ADVANCES IN INFORMATION SECURITY

Malware
Detection

Edited by
Mihai Christodorescu
Somesh Jha
Douglas Maughan
Dawn Song
Cliff Wang

Malware Detection

Advances in Information Security

Sushil Jajodia
Consulting Editor
Center for Secure Information Systems
George Mason University
Fairfax, VA 22030-4444
email: jajodia @ gmu.edu

The goals of the Springer International Series on ADVANCES IN INFORMATION
SECURITY are, one, to establish the state of the art of, and set the course for future research
in information security and, two, to serve as a central reference source for advanced and
timely topics in information security research and development. The scope of this series
includes all aspects of computer and network security and related areas such as fault tolerance
and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive
overviews of specific topics in information security, as well as works that are larger in scope
or that contain more detailed background information than can be accommodated in shorter
survey articles. The series also serves as a forum for topics that may not have reached a level
of maturity to warrant a comprehensive textbook treatment.

Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with
ideas for books under this series.

Additional titles in the series:

ELECTRONIC POSTAGE SYSTEMS: Technology, Security, Economics by Gerrit
Bleumer; ISBN: 978-0-387-29313-2

MULTIVARIATE PUBLIC KEY CRYPTOSYSTEMS by Jintai Ding, Jason E. Gower
and Dieter Schmidt; ISBN-13; 978-0-378-32229-2

UNDERSTANDING INTRUSION DETECTION THROUGH VISUALIZATION by
Stefan Axelsson; ISBN-10: 0-387-27634-3

QUALITY OF PROTECTION: Security Measurements and Metrics by Dieter Gollmann,
Fabio Massacci and Artsiom Yautsiukhin; ISBN-10: 0-387-29016-8

COMPUTER VIRUSES AND MALWARE by John Aycock; ISBN-10: 0-387-30236-0
HOP INTEGRITY IN THE INTERNET by Chin-Tser Huang and Mohamed G. Gouda;
ISBN-10: 0-387-22426-3

CRYPTOGRAPHICS: Exploiting Graphics Cards For Security by Debra Cook and
Angelos Keromytis; ISBN: 0-387-34189-7

PRIVACY PRESERVING DATA MINING by Jaideep Vaidya, Chris Clifton and Michael
Zhu; ISBN-10: 0-387- 25886-8

BIOMETRIC USER AUTHENTICATION FOR IT SECURITY: From Fundamentals to
Handwriting by Claus Vielhauer; ISBN-10: 0-387-26194-X

IMPACTS AND RISK ASSESSMENT OF TECHNOLOGY FOR INTERNET
SECURITY:Enabled Information Small-Medium Enterprises (TEISMES) by Charles A.
Shoniregun; ISBN-10: 0-387-24343-7

SECURITY IN E-LEARNING by Edgar R. Weippl; ISBN: 0-387-24341-0

IMAGE AND VIDEO ENCRYPTION: From Digital Rights Management to Secured
Personal Communication by Andreas Uhl and Andreas Pommer; ISBN: 0-387-23402-0

Additional information about this series can be obtained from
http://www.springer.com

Malware Detection

edited by

Mihai Christodorescu

Somesh Jha
University of Wisconsin, USA

Douglas Maughan
Department of Homeland Security, USA

Dawn Song
Carnegie Mellon University, USA

Cliff Wang
Army Research Office, USA

@ Springer

Mihai Christodorescu Somesh Jha
Computer Sciences Department Computer Sciences Department

University of Wisconsin University of Wisconsin
1210 W Dayton St 1210 W Dayton St
Madison, WI 53706-1685 Madison, WI 53706-1685
mihai @cs.wisc.edu jha@cs.wisc.edu

Douglas Maughan Dawn Song

Dept. of Homeland Security CIC 2122

Washington, D.C. 20528 Carnegie Mellon University
Douglas.Maughan @dhs.gov 4720 Forbes Ave

Pittsburgh, PA 15213
dawnsong @cmu.edu

Cliff Wang

Computing and Information Science Div.
U.S. Army Research Office

P.O. Box 12211

Research Triangle Park, NC 27709-2211
cliff. wang @us.army.mil

Library of Congress Control Number: 2006933728

Malware Detection edited by Mihai Christodorescu, Somesh Jha, Douglas Maughan,
Dawn Song, and Cliff Wang

ISBN-10: 0-387-32720-7
ISBN-13: 978-0-387-32720-4
¢-ISBN-10: 0-387-44599-4
e-ISBN-13: 978-0-387-44599-1

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LI.C.

All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.
987654321

springer.com

Preface

Malicious programs present an increasing threat to the privacy of sensitive data and
the availability of critical services. As Internet connectivity exploded and online ser-
vices have become omnipresent, malware has targeted all aspects of the cyberworld.
Driven by profit, malware authors have sharpened their skills to attack all online
services, from banking to social networking to instant messaging, with increased
frequency and sophistication. }

This book captures recent advances in the defense against all types of threats,
and the chapters reflect a diversity of defensive techniques. Chapter 1 presents a
detailed view of the threat landscape and analyzes the malware trends. The remaining
chapters are organized into themes corresponding to the various malware threats.

Chapters 2-5 present techniques for analyzing existing programs to determine
their trustworthiness, as well as techniques for armoring programs against remote at-
tacks. Chapter 2 introduces robust approaches to the disassembly and static analysis
of obfuscated binaries, including obfuscated malware, while Chapter 3 describes a
static analysis to recover high-level variables and data structures from binaries. Tech-
niques that characterize the behavioral and structural properties of binary code are
used to generate semantically-rich descriptions of malware in Chapter 4. New ap-
proaches for the detection and prevention of SQL injection attacks against database-
driven web applications are presented in Chapter 5.

The second part of the book (chapters 6-9) tackles the problem of distributed
threats and the challenge of distributed detection. Network containment of worms
(Chapter 6) complements the host-based self-healing architecture of Sting (Chap-
ter 7) to provide end-to-end defenses against fast Internet-scale worm attacks. Chap-
ter 8 presents the inner workings of botnets, the large networks of infected hosts
under the control of a remote attacker. Chapter 9 analyzes the benefits of cooperation
between network-based and host-based intrusion detectors and provides practical
guidelines for obtaining the maximum detection rate out of a cooperative setup.

Targeted and stealthy threats meet their match in Chapters 10 and 11. Shadow
honeypots in Chapter 10 combine the power of anomaly detectors with the preci-
sion of honeypots to detect targeted attacks. Statistical methods for binary content
analysis are then used in Chapter 11 to detect malware hiding in document files.

VI Preface

The last part of the book presents new techniques for constructing trustworthy
services and applications from the ground up. Pioneer in Chapter 12 can verify the
correct execution of a program on an untrusted remote host. Chapter 13 explains
the principles of secure information flow analysis, with the goal of proving that a
program does not leak sensitive information.

We are grateful to the authors appearing in this edited volume for their contribu-
tions to the field of malware detection, in all of its aspects, and for striving to make
the Internet a safer, more trustworthy place.

Mihai Christodorescu
Somesh Jha

Douglas Maughan
Dawn Song

Cliff Wang

Contents

Part I Overview

1 Malware Evolution: A Snapshot of Threats and Countermeasures in
2005
Brian Witten, Carey Nachenbergcoi i, 3

Part II Software Analysis and Assurance

2 Static Disassembly and Code Analysis
Giovanni VIGna e s 19

3 A Next-Generation Platform for Analyzing Executables
Thomas Reps, Gogul Balakrishnan, Junghee Lim, Tim Teitelbaum 43

4 Behavioral and Structural Properties of Malicious Code
Christopher Kruegel i 63

5 Detection and Prevention of SQL Injection Attacks
William G.J. Halfond, Alessandro Orsoc.coiuuiuiuniiinina. 85

Part III Distributed Threat Detection and Defense

6 Very Fast Containment of Scanning Worms, Revisited
Nicholas Weaver, Stuart Staniford, Vern Paxson 113

7 Sting: An End-to-End Self-Healing System for Defending against
Internet Worms
David Brumley, James Newsome, Dawn Song, 147

8 An Inside Look at Botnets
Paul Barford, Vinod Yegneswaran c.oiiiiiiiiiiiiiiiin. 171

VIII Contents

9 Can Cooperative Intrusion Detectors Challenge the Base-Rate
Fallacy?

Mihai Christodorescu, Shai Rubin i,

Part IV Stealthy and Targeted Threat Detection and Defense

10 Composite Hybrid Techniques For Defending Against Targeted
Attacks

Stelios Sidiroglou, Angelos D. Keromytiso ..

11 Towards Stealthy Malware Detection

Salvatore J. Stolfo, Ke Wang, Wei-Jen Li

Part V Novel Techniques for Constructing Trustworthy Services

12 Pioneer: Verifying Code Integrity and Enforcing Untampered Code
Execution on Legacy Systems
Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, Pradeep

Khosla e e e,

13 Principles of Secure Information Flow Analysis

Geoffrey Smith e

Introduction

Shared resources, such as the Internet, have created a highly interconnected cyber-
infrastructure. Critical infrastructures in domains such as medical, power, telecom-
munications, and finance are highly dependent on information systems. These two
factors have exposed our critical infrastructures to malicious attacks and accidental
failures. Disruption of services caused by such undesirable events can have catas-
trophic effects, including loss of human life, disruption of essential services, and
huge financial losses. For example, the outbreak of the CodeRed virus infected more
than 359, 000 hosts, resulting in financial losses of approximately 2.6 billion dol-
lars [10]. Given the devastating effect malicious code can have on our cyber infras-
tructure, identifying and containing malicious programs is an important goal.

A malware is a program that has malicious intent. Examples of malware are
viruses, trojans, and worms. Malware is usually classified [9] according to its propa-
gation method and goal into the following categories:

e viruses are programs that self-replicate within a host by attaching themselves to
programs and/or documents that become carriers of the malicious code;
worms self-replicate across a network;
trojan horses masquerade as useful programs, but contain malicious code to at-
tack the system or leak data;

e back doors open the system to external entities by subverting the local security
policies to allow remote access and control over a network;

e spyware is a useful software package that also transmits private user data to an
external entity.

A malware detector is a system that attempts to identify malware. A virus scanner
uses signatures and other heuristics to identify malware, and thus is an example of
a malware detector. Given the havoc that can be caused by malware [4], malware
detection is an important goal.

The goal of an malware writer (hacker) is to modify or morph their malware to
evade detection by a malware detector. A common technique used by malware writ-
ers for evading detection is program obfuscation [11]. Polymorphism and metamor-
phism are two common obfuscation techniques used by malware writers. In order

X Introduction

to evade detection, a virus morphs itself by encrypting its malicious payload and
decrypting it during execution. A polymorphic virus obfuscates its decryption loop
using several transformations, such as nop-insertion, code transposition (changing
the order of instructions and placing jump instructions to maintain the original se-
mantics), and register reassignment (permuting the register allocation). Metamorphic
viruses attempt to evade detection by obfuscating the entire virus. When they repli-
cate, these viruses change their code in a variety of ways, such as code transposition,
substitution of equivalent instruction sequences, change of conditional jumps, and
register reassignment [8, 12, 13].

Addition of new behaviors to existing malware is another favorite technique
used by malware writers. For example, the Sobig.A through Sobig.F worm variants
(widespread during the summer of 2003) were developed iteratively, with each suc-
cessive iteration adding or changing small features [S, 6, 7]. Each new variant man-
ages to evade detection either through the use of obfuscations or through adding more
behavior. The recent recurrence of the Netsky and Beagle worms (both active in the
first half of 2004) are also examples of how adding new code or changing existing
code creates new undetectable and more malicious variants [2, 3]. For example, the
Beagle worm shows a series of “upgrades” from version A to version C that include
the addition of a backdoor, code to disable local security mechanisms, and function-
ality to better hide the worm within existing processes. A quote from [3] summarizes
the challenges worm families pose to malware detectors:

Arguably the most striking aspect of Beagle is the dedication of the au-
thor or authors to refining the code. New pieces are tested, perfected, and
then deployed with great forethought as to how to evade antivirus scanners
and how to defeat network edge protection devices.

Commercial malware detectors (such as virus scanners) use a simple pattern
matching approach to malware detection, i.e., a program is declared as malware if it
contains a sequence of instructions that is matched by a regular expression. A recent
study demonstrated that such malware detectors can be easily defeated using simple
program obfuscations [1], which are already being used by hackers. The basic defi-
ciency in the “pattern matching” approach to malware detection is that they ignore
the semantics of instructions. Since the pattern-matching algorithm is not very re-
silient to slight variations, these malware detectors have to use different patterns for
detecting two malware that are slight variations of each other. This is the reason that
the signature database of a commercial virus scanner has to be updated frequently.
The paper by Christodorescu and Jha [1] demonstrates that in the field of malware
detection a fundamental shift in direction is required. If malware detectors keep re-
lying on simple techniques (such as pattern matching), they are bound to fall behind
in the “arms race”.

In order to address these challenges in malware detection, a workshop on Mal-
ware Detection was held on August 10-11, 2005 at SRI International, Arlington,

Introduction X1

Virginia.! The workshop was co-sponsored by the Army Research Office (ARO) and
Department of Homeland Security (DHS). Several experts in the field of malware
detection attended the workshop. Presentations covered various topics, such static
analysis, distributed threat detection, and novel techniques for building trustworthy
services. The papers in this edited volume represent the cutting edge techniques in
detection malware.

References

1. M. Christodorescu and S. Jha. Testing malware detectors. In Proceedings of the ACM

bt

10.

11.

12.

13.

1

SIGSOFT International Symposium on Software Testing and Analysis 2004 (ISSTA’04),
pages 34-44, Boston, MA, USA, July 2004. ACM Press.

M. Ciubotariu. Netsky: a conflict starter? Virus Bulletin, pages 4-8, May 2004.

J. Gordon. Lessons from virus developers: The Beagle worm history through april 24,
2004. In SecurityFocus Guest Feature Forum. SecurityFocus, May 2004. Published on-
lineathttp://www.securityfocus.com/guest/24228. Last accessed: 9 Sep.
2004.

L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson. 2004 CSI/FBI computer
crime and security survey. Technical report, Computer Security Institute, 2004,

LURHQ Threat Intelligence Group. Sobig.a and the spam you received today. Techni-
cal report, LURHQ, 2003. Published online at http://www.lurhqg.com/sobig.
html. Last accessed on 16 Jan. 2004,

LURHQ Threat Intelligence Group. Sobig.e - Evolution of the worm. Technical report,
LURHQ, 2003. Published online at http://www.lurhqg.com/sobig~e.html.
Last accessed on 16 Jan. 2004.

. LURHQ Threat Intelligence Group. Sobig.f examined. Technical report, LURHQ, 2003.

Published online at http://www.lurhg.com/sobig-f.html. Last accessed on
16 Jan. 2004.

. A. Marinescu. Russian doll. Virus Bulletin, pages 7-9, Aug. 2003.
. G. McGraw and G. Morrisett. Attacking malicious code: report to the Infosec research

council. I[EEE Software, 17(5):33 — 41, Sept./Oct. 2000.

D. Moore, C. Shannon, and J. Brown. Code-Red: a case study on the spread and victims of
an internet worm. In Proceedings ot the Internet Measurement Workshop 2002, Marseille,
France, November 6-8 2002.

C. Nachenberg. Computer virus-antivirus coevolution. Commun. ACM, 40(1):46-51, Jan.
1997.

P. Szor and P. Ferrie. Hunting for metamorphic. In Proceedings of the 2001 Virus Bulletin
Conference (VB2001), pages 123 — 144, September 2001.

z0mbie. zOmbie’s homepage. Published online at http://z0mbie.host.sk. Last
accessed: 16 Jan. 2004.

Details about the workshop can be found at

http://www.cs.wisc.edu/malwareworkshop2005/.

Part 1

Overview

1

Malware Evolution: A Snapshot of Threats and
Countermeasures in 2005

Brian Witten and Carey Nachenberg

! Symantec Corporation, 12801 Worldgate Drive, Suite 800, Herndon, VA
20170

bwitten@symantec.com

z Symantec Corporation, 2500 Broadway, Suite 200, Santa Monica, CA
90404

cnachenberg@symantec.com

1.1 Overview

Speed, stealth, and purpose of malware [1] threats and countermeasures are
evolving quickly. This chapter describes these three facets of current mal-
ware threats, and describes a few countermeasures emerging to better ad-
dress such threats.

1.2 Evolution of Threats

Defenders currently have a much smaller window from discovery of a
vulnerability to release of malware exploiting that vulnerability. Further, a
number of malware threats released within the last five years have been
effectively designed to propagate far faster than threats released in previous
periods. Yet more disconcerting, malware authors and distributors are in-
creasingly focused on collection of private and directly valuable informa-
tion, both in spyware [2] and other forms of malware, and they have a
growing number of techniques for hiding themselves.

4 Brian Witten and Carey Nachenberg

1.2.1 Evolution of Threat Speed

The average time between announcement of a computer system security
flaw and appearance of malicious code that takes advantage of the flaw
declined from 281 days in 1999 to 10 days in 2004 [15]. Recent threats are
also faster in propagation rate. By way of example, on January 25, 2003 an
SQL based worm commonly referred to as Slammer [18] infected 90% of
vulnerable servers within the first 10 minutes of propagation [37]. Similarly,
on July 19, 2001 in less than 14 hours more than 359,000 computers were
infected with a variant of the Code-Red worm [32]. In contrast, the Morris
Worm of 1988 [6] spread over the course of days [26]. Given that the cur-
rent average time between the disclosure of a vulnerability and the release of
an associated exploit is 6 days, and that the average patch-release time is 54
days [44], patching is largely ineffective against new threats.

1.2.2 Evolution of Threat Purpose

Malicious code for profit remains on the rise [44], as are spyware and other
threats to confidential information. Between January 1 and June 30, 2005,
malicious code that exposed confidential information represented 74% of
the top 50 malicious code samples reported to Symantec, up from 54%
during the previous six months [44], and 44% between January 1 and June
30, 2004 [43]. Spyware is now among the most pervasive and fastest
growing forms of malware. In a recent study by NCSA and AOL, 80% of
systems scanned were infected by spyware [12]. Even by conservative
standards of cataloging spyware, Symantec now lists 221 families of spy-
ware that have appeared in and since 2003 [7]. To contrast the spyware
threat with viruses and worms, although thousands of variants of viruses and
worms are found each quarter, only 830 families of viruses and worms were
discovered between January 1, 2003 and June 30, 2005 [44]. In short, al-
though anti-spyware offerings did not appear until 2000 [8], the rate at
which new families of spyware are being created is now nearing the rate at
which new viruses are being created. Moreover, by laying in waiting at well
advertised sites and bundling itself with desirable downloads such as
Browser Helper Objects, and other software that users intentionally or un-
intentionally download, it’s easier to broadcast some forms spyware to very
broad distributions of victims immediately, rather than waiting through the
first portion of s-shaped infection growth curves experienced by viruses and
worms. Given these propagation vectors and threat speeds described above,
along with the number of unprotected systems and systems that update their
defenses infrequently, malware authors have succeeded in compromising

1 Malware Evolution: Snapshot of Threats and Countermeasures in 2005 5

countless systems. In fact, police recently arrested three people accused of
compromising 100,000 systems [21]. Moreover, given the changing mo-
tives described above, it is very common to establish a persistent presence
called a “bot” on such compromised machines for financial gain. Once such
a bot is installed, its owner can steal confidential information, use the ma-
chine for spam distribution, falsely increasing hit rates on advertisements to
increase hit rate-based ad revenue, or simply sell the bot to others for such
illicit uses. We recently reported evidence of underground selling of bot
networks and reported identifying an average of over 10,000 bots per day
over a six month period [44].

1.2.3 Evolution of Threat Stealth

Such financial motives give direct financial value to the ability to hide a
persistent presence to prevent detection. Rootkits [9] are among the tools
which malware may use to persistently hide itself as well as installed bots.
This is a growing area of interest for malware authors, and several tech-
niques have recently been published showing how to more effectively hide
persistent malware from detection by security software [10, 41]. Further, as
the number of variants of viruses and worms continues to nearly double
every six months [44], the risk of previously unseen malware evading de-
tection continues to increase substantially each quarter. Moreover, as the
number of vulnerabilities continues to grow so does the risk that someone
might quietly and non-publicly find a new, unpublished vulnerability and
create malware exploiting the vulnerability on large scale before most de-
fenders are able to find and mitigate the vulnerability. Last, as defenses and
detection schemes have evolved to better protect operating systems and
standard services, many malware authors have focused their attention on
higher level web applications where fewer defenses have existed histori-
cally, resulting in a countless number of incidents with sweeping loss of
privacy [31, 45].

1.3 Evolution of Countermeasures

This section describes a sampling of recently emerging countermeasures for
fast spreading and previously unseen threats, as well as spyware. Since
emergence of fast spreading threats such as Slammer and Code Red, tech-
niques and technologies have emerged to better mitigate risks from such fast
spreading threats. Various forms of rate-limiting, such as Virus Throt-
tling [50], were among early countermeasures proposed to slow such rapid

6 Brian Witten and Carey Nachenberg

and potentially entirely-unknown threats. Other countermeasures, however,
don’t merely slow the threat but rather completely block previously unseen
threats from actually infecting protected machines. Given the strong indus-
try emphasis on signature-based detection for intrusion detection and
anti-virus, malware authors and distributors have found great value in lev-
eraging previously unseen threats to evade detection. For this reason, pro-
active approaches will grow to be an increasingly important tool in the se-
curity arsenal. However, broadening and generalizing protection against
many classes of previously unseen threats is not sufficient for all threats.
More and more spyware threats are employing self-updating to add func-
tionality and change their signature faster than security vendors can respond
with traditional techniques; moreover, they have distribution vectors that
are vastly different from traditional malware, Thus, security firms are hav-
ing to devote substantial effort addressing these unique behaviors, including
building farms of spyware to rapidly harvest new spyware variants as they
update themselves. Further, when threats such as rootkits, which are be-
coming increasingly stealthy in establishing and maintaining covert and
persistent presence, are coupled with either a previously unseen threat or the
exceptionally broad distribution vectors of spyware, the result is a blended
threat that is exceedingly difficult to detect at time of compromise, and can
be exceedingly difficult to detect and remove after compromise. For these
reasons, the next sections focus on countermeasures for previously unseen
malware threats in general, then specific attention to countermeasures for
rootkits and spyware.

1.3.1 Countermeasures for Previously Unseen Threats

Countermeasures for previously unseen threats are addressed below first for
detecting previously unseen threats against already known vulnerabilities
and identifying previously unknown vulnerabilities, and then for detecting
previously unseen threats without foreknowledge of the vulnerability.

Blocking Previously Unseen Threats Against Already Known Vulnerabilities

Techniques such as Generic Exploit Blocking (GEB) [33] and Microsoft’s
Shield effort [47] were conceived to provide protection against previously
unseen threats. These techniques use analysis of a known vulnerability to
produce a signature that is not specific to any single instance of malware
exploiting the vulnerability. Thus, such a properly written signature can
properly detect all potential attacks against a given vulnerability. This is in
contrast with traditional antivirus and IDS heuristics which may be able to

1 Malware Evolution: Snapshot of Threats and Countermeasures in 2005 7

detect a percentage of new threats, but cannot guarantee complete detection.
However, these approaches include a number of challenges in implementa-
tion, including the following three challenges.

- First, the signatures must be specified in a language and processed by a
scanning engine that facilitate “performant” scanning, either in the
sense of high line-speeds, as is the constraint for traditional intrusion
detection and network level anti-virus systems, or in the sense of low
CPU burden.

- Second, the system must maintain low false positives while producing
high true positives.

- Third, even though these approaches do not require prior knowledge of
the malware, they still require prior knowledge of the vulnerability.
The luxury of that prior knowledge is not always available.

The next two sections describe techniques for identifying previously

unknown vulnerabilities, and techniques for detecting previously unseen
threats without the luxury of knowledge of the vulnerability.

Identifying Previously Unknown Vulnerabilities

Given that the above techniques rely on prior knowledge of vulnerabilities,
they would be substantially more valuable if it was possible to better iden-
tify vulnerabilities in software before malware was created to exploit those
vulnerabilities. A form of random test case generation known as Fuzzing [5]
is among the most common techniques for finding vulnerabilities. More
recently, static analysis of the target software itself has been used to intel-
ligently generate test cases more efficiently identifying vulnerabilities likely
to exist near corner cases in target software execution [16, 23]. Although
these techniques currently require source code, substantial progress has
been made in extracting models from executable code for model checking
and other static analysis without source code [13, 14]. However, in dis-
cussing static analysis of binaries, it is important to note that such tools can
be used very effectively by creators of malware just as easily as they can be
used by the security community [30].

Identifying Previously Unseen Threats without Prior Knowledge of
Vulnerabilities

In this section we describe several emerging techniques that do not require
prior knowledge of vulnerabilities for identifying previously unseen threats.
These techniques include behavior based techniques, honeypots, anomaly
detection, fault analysis, and correlation. Dynamic analysis of program
behavior within a host is not new [11]. Behavior analysis was extended with

8 Brian Witten and Carey Nachenberg

various forms of anomaly detection [25] to improve generalization to pre-
viously unseen attacks while reducing false positives. However, some of
these techniques are vulnerable to evasion [30]. More recent techniques
include:

Model Extraction:
- Machine learning of packet payload statistical profiles to model nor-
mality for anomaly correlation
- Machine learning of state models of run-time behavior to detect
run-time deviation from model
- Using static analysis to extract models for run-time monitors that de-
tect deviation from model

Automated Signature Inference, extracting signatures:

- From static samples in controlled environments

- From taint analysis of fault inducing inputs in production systems

- From correlation of fault inducing inputs in production systems

- From analysis of fault inducing inputs in honeypots shadowing pro-
duction systems

- Via correlation for longest common byte sequences in honeypot traffic
and other inputs given above

- Via correlation for trees of token subsequences to reduce false posi-
tives

Model Extraction

Having a model of how a system should behave can be helpful in detecting
new threats that cause misbehavior. Even if there is no prior knowledge of
the threat, such models make detection of the misbehavior possible, therein
facilitating potential remedies.

One approach for modeling how a system should behave involves
learning the statistical composition of traffic coming and going from a
system. With such statistical models, anomalies are detectable, and it may
even be possible to correlate commonality between anomalies occurring at a
distributed set of sites [48].

For stateful systems, including many software applications that query
database systems, it is possible to build more precise models of normal
behavior by modeling the behavior in terms of state machines. This works
best when a full set of normal queries can be learned quickly so that after
such a learning period, the system can alert on any anomalies in different
fields of queries via statistical approaches without intolerable false posi-

1 Malware Evolution: Snapshot of Threats and Countermeasures in 2005 9

tives. Recent progress demonstrated this possible for at least one web based
database application [46].

However, not all anomalies are misbehaviors. Since some rare and
anomalous behaviors are legitimate behaviors, there are advantages in ap-
plying static analysis to the software to build a model of how the software
should behave, and detecting deviations from such models [24].

Automated Signature Inference

Once a new, previously unseen threat is detected, extracting a signature of
that threat and disseminating that signature to others may help others better
protect themselves. Of course, automated signature extraction is not new in
controlled environments [27], and there has been tremendous progress re-
cently in automated signature extraction in the “wild” of less controlled
environments such as production systems, honeypots, and other threat col-
lection systems.

One technique for automatically extracting signatures from production
systems leverages analysis of fault inducing inputs. By using tainting, it is
possible to trace backwards from a fault to the fault inducing input [35].

Similarly, without runtime tracing, it is possible to capture the set of in-
puts preceding a fault or disallowed state, and send those inputs to other
parties for correlation with other inputs preceding and not preceding
faults [19].

Moreover, a third approach to fault handling leverages parallel execution
of inputs on production systems and more controlled systems to provide the
ability to not only detect previously unseen threats, but to dynamically
generate and dynamically apply curative patches and allow the system to
continue operation despite receipt of what would have been fault inducing
input [38, 39]. In this model, the more controlled system, is a honeypot
shadowing the production system. The honeypot executes the inputs first,
and if a fault occurs, an overarching control system attempts to mutate the
executable around the region of the fault to produce a variant of the ex-
ecutable that does not fault on the input. Once such a curative patch is
generated and applied to the production system, the production system is
allowed to process the input which caused the fault in the controlled system
but does not cause faults in the dynamically patched system.

Automated signature extraction has also been developed for less con-
trolled honeypot environments to function without requiring either faults as
triggers or production systems to shadow. One version of this approach
works by using longest common sequences in message exchanges [28].

Such techniques have been improved in systems such as Polygraph by
using trees of token sequences to reduce false positives [34]. Moreover,

10 Brian Witten and Carey Nachenberg

such techniques have been further improved in a similar system, Earlybird,
to support processing traffic at speeds up to 200 Mbps [40]. More recently, a
similar system, “DACODA” demonstrated detection of more than a dozen
worms, with no prior knowledge of the worms and no false positives over a
six month period [20]. Maintaining negligible false positives is critical since
preventing threats so rapidly propagating as Warhol Worms [42] requires
both rapid signature inference and rapid blocking, and system owners and
operators have little tolerance for blockage of legitimate traffic. Regrettably
though, DACODA does not have the line speed scalability of Earlybird.

1.3.2 Countermeasures for Rootkit Detection

As described in the “Evolution of Threats,” above, malware authors and
distributors currently have many vectors for establishing access to a system,
and direct financial motives for establishing and maintaining undetected
persistent presence on compromised systems, effectively hiding themselves
indefinitely. Recently, some techniques have begun to emerge for detecting
the stealth threats by searching for side effects of the stealthing mechanism
(e.g. changes made to various operating system structures, checking for
unusual hooks in the operating system kernel, etc.). One technique uses
static analysis of the operating system to identify critical regions of memory
and valid values for those regions, and provides those results to a run time
kernel integrity monitor [22, 36]. Another technique uses static analysis to
construct a model of a module’s programmed behavior to determine at load
time whether or not the module will behave like a rootkit at runtime [29].
Though not mentioned by the authors, similar techniques may also have
utility in detection and classification of spyware. '

1.3.3 Countermeasures for Spyware

However, spyware also requires technologies orthogonal to load time
analysis, categorization, and run time rootkit detection. Perhaps most im-
portantly, the rate of spyware evolution, the rate of spyware distribution,
and the means of spyware distribution broadcast from thousands to millions
of websites to countless unsuspecting users, practically all require the se-
curity industry to more actively seek out these threats on the internet. Such
techniques have been proposed and implemented by Microsoft [49], We-
bRoot [3], and others. Moreover, spyware defenses are now in or entering
the market as either standalone offerings, or as offerings integrated with
anti-virus and other product offerings.

1 Malware Evolution: Snapshot of Threats and Countermeasures in 2005 11

1.4 Summary

The speed, stealth, and purpose of malware are evolving rapidly. Over re-
cent years, substantial technology has emerged to help mitigate risks of fast
spreading threats, and a variety of technologies have emerged to begin to
help mitigate risks from previously unseen threats. However, malware is
becoming both increasingly stealthy, and increasingly malicious in the
sense of collection of private and directly valuable personal information.
Gone are the relatively innocent glory days where fame and infamy were
primary motivators behind construction of most malware seen. We’ve now
entered the era where malicious collection of private and directly valuable
personal information from unsuspecting users is a billion dollar [4] illicit
industry.

References

1. http://en.wikipedia.org/wiki/Malware

2. http://en.wikipedia.org/wiki/Malware#Spyware

3. http://www.webroot.com/resources/phileas/

4. http://www.gartner.com/DisplayDocument?doc_cd=120804

5. fip://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf

6. http://en.wikipedia.org/wiki/Morris_worm

7. http://securityresponse.symantec.com/avcenter/expanded_threats/spyw

are/index.html

8. http://en.wikipedia.org/wiki/Spyware

9. http://en.wikipedia.org/wiki/Rootkit

10. http://cme.mitre.org/data/list.html#589

11. http://en.wikipedia.org/wiki/Host-based_intrusion_detection_system

12. AOL/NCSA Online Safety Study, Conducted by America Online and
the National Cyber Security Alliance, October 2004,
http://www.staysafeonline.info/pdf/safety study v04.pdf

13. G. Balakrishnan, et. al, “Model checking x86 executables with Code-
Surfer/x86 and WPDS++,” (tool-demonstration paper). In Proc. Com-
puter-Aided Verification, 2005.
http://www.cs.wisc.edu/wpis/papers/CAV05-tool-demo.pdf

14. G. Balakrishnan, et. al, “WYSINWYX: What You See Is Not What You
eXecute.” To appear in Proc. IFIP Working Conference on Verified
Software: Theories, Tools, Experiments, Zurich, Switzerland, Oct.
10-13, 2005. http://www.cs.wisc.edu/wpis/papers/wysinwyx05.pdf

12

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Brian Witten and Carey Nachenberg

D. Bank, “Computer Worm Is Turning Faster,” The Wall Street Journal,
May 27, 2004.

C. Cadar and D. Engler, “Execution Generated Test Cases: How to
Make Systems Code Crash Ttself,” CSTR-2005-04,
http://www stanford.edu/~engler/cstr-3.25.5.pdf

CAN-2003-0533

CERT® Advisory CA-2003-04 MS-SQL Server Worm;
http://www.cert.org/advisories/CA-2003-04.html

M. Costa, et. al, “Vigilante: End-to-End Containment of Internet
Worms,” ACM SIGOPS Operating Systems Review, Volume 39, Issue
5 (December 2005),
http://research.microsoft.com/~manuelc/MS/VigilanteSOSP.pdf

J. Crandall, et. al, “On Deriving Unknown Vulnerabilities from Zero-
Day Polymorphic and Metamorphic Worm Exploits,” 12th ACM
Conference on Computer and Communications Security (CCS).
Alexandria, Virginia. November 2005,
http://wwwecsif.cs.ucdavis.edu/~crandall/ccsdacoda.pdf

J. Evers, “Dutch police nab suspected 'bot herders,” CNET, October 7,
2005, 3:41 PM PDT

T. Fraser, “Automatic Discovery of Integrity Constraints in Binary
Kernel Modules,” UMIACS TR-2005-02, December 2004,
http://www.missl.cs.umd.edu/~tfraser/TRs/fraser-copilot-contig.pdf

P. Godefroid, et. al, “DART: Directed Automated Random Testing,” to
appear in PLDIOS,
http://cm.bell-labs.com/who/god/public_psfiles/pldi2005.pdf

W. Halfond and A. Orso, “AMNESIJA: Analysis and Monitoring for
NEutralizing SQLInjection Attacks,”
http://www.cc.gatech.edu/grads/w/whalfond/papers/halfond.orso.ASE

05.pdf

S. A. Hofmeyr, et. al, “Intrusion Detection using Sequences of System
Calls,” Journal of Computer Security Vol. 6, pp. 151-180 (1998).
http://cs.unm.edu/~forrest/publications/int_decssc.pdf

M. W. Jon and J. A. Rochlis, “With Microscope and Tweezers: An
Analysis of the Internet Virus of November 1988,”
http://web.mit.edu/eichin/www/virus/main.html

J. O. Kephart and W. C. Arnold, “Automatic Extraction of Computer
Virus Signatures,”In Proceedings of teh 4th Virus Bulletin International
Conference, R. Ford, ed., Virus Bulletin Ltd., Abingdon, England,
1994, pp. 178-184,
http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94
html

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

1 Malware Evolution: Snapshot of Threats and Countermeasures in 2005 13

C. Kreibich and J. Crowcroft, “Honeycomb: Creating Intrusion Detec-
tion Signatures Using Honeypots,” In Proceedings of the
USENIX/ACM Workshop on Hot Topics in Networking, Nov. 2003.
http://citeseer.ist.psu.edu/cache/papers/cs/30348/http:zSzzSznms.lcs.m
it.eduzSzHotNets-11zSzpaperszSzhoneycomb.pdf/kreibich03honeycom
b.pdf

C. Kruegel, et. al, “Detecting Kernel-Level Rootkits Through Binary
Analysis,” Proceedings of the Annual Computer Security Applications
Conference (ACSAC) 91-100 Tucson, AZ December 2004,
http://www.cs.ucsb.edu/~vigna/publications.html

C. Kruegel, et. al, “Automating Mimicry Attacks Using Static Binary
Analysis,” Proceedings of the USENIX Security Symposium Balti-
more, MD August 2005,
http://www .cs.ucsb.edu/~vigna/pub/2005_kruegel kirda robertson m
utz_vigna USENIXO05.pdf

L. Mearian, “System break-in nets hackers 8 million credit card num-
bers,” COMPUTERWORLD, February 24, 2003,
http://www.computerworld.com/securitytopics/security/story/0,10801,
78747,00.html

D. Moore and C. Shannon, “The Spread of the Code-Red Worm
(CRv2),”
http://www.caida.org/analysis/security/code-red/coderedv2_analysis.x
ml

C. Nachenberg, “Generic Exploit Blocking,” Virus Bulletin, February,
2005

J. Newsome, et. al, “Automatically Generating Signatures for Poly-
morphic Worms,” in the Proceedings of the IEEE Symposium on Se-
curity and Privacy (Oakland 2005), Oakland, CA, May, 2005.
http://www.cs.ucl.ac.uk/staff/B.Karp/poly graph-oakland2005.pdf

J. Newsome and D. Song, “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Com-
modity Software,” In Proceedings of the 12th Annual Network and
Distributed System Security Symposium (NDSS *05), February 2005.
http://www.ece.cmu.edu/~jnewsome/docs/taintcheck.pdf

N. L. Petroni, Jr., et. al, “Copilot - a Coprocessor-based Kernel Runtime
Integrity Monitor,” 13th Usenix Security Symposium 2004,
http://www jesusmolina.com/docs/copilot.pdf

J. Roculan, et. al, “DeepSight™ Threat Management System Threat
Analysis: SQLExp SQL Server Worm,”
http://securityresponse.symantec.com/avcenter/ Analysis-SQLExp.pdf,
January 25, 2003

14

38

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Brian Witten and Carey Nachenberg

. S. Sidiroglou, et. al, “An EmailWorm Vaccine Architecture,” In Pro-
ceedings of the 1st Information Security Practice and Experience Con-
ference (ISPEC), pp. 97 - 108. April 2005, Singapore.
http://www1.cs.columbia.edu/~angelos/Papers/2005/email-worm.pdf
S. Sidiroglou and A. Keromytis, “Countering Network Worms Through
Automatic Patch Generation,” In IEEE Security & Privacy, vol. 3, no. 6,
Pp- 52 - 60, November/December 2005,
http://www]1.cs.columbia.edu/~angelos/Papers/2005/j6ker3.pdf

S. Singh, “Automated Worm Fingerprinting,” Proceedings of the
ACM/USENIX Symposium on Operating System Design and Imple-
mentation, San Francisco, CA, December 2004.
http://www.cs.ucsd.edu/~savage/papers/OSDI04.pdf

S. Sparks and J. Butler, “Shadow Walker - Raising The Bar For Rootkit
Detection,” DefCon 13, July 29-31, 2005,
http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butle
r.pdf

S. Staniford, et. al, “How to Own the Internet in Your Spare Time,”
Proceedings of the 11th USENIX Security Symposium (Security '02)
http://www.cs.berkeley.edu/~nweaver/cdc.web/cdc.web.pdf

Symantec Internet Security Threat Report, Volume VII, Published
March 2005

Symantec Internet Security Threat Report, Volume VIII, Published
September 2005

J. Swartz, “40 million credit card holders may be at risk,” USA
TODAY, June 19, 2005,
http://www.usatoday.com/money/perfi/general/2005-06-19-breach-usa
t x.htm

F. Valeur, et. al, “A Learning-Based Approach to the Detection of SQL
Attacks,”Proceedings of the Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA) Vienna, Austria July
2005, http://www.cs.ucsb.edu/~vigna/publications.html

H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield: Vul-
nerability-Driven Network Filters for Preventing Known Vulnerability
Exploits. Proceedings of the ACM SIGCOMM Conference, Aug. 2004,
http://citeseer.ist.psu.edu/cache/papers/cs2/162/http:zSzzSzresearch.mi
cro-
soft.comzSzresearchzSzshieldzSzpaperszSzshieldSigcommO04.pdf/wan
g04shield.pdf

K. Wang, et. al, “Anomalous Payload-based Worm Detection and Sig-
nature Generation,” In Proceedings of the Eighth International Sympo-
sium on Recent Advances in Intrusion Detection, September 2005,
http://worminator.cs.columbia.edu/papers/2005/raid-cut4.pdf

1 Malware Evolution: Snapshot of Threats and Countermeasures in 2005 15

49. Y.-M. Wang, et. al, “Automated Web Patrol with Strider HoneyMon-
keys: Finding Web Sites That Exploit Browser Vulnerabilities”
MSR-TR-2005-72, August 2005
fip://ftp.research.microsoft.com/pub/tr/TR-2005-72.pdf

50. M. Williamson, et. al, “Virus Throttling,” HPL-2003-69 20030430,
Virus Bulletin, March 2003,
http://www hpl.hp.com/techreports/2003/HPL-2003-69.html

Part 11

Software Analysis and Assurance

2

Static Disassembly and Code Analysis

Giovanni Vigna

Reliable Software Group, University of California, Santa Barbara
vigna@cs.ucsb.edu

Summary. The classification of an unknown binary program as malicious or benign requires
two steps. In the first step, the stream of bytes that constitutes the program has to be trans-
formed (or disassembled) into the corresponding sequence of machine instructions. In the
second step, based on this machine code representation, static or dynamic code analysis tech-
niques can be applied to determine the properties and function of the program.

Both the disassembly and code analysis steps can be foiled by techniques that obfuscate
the binary representation of a program. Thus, robust techniques are required that deliver re-
liable results under such adverse circumstances. In this chapter, we introduce a disassemble
technique that can deal with obfuscated binaries. Also, we introduce a static code analysis
approach that can identify high-level semantic properties of code that are difficult to conceal.

2.1 Introduction

Code analysis takes as input a program and attempts to determine certain character-
istics of this program. In particular, the goal of security analysis is to identify either
malicious behavior or the presence of security flaws, which might be exploited to
compromise the security of a system. In this chapter, we focus particularly on the
security analysis of binary programs that use the Intel x86 instruction set. However,
many of the concepts can also be applied to analyze code that exists in a different
representation.

In the first step of the analysis, the code has to be disassembled. That is, we want
to recover a symbolic representation of a program’s machine code instructions from
its binary representation. While disassembly is straightforward for regular binaries,
the situation is different for malicious code. In particular, a number of techniques
have been proposed that are effective in preventing a substantial fraction of a binary
program from being disassembled correctly. This could allow an attacker to hide ma-
licious code from the subsequent static program analysis. In Section 2.2, we present
binary analysis techniques that substantially improve the success of the disassembly
process when confronted with obfuscated binaries. Using control flow graph infor-
mation and statistical methods, a large fraction of the program’s instructions can be
correctly identified.

20 Giovanni Vigna

Based on the program’s machine code, the next step is to identify code sequences
that are known to be malicious (or code sequences that violate a given specification of
permitted behavior). Often, malicious code is defined at a very low level of abstrac-
tion. That is, a specification, or signature, of malicious code is expressed in terms of
byte sequences or instruction sequences. While it is efficient and easy to search a pro-
gram for the occurrence of specific byte strings, such syntax-based signatures can be
trivially evaded. Therefore, specifications at a higher level are needed that can char-
acterize the intrinsic properties of a program that are more difficult to disguise. Of
course, suitable analysis techniques are required that can identify such higher-level
properties. Moreover, these techniques have to be robust against deliberate efforts of
an attacker to thwart analysis.

Code analysis techniques can be categorized into two main classes: dynamic
techniques and static techniques. Approaches that belong to the first category rely
on monitoring execution traces of an application to identify the executed instructions
and their actions, or behavior. Approaches that belong to the second category analyze
the binary structure statically, parsing the instructions as they are found in the binary
image and attempting to determine a (possibly over-approximated) set of all possible
behaviors.

Both static and dynamic approaches have advantages and disadvantages. Static
analysis takes into account the complete program, while dynamic analysis can only
operate on the instructions that were executed in a particular set of runs. Therefore,
it is impossible to guarantee that the whole executable with all possible actions was
covered when using dynamic analysis. On the other hand, dynamic analysis assures
that only actual program behavior is considered. This eliminates possible incorrect
results due to overly conservative approximations that are often necessary when per-
forming static analysis.

In Section 2.3, we introduce our static analysis approach to find pieces of code
that perform actions (i.e., behave) in a way that we have specified as malicious. More
precisely, we describe our application of symbolic execution to the static analysis of
binaries.

2.2 Robust Disassembly of Obfuscated Binaries

In this section, we introduce our approach to robust disassembly when facing ob-
fuscated, malicious binaries. The term obfuscation refers to techniques that preserve
the program’s semantics and functionality while, at the same time, making it more
difficult for the analyst to extract and comprehend the program’s structures. In the
context of disassembly, obfuscation refers to transformations of the binary such that
the parsing of instructions becomes difficult.

In [13], Linn and Debray introduced novel obfuscation techniques that exploit
the fact that the Intel x86 instruction set architecture contains variable length in-
structions that can start at arbitrary memory address. By inserting padding bytes at
locations that cannot be reached during run-time, disassemblers can be confused to
misinterpret large parts of the binary. Although their approach is limited to Intel x86

2 Static Disassembly and Code Analysis 21

binaries, the obfuscation results against current state-of-the-art disassemblers are re-
markable.

In general, disassemblers follow one of two approaches. The first approach,
called linear sweep, starts at the first byte of the binary’s text segment and proceeds
from there, decoding one instruction after another. It is used, for example, by GNU’s
objdump [8]. The drawback of linear sweep disassemblers is that they are prone to
errors that result from data embedded in the instruction stream. The second approach,
called recursive traversal, fixes this problem by following the control flow of the pro-
gram [4, 15]. This allows recursive disassemblers such as IDA Pro [7] to circumvent
data that is interleaved with the program instructions. The problem with the second
approach is that the control flow cannot always be reconstructed precisely. When the
target of a control transfer instruction such as a jump or a call cannot be determined
statically (e.g., in case of an indirect jump), the recursive disassembler fails to an-
alyze parts of the program’s code. This problem is usually solved with a technique
called speculative disassembly [3], which uses a linear sweep algorithm to analyze
unreachable code regions.

Linn and Debray’s approach [13] to confuse disassemblers are based on two main
techniques. First, junk bytes are inserted at locations that are not reachable at run-
time. These locations can be found after control transfer instructions such as jumps
where control flow does not continue. Inserting junk bytes at unreachable locations
should not affect recursive disassemblers, but has a profound impact on linear sweep
implementations.

The second technique relies on a branch function to change the way regular pro-
cedure calls work. This creates more opportunities to insert junk bytes and misleads
both types of disassemblers. A normal call to a subroutine is replaced with a call to
the branch function. This branch function uses an indirect jump to transfer control to
the original subroutine. In addition, an offset value is added to the return address of
the subroutine, which has been saved on the stack as part of the subroutine invoca-
tion. Therefore, when the subroutine is done, control is not transfered to the address
directly after the call instruction. Instead, an instruction that is a certain number of
bytes after the call instruction is executed. Because calls are redirected to the branch
function, large parts of the binary become unreachable for the recursive traversal
algorithm. As a result, recursive traversal disassemblers perform even worse on ob-
fuscated binaries than linear sweep disassemblers.

When analyzing an obfuscated binary, one cannot assume that the code be gen-
erated by a well-behaved compiler. In fact, the obfuscation techniques introduced by
Linn and Debray [13] precisely exploit the fact that standard disassemblers assume
certain properties of compiler-generated code that can be violated without chang-
ing the program’s functionality. However, in general, certain properties are easier to
change than others and it is not straightforward to transform a binary into a func-
tionally equivalent representation in which all the compiler-related properties of the
original code are lost. When disassembling obfuscated binaries, we require that cer-
tain assumptions are valid.

First of all, we assume that valid instructions must not overlap. An instruction is
denoted as valid if it belongs to the program, that is, it is reached (and executed) at

22 Giovanni Vigna

run-time as part of some legal program execution trace. Two instructions overiap if
one or more bytes in the executable are shared by both instructions. In other words,
the start of one instruction is located at an address that is already used by another
instruction. Overlapping instructions have been suggested to complicate disassembly
in [5]. However, suitable candidate instructions for this type of transformation are
difficult to find in real executables and the reported obfuscation effects were minimal
[13].

The second assumption is that conditional jumps can be either taken or not taken.
This means that control flow can continue at the branch target or at the instruction
after the conditional branch. In particular, it is not possible to insert junk bytes at the
branch target or at the address following the branch instruction. Linn and Debray [13]
discuss the possibility to transform unconditional jumps into conditional branches
using opaque predicates. Opaque predicates are predicates that always evaluate to
either true or false, independent of the input. This would allow the obfuscator to
insert junk bytes either at the jump target or in place of the fall-through instruction.
However, it is not obvious how to generate opaque predicates that are not easily
recognizable for the disassembler. Also, the obfuscator presented in [13) does not
implement this transformation.

In addition to the assumptions above, we also assume that the code is not nec-
essarily the output of a well-behaved compiler. That is, we assume that an arbitrary
amount of junk bytes can be inserted at unreachable locations. Unreachable locations
denote locations that are not reachable at run-time. These locations can be found af-
ter instructions that change the normal control flow. For example, most compilers
arrange code such that the address following an unconditional jump contains a valid
instruction. However, we assume that an arbitrary number of junk bytes can be in-
serted there. Also, the control flow does not have to continue immediately after a
call instruction. Thus, an arbitrary number of padding bytes can be added after each
call. This is different from the standard behavior where it is expected that the callee
returns to the instruction following a call using the corresponding return instruction.
More specifically, in the x86 instruction set, the call operation performs a jump
to the call target and, in addition, pushes the address following the call instruction
on the stack. This address is then used by the corresponding ret instruction, which
performs a jump to the address currently on top of the stack. However, by redirecting
calls to a branch function, it is trivial to change the return address.

Given the assumptions above, we have developed two classes of techniques: gen-
eral techniques and tool-specific techniques. General techniques are techniques that
do not rely upon any knowledge on how a particular obfuscator transforms the bi-
nary. It is only required that the transformations respect our assumptions. Qur general
techniques are based on the program’s control flow, similar to a recursive traversal
disassembler. However, we use a different approach to construct the control fiow
graph, which is more resilient to obfuscation attempts. Program regions that are not
covered by the control flow graph are analyzed using statistical techniques.

An instance of an obfuscator that respects our assumptions is presented by Linn
and Debray in [13]. By tailoring the static analysis process against a particular tool,
it is often possible to reverse some of the performed transformations and improve the

2 Static Disassembly and Code Analysis 23

analysis results. For more information on how we can take advantage of tool-specific
knowledge when disassembling binaries transformed with Linn and Debray’s ob-
fuscator, please refer to [11]. In the following, we only concentrate on the general
disassembly techniques.

2.2.1 Function Identification

The first step when disassembling obfuscated programs is to divide the binary into
functions that can then be analyzed independently. The main reason for doing so is
run-time performance; it is necessary that the disassembler scale well enough such
that the analysis of large real-world binaries is possible.

An important part of our analysis is the reconstruction of the program’s control
flow. When operating on the complete binary, the analysis does not scale well for
large programs. Therefore, the binary is broken into smaller regions (i.e., functions)
that can be analyzed consecutively. This results in a run-time overhead of the disas-
sembly process that is linear in the number of instructions (roughly, the size of the
code segment).

A straightforward approach to obtain a function’s start addresses is to extract the
targets of call instructions. When a linker generates an ordinary executable, the tar-
gets of calls to functions located in the binary’s text segment are bound to the actual
addresses of these functions. Given the call targets and assuming that most func-
tions are actually referenced from others within the binary, one can obtain a fairly
complete set of function start addresses. Unfortunately, this approach has two draw-
backs. One problem is that this method requires that the call instructions are already
identified. As the objective of our disassembler is precisely to provide that kind of
information, the call instructions are not available at this point. Another problem is
that an obfuscator can redirect all calls to a single branching function that transfers
control to the appropriate targets. This technique changes all call targets to a single
address, thus removing information necessary to identify functions.

We use a heuristic to locate function start addresses. More precisely, function
start addresses are located by identifying byte sequences that implement typical func-
tion prologs. When a function is called, the first few instructions usually set up a new
stack frame. This frame is required to make room for local variables and to be able
restore the stack to its initial state when the function returns. In the current imple-
mentation, we scan the binary for byte sequences that represent instructions that
push the frame pointer onto the stack and instructions that increase the size of the
stack by decreasing the value of the stack pointer. The technique works very well for
regular binaries and also for the obfuscated binaries used in our experiments. The
reason is that the used obfuscation tool [13] does not attempt to hide function pro-
logs. It is certainly possible to extend the obfuscator to conceal the function prolog.
In this case, our function identification technique might require changes, possibly
using tool-specific knowledge.

Note that the partitioning of the binary into functions is mainly done for perfor-
mance reasons, and it is not crucial for the quality of the results that all functions
are correctly identified. When the start point of a function is missed, later analysis

24 Giovanni Vigna

simply has to deal with one larger region of code instead of two separate smaller
parts. When a sequence of instructions within a function is misinterpreted as a func-
tion prolog, two parts of a single function are analyzed individually. This could lead
to less accurate results when some intra-procedural jumps are interpreted as inter-
procedural, making it harder to reconstruct the intra-procedural control flow graph
as discussed in the following section.

2.2.2 Intra-Procedural Control Flow Graph

To find the valid instructions of a function (i.e., the instructions that belong to the pro-
gram), we attempt to reconstruct the function’s intra-procedural control flow graph.
A control flow graph (CFG) is defined as a directed graph G = (V, E) in which
vertices u,v € V represent basic blocks and an edge e € E : v — v represents a
possible flow of control from u to v. A basic block describes a sequence of instruc-
tions without any jumps or jump targets in the middle. More formally, a basic block
is defined as a sequence of instructions where the instruction in each position domi-
nates, or always executes before, all those in later positions, and no other instruction
executes between two instructions in the sequence. Directed edges between blocks
represent jumps in the control flow, which are caused by control transfer instructions
(CTIs) such as calls, conditional and unconditional jumps, or return instructions.

The traditional approach to reconstructing the control flow graph of a function
works similar to a recursive disassembler. The analysis commences at the function’s
start address and instructions are disassembled until a control transfer instruction
is encountered. The process is then continued, recursively, at all jump targets that
are local to the procedure and, in case of a call instruction or a conditional jump,
at the address following the instruction. In case of an obfuscated binary, however,
the disassembler cannot continue directly after a call instruction. In addition, many
local jumps are converted into non-local jumps to addresses outside the function to
blur local control flow. In most cases, the traditional approach leads to a control flow
graph that covers only a small fraction of the valid instructions of the function under
analysis.

We developed an alternative technique to extract a more complete control flow
graph. The technique is composed of two phases: in the first phase, an initial control
flow graph is determined. In the following phase, conflicts and ambiguities in the
initial CFG are resolved. The two phases are presented in detail in the following two
sections.

2.2.3 Initial Control Flow Graph

To determine the initial control flow graph for a function, we first decode all possible
instructions between the function’s start and end addresses. This is done by treating
each address in this address range as the beginning of a new instruction. Thus, one
potential instruction is decoded and assigned to each address of the function. The
reason for considering every address as a possible instruction start stems from the fact
that x86 instructions have a variable length from one to fifteen bytes and do not have

8048000
8048001

8048003
8048008

804800a
804800c
804800e
8048010
8048012
L1: 8048014

L2: 8048019
804801b
804801¢
804801d

55
89 eb

e8000074 11
0a 05

3¢ 00
75 06
bG 00
eb 07
0a 05
a1 00007401

89 ec
5d
c3
90

2 Static Disassembly and Code Analysis

push %ebp
mov %esp, %ebp

call 19788008 <branch fnct> |
(junk)

cmp 0, %eax

jne 8048014 <L1>
mov 0, %eax

jmp 8048018 <L2>
(junk)

mov (1740000), %eax

mov %ebp, %esp
pop %ebp

ret

nop

Disassembly of Obfuscated Function

Fig. 2.1, Example function.

function func(int arg) {

int local_var, ret_val;

local = other_func(arg);

if (local_var == 0)

ret_val = G;
else

ret_val = global_var;

return ret_val;

C Function

25

to be aligned in memory (i.e., an instruction can start at an arbitrary address). Note

that most instructions take up multiple bytes and such instructions overlap with other

instructions that start at subsequent bytes. Therefore, only a subset of the instructions

decoded in this first step can be valid. Figure 2.2 provides a partial listing of all
instructions in the address range of the sample function (both in source and assembler

format) that is shown in Figure 2.1. For the reader’s reference, valid instructions are
marked by an x in the “Valid” column. Of course, this information is not available to
our disassembler. An example for the overlap between valid and invalid instructions
can be seen between the second and the third instruction. The valid instruction at
address 0x8048001 requires two bytes and thus interferes with the next (invalid)
instruction at 0x8048002.

8048000
8048001
8048002
8048003
8048004
8048005
8048006

804800c
8048010

8048017
8048018
8048019
804801a
804801b

55
89 e5
e5e8

00 00
0074
74 11
75 06
eb 07
74 01
89 ec

ec
5d

push %ebp
mov %esp, %ebp
in e8,%eax

e8000074 11 call 19788008 <obfuscator>

add %al, %eax

add

je 8048019
jne 8048014
jmp 8048019

804801a

je
0189ec5dc390 add %dh,fiffff89(%ecx, %eax,1)

mov %ebp, %esp
in (%dx), %al
pop %ebp

Fig. 2.2. Partial instruction listing.

Valid Candidate

26 Giovanni Vigna

The next step is to identify all intra~-procedural control transfer instructions. For
our purposes, an intra-procedural control transfer instruction is defined as a CTI with
at least one known successor basic block in the same function. Remember that we
assume that control flow only continues after conditional branches but not necessarily
after call or unconditional branch instructions. Therefore, an instruction is an intra-
procedural control transfer instruction if either (i) its target address can be determined
and this address is in the range between the function’s start and end addresses or (ii)
it is a conditional jump. In the latter case, the address that immediately follows the
conditional jump instruction is the start of a successor block.

Note that we assume that a function is represented by a contiguous sequence of
instructions, with possible junk instructions added in between. This means that, it is
not possible that the basic blocks of two different functions are intertwined. There-
fore, each function has one start address and one end address (i.e., the last instruction
of the last basic block that belongs to this function). However, it is possible that a
function has multiple exit points.

To find all intra-procedural CTlIs, the instructions decoded in the previous step are
scanned for any control transfer instructions. For each CTI found in this way, we at-
tempt to extract its target address. In the current implementation, only direct address
modes are supported and no data flow analysis is performed to compute address val-
ues used by indirect jumps. However, such analysis could be later added to further
improve the performance of our static analyzer. When the instruction is determined
to be an intra-procedural control transfer operation, it is included in the set of jump
candidates. The jump candidates of the sample function are marked in Figure 2.2 by
an x in the “Candidate” column. In this example, the call at address 0x8048003
is not included into the set of jump candidates because the target address is Jocated
outside the function.

Given the set of jump candidates, an initial control flow graph is constructed.
This is done with the help of a recursive disassembler. Starting with an initial empty
CFQG, the disassembler is successively invoked for all the elements in the set of jump
candidates. In addition, it is also invoked for the instruction at the start address of the
function.

The key idea for taking into account all possible control transfer instructions
is the fact that the valid CTIs determine the skeleton of the analyzed function. By
using all control flow instructions to create the initial CFG, we make sure that the
real CFG is a subgraph of this initial graph. Because the set of jump candidates can
contain both valid and invalid instructions, it is possible (and also frequent) that the
initial CFG contains a superset of the nodes of the real CFG. These nodes are in-
troduced as a result of argument bytes of valid instructions being misinterpreted as
control transfer instructions. The Intel x86 instruction set contains 26 single-byte
opcodes that map to control transfer instructions (out of 219 single-byte instruction
opcodes). Therefore, the probability that a random argument byte is decoded as CTI
is not negligible. In our experiments [11], we found that about one tenth of all de-
coded instructions are CTIs. Of those instructions, only two thirds were part of the
real control flow graph. As a result, the initial CFG contains nodes and edges that
represent invalid instructions. Most of the time, these nodes contain instructions that

2 Static Disassembly and Code Analysis 27

overlap with valid instructions of nodes that belong to the real CFG. The follow-
ing section discusses mechanisms to remove these spurious nodes from the initial
control flow graph. It is possible to distinguish spurious from valid nodes because
invalid CTIs represent random jumps within the function while valid CTIs constitute
a well-structured CFG with nodes that have no overlapping instructions.

Creating an initial CFG that includes nodes that are not part of the real control
flow graph can been seen as the opposite to the operation of a recursive disassembler.
A standard recursive disassembler starts from a known valid block and builds up
the CFG by adding nodes as it follows the targets of control transfer instructions
that are encountered. This technique scems favorable at a first glance, because it
makes sure that no invalid instructions are incorporated into the CFG. However, most
control flow graphs are partitioned into several unconnected subgraphs. This happens
because there are control flow instructions such as indirect branches whose targets
often cannot be determined statically. This leads to missing edges in the CFG and
to the problem that only a fraction of the real control flow graph is reachable from
a certain node. The situation is exacerbated when dealing with obfuscated binaries,
as inter-procedural calls and jumps are redirected to a branching function that uses
indirect jumps. This significantly reduces the parts of the control flow graph that are
directly accessible to a recursive disassembler, leading to unsatisfactory results.

Although the standard recursive disassembler produces suboptimal results, we
use a similar algorithm to extract the basic blocks to create the initial CFG. As men-
tioned before, however, the recursive disassembler is not only invoked for the start
address of the function alone, but also for all jump candidates that have been identi-
fied. An initial control flow graph is then constructed.

There are two differences between a standard recursive disassembler and our
prototype tool. First, we assume that the address after a call or an unconditional
jump instruction does not have to contain a valid instruction. Therefore, our recursive
disassembler cannot continue at the address following a call or an unconditional
jump. Note, however, that we do continue to disassemble after a conditional jump
(i.e., branch).

The second difference is due to the fact that it is possible to have instructions in
the initial call graph that overlap. In this case, two different basic blocks in the call
graph can contain overlapping instructions starting at slightly different addresses.
When following a sequence of instructions, the disassembler can arrive at an instruc-
tion that is already part of a previously found basic block. Normally, this instruction
is the first instruction of the existing block. The disassembler can then “close” the
instruction sequence of the current block and create a link to the existing basic block
in the control flow graph.

When instructions can overlap, it is possible that the current instruction sequence
overlaps with another sequence in an existing basic block for some instructions be-
fore the two sequences eventually become identical. In this case, the existing basic
block is split into two new blocks. One block refers to the overlapping sequence up
to the instruction where the two sequences merge, the other refers to the instruction
sequence that both have in common. All edges in the control flow graph that point
to the original basic block are changed to point to the first block, while all outgoing

28 Giovanni Vigna

edges of the original block are assigned to the second. In addition, the first block is
connected to the second one.

The reason for splitting the existing block is the fact that a basic block is de-
fined as a continuous sequence of instructions without a jump or jump target in the
middle. When two different overlapping sequences merge at a certain instruction,
this instruction has two predecessor instructions (one in each of the two overlapping
sequences). Therefore, it becomes the first instruction of a new basic block. As an
additional desirable side effect, each instruction appears at most once in a basic block
of the call graph.

The fact that instruction sequences eventually “merge” is a common phenomenon
when disassembling x86 binaries. The reason is called self-repairing disassembly
and relates to the fact that two instruction sequences that start at slightly different
addresses (that is, shifted by a few bytes) synchronize quickly, often after a few
instructions. Therefore, when the disassembler starts at an address that does not cor-
respond to a valid instruction, it can be expected to re-synchronize with the sequence
of valid instructions after a few steps [13].

804801a
804801b

8048017
8048019

Fig. 2.3. Initial control flow graph.

The initial control flow graph generated for for our example function is shown
in Figure 2.3. In this example, the algorithm is invoked for the function start at
address 0x8048000 and the four jump candidates (0x8048006, 0x804800c,
0x8048010, and 0x8048017). The nodes in this figure represent basic blocks
and are labeled with the start address of the first instruction and the end address of
the last instruction in the corresponding instruction sequence. Note that the end ad-
dress denotes the first byte after the last instruction and is not part of the basic block
itself. Solid, directed edges between nodes represent the targets of control transfer
instructions. A dashed line between two nodes signifies a conflict between the two
corresponding blocks.

Two basic blocks are in conflict when they contain at least one pair of instruc-
tions that overlap. As discussed previously, our algorithm guarantees that a certain
instruction is assigned to at most one basic block (otherwise, blocks are split appro-

2 Static Disassembly and Code Analysis 29

priately). Therefore, whenever the address ranges of two blocks overlap, they must
also contain different, overlapping instructions. Otherwise, both blocks would con-
tain the same instruction, which is not possible. This is apparent in Figure 2.3, where
the address ranges of all pairs of conflicting basic blocks overlap. To simplify the
following discussion of the techniques used to resolve conflicts, nodes that belong
to the real control flow graph are shaded. In addition, each node is denoted with an
uppercase letter.

2.2.4 Block Conflict Resolution

The task of the block conflict resolution phase is to remove basic blocks from the
initial CFG until no conflicts are present anymore. Conflict resolution proceeds in
five steps. The first two steps remove blocks that are definitely invalid, given our
assumptions. The last three steps are heuristics that choose likely invalid blocks. The
conflict resolution phase terminates immediately after the last conflicting block is
removed; it is not necessary to carry out all steps. The final step brings about a
decision for any basic block conflict and the control flow graph is guaranteed to be
free of any conflicts when the conflict resolution phase completes.

The five steps are detailed in the following paragraphs.

Step 1: We assume that the start address of the analyzed function contains a valid
instruction. Therefore, the basic block that contains this instruction is valid. In addi-
tion, whenever a basic block is known to be valid, all blocks that are reachable from
this block are also valid.

A basic block v is reachable from basic block wu if there exists a path p from
u to v. A path p from u to v is defined as a sequence of edges that begins at u
and terminates at v. An edge is inserted into the control flow graph only when its
target can be statically determined and a possible program execution trace exists that
transfers control over this edge. Therefore, whenever a control transfer instruction is
valid, its targets have to be valid as well.

We tag the node that contains the instruction at the function’s start address and
all nodes that are reachable from this node as valid. Note that this set of valid nodes
contains exactly the nodes that a traditional recursive disassembler would identify
when invoked with the function’s start address. When the valid nodes are identified,
any node that is in conflict with at least one of the valid nodes can be removed.

In the initial control flow graph for the example function in Figure 2.3, only
node A (0x8048000) is marked as valid. That node is drawn with a stronger bor-
der in Figure 2.3. The reason is that the corresponding basic block ends with a call
instruction at 0x804 8003 whose target is not local. In addition, we do not assume
that control flow resumes at the address after a call and thus the analysis cannot di-
rectly continue after the call instruction. In Figure 2.3, node B (the basic block at
0x8048006) is in conflict with the valid node and can be removed.

Step 2: Because of the assumption that valid instructions do not overlap, it is not
possible to start from a valid block and reach two different nodes in the control flow
graph that are in conflict. That is, whenever two conflicting nodes are both reachable
from a third node, this third node cannot be valid and is removed from the CFG. The

30 Giovanni Vigna

situation can be restated using the notion of a common ancestor node. A common
ancestor node of two nodes « and v is defined as a node n such that both v and v are
reachable from n.

In Step 2, all common ancestor nodes of conflicting nodes are removed from the
control flow graph. In our example in Figure 2.3, it can be seen that the conflicting
node F and node K share a common ancestor, namely node J. This node is removed
from the CFG, resolving a conflict with node I. The resulting control flow graph after
the first two steps is shown in Figure 2.4.

The situation of having a common ancestor node of two conflicting blocks is
frequent when dealing with invalid conditional branches. In such cases, the branch
target and the continuation after the branch instruction are often directly in conflict,
allowing one to remove the invalid basic block from the control flow graph.

c

804801a
804801b

Fig. 2.4. CFG after two steps of conflict resolution.

Step 3: When two basic blocks are in conflict, it is reasonable to expect that a valid
block is more tightly integrated into the control flow graph than a block that was
created because of a misinterpreted argument value of a program instruction. That
means that a valid block is often reachable from a substantial number of other blocks
throughout the function, while an invalid block usually has only a few ancestors.

The degree of integration of a certain basic block into the control flow graph
is approximated by the number of its predecessor nodes. A node u is defined as a
predecessor node of v when v is reachable from w. In Step 3, the predecessor nodes
for pairs of conflicting nodes are determined and the node with the smaller number
is removed from the CFG.

In Figure 2.4, node K has no predecessor nodes while node F has five. Note
that the algorithm cannot distinguish between real and spurious nodes and, thus, it
includes node C in the set of predecessor nodes for node F. As a result, node K is
removed. The number of predecessor nodes for node C and node H are both zero and
no decision is made in the current step.

Step 4: In this step, the number of direct successor nodes of two conflicting nodes
are compared. A node v is a direct successor node of node u© when v can be directly

2 Static Disassembly and Code Analysis 31

reached through an outgoing edge from u. The node with less direct successor nodes
is then removed. The rationale behind preferring the node with more outgoing edges
is the fact that each edge represents a jump target within the function and it is more
likely that a valid control transfer instruction has a target within the function than
any random CTI.

In Figure 2.4, node C has only one direct successor node while node H has two.

Therefore, node C is removed from the control flow graph. In our example, all con-
flicts are resolved at this point.
Step 5: In this step, all conflicts between basic blocks must be resolved. For each
pair of conflicting blocks, one is chosen at random and then removed from the graph.
No human intervention is required at this step, but it would be possible to create
different alternative disassembly outputs (one output for each block that needs to be
removed) that can be all presented to a human analyst.

It might also be possible to use statistical methods during Step 5 to improve the
chances that the “correct” block is selected. However, this technique is not imple-
mented and is left for future work.

The result of the conflict resolution step is a control flow graph that contains no
overlapping basic blocks. The instructions in these blocks are considered valid and
could serve as the output of the static analysis process. However, most control flow
graphs do not cover the function’s complete address range and gaps exist between
some basic blocks.

2.2.5 Gap Completion

The task of the gap completion phase is to improve the results of our analysis by
filling the gaps between basic blocks in the control flow graph with instructions that
are likely to be valid. A gap from basic block b; to basic block b, is the sequence of
addresses that starts at the first address after the end of basic block b; and ends at the
last address before the start of block by, given that there is no other basic block in the
control flow graph that covers any of these addresses. In other words, a gap contains
bytes that are not used by any instruction in blocks the control flow graph.

Gaps are often the result of junk bytes that are inserted by the obfuscator. Be-
cause junk bytes are not reachable at run-time, the control flow graph does not cover
such bytes. It is apparent that the attempt to disassemble gaps filled with junk bytes
does not improve the results of the analysis. However, there are also gaps that do
contain valid instructions. These gaps can be the result of an incomplete control flow
graph, for example, stemming from a region of code that is only reachable through an
indirect jump whose target cannot be determined statically. Another frequent cause
for gaps that contain valid instructions are call instructions. Because the disassem-
bler cannot continue after a call instruction, the following valid instructions are not
immediately reachable. Some of these instructions might be included into the control
flow graph because they are the target of other control transfer instructions. Those
regions that are not reachable, however, cause gaps that must be analyzed in the gap
completion phase.

32 Giovanni Vigna

The algorithm to identify the most probable instruction sequence in a gap from
basic block b; to basic block by works as follows. First, all possibly valid sequences
in the gap are identified. A necessary condition for a valid instruction sequence is that
its last instruction either (i) ends with the last byte of the gap or (ii) its last instruction
is a non intra-procedural control transfer instruction. The first condition states that the
last instruction of a valid sequence has to be directly adjacent to the first instruction of
block bs. This becomes evident when considering a valid instruction sequence in the
gap that is executed at run-time. After the last instruction of the sequence is executed,
the control flow has to continue at the first instruction of basic block by. The second
condition states that a sequence does not need to end directly adjacent to block by if
the last instruction is a non intra-procedural control transfer. The restriction to non
intra-procedural CTTs is necessary because all intra-procedural CTIs are included
into the initial control flow graph. When an intra-procedural instruction appears in a
gap, it must have been removed during the conflict resolution phase and should not
be included again.

Instruction sequences are found by considering each byte between the start and
the end of the gap as a potential start of a valid instruction sequence. Subsequent
instructions are then decoded until the instruction sequence either meets or violates
one of the necessary conditions defined above. When an instruction sequence meets a
necessary condition, it is considered possibly valid and a sequence score is calculated
for it. The sequence score is a measure of the likelihood that this instruction sequence
appears in an executable. It is calculated as the sum of the instruction scores of all
instructions in the sequence. The instruction score is similar to the sequence score
and reflects the likelihood of an individual instruction. Instruction scores are always
greater or equal than zero. Therefore, the score of a sequence cannot decrease when
more instructions are added. We calculate instruction scores using statistical tech-
niques and heuristics to identify improbable instructions.

The statistical techniques are based on instruction probabilities and digraphs.
Our approach utilizes tables that denote both the likelihood of individual instruc-
tions appearing in a binary as well as the likelihood of two instructions occurring
as a consecutive pair. The tables were built by disassembling a large set of common
executables and tabulating counts for the occurrence of each individual instruction
as well as counts for each occurrence of a pair of instructions. These counts were
subsequently stored for later use during the disassembly of an obfuscated binary. It
is important to note that only instruction opcodes are taken into account with this
technique; operands are not considered. The basic score for a particular instruction
is calculated as the sum of the probability of occurrence of this instruction and the
probability of occurrence of this instruction followed by the next instruction in the
sequence.

In addition to the statistical technique, a set of heuristics is used to identify im-
probable instructions. This analysis focuses on instruction arguments and observed
notions of the validity of certain combinations of operations, registers, and accessing
modes. Each heuristic is applied to an individual instruction and can modify the basic
score calculated by the statistical technique. In our current implementation, the score

2 Static Disassembly and Code Analysis 33

of the corresponding instruction is set to zero whenever a rule matches. Examples of
these rules include the following:

operand size mismatches;
certain arithmetic on special-purpose registers;
unexpected register-to-register moves (e.g., moving from a register other than
Joebp into %esp);
e moves of a register value into memory referenced by the same register.

When all possible instruction sequences are determined, the one with the highest
sequence score is selected as the valid instruction sequence between b; and bo.

8048000 55 55 push %ebp
8048001]| 89e5 89e5 mov %esp, %ebp
8048003|| e8 000074 11 e8000074 11 call 19788008
8048008 | Oa 50a

F 8048009 | 05 05 Z05

S 8o4800a| 3c 3 ®3 ga 3c 00 cmp 0, %eax
804800b | 00 0000 500 Zop .

75 75 75

804800c|| 75086 06 06 06 7506 jhe 8048014
804800e|| b0 00 b0 00 mov 0, %eax
8048010|| eb 07 eb 07 jmp 8048019

% 8048012 | Oa 50a

O 8048013| 05 05 05

a3 .g.a.1
8048014{| a1 0000 74 01 00 Q0 a1000074 01 mov (1740000), %eax
00 Q0
8048019|| 89 ec 74 74 89 ec mov %ebp, %esp
804801b|| 5d 5d pop %ebp
804801c|| <3 c3 ret
804801d){ 90 90 nop
Gap Sequences Disassembler Output

Fig. 2.5. Gap completion and disassembler output.

The instructions that make up the control flow graph of our example function
and the intermediate gaps are shown in the left part of Figure 2.5. It can be seen that
only a single instruction sequence is valid in the first gap, while there is none in the
second gap. The right part of Figure 2.5 shows the output of our disassembler. All
valid instructions of the example function have been correctly identified.

Based on the list of valid instructions, the subsequent code analysis phase can
attempt to detect malicious code. In the following Section 2.3, we present symbolic
execution as one possible static analysis approach to identify higher-level properties
of code.

34 Giovanni Vigna
2.3 Code Analysis

This section describes the use of symbolic execution [10], a static analysis technique
to identify code sequences that exhibit certain properties. In particular, we aim at
characterizing a code piece by its semantics, or, in other words, by its effect on the
environment. The goal is to construct models that characterize malicious behavior,
regardless of the particular sequence of instructions (and therefore, of bytes) used in
the code. This allows one to specify more general and robust descriptions of mali-
cious code that cannot be evaded by simple changes to the syntactic representation
or layout of the code (e.g., by renaming registers or modify the execution order of
instructions).

Symbolic execution is a technique that interpretatively executes a program, using
symbolic expressions instead of real values as input. This also includes the execution
environment of the program (data, stack, and heap regions) for which no initial value
is known at the time of the analysis. Of course, for all variables for which concrete
values are known (e.g., initialized data segments), these values are used. When the
execution starts from the entry point in the program, say address s, a symbolic execu-
tion engine interprets the sequence of machine instructions as they are encountered
in the program.

To perform symbolic execution of machine instructions (in our case, Inte] x86 op-
erations), it is necessary to extend the semantics of these instructions so that operands
are not limited to real data objects but can also be symbolic expressions. The nor-
mal execution semantics of Intel x86 assembly code describes how data objects are
represented, how statements and operations manipulate these data objects, and how
control flows through the statements of a program. For symbolic execution, the defi-
nitions for the basic operators of the language have to be extended to accept symbolic
operands and produce symbolic formulas as output.

2.3.1 Execution State

We define the execution state S of program p as a snapshot of the content of the
processor registers (except the program counter) and all valid memory locations at
a particular instruction of p, which is denoted by the program counter. Although it
would be possible to treat the program counter like any other register, it is more
intuitive to handle the program counter separately and to require that it contain a
concrete value (i.e., it points to a certain instruction). The content of all other registers
and memory locations can be described by symbolic expressions.

Before symbolic execution starts from address s, the execution state .S’ is initial-
ized by assigning symbolic variables to all processor registers (except the program
counter) and memory locations for which no concrete value is known initially. Thus,
whenever a processor register or a memory location is read for the first time, without
any previous assignment to it, a new symbol is supplied from the list of variables
{vi, v, vs, ... }. Note that this is the only time when symbolic data objects are in-
troduced.

2 Static Disassembly and Code Analysis 35

In our current system, we do not support floating-point data objects and opera-
tions. Therefore, all symbols (variables) represent integer values. Symbolic expres-
sions are linear combinations of these symbols (i.e., integer polynomials over the
symbols). A symbolic expression can be written as ¢, * Uy + Cp—1 ¥ Up—1 + -+ +
¢1 % U1 + cg where the ¢; are constants. In addition, there is a special symbol | that
denotes that no information is known about the content of a register or a memory
location. Note that this is very different from a symbolic expression. Although there
is no concrete value known for a symbolic expression, its value can be evaluated
when concrete values are supplied for the initial execution state. For the symbol L,
nothing can be asserted, even when the initial state is completely defined.

By allowing program variables to assume integer polynomials over the symbols
v;, the symbolic execution of assignment statements follows naturally. The expres-
sion on the right-hand side of the statement is evaluated, substituting symbolic ex-
pressions for source registers or memory locations. The result is another symbolic
expression (an integer is the trivial case) that represents the new value of the left-hand
side of the assignment statement. Because symbolic expressions are integer polyno-
mials, it is possible to evaluate addition and subtraction of two arbitrary expressions.
Also, it is possible to multiply or shift a symbolic expression by a constant value.
Other instructions, such as the multiplication of two symbolic variables or a logic
operation (e.g., and, or), result in the assignment of the symbol L to the destina-
tion. This is because the result of these operations cannot (always) be represented as
integer polynomial. The reason for limiting symbolic formulas to linear expressions
will become clear in Section 2.3.3.

Whenever an instruction is executed, the execution state is changed. As men-
tioned previously, in case of an assignment, the content of the destination operand is
replaced with the right-hand side of the statement. In addition, the program counter
is advanced. In the case of an instruction that does not change the control flow of a
program (i.e., an instruction that is not a jump or a conditional branch), the program
counter is simply advanced to the next instruction. Also, an unconditional jump to a
certain label (instruction) is performed exactly as in normal execution by transferring
control from the current statement to the statement associated with the corresponding
label.

Figure 2.6 shows the symbolic execution of a sequence of instructions. In addi-
tion to the x86 machine instructions, a corresponding fragment of C source code is
shown. For each step of the symbolic execution, the relevant parts of the execution
state are presented. Changes between execution states are shown in bold face. Note
that the compiler (gcc 3. 3) converted the multiplication in the C program into an
equivalent series of add machine instructions.

2.3.2 Conditional Branches and Loops

To handle conditional branches, the execution state has to be extended to include a
set of constraints, called the path constraints. In principle, a path constraint relates a
symbolic expression L to a constant. This can be used, for example, to specify that
the content of a register has to be equal to 0. More formally, a path constraint is a

36 Giovanni Vigna

Teax: VWO Tl Teax Ty vo)
inti, j, k; 8048364: mov 0xB049588,%edx) . [. '
804836a: mov %edx,%eax poa: Vi e vE o
void () 804836c: add %eax,%eax ! N) gy -)
804836e: add Shed %eeax | 204000 (0 va | | 0049580: (iva |
i=8+k 8048370 add 0x804958¢,%eax | iy ' 1 8049500: () - v4 |
} 8048376 mov %eax,0xB049590 8049590 (): va 1 v .
804B370: 'PC:___ 8048364 PC.____ B04836a !
Step 1 Step 2
Teax: w2 i leax: 22 | leax V2 | reax: Fv24v3 1 leax: 3243 |
1edx: v2) ledx: v2 | tledx: v2 ! edx: v2 | edx: v2 '
' o . D " !
18049588 (): v2 | \80AG58B(): v2 | |8049588(): v2 | 8049588 (): v2 ! 18049588 () | v2 ;
1 804958¢ (k): v3 ! | 804958¢ (k): v3 ! 1 804958¢ (kK): v3 ! | 804958¢ (k): v3 | 1804958¢ (k): v3 i
18049530 (i) : v4 1 8049590 (i) : v4 11 8049590 (i) : v4 1 18049590 (i) 1 v4 1 8049590 (i) : 3*v2+v3 ,
([[[oy i
' [' ! : '
'PC. 8048360 | (PC. _ BOAB36e! |PC: 8048370 |PC. 8048376 | [PC.____ 804837b _ !
Step 3 Step 4 Step 5 Step 6 Step 7

Fig. 2.6. Symbolic execution.

boolean expression of the form L > 0 or L = 0, in which L is an integer polynomial
over the symbols v;. The set of path constraints forms a linear constraint system.

The symbolic execution of a conditional branch statement starts by evaluating the
associated Boolean expression. The evaluation is done by replacing the instruction’s
operands with their corresponding symbolic expressions. Then, the inequality (or
equality) is transformed and converted into the standard form introduced above. Let
the resulting path constraint be called q.

To continue symbolic execution, both branches of the control path need to be
explored. The symbolic execution forks into two “parallel” execution threads: one
thread follows the then alternative, while the other one follows the else alternative.
Both execution threads assume the execution state that existed immediately before
the conditional statement, but proceed independently thereafter. Because the then
alternative is only chosen if the conditional branch is taken, the corresponding path
constraint ¢ must be true. Therefore, we add ¢ to the set of path constraints of this
execution thread. The situation is reversed for the else alternative. In this case, the
branch is not taken and ¢ must be false. Thus, —q is added to the path constraints of
this execution.

After ¢ (or —g) is added to a set of path constraints, the corresponding linear
constraint system is immediately checked for satisfiability. When the set of path con-
straints has no solution, this implies that, independent of the choice of values for
the initial configuration C, this path of execution can never occur. This allows us to
immediately terminate impossible execution threads.

Each fork of execution at a conditional statement contributes a condition over the
variables v; that must hold for this particular execution thread. Thus, the set of path
constraints determines which conditions the initial execution state must satisfy in or-
der for an execution to follow the particular associated path. Each symbolic execution
begins with an empty set of path constraints. As assumptions about the variables are
made (in order to choose between alternative paths through the program as presented
by conditional statements), those assumptions are added to the set. An example of

2 Static Disassembly and Code Analysis 37

inti, J; teax: w0
vold 10 ;‘ edx: vi i
{ 8048364: cmpl $0x2a,0x804958¢ 1 8049588 (j). v2 i
if (i > 42) 804836b: jle 8048379 1804958¢ (i) v3 |
j=1; 804836d: movl $0x1,0x8049588 ' !
else 8048377 jmp 8048383 ' PC: 804836 !
j=0; 8048379: movi $0x0,0x8049588 I '

} 8048383: | Path Condition; ___!

then continuation

‘ .
| |
8049588 (j): v2 i 8049588 (j). 1 1 8049588 (j): 1 18049588 (j): v2 3 E 8049588 (j): 0 5
8| 1804958¢ (i): v3 ! ' 804958c¢ (i): v3 ¢

1 804958¢ (i): v3

04958¢ (i): v3 1 804958¢ (i): v3 ! !
| ¢ I ;
PC: 804836d E PC: 8048377 3 PC: 8048383 : PC: 8048379 : PC: 8048383
Path Condition: | Path Condition: i Path Condition: | Path Condition: | Path Condition:
(v3-42)>0 ____: Lv8-a2)>0 . L(v3-42)> 0 ! (v3-42)=0_ ____: WB-42)s 0 .
Step 2a. Step 3a. Step 4a. Step 2b. Step 8b.

Fig. 2.7. Handling conditional branches during symbolic execution.

a fork into two symbolic execution threads as the result of an i f-statement and the
corresponding path constraints are shown in Figure 2.7. Note that the i f-statement
was translated into two machine instructions. Thus, special code is required to extract
the condition on which a branch statement depends.

Because a symbolic execution thread forks into two threads at each conditional
branch statement, loops represent a problem. In particular, we have to make sure that
execution threads “make progress.” The problem is addressed by requiring that a
thread passes through the same loop at most three times. Before an execution thread
enters a loop for the forth time, its execution is halted. Then, the effect of an arbi-
trary number of iterations of this loop on the execution state is approximated. This
approximation is a standard static analysis technique [6, 14] that aims at determining
value ranges for the variables that are modified in the loop body. Since the problem
of finding exact ranges and relationships between variables is undecidable in the gen-
eral case, the approximation naturally involves a certain loss of precision. After the
effect of the loop on the execution thread is approximated, the thread can continue
with the modified state after the loop. To determine loops in the control flow graph,
we use the algorithm by Lengauer-Tarjan [12], which is based on dominator trees.

To approximate the effect of the loop body on an execution state, a fixpoint for
this loop is constructed. For our purposes, a fixpoint is an execution state F' that,
when used as the initial state before entering the loop, is equivalent to the execution
state after the loop termination. In other words, after the operations of the loop body
are applied to the fixpoint state F, the resulting execution state is again F'. Clearly,
if there are multiple paths through the loop, the resulting execution states at each
loop exit must be the same (and identical to F’). Thus, whenever the effect of a loop
on an execution state must be determined, we transform this state into a fixpoint for

38 Giovanni Vigna

this loop. This transformation is often called widening. Then, the thread can continue
after the loop using the fixpoint as its new execution state.

The fixpoint for a loop is constructed in an iterative fashion. Given the execution
state Sy after the first execution of the loop body, we calculate the execution state Sy
after a second iteration. Then, Sy and Sy are compared. For each register and each
memory location that hold different values (i.e., different symbolic expressions), we
assign | as the new value. The resulting state is used as the new state and another
iteration of the loop is performed. This is repeated until S; and S(; 1y are identical.
In case of multiple paths through the loop, the algorithm is extended by collecting
one exit state S; for each path and then comparing all pairs of states. Whenever a
difference between a register value or a memory location is found, this location is
set to L. The iterative algorithm is guaranteed to terminate, because at each step, it
is only possible to convert the content of a memory location or a register to L. Thus,
after each iteration, the states are either identical or the content of some locations is
made unknown. This process can only be repeated until all values are converted to
unknown and no information is left.

intj, k;
void f() |=J_, o
mizo | ST =L
j=k=0; i=1;: i . =l REDLD =] KELL
=0 = o Sy =L 87
while (i < 100) { k=1; k=1, k=130 U
k=1; s S S V=l
i (1= 10) ! 3 6 oI
=2 k=1;.
i++; s
3} 8
}

Fig. 2.8. Fixpoint calculation.

An example for a fixpoint calculation (using C code instead of x86 assembly)
is presented in Figure 2.8. In this case, the execution state includes the values of
the three variables i, 7, and k. After the first loop iteration, the execution state S;
is reached. Here, ¢ has been incremented once, k£ has been assigned the constant 1,
and j has not been modified. After a second iteration, Sy is reached. Because ¢ has
changed between S and So, its value is set to L in S5. Note that the execution has
not modified j, because the value of ¢ was known to be different from 10 at the i £-
statement. Using S5 as the new execution state, two paths are taken through the loop.
In one case (Sy), j is set to 2, in the other case (St), the variable j remains 0. The
reason for the two different execution paths is the fact that 4 is no longer known at
the if-statement and, thus, both paths have to be followed. Comparing S3 with Sy
and S5, the difference between the values of variable j leads to the new state Sg in
which j is set to L. As before, the new state Sg is used for the next loop iteration.

2 Static Disassembly and Code Analysis 39

Finally, the resulting states Sy and Sy are identical to Sg, indicating that a fixpoint is
reached.

In the example above, we quickly reach a fixpoint. In general, by considering
all modified values as unknown (setting them to _L), the termination of the fixpoint
algorithm is achieved very quickly. However, the approximation might be unneces-
sarily imprecise. For our current prototype, we use this simple approximation tech-
nique [14]. However, we plan to investigate more sophisticated fixpoint algorithms
in the future.

2.3.3 Analyzing Effects of Code Sequences

As mentioned previously, the aim of the symbolic execution is to characterize the
behavior of a piece of code. For example, symbolic execution could be used to deter-
mine if a system call is invoked with a particular argument. Another example is the
assignment of a value to a certain memory address.

Consider a specification that defines a piece of code as malicious when it writes
to an area in memory that should not be modified. Such a specification can be used to
characterize kernel-level rootkits, which modify parts of the operating system mem-
ory (such as the system call table) that benign modules do not touch. To determine
whether a piece of code can assign a value to a certain memory address ¢, the des-
tination addresses of data transfer instructions (e.g., X86 mov) must be determined.
Thus, whenever the symbolic execution engine encounters such an instruction, it
checks whether this instruction can possibly access (or write to) address t. To this
end, the symbolic expression that represents the destination of the data transfer in-
struction is analyzed. The reason is that if it were possible to force this symbolic
expression to evaluate to ¢, then the attacker could achieve her goal.

Let the symbolic expression of the destination of the data transfer instruction
be called s;. To check whether it is possible to force the destination address of this
instruction to £, the constraint s, = ¢ is generated (this constraint simply expresses
the fact that s; should evaluate to the target address ¢). Now, we have to determine
whether this constraint can be satisfied, given the current path constraints. To this
end, the constraint s; = t is added to the path constraints, and the resulting linear
inequality system is solved.

If the linear inequality system has a solution, then the sequence of code instruc-
tions that were symbolically executed so far can possibly write to t. Note that, since
the symbolic expressions are integer polynomials over variables that describe the ini-
tial state of the system, the solution to the linear inequality system directly provides
concrete values for the initial configuration that will eventually lead to a value being
written to t. For example, in the case of kernel-level rootkit detection, a kernel mod-
ule would be classified as malicious if a data transfer instruction (in its initialization
routine) can be used to modify the address ¢ of an entry in the system call table.

To solve the linear constraint systems, we use the Parma Polyhedral Library
(PPL) [1]. In general, solving a linear constraint system is exponential in the number
of inequalities. However, the number of inequalities is usually small, and PPL uses a
number of optimizations to reduce the resources required at run time.

40 Giovanni Vigna
2.3.4 Memory Aliasing and Unknown Stores

In the previous discussion, two problems were ignored that considerably complicate
the analysis for real programs: memory aliasing and store operations to unknown
destination addresses.

Memory aliasing refers to the problem that two different symbolic expressions s;
and s might point to the same address. That is, although s; and sy contain different
variables, both expressions evaluate to the same value. In this case, the assignment of
a value to an address that is specified by s; has unexpected side effects. In particular,
such an assignment simultaneously changes the content of the location pointed to by
8a.

Memory aliasing is a typical problem in the static analysis of high-level lan-
guages with pointers (such as C). Unfortunately, the problem is exacerbated at the
machine code level. The reason is that, in a high-level language, only a certain subset
of variables can be accessed via pointers. Also, it is often possible to perform alias
analysis that further reduces the set of variables that might be subject to aliasing.
Thus, one can often guarantee that certain variables are not modified by write oper-
ations through pointers. At machine level, the address space is uniformly treated as
an array of storage locations. Thus, a write operation could potentially modify any
other variable.

In our prototype, we take an optimistic approach and assume that different sym-
bolic expressions refer to different memory locations. This approach is motivated
by the fact that most C compilers address local and global variables so that a dis-
tinct expression is used for each access to a different variable. In the case of global
variables, the address of the variable is directly encoded in the instruction, making
the identification of the variable particularly easy. For each local variable, the access
is performed by calculating a different offset with respect to the value of the base
pointer register (5ebp).

A store operation to an unknown address is related to the aliasing problem as such
an operation could potentially modify any memory location. Here, one can choose
one of two options. A conservative and safe approach must assume that any vari-
able could have been overwritten and no information remains. The other approach
assumes that such a store operation does not interfere with any variable that is part
of the solution of the linear inequality system. While this leads to the possibility of
false negatives, it significantly reduces the number of false positives.

2.4 Conclusions

The analysis of an unknown program requires that the binary is first disassembled
into its corresponding assembly code representation. Based on the code instructions,
static or dynamic code analysis techniques can then be used to classify the program
as malicious or benign.

In this chapter, we have introduced a robust disassembler that produces good re-
sults even when the malicious code employs tricks to resists analysis. This is crucial

2 Static Disassembly and Code Analysis 41

for many security tools, including virus scanners [2] and intrusion detection sys-
tems [9].

We also introduced symbolic execution as one possible static analysis technique

to infer semantic properties of code. This allows us to determine the effects of the
execution of a piece of code. Based on this knowledge, we can construct general and
robust models of malicious code. These models do not describe particular instances
of malware, but capture the properties of a whole class of malicious code. Thus, it is
more difficult for an attacker to evade detection by applying simple changes to the
syntactic representation of the code.

References

1.

10.

11.

12.

13.

14.

15.

R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra
and the Parma Polyhedra Library. In 9th International Symposium on Static Analysis,
2002.

. M. Christodorescu and S. Jha. Static Analysis of Executables to Detect Malicious Pat-

terns. In Proceedings of the 12th USENIX Security Symposium, 2003.

. C. Cifuentes and M. V. Emmerik. UQBT: Adaptable binary translation at low cost. IEEE

Computer, 40(2-3), 2000.

. C. Cifuentes and K. Gough. Decompilation of Binary Programs. Software Practice &

Experience, 25(7):811-829, July 1995.

. F. B. Cohen. Operating System Protection through Program Evolution. http://all.

net/books/IP/evolve.html.

. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Anal-

ysis of Programs by Construction or Approximation of Fixpoints. In 4th ACM Symposium
on Principles of Programming Languages (POPL), 1977.

. Data Rescure. IDA Pro: Disassembler and Debugger. http://www.datarescue.

com/idabase/, 2004.

. Free Software Foundation. GNU Binary Utilities, Mar 2002. http: //www.gnu.org/

software/binutils/manual/.

. J. Giffin, S. Jha, and B. Miller. Detecting manipulated remote call streams. In In Pro-

ceedings of 11th USENIX Security Symposium, 2002.

J. King. Symbolic Execution and Program Testing. Communications of the ACM, 19(7),
1976.

C. Kruegel, F. Valeur, W. Robertson, and G. Vigna. Static Analysis of Obfuscated Bina-
ries. In Usenix Security Symposium, 2004.

T. Lengauer and R. Tarjan. A Fast Algorithm for Finding Dominators in a Flowgraph.
ACM Transactions on Programming Languages and Systems, 1(1), 1979.

C. Linn and S. Debray. Obfuscation of executable code to improve resistance to static
disassembly. In Proceedings of the 10th ACM Conference on Computer and Communi-
cations Security (CCS), pages 290-299, Washington, DC, October 2003.

E. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis. Springer Verlag,
1999.

R. Sites, A. Chernoff, M. Kirk, M. Marks, and S. Robinson. Binary Translation. Digital
Technical Journal, 4(4), 1992.

3

A Next-Generation Platform for Analyzing
Executables™

Thomas Reps

1

2

L2 Gogul Balakrishnan?, Junghee Lim?!, and Tim Teitelbaum?
Department of Computer Sciences, University of Wisconsin, Madison

{reps, bgogul, junghee}@cs.wisc.edu

GrammaTech, Inc.

tt@grammatech.com

Summary. In recent years, there has been a growing need for tools that an analyst can use to
understand the workings of COTS components, plug-ins, mobile code, and DLLs, as well as
memory snapshots of worms and virus-infected code. Static analysis provides techniques that
can help with such problems; however, there are several obstacles that must be overcome:

For many kinds of potentially malicious programs, symbol-table and debugging informa-

tion is entirely absent. Even if it is present, it cannot be relied upon.

To understand memory-access operations, it is necessary to determine the set of addresses

accessed by each operation. This is difficult because

— While some memory operations use explicit memory addresses in the instruction
(easy), others use indirect addressing via address expressions (difficult).

— Arithmetic on addresses is pervasive. For instance, even when the value of a local vari-
able is loaded from its slot in an activation record, address arithmetic is performed.

— There is no notion of type at the hardware level, so address values cannot be distin-
guished from integer values.

— Memory accesses do not have to be aligned, so word-sized address values could po-
tentially be cobbled together from misaligned reads and writes.

We have developed static-analysis algorithms to recover information about the contents of
memory locations and how they are manipulated by an executable. By combining these
analyses with facilities provided by the IDAPro and CodeSurfer toolkits, we have created
CodeSurfer/x86, a prototype tool for browsing, inspecting, and analyzing x86 executables.

* This chapter is a slightly revised version of a paper that appeared in Proceedings of the 3rd

Asian Symposium on Programming Languages and Systems [37]. Portions of the chapter
also appeared in [3, 5, 36].

This work was supported in part by NSF under grant CCR-9986308, by ONR under
contracts N00014-{01-1-0796,01-1-0708,03-C-0502,05-C-0357}, by ARFL under con-
tract F30602-02-C-0051, and by HSARPA under contract FA8750-05-C-0179. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes,
notwithstanding any copyright notices affixed thereon. The views and conclusions con-
tained herein are those of the authors, and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or implied, of the above
government agencies or the U.S. Government.

44 Thomas Reps, Gogul Balakrishnan, Junghee Lim, and Tim Teitelbaum

From an x86 executable, CodeSurfer/x86 recovers intermediate representations that are sim-
ilar to what would be created by a compiler for a program written in a high-level language.
CodeSurfer/x86 also supports a scripting language, as well as several kinds of sophisticated
pattern-matching capabilities. These facilities provide a platform for the development of addi-
tional tools for analyzing the security properties of executables.

3.1 Introduction

Market forces are increasingly pushing companies to deploy COTS software when
possible—for which source code is typically unavailable—and to out-source devel-
opment when custom software is required. Moreover, a great deal of legacy code—
for which design documents are usually out-of-date, and for which source code is
sometimes unavailable and sometimes non-existent—will continue to be left de-
ployed. An important challenge during the coming decade will be how to identify
bugs and security vulnerabilities in such systems. Methods are needed to determine
whether third-party and legacy application programs can perform malicious opera-
tions (or can be induced to perform malicious operations), and to be able to make
such judgments in the absence of source code.

Recent research in programming languages, software engineering, and computer
security has led to new kinds of tools for analyzing code for bugs and security vul-
nerabilities [26, 43, 21, 15, 9, 6, 11, 28, 18, 10]. In these tools, static analysis is
used to determine a conservative answer to the question “Can the program reach a
bad state?”? In principle, such tools would be of great help to an analyst trying to
detect malicious code hidden in software, except for one important detail: the afore-
mentioned tools all focus on analyzing source code written in a high-level language.
Even if source code were available, there are a number of reasons why analyses that
start from source code do not provide the right level of detail for checking certain
kinds of properties, which can cause bugs, security vulnerabilities, and malicious
behavior to be invisible to such tools. (See §3.2.)

In contrast, our work addresses the problem of finding bugs and security vul-
nerabilities in programs when source code is unavailable. Our goal is to create a
platform that carries out static analysis on executables and provides information that
an analyst can use to understand the workings of potentially malicious code, such as
COTS components, plug-ins, mobile code, and DLLs, as well as memory snapshots
of worms and virus-infected code. A second goal is to use this platform to create
tools that an analyst can employ to determine such information as

e whether a program contains inadvertent security vulnerabilities

3 Static analysis provides a way to obtain information about the possible states that a pro-
gram reaches during execution, but without actually running the program on specific in-
puts. Static-analysis techniques explore the program’s behavior for all possible inputs and
all possible states that the program can reach. To make this feasible, the program is “run
in the aggregate”—i.e., on descriptors that represent collections of memory configurations
[16].

3 A Next-Generation Platform for Analyzing Executables 45

e whether a program contains deliberate security vulnerabilities, such as back
doors, time bombs, or logic bombs. If so, the goal is to provide information about
activation mechanisms, payloads, and latencies.

‘We have developed a tool, called CodeSurfer/x86, that serves as a prototype for a
next-generation platform for analyzing executables. CodeSurfer/x86 provides a secu-
rity analyst with a powerful and flexible platform for investigating the properties and
possible behaviors of an x86 executable. It uses static analysis to recover interme-
diate representations (IRs) that are similar to those that a compiler creates for a pro-
gram written in a high-level language. An analyst is able to use (i) CodeSurfer/x86’s
GUI, which provides mechanisms to understand a program’s chains of data and con-
trol dependences, (ii) CodeSurfer/x86’s scripting language, which provides access to
all of the intermediate representations that CodeSurfer/x86 builds, and (iii) Gram-
maTech’s Path Inspector, which is a model-checking tool that uses a sophisticated
pattern-matching engine to answer questions about the flow of execution in a pro-
gram.,

Because CodeSurfer/x86 was designed to provide a platform that an analyst can
use to understand the workings of potentially malicious code, a major challenge
is that the tool must assume that the x86 executable is untrustworthy, and hence
symbol-table and debugging information cannot be relied upon (even if it is present).
The algorithms used in CodeSurfer/x86 provide ways to meet this challenge.

Although the present version of CodeSurfer/x86 is targeted to x86 executables,
the techniques used [3, 35, 40, 33, 36] are language-independent and could be
applied to other types of executables. In addition, it would be possible to extend
CodeSurfer/x86 to use symbol-table and debugging information in situations where
such information is available and trusted—for instance, if you have the source code
for the program, you invoke the compiler yourself, and you trust the compiler to
supply correct symbol-table and debugging information. Moreover, the techniques
extend naturally if source code is available: one can treat the executable code as just
another IR in the collection of IRs obtainable from source code. The mapping of
information back to the source code would be similar to what C source-code tools
already have to perform because of the use of the C preprocessor (although the kind
of issues that arise when debugging optimized code [27, 46, 17] complicate matters).

The remainder of chapter is organized as follows: §3.2 illustrates some of the
advantages of analyzing executables. §3.3 describes CodeSurfer/x86. §3.4 gives an
overview of the model-checking facilities that have been coupled to CodeSurfer/x86.
§3.5 discusses related work.

3.2 Advantages of Analyzing Executables

This section discusses why an analysis that works on executables can provide more
accurate information than an analysis that works on source code.* An analysis that

* Terms like “an analysis that works on source code” and “source-level analyses” are used as
a shorthand for “analyses that work on IRs built from the source code.”

46 Thomas Reps, Gogul Balakrishnan, Junghee Lim, and Tim Teitelbaum

works on source code can fail to detect certain bugs and vulnerabilities due to the
WYSINWYX phenomenon: “What You See Is Not What You eXecute” [5], which
can cause there to be a mismatch between what a programmer intends and what is
actually executed by the processor. The following source-code fragment, taken from
a login program, illustrates the issue [30]:
memset (password, ‘\0’, len);
free(password);

The login program temporarily stores the user’s password—in clear text—in a dy-
namically allocated buffer pointed to by the pointer variable password. To mini-
mize the lifetime of the password, which is sensitive information, the code fragment
shown above zeroes-out the buffer pointed to by password before returning it to
the free-storage pool. Unfortunately, a compiler that performs useless-code elimi-
nation may reason that the program never uses the values written by the call on
memset, and therefore the call on memset can be removed—thereby leaving sen-
sitive information exposed in the free-storage pool. This is not just hypothetical; a
similar vulnerability was discovered during the Windows security push in 2002 [30].
This vulnerability is invisible in the source code; it can only be detected by examin-
ing the low-level code emitted by the optimizing compiler.

A second example where analysis of an executable does better than typical
source-level analyses involves pointer arithmetic and an indirect call:

int (*f) (void);

int diff = (char+)&f2 - (char+)&fl; // The offset between fl and f2
f = &fl;
£ = (int (%) ()) ((char*)f + diff); // f now points to f2

(x£) (}; // indirect call;

Existing source-level analyses (that we know of) are ill-prepared to handle the above
code. The conventional assumption is that arithmetic on function pointers leads to
undefined behavior, so source-level analyses either (a) assume that the indirect func-
tion call might call any function, or (b) ignore the arithmetic operations and assume
that the indirect function call calls £1 (on the assumption that the code is ANSI-
C compliant). In contrast, the analysis described by Balakrishnan and Reps [3, 36]
correctly identifies £2 as the invoked function. Furthermore, the analysis can detect
when arithmetic on addresses creates an address that does not point to the beginning
of a function; the use of such an address to perform a function “call” is likely to be a
bug (or else a very subtle, deliberately introduced security vulnerability).

A third example involves a function call that passes fewer arguments than the
procedure expects as parameters. (Many compilers accept such (unsafe) code as an
easy way of implementing functions that take a variable number of parameters.) With
most compilers, this effectively means that the call-site passes some parts of one
or more local variables of the calling procedure as the remaining parameters (and,
in effect, these are passed by reference—an assignment to such a parameter in the
callee will overwrite the value of the corresponding local in the caller.) An analysis
that works on executables can be created that is capable of determining what the
extra parameters are [3, 36], whereas a source-level analysis must either make a
cruder over-approximation or an unsound under-approximation.

3 A Next-Generation Platform for Analyzing Executables 47

A final example is shown in Fig. 3.1. The C code on the left uses an uninitialized
variable (which triggers a compiler warning, but compiles successfully). A source-
code analyzer must assume that Local can have any value, and therefore the value
of v in main is either 1 or 2. The assembly listings on the right show how the C
code could be compiled, including two variants for the prolog of function callee.
The Microsoft compiler (cl) uses the second variant, which includes the following
strength reduction:

The instruction sub esp, 4 that allocates space for 1ocal is replaced by

a push instruction of an arbitrary register (in this case, ecx).
An analysis of the executable can determine that this optimization results in local
being initialized to 5, and therefore v in main can only have the value 1.

int callee(int q, int b)
int local;
if (local == 5) return 1;

Standard prolog__ Prolog for 1 local
push ebp push ebp
mov ebp,esp mov ebp, esp

else return 2; sub esp, 4 push ecx

}

int main() { mov [ebp+var_8], 5
intc=5; mov [ebp+var_C], 7
intd=7; mov eax, [ebp+var_C]

push eax

mov ecx, [ebp+var_8]
push ecx

call _callee

int v = callee(c d):
at is the value of v here?
return O;

}

Fig. 3.1. Example of unexpected behavior due to compiler optimization. The box at the top
right shows two variants of code generated by an optimizing compiler for the prolog of
callee. Analysis of the second of these reveals that the variable Llocal necessarily con-
tains the value 5.

To summarize, the advantage of an analysis that works on executables is that an
executable contains the actual instructions that will be executed, and hence provides
information that reveals the actual behavior that arises during program execution.
This information includes

e memory-layout details, such as (i) the positions (i.e., offsets) of variables in the
runtime stack’s activation records, and (ii) padding between structure fields.
register usage

execution order (e.g., of actual parameters)

optimizations performed

artifacts of compiler bugs

Access to such information can be crucial; for instance, many security exploits de-
pend on platform-specific features, such as the structure of activation records. Vul-
nerabilities can escape notice when a tool does not have information about adjacency
relationships among variables.

48 Thomas Reps, Gogul Balakrishnan, Junghee Lim, and Tim Teitelbaum

In contrast, there are a number of reasons why analyses based on source code do
not provide the right level of detail for checking certain kinds of properties:

e Source-level tools are only applicable when source is available, which limits their
usefulness in security applications (e.g., to analyzing code from open-source
projects).

e Analyses based on source code typically make (unchecked) assumptions, e.g.,
that the program is ANSI-C compliant. This often means that an analysis does
not account for behaviors that are allowed by the compiler (e.g., arithmetic is
performed on pointers that are subsequently used for indirect function calls;
pointers move off the ends of arrays and are subsequently dereferenced,; etc.)

e Programs typically make extensive use of libraries, including dynamically linked
libraries (DLLs), which may not be available in source-code form. Typically,
source-level analyses are performed using code stubs that model the effects of
library calls. Because these are created by hand they are likely to contain errors,
which may cause an analysis to return incorrect results.

e Programs are sometimes modified subsequent to compilation, e.g., to perform
optimizations or insert instrumentation code [44]. (They may also be modified to
insert malicious code.) Such modifications are not visible to tools that analyze
source.

o The source code may have been written in more than one language. This com-
plicates the life of designers of tools that analyze source code because multiple
languages must be supported, each with its own quirks.

e Even if the source code is primarily written in one high-level language, it may
contain inlined assembly code in selected places. Source-level analysis tools
typically either skip over inlined assembly code [14] or do not push the analysis
beyond sites of inlined assembly code [1].

Thus, even if source code is available, a substantial amount of information is hidden
from analyses that start from source code, which can cause bugs, security vulnerabil-
ities, and malicious behavior to be invisible to such tools. Moreover, a source-level
analysis tool that strives to have greater fidelity to the program that is actually exe-
cuted would have to duplicate all of the choices made by the compiler and optimizer;
such an approach is doomed to failure.

3.3 Analyzing Executables in the Absence of Source Code

To be able to apply techniques like the ones used in [26, 43, 21, 15, 9, 6, 11, 28,
18, 10], one already encounters a challenging program-analysis problem. From the
perspective of the compiler community, one would consider the problem to be “IR re-
covery”: one needs to recover intermediate representations from the executable that
are similar to those that would be available had one started from source code. From
the perspective of the model-checking community, one would consider the problem
to be that of “model extraction”: one needs to extract a suitable model from the exe-
cutable. To solve the IR-recovery problem, several obstacles must be overcome:

3 A Next-Generation Platform for Analyzing Executables 49

e For many kinds of potentially malicious programs, symbol-table and debugging
information is entirely absent. Even if it is present, it cannot be relied upon.

¢ To understand memory-access operations, it is necessary to determine the set of
addresses accessed by each operation. This is difficult because

— While some memory-access operations use explicit memory addresses in the
instruction (easy), others use indirect addressing via address expressions (dif-
ficult).

— Arithmetic on addresses is pervasive. For instance, even when the value of a
local variable is loaded from its slot in an activation record, address arith-
metic is performed.

— There is no notion of type at the hardware level, so address values cannot be
distinguished from integer values.

— Memory accesses do not have to be aligned, so word-sized address values
could potentially be cobbled together from misaligned reads and writes.

For the past few years, we have been working to create a prototype next-
generation platform for analyzing executables. The tool set that we have developed
extends static vulnerability-analysis techniques to work directly on executables, even
in the absence of source code. The tool set builds on (i) recent advances in static
analysis of program executables [3, 36], and (ii) new techniques for software model
checking and dataflow analysis [8, 39, 40, 33]. The main components of the tool set
are CodeSurfer/x86, WPDS++, and the Path Inspector:

e CodeSurfer/x86 recovers IRs from an executable that are similar to the IRs
that source-code-analysis tools create—but, in many respects, the IRs that
CodeSurfer/x86 builds are more precise. CodeSurfer/x86 also provides an API
to these IRs.

e WPDS++ [32] is a library for answering generalized reachability queries on
weighted pushdown systems (WPDSs) [8, 39, 40, 33]. This library provide a
mechanism for defining and solving model-checking and dataflow-analysis prob-
lems. To extend CodeSurfer/x86’s analysis capabilities, the CodeSurfer/x86 API
can be used to extract a WPDS model from an executable and to run WPDS++
on the model.

o The Path Inspector is a software model checker built on top of CodeSurfer and
WPDS++. It supports safety queries about a program’s possible control configu-
rations.

In addition, by writing scripts that traverse the IRs that CodeSurfer/x86 recovers, the
tool set can be extended with further capabilities (e.g., decompilation, code rewriting,
etc.).

Fig. 3.2 shows how these components fit together. CodeSurfer/x86 makes use
of both IDAPro [31], a disassembly toolkit, and GrammaTech’s CodeSurfer sys-
tem [14], a toolkit originally developed for building program-analysis and inspection
tools that analyze source code. These components are glued together by a piece called
the Connector, which uses two static analyses—value-set analysis (VSA) [3, 36] and

50 Thomas Reps, Gogul Balakrishnan, Junghee Lim, and Tim Teitelbaum

aggregate-structure identification (ASI) [35] to recover information about the con-
tents of memory locations and how they are manipulated by an executable.’

CodeSurter/x86
.

Initial estimate of - fleshed-out CF6Es
+ code vs. data - fleshed-out call graph
* procedures - used, killed, may-killed
- call sites variables for CFG nodes
- malloc sites - points-to sets

- reports of violations

Fig. 3.2. Organization of CodeSurfer/x86 and companion tools.

An x86 executable is first disassembled using IDAPro. In addition to the disas-
sembly listing, IDAPro also provides access to the following information:

Statically known memory addresses and offsets: IDAPro identifies the statically
known memory addresses and stack offsets in the program, and renames all
occurrences of these quantities with a consistent name. This database is used
to define the set of data objects in terms of which (the initial run of) VSA is
carried out; these objects are called a-locs, for “abstract locations”. VSA is an
analysis that, for each instruction, determines an over-approximation of the set
of values that each a-loc could hold.

Information about procedure boundaries: X86 executables do not have information
about procedure boundaries. IDAPro identifies the boundaries of most of the
procedures in an executable.

5 VSA also makes use of the results of an additional static-analysis phase, called affine-
relation analysis (ARA), which, for each program point, identifies affine relationships [34]
that hold among the values of registers; see [3, 33].

8 IDAPro does not identify the targets of all indirect jumps and indirect calls, and therefore
the call graph and control-flow graphs that it constructs are not complete. However, the
information computed during VSA is used to augment the call graph and control-flow
graphs on-the-fly to account for indirect jumps and indirect calls.

3 A Next-Generation Platform for Analyzing Executables 51

Calls to library functions: IDAPro discovers calls to library functions using an al-
gorithm called Fast Library Identification and Recognition Technology (FLIRT)
[24].

IDAPro provides access to its internal resources via an API that allows users to
create plug-ins to be executed by IDAPro. CodeSurfer/x86 uses a plug-in to IDAPro
to read out information from IDAPro. This information is then used by the Connector
to create the initial versions of its own intermediate representations (see Fig. 3.2);
VSA and ASI are implemented using the intermediate representations created by
the Connector. The IDAPro-plug-in/Connector combination is also able to create the
same data structures for DLLs, and to link them into the data structures that represent
the program itself. This infrastructure permits whole-program analysis to be carried
out—including analysis of the code for all library functions that are called.

CodeSurfer/x86 makes no use of symbol-table or debugging information. In-
stead, the results of VSA and ASI provide a substitute for absent or untrusted
symbol-table and debugging information. Initially, the set of a-locs is determined
based on the static memory addresses and stack offsets that are used in instructions
in the executable. Each run of ASI refines the set of a-locs used for the next run of
VSA.

Because the IRs that CodeSurfer/x86 recovers are extracted directly from the exe-
cutable code that is run on the machine, and because the entire program is analyzed—
including any libraries that are linked to the program—this approach provides a
“higher fidelity” platform for softwarc model checking than the IRs derived from
source code that other software model checkers use [26, 43, 21, 15,9, 6, 11, 28, 18,
10].

CodeSurfer/x86 supports a scripting language that provides access to all of the
IRs that CodeSurfer/x86 builds for the executable. This provides a way to connect
CodeSurfer/x86 to other analysis tools, such as model checkers (see §3.4), as well
as to implement other tools on top of CodeSurfer/x86, such as decompilers, code
rewriters, etc. It also provides an analyst with a mechanism to develop any additional
“one-off” analyses he needs to create.

3.3.1 Memory-Access Analysis in the Connector

The analyses in CodeSurfer/x86 are a great deal more ambitious than even relatively
sophisticated disassemblers, such as IDAPro. At the technical level, CodeSurfer/x86
addresses the following problem:

52 Thomas Reps, Gogul Balakrishnan, Junghee Lim, and Tim Teitelbaum

Given a stripped executable F, identify the
e procedures, data objects, types, and libraries that it uses
and

e for each instruction [in E and its libraries
e for each interprocedural calling context of [
o for each machine register and a-loc A

statically compute an accurate over-approximation to

o the set of values that A may contain when I executes
o the instructions that may have defined the values used by I
e the instructions that may use the values defined by execution of I

and provide effective means to access that information both interactively and under
program control.

Value-Set Analysis. VSA [3, 36] is a combined numeric and pointer-analysis
algorithm that determines an over-approximation of the set of numeric values and
addresses (or value set) that each a-loc holds at each program point. The information
computed during VSA is used to augment the call graph and control-flow graphs
on-the-fly to account for indirect jumps and indirect function calls.

VSA is related to pointer-analysis algorithms that have been developed for pro-
grams written in high-level languages, which determine an over-approximation of
the set of variables whose addresses each pointer variable can hold:

VSA determines an over-approximation of the set of addresses that each data
object can hold at each program point.

At the same time, VSA is similar to range analysis and other numeric static-analysis
algorithms that over-approximate the integer values that each variable can hold:

VSA determines an over-approximation of the set of integer values that each
data object can hold at each program point.

The following insights shaped the design of VSA:

o A non-aligned access to memory—e.g., an access via an address that is not
aligned on a 4-byte word boundary—spans parts of two words, and provides a
way to forge a new address from parts of old addresses. It is important for VSA
to discover information about the alignments and strides of memory accesses,
or else most indirect-addressing operations appear to be possibly non-aligned
accesses.

e To prevent most loops that traverse arrays from appearing to be possible stack-
smashing attacks, the analysis needs to use relational information so that the
values of a-locs assigned to within a loop can be related to the values of the
a-locs used in the loop’s branch condition (see [3, 34, 33]).

e It is desirable for VSA to track integer-valued and address-valued quantities
simultaneously. This is crucial for analyzing executables because

3 A Next-Generation Platform for Analyzing Executables 53

— integers and addresses are indistinguishable at execution time, and

— compilers use address arithmetic and indirect addressing to implement such
features as pointer arithmetic, pointer dereferencing, array indexing, and ac-
cessing structure fields.

Moreover, information about integer values can lead to improved tracking of

address-valued quantities, and information about address values can lead to im-

proved tracking of integer-valued quantities.

VSA produces information that is more precise than that obtained via several more
conventional numeric analyses used in compilers, including constant propagation,
range analysis, and integer-congruence analysis. At the same time, VSA provides
an analog of pointer analysis that is suitable for use on executables.
Aggregate-Structure Identification. One of the major stumbling blocks in analysis
of executables is the difficulty of recovering information about variables and types,
especially for aggregates (i.e., structures and arrays). CodeSurfer/x86 uses an itera-
tive strategy for recovering such information; with each round, it refines its notion of
the program’s variables and types.

Initially, VSA uses a set of variables (“a-locs”™) that are obtained from IDAPro.
Because IDAPro has relatively limited information available at the time that it applies
its variable-discovery heuristics (i.e., it only knows about statically known memory
addresses and stack offsets), what it can do is rather limited, and generally leads to a
very coarse-grained approximation of the program’s variables.

Once a given run of VSA completes, the value sets for the a-locs at each in-
struction provide a way to identify an over-approximation of the memory accesses
performed at that instruction. This information is used to refine the current set of a-
locs by running a variant of the ASI algorithm [35], which identifies commonalities
among accesses to different parts of an aggregate data value. ASI was originally de-
veloped for analysis of Cobol programs: in that context, ASI ignores all of the type
declarations in the program, and considers an aggregate to be merely a sequence of
bytes of a given length; an aggregate is then broken up into smaller parts depending
upon how the aggregate is accessed by the program. In the context in which we use
ASI—namely, analysis of x86 executables—ASI cannot be applied until the results
of VSA are already in hand: ASI requires points-to, range, and stride information
to be available; however, for an x86 executable this information is not available until
after VSA has been run.

ASI exploits the information made available by VSA (such as the values that a-
locs can hold, sizes of arrays, and iteration counts for loops), which generally leads
to a much more accurate set of a-locs than the initial set of a-locs discovered by
IDAPro. For instance, consider a simple loop, implemented in source code as

int a[l1l0],
for (i = 0;
alil]l = i;

i
i < 10; i++)

From the executable, IDAPro will determine that there are two variables, one of
size 4 bytes and one of size 40 bytes, but will provide no information about the

54 Thomas Reps, Gogul Balakrishnan, Junghee Lim, and Tim Teitelbaum

substructure of the 40-byte variable. In contrast, in addition to the 4-byte variable,
ASI will correctly identify that the 40 bytes are an array of ten 4-byte quantities.

The Connector uses a refinement loop that performs repeated phases of VSA and
ASI (see Fig. 3.2). The ASI results are used to refine the previous set of a-locs, and
the refined set of a-locs is then used to analyze the program during the next round of
VSA. The number of iterations is controlled by a command-line parameter.

ASI also provides information that greatly increases the precision with which
VSA can analyze the contents of dynamically allocated objects (i.e., memory loca-
tions allocated using ma 1 1oc or new). To see why, recall how the initial set of a-locs
is identified by IDAPro. The a-loc abstraction exploits the fact that accesses to pro-
gram variables in a high-level language are either complied into static addresses (for
globals, and fields of struct-valued globals) or static stack-frame offsets (for locals
and fields of struct-valued locals). However, fields of dynamically allocated objects
are accessed in terms of offsets relative to the base address of the object itself, which
is something that IDAPro knows nothing about. In contrast, VSA considers each
malloc site m to be a “memory region” (consisting of the objects allocated at m),
and the memory region for m serves as a representative for the base addresses of
those objects.” This lets ASI handle the use of an offset from an object’s base ad-
dress similar to the way that it handles a stack-frame offset—with the net result that

ASI is able to capture information about the fine-grained structure of dynamically
allocated objects. The object fields discovered in this way become a-locs for the next
round of VSA, which will then discover an over-approximation of their contents.

ASIis complementary to VSA: ASI addresses only the issue of identifying the
structure of aggregates, whereas VSA addresses the issue of (over-approximating)
the contents of memory locations. ASI provides an improved method for the
“variable-identification” facility of IDAPro, which uses only much cruder techniques
(and only takes into account statically known memory addresses and stack offsets).
Moreover, ASI requires more information to be on hand than is available in IDAPro
(such as the sizes of arrays and iteration counts for loops). Fortunately, this is exactly
the information that is available after VSA has been carried out, which means that
ASI can be used in conjunction with VSA to obtain improved results: after a first
round of VSA, the results of ASI are used to refine the a-loc abstraction, after which
VSA is run again—generally producing more precise results.

3.3.2 CodeSurfer/x86

The value sets for the a-locs at each program point are used to determine each point’s
sets of used, killed, and possibly-killed a-locs; these are emitted in a format that is
suitable for input to CodeSurfer.

7 CodeSurfer/x86 actually uses a more refined technique (involving two memory regions
per malloc site) to overcome some of the imprecision that arises due to the need to per-
form weak updates—i.e., accumulate information via join—on fields of summary malloc-
regions. In particular, this technique, which is described in [4], often allows VSA to estab-
lish a definite link between a dynamically-allocated object of a class that uses one or more
virtual functions and the appropriate virtual-function table.

3 A Next-Generation Platform for Analyzing Executables 55

CodeSurfer is a tool for code understanding and code inspection that supports
both a graphical user interface (GUI) and an API (as well as a scripting language) to
provide access to a program’s system dependence graph (SDG) [29], as well as other
information stored in CodeSurfer’s IRs.> An SDG consists of a set of program
dependence graphs (PDGs), one for each procedure in the program. A vertex in a
PDG corresponds to a construct in the program, such as an instruction, a call to
a procedure, an actual parameter of a call, or a formal parameter of a procedure.
The edges correspond to data and control dependences between the vertices [22].
The PDGs are connected together with interprocedural edges that represent control
dependences between procedure calls and entries, data dependences between actual
parameters and formal parameters, and data dependences between return values and
receivers of return values.

Dependence graphs are invaluable for many applications, because they highlight
chains of dependent instructions that may be widely scattered through the program.
For example, given an instruction, it is often useful to know its data-dependence
predecessors (instructions that write to locations read by that instruction) and its
control-dependence predecessors (control points that may affect whether a given in-
struction gets executed). Similarly, it may be useful to know for a given instruction its
data-dependence successors (instructions that read locations written by that instruc-
tion) and control-dependence successors (instructions whose execution depends on
the decision made at a given control point).

CodeSurfer’s GUI supports browsing (“surfing”) of an SDG, along with a variety
of operations for making queries about the SDG—such as slicing [29] and chopping
[38].° The GUI allows a user to navigate through a program’s source code using
these dependences in a manner analogous to navigating the World Wide Web.

CodeSurfer’s API provides a programmatic interface to these operations, as well
as to lower-level information, such as the individual nodes and edges of the pro-
gram’s SDG, call graph, and control-flow graph, and a node’s sets of used, killed,
and possibly-killed a-locs. By writing programs that traverse CodeSurfer’s IRs to
implement additional program analyses, the API can be used to extend CodeSurfer’s
capabilities.

CodeSurfer/x86 provides some unique capabilities for answering an analyst’s
questions. For instance, given a worm, CodeSurfer/x86’s analysis results have been
used to obtain information about the worm’s target-discovery, propagation, and acti-
vation mechanisms by

8 In addition to the SDG, CodeSurfer’s IRs include abstract-syntax trees, control-flow graphs
(CFGs), a call graph, VSA results, the sets of used, killed, and possibly-killed a-locs at each
instruction, and information about the structure and layout of global memory, activation
records, and dynamically allocated storage.

¥ A backward slice of a program with respect to a set of program points S is the set of all
program points that might affect the computations performed at .S; a forward slice with
respect to S is the set of all program points that might be affected by the computations
performed at members of S [29]. A program chop between a set of source program points
S and a set of target program points 7' shows how S can affect the points in 7' [38].
Chopping is a key operation in information-flow analysis.

56 Thomas Reps, Gogul Balakrishnan, Junghee Lim, and Tim Teitelbaum

locating sites of system calls,

finding the instructions by which arguments are passed, and

following dependences backwards from those instructions to identify where the
values come from.

Because the techniques described in §3.3.1 are able to recover quite rich information
about memory-access operations, the answers that CodeSurfer/x86 furnishes to such
questions account for the movement of data through memory—not just the move-
ment of data through registers, as in some prior work (e.g., [19, 12]).

3.3.3 Goals, Capabilities, and Assumptions

A few words are in order about the goals, capabilities, and assumptions underlying
CodeSurfer/x86.

The constraint that symbol-table and debugging information are off-limits com-
plicated the task of creating CodeSurfer/x86; however, the results of VSA and ASI
provide a substitute for such information. This allowed us to create a tool that can be
used when symbol-table and debugging information is absent or untrusted.

Given an executable as input, the goal is to check whether the executable con-
forms to a “standard” compilation model—i.e., a runtime stack is maintained; acti-
vation records (ARs) are pushed onto the stack on procedure entry and popped from
the stack on procedure exit; each global variable resides at a fixed offset in memory;
each local variable of a procedure f resides at a fixed offset in the ARs for f; actual
parameters of f are pushed onto the stack by the caller so that the corresponding
formal parameters reside at fixed offsets in the ARs for f; the program’s instructions
occupy a fixed area of memory, are not self-modifying, and are separate from the
program’s data. If the executable conforms to this model, CodeSurfer/x86 creates an
IR for it. If it does not conform to the model, then one or more violations will be
discovered, and corresponding error reports are issued.

The goal for CodeSurfer/x86 is to provide (i) a tool for security analysis, and (ii)
a general infrastructure for additional analysis of executables. Thus, as a practical
measure, when the system produces an error report, a choice is made about how to
accommodate the error so that analysis can continue (i.e., the error is optimistically
treated as a false positive), and an IR is produced; if the analyst can determine that
the error report is indeed a false positive, then the IR is valid.

The analyzer does not care whether the program was compiled from a high-level
language, or hand-written in assembly code. In fact, some pieces of the program may
be the output from a compiler (or from multiple compilers, for different high-level
languages), and others hand-written assembly code. Still, it is easiest to talk about
the information that VSA and ASI are capable of recovering in terms of the features
that a high-level programming language allows: VSA and ASI are capable of recov-
ering information from programs that use global variables, local variables, pointers,
structures, arrays, dynamically allocated storage, pointer arithmetic, indirect jumps,
recursive procedures, indirect calls through function pointers, virtual-function calls,
and DLLs (but, at present, not run-time code generation or self-modifying code).

3 A Next-Generation Platform for Analyzing Executables 57

Compiler optimizations often make VSA and ASI less difficult, because more
of the computation’s critical data resides in registers, rather than in memory; register
operations are more easily deciphered than memory operations.

The major assumption that we make about IDAPro is that it is able to disassemble
a program and build an adequate collection of preliminary IRs for it. Even though (i)
the CFG created by IDAPro may be incomplete due to indirect jumps, and (ii) the
call-graph created by IDAPro may be incomplete due to indirect calls, incomplete
IRs do not trigger error reports. Both the CFG and the call graph are fleshed out
according to information recovered during the course of VSA/ASI iteration. In
fact, the relationship between VSA/ASI iteration and the preliminary IRs created
by IDAPro is similar to the relationship between a points-to-analysis algorithm in a
C compiler and the preliminary IRs created by the C compiler’s front end. In both
cases, the preliminary IRs are fleshed out during the course of analysis.

3.4 Model-Checking Facilities

Model checking [13] involves the use of sophisticated pattern-matching techniques to
answer questions about the flow of execution in a program: a model of the program’s
possible behavior is created and checked for conformance with a model of expected
behavior (as specified by a user query). In essence, model-checking algorithms ex-
plore the program’s state-space and answer questions about whether a bad state can
be reached during an execution of the program.

For mode] checking, the CodeSurfer/x86 IRs are used to build a weighted
pushdown system (WPDS) [8, 39, 40, 33] that models possible program behav-
iors. WPDSs generalize a model-checking technology known as pushdown systems
(PDSs) [7, 23], which have been used for software model checking in the Moped
[42,41] and MOPS [11] systems. Compared to ordinary (unweighted) PDSs, WPDSs
are capable of representing more powerful kinds of abstractions of runtime states
[40, 33], and hence go beyond the capabilities of PDSs. For instance, the use of
WPDSs provides a way to address certain kinds of security-related queries that can-
not be answered by MOPS.

WPDS++ [32] is a library that implements the symbolic algorithms from [40, 33]
for solving WPDS reachability problems. We follow the standard approach of using
a PDS to model the interprocedural CFG (one of CodeSurfer/x86’s IRs). The stack
symbols correspond to program locations; there is only a single PDS state; and PDS
rules encode control flow as follows:

Rule Control flow modeled

q{u) — q{v) Intraprocedural CFG edge u — v

q{c) — q{entryp r) Call to P from c that returns to r

q{z) — q{) Return from a procedure at exit node z

In a configuration of the PDS, the symbol at the top of the stack corresponds to the
current program location, and the rest of the stack holds return-site locations—this
allows the PDS to model the behavior of the program’s runtime execution stack.

58 Thomas Reps, Gogul Balakrishnan, Junghee Lim, and Tim Teitelbaum

An encoding of the interprocedural CFG as a PDS is sufficient for answering
queries about reachable control states (as the Path Inspector does; see below): the
reachability algorithms of WPDS++ can determine if an undesirable PDS configura-
tion is reachable. However, WPDS++ also supports weighted PDSs, which are PDSs
in which each rule is weighted with an element of a (user-defined) semiring. The
use of weights allows WPDS++ to perform interprocedural dataflow analysis by us-
ing the semiring’s extend operator to compute weights for sequences of rule firings
and using the semiring’s combine operator to take the join of weights generated by
different paths [40, 33]. (When the weights on rules are conservative abstract data
transformers, an over-approximation to the set of recachable concrete configurations
is obtained, which means that counterexamples reported by WPDS++ may actually
be infeasible.)

The advantage of answering reachability queries on WPDSs over conventional
dataflow-analysis methods is that the latter merge together the values for all states
associated with the same program point, regardless of the states’ calling context.
With WPDSs, queries can be posed with respect to a regular language of stack con-
figurations [8, 39, 40, 33]. (Conventional merged dataflow information can also be
obtained [40].)

CodeSurfer/x86 can also be used in conjunction with GrammaTech’s Path In-
spector tool. The Path Inspector provides a user interface for automating safety
queries that are only concerned with the possible control configurations that an ex-
ecutable can reach. The Path Inspector checks sequencing properties of events in a
program, which can be used to answer such questions as “Is it possible for the pro-
gram to bypass the authentication routine?” (which indicates that the program may
contain a trapdoor), or “Can this login program bypass the code that writes to the log
file?” (which indicates that the program may be a Trojan login program).

With the Path Inspector, such questions are posed as questions about the exis-
tence of problematic event sequences; after checking the query, if a problematic path
exists, it is displayed in the Path Inspector tool. This lists all of the program points
that may occur along the problematic path. These items are linked to the source code;
the analyst can navigate from a point in the path to the corresponding source-code
element. In addition, the Path Inspector allows the analyst to step forward and back-
ward through the path, while simultaneously stepping through the source code. (The
code-stepping operations are similar to the single-stepping operations in a traditional
debugger.)

The Path Inspector uses an automaton-based approach to model checking: the
query is specified as a finite automaton that captures forbidden sequences of program
locations. This “query automaton” is combined with the program model (a WPDS)
using a cross-product construction, and the reachability algorithms of WPDS++ are
used to determine if an error configuration is reachable. If an error configuration is
reachable, then witnesses (see [40]) can be used to produce a program path that drives
the query automaton to an error state.

The Path Inspector includes a GUI for instantiating many common reachabil-
ity queries [20], and for displaying counterexample paths in the disassembly list-
ing. In the current implementation, transitions in the query automaton are triggered

3 A Next-Generation Platform for Analyzing Executables 59

by program points that the user specifies either manually, or using result sets from
CodeSurfer queries. Future versions of the Path Inspector will support more sophis-
ticated queries in which transitions are triggered by matching an abstract-syntax-tree
pattern against a program location, and query states can be instantiated based on
pattern bindings.

3.5 Related Work

Previous work on analyzing memory accesses in executables has dealt with memory
accesses very conservatively: generally, if a register is assigned a value from memory,
it is assumed to take on any value. VSA does a much better job than previous work
because it tracks the integer-valued and address-valued quantities that the program’s
data objects can hold; in particular, VSA tracks the values of data objects other than
just the hardware registers, and thus is not forced to give up all precision when a load
from memory is encountered.

The basic goal of the algorithm proposed by Debray et al. [19] is similar to that
of VSA: for them, it is to find an over-approximation of the set of values that each
register can hold at each program point; for us, it is to find an over-approximation
of the set of values that each (abstract) data object can hold at each program point,
where data objects include memory locations in addition to registers. In their analy-
sis, a set of addresses is approximated by a set of congruence values: they keep track
of only the low-order bits of addresses. However, unlike VSA, their algorithm does
not make any effort to track values that are not in registers. Consequently, they lose
a great deal of precision whenever there is a load from memory.

Cifuentes and Fraboulet [12] give an algorithm to identify an intraprocedural
slice of an executable by following the program’s use-def chains. However, their
algorithm also makes no attempt to track values that are not in registers, and hence
cuts short the slice when a load from memory is encountered.

The two pieces of work that are most closely related to VSA are the algorithm for
data-dependence analysis of assembly code of Amme et al. [2] and the algorithm for
pointer analysis on a low-level intermediate representation of Guo et al. [25]. The al-
gorithm of Amme et al. performs only an intraprocedural analysis, and it is not clear
whether the algorithm fully accounts for dependences between memory locations.
The algorithm of Guo et al. [25] is only partially flow-sensitive: it tracks registers
in a flow-sensitive manner, but treats memory locations in a flow-insensitive man-
ner. The algorithm uses partial transfer functions [45] to achieve context-sensitivity.
The transfer functions are parameterized by “unknown initial values” (UIVs); how-
ever, it is not clear whether the the algorithm accounts for the possibility of called
procedures corrupting the memory locations that the UIVs represent.

References

1. . . * PREfast with driver-specific rules, Oct. 2004. WHDC, Microsoft Corp.,
http://www.microsoft.com/whdc/devtools/tools/PREfast-drv.mspx.

60

10.
11.
12.
13.

14,
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Thomas Reps, Gogul Balakrishnan, Junghee Lim, and Tim Teitelbaum

W. Amme, P. Braun, E. Zehendner, and F. Thomasset. Data dependence analysis of as-
sembly code. Int. J. Parallel Proc., 2000.

G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In Comp.
Construct., pages 5-23, 2004.

G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated storage. In Static
Analysis Symp., 2006.

. G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum. WYSINWYX: What You See

Is Not What You eXecute. In IFIP Working Conf. on Verified Software: Theories, Tools,
Experiments, 2005.

. T. Ball and S. Rajamani. The SLAM toolkit. In Computer Aided Verif., volume 2102 of

Lec. Notes in Comp. Sci., pages 260-264, 2001.

. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:

Application to model checking. In Proc. CONCUR, volume 1243 of Lec. Notes in Comp.
Sci., pages 135-150. Springer-Verlag, 1997.

. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of

concurrent programs with procedures. In Princ. of Prog. Lang., pages 6273, 2003.

. 'W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic programming

errors, Software—Practice &Experience, 30:775-802, 2000.

H. Chen, D. Dean, and D. Wagner. Model checking one million lines of C code. In
Network and Dist. Syst. Security, 2004,

H. Chen and D. Wagner. MOPS: An infrastructure for examining security properties of
software. In Conf. on Comp. and Commun. Sec., pages 235-244, Nov. 2002.

C. Cifuentes and A. Fraboulet. Intraprocedural static slicing of binary executables. In Int.
Conf. on Softw. Maint., pages 188-195, 1997.

E. Clarke, Jr., O. Grumberg, and D. Peled. Model Checking. The M.LT. Press, 1999.
CodeSurfer, GrammaTech, Inc., http://www.grammatech.com/products/codesurfer/.

J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby, and H. Zheng. Ban-
dera: Extracting finite-state models from Java source code. In Int. Conf. on Softw. Eng.,
pages 439-448, 2000.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction of approximation of fixed points. In Princ. of Prog. Lang.,
pages 238-252, 1977.

D. Coutant, S. Meloy, and M. Ruscetta. DOC: A practical approach to source-level de-
bugging of globally optimized code. In Prog. Lang. Design and Impl., 1988.

M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in polynomial
time. In Prog. Lang. Design and Impl., pages 57-68, New York, NY, 2002. ACM Press.
S. Debray, R. Muth, and M. Weippert. Alias analysis of executable code. In Princ. of
Prog. Lang., pages 12-24, 1998.

M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for finite-state
verification. In Int. Conf. on Softw. Eng., 1999.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-
specific, programmer-written compiler extensions. In Op. Syst. Design and Impl., pages
1-16, 2000.

J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its use in
optimization. Trans. on Prog. Lang. and Syst., 3(9):319-349, 1987.

A. Finkel, B.Willems, and P. Wolper. A direct symbolic approach to model checking
pushdown systems. Elec. Notes in Theor. Comp. Sci., 9, 1997.

Fast Library Identification and Recognition Technology, DataRescue sa/nv, Li¢ge, Bel-
gium, http://www.datarescue.com/idabase/flirt.htm.

25.

26.

27.

28.

29.

30.

31.

32,

33.

34,

35.

36.

37.

38.
39.

40.

41.

42,

43.

44,

45.

46.

3 A Next-Generation Platform for Analyzing Executables 61

B. Guo, M. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D. August. Practical and
accurate low-level pointer analysis. In 3nd Int. Symp. on Code Gen. and Opt., pages
291-302, 2005.

K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder.
Softw. Tools for Tech. Transfer, 2(4), 2000.

J. Hennessy. Symbolic debugging of optimized code. Trams. on Prog. Lang. and Syst.,
4(3):323-344, 1982.

T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Princ. of Prog.
Lang., pages 58-70, 2002.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.
Trans. on Prog. Lang. and Syst., 12(1):26-60, Jan. 1990.

M. Howard. Some bad news and some good news. Oct. 2002. MSDN,
Microsoft Corp., http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncode/html/secure10102002.asp.

IDAPro disassembler, http://www.datarescue.com/idabase/.

N.Kidd, T. Reps, D. Melski, and A. Lal. WPDS++: A C++ library for weighted pushdown
systems, 2004. http://www.cs.wisc.edu/wpis/wpds++/.

A. Lal, T. Reps, and G. Balakrishnan. Extended weighted pushdown systems. In Com-
puter Aided Verif., 2005.

M. Miiller-Olm and H. Seidl. Analysis of modular arithmetic. In European Symp. on
Programming, 2005.

G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and its application
to program analysis. In Princ. of Prog. Lang., pages 119-132, 1999.

T. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from low-
level code. In Part. Eval. and Semantics-Based Prog. Manip., 2006,

T. Reps, G. Balakrishnan, J. Lim, and T. Teitelbaum. A next-generation platform for
analyzing executables. In Asian Symp. on Prog. Lang. and Systems, 2005.

T. Reps and G. Rosay. Precise interprocedural chopping. In Found. of Softw. Eng., 1995.
T. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their application to
interprocedural dataflow analysis. In Static Analysis Symp., 2003.

T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their
application to interprocedural dataflow analysis. Sci. of Comp. Prog., 58(1-2):206-263,
Oct. 2005.

S. Schwoon. Moped system. http://www.fmi.uni-stuttgart.de/szs/tools/moped/.

S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of Munich,
Munich, Germany, July 2002.

D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated detection
of buffer overrun vulnerabilities. In Network and Dist. Syst. Security, Feb. 2000.

D. Wall. Systems for late code modification. In R. Giegerich and S. Graham, editors,
Code Generation — Concepts, Tools, Techniques, pages 275-293. Springer-Verlag, 1992.
R. Wilson and M. Lam. Efficient context-sensitive pointer analysis for C programs. In
Prog. Lang. Design and Impl., pages 1-12, 1995.

P. Zellweger. Interactive Source-Level Debugging of Optimized Programs. PhD thesis,
Univ. of California, Berkeley, 1984.

4

Behavioral and Structural Properties of Malicious
Code

Christopher Kruegel

Secure Systems Lab, Technical University Vienna
chris@seclab.tuwien.ac.at

Summary. Most current systems to detect malicious code rely on syntactic signatures. More
precisely, these systems use a set of byte strings that characterize known malware instances.
Unfortunately, this approach is not able to identify previously unknown malicious code for
which no signature exists. The problem gets exacerbated when the malware is polymorphic
or metamorphic. In this case, different instances of the same malicious code have a different
syntactic representation.

In this chapter, we introduce techniques to characterize behavioral and structural proper-
ties of binary code. These techniques can be used to generate more abstract, semantically-rich
descriptions of malware, and to characterize classes of malicious code instead of specific in-
stances. This makes the specification more robust against modifications of the syntactic layout
of the code. Also, in some cases, it allows the detection of novel malware instances.

4.1 Introduction

Malicious code (or malware) is defined as software that fulfills the deliberately harm-
ful intent of an attacker when run. Typical examples of malware include viruses,
worms, and spyware. The damage caused by malicious code has dramatically in-
creased in the past few years. This is due to both the popularity of the Internet, which
leads to a significant increase in the number of available vulnerable machines, and
the sophistication of the malicious code itself.

Current systems to detect malicious code (most prominently, virus scanners) are
mostly based on syntactic signatures, which specify byte sequences that are char-
acteristic of particular malware instances. This approach has two drawbacks. First,
specifying precise, syntactic signatures makes it necessary to update the signature
database whenever a previously unknown malware sample is found. As a result,
there is always a window of vulnerability between the appearance of a new mali-
cious code instance and the availability of a signature that can detect it. Second,
malicious code can be metamorphic. That is, the malware code mutates while repro-
ducing or spreading across the network, thereby rendering detection using signatures
completely ineffective.

64 Christopher Kruegel

In this chapter, we will discuss approaches to characterize higher-level properties
of malicious code. These properties are captured by abstract models that describe the
behavior and structure of malicious code. The key idea is that semantic or structural
properties are more difficult to change between different malware variations. There-
fore, our approach results in a more general and robust description of malicious code
that is not affected by syntactic changes in the binary image. To demonstrate the ef-
fectiveness of our approach, we introduce a technique to describe and detect kernel-
level rootkits based on their behavior in Section 4.2. In addition, in Section 4.3, we
describe a mechanism to capture the structure of executables and its use to identify
metamorphic worms.

4.2 Behavioral Identification of Rootkits

A rootkit is a collection of tools often used by an attacker after gaining administrative
privileges on a host. This collection includes tools to hide the presence of the attacker
(e.g., log editors), utilities to gather information about the system and its environment
(e.g., network sniffers), tools to ensure that the attacker can regain access at a later
time (e.g., backdoored servers), and means of attacking other systems. Even though
the idea of a rootkit is to provide all the tools that may be needed after a system
has been compromised, rootkits focus in particular on backdoored programs and
tools to hide the attacker from the system administrator. Originally, rootkits mainly
included modified versions of system auditing programs (e.g., ps or netstat for
Unix systems) [10]. These modified programs (also called Trojan horses) do not
return any information to the administrator about specific files and processes used by
the intruder, making the intruder “invisible” to the administrator’s eyes. Such tools,
however, are easily detected using file integrity checkers such as Tripwire [3].

Recently, a new type of rootkit has emerged. These rootkits are implemented as
loadable kernel modules (LKMs). A loadable kernel module is an extension to the
operating system (e.g., a device driver) that can be loaded into and unloaded from
the kernel at runtime. This runtime kernel extension is supported by many Unix-style
operating systems, most notably Solaris and Linux. When loaded, a kernel module
has access to the symbols exported by the kernel and can modify any data structure
or function pointer that is accessible. Typically, these kernel rootkits “hijack” entries
in the system call table and provide modified implementations of the corresponding
system call functions [11, 17]. These modified system calls often perform checks
on the data passed back to a user process and can thus efficiently hide information
about files and processes. An interesting variation is implemented by the adore—ng
rootkit [18, 19]. In this case, the rootkit does not modify the system call table, but,
instead, hijacks the routines used by the Virtual File System (VFS), and, therefore,
it is able to intercept (and tamper with) calls that access files in both the /proc file
system and the root file system. In any case, once the kernel is infected, it is very
hard to determine if a system has been compromised without the help of hardware
extensions, such as the TCPA chip [13].

4 Behavioral and Structural Properties of Malicious Code 65

4.2.1 Rootkit Detection

In the following, we introduce a technique for the detection of kernel rootkits in the
Linux operating system. The technique is based on the general specification of the
behavior of a rootkit. Using static analysis (more precisely, symbolic execution), an
unknown kernel module is checked for code that exhibits the malicious behavior. If
such code is found, the module is classified as rootkit. The advantage of our method
compared to byte string signatures is the fact that our specification describes a gen-
eral property of a class of kernel rootkits. As a result, our technique has the capability
to identify previously unknown instances. Also, it is robust to obfuscation techniques
that change the syntactic layout of the code but retain its semantics.

The idea for our detection approach is based on the observation that the runtime
behavior of regular kernel modules (e.g., device drivers) differs significantly from
the behavior of kernel rootkits. We note that regular modules have different goals
than rootkits, and thus implement different functionality. Our analysis is performed
in two steps. First, we have to specify undesirable behavior. Second, each kernel
module binary is statically analyzed for the presence of instructions sequences that
implement these specifications.

Currently, our specifications are given informally, and the analysis step has to
be adjusted appropriately to deal with new specifications. Although it might be pos-
sible to introduce a formal mechanism to model behavioral specifications, it is not
necessary for our detection prototype. The reason is that a few general specifications
are sufficient to accurately capture the malicious behavior of all current LKM-based
rootkits. Nevertheless, the analysis technique is powerful enough that it can be easily
extended. This may become necessary when rootkit authors actively attempt to evade

detection by changing the code such that it does not adhere to any of our specifica-
tions.

4.2.2 Specification of Behavior

A specification of malicious behavior has to model a sequence of instructions that is
characteristic for rootkits but that does not appear in regular modules (at least, with
a high probability). That is, we have to analyze the behavior of rootkits to derive
appropriate specifications that can be used during the analysis step.

In general, kernel modules (e.g., device drivers) initialize their internal data struc-
tures during startup and then interact with the kernel via function calls, using both
system calls or functions internal to the kernel. In particular, it is not often necessary
that a module directly writes to kernel memory. Some exceptions include device
drivers that read from and write to memory areas that are associated with a managed
device and that are mapped into the kernel address space to provide more efficient
access or modules that overwrite function pointers to register themselves for event
callbacks.

Kernel rootkits, on the other hand, usually write directly to kernel memory to alter
important system management data structures. The purpose is to intercept the regular
control flow of the kernel when system services are requested by a user process. This

66 Christopher Kruegel

is done in order to monitor or change the results that are returned by these services to
the user process. Because system calls are the most obvious entry point for requesting
kernel services, the earliest kernel rootkits modified the system call table accordingly.
For example, one of the first actions of the knark [11] rootkit is to exchange entries
in the system call table with customized functions to hide files and processes.

In newer kernel releases, the system call table is no longer exported by the kernel,
and thus it cannot be directly accessed by kernel modules. Therefore, alternative ap-
proaches to influence the results of operating system services have been investigated.
One such solution is to monitor accesses to the /proc file system. This is accom-
plished by changing the function addresses in the /proc file system root node that
point to the corresponding read and write functions. Because the /proc file system
is used by many auditing applications to gather information about the system (e.g.,
about running processes, or open network connections), a rootkit can easily hide im-
portant information by filtering the output that is passed back to the application. An
example of this approach is the adore—ng rootkit [19] that replaces functions of
the virtual file system (VFS) node of the /proc file system.

As a general observation, we note that rootkits perform writes to a number of
locations in the kernel address space that are usually not touched by regular modules.
These writes are necessary either to obtain control over system services (e.g., by
changing the system call table, file system functions, or the list of active processes)
or to hide the presence of the kernel rootkit itself (e.g., modifying the list of installed
modules). Because write operations to operating system management structures are
required to implement the needed functionality, and because these writes are unique
to kernel rootkits, they present a salient opportunity to specify malicious behavior.

To be more precise, we identify a loadable kernel module as a rootkit based on
the following two behavioral specifications:

1. The module contains a data transfer instruction that performs a write operation
to an illegal memory area, or

2. the module contains an instruction sequence that i) uses a forbidden kernel sym-
bol reference to calculate an address in the kernel’s address space and ii) per-
forms a write operation using this address.

Whenever the destination address of a data transfer can be determined statically
during the analysis step, it is possible to check whether this address is within a le-
gitimate area. The notion of legitimate areas is defined by a white-list that specifies
the kernel addressed that can be safely written to. For our current system, these areas
include function pointers used as event callback hooks (e.g., br_ioctl_hook ())
or exported arrays (e.g., blk_dev).

One drawback of the first specification is the fact that the destination address
must be derivable during the static analysis process. Therefore, a complementary
specification is introduced that checks for writes to any memory address that is cal-
culated using a forbidden kernel symbol.

A kernel symbol refers to a kernel variable with its corresponding address that
is exported by the kernel (e.g., via /proc/ksysm). These symbols are needed by
the module loader, which loads and inserts modules into the kernel address space.

4 Behavioral and Structural Properties of Malicious Code 67

‘When a kernel module is loaded, all references to external variables that are declared
in this module but defined in the kernel (or in other modules) have to be patched
appropriately. This patching process is performed by substituting the place holder
addresses of the declared variables in the module with the actual addresses of the
corresponding symbols in the kernel.

The notion of forbidden kernel symbols can be based on black-lists or white-
lists. A black-list approach enumerates all forbidden symbols that are likely to be
misused by rootkits, for example, the system call table, the root of the /proc file
system, the list of modules, or the task structure list. A white-list, on the other hand,
explicitly defines acceptable kernel symbols that can legitimately be accessed by
modules. As usual, a white-list approach is more restrictive, but may lead to false
positives when a module references a legitimate but infrequently used kernel symbol
that has not been allowed previously. However, following the principle of fail-safe
defaults, a white-list also provides greater assurance that the detection process cannot
be circumvented.

Note that it is not necessarily malicious when a forbidden kernel symbol is de-
clared by a module. When such a symbol is not used for a write access, it is not
problematic. Therefore, we cannot reject a module as a rootkit by checking the de-
clared symbols only.

Also, it is not sufficient to check for writes that target a forbidden symbol directly.
Often, kernel rootkits use such symbols as a starting point for more complex address
calculations. For example, to access an entry in the system call table, the system call
table symbol is used as a base address that is increased by a fixed offset. Another
example is the module list pointer, which is used to traverse a linked list of module
elements to obtain a handle for a specific module. Therefore, a more extensive anal-
ysis has to be performed to also track indirect uses of forbidden kernel symbols for
write accesses.

Naturally, there is an arms-race between rootkits that use more sophisticated
methods to obtain kernel addresses, and our detection system that relies on speci-
fications of malicious behavior. For current rootkits, our basic specifications allow
for reliable detection with no false positives (see Section 4.2.4 for details). However,
it might be possible to circumvent these specifications. In that case, it is necessary to
provide more elaborate descriptions of malicious behavior.

Note that our behavioral specifications have the advantage that they provide a
general model of undesirable behavior. That is, these specifications characterize an
entire class of malicious actions. This is different from fine-grained specifications
that need to be tailored to individual kernel modules.

4.2.3 Symbolic Execution

Based on the specifications introduced in the previous section, the task of the analysis
step is to statically check the module binary for instructions that correspond to these
specifications. When such instructions are found, the module is labeled as a rootkit.

‘We perform analysis on binaries using symbolic execution. Symbolic execution
is a static analysis technique in which program execution is simulated using sym-

68 Christopher Kruegel

bols, such as variable names, rather than actual values for input data. The program
state and outputs are then expressed as mathematical (or logical) expressions involv-
ing these symbols. When performing symbolic execution, the program is basically
executed with all possible input values simultaneously, thus allowing one to make
statements about the program behavior.

In order to simulate the execution of a program, or, in our case, the execution of
a loadable kernel module, it is necessary to perform two preprocessing steps.

First, the code sections of the binary have to be disassembled. In this step, the
machine instructions have to be extracted and converted into a format that is suitable
for symbolic execution. That is, it is not sufficient to simply print out the syntax of in-
structions, as done by programs such as objdump. Instead, the type of the operation
and its operands have to be parsed into an internal representation. The disassembly
step is complicated by the complexity of the Intel x86 instruction set, which uses a
large number of variable-length instructions and many different addressing modes
for backward-compatibility reasons.

In the second preprocessing step, it is necessary to adjust address operands in all
code sections present. The reason is that a Linux loadable kernel module is merely
a standard ELF relocatable object file. Therefore, many memory address operands
have not been assigned their final values yet. These memory address operands in-
clude targets of jump and call instructions but also source and destination locations
of load, store, and move instructions.

For a regular relocatable object file, the addresses are adjusted by the linker.
To enable the necessary link operations, a relocatable object also contains, besides
regular code and data sections, a set of relocation entries. Note, however, that kernel
modules are not linked to the kernel code by a regular linker. Instead, the necessary
adjustment (i.e., patching) of addresses takes place during module load time by a
special module loader. For Linux kernels up to version 2.4, most of the module loader
ran in user-space; for kernels from version 2.5 and up, much of this functionality was
moved into the kernel. To be able to simulate execution, we perform a process similar
to linking and substitute place holders in instruction operands and data locations with
the real addresses. This has the convenient side-effect that we can mark operands that
represent forbidden kernel symbols so that the symbolic execution step can later trace
their use in write operations.

When the loadable kernel module has been disassembled and the necessary ad-
dress modifications have occurred, the symbolic execution process can commence.
To be precise, the analysis starts with the kernel module’s initialization routine, called
init_module (). More details about a possible realization of the binary symbolic
execution process can be found in [4]. During the analysis, for each data transfer
instruction, it is checked whether data is written to kernel memory areas that are not
explicitly permitted by the white-list, or whether data is written to addresses that are
tainted because of the use of forbidden symbols. When an instruction is found that
violates the specification of permitied behavior, the module is flagged as a kernel
rootkit.

4 Behavioral and Structural Properties of Malicious Code 69
4.2.4 Evaluation

The proposed rootkit detection algorithm was implemented as a user-space prototype
that simulated the object parsing and symbol resolution performed by the existing
kernel module loader before disassembling the module and analyzing the code for
the presence of malicious writes to kernel memory.

To evaluate the detection capabilities of our system, three sets of kernel mod-
ules were created. The first set comprised the knark and adore-ng rootkits, both
of which were used during development of the prototype. As mentioned previously,
both rootkits implement different methods of subverting the control flow of the ker-
nel: knark overwrites entries in the system call table to redirect various system calls
to its own handlers, while adore~-ng patches itself into the VES layer of the kernel
to intercept accesses to the /proc file system. Since each rootkit was extensively
analyzed during the prototype development phase, it was expected that all malicious
kernel accesses would be discovered by the prototype.

Table 4.1. Evaluation rootkits.
Rootkit Technique Description
adore syscalls File, directory, process, and socket hiding
Rootshell backdoor
all-root syscalls Gives all processes UID 0
kbdv3 syscalls Gives special user UID 0
kkeylogger syscalls Logs keystrokes from local and network logins
rkit syscalls Gives special user UID 0
shtroj2 syscalls Execute arbitrary programs as UID 0
synapsys syscalls File, directory, process, socket, and module hiding
Gives special user UID 0

The second set consisted of a set of seven additional popular rootkits downloaded
from the Internet, described in Table 4.1. Since these rootkits were not analyzed dur-
ing the prototype development phase, the detection rate for this group can be con-
sidered a measure of the generality of the detection technique as applied against pre-
viously unknown rootkits that utilize similar means to subvert the kernel as knark
and adore—ng.

The final set consisted of a control group of legitimate kernel modules, namely
the entire default set of kernel modules for the Fedora Core 1 Linux x86 distribu-
tion. This set includes 985 modules implementing various components of the Linux
kernel, including networking protocols (e.g., IPv6), bus protocols (e.g., USB), file
systems (e.g., EXT3), and device drivers (e.g., network interfaces, video cards). It
was assumed that no modules incorporating rootkit functionality were present in this
set.

Table 4.2 presents the results of the detection evaluation for each of the three sets
of modules. As expected, all malicious writes to kernel memory by both knark and
adore-ng were detected, resulting in a false negative rate of 0% for both rootkits.

70 Christopher Kruegel

Table 4.2. Detection results.
Module Set Modules Analyzed Detections Misclassification Rate

Development rootkits 2 2 0 (0%)
Evaluation rootkits 6 6 0 (0%)
Fedora Core 1 modules 985 0 0 (0%)

All malicious writes by each evaluation rootkit were detected as well, resulting in
a false negative rate of 0% for this set. We interpret this result as an indication that
the detection technique generalizes well to previously unseen rootkits. Finally, no
malicious writes were reported by the prototype for the control group, resulting in
a false positive rate of 0%. We thus conclude that the detection algorithm is com-
pletely successful in distinguishing rootkits exhibiting specified malicious behavior
from legitimate kernel modules, as no misclassifications occurred during the entire
detection evaluation.

kmodscan: initializing scan for rootkits/all-root.o
kmodscan: loading kernel symbol table from boot/System.map
kmodscan: kernel memory configured [c0100000-c04leaf8]
kmodscan: resolving external symbols in section .text
kmodscan: disassembling section .text

kmodscan: performing scan from [.text+40]

kmodscan: WRITE TO KERNEL MEMORY [c0347df0] at [.text+50]
kmodscan: 1 malicious write detected, denying module load

Fig. 4.1. al1l-root rootkit analysis.

To verify that the detection algorithm performed correctly on the evaluation
rootkits, traces of the analysis performed by the prototype on each rootkit were ex-
amined with respect to the corresponding module code. As a simple example, con-
sider the case of the al1l-root rootkit, whose analysis trace is shown in Figure 4.1.
From the trace, we can see that one malicious kernel memory write was detected at
.text+50 (i.e., at an offset of 50 bytes into the .text section). By examining
the disassembly of the all-root module, the relevant portion of which is shown
in Figure 4.2, we can see that the overwrite occurs in the module’s initialization
function, init module ()1, Specifically, the mov1l instruction at .text+50 is
flagged as a malicious write to kernel memory. Correlating the disassembly with
the corresponding rootkit source code, shown in Figure 4.3, we can see that this
instruction corresponds to the write to the sys.call_table array to replace the
getuid () system call handler with the module’s malicious version at line 4. Thus,
we conclude that the rootkit’s attempt to redirect a system call was properly detected.

! Note that this disassembly was generated prior to kernel symbol resolution, thus the dis-
played read and write accesses are performed on place holder addresses. At runtime and
for the symbolic execution, the proper memory address would be patched into the code.

4 Behavioral and Structural Properties of Malicious Code 71

00000040 <init_module>:

40: al 60 00 00 0O mov 0x60, %eax
45: 55 push %ebp

46: 89 e5 mov %esp, $ebp
48: a3 00 00 00 00 mov $eax, 0x0
4d: 5d pop %ebp

de: 31 c0 XOor %eax, $eax

50: c7 05 60 00 00 00 0O movl 50x0, 0x60
57: 00 00 00
Sa: c3 ret

Fig. 4.2. al1-root module disassembly.

int init_module (void)

{
orig_getuid = sys_call_table[__ NR_getuid];
sys_call_table[__NR_getuid] = give_root;

return 0;

~NoY U W N

Fig.4.3. all-root initialization function.

4.3 Structural Identification of Worms

As mentioned previously, polymorphic code can change its binary representation as
part of the replication process. This can be achieved by using self-encryption mech-
anisms or semantics-preserving code manipulation techniques. As a consequence,
copies of polymorphic malware often no longer share a common invariant substring
that can be used as a detection signature.

In this section, we present a technique that uses the structural properties of an
executable to identify different mutations of the same malware. This technique is re-
silient to code modifications that make existing detection approaches based on syn-
tactic signatures ineffective. Our approach is based on a novel fingerprinting tech-
nique based on control flow information that allows us to detect structural similar-
ities between variations of one malware instance or between members of the same
malicious code family. The following properties are desirable for the fingerprinting
technique:

e Uniqueness. Different executable regions should map to different fingerprints.
If identical fingerprints are derived for unrelated executables, the system cannot
distinguish between code that should be correlated and those that should not. If
the uniqueness property is not fulfilled, the system is prone to producing false
positives.

¢ Robustness to insertion and deletion. When code is added to an executable re-
gion, either by prepending it, appending it, or interleaving it with the original ex-

72 Christopher Kruegel

ecutable (i.e., insertion), the fingerprints for the original executable region should
not change. Furthermore, when parts of a region are removed (i.e., deletion), the
remaining fragment should still be identified as part of the original executable.
Robustness against insertion and deletion is necessary to counter straightforward
evasion attempts in which an attacker inserts code before or after the actual ma-
licious code fragment.

e Robustness to modification. The fingerprinting mechanism has to be robust
against certain code modifications. That is, even when a code sequence is mod-
ified by operations such as junk insertion, register renaming, code transposition,
or instruction substitution, the resulting fingerprint should remain the same. This
property is necessary to identify different variations of a single polymorphic mal-
ware program.

Our key observation is that the internal structure of an executable is more char-
acteristic than its representation as a stream of bytes. That is, a representation that
takes into account control flow decision points and the sequence in which particu-
lar parts of the code are invoked can better capture the nature of an executable and
its functionality. Thus, it is more difficult for an attacker to automatically generate
variations of an executable that differ in their structure than variations that map to
different sequences of bytes.

For our purpose, the structure of an executable is described by its control flow
graph (CFG). The nodes of the control flow graph are basic blocks. An edge from
a block u to a block v represents a possible flow of control from u to v. A basic
block describes a sequence of instructions without any jumps or jump targets in the
middle.? Note that a control flow graph is not necessarily a single connected graph. It
is possible (and also very likely) that it consists of a number of disjoint components.

Given two regions of executable code that belong to two different malware pro-
grams, we use their CFGs to determine if these two regions represent two polymor-
phic instances of the same code. This analysis, however, cannot be based on simply
comparing the entire CFG of the regions because an attacker could trivially evade
this technique, e.g., by adding some random code to the end of the actual malware
instance. Therefore, we have developed a technique that is capable of identifying
common substructures of two control flow graphs. We identify common substruc-
tures in control flow graphs by checking for isomorphic connected subgraphs of size
k (called k-subgraphs) contained in all CFGs. Two subgraphs, which contain the
same number of vertices k, are said to be isomorphic if they are connected in the
same way. When checking whether two subgraphs are isomorphic, we only look at
the edges between the nodes under analysis. Thus, incoming and outgoing edges to
other nodes are ignored.

2 More formally, a basic block is defined as a sequence of instructions where the instruc-
tion in each position dominates, or always executes before, all those in later positions, and
no other instruction executes between two instructions in the sequence. Directed edges
between blocks represent jumps in the control flow, which are caused by control transfer
instructions (CTIs) such as calls, conditional and unconditional jumps, or return instruc-
tions.

4 Behavioral and Structural Properties of Malicious Code 73

Two code regions are related if they share common k-subgraphs. Consider the
example of the two control flow graphs in Figure 4.4. While these two graphs appear
different at a first glance, closer examination reveals that they share a number of
common 4-subgraphs. For example, nodes A to D form connected subgraphs that
are isomorphic. Note that the number of the incoming edges is different for the A
nodes in both graphs. However, only edges from and to nodes that are part of the
subgraph are considered for the isomorphism test.

Fig. 4.4. Two control flow graphs with an example of a common 4-subgraph.

Different subgraphs have to map to different fingerprints to satisfy the unique-
ness property. The approach is robust to insertion and deletion because two CFGs
are related as long as they share sufficiently large, isomorphic subgraphs. In addi-
tion, while it is quite trivial for an attacker to modify the string representation of an
executable to generate many variations automatically, the situation is different for
the CFG representation. Register renaming and instruction substitution (assuming
that the instruction is not a control flow instruction) have no influence on the CFG.
Also, the reordering of instructions within a basic block and the reordering of the
layout of basic blocks in the executable result in the same control flow graph. This
makes the CFG representation more robust to code modifications in comparison to
syntax-based techniques.

To refine the specification of the control flow graph, we also take into account in-
formation derived from each basic block, or, to be more precise, from the instructions
in each block. This allows us to distinguish between blocks that contain significantly
different instructions. For example, the system should handle a block that contains
a system call invocation differently from one that does not. To represent informa-
tion about basic blocks, a color is assigned to each node in the control flow graph.
This color is derived from the instructions in each block. The block coloring tech-
nique is used when identifying common substructures, that is, two subgraphs (with
k nodes) are isomorphic only if the vertices are connected in the same way and the

74 Christopher Kruegel

color of each vertex pair matches. Using graph coloring, the characterization of an
executable region can be significantly improved. This reduces the amount of graphs
that are incorrectly considered related and lowers the false positive rate.

4.3.1 Control Flow Graph Extraction

The initial task of our system is to construct a control flow graph from the program(s)
that should be analyzed. This requires two steps. In the first step, we perform a lincar
disassembly of the byte stream to extract the machine instructions. In the second
step, based on this sequence of instructions, we use standard techniques to create a
control flow graph.

Constructing a control flow graph is easy when the executable program is directly
available (e.g., as an email attachment or as a file in the file system). However, the
situation is very different in the case of network flows. The reason is that it is not
known a priori where executable code regions are located within a network stream or
whether the stream contains executable code at all. Thus, it is not immediately clear
which parts of a stream should be disassembled. Nevertheless, network traffic must
be analyzed to identify worms. The problem of finding executables in network traffic
is exacerbated by the fact that for many instruction set architectures, and in particular
for the Intel x86 instruction set, most bit combinations map to valid instructions. As a
result, it is highly probable that even a stream of random bytes could be disassembled
into a valid instruction sequence. This makes it very difficult to reliably distinguish
between valid code areas and random bytes (or ASCII text) by checking only for the
presence or absence of valid instructions.

We address this problem by disassembling the entire byte stream first and defer-
ring the identification of “meaningful” code regions after the construction of the
CFG. This approach is motivated by the observation that the structure (i.e., the
CFGj) of actual code differs significantly from the structure of random instruction
sequences. The CFG of actual code contains large clusters of closely connected basic
blocks, while the CFG of a random sequence usually contains mostly single, isolated
blocks or small clusters. The reason is that the disassembly of non-code byte streams
results in a number of invalid basic blocks that can be removed from the CFG, caus-
ing it to break into many small fragments. A basic block is considered invalid (i) if it
contains one or more invalid instructions, (ii) if it is on a path to an invalid block, or
(iif) if it ends in a control transfer instruction that jumps into the middle of another
instruction.

As mentioned previously, we analyze connected components with at least k
nodes (i.e., k-subgraphs) to identify common subgraphs. Because random instruction
sequences usually produce subgraphs that have less than k nodes, the vast majority of
non-code regions are automatically excluded from further analysis. Thus, we do not
require an explicit and a priori division of the network stream into different regions
nor an oracle that can determine if a stream contains a worm or not. Experimental
results (presented in [5]) support our claim that code and non-code regions can be
differentiated based on the shape of the control flows.

4 Behavioral and Structural Properties of Malicious Code 75

Another problem that arises when disassembling a network stream is that there
are many different processor types that use completely different formats to encode
instructions. In our current system, we focus on executable code for Intel x86 only.
This is motivated by the fact that the vast majority of vulnerable machines on the
Internet (which are the potential targets for malware) are equipped with Intel x86
compatible processors.

As we perform linear disassembly from the start (i.¢., the first byte) of a stream, it
is possible that the start of the first valid instruction in that stream is “missed”. As we
mentioned before, it is probable that non-code regions can be disassembled. If the last
invalid instruction in the non-code region overlaps with the first valid instruction, the
sequence of actual, valid instructions in the stream and the output of the disassembler
will be different (i.e., de-synchronized). An example of a missed first instruction is
presented in Figure 4.5. In this example, an invalid instruction with a length of three
bytes starts one byte before the first valid instruction, which is missed by two bytes.

l Non-code l Code l

CIITTTITTTITTIT] syestrean

e T

Missed instruction —# | 3 | | | Actual instructions

Lo L[1 1 1 | Disassembleroutput

Synchronization point

Fig. 4.5. Linear disassembler misses the start of the first valid instruction.

We cannot expect that network flows contain code that corresponds to a valid ex-
ecutable (e.g., in the ELF or Windows PE format), and, in general, it is not possible,
to identify the first valid instruction in a stream. Fortunately, two Intel x86 instruc-
tion sequences that start at slightly different addresses (i.e., shifted by a few bytes)
synchronize quickly, usually after a few (between one and three) instructions. This
phenomenon, called self-synchronizing disassembly, is caused by the fact that Intel
x86 instructions have a variable length and are usually very short. Therefore, when
the linear disassembler starts at an address that does not correspond to a valid instruc-
tion, it can be expected to re-synchronize with the sequence of valid instructions very
quickly [6]. In the example shown in Figure 4.5, the synchronization occurs after the
first missed instruction (shown in gray). After the synchronization point, both the
disassembler output and the actual instruction stream are identical.

76 Christopher Kruegel

4.3.2 K-Subgraphs and Graph Coloring

Given a control flow graph extracted from a binary program or directly from a net-
work stream, the next task is to generate connected subgraphs of this CFG that have
exactly k nodes (k-subgraphs).

The generation of k-subgraphs from the CFG is one of the main contributors to
the run-time cost of the analysis. Thus, we are interested in a very efficient algorithm
even if this implies that not all subgraphs are constructed. The rationale is that we
assume that the number of subgraphs that are shared by two malware samples is
sufficiently large that at least one is generated by the analysis. The validity of this
thesis is confirmed by our experimental detection results, which are presented in
Section 4.3.5.

To produce k-subgraphs, our subgraph generation algorithm is invoked for each
basic block, one after another. The algorithm starts from the selected basic block A
and performs a depth-first traversal of the graph. Using this depth-first traversal, a
spanning tree is generated. That is, we remove edges from the graph so that there
is at most one path from the node A to all the other blocks in the CFG. In practice,
the depth-first traversal can be terminated after a depth of k because the size of the
subgraph is limited to k£ nodes. A spanning tree is needed because multiple paths
between two nodes lead to the generation of many redundant k-subgraphs in which
the same set of nodes is connected via different edges. While it would be possible
to detect and remove duplicates later, the overhead to create and test these graphs is
very high.

n

Spanning tree

4-node subtrees

Fig. 4.6. Example for the operation of the subgraph generation process.

4 Behavioral and Structural Properties of Malicious Code 77

Once the spanning tree is built, we generate all possible k-node subtrees with the
selected basic block A as the root node. Note that all identified subgraphs are used
in their entirety, also including non-spanning-tree links. Consider the graph shown
in Figure 4.6. In this example, & is 4 and node A is the root node. In the first step, the
spanning tree is generated. Then, the subtrees {A, B, D, E}, {A, B, C, D}, and {4,
B, C, E} are identified. The removal of the edge from C to E causes the omission
of the redundant subgraph {4, B, C, E}.

4.3.3 Graph fingerprinting

In order to quickly determine which k-subgraphs are shared between different pro-
grams or appear in different network streams, it is useful to be able to map each
subgraph to a number (a fingerprint) so that two fingerprints are equal only if the
corresponding subgraphs are isomorphic. This problem is known as canonical graph
labeling [1]. The solution to this problem requires that a graph is first transformed
into its canonical representation. Then, the graph is associated with a number that
uniquely identifies the graph. Since isomorphic graphs are transformed into an iden-
tical canonical representation, they will also be assigned the same number.

The problem of finding the canonical form of a graph is as difficult as the
graph isomorphism problem. There is no known polynomial algorithm for graph
isomorphism testing; nevertheless, the problem has also not been shown to be NP-
complete [15]. For many practical cases, however, the graph isomorphism test can
be performed efficiently and there exist polynomial solutions. In particular, this is
true for small graphs such as the ones that we have to process. We use the Nauty li-
brary {8, 9], which is generally considered to provide the fastest isomorphism testing
routines, to generate the canonical representation of our k-subgraphs. Nauty can
handle vertex-colored directed graphs and is well-suited to our needs.

When the graph is in its canonical form, we use its adjacency matrix to assign
a unique number to it. The adjacency matrix of a graph is a matrix with rows and
columns labeled by graph vertices, with a 1 or 0 in position (v;,v;) according to
whether there is an edge from v; to v; or not. As our subgraphs contain a fixed
number of vertices k, the size of the adjacency matrix is fixed as well (consisting of
%2 bits). To derive a fingerprint from the adjacency matrix, we simply concatenate
its rows and read the result as a single k2-bit value. This value is unique for each
distinct graph since each bit of the fingerprint represents exactly one possible edge.
Consider the example in Figure 4.7 that shows a graph and its adjacency matrix. By
concatenating the rows of the matrix, a single 16-bit fingerprint can be derived.

Of course, when k2 becomes too large to be practical as a fingerprint, it is also
possible to hash the rows of the adjacency matrix instead of concatenating them. In
this case, however, fingerprints are no longer unique and a good hash function (for
example, one proposed by Jenkins [2]) has to be used to prevent frequent collisions.

4.3.4 Graph coloring

One limitation of a technique that only uses structural information to identify sim-
ilarities between executables is that the machine instructions that are contained in

78 Christopher Kruegel

| A B CD
A 0110
B 0 0 0 1
cl oo o 1 —¥ 011000010001 1000
D 10 0 0
4-node subgraph Adjacency matrix 42-bit fingerprint

Fig. 4.7. Deriving a fingerprint from a subgraph with 4 nodes.

basic blocks are completely ignored. The idea of graph coloring addresses this short-
coming.

We devised a graph coloring technique that uses the instructions in a basic block
to select a color for the corresponding node in the control flow graph. When using
colored nodes, the notion of common substructures has to be extended to take into
account color. That is, two subgraphs are considered isomorphic only if the vertices
in both graphs are connected in the same way and have the same color. Including col-
ors into the fingerprinting process requires that the canonical labeling procedure ac-
counts for nodes of different colors. Fortunately, the Nauty routines directly provide
the necessary functionality for this task. In addition, the calculation of fingerprints
must be extended to account for colors. This is done by first appending the (numer-
ical representation of the) color of a node to its corresponding row in the adjacency
matrix. Then, as before, all matrix rows are concatenated to obtain the fingerprint.
No further modifications are required to support colored graphs.

It is important that colors provide only a rough indication of the instructions in a
basic block, that is, they must not be too closely associated with specific instructions.
Otherwise, an attacker can easily evade detection by producing structurally similar
executables with instructions that result in different colorings. For example, if the
color of a basic block changes when an add instruction is replaced by a semantically
equivalent sub (subtraction) instruction, the system could be evaded by malicious
code that uses simple instruction substitution.

In our current system, we use 14-bit color values. Each bit corresponds to a cer-
tain class of instructions. When one or more instructions of a certain class appear in
a basic block, the corresponding bit of the basic block’s color value is set to 1. If no
instruction of a certain class is present, the corresponding bit is 0.

Table 4.3 lists the 14 color classes that are used in our system. Note that it is
no longer possible to substitute an add with a sub instruction, as both are part of
the data transfer instruction class. However, in some cases, it might be possible to
replace one instruction by an instruction in another class. For example, the value of
register $eax can be set to 0 both by a mov 0, %eax instruction (which is in the
data transfer class) or by a xor %eax, %eax instruction (which is a logic instruc-
tion). While instruction substitution attacks cannot be completely prevented when

4 Behavioral and Structural Properties of Malicious Code 79

Table 4.3. Color classes.

Class Description Class Description

Data Transfer mov instructions String x86 string operations
Arithmetic incl. shift and rotate Flags access of x86 flag register
Logic incl. bit/byte operations LEA load effective address
Test test and compare Float floating point operations
Stack push and pop Syscall interrupt and system call
Branch conditional control flow Jump unconditional control flow
Call function invocation Halt stop instruction execution

using color classes, they arc made much more difficult for an attacker. The reason is
that there are less possibilities for finding semantically equivalent instructions from
different classes. Furthermore, the possible variations in color that can be generated
with instructions from different classes is much less than the possible variations on
the instruction level. In certain cases, it is even impossible to replace an instruction
with a semantically equivalent one (e.g., when invoking a software interrupt).

4.3.5 Worm Detection

In this section, we show how the previously introduced structural properties of exe-
cutables can be used to detect polymorphic worms in network traffic. To do so, we
have to assume that at least some parts of a worm contain executable machine code.
While it is possible that certain regions of the code are encrypted, others have to
be directly executable by the processor of the victim machine (e.g., there will be a
decryption routine to decrypt the rest of the worm). Our assumption is justified by
the fact that most contemporary worms contain executable regions. For example, in
the 2004 “Top 10” list of worms published by anti-virus vendors [16], all entries
contain executable code. Note, however, that worms that do not use executable code
(e.g., worms written in non-compiled scripting languages) will not be detected by
our system. Based on our assumption, we analyze network flows for the presence
of executable code. If a network flow contains no executable code, we discard it
immediately. Otherwise, we derive a set of fingerprints for the executable regions.

Our algorithm to detect worms is very similar to the Earlybird approach presented
in [14]. In the Earlybird system, the content of each network flow is processed, and all
substrings of a certain length are extracted. Each substring is used as an index into a
table, called prevalence table, that keeps track of how often that particular string has
been seen in the past. In addition, for each string entry in the prevalence table, a list
of unique source-destination IP address pairs is maintained. This list is searched and
updated whenever a new substring is entered. The basic idea is that sorting this table
with respect to the substring count and the size of the address lists will produce the set
of likely worm traffic samples. That is, frequently occurring substrings that appear
in network traffic between many hosts are an indication of worm-related activity.
Moreover, these substrings can be used directly as worm signatures.

80 Christopher Kruegel

The key difference between our system and previous work is the mechanism used
to index the prevalence table [12]. While Earlybird uses simple substrings, we use the
fingerprints that are extracted from control flow graphs. That is, we identify worms
by checking for frequently occurring executable regions that have the same structure
(i.e., the same fingerprint).

This is accomplished by maintaining a set of network streams S; for each given
fingerprint f;. Every set S; contains the distinct source-destination IP address pairs
for streams that contained f;. A fingerprint is identified as corresponding to worm
code when the following conditions on S; are satisfied:

1. m, the number of distinct source-destination pairs contained in .S;, meets or ex-
ceeds a predefined threshold M.

2. The number of distinct internal hosts appearing in S; is at least 2.

3. The number of distinct external hosts appearing in S; is at least 2.

The last two conditions are required to prevent false positives that would other-
wise occur when several clients inside the network download a certain executable file
from an external server, or when external clients download a binary from an internal
server. In both cases, the traffic patterns are different from the ones generated by a
worm, for which one would expect connections between multiple hosts from both
the inside and outside networks.

In a first experiment, we analyzed the capabilities of our system to detect poly-
morphic worms. To this end, we analyzed malicious code that was disguised by
ADMmutate [7], a well-known polymorphic engine. ADMmutate operates by first
encrypting the malicious payload, and then prepending a metamorphic decryption
routine. To evaluate our system, we used ADMmutate to generate 100 encrypted in-
stances of a worm, which produced a different decryption routine for each run. Then,
we used our system to identify common substructures between these instances.

Our system could not identify a single fingerprint that was common to all 100
instances. However, there were 66 instances that shared one fingerprint, and 31 in-
stances that shared another fingerprint. Only 3 instances did not share a single com-
mon fingerprint at all. A closer analysis of the generated encryption routines revealed
that the structure was identical between all instances. However, ADMmutate heavily
relies on instruction substitution to change the appearance of the decryption routine.
In some cases, data transfer instructions were present in a basic block, but not in
the corresponding block of other instances. These differences resulted in a different
coloring of the nodes of the control flow graphs, leading to the generation of differ-
ent fingerprints. This experiment brings to attention the possible negative impact of
colored nodes on the detection. However, it also demonstrates that the worm would
have been detected quickly since a vast majority of worm instances (97 out of 100)
contain one of only two different fingerprints.

In order to evaluate the degree to which the system is prone to generating false
detections, we evaluated it on a dataset consisting of 35.7 Gigabyte of network traffic
collected over 9 days on the local network of the Distributed Systems Group at the
Technical University of Vienna. This evaluation set contained 661,528 total network
streams and was verified to be free of known attacks. The data consists to a large

4 Behavioral and Structural Properties of Malicious Code 81

extent of HT'TP (about 45%) and SMTP (about 35%) traffic. The rest is made up of a
wide variety of application traffic including SSH, IMAP, DNS, NTP, FTP, and SMB
traffic.

We were particularly interested in exploring the degree to which false positives
can be mitigated by appropriately selecting the detection parameter M. Recall that
M determines the number of unique source-destination pairs that a network stream
set S; must contain before the corresponding fingerprint f; is considered to belong to
a worm. Also recall that we require that a certain fingerprint must occur in network
streams between two or more internal and external hosts, respectively, before be-
ing considered as a worm candidate. False positives occur when legitimate network
usage is identified as worm activity by the system. For example, if a particular fin-
gerprint appears in too many (benign) network flows between multiple sources and
destinations, the system will identify the aggregate behavior as a worm attack. While
intuitively it can be seen that larger values of M reduce the number false positives,
they simultaneously delay the detection of a real worm outbreak.

Table 4.4, Incorrectly labeled fingerprints as a function of M. 1,400,174 total fingerprints
were encountered in the evaluation set.

M 3 4 5 6 7 8 9 10 1
Fingerprints 12,661 7,841 7,215 3,647 3,441 3,019 2515 1219 1,174
M 12 13 14 15 16 17 18 19 20
Fingerprints 1,134 944 623 150 44 43 43 24 23
M 21 22 23 24 25
Fingerprints 22 22 22 22 22

Table 4.4 gives the number of fingerprints identified by the system as suspicious
for various values of M. For comparison, 1,400,174 total fingerprints were observed
in the evaluation set. This experiment indicates that increasing M beyond 20 achieves
diminishing returns in the reduction of false positives (for this traffic trace). The
remainder of this section discusses the root causes of the false detections for the 23
erroneously labeled fingerprint values for M = 20.

The 23 stream sets associated with the false positive fingerprints contained a total
of 8,452 HTTP network flows. Closer inspection of these showed that the bulk of the
false alarms were the result of binary resources on the site that were (a) frequently
accessed by outside users and (b) replicated between two internal web servers. These
accounted for 8,325 flows (98.5% of the total) and consisted of:

e 5544 flows (65.6%): An image appearing on most of the pages of a Java pro-
gramming language tutorial.

o 2148 flows (25.4%): The image of a research group logo, which appears on many
local pages.

o 490 flows (5.8%): A single Microsoft PowerPoint presentation.

82 Christopher Kruegel

e 227 flows (2.7%): Multiple PowerPoint presentations that were found to contain
common embedded images.

The remaining 43 flows accounted for 0.5% of the total and consisted of external
binary files that were accessed by local users and had fingerprints that, by random
chance, collided with the 23 flagged fingerprints.

The problem of false positives caused by heavily accessed, locally hosted files
could be addressed by creating a white list of fingerprints, gathered manually or
through the use of an automated web crawler. For example, if we had prepared a
white list for the 23 fingerprints that occurred in the small number of image files
and the single PowerPoint presentation, we would not have reported a single false
positive during the test period of 9 days.

4.4 Conclusions

In this chapter, we have introduced behavioral and structural properties of malicious
code. These properties allow a more abstract specification of malware, mitigating
shortcomings of syntactic signatures.

Behavioral properties are captured by analyzing the effect of a piece of code
on the environment. More precisely, the behavior is specified by checking for the
destination addresses of data transfer instructions. In the case of kernel modules,
malicious behavior is defined as writes to forbidden regions in the kernel address
space. Using symbolic execution, each kernel module is statically analyzed before
it is loaded into the kernel. Whenever an illegal write is detected, this module is
classified as kernel rootkit and loading is aborted.

The structure of an executable is captured by the subgraphs of the executable’s
control flow graph. Based on the results of graph isomorphism tests, identical struc-
tures that appear in different executables can be identified. The precision of the struc-
tural description is further refined by taking into account the classes of instructions
(not their exact type) that appear in certain nodes of the control flow graph. Using
structural properties of executables, the spread of polymorphic worms can be identi-
fied. To this end, our system searches for recurring structures in network flows. When
the same structure is identified in connections from multiple source hosts to multi-
ple destinations, this structure is considered to belong to a (possibly polymorphic)
worm.

References

1. L. B. annd E. Luks. Canonical Labeling of Graphs. In 15th ACM Symposium on Theory
of Computing, 1983.

2. R. Jenkins. Hash Functions and Block Ciphers. http://burtleburtle.net/
bob/hash/.

3. G. Kim and E. Spafford. The Design and Implementation of Tripwire: A File System
Integrity Checker. Technical report, Purdue University, Nov. 1993,

12.

13.
4.

15.

16.

17.
18.

19.

4 Behavioral and Structural Properties of Malicious Code 83

. C.Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating Mimicry Attacks
Using Static Binary Analysis. In 14th Usenix Security Symposium, 2005.

. C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic Worm De-
tection Using Structural Information of Executables. In 8th International Symposium on
Recent Advances in Intrusion Detection (RAID), 2005.

. C. Linn and S. Debray. Obfuscation of Executable Code to Improve Resistance to Static
Disassembly. In ACM Conference on Computer and Communications Security (CCS),
2003.

. S. Macaulay. ADMmutate: Polymorphic Shelicode Engine. http://www.ktwo.ca/
security.html.

. B. McKay. Nauty: No AUTomorphisms, Yes? http://cs.anu.edu.au/~bdm/
nauty/.

. B. McKay. Practical graph isomorphism. Congressus Numerantium, 30, 1981.

. 'T. Miller. TOrn rootkit analysis. http://www.ossec.net/rootkits/studies/
tOrn.txt.

. T. Miller. Analysis of the KNARK Rootkit. http://www.ossec.net/rootkits/

studies/knark.txt, 2004.

M. Rabin. Fingerprinting by Random Polynomials. Technical report, Center for Research

in Computing Techonology, Harvard University, 1981.

D. Safford. The Need for TCPA. IBM White Paper, October 2002.

S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Fingerprinting. In 6th

Symposium on Operating System Design and Implementation (OSDI), 2004.

S. Skiena. Implementing Discrete Mathematics: Combinatorics and Graph Theory, chap-

ter Graph Isomorphism. Addison-Wesley, 1990.

Sophos. War of the Worms: Top 10 list of worst virus outbreaks in 2004. http://www.

sophos.com/pressoffice/pressrel/uk/20041208yeartopten.html.

Stealth. adore. http://spider.scorpions.net/~stealth, 2001.

Stealth. Kernel Rootkit Experiences and the Future. Phrack Magazine, 11(61), August

2003.

Stealth. adore-ng. http://stealth.7350.0rg/rootkits/, 2004

5

Detection and Prevention of SQL Injection Attacks

William G.J. Halfond and Alessandro Orso

Georgia Institute of Technology
{whalfond, orso}@cc.gatech.edu

Summary. We depend on database-driven web applications for an ever increasing amount of
activities, such as banking and shopping. When performing such activities, we entrust our per-
sonal information to these web applications and their underlying databases. The confidentiality
and integrity of this information is far from guaranteed; web applications are often vulnerable
to attacks, which can give an attacker complete access to the application’s underlying database.
SQL injection is a type of code-injection attack in which an attacker uses specially crafted in-
puts to trick the database into executing attacker-specified database commands. In this chapter,
we provide an overview of the various types of SQL injection attacks and present AMNESIA,
a technique for automatically detecting and preventing SQL injection attacks. AMNESIA uses
static analysis to build a model of the legitimate queries an application can generate and then,
at runtime, checks that all queries generated by the application comply with this model. We
also present an extensive empirical evaluation of AMNESIA. The results of our evaluation
indicate that AMNESIA is, at least for the cases considered, highly effective and efficient in
detecting and preventing SQL injection attacks.

5.1 Introduction

SQL Injection Attacks (SQLIAs) have emerged as one of the most serious threats
to the security of database-driven applications. In fact, the Open Web Application
Security Project (OWASP), an international organization of web developers, has
placed SQLIAs among the top ten vulnerabilities that a web application can have [7].
Similarly, software companies such as Microsoft [3] and SPI Dynamics have cited
SQLIAs as one of the most critical vulnerabilities that software developers must ad-
dress. SQL injection vulnerabilities can be particularly harmful because they allow
an attacker to access the database that underlies an application. Using SQLIAs, an
attacker may be able to read, modify, or even delete database information. In many
cases, this information is confidential or sensitive and its loss can lead to problems
such as identity theft and fraud. The list of high-profile victims of SQLIAs includes
Travelocity, FTD.com, Creditcards.com, Tower Records, Guess Inc., and the Record-
ing Industry Association of America (RIAA).

86 William G.J. Halfond and Alessandro Orso

The errors that lead to SQLIAs are well understood. As with most code-injection
attacks, SQLIAs are caused by insufficient validation of user input. The vulnerability
occurs when input from the user is used to directly build a query to the database.
If the input is not properly encoded and validated by the application, the attacker
can inject malicious input that is treated as additional commands by the database.
Depending on the severity of the vulnerability, the attacker can issue a wide range of
SQL commands to the database. Many interactive database-driven applications, such
as web applications that use user input to query their underlying databases, can be
vulnerable to SQLIA. In fact, informal surveys of database-driven web applications
have shown that almost 97% are potentially vulnerable to SQLIA.

Like most security vulnerabilities, SQLIAs can be prevented by using defensive
coding. In practice however, this solution is very difficult to implement and enforce.
As developers put new checks in place, attackers continue to innovate and find new
ways to circumvent these checks. Since the state of the art in defensive coding is a
moving target, it is difficult to keep developers up to date on the latest and best de-
fensive coding practices. Furthermore, retroactively fixing vulnerable legacy appli-
cations using defensive coding practices is complicated, labor-intensive, and error-
prone. These problems motivate the need for an automated and generalized solution
to the SQL injection problem.

In this chapter we present AMNESIA (Analysis and Monitoring for NEutraliz-
ing SQL Injection Attacks), a fully automated technique and tool for the detection
and prevention of SQLIAs.! AMNESIA was developed based on two key insights:
(1) the information needed to predict the possible structure of all legitimate queries
generated by a web application is contained within the application’s code, and (2)
an SQLIA, by injecting additional SQL statements into a query, would violate that
structure. Based on these two insights we developed a technique against SQL in-
jection that combines static analysis and runtime monitoring. In the static analysis
phase, AMNESIA extracts from the web-application code a model that expresses
all of the legitimate queries the application can generate. In the runtime monitoring
phase, AMNESIA checks that all of the queries generated by the application comply
with the model. Queries that violate the model are stopped and reported.

We also present an extensive empirical evaluation of AMNESIA. We evaluated
AMNESIA on seven web applications, including commercial ones, and on thousands
of both legitimate and illegitimate accesses to such applications. We modeled the
illegitimate accesses after real attacks that are in use by hackers and penetration
testing teams. In the evaluation, AMNESIA did not generate any false positives or
negatives and had a very low runtime overhead. These results indicate AMNESIA is
an effective and viable technique for detecting and preventing SQLIAs.

The rest of the chapter is organized as follows. Section 5.2 discusses SQLIAs and
their various types. Section 5.3 illustrates our technique against SQLIAs. Section 5.4
presents an empirical evaluation of our technique. Section 5.5 compares our approach
to related work. Section 5.6 concludes and discusses future directions for the work.

1 An early version of this work was presented in [9].

5 Detection and Prevention of SQL Injection Attacks 87

5.2 SQL Injection Attacks Explained

The presence of an SQL injection vulnerability allows an attacker to issue commands
directly to a web application’s underlying database and to subvert the intended func-
tionality of the application. Once an attacker has identified an SQLIA vulnerability,
the vulnerable application becomes a conduit for the attacker to execute commands
on the database and possibly the host system itself.

SQLIAs are a class of code injection attacks that take advantage of a lack of vali-
dation of user input. The vulnerabilities occur when developers combine hard-coded
strings with user-input to create dynamic queries. If the user input is not properly
validated, it is possible for attackers to shape their input in such a way that, when it
is included in the final query string, parts of the input are evaluated as SQL keywords
or operators by the database.

5.2.1 Example of an SQLIA

To illustrate how an SQLIA can occur, we introduce an example web application
that is vulnerable to a type of SQLIA that we call a tautology-based attack. The
architecture of this web application is shown in Figure 5.1. In this example, the user
interacts with a web form that takes a login name and pin as input and submits them
to the web server. The web server passes the user supplied credentials to a serviet
(show. jsp, in the example), which resides on the application server. The servlet
queries the database to check whether the credentials are valid and, based on the
result of the query, generates a response for the user in the form of a web page. The
servlet, whose partial implementation is shown in Figure 5.2, uses the user-supplied
credentials to dynamically build a database query. Method getUserInfo is called
with the login and pin provided by the user. If both 1ogin and pin are empty, the
method submits the following query to the database:

SELECT info FROM users WHERE login=/guest’

Conversely, if 1login and pin are specified by the user, the method embeds the
submitted credentials in the query. Therefore, if a user submits Login and pin as
“doe” and “123,” the servlet dynamically builds the query:

SELECT info FROM users WHERE login='doe’ AND pin=123

A web site that uses this servlet would be vulnerable to SQLIAs. For example, if

auser enters “/ OR 1=1 ~-"and ‘", instead of “doe” and “123”, the resulting
query is:
SELECT info FROM users WHERE login=’’ OR 1=1 -’ AND pin=

The database interprets everything after the WHERE token as a conditional statement
and the inclusion of the “OR 1=1" clause turns this conditional into a tautology.
(The characters “—~" mark the beginning of a comment, so everything after them is
ignored.) As a result, the database would return information for all user entries.

It is important to note that tautology-based attacks represent only a small subset
of the different types of SQLIAs that attackers have developed. We present this type

88 William G.J. Halfond and Alessandro Orso

8 i i Firewall Web : Application | Database server
A rc;yvs;a_ ! b server | server | (MySQL, Oracle,
appisation . §§? ; {11 IBMDB2,..)

S

{ :
! hitp:#fod,col hcw\.}jfi?ginjdae&pin:wa

Y 1l

' '
' '
' '
] '

l http: lﬁ‘ foo.com H show.,jsp J 7[I%QEE‘GZ%E

Fig. 5.1. Example of interaction between a user and a typical web application.

public class Show extends HttpServlet {

1. public ResultSet getUserInfo (String login,
String pin) {

2. Connection conn = DriverManager.getConnection ("MyDB"};
3. Statement stmt = conn.createStatement ();

4. String queryString = "";

5. queryString = "SELECT info FROM users WHERE ";

[if ((! login.equals(""})} && (! pin.equals(""})) {

7. queryString += "login="" + login +

"’ AND pin=" + pin;
}

8. else {
9. queryString+="login='guest’";
}
10. ResultSet tempSet = stmt.execute(queryString)
11. return tempSet;

Fig. 5.2. Example servlet.

of attack as an example because it is fairly straightforward and intuitive. For this same
reason, tautology-based attacks have been widely cited in literature and are often
mistakenly viewed as the only type of SQLIAs. However, current attack techniques
are not limited to only injecting tautologies. In the rest of this section, we first provide
a general definition of SQLIAs and then present an overview of the currently known
types of SQLIAs.

5.2.2 General Definition of SQLIA

An SQL injection attack occurs when an attacker changes the intended logic, seman-
tics, or syntax of a SQL query by inserting new SQL. keywords or operators. This
definition includes all of the variants of SQLIAs discussed in the following subsec-
tions.

5 Detection and Prevention of SQL Injection Attacks 89

5.2.3 Variants of SQLIA

Over the past several years, attackers have developed a wide array of sophisticated
attack techniques that can be used to exploit SQL injection vulnerabilities. These
techniques go beyond the commonly used tautology-based SQLIA examples and
take advantage of esoteric and advanced SQL constructs. Ignoring the existence of
these kinds of attacks leads to the development of solutions that address the SQLIA
problem only partially.

For example, SQLIA can be introduced into a program using several different
types of input sources. Developers and researchers often assume that SQLIAs are
only introduced via user input that is submitted as part of a web form or as a re-
sponse to a prompt for input. This assumption misses the fact that any external string
or input that is used to build a query string can be under the control of an attacker and
represents a possible input channel for SQLIAs. It is common to see other external
sources of input such as fields from an HTTP cookie or server variables being used
to build a query. Since cookie values are under the control of the user’s browser and
server variables are often set via values from HTTP headers, these values represent
external strings that can be manipulated by an attacker. In addition, second-order
injections use advanced knowledge of a vulnerable application to introduce an at-
tack using otherwise properly secured input sources [1]. A developer may properly
escape, type-check, and filter input that comes from the user and assume it is safe.
Later on, when that data is used in a different context or to build a different type of
query, the previously safe input becomes an injection attack. Because there are many
input sources that could lead to a SQLIA, techniques that focus on simply checking
user input or explicitly enumerating all untrusted input sources are often incomplete
and still leave ways for malicious input to affect the generated query strings.

Once attackers have identified an input source that can be used to exploit an
SQLIA vulnerability, there are many different types of attack techniques that they
can employ. Depending on the type and extent of the vulnerability, the results of
these attacks can include crashing the database, gathering information about the ta-
bles in the database schema, establishing covert channels, and open-ended injection
of virtually any SQL command. We briefly summarize the main techniques for per-
forming SQLIAs using the example code from Figure 5.2. Interested readers can
refer to [10] for additional information and examples of how these techniques work.

Tautologies.

The general goal of a tautology-based attack is to inject SQL tokens that cause
the query’s conditional statement to always evaluate to true. Although the results
of this type of attack are application specific, the most common uses are to bypass
authentication pages and extract data. In this type of injection, an attacker exploits a
vulnerable input field that is used in the query’s WHERE conditional. This conditional
logic is evaluated as the database scans each row in the table. If the conditional
represents a tautology, the database matches and returns all the rows in the table
as opposed to matching only one row, as it would normally do in the absence of
injection. We showed an example of this type of attack in Section 5.2.1.

Malformed Queries.

90 William G.J. Halfond and Alessandro Orso

This attack technique takes advantage of overly descriptive error messages that
are returned by the database when a query is rejected. Database error messages
often contain useful debugging information that also allows an attacker to accu-
rately identify which parameters are vulnerable in an application and the com-
plete schema of the underlying database. Attackers exploit this situation by in-
jecting SQL tokens or garbage input that causes the query to contain syntax er-
rors, type mismatches, or logical errors. Consider our example, an attacker could
try to cause a type mismatch error by injecting the following text into the pin
input field: “ convert (int, (select top 1 name from sysobjects
where xtype='u’))”.

The resulting query generated by the web application would be:

SELECT info FROM users WHERE login=’’ AND pin=

convert (int, (select top 1 name from sysobjects where xtype='u’})

In the attack string, the injected select query extracts the name of the first user table
(xtype="u') from the database’s metadata table, sysob jects, which contains
information on the structure of the database. It then converts this table name to an
integer. Because the name of the table is a string, the conversion is illegal, and the
database returns an error. For example, an SQL Server may return the following
error: "Microsoft OLE DB Provider for SQL Server (0x80040EQ7) Error converting
nvarchar value ’CreditCards’ to a column of data type int.”

There are two useful pieces of information in this message that aid an attacker. First,
the attacker can see that the database is an SQL Server database, as the error message
explicitly states this. Second, the error message reveals the string that caused the
type conversion to occur (in this case, the name of the first user-defined table in the
database, “CreditCards”). A similar strategy can be used to systematically extract the
name and type of each column in the given table. Using this information about the
schema of the database, an attacker can create more precise attacks that specifically
target certain types of information. Attacks based on malformed queries are typically
used as a preliminary information-gathering step for other attacks.

Union Query.

The Union Query technique refers to injection attacks in which an attacker causes
the application to return data from a table that is different from the one that was in-
tended. To this end, attackers inject a statement of the form “UNION <injected
query>”. By suitably defining <injected query>, attackers can retrieve infor-
mation from a specified table. The outcome of this attack is that the database returns
a dataset that is the union of the results of the original query with the results of
the injected query. In our example, an attacker could perform a Union Query injec-
tion by injecting the text “/ UNION SELECT cardNo from CreditCards

S Detection and Prevention of SQL Injection Attacks 91

where acctNo=10032--"into the login field. The application would then pro-
duce the following query:

SELECT info FROM users WHERE login='’ UNION
SELECT cardNo from CreditCards where acctNo=10032 -- AND pin=

<3y

Assuming that there is no login equal to *“”’ (the empty string), the original query
returns the null set, and the injected query returns data from the “CreditCards” table.
In this case, the database returns field “cardNo” for account “10032.” The database
takes the results of these two queries, unions them together, and returns them to the
application. In many applications, the effect of this attack would be that the value for
“cardNo” is displayed with the account information.

Piggy-backed Queries.

In the Piggy-backed Query technique, an attacker tries to append additional
queries to the original query string. If the attack is successful, the database receives
and executes a query string that contains multiple distinct queries. The first query
is generally the original, legal query, whereas subsequent queries are the injected,
malicious queries. This type of attack can be especially harmful; attackers can use
it to inject virtually any type of SQL command. In our example application, an at-
tacker could inject the text “0; drop table users” into the pin input field.
The application would then generate the query:

SELECT info FROM users WHERE login=’doe’ AND pin=0; drop table users

The database treats this query string as two queries separated by the query delimiter,
“;”, and executes both. The second, malicious query causes the database to drop
the users table in the database, which would have the catastrophic consequence of
deleting all of the database users. Other types of queries can be executed using this
technique, such as insertion of new users into the database or execution of stored
procedures. It is worth noting that many databases do not require a special charac-
ter to separate distinct queries, so simply scanning for a special character is not an

effective way to prevent this attack technique.

Stored Procedures.

In this technique, attackers focus on the stored procedures that are present on
the database system. Stored procedures are code that is stored in the database and
run directly by the database engine. Stored procedures enable a programmer to code
database or business logic directly into the database and provide an extra layer of
abstraction. It is a common misconception that the use of stored procedures protects
an application from SQLIAs. Stored procedures are just code and can be just as
vulnerable as the application’s code. Depending on the specific stored procedures
that are available on a database, an attacker has different ways of exploiting a system.

The following example demonstrates how a parameterized stored procedure can
be exploited via an SQLIA. In this scenario, we assume that the query string con-
structed at lines 5, 7, and 9 of our example has been replaced by a call to the stored
procedure defined in Figure 5.3. The stored procedure returns a boolean value to in-
dicate whether the user’s credentials were authenticated by the database. To perform
an SQLIA that exploits this stored procedure, the attacker can simply inject the text

92 ‘William G.J. Halfond and Alessandro Orso

CREATE PROCEDURE DBO.isAuthenticated

QuserName varchar2, @pin int
AS

EXEC("SELECT info FROM users

WHERE login=’" +QuserName+ "’ and pin=" +@pin);
GO

Fig. 5.3. Stored procedure for checking credentials.

! ; SHUTDOWN; --"into the userName field. This injection causes the stored
procedure to generate the following query:

SELECT info FROM users WHERE login=’ ’; SHUTDOWN; -- AND pin=

This attack works like a piggy-back attack. When the second query is executed, the
database is shut down.

Inference.

Inference-based attacks create queries that cause an application or database to
behave differently based on the results of the query. In this way, even if an applica-
tion does not directly provide the results of the query to the attacker, it is possible to
observe side effects caused by the query and deduce the results. These attacks allow
an attacker to extract data from a database and detect vulnerable parameters. Re-
searchers have reported that, using these techniques, they have been able to achieve
a data extraction rate of one byte per second [2]. There are two well-known attack
techniques that are based on inference: blind-injection and timing attacks.

Blind Injection: In this variation, an attacker performs queries that have a boolean
result. The queries cause the application to behave correctly if they evaluate to true,
whereas they cause an error if the result is false. Because error messages are easily
distinguishable from normal results, this approach provides a way for an attacker to
get an indirect response from the database. One possible use of blind-injection is to
determine which parameters of an application are vulnerable to SQLIA. Consider
again the example code in Figure 5.2. Two possible injections into the login field
are “legalUser’ and 1=0 --"and “legalUser’ and 1=1 --". These
injections result in the following two queries:

SELECT info FROM users WHERE login=’legalUser’ and 1=0 -- ’/ AND pin=

SELECT info FROM users WHERE login=’legalUser’ and 1l=1 -- ' AND pin=

Now, let us consider two scenarios. In the first scenario, we have a secure ap-
plication, and the input for login is validated correctly. In this case, both injections
would return login error messages from the application, and the attacker would know
that the login parameter is not vulnerable to this kind of attack. In the second sce-
nario, we have a non-secure application in which the login parameter is vulnerable
to injection. In this case, the first injection would evaluate to false, and the applica-
tion would return a login-error message. Without additional information, attackers
would not know whether the error occurred because the application validated the in-
put correctly and blocked the attack attempt or because the attack itself caused the
login error. However, when the attackers observe that the second query does not re-

5 Detection and Prevention of SQL Injection Attacks 93

sult in an error message, they know that the attack was successful and that the login
parameter is vulnerable to injection.

Timing Attacks: A timing attack lets an attacker gather information from a
database by observing timing delays in the database’s responses. This attack is simi-
lar to blind injection, but uses a different type of observable side effect. To perform a
timing attack, attackers structure their injected query in the form of an if-then state-
ment whose branch condition corresponds to a question about the contents of the
database. The attacker then uses the WATTFOR keyword along one of the branches,
which causes the database to delay its response by a specified time. By measuring the
increase or decrease in the database response time, attackers can infer which branch
was taken and the answer to the injected question.

Using our example, we illustrate how to use a timing-based inference attack to
extract a table name from the database. In this attack, the following text is injected
into the login parameter:

legalUsex’ and ASCII (SUBSTRING((select top 1 name from sysobjects),1,1)) >
X WAITFOR 5 ——

This injection produces the following query:

SELECT info FROM users WHERE login='legalUser’ and ASCII(SUBSTRING((select top
1 name from sysobjects),1,1)) > X WAITFOR 5 —— ' AND pin=

In this attack, the SUBSTRING function is used to extract the first character of the
first table’s name. The attacker can then ask a series of questions about this character.
In this example, the attacker is asking if the ASCII value of the character is greater-
than or less-than-or-equal-to the value of X. If the value is greater, the attacker will be
able to observe an additional five-second delay in the database response. The attacker
can continue in this way and use a binary-search strategy to identify the value of the
first character, then the second character, and so on.

Alternate Encodings. Using alternate encoding techniques, attackers modify their
injection strings in a way that avoids typical signature- and filter-based checks
that developers put in their applications. Alternate encodings, such as hexadeci-
mal, ASCII, and Unicode can be used in conjunction with other techniques to al-
low an attack to escape straightforward detection approaches that simply scan for
certain known “bad characters.”” Even if developers account for alternative encod-
ings, this technique can still be successful because alternate encodings can target
different layers in the application. For example, a developer may scan for a Uni-
code or hexadecimal encoding of a single quote and not realize that the attacker
can leverage a database function (e.g., char (44)) to encode the same character.
An effective code-based defense against alternate encodings requires developers to
be aware of all of the possible encodings that could affect a given query string as
it passes through the different application layers. Because developing such a com-
plete protection is very difficult in practice, attackers have been very successful
in using alternate encodings to conceal attack strings. The following example at-
tack (from [11]) shows the level of obfuscation that can be achieved using alter-

94 William G.J. Halfond and Alessandro Orso

nate encodings. In the attack, the pin field is injected with the following string: “0;
exec (0x73687574646£f776e),” and the resulting query is:

SELECT info FROM users WHERE login=’’ AND pin=0; exec(char (0x73687574646f776e))

This example makes use of the char () function and ASCII hexadecimal encoding.
The char () function takes as a parameter an integer or hexadecimal encoding of
one or more characters and replaces the function call with the actual character(s).
The stream of numbers in the second part of the injection is the ASCII hexadecimal
encoding of the attack string. This encoded string is inserted into a query using some
other type of attack profile and, when it is executed by the database, translates into
the shutdown command.

5.3 Detection and Prevention of SQL Injection Attacks

AMNESIA, (Analysis for Monitoring and NEutralizing SQL Injection Attacks) is
a fully-automated and general technique for detecting and preventing all types of
SQLIAs. The approach works by combining static analysis and runtime monitoring.
Our two key insights behind the approach are that (1) the information needed to pre-
dict the possible structure of all legitimate queries generated by a web application is
contained within the application’s code, and (2) an SQLIA, by injecting additional
SQL statements into a query, would violate that structure. In its static part, our tech-
nique uses program analysis to automatically build a model of the legitimate queries
that could be generated by the application. In its dynamic part, our technique mon-
itors the dynamically generated queries at runtime and checks them for compliance
with the statically-generated model. Queries that violate the model represent poten-
tial SQLIAs and are reported and prevented from executing on the database.

The technique consists of four main steps. We first summarize the steps and then
describe them in more detail in subsequent sections.

5.3.1 The AMNESIA Approach

Identify hotspots: Scan the application code to identify hotspots—points in the ap-
plication code that issue SQL queries to the underlying database.

Build SQL-query models: For each hotspot, build a model that represents all the
possible SQL queries that may be generated at that hotspot. A SQL-guery model
is a non-deterministic finite-state automaton in which the transition labels consist
of SQL tokens (SQL keywords and operators), delimiters, and placeholders for
string values.

Instrument Application: At each hotspot in the application, add calls to the runtime
monitor.

Runtime monitoring: At runtime, check the dynamically-generated queries against
the SQL-query model and reject and report queries that violate the model.

5 Detection and Prevention of SQL Injection Attacks 95

login = ! guest !
SELECT_ __ info. FROM userTable WHERE O
% O login

= O-'>: 8 o—— AND pin = B ')

Fig. 5.4. SQL-query model for the servlet in Figure 5.2.

Identify Hotspots

In this step, AMNESIA performs a simple scan of the application code to iden-
tify hotspots. In the Java language, all interactions with the database are performed
through a predefined API, so identifying all the hotspots is a trivial step. In the case
of the example servlet in Figure 5.2, the set of hotspots contains a single element:
the call to stmt . execute on line 10.

Build SQL-Query Models

In this step, we build the SQL-query model for each hotspot. We perform this step in
two parts. In the first part, we use the Java String Analysis (JSA) developed by Chris-
tensen, Mgller, and Schwartzbach [5] to compute all of the possible values for each
hotspot’s query string. JSA computes a flow graph that abstracts away the control
flow of the program and only represents string-manipulation operations performed
on string variables. For each string of interest, the library analyzes the flow graph
and simulates the string-manipulation operations that are performed on the string.
The result is a Non-Deterministic Finite Automaton (NDFA) that expresses, at the
character level, all possible values that the considered string variable can assume.
Because JSA is conservative, the NDFA for a given string variable is an overestimate
of all of its possible values.

In the second part, we transform the NDFA computed by JSA into an SQL-query
model. More precisely, we perform an analysis of the NDFA that produces another
NDFA in which all of the transitions are labeled with SQL keywords, operators,
or literal values. We create this model by performing a depth first traversal of the
character-level NDFA and grouping characters that correspond to SQL keywords,
operators, or literal values. For example, a sequence of transitions labeled ’S’, 'E’,
'L,’E’, ’C’, and *T” would be recognized as the SQL keyword SELECT and grouped
into a single transition labeled “SELECT”. This step is configurable to recognize
different dialects of SQL. In the SQL-query model, we represent variable strings
(i.e., strings that correspond to a variable related to some user input) using the symbol
B. For instance, in our example, the value of the variable 1ogin is represented as
(. This process is analogous to the one used by Gould, Su, and Devanbu [8], except
that we perform it on NDFAs instead of DFAs.

Figure 5.4 shows the SQL-query model for the single hotspot in our example.
The model reflects the two different query strings that can be generated by the code
depending on the branch followed after the i £ statement at line 6 in Figure 5.2.

96 William G.J. Halfond and Alessandro Orso
Instrument Application

In this step, we instrument the application by adding calls to the monitor that checks
the queries at runtime. For each hotspot, the technique inserts a call to the monitor
before the call to the database. The monitor is invoked with two parameters: the
query string that is about to be submitted to the database and a unique identifier
for the hotspot. Using the unique identifier, the runtime monitor is able to correlate
the hotspot with the specific SQL-query model that was statically generated for that
point and check the query against the correct model.

Figure 5.5 shows how the example application would be instrumented by our
technique. The hotspot, originally at line 10 in Figure 5.2, is now guarded by a call
to the monitor at line 10a.

10a. if (monitor.accepts (<hotspot ID>, queryString))
{

10b. ResultSet tempSet = stmt.execute(queryString);

11. return tempSet;

Fig. 5.5. Example hotspot after instrumentation.

Runtime Monitoring

At runtime, the application executes normally until it reaches a hotspot. At this point,
the query string is sent to the runtime monitor, which parses it into a sequence of
tokens according to the specific SQL syntax considered. In our parsing of the query
string, the parser identifies empty string and empty numeric literals by their syntactic
position, and we denote them in the parsed query string using . Figure 5.6 shows
how the last two queries discussed in Section 5.2.1 would be parsed during runtime
monitoring.

It is important to point out that our technique parses the query string in the same
way that the database would and according to the specific SQL grammar considered.
In other words, our technique does not perform a simple keyword matching over the
query string, which would cause false positives and problems with user input that
happened to match SQL keywords. For example, a user-submitted string that con-
tains SQL keywords but is syntactically a text field, would be correctly recognized
as a text field. However, if the user were to inject special characters, as in our exam-
ple, to force part of the text to be evaluated as a keyword, the parser would correctly
interpret this input as a keyword. Using the same parser as the database is essential
because it guarantees that we are interpreting the query in the same way that the
database will.

5 Detection and Prevention of SQL Injection Attacks 97

(a) SELECT info FROM users WHERE login=’doe’ AND pin=123
() ()) — - () () - @ - (- - () (- - ()
(b) SELECT info FROM users WHERE login='’ OR 1=1 -- ’ AND pin=

Fig. 5.6. Example of parsed runtime queries.

After the query has been parsed, the runtime monitor checks it by assessing
whether the query violates the SQL-query model associated with the current hotspot.
An SQL-query model is an NDFA whose alphabet consists of SQL keywords, oper-
ators, literal values, and delimiters, plus the special symbol 3. Therefore, to check
whether a query is compliant with the model, the runtime monitor can simply check
whether the model accepts the the sequence of tokens derived from the query string.
A string or numeric literal (including the empty string, €) in the parsed query string
can match either [or an identical literal value in the SQL-query model.

If the model accepts the query, the monitor lets the execution of the query con-
tinue. Otherwise, the monitor identifies the query as an SQLIA. In this case, the
monitor prevents the query from executing on the database and reports the attack.

To illustrate, consider again the queries shown in Figure 5.6 and recall that the
first query is legitimate, whereas the second one corresponds to an SQLIA. When
checking query (a), the analysis would start matching from token and
from the initial state of the SQL-query model in Figure 5.4. Because the token
matches the label of the only transition from the initial state, the automaton reaches
the second state. Again, token matches the only transition from the current
state, so the automaton reaches the third state. The automaton continues to reach new
states until it reaches the state whose two outgoing transitions are labeled “=". At this
point, the automaton would proceed along both transitions. On the upper branch, the
query is not accepted because the automaton does not reach an accept state. Con-
versely, on the lower branch, all the tokens in the query are matched with labels on
transitions, and the automaton reaches the accept state after consuming the last token
in the query (“’). The monitor can therefore conclude that this query is legitimate.

The checking of query (b) proceeds in an analogous way until token in the
query is reached. Because the token does not match the label of the only outgoing
transition from the current state (AND), the query is not accepted by the automaton,
and the monitor identifies the query as a SQLIA.

Efficiency and limitations

For the technique to be practical, the runtime overhead of the monitoring must not af-
fect the usability of the web application. We analyze the cost of AMNESIA’s runtime
monitoring in terms of both space and time. The space complexity of the monitoring
is dominated by the size of the generated SQL-query models. In the worst case, the
size of the query models is quadratic in the size of the application. This case corre-
sponds to the unlikely situation of a program that branches and modifies the query

98 William G.J. Halfond and Alessandro Orso

string at each program statement. In typical programs, the generated automata are
linear in the program size. In fact, our experience is that most automata are actually
quite small with respect to the size of the corresponding application (see Table 5.1).
The time complexity of the approach depends on the cost of the runtime matching of
the query tokens against the models. Because we are checking a set of tokens against
an NDFA, the worst case complexity of the matching is exponential in the number
of tokens in the query (in the worst case, for each token all states are visited). In
practice, however, the SQL-query models typically reduce to trees, and the cost of
the matching is almost linear in the size of the query. Our experience shows that the
cost of the runtime phase of the approach is negligible (see Section 5.4).

As far as limitations are concerned, our technique can generate false positives
and false negatives. Although the string analysis that we use is conservative, false
positives can be created in situations where the string analysis is not precise enough.
For example, if the analysis cannot determine that a hard-coded string in the appli-
cation is a keyword, it could assume that it is an input-related value and erroneously
represent it as a [in the SQL-query model. At runtime, the original keyword would
not match the placeholder for the variable, and AMNESIA would flag the corre-
sponding query as an SQLIA. False negatives can occur when the constructed SQL
query model contains spurious queries, and the attacker is able to generate an injec-
tion attack that matches one of the spurious queries. For example, if a developer adds
conditions to a query from within a loop, an attacker who inserts an additional con-
dition of the same type would generate a query that does not violate the SQL-query
model. We expect these cases to be rare in practice because of the peculiar structure
of SQLIAs. The attacker would have to produce an attack that directly matches either
an imprecision of the analysis or a specific pattern. Moreover, in both cases, the type
of attacks that could be exploited would be limited by the constraints imposed by
the rest of the model that was used to match the query. It is worth noting that, in our
empirical evaluation, neither false positives nor false negatives were generated (see
Section 5.4).

5.3.2 Implementation

AMNESIA is the prototype tool that implements our technique for Java-based web
applications. The technique is fully automated, requiring only the web application
as input, and requires no extra runtime environment support beyond deploying the
application with the AMNESIA library. We developed the tool in Java and its im-
plementation consists of three modules:

Analysis module. This module implements Steps 1 and 2 of our technique. It inputs
a Java web application and outputs a list of hotspots and a SQL-query model
for each hotspot. For the implementation of this module, we leveraged the im-
plementation of the Java String Analysis library by Christensen, Mgller, and
Schwartzbach [5]. The analysis module is able to analyze Java Servlets and JSP

pages.

5 Detection and Prevention of SQL Injection Attacks 99

Static Phase
(Static Analysis)
Instrumented
Instrumentation Web
Module Application
Web |:> | L=
Application -
Analysis |
Module : E:> SQL-Query
Model
Dynamic Phase s rmme -
i i u
(Runtime Monitoring) Monftoring
Module
ST
Broyvse_rf alicious Queny
Application & .
UR -
ktalllo Legitimate Query
Web. ﬂ Database
Application

i Data ﬂ Data
Users L

Report

Fig. 5.7. High-level overview of AMNESIA.

Instrumentation module. This module implements Step 3 of our technique. It inputs
a Java web application and a list of hotspots and instruments each hotspot with
a call to the runtime monitor. We implemented this module using INSECTJ, a
generic instrumentation and monitoring framework for Java developed at Geor-
gia Tech [23].

Runtime-monitoring module. This module implements Step 4 of our technique. The
module takes as input a query string and the ID of the hotspot that generated
the query, retrieves the SQL-query model for that hotspot, and checks the query
against the model.)

Figure 5.7 shows a high-level overview of AMNESIA. In the static phase, the
Instrumentation Module and the Analysis Module take as input a web application and
produce (1) an instrumented version of the application, and (2) an SQL-query model
for each hotspot in the application. In the dynamic phase, the Runtime-Monitoring
Module checks the dynamic queries while users interact with the web application. If
a query is identified as an attack, it is blocked and reported.

Once an SQLIA has been detected, AMNESIA stops the query before it is exe-
cuted on the database and reports relevant information about the attack in a way that
can be leveraged by developers. In our implementation of the technique for Java, we

100 William G.J. Halfond and Alessandro Orso

throw an exception when the attack is detected and encode information about the
attack in the exception. If developers want to access the information at runtime, they
can simply leverage the exception-handling mechanism of the language and integrate
their handling code into the application.

Having this attack information available at runtime is useful because it allows
developers to react to an attack right after it is detected and develop an appropri-
ate customized response. For example, developers may decide to avoid any risk and
shut-down the part of the application involved in the attack. Alternatively, a developer
could handle the attack by converting the information into a format that is usable by
another tool, such as an Intrusion Detection System, and reporting it to that tool. Be-
cause this mechanism integrates with the application’s language, it allows developers
flexibility in choosing a response to SQLIAs.

Currently, the information reported by our technique includes the time of the
attack, the location of the hotspot that was exploited, the attempted-attack query,
and the part of the query that was not matched against the model. We are currently
considering additional information that could be useful for the developer (e.g., infor-
mation correlating program execution paths with specific parts of the query model)
and investigating ways in which we can modify the static analysis to collect this
information.

5.3.3 Implementation Assumptions

Our implementation makes one main assumption regarding the applications that it
analyzes. The tool assumes that queries are created by manipulating strings in the
application, that is, the developer creates queries by combining hard-coded strings
and variables using operations such as concatenation, appending, and insertion. Al-
though this assumption precludes the use of AMNESIA on some applications (e.g.,
applications that externalize all query-related strings in files), it is not overly restric-
tive and, most importantly, can be eliminated with suitable engineering.

5.4 Empirical Evaluation

The goal of our empirical evaluation is to assess the effectiveness and efficiency of
the technique presented in this chapter when applied to various web applications.
We used our prototype tool, AMNESIA, to perform an empirical study on a set of
subjects. The study investigates three research questions:

RQI1: What percentage of attacks can AMNESIA detect and prevent that would
otherwise go undetected and reach the database?

RQ2: How much overhead does AMNESIA impose on web applications at runtime?

RQ3: What percentage of legitimate accesses does AMNESIA identify as attacks?

The following sections illustrate the setup for the evaluation, and discuss the two
studies that we performed to address the research questions.

5 Detection and Prevention of SQL Injection Attacks 101

Table 5.1. Subject programs for the empirical study.

Subject LOC Servlets Injectable State Hotspots Automata Size
(Description) Params Params (#nodes)

Checkers 5,421 18 (61) 44 0 5 289 (2-772)
(Online checkers game)

Office Talk 4,543 7 (64) 13 1 40 40 (8-167)
(Purchase-order management)

Employee Directory 5,658 7(10) 25 9 23 107 (2-952)
(Online employee directory)

Bookstore 16,959 8(28) 36 6 71 159 (2-5,269)
(Online bookstore)

Events 7,242 7(13) 36 10 31 77 (2-550)
(Event tracking system)

Classifieds . 10,949 6 (14) 18 8 34 91 (2-799)
(Management system for classifieds)

Portal 16,453 3 (28) 39 7 67 117 (2-1,187)
(Portal for a club)

5.4.1 Experiment Setup

To investigate our research questions, we leveraged a previously developed testbed
for SQLIAs, which was presented in [9]. This testbed provides a set of web appli-
cations and a large set of both legitimate and malicious inputs for the applications.
In the next two sections we briefly review the testbed, describe the applications it
contains, and explain how the inputs were generated. Readers can refer to [9] for
additional details.

Subjects

The testbed contains seven subjects. All of the subjects are typical web applica-
tions that accept user input via web forms and use that input to build queries to an
underlying database. Five of the applications are commercial applications that we
obtained from GotoCode (http://www.gotocode.com): Employee Directory,
Bookstore, Events, Classifieds, and Portal. The last two applications, Checkers and
OfficeTalk, were student-developed applications created for a class project. We con-
sider them because they have been used in previous related studies [8].

In Table 5.1 we provide information about the subject applications. For each sub-
ject, the table shows: its name (Subject); a concise description (Description); its size
in terms of lines of code (LOC); the number of accessible servlets (Serviets), with the
total number of servlets in the application in parenthesis; the number of injectable
parameters (Injectable Params); the number of state parameters (State Params); the
number of hotspots (Hotspots); and the average size of the SQL automata generated
by AMNESIA (Automata Size), with the minimum—maximum range in parentheses.

102 William G.J. Halfond and Alessandro Orso

The table distinguishes between injectable parameters and state parameters for
each application. This distinction is necessary because each type of parameter plays
a different role in the application. An injectable parameter is an input parameter
whose value is used to build part of a query that is then sent to the database. A state
parameter is a parameter that may affect the control flow within the web application
but never becomes part of a query. Because, by definition, state parameters cannot
result in SQL injection, we only focus on injectable parameters for our attacks. We
also distinguish between total and accessible servlets in the applications. An acces-
sible servlet is a servlet that, to be accessed, only requires the user to be logged-in or
does not require sessions at all. Some servlets, converscly, must have specific session
data (i.e., cookies) to function properly, which considerably complicates the automa-
tion of the evaluation. Because we were able to generate enough attacks considering
accessible servlets only, we did not consider the remaining servlets.

Input Generation

The sets of inputs provided by the testbed framework represent normal and malicious
usages of the applications. In this section we briefly review how these sets were
generated and the types of inputs they contain.

In a preliminary step, we identified all of the servlets in each web application and
the corresponding parameters that could be submitted to the servlet. Each parame-
ter was identified as either an injectable or stale parameter. State parameters must
be handled specially because they often determine the behavior of the application.
Without a correct and meaningful value assigned to them, the application fails and
no attack can be successful. Lastly, we identified the expected type of each injectable
parameter. This information helps us in identifying potential attacks that can be used
on the parameter and in generating legitimate inputs.

The set of attack strings was generated independently using commercial pene-
tration testing techniques. For this task, we leveraged the services of a Masters-level
student at Georgia Tech who worked for a local software-security company. The
student is an experienced programmer who has developed commercial-level pene-
tration tools for detecting SQL-injection vulnerabilities. In addition, the student was
not familiar with our technique, which reduced the risk of developing a set of attacks
biased by the knowledge of the approach and its capabilities.

To define the initial set of attack strings, the student used a combination of
sources, including (1) exploits developed by commercial penetrating teams to take
advantage of SQL-injection vulnerabilities, (2) online sources of vulnerability re-
ports, such as US-CERT (http://www.us—cert.gov/) and CERT/CC Ad-
visories (http://www.cert.org/advisories/), and (3) information ex-
tracted from several security-related mailing lists. The resulting set of attack strings
contained thirty unique types of attacks. All types of attacks reported in literature
(e.g., [1]) were represented in this set with the exception of attacks that take ad-
vantage of overly-descriptive database error messages and second-order injections.
We excluded these kinds of attacks because they are multi-phase attacks that require
intensive human intervention to interpret the attacks’ partial results.

5 Detection and Prevention of SQL Injection Attacks 103

The student generated two sets of inputs for each application. The first set con-
tained normal or legitimate inputs for the application. We call this set LEGIT. The
second set contained malicious inputs, that is, strings that would result in an SQLIA.
We call this set ATTACK. To populate the LEGIT set, the student generated, for each
servlet, different combinations of legitimate values for each injectable parameter.
State parameters were assigned a meaningful and correct value. To populate the AT-
TACK set, a similar process was used. For each accessible servlet in the application
the student generated the Cartesian product of its injectable parameters using values
from the initial attack strings and legitimate values. This approach generated a large
set of potentially malicious inputs, which we used as the ATTACK set.

5.4.2 Study 1: Effectiveness

In the first study, we investigated RQ1, the effectiveness of our technique in detecting
and preventing SQLIAs. We analyzed and instrumented each application using AM-
NESIA and ran all of the inputs in each of the applications’ ATTACK sets. For each
application, we measured the percentage of attacks detected and reported by AM-
NESIA. (As previously discussed, when AMNESIA detects an attack, it throws an
exception, which is in turn returned by the web application. Therefore, it is easy to
accurately detect when an attack has been caught.)

The results for this study are shown in Table 5.2. The table shows, for each sub-
ject, the number of unsuccessful attacks (Unsuccessful),? the number of successful
attacks (Successful), and the number of attacks detected and reported by AMNESIA
(Detected) in absolute terms and as a percentage over the total number of successful
attacks, in parentheses. As the table shows, AMNESIA achieved a perfect score.
For all subjects, it was able to correctly identify all attacks as SQLIAs, that is, it
generated no false negatives.

Table 5.2. Results of Study 1.

Subject Unsuccessful Successful Detected

Checkers 1195 248 248 (100%)
Office Talk 598 160 160 (100%)
Employee Directory 413 280 280 (100%)
Bookstore 1028 182 182 (100%)
Events 875 260 260 (100%)
Classifieds 823 200 200 (100%)
Portal 880 140 140 (100%)

2 Because the applications performed input validation, they were able to block a portion of
the attacks without the attack reaching AMNESIA’s monitor.

104 William G.J. Halfond and Alessandro Orso
5.4.3 Study 2: Efficiency and Precision

In the second study, we investigated RQ2 and RQ3. To investigate RQ2, the effi-
ciency of our technique, we ran all of the inputs in the LEGIT sets on the uninstru-
mented web applications and measured the response time of the applications for each
web request. We then ran the same inputs on the versions of the web applications in-
strumented by AMNESIA and again measured the response time. The difference in
the two response times corresponds to the overhead imposed by our technique.

We found that the overhead imposed by our technique is negligible and, in fact,
barely measurable, averaging about 1 millisecond. Note that this time should be con-
sidered an upper bound on the overhead, as our implementation was not optimized.
These results confirm our expectations. Intuitively, the time for the network access
and the database transaction completely dominates the time required for the runtime
checking. As the results show, our technique is efficient and can be used without
significantly affecting the response time of a web application.

To investigate RQ3, the rate of false positives generated by our technique, we
simply assessed whether AMNESIA identified any legitimate query as an attack.
The results of the assessment were that AMNESIA correctly identified all such
queries as legitimate queries and reported no false positives.

5.4.4 Discussion

The results of our study are very encouraging. For all subjects, our technique was
able to correctly identify all attacks as SQLIAs, while allowing all legitimate queries
to be performed. In other words, for the cases considered, our technique generated no
false positives and no false negatives. The lack of false positives and false negatives
is promising and provides evidence of the viability of the technique.

In our study, we did not compare our results with alternative approaches against
SQLIAs because most of the existing automated approaches address only a subset of
the possible SQLIAs. (For example, the approach in [8] is focused on type safety, and
the one in [25] focuses only on tautologies.) Therefore, we can conclude analytically
that such approaches would not be able to identify many of the attacks in our test
bed.

As for all empirical studies, there are some threats to the validity of our evalua-
tion, mostly with respect to external validity. The results of our study may be related
to the specific subjects considered and may not generalize to other web applications.
To minimize this risk, we used a set of real web applications (except for the two
applications developed by students teams) and an extensive set of realistic attacks.
Although more experimentation is needed before drawing definitive conclusions on
the effectiveness of the technique, the results we obtained so far are promising.

5 Detection and Prevention of SQL Injection Attacks 105

5.5 Related Approaches

There has been a wide range of techniques proposed to counter SQLIAs. However,
when compared to AMNESIA, these solutions have several limitations and short-
comings. In this section we review and discuss the main approaches against SQLIAs.

Defensive Programming.

Developers have proposed a range of code-based development practices to counter
SQLIAs. These techniques generally focus on proper input filtering, such as escaping
potentially harmful characters and rigorous type-checking of inputs. Many of these
approaches are summarized in Reference [11]. In general, a rigorous and systematic
application of these techniques is an effective solution to the problem. However, in
practice, the application of such techniques is human-based and is therefore less than
ideal. For example, many SQLIA vulnerabilities that have been discovered in various
applications correspond to cases where the applications contained input-validation
operations, but the validation was inadequate. The situation is further complicated
because attackers continue to find new attack strings or subtle variation on old attacks
that are able to avoid the checks programmers put in place. Lastly, retroactively fix-
ing vulnerable legacy applications using defensive coding practices is complicated,
labor-intensive, and error-prone.

Two widely suggested “SQLIA remedies” merit specific mention. Both of them
initially appear to offer viable solutions to the SQLIA problem, but do not cor-
rectly address it. The first remedy consists of simply checking user input for ma-
licious keywords. This approach would clearly result in a high rate of false posi-
tives because an input field could legally contain words that match SQL keywords
(i.e. “FROM”,“OR”, or “AND”). The second remedy is to use stored procedures
for database access. The ability of stored procedures to prevent SQLIAs is depen-
dent on their implementation. The mere fact of using stored procedures does not
protect against SQLIA. Interested readers may refer to Section 5.2 and to Refer-
ences [1, 15, 18, 19] for examples of how SQLIASs can be performed in the presence
of stored procedures.

Two approaches, SQL DOM [17] and Safe Query Objects [6], use encapsulation
of database queries to provide a safe and reliable way to access databases. These tech-
niques offer an effective way to avoid the SQLIA problem by changing the query-
building process from one that uses string concatenation to a systematic one that uses
a type-checked APL (In this sense, SQL DOM and Safe Query Objects can be con-
sidered instances of defensive coding.) Although these techniques are as effective as
AMNESIA, they have the drawback that they require developers to learn and use a
new programming paradigm or query-development process.

In general, defensive coding has not been successful in completely preventing
SQLIA. While improved coding practices can help mitigate the problem, they are
limited by the developer’s ability to generate appropriate input validation code and
recognize all situations in which it is needed. AMNESIA, being fully automated, can
provide stronger guarantees about the completeness and accuracy of the protections
put in place.

106 William G.J. Halfond and Alessandro Orso

General Techniques Against SQLIAs.

Security Gateway [22] uses a proxy filter to enforce input validation rules on
the data that reaches a web application. Using a descriptor language, developers cre-
ate filters that specify constraints and transformations to be applied to application
parameters as they flow from the web page to the application server. By creating ap-
propriate filters, developers can block or transform potentially malicious user input.
The effectiveness of this approach is limited by the developer’s ability to (1) identify
all the input streams that can affect the query string and (2) determine what type of
filtering rules should be placed on the proxy.

WAVES [12] is a penetration testing tool that attempts to discover SQLIA vul-
nerabilities in web applications. This technique improves over normal penetration-
testing techniques by using machine learning to guide its testing. However, like all
penetration testing techniques, it can not provide guarantees of completeness.

Valeur and colleagues [24] propose the use of an Intrusion Detection System
(IDS) to detect SQLIAs. Their IDS is based on a machine learning technique that
is trained using a set of typical application queries. The technique builds models of
normal queries and then monitors the application at runtime to identify queries that
do not match the model. The fundamental limitation of learning based techniques
is that they can not provide guarantees about their detection abilities because their
success is dependent on the use of an optimal training set. Without such a set, this
technique could generate a large number of false positives and negatives.

Boyd and Keromytis propose SQLrand, an approach that uses key-based random-
ization of SQL instructions [4]. In this approach, SQL code injected by an attacker
would result in a syntactically incorrect query because it was not specified using
the randomized instruction set. While this technique can be very effective, there are
several practical drawbacks to this approach. First, the security of the key may be
compromised by looking at the error logs or messages. Furthermore, the approach
imposes a significant infrastructure overhead because it requires the integration of an
encryption proxy for the database.

Static Detection Techniques.

JDBC-Checker is a technique for statically checking the type correctness of dy-
namically generated SQL queries [8]. Although this technique was not originally
intended to address SQLIA, it can detect one of the root causes of SQL-injection
vulnerabilities—improper type checking of input. In this sense, JDBC-Checker is
able to detect and help developers eliminate some of the code that allows attackers
to exploit type mismatches. However, JDBC-Checker cannot prevent other types of
SQLIAs that produce syntactically and type correct queries.

Wassermann and Su propose an approach that uses static analysis combined with
automated reasoning to verify that the SQL queries generated in the application layer
cannot contain a tautology [25]. The scope of this technique is limited, in that it can
only address one type of SQLIAs, namely tautology-based attacks, whereas AMNE-
SIA is designed to address all types of SQLIAs.

Taint-based Approaches.

5 Detection and Prevention of SQL Injection Attacks 107

Two similar approaches have been proposed by Nguyen-Tuong et al. [20] and
Pietraszek and Berghe [21]. These approaches modify a PHP interpreter to track pre-
cise taint information about user input and use a context sensitive analysis to detect
and reject queries if untrusted input has been used to create certain types of SQL
tokens. In general, these taint-based techniques have shown much promise in their
ability to detect and prevent SQLIAs. The main drawback of these approaches con-
cerns their practicality. First, identifying all sources of tainted user input in highly-
modular web applications introduces problem of completeness. Second, accurately
propagating taint information may result in high runtime overhead for the web appli-
cations. Finally, the approach relies on the use of a customized version of the runtime
system, which affects portability.

Huang and colleagues define WebSSARI, a white-box approach for detecting
input-validation-related errors, that is based on information-flow analysis [13]. This
approach uses static analysis to check information flows against preconditions for
sensitive functions. The analysis detects where preconditions are not satisfied and
suggests filters and sanitization functions that can be automatically added to the ap-
plication to satisfy the preconditions. The primary drawbacks of this technique are
the assumptions that (1) preconditions for sensitive functions can be adequately and
accurately expressed using their type system and (2) forcing input to pass through
certain types of filters is sufficient to consider it trusted. For many types of functions
and applications, these assumptions do not hold.

Livshits and Lam [14] use a static taint analysis approach to detect code that is
vulnerable to SQLIA. This approach checks whether user input can reach a hotspot
and flags this code for developer intervention. A further extension to this work, Se-
curifly [16], detects vulnerable code and automatically adds calls to a sanitization
function. This automated defensive coding practice, while effective in some cases,
would not prevent all types of SQLIAs. In particular, it would not prevent SQLIAs
that inject malicious text into numeric non-quoted fields.

5.6 Conclusion

SQLIAs have become one of the more serious and harmful attacks on database-
driven web applications. They can allow an attacker to have unmitigated access to
the database underlying an application and, thus, the power to access or modify its
contents. In this article, we have discussed the various types of SQLIAs known to
date and presented AMNESIA, a fully automated technique and tool for detecting
and preventing SQLIAs. AMNESIA uses static analysis to build a model of the le-
gitimate queries that an application can generate and runtime monitoring to check
the dynamically generated queries against this model. Our empirical evaluation, per-
formed on commercial applications using a large number of realistic attacks, shows
that AMNESIA is a highly effective technique for detecting and preventing SQLIAs.
Compared to other approaches, AMNESIA offers the benefit of being fully auto-
mated and is general enough to address all known types of SQLIAs.

108 William G.J. Halfond and Alessandro Orso

Acknowledgments

This material is based upon work supported by NSF award CCR-0209322 to Geor-
gia Tech and by the Department of Homeland Security and United States Air Force
under Contract No. FA8750-05-2-0214. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not nec-
essarily reflect the views of the United States Air Force. Jeremy Viegas developed
our test bed infrastructure.

References

1. C. Anley. Advanced SQL Injection In SQL Server Applications. White paper, Next
Generation Security Software Ltd., 2002.

2. C. Anley. (more) Advanced SQL Injection. White paper, Next Generation Security Soft-
ware Ltd., 2002.

3. D. Aucsmith. Creating and maintaining software that resists malicious attack. http://
www.gtisc.gatech.edu/aucsmith_bio.htm, September 2004. Distinguished
Lecture Series.

4. S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL injection attacks. In Pro-
ceedings of the 2nd Applied Cryptography and Network Security (ACNS) Conference,
pages 292-302, June 2004.

5. A. S. Christensen, A. Mgller, and M. I. Schwartzbach. Precise analysis of string
expressions. In Proc. 10th International Static Analysis Symposium, SAS 03, vol-
ume 2694 of LNCS, pages 1-18. Springer-Verlag, June 2003. Available from
http://www.brics.dk/JSA/.

6. W.R. Cook and S. Rai. Safe Query Objects: Statically Typed Objects as Remotely Exe-
cutable Queries. In Proceedings of the 27th International Conference on Software Engi-
neering (ICSE 2005), 2005.

7. T. O. Foundation. Top ten most critical web application vulnerabilities, 2005. http:
//www.owasp.org/documentation/topten.html.

8. C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically Generated Queries in
Database Applications. In Proceedings of the 26th International Conference on Software
Engineering (ICSE 04), pages 645-654, 2004.

9. W. G. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for NEutralizing SQL-
Injection Attacks. In Proceedings of the IEEE and ACM International Conference on
Automated Software Engineering (ASE 2005), Long Beach, CA, USA, Nov 2005.

10. W. G. Halfond, J. Viegas, and A. Orso. A Classification of SQL-Injection Attacks and
Counter Techniques. Technical report, Georgia Institute of Technology, August 2005.

11. M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press, Redmond, Washing-
ton, second edition, 2003.

12. Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application Security Assessment by Fault
Injection and Behavior Monitoring. In Proceedings of the 11th International World Wide
Web Conference (WWW 03), May 2003.

13. Y. Huang, E Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo. Securing Web Application
Code by Static Analysis and Runtime Protection. In Proceedings of the 12th International
World Wide Web Conference (WWW 04), May 2004.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

5 Detection and Prevention of SQL Injection Attacks 109

V. B. Livshits and M. S. Lam. Finding Security Vulnerabilities in Java Applications with
Static Analysis. In Usenix Security Symposium, August 2005.

O. Maor and A. Shulman. SQL Injection Signatures Evasion. White paper, Imperva,
April 2004. http://www.imperva.com/application_defense_center/
white_papers/sql_injection_signatures_evasion.html.

M. Martin, V. B. Livshits, and M. S. Lam. Finding Application Errors and Security Flaws
Using PQL: a Program Query Language. In Proceedings of the ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), Octo-
ber 2005.

R. McClure and I. Kriiger. SQL DOM: Compile Time Checking of Dynamic SQL State-
ments. In Proceedings of the 27th International Conference on Software Engineering
(ICSE 05), pages 88-96, 2005.

S. McDonald. SQL Injection: Modes of attack, defense, and why it matters. White paper,
GovernmentSecurity.org, April 2002. http://www.governmentsecurity.org/
articles/SQLInjectionModesofAttackDefenceandWhyItMatters.
php.

S. McDonald. SQL Injection Walkthrough. White paper, SecuriTeam, May 2002. http:
/ /www.securiteam.con/securityreviews/5DPON1P76E. html,

A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automatically
Hardening Web Applications Using Precise Tainting Information. In Twentieth IFIP In-
ternational Information Security Conference (SEC 2005), May 2005.

T. Pietraszek and C. V. Berghe. Defending Against Injection Attacks through Context-
Sensitive String Evaluation. In Proceedings of Recent Advances in Intrusion Detection
(RAID2005), 2005.

D. Scott and R. Sharp. Abstracting Application-level Web Security. In Proceedings of
the 11" International Conference on the World Wide Web (WWW 2002), pages 396407,
2002.

A. Seesing and A. Orso. InsECTJ: A Generic Instrumentation Framework for Collecting
Dynamic Information within Eclipse. In Proceedings of the eclipse Technology eXchange
(eTX) Workshop at OOPSLA 2005, pages 49-53, San Diego, USA, October 2005.

F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach to the Detection of SQL
Attacks. In Proceedings of the Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), Vienna, Austria, July 2005.

G. Wassermann and Z. Su. An Analysis Framework for Security in Web Applications. In
Proceedings of the FSE Workshop on Specification and Verification of Component-Based
Systems (SAVCBS 2004), pages 70-78, 2004.

Part 111

Distributed Threat Detection and Defense

6

Very Fast Containment of Scanning Worms, Revisited*

Nicholas Weaver!, Stuart Staniford?, and Vern Paxson®

! International Computer Science Institute

nweaverQicsi.berkeley.edu

Nevis Networks

stuart@nevisnetworks.com

International Computer Science Institute and Lawrence Berkeley National Laboratory
vernRicir.org

Summary. Computer worms — malicious, self-propagating programs — represent a signif-
icant threat to large networks. One possible defense, containment, seeks to limit a worm’s
spread by isolating it in a small subsection of the network. In this work we develop con-
tainment algorithms suitable for deployment in high-speed, low-cost network hardware. We
show that these techniques can stop a scanning host after fewer than 10 scans with a very low
false-positive rate. We also augment this approach by devising mechanisms for cooperation
that enable multiple containment devices to more effectively detect and respond to an emerg-
ing infection. In addition, we discuss ways that a worm can attempt to bypass containment
techniques in general, and ours in particular.

‘We then report on experiences subsequently implementing our algorithm in Click [13]
and deploying it both on our own network and in the DETER testbed [6]. Doing so uncovered
additional considerations, including the need to passively map the monitored LLAN due to
Ethernet switch behavior, and the problem of detecting ARP scanning as well as IP scanning.
We finish with discussion of some deployment issues, including broadcast/multicast traffic
and the use of NAT to realize sparser address spaces.

6.1 Introduction

Computer worms — malicious, self propagating programs — represent a substantial
threat to large networks. Since these threats can propagate more rapidly than hu-
man response [30, 15], automated defenses are critical for detecting and responding
to infections [16]. One of the key defenses against scanning worms which spread
throughout an enterprise is containment [36, 29, 27, 9, 17]. Worm containment, also
known as virus throttling, works by detecting that a worm is operating in the network
and then blocking the infected machines from contacting further hosts. Currently,
such containment mechanisms only work against scanning worms [33] because they

* An earlier version of this chapter appears in Proceedings of the USENIX Security Sympo-
sium, 2004.

114 Nicholas Weaver, Stuart Staniford, and Vern Paxson

leverage the anomaly of a local host attempting to connect to multiple other hosts as
the means of detecting an infectee.

Within an enterprise, containment operates by breaking the network into many
small pieces, or cells. Within each cell (which might encompass just a single ma-
chine), a worm can spread unimpeded. But between cells, containment attempts to
limit further infections by blocking outgoing connections from infected cells.

A key problem in containment of scanning worms is efficiently detecting and
suppressing the scanning. Since containment blocks suspicious machines, it is criti-
cal that the false positive rate be very low. Additionally, since a successful infection
could potentially subvert any software protections put on the host machine, contain-
ment is best effected inside the network rather than on the end-hosts.

We have developed a scan detection and suppression algorithm based on a sim-
plification of the Threshold Random Walk (TRW) scan detector [11]. The simplifi-
cations make our algorithm suitable for both hardware and software implementation.
We use caches to (imperfectly) track the activity of both addresses and individual
connections, and reduce the random walk calculation of TRW to a simple compar-
ison. Our algorithm’s approximations generally only cost us a somewhat increased
false negative rate; we find that false positives do not increase.

Evaluating the algorithm on traces from a large (6,000 host) enterprise, we find
that with a total memory usage of 5 MB we obtain good detection precision while
staying within a processing budget of at most 4 memory accesses (to two independent
banks) per packet. In addition, our algorithm can detect scanning which occurs at a
threshold of one scan per minute, much lower than that used by the throttling scheme
in [36], and thus significantly harder for an attacker to evade.

Our trace-based analysis shows that the algorithms are both highly effective and
sensitive when monitoring scanning on an Internet access link, able to detect low-
rate TCP and UDP scanners which probe our enterprise. One deficiency of our work,
however, is that we were unable to obtain internal enterprise traces. These can be
very difficult to acquire, but we are currently pursuing doing so. Until we can, the
efficacy of our algorithm when deployed internal to an enterprise can only be partly
inferred from its robust access-link performance.

We have also investigated how to enhance containment through cooperation be-
tween containment devices. Worm containment systems have an epidemic threshold:
if the number of vulnerable machines is few enough relative to a particular con-
tainment deployment, then containment will almost completely stop the worm [27].
However, if there are more vulnerable machines, then the worm will still spread ex-
ponentially (though less than in the absence of containment). We show that by adding
a simple inter-cell communication scheme, the spread of the worm can be dramati-
cally mitigated in the case where the system is above its epidemic threshold.

We next discuss inadvertent and malicious attacks on worm containment sys-
tems: what is necessary for an attacker to create either false negatives (a worm which
evades detection) or false positives (triggering a response when a worm did not ex-
ist), assessing this for general worm containment, cooperative containment, and our
particular proposed system. We specifically designed our system to resist some of
these attacks.

6 Very Fast Containment of Scanning Worms, Revisited 115

Subsequent to the publication of the above elements of the paper, we imple-
mented our algorithm in Click [13] and deployed it both on our own network and
in the DETER testbed [6]. Doing so uncovered additional considerations, including
the need to passively map the monitored LAN due to Ethernet switch behavior, and
the problem of detecting ARP scanning as well as IP scanning. In the final section of
this chapter, we revisit the algorithm in this light, and also discuss some deployment
issues, including broadcast/multicast traffic and the use of NAT to realize sparser
address spaces.

6.2 Worm Containment

Worm containment is designed to halt the spread of a worm in an enterprise by
detecting infected machines and preventing them from contacting further systems.
Current approaches to containment [36, 27, 25] are based on detecting the scanning
activity associated with scanning worms, as is our new algorithm.

Scanning worms operate by picking “random” addresses and attempting to infect
them. The actual selection technique can vary considerably, from linear scanning of
an address space (Blaster [31]), fully random (Code Red [7]), a bias toward local
addresses (Code Red IT [4] and Nimda [3]), or even more enhanced techniques (Per-
mutation Scanning [30]). While future worms could alter their style of scanning to
try to avoid detection, all scanning worms share two common properties: most scan-
ning attempts result in failure, and infected machines will institute many connection
attempts.* Because containment looks for a class of behavior rather than specific
worm signatures, such systems can stop new (scanning) worms.

Robust worm defense requires an approach like containment because we know
from experience that worms can find (by brute force) small holes in firewalls [4],
VPN tunnels from other institutions, infected notebook computers [31], web browser
vulnerabilities [3], and email-borne attacks [3] to establish a foothold in a target
institution. Many institutions with solid firewalls have still succumbed to worms that
entered through such means. Without containment, even a single breach can lead to
a complete internal infection.

Along with the epidemic threshold (Section 6.2.1) and sustained sub-threshold
scanning (Section 6.2.2), a significant issue with containment is the need for com-
plete deployment within an enterprise. Otherwise, any uncontained-but-infected ma-
chines will be able to scan through the enterprise and infect other systems. (A single
machine, scanning at only 10 IP addresses per second, can scan through an entire
/16 in under 2 hours.)

Thus, we strongly believe that worm-suppression needs to be built into the net-
work fabric. When a worm compromises a machine, the worm can defeat host soft-
ware designed to limit the infection; indeed, it is already common practice for viruses

% There are classes of worms—topological, meta-server, flash (during their spreading phase,
once the hit-list has been constructed), and contagion [33]—that do not exhibit such scan-
ning behavior. Containment for such worms remains an important, open research problem.

116 Nicholas Weaver, Stuart Staniford, and Vern Paxson

and mail-worms to disable antivirus software, so we must assume that future worms
will disable worm-suppression software.

Additionally, since containment works best when the cells are small, this strongly
suggests that worm containment needs to be integrated into the network’s outer
switches or similar hardware elements, as proximate to the end hosts as economi-
cally feasible. This becomes even more important for cooperative containment (Sec-
tion 6.6), as this mechanism is based on some cells becoming compromised as a
means of better detecting the spread of a worm and calibrating the response neces-
sary to stop it.

6.2.1 Epidemic Threshold

A worm-suppression device must necessarily allow some scanning before it trig-
gers a response. During this time, the worm may find one or more potential victims.
Staniford [27] discusses the importance of this “epidemic threshold” to the worm
containment problem. If on average an infected computer can find more than a sin-
gle victim before a containment device halts the worm instance, the worm will still
grow exponentially within the institution (until the average replication rate falls be-
low 1.0).
The epidemic threshold depends on

the sensitivity of the containment response devices
the density of vuinerable machines on the network

e the degree to which the worm is able to target its efforts into the correct network,
and even into the current cell

Aside from cooperation between devices, the other options to raise the epidemic
threshold are to increase the sensitivity of the scan detector/suppressor, reduce the
density of vulnerable machines by distributing potential targets in a larger address
space, or increase the number of cells in the containment deployment.

One easy way to distribute targets across a larger address space arises if the en-
terprise’s systems use NAT and DHCP. If so, then when systems acquire an address
through DHCP, the DHCP server can select a random address from within a private
/8 subnet (e.g., 10.0.0.0/8). Thus, an institution with 2'® workstations could have an
internal vulnerability density of 216/224 = 1/256, giving plenty of headroom for
relatively insensitive worm-suppression techniques to successfully operate.

Alternatively, we can work to make the worm detection algorithm more accu-
rate. The epidemic threshold is directly proportional to the scan threshold T': the
faster we can detect and block a scan, the more vulnerabilities there can be on the
network without a worm being able to get loose. Thus, we desire highly sensitive
scan-detection algorithms for use in worm containment.

6.2.2 Sustained Scanning Threshold

In addition to the epidemic threshold, many (but not all) worm containment tech-
niques also have a sustained scanning threshold: if a worm scans slower than this

6 Very Fast Containment of Scanning Worms, Revisited 117

rate, the detector will not trigger. Although there have been systems proposed to de-
tect very stealthy scanning [28], these systems are currently too resource-intensive
for use in this application.

Even a fairly low sustained scanning threshold can enable a worm to spread if the
attacker engineers the worm to avoid detection. For example, consider the spread of
a worm in an enterprise with 256 (2%) vulnerable machines distributed uniformly in
a contiguous /16 address space. If the worm picks random addresses from the entire
Internet address space, then we expect only 1 in 2?4 scans to find another victim in
the enterprise. Thus, even with a very permissive sustained scanning threshold, the
worm will not effectively spread within the enterprise.

But if the worm biases its scanning such that 1/2 the effort is used to scan the
local /16, then on average it will locate another target within the enterprise after 2°
scans. If the threshold is one scan per second (the default for Williamson’s technique
[361), then the initial population’s doubling time will be approximately 2% seconds,
or once every 8.5 minutes. This doubling time is sufficient for a fast-moving worm, as
the entire enterprise will be infected in less than two hours. If the worm concentrates
its entire scanning within the enterprise’s /16, the doubling time will be about four
minutes.

Thus, it is vital to achieve as low a sustained scanning threshold as possible. For
our concrete design, we target a threshold of 1 scan per minute. This would change
the doubling times for our example above to 8.5 and 4 hours respectively — slow
enough that humans can notice the problem developing and take additional action.
Achieving such a threshold is a much stricter requirement than that proposed by
Williamson, and forces us to develop a different scan-detection algorithm.

6.3 Scan Suppression

The key component for today’s containment techniques is scan suppression: re-
sponding to detected portscans by blocking future scanning attempts. Portscans—
probe attempts to determine if a service is operating at a target IP address—are used
by both human attackers and worms to discover new victims. Portscans have two ba-
sic types: horizontal scans, which search for an identical service on a large number
of machines, and vertical scans, which examine an individual machine to discover
all running services. (Clearly, an attacker can also combine these and scan many ser-
vices on many machines. For ease of exposition, though, we will consider the two
types separately.)

The goal of scan suppression is often expressed in terms of preventing scans
coming from “outside” inbound to the “inside.” If “outside” is defined as the exter-
nal Internet, scan suppression can thwart naive attackers. But it can’t prevent infec-
tion from external worms because during the early portion of a worm outbreak an
inbound-scan detector may only observe a few (perhaps only single) scans from any
individual source. Thus, unless the suppression device halts all new activity on the
target port (potentially disastrous in terms of collateral damage), it will be unable

118 Nicholas Weaver, Stuart Staniford, and Vern Paxson

to decide, based on a single request from a previously unseen source, whether that
request is benign or an infection attempt.

For worm containment, however, we turn the scan suppressor around: “inside”
becomes the enterprise’s larger internal network, to be protected from the “outside”
local area network. Now any scanning worm will be quickly detected and stopped,
because (nearly) all of the infectee’s traffic will be seen by the detector.

We derived our scan detection algorithm from TRW (Threshold Random Walk)
scan detection [11]. In abstract terms, the algorithm operates by using an oracle to
determine if a connection will fail or succeed. A successfully completed connection
drives a random walk upwards, a failure to connect drives it downwards. By modeling
the benign traffic as having a different (higher) probability of success than attack
traffic, TRW can then make a decision regarding the likelihood that a particular series
of connection attempts from a given host reflect benign or attack activity, based on
how far the random walk deviates above or below the origin. By casting the problem
in a Bayesian random walk framework, TRW can provide deviation thresholds that
correspond to specific false positive and false negative rates, if we can parameterize
it with good a priori probabilities for the rate of benign and attacker connection
successes.

To implement TRW, we obviously can’t rely on having a connection oracle
handy, but must instead track connection establishment. Furthermore, we must do
so using data structures amenable to high-speed hardware implementation, which
constrains us considerably. Finally, TRW has one added degree of complexity not
mentioned above. It only considers the success or failure of connection attempts to
new addresses. If a source repeatedly contacts the same host, TRW does its ran-
dom walk accounting and decision-making only for the first attempt. This approach
inevitably requires a very large amount of state to keep track of which pairs of ad-
dresses have already tried to connect, too costly for our goal of a line-rate hardware
implementation. As developed in Section 6.5, our technique uses a number of ap-
proximations of TRW’s exact bookkeeping, yet still achieves quite good results.

There are two significant alternate scan detection mechanisms proposed for worm
containment. The first is the new-destination metric proposed by Williamson [36].
This measures the number of new destinations a host can visit in a given period of
time, usually set to 1 per second. The second is dark-address detection, used by both
Forescout [9] and Mirage Networks [17]. In these detectors, the device routes or
knows some otherwise unoccupied address spaces within the internal network and
detects when systems attempt to contact these unused addresses.

6.4 Hardware Implementations

When targeting hardware, memory access speed, memory size, and the number of
distinct memory banks become critical design constraints, and, as mentioned above,
these requirements drive us to use data structures that sometimes only approximate
the network’s state rather than exactly tracking it. In this section we discuss these

6 Very Fast Containment of Scanning Worms, Revisited 119

constraints and some of our design choices to accommodate them. The next section
then develops a scan detection algorithm based on using these approximations.

Memory access speed is a surprisingly significant constraint. During transmis-
sion of a minimum-sized gigabit Ethernet packet, we only have time to access a
DRAM at 8 different locations. If we aim to monitor both directions of the link
(gigabit Ethernet is full duplex), our budget drops to 4 accesses. The situation is ac-
cordingly even worse for 10-gigabit networks: DRAM is no longer an option at all,
and we must use much more expensive SRAM. If an implementation wishes to mon-
itor several links in parallel, this further increases the demand on the memory as the
number of packets increases.

One partial solution for dealing with the tight DRAM access budget is the use
of independent memory banks allowing us to access two distinct tables simultane-
ously. Each bank, however, adds to the overall cost of the system. Accordingly, we
formulated a design goal of no more than 4 memory accesses per packet to 2 separate
tables, with each table only requiring two accesses: a read and a write to the same
location.

Memory size can also be a limiting factor. For the near future, SRAMs will only
be able to hold a few tens of megabytes, compared with the gigabits we can store
in DRAMs. Thus, our ideal memory footprint is to stay under 16 MB. This leaves
open the option of implementing using only SRAM, and thus potentially running at
10 gigabit speeds.

Additionally, software implementations can also benefit from using the approx-
imations we develop rather than exact algorithms. Since our final algorithm indeed
meets our design goals—Iess than 16 MB of total memory (it is highly effective with
just 5 MB) and 2 uncached memory accesses per packet—it could be included as
a scan detector within a conventional network IDS such as Bro [20] or Snort [26],
replacing or augmenting their current detection facilities.

6.4.1 Approximate Caches

When designing hardware, we often must storc information in a fixed volume of
memory. Since the information we’d like to store may exceed this volume, one ap-
proach is to use an approximate cache: a cache for which collisions cause imperfec-
tions. (From this perspective, a Bloom filter is a type of approximation cache [2].)
This is quite different from the more conventional notion of a cache for which, if
we find an entry in the cache, we know exactly what it means, but a failed lookup
requires accessing a large secondary data-store, or of a hash table, for which we will
always find what we put in it earlier, but it may grow beyond bound. Along with
keeping the memory bounded, approximate caches allow for very simple lookups, a
significant advantage when designing hardware.

However, we then must deal with the fact that collisions in approximate caches
can have complicated semantics. Whenever two elements map to the same location
in the cache, we must decide how to react. One option is to combine distinct entries
into a single element. Another is to discard either the old entry or the new entry.
Accordingly, collisions, or aliasing, create two additional security complications:

120 Nicholas Weaver, Stuart Staniford, and Vern Paxson

false positives or negatives due to the policy when entries are combined or evicted,
and the possibility of an attacker manipulating the cache to exploit these aliasing-
related false outcomes.

Since the goal of our scan-suppression algorithm is to generate automatic re-
sponses, we consider false positives more severe than false negatives, since they will
cause an instance of useful traffic to be completely impaired, degrading overall net-
work reliability. A false negative, on the other hand, often only means that it takes us
longer to detect a scanner (unless the false negative is systemic). In addition, if we
can structure the system such that several positives or negatives must occur before
we make a response decision, then the effect will be mitigated if they are not fully
correlated.

Thus, we decided to structure our cache-based approximations to avoid creating
additional false positives. We can accomplish this by ensuring that, when removing
entries or combining information, the resulting combination could only create a false
negative, as discussed below.

Attackers can exploit false negatives or positives by either using them to create
worms that evade detection, or by triggering responses to impair legitimate traffic.
Attacker can do so through two mechanisms: predicting the hashing algorithm, or
simply overwhelming the cache.

The first attack, equivalent to the algorithm complexity attacks described by
Crosby and Wallach [5], relies on the attacker using knowledge of the cache’s hash
function to generate collisions. For Crosby’s attack, the result was to increase the
length of hash chains, but for an approximation cache, the analogous result is a spate
of evicted or combined entries, resulting in excess false positives or negatives. A
defense against it is to use a keyed hash function whose output the attacker cannot
predict without knowing the key.

The second attack involves flooding the cache in order to hide a true attack by
overwhelming the system’s ability to track enough network activity. This could be ac-
complished by generating a massive amount of “normal” activity to cloak malicious
behavior. Unlike the first attack, overwhelming the cache may require substantial
resources.

While such attacks are a definite concern (sec also Section 6.7), approximate
caching is vital for a high-performance hardware implementation. Fortunately, as
shown below, we are able to still obtain good detection results even given the ap-
proximations.

6.4.2 Efficient Small Block Ciphers

Another component in our design is the use of small (32 bit) block ciphers. An N-bit
block cipher is equivalent to an N-bit keyed permutation: there exists a one-to-one
mapping between every input word and every output word, and changing the key
changes the permutation.

In general, large caches are either direct-mapped, where any value can only map
to one possible location, or N-way associative. Looking up an element in a direct-
mapped cache requires computing the index for the element and checking if it resides

6 Very Fast Containment of Scanning Worms, Revisited 121

at that index. In an associative cache, there are N possible locations for any particular
entry, arranged in a contiguous block (cache line). Each entry in an associative cache
includes a tag value. To find an element, we compute the index and then in parallel
check all possible locations based on the tag value to determine if the element is
present.

Block ciphers give us a way to implement efficiently tagged caches that resist
attackers predicting their collision patterns. They work by, rather than using the ini-
tial IV-bit value to generate the cache index and tag values, first permuting the N-bit
value, after which we separate the resulting /V-bit value into an index and a tag. If
we use k bits for the index, we only need N — k bits for the tag, which can result in
substantial memory savings for larger caches. If the block-cipher is well constructed
and the key is kept secret from the attacker, this will generate cache indices that at-
tackers cannot predict. This approach is often superior to using a hash function, as
although a good hash function will also provide an attacker-unpredictable index, the
entire /V-bit initial value will be needed as a tag.

Ciphers that work well in software are often incfficient in hardware, and vice
versa. For our design, we used a simple 32 bit cipher based on the Serpent S-
boxes [1], particularly well-suited for FPGA or ASIC implementation as it requires
only 8 levels of logic to compute.

6.5 Approximate Scan Suppression

Our scan detection and suppression algorithm approximates the TRW algorithm in
a number of ways. First, we track connections and addresses using approximate
caches. Second, to save state, rather than only incorporating the success or failure
of connection attempts to new addresses, we do so for attempts to new addresses,
new ports at old addresses, and old ports at old addresses if the corresponding entry
in our state table has timed out. Third, we do not ever make a decision that an ad-
dress is benign; we track addresses indefinitely as long as we do not have to evict
their state from our caches.

We also extend TRW’s principles to allow us to detect vertical as well as horizon-
tal TCP scans, and also horizontal UDP scans, while TRW only detects horizontal
TCP scans. Finally, we need to implement a “hygiene filter” to thwart some stealthy
scanning techniques without causing undue restrictions on normal machines.

Figure 6.1 gives the overall structure of the data structures. We track connections
using a fixed-sized table indexed by hashing the “inside” IP address, the “outside”
IP address, and, for TCP, the inside port number. Each record consists of a 6 bit age
counter and a bit for each direction (inside to outside and outside to inside), record-
ing whether we have seen a packet in that direction. This table combines entries in
the case of aliasing, which means we may consider communication to have been
bidirectional when in fact it was unidirectional, turning a failed connection attempt
into a success (and, thus, biasing towards false negatives rather than false positives).

We track external (“outside”) addresses using an associative approximation
cache. To find an entry, we encrypt the external IP address using a 32 bit block cipher

122 Nicholas Weaver, Stuart Staniford, and Vern Paxson

Packet: Address Cache Lookup:
lProto ISrcIPlDestIPbrcPort IDcstPort lPayload I E(QutsidelP) - Index/Tag
i 1
Extract from Packet:
InsidelP, QutsideIP, InsidePort
Connection Cache Lookup (Direct Mapped):
H(InsidelP, QutsidelP, (proto = TCP) ? InsidePort : 0) Cache Line:
lTagl I Countl l Tag? I Count2 | l
Established | Established | Age y
InToOut OutToln
Tbit Thit Gbits Entry: {Tag
16b 16b

Fig. 6.1. The structure of the connection cache and the address cache. The connection cache
tracks whether a connection has been established in either direction. The age value is reset
to 0 every time we see a packet for that connection. Every minute, a background process
increases the age of all entries in the connection cache, removing any idle entry more than
D conn minutes old. The address cache keeps track of all detected addresses, and records in
“count” the difference between the number of failed and successful connections. Every Diniss
seconds, each positive count in the address cache is reduced by one.

Condition:
SrelP = InsideIP

If{1EstablishedInToOut)
if(EstablishedOutToln}
Was previously
recorded as a miss
but is now a hit
Count <- Count - 2
EstablishedInToOut <- True
Age<-0
Forward packet

Condition:
SrclP = QutsidelP &
Count < Threshhold

Condition;
SrelP = OutsidelP &
Count >= Threshhold

If{!EstablishedOutToln)
if(EstablishedInToOut)
Record as a hit
Count <- Count - 1
EstablishedOutToln <- True
¢lse if(hygiene_drop)
Drop packet
else
A possible miss
Count <- Count + 1
EstablishedOutToln <- True

Address is being blocked
if(EstablishedInToOut)
if(isSYN | isUDP)
No matter what, drop
Drop packet
else if(! EstablishedOutToln){
Record as a hit
Count <- Count - 1
EstablishedOutToln <- True
Internally requested or old
connection, so allow

if({DroppedPacket) Age <-0
Age<-0 Forward packet
Forward packet else
Drop packet

Fig. 6.2. The high level structure of the detection and response algorithm. We count every
successful connection (in either direction) as a “hit”, with all failed or possibly-failed connec-
tions as “misses”. If the difference between the number of hits and misses is greater than a
threshold, we block further communication attempts from that address.

6 Very Fast Containment of Scanning Worms, Revisited 123

as discussed in Section 6.4.2, separating the resulting 32 bit number into an index and
atag, and using the index to find the group (or line) of entries. In our design, we use a
4-way associative cache, and thus each line can contain up to four entries, with each
entry consisting of the tag and a counter. The counter tracks the difference between
misses and hits (i.e., successful and unsuccessful connection attempts), forming the
basis of our detection algorithm.

Whenever the device receives a packet, it looks up the corresponding connec-
tion in the connection table and the corresponding external address in the address
table. Per Figure 6.2, the status of these two tables, and the direction of the packet,
determines the action to take, as follows:

For a non-blocked external address (one we have not already decided to sup-
press), if a corresponding connection has already been established in the packet’s
direction, we reduce the connection table’s age to 0 and forward the packet. Other-
wise, if the packet is from the outside and we have seen a corresponding connection
request from the inside, we forward the packet and decrement the address’s count
in the address table by 1, as we now credit the outside address with a successful
connection. Otherwise, we forward the packet but increment the external address’s
count by 1, as now that address has one more outstanding, so-far-unacknowledged
connection request.

Likewise, for packets from internal addresses, if there is a connection establish-
ment from the other direction, the count is reduced, in this case by 2, since we are
changing our bookkeeping of it from a failure to a success (we previously incre-
mented the failure-success count by 1 because we initially treat a connection attempt
as a failure).

Thus, the count gives us an on-going estimate of the difference between the num-
ber of misses (failed connections) and the number of successful connections. Given
the assumption that legitimate traffic succeeds in its connection attempts with a prob-
ability greater than 50%, while scanning traffic succeeds with a probability less than
50%, by monitoring this difference we can determine when it is highly probable that
a machine is scanning.

6.5.1 Blocking and Special Cases

If an address’s count exceeds a predefined threshold T', the device blocks it. When we
receive subsequent packet from that address, our action depends on the packet’s type
and whether it matches an existing, successfully-established connection, which we
can tell from the connection status bits stored in the connection table. If the packet
does not match an existing connection, we drop it. If it does, then we still drop it if it
is a UDP packet or a TCP initial SYN. Otherwise, we allow it through. By blocking
in this manner, we prevent the blocked machine from establishing subsequent TCP or
UDP sessions, while still allowing it to accept TCP connection requests and continue
with existing connections. Doing so lessens the collateral damage caused by false
positives.

We treat TCP RST, RST+ACK, SYN+ACK, FIN, and FIN+ACK packets spe-
cially. If they do not correspond to a connection established in the other direction,

124 Nicholas Weaver, Stuart Staniford, and Vern Paxson

the hygiene filter simply drops these packets, as they could reflect stealthy scanning
attempts, backscatter from spoofed-source flooding attacks, or the closing of very-
long-idle connections. Since they might be scans, we need to drop them to limit an
attacker’s information. But since they might instead be benign activity, we don’t use
them to trigger blocks.

Likewise, if a connection has been established in the other direction, but not in
the current direction, then we forward TCP RST, RST+ACK, FIN, and FIN+ACK
packets, but do not change the external address’s counter, to avoid counting failed
connections as successful. (A FIN+ACK could reflect a successful connection if we
have seen the connection already established in the current direction, but the actions
here are those we take if we have not seen this.)

6.5.2 Errors and Aliasing

Because connection table combines entries when aliasing occurs, it can create a false
negative at a rate that depends on the fullness of the table. If the table is 20% full, then
we will fail to detect roughly 20% of individual scanning attempts. Likewise, 20% of
the successful connection attempts will not serve to reduce an address’s failure/suc-
cess count either, because the evidence of the successful connection establishment
aliases with a connection table entry that already indicates a successful establish-
ment.

To prevent the connection table from being overwhelmed by old entries, we re-
move any connection idle for more than an amount of time Dy, Which to make
our design concrete we set to D ., = 10 minutes. We can’t reclaim table space by
just looking for termination (FIN exchanges) because aliasing may mean we need to
still keep the table entry after one of the aliased connections terminates, and because
UDP protocols don’t have a clear “terminate connection” message.

While the connection table combines entries, the address table, since it is respon-
sible for blocking connections and contains tagged data, needs to evict entries rather
than combining information. Yet evicting important data can cause false negatives,
requiring a balancing act in the eviction policy. We observe that standard cache re-
placement policies such as least recently used (LRU), round robin, and random, can
evict addresses of high interest. Instead, when we need to evict an entry, we want to
select the entry with the most negative value for the (miss—hit) count, as this consti-
tutes the entry least likely to reflect a scanner; although we thus tend to evict highly
active addresses from the table, they represent highly active normal machines.

In principle, this policy could occasionally create a transient false positive, if
subsequent connections from the targeted address occur in a very short term burst,
with several connection attempts made before the first requests can be acknowledged.
We did not, however, observe this phenomenon in our testing.

6.5.3 Parameters and Tuning

There are several key parameters to tune with our system, including the response
threshold 7" (miss—hit difference that we take to mean a scan detection), minimum

6 Very Fast Containment of Scanning Worms, Revisited 125

and maximum counts, and decay rates for the connection cache and for the counts.
We also need to size the caches.

For T, our observations below in Section 6.5.5 indicate that for the traces we
assessed a threshold of 5 suffices for blocking inbound scanning, while a threshold
of 10 is a suitable starting point for worm containment.

The second parameters, Cyipn and Cyyqq, are the minimum and maximum values
the count is allowed to achieve. C),;,, is needed to prevent a previously good address
that is subsequently infected from being allowed too many connections before it
is blocked, while C,,,,, limits how long it takes before a highly-offending blocked
machine is allowed to communicate again. For testing purposes, we set C,;,, to —20,
and C),., t0 00 as we were interested in the maximum count which each address
could reach in practice.

The third parameter, D,,;ss, is the decay rate for misses. Every D,,;ss seconds,
all addresses with positive counts have their count reduced by one. Doing so al-
lows a low rate of benign misses to be forgiven, without seriously enabling sub-
threshold scanning. We set D, equal to 60 seconds, or one minute, meeting our
sub-threshold scanning goal of 1 scan per minute. In the future, we wish to experi-
ment with a much lower decay rate for misses.

We use a related decay rate, D.,pny, to remove idle connections, since we can’t
rely on a “connection-closed” message to determine when to remove entries. As
mentioned earlier, we set D ony to 10 minutes.

The final parameters specify the size and associativity of the caches. A software
implementation can tune these parameters, but a hardware system will need to fix
these based on available resources. For evaluation purposes, we assumed a 1 million
entry connection cache (which would require 1 MB), and a 1 million entry, 4-way
associative address cache (4 MB). Both cache sizes worked well with our traces, al-
though increasing the connection cache to 4 MB would provide increased sensitivity
by diminishing aliasing.

6.5.4 Policy Options

Several policy options and variations arise when using our system operationally:
the threshold of response, whether to disallow all communication from blocked ad-
dresses, whether to treat all ports as the same or to allow some level of benign scan-
ning on less-important ports, and whether to detect horizontal and vertical, or just
horizontal, TCP scans.

The desired initial response threshold 7" may vary from site to site. Since all
machines above a threshold of 6 in our traces represent some sort of scanner (some
benign, most malicious, per Section 6.5.5), this indicates a threshold of 10 on out-
bound connections would be conservative for deployment within our environment,
while a threshold of 5 appears sufficient for incoming connections.

A second policy decision is whether to block all communication from a blocked
machine, or to only limit new connections it initiates. The first option offers a greater
degree of protection, while the second is less disruptive for false positives.

126 Nicholas Weaver, Stuart Staniford, and Vern Paxson

Table 6.1. All outbound connections over a threshold of 5 flagged by our algorithm

Anonymized IP Maximum Count Cause
221.147.96.4 16 Benign DNS Scanner?
Dynamic DNS host error?

147.95.58.73 12 AFS-Related Control Traffic?
147.95.35.149 12 NetBIOS “Scanning” and activity
147.95.238.71 8 AFS-Related Control Traffic?
144.240.17.50 6 Benign SNMP (UDP) “Scanning”
144.240.96.234 6 NetBIOS “scanning” of a few hosts

A third decision is how to configure Ci,;p, and Ci,qq, the floor and ceiling on the
counter value. We discussed the tradeoffs for these in the previous section.

A fourth policy option would be to treat some ports differently than others. Some
applications, such as Gnutella [22], use scanning to find other servers. Likewise,
at some sites particular tools may probe numerous machines to discover network
topology. One way to give different ports different weights would be to changing the
counter from an integer to a fixed-point value. For example, we could assign SNMP
a cost of .25 rather than 1, to allow a greater degree of unidirectional SNMP attempts
before triggering an alarm. We can also weight misses and hits differently, to alter
the proportion of traffic we expect to be successful for benign vs. malicious sources.

Finally, changing the system to only detect horizontal TCP scans requires chang-
ing the inputs to the connection cache’s hash function. By excluding the internal port
number from the hash function, we will include all internal ports in the same bucket.
Although this prevents the algorithm from detecting vertical scans, it also eliminates
an evasion technique discussed in Section 6.7.6.

6.5.5 Evaluation

We used hour-long traces of packet header collected at the access link at the
Lawrence Berkeley National Laboratory. This gigabit/sec link connects the Lab-
oratory’s 6,000 hosts to the Internet. The link sustains an average of about 50—
100 Mbps and 8-15K packets/sec over the course of a day, which includes roughly
20M externally-initiated connection attempts (most reflecting ambient scanning from
worms and other automated malware) and roughly 2M internally-initiated connec-
tions. The main trace we analyzed was 72 minutes long, beginning at 1:56PM on a
Friday afternoon. It totaled 44M packets and included traffic from 48,052 external
addresses (and all 131K internal addresses, due to some energetic scans covering the
entire internal address space). We captured the trace using t cpdump, which reported
2,200 packets dropped by the measurement process.

We do not have access to the ideal traces for assessing our system, which would
be all internal and external traffic for a major enterprise. However, the access-link
traces at least give us a chance to evaluate the detection algorithm’s behavior over
high-diverse, high-volume traffic.

6 Very Fast Containment of Scanning Worms, Revisited 127

We processed the traces using a custom Java application so we could include
a significant degree of instrumentation, including cache-miss behavior, recording
evicted machines, maintaining maximum and minimum counts, and other options
not necessary for a production system. Additionally, since we developed the exper-
imental framework for off-line analysis, high performance was not a requirement.
Our goal was to extract the necessary information to determine how our conceptual
hardware design will perform in terms of false positives and negatives and quickness
of response.

For our algorithm, we just recorded the maximum count rather than simulating
a specific blocking threshold, so we can cxplore the tradeoffs different thresholds
would yield. We emulated a 1 million entry connection cache, and a 1 million entry,
4-way associative address cache. The connection cache reached 20% full during the
primary trace. The eviction rate in the address cache was very low, with no evictions
when tested with the Internet as “outside,” and only 2 evictions when the enterprise
was “outside.” Thus, the 5 MB of storage for the two tables was quite adequate.

We first ran our algorithm with the enterprise as outside, to determine which of
its hosts would be blocked by worm containment and why. We manually checked all
alerts that would be generated for a threshold of 5, shown in Table 6.1. Of these, all
represented benign scanning or unidirectional control traffic. The greatest offender,
at a count of 16, appears to be a misconfigured client which resulted in benign DNS
scanning. The other sources appears to generate AFS-related control traffic on UDP
ports 7000-7003; scanning from a component of Microsoft NetBIOS file sharing; and
benign SNMP (UDP-based) scanning, apparently for remotely monitoring printer
queues.

‘With the Internet as “outside,” over 470 external addresses reached a threshold of
5 or higher. While this seems incredibly high, it in fact represents the endemic scan-
ning which occurs continually on the Internet [11]. We manually examined the top
5 offenders, whose counts ranged from 26,000 to 49,000, and verified that these were
all blatant scanners. Of these, one was scanning for the FTP control port (21/tcp), two
were apparently scanning for a newly discovered vulnerability in Dameware Remote
Administrator (6129/tcp), and two were apparently scanning for a Windows RPC
vulnerability (135/tcp; probably from hosts infected with Blaster [31]).

Additionally, we examined the offenders with the lowest counts above the thresh-
old. 10 addresses had a maximum count between 20 and 32. Of these, 8 were scans on
aNetBIOS UDP port 137, targeted at a short (2040 address) sequential range, with a
single packet sent to each machine. Of the remaining two offenders, one probed ran-
domly selected machines in a /16 for a response on TCP port 80 using 3 SYN packets
per attempt, while the other probed randomly selected machines on port 445/tcp with
2 SYN packets per attempt. All of these offenders represented true scanners: none is
a false positive.

We observed 19 addresses with a count between 5 and 19, where we would par-
ticularly expect to see false positives showing up. Of these, 15 were NetBIOS UDP
scanners. Of the remaining 4, one was scanning 1484/udp, one was scanning 80/tcp,
and one was scanning 445/tcp. The final entry was scanning both 138/udp and gener-

128 Nicholas Weaver, Stuart Staniford, and Vern Paxson

Table 6.2. Additional alerts on the outbound traffic generated when the sensitivity was in-
creased.

Anonymized I[P Maximum Count Cause

147.95.61.87 11 NNTP, sustained low rate of failures
147.95.35.154 1 High port UDP, 10 scans in a row
221.147.96.220 9 TCP port 13 (“daytime”),
detected due to reduced sub-threshold
144.240.96.234 9 NetBIOS and failed HTTP,

detected due to reduced sub-threshold

144.240.28.138 7 High port UDP, due to reduced sub-threshold
147.95.3.27 6 TCP Port 25, due to reduced sub-threshold

147.95.36.165 5 High port UDP, due to reduced sub-threshold

144.240.43.227 5 High port UDP, due to reduced sub-threshold

ating successful communications on 139/tcp and port 80/tcp. The final entry, which
reached a maximum count of 6, represents a NetBIOS-related false positive.

Finally, we also examined ten randomly selected external addresses flagged by
our algorithm. Eight were UDP scanners targeting port 137, while two were TCP
scanners targeting port 445. All represent true positives.

During this test, the connection cache size of 1 million entries reached about 20%
full. Thus, each new scan attempt has a 20% chance of not being recorded because it
aliases with an already-established connection. If the connection cache was increased
to 4 million entries (4 MB instead of 1 MB), the false negative rate would drop to
slightly over 5%.

We conducted a second test to determine the effects of setting the parameters
for maximum sensitivity. We increased the connection cache to 4 million entries,
reducing the number of false negatives due to aliasing. We also tightened the C,,;,,
threshold to -5, which increases the sensitivity to possible misbehavior of previously
“good” machines, and increased D,,;ss to infinity, meaning that we never decayed
misses. Setting the threshold of response to 5 would then trigger an alert for an
otherwise idle machine once it made a series of 5 failed connections; while a series of
10 failed connections would trigger an alert regardless of an address’s past behavior.

We manually examined all outbound alerts (i.e., alerts generated when consid-
ering the enterprise “outside”) that would have triggered when using this threshold,
looking for additional false positives. Table 6.2 summarizes these additional alerts.

We would expect that, by increasing the sensitivity in this manner, we would ob-
serve some non-scanning false positives. Of the additional alerts, only one new alert
was generated because of the changed C,y,;,. This machine sent out unidirectional
UDP to 15 destinations in a row, which was countered by normal behavior when
Crin was set to -20 instead of -5. The rest of the alerts were triggered because of
the reduced decay of misses. In all these cases, the traffic consisted of unidirectional
communication to multiple machines. The TCP-based activity (NNTP, daytime, and
SMTP) showed definite failed connections, but these may be benign failures.

6 Very Fast Containment of Scanning Worms, Revisited 129

In summary, even with the aggressive thresholds, there are few false positives,
and they appear to reflect quite peculiar traffic.

6.5.6 Williamson Implementation

For comparison purposes, we also included in our trace analysis program an im-
plementation of Williamson’s technique [36], which we evaluated against the site’s
outbound traffic in order to assess its performance in terms of worm containment.
Williamson’s algorithm uses a small cache of previously-allowed destinations. For
all SYNs and any UDP packets, if we find the destination in the allowed-destination
cache, we forward it regularly. If not, but if the source has not sent to a new destina-
tion (i.e., we haven’t added anything to its allowed-destination cache) during the past
second, then we put an entry in the cache to note that we are allowing communication
between the source and the given destination, and again forward the packet.

Table 6.3. All outbound connections with a delay queue of size 15 or greater for Williamson’s
algorithm

Anonymized IP Delay Queue Size Cause

144.240.84.131 11,395 DNS Server
147.95.15.21 8,772 DNS Server
144.240.84.130 3,416 DNS Server
147.95.3.37 23 SMTP Server
144.240.25.76 19 Bursty DNS Client
147.95.52.12 18 Active HTTP Client
147.95.208.255 17 Active HTTP Client
147.95.208.18 15 Active HTTP Client

Otherwise, we add the packet to a delay queue. We process this queue at the rate
of one destination per second. Each second, for each source we determine the next
destination it attempted to send to but so far has not due to our delay queue. We
then forward the source’s packets for that destination residing in the delay queue and
add the destination to the allowed-destination cache. The effect of this mechanism
is to limit sources to contacting a single new destination each second. One metric of
interest with this algorithm then is the maximum size the delay queue reaches.

A possible negative consequence of the Williamson algorithm is that the cache of
previously established destinations introduces false positives rather than false neg-
atives. Due to its limited size, previously established destinations may be evicted
prematurely. For testing purposes, we selected cache sizes of 8 previously-allowed
destinations per source (3 greater than the cache size used in [36]). We manually
examined all internal sources where the delay queue reached 15 seconds or larger,
enough to produce a significant disturbance for a user (Table 6.3).

In practice, we observed that the Williamson algorithm has a very low false posi-
tive rate, with only a few minor exceptions. First, the DNS servers in the trace greatly

130 Nicholas Weaver, Stuart Staniford, and Vern Paxson

overflow the delay queue due to their high fanout when resolving recursive queries,
and thus would need to be special-cased. Likewise, a major SMTP server also trig-
gered a response due to its high connection fanout, and would also require white-
listing. However, of potential note is that three HTTP clients reached a threshold
greater than 15, which would produce a user-noticeable delay but not trigger a per-
manent alarm, based on Williamson’s threshold of blocking machines when their
delay queue reaches a depth of 100 [32].

6.6 Cooperation

Staniford analyzed the efficacy of worm containment in an enterprise context, finding
that such systems exhibit a phase structure with an epidemic threshold [27]. For
sufficiently low vulnerability densities and/or T" thresholds, the system can almost
completely contain a worm. However, if these parameters are too large, a worm can
escape and infect a sizeable fraction of the vulnerable hosts despite the presence of
the containment system. The epidemic threshold occurs when on average a worm
instance is able to infect exactly one child before being contained. Less than this,
and the worm will peter out. More, and the worm will spread exponentially. Thus
we desire to set the response threshold T as low as possible, but if we set it too low,
we may incur unacceptably many false positives. This tends to place a limit on the
maximum vulnerability density that a worm containment system can handle.

In this section, we present a preliminary analysis of performance improvements
that come from incorporating communication between cells. The improvement arises
by using a second form of a-worm-is-spreading detector: the alerts generated by
other containment devices. The idea is that every containment device knows how
many blocks the other containment devices currently have in effect. Each devise uses
this information to dynamically adjust its response threshold: as more systems are
being blocked throughout the enterprise, the individual containment devices become
more sensitive. This positive feedback allows the system to adaptively respond to a
spreading worm.

The rules for doing so are relatively simple. All cells communicate, and when one
cell blocks an address, it communicates this status to the other cells. Consequently, at
any given time each cell can compute that X other blocks are in place, and thereby
reduces T by (1 —)X, where § is a parameter that controls how aggressively to
reduce the threshold as a worm spreads. For our algorithm, the cell also needs to
increase Cy;pn by a similar amount, to limit the scanning allowed by a previously
normal machine.

In our simulations, very small values of § make a significant difference in perfor-
mance. This is good, since reducing the threshold also tends to increase false positive
rates.

5 Large values of ¢ risk introducing catastrophic failure modes in which some initial false
positive drives thresholds low enough to create more false positives, which drive thresholds
still lower. This could lead to a complete blockage of traffic due to a runaway positive

6 Very Fast Containment of Scanning Worms, Revisited 131

However, we can have the threshold return to its normal (initial) value using an
exponentially weighted time delay to ensure that this effect is short lived.

A related policy question is whether this function should allow a complete shut-
down of the network (no new connections tolerated), or should have a minimum
threshold below which the containment devices simply will not go, potentially al-
lowing a worm to still operate at a slower spreading rate, depending on its epi-
demic threshold. The basic tradeoff is ensuring a degree of continued operation, vs.
a stronger assure that we will limit possible damage from the worm.

6.6.1 Testing Cooperation

To evaluate the effects of cooperation, we started with the simulation program used in
the previous evaluation of containment [27]. We modified the simulator so that each
response would reduce the threshold by 6. We then reran some of the simulations
examined in [27] to assess the effect on the epidemic threshold for various values of
0.

The particular set of parameters we experimented with involved an enterprise
network of size 217 addresses. We assumed a worm that had a 50% probability of
scanning inside the network, with the rest falling outside the enterprise. We also
assumed an initial threshold of T' = 10, that the network was divided into 512 cells
of 256 addresses each, and that the worm had no special preference to scan within
its cell. We considered a uniform vulnerability density. These choices correspond to
Figure 2 in [27], and, as shown there, the epidemic threshold is then at a vulnerability
density of v = 0.2 (that is, it occurs when 20% of the addresses are vulnerable to the
worm).

We varied the vulnerability density across this epidemic threshold for different
values of 6, and studied the resulting average infection density (the proportion of
vulnerable machines which actually got infected). This is shown in Figure 6.3, where
each point represents the average of 5,000 simulated worm runs. The top curve shows
the behavior when communication does not modify the threshold (i.e., § = 0), and
successively lower curves have 8 = 0.00003, § = 0.0001, and § = 0.0003. It is to
be emphasized that these are tiny values of # (less than 3/100 of 1%). One would not
expect there to be any significant problem of increased false positives with such small
changes; but that they are larger than zero suffices to introduce significant positive
feedback in the presence of a propagating worm (i.e., the overall rate of blocked
scans within the network rises over time).

The basic structure of the results is clear. Changing 6 does not significantly
change the epidemic threshold, but we can greatly reduce the infection density that

feedback loop. This is unlikely with the small values of ¢ in this study, and moreover
could be addressed by introducing a separate threshold for communication that was not
adaptively modified. The two thresholds would begin at the same value, but the blocking
threshold would lower as the worm spread, while the communication threshold — i.e.,
the degree of scanning required before a device tells other devices that it has blocked the
corresponding address — would stay fixed. This would sharply limit the positive feedback
of more false positives triggering ever more changes to the threshold.

132 Nicholas Weaver, Stuart Staniford, and Vern Paxson

40%
35%

30% /
25% /

20% / /
15% '/ /
10% / / /‘/

16% 18% 20% 22% 24% 26% 28% 30%
Vulnerability Density

ity

Infection Densi

[—s—theta=0% —a—theta=0,003% —— theta=0,01% —— theta=0.03%

Fig. 6.3. Plot of worm infection density against vulnerability density v for varying values of
the threshold modification value 6. See the text for more details.

the worm can achieve above the epidemic threshold. It makes sense that the epidemic
threshold is not changed, since below the epidemic threshold, the worm cannot gain
much traction and so the algorithm that modifies 7" has no chance to engage and al-
ter the situation. However, above the epidemic threshold, adaptively changing T" can
greatly reduce the infection density a worm can achieve. Clearly, inter-cell communi-
cation mechanisms hold great promise at improving the performance of containment
systems.®

‘We must however discuss a simplification we made in our simulation. We effec-
tively assumed that communication amongst cells occurs instantaneously compared
to the worm propagation. Clearly, this an idealization. A careless design of the com-
munication mechanism could result in speeds that cause the threshold modification
to always substantially lag behind the propagation of the worm, greatly limiting its
usefulness. (See [18] for a discussion of the competing dynamics of a response to a
worm and the worm itself).

For example, it can be shown that a design in which we send a separate packet to
each cell that needs notification allows worm instances to scan (on average) a number
of addresses equal to half the number of cells before any threshold modification
occurs (assuming that the worm can scan at the same speed as the communication
mechanism can send notifications). This isn’t very satisfactory.

One simple approach to achieve very fast inter-cell communication is to use
broadcast across the entire network. However, this is likely to pose practical risks

5 Particularly in parts of the parameter space where the epidemic threshold vulnerability
density is much lower than 20% — e.g., if the worm has the ability to differentially target
its own cell.

6 Very Fast Containment of Scanning Worms, Revisited 133

to network performance in the case where there are significant numbers of false pos-
itives.

A potentially better approach is for the containment devices to cache recently
contacted addresses. Then when a source IP crosses the threshold for scan detection,
the cells it recently communicated with can be contacted first (in order). These cells
will be the ones most in need of the information. In most cases, this will result in
threshold modification occurring before the threshold is reached on any cells that got
infected as a result (rather than the message arriving too late and the old unmodified
threshold being used).

6.7 Attacking Worm Containment

Security devices do not exist in a vacuum, but represent both targets and obstacles
for possible attackers. By creating a false positive, an attacker can trigger responses
which wouldn’t otherwise occur. Since worm containment must restrict network traf-
fic, false positives create an attractive DOS target. Likewise, false negatives allow a
worm or attacker to slip by the defenses.

General containment can incur inadvertent false positives both from detection
artifacts and from “benign” scanning. Additionally, attackers can generate false pos-
itives if they can forge packets, or attempt to evade containment if they detect it
in operation. When we also use cooperation, an attacker who controls machines in
several cells can cause significant network disruption through cooperative collapse:
using the network of compromised machines to trigger an institution-wide response
by driving down the thresholds used by the containment devices through the insti-
tute (if & is large enough to allow this). Our scan detection algorithm also has an
algorithm-specific, two-sided evasion, though we can counter these evasions with
some policy changes, which we discuss below. Although we endeavor in this section
to examine the full range of possible attacks, undoubtedly there are more attacks we
haven’t considered.

6.7.1 Inadvertent False Positives

There are two classes of inadvertent false positives: false positives resulting from
artifacts of the detection routines, and false positives arising from “benign” scan-
ning. The first are potentially the more severe, as these can severely limit the use of
containment devices, while the second is often amenable to white-listing and other
policy-based techniques.

In our primary testing trace, we observed only one instance of an artifact-induced
false positive, due to unidirectional AFS control traffic. Thus, this does not appear
to be a significant problem for our algorithm. Our implementation of Williamson’s
mechanism showed artifact-induced false positives involving 3 HTTP clients that
would have only created a minor disruption. Also, Williamson’s algorithm is specif-
ically not designed to apply to traffic generated by servers, requiring these machines
to be white-listed.

134 Nicholas Weaver, Stuart Staniford, and Vern Paxson

Alerting on benign scanning is less severe. Indeed, such scans should trigger
all good scan-detection devices. More generally, “benign” is fundamentally a policy
distinction: is this particular instance of scanning a legitimate activity, or something
to prohibit?

We have observed benign scanning behavior from Windows File Sharing (Net-
BIOS) and applications such as Gnutella which work through a list of previously-
connected peers to find access into a peer-to-peer overlay. We note that if these pro-
tocols were modified to use a rendezvous point or a meta-server then we could elim-
inate their scanning behavior. The other alternative is to whitelist these services. By
whitelisting, their scanning behavior won’t trigger a response, but the containment
devices can no longer halt a worm targeting these services.

6.7.2 Detecting Worm Containment

If a worm is propagating within an enterprise that has a containment system operat-
ing, then the worm could slow to a sub-threshold scanning rate to avoid being sup-
pressed. But in the absence of a containment system, the worm should instead scan
quickly. Thus, attackers will want to devise ways for a worm to detect the presence
of a containment system.

Assuming that the worm instance knows the address of the host that infected it,
and was told by it of a few other active copies of the worm in the enterprise, then the
worm instance can attempt to establish a normal communication channel with the
other copies. If each instance sets up these channels, together they can form a large
distributed network, allowing the worm to learn of all other active instances.

Having established the network, the worm instance then begins sending out
probes at a low rate, using its worm peers as a testing ground: if it can’t establish
communication with already-infected hosts, then it is likely the enterprise has a con-
tainment system operating. This information can be discovered even when the block
halts all direct communication: the infection can send a message into the worm’s
overlay network, informing the destination worm that it will attempt to probe it. If
the ensuing direct probe is blocked, the receiving copy now knows that the sender is
blocked, as it was informed about the experimental attempt.

This information can then be spread via the still-functional connections among
the worm peers in order to inform future infections in the enterprise. Likewise, if the
containment system’s blocks are only transient, the worm can learn this fact, and its
instances can remain silent, waiting for blocks to lift, before resuming sub-threshold
scanning.

Thus we must assume that a sophisticated worm can determine that a network
employs containment, and probably deduce both the algorithm and parameters used
in the deployment.

6.7.3 Malicious False Negatives

Malicious false negatives occur when a worm is able to scan in spite of active scan-
containment. The easiest evasion is for the worm to simply not scan, but propa-
gate via a different means: topological, meta-server, passive, and target-list (hit-list)

6 Very Fast Containment of Scanning Worms, Revisited 135

worms all use non-scanning techniques [33]. Containing such worms is outside the
scope of our work. We note, however, that scanning worms represent the largest class
of worms seen to date and, more generally, a broad class of attack. Thus, eliminating
scanning worms from a network clearly has a great deal of utility even if it does not
address the entire problem space.

In addition, scanning worms that operate below the sustained-scanning threshold
can avoid detection. Doing so requires more sophisticated scanning strategies, as the
worms must bias their “random” target selection to effectively exploit the internal
network in order to take advantage of the low rate of allowed scanning. The best
countermeasure for this evasion technique is simply a far more sensitive threshold.
We argue that a threshold of 1 scan per second (as in Williamson [36]), although
effective for stopping current worms, is too permissive when a worm is attempting to
evade containment. Thus we targeted a threshold of 1 scan per minute in our work.

Additionally, if scanning of some particular ports has been white-listed (such as
Gnutella, discussed above), a worm could use that port to scan for liveness—i.e.,
whether a particular address has a host running on it, even though the host rejects
the attempted connection—and then use followup scans to determine if the machine
is actually vulnerable to the target service. While imperfect—failed connection at-
tempts will still occur—the worm can at least drive the failure rate lower because the
attempts will fail less often.

Another substantial evasion technique can occur if a corrupted system can obtain
multiple network addresses. If a machine can gain k& distinct addresses, then it can
issue k times as many scans before being detected and blocked. This has the effect of
reducing the epidemic threshold by a factor of &, a huge enhancement on a worm’s
ability to evade containment.

6.7.4 Malicious False Positives

If attackers can forge packets, they can frame other hosts in the same cell as scanners.
We can engineer a local area network to resist such attacks by using the MAC address
and switch features that prevent spoofing and changing of MAC addresses. This is
not an option, though, for purported scans inbound to the enterprise coming from the
external Internet. While the attacker can use this attack to deny service to external
addresses, preventing them from initiating new connections to the enterprise, at least
they can’t block new connections initiated by internal hosts.

There is an external mechanism which could cause this internal DOS: a mali-
cious web page or HTML-formatted email message could direct an internal client to
attemipt a slew of requests to nonexistent servers. Since this represents an attacker
gaining a limited degree of control over the target machine (i.e., making it execute
actions on the attacker’s behalf), we look to block the attack using other types of
techniques, such as imposing HTTP proxies and mail filtering to detect and block
the malicious content.

136 Nicholas Weaver, Stuart Staniford, and Vern Paxson
6.7.5 Attacking Cooperation

Although cooperation helps defenders, an attacker can still attempt to outrace con-
tainment if the initial threshold is highly permissive. However, this is unlikely to
occur simply because the amount of communication is very low, so it is limited by
network latency rather than bandwidth. Additionally, broadcast packets could allow
quick, efficient communication between all of the devices. Nevertheless, this sug-
gests that the communication path should be optimized.

The attacker could also attempt to flood the containment coordination channels
before beginning its spread. Thus, containment-devices should have reserved com-
munication bandwidth, such as a dedicated LAN or prioritized VLLAN channels, to
prevent an attacker from disrupting the inter-cell communication.

Of greater concern is cooperative collapse. If the rate of false positives is high
enough, the containment devices respond by lowering their thresholds, which can
generate a cascade of false positives, which further reduces the threshold. Thus, it is
possible that a few initial false positives, combined with a highly-sensitive response
function, could trigger a maximal network-wide response, with major collateral dam-
age.

An attacker that controls enough of the cells could attempt to trigger or amplify
this effect by generating scanning in those cells. From the viewpoint of the worm
containment, this appears to reflect a rapidly spreading worm, forcing a system-wide
response. Thus, although cooperation appears highly desirable due to the degree to
which it allows us to begin the system with a high tolerance setting (minimizing
false positives), we need to develop models of containment cooperation that enable
us to understand any potential exposure an enterprise has to the risk of maliciously
induced cooperative collapse.

6.7.6 Attacking Our Algorithm

Our approximation algorithm adds two other risks: attackers exploiting the approx-
imation caches’ hash and permutation functions, and vulnerability to a two-sided
evasion technique. We discussed attacking the hash functions earlier, which we ad-
dress by using a block-cipher based hash. In the event of a delayed response due to
a false negative, the attacker will have difficulty determining which possible entry
resulted in a collision.

Another evasion is for the attacker to embed their scanning within a large storm
of spoofed packets which cause thrashing in the address cache and which pollute
the connection cache with a large number of half-open connections. Given the level
of resources required to construct such an attack (hundreds of thousands or millions
of forged packets), however, the attacker could probably spread just as well simply
using a slow, distributed scan. Determining the tradeoffs between cache size and
where it becomes more profitable to perform distributed scanning is an area for future
work.

A more severe false negative is a two-sided evasion: two machines, one on each
side of the containment device, generate normal traffic establishing connections on

6 Very Fast Containment of Scanning Worms, Revisited 137

a multitude of ports. A worm could use this evasion technique to balance out the
worm’s scanning, making up for each failed scanning attempt by creating another
successful connection between the two cooperating machines. Since our algorithm
treats connections to distinct TCP ports as distinct attempts, two machines can gen-
erate enough successes to mask any amount of TCP scanning.

There is a counter-countermeasure available, however. Rather than attempting
to detect both vertical and horizontal TCP scanning, we can modify the algorithm
to detect only horizontal scans by excluding port information from the connection-
cache tuple. This change prevents the algorithm from detecting vertical scans, but
greatly limits the evasion potential, as now any pair of attacker-controlled machines
can only create a single success.

More generally, however, for an Internet-wide worm infection, the huge number
of external infections could allow the worm to generate a large amount of successful
traffic even when we restrict the detector to only look for horizontal scans. We can
counter this technique, though, by splitting the detector’s per-address count into one
count associated with scanning within the internal network and a second count to
detect scanning on the Internet. By keeping these counts separate, an attacker could
use this evasion technique to allow Internet scanning, but they could not exploit it to
scan the internal network. Since our goal is to protect enterprise and not the Internet
in the large, this is acceptable.

A final option is to use two containment implementations, operating simultane-
ously, one targeting scans across the Internet and the other only horizontal scans
within the enterprise. This requires twice the resources, although any hardware can
be parallelized, and allows detection of both general scanning and scanning behavior
designed to evade containment.

6.8 Related Work

In addition to the TRW algorithm used as a starting point for our work [11], a number
of other algorithms to detect scanning have appeared in the literature.

Both the Network Security Monitor [10] and Snort [26] attempt to detect scan-
ning by monitoring for systems which exceed a count of unique destination addresses
contacted during a given interval. Both systems can exhibit false positives due to ac-
tive, normal behavior, and may also have a significant scanning sub-threshold which
an attacker can exploit.

Bro [20] records failed connections on ports of interest and triggers after a user-
configurable number of failures. Robinson ef al. [23] used a similar method.

Leckie et al [14] use a probabilistic model based on attempting to learn the
probabilistic structure of normal network behavior. The model assumes that access
to addresses made by scanners follows a uniform distribution rather than the non-
homogeneous distribution learned for normal traffic, and attempts to classify possi-
ble scanning sources based on the degree to which one distribution or the other better
fits their activity.

138 Nicholas Weaver, Stuart Staniford, and Vern Paxson

Finally, Staniford et al’s work on SPICE [28] detects very stealthy scans by cor-
relating anomalous events. Although effective, it requires too much computation to
use it for line-rate detection on high-speed networks.

In addition to Williamson’s [36, 32] and Staniford’s {27, 29] work on worm con-
tainment, Jung et al [12] have developed a similar containment technique based on
TRW. Rather than using an online algorithm which assumes that all connections fail
until proven successful, it uses the slightly delayed (until response seen or timeout)
TRW combined with a mechanism to limit new connections similar to Williamson’s
algorithm.

Zou et al. [38] model some requirements for dynamic-quarantine defenses. They
also demonstrate that, with a fixed threshold of detection and response, there are
epidemic thresholds. Additionally, Moore et al. have studied abstract requirements
for containment of worms on the Internet [16], and Nojiri et al have studied the
competing spread of a worm and a not-specifically-modeled response to it [18].

There have been two other systems attempting to commercialize scan contain-
ment: Mirage networks [17] and Forescout [9]. Rather than directly detecting scan-
ning, these systems intercept communication to unallocated (dark) addresses and
respond by blocking the infected systems.

6.9 Future Work

We have plans for future work in several areas: implementing the system in hardware
and deploying it; integrating the algorithm into a software-based IDS; attempting to
improve the algorithm further by reducing the sub-threshold scanning available to an
attacker; exploring optimal communication strategies; and developing techniques to
obtain a complete enterprise-trace for further testing.

The hardware implementation will target the ML300 demonstration platform by
Xilinx [37]. This board contains 4 gigabit Ethernet connections, a small FPGA, and
a single bank of DDR-DRAM. The DRAM bank is sufficiently large to meet our
design goals, while the DRAM’s internal banking should enable the address and
connection tables to be both implemented in the single memory.

We will integrate our software implementation into the Bro IDS, with the neces-
sary hooks to pass IP blocking information to routers (which Bro already does for
its current, less effective scan-detection algorithm). Doing so will require selecting a
different 32-bit block cipher, as our current cipher is very inefficient in software. For
both hardware and software, we aim to operationally deploy these systems.

Finally, we are investigating ways to capture a full-enterprise trace: record every
packet in an large enterprise network of many thousands of users. We believe this
is necessary to test worm detection and suppression devices using realistic traffic,
while reflecting the diversity of use which occurs in real, large intranets. Currently,
we are unaware of any such traces of contemporary network traffic.

6 Very Fast Containment of Scanning Worms, Revisited 139
6.10 Conclusions

We have demonstrated a highly sensitive approximate scan-detection and suppres-
sion algorithm suitable for worm containment. It offers substantially higher sensi-
tivity over previously published algorithms for worm containment, while easily op-
erating within an § MB memory footprint and requiring only 2 uncached memory
accesses per packet. This algorithm is suitable for both hardware and software im-
plementations.

The scan detector used by our system can limit worm infectees to sustained scan-
ning rates of 1 per minute or less. We can configure it to be highly sensitive, detecting
scanning from an idle machine after fewer than 10 attempts in short succession, and
from an otherwise normal machine in less than 30 attempts.

We developed how to augment the containment system with using cooperation
between the containment devices that monitor different cells. By introducing com-
munication between these devices, they can dynamically adjust their thresholds to
the level of infection. We showed that introducing a very modest degree of bias that
grows with the number of infected cells makes a dramatic difference in the efficacy
of containment above the epidemic threshold. Thus, the combination of containment
coupled with cooperation holds great promise for protecting enterprise networks
against worms that spread by address-scanning.

6.11 Revisited

Since we target our algorithm for use in a local network, we needed to construct a
LAN implementation to evaluate it. Although we were confident in the basic cor-
rectness of our algorithm (now called Approximate-Cache TRW, or AC-TRW), we
appreciated a need to determine if any difficulties might arise when operating it in a
full LAN environment.

We implemented AC-TRW in Click[13], a software framework for building
router forwarding planes. Our implementation is designed to run transparently in
Ethernet networks: unless blocking packets, it behaves like a wire, completely pre-
serving Ethernet packets (including not changing the MAC addresses). The only sig-
nificant change we made to our algorithm was to use a truncated RCS variant (RC5
with a 32-bit wordsize and 6 rounds) as our permutation function. We discuss it fur-
ther below.

We tested this implementation both in our own LAN and using sythentic traf-
fic generated in the DETER [6] testbed (an Emulab[34] environment). During our
testing in both the testbed and the LAN, we discovered unanticipated interactions
between end-system ARP caches, Ethernet switches, and our algorithm, which led
to false positives. Additionally, we came to realize that IP scanning might not occur
at all, as the standard system calls will not generate IP packets to the LAN unless a
previous ARP is successful.

As aresult, we needed to modify our system to passively map the local network.
This map is used to determine whether a packet crossing through our device is a spu-
rious broadcast packet (such as from the use of a hub on one side of the network, or an

140 Nicholas Weaver, Stuart Staniford, and Vern Paxson

uninitialized MAC cache). If we determine the packet to be a spurious broadcast, we
ignore it (but pass it unchanged). We also use this map to determine if an ARP ought
to cross our viewpoint. If so, we incorporate ARP requests and responses into our
TRW implementation, with a modification. Failed or unacknowledged ARPs count
as +1, the same as for initial IP traffic; but acknowledged ARPs count as 0 rather
than -1, as an ARP is invariably a prelude to further IP communication. We also need
to whitelist the gateway system, as this system generates ARPs based on incoming
communication.

Although this mechanism differs from the one described by Whyte et al[35],
the goal is the same: to detect ARPs used during scans of the local environment
in addition to IP scans of machines as they are discovered. We also use the map
we construct to recognize and ignore packets that are initially broadcast onto the
network, but would not normally cross the device if the Ethernet switch’s MAC cache
was complete. Without the map, we would erroneously charge these as the equivalent
of a failed connection attempt.

6.11.1 Containment on Ethernet Networks

We implemented our Click-based algorithm as a software Ethernet bridge: it reads
packets from one Ethernet and, unless it blocks a packet, forwards the packet un-
changed (including the original Ethernet MAC addresses) to the other Ethernet on
the system, with any non-IP/non-ARP packets simply passed without examination.
This allows us to deploy our devices anywhere in the network, rather than only at
IP gateways, without affecting the spanning tree protocol or other non-IP network
mechanisms. Additionally, since other containment algorithms have been integrated
commercially into Ethernet switches such as the HP ProCurve 5300x1 [19], it is im-
portant to understand the issues in integrating IP-derived containment devices into
Ethernet-based networks.

Our device does not just monitor but also actively blocks, to give us a direct
imperative (i.e., displeased end users) to uncover and remove any lingering bugs.
We were particularly interested whether a liberal threshold (block at +18, max +20,
min -20) would incur false positives from normal Windows background chatter.
However, we found that such a liberal threshold did not prove a problem: except
for the false-positive due to packets not always being switched (discussed below,
and subsequently addressed through our passive network mapping), and an expected
false-positive when as a test we ran the Limewire installer (an unstructured P2P pro-
gram), we had no false positives over several weeks of normal operation, including
a Windows system, several Linux systems, and an occasional Macintosh connecting
through the device.

Initially we made an assumption that because the network is fully switched, only
packets that were supposed to cross through the spliced link would pass through

7 The HP technology, however, ignores many of the issues we’ve encountered because it only
performs containment between distinct subnets on distinct VLANS, using the switch’s IP
routing facility.

6 Very Fast Containment of Scanning Worms, Revisited 141

our device. As we discuss below, however, this assumption is not correct: switched
networks occasionally broadcast IP packets, which can create false positives.

6.11.2 ARPs and the ARP/MAC-cache inferaction

The normal means for one system to find another on an Ethernet network is ARP[21].
When IP host A wants to contact IP host B on the same subnet, it broadcasts an ARP
request to the Ethernet broadcast (FF:FF:FF:FF:FF:FF) address. B then replies
directly to A with an ARP response, sending B’s Ethernet MAC address to A. In the
future (until host A’s ARP cache expires), any request for A to talk to B will just use
the entry in the ARP cache.

At the same time as the ARP reply is sent, any Ethernet switch along the path
between B and A will initialize its MAC cache with B’s MAC address. Thus any
subsequent packets destined for B’s MAC will not be broadcast on the network, but
will be directly routed along the path to B’s port. Our initial implementation passed
ARPs without modification; thus, if our monitor is not on the path between A and B,
we assumed that it would not see the initial TCP SYN or any subsequent packets. Or,
if it did see the TCP SYN (because a broadcast hub rather than a switch was used),
it would also see the subsequent packets in the connection.

These caches do not expire at an equal rate, however. If a system’s ARP cache
is still valid, but the switch’s MAC cache has expired, when A initiates a new con-
nection to B, the SYN from A to B will be broadcast throughout the network. The
response (and all subsequent packets) will reinitialize the MAC cache, causing all
further packets to be switched. Thus, if our device is not on the path between A and
B, it will see the initial SYN, counting it as a scan attempt, but not see the subsequent
dialog.

We have observed this in practice, both in testbed experiments and on our live
network. In our LAN, there is a system outside our containment device that regularly
performs a global update to all clients on the LAN. Our device once detected and
blocked this system as a scanner during its nightly update; the connections to off-
path systems were treated as scan attempts, as the system’s ARP cache remained
valid, but the switch’s MAC cache entries had timed out. _

Additionally, AC-TRW needs to examine the ARPs themselves. In most cases, a
connection attempt to the local network is proceeded by an ARP. If the receiving host
is live, the initiating host will see an ARP response, which it then uses to follow up
with the IP-level connection request. But if the receiving host is down, the subsequent
IP packets will never be sent. Thus, we need to count unacknowledged ARPs as scan
attempts.

A problem arises, however, in that although the ARP request is a broadcast
packet, the ARP reply is not. Thus, if our device is not on the path between the
two hosts in question, it will see the ARP request but not the ARP reply, so we must
not blindly count ARPs as scan attempts. We now turn to addressing this problem.

142 Nicholas Weaver, Stuart Staniford, and Vern Paxson

6.11.3 The LAN Map

Our solution to both the ARP/MAC cache interactions and detecting ARP scanning
is to passively gather and maintain a map of all active addresses in the subnet. For
each host on the subnet, we track when it was last seen and on which side of the
network. We also track on which side of the network the gateway system resides. If
these locations ever change (such as a system moving from one side to the other), we
simply note the change without taking action.

AC-TRW then uses this map to determine if a packet is a spurious broadcast. If
the destination (if on the same subnet) or gateway (if to a non-local address) is on
the same side of the network as the originating packet, AC-TRW assumes that this
packet is a spurious broadcast packet and simply ignores it during its analysis. If
AC-TRW does not know which side the destination should be on, it always analyzes
the packet, assuming the packet was supposed to cross through the link.

We also use this approach to determine whether to consider an ARP request as a
connection attempt. If the destination might be on the other side of the network, we
increment the source’s count by -+1, a provisional scan attempt. Then the subsequent
reply, which we will observe, results in the count being reduced by —1, rather than by
—2 as we would for an IP-level response. By doing so, we count an unacknowledged
ARP as +1, but a successful ARP as 0 (compared with +1 for failed IP connections
and —1 for successful connections). This is because although an unacknowledged
ARP needs to be considered a scan attempt, an acknowledged ARP is not a successful
contact: the ARP will be followed by an IP-based connection attempt.

This passive mapping can introduce a rare false-positive: If system A and B are
on the same side of the network, and B has never sent a packet across our monitored
link (including broadcast ARP requests), or if B has moved from the other side to the
same side without ever sending a packet across our monitored link, an ARP from A
to B will be considered falsely as a scan attempt. Since it takes several scan attempts
before a system is actually blocked, and because most systems are not completely
silent, we do not believe this false positive will be a problem in practice.

6.11.4 Software Performance

Although we only designed our Click implementation for prototyping, it’s pure-
software performance is actually respectable, suggesting that many networks can use
a software-only implementation. On a 2.8 GHz, dual processor system with 2 Gigabit
Ethernet cards in the DETER testbed, we were able to stream 450 Mbps of TCP data
(in two streams) through our AC-TRW implementation. This represents the best-case
performance for our implementation: there are no cache misses, and all the packets
are maximum size.

However, we did not optimize our implementation. We used user-level Click,
which means every packet crosses through the kernel twice. We also did not optimize
our implementation beyond correctly implementing the AC-TRW algorithm. Thus,
it should be possible to significantly increase performance through a combination

6 Very Fast Containment of Scanning Worms, Revisited 143

of profiling to determine locations to recode and compiling our module into kernel-
space Click.

Another useful property of our implementation is that after startup, it performs
no dynamic memory allocation; we have run our algorithm on our own network for
weeks without memory leaks.

6.11.5 Open Problem: Broadcast Packets

One item which we have yet to address is a proper policy for broadcast and multi-
cast packets. A broadcast packet, especially a broadcast ping, can instantly reveal all
live systems on the focal LAN. A natural proposal would be to block all broadcast
packets, but this could prove untenable in some environments. Of particular concern
are the broadcast and multicast packets used by both Windows and Macs to discover
other systems in the network.

Currently, we falsely count broadcast and multicast packets as scan attempts.
But since these are UDP, each broadcast or multicast address contacted by a host
only counts as a single failure, which quickly gets forgiven. Determining a proper
policy for such packets remains an open question. Any solution will need to carefully
consider the requirements of the target network.

6.11.6 Reverse TRW

Concurrent with our work, Jung et al developed a TRW variant called “Reverse
TRW” [24]. It analyzes connection events looking backward through time rather
than forward, in order to more quickly detect that a system has transitioned from a
benign to a scanning state. We have not implemented reverse TRW, but our use of a
floor on the count accomplishes a similar task, albeit with some loss of promptness
of detection for systems that transition from benign to scanning.

6.11.7 Network Construction

All these scan containment algorithms suffer from the epidemic threshold prob-
lem [27]: if they are not suitably sensitive, a worm can still spread exponentially.
We believe that network construction, rather than attempting to make the algorithms
more sensitive (and therefore risking more false positives), likely provides the best
solution to the epidemic threshhold problem.

A promising architecture for doing so is to restructure networks which deploy
scan-containment technology using NAT [8] to make the address space sparser, and
thus increase the likelihood that blind scanning generates numerous connection fail-
ures. For example, rather than providing end hosts with routable IP addresses, al-
locate their addresses allocated from the 10.0.0.0/8 private address space in a uni-
formly random fashion. By creating far less dense networks, where only 1 in 100 or
1 in 1000 internal addresses are actually live, even a very insensitive algorithm can
successfully contain a scanning worm.

144 Nicholas Weaver, Stuart Staniford, and Vern Paxson

One issue with this approach, however, is that broadcast or multicast packets can
still discover hosts in the current subnet. Thus, there needs to be a mechanism for
suitably addressing and restricting broadcast packets.

6.12 Acknowledgments

Funding has been provided in part by the National Science Foundation under grants
ITR/ANI-0205519, NSF-0433702, and STI-0334088, and by NSF/DHS under grant
NRT-0335290. Special thanks to those at ICSI who agreed to have their systems serve
as guinea pigs by having all their packets routed through experimental software,
and the system administration staff who have reconfigured networks to enable these
experiments.

References

1. R. Anderson, E. Biham, and L. Knudsen. Serpent: A Proposal for the Advanced Encryp-
tion Standard.

2. B. Bloom. Space/Time Trade-Offs in Hash Coding with Allowable Errors. CACM, July
1970.

3. CERT. CERT Advisory CA-2001-26 Nimda Worm, http://www.cert.org/advisories/ca-
2001-26.html.

4. CERT. Code Red II: Another Worm Exploiting Buffer Overflow in IIS Indexing Service
DLL, http://www.cert.org/incident_notes/in-2001-09.html.

5. S. Crosby and D. Wallach. Denial of Service via Algorithmic Complexity Attacks. In
Proceedings of the 12th USENIX Security Symposium. USENIX, August 2003.

6. Deter: A laboratory for security research, http://www.isi.edu/deter/.

7. eEye Digital Security. .ida “Code Red” Worm, http://www.eeye.com/html/Research/
Advisories/AL20010717.html.

8. K. Egevang and P. Francis. Rfc 1631 - the ip network address translator (nat).

9. Forescout. Wormscout, http://www.forescout.com/wormscout.html.

10. L. T. Heberlein, G. Dias, K. Levitt, B. Mukerjee, J. Wood, and D. Wolber. A Network
Security Monitor. In Proceedings of the IEEE Symopisum on Research in Security and
Privacy, 1990.

11. J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast Portscan Detection Using
Sequential Hypothesis Testing. In 2004 IEEE Symposium on Security and Privacy, to
appear, 2004.

12. J. Jung, S. Schechter, and A. Berger. Fast Detection of Scanning Worm Infections, in
submission.

13. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click modular router.
ACM Transactions on Computer Systems, 18(3):264-297, August 2000.

14. C.Leckie and R. Kotagiri. A Probabilistic Approach to Detecting Network Scans. In Pro-
ceedings of the Eighth IEEE Network Operations and Management Symposium (NOMS
2002), 2002.

15. D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside the
Slammer Worm. IEEE Magazine of Security and Privacy, pages 33-39, July/August
2003 2003.

16

17.
18.

19.
20.
21.
22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

6 Very Fast Containment of Scanning Worms, Revisited 145

. D. Moore, C. Shannon, G. M. Voelker, and S. Savage. Internet Quarantine: Requirements
for Containing Self-Propagating Code, 2003.

M. Networks. http://www.miragenetworks.com/.

D. Nojiri, J. Rowe, and K. Levitt. Cooperative Response Strategies for Large Scale Attack
Mitigation. In Proc. DARPA DISCEX Il Conference, 2003.

H. Packard. Connection-rate filtering based on virus-trottling tecnology,
http://www.hp.com/rnd/pdf_html/virus-throttling_tech_brief.htm.

V. Paxson. Bro: a System for Detecting Network iltruders in Real-Time. Computer
Networks, 31(23-24):2435-2463, 1999.

D. Plummer. Rfc 826 - ethernet address resolution protocol.

G. Project. Gnutella, A Protocol for Revolution, http:/rfc-gnutella.sourceforge.net/.

S. Robertson, E. V. Siegel, M. Miller, and S. J. Stolfo. Surveillance Detection in High
Bandwidth Environments. In Proc. DARPA DISCEX III Conference, 2003.

S. E. Schechter, J. Jung, and A. W. Berger. Fast Detection of Scanning Worm Infections.
In Proceedings of the Seventh International Symposium on Recent Advances in Intrusion
Detection (RAID 2004), Sept. 15-17, 2004.

Silicon Defense. Countermalice Worm Containment, http://www.silicondefense.com/
products/countermalice/.

Snort.org. Snort, the Open Source Network Intrusion Detection System,
http://www.snort.org/.

S. Staniford. Containment of Scanning Worms in Enterprise Networks. Journal of Com-
puter Security, to appear, 2004.

S. Staniford, J. Hoagland, and J. McAlerney. Practical Automated Detection of Stealthy
Portscans. Journal of Computer Security, 10:105-136, 2002.

S. Staniford and C. Kahn. Worm Containment in the Internal Network. Technical report,
Silicon Defense, 2003.

S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet in Your Spare Time. In
Proceedings of the 11th USENIX Security Symposium. USENIX, August 2002.
Symantec. W32.blaster.worm, http://securityresponse.symantec.com/avcenter/venc/data/
w32.blaster.worm.html.

J. Twycross and M. M. Williamson. Implementing and Testing a Virus Throttle. In
Proceedings of the 12th USENIX Security Symposium. USENIX, August 2003.

N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A Taxonomy of Computer
‘Worms. . In The First ACM Workshop on Rapid Malcode (WORM), 2003.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb,
and A. Joglekar. An integrated experimental environment for distributed systems and net-
works. In Proc. of the Fifth Symposium on Operating Systems Design and Implementa-
tion, pages 255-270, Boston, MA, Dec. 2002. USENIX Association.

D. Whyte, P. vas Oorschot, and E. Kranakis. Arp-based detection of scanning worms
within an enterprise network. In In proceedings of Annual Computer Security Applica-
tions Conference (ACSAC 2005), Tucson, AZ, December 2005.

M. M. Williamson. Throttling Viruses: Restricting Propagation to Defeat Mobile Mali-
cious Code. In ACSAC, 2002.

Xilinx Inc. Xilinx ML300 Development Platform, http://www.xilinx.com/products/
boards/m1300/.

C. C. Zou, W. Gong, and D. Towsley. Worm Propagation Modeling and Analysis under
Dynamic Quarantine Defense. In The First ACM Workshop on Rapid Malcode (WORM),
2003.

7

Sting: An End-to-End Self-Healing System for
Defending against Internet Worms

David Brumley, James Newsome, and Dawn Song

Carnegie Mellon University, Pittsburgh, PA, USA
dbrumley@cs.cmu.edu, jnewsome@ece.cmu.edu, dawnsonglcmu. edu

7.1 Introduction

We increasingly rely on highly available systems in all areas of society, from the
economy, to military, to the government. Unfortunately, much software, including
critical applications, contains vulnerabilities unknown at the time of deployment,
with memory-overwrite vulnerabilities (such as buffer overflow and format string
vulnerabilities) accounting for more than 60% of total vulnerabilities [10]. These vul-
nerabilities, when exploited, can cause devastating effects, such as self-propagating
worm attacks which can compromise millions of vulnerable hosts within a matter
of minutes or even seconds [32, 61], and cause millions of dollars of damage [30].
Therefore, we need to develop effective mechanisms to protect vulnerable hosts from
being compromised and allow them to continue providing critical services, even un-
der aggressively spreading attacks on previously unknown vulnerabilities.

We need automatic defense techniques because manual response to new vulnera-
bilities is slow and error prone. A worm exploiting a previously unknown vulnerabil-
ity and advanced techniques such as hit-lists can infect the vulnerable population on
a time scale orders of magnitude faster than a human mediated response [7, 61, 60].
Automatic techniques have the potential to be more accurate than manual efforts be-
cause vulnerabilities exploited by worms tend to be complex and require intricate
knowledge of details such as realizable program paths and corner conditions. Un-
derstanding the complexities of a vulnerability has consistently proven very difficult
and time consuming for humans at even the source code level [9], let alone COTS
software at the assembly level.

Overview and Contributions. By carefully uniting a suite of new techniques, we
create a new end-to-end self-healing architecture, called Sting, as a first step towards
automatically defending against fast Internet-scale worm attacks.

At ahigh level, the Sting self-healing architecture enables programs to efficiently
and automatically (1) self-monitor their own execution behavior to detect a large
class of errors and exploit attacks, (2) self-diagnose the root cause of an error or
exploit attack, (3) self-harden to be resilient against further attacks, and (4) quickly

148 David Brumley, James Newsome, and Dawn Song

self-recover to a safe state after a state corruption. Furthermore, once a Sting host
detects and diagnoses an error or attack, it can generate a verifiable antibody, which
is then distributed to other vulnerable hosts, who verify the correctness of the anti-
bodyand use it to self-harden against attacks on that vulnerability. We provide a more
detailed overview below.

First, we propose dynamic taint analysis to detect new attacks, and to provide
information about discovered attacks which can be used to automatically generate
antibodies that protect against further attacks on the corresponding vulnerability. Dy-
namic taint analysis monitors software execution at the instruction level to track what
data was derived from untrusted sources, and detect when untrusted data is used in
ways that signify that an attack has taken place. This technique reliably detects a
large class of exploit attacks, and does not require access to source code, allowing it
to be used on commodity software. This work is described in detail in [43, 44].

Once a new attack is detected, there are several types of antibodies that can be
generated, and several methods to generate them. We have investigated automatic
methods of generating input-filters by finding common byte-patterns in collected
worm samples, even for polymorphic worms. This work is described in detail in [41].
However, we have found that a worm author can severely cripple such methods by
including spurious features in samples of the worm [42].

In [8], we propose vulnerability-based signatures, in which signatures are cre-
ated based upon the vulnerability itself. Vulnerability signatures are input signatures
which provably have zero-false positives (or false negatives, if desired). Therefore,
vulnerability signatures are appropriate even in an adversarial environment where
malicious parties may try to mislead the signature creation algorithm.

In some circumstances input-based filters may not be practical. For example, per-
formance requirements may only allow for token-based signatures, but token-based
signatures may be too imprecise to be useful. Therefore, we propose an alternative
of automatically generating execution filters, which are specifications of where the
vulnerability lies in the vulnerable program. These are used to automatically insert
a small piece of instrumentation into the vulnerable program, which in turn allows
the vulnerable program to efficiently and reliably detect when that vulnerability is
exploited. This work is described in [39].

Once a new attack has been found, and an antibodygenerated for that attack, we
disseminate that antibodyto other vulnerable hosts. These vulnerable hosts can verify
both that an attack exists and that the antibodysuccessfully stops it by replaying the
attack against the antibody-protected software in a confined environment.

Finally, we integrate the above techniques to form Sting, an end-to-end self-
healing system capable of defending commodity software against even zero-day hit-
list worm attacks. In this system, users use light-weight detectors (such as address
randomization [45, 5, 6, 11, 20, 22, 68]) and random sampling to initially detect new
attacks with little performance cost. When a potential attack is detected, we then use
dynamic taint analysis to perform automatic self-diagnosis, which verifies whether
it is truly an attack, and automatically generates an execution filter. That execution
filter is used to harden the vulnerable binary, and is distributed to others running
the vulnerable software to allow them to also harden their own vulnerable binaries.

7 Sting: End-to-End Self-Healing Defense against Internet Worms 149

When an exploit is detected, the system performs diagnosis-directed self-recovery
using process checkpointing and recovery [59, 46]. To the best of our knowledge,
we are the first to demonstrate that we can defend against even hit-list worms under
realistic deployment scenarios.

Organization. In Section 7.2, we briefly describe the design space for worm de-
fense systems. Our analysis indicates that the best designs incorporate both a proac-
tive protection component and a reactive antibodycomponent. This analysis moti-
vates our Sting architecture. We then describe TaintCheck in Section 7.3, which is
one of the primary mechanism we use to detect new exploits and vulnerabilities. In
Section 7.4, we discuss automatic input-based signature creation. We show many
proposed algorithms are fragile and can be mislead by an adversary into creating
incorrect signatures. We then describe a new class of signatures called vulnerability
signatures which are provably correct, even in an adversarial environment. In Sec-
tion 7.5, we describe an alternative to input-based filters called vulnerability-based
execution filters (VSEF). Section 7.6 describes the complete Sting architecture and
our experiences creating it. We then present related work, and conclude.

7.2 Worm Defense Design Space

The design space for worm defense systems is vast. For example, should a worm
defense system try to contain infected machines from further propagation of the
worm, blacklist known infected hosts, or filter infection attempts? In [7], we propose
a taxonomy for worm defense strategies and perform theoretical and experimental
evaluation to compare different strategies in the design space. Our analysis shows a
hybrid scheme using proactive protection and a reactive antibodydefense is the most
promising approach. Thus, we adopt this strategy in the Sting architecture.

7.2.1 Defense Strategy Taxonomy

We analyze a taxonomy of possible solutions in the worm defense design space in [7].
The taxonomy is depicted in Figure 7.1. At a high level, the four defense strategies
are:

Reactive Defense. This approach reactively generates an antibody, which is a pro-
tective measure that prevents further infections. The scheme is reactive because
the antibodyis created based upon a known worm sample. Many input-based fil-
tering schemes such as in Section 7.4 and [27, 29, 41] are examples of a reactive
antibodydefense since the input filters are created from known worm samples.
Vulnerability-specific execution filters (Section 7.5) are another example.

Proactive Protection. A proactive protection scheme is always in place and pre-
vents at least some worm infection attempts from succeeding. Running Taint-
Check on all programs, all the time is an example of a proactive protection
scheme. However, running TaintCheck all the time is unrealistic due to the po-
tentially high overhead. An example of a probabilistic proactive protection is

150 David Brumley, James Newsome, and Dawn Song

I Defense Strategies I

>

I Protection | I Lacal Containment I

l Proactive Protaction | | Reactive Protection I

I Reactive Antibody Defense | | Reactive Address Blackiisting

Fig. 7.1. Worm Defense Strategy Taxonomy

address space randomization [45, 5, 6, 11, 20, 22, 68], in which each infection
attempt succeeds with some probability p.

Reactive Address Blacklisting. Blacklisting generates a worm defense based upon
the address of an attacking host. For example, filtering any subsequent connec-
tions from a known infected host [34].

Local Containment. Local containment is a “good neighbor” strategy in which a
site filters outgoing infection attempts to other sites. Scan rate throttling schemes
such [64, 67] are an example of this strategy.

7.2.2 The Sting Architecture

We show in [7] that the most effective strategy in a realistic setting is combining
proactive protection with a reactive antibodydefense. The intuition is that proactive
protection will slow down the initial worm outbreak, which allows time to develop
and deploy a permanent antibody.

Sting is designed around the hybrid proactive protection with reactive anti-
bodydefense. Sting utilizes TaintCheck, address space randomization, and random
sampling as proactive protection mechanisms. The combination of these mechanisms
provides efficient probabilistic protection. Sting develops verifiable antibodies which
can be distributed and installed. The antibodies provide efficient protection against
subsequent infections.

7.3 Dynamic Taint Analysis for Automatic Detection of New
Exploits

Many approaches have been proposed to detect new attacks. These approaches
roughly fall into two categories: coarse-grained detectors, that detect anomalous

7 Sting: End-to-End Self-Healing Defense against Internet Worms 151

behavior, such as scanning or unusual activity at a certain port; and fine-grained de-
tectors, that detect attacks on a program’s vulnerabilities. While coarse-grained de-
tectors are relatively inexpensive, they can have frequent false positives, and do not
provide detailed information about the vulnerability and how it is exploited. Thus, it
is desirable to develop fine-grained detectors that produce fewer false positives, and
provide detailed information about the vulnerability and exploit.

Several approaches for fine-grained detectors have been proposed that detect
when a program is exploited. Most of these previous mechanisms require source code
or special recompilation of the program, such as StackGuard [16], PointGuard [15],
full-bounds check [25, 51], LibsafePlus [3], FormatGuard [14], and CCured [36].
Some of them also require recompiling the libraries [25, 51], or modifying the orig-
inal source code, or are not compatible with some programs [36, 15]. These con-
straints hinder the deployment and applicability of these methods, especially for
commodity software, because source code or specially recompiled binaries are of-
ten unavailable, and the additional work required (such as recompiling the libraries
and modifying the original source code) makes it inconvenient to apply these meth-
ods to a broad range of applications. Note that most of the large-scale worm attacks
to date are attacks on commodity software.

Thus, it is important to design fine-grained detectors that work on commodity
software, i.e., work on arbitrary binaries without requiring source code or specially
recompiled binaries. This goal is difficult to achieve because important information,
such as data types, is not generally available in binaries. As a result, existing ex-
ploit detection mechanisms that do not use source code or specially compiled binary
programs, such as LibSafe [4], LibFormat [50], Program Shepherding [28], and the
Nethercote-Fitzhardinge bounds check [37], are typically tailored for narrow types
of attacks and fail to detect many important types of common attacks.

‘We propose a new approach, dynamic taint analysis, for the automatic detection
of exploits on commodity software. In dynamic taint analysis, we label data origi-
nating from or arithmetically derived from untrusted sources such as the network as
tainted. We keep track of the propagation of tainted data as the program executes
(i.e., what data in memory is tainted), and detect when tainted data is used in danger-
ous ways that could indicate an attack. This approach allows us to detect overwrite
attacks, attacks that cause a sensitive value (such as return addresses, function point-
ers, format strings, efc.) to be overwritten with the attacker’s data. Most commonly
occurring exploits fall into this class of attacks. We have developed an automatic
tool, TaintCheck, to demonstrate our dynamic taint analysis approach.

7.3.1 Dynamic Taint Analysis

Our technique is based on the observation that in order for an attacker to change
the execution of a program illegitimately, he must cause a value that is normally
derived from a trusted source to instead be derived from his own input. For example,
values such as return addresses, function pointers, and format strings should usually
be supplied by the code itself, not from external untrusted inputs. In an overwrite

152 David Brumley, James Newsome, and Dawn Song

attack, an attacker exploits a program by overwriting sensitive values such as these
with his own data, allowing him to arbitrarily change the execution of the program.

We refer to data that originates or is derived arithmetically from an untrusted
input as being fainted. In our dynamic taint analysis, we first mark input data from
untrusted sources tainted, then monitor program execution to track how the tainted
attribute propagates (i.e., what other data becomes tainted) and to check when tainted
data is used in dangerous ways. For example, use of tainted data as a function pointer
or a format string indicates an exploit of a vulnerability such as a buffer overrun or
format string vulnerability !, respectively.

Note that our approach detects attacks at the time of use, i.e., when tainted data
is used in dangerous ways. This significantly differs from many previous approaches
which attempt to detect when a certain part of memory is illegitimately overwritten
by an attacker at the time of the write. Without source code, it is not always possi-
ble at the time of a write to detect whether an illegitimate overwrite is taking place,
because it cannot always be statically determined what kind of data is being over-
written, e.g. whether the boundary of a buffer has been exceeded. Hence, techniques
that detect attacks at the time of write without source code are only applicable to
certain type of attacks and/or suffer from limited accuracy. However, at the time that
data is used in a sensitive way, such as as a function pointer, we know that if that
data is tainted, then a previous write was an illegitimate overwrite, and an attack has
taken place. By detecting attacks at the time of use instead of the time of write, we
reliably detect a broad range of overwrite attacks.

7.3.2 Design and Implementation Overview

‘We have designed and implemented TaintCheck, a new tool for performing dynamic
taint analysis. TaintCheck performs dynamic taint analysis on a program by running
the program in its own emulation environment. This allows TaintCheck to monitor
and control the program’s execution at a fine-grained level. We have two implemen-
tations of TaintCheck: we implemented TaintCheck using Valgrind [38]. Valgrind is
an open source x86 emulator that supports extensions, called skins, which can instru-
ment a program as it is run.> We also have a Windows implementation of TaintCheck
that uses DynamoRIO [21], another dynamic binary instrumentation tool. For sim-

! Note that the use of tainted data as a format string often indicates a format string vulner-
ability, whether or not there is an actual exploit. That is, the program unsafely uses un-
trusted data as a format string (print f (user_input) instead of printf (*‘%s’’,
user_input)), though the data provided by a particular user input may be innocuous.

2 Note that while Memcheck, a commonly used Valgrind extension, is able to assist in de-
bugging memory errors, it is not designed to detect attacks. It can detect some conditions
relevant to vulnerabilities and attacks, such as when unallocated memory is used, when
memory is freed twice, and when a memory write passes the boundary of a malloc-
allocated block. However, it does not detect other attacks, such as overflows within an area
allocated by one malloc call (such as a buffer field of a struct), format string attacks, or
stack-allocated buffer overruns.

7 Sting: End-to-End Self-Healing Defense against Internet Worms 153

plicity of explanation, for the remainder of this section, we refer to the Valgrind
implementation unless otherwise specified.

Whenever program control reaches a new basic block, Valgrind first translates
the block of x86 instructions into its own RISC-like instruction set, called UCode.
It then passes the UCode block to TaintCheck, which instruments the UCode block
to incorporate its taint analysis code. TaintCheck then passes the rewritten UCode
block back to Valgrind, which translates the block back to x86 code so that it may be
executed. Once a block has been instrumented, it is kept in Valgrind’s cache so that
it does not need to be re-instrumented every time it is executed.

TaintSeed TaintTracker TaintAssert

Copy
Use as Attack

wu ble—free)
Fn Pointer Detected!

Malloc’d . |
Buffer |

“Data from
Socket

Fig. 7.2. TaintCheck detection of an attack. (Exploit Analyzer not shown).

To use dynamic taint analysis for attack detection, we need to answer three ques-
tions: (1) What inputs should be tainted? (2) How should the taint attribute propa-
gate? (3) What usage of tainted data should raise an alarm as an attack? To make
TaintCheck flexible and extensible, we have designed three components: TaintSeed,
TaintTracker, and TaintAssert to address each of these three questions in turn. Figure
7.2 shows how these three components work together to track the flow of tainted
data and detect an attack. Each component has a default policy and can easily in-
corporate user-defined policies as well. In addition, each component can be config-
ured to log information about taint propagation, which can be used by the fourth
component we have designed, the Exploit Analyzer. When an attack is detected, the
Exploit Analyzer performs post-analysis to provide information about the attack, in-
cluding identifying the input that led to the attack, and semantic information about
the attack payload. This information can be used to automatically generate antibod-
ies against the attack, including input-based filters (Section 7.4) and execution filters
(Section 7.5).

7.4 Automatic Generation of Input-based Filters

We first describe previous attempts at automatically generating signatures by syn-
tax pattern-extraction techniques. These techniques find and create signatures based
on syntactic differences between exploits and benign inputs. Our experience shows
these methods are fragile, and thus not suitable in an adversarial environment where

154 David Brumley, James Newsome, and Dawn Song

an adversary may try to mislead the signature generation algorithm. We then in-
troduce vulnerability signatures, which produce signatures with zero false positives
(even in an adversarial setting). In addition, vulnerability signatures are generally of
a higher quality (i.e., more accurate and less fragile) than signatures generated by
syntax pattern-extraction techniques.

7.4.1 Limitations of Pattern-Extraction based techniques

First generation worms: identical byte strings. Motivated by the slow pace of
manual signature generation, researchers have recently given attention to automating
the generation of signatures used by IDSes to match worm traffic. Systems such as
Honeycomb [29], Autograph [27], and EarlyBird [57] monitor network traffic to
identify novel Internet worms, and produce signatures for them using pattern-based
analysis, i.e., by extracting common byte patterns across different suspicious flows.

These systems all generate signatures consisting of a single, contiguous substring
of a worm’s payload, of sufficient length to match only the worm, and not innocu-
ous traffic. The shorter the byte string, the greater the probability it will appear in
some flow’s payload, regardless of whether the flow is a worm or innocuous. These
syntax pattern-extraction signature generation systems all make the same underlying
assumption: that there exists a single payload substring that will remain invariant
across worm connections, and will be sufficiently unique to the worm such that it
can be used as a signature without causing false positives.

Second generation worms: polymorphism. Regrettably, the above payload in-
variance assumption is naive, and gives rise to a critical weakness in these previ-
ously proposed signature generation systems. A worm author may craft a worm that
substantially changes its payload on every successive connection, and thus evades
matching by any single substring signature that does not also occur in innocuous
traffic. Polymorphism techniques’, through which a program may encode and re-
encode itself into successive, different byte strings, enable production of changing
worm payloads. It is pure serendipity that worm authors thus far have not chosen
to render worms polymorphic; virus authors do so routinely [35, 63]. The effort re-
quired to do so is trivial, given that libraries to render code polymorphic are readily
available [1, 18].

In Polygraph [41], we showed that for many vulnerabilities, there are several
invarjant byte strings that must be present to exploit that vulnerability. While us-
ing a single one of these strings would not be specific enough to generate an ac-
curate signature, they can be combined to create an accurate conjunction signature,
subsequence signature, or Bayes signature. We proposed algorithms that automati-
cally generate accurate signatures of these types, for maximally varying polymorphic
worms. That is, we assumed the worm minimized commonality between each in-
stance, such that only the invariant byte strings necessary to trigger the vulnerability
were present.

3 We refer to both polymorphism and metamorphism as polymorphism, in the interest of
brevity.

7 Sting: End-to-End Self-Healing Defense against Internet Worms 155

Third generation worms: Attacks on learning. The maximal variation model of
a polymorphic worm’s content bears further scrutiny. If one seeks to understand
whether a worm can vary its content so widely that a particular signature type, e.g.,
one comprised of multiple disjoint substrings, cannot sufficiently discriminate worm
instances from innocuous traffic, this model is appropriate, as it represents a worst
case, in which as many of a worm’s bytes vary randomly as possible. But the maxi-
mally varying model is one of many choices a worm author may adopt. Once a worm
author knows the signature generation algorithm in use, he may adopt payload vari-
ation strategies chosen specifically in an attempt to defeat that algorithm or class of
algorithm. Thus, maximal variation is a distraction when assessing the robustness of
a signature generation algorithm in an adversarial environment; some other strategy
may be far more effective in causing poor signatures (i.e., those that cause many false
negatives and/or false positives) to be generated .

In Paragraph [42], we demonstrated several attacks that make the problem of au-
tomatic signature generation via pattern-extraction significantly more difficult. The
approach taken by pattern-extraction based signature generation systems such as
Polygraph is to find common byte patterns in samples of a worm, and then apply
some type of learning algorithm to generate a classifier, or signature. Most research
in machine learning algorithms is in the context in which the content of samples is
determined randomly, or even by a helpful teacher, who constructs examples in an
effort to assist learning.

However, learning algorithms, when applied to polymorphic worm signature gen-
eration, attempt to function with examples provided by a malicious teacher. That is,
a clever worm author may manipulate the particular features found in the worm sam-
ples, innocuous samples, or both—not to produce maximal variation in payload, but
to thwart learning itself.

‘We demonstrate this concept in Paragraph [42] by constructing attacks against
the signature generation algorithms in Polygraph [41]. We have shown that these
attacks are practical to perform, and that they prevent an accurate signature from
being generated quickly enough to prevent wide-spread infection. From our analysis,
we conclude that generating worm signatures purely by syntax pattern-extraction
techniques seems limited in robustness against a determined adversary.

7.4.2 Automatic Vulnerability Signature Generation

A realistic signature generation mechanism should succeed in an adversarial environ-
ment without requiring assumptions about the amount of polymorphism an unknown
vulnerability may have. Thus, to be effective, the signature should be constructed
based on the property of the vulnerability, instead of an exploit (this observation has
been made by others as well [66]).

We show that signatures with zero false positives, even in an adversarial setting,
can be created by analyzing the vulnerability itself. We call these signatures vulner-
ability signatures [8]. Vulnerability signatures are provably correct with respect to
the goal of the administrator: they are constructed with zero false positives or zero

156 David Brumley, James Newsome, and Dawn Song

false negatives regardless of how the attacker may try and deceive the generation
algorithm.

Requirements for Vulnerability Signature Generation

We motivate our work and approach to vulnerability signatures in the following set-
ting: a new exploit is just released for an unknown vulnerability. A site has detected
the exploit through some means such as dynamic taint analysis (Section 7.3), and
wishes to create a signature that recognizes any further exploits. The site can fur-
nish our analysis with the tuple {P, T, z, ¢} where P is the program, z is the exploit
string, ¢ is a vulnerability condition, and T is the execution trace of P on z. Since
our experiments are at the assembly level, we assume P is a binary program and 7"
is an instruction trace, though our techniques also work at the source-code level. Our
goal is to create a vulnerability signature which will match future malicious inputs
7’ by examining them without running P.

Vulnerability Signature Definition

A vulnerability is 2-tuple (P, c), where P is a program (which is a sequence of in-
structions (i1, -+ , 1)), and ¢ is a vulnerability condition (defined formally below).
The execution trace obtained by executing a program P on input z is denoted by
T (P, z). An execution trace is simply a sequence of actual instructions that are exe-
cuted. A vulnerability condition c is evaluated on an execution trace T". If T" satisfies
the vulnerability condition ¢, we denote it by T' |= c. The language of a vulnerability
Lp . consists of the set of all inputs x to a program P such that the resulting exe-
cution trace satisfies c. Let 2 be the domain of inputs to P. Formally, Lp . is the
language defined by:

Lpc={zxeXx* | T(P,z) E c}

An exploit for a vulnerability (P, ¢) is simply an input € Lp,, i.e., executing
‘P on input z results in a trace that satisfies the vulnerability condition c. A vulner-
ability signature is a matching function MATCH which for an input « returns either
EXPLOIT or BENIGN without running P. A perfect vulnerability signature satis-
fies the following property:

EXPLOIT whenz € Lp .

MATCH(z) = { BENIGN when z ¢ Lp.,

As we show in Section 7.4.2, the language Lp . can be represented in many
different ways ranging from Turing machines which are precise, i.e., accept exactly
Lyp ., to regular expressions which may not be precise, i.e., have an error rate.

Soundness and completeness for signatures.. We define completeness for a vul-
nerability signature MATCH to be Yz : x € Lp . =MATCH(z) = EXPLOIT, i.e.,
MATCH accepts everything Lp . does. Incomplete solutions will have false nega-
tives. We define soundness as Vz : ¢ ¢ Lp . = MATCH(z) = BENIGN, i.e., MATCH

7 Sting: End-to-End Self-Healing Defense against Internet Worms 157

does not accept anything extra not in Lp .. * Unsound solutions will have false posi-
tives. A consequence of Rice’s theorem [23] is that no signature representation other
than a Turing machine can be both sound and complete, and therefore for other repre-
sentations we must pick one or the other. In our setting, we focus on soundness, i.e.,
we tolerate false negatives but not false positives. Vulnerability signature creation
algorithms can easily be adapted to generate complete by unsound signatures [8].

Vulnerability Signature Representation Classes

We explore the space of different language classes that can be used to represent
Lyp . as a vulnerability signature. Which signature representation we pick determines
the precision and matching efficiency. We investigate three concrete signature rep-
resentations which reflect the intrinsic trade-offs between accuracy and matching
efficiency: Turing machine signatures, symbolic constraint signatures, and regular
expression signatures. A Turing machine signature can be precise, i.e., no false pos-
itives or negatives. However, matching a Turing machine signature may take an un-
bounded amount of time because of loops and thus is not applicable in all scenar-
ios. Symbolic constraint signatures guarantee that matching will terminate because
they have no loops, but must approximate certain constructs in the program such as
looping and memory aliasing, which may lead to imprecision in the signature. Reg-
ular expression signatures are the other extreme point in the design space because
matching is efficient but many elementary constructions such as counting must be
approximated, and thus the least accurate of the three representations.

Turing machine signatures. A Turing machine (TM) signature is a program T con-
sisting of those instructions which lead to the vulnerability point with the vulnerabil-
ity condition algorithm in-lined. Paths that do not lead to the vulnerability point will
return BENIGN, while paths that lead to the vulnerability point and satisfy the vul-
nerability condition return EXPLOIT. 3 TM signatures can be precise, e.g., a trivial
TM signature with no error rate is emulating the full program.

Symbolic constraint signatures. A symbolic constraint signature is a set of boolean
formulas which approximate a Turing machine signature. Unlike Turing machine
signatures which have loops, matching (evaluating) a symbolic constraint signature
on an input z will always terminate because there are no loops. Symbolic constraint
signatures only approximate constructs such as loops and memory updates statically.
As a result, symbolic constraint signatures may not be as precise as the Turing ma-
chine signature.

Regular expression signatures. Regular expressions are the least powerful signature
representation of the three, and may have a considerable false positive rate in some
circumstances. For example, a well-known limitation is regular expressions cannot
count [23], and therefore cannot succinctly express conditions such as checking a

* Normally soundness is V& : 2 € § = & € Lp,. Here we are stating the equivalent
contra-positive.
5 A path in a program is a path in the program’s control flow graph.

158 David Brumley, James Newsome, and Dawn Song

message has a proper checksum or even simple inequalities such as z[i] < z[j].
However, regular expression signatures are widely used in practice.

Vulnerability Signature Generation

At a high level, our algorithm for computing a vulnerability signature for program P,
vulnerability condition ¢, a sample exploit z, and the corresponding instruction trace
T is depicted in Figure 7.3. Our algorithm for computing vulnerability signatures is:

1. Pre-process the program before any exploit is received by:

a) Disassembling the program P. Disassemblers are available for all modern
architectures and OS’s.

b) Converting the assembly into an intermediate representation (IR). The IR
disambiguates any machine-level instructions. For example, an assembly
statement add a, b may perform a -+ b but also set a hardware overflow
flag. The IR captures both operations.

2. Compute a chop with respect to the execution trace T' of a sample exploit. The
chop includes all paths to the vulnerability point including that taken by the
sample exploit [24, 48]. Intuitively, the chop contains all and only those program
paths any exploit of the vulnerability may take.

3. Compute the signature:

a) Compute the Turing machine signature. Stop if this is the final representa-
tion.

b) Compute the symbolic constraint signature from the TM signature. Stop if
this is the final representation.

c) Solve the regular expression signature from the symbolic constraint signa-
ture.

S
Bin ——

Progy Vuinerability

Exploit & Condition

............... S N
' ' ! i
HE™ ! 3| Select paths from . Symbolic Execution Conglraint !
(e)= (emen) e (et o[5 || comemise Jo{ pEmicheen, o S

o , |
| Pre-processing Phase ! 1 Signature Generation Phase

Turing Machine Signatre Symbglic Constraint ~ Regular Expression
Signature Signature

Fig. 7.3. A high level view of the steps to compute a vulnerability signature.

At a high level, the resulting signature is provably correct since only input strings
that can be proved to exploit the vulnerability are included, i.e., a TM signature
by construction accepts an input iff the input would exploit the original program;
the symbolic constraints are satisfiable iff the TM signature would accept the in-
put; and the regular expression contains only those strings that satisfy the symbolic
constraints.

7 Sting: End-to-End Self-Healing Defense against Internet Worms 159

Vulnerability Signature Results

We show in [8] that our automatically generated vulnerability signatures are of much
higher quality than those generated with syntax pattern-extraction techniques. The
higher quality is because given only a single exploit sample, our vulnerability sig-
nature creation algorithm will deduce properties of other unseen exploits. For ex-
ample, in the atphttpd webserver vulnerability the get HTTP request method is
case-insensitive [47], and in the DNS TSIG vulnerability that there must be multiple
DNS “questions” (which is a field in DNS protocol messages) present for any exploit
to work [65].

7.5 Automatic Generation of Vulnerability-Specific Execution
Filters

In some situations input-based filters are not an appropriate solution. For some vul-
nerabilities, it is not possible to generate an input-based filter that is accurate, ef-
ficient, and of reasonable size. In addition, while one of the desirable properties
of input-based filters is that they can be evaluated off the host (e.g., by a network
intrusion detection system), this advantage is largely negated in cases where it is
impossible to perform accurate filtering without knowledge of state that is on the
vulnerable host, such as what encryption key is being used for a particular connec-
tion. On the other hand, various host-based approaches have been proposed which are
more accurate, but have other drawbacks. For example, previous approaches have fo-
cused on: (1) Patching: patching a new vulnerability can be a time-consuming task—
generating high quality patches often require source code, manual effort, and exten-
sive testing. Applying patches to an existing system also often requires extensive
testing to ensure that the new patches do not lead to any undesirable side effects on
the whole system. Patching is far too slow to respond effectively to a rapidly spread-
ing worm. (2) Binary-based full execution monitoring: many approaches have been
proposed to add protection to a binary program. However, these previous approaches
are either inaccurate and only defend against a small classes of attacks (4, 50, 28, 37]
or require hardware modification or incur high performance overhead when used to
protect the entire program execution [17, 43, 62, 13].

We propose a new approach for automatic defense: vulnerability-specific execu-
tion-based filtering (VSEF) [39]. At a high-level, VSEF filters out exploits based on
the program’s execution, as opposed to filtering based solely upon the input string.
However, instead of instrumenting and monitoring the full execution, VSEF only
monitors and instruments the part of program execution which is relevant to the
specific vulnerability. VSEF therefore takes the best of both input-based filtering and
full execution monitoring: it is much more accurate than input-based filtering and
much more efficient than full execution monitoring.

We also develop the first system for automatically creating a VSEEF filter for a
known vulnerability given only a program binary, and a sample input that exploits
that vulnerability. Our VSEF Filter Generator automatically generates a VSEF filter

160 David Brumley, James Newsome, and Dawn Song

which encodes the information needed to detect future attacks against the vulnerabil-
ity. Using the VSEF filter, the vulnerable host can use our VSEF Binary Instrumen-
tation Engine to automatically add instrumentation to the vulnerable binary program
to obtain a hardened binary program. The hardened program introduces very little
overhead and for normal requests performs just as the original program. On the other
hand, the hardened program detects and filters out attacks against the same vulner-
ability. Thus, VSEF protects vulnerable hosts from attacks and allow the vulnerable
hosts to continue providing critical services.
Using the execution trace of an exploit of a vulnerability, our VSEF automati-
cally generates a hardened program which can defend against further (polymorphic)
exploits of the same vulnerability. VSEF achieves the following desirable properties:
e Our VSEF is an extremely fast defense. In general, it takes a few milliseconds
for our VSEF to generate the hardened program from an exploit execution trace.
e Our VSEF filtering techniques provide a way of detecting exploits of a vulnera-
bility more accurately than input-based filters and more efficiently than full exe-
cution monitoring.

e Our techniques do not require access to source code, and are thus applicable in
realistic environments.

e Our experiments show that the performance overhead of the hardened program
is usually only a few percent.

e Our approach is general, and could potentially be applied to other faults such as
integer overflow, divide-by-zero, efc.

These properties make VSEF an attractive approach toward building an auto-
matic worm defense system that can react to extremely fast worms.

7.6 Sting Self-healing Architecture and Experience

We integrate the aforementioned new techniques with each-other and with existing
techniques to form a new end-to-end self-healing architecture, called Sting [40], as a
first step towards automatically defending against fast Internet-scale worm attacks.

Sting Consumer

)

Self-Harden

Self-Monitor

Hardoned
candidate

CS{D Exploit Sandboxed Verified Refine
Dissemination Msg Trace Verificatiop andidats
Unverified

Reject Install
candidate candidate

VSEF

Exploit
Msg Trace

SVAA

Self-Recover Self-Diaguose

Self~Harden

Sting Producer

Fig. 7.4. Sting distributed architecture

Figure 7.4 illustrates Sting’s distributed architecture. At a high level, the Sting
self-healing architecture enables programs to efficiently and automatically (1) self-
monitor their own execution behavior to detect a large class of errors and exploit

7 Sting: End-to-End Self-Healing Defense against Internet Worms 161

attacks, (2) self-diagnose the root cause of an error or exploit attack, (3) self-harden
to be resilient against further attacks, and (4) quickly self-recover to a safe state
after a state corruption. Further, once a Sting host detects and diagnoses an error or
attack, it generates a Self-Verifiable antibodyAlert (SVAA), to be distributed to other
vulnerable hosts, who verify the correctness of the antibodyand use it to self-harden
against attacks against that vulnerability.

Our Sting self-healing architecture achieves the following properties: Our tech-
niques are accurate, apply to a large class of vulnerabilities and attacks, and enable
critical applications and services to continue providing high-quality services even
under new attacks on previously unknown vulnerabilities. Moreover, our techniques
work on black-box applications and commodity software since we do not require
access to source code. Furthermore, such a system integration allows us to achieve
a set of salient new features that were not possible in previous systems: (1) By in-
tegrating checkpointing and system call logging with diagnosis-directed replay, we
can quickly recover a compromised program to a safe and consistent state for a large
class of applications. In fact, our self-recovery procedure does not require program
restart for a large class of applications, and our experiments demonstrate that our
self-recovery can be orders of magnitude faster than program restart. (2) By inte-
grating faithful and zero side-effect system replay with in-depth diagnosis, we can
seamlessly combine light-weight detectors and heavy-weight diagnosis to obtain the
benefit of both: the system is efficient due to the low overhead of the light-weight
detectors; and the system is able to faithfully replay the attack with no side effect
for in-depth diagnosis once the light-weight detectors have detected an attack, which
are important properties lacking in previous work [12, 2]. Such seamless integra-
tion is also particularly important for retro-active random sampling, where randomly
selected requests can be later examined by in-depth diagnosis without the attacker
being able to tell which request has been sampled. This is a property that previous
approaches such as [2] do not guarantee.

Moreover, our self-healing approach not only allows a computer program to self-
heal, but also allows a community of nodes that run the same program to share au-
tomatically generated antibodies quickly and effectively. In particular, once a node
self-heals, it generates an Self-Verifiable Antibody Alerts containing an antibodythat
other nodes can use to self-harden before being attacked. The antibodyis a response
generated in reaction to a new exploit and can be used to prevent future exploits of
the underlying vulnerability. Moreover, the disseminated alerts containing the anti-
bodyare self-verifiable, so recipients of alerts need not trust each other. We call this
type of defense reactive anti-body defense, similar to Vigilante [12].

Our evaluation demonstrates that our system has an extremely fast response time
to an attack: it takes under one second to diagnose, recover from, and harden against
a new attack. And it takes about one second to generate and verify a Self-Verifiable
Antibody Alerts. Furthermore, our evaluation demonstrates that with reasonably low
deployment ratio of nodes creating antibodies (Sting producers), our approach will
protect most of the vulnerable nodes which can receive and deploy antibodies (Sting
consumers) from very fast worm attacks such as the Slammer worm attack.

162 David Brumley, James Newsome, and Dawn Song

Finally, despite earlier work showing that proactive protection mechanisms such
as address randomization are not effective as defense mechanisms [52], we show that
reactive anti-body defense alone (as proposed in [12]) is insufficient to defend against
extremely fast worms such as hit-list worms. By combining proactive protection and
reactive anti-body defense, we demonstrate for the first time that it is possible to
defend against even hit-list worms. We demonstrate that if the Sting consumers also
deploy address space randomization techniques, then our system will also be able to
protect most of the Sting consumers from extremely fast worm attacks such as hit-
list worms. To the best of our knowledge, we are the first to demonstrate a practical
end-to-end approach which can defend against hit-list worms.

By developing and carefully uniting a suite of new techniques, we design and
build the first end-to-end system that has reasonable performance overhead, yet can
respond to worm attacks quickly and accurately, and enable safe self-recovery faster
than program restart. The system also achieves properties not possible in previous
work as described above. Furthermore, by proposing a hybrid defense strategy, a
combination of reactive anti-body defense and proactive protection, we show for the
first time that it is possible to defend against hit-list worms.

7.7 Evaluation

7.7.1 Reactive Anti-body Defense Evaluation

In this section, we evaluate the effectiveness of our reactive anti-body defense against
fast worm outbreaks, using the Slammer Worm and a hit-list worm as concrete ex-
amples. In particular, given a worm’s contact rate G (the number of vulnerable hosts
an infected host contacts within a unit of time), the effectiveness of our reactive anti-
body defense depends on two factors: the deployment ratio of Sting producers « (the
fraction of the vulnerable hosts which are Sting producers) and the response time 7
(the time it takes from a producer receiving an infection attempt to all the vulnerable
hosts receiving the SVAA generated by the producer). We illustrate below the total
infection ratio (the fraction of vulnerable hosts infected throughout the worm break)
under our collaborative community defense vs. a given different 5 and r.

Defense against Slammer worm. Figure 5(a) shows the overall infection ratio vs.
the producer deployment ratio o for a Slammer worm outbreak (where 8 = 0.1 [33])
with different response time r. For example, the figure indicates that given @ =
0.0001 and r = 5 seconds, the overall infection ratio is only 15%; and for & = 0.001
and r = 20 seconds, the overall infection ratio is only about 5%. This analysis shows
that our reactive anti-body defense can be very effective against fast worms such as
Slammer. Next we investigate the effectiveness of this defense against hit-list worms.

Defense against Hit-list worm. Figure 6(c) shows the result of a hit-list worm for
B = 1000 and 8 = 4000, and n = 100, 000°. From the figure we see that (ignoring

5 This is basically the same parameters as the Slammer worm, except that instead of a random
scanning worm, the worm is a hit-lIist.

7 Sting: End-to-End Self-Healing Defense against Internet Worms 163

—o—y= ——1=5
08 —o—y=10 (] s —o—y=10
—8—y=20 —a—y=20
0.8] —o—y=30 0.8 —e—y=30
——y=50 —%— =50
07, Yet00 o7 gm0
£ ol £ o8]
i 8
.§ 08 506
£ o4 g 0.4
0.3, 03
22 02
01 a1
g1
X 0.01 0.001 0.0001 05 0 0.001 0.0001

0,005 091
Deployment Ratlo Deployment Ratio

(a) Reactive Anti-body Defense (b) Hybrid Defense against Hit-list

against Slammer (3 = 0.1) (6 = 1000)
go.s
%oﬁt

[01 0.001 00001

0.0t
Deployment Ratlo

(c) Hybrid Defense against Hit-list
(8 = 4000)

Fig. 7.5. Effectiveness of Community Defense

network delay) a hit-list worm can infect the entire vulnerable population (Sting
consumers) in a fraction of a second. This is similar to earlier estimates [32, 61]
which shows that a hit-list worm can propagate through the entire Internet within a
fraction of a second. Thus, our reactive anti-body defense alone will be insufficient
to defend against such fast worms because the anti-bodies will not be generated and
disseminated fast enough to protect the Sting consumers.

7.7.2 Proactive Protection against Hit-list Worm

Another defense strategy is a proactive one instead reactive. For example, for a large
class of attacks, address space randomization can provide proactive protection, al-
beit a probabilistic one. The attack, with high probability, will crash the program
instead of successfully compromise it. This probabilistic protection is an instant de-
fense, which does not need to wait for the anti-body to be generated and distributed.
However, because the protection is only probabilistic, repeated or brute-force attacks
may succeed. Figure 6(a) and 6(b) show the effectiveness of such proactive pro-
tection against hit-list worms when a certain fraction « of the total vulnerable hosts
deploy the proactive protection mechanism, where p = 1/2'2 (the probability of an

164 David Brumley, James Newsome, and Dawn Song

s
%0 —6—a=09
—e— =099
80 ——a=t
§ 3 70
E; 3 80
i i
3 46
i ie
20
10
o w3 10 20 30 40 50 [10 20 k4 40 80
Time (in seconds) Time in ssconds)
(a) Proactive Protection against Hit-list (b) Proactive Protection against Hit-
(8 = 1000) list (3 = 4000)
w0 !
80
g 70|
g 80|
{é 80
§ 40
E
= a0
20|
w
0.004 0012 0.016 0.02

0.008
Time { in seconds)

(¢) Reactive Anti-body Defense
against Hit-list

Fig. 7.6. Defense Effectiveness Evaluation

attack trial succeeding), and 8 = 1000 and 8 = 4000 respectively. As shown in the
figure, for § = 1000, when o = 0.5 50% of the vulnerable hosts deploy the proactive
protection defense, it will take about 10 seconds for the worm to infect 90% of the
vulnerable population; whereas if 100% of the vulnerable hosts deploy the proactive
protection defense, it only slows down the worm to about 45 seconds to infect 90%
of the vulnerable population. When # = 4000, the worm propagates even faster as
shown in Figure 6(b).

Thus, proactive protection alone can slow down the worm propagation to a cer-
tain extent, but is clearly not a completely effective defense.

7.7.3 Hybrid Defense against Hit-list Worm: Combining Proactive Protection
and Reactive Anti-body Defense

As explained above, our reactive anti-body defense alone is not fast enough to de-
fend against hit-list worms. Thus, we propose a hybrid defense mechanism where
the Sting consumers deploy proactive protection mechanisms such as address space
randomization in addition to receiving SVAA using the reactive anti-body defense.
In both cases, we assume the probability that an infection attempt succeeds against

7 Sting: End-to-End Self-Healing Defense against Internet Worms 165

the proactive protection mechanism (e.g., guessing the correct program internal state
with address space randomization) is again 2712,

Figure 5(b) and Figure 5(c) show the effectiveness of this hybrid defense ap-
proach, i.e., the overall infection ratio vs. the producer deployment ratio ¢, with dif-
ferent response time 7, under two different Hit-list worm outbreaks (where 8 = 1000
and 3 = 4000 respectively). For example, the figures indicate that given o = 0.0001
and r = 10 seconds, the overall infection ratio is only 5%; for § = 1000 and 40%
for 8 = 4000; and for o = 0.0001 and r = 5 seconds, the overall infection ratio is
negligible (less than 1%) for both cases.

Our simulations show a total end-to-end time (self-detection, self-diagnosis, dis-
semination, and self-hardening) of about 5 seconds will stop a hit-list worm. Note
that our experiments show that self-detection and self-hardening are almost instanta-
neous, and the total time it takes for a producer to self-diagnose to create a SVAA and
for a consumer to verify a SVAA is under 2 seconds. Vigilante shows that the dis-
semination of an alert could take less than 3 seconds [12]. Thus our system achieves
an r = 2 + 3 = 5, demonstrating that our system is the first to effectively defend
against even hit-list worms.

7.8 Related Work

Antibody Generation Systems. Vigilante has independently proposed a distributed
architecture, where dynamic taint analysis is used to detect new attacks and automat-
ically generate verifiable antibodies [12]. It was a very nice piece of work. There are
several important technical differences between Vigilante and Sting. Unlike Sting,
Vigilante does not provide self-recovery, and also does not allow the seamless com-
bination of light-weight detectors and heavy-weight detectors. Vigilante automati-
cally generates a specific type of input-based filters, where Sting automatically pro-
duces a suite of different antibodies including a wider range of input-based filters
and execution-based filters which could provide higher accuracy.

Sidiroglou et al. have proposed a method for automatically generating patches
when source code is available [53, 54]. They have also proposed application com-
munities [55], in which entities running the same software share the burden of mon-
itoring for flaws and attacks, and notify the rest of the community when such are
detected.

Anagnostakis et al. propose shadow honeypots to enable a suspicious request
to be examined by a more expensive detector [2]. However, their approach requires
source code access and manual identification of beginning and end of transactions
and thus does not work on commodity software. In addition, because they only re-
verse memory states but do not perform system call logging and replay, their ap-
proach can cause side effects. Moreover, because the suspicious request is handled
directly by the more expensive detector instead of the background analysis as in our
approach, the attacker could potentially detect when its attack request is being mon-
itored by a more expensive detector and thus end the attack prematurely and retry
later, whereas our retro-active random sampling addresses this issue.

166 David Brumley, James Newsome, and Dawn Song

Liang and Sekar [31] and Xu et. al. [69] independently propose different ap-
proaches to use address space randomization as a protection mechanism and auto-
matically generate a signature by analyzing the corrupted memory state after a crash.

Recovery. Our diagnosis-directed self-recovery provides a different point in the de-
sign space compared to previous work. For example, Rinard et. al. has proposed an
interesting line of research, failure-oblivious computing in which invalid memory op-
erations are discarded and manufactured values are returned [49]. Instead of rolling
back execution to a known safe point, Sidiroglou et al have explored aborting the
active function when an error is detected [56). While interesting, these approaches
do not provide semantic correctness, and is thus unsuitable for automatic deploy-
ment on critical services. DIRA is another approach that modifies the source code so
that overwrites of control data structures can be rolled back and undone {58]. All of
these approaches require source code access, and thus cannot be used on commodity
software.

There is a considerable body of research on rollback schemes: see [46] for a
more detailed discussion. We choose to use FlashBack [59], a kernel-level approach
for transactional rollback that does not require access to source code and determin-
istically replays execution. Another approach is to use virtual machines (VM) for
rollback [19, 26]. This approach is more heavy-weight but has advantages such as it
is secure against kernel attacks. We plan to explore this direction in the future.

Rx proposes an interesting new approach of using environmental changes to de-
fend against failures, using execution rollback and environment perturbation [46].
However, their approach does not support detailed self-diagnosis and self-hardening,
and simply retries execution with different environmental changes until the failure is
successfully avoided.

Dynamic Taint Analysis. We use TaintCheck [43, 44] to perform dynamic taint
analysis on the binary for self-diagnosis. Others have implemented similar tools [12]
which can also be used. Hardware-assisted taint analysis has also been proposed [62,
17]. Unfortunately, such hardware does not yet exist, though we can take advantage
of any developments in this area.

7.9 Conclusion

We presented a self-healing architecture for software systems where programs (1)
self-monitor and detect exploits, (2) self-diagnose the root cause of the vulnerability,
(3) self-harden against future attacks, and (4) self-recover from attacks. We develop
the first architecture, called Sting, that realizes this four step self-healing architecture
for commodity software. Moreover, our approach allows a community to share an-
tibodies through Self-Verifiable Antibody Alerts, which eliminate the need for trust
among nodes. We validate our design through (1) experiments which shows our sys-
tem can react quickly and efficiently and (2) deployment models which show Sting
can defend against hit-list worms. To the best of our knowledge, we are the first
to design and develop a complete architecture capable of defending against hit-list
worms,

7 Sting: End-to-End Self-Healing Defense against Internet Worms 167

We are one of the first to realize a self-healing architecture that protects software

with light-weight techniques, and enables more sophisticated techniques to perform
accurate post-analysis. We are also the first to provide semantically correct recovery
of a process after an attack without access to its source code, and our experiments
demonstrate that our self-recovery can be orders of magnitude faster than program
restart which significantly reduces the down time of critical services under continu-
ous attacks.

References

—

. K2, admmutate. http://www.ktwo.ca/c/ADMmutate-0.8.4.tar.gz.

2. K. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. Keromytis.

10.

11.

12.

13.

14.

15.

Detecting targeted attacks using shadow honeypots. In Proceedings in USENIX Security
Symposium, 2005.

. K. Avijit, P. Gupta, and D. Gupta. Tied, libsafeplus: Tools for runtime buffer overflow

protection. In USENIX Security Symposium, August 2004.

. A. Baratloo, N. Singh, and T. Tsai. Transparent run-time defense against stack smashing

attacks. In USENIX Annual Technical Conference 2000, 2000.

. S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: An efficient approach to

combat a broad range of memory error exploits. In Proceedings of 12th USENIX Security
Symposium, 2003.

. S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques for comprehensive pro-

tection from memory error exploits. In Proceedings of the 14th USENIX Security Sympo-
sium, 2005.

. D. Brumley, L.-H. Liu, P. Poosank, and D. Song. Design space and analysis of worm

defense systems. In Proc of the 2006 ACM Symposium on Information, Computer;, and
Communication Security (ASIACCS), 2006. Full version in CMU TR CMU-CS-05-156.

. D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards automatic generation

of vulnerability-based signatures. In Proceedings of the IEEE Symposium on Security and
Privacy, 2006.

. C. Cerrudo. Story of a dumb patch. http://argeniss.com/research/

MSBugPaper .pdf, 2005.

CERT/CC. CERT/CC statistics 1988-2005. http://www.cert.org/stats/
cert_stats.html.

M. Chew and D. Song. Mitigating buffer overflows by operating system randomization.
Technical report, Carnegie Mellon University, 2002.

M. Cost, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham. Vigi-
lante: End-to-end containment of internet worms. In 20°* ACM Symposium on Operating
System Principles (SOSP 2005), 2005.

M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham.
Vigilante: End-to-end containment of internet worms. In Proceedings of the twentieth
ACM symposium on Operating systems principles (SOSP), Oct. 2005.

C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman. FormatGuard: automatic
protection from printf format string vulnerabilities. In Proceedings of the 10th USENIX
Security Symposium, August 2001.

C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuard: Protecting pointers from
buffer overflow vulnerabilities. In 12th USENIX Security Symposium, 2003.

168

16.

17.

18.

19.

20.

21.

22.

23.

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

35.

36.

David Brumley, James Newsome, and Dawn Song

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang,
and H. Hinton. StackGuard: automatic adaptive detection and prevention of buffer-
overflow attacks. In Proceedings of the 7th USENIX Security Symposium, January 1998.
J. R. Crandall and F. Chong. Minos: Architectural support for software security through
control data integrity. In International Symposium on Microarchitecture, December 2004.
T. Detristan, T. Ulenspiegel, Y. Malcom, and M. V. Underduk. Polymorphic shellcode en-
gine using spectrum analysis. http://www.phrack.org/show.php?p=6l&a=9.
G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. Revirt: Enabling intrusion analysis
through virtual-machine logging and replay. In Proceedings of the 2002 Symposium on
Operating System Design and Implementation (OSDI), 2002.

D. C. DuVarney, R. Sekar, and Y.-J. Lin. Benign software mutations: A novel approach
to protect against large-scale network attacks. Center for Cybersecurity White Paper,
October 2002.

Dynamorio. http://www.cag.lcs.mit.edu/dynamorio/.

S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse computer systems. In Pro-
ceedings of 6th workshop on Hot Topics in Operating Systems, 1997.

J. Hopcroft, R. Motwani, and J. Ullman. Introduction to automata theory, langauges, and
computation. Addison-Wesley, 2001.

. D. Jackson and E. Rollins. Chopping: A generalization of slicing. In Proc. of the Second

ACM SIGSOFT Symposium on the Foundations of Software Engineering, 1994.

R. Jones and P. Kelly. Backwards-compatible bounds checking for arrays and pointers in
C programs. In Proceedings of the Third International Workshop on Automated Debug-
ging, 1995.

A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting past and present intru-
sions through vulnerability-specific predicates. In Proceedings of the 2005 Symposium
on Operating Systems Principles (SOSP), 2005.

H.-A. Kim and B. Karp. Autograph: toward automated, distributed worm signature de-
tection. In Proceedings of the 13th USENIX Security Symposium, August 2004.

V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via program shepherd-
ing. In Proceedings of the 11th USENIX Security Symposium, August 2002.

C. Kreibich and J. Crowcroft. Honeycomb - creating intrusion detection signatures using
honeypots. In Proceedings of the Second Workshop on Hot Topics in Networks (HotNets-
11), November 2003.

R. Lemos. Counting the cost of the slammer worm. http://news.com.com/
2100-1001-982955.html, 2003.

Z. Liang and R. Sekar. Fast and automated generation of attack signatures: A basis for
building self-protecting servers. In Proc. of the 12th ACM Conference on Computer and
Communications Security (CCS), 2005.

D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside the
slammer worm. In IEEE Security and Privacy, volume 1, 2003.

D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside the
slammer worm. In IEEE Security and Privacy, volume 1, 2003.

D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet quarantine: Requirements for
containing self-propagating code. In 2003 IEEE Infocom Conference, 2003,

C. Nachanberg. Computer virus-antivirus coevolution. Communications of The ACM,
1997.

G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe retrofitting of legacy code.
In Proceedings of the Symposium on Principles of Programming Languages, 2002.

37.

38.

39.

40.

41.

42,

43.

45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

7 Sting: End-to-End Self-Healing Defense against Internet Worms 169

N. Nethercote and J. Fitzhardinge. Bounds-checking entire programs without recompil-
ing. In Proceedings of the Second Workshop on Semantics, Program Analysis, and Com-
puting Environments for Memory Management (SPACE 2004), Venice, Italy, Jan. 2004.
(Proceedings not formally published.).

N. Nethercote and J. Seward. Valgrind: A program supervision framework. In Proceed-
ings of the Third Workshop on Runtime Verification (RV’03), Boulder, Colorado, USA,
July 2003.

J. Newsome, D. Brumley, and D. Song. Vulnerability-specific execution filtering for ex-
ploit prevention on commodity software. In Proceedings of the 13" Annual Network and
Distributed System Security Symposium (NDSS), 2006.

J. Newsome, D. Brumley, D. Song, and M. R. Pariente. Sting: An end-to-end self-healing
system for defending against zero-day worm attacks on commodity software. Technical
Report CMU-CS-05-191, Carnegie Mellon University, February 2006.

J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating signatures for
polymorphic worms. In Proceedings of the IEEE Symposium on Security and Privacy,
May 2005.

J. Newsome, B. Karp, and D. Song. Paragraph: Thwarting signature learning by train-
ing maliciously. In Proceedings of the International Symposium on Recent Advances in
Intrusion Detection, Sept. 2006.

J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity software. In Proceedings of the 12th An-
nual Network and Distributed System Security Symposium (NDSS), February 2005.

. J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis, and

signature generation of exploits on commodity software. Technical Report CMU-CS-04-
140, Carnegie Mellon University, May 2005.

PaX. http://pax.grsecurity.net/.

F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as allergies—a safe
method to survive software failures. In 20t ACM Symposium on Operating System Prin-
ciples (SOSP), 2005.

r code. ATPhttpd exploit. http://www.cotse.com/mailing-lists/todays/att-0003/01-
atphttp0x06.c.

T. Reps and G. Rosay. Precise interprocedural chopping. In Proc. of the Third ACM
SIGSOFT Symposium on the Foundations of Software Engineering, 1995.

M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and W. B. Jr. Enhancing server avail-
ability and security through failure-oblivious computing. In Operating System Design &
Implementation (OSDI), 2004.

T. J. Robbins. libformat. http://www.securityfocus.com/tools/1818,
2001.

O. Ruwase and M. Lam. A practical dynamic buffer overflow detector. In Proceedings of
the 11th Annual Network and Distributed System Security Symposium, Febroary 2004.
H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effec-
tiveness of address-space randomization. In Proceedings of the 11th ACM Conference on
Computer and Communications Security, October 2004,

S. Sidiroglou and A. D. Keromytis. A network worm vaccine architecture. In Proceed-
ings of the IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), Workshop on Enterprise Security, pages 220-225,
June 2003.

S. Sidiroglou and A. D. Keromytis. Countering network worms through automatic patch
generation. IEEE Security and Privacy, 2005.

170

55.

56.

57.

58.

59.

60.

61.

62.

63.
64.
65.

66.

67.

68.

69.

David Brumley, James Newsome, and Dawn Song

S. Sidiroglou, M. Locasto, and A. Keromytis. Software self-healing using collaborative
application communities. In Proceedings of the 13" Annual Network and Distributed
System Security Symposium (NDSS), 2006.

S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis. Building a reactive
immune system for software services. In USENIX Annual Technical Conference, 2005.
S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting. In
Proceedings of the 6th ACM/USENIX Symposium on Operating System Design and Im-
plementation (OSDI), Dec. 2004.

A. Smirnov and T. cker Chiueh. DIRA: Automatic detection, identification, and repair
of control-hijacking attacks. In Proceedings of the 12" annual Network and Distributed
System Security Symposium (NDSS), 2005.

S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flashback: A lightweight
extension for rollback and deterministic replay for software debugging. In Proceedings
of the 2004 USENIX Technical Conference, 2004.

S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top speed of flash worms. InACM
CCS WORM, Oct. 2004.

S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet in your spare time. In
11th USENIX Security Symposium, 2002.

G. E. Suh, J. Lee, and S. Devadas. Secure program execution via dynamic information
flow tracking. In Proceedings of ASPLOS, 2004.

P. Szor. Hunting for metamorphic. In Proceedings of the Virus Bulletin Conference, 2001.
J. Twycross and M. M. Williamson. Implementing and testing a virus throttle. In Pro-
ceedings of 12th USENIX Security Symposium, August 2003.

US-CERT. Vulnerability note vu#196945 - isc bind 8 contains buffer overflow in
transaction signature (tsig) handling code. http://www.kb.cert.org/vuls/id/
196945.

H. J. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield: Vulnerability-driven network
filters for preventing known vulnerability exploits. In ACM SIGCOMM, August 2004.
M. M. Williamson. Throttling viruses: Restricting propagation to defeat malicious mobile
code. In Proceedings of the 18th Annual Computer Security Applications Conf erence,
2002.

J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization for security.
Technical report, Center for Reliable and Higher Performance Computing, University of
Illinois at Urbana-Champaign, May 2003.

J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt. Automatic diagnosis and response to
memory corruption vulnerabilities. In Proceedings of the 12th Annual ACM Conference
on Computer and Communication Security (CCS), 2005.

8

An Inside Look at Botnets

Paul Barford and Vinod Yegneswaran

Computer Sciences Department, University of Wisconsin, Madison
{pb, vinod}@cs.wisc.edu

Summary. The continued growth and diversification of the Internet has been accompanied
by an increasing prevalence of attacks and intrusions [40]. It can be argued, however, that a
significant change in motivation for malicious activity has taken place over the past several
years: from vandalism and recognition in the hacker community, to attacks and intrusions for
financial gain. This shift has been marked by a growing sophistication in the tools and methods
used to conduct attacks, thereby escalating the network security arms race.

Our thesis is that the reactive methods for network security that are predominant today
are ultimately insufficient and that more proactive methods are required. One such approach
is to develop a foundational understanding of the mechanisms employed by malicious soft-
ware (malware) which is often readily available in source form on the Internet. While it is
well known that large IT security companies maintain detailed databases of this informa-
tion, these are not openly available and we are not aware of any such open repository. In
this chapter we begin the process of codifying the capabilities of malware by dissecting four
widely-used Internet Relay Chat (IRC) botnet codebases. Each codebase is classified along
seven key dimensions including botnet control mechanisms, host control mechanisms, prop-
agation mechanisms, exploits, delivery mechanisms, obfuscation and deception mechanisms.
Our study reveals the complexity of botnet software, and we discusses implications for defense
strategies based on our analysis.

8.1 Introduction

Software for malicious attacks and intrusions (malware) has evolved a great deal over
the past several years. This evolution is driven primarily by the desire of the authors
(black hats) to elude improvements in network defense systems and to expand and
enhance malware capabilities. The evolution of malcode can be seen both in terms
of variants of existing tools (e.g., there are over 580 variants of the Agobot malware
since it’s first release in 2002 [33]) and in the relatively frequent emergence of com-
pletely new codebases (e.g., there were six major Internet worm families introduced
in 2004: Netsky, Bagle, MyDoom, Sassser, Korgo and Witty as well as the Cabir
virus - the first for cell phones [11]).

While worm outbreaks and DoS attacks have been widely reported in the popular
press and evaluated extensively by the network and security research communities

172 Paul Barford and Vinod Yegneswaran

(e.g., [25, 23, 24, 9]), perhaps the most serious threat to the Internet today are col-
lections of compromised systems that can be controlled by a single person. These
botnets have actually been in existence for quite some time and trace their roots to
the Eggdrop bot created by Jeff Fisher for benign network management in 1993.
High level overviews of malicious botnet history and their basic functionality can
be found in [29, 4]. Over the years botnet capability has increased substantially to
the point of blurring the lines between traditional categories of malware. There have
been numerous reports of botnets of over one hundred thousand systems (although
the average size appears to be dropping) and the total number of estimated systems
used in botnets today is in the millions [13, 19, 10].

A plausible reason for the rise of malicious botnets is that the basic motivations
for malicious activity are shifting. In the past, the primary motivations for attacks
appear to have been simple (but potent) “script kiddie” vandalism and demonstra-
tions of programming prowess in the black hat community. However, there are an
increasing number of reports of for-profit malicious activity including identity theft
and extortion that may be backed by organized crime (e.g., [28, 35, 371). This trend
toward an economic motivation is likely to catalyze development of new capabilities
in botnet code making the task of securing networks against this threat much more
difficult.

The thesis for our work is that effective network security in the future will be
based on detailed understanding of the mechanisms used by malware. While this
high level statement does not represent a significant departure from what has been the
modus operandi of the IT security industry for some time, unfortunately, data sharing
between industry and research to date has not been common. We argue that greater
openness and more detailed evaluations of the mechanisms of malware are required
across the network security research community. In some respects this broadens the
Internet Center for Disease Control vision outlined by Staniford et al. in [34]. We
advocate analysis that includes both static inspection of malware source code when
it is available and dynamic profiling of malware executables in a controlled environ-
ment. An argument for the basic feasibility of this approach is that a good deal of
malware is, in fact, available on line (e.g., [22]) and there are emerging laboratory
environments such as WAIL [3] and DETER [8] that enable safe evaluation of exe-
cutables. It is important to emphasize that these analyses are meant to complement
the ongoing empirical measurement-based studies (e.g., [36, 26, 2]) which provide
important insight on how malware behaves in the wild, and are critical in identifying
new instances of outbreaks and attacks.

This chapter presents a first step in the process of codification of malware mech-
anisms. In particular, we present an initial breakdown of four of the major botnet
source codebases including Agobot, SDBot, SpyBot and GT Bot. We conduct this
analysis by creating a taxonomy of seven key mechanisms and then describe the
associated capabilities for specific instances of each bot family. Our taxonomy em-
phasizes botnet architecture, control mechanisms, and methods for propagation and
attack. Our objectives are to highlight the richness and diversity of each codebase, to
identify commonalities between codebases and to consider how knowledge of these
mechanisms can lead to development of more effective defense mechanisms.

8 An Inside Look at Botnets 173

A summary of our findings and their implications are as follows:

¢ Finding: The overall architecture and implementation of botnets is complex, and
is evolving toward the use of common software engineering techniques such as
modularity. Implication: The regularization of botnet architecture provides in-
sight on potential extensibility and could help to facilitate systematic evaluation
of botnet code in the future.

o Finding: The predominant remote control mechanism for botnets remains Inter-
net Relay Chat (IRC) and in general includes a rich set of commands enabling a
wide range of use. Implication: Monitors of botnet activity on IRC channels and
disruption of specific channels on IRC servers should continue to be an effective
defensive strategy for the time being.

o Finding: The host control mechanisms used for harvesting sensitive informa-
tion from host systems are ingenious and enable data from passwords to mailing
lists to credit card numbers to be gathered. Implication: This is one of the most
serious results of our study and suggests design objectives for future operating
systems and applications that deal with sensitive data.

e Finding: There is a wide diversity of exploits for infecting target systems written
into botnet codebases including many of those used by worms that target well
known Microsoft vulnerabilities. Implication: This is yet additional evidence
that keeping OS patches up to date is essential and also informs requirements for
network intrusion detection and prevention systems.

¢ Finding: All botnets include denial of service (DoS) attack capability. Implica-
tion: The specific DoS mechanisms in botnets can inform designs for future DoS
defense architectures.

¢ Finding: Shell encoding and packing mechanisms that can enable attacks to cir-
cumvent defensive systems are common. However, Agobot is the only botnet
codebase that includes support for (limited) polymorphism. Implication: A sig-
nificant focus on methods for detecting polymorphic attacks may not be war-
ranted at this time but encodings will continue to present a challenge for defen-
sive systems.

o Finding: All botnets include a variety of sophisticated mechanisms for avoiding
detection (e.g., by anti-virus software) once installed on a host system. Impli-
cation: Development of methods for detecting and disinfecting compromised
systems will need to keep pace.

e Finding: There are at present only a limited set of propagation mechanisms avail-
able in botnets with Agobot showing the widest variety. Simple horizontal and
vertical scanning are the most common mechanism. Implication: The specific
propagation methods used in these botnets can form the basis for modeling and
simulating botnet propagation in research studies.

The remainder of this chapter is structured as follows. While there have been
relatively few studies of botnets in the research literature to date, we discuss other
related work in Section 8.2. In Section 8.3 we present our taxonomy of botnet code
and the results of evaluating four instances of botnet source code. In Section 8.4 we
summarize our work and comment on our next steps.

174 Paul Barford and Vinod Yegneswaran

8.2 Related Work

Empirical studies have been one of the most important sources of information on
malicious activity for some time. Moore et al. characterized the Code Red /I worm
outbreaks in [25] and the Sapphire/Slammer worm outbreak [23] providing key de-
tails on propagation methods and infection rates. Recently, Kumar ez al. show how a
broad range of details of the Witty worm outbreak can be inferred using information
about that malware’s random number generator [20]. In [40], firewall and intrusion
detection system logs collected from sites distributed throughout the Internet are
used to characterize global attack activity. Several recent studies have demonstrated
the utility of unused address space monitors (honeynets) [15] that include active re-
sponse capability as a means for gathering details on network attacks [2, 39, 26].
Honeynet measurement studies have also provided valuable information on botnet
activity [39, 12]. Cooke et al. discuss the potential of correlating data from multi-
ple sources as a means for detecting the botnet command and control traffic in [S].
Finally, the virtual honeyfarm capabilities described in [38] could prove to be very
useful for botnet tracking in the future.

As we advocated in the prior section, another way to study malware is to gather
and then decompose instances of both source code (many instances of malware
source code can be found by searching the Web and Usenet news groups) and ex-
ecutable code (executables can be gathered by enhancing honeynet environments).
There are standard tools available for reverse engineering executables including dis-
assemblers, debuggers and system monitors such as [17, 30, 27]. Despite the capa-
bilities of these tools, the complexity and deception techniques of certain instances
of malware executables often complicate this analysis [16]. Likewise, there are many
tools available for static analysis of source code such as [7, 6]. While these tools are
often focused on the problems of identifying run time errors and security vulnera-
bilities, the general information they provide such as parse trees, symbol tables and
call graphs could be valuable in our malware analysis. While we present a simple
taxonomy of malware mechanisms in this chapter, we look forward to using both
static and dynamic analysis tools for in depth study in the future.

8.3 Evaluation

Our process of codification of malware begins with a comparison of four botnet
families: Agobot, SDBot, SpyBot and GT Bot. These were selected based on the
age of their first known instances, the diversity in their design and capabilities, and
reports in the popular press, commercial and research communities identifying these
as the most commonly used bot families. While each of these families have many
versions and variants, for this study we evaluate one version of source code from
each: Agotbot (4.0 pre-release), SDBot (05b) and SpyBot (1.4). GT Bot variants
are commonly listed with extensions after the word “Bot” e.g., “GT Bot Foo” — we
evaluated the “GT Bot with DCOM?” version of this code.

8 An Inside Look at Botnets 175

The attributes we consider in our analysis include: (¢) architecture, (i¢) botnet
control mechanisms, (¢i¢) host control mechanisms, (iv) propagation mechanisms,
(v) target exploits and attack mechanisms, (v7) malware delivery mechanisms, (v)
obfuscation methods, and (vi?) deception strategies. This taxonomy was developed
based on our goal of improving both host and network-based defensive systems by
exploiting knowledge of basic features of botnet systems.

8.3.1 Architecture

Architecture refers to the design and implementation characteristics of bot code. Ar-
chitecture is readily analyzed from source code and includes assessment of the over-
all organization, data design, interface design and component design of the system.
An important additional objective in this analysis is to assess the potential long term
viability of each bot family by considering how each codebase might be extended to
include new functionality.

e Agobot: The earliest references to Agobot that we could find were in the Oc-
tober, 2002 time frame [31]. There are now many hundreds of variants of this
code which is also commonly referred to as Phatbot. It is arguably the most so-
phisticated and best-written source code among the four families we evaluated.
A typical source bundle is around 20,000 lines of C/C++. The bot consists of
several high level components including, (¢) an IRC-based command and control
mechanism, (i7) a large collection of target exploits, (éi¢) the ability to launch dif-
ferent kinds of DoS attacks, (iv) modules that support shell encodings and lim-
ited polymorphic obfuscations, (v) the ability to harvest the local host for Paypal
passwords, AOL keys and other sensitive information either through traffic sniff-
ing, key logging or searching registry entries, (v¢) mechanisms to defend and
fortify compromised systems either through closing back doors, patching vulner-
abilities or disabling access to anti-virus sites, and (v4z) mechanisms to frustrate
disassembly by well known tools such as Softlce, Ollydbg and others. Agobot has
a monolithic architecture, demonstrates creativity in design, and adheres to struc-
tured design and software engineering principles through its modularity, standard
data structures and code documentation.

e SDBot: The earliest references to SDBot that we could find were in the Octo-
ber, 2002 time frame [32]. There are now hundreds of variants of this code that
provide a wide range of capabilities. In contrast with Agobot, SDBot is a fairly
simple, more compact instance of bot code written in slightly over 2,000 lines
of C. The main source tree does not include any overtly malicious code modules
such as target exploits or DoS capabilities, and is published under GPL. SDBot
primarily provides a utilitarian IRC-based command and control system. How-
ever, the code is obviously easy to extend, and a large number of patches are
readily available that provide more sophisticated malicious capabilities such as
scanning, DoS attacks, sniffers, information harvesting routines and encryption
routines. This organization facilitates generation of custom botnets with special-
ized capabilities that suit a specific botmaster. We speculate that an important

176 Paul Barford and Vinod Yegneswaran

motivation for this patch-style dissemination strategy is diffusion of accountabil-
ity. We easily found around 80 patches for SDBot ! on the Web, not all of which
were malicious.

¢ SpyBot: The earliest references to SpyBot that we could find were in the April,
2003 time frame [21]. Like Agobot and SDBot there are now hundreds of vari-
ants of SpyBot. The codebase is relatively compact, written in under 3,000 lines
of C. Much of SpyBot’s command and control engine appears to be shared with
SDBot, and it is likely, in fact, that it evolved from SDBot. However, unlike
SDBot, there is no explicit attempt to diffuse accountability or to hide the mali-
cious intent of this codebase. The version of SpyBot that we evaluated includes
NetBIOS/Kuang/Netdevil/KaZaa exploits, scanning capability, and modules for
launching flooding attacks. Overall, the codebase for Spybot is efficient, but does
not exhibit the modularity or breadth of capabilities of Agobot.

o GT Bot: The earliest references to GT Bot that we could find were in the April,
1998 time frame [1]. At present there are well over a hundred variants of GT
(Global Threat) Bot which is also referred to as Aristotles. GT Bot’s design is
quite simple, providing a limited set of functions based on the scripting capabil-
ities of mIRC which is a widely used shareware IRC client for Windows. mIRC
provides functionality for writing event handlers that responds to commands re-
ceived by remote nodes. GT Bot also includes the HideWindow program which
keeps the bot hidden on the local system. While this bot has proved easy to mod-
ify, there is nothing that suggests it was designed with extensibility in mind. GT
Bot capabilities including port scanning, DoS attacks, and exploits for RPC and
NetBIOS services. GT Bot scripts are commonly stored in a file called mirc.ini
on compromised local hosts. However GT Bot is often packaged with its own
version of the mIRC.exe that has been hex-edited to include other configuration
files. Other useful pieces of software that are often packaged with GT Bot in-
clude BNC (pronounced “bounce”) which is a proxy system that allows users to
bounce through shells to a IRC server providing anonymity and DoS protection,
and psexec.exe (Syslnternals) which is a utility that facilitates remote process
execution. Based on the limited capabilities in GT Bot, it appears that differ-
ent versions have been generated for specific malicious intent, instead of general
enhancement of the code to provide a broad set of capabilities. As the name sug-
gests, the “with DCOM?” version of GT Bot that we evaluated includes DCOM
exploit capabilities.

Implications: While bot codebases vary in size, structure, complexity, and imple-
mentation approach, there appears to be a convergence in the set of functions that are
available (this will be further highlighted in subsequent sections of this report). This
suggests the possibility that defensive systems may be eventually be effective across
bot families. Further, as demonstrated by the fact that there are so many variants in
each codebase, all of the bot families are at least somewhat extensible. However, we
project that over the next several years, due to economic motivations, capabilities

! These are not UNIX-style patches, rather they are simply well-commented source code
fragments that can be copied and inserted before recompilation.

8 An Inside Look at Botnets 177

and open availability, the Agobot codebase is likely to become dominant. It’s mod-
ular design makes it easy to extend, and we anticipate future enhancements such as
improved command and control systems (e.g.., peer-to-peer) and additional target
exploits. While an open-source-like approach to Agobot’s development is somewhat
daunting, it’s open availability means that it can be examined for elements which can
be exploited by defensive systems.

8.3.2 Botnet Control Mechanisms

Botnet control refers to the command language and control protocols used to operate
botnets remotely after target systems have been compromised. The command and
control mechanisms for the bots that we evaluated are all based on IRC. Thus, an
understanding of that system (e. g., see IETF RFC #1459 which defines IRC) will help
to make sense out of the botnet commands detailed in this section. In general, there
is a broad range of commands that are available. These include directing botnets to
deny service, send spam, phish, forward sensitive information about hosts, and look
for new systems to add to the botnet.

The most important reason for understanding the details of the communication
mechanisms is that their disruption can render a botnet useless. For example, by
sniffing for specific commands in IRC traffic, network operators can identify com-
promised systems, and IRC server operators can shutdown channels that are used
by botnets (this is commonly done today). Additionally, knowledge of these mecha-
nisms can be used in development of large botnet monitors (e.g., via active honeynet
systems), and it also facilitates the process of detecting new variants. While con-
trol mechanisms occasionally change between versions, there is strong commonality
within each family we analyzed. This bodes well for continued focus on these mech-
anisms when designing network defenses against botnets.

e Agobot: The command and control system implemented in Agobot is a deriva-
tive of IRC. The protocol used by compromised systems to establish connec-
tions to control channels is standard IRC. The command language consists of
both standard IRC commands and specific commands developed for this bot. De-
tails of the command language are summarized in Table 8.1. The bot command
set includes directives that request the bot to perform a specific function e.g.,
bot . open which opens a specific file on the host. The control variables are used
in conjunction with the cvar.set command to turn on/off features or other-
wise manipulate fields that affect modes of operation e.g. ddos_max_threads
which directs the bot to SYN flood a specified host using a maximum number of
threads.

e SDBot: The command language implemented in SDBot is essentially a light-
weight version of IRC. Figure 8.1 illustrates the state transition sequence of a
compromised host interacting with an IRC server. The bot begins by establishing
a connection to the IRC server through the following steps: (i) send NICK (name)
and USER (name) to login to the server, (i) if a PING is received, respond with
a PONG, (74¢) when connected to the server (i.e., return code 001 or 005), send

178 Paul Barford and Vinod Yegneswaran

Table 8.1. Partial listing of the Agobot command and control language. The “variables” are passed as parameters
to the cvar. set set command.

Variable Description

bot_ftrans_port Set bot - file transfer port

bot_ftrans_port_ftp Set bot - file transfer port for FTP

si-chanpass IRC server information - channel password
si.mainchan IRC server information - main channel
si_nickprefix IRC server information - nickname prefix
si-port IRC server information - server port
si_server IRC server information - server address
si-servpass IRC server information - server password
si_usessl IRC server information - use SSL ?

si-nick IRC server information - nickname
bot_version Bot - version

bot_filename Bot - runtime filename

bot.id Bot - current ID

bot_prefix Bot - command prefix

bot_timeo Bot - timeout for receiving {in milliseconds)
bot_seclogin Bot - enable login only by channel messages
bot_compnick Bot - use the computer name as a nickname
bot_randnick Bot - random nicknames of letters and numbers
bot_meltserver ~ Bot - melt the original server file
bot_topiccmd Bot - execute topic commands

do_speedtest Bot - do speed test on startup

do_avkill Bot - enable anti-virus kilk

do_stealth Bot - enable stealth operation

as_valname Autostart - value name

as_enabled Autostart - enabled

as.service Autostart - start as service

as.service_name Autostart - short service name
scan_maxthreads ~Scanner - maximum number of threads
scan_maxsockets Scanner - Maximum number of sockets
ddos_maxthreads DDoS - maximum number of threads
redir.maxthreads Redirect - maximum number of threads
identd_enabled IdentD - enable the server
cdkey.windows Return windows product keys on cdkey.get
scaninfo.chan Scanner - output channel

scaninfo level Info level 1 (less) - (3) more
spam.aol_channel AOL spam - channel name
spam.aol.enabled AOL spam - enabled ?

sniffer.enabled Sniffer - enabled ?

sniffer_channel Sniffer - output channel

vuln.channel Vulnerability daemon sniffer channel
inst_polymorph Installer - polymorphoic on install ?

Command Description

bot.about Displays information (e.g., version) about the bot code
bot.die Terminates the bot

bot.dns Resolves IP/hostname via DNS

bot.execute Makes the bot execute a specific .exe

bot.id Displays the ID of the current bot code

bot.nick Changes the nickname of the bot

bot.open Opens a specified file

bot.remove Removes the bot from the host
bot.removeallbut Removes the bot if ID does not match
bot.rndnick Makes the bot generate a new random nickname
bot.status Echo bot status information

bot.sysinfo Echo the bot’s system information

bot.longuptime If uptime > 7 days then bot will respond
bot.highspeed If speed > 5000 then bot will respond

bot.quit Quits the bot

bot.flushdns Flushes the bot’s DNS cache

bot.secure Delete specified shares and disable DCOM
bot.unsecure Enable specified shares and enables DCOM

bot.command Executes a specified command with system()

8 An Inside Look at Botnets 179

PRIVMSG/NOTICE/TOPIC

Fig. 8.1. Typical interaction between an SDBot and IRC server.

a JOIN message followed by a USERHOST request to obtain the hostname, (iv)

wait for a 302 response that indicates a connection is established, (v) listen and

react to commands sent by the master which can include the following:

1. KICK: the bot rejoins the channel if it is kicked off. Otherwise the bot resets
the master if the master is kicked.

2. NICK: if master’s nickname is replaced, then it is updated on the bot.

3. PART (or QUIT): resets the master if the master parts or quits.

4. 353: return code that indicates that the bot has successfully joined the IRC
channel.

The bot then expects all other commands will be sent as part of the PRIVMSG,

NOTICE or TOPIC IRC messages. The commands available in SDBot are listed

in Table 8.2. Additional features supported by SDBot but absent from Agobot

include IRC cloning and spying. Cloning is when a bot connects to an IRC chan-

nel multiple times. This can be used to deny service on a particular IRC server.

Spying is simply the act of logging activity on a specified IRC channel.

e SpyBot: The command language implemented in SpyBot is quite simple and es-
sentially represents a subset of the SDBot command language. The commands
available in SpyBot are listed in Table 8.3. The IRC connection set up proto-
col for SpyBot is the same as SDBot, and the mechanisms to pass and execute
commands on bots are also identical.

180

Paul Barford and Vinod Yegneswaran

Table 8.2. Partial listing of the SDBot command language. These commands are passed to bots via the PRIVMSG,

NOTICE or TOPIC IRC commands.

Command

Description

about
action <channel/user>, <text>
addalias <alias, command>

Displays information about the bot code
Perform specified action on the channel
Add an alias

aliases Return a current list of aliases

cycle<N> <channel> Leave channel and return after N seconds

die Kill all threads, close IRC connection and stop running
disconnect Disconnect from channel and reconnect in 30 minutes
id Return the bot ID

join <channel> <key> Join specified channel with specified key

log Return a log of connections, logins and time stamps
nick < newnick> Changes bot’s nickname

part Part the specified channel

prefix Temporary change to bot’s IP prefix

quit Quit the channel, kill threads and close the bot

raw <text> Send the following text to server

reconnect Disconnect and reconnect to receive new nickname and ID
repeat <numtimes> <command> Act as if command was received numtimes

rndnick Change to random nickname

server <servername>> Temporarily changes bot’s IRC server

status Echo with version number and bot’s uptime

Clones and Spies

clone <server> <port><channel>
crndnick <threadnum>>

craw <threadnum> <text>

c_quit <threadnum>

c.nick <threadnum> <nick>

c.privmsg <threadnum> <user> <text>
c.part <threadnum> <channel>

c.mode <threadnum>> <channel> <mode> <user>
c_join <threadnum> <channel>

c.action <threadnum> < channel> <text>
spy <nick> < server> <port> <channel>

Create clone on specified channel

Causes clone to change to random nickname

Causes clone to send text to server

Causes the clone/spy to quit the IRC server

Causes the clone/spy to change its nickname

Causes clone/spy to send message channel with text
Causes clone/spy to part channel

Causes clone to set a channel or user mode

Causes clone/spy to join channel

Causes clone/spy to perform an action to the given channel.
Creates spy with specified nickname on server,port,channel

Table 8.3. Partial listing of the SpyBot command language. These commands are passed to bots via the PRIVMSG,

NOTICE or TOPIC IRC commands.

Command Description

login < password > Login to the bot

info Provides information about host system

passwords Lists the RAS passwords in MS Windows 9x versions
disconnect < secs > Disconnect bot for t seconds (default is 30 minutes)
reconnect Disconnect and then reconnect

server < new server addr > Temporarily changes the bot’s IRC server

quit Quit the channel, kill threads and close bot

uninstall Uninstalls the bot

redirect <in port> <host> <out port>
raw <command >
download <url> <filename>

Redirect traffic from host to output port
Echo command to server
Copy contents of url to filename

list <path--filter> Liste:\ # %

spy Redirects all traffic from the IRC server to the DCC chat
stopspy Stops the spy

redirectspy Redirects all traffic from the port redirect to the DCC chat
stopredirectspy Stops redirect spy

loadclones <server> <port> <numgclones> Load numclones clones on server

killclones Kills all the clones

rawclones < command>

Execute raw command on all clones

8 An Inside Look at Botnets 181

o GT Bot: Like the other families, GT Bot uses IRC as its control infrastructure.
The command language implemented in GT Bot is the simplest of all of those
that we evaluated, but it varies quite a bit across versions within this family. This
is likely due to the architecture of GT Bot which facilitates creation of versions
with specific intent instead of developing a broad range of capabilities within a
single line of the codebase. We provide a list of the commands supported by the
GTBot-with-dcom source code used in our analysis in Table 8.4.

Table 8.4, Partial listing of the GT Bot command language. These commands are passed to bots via the PRIVMSG,
NOTICE or TOPIC IRC commands.

Command Description

tver Returns the version of the botnet

tinfo Returns local host information e.g., OS, uptime, etc.
Iscan <(ip.*> <port> Scan specified address prefix on specified port
tportscan <IP> <sport><eport> Scan specified address across specified ports

Istopscan Stops all scans

!packet <IP>><number> Start denial of service attack (ping.exe) of IP

Ibnc Execute commands specific to the bounce proxy system
Iclone.* Directs all IRC clone behavior (attacks, etc.)

tupdate <url> Update version of bot code from a specified Web page
- Executes command on local host

Implications: Understanding command and control systems has direct and im-
mediate implications for creation of methods and systems to disrupt botnets. The
continued reliance on IRC as the foundation for botnet command and control means
that IRC server operators can play a central role in blocking botnet traffic (anec-
dotally, they already do). However, monitoring and shutting down botnet channels
by hand is arduous, and automated mechanisms for identifying botnet traffic are re-
quired. The botnet command languages outlined in this section can be used in the
development of such systems and we project this will be a fruitful short term focus
area. However, we anticipate that future botnet development will include the use of
encrypted communication, eventually a movement away from IRC and adopt peer-
to-peer style communication (some versions of Phatbot are already reported to have
rudimentary P2P capability). While this will certainly make defending against bot-
nets more difficult, botnet traffic may still be able to be identified via statistical finger
printing methods.

8.3.3 Host Control Mechanisms

Host control refers to the mechanisms used by the bot to manipulate a victim host
once it has been compromised. The general intent of host control is to fortify the
local system against other malicious attacks, to disable anti-virus software, and to
harvest sensitive information.

e Agobot: The set of host control capabilities provided in Agobot is quite compre-
hensive. These include, (¢) commands to secure the system e.g., close NetBIOS

182

Paul Barford and Vinod Yegneswaran

shares, RPC-DCOM, etc. (i%) a broad set of commands to harvest sensitive in-
formation (447) petrl commands to list the processes running on the host and
kill specific processes ({v) inst commands to add or delete autostart entries. A
summary of Agobot host control commands is provided in Table 8.5.

Table 8.5. Agobot host control commands.

Command Description

harvest.cdkeys Return a list of CD keys

harvest.emails Return a list of emails

harvest.emailshttp Return a list of emails via HTTP
harvest.aol Return a list of AOL specific information
harvest.registry Return registry information for specific registry path
harvest.windowskeys Return Windows registry information
petrhlist Return list of all processes

petrLkill Kill specified process set from service file
petrllistsve Return list of all services that are running
petrlkillsve Delete/stop a specified service

petrl killpid Kill specified process

inst.asadd Add an autostart entry

inst.asdel Delete an autostart entry

inst.sveadd Adds a service to SCM

inst.svedel Delete a service from SCM

¢ SDBot: The host control capabilities provided in the base distribution of SDBot
are somewhat limited. They include some basic remote execution commands and
some capability to gather local information. The lack of host control capabilities
in the basic distribution is likely due to SDBot’s benign intent as described above.
However, these capabilities can be easily enhanced through auxiliary patches and
a large number of these are readily available. A summary of SDBot host control
commands is provided in Table 8.6.

Table 8.6. SDBot host control commands.
Command Description
download <url> <dest>> <action>> Downloaded specified file and execute if action is 1
killthread < thread#> Kiil specified thread
update <url> <id> If bot ID is different than current, download “sdbot executable” and update
sysinfo List host system information (CPU/RAM/OS and uptime)
execute < visibility> <file>> parameters Run a specified program (visibility is 0/1)
cdkey/getcdkey Return keys of popular games e.g., Halflife, Soldier of Fortune etc.

o SpyBot: The host control capabilities included in SpyBot are relatively rich, and
similar in most respects to what is provided by Agobot. These include commands
for local file manipulation, key logging, process/system manipulation and remote
command execution. A summary of the SpyBot host control commands is pro-
vided in Table 8.7.

o GT Bot: The set of host control commands provided in GT Bot is the most

limited of all of the families we evaluated. The base capabilities include only
gathering local system information and the ability to run or delete local files.

8 An Inside Look at Botnets 183

Table 8.7. SpyBot host control commands.

Command Description

delete <filename> Delete a specified file

execute <filename> Execute a specified file

rename <origfilename>> <newfile>> Rename a specified file

makedir <dimame>> Create a specified directory
startkeylogger Starts the on-line keylogger
stopkeylogger Stops the keylogger

sendkeys <keys> Simulates key presses

keyboardlights Flashes remote keyboard lights 50x
passwords Lists the RAS passwords in Windows 9x systems
listprocesses Return a list of all running processes
killprocess <processname> Kills the specified process

threads Returns a list of all running threads
kilithread < number > Kills a specified thread

disconnect <number> Disconnect the bot for number seconds
reboot Reboot the system

cd-rom <0/1> Open/close cd-rom. cd-rom 1 = open, cd-rom 0 = close
opencmd Starts cmd.exe (hidden)

cmd <command > Sends a command to cmd.exe

get <filename> Triggers DCC send on bot

update <url> Updates local copy of the bot code

However, like SDBot, there are many versions of GT Bot that include diverse
capabilities for malicious host control.

Implications: The capabilities and diversity of the host control mechanisms in
botnets are frightening and have serious implications. First they underscore the need
to patch and protect systems from known vulnerabilities. Second, they informs soft-
ware development and the need for stronger protection boundaries across applica-
tions in operating systems. Third, the capabilities of gathering sensitive information
such as Paypal passwords and software keys provide clear economic incentives for
people to operate botnets and for sponsorship by organized crime.

8.3.4 Propagation Mechanisms

Propagation refers to the mechanisms used by bots to search for new host systems.
Traditional propagation mechanisms consist of simple horizontal scans on a single
port across a specified address range, or vertical scans on a single IP address across a
specified range of ports. However, as botnet capability expands, it is likely that they
will adopt more sophisticated propagation methods such as those proposed in [34].

e Agobot: The scanning mechanisms included in Agobot are relatively simple and
do not extend very far beyond horizontal and vertical scanning. Agobot scanning
is based on the notion of network ranges (network prefixes) that are configured
on individual bots. When so directed, a bot can scan across a range or randomly
select IP addresses within a range. However, the current scanning command set
provides no means for efficient distribution of a target address space among a
collection of bots. Table 8.8 provides a summary of the scanning commands in
Agobot.

184 Paul Barford and Vinod Yegneswaran

Table 8.8. Agobot propagation and scanning commands.

Command Description

scan.addnetrange <IP range>> <priority>> Adds a network range to a bot
scan.delnetrange <IP range>> Deletes a network range from a bot
scan.listnetranges Returns all network ranges registered with a bot
scan,clearnetranges Clears all network ranges registered with a bot
scan.resetnetranges Resets the network ranges to the locathost
scan.enable <module name> Enables a scanner module e.g., DCOM
scan.disable <module name> Disables a scanner module

scan.startall Directs all bots to start scanning their network ranges
scan.stopall Directs all bots to stop scanning

scan.start Directs all enabled bots start scanning
scan.stop Directs all bots to stop scanning

scan.stats Returns results of scans

o SDBot: As discussed in Section 8.3.1, by virtue of its benign intent, SDBot does
not have scanning or propagation capability in its base distribution. However,
many variants of SDBot include scanning and propagation capability. Among
these, the scanning control interface is often quite similar to Agobot providing
horizontal and vertical search capabilities. There are also instance where slightly
more complex scanning methods are available. For example, the interface for a
NetBIOS scanner for SDBot accepts starting and ending IP addresses as param-
eters and then randomly selects addresses between these two markers.

o SpyBot: The command interface for Spybot scanning is quite simple, consisting
of horizontal and vertical capability. A typical example is given below:

Command:
scan <start IP address> <port> <delay>
<spreaders> <logfilename>
Example:
scan 127.0.0.1 17300 1 netbios portscan.txt

Scanning begins at the start address and opens MAX_PORTSCAN_SOCKETS -
TO_USE sockets. The default value for this parameter is set to 20. Scanning then
proceeds sequentially. The only spreader supported by the version of SpyBot that
we evaluated is via NetBIOS.

s GTBot: As shown in Table 8.4, GT Bot only includes support for simple hori-
zontal and vertical scanning.

Implications: There are several implications for bot propagation mechanisms.
First, at present, botnets use relatively simple scanning techniques. This means that
it may be possible to develop statistical finger printing methods to identify scans from
botnets in distributed monitors. Second, scanning methods inform requirements for
building and configuring network defenses based on firewalls and intrusion detection
systems that consider scanning frequency. Finally, source code examination reveals
detail of scanning mechanisms that can enable development of accurate botnet prop-
agation models for analytic and simulation-based evaluation. We project that future
versions of bot codebases will focus on propagation as an area of improvement, in-
cluding both flash mechanisms and more stealthy mechanisms.

8 An Inside Look at Botnets 185

8.3.5 Exploits and Attack Mechanisms

Exploits refer to the specific methods for attacking known vulnerabilities on target
systems. Exploits are usually attempted in conjunction with scanning for target hosts.
In this section we discuss the specific exploit modules included in each bot, and other
capabilities for launching remote attacks against target systems.

Agobot: The most elaborate set of exploit modules among the families that
we analyzed is included with Agobot. In contrast with the other bot families,
Agobot’s evolution has included an ever broadening set of exploits instead of
individual versions with their own exploits. This increases Agobot’s potential
for compromising targeted hosts. The exploits in the version of Agobot that we
evaluated include:

1. Bagle scanner: scans for back doors left by Bagle variants on port 2745.

2. Dcom scanners (1/2): scans for the well known DCE-RPC buffer overflow.

3. MyDoom scanner: scans for back doors left by variants of the MyDoom
worm on port 3127.

4. Dameware scanner: scans for vulnerable versions of the Dameware network
administration tool.

5. NetBIOS scanner: brute force password scanning for open NetBIOS shares.
6. Radmin scanner: scans for the Radmin buffer overflow.
7. MS-SQL scanner: brute force password scanning for open SQL servers.
8. Generic DDoS module: enables seven types of denial service attack against
a targeted host. A list of the commands used to control these attacks is given
in Table 8.9.
Table 8.9. Agobot DDos attack commands.
Command Description
ddos.udpfiood<target> <port> < 0=rand> <time>>(secs) <delay>>(ms) Starts a UDP flood
ddos.synflood<host> <time> <delay> <port> Starts a SYN flood
ddos.httpflood <url> <number> <referrer>> <delay> <recursive>> Starts an HTTP flood
ddos.phatsyn <host> <time> <delay> <port> Starts a PHAT SYN flood
ddos.phaticmp <host> <time> <delay> Starts PHAT ICMP flood
ddos.phatwonk <host> <time> <delay> Starts PHATwonk flood
ddos.targa3 <target> <time>>(secs) Start a targa3 flood
ddos.stop stops all floods

SDBot: As discussed in Section 8.3.1, by virtue of its benign intent, SDBot does
not have any exploits packaged in its standard distribution. There are, however,
numerous variants that include specific exploits. SDBot does include modules
for sending both UDP and ICMP packets. While not overtly malicious, these can
certainly be used for simple flooding attacks. Commands to control these capa-
bilities are listed in Table 8.10. As might be expected, there are also numerous
variants of SDBot that include different kinds of DDoS attack modules.

Spybot: The exploits included in the version of Spybot that we evaluated only
included attacks on NetBIOS open shares. However, as with SDBot, there are

186 Paul Barford and Vinod Yegneswaran

Table 8.10. SDBot commands which could be used for DDoS attacks,

Command Description
udp <host> <#pkts> <pkt sz> <delay> <port> Send a specified number of UDP packets
ping <host> <# pkts> <pkt sz> <timeout> Send a specified number of ICMP echo packets

many variants that include a wide range of exploits. SpyBot’s DDoS interface is
also closely related to SDBot and includes the capabilities for launching simple
UDP, ICMP and TCP SYN floods.

¢ GTBot: As mentioned earlier, the exploit set for the GT Bot code that we eval-
uated was developed to include RPC-DCOM exploits. Like SDBot and Spybot,
there are many variants of GT Bot that include other well known exploits. Our
version of GT Bot only included capability to launch simple ICMP floods. How-
ever, there are many variants of GT Bot that have other DDoS capabilities such
as UDP and TCP SYN floods.

Implications: The set of exploits packaged with botnets suggest basic require-
ments for host-based anti-virus systems and network intrusion detection and preven-
tion signature sets. It seems clear that in the future, more bots will include the ability
to launch multiple exploits as in Agobot since this increases the opportunity for suc-
cess. The DDoS tools included in bots, while fairly straightforward, highlight the
potential danger of large botnets. They also inform possibilities for DDoS protection
strategies such as [18].

8.3.6 Malware Delivery Mechanisms

Packers and shell encoders have long been used in legitimate software distribution
to compress and obfuscate code. The same techniques have been adopted in botnet
malware for the same reasons. GT/SD/Spy Bots all deliver their exploit and encoded
malware packaged in a single script. However, Agobot has adopted a new strategy for
malware delivery based on separating exploits and delivery. The idea is to first exploit
a vulnerability (e.g., via buffer overflow) and open a shell on the remote host. The
encoded malware binary is then uploaded using either HT'TP or FTP. This separation
enables an encoder to be used across exploits thereby streamlining the codebase and
potentially diversifying the resulting bit streams.

In Figure 8.2 we provide an example of the shell-encoder used in Agobot for
malware delivery. An important function of a shell-encoder is to remove null bytes
(that terminate c-strings) from x86 instruction sequences. As can be seen in the Fig-
ure, the code begins with an XOR key value of 0x98 then checks to see if this results
in a string without null characters. If the check fails, it simply tries successive values
for the XOR key until it finds a value that works. This value is then copied over to
the shell code at position ENCODER_OFFSET_XORKEY.

Implications: The malware delivery mechanisms used by botnets have implica-
tions for network intrusion detection and prevention signatures. In particular, NID-
S/NIPS benefit from knowledge of commonly used shell codes and ability to perform
simple decoding. If the separation of exploit and delivery becomes more widely

8 An Inside Look at Botnets 187

adopted in bot code (as we anticipate it will), it suggests that NIDS could benefit
greatly by incorporating rules that can detect follow-up connection attempts.

char encoder[]=
"\XEB\x02\XEB\x05\XE8\xFI\XFF\RFF\XFF\x5B\x31\xCI\x 66 \xBO\RFF \XFF"
"\x80\x73\x0E\XFF\x43\xE2\xF9";

int xorkey=0x98;

// Create local copies of the shellcode and encoder

char +szShellCopy=({(char+«)malloc (iSCSize);

memset {szShellCopy, 0, 1SCSize); memcpy (szShellCopy, szOrigShell, iSCSize);
char *szEncoderCopy=(char+)malloc(iEncoderSize);

memset (szEncoderCopy, 0, iEncoderSize);

memcpy (szEncoderCopy, encoder, iEncoderSize);

if (pfnsScC)
pfnSC(szShellCopy, 1SCSize);

char *szShellBackup={char=*)malloc (iSCSize);
memset (szShellBackup, 0, iSCSize);
memcpy (szShellBackup, szShellCopy, 1SCSize);

// Set the content size in the encoder copy

char xszShellLength=(char+)&iSCSize;

szEncoderCopy [ENCODER_OFFSET_SIZE]=(char)szShellLength[0];
szEncoderCopy [ENCODER_OFFSET_SIZE+1]=(char)szShellLength[1l];

// XOR the shellcode while it contains 0x5C, 0x00, Ox0A or 0x0D
while (contains (szShellCopy, 1i8CSize, "\x5C’) ||
contains (szShellCopy, 1SCSize, “\x007) (]| \
contains(szShellCopy, 1iSCSize, ’"\x0A7) ||
contains (szShellCopy, iSCSize, ’\x0D’))
{
memcpy (szS8hellCopy, szShellBackup, 1SCSize); xorkey++;
for(int i=0;1<iSCSize;i++) szShellCopy[il=szShellCopy[i] "xorkey;
szEncoderCopy [ENCODER_OFFSET_XORKEY]=xorkey;
}

free(szShellBackup);

Fig. 8.2. Agobot shell-encoding routine for malware delivery.

8.3.7 Obfuscation Mechanisms

Obfuscation refers to mechanisms that are used to hide the details of what is be-
ing transmitted through the network and what arrives for execution on end hosts.
While none of the bots we evaluated included TCP obfuscations such as those de-
scribed in [14], the aforementioned encoders provide obfuscation in a limited way.
However, if the same key is used in each encoded delivery, then signatures could be
generated quickly that would recognize a particular bit sequence. Polymorphism has
been suggested as a means for evading signatures based on specific bit sequences by
generating random encodings.

188 Paul Barford and Vinod Yegneswaran

The only bot that currently supports any kind of polymorphism is Agobot. There
are currently four different polymorphic encoding strategies that are supported:
POLY.TYPE_XOR, POLY _TYPE_SWAP (swap consecutive bytes), POLY _TYPE_-
ROR (rotate right), POLY _TYPE_ROL (rotate left). While this code appears to func-
tion as advertised, thorough analysis of its capabilities is left for future work.

Implications: While polymorphic botnet delivery appears to be a reality, it is not
yet widely available across bot families. As such, a concentrated focus on polymor-
phism by the network security community may not be warranted at this time. How-
ever, while the polymorphic routine packaged with Agobot is rather simplistic, it is
conceivable that future botnets will have significantly support for polymorphism. As
a result, anti-virus systems and NIDS will need to eventually develop mechanisms to
account for this capability.

8.3.8 Deception Mechanisms

Deception refers to the mechanisms used to evade detection once a bot is installed
on a target host. These mechanisms are also referred to as rootkits. Of the four bots
we analyzed, only Agobot had elaborate deception mechanisms. These include (7}
tests for debuggers such as OllyDebug, Softlce and procdump, (i7) test for VM Ware,
(4i%) killing anti-virus processes, and (iv) altering DNS entries of anti-virus software
companies to point to localhost.

Implications: The elaborate deception strategy of Agobot some ways represents
a merging of botnets with other forms of malware such as trojans and has several
implications. First, honeynet monitors need to be aware of malware that specifically
targets virtual machine environments. Second, it suggests the need for better tools
for dynamic analysis of this malware since simply executing them in VMware or
debuggers will provide false information. Finally, as these mechanisms improve, it is
likely to become increasingly difficult to know that a system has been compromised,
thereby complicating the task for host-based anti-virus and rootkit detection systems.

8.4 Conclusions

Continued improvements and diversification of malware are making the task of se-
curing networks against attacks and intrusions increasingly difficult. The objective
of our work is to expand the knowledge base for security research through system-
atic evaluation of malicious codebases. We advocate an approach that includes both
static analysis of source code and dynamic profiling of executables. In this chapter
we take a first step in this process by presenting an evaluation of four instances of
botnet source code. We selected botnet code as our initial focus due to its relatively
recent emergence as one of the most lethal classes of Internet threats.

Overall, our source code evaluation highlights the sophistication and diverse ca-
pabilities of botnets. The details of our findings include descriptions of the primary
functional components of botnets organized into seven categories. Some of the most
important of findings within these categories include the diverse mechanisms for

8 An Inside Look at Botnets 189

sensitive information gathering on compromised hosts, the effective mechanisms for
remaining invisible once installed on a local host, and the relatively simple com-
mand and control systems that are currently used. While the IRC-based command
and control systems remain an area that the network security community can poten-
tially exploit for defensive purposes, it is likely that these systems will evolve toward
something like a peer-to-peer infrastructure in the near future (if they are not already
doing so).

The results in this chapter represent a first step in a much larger process of de-
composing and documenting malware of all types. Ultimately, we anticipate that the
resulting database will enable proactive network security. Our immediate next steps
will be to begin the process of dynamic profiling of botnet executables using tools
like IDA Pro [17] and by running the executables in our own laboratory environ-
ment. Beyond that, we plan to use the lessons learned from this study to begin an
IRC monitoring effort at our university border router with the objective of develop-
ing new methods for identifying botnet communications. We also plan to expand our
on-going honeynet measurement efforts to include botnet monitoring.

Acknowledgements

This work is supported in part by ARO grant DAAD19-02-1-0304 and NSF grant
CNS-0347252. The second author was supported in part by a Lawrence H.Landweber
NCR Graduate Fellowship. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of the above government agencies
or the U.S. Government.

References

1. C. Associates. GTBotl. http://www3.ca.com/securityadvisor/pest/pest.aspx?id=453073312, 1998.

. M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson. The Internet Motion Sen-
sor: A Distributed Blackhole Monitoring System. In Proceedings of the Network and
Distributed Security Symposium, San Diego, CA, January 2005.

3. P. Barford. The Wisconsin Advanced Internet Laboratory. http://wail.cs.wisc.edu, 2005.

4. J. Canavan. The evolution of irc bots. In Proceedings of Virus Bulletin Conference 2005,
October 2005.

5. E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup: Understanding, detect-
ing and disrupting botnets. In Proceedings of Usenix Workshop on Stepts to Reducing
Unwanted Traffic on the Internet (SRUTI *05), Cambridge, MA, July 2005.

6. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux, and X. Rival. The
Astree Static Analyzer. hitp//www.astree.ens.fr, 2005.

7. Coverity. Coverity Prevent. http://www.coverity.com, 2005.

. DETER. A laboratory for security research. http://www.isi.edu/deter, 2005.

9. D. Dietrich. Distributed Denial of Service (DDoS) Attacks/tools.
http://staff.washington.edu/dittrich/misc/ddos/, 2005.

»N

oo

190

10.
11

12.
13.
14.

15.
16.
17.
18.

19.
20.

21.
22.
23.

24.

25.

26.

27.
28.
29.

30.
31
32.
33.
34,

3s.

36.
37.

38.

Paul Barford and Vinod Yegneswaran

J. Evers. Dutch Police Nab Suspected Bot Herders. CNET News.com, October 2005.
F-Secure Corporation’s Data Security Summary for 2004. http://www.f-secure.com/2004,
2004,

German Honeynet Project. Tracking Botnets. http:/lwww.honeynet.org/papers/bots, 2005.

A. Gostev. Malware Evolution: January - March, 2005. http://www.viruslist.com, 2005.
M. Handley, C. Kreibich, and V. Paxson. Network Intrusion Detection: Evasion, Traf-
fic Normalization, and End-to-End Protocol Semantics. In Proceedings of the USENIX
Security Symposium, Washington, DC, August 2001.

The Honeynet Project. hitp://project.honeynet.org, 2003.

Honeynet Scan of the Month 32. http://www.honeynet.org/scans/scan32/, 2005.

IDA Pro. http://www.datarescue.com, 2005.

S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-Sale: Surviving Organized DDos
Attacks That Mimic Flash Crowds . In Proceedings of the USENIX Symposium on Net-
work Systems Design and Implementation, Boston, MA, May 2005.

D. Kawamoto. Bots Slim Down to get Tough. CNET News.com, November 2005.

A. Kumar, V. Paxson, and N. Weaver. Exploiting underlying structure for detailed re-
construction of an internet scale event. In Proceedings of ACM Internet Measurement
Conference, November 2002.

McAfee. W32-Spybot.worm. http//vil.nai.compvil/contentiv_100282.htm, 2003.

Metasploit. http://www.metasploit.com, 2005.

D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside the
slammer worm. In Proceedings of IEEE Security and Privacy, July 2003.

D. Moore and C. Shannon. The Spread of the Witty Worm. http : // —
www.caida.org/analysis/security fwitty/, 2004.

D. Moore, C. Shannon, and K. Claffy. Code red: A case study on the spread and victims
of an internet worm. In Proceedings of ACM Internet Measurement Workshop, November
2002.

R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson. Characteristics of
internet background radiation. In Proceedings of ACM Internet Measurement Conference,
Taormina, Italy, October 2004.

Regmon. http//www.sysinternals.com, 2005.

California Man Charged in Botnet Attacks. Reuters, November 2005.

B. Saha and A. Gairola. Botnet: An Overivew. CERT-In White Paper, CIWP-2005-05,
June 2005.

SoftICE Driver Suite. htip://www.compuware.com/products/driverstudio/softice.htm, 2005.
Sophos. Troj/Agobot-A. http//www.sophos.com/virusinfo/analyses/trojagobota.html, 2002.
Sophos. Troj/SDBot. http/mww.sophos.com/virusinfo/analyses/trojsdbot.html, 2002.

Sophos virus analyses. http://www.sophos.com/virusinfo/analyses, 2005.

S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet in Your Spare Time. In
Proceedings of the 11th USENIX Security Symposium, 2002.

I. Thomson. Hackers Fight to Create Worlds Largest Botnet. http://www.vnunet.com,
August 2005.

J. Ullrich. Dshield. http://www.dshield.org, 2005.

D. Verton. Organized Crime Invades Cyberspace. http://www.computerworld.com, Au-
gust 2004.

M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren, G. Voelker, and S. Sav-
age. Scalability, fidelity and containment in the potemkin virtual honeyfarm. In Proceed-
ings of ACM Symposium on Operating Systems Principles (SOSP), Brighton, England,
October 2005.

8 An Inside Look at Botnets 191

39. V. Yegneswaran, P. Barford, and D. Plonka. On the design and use of Internet sinks for
network abuse monitoring. In Proceedings of Recent Advances on Intrusion Detection,
Sophia, France, September 2004.

40. V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions: Global characteristics and
prevalence. In Proceedings of ACM SIGMETRICS, San Diego, CA, June 2003.

9

Can Cooperative Intrusion Detectors Challenge the
Base-Rate Fallacy?

Mihai Christodorescu and Shai Rubin

Department of Computer Sciences, University of Wisconsin, Madison
{mihai, shail@cs.wisc.edu

9.1 Introduction

In recent years, researchers have focused on the ability of intrusion detection sys-
tems to resist evasion: techniques attackers use to bypass intrusion detectors and
avoid detection. Researchers have developed successful evasion techniques either
for network-based (e.g., [14, 19]) or host-based (e.g., [18, 20]) detectors.

Unlike the problem of evasion, the problem of false positives has yet to attract
much attention. False positives, cases in which a IDS raises an alert but no intrusion
has occurred, are a major problem for IDS users [6, 16]. If the number of false posi-
tives is large, the security officer that uses the IDS quickly learns to treat every alert
as false, rendering the IDS useless.

In a recent work, Axelsson [2] mathematically showed that even with a reason-
ably accurate detector, one out of three alerts is likely to be false positive. Axelsson
observed that a few IDS mistakes are translated into a large number of false positives
because of the volume of benign events dwarfs the volume of intrusions. Axelsson
concluded that false positives will always remain a major problem and called this
phenomenon, the base-rate fallacy of intrusion detection.

‘We attempt to address the base-rate fallacy. We claim that, even though the fallacy
mandates the use of detectors with a low false positive rate, it also suggests that it is
feasible to build such a detector.

Our approach is based on two observations. First, we observe that false positives
occur not because it is impossible to distinguish between benign and malicious events
but only because it is difficult to do so efficiently. For example, there is a simple pro-
cedure to determine whether an HTTP request triggers a buffer overflow: executing
it in a protected environment (sandbox). Sandboxing, however, is too expensive [1];
an IDS that must analyze thousands of HTTP requests per second cannot afford to
sandbox all of them.

Second, like Axelsson, we observe that most events are benign. However, we
extend the observation further and notice that it is possible to efficiently distinguish
between the majority of benign events and malicious events. It is possible to split the
set of benign events into subsets based on the effort required to determine whether

194 Mihai Christodorescu and Shai Rubin

an event is malicious or benign. For the vast majority of benign events, it is easy to
determine that they are benign. We believe that false positives occur not because it is
difficult to distinguish between an intrusion and any other benign event, but because
it is difficult to distinguish between an intrusion and a small set of benign events.

We leverage these observations to build a detection system with a low false-
positive rate and a low cost. We know that ideal detectors exist, but only with a high
cost of detection. We also know that detectors with a low cost exist, but only with a
high rate of false positives. The goal is then to design a detector that bridges the gap
between these two extremes. To achieve such a detector, we use the concept of defec-
tor combination. Intuitively, we first use an efficient detector to distinguish between
the majority of benign events and might-be-intrusion events. Then, as a second step,
a less efficient detector can further distinguish between might-be-intrusion events
and malicious events. We show that Axelsson’s fallacy actually facilitates cfficiency.
Since the majority of the events are benign, and since it is possible to efficiently dis-
tinguish between the majority of benign events and malicious ones, the efficiency of
the combined detector is close to the efficiency of the more efficient detector.

In particular, this chapter makes the following contributions:

1. We formulate the detector-combination problem: given two detectors D; and
D,, find a function, f, that combines the two such that the combined detector,
f(D1, Dy) is (i) more accurate than both detectors and (ii) its operation cost is
smaller than some upper bound.

2. We mathematically analyze solutions to the detector-combination problem.
We investigate three potential solutions to the detector-combination problem.
For each solution, we investigate the conditions that must hold for Dy and D,
so the function is a valid solution.

3. We derive recommendations for IDS development. Base on our analysis, we
derive recommendations for IDS developers. Example recommendations are:

e To achieve a combined detector with a low false positive rate, design two
detectors with high false positive rates such that they eliminate the false pos-
itive of each other.

¢ Itis not always more efficient to use the most efficient detector to distinguish
between benign and might-be-attack events. The decision depends on the
relation between costs of the two detectors and their false positive rates.

9.2 Overview

In this section we present in detail the false-positive problem, initially formulated by
Stefan Axelsson as the base-rate fallacy. Then we introduce our proposed solution
for reducing false positives with no significant increase in cost and no decrease in
intrusion-detection rate. The discussion of our solution makes use of a practical ex-
ample highlighting the choices a security analyst makes when building an intrusion
detection system.

9 Can Cooperative Intrusion Detectors Challenge the Base-Rate Fallacy? 195
9.2.1 The Base-Rate Fallacy of Intrusion Detection

Axelsson’s Base-Rate Fallacy [2] is best understood via an example. Consider a
network-based IDS that attempts to identify an FTP attack, called ftp-cwd (CAN-
2002-0126 [13]), which causes a buffer overflow in the Blackmoon FTP server for
Windows. The overflow occurs when the attacker supplies an overly long, more than
256 bytes, directory name for the CWD (change directory) command. In an effective
Jtp-cwd attack, this long name must contain shell code that hijacks the control from
the FTP server into the hands of an attacker.

Like Axelsson, we assume that effective instances of the fip-cwd attack are rare.
For example, assume that out of a million packets observed by a network-based IDS
(NIDS), only half a dozen packets are real fip-cwd attacks. Recall that a false positive
is a situation in which the NIDS raises an alert given a non-attack event. Then, a
NIDS that mistakenly generates an alert once every 100,000 non-attack packets (this
means the false-positive rate of this NIDS is 1079), would raise about 10 alerts per
a million packets. In total, such a NIDS would raise about 16 alerts: 6 alerts because
of the real instances of fip-cwd and 10 alerts that are false.

9.2.2 Our Observations

We embrace Axelsson assumption that the number of intrusions is significantly
smaller than the number of benign events. We also understand that false positives
would always be a major problem because they are dominated by the number of
non-attack events. We understand that the only way to address Axelsson’s fallacy is
to develop a highly accurate detector. However, we believe that Axelsson’s fallacy
can be used as a guideline for building such accurate detectors.

We illustrate our observation using the fip-cwd example. Assume that the ex-
ample IDS monitors both the FTP and HTTP servers of our organization. We first
describe two detectors that distinguish between benign events and might-be-ftp-cwd
attacks. As we argue, the operational cost of these two detectors is moderate.

Detector 1: Identify benign HTTP events.
HTTP events are clearly not our attack. It is easy to differentiate between HTTP
and FTP events just by looking at the port numbers in the TCP header.

Detector 2: Identify possibly malicious CWD commands with long arguments.
The computational effort requires to identify a Level 3 event is equivalent to
the effort to identify a regular expression of the form ('\nCWD’)('-\n’){256,}: a
line starts with CWD, followed by at least 256 characters that are not ‘\n’. This
requires matching of a regular expression that can be done in a linear time (with
respect to the length of the input stream).

Detectors 1 and 2 above can be combined to differentiate between benign and
might-be-ftp-cwd events. It is important to understand that, in our scenario, an FTP
CWD command with an argument longer than 256 bytes is an extremely rare event.
In other words, Detectors 1 and 2 can be used to determine that more than 99.9% of
the events on our site are not fip-cwd attacks.

196 Mihai Christodorescu and Shai Rubin

Detector 3: Identify CWD commands with long arguments containing shell
code.
Detector 3 requires the highest computational effort. Like Detector 2, it requires
regular expression matching. However, it also requires inspection of the FTP
payload to determine whether the payload contains valid shell code. One way
to determine whether the FTP command contains shell code is sandboxing [1],
which simulates the CWD command on a shadow FTP server where a successful
buffer overflow cannot cause any damage.

Note that Detector 3 requires significant computational effort, several orders of
magnitudes larger than the cost of Detector 2. However, Detector 3 false positive rate
is zero (if we assume that a CWD command that does not cause an overflow on the
shadow FTP server also does not cause an overflow on the real FTP server). Below,
we show that one can combine all three detectors to get the false positive rate of
Detector 3 at an operational cost close to the cost of Detector 2.

9.2.3 Combining Detectors

Consider a developer that builds a network-based IDS (NIDS). Assume that accord-
ing to the developer’s measurement, the NIDS has to handle 4,000 TCP packets per
second, both FTP and HTTP traffic. For the sake of computation, assume that the de-
veloper implements the NIDS on a 3.5 MHz processor. Thus, on average, the NIDS
must analyze a single packet using less than 8.75 x 10° cycles per packet:

3.5 x 10°

TR R 8.75 x 10° cycles/packet

The developer notices that it is possible to define a Snort signature to match CWD
FTP commands with arguments longer than 256 bytes (i.e., Snort could serve as both
Detector 1 and Detector 2 above). The developer measures Snort’s performance and
notices that (i) Snort requires, on average, 20,000 cycles to analyze a single packet,
and (ii) Snort generates only one fp-cwd alert per 100,000 packets it analyzes, that
is P(Agon) = 1075 (we chose these number based on our experience with Snort).

While Snort meets the cost bound of 8.75 x 10° cycles per packet, its false-
alert rate is too high for the given volume of traffic. In this scenario, Snort would
generate approximately 58 false alerts per hour for 86 actual intrusions per hour. The
developer realizes that the false alert rate is too high; it will cause the NIDS user to
ignore all alerts. The developer decides to consider a different detection approach.

The developer implements a shadow FTP honeypot. The developer measures the
performance of this shadow FTP server and discovers that it requires half a second
to simulate a single FTP command. In other words, it takes 1.75 x 10% cycles to run
a single FTP command on the shadowed FTP server.

The developer then implements the following system. All packets, either FTP or
HTTP, are fed first fed into Snort. Each packet that matches the signature above is
passed to the shadow FTP server. If the FTP command causes an overflow on the
shadow server, the system raises an fip-cwd alert.

9 Can Cooperative Intrusion Detectors Challenge the Base-Rate Fallacy? 197

Let us calculate the average time it takes for the combined system to analyze a
single packet. Denote the time it takes for Snort to analyze a packet as T, and the
time it takes for the shadow server to analyze a packet as Typa40n. Then the average
time per packet for the combined detector is:

Taverage = T:mort + P (Asnort) : Tshadow
=2x 10" +107° x 1.75 x 10°
= 3.75 x 10* cycles

That is, the average time per packet is 23 times lower than the upper bound set by
the developer (8.75 x 10%).

This example construction shows that, while Axelsson’s fallacy holds, it is also
possible to build a highly accurate detector with a reasonable performance. Snort
alone is not accurate and requires 2 x 10% cycles per event. However, the combined
detector, which is highly accurate, requires 3.75 x 10* cycles per event, only 87%
less efficient than snort. In other words, the high volume of benign events dominates
the false positive rate, but it also dominates the average cost of detection.

9.3 The Problem of Detector Combination

Intuitively speaking, the problem of detector combination is how to combine two
detectors such that the combined detector is both more accurate than each component
detector alone and the operational cost of the combined detector is smaller than some
fixed upper bound.

A detector is characterized by its true positive rate, false positive rate, and oper-
ational cost. To define the detector’s operational cost, we use the notion of universal
detection cost. The universal detection cost for a detector D, denoted udc, is a pos-
itive integer that represents the effort D invests per event, the higher the cost the
higher the effort. By effort, we mean computation time, computation space, energy
consumed, or maintenance cost in person-hours.

We use the universal detection cost as a design tool rather than a scientific mea-
surement. Developers considering the detector-combination problem should assign
different costs to the detectors they wish to combine according to their analysis or
experimental measurement. For example, in Section 9.2.3 we use cycles per packet
as our cost function. We derive the costs based on our experience with Snort and our
estimate for a shadow FTP server.

Definition 1 (Intrusion Detector) Let E be a set of events and I C E a set of
intrusions. Let f be a detection function f : E — {A,-A}, with the universal

detection cost C. An intrusion detector system is a tuple ID) (E,I,f,C). We
further define:
1. The true-positive rate of 1D, tp d:efP(f(e) = Ale € I).

2. The false-positive false of ID, fp = P(f(e) = Ale ¢ I).

198 Mihai Christodorescu and Shai Rubin

Table 9.1. Notation used throughout the chapter.

Formal definition Notation Description

P(f(e) = Alee I) P(Al true positive (tp) rate.
P(fle)=Ale ¢ I) P(A|-I) false positive (fp) rate.
P(f(e) =-Ale€I) P(-A|I) =1-P(A|]) false negative (fn) rate.
P(f(e) =-Ale ¢ I) P(=A|-I)=1— P(=A|I) true negative (tn) rate.

All detectors operate over the same set of events by definition. We chose this
abstraction because it facilitates detector combination. It is possible to combine a
network-based detector with a host-based detector. Although in practice such detec-
tors operate over a different set of events, these events are signs of the same attack.
For example, an attack exploiting a buffer overflow in an FTP server manifests it-
self both at the network level (the FTP session) and at the host audit log level (the
execution of a new shell).

We note that it is enough to use the true-positive and false-positive rates to charac-
terize a detector completely. The other two rates, the true-negative and false-negative
rates, are the complement of the first two rates. For clarity we use the notation used
by Axelsson as depicted in Table 9.1.

Definition 2 (The Problem of Detector Combination) Ler D1 = (E, I, f1,C1)
and Dy = (E,I, f2,Cs) be two detectors. Let X > O be the cost upperbound.
The detector-combination problem is to find a detection function f3(f1, fa) such that
the following requirements hold for the combined detector D3 = (E, I, f3,C3):

tpg > max(tp,, tpy) (True-Positive Requirement)
frs < min(fpq, frg) (False-Positive Requirement)
Cy < X (Cost Requirement)

Any solution to this problem needs to produce a combined detector D3 with a
true-positive rate that is at least as high as the maximum between the rates of D; and
Dy, a false-positive rate that is at least as low as the minimum between the rates of
D1 and D5, and with a universal cost smaller than X.

9.4 Possible Solutions to the Detector-Combination Problem
We discuss specific solutions to the detector-combination problem and determine for

which instances of the problem these solutions are valid. A general solution to the
detector-combination problem, if one exists, is left for future work.

9.4.1 Trivial Solutions: f3 = f; or f3 = f2

There are instances of the detector-combination problem for which one of the de-
tector is a solution. For example, consider detectors 1) and Dy such that Cy < X,

9 Can Cooperative Intrusion Detectors Challenge the Base-Rate Fallacy? 199

€ = : A? e
€ =—sf———— Detector D

%DE[GC(O{ D 2;»—-—_ A

~A ~4

I . - iy

Fig. 9.1. A schematic view of the cascade-on-alert scheme. The notation A?e means that the
event e is passed on to the next component if the previous component raised the alert A.

tp; > tp,, and fp; < fp, (an analogous case exists for D). D; has true-positive
and false-positive rates better than Dy and its detection cost is lower than the upper
bound X'.

Notice though that there are instances in which C; < X and Cy < X but neither
f3 = finor f3 = f; is a feasible solution. For example, consider D7 and D5 such
that tp, > ip, but fp; > fp,, that is, Dy has better true-positive rate but worse
false-positive rate. Below, we discuss functions that solve the detector-combination
problem for such cases.

94.2 f3 = Cascade on Alert

We analyze a specific solution to the detector-combination problem called cascade-
on-alert. As we show, the cascade on alert is not a general solution to the problem.
Therefore, we derive the constraints on D4 and D that must hold for the cascade-
on-alert function to be a valid solution.

Definition 3 (Cascade-on-Alert) For every event, e, perform the following. Analyze
e using D1. If D1 returns — A, then return —A. If D1 return A, then analyze e using
Dy and return Dy’s answer. Formally:

OISR S Ay L ey
-A iffl(e):"‘A\/(fl(e):A/\f2(6):,jA)

Cascade-on-alert is not a general solution. For example, consider (a useless) Dy
that returns —A for every e. Therefore, the combined detector D3 returns —A for
every event and its true positive rate is zero. Such Dj3 is not a valid solution in case
the true positive rate of D; is greater than zero.

Satisfying the True-Positive Requirement.
The true-positive requirement mandates that tp; > max(ip,, tpy):
P(As|T) = max(P(A1|1), P(Az|I))
T

However, Ay N Ay € A; and A; N Ay C Ay which means that:

200 Mihai Christodorescu and Shai Rubin
P(A1 N Ao|I) < min(P(A4|T), P(A2|1)) ©2)
Hence, the only way to satisfy both Equations 1 and 9.2 is to impose:
P(Ay N As|I) = P(A{[I) = P(4gT) ©9.3)
and the only way to impose Equation 9.3 is to build Dy and D, such that:

{A NI} ={A;n 1} 9.4)

Satisfying the False-Positive Requirement.
The false-positive requirement mandates that fp; < min(fp,, fp,). The cascade-
on-alert function always satisfies this condition because:

fps = P(A1 0 Ag|=I) < min(P(A1|-I), P(Ag|-1)) = min(fpy, fps) (9.5)

Moreover, if we want to reduce the false positive rate to zero the we must impose:

({An-I)n{{dan-I}) =0 (9.6)

Satisfying the Cost Requirement.
We want a detector that its cost of operation is lower than X', That is:

X -4
C

Notice that in Equation 9.7 we use the fact that D, is the “first” detector and Do
is the “second” one in the cascade-on-alert sequence (Figure 9.1). However, this does
not mean that that the universal cost of D4 is lower than the cost of Ds. Indeed, in
Section 9.5.2 we show there are cases in which it is more efficient to put the more
expensive detector in front of the less expensive one.

Summary: Cascade-on-alert is a valid solution to the detector-combination prob-
lem only if D and D satisfy Equations 9.4 and 9.7. If we want a cascade-on-alert
function with zero false positives, then D, and D must satisfy Equation 9.6.

9.4.3 f3 = Cascade on Non-Alert

The cascade-on-non-alert function is analogous to cascade-on-alert. However, in-
stead of invoking Dy when the output of D, is A, the cascade-on-non-alert invokes
D, when D;’s output is = A. Below we derive the necessary conditions for cascade-
on-non-alert to be a valid solution.

Definition 4 (Cascade-on-Non-Alert) For every event, e, perform the following.
Analyze e using D1. If D1 returns A, then return A. If D1 return — A, then analyze e
using Dy and return Dy’s answer. Formally:

f(e):{A if fu(e) = AV (fi(e) = 2AA fale) = A)
s —A i file) =—ANfale) = A

9 Can Cooperative Intrusion Detectors Challenge the Base-Rate Fallacy? 201

~A4?e ~4

Detector D 5 ~A

A A

Fig. 9.2. A schematic view of the cascade-on-non-alert scheme. The notation —A?e means
that the event e is passed on to the next component if the previous component did not raise an
alert A.

Analogous to cascade-on-alert, the cascade-on-non-alert is not a general solution.
We wish to find the constraints that detectors Dy and D5 must satisfy for the cascade-
on-non-alert scheme to be a valid solution to the conditions problem.

Satisfying the True-Positive Requirement.
The true positive rate of D3 can be derived as follows:

P(A3|I) = P(A1 U (—|A1 n A2)|I)
Note that P(Az|I) = P(A;|I)+P(—A1NA2|I)— P(A;N(—A1NAs)|T). Therefore:
P(A3|I) = P(A1|I) + P(—A1 N Ap|T)

Given that 0 < P(—A;NAg|I) < 1, the true positive rate of Dj is at least as good
as the true positive rate of D1. For the cascade-on-no-alert to be a valid solution, we
need to find the conditions under which P(A3|I) is greater than P{Az|T).

P(A1|I) + P(—=A1 N Az|I) > P(Aq|I)
As {—A1 N Ay} = {Ax}\ {41 N Az}, we get:

()
P(A|T) = P(A, N Ao|) 9.9)

Because A; N A2 C Aj, Equation 9.9 is always true. Thus, the true positive rate of
the combined detector is at least as large as the maximum of the true positive rates
of the two detectors.

Furthermore, we can see from Equation 9.8 that the true positive rate of the
combined detector is maximized when P(A; N As|I) = 0. This implies that
{A1 N A, NI} =, or, equivalently:

({AainIh)yn({4snI}) =0 9.10)

In other words, the cascade-on-non-alert scheme achieves maximum true positive
(detection) rate when the two detectors)y and D» raise true alerts on distinct sets
of events.

202 Mihai Christodorescu and Shai Rubin

Satisfying the False-Positive Requirement.
We derive the false positive rate fp; = P(Az|—I) for the combination detector
through a series of steps similar to the derivation for the true positive rate.

P(As|=I) = P(Ay|~I) + P(=AL N Ap|=T) (0.11)

As Equation 9.11 shows, the false positive rate of the combination detector could
increase beyond the false positive rate of the first detector, D;. The best we can
achieve is to keep the false positive rate equal to that of detector Dy. This implies
that P(-A; N Az|—I) = 0, and the following has to hold:

{(~AN{A}n {1} =10 9.12)

Satisfying the Cost Requirement.
The average cost (per event) of the cascade-on-non-alert detector is captured by
the following formula:

C3=C +P(—'A1) x Cy
201+(1—P(A1)) x Cy
= C1+ (1= P(A41|T) x P(I) = P(A1|=I) x P(~I)) x Cq

Then the condition becomes:

X -C

Gt > 1= P(AWD) x P(I) = P(Ay|-1) x P(-D) (9.13)
2

Summary: Cascade-on-non-alert is a valid solution to the detector-combination
problem only if D; and D9 satisfy Equations 9.12 and 9.13. If we want a cascade-
on-non-alert function with maximum true positive rate, then D¢ and Dy must satisfy
Equation 9.10.

9.5 Recommendations to IDS Developers

In Section 9.4 we mathematically analyzed solutions to the detector-combination
problem. In this section we interpret our mathematical results into practical guide-
lines for IDS developers.

In Section 9.4.2, we showed that cascade-on-alert cannot improve the true-
positive rate of either Dy or D (Equation 9.3). Similarly, in Section 9.4.3, we
showed that the cascade-on-non-alert cannot improve the false positive rate of the
combined detector (Equation 9.11). Since the main motivation of our work is reduc-
ing false positives, we focus on the cascade-on-alert scheme.

For cascade-on-alert to be a viable solution, one must build two detectors that
satisfy Equations 9.4 and 9.7. We translate these equations into practical considera-
tions.

9 Can Cooperative Intrusion Detectors Challenge the Base-Rate Fallacy? 203

Alerts from
= detector D2

Alerts from
detector D1

.___—Intrusions

Fig. 9.3. True positives for cascade-on-alert

9.5.1 Satisfying Equation 9.4: The True-Positive Requirement

Equation 9.4 requires that {A; NI} = {As N I'}. Practically, this means that both
detectors must agree when a real attack occurs. Note that this does not mean that both
detectors should detect all real attacks, but only that they should detect the same set
of attacks (Figure 9.3). Detectors Dy and D5 in Figure 9.3 detect that same set of
real attacks (the crosshatched half of the set of real attacks) and miss the same set of
real attacks (the bottom half of the set of real attacks). The combined detector detects
the same set of real attacks as either component detector, but it cannot do better than
that.

To increase the set of detected real attacks of a cascade-on-alert combination,
both sets of real attacks detected by the component detectors must increase. The best
case is shown in Figure 9.4, where both component detectors D7 and D5 detect all
of the real attacks. In this case, the cascade-on-alert combination detects all of the
real attacks as well.

9.5.2 Satisfying Equation 9.7: The Cost Requirement

Notice that satisfying the false positive and true positive requirement does not impose
an order between D; and Dy: we can either put D; in front of D3, or vice versa. This
is evident from Equation 9.4 which does not reflect the order between the detectors.
Thus, we need to look at the cost requirement to determine how to order the detectors.

The cost requirements for the cascade-on-alert scheme when detector D is first
and when D, is first are, respectively, as follows:

Cio=0C1+ P(Al) XCy <X 9.14)
Cy_ 1 =Co+ P(Az) x(C1 <X 9.15)

If none of these requirements are satisfied, then the cascade-on-alert scheme can-
not solve this instance of the detector-combination problem. If only one of these
requirements is satisfied, then the solution is to choose the order corresponding to
that requirement. If both of these requirements are satisfied, then either order (D,
followed by Dy and D, followed by D1) are possible solutions.

204 Mihai Christodorescu and Shai Rubin

We favor the order that leads to the lowest cost for the combined detector. We
assume, without loss of generality, that Dy is less expensive to run than Dy, by a
factorof k > 1:

Cy=kxC 9.16)

Let us consider the conditions under which D, should be placed first:
C1+ P(A;) x Oy < Cy+ P(A2) x 4

which holds if:
kx P(A)) — P(Ay) <k—1 9.17)

If Equation 9.17 holds, then D; should be placed first in the cascade-on-alert
scheme. However, if Equation 9.17 does not hold, we reach a surprising result. The
expensive detector, Dy, should be placed first. Intuitively, the reason is that even

though Dy is less expensive, it will invoke D2 too frequently (because P(Ay) >
k=1 P(Ag))
).

9.5.3 Optimizing Cascade-On-Alert for False Positives

Recall that cascade-on-alert scheme always improves the false-positive rate (Equa-
tion 9.5). Furthermore, cascade-on-alert enables us to reduce the false-positive rate
to zero when we satisfy Equation 9.6.

There can be four cases that satisfy Equation 9.6:

Condition Description
Li{Ai}n {4} =90 Detectors D1 and D- have no alerts in common.
2{AIN{-1} =0 Detector D; produces no false alerts.
{4} {-I} =0 Detector D produces no false alerts.
4.1{A1} N {A2} N {~I} = B]None of the three cases above applies.

When attempting to satisfy Equation 9.6, we also need to remember that we must
satisfy Equation 9.4, which ensures that the true-positive rate requirement holds. In
Case (1) above, this means that {A;} N {A2} = @ and {4; NI} = {4z N I}, thus,
{A1NI} ={AanI} = {. This scenario is not useful, because both the component
detectors and the combined detector fail to detect any attacks.

Case (2) describe scenarios in which the detector D; has no false positives. Given
the fact that { A1 NI} = {A2 N1} (Equation 9.4), it means that D detects all attacks
detected by D and does not produce false positives. In this case, we would like to
use D1 alone. The only reason to use D5 is to reduce the operational cost. This case
is similar to the example case presented in Section 9.2.

Case (3) is analogous to case (2).

Case (4) means that the D, and D» have some false positives, but none of these
false positives are common to both detectors. In other words, whatever the false
positives from the two component detectors, as long as they are distinct, the cascade-
on-alert detector will have no false positives. We can combine this case with the

9 Can Cooperative Intrusion Detectors Challenge the Base-Rate Fallacy? 205

Alerts from
detector D2

Alerts from
detector D1

Intrusions

Fig. 9.4. Best case for cascade-on-alert.

best case for the true-positive requirement (described next) to obtain the only ideal
detector that cascade-on-alert can build.

The Ideal Cascade-On-Alert Combination.

Based on the analysis for the true-positive requirement, a cascade-on-alert de-
tector can attain 100% true positives only if both component detectors have 100%
true positives. Based on the analysis for the false-positive requirement, a cascade-on-
alert detector can attain 0% false positives if the two component detectors have no
false positives in common. This scenario is illustrated in Figure 9.4. In this scenario,
the resulting cascade-on-alert detector is ideal (no false alerts with 100% attacks
detected).

If we furthermore assume that both component detectors have low detection costs
detectors (since they can have relatively large numbers of false positives), then the
resulting cascade-on-alert detector has a relatively low detection cost as well. Thus
cascade-on-alert can combine two low-cost detectors with large false positive rates
(which further satisfy the true-positive and false-positive requirements) to obtain a
low-cost ideal detector!

Realistic Cascade-On-Alert Combinations.

The best case for the cascade-on-alert scenario, as discussed above, holds the
promise of building ideal detectors from low-cost, high false-positive detectors. Un-
fortunately, it is unrealistic to expect to find detectors with disjoint false-alert sets.
We discuss two cascade-on-alert cases that, although do not yield ideal detectors,
have realistic requirements.

The first case was presented in Section 9.2, where multiple detectors of increasing
cost and decreasing false positives are chained in a cascade-on-alert setup. This is
best illustrated using the diagram in figure 9.5. We show here three detectors (the
three outer areas around the black circle) that could correspond to levels 1, 3, and 4
from Section 9.2. Both the true-positive and the false-positive requirements from
Section 9.3 hold true:

206 Mihai Christodorescu and Shai Rubin

Alerts from
detector D2

Alerts from
detector D1

Alerts from
detector D3

———Intrusions

Fig. 9.5. An implementation of the cascade-on-alert scheme that combines three detectors
with decreasing false positives, P(A1|-I) > P(Aa|~I) > P(As|~I), and corresponding
increasing costs, udc(D1) < udc(D2) < ude(Ds).

{AiNI}={A4 NI} ={A3NTI} (True-Positive Requirement)
{AiNAsNAzN-I} ={AsN~I}
C {4;N -1} (False-Positive Requirement)
C {4, NI}

This design scenario reflect the intuition expressed in the beginning of the chapter.
‘We can chain multiple detectors using cascade-on-alert to obtain a combined detector
with the lowest false positive rate and an averaged detection cost.

The second design scenario for cascade-on-alert combinations is a more realistic
version of the ideal cascade-on-alert combination. The difference is that we allow
some false positives to occur from the combined detector, while maintaining the
focus on getting disjoint sets of false positives. This still allows us to minimize the
resulting number of false positives, as shown in Figure 9.6. The key element of this
design scenario is the choice of the component detectors. The detectors D1 and Dy
can have high false positive rates, as long as the rate of false positives they have in
common is small. We believe this option provides a lot of latitude to the IDS designer,
because many existing detectors have high false positive rates, making them valid
candidates for this design process.

9.6 Related Work

We review related work in the areas of the false positives and combining detectors.

The Problem of False Positives.

Researchers [2, 6, 17] and users [16] of intrusion detection systems have ac-
knowledged that false positives are a major problem in adopting and using intrusion
detection devices.

In our opinion, Axelsson’s fallacy [2] is the best explanation for the large number
of false positives. Our work is based on the same observation as Axelsson’s: unless a

9 Can Cooperative Intrusion Detectors Challenge the Base-Rate Fallacy? 207

Alerts from
— detector D2

Alerts from
detector D1

. Intrusions

Fig. 9.6. Combining detectors with disjoint false positives in a cascade-on-alert scheme results
in a detector with (almost) no false positives. If {I} C {A1} N {Az2}, then the combined
detector has few false positives and no false negatives.

detector does not produce any false positives, the large number of benign events leads
to a high number of false positives. We extended Axelsson’s work by adding the cost
of detection into the equation. We observed that the majority of benign events can be
efficiently and safely classified as benign. This means that the average classification
cost can be close to the cost of classifying benign events.

In the literature, one can find two main methods to fight false positives: alarm
clustering and accurate signatures. The goal of alarm clustering [3, 5, 9] is to group
together related alerts, so the security administrator can analyze a group of alerts
rather than each alert individually. Generally speaking, alarm clustering deals with
the symptoms rather the causes. In comparison, the detector-combination approach
attempts to reduce the overall number of false alerts.

Using more accurate signatures is an attractive approach for fighting false posi-
tives. Unfortunately, accurate signatures usually require a higher computational cost.
For example, researchers have suggested to use victim responses [15, 17] as part
of signatures or to verify the alert [11], using a monitoring tool like Nessus [7].
Our work is based on the assumption that even inaccurate signatures are enough to
distinguish between benign and might-be-malicious events, thus leaving the use of
more expensive signatures to distinguish between might-be-malicious and malicious
events.

Combining Detectors.

A common way to combine detectors is by using a voting scheme, where the out-
put of the combined detector is the output that the majority vote among all detectors.
Giacinto et al. [8] found that a voting-based detector is more accurate than detectors
that were used in the DARPA evaluation [12]. Our work considers other combina-
tion schemes like cascading (Section 9.4.2). Furthermore, we consider the question
of operating under cost constraints, which was not addressed by Giacinto et al..

Other researchers consider hierarchical architectures for intrusion detection. In a
typical hierarchical architecture (e.g., [21]), the detectors are ordered in layers, and
the input for a detector in a lower layer is the output of a detector in a higher layer.

208 Mihai Christodorescu and Shai Rubin

Our cascading approach is similar to a hierarchical architecture, but our cascading
architecture “bypasses”, in some cases, a lower level detector (Figure 9.1).

9.7 Future Vision

We believe that our results demonstrate the potential benefits of combining detectors.
Based on these results, we propose that future work in intrusion detection (and pre-
vention) targets the issue of building new detectors that cooperate well with existing
detectors.

There are two research problems that require solutions before cooperative IDS
development becomes practical. First, for the development of a new detector not to
overlap existing detectors, a way to evaluate the event space covered by existing
detectors is needed. Note that the goal is not to measure the true-positive and false-
positive rates, but to identify the sets of true positives and false positives in the event
space. Recent work on language-based techniques for NIDS evaluation could prove
useful in developing analytic solutions [15]. Another possible approach is based on
the empirical assessment of an IDS. By learning the rules used by network-based
and host-based intrusion detection systems, the event space covered by a particular
IDS can be characterized precisely [4, 10]. Extending these techniques to answer the
problem of event-space coverage for an existing IDS accurately is one direction for
future research.

The second research goal in support of cooperative IDS development is to iden-
tify additional solutions to the detector-combination problem. In this chapter we pre-
sented a set of possible solutions (the cascade-on-alert and the cascade-on-non-alert
schemes) that each enable multiple design strategies (Section 9.5). Other ways of
combining detectors could provide different tradeoffs between true positives, false
positives, and cost. Decision trees, based on the idea of breaking up a complex deci-
sion (“Is this event a real attack?”) into multiple simpler decisions, can provide the
conceptual framework for finding other ways to combine detectors. At each node in
the decision tree a intrusion detector is placed, and the output of this detector in-
fluences that path taken through the tree. The problem of constructing an optimal
decision tree, given a set of intrusion detectors as blackbox decision procedures, is
another direction for future research.

References

1. K. G. Anagnostakis, S. Sidiroglon, P. Akritidis, K. Xinidis, E. Markatos, and A. D.
Keromytis. Detecting targeted attacks using shadow honeypots. In USENIX Security
Symposium, Baltimore, MD, August 2005.

2. S. Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM Trans-
actions on Information and System Security, 3(3):186 — 205, 2000.

3. S. Axelsson. Visualisation for intrusion detection: Hooking the worm. In European
Symposium on Research in Computer Security, Gjvik, Norway, Sep. 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

9 Can Cooperative Intrusion Detectors Challenge the Base-Rate Fallacy? 209

M. Christodorescu and S. Jha. Testing malware detectors. In Proceedings of the 2004
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2004),
pages 34-44, Boston, MA, USA, July 2004. ACM Press.

. E Cuppens and A. Miege. Alert correlation in a cooperative intrusion detection frame-

work. In IEEE Symposium on Security and Privacy, Oakland, CA, May 2002.

. M. Dacier, editor. Design of an Intrusion-Tolerant Intrusion Detection System. 1IBM

Zurich Research Laboratory, Aug. 2002. Deliverable D10, Project MAFTIA IST-1999-
11583, Available at www.maftia.org.

. R. Deraison. Nessus, a network security scanner. Available at www.nessus.ordg.
. G. Giacinto, F. Roli, and L. Didaci. A modular multiple classifier system for the detection

of intrusions in computer networks. In Multiple Classifier Systems, 4th International
Workshop, MCS, Guilford, UK, June 2003.

. K. Julisch. Clustering intrusion detection alarms to support root cause analysis. ACM

Transactions on Information and System Security, 6(4):443 — 471, 2003.

C. Kruegel, D. Mutz, W. Robertson, G. Vigna, and R. Kemmerer. Reverse engineering of
network signatures. In Proceedings of the AusCERT Asia Pacific Information Technology
Security Conference, Gold Coast, Australia, May 2005.

C. Kruegel and W. Robertson. Alert verification - determining the success of intrusion
attempts. In In Proceedings of the Workshop on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), Germany, July 2004.

R. Lippmann, J. W. Haines, D. J, Fried, J. Korba, and K. Das. Analysis and results of
the 1999 DARPA off-line intrusion detection evaluation. In International Symposium on
Recent Advances in Intrusion Detection, Toulouse, France, Oct. 2000.

MITRE Corporation. CVE: Common Vulnerabilities and Exposures. Available at
Wwww.cve.mitre.orgqg.

S. Rubin, S. Jha, and B. P. Miller. Automatic generation and analysis of NIDS attacks. In
Annual Computer Security Applications Conference, Tucson, AZ, Dec. 2004.

S. Rubin, S. Jha, and B. P. Miller. Language-based generation and evaluation of NIDS
signatures. In IEEE Symposium on Security and Privacy, Oakland, CA, May 2005.
SecurityFocus. Focus on IDS. Mailing list. Available at
http://www.securityfocus.com/archive.

R. Sommer and V. Paxson. Enhancing byte-level network intrusion detection signatures
with context. In ACM Conference on Computer and Communications Security, Washing-
ton, DC, Oct. 2003.

K. M. C. Tan, K. S. Killourhy, and R. A. Maxion. Undermining an anomaly-based in-
trusion detection system using common exploits. In International Symposium on Recent
Advances in Intrusion Detection, Zurich, Switzerland, Oct. 2002.

G. Vigna, W. Robertson, and D. Balzarotti. Testing network-based intrusion detection
signatures using mutant exploits. In ACM Conference on Computer and Communications
Security, Washington, DC, Oct. 2004.

D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems. In
ACM Conference on Computer and Communications Security, Washington, DC, Nov.
2002.

Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, and J. Ucles. HIDE: a hierarchical net-
work intrusion detection system using statistical preprocessing and neural network clas-
sification. In Workshop on Information Assurance and Security, West Point, NY,, June
2001.

Part IV

Stealthy and Targeted Threat Detection and Defense

10

Composite Hybrid Techniques For Defending Against
Targeted Attacks

Stelios Sidiroglou and Angelos D. Keromytis

Department of Computer Science, Columbia University
{stelios, angelos}@cs.columbia.edu

Summary. We investigate the use of hybrid techniques as a defensive mechanism against
targeted attacks and introduce Shadow Honeypots, a novel hybrid architecture that combines
the best features of honeypots and anomaly detection. At a high level, we use a variety of
anomaly detectors to monitor all traffic to a protected network/service. Traffic that is con-
sidered anomalous is processed by a “shadow honeypot” to determine the accuracy of the
anomaly prediction. The shadow is an instance of the protected software that shares all inter-
nal state with a regular (“production”) instance of the application, and is instrumented to detect
potential attacks. Attacks against the shadow are caught, and any incurred state changes are
discarded. Legitimate traffic that was misclassified will be validated by the shadow and will
be handled correctly by the system transparently to the end user. The outcome of processing a
request by the shadow is used to filter future attack instances and could be used to update the
anomaly detector.

Our architecture allows system designers to fine-tune systems for performance, since false
positives will be filtered by the shadow. Contrary to regular honeypots, our architecture can
be used both for server and client applications. We also explore the notion of using Shadow
Honeypots in Application Communities in order to amortize the cost of instrumentation and
detection across a number of autonomous hosts.

10.1 Introduction

Due to the increasing level of malicious activity seen on today’s Internet, organiza-
tions are beginning to deploy mechanisms for detecting and responding to new at-
tacks or suspicious activity, called Intrusion Prevention Systems (IPS). Since current
IPS’s use rule-based intrusion detection systems (IDS) such as Snort [37] to detect
attacks, they are limited to protecting, for the most part, against already known at-
tacks. As a result, new detection mechanisms are being developed for use in more
powerful reactive-defense systems. The two primary such mechanisms are honey-
pots [32, 13, 62, 45, 20, 4] and anomaly detection systems (ADS) [53, 57, 52, 6, 19].
In contrast with IDS’s, honeypots and ADS’s offer the possibility of detecting (and
thus responding to) previously unknown attacks, also referred to as zero-day attacks.

214 Stelios Sidiroglou and Angelos D. Keromytis

Honeypots and anomaly detection systems offer different tradeoffs between ac-
curacy and scope of attacks that can be detected, as shown in Figure 10.1. Honeypots
can be heavily instrumented to accurately detect attacks, but depend on an attacker
attempting to exploit a vulnerability against them. This makes them good for de-
tecting scanning worms [8, 9, 13], but ineffective against manual directed attacks or
topological and hit-list worms [48, 47]. Furthermore, honeypots can typically only
be used for server-type applications. Anomaly detection systems can theoretically
detect both types of attacks, but are usually much less accurate. Most such systems
offer a tradeoff between false positive (FP) and false negative (FN) rates. For ex-
ample, it is often possible to tune the system to detect more potential attacks, at an
increased risk of misclassifying legitimate traffic (low FN, high FP); alternatively, it
is possible to make an anomaly detection system more insensitive to attacks, at the
risk of missing some real attacks (high FN, low FP). Because an ADS-based IPS can
adversely affect legitimate traffic (e.g., drop a legitimate request), system designers
often tune the system for low false positive rates, potentially misclassifying attacks
as lcgitimate traffic.

Accuracy

A

Honeypot

Anomaly Detect

P

Scan/Random All Attacks Scope
Attacks Only (Random + Targeted)

Fig. 10.1. A simple classification of honeypots and anomaly detection systems, based on at-
tack detection accuracy and scope of detected attacks. Targeted attacks may use lists of known
(potentially) vulnerable servers, while scan-based attacks will target any system that is be-
lieved to run a vulnerable service. AD systems can detect both types of attacks, but with lower
accuracy than a specially instrumented system (honeypot). However, honeypots are blind to
targeted attacks, and may not see a scanning attack until after it has succeeded against the real
server.

We propose a novel hybrid approach that combines the best features of honey-
pots and anomaly detection, named Shadow Honeypots. At a high level, we use a
variety of anomaly detectors to monitor all traffic to a protected network. Traffic that

10 Composite Hybrid Techniques For Defending Against Targeted Attacks 215

is considered anomalous is processed by a shadow honeypot. The shadow version
is an instance of the protected application (e.g., a web server or client) that shares
all internal state with a “normal” instance of the application, but is instrumented to
detect potential attacks. Attacks against the shadow honeypot are caught and any in-
curred state changes are discarded. Legitimate traffic that was misclassified by the
anomaly detector will be validated by the shadow honeypot and will be transparently
handled correctly by the system (i.e., an HTTP request that was mistakenly flagged
as suspicious will be served correctly). Our approach offers several advantages over
stand-alone ADS’s or honeypots:

e First, it allows system designers to tune the anomaly detection system for low
false negative rates, minimizing the risk of misclassifying a real attack as legiti-
mate traffic, since any false positives will be weeded out by the shadow honeypot.

e Second, and in contrast to typical honeypots, our approach can defend against
attacks that are tailored against a specific site with a particular internal state.
Honeypots may be blind to such attacks, since they are not typically mirror im-
ages of the protected application.

e Third, shadow honeypots can also be instantiated in a form that is particu-
larly well-suited for protecting against client-side attacks, such as those directed
against web browsers and P2P file sharing clients.

o Finally, our system architecture facilitates easy integration of additional detection
mechanisms.

In addition to the server-side scenario, we also investigate a client-targeting
attack-detection scenario, unique to shadow honeypots, where we apply the detec-
tion heuristics to content retrieved by protected clients and feed any positives to
shadow honeypots for further analysis. Unlike traditional honeypots, which are idle
whilst waiting for active attackers to probe them, this scenario enables the detection
of passive attacks, where the attacker lures a victim user to download malicious data.

Finally, we explore the combination of Shadow Honeypots with Application
Communities to create a distributed collaborative environment where detection and
the processing cost incured by the use Shadow Honeypots is shared across a large
number of hosts.

Chapter Organization. The remainder of this chapter is organized as follows. Sec-
tion 10.2 discusses the shadow honeypot architecture in greater detail. Some of
the limitations of our approach are briefly discussed in Section 10.3. We give an
overview of related work in Section 10.4, and conclude the chapter with a summary
of our work and plans for future work in Section 10.5.

10.2 Architecture

The Shadow Honeypot architecture is a systems approach to handling network-based
attacks, combining filtering, anomaly detection systems and honeypots in a way that
exploits the best features of these mechanisms, while shielding their limitations. We

216 Stelios Sidiroglou and Angelos D. Keromytis

focus on transactional applications, i.e., those that handle a series of discrete requests.
Our architecture is not limited to server applications, but can be used for client-side
applications such as web browsers, P2P clients, efc. As illustrated in Figure 10.2, the
architecture is composed of three main components: a filtering engine, an array of
anomaly detection sensors and the shadow honeypot, which validates the predictions
of the anomaly detectors. The processing logic of the system is shown graphically in
Figure 10.3.

The filtering component blocks known attacks. Such filtering is done based ei-
ther on payload content [56, 1] or on the source of the attack, if it can be identified
with reasonable confidence (e.g., confirmed traffic bi-directionality). Effectively, the
filtering component short-circuits the detection heuristics or shadow testing results
by immediately dropping specific types of requests before any further processing is
done.

Traffic passing the first stage is processed by one or more anomaly detectors.
There are several types of anomaly detectors that may be used in our system, includ-
ing payload analysis [57, 42, 18, 52] and network behavior [16, 60]. Although we
do not impose any particular requirements on the AD component of our system, it
is preferable to tune such detectors towards high sensitivity (at the cost of increased
false positives). The anomaly detectors, in turn, signal to the protected application
whether a request is potentially dangerous.

Protected System

Regular _—
Service State Rollback
Code
. 08 Kernel
User processes Shadow
o _——-=--=--1- Honeypot
- Code

Protected Service
Address Space

1 \
U
Anomaly Detection Sensors r ohaetc. |

/

/

o

— Update filters

Traffic from the network

Fig. 10.2. Shadow Honeypot architecture.

10 Composite Hybrid Techniques For Defending Against Targeted Attacks 217

Input arrives

Yes
Bad Input) * Drop request

Indicate False Positive to AD
Update AD Model

Yes Indicate Hit to AD
g
Use Shadow Update AD Model
Update Filtering Component
No
Yes
Randomty
Attack \Yes
S —" N .
Us:ni::i’?'w Use Shadow. \ Detected?”— —® Indicate False Negative to AD
/ Update AD Model
No No

Handle request normally
Handle request normally; if
attack, system gets compromised

Fig. 10.3. System workflow.

Depending on this prediction by the anomaly detectors, the system invokes either
the regular instance of the application or its shadow. The shadow is an instrumented
instance of the application that can detect specific types of failures and rollback any
state changes to a known (or presumed) good state, e.g., before the malicious request
was processed. Because the shadow is (or should be) invoked relatively infrequently,
we can employ computationally expensive instrumentation to detect attacks. The
shadow and the regular application fully share state, to avoid attacks that exploit
differences between the two; we assume that an attacker can only interact with the
application through the filtering and AD stages, i.e., there are no side-channels. The
level of instrumentation used in the shadow depends on the amount of latency we
are willing to impose on suspicious traffic (whether truly malicious or misclassified
legitimate traffic). In our reference implementation, described in [3], we focus on
memory-violation attacks, but any attack that can be determined algorithmically can
be detected and recovered from, at the cost of increased complexity and potentially
higher latency.

If the shadow detects an actual attack, we notify the filtering component to block
further attacks. If no attack is detected, we update the prediction models used by

218 Stelios Sidiroglou and Angelos D. Keromytis

the anomaly detectors. Thus, our system could in fact self-train and fine-tune itself
using verifiably bad traffic and known mis-predictions, although this aspect of the
approach is outside the scope of the present chapter.

As we mentioned above, shadow honeypots can be integrated with servers as
well as clients. In this work, we focus our attention on tight coupling with both
server and client applications, where the shadow resides in the same address space
as the protected application.

e Tightly coupled with server This is the most practical scenario, in which we
protect a server by diverting suspicious requests to its shadow. The application
and the honeypot are tightly coupled, mirroring functionality and state. We have
implemented this configuration with the Apache web server, described in [3].

o Tightly coupled with client Unlike traditional honeypots, which remain idle
while waiting for active attacks, this scenario targets passive attacks, where the
attacker lures a victim user to download data containing an attack, as with the
recent buffer overflow vulnerability in Internet Explorer’s JPEG handling. In this
scenario, the context of an attack is an important consideration in replaying the
attack in the shadow. It may range from data contained in a single packet to an
entire flow, or even set of flows. Alternatively, it may be defined at the application
layer. For our testing scenario, specifically on HTTP, the request/response pair is
a convenient context.

o Loosely coupled with server In this scenario, we detect novel attacks against
protected servers by diverting suspicious requests to shadow honeypots. The ap-
plication is not tightly coupled with the shadow honeypot system, so multiple
versions of the application may have to be maintained, and its exact configura-
tion is not known. The requests are captured using passive monitoring and no
attempt is made to prevent the attack. This approach has the benefit of being able
to “outsource” the detection of vulnerabilities to third entities, potentially taking
advantage of economies of scale.

o Loosely coupled with client For this approach, suspicious flows are redirected to
loosely coupled (do not share state or configuration) versions of an application.
One can envision protected client farms where suspicious traffic is tested against
multiple versions of the application one is trying to protect.

Tight coupling assumes that the application can be modified. The advantage of
this configuration is that attacks that exploit differences in the state of the shadow
vs. the application itself become impossible. However, it is also possible to deploy
shadow honeypots in a loosely coupled configuration, where the shadow resides on a
different system and does not share state with the protected application. The advan-
tage of this configuration is that management of the shadows can be “outsourced” to
a third entity as a service.

Note that the filtering and anomaly detection components can also be tightly
coupled with the protected application, or may be centralized at a natural aggregation
point in the network topology (e.g., at the firewall).

Finally, it is worth considering how our system would behave against different
types of attacks. For most attacks we have seen thus far, once the AD component

10 Composite Hybrid Techniques For Defending Against Targeted Attacks 219

.. (2) Detect fault
(4) Malicious traffic

i

i

i
|
\

-

®

(3) Notify Applicz.ttion Community
AD filter & patch update

{5) Filter out attack

Fig. 10.4. Application Community work{low

has identified an anomaly and the shadow has validated it, the filtering component
will block all future instances of it from getting to the application. However, we
cannot depend on the filtering component to prevent polymorphic or metamorphic
[51] attacks. For low-volume events, the cost of invoking the shadow for each attack
may be acceptable. For high-volume events, such as a Slammer-like outbreak, the
system will detect a large number of correct AD predictions (verified by the shadow)
in a short period of time; should a configurable threshold be exceeded, the system can
enable filtering at the second stage, based on the unverified verdict of the anomaly
detectors. Although this will cause some legitimate requests to be dropped, this could
be acceptable for the duration of the incident. Once the number of (perceived) attacks
seen by the ADS drop beyond a threshold, the system can revert to normal operation.

220 Stelios Sidiroglou and Angelos D. Keromytis
Application Communities

Using shadow honeypots in a collaborative distributed environment presents another
set of interesting tradeoffs and deployment configurations. For this purpose, we ex-
plore the use of shadow honeypots with Application Communities [21].

Application Communities (AC) are a collection of almost-identical instances of
the same application running autonomously across a wide area network. Members
of an AC collaborate in identifying previously unknown (zero day) flaws/attacks and
exchange information so that such failures are prevented from re-occurring. Individ-
ual members may succumb to new flaws; however, over time the AC should converge
to a state of immunity against that specific fault. The system learns new faults and
adapts to them, exploiting the AC size to achieve both coverage (in detecting faults)
and fairness (in distributing the monitoring task).

Shadow honeypots, in collaboration with Application Communities, provides a
systemic framework where the cost of validating false positives is amortized across
a large number of hosts and collaboration in anomaly detection can result in more
robust vulnerability sensing. Shadow honeypots and AC’s can be used in both tightly
and loosely coupled configurations. As illustrated in 10.4, each host in an application
community participates in protecting portions of an application. For example, if an
AC is comprised of four nodes, one (naive) way to split the monitoring cost would
be to assign each node responsibility for 25% of the code. For a detailed analysis
on work distribution mechanisms and fairness measures, refer to [21]. AC hosts are
solely responsible for dealing with their traffic. Traffic that is tagged suspicious by
the local AD is processed either by the local instance of the shadow code in a tightly
coupled scenario or forwarded to a third party in loosely coupled configuration.

In the tightly coupled scenario, suspicious requests are processed locally by a
shadow version of the code that monitors a subset of the application code. This
translates into a lower per host cost for processing false positives but relies on col-
laboration and the size of an AC to achieve both coverage and low overhead. If a
vulnerability is detected, it is first processed locally and then information pertinent
to the attack is propagated to the AC. In more detail, given a fault, the application
is modified so that it can both detect and recover from any future manifestations of
the specific fault and the anomaly detectors are updated with signatures derived from
the attack vector. This information, along with the attack vector, is then dispatched
to the rest of the AC, where hosts can independently validate the vulnerability.

Similarly, for the loosely couple configuration, suspicious requests to a host are
sent to a remote sensor that is responsible for monitoring one portion of the appli-
cation. If the remote sensor detects a fault, the vulnerability specific information is
reported back to the host that will, in turn, update the anomaly detector filters and
update the application with a version that is protected against the specific fault. At
that point, information derived from the remote sensor is communicated to the rest
of the AC.

10 Composite Hybrid Techniques For Defending Against Targeted Attacks 221
10.3 Limitations

There are three limitations of the shadow honeypot design presented in this chapter
that we are aware of. First, the effectiveness of the rollback mechanism depends on
the detection and recovery capabilities of the vulnerability sensor, and the latency
of the detector. The detector used in [3] can instantly detect attempts to overwrite a
buffer, and therefore the system cannot be corrupted. Other detectors [41], however,
may have higher latency, and the placement of commit calls is critical to recovering
from the attack. Depending on the detector latency and how it relates to the cost of
implementing rollback, one may have to consider different approaches. The trade-
offs involved in designing such mechanisms are thoroughly examined in the fault-
tolerance literature (c.f. [15]).

Second, the loosely coupled client shadow honeypot is limited to protecting
against relatively static attacks. The honeypot cannot effectively emulate user be-
havior that may be involved in triggering the attack, for example, through DHTML
or Javascript. The loosely coupled version is also weak against attacks that depend
on local system state on the user’s host that is difficult to replicate. This is not a prob-
lem with tightly coupled shadows, because we accurately mirror the state of the real
system. In some cases, it may be possible to mitror state on loosely coupled shadows
as well, but we have not considered this case in the experiments presented in this
chapter.

Finally, we have not explored in depth the use of feedback from the shadow
honeypot to tune the anomaly detection components. Although this is likely to lead
to substantial performance benefits, we need to be careful so that an attacker cannot
launch blinding attacks, e.g., “softening” the anomaly detection component through
a barrage of false positives before launching a real attack.

10.4 Related Work

Much of the work in automated attack reaction has focused on the problem of net-
work worms, which has taken truly epidemic dimensions (pun intended). For exam-
ple, the system described in [60] detects worms by monitoring probes to unassigned
IP addresses (“dark space”) or inactive ports and computing statistics on scan traffic,
such as the number of source/destination addresses and the volume of the captured
traffic. By measuring the increase on the number of source addresses seen in a unit
of time, it is possible to infer the existence of a new worm when as little as 4% of the
vulnerable machines have been infected. A similar approach for isolating infected
nodes inside an enterprise network [46] is taken in [16], where it was shown that as
little as 4 probes may be sufficient in detecting a new port-scanning worm. [S8] de-
scribes an approximating algorithm for quickly detecting scanning activity that can
be efficiently implemented in hardware. [38] describes a combination of reverse se-
quential hypothesis testing and credit-based connection throttling to quickly detect
and quarantine local infected hosts. These systems are effective only against scan-
ning worms (not topological, or “hit-list” worms), and rely on the assumption that

222 Stelios Sidiroglou and Angelos D. Keromytis

most scans will result in non-connections. As such, they as susceptible to false pos-
itives, either accidentally (e.g., when a host is joining a peer-to-peer network such
as Gnutella, or during a temporary network outage) or on purpose (e.g., a malicious
web page with many links to images in random/not-used IP addresses). Furthermore,
it may be possible for several instances of a worm to collaborate in providing the il-
lusion of several successful connections, or to use a list of known repliers to blind
the anomaly detector. Another algorithm for finding fast-spreading worms using 2-
level filtering based on sampling from the set of distinct source-destination pairs is
described in [54].

[59] correlates DNS queries/replies with outgoing connections from an enterprise
network to detect anomalous behavior. The main intuition is that connections due to
random-scanning (and, to a degree, hit-list) worms will not be preceded by DNS
transactions. This approach can be used to detect other types of malicious behavior,
such as mass-mailing worms and network reconnaissance.

[18] describes an algorithm for correlating packet payloads from different traffic
flows, towards deriving a worm signature that can then be filtered [24]. The tech-
nique is promising, although further improvements are required to allow it to operate
in real time. Earlybird [42] presents a more practical algorithm for doing payload
sifting, and correlates these with a range of unique sources generating infections and
destinations being targeted. However, polymorphic and metamorphic worms [51] re-
main a challenge; Spinelis {44] shows that it is an NP-hard problem. Buttercup [28]
attempts to detect polymorphic buffer overflow attacks by identifying the ranges of
the possible return memory addresses for existing buffer overflow vulnerabilities.
Unfortunately, this heuristic cannot be employed against some of the more sophis-
ticated overflow attack techniques [30]. Furthermore, the false positive rate is very
high, ranging from 0.01% to 1.13%. Vigna et al. [55] discuss a method for testing de-
tection signatures against mutations of known vulnerabilities to determine the quality
of the detection model and mechanism. Polygraph [27] attempts to detect polymor-
phic exploits by identifying common invariants among the various attack instances,
such as return addresses, protocol framing and poor obfuscation. Toth and Kruegel
[52] propose to detect buffer overflow payloads (including previously unseen ones)
by treating inputs received over the network as code fragments. The use restricted
symbolic execution to show that legitimate requests will appear to contain relatively
short sequences of valid x86 instruction opcodes, compared to attacks that will con-
tain long sequences. They integrate this mechanism into the Apache web server,
resulting in a small performance degradation. STRIDE [2] is a similar system that
seeks to detect polymorphic NOP-steds in buffer overflow exploits. [29] describes a
hybrid polymorphic-code detection engine that combines several heuristics, includ-
ing NOP-sled detector and abstract payload execution.

HoneyStat [13] runs sacrificial services inside a virtual machine, and monitors
memory, disk, and network events to detect abnormal behavior. For some classes
of attacks (e.g., buffer overflows), this can produce highly accurate alerts with rela-
tively few false positives, and can detect zero-day worms. Although the system only
protects against scanning worms, “active honeypot” techniques [62] may be used
to make it more difficult for an automated attacker to differentiate between Hon-

10 Composite Hybrid Techniques For Defending Against Targeted Attacks 223

eyStats and real servers. FLIPS (Feedback Learning IPS) [22] is a similar hybrid
approach that incorporates a supervision framework in the presence of suspicious
traffic. Instruction-set randomization is used to isolate attack vectors, which are used
to train the anomaly detector. Shadow honeypots [3] combine the best features found
in anomaly detectors and honeypots to create what an application-aware network in-
trusion detection system. The anomaly detectors differentiate between trusted and
untrusted traffic; trusted traffic is processed normally whilst untrusted traffic is for-
warded to a protected instance of the application, its “shadow.” The system provides
an elegant way to deal with false positives, since all requests are processed albeit
some incur additional latency. The authors of [14] propose to enhance NIDS alerts
using host-based IDS information. Nemean [63] is an architecture for generating
semantics-aware signatures, which are signatures aware of protocol semantics (as
opposed to general byte strings). Shield [56] is a mechanism for pushing to work-
stations vulnerability-specific, application-aware filters expressed as programs in a
simple language. These programs roughly mirror the state of the protected service,
allowing for more intelligent application of content filters, as opposed to simplistic
payload string matching. '

The Internet Motion Sensor [4] is a distributed blackhole monitoring system
aimed at measuring, characterizing, and tracking Internet-based threats, including
worms. [11] explores the various options in locating honeypots and correlating their
findings, and their impact on the speed and accuracy in detecting worms and other
attacks. [33] shows that a distributed worm monitor can detect non-uniform scanning
worms two to four times as fast as a centralized telescope [25], and that knowledge of
the vulnerability density of the population can further improve detection time. How-
ever, other recent work has shown that it is relatively straightforward for attackers to
detect the placement of certain types of sensors [5, 39]. Shadow Honeypots [3] are
one approach to avoiding such mapping by pushing honeypot-like functionality at
the end hosts.

The Worm Vaccine system [40] proposes the use of honeypots with instrumented
versions of software services to be protected, coupled with an automated patch-
generation facility. This allows for quick (< 1 minute) fixing of buffer overflow
vulnerabilities, even against zero-day worms, but depends on scanning behavior on
the part of worms.

The HACQIT architecture [17, 36, 34, 35] uses various sensors to detect new
types of attacks against secure servers, access to which is limited to small numbers
of users at a time. Any deviation from expected or known behavior results in the
possibly subverted server to be taken off-line. A sandboxed instance of the server
is used to conduct “clean room” analysis, comparing the outputs from two different
implementations of the service (in their prototype, the Microsoft IIS and Apache web
servers were used to provide application diversity). Machine-learning techniques are
used to generalize attack features from observed instances of the attack. Content-
based filtering is then used, either at the firewall or the end host, to block inputs
that may have resulted in attacks, and the infected servers are restarted. Due to the
feature-generalization approach, trivial variants of the attack will also be caught by
the filter. [53] takes a roughly similar approach, although filtering is done based

224 Stelios Sidiroglou and Angelos D. Keromytis

on port numbers, which can affect service availability. Cisco’s Network-Based Ap-
plication Recognition (NBAR) [1] allows routers to block TCP sessions based on
the presence of specific strings in the TCP stream. This feature was used to block
CodeRed probes, without affecting regular web-server access. Porras et al. [31] ar-
gue that hybrid defenses using complementary techniques (in their case, connection
throttling at the domain gateway and a peer-based coordination mechanism), can be
much more effective against a wide variety of worms.

DOMINO [61] is an overlay system for cooperative intrusion detection. The sys-
tem is organized in two layers, with a small core of trusted nodes and a larger col-
lection of nodes connected to the core. The experimental analysis demonstrates that
a coordinated approach has the potential of providing early warning for large-scale
attacks while reducing potential false alarms. A similar approach using a DHT-based
overlay network to automatically correlate all relevant information is described in
[7]. Reference [64] describes an architecture and models for an early warning sys-
tem, where the participating nodes/routers propagate alarm reports towards a central-
ized site for analysis. The question of how to respond to alerts is not addressed, and,
similar to DOMINO, the use of a centralized collection and analysis facility is weak
against worms attacking the early warning infrastructure.

Suh et al. [49], propose a hardware-based solution that can be used to thwart
control-transfer attacks and restrict executable instructions by monitoring “tainted”
input data. In order to identify “tainted” data, they rely on the operating system. If
the processor detects the use of this tainted data as a jump address or an executed
instruction, it raises an exception that can be handled by the operating system. The
authors do not address the issue of recovering program execution and suggest the
immediate termination of the offending process. DIRA [43] is a technique for auto-
matic detection, identification and repair of control-hijaking attacks. This solution is
implemented as a GCC compiler extension that transforms a program’s source code
adding heavy instrumentation so that the resulting program can perform these tasks.
The use of checkpoints throughout the program ensures that corruption of state can
be detected if control sensitive data structures are overwritten. Unfortunately, the
performance implications of the system make it unusable as a front line defense
mechanism. Song and Newsome [26] propose dynamic taint analysis for automatic
detection of overwrite attacks. Tainted data is monitored throughout the program ex-
ecution and modified buffers with tainted information will result in protection faults.
Once an attack has been identified, signatures are generated using automatic seman-
tic analysis. The technique is implemented as an extension to Valgrind and does
not require any modifications to the program’s source code but suffers from severe
performance degradation. One way of minimizing this penalty is to make the CPU
aware of memory tainting [10]. Crandall et al. report on using a taint-based system
for capturing live attacks in [12].

The Safe Execution Environment (SEE) [50] allows users to deploy and test un-
trusted software without fear of damaging their system. This is done by creating a
virtual environment where the software has read access to the real data; all writes
are local to this virtual environment. The user can inspect these changes and de-
cide whether to commit them or not. We envision use of this technique for unrolling

10 Composite Hybrid Techniques For Defending Against Targeted Attacks 225

the effects of filesystem changes in our system, as part of our future work plans. A
similar proposal is presented in [23] for executing untrusted Java applets in a safe
“playground” that is isolated from the user’s environment.

10.5 Conclusion

We have described a novel approach to dealing with zero-day attacks by combining
features found today in honeypots and anomaly detection systems. The main advan-
tage of this architecture is providing system designers the ability to fine tune systems
with impunity, since any false positives (legitimate traffic) will be filtered by the
underlying components.

‘We have implemented this approach in an architecture called Shadow Honeypots.
In this approach, we employ an array of anomaly detectors to monitor and classify
all traffic to a protected network; traffic deemed anomalous is processed by a shadow
honeypot, a protected instrumented instance of the application we are trying to pro-
tect. Attacks against the shadow honeypot are detected and caught before they infect
the state of the protected application. This enables the system to implement policies
that trade off between performance and risk, retaining the capability to re-evaluate
this trade-off effortlessly. We also explore the use of Shadow Honeypots in Appli-
cation Communities where, the cost of instrumentation is spread across numerous
hosts and anomaly detector models can be updated to reflect the findings of hosts
that service a variety of different traffic flows.

Finally, the preliminary performance experiments indicate that despite the con-
siderable cost of processing suspicious traffic on our Shadow Honeypots and over-
head imposed by instrumentation, our system is capable of sustaining the overall
workload of protecting services such as a Web server farm, as well as vulnerable
Web browsers. In the future, we expect that the impact on performance can be min-
imized by reducing the rate of false positives and tuning the AD heuristics using
a feedback loop with the shadow honeypot. Our plans for future work also include
evaluating different components and extending the performance evaluation.

References

1. ..*, Using Network-Based Application Recognition and Access Control Lists for Block-
ing the "Code Red” Worm at Network Ingress Points. Technical report, Cisco Systems,
Inc., 2006.

2. P. Akritidis, E. P. Markatos, M. Polychronakis, and K. Anagnostakis. STRIDE: Polymor-
phic Sled Detection through Instruction Sequence Analysis. In Proceedings of the 20t
IFIP International Information Security Conference (IFIP/SEC), June 2005.

3. K. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. D.
Keromytis. Detecting Targetted Attacks Using Shadow Honeypots. In Proceedings of
the 14" USENIX Security Symposium, pages 129-144, August 2005.

226

4,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Stelios Sidiroglou and Angelos D. Keromytis

M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson. The Internet Motion Sensor:
A Distributed Blackhole Monitoring System. In Proceedings of the 12t% ISOC Sympo-
sium on Network and Distributed Systems Security (SNDSS), pages 167179, February
2005.

J. Bethencourt, J. Franklin, and M. Vernon. Mapping Internet Sensors With Probe Re-
sponse Attacks. In Proceedings of the 14" USENIX Security Symposium, pages 193-208,
August 2005.

. M. Bhattacharyya, M. G. Schultz, E. Eskin, S. Hershkop, and S. J. Stolfo. MET: An

Experimental System for Malicious Email Tracking. In Proceedings of the New Security
Paradigms Workshop (NSPW), pages 1-12, September 2002.

. M. Cai, K. Hwang, Y.-K. Kwok, S. Song, and Y. Chen. Collaborative Internet Worm

Containment. [EEE Security & Privacy Magazine, 3(3):25-33, May/June 2005.

. CERT Advisory CA-2001-19: ‘Code Red” Worm Exploiting Buffer Overflow in IIS

Indexing Service DLL. http://www.cert.org/advisories/CA-2001-19.
html, July 2001.

. Cert Advisory CA-2003-04: MS-SQL Server Worm. http://www.cert.org/

advisories/CA-2003-04.html, January 2003.

S. Chen, J. Xu, N. Nakka, Z. Katbarczyk, and C. Verbowski. Defeating Memory Cor-
ruption Attacks via Pointer Taintedness Detection. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN), pages 378387, June 2005.

E. Cook, M. Bailey, Z. M. Mao, and D. McPherson. Toward Understanding Distributed
Blackhole Placement. In Proceedings of the ACM Workshop on Rapid Malcode (WORM),
pages 54-64, October 2004.

J.R. Crandall, S. E. Wu, and F. T. Chong. Experiences Using Minos as a Tool for Captur-
ing and Analyzing Novel Worms for Unknown Vulnerabilities. In Proceedings of the Con-
Jerence on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA),
July 2005.

D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen. HoneyStat: Local
Worm Detection Using Honepots. In Proceedings of the " International Symposium on
Recent Advances in Intrusion Detection (RAID), pages 39-58, October 2004.

H. Dreger, C. Kreibich, V. Paxson, and R. Sommer. Enhancing the Accuracy of Network-
based Intrusion Detection with Host-based Context. In Proceedings of the Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), July 2005.
E. N. Elnozahy, L.. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv., 34(3):375-408, 2002.

J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast Portscan Detection Using
Sequential Hypothesis Testing. In Proceedings of the IEEE Symposium on Security and
Privacy, May 2004.

J. E. Just, L. A. Clough, M. Danforth, K. N. Levitt, R. Maglich, J. C. Reynolds, and
J. Rowe. Learning Unknown Attacks — A Start. In Proceedings of the 5t International
Symposium on Recent Advances in Intrusion Detection (RAID), October 2002.

H. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Signature Detec-
tion. In Proceedings of the 13" USENIX Security Symposium, pages 271-286, August
2004.

C. Kruegel and G. Vigna. Anomaly Detection of Web-based Attacks. In Proceedings
of the 10" ACM Conference on Computer and Communications Security (CCS), pages
251-261, October 2003.

J. G. Levine, J. B. Grizzard, and H. L. Owen. Using Honeynets to Protect Large Enterprise
Networks. IEEE Security & Privacy, 2(6):73-75, November/December 2004.

21.

22.

23,

24,

25.

26.

27.

28.

29.

30.

31.

32,

33,

34,

3s.

36.

37.

10 Composite Hybrid Techniques For Defending Against Targeted Attacks 227

M. Locasto, S. Sidiroglou, and A. D. Keromytis. Application Communities: Using Mono-
culture for Dependability. In Proceedings of the 1°* Workshop on Hot Topics in System
Dependability (HotDep), pages 288-292, June 2005.

M. Locasto, K. Wang, A. Keromytis, and S. Stolfo. FLIPS: Hybrid Adaptive Intrusion
Prevention. In Proceedings of the 8" Symposium on Recent Advances in Intrusion De-
tection (RAID), September 2005.

D. Malkhi and M. K. Reiter. Secure Execution of Java Applets Using a Remote Play-
ground. IEEE Trans. Softw. Eng., 26(12):1197-1209, 2000.

D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet Quarantine: Requirements
for Containing Self-Propagating Code. In Proceedings of the IEEE Infocom Conference,
April 2003.

D. Moore, G. Voelker, and S. Savage. Infetring Internet Denial-of-Service Activity. In
Proceedings of the 10" USENIX Security Symposium, pages 9-22, August 2001.

J. Newsome and D. Dong. Dynamic Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Commodity Software. In Proceedings of the 12th
ISOC Symposium on Network and Distributed System Security (SNDSS), pages 221-237,
February 2005.

J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Signatures for
Polymorphic Worms. In Proceedings of the IEEE Security & Privacy Symposium, pages
226-241, May 200S.

A. Pasupulati, J. Coit, K. Levitt, S. F. Wu, S. H. Li, J. C. Kuo, and K. P. Fan. Buttercup: On
Network-based Detection of Polymorphic Buffer Overflow Vulnerabilities. In Proceed-
ings of the Network Operations and Management Symposium (NOMS), pages 235-248,
vol. 1, April 2004.

U. Payer, P. Teufl, and M. Lamberger. Hybrid Engine for Polymorphic Shellcode De-
tection. In Proceedings of the Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), July 2005.

J. Pincus and B. Baker. Beyond Stack Smashing: Recent Advances in Exploiting Buffer
Overflows. IEEE Security & Privacy, 2(4):20-27, July/August 2004.

P. Porras, L. Briesemeister, K. Levitt, J. Rowe, and Y.-C. A. Ting. A Hybrid Quarantine
Defense. In Proceedings of the ACM Workshop on Rapid Malcode (WORM), pages 73—
82, October 2004.

N. Provos. A Virtual Honeypot Framework. In Proceedings of the 13t" USENIX Security
Symposium, pages 1-14, August 2004.

M. A. Rajab, F. Monrose, and A. Terzis. On the Effectiveness of Distributed Worm Moni-
toring. In Proceedings of the 141" USENIX Security Symposium, pages 225-237, August
2005.

J. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. On-line Intrusion Protec-
tion by Detecting Attacks with Diversity. In Proceedings of the 16" Annual IFIP 11.3
Working Conference on Data and Application Security Conference, April 2002.

J. C. Reynolds, J. Just, L. Clough, and R. Maglich. On-Line Intrusion Detection and
Attack Prevention Using Diversity, Generate-and-Test, and Generalization. In Proceed-
ings of the 36" Annual Hawaii International Conference on System Sciences (HICSS),
January 2003.

J. C.Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. The Design and Implemen-
tation of an Intrusion Tolerant System. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN), June 2002.

M. Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings of
USENIX LISA, November 1999. (software available from http.//www.snort.org/).

228

38.

39.

40.

41.

42.

43,

44,

45.

46.

47.

48.

49.

50.

5L

52.

53.

54.

55.

56.

Stelios Sidiroglou and Angelos D. Keromytis

S. E. Schechter, J. Jung, and A. W. Berger. Fast Detection of Scanning Worm Infections.
In Proceedings of the 7" International Symposium on Recent Advances in Intrusion De-
tection (RAID), pages 59-81, October 2004.

Y. Shinoda, K. Ikai, and M. Itoh. Vulnerabilities of Passive Internet Threat Monitors. In
Proceedings of the 14'** USENIX Security Symposium, pages 209-224, August 2005.

S. Sidiroglou and A. D. Keromytis. A Network Worm Vaccine Architecture. In Proceed-
ings of the IEEE Workshop on Enterprise Technologies: Infrastructure for Collaborative
Enterprises (WETICE), Workshop on Enterprise Security, pages 220-225, June 2003.

S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. K. omytis. Building A Reactive
Immune System for Software Services. In Proceedings of the 11 USENIX Annual
Technical Conference, pages 149-161, April 2005.

S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting. In Pro-
ceedings of the 62" Symposium on Operating Systems Design & Implementation (OSDI),
December 2004.

A. Smirnov and T. Chiueh. DIRA: Automatic Detection, Identification, and Repair of
Control-Hijacking Attacks. In Proceedings of the 12" ISOC Symposium on Network and
Distributed System Security (SNDSS), February 2005.

D. Spinellis. Reliable identification of bounded-length viruses is NP-complete. [EEE
Transactions on Information Theory, 49(1):280-284, January 2003.

L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley, 2003.

S. Staniford. Containment of Scanning Worms in Enterprise Networks. Journal of Com-
puter Security, 2005. (to appear).

S. Staniford, D. Moore, V. Paxson, and N. Weaver. The Top Speed of Flash Worms. In
Proceedings of the ACM Workshop on Rapid Malcode (WORM), pages 33—42, October
2004.

S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet in Your Spare Time. In
Proceedings of the 11%" USENIX Security Symposium, pages 149—167, August 2002.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution via dynamic
information flow tracking. SIGOPS Operating Systems Review, 38(5):85-96, 2004.

W. Sun, Z. Liang, R. Sekar, and V. N. Venkatakrishnan. One-way Isolation: An Effec-
tive Approach for Realizing Safe Execution Environments. In Proceedings of the 12t"
ISOC Symposium on Network and Distributed Systems Security (SNDSS), pages 265-278,
February 2005.

P. Szor and P. Ferrie. Hunting for Metamorphic. Technical repott, Symantec Corporation,
June 2003.

T. Toth and C. Kruegel. Accurate Buffer Overflow Detection via Abstract Payload Exe-
cution. In Proceedings of the 5" Symposium on Recent Advances in Intrusion Detection
(RAID), October 2002.

T. Toth and C. Kruegel. Connection-history Based Anomaly Detection. In Proceedings
of the IEEE Workshop on Information Assurance and Security, June 2002.

S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum. New Streaming Algorithms
for Fast Detection of Superspreaders. In Proceedings of the 12" ISOC Symposium on
Network and Distributed Systems Security (SNDSS), pages 149-166, February 2005.

G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-based Intrusion Detection
Signatures Using Mutant Exploits. In Proceedings of the 11** ACM Conference on Com-
puter and Communications Security (CCS), pages 21-30, October 2004.

H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield: Vulnerability-Driven
Network Filters for Preventing Known Vulnerability Exploits. In Proceedings of the ACM
SIGCOMM Conference, pages 193-204, August 2004.

57.

58.

59.

60.

61.

62.

63.

64.

10 Composite Hybrid Techniques For Defending Against Targeted Attacks 229

K. Wang and S. I. Stolfo. Anomalous Payload-based Network Intrusion Detection. In
Proceedings of the 7" International Symposium on Recent Advanced in Intrusion Detec-
tion (RAID), pages 201-222, September 2004.

N. Weaver, S. Staniford, and V. Paxson. Very Fast Containment of Scanning Worms. In
Proceedings of the 13" USENIX Security Symposium, pages 29—44, August 2004.

D. Whyte, E. Kranakis, and P. van Oorschot. DNS-based Detection of Scanning Worms
in an Enterprise Network. In Proceedings of the 12" ISOC Symposium on Network and
Distributed Systems Security (SNDSS), pages 181-195, February 2005.

J. Wu, S. Vangala, L. Gao, and K. Kwiat. An Effective Architecture and Algorithm for
Detecting Worms with Various Scan Techniques. In Proceedings of the ISOC Symposium
on Network and Distributed System Security (SNDSS), pages 143—156, February 2004.
V. Yegneswaran, P. Barford, and S. Jha. Global Intrusion Detection in the DOMINO
Overlay System. In Proceedings of the ISOC Symposium on Network and Distributed
System Security (SNDSS), February 2004.

V. Yegneswaran, P. Barford, and D. Plonka. On the Design and Use of Internet Sinks
for Network Abuse Monitoring. In Proceedings of the T International Symposium on
Recent Advances in Intrusion Detection (RAID), pages 146-165, October 2004.

V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An Architecture for Generating
Semantics-Aware Signatures. In Proceedings of the 14" USENIX Security Symposium,
pages 97-112, August 2005.

C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and Early Warning for Internet
Worms. In Proceedings of the 10" ACM International Conference on Computer and
Communications Security (CCS), pages 190~-199, October 2003.

11

1
Towards Stealthy Malware Detection

Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li

Department of Computer Science, Columbia University
{sal, kewang,wei-jen}@cs.columbia.edu

Abstract

Malcode can be easily hidden in document files and go undetected by
standard technology. We demonstrate this opportunity of stealthy malcode
insertion in several experiments using a standard COTS Anti-Virus (AV)
scanner. Furthermore, in the case of zero-day malicious exploit code, sig-
nature-based AV scanners would fail to detect such malcode even if the
scanner knew where to look. We propose the use of statistical binary con-
tent analysis of files in order to detect suspicious anomalous file segments
that may suggest insertion of malcode. Experiments are performed to de-
termine whether the approach of n-gram analysis may provide useful evi-
dence of a tainted file that would subsequently be subjected to further scru-
tiny. We further perform tests to determine whether known malcode can be
easily distinguished from otherwise “normal” Windows executables, and
whether self-encrypted files may be easy to spot. Our goal is to develop an
efficient means by static content analysis of detecting suspect infected
files. This approach may have value for scanning a large store of collected
information, such as a database of shared documents. The preliminary ex-
periments suggest the problem is quite hard requiring new research to de-
tect stealthy malcode.

! This work was partially supported by a grant from ARDA under a contract
with Batelle, Pacific Northwest Labs.

232 Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li

11.1 Introduction

Attackers have used a variety of ways of embedding malicious code in
otherwise normal appearing files to infect systems. Viruses that attach
themselves to system files, or normal appearing media files, are nothing
new. State-of-the-art COTS products scan and apply signature analysis to
detect these known malware. For various performance optimization rea-
sons, however, COTS Anti-Virus (AV) scanners may not perform a deep
scan of all files in order to detect known malcode that may have been em-
bedded in an arbitrary file location. Other means of stealth to avoid detec-
tion are well known. Various self-encryption or code obfuscation tech-
niques may be used to avoid detection simply making the content of
malcode unavailable for inspection by an AV scanner. In the case of new
zero day malicious exploit code, signature-based AV scanners would fail
to detect such malcode even if the scanner had access to the content and
knew where to look.

In this chapter we explore the use of statistical content analysis of files
in order to detect anomalous file segments that may suggest infection by
malcode. Our goal is to develop an efficient means of detecting suspect in-
fected files for application to scanning a large store of collected informa-
tion, such as a database of content in a file sharing network. The work re-
ported in this chapter is preliminary. Our ongoing studies have uncovered
a number of other techniques that are under development and evaluation.
Here we present background summary on our work on Fileprints, followed
by several experiments applying the method to malcode detection.

The threat model needs to be clarified in this work. We do not consider
the methods by which stealthy malcode embedded in tainted files may be
automatically launched and executed. One may posit that detecting a
tainted file may be easy simply by opening the file and detecting whether
the application issues a fault. This might be the case if the malcode was
embedded in such a way as to damage the expected file format causing the
application to fault. As we show in Section 11.2 , one can embed malcode
without creating such a fault when opening a tainted file. In this work, we
focus specifically on static analysis techniques to determine whether or not
we may be able to identify a tainted file. The approach we propose is to
use generic statistical feature analysis of binary content irrespective of the
type of file used to transport the malcode into a protected environment.

Files typically follow naming conventions that use standard extensions
describing its type or the applications used to open and process the file.

11 Towards Stealthy Malware Detection 233

However, although a file may be named Paper.docz, it may not be a le-
gitimate Word document file unless it is successfully opened and displayed
by Microsoft Word, or parsed and checked by tools, such as the Unix file
command, if such tools exist for the file type in question. We proposed a
method to analyze the contents of exemplar files using statistical modeling
techniques. In particular, we apply n-gram analysis to the binary content of
a set of exemplar “training” files and produce normalized n-gram distribu-
tions representing all files of a specific type. Our aim is to determine the
validity of files claiming to be of a certain type (even though the header
may indicate a certain file type, the actual content may not be what is
claimed) or to determine the type of an unnamed file object.

The conjecture is that we may model different types of files to produce a
model of what all files of that type should look like. Any significant devia-
tion from this model may indicate the file is infected with embedded mal-
code. Suspect files identified using this technique may then be more
deeply analyzed using a variety of techniques under investigation by other
researchers (e.g., [9, 16, 18].)

In our prior work [11, 19, 20], we demonstrated an efficient statistical n-
gram method to analyze the binary contents of network packets and files.
This work followed our earlier work on applying machine learning tech-
niques applied to binary content to detect malicious email attachments
[15]. The method trains n-gram models from a collection of input data, and
uses these models to test whether other data is similar to the training data,
or sufficiently different to be deemed an anomaly. The method allows for
each file type to be represented by a compact representation of statistical
n-gram models. Using this technique, we can successfully classify files
into different types, or validate the declared type of a file, according to
their content, instead of using the file extension only or searching for em-
bedded “magic numbers” [11] (that may be spoofed).

We do not presume to replace other detection techniques, but rather to
augment approaches with perhaps new and useful evidence to detect suspi-
cious files. Under severe time constraints, such as real-time testing of net-
work file shares, or inspection of large amounts of newly acquired media,
the technique may be useful in prioritizing files that are subjected to a
deeper analysis for early detection of malcode infection.

In the next section, we describe some simple experiments of inserting
malware into normal files and how well a commercial AV scanner per-
formed in detecting these infected files. Amazingly, in several cases the

2 For our purposes here, we refer to .DOC as Microsoft Word documents, al-
though other applications use the .DOC extension such as Adobe Framemaker, In-
terleaf Document Format, and Palm Pilot format, to name a few.

234 Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li

tainted files were opened without problem by the associated application.
Section 11.3 summarizes our work on fileprints using 1-gram distributions
for pedagogical reasons. The same principles apply to higher order grams.
We present several experiments using these techniques to detected infected
files. Our concluding remarks in Section 11.4 identify several areas of new
work to extend the preliminary ideas explored in this paper.

11.2 Deceiving anti-virus software

Malware may be easily transmitted among machines as (P2P) network
shares. One possible stealthy way to infect a machine is by embedding the
malicious payload into files that appear normal and that can be opened
without incident. A later penetration by an attacker or an embedded Trojan
may search for these files on disk to extract the embedded payload for exe-
cution or assembly with other malcode. Or an unsuspecting user may be
tricked into launching the embedded malcode in some crafty way. In the
latter case, malcode placed at the head of a PDF file can be directly exe-
cuted to launch the malicious software. Social engineering can be em-
ployed to do so. One would presume that an AV scanner can check and de-
tect such infected file shares if they are infected with known malcode for
which a signature is available. The question is whether a commercial AV
scanner can do so. Will the scanning and pattern-matching techniques cap-
ture such embeddings successfully? An intuitive answer would be “yes”.
We show that is not so in all cases.

We conducted the following experiments. First we collected a set of
malware [22], and each of them was tested to verify they can be detected

by a COTS anti-virus system3. We concatenate each of them to normal
PDF files, both at the head and tail of the file. Then we manually test
whether the COTS AV can still detect each of them, and whether Acrobat
can open the PDF file without error. These tests were performed on a
Windows platform. The results are summarized in Table 11.1. The COTS
anti-virus system has surprisingly low detection rate on these infected files
with embedded malware, especially when malware is attached at the tail.
For those that were undetected, quite a few can still be successfully opened
by Acrobat appearing exactly as the untouched original file. Thus, the mal-

3 This work does not intend to evaluate nor denigrate any particular COTS
product. We chose a widely used AV scanner that was fully updated at the time
the tests were performed. We prefer not to reveal which particular COTS AV
scanner was used. It is not germane to the research reported in this paper.

11 Towards Stealthy Malware Detection ~ 235

code can easily reside inside a PDF file without being noticed at all. An
example of the manipulated PDF file is displayed in Figure 11.1. The ap-
parent reason Adobe Acrobat Reader (version 7.0) opens infected files
with no trouble is that it scans the head of a file looking for the PDF
“magic numbers” signaling the beginning header meta-data necessary to
interpret the rest of the binary content. Thus, the portions passed over by
the reader while searching for its header data provides a convenient place
to hide malcode.

Table 11.1. COTS AV detection rate and Acrobat behavior on embedded mal-

code.
Total vi- Virus at the head of PDF Virus at the tail of PDF
rus/worm AV can de- Acrobat can AV can de- Acrobat can
tect open tect open
223 162 (72.6%) 4 /not detected 43 (19.3%) 17 /not de-

tected

T

["L.J e | e T

NEThY- '~ S S

Fig. 11.1. Screenshot of original and malware embedded PDF file

We also performed another experiment by inserting the malware into
some random position in the middle of the PDF file. But since PDF has its
own encoding and such blind insertion can easily break the encoding, gen-

236 Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li

erally this is easily noticed by the Acrobat Reader when opening the file.
This was the case and hence malware simply appended to the head/tail is
obviously easier without causing any errors by the reader. We repeated this
experiment on DOC files using some selected malwares, and got a similar
result. The following table provides the detailed results of several malware
insertion experiments using well known malware. Only CRII can be relia-
bly detected no matter where it is inserted, while Slammer and Sasser were
missed.

Table 11.2. Detailed example of insertion using several well-known malware

Slammer
Virus at head In the middle At tail
PDF file Not detect/open Not detect/open er- Not detect/open
fine ror fine
DOC file Not detect/open Not detect/open er- Not detect/open
error ror fine
CodeRed I1
Can be detected anywhere
Sasser
Virus at head In the middle At tail
PDF file Can detect Not detect/open er- Not detect/open
ror error
DOC file Can detect Not detect/open er- Not detect/open
ror fine

Another experiment focused on Windows executables, like
WINWORD.EXE. After analyzing the byte value distributions of executa-
bles, we noticed that byte value 0 dominated all others. Application execu-
tables are stored on disk using a standard block alignment strategy of pad-
ding of executables (falling at addresses n*4096) for fast disk loading.
These zero’ed portions of application files provide ample opportunity to
insert hidden malcode. Instead of concatenating malcode, in this case we
insert the malcode in a continuous block of 0’s long enough to hold the
whole malcode and store the file back on disk. Again, we tested whether a
COTS AV scanner would detect these poisoned applications. It did not.
We performed this experiment by replacing the padded segments of
WINWORD.EXE, from byte positions 2079784 to 2079848. Figure 11.2
shows two versions of the application, the normal executable and the other
infected with malcode, and both were able to open DOC files with no
trouble.

11 Towards Stealthy Malware Detection 237

B GRS Fpods ok e

O

P and folder Tasks & 8

I8 D) Matr e fader
i Ptk s
] ﬁn e 1

=
Ba [Wew peet femst ech Tbe geee teb M B B8t Ve fert Fomet Tk ek ek b *
DERSE SRY 8 ™ . %o O RSY SRY B w™ - T .
fosrote Text - Aiad -m-n:n@u:lg-: FaomoteTedt = And -a-lrngl!IL- =
=

o Ty T

i

j Opened using WINWORD EXE Opened using WINWORD-Modified.exe

: o)

: » : .

Enironmental assessment of | * Enironmental assessment o
Athens 2004 Olympic Ga § - Athens 2004 Olympic Ga

- N aff . p °
E— i A i . - ! A | el
e b hictewm W NOOCHEACET &L ow b wotwn- \NOCHBADES -L-
iy dergish. o 370 harctars fn e vk Py e va oy ni cdi .]

Fig. 11.2. Opening of a normal DOC file using the original WINWORD.EXE
(left) and the infected one WINWORD-Modified EXE (right).

11.3 N-gram experiments on files

Here we introduce the modeling and testing techniques and present the re-
sults of applying these techniques to detect tainted malware-embedded
files from normal files of the same type.

11.3.1 Fileprints — n-gram distributions of file content

An n-gram [4] is a subsequence of n consecutive tokens in a stream of to-
kens. N-gram analysis has been applied in many tasks, and is well under-

238 Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li

stood and efficient to implement. By converting a string of data to a fea-
ture vector of n-grams, one can map and embed the data in a vector space
to efficiently compare two or more streams of data. Alternatively, one may
compare the distributions of n-grams contained in a set of data to deter-
mine how consistent some new data may be with the set of data in ques-
tion. In our work to date, we experimented with both 1-gram and 2-gram
analysis of ASCII byte values. The sequence of binary content is analyzed,
and the frequency and variance of each gram is computed. Thus, in the
case of 1-grams, two 256-element vectors (histograms) are computed. This
is a highly compact and efficient representation, but it may not have suffi-
cient resolution to represent a class of file types. Nevertheless, we test this
conjecture by starting with 1-grams. The following plot shows that differ-
ent file types do indeed have significant distinct 1-gram patterns. Thus, dif-
ferent file types can be reasonably well classified using this technique
(see [11]).

EXE HIML

Byte Value
0 Avg
Frequency

Byte Value
255 Avg
Frequency

e K

Fig. 11.3. 1-gram distribution for different file types.

Once a set of models are computed from a set of normal files, a test file
is measured to determine how closely its content conforms to the normal
models. This is accomplished by computing the Mahalanobis distance [20]
between the test file in question and the normal (centroid) models previ-
ously computed. The score produced is a distance measure; a distance
threshold is then used to determine whether to declare the file normal or
not.

11 Towards Stealthy Malware Detection 239

11.3.2 Truncation and multiple centroids

Truncation simply means we model only a fixed portion of a file when
computing a byte distribution. That portion may be a fixed prefix, say the
first 1000 bytes, or a fixed portion of the tail of a file, as well as perhaps a
middle portion. This has several advantages. First, for most files, it can be
assumed that the most relevant part of the file, as far as its particular type
is concerned, is located early in the file to allow quick loading of meta-
data by the handler program that processes the file type. Second, viruses
often have their malicious code at the very beginning of a file. Hence, vi-
ruses may be more readily detected from this portion of the file. However,
viruses indeed may also be appended to the end of a file, hence truncation
may also be applied to the tail of a file to determine whether a file varies
substantially from the expected distribution of that file type. The last, trun-
cation dramatically reduces the computing time for model building and file
testing.

On the other hand, files with the same extension do not always have a
distribution similar enough to be represented by a single model. For exam-
ple, EXE files might be totally different when created for different pur-
pose, such as system files, games, or media handlers. Thus, an alternative
strategy for representing files of a particular type is to compute “multiple
models”. We do this via a clustering strategy. Rather than computing a
single model M, for files of type A, we compute a set of models My, k>1.
The multiple model strategy requires a different test methodology, how-
ever. During testing, a test file is measured against all centroids to deter-
mine if it matches at least one of the centroids. The set of such centroids is
considered a composite fileprint for the entire class. The multiple model
technique creates more accurate models, and separates foreign files from
the normal files of a particular type in more precise manner. The multiple
models are computed by the K-Means algorithm under Manhattan Dis-
tance as the similarity metric. The result is a set of K centroid models, M 4
which are later used in testing files for various purposes.

11.3.3 Data sets

To test the effectiveness of the n-gram analysis on files, we conducted sev-
eral experiments to determine whether it can correctly classify files and
whether it can detect malcode.

The test files used in the experiments include 140 PDF files. The mali-
cious files used for embedding were collected from emails, internet
sources [22] and some target honeypot machines setup for this purpose in

240 Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li

our lab. The PDF files were collected from the internet using a general
search on Google. In this way, they can be considered randomly chosen as
an unbiased sample. These tests are preliminary; considerable more effort
is needed to compose a proper set of training and test data to ensure the
files in question represent a true sample of interest. Here we collected
documents from an open source and have no means to accurately charac-
terize whether this sample is truly representative of a collection of interest.
Nevertheless, this experiment provides some evidence of whether the pro-
posed techniques show promise or not.

11.3.4 Detecting malware embedded files

First we revisit our malcode embedding experiment. We’ve seen that the
COTS AV system we used can easily miss the malcode hidden inside
normal appearing files. Here we apply the 1-gram analysis and see how
well it may be able to detect the malicious code sequences. 100 of the 140
PDF files were used to build head and tail 1-gram models. Then we tested
the remaining 40 normal PDF files and hundreds of malware-embedded
files against the model. Since we know ground truth, we measure the de-
tection rate exactly when the false positive rate is zero, i.e., no normal PDF
files been misclassified as malware-infected. The result is displayed in Ta-
ble 11.3, which is much higher than the COTS anti-virus software detec-
tion rate, which for these files is effectively zero. Notice that the total
number of malware-embedded files is different for different truncation
sizes. That is because the malware used in this study differ in size and we
only consider the problem of classifying a pure malcode block fully em-
bedded in a portion of the PDF file. We consider a concatenated PDF file
as a test candidate only if the malcode size is equal to or greater than the
truncation size used for modeling.

Table 11.3. Detection rate using truncated head and tail modeling

Models head N bytes

Detect 1000 bytes 500 bytes 200 bytes
49/56(87.5%) 314/347(90.5%) 477/505(94.5%)

Models tail N bytes

Detect 1000 bytes 500 bytes 200 bytes

42/56(75%) 278/347(80.1%) 364/505(72.1%)

It may be the case that it is easier to detect the malcode if it is concate-
nated at the head or tail of a file, since different file types usually have
their own standard header information and ending encoding. Malcode may

11 Towards Stealthy Malware Detection 241

be significantly different from these standardized encodings. However, we
test whether malware can effectively be hidden in some middle portion of
a file (presuming that the file would still possibly be opened correctly). A
reasonable assumption about such insertion is that the malware is inserted
as a continuous whole block. So we apply the n-gram detection method to
each block of a file’s binary content and test whether the model can distin-
guish PDF blocks from malware blocks. If so, then we can detect the mal-
code hidden inside PDF files.

We compute byte distribution models using N consecutive byte blocks
from 100 PDF files, then test the blocks of the malware and another 40
PDF files against the model, using Mahalanobis distance. Figure 11.4
shows the distance of the malware blocks and PDF blocks to the normal
model, using N=500 byte blocks and N=1000 byte blocks, respectively. In
the plot we display the distance of the malcode blocks on the left side of
the separating line and the normal PDF on the right. As the plots show,
there is a large overlap between malcode and PDF blocks. The poor results
indicate that malware blocks cannot be easily distinguished from normal
PDF file blocks using 1-gram distributions.

viris blocks PDF blocks {
PDF blacks i

B 8
SRR+ 4+

Fig. 11.4. The Mahalanobis distance of the normal PDF and malware blocks to the
trained PDF block model. The left is 500-byte block and the right plot is 1000-
byte block.

In order to understand why the block-based detection using 1-grams
does not work well, we plot the byte distribution of each block of a normal
PDF file and the Sasser worm code. The first 9 blocks of the PDF file and
the first 6 blocks of Sasser are displayed in the following plots. These plots
clearly show that different blocks inside a PDF file differ much in their
byte distribution, and we cannot determine an absolute difference of the
malcode blocks from PDF blocks. Therefore, it appears that a 1-gram sta-
tistical content analysis might not have sufficient resolution for malware
block detection. Either higher order grams (perhaps 2-grams or 3-grams)

242 Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li

may suffice, or we may need more syntactic information about the file
formats to adequately distinguish malcode embedded in PDF files. A
search for better statistical features is part of our ongoing research.

Fig. 11.5. Byte value distributions of blocks of the PDF file and Sasser worm.

at.
om

0.008

0.006

il

o 80 10D 150 200 250 300 o 50 10 150 200 2850 300 0 100 150 20 260 3W
(a) PDF file
ans a5 0.02
0.04 oot 0015
0.03 :
a2

0.0
0

0.02 0.02 0.02
0.015 0.015 0015
0.0 am 0.01
0.005 0.005 04805
0 s} 1}

[=]

'

wr
g

100 200

0

[=]

100

200

.01
0.005
a

100 300

o

100 200

3

=

0

[=]

(b) Slammer worm

100

200

3

=)

11 Towards Stealthy Malware Detection 243

11.3.5 Classifying normal executables and viruses

In this experiment, we use a collection of malcode executables gathered
from other external sources, and compare the 1-gram and 2-gram distribu-
tions of these to the corresponding distributions of “normal” Windows ex-
ecutables to determine whether viruses exhibit any clear separating charac-
teristics. We conjecture that the Windows executables are generated by
programming environments and compilers that may create standard “head-
ers” different from those used by virus writers who deliver their viruses via
email or file shares.

We apply three modeling methods to these experiments, which are one-
centroid, multi-centroids and exemplar files as centroids. The one centroid
method trains one single model for each class (or type) of file. We build n
models M;, M,, ..., M, from n different file types. Then, we compute the
distance of the test file F to each model, and F is classified to the model
with the closest distance.

Alternatively, the multi-centroids method, we build &k models M, M,
o, M using k-means algorithm for each file type ¢ as described in Sec-
tion 11.3.2 . There are k*T models in total, where T is the number of file
types. k is set to 10 in this test. The test strategy is the same as in the case
of one centroid. The test file F is classified to the model with the closest
distance.

A third method is also tested. Here we use a set of exemplar files of
each type as centroids. Thus, a set of randomly chosen normal files for
each file type are used as centroids. There are N models if there are N cho-
sen exemplar files. We also analyze the accuracy of the method using dif-
ferent truncations — first 10, 50, 100, 200, 400, 600, 1000, 2000, 4000,
6000, and 8000 bytes, and the entire file. In this experiment, we evaluate
both 1-gram and 2-gram analysis.

We trained models on 80% of the randomly selected files of each group
(normal and malicious) to build a set of models for each class. The remain-
ing 20% of the files are used as test files. Again, we know ground truth and
hence can accurately evaluate performance. Note that all of the malicious
files extensions are EXE. For each of the test files, we evaluate their dis-
tance from both the “normal model” and the “malicious model”. 31 normal
application executable files, 45 spyware, 331 normal executable under
folder System32 and 571 viruses were tested. Three “pairs” of groups of
files are tested — Normal executable vs. spyware, normal application vs.
spyware and normal executable vs. viruses. We report the average accu-
racy over 100 trials using cross validation for each of the modeling tech-
niques.

244 Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li

The results are shown in Figure 11.6. Each column represents each
modeling method: one-centroid, muli-centroids and exemplar file cen-
troids. The rows indicate the testing “pairs”. In each plot, the X and Y-axis
are the false positive rate and detection rate, respectively. The asterisk
marks are l-gram tests using different truncation sizess, and the circle
marks represent the results of 2-gram centoids. In these plots, the trunca-
tion sizes are not arranged in order. In these two dimensional plots, the op-
timum performance appears closest to the upper left corner of each plot.
That is to say, a false positive rate of 0 and a detection rate of 1 is perfect
performance.

The results show relatively good performance in some case of normal
executable vs. spyware and normal executable vs. virus. Because viruses
and worms usually target the System32 folder, we can reasonable well de-
tect non-standard malicious files in that folder. Moreover, the performance

1 Centroig Hulth-Cantroids (10} fixemplsr Files as Centroids
b
*
ByctordZ o
g g & 0.8
Spywate g
+ 046 %
94
gox 0.4 .
00 .5 1 620 0.5 1 MO 4.5 1
4 Ceontinid Fulti-Caatroids {10} Exemplar Files as Dentroids
ol 1 N Y 1 1 S
Application A .Q@
w 09 %, 0s ¥ 09 *% +
Spyware g g o0 * @ ¥
+ 08l o % X
0.7 o
0o o ¢ 04 .4 9.7 G
o) o] *
153 : 3
U] 0.5 1 20 0.5 1 ° Gﬂ 0.8 1
1 Controid MultiCentroids (10 Exernplar Files as Centroid
1 Ft 1 re
System3d2 OQ* ¥ - *
“. 6.8 .98
Wirs % 08 g§‘ g’
0s|§ o o56/%
875% o '
o+ 064 %
865 . 092g
. , [i%:]
o 50 0.2 8.4 o AD 4.2 4 @ 0.4 1

Fig. 11.6. 2-class classification of malware and normal EXE files. X-Axis: false
positive, Y-Axis: detection rate. Asterisk marks: 1-gram test, Circle marks: 2-
gram test.

11 Towards Stealthy Malware Detection 245

results varied under different truncation sizes. Thus, we have considerable
additional analysis to perform in our future work to identify appropriate
file sizes (and normalization strategies) to improve detection performance.
However, the plots clearly indicate that performance varies widely, which
suggests the comparison method is too weak to reliably detect malicious
code.

Notice that there is a high false positive rate in the case of testing nor-
mal applications to the Spyware samples. This is due to two reasons. First,
the range of the normal application file size is too large, ranging from
10KB to 10MB. 1t is hard to normalize the models when the data ranges so
widely. Second, the spyware files are somewhat similar to normal applica-
tion files. They are both MS Windows applications, and they may be used
for similar purposes. Hence, other features may be necessary to explore
ways of better distinguishing this class of files.

In the experiments performed to date, there is no strong evidence to in-
dicate that 2-gram analysis is better than 1-gram analysis. Even though the
1-gram memory usage is much smaller and the computation speed is much
faster, we may need to analyze far more many files to determine whether
the heavy price paid in performing 2-gram analysis will perform better ul-
timately.

11.3.6 Uniform Distributions of 1-gram analysis: encrypted files and
spyware

In this experiment we scan Windows files to determine whether any are
close to a uniform 1-gram distribution. We thus test whether spyware that
is obfuscated by self-encryption technology may be revealed as substan-
tially different from other executable files on a Windows host platform.
We conjecture that self-encrypted files, such as stealthy Trojans and spy-
ware, may be detectable easily via 1-gram analysis.

The normal EXE from System32, spyware and virus files used in the
experiments reported in the previous section are used here again. More-
over, we randomly select 600 files (DOC, PPT, GIF, JPG, PDF, DLL)
from Google, 100 for each type. Since the models are normalized, the uni-
form distribution is an array with uniform value 1/n, where n is the length
of the array and # is 256 in the 1-gram test. For each of the test files, we
compute the Manhattan distance against the uniform model and plot the
distance in Figure 11.7. The files that are closest to uniform distribution
are listed in Table 11.4.

As the plot shows, JPG, GIF and PDF files are self-encoded, so they are
more similar to the uniform distribution. System32 files and DLL files are

246 Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li

not self-encrypted, and most of the virus and spyware tested are also not
self-encrypted. However, some of the normal files are self-encrypted and
quite similar to the random distribution. An interesting example is the ap-
plication ad-aware.exe, which is a COTS adware detection application that
apparently uses self-encryption, perhaps to attempt to protect its intellec-

tual property.

hazxs\\'cc.cxd | wastl.exe 1

Fig. 11.7. The distance of testing files against the uniform distribution. X-Axis:
the test files, Y-Axis: the distance.

Table 11.4. Files whose content is deemed close to a uniform 1-gram dis-
tribution (hence likely encrypted).

File name

Description

Teee-submission-
instruct.doc
Ad-Aware.exe

msgfix.exe

Qazxswcc.exe
Asm.exe

An ieee submission format instruction Word file. It is
unclear why this file follows a normal distribution.
Ad-Aware.exe: ad-aware from lavasoft, searches and
removes spyware and/or adware programs from your
computer.

msgfix.exe is the W32.Gaobot.SN Trojan. This Trojan
allows attackers to access your computer, stealing
passwords and personal data.

qazxswcc.exe is as a backdoor Trojan.

asm.exe is a commercial spyware program by Gator.
This program monitors browsing habits and distributes
the data back to a Gator server for analysis. This also
prompts advertising pop-ups.

11 Towards Stealthy Malware Detection 247

wast2.exe wast2.exe is an adware based Internet Explorer
browser helper object that delivers targeted ads based
on a user’s browsing patterns.

11.4 Concluding Remarks

In this paper, we demonstrate that simple techniques to embed known mal-
code in normal files can easily bypass signature-based detection. We suc-
cessfully inserted known malcode in non-executable (PDF and DOC) files
without being detected by AV scanners, and several were normally opened
and executed. Various code obfuscation techniques can also be used by
crafty attackers to avoid inspection by signature-based methods. We pro-
pose an alternative approach to augment existing signature-based protec-
tion mechanisms with statistical content analysis techniques. Rather than
only scanning for signatures, we compute the statistical binary content of
files in order to detect anomalous files or portions of files which may indi-
cate a malcode embedding. Although it may be relatively easy to detect
tainted files where malcode is embedded in the head (where normal meta-
data is expected) or at the tail of a file, detecting embeddings within the in-
terior portion of a file poses a significant challenge. The results show that
far more work is needed to identify files tainted by stealthy malcode em-
beddings. On the positive side, self-encrypted files are relatively easy to
spot.

The results reported here are preliminary, and have opened up other
avenues of future work. For example, adherence to a 1-gram model may
not be the right strategy. Higher order grams may reveal more structure in
files, and help identify unusual segments worthy of deeper analysis. Fur-
thermore, file formats are defined by, typically, proprietary and unpub-
lished syntactic conventions providing markers delimiting regions of files
handled different (eg., embedded objects with specialized methods for
their processing) that may be analyzed by alternative methods. Utilizing
this information may provide a finer granularity of modeling normal file
formats and perhaps produce improved performance.

Finally, we believe another path may be useful, profiling application
execution when opening typical/normal files. It may be possible to identify
portions of files that harbor malcode by finding possible deviations from
normal application behavior. Combining static analysis with dynamic pro-
gram behavior analysis may be the best option for detecting tainted files
with embedded stealthy malcode.

248

Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li

References

1.

10.

11.

12,

13.

K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K.Xinidis, E. Marka-
tos, and A. D. Keromytis. “Detecting Targeted Attacks Using Shadow
Honeypots”, Proceedings of the 14™ USENIX Security Symposium,
2005.

R. Balzer and N. Goldman, “Mediating Connectors”, Proceedings of
the 19 IEEE International Conference on Distributed Computing Sys-
tems Workshop, 1994.

M. Christodorescu and S. Jha, “Static Analysis of Executables to De-
tect Malicious Patterns”, In Proceedings of the 12th USENIX Security
Symposium, August 2003

M. Damashek. “Gauging similarity with n-grams: language independ-
ent categorization of text.” Science, 267(5199):843--848, 1995

E. Eskin, W. Lee and S. J. Stolfo. *“Modeling System Calls for Intru-
sion Detection with Dynamic Window Sizes." Proceedings of DISCEX
I1. June 2001.

J. Giffin, S. Jha, and B. Miller. “Detecting Manipulated Remote Call
Streams”. In the 11" USENIX Security Symposium, 2002

C. Ko, M. Ruschitzka, and K. Levitt. “Execution monitoring of secu-
rity-critical programs in distributed systems: A specification-based ap-
proach”. In Proceedings of the IEEE Symposium on Security and Pri-
vacy, 1997.

J. Kolter and M. Maloof. “Learning to Detect Malicious Executables
in the Wild.” In the Proceedings of ACM SIGKDD, 2004

C. Krugel, W. Robertson, F. Valeur, G. Vigna. “Static Disassembly of
Obfuscated Binaries”. In Proceedings of USENIX Security Sympo-
sium, 2004.

A. Kurchuk and A. Keromytis. “Recursive Sandboxes: Extending
Systrace to Empower Applications”. In Proceeding of the 19" IFIP In-
ternational Information Security Conference (SEC), Aug. 2004

W. Li, K. Wang, S. Stolfo and B. Herzog. “Fileprints: identifying file
types by n-gram analysis”. 6" IEEE Information Assurance Workshop,
West Point, NY, June, 2005.

M. McDaniel, M. Heydari. “Content Based File Type Detection Algo-
rithms”. 36" Annual Hawaii International Conference on System Sci-
ences (HICSS’03).

G. Necula, P. Lee. “Proof-Carrying Code” In Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), 1997

14

15.

16.

17.

18.

19.

20.

21.

22.
23.

11 Towards Stealthy Malware Detection 249

F. B. Schneider. “Enforceable security politics”. Technical Report 98-
1664, Cornell University, 1998

M. Schultz, E. Eskin, and S. Stolfo. “Malicious Email Filter - A UNIX
Mail Filter that Detects Malicious Windows Executables.” In Proceed-
ings of USENIX Annual Technical Conference - FREENIX Track.
Boston, MA: June 2001.

R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang and S.
Zhou. “Specification-Based Anomaly Detection: a new approach for
detecting network intrusions”, RAID 2002

A. Shamir and N. van Someren. “Playing Hide and Seek with stored
keys”, Financial Cryptography 1999.

D. Wagner and D. Dean. “Intrusion Detection via Static Analysis”. In
IEEE Symposium in Security and Privacy, Oakland, CA, 2001

K. Wang, G. Cretu and S. Stolfo. “Anomalous Payload-based Worm
Detection and Signature Generation”. To appear in Proceedings of the
Eighth International Symposium on Recent Advances in Intrusion De-
tection, Sept. 2005.

K. Wang and S. Stolfo. “Anomalous Payload-based Network Intrusion
Detection”. In Proceedings of the Seventh International Symposium on
Recent Advance in Intrusion Detection (RAID), Sept. 2004.

C. Warrender, S. Forrest, and B. Pearlmutter. "Detecting intrusions us-
ing System calls: alternative data models, Proc. of 1999 IEEE Sympo-
sium on Security and Privacy, 1999.

VX Heavens http://vx.netlux.org/

Net Alliance http://www.shellcode.com.ar/docz/bof/pe.pdf

Part V

Novel Techniques for Constructing Trustworthy
Services

12

Pioneer: Verifying Code Integrity and Enforcing
Untampered Code Execution on Legacy Systems™

Arvind Seshadrit, Mark Luk!, Adrian Perrig', Leendert van Doorn2, and Pradeep
Khosla!

1 CyLab, Carnegie Mellon University
arvinds@cs.cmu.edu, mark.luk@gmail.com,
{adrian, pkk}@ece.cmu.edu

2 IBM Research
leendertQus.ibm.com

Summary. We propose a primitive, called Pioneer, as a first step towards verifiable code exe-
cution on untrusted legacy hosts. Pioneer does not require any hardware support such as secure
co-processors or CPU-architecture extensions. We implement Pioneer on an Intel Pentium IV
Xeon processor. Pioneer can be used as a basic building block to build security systems. We
demonstrate this by building a kernel rootkit detector.

12.1 Introduction

Obtaining a guarantee that a given code has executed untampered on an untrusted
legacy computing platform has been an open research challenge. We refer to this
as the problem of verifiable code execution. An untrusted computing platform can
tamper with code execution in at least three ways: 1) by modifying the code before
invoking it; 2) executing alternate code; or 3) modifying execution state such as
memory or registers when the code is running.

In this chapter, we propose a software-based primitive called Pioneer” as a first
step towards addressing the problem of verifiable code execution on legacy comput-
ing platform without relying on secure co-processors or CPU architecture extensions
such as secure virtualization support. Pioneer is based on a challenge-response pro-
tocol between an external trusted entity, called the dispatcher, and an untrusted com-
puting platform, called the untrusted platform. The dispatcher communicates with

3

* This research was supported in part by CyLab at the Carnegie Mellon University under
grant DAAD19-02-1-0389 from the Army Research Office, by NSF under grant CNS-
0509004, and by a gift from IBM, Intel and Microsoft. The views and conclusions con-
tained here are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either express or implied, of ARO, Carnegic Mellon
University, IBM, Intel, Microsoft, NSF, or the U.S. Government or any of its agencies.

3 We call our primitive Pioneer because it can be used to instantiate a trusted base on an
untrusted platform.

254 Arvind Seshadri et al.

the untrusted platform over a communication link, such as a network connection.
After a successful invocation of Pioneer, the dispatcher obtains assurance that: 1) an
arbitrary piece of code, called the executable, on the untrusted platform is unmodi-
fied; 2) the unmodified executable is invoked for execution on the untrusted platform;
and 3) the executable is executed untampered, despite the presence of malicious soft-
ware on the untrusted platform.

To provide these properties, we assume that the dispatcher knows the hardware
configuration of the untrusted platform, and that the untrusted platform cannot col-
lude with other devices during verification. We also assume that the communication
channel between the dispatcher and the untrusted platform provides the property of
message-origin authentication, i.e., the communication channel is configured so that
the dispatcher obtains the guarantee that the Pioneer packets it receives originate
from the untrusted platform. Furthermore, to provide the guarantee of untampered
code execution, we assume that the executable is self-contained, not needing to in-
voke any other software on the untrusted platform, and that it can execute at the
highest processor privilege level with interrupts turned off.

The dispatcher uses Pioneer to dynamically establish a trusted computing base
on the untrusted platform, called the dynamic root of trust. All code contained in the
dynamic root of trust is guaranteed to be unmodified and is guaranteed to execute in
an untampered execution environment. Once established, the dynamic root of trust
measures the integrity of the executable and invokes the executable. The executable is
guaranteed to execute in the untampered execution environment of the dynamic root
of trust. In Pioneer, the dynamic root of trust is instantiated through the verification
function, a self-checking function that computes a checksum over its own instruc-
tions. The checksum computation slows down noticeably if the adversary tampers
with the computation. Thus, if the dispatcher receives the correct checksum from the
untrusted platform within the expected amount of time, it obtains the guarantee that
the verification function code on the execution platform is unmodified.

Pioneer can be used as a basic primitive for developing security applications.
We illustrate this by designing a kernel rootkit detector. Our rootkit detector uses a
software-based kernel integrity monitor. Instead of using rootkit signatures or low
level filesystem scans to find files hidden by a rootkit, our kernel integrity monitor
computes periodic hashes of the kernel code segment and static data structures to
detect unauthorized kernel changes. The trusted computer uses Pioneer to obtain
a guarantee that the kernel integrity monitor is unmodified and runs untampered.
‘When implemented on version 2.6 of the Linux kernel, our rootkit detector was able
to detect all publically-known rootkits for this series of the Linux kernel.

An important property of Pioneer is that it enables software-based code attesta-
tion [19]. Code attestation allows a trusted entity, known as the verifier, to verify the
software stack running on another entity, known as the attestation platform. The ver-
ifier and the attestation platform are usuvally different physical computing devices. A
measurement agent on the attestation platform takes integrity measurements of the
platform’s software stack and sends them to the verifier. The verifier uses the in-
tegrity measurements obtained from the attestation platform to detect modifications
in the attestation platform’s software stack.

12 Pioneer: Untampered Code Execution on Legacy Systems 255

The Trusted Computing Group (TCG) has released standards for secure comput-
ing platforms, based on a tamper-resistant chip called the Trusted Platform Module
(TPM) [22]. All code is measured before it is loaded and the measurements are stored
inside the TPM. In response to an attestation request, the attestation platform sends
the load-time measurements to the verifier. The verifier can the load-time measure-
ments to obtain the guarantee of load-time attestation, whereby the verifier obtains a
guarantee of what code was loaded into the system memory initially.

The load-time attestation mechanism proposed by the TCG standards has two
disadvantages: 1) it requires hardware extensions to the attestation platform in the
form of a TPM chip and is hence not suitable for legacy systems, and 2) the mech-
anism is not field upgradable using software means. It is not possible to update the
software running on the TPM using software methods. The only way to update the
TPM software is to physically replace the TPM. TPMs are designed this way to
prevent an adversary from loading malicious software into the TPM via the update
mechanism. However, this also means that whenever the cryptographic primitives
used by the TPM are compromised or any vulnerabilities are found in the TPM soft-
ware, the only way to re-secure already deployed systems is to physically replace
their hardware.

The software-based code attestation provided by Pioneer does not require any
hardware extensions to the attestation platform. The verifier depends on Pioneer to
guarantee the verifiably correct execution of the measurement agent. Pioneer-based
code attestation has three main advantages: 1) it can be updated using software meth-
ods if the underlying primitives are compromised, 2) it works on legacy systems that
lack secure co-processors or other hardware enhancements to protect the measure-
ment agent from a malicious attestation platform, and 3) it provides the property of
run-time attestation, i.e., the verifier can verify the integrity of software running on
the attestation platform at the present time. Run-time attestation provides a stronger
guarantee than the TCG-based load-time attestation, since software can be compro-
mised by dynamic attacks, such as buffer overflows, after software is loaded into
memory.

The chapter is organized as follows. Section 12.2 describes the problem we ad-
dress, our assumptions, and attacker model. In Section 12.3, we give an overview of
Pioneer. We then describe the design of the verification function and its implementa-
tion on the Intel Pentium IV Xeon processor in Sections 12.4 and 12.5, respectively.
Section 12.6 describes our kernel rootkit detector. We discuss related work in Sec-
tion 12.7 and conclude in Section 12.8.

12.2 Problem Definition, Assumptions & Attacker Model

In this section, we describe the problem we address, discuss the assumptions we
make, and describe our attacker model.

256 Arvind Seshadri et al.

12.2.1 Problem Definition

We define the problem of verifiable code execution, in which the dispatcher wants a
guarantee that some arbitrary code has executed untampered on an untrusted external
platform, even in the presence of malicious software on the untrusted platform.

The untrusted platform has a self-checking function, called the verification func-
tion. The dispatcher invokes the verification function by sending a challenge to the
untrusted platform. The verification function returns a checksum to the dispatcher.
The dispatcher has a copy of the verification function and can independently verify
the checksum. If the checksum returned by the untrusted platform is correct and is
returned within the expected time, the dispatcher obtains the guarantee that a dy-
namic root of trust exists on the untrusted platform. The code in the dynamic root
of trust measures the executable, sends the measurement to the dispatcher, and in-
vokes the executable. The executable runs in an untampered execution environment,
which was set up as part of instantiating the dynamic root of trust. The dispatcher
can verify the measurement since it has a copy of the executable. Taken together, the
correctness of the checksum and correctness of the executable measurement provide
the guarantee of verifiable code execution to the dispatcher.

Even if malicious software runs on the untrusted platform, it cannot tamper with
the execution of the executable. The adversary can perform an active DoS attack
and thwart Pioneer from being run at all. However, the adversary cannot cheat by
introducing a false negative, where the correct checksum value has been reported
within the expected time to the dispatcher, without the correct code executing on the
untrusted platform.

12.2.2 Assumptions

We assume that the dispatcher knows the exact hardware configuration of the un-
trusted platform, including the CPU model, the CPU clock speed, and the memory
latency. We also assume that the CPU of the untrusted platform is not overclocked.
In addition, the untrusted platform has a single CPU, that does not have support for
Symmetric Multi-Threading (SMT). For the x86 architecture, we also assume that
the adversary does not generate a System Management Interrupt (SMI) on the un-
trusted platform during the execution of Pioneer.

We assume the communication channel between the dispatcher and the untrusted
platform provides message-origin authentication i.e., the dispatcher is guaranteed
that all Pioneer packets it receives originate at the untrusted platform. Also, we as-
sume that the untrusted platform can only communicate with the dispatcher during
the time Pioneer runs. Equivalently, the dispatcher can detect the untrusted platform
attempting to contact other computing platforms. We make this assumption to elim-
inate the proxy attack, where the untrusted platform asks a faster computing device
(proxy), to compute the checksum on its behalf.

Assuming that the untrusted platform has only one wired communication inter-
face, we can provide message-origin authentication and eliminate the proxy attack
by physically connecting the untrusted platform to dispatcher with a cable. Also, if

12 Pioneer: Untampered Code Execution on Legacy Systems 257

the untrusted platform can only communicate over a Local Area Network (1LAN),
the network administrators can configure the network switches such that any packets
sent by the untrusted platform will reach only the dispatcher.

12.2.3 Attacker Model

We assume an adversary who has complete control over the software of the untrusted
platform. In other words, the adversary has administrative privileges and can tamper
with all software on the untrusted platform including the OS. However, we assume
that the adversary does not modify the hardware on the untrusted platform. For exam-
ple, the adversary does not load malicious firmware onto peripheral devices such as
network cards or disk controllers, or replace the CPU with a faster one. In addition,
the adversary does not perform DMA-based attacks like scheduling a DMA-write
causing a benign peripheral device to overwrite the executable between the time of
measurement and time of invocation.

12.3 Pioneer Overview

In this section, we give an overview of the verification function and describe the
challenge-response protocol used to set up a dynamic root of trust on the execution
platform and to obtain the guarantee of verifiable code execution.

12.3.1 The Verification Function

The verification function is the central component of the Pioneer system. It is re-
sponsible for performing an integrity measurement on the executable, setting up an
execution environment for the executable that ensures untampered execution, and
invoking the executable. As Figure 12.1 shows, the verification function has three
parts: a checksum code, a hash function and a send function.

Checksum code. The checksum code computes a checksum over the entire verifica-
tion function, and sets up an execution environment in which the send function, the
hash function and the executable are guaranteed to run untampered by any malicious
software on the untrusted platform. The checksum code computes a fingerprint of
the verification function, i.e., if even a single byte of the verification function code
is different, the checksum will be different with a high probability. Thus, a correct
checksum provides a guarantee to the dispatcher that the verification function code
is unmodified. However, an adversary could attempt to manipulate the checksum
computation to forge the correct checksum value in spite of having modified the ver-
ification function. For example, the adversary could detect when the checksum code
reads the altered memory locations and redirect the read to other memory locations
where the adversary has stored the correct values. To detect such manipulations,
we construct the verification function such that if an adversary tries to manipulate
the checksum computation, the computation time will noticeably increase. Thus, a

258 Arvind Seshadri et al.

f_______a ______ N 'd b \
: c :
: | g
I d : 1 - d
| |- 3 a
! 1

[$] (S
| | | 5
I
f f : f
! [
! [
| f 4 6
i | vy
1
| g | < 7 g

, | -
(oot U\ \ J
\\\X

Fig. 12.1. Overview of Pioneer. The numbers represent the temporal ordering of events.

correct checksum obtained within the expected amount of time is a guarantee to the
dispatcher that the verification function code on the untrusted platform is unmodified
and that there is an environment for untampered execution on the untrusted platform.
In other words, the dispatcher obtains the guarantee that there is a dynamic root of
trust on the untrusted platform.

Hash function. We use SHA-1 as the hash function to perform the integrity mea-
surement of the executable. Although the collision resistance property of SHA-1 has
been compromised, we rely on the second-preimage collision resistance property for
which SHA-1 is still considered secure [25]. To achieve this property, we design the
hash function so that it computes the hash of the executable as a function of a nonce
that is sent by the dispatcher. Thus, the adversary cannot take advantage of the com-
promised collision resistance property of SHA-1 to create to two different copies of
the executable both of which have the same hash value. After the measurement, the
hash function invokes the executable.

Send function. The send function returns the checksum and integrity measurement
to the dispatcher over the communication link.

12.3.2 The Pioneer Protocol

The dispatcher uses a challenge-response protocol to obtain the guarantee of veri-
fiable code execution on the untrusted platform. The protocol has two steps. First,
the dispatcher obtains an assurance that there is a dynamic root of trust on the un-
trusted platform. Second, the dispatcher uses the dynamic root of trust to obtain the
guarantee of verifiable code execution.

12 Pioneer: Untampered Code Execution on Legacy Systems 259

1.D: t1 « current time,noncef—{o, 1}
D — P: (nonce)
2. P: ¢ «— Checksum(nonce, P)
3.P—-D: (¢
D to « current time

if (t2 — t1 > At) then exit with failure
else verify checksum c

4. P: h « Hash(nonce, E)
5. P —=D: (h)

D: verify measurement result &
6. P: transfer control to

7. E — D (result (optional))

Fig. 12.2. The Pioneer protocol. The numbering of events is the same as in Figure 12.1. D is
the dispatcher, P the verification function, and E is the executable.

‘We describe the challenge-response protocol in Figure 12.2. The dispatcher first
sends a challenge containing a random nonce to the untrusted platform, initiating the
checksum computation of the verification function. The untrusted platform uses the
checksum code that is part of the verification function to compute the checksum. The
checksum code also sets up an execution environment to ensure that the send func-
tion, the hash function and the executable can execute untampered. After computing
the checksum, the checksum code invokes the send function to return the checksum
to the dispatcher. The dispatcher has a copy of the verification function and can inde-
pendently verify the checksum. Also, since the dispatcher knows the exact hardware
configuration of the untrusted platform, the dispatcher knows the expected time du-
ration of the checksum computation. After the send function returns the checksum
to the dispatcher, it invokes the hash function. The hash function measures the ex-
ecutable by computing a hash over it as a function of the dispatcher’s nonce and
returns the hash of the executable to the dispatcher using the send function. The
dispatcher also has a copy of the executable and can independently verify the hash
value. The hash function then invokes the executable, which optionally returns the
execution result to the dispatcher.

12.4 Design of the Checksum Code

In this section, we discuss the design of the checksum code that is part of the verifi-
cation function. The design is presented in a CPU-architecture-independent manner.
First, we discuss the properties of the checksum code, and explain how we achieve
these properties and what attacks these properties can prevent or help detect. Then,
we explain how we set up an execution environment in which the hash function, the
send function and the executable execute untampered. In Section 12.5, we shall de-
scribe how to implement the checksum code on an Intel Pentium IV Xeon processor.

260 Arvind Seshadri et al.
12.4.1 Required Properties of the Checksum Code

The checksum code has to be constructed such that adversarial tampering results in
either a wrong checksum or a noticeable time delay. We now describe the required
properties of the checksum code and explain how these properties achieve the goals
mentioned above.

Time-optimal implementation. Our checksum code needs to be the checksum code
sequence with the fastest running time; otherwise the adversary could use a faster
implementation of the checksum code and use the time saved to forge the checksum.
Unfortunately, it is an open problem to devise a proof of optimality for our checksum
function. Promising research directions to achieve a proof of optimality are tools
such as Denali [13] or superopt [8] that automatically generate the most optimal
code sequence for basic code blocks in a program. However, Denali currently only
optimizes simple code that can be represented by assignments, and superopt would
not scale to the code size of our checksum function.

To achieve a time-optimal implementation, we use simple instructions such as
add and xor that are challenging to implement faster or with fewer operations.
Moreover, the checksum code is structured as code blocks such that operations in
one code block are dependent on the result of operations in the previous code block.
This prevents operation reordering optimizations across code blocks.

Instruction sequencing to eliminate empty issue slots. Most modern CPUs are su-
perscalar, i.e., they issue multiple instructions in every clock cycle. If our checksum
code does not have a sufficient number of issuable instructions every clock cycle,
then one or more instruction issue slots will remain empty. An adversary could ex-
ploit an empty issue slot to execute additional instructions without overhead. To pre-
vent such an attack, we need to arrange the instruction sequence of the checksum
code so that the processor issue logic always has a sufficient number of issuable in-
structions for every clock cycle. Note that we cannot depend solely on the processor
out-of-order issue logic for this since it is not guaranteed that the out-of-order issue
logic will always be able to find a sufficient number of issuable instructions.

CPU state inputs. The checksum code is self-checksumming, i.e., it computes a
checksum over its own instruction sequence. The adversary can modify the checksum
code so that instead of checksumming its own instructions, the adversary’s check-
sum code computes a checksum over a correct copy of the instructions that is stored
elsewhere in memory. We call this attack a memory copy attack. This attack is also
mentioned by Wurster et al. in connection with their attack on software tamperproof-
ing [28]. The adversary can perform the memory copy attack in three different ways:
1) as shown in Figure 3(b), the adversary executes an altered checksum function from
the correct location in memory, but computes the checksum over a correct copy of
the checksum function elsewhere in memory; 2) as shown in Figure 3(c), the adver-
sary does not move the correct checksum code, but executes its modified checksum
code from other locations in memory; or 3) the adversary places both the correct
checksum code and its modified checksum code in memory locations that are differ-

12 Pioneer: Untampered Code Execution on Legacy Systems 261

ent from the memory locations where the correct checksum code originally resided,
as shown in Figure 3(d).

It is obvious from the above description that when the adversary performs a
memory copy attack, either the adversary’s Program Counter (PC) value or the data
pointer value or both will differ from the correct execution. We cause the adversary
to suffer an execution time overhead for the memory copy attack by incorporating
both the PC and the data pointer value into the checksum. In a memory copy attack,
the adversary will be forced to forge one or both of these values in order to generate
the correct checksum, leading to an increase in execution time.

Both the PC and the data pointer hold virtual addresses. The verification func-
tion is assumed to execute from a range of virtual addresses that is known to the
dispatcher. As a result, the dispatcher knows the excepted value of the PC and the
data pointer and can compute the checksum independently.

I T e 3

Faag m—

1 1
Z T T Aa— D I I KR t— 2
(a) No attack, PC and (b) Memory copy at-
DP are within the cor- tack 1. PC correct, but
rect range. DP incorrect.
77
1 1 J;<— 3
s
3 K2 7 W2
RARIFR,
VT T
17
T a3
(c) Memory copy at- (d) Memory copy at-
tack 2. PC incorrect, tack 3. PC and DP in-

DP correct. correct.

Fig. 12.3. Memory copy attacks. PC refers to the program counter, DP refers to the data
pointer, V.func refers to the verification function, and Mal. func refers to the malicious verifi-
cation function.

Iterative checksum code. As Figure 12.4 shows, the checksum code consists of
three parts; the initialization code, the checksum loop and the epilog code. The most
important part is the checksum loop. Each checksum loop reads one memory location
of the verification function and updates the running value of the checksum with the
memory value read, a pseudo-random value and some CPU state information. If the

262 Arvind Seshadri et al.

PVF
CIC

CL

EC
SF

HF

- - - —m—mmmm e e m o

Fig. 12.4. Functional structure of the verification function. The checksum code consists of an
initialization code, the checksum loop which computes the checksum, and the epilog code that
runs after the checksum loop but before the send function.

adversary alters the checksum function but wants to forge a correct checksum output,
it has to manipulate the values of one or more of the inputs in every iteration of the
checksum code, causing a constant time overhead per iteration.

Strongly-ordered checksum function. A strongly-ordered function is a function
whose output differs with high probability if the operations are evaluated in a dif-
ferent order. A strongly-ordered function requires an adversary to perform the same
operations on the same data in the same sequence as the original function to obtain
the correct result. For example, if a1, a2, a3, a4 and as are random inputs, the func-
tion a1 @ a2 + a3 B a4 + as is strongly-ordered. We use a strongly ordered function
consisting of alternate add and xor operations for two reasons. First, this prevents
parallelization, as at any step of the computation the current value is needed to com-
pute the succeeding values. For example, the correct order of evaluating the function
a1 @ ag + az P aq is (((a1 B az) + az) @ a4). If the adversary tries to parallelize
the computation by computing the function in the order ({a1 ® az) + (a3 D a4)), the
output will be different with high probability. Second, the adversary cannot change
the order of operations in the checksum code to try to speed up the checksum com-
putation. For example, if the adversary evaluates a; @ az + as @ a4 in the order
(a1 ® (a2 + (as D a4))), the output will be different with high probability.

In addition to using a strongly ordered checksum function, we also rotate the
checksum, Thus, the bits of the checksum change their positions from one iteration
of the checksum loop to the next, which makes our checksum function immune to
the attack against the Genuinity function that we point out in our paper [19].

Small code size. The size of the checksum loop needs to be small for two main rea-
sons. First, the code needs to fit into the processor cache to achieve a fast and deter-
ministic execution time. Second, since the adversary usually has a constant overhead
per iteration, the relative overhead increases with a smaller checksum loop.

Low variance of execution time. Code execution time on modern CPUs is non-
deterministic for a number of reasons. We want a low variance for the execution time
of the checksum code so that the dispatcher can easily find a threshold value for

12 Pioneer; Untampered Code Execution on Legacy Systems 263

the correct execution time. We leverage three mechanisms to reduce the execution
time variance of the checksum code. One, the checksum code executes at the highest
privilege CPU privilege level with all maskable interrupts turned off, thus ensuring
that no other code can run when the checksum code executes. Two, the checksum
code is small enough to fit completely inside the CPU’s L1 instruction cache. Also,
the memory region containing the verification function is small enough to fit inside
the CPU’s L1 data cache. Thus, once the CPU caches are warmed up, no more cache
misses occur. The time taken to warm up the CPU caches is a small fraction of the to-
tal execution time. As a result, the variance in execution time caused by cache misses
during the cache warm-up period is small. Three, we sequence the instructions of the
checksum code such that a sufficient number of issuable instructions are available
at each clock cycle. This eliminates the non-determinism due to out-of-order execu-
tion. As we show in our results in Section 12.5.3, the combination of the above three
factors leads to a checksum code with very low execution time variance.

Keyed-checksum. To prevent the adversary from pre-computing the checksum be-
fore making changes to the verification function, and to prevent the replaying of old
checksum values, the checksum needs to depend on a unpredictable challenge sent
by the dispatcher. We achieve this in two ways. First, the checksum code uses the
challenge to seed a Pseudo-Random Number Generator (PRNG) that generates in-
puts for computing the checksum. Second, the challenge is also used to initialize the
checksum variable to a deterministic yet unpredictable value.

We use a T-function as the PRNG [16]. A T-function is a function from n-bit
words to n-bit words that has a single cycle length of 2™. That is, starting from any
n-bit value, the T-function is guaranteed to produce ail the other 2™ — 1 n-bit values
before starting to repeat the values. The T-function we use is z «— z -+ (x?V5)mod?27,
where V is the bitwise-or operator. Since every iteration of the checksum code uses
one random number to avoid repetition of values from the T-function, we have to
ensure that the number of iterations of the checksum code is less than 2™ when we
use an n-bit T-function. We use n = 64 in our implementation to avoid repetition.

It would appear that we could use a Message Authentication Code (MAC) func-
tion instead of the simple checksum function we use. MAC functions derive their
output as a function of their input and a secret key. We do not use a MAC function
for two reasons. First, the code of current cryptographic MAC functions is typically
large, which is against our goal of a small code size. Also, MAC functions have
much stronger properties than what we require. MAC functions are constructed to
be resilient to MAC-forgery attacks. In a MAC-forgery attack, the adversary knows
a finite number of (data, MAC(data)) tuples, where each MAC value is generated
using the same secret key. The task of the adversary is to generate a MAC for a new
data item that will be valid under the unknown key. It is clear that we do not require
resilience to the MAC forgery attack, as the nonce sent by the Pioneer dispatcher is
not a secret but is sent in the clear. We only require that the adversary be unable to
pre-compute the checksum or replay old checksum values.

Pseudo-random memory traversal. The adversary can keep a correct copy of any
memory locations in the verification function it modifies. Then, at the time the check-
sum code tries to read one of the modified memory locations, the adversary can redi-

264 Arvind Seshadri et al.

rect the read to the location where the adversary has stored the correct copy. Thus, the
adversary’s final checksum will be correct. We call this attack the data substitution
artack. To maximize the adversary’s time overhead for the data substitution attack,
the checksum code reads the memory region containing the verification function in
a pseudo-random pattern. A pseudo-random access pattern prevents the adversary
from predicting which memory read(s) will read the modified memory location(s).
Thus, the adversary is forced to monitor every memory read by the checksum code.
This approach is similar to our earlier work in SWATT [19].

‘We use the result of the Coupon Collector’s Problem to guarantee that the check-
sum code will read every memory location of the verification function with high
probability, despite the pseudo-random memory access pattern. If the size of the ver-
ification function is 7 words, the result of the Coupon Collector’s Problem states: if
X is the number of memory reads required to read each of the n words at least once,
then Pr[X > enlnn] < n=¢t1. Thus, after O(n In n) memory reads, each memory
location is accessed at least once with high probability.

12.4.2 Execution Environment for Untampered Code Execution

We now explain how the checksum code sets up an untampered environment for the
hash function, the send function, and the executable.

Execution at highest privilege level with maskable interrupts turned off. All
CPUs have an instruction to disable maskable interrupts. Executing this instruction
changes the state of the interrupt enable/disable bit in the CPU con-
dition codes (flags) register. The disable-maskable-interrupt instruction
can only be executed by code executing at the highest privilege level. The initial-
ization code, which runs before the checksum loop (see Figure 12.4), executes the
disable-maskable-interrupt instruction. If the checksum code is execut-
ing at the highest privilege level, the instruction execution proceeds normally and the
interrupt enable/disable flag in the flags register is set to the disable
state. If the checksum code is executing at lower privilege levels one of two things
can happen: 1) the disablemaskable—interrupts instruction fails and the
status of the interrupt enable/disable flag is not set to disable, or 2)
the disable-maskable-interrupt instruction traps into software that runs at
the highest privilege level. Case 2 occurs when the checksum code is running inside
a virtual machine (VM). Since we assume a legacy computer system where the CPU
does not have support for virtualization, the VM must be created using a software-
based virtual machine monitor (VMM) such as VMware [24]. The VMM internally
maintains a copy of the flags register for each VM. When the VMM gains control as
a result of the checksum code executing the disable-maskable-interrupt
instructions, the VMM changes the state of the interrupt enable/disable
flag in the copy of the flags register it maintains for the VM and returns control to
the VM. This way, the actual CPU flags register remains unmodified.

We incorporate the flags register into the checksum in each iteration of the check-
sum loop. Note that the adversary cannot replace the flags register with an immediate

12 Pioneer: Untampered Code Execution on Legacy Systems 265

since the flags register contains status flags, such as the carry and zero flag, whose
state changes as a result of arithmetic and logical operations. If the adversary directly
tries to run the checksum code at privilege levels lower than the highest privilege
level, the final checksum will be wrong since the interrupt enable/disable
flag will not be set to the disable state. On the other hand, if the adversary tries to
cheat by using a software VMM, then each read of the flags register will trap into the
VMM or execute dynamically generated code, thereby increasing the adversary’s
checksum computation time. In this way, when the dispatcher receives the correct
checksum within the expected time, it has the guarantee that the checksum code ex-
ecuted at the highest CPU privilege level with all maskable interrupts turned off.
Since the checksum code transfers control to the hash function and the hash function
in turn invokes the executable, the dispatcher also obtains the guarantee that both
the hash function and executable will run at the highest CPU privilege level with all
maskable interrupts turned off.

Replacing exception handlers and non-maskable interrupt handlers. Unlike
maskable interrupts, exceptions and non-maskable interrupts cannot be temporar-
ily turned off. To ensure that the hash function and executable will run untampered,
we have to guarantee that the exception handlers and the handlers for non-maskable
interrupts are non-malicious. We achieve this guarantee by replacing the existing ex-
ception handlers and the handlers for non-maskable interrupts with our own handlers
in the checksum code. Since both the hash function and the executable operate at the
highest privilege level, they should not cause any exceptions. Also, non-maskable in-
terrupts normally indicate catastrophic conditions, such as hardware failures, which
are low probability events. Hence, during normal execution of the hash function and
the executable, neither non-maskable interrupts nor exceptions should occur. There-
fore, we replace the existing exception handlers and handlers for non-maskable in-
terrupts with code that consists only of an interrupt return instruction (e.g., iret on
x86). Thus, our handler immediately returns control to whatever code was running
before the interrupt or exception occurred.

An intriguing problem concerns where in the checksum code we should replace
the exception and non-maskable interrupt handlers. We cannot do this in the check-
sum loop since the instructions that replace the exception and non-maskable interrupt
handlers do not affect the value of the checksum. Thus, the adversary can remove
these instructions and still compute the correct checksum within the expected time.
Also, we cannot place the instructions to replace the exception and non-maskable
interrupt handlers in the initialization code, since the adversary can skip these in-
structions and jump directly into the checksum loop.

We therefore place the instructions that replace the handlers for exceptions and
non-maskable interrupts in the epilog code. The epilog code (see Figure 12.4) is
executed after the checksum loop is finished. If the checksum is correct and is com-
puted within the expected time, the dispatcher is guaranteed that the epilog code is
unmodified, since the checksum is computed over the entire verification function.
The adversary can, however, generate a non-maskable interrupt or exception when
the epilog code tries to run, thereby gaining control. For example, the adversary can

266 Arvind Seshadri et al.

Fig. 12.5. The stack trick. A part of the checksum (6 words long in the figure) is on the stack.
The stack pointer is randomly moved to one of the locations between the markers by each
iteration of the checksum code. Note that the stack pointer never points to either end of the
checksum.

set an execution break-point in the epilog code. The processor will then generate a
debug exception when it tries to execute the epilog code. The existing debug excep-
tion handler could be controlled by the adversary. This attack can be prevented by
making use of the stack to store a part of the checksum. The key insight here is that
all CPUs automatically save some state on the stack when an interrupt or exception
occurs. If the stack pointer is pointing to the checksum that is on the stack, any in-
terrupt or exception will cause the processor to overwrite the checksum. We ensure
that the stack pointer always points to the middle of the checksum on the stack (see
Figure 12.5) so that part of the checksum will always be overwritten regardless of
whether the stack grows up or down in memory.

Each iteration of the checksum loop randomly picks a word of the stack-based
checksum for updating. It does this by moving the stack pointer to a random location
within the checksum on the stack, taking care to ensure that the stack pointer is never
at either end of the checksum (see Figure 12.5). The new value of the stack pointer is
generated using the current value of the checksum and the current value of the stack
pointer, thereby preventing the adversary from predicting its value in advance.

The epilog code runs before the send function, which sends the checksum back
to the dispatcher. Thereby, a valid piece of checksum is still on the stack when the
epilog code executes. Thus, the adversary cannot use a non-maskable interrupt or
exception to prevent the epilog code from running without destroying a part of the
checksum. Once the epilog code finishes running, all the exception handlers and the
handlers for non-maskable interrupts will have been replaced. In this manner, the
dispatcher obtains the guarantee that any code that runs as a result of an exception or
a non-maskable interrupt will be non-malicious.

12.5 Checksum Code Implementation on the Netburst
Microarchitecture

In this section we describe our implementation of the checksum code on an Intel
Pentium IV Xeon processor with EM64T extensions. First, we briefly describe the
Netburst microarchitecture, which is implemented by all Intel Pentium IV proces-
sors, and the EM64T extensions. Next, we describe how we implement the check-
sum code on the Intel x86 architecture. Section 12.5.3 shows the results of our experi-

12 Pioneer: Untampered Code Execution on Legacy Systems 267

Bl (4————»{ IF ‘

D
B2 -t - TC
| ALL l :
v v ! ! v v v
AGU AGU
LU SU 2xALU | | 2xALU| | ALU FP FP
v v
| Lt |

Fig. 12.6. The Intel Netburst Microarchitecture. The execution units are LU: Load Unit; SU:
Store Unit; AGU: Address Generation Unit; 2xALU: Double-speed Integer ALUs that execute
two uops each per cycle; ALU: Complex Integer ALU; FP: Floating Point, MMX, and SSE
unit.

ments measuring the time overhead of the different attacks. Finally, in Section 12.5.4
we discuss some points related to the practical deployment of Pioneer and extensions
to the current implementation of Pioneer.

12.5.1 The Netburst Microarchitecture and EM64T Extensions

In this section, we present a simplified overview of the Intel Netburst microarchitec-
ture that is implemented in the Pentium IV family of CPUs. We also describe the
EM64T extensions that add support for 64-bit addresses and data to the 32-bit x86
architecture.

Figure 12.6 shows a simplified view of the front-end and execution units in the
Netburst architecture. The figure and our subsequent description are based on a de-
scription of the Netburst microarchitecture by Boggs et al. [5].

The instruction decoder in Pentium IV CPUs can only decode one instruction
every clock cycle. To prevent the instruction decoder from creating a performance
bottleneck, the Netburst microarchitecture uses a trace cache instead of a regular L1
instructions cache. The trace cache holds decoded x86 instructions in the form of
pops. pops are RISC-style instructions that are generated by the instruction decoder
when it decodes the x86 instructions. Every x86 instruction breaks down into one or
more dependent pops. The trace cache can hold up to 12000 pops and can issue up to
three pops to the execution core per clock cycle. Thus, the Netburst microarchitecture
is a 3-way issue superscalar microarchitecture.

The Netburst microarchitecture employs seven execution units. The load and
store units have dedicated Arithmetic Logic Units (ALU) called Address Generation

268 Arvind Seshadri et al.

Units (AGU) to generate addresses for memory access. Two double-speed integer
ALUs execute two pops every clock cycle. The double speed ALLUs handle simple
arithmetic operations like add, subtract and logical operations.

The L1-data cache is 16KB in size, 8-way set associative and has a 64 byte line
size. The L2 cache is unified (holds both instructions and data). Its size varies de-
pending on the processor family. The L2 cache is 8 way set associative and has a 64
byte line size.

The EM64T extensions add support for a 64-bit address space and 64-bit operands
to the 32-bit x86 architecture. The general purpose registers are all extended to 64
bits and eight new general purpose registers are added by the EM64T extensions. In
addition, a feature called segmentation® allows a process to divide up its data seg-
ment into multiple logical address spaces called segments. Two special CPU registers
(f£s and gs) hold pointers to segment descriptors that provide the base address and
the size of a segment as well as segment access rights. To refer to data in a particular
segment, the process annotates the pointer to the data with the segment register that
contains the pointer to the descriptor of the segment. The processor adds the base ad-
dress of the segment to the pointer to generate the full address of the reference. Thus,
£5:0000 would refer to the first byte of the segment whose descriptor is pointed to
by £s.

12.5.2 Implementation of Pioneer on x86

‘We now discuss how we implement the checksum code so that it has ali the properties
we describe in Section 12.4.1. Then we describe how the checksum code sets up the
execution environment described in Section 12.4.2 on the x86 architecture.

Every iteration of the checksum code performs these five actions: 1) deriving the
next pseudo-random number from the T-function, 2) reading the memory word for
checksum computation, 3) updating the checksum, 4) rotating the checksum using a
rotate instruction, and 5) updating some program state such as the data pointer.
Except for reading the CPU state and our defense against the memory copy attack,
all properties are implemented on the x86 architecture exactly as we describe in
Section 12.4.1. Below, we describe the techniques we employ to obtain the CPU
state on the x86 architecture. We also describe how we design our defense against
the memory copy attacks.

CPU state inputs. The CPU state inputs, namely the Program Counter (PC) and the
data pointer, are included in the checksum to detect the three memory copy attacks.
On the x86 architecture with EM64T extensions, the PC cannot be used as an operand
for any instruction other than the lea instruction. So, if we want to include the
value of the PC in the checksum, the fastest way to do it is to use the following two
instructions: first, the 1ea instruction moves the current value of PC into a general
purpose register, and next, we incorporate the value in the general purpose register

4 The EM64T extensions to the IA32 architecture support segmentation in a limited way.
When running in 64-bit mode, the CPU does not use the segment base values present in
segment descriptors pointed to by the cs, ds, ss and es segment registers.

12 Pioneer: Untampered Code Execution on Legacy Systems 269

into the checksum. Since the value of the PC is known in advance, the adversary
can directly incorporate the corresponding value into the checksum as an immediate.
Doing so makes the adversary’s checksum computation faster since it does not need
the lea instruction. Hence, on the x86 platform we cannot directly include the PC
in the checksum.

Instead of directly including the PC in the checksum, we construct the check-
sum code so that correctness of the checksum depends on executing a sequence of
absolute jumps. By including the jump target of each jump into the checksum, we
indirectly access the value of the PC.

Block 1

[jmp *rcg

Block 2

4 jmp *reg

Block 3

jmp *reg 5

Block 4

Jjmp *reg

Fig. 12.7. Structure of the checksum code. There are 4 code blocks. Each block is 128 bytes
in size. The arrows show one possible sequence of control transfers between the blocks.

As Figure 12.7 shows, we construct the checksum code as a sequence of four
code blocks. Each code block generates the absolute address of the entry point of
any of the four code blocks using the current value of the checksum as a parameter.
Both the code block we are jumping from and the code block we are jumping to
incorporate the jump address in the checksum. The last instruction of code block
jumps to the absolute address that was generated earlier.

All of the code blocks execute the same set of instructions to update the check-
sum but have a different ordering of the instructions. Since the checksum function is
strongly ordered, the final value of the checksum depends on executing the checksum
code blocks in the correct sequence, which is determined by the sequence of jumps
between the blocks.

270 Arvind Seshadri et al.

The checksum code blocks are contiguously placed in memory. Each block is
128 bytes in size. The blocks are aligned in memory so that the first instruction of
each block is at an address that is a multiple of 128. This simplifies the jump target
address generation since the jump targets can be generated by appropriately masking
the current value of the checksum.

Memory copy attacks. Memory copy attacks are the most difficult attacks to de-
fend against on the x86 architecture, mainly for of three reasons: 1) the adversary
can use segmentation to have the processor automatically add a displacement to the
data pointer without incurring a time overhead; 2) the adversary can utilize mem-
ory addressing with an immediate or register displacement, without incurring a time
overhead because of the presence of dedicated AGUs in the load and the store execu-
tion units; and 3) the PC cannot be used like a general purpose register in instructions,
which limits our flexibility in designing defenses for the memory copy attacks.

‘We now describe how the adversary can implement the three memory copy at-
tacks on the x86 architecture and how we construct the checksum code so that the
memory copy attacks increase the adversary’s checksum computation time.

In the first memory copy attack shown in Figure 3(b), the adversary runs a mod-
ified checksum code from the correct memory location and computes the checksum
over a copy of the unmodified verification function placed elsewhere in memory.
This attack requires the adversary to add a constant displacement to the data pointer.
There are two ways the adversary can do this efficiently: 1) it can annotate all in-
structions that use the data pointer with one of the segment registers, £s or gs, and
the processor automatically adds the segment base address to the data pointer, or 2)
the adversary can use an addressing mode that adds an immediate or a register value
to the data pointer, and the AGU in the load execution unit will add the correspond-
ing value to the data pointer. However, our checksum code uses all sixteen general
purpose registers, so the adversary can only use an immediate to displace the data
pointer.

Neither of these techniques adds any time overhead to the adversary’s check-
sum computation. Also, both techniques retain the correct value of the data pointer.
Thus, this memory copy attack cannot be detected by including the data pointer in
the checksum. However, both these techniques increase the instruction length. We
leverage this fact in designing our defense against this memory copy attack. The seg-
ment register annotation adds one byte to the length of any instruction that accesses
memory, whereas addressing with immediate displacement increases the instruction
length by the size of the immediate. Thus, in this memory copy attack, the adver-
sary’s memory reference instructions increase in length by a minimum of one byte.
An instruction that reads memory without a segment register annotation or an imme-
diate displacement is 3 bytes long on the x86 architecture with EM64T extensions.
We place an instruction having a memory reference, such as add mem, reg, as
the first instruction of each of the four checksum code blocks. In each checksum
code block, we construct the jump target address so that, the jump lands with equal
probability on either the first instruction of a checksum code block or at an offset
of 3 bytes from the start of a code block. In an unmodified code block, the second

12 Pioneer: Untampered Code Execution on Legacy Systems 271

instruction is at an offset of 3 bytes from the start of the block. When the adver-
sary modifies the code blocks to do a memory copy attack, the second instruction
of the block cannot begin before the 4th byte of the block. Thus, 50% of the jumps
would land in the middle of the first instruction, causing the processor to generate an
illegal opcode exception.

Additional
--===-=----4 -— N
Instructions
2
3 2
4

Fig. 12.8. Comparison of the code block lengths in the original verification function and an
adversary-modified verification function. The adversary moves its code blocks in memory so
that the entry points of its code blocks are at addresses that are a power of two.

To accommodate the longer first instruction, the adversary would move its code
blocks farther apart, as Figure 12.8 shows. The adversary can generate its jump target
addresses efficiently by aligning its checksum code blocks in memory in the follow-
ing way. The adversary places its code blocks on 256 byte boundaries and separates
its first and second instruction by 8 bytes. Then, the adversary can generate its jump
addresses by left-shifting the correct jump address by 1. We incorporate the jump
address into the checksum both before and after the jump. So, the adversary has to
left-shift the correct jump address by 1 before the jump instruction is executed and
restore the correct jump address by right-shifting after the jump is complete. Thus,
the adversary’s overhead for the first memory copy attack is the execution latency of
one left-shift instruction and one right-shift instruction.

In the second memory copy attack shown in Figure 3(c), the adversary keeps the
unmodified verification function at the correct memory location, but computes the
checksum using a modified checksum code that runs at different memory locations.
In this case, the entry points of the adversary’s code blocks will be different, so the
adversary would have to generate different jump addresses. Since we include the
jump addresses in the checksum, the adversary would also have to generate the cor-
rect jump addresses. Hence, the adversary’s checksum code blocks would be larger
than 128 bytes. As before, to accommodate the larger blocks, the adversary would
move its code blocks apart and align the entry points at 256 byte boundaries (Fig-
ure 12.8). Then, the adversary can generate its jump address by left-shifting the cor-
rect jump address and by changing one or more bits in the resulting value using a

272 Arvind Seshadri et al.

LM HM

=== =

SP1 SP2
C1 c2

Fig. 12.9. The layout of the stack on an x86 processor with EM64T extensions. Both checksum
pieces are 8 bytes long and are aligned on 16-byte boundaries. The empty regions are also 8
bytes long. The stack pointer is assigned at random to one of the two locations SP1 or SP2.

logical operation. To restore the correct jump address, the adversary has to undo the
changes either by loading an immediate value or by using a right-shift by 1 and a
logical operation. In any case, the adversary’s time overhead for this memory copy
attack is greater than the time overhead for first memory copy attack.

In the third memory copy attack shown in Figure 3(d), both the unmodified ver-
ification function and the adversary’s checksum code are not present at the correct
memory locations. Thus, this attack is a combination of the first and the second mem-
ory copy attacks. The adversary’s time overhead for this memory copy attack is the
same as the time overhead for the second memory copy attack.

Variable instruction length. The x86 Instruction Set Architecture (ISA) supports
variable length instructions. Hence, the adversary can reduce the size of the check-
sum code blocks by replacing one or more instructions with shorter variants that
implement the same operation with the same or shorter latency. The adversary can
use the space saved in this manner to implement the memory copy attacks without
its code block size exceeding 128 bytes. To prevent this attack, we carefully select
the instructions used in the checksum code blocks so that they are the smallest in-
structions able to perform a given operation with minimum latency.

Execution environment for untampered code execution. In order to get the guar-
antee of execution at the highest privilege level with maskable interrupts turned off,
the checksum code incorporates the CPU flags in the checksum. The flags register
on the x86 architecture, r£1ags, can only be accessed if it is pushed onto the stack.
Since we use to the stack to hold a part of the checksum, we need to ensure that
pushing the rf1lags onto the stack does not overwrite the part of the checksum that
is on the stack. Also, a processor with EM64T extensions always pushes the proces-
sor state starting at a 16-byte boundary on receiving interrupts or exceptions. Thus,
we need to make sure that the checksum pieces on the stack are aligned on 16-byte
boundaries so they will be overwritten when an interrupt or exception occurs.
Figure 12.9 shows the stack layout we use for x86 processors with EM64T ex-
tensions. Our stack layout has checksum pieces alternating with empty slots. All four
elements are eight bytes in size. The checksum code moves the stack pointer so that
the stack pointer points either to location SP1 or to location SP2. On the x86 architec-
ture, the stack grows downwards from high addresses to low addresses. To push an
item onto the stack, the processor first decrements the stack pointer and then writes

12 Pioneer: Untampered Code Execution on Legacy Systems 273

the item to the memory location pointed to by the stack pointer. With EM64T exten-
sions, pushes and pops normally operate on 8-byte data. Since the stack pointer is
always initialized to either SP1 or to SP2, a push of the r£1 ags register will always
write the flags to one of the empty 8-byte regions. If an interrupt or exception were to
occur, the processor would push 40 bytes of data onto the stack, thereby overwriting
either checksum piece 1 or both checksum pieces.

We keep checksum pieces on the stack to prevent the adversary from getting
control through an exception or a non-maskable interrupt. However, the x86 archi-
tecture has a special non-maskable interrupt called System Management Interrupt
(SMI), which switches the processor into the System Management Mode (SMM).
The purpose of SMM is to fix chipset bugs and for hardware control.

The SMI does not save the processor state on the stack. So, it is not possible
to prevent the SMI by keeping checksum pieces on the stack. Since the SMI is a
special-purpose interrupt, we assume that it never occurs when the verification func-
tion runs. During our experiments, we found this assumption to be true all the time.
In Section 12.5.4, we discuss how we can extend the current implementation of Pio-
neer to handle the SMI.

Description of verification function code. Figure 12.10 shows the pseudocode of
one code block of the verification function. The block performs six actions: 1) de-
riving the next pseudo-random value from the T-function; 2) generating the jump
address, the stack pointer, and the data pointer using the current value of the check-
sum, 3) pushing rflags onto the stack, 4) reading a memory location containing
the verification function, 5) updating the checksum using the memory read value,
previous value of the checksum, the output of the T-function, the r f1ags register,
and the jump address, and 6) rotating the checksum using the rotate instruction.

The checksum is made up of twelve 64-bit pieces, ten in the registers and two on
the stack. The checksum code uses all sixteen general purpose registers.

Figure 12.11 shows the assembler code of one block of the verification function.
The code shown is not the optimized version but a verbose version to aid readability.

12.5.3 Experiments and Results

Any attack that the adversary uses has to be combined with a memory copy attack
because the adversary’s checksum code will be different from the correct checksum
code. Hence, the memory copy attack is the attack with the lowest overhead. Of the
three memory copy attacks, the first has the lowest time overhead for the adversary.
Hence, we implemented two versions of the checksum code using x86 assembly: a
legitimate version and a malicious version that implements the first memory copy
attack (the correct code plus two extra shift instructions).

Experimental setup. The dispatcher is a PC with a 2.2 GHz Intel Pentium IV pro-
cessor and a 3Com 3c¢905C network card, running Linux kernel version 2.6.11-8.
The untrusted platform is a PC with a 2.8 GHz Intel Pentium IV Xeon processor
with EM64T extensions and an Intel 82545GM Gigabit Ethernet Controller, running

274 Arvind Seshadri et al.

/fInput: y number of iterations of the verification procedure
//Output: Checksum C, (10 segments in registers Cg to Co,

I and 2 on stack Cstkl , Cstkz , each being 64 bits)

/Variables: {code_start, code_end] - bounds of memory address under verification
7 daddr - address of current memory access

" x - value of T function

" { - counter of iterations

/" 7 flags - flags register

/7 jump.target[l : 0] - determines which code block to execute

" temp - temp register used to compute checksum

daddr «— code_start
forl = yto O do
Checksum 1
/[T function ugdates x where 0 < 2z < 27
z «— x + (z* V 5) mod 2™
//Read r flags and incorporate into daddr
daddr « daddr + rflags
//Read from memory address daddr, calculate checksum.Let C be the checksum vector and j be the current
index.
Jjump_target — not(jump_target) + loop_ctr @ x
temp — x @ Cj—1 + daddr & C;
if jump.target{l] == Oandjump_target{0] === 0 then
Cj « C; + mem[daddr + 8] + jump.-target
else
Cj «— Cj + jump-target
end if
Cj_1+ Cj_1+temp
Cstk — Cstr @ jump_target
Cj-2—Cj2+Cj
Cj_3+—Cj_3+Cj-1
Cj « rotate.right(C;)
//Update daddr to perform pseudo-random memory traversal
daddr < daddr 4 x
/{Update rsp and jump_target
rsp[l] «— C;[1]
j+ (+1) mod 11
jump-target[8 : 7] «— C;[8 : 7]
jump_target[l : 0] «— temp[0], temp|0]
if jump_target[8 : 7] = 0 then
goto Checksum 1
else if jump_target[8 : 7] = 1 then
goto Checksum 2
else if jump_target[8 : 7] = 2 then
goto Checksum 3
else if jump_target(8 : 7] = 3 then
goto Checksum 4
end if
Checksum 2

'(Ehecksum 3
Checksum 4

end for

Fig. 12.10. Verification Function Pseudocode

12 Pioneer: Untampered Code Execution on Legacy Systems

Assembly Instruction Explanation

//Read memory

add (rbx), r15 memory read

sub 1, ecx decrement loop counter
add rdi, rax z— (z+xz)OR5+x
/modifies jump_target register rdx and rdi

xor rl14, rdi rdi — rdi ® Cj_1

add rex, rdx rdx « rdx + loopctr
add rbx, rdi rdi « rdi + daddr

XOr rax, rdx input x (from T function)
xor rl5, rdi rdi — rdi @ c;
/modifies checksum with rdx and rdi

add rdx, r15 modify checksum Cj

add rdi, r14 modify checksum Cj_1
xor rdx, -8(rsp) modify checksum on stack
xorrl5, r13 Cj2—Cj20C;

add r14,r12 Cj_g — Cj43 +Oj_1
rol r15 r15 — rotate[rls]
//Pseudorandom memory access

xor rdi, tbx daddr — daddr & randompits
and maskl, ebx modify daddr

or mask2, rbx modify daddr

/Modify stack pointer and target jump address

xor rdx, rsp Modify rsp

and mask3, esp create r3p

or mask4, rsp create TSp

and 0x180, edx jump_target — rlb
and Ox1, rdi rdi «— rdi AND 0x1
add rdi, rdx rdx « rdx + rdi

add rdi, rdi shift rdi

add rdi, rdx rdx — rdzx + rdi

or mask, rdx create jump_target address
xor rdx, r15 add jump target address into checksum
AT function updates x, at rax

mov rax, rdi save value of T function
imul rax, rax X = X*X

or 0x5, rax z+—xzxxORb

//Read flags

pushfq push rflags

add (rsp), rbx daddr «— daddr + r flags
jmp *rdx Jjump to 1 of the 4 blocks

Fig. 12.11. Checksum Assembly Code

275

276 Arvind Seshadri et al.

Linux kernel version 2.6.7. The dispatcher code and the verification function are im-
plemented inside the respective network card interrupt handlers. Implementing code
inside the network card interrupt handler enables both the dispatcher and the un-
trusted platform to receive the Pioneer packets as early as possible. The dispatcher
and the untrusted platform are on the same LAN segment.

Empty instruction issue slots. In Section 12.4.1, we mentioned that the checksum
code instruction sequence has to be carefully arranged to eliminate empty instruc-
tion issue slots. The Netburst Microarchitecture issues piops, which are derived from
decoding x86 instructions. Hence, to properly sequence the instructions, we need to
know what pops are generated by the instructions we use in the checksum code. This
information is not publically available. In the absence of this information, we try to
sequence the instructions through trial-and-error. To detect the presence of empty
instruction issue slots we place no—op instructions at different places in the code. If
there are no empty instruction issue slots, placing no—op instructions should always
increase the execution time of the checksum code. We found this assertion to be only
partially true in our experiments. There are places in our code where no—op instruc-
tions can be placed without increasing the execution time, indicating the presence of
empty instruction issue slots.

Determining number of verification function iterations. The adversary can try to
minimize the Network Round-Trip Time (RTT) between the untrusted platform and
dispatcher. Also, the adversary can pre-load its checksum code and the verification
function into the CPU’s L1 instruction and data caches respectively to ensure that it
does not suffer any cache misses during execution. We prevent the adversary from
using the time gained by these two methods to forge the checksum.

The theoretically best adversary has zero RTT and no cache misses, which is a
constant gain over the execution time of the correct checksum code. We call this
constant time gain as the adversary time advantage. However, the time overhead of
the adversary’s checksum code increases linearly with the number of iterations of
the checksum loop. Thus, the dispatcher can ask the untrusted platform to perform a
sufficient number of iterations so that the adversary’s time overhead is at least greater
than the adversary time advantage.

The expression for the number of iterations of the checksum loop to be performed
by the untrusted platform can be derived as follows. Let ¢ be the clock speed of the
CPU, a be the time advantage of the theoretically best adversary, o be the adversary’s
overhead per iteration of the checksum loop represented in CPU cycles, and 7 is the
number of iterations. Then n > €% to prevent false negatives® in the case of the
theoretically best adversary.

Experimental results, To calculate the time advantage of the theoretically best ad-
versary, we need to know the upper bound on the RTT and the time saved by pre-
warming the caches. We determine the RTT upper bound by observing the ping
latency for different hosts on our LAN segment. This gives us an RTT upper bound

5 A false negative occurs when Pioneer claims that the untrusted platform is uncompromised
when the untrusted platform is actually compromised.

12 Pioneer: Untampered Code Execution on Legacy Systems 277

of 0.25 ms since all ping latencies are smaller than this value. Also, we calculate the
amount of time that cache pre-warming saves the adversary by running the checksum
code with and without pre-warming the caches and observing the running times us-
ing the CPU’s rdt sc instruction. The upper bound on the cache pre-warming time
is 0.0016 ms. Therefore, for our experiments we fix the theoretically best adversary’s
time advantage to be 0.2516 ms. The attack that has the least time overhead is the
first memory copy attack, which has an overhead of 0.6 CPU cycles per iteration of
the checksum loop. The untrusted platform has a 2.8 GHz CPU. Using these values,
we determine the required number of checksum loop iterations to be 1,250,000. To
prevent false positives due to RTT variations, we double the number of iterations to
2,500,000.

The dispatcher knows, r, the time taken by the correct checksum code to carry out
2,500,000 iterations. It also knows that the upper bound on the RTT, r¢{. Therefore,
the dispatcher considers any checksum result that is received after time r 4 rtt to be
late. This threshold is the adversary detection threshold.

We place the dispatcher at two different physical locations on our LAN seg-
ment. We run our experiments for 2 hours at each location. Every 2 minutes, the dis-
patcher sends a challenge to the untrusted platform. The untrusted platform returns
a checksum computed using the correct checksum code. On receiving the response,
the dispatcher sends another challenge. The untrusted platform returns a checksum
computed using the adversary’s checksum code, in response to this challenge. Both
the dispatcher and the untrusted platform measure the time taken to compute the two
checksums using the CPU’s rdt sc instruction. The time measured on the untrusted
platform for the adversary’s checksum computation is the checksum computation
time of the theoretically best adversary.

Figures 12.12 and 12.13 show the results of our experiments at the two physi-
cal locations on the LAN segment. Based on the results, we observe the following
points: 1) even the running time of the theoretically best adversary is greater than the
Adversary Detection Threshold, yielding a false negative rate of 0%; 2) the check-
sum computation time shows a very low variance, that we have a fairly deterministic
runtime; 3) we observe some false positives (5 out of 60) at location 2, which we can
avoid by better estimating the RTT.

We suggest two methods for RTT estimation. First, the dispatcher measures the
RTT to the untrusted platform just before it sends the challenge and assumes that
the RTT will not significantly increase in the few tens of milliseconds between the
time it measures the RTT and the time it receives the checksum packet from the
untrusted platform. Second, the dispatcher can take RTT measurements at coarser
time granularity, say every few seconds, and use these measurements to update its
current value of the RTT.

12.5.4 Discussion

We now discuss virtual-memory-based attacks, issues concerning the practical de-
ployment of Pioneer, and potential extensions to the current implementation of Pio-
neer to achieve better properties.

278 Arvind Seshadri et al.

T I T I
L — Expected Runtime i
-—- Expected Runtime and Network RTT (Adversary Detection Threshold) | _|

96 -« Legitimate Code’s Runtime
F o—o Legitimate Code’s Runtime and Network RTT 7
494 o—o Theoretically Best Adversary’s Runtime —

e—a Adversary’s Runtime and Network RTT

&
°
[&)

Execution Time [ms]
A
=

A
*
oo

N
&
=)

n
&
~

0 50 100
Time of Measurement [minutes]

Fig. 12.12. Results from Location 1.

Implementing the verification function as SMM module. The System Manage-
ment Mode (SMM) is a special operating mode present on all x86 CPUs. Code
running in the SMM mode runs at the highest CPU privilege level. The execution
environment provided by SMM has the following properties that are useful for im-
plementing Pioneer: 1) all interrupts, including the Non-Maskable Interrupt (NMI)
and the System Management Interrupt (SMI), and all exceptions are disabled by
the processor, 2) paging and virtual memory are disabled in SMM, which precludes
virtual-memory-based attacks, and 3) real-mode style segmentation is used, making
it easier to defend against the segmentation-based memory copy attack.

Virtual-memory-based attacks. There are two ways in which the adversary might
use virtual memory to attack the verification function: 1) the adversary could cre-
ate memory protection exceptions by manipulating the page table entries and obtain
control through the exception handler, or 2) the adversary could perform a memory
copy attack by loading the instruction and data Translation Lookaside Buffer (TLB)
entries that correspond to the same virtual address with different physical addresses.
Since we use the stack to hold checksum pieces during checksum computation and
later replace the exception handlers, the adversary cannot use memory protection
exceptions to gain control.

12 Pioneer: Untampered Code Execution on Legacy Systems 279

— Expected Runtime
--- Expected Runtime and Network RTT (Adversary Detection Threshold)

49.6 — x--x Legitimate Code’s Runtime 7
L o—o Legitimate Code’s Runtime and Network RTT 1
4941 o—o Theoretically Best Adversary’s Runtime N
' a——o Adversary’s Runtime and Network RTT
o 49.2 =
£ _
=
§ 49k oo
=
8 o -
»
M 488 -

Time of Measurement [minutes]

Fig. 12.13. Result from Location 2.

The adversary can, however, use the CPU TLBs to perform a memory copy at-
tack. Wurster et al. discuss how the second attack can be implemented on the Ultra-
Sparc processor [28]. Their attack can be adapted to the Intel x86 architecture in the
context of Pioneer as follows: 1) the adversary loads the page table entry correspond-
ing to the virtual address of the verification function with the address of the physical
page where the adversary keeps an unmodified copy of the verification function,
2) the adversary does data accesses to virtual addresses of the verification function,
thereby loading the its mapping into the CPU’s D-TLB, and 3) the adversary replaces
the page table entry corresponding to the virtual address of the verification function
with the address of the physical page where the adversary keeps the modified check-
sum code is kept. When the CPU starts to execute the adversary’s checksum code,
it will load its I-TLB entry with the mapping the adversary set up in step 3. Thus,
the CPU’s I-TLB and D-TLB will have different physical addresses corresponding
to the same virtual address and the adversary will be able to perform the memory
copy attack.

The current implementation of Pioneer does not defend against this memory copy
attack. However, a promising idea to defend against the attack is as follows. We
create virtual address aliases to the physical pages contaning the verification function
so that the number of aliases is greater than the number of entries in the CPU’s TLB.

280 Arvind Seshadri et al.

Each iteration of the checksum code loads the PC and the data pointer with two of the
virtual address aliases, selected in a pseudo-random manner. If the checksum loop
performs a sufficient number of iterations so that with high probability all virtual
address aliases are guaranteed to be used then the CPU will eventually evict the
adversary’s entry from the TLB.

The adversary can prevent its entry from being evicted from the TLB by not using
all the virtual address aliases. However, in this case, the adversary will have to fake
the value of the PC and the data pointer for the unused virtual address aliases. Since
each iteration of the checksum code selects the virtual address aliases with which to
load the PC and the data pointer in a pseudo-random manner, the adversary will have
to check which aliases are used to load the PC and the data pointer in each iteration of
the checksum code. This will increase the adversary’s checksum computation time.

The TLB-based memory copy attack can also be prevented by implementing the
verification function as an SMM module. Since the CPU uses physical addresses in
SMM and all virtual memory support is disabled, the memory copy attack that uses
the TLBs is not possible anymore.

Why use Pioneer instead of trusted network boot?. In trusted network boot, the
BIOS on a host fetches the boot image from a trusted server and executes the boot
image. In order to provide the guarantee of verifiable code execution, trusted network
boot has to assume that: 1) the host has indeed rebooted; 2) the correct boot image has
indeed reached the host; and 3) the BIOS will correctly load and transfer control to
the boot image. To guarantee that the BIOS cannot be modified by the adversary, the
BIOS will have to stored on an immutable storage medium like Read-Only Memory
(ROM). This makes it impossible to update the BIOS without physically replacing
the ROM, should any vulnerability be discovered in the BIOS code.

Pioneer does not require any code to reside in immutable storage media, thereby
making it easy to update. Also, Pioneer provides the property of verifiable code ex-
ecution without having to reboot the untrusted platform, without having to transfer
code over the network and without relying on any unverified software on the un-
trusted platform to transfer control to the executable.

MMX and SSE instructions. x86 processors provide support for Single Instruction
Multiple Data (SIMD) instructions in the form of MMX and SSE technologies [11].
These instructions can simultaneously perform the same operation on multiple data
items. This is faster than operating on the data items one at a time. However, the
adversary cannot use the MMX or SSE instructions to speed up its checksum code,
since we design the checksum code to be non-parallelizable.

Pioneer and TCG. A promising approach for reducing exposure to network RTT
and for achieving a trusted channel to the untrusted platform is to leverage a Trusted
Platform Module (TPM). The TPM could issue the challenge and time the execution
of the checksum code and return the signed result and computation time to the dis-
patcher. However, this would require that the TPM be an active device, whereas the
current generation of TPMs are passive.

12 Pioneer: Untampered Code Execution on Legacy Systems 281

Directly computing checksum over the executable. Why do we need a hash func-
tion? Why can the checksum code not simply compute the checksum over the exe-
cutable? While this simpler approach may work in most cases, an adversary could ex-
ploit redundancy in the memory image of the executable to perform data-dependent
optimizations. A simple example is a executable image that contains a large area ini-
tialized to zeros, which allows the adversary to suppress memory reads to that region
and also to suppress updating the checksum with the memory value read (in case of
add or xor operations).

skinit and senter. AMD’s Pacifica technology has an instruction called sk—
init, which can verifiably transfer control to an executable after measuring it [2].
Intel’s LaGrande Technology (LT) has a similar instruction, senter [10]. Both
senter and skinit also set up an execution environment in which the executable
that is invoked is guaranteed to execute untampered. These instructions can be used
to start-up a Virtual Machine Monitor (VMM) or a Secure Kernel (SK). Both instruc-
tions rely on the TCG load-time attestation property to guarantee that the SK or the
VMM is uncompromised at start-up. Unlike Pioneer, however, neither Pacifica nor
LT can be used on legacy computing systems.

Implementing Pioneer on other architectures. We use the x86 architecture as our
implementation platform example for the following reasons: 1) since x86 is the most
widely deployed architecture today, our implementation of Pioneer on x86 can im-
mediately be used on many legacy systems; and 2) due to requirements of backward
compatibility, the x86 is a complex architecture, with a non-orthogonal ISA. There-
fore, implementing Pioneer on the x86 architecture is more challenging than imple-
menting it on RISC architectures with more orthogonal instruction sets, such as the
MIPS, and the Alpha.

Verifying the timing overhead. Pioneer relies on the execution time of the check-
sum code. Therefore, the dispatcher has to know ahead of time what the correct
checksum computation time should be for the untrusted platform. The checksum
computation time depends on the CPU of the untrusted platform. There are two ways
by which the dispatcher can find out the correct checksum computation time: 1) if
the dispatcher has access to a trusted platform having the same CPU as the untrusted
platform, or a CPU simulator for the untrusted platform, it can run experiments to
get the correct execution time; or 2) we can publish the correct execution time for
different CPUs on a trusted web-site.

12.6 Applications
In this section, we first discuss the types of applications that can leverage Pioneer

to achieve security, given the assumptions we make. Then, we describe the kernel
rootkit detector, the sample application we have built using Pioneer.

282 Arvind Seshadri et al.
12.6.1 Potential Security Applications

Pioneer can be applied to build security applications that run over networks con-
trolled by a single administrative entity. On such networks, the network administrator
could configure the network switches so that an untrusted host can only communi-
cate with the dispatcher during the execution of Pioneer. This provides the property
of message-origin-authentication while eliminating proxy attacks. Examples of net-
works that can be configured in this manner are corporate networks and cluster com-
puting environments. On these networks the network administrator often needs to
perform security-critical administrative tasks on untrusted hosts, such as installing
security patches or detecting malware like viruses and rootkits. For such applica-
tions, the administrator has to obtain the guarantee that the tasks are executed cor-
rectly, even in the presence of malicious code on the untrusted host. This guarantee
can be obtained through Pioneer.

As an example of how Pioneer could be used, we briefly discuss secure code
updates. To verifiably install a code update, we can invoke the program that installs
the code update using Pioneer. Pioneer can also be used to measure software on
an untrusted host after a update to check if the code update has been successfully
installed.

12.6.2 Kernel Rootkit Detection

In this section, we describe how we build a kernel rootkit detector using Pioneer.
Our kernel rootkit detector allows a trusted verifier to detect kernel rootkits that may
be installed on an external untrusted host without rclying on signatures of specific
rootkits or on low-level file system scans. Sailer et al. propose to use the load-time at-
testation guarantees provided by a TPM to detect rootkits when the kernel boots [18].
However, their technique cannot detect rootkits that do not make changes to the disk
image of the kernel but only infect the in-memory image. Such rootkits do not sur-
vive reboots. Our rootkit detector is capable of detecting both kinds of rootkits. The
only rootkit detection technique we are aware of that achieves similar properties to
ours is Copilot [17]. However, unlike our rootkit detector, Copilot requires additional
hardware in the form of an add-in PCI card to achieve its guarantees. Hence, it cannot
be used on systems that do not have this PCI card installed. Also, our rootkit detector
runs on the CPU of the untrusted host, making it immune to the dummy kernel attack
that we describe in Section 12.7 in the context of Copilot.

Rootkits primer. Rootkits are software installed by an intruder on a host that
allow the intruder to gain privileged access to that host, while remaining unde-
tected [17, 29]. Rootkits can be classified into two categories: those that modify
the OS kernel, and those that do not. Of the two, the second category of rootkits can
be easily detected. These rootkits typically modify system binaries (e.g., Is, ps, and
netstat) to hide the intruder’s files, processes, network connections, etc. These rootk-
its can be detected by a kernel that checks the integrity of the system binaries against
known good copies, e.g., by computing checksums. There are also tools like Trip-

12 Pioneer: Untampered Code Execution on Legacy Systems 283

wire that can be used to check the integrity of binaries [23]. These tools are invoked
from read-only or write-protected media so that the tools do not get compromised.

As kernel rootkits subvert the kernel, we can no longer trust the kernel to de-
tect such rootkits. Therefore, Copilot uses special trusted hardware (a PCI add-on
card) to detect kernel rootkits. All rootkit detectors other than Copilot, including
AskStrider [26], Carbonite [12] and St. Michael [7], rely on the integrity of one
or more parts of the kernel. A sophisticated attacker can circumvent detection by
compromising the integrity of the rootkit detector. Recently Wang et al. proposed a
method to detect stealth software that try to hide files [27]. Their approach does not
rely on the integrity of the kernel; however, it only applies when the stealth software
makes modifications to the file system.

Implementation. We implement our rootkit detector on the x86_64 version of the
Linux kernel that is part of the Fedora Core 3 Linux distribution. The x86_64
version of the Linux kernel reserves the range of virtual address space above
OxfE££800000000000. The code segment of the kernel starts at virtual ad-
dress OxfEE£££££80100000. The kernel text segment contains immutable bi-
nary code which remains static throughout its lifetime. Loadable Kernel Modules
(LKM) occupy virtual addresses from Oxf£f£ff£f£88000000 to Oxffffff—
f££££00000.

We build our kernel rootkit detector using a Kernel Measurement Agent (KMA).
The KMA hashes the kernel image and sends the hash values to the verifier. The
verifier uses Pioneer to obtain the guarantee of verifiable code execution of the KMA.
Hence, the verifier knows that the hash values it receives from the untrusted host were
computed correctly.

The KMA runs on the CPU at the kernel privilege level, i.e., CPLO; hence, it
has access to all the kernel resources (e.g., page tables, interrupt descriptor tables,
jump tables, etc.), and the processor state, and can execute privileged instructions.
The KMA obtains the virtual address ranges of the kernel over which to compute
the hashes by reading the System.map file. The following symbols are of interest
to the KMA: 1) _text and _etext, which indicate the start and the end of the
kernel code segment; 2) sys_call_table which is the kernel system call table;
and 3) module.list which is a pointer to the linked list of all loadable kernel
modules (LKM) currently linked into the kernel. When the Kernel Measurement
Agent (KMA) is invoked, it performs the following steps:

1. The KMA hashes the kernel code segment between _text and _etext.

2. The KMA reads kernel version information to check which LKMs have been
loaded and hashes all the LKM code.

3. The KMA checks that the function pointers in the system call table only refer
to the kernel code segment or to the LKM code. The KMA also verifies that the
return address on the stack points back to the kernel/LKM code segment. The
return address is the point in the kernel to which control returns after the KMA
exits.

4. The KMA returns the following to the verifier: 1) the hash of the kernel code
segment; 2) the kernel version information and a list indicating which kernel

284 Arvind Seshadri et al.

modules have been loaded; 3) the hash of all the LKM code; 4) a success/failure
indicator stating whether the function pointer check has succeeded.

5. The KMA flushes processor caches, restores the register values, and finally re-
turns to the kernel. The register values and the return address were saved on the
stack when the kernel called invoked the Pioneer verification function.

We now explain how the verifier verifies the hash values returncd by the untrusted
platform. First, because the kernel text is immutable, it suffices for the verifier to
compare the hash value of the kernel code segment to the known good hash value for
the corresponding kernel version. However, the different hosts may have different
LKMs installed, and so the hash value of the LKM code can vary. Therefore, the
verifier needs to recompute the hash of the LKM text on the fly according to the list
of installed modules reported by the KMA. The hash value reported by the KMA is
then compared with the one computed by the verifier.

Experimental results. We implemented our rootkit detector on the Fedora Core 2
Linux distribution, using SHA-1 as the hash function. The rootkit detector ran every 5
seconds and successfully detected adore-ng-0.53, the only publically-known rootkit
for the 2.6 version of the Linux kernel.

Table 12.1. Overhead of the Pioneer-based rootkit detector
Standalone (s) Rootkit Detect (s) % Overhead

PostMark 52 52.99 1.9
Bunzip2 21.396 21.713 1.5
Copy Directory 373 385 3.2

‘We monitor the performance overhead of running our rootkit detector in the back-
ground. We use three representative tasks for measurements: PostMark, bunzip2, and
copying the entire contents of a directory. The first task, PostMark [3], is a file sys-
tem benchmark that carries out transactions on small files. As a result, PostMark is a
combination of I/O intensive and computationally intensive tasks. We used bunzip2
to to uncompress the Firefox source code, which is a computationally intensive task.
Finally, we modeled an I/O intensive task by copying the entire /usr/src/linux
directory, which totaled to 1.33 GB, from one harddrive to another. As the table above
shows, all three tasks perform reasonably well in the presence of our rootkit detector.

Discussion. As with Copilot, one limitation of our approach is that we do not verify
the integrity of data segments or CPU register values. Therefore, the following types
of attacks are still possible: 1) attacks that do not modify code segments but rely
merely on the injection of malicious data; 2) if the kernel code contains jump/branch
instructions whose target address is not read in from the verified jump tables, the
jump/branch instructions may jump to some unverified address that contains mali-
cious code. For instance, if the jump address is read from an unverified data segment,
we cannot guarantee that the jump will only reach addresses that have been verified.

12 Pioneer: Untampered Code Execution on Legacy Systems 285

Also, if jump/branch target addresses are stored temporarily in the general purpose
registers, it is possible to jump to an unverified code segment, after the KMA returns
to the kernel since the KMA restores the CPU register values. In conclusion, Pioneer
limits a kernel rootkit to be placed solely in mutable data segments; it requires any
pointer to the rootkit to reside in a mutable data segment as well. These properties
are similar to what Copilot achieves.

Our rootkit detection scheme does not provide backward security. A malicious
kernel can uninstall itself when it receives a Pioneer challenge, and our Pioneer-based
rootkit detector cannot detect bad past events. Backward security can be achieved if
we combine our approach with schemes that backtrack intrusions through analyzing
system event logs [15].

12.7 Related Work

In this section, we survey related work that addresses the verifiable code execution
problem. We also describe the different methods of code attestation proposed in the
literature and discuss how the software-based code attestation provided by Pioneer
is different from other code attestation techniques.

12.7.1 Verifiable Code Execution

Two techniques, Cerium [6] and BIND [21], have been proposed. These use hard-
ware extensions to the execution platform to provide a remote host with the guarantee
of verifiable code execution. Cerium relies on a physically tamper-resistant CPU with
an embedded public-private key pair and a p-kernel that runs from the CPU cache.
BIND requires that the execution platform has a TPM chip and CPU architectural
enhancements similar to those found in Intel’s LaGrande Technology (LT) [10] or
AMD’s Secure Execution Mode (SEM) [1] and Pacifica technology [2]. Unlike Pio-
neer, neither Cerium nor BIND can be used on legacy computing platforms. As far
as we are aware, Pioneer is the only technique that attempts to provide the verifiable
code execution property solely through software techniques.

12.7.2 Code Attestation

Code attestation can be broadly classified into hardware-based and software-based
approaches. While the proposed hardware-based attestation techniques work on gen-
eral purpose computing systems, to the best of our knowledge, there exists no
software-based attestation technique for general purpose computing platforms.

Hardware-based code attestation. Sailer et al. describe a load-time attestation
technique that relies on the TPM chip standardized by the Trusted Computing
Group {18]. Their technique allows a remote verifier to verify what software was
loaded into the memory of a platform. However, a malicious peripheral could over-
write code that was just loaded into memory with a DMA-write, thereby breaking

286 Arvind Seshadri et al.

the load-time attestation guarantee. Also, as we discussed in Section 12.1, the load-
time attestation property provided by the TCG standard is no longer secure since the
collision resistance property of SHA-1 has been compromised. Terra uses a Trusted
Virtual Machine Monitor (TVMM) to partition a tamper-resistant hardware platform
in multiple virtual machines (VM) that are isolated from each other [9]. CPU-based
virtualization and protection are used to isolate the TVMM from the VMs and the
VMs from each other. Although the authors only discuss load-time attestation using a
TPM, Terra is capable of performing run-time attestation on the software stack of any
of the VM by asking the TVMM to take integrity measurements at any time. All the
properties provided by Terra are based on the assumption that the TVMM is uncom-
promised when it is started and that it cannot be compromised subsequently. Terra
uses the load-time attestation property provided by TCG to guarantee that the TVMM
is uncompromised at start-up. Since this property of TCG is compromised, none of
the properties of Terra hold. Even if TCG were capable of providing the load-time
attestation property, the TVMM could be compromised at run-time if there are vul-
nerabilities in its code. In Copilot, Petroni et al. use an add-in card connected to the
PCI bus to perform periodic integrity measurements of the in-memory Linux kernel
image [17]. These measurements are sent to the trusted verifier through a dedicated
side channel. The verifier uses the measurements to detect unauthorized modifica-
tions to the kernel memory image. The Copilot PCI card cannot access CPU-based
state such as the pointer to the page table and pointers to interrupt and exception han-
dlers. Without access to such CPU state, it is impossible for the PCI card to determine
exactly what resides in the memory region that the card measures. The adversary can
exploit this lack of knowledge to hide malicious code from the PCI card. For in-
stance, the PCI card assumes that the Linux kernel code begins at virtual address
0xc0000000, since it does not have access to the CPU register that holds the pointer
to the page tables. While this assumption is generally true on 32-bit systems based
on the Intel x86 processor, the adversary can place a correct kernel image starting
at address 0xc0000000 while in fact running a malicious kernel from another mem-
ory location. The authors of Copilot were aware of this attack [4]. It is not possible
to prevent this attack without access to the CPU state. The kernel rootkit detector
we build using Pioneer is able to provide properties equivalent to Copilot without
the need for additional hardware. Further, because our rootkit detector has access
to the CPU state, it can determine exactly which memory locations contain the ker-
nel code and static data. This ensures that our rootkit detector measures the running
kernel and not a correct copy masquerading as a running kernel. Also, if the host
running Copilot has an IOMMU, the adversary can re-map the addresses to perform
a data substitution attack. When the PCI card tries to read a location in the kernel,
the JOMMU automatically redirects the read to a location where the adversary has
stored the correct copy.

Software-based attestation. Genuinity is a technique proposed by Kennell and
Jamieson that explores the problem of detecting the difference between a simula-
tor-based computer system and an actual computer system [14]. Genuinity relies on
the premise that simulator-based program execution is bound to be slower because

12 Pioneer: Untampered Code Execution on Legacy Systems 287

a simulator has to simulate the CPU architectural state in software, in addition to
simulating the program execution. A special checksum function computes a check-
sum over memory, while incorporating different elements of the architectural state
into the checksum. By the above premise, the checksum function should run slower
in a simulator than on an actual CPU. While this statement is probably true when
the simulator runs on an architecturally different CPU than the one it is simulat-
ing, an adversary having an architecturally similar CPU can compute the Genuinity
checksum within the alloted time while maintaining all the necessary architectural
state in software. As an example, in their implementation on the x86, Kennell and
Jamieson propose to use special registers, called Model Specific Registers (MSR),
that hold various pieces of the architectural state like the cache and TLB miss count.
The MSRs can only be read and written using the special rdmsr and wrmsr in-
structions. We found that these instructions have a long latency (=~ 300 cycles). An
adversary that has an x86 CPU could simulate the MSRs in software and still com-
pute the Genuinity checksum within the alloted time, even if the CPU has a lower
clock speed than what the adversary claims. Also, Shankar et al. show weaknesses
in the Genuinity approach [20]. SWATT is a technique proposed by Seshadri et al.
that performs attestation on embedded devices with simple CPU architectures using
a software verification function [19]. Similar to Pioneer, the verification function is
constructed so that any attempt to tamper with it will increase its running time. How-
ever, SWATT cannot be used in systems with complex CPUs. Also, since SWATT
checks the entire memory, its running time becomes prohibitive on systems with
large memories.

12.8 Conclusions and Future Work

We present Pioneer, which is a first step towards addressing the problem of verifi-
able code execution on untrusted legacy computing platforms. The current version
of Pioneer leaves open research problems. We need to: 1) deriving a formal proof
of the optimality of the checksum code implementation; 2) proving that an adver-
sary cannot use mathematical methods to generate a shorter checksum function that
generates the same checksum output when fed with the same input; 3) deriving a
checksum function that is largely CPU architecture independent, so that it can be
easily ported to different CPU architectures; and 4) increasing the time overhead for
different attacks, so that it is harder for an adversary to forge the correct checksum
within the expected time. There are also low-level attacks that need to be addressed:
1) the adversary could overclock the processor, making it run faster; 2) malicious pe-
ripherals, a malicious CPU in a multi-processor system or a DM A-based write could
overwrite the executable code image in memory after it is checked but before it is
invoked; and 3) dynamic processor clocking techniques could lead to false positives.
We plan to address these open research problems in our future work.

There are also two known issues with the current version of Pioneer: 1) On the
x86 architecture with 64-bit extensions, any interrupt and exception handler can be
set up to have a dedicated stack. The CPU will unconditionally switch to this stack

288 Arvind Seshadri et al.

when it calls the corresponding interrupt or exception handler. This feature can be
used to defeat the stack trick used by Pioneer, thereby allowing the attacker to tamper
with the execution of the executable by generating an exception. 2) The attacker
can run the Pioneer verification function in user space with interrupts turned off
while running a malicious operating system kernel in kernel space. The malicious
kernel could obtain control through an exception after the checksum code returns the
checksum to the verifier. We will address these issues in our future work.

This chapter shows an implementation of Pioneer on an Intel Pentium IV Xeon
processor based on the Netburst Microarchitecture. The architectural complexity of
Netburst Microarchitecture and the complexity of the x86_64 instruction set archi-
tecture make it challenging to design a checksum code that executes slower when
the adversary tampers with it in any manner. We design a checksum code that ex-
hausts the issue bandwidth of the Netburst microarchitecture, so that any additional
instructions the adversary inserts will require extra cycles to execute.

Pioneer can be used as a new basic building block to build security applications.
We have demonstrated one such application, the kernel rootkit detector, and we pro-
pose other potential applications. We hope these examples motivate other researchers
to embrace Pioneer, extend it, and apply it towards building secure systems.

12.9 Acknowledgments

We gratefully acknowledge support and feedback of, and fruitful discussions with
William Arbaugh, Mike Burrows, George Cox, David Durham, David Grawrock,
Jon Howell, John Richardson, Dave Riss, Carlos Rozas, Stefan Savage, Emin Giin
Sirer, Dawn Song, Jesse Walker, Yi-Min Wang. We would like to thank the anony-
mous reviewers who reviewed the conference version of this chapter for their helpful
comments and suggestions. We also thank Elaine Shi for her help with writing an
earlier version of this work.

References

—_

* % % AMD platform for trustworthy computing. In WinHEC, Sept. 2003.

2. ¥ **_ Secure Virtual Machine Architecture Reference Manual. AMD Corp., May 2005.

3. N. Appliance. Postmark: A new file system benchmark. Available at
http://www.netapp.com/techlibrary/3022.html, 2004.

4. W. Arbaugh. Personal communication, May 2005.

5. D. Boggs, A. Baktha, J. Hawkins, D. Marr, J. Miller, P. Roussel, R. Singhal, B. Toll,
and K. Venkatraman. The microarchitecture of the Intel Pentium 4 processor on 90nm
technology. Intel Technology Journal, 8(01), Feb. 2004.

6. B. Chen and R. Morris. Certifying program execution with secure procesors. In Proceed-
ings of HotOS IX, 2003.

7. A. Chuvakin. Ups and downs of unix/linux host-based security solutions. ;login: The

Magazine of USENIX and SAGE, 28(2), Apr. 2003.

8.

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

12 Pioneer; Untampered Code Execution on Legacy Systems 289

E. S. Foundation. superopt - finds the shortest instruction sequence for a given function.
http://www.gnu.org/directory/devel/compilers/superopt.html.

. T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-

based platform for trusted computing. In In Proceedings of ACM Symposium on Operat-
ing Systems Principles (SOSP), 2003.

Intel Corp. LaGrande Technology Architectural Overview, September 2003.

Intel Corporation. IA32 Intel Architecture Software Developer’s Manual Vol. 1.

K. J. Jones. Loadable Kernel Modules. ;login: The Magazine of USENIX and SAGE,
26(7), Nov. 2001.

R. Joshi, G. Nelson, and K. Randall. Denali: a goal-directed superoptimizer. In Proceed-
ings of ACM Conference on Programming Language Design and Implementation (PLDI),
pages 304-314, 2002,

R. Kennell and L. Jamieson. Establishing the genuinity of remote computer systems. In
Proceedings of USENIX Security Symposium, Aug. 2003.

S. King and P. Chen. Backtracking intrusions. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 223-236, 2003.

A. Klimov and A. Shamir. A new class of invertible mappings. In CHES ’02: Revised
Papers from the 4th International Workshop on Cryptographic Hardware and Embedded
Systems, pages 470-483, 2003.

N. Petroni, T. Fraser, J. Molina, and W. Arbaugh. Copilot - a coprocessor-based kernel
runtime integrity monitor. In Proceedings of USENIX Security Symposium, pages 179-
194, 2004.

R. Sailer, X. Zhang, T. Jaeger, and L.. van Doorn. Design and implementation of a TCG-
based integrity measurement architecture. In Proceedings of USENIX Security Sympo-
sium, pages 223-238, 2004.

A. Seshadri, A. Perrig, L.. van Doorn, and P. Khosla. SWATT: Software-based attestation
for embedded devices. In Proceedings of IEEE Symposium on Security and Privacy, May
2004.

U. Shankar, M. Chew, and J. D. Tygar. Side effects are not sufficient to authenticate
software. In Proceedings of USENIX Security Symposium, pages 89-101, Aug. 2004.

E. Shi, A. Perrig, and L. van Doorn. Bind: A fine-grained attestation scrvice for sccure
distributed systems. In Proc. of the IEEE Symposium on Security and Privacy, pages
154-168, 2005.

Trusted Computing Group (TCG). https://www.trustedcomputinggroup.
org/, 2003.

Tripwire. http://sourceforge.net/projects/tripwire/.

VMware. http://www.vmware.com/.

X. Wang, Y. Yin, and H. Yu. Finding collisions in the full sha-1. In Proceedings of Crypto,
Aug. 2005.

Y. Wang, R. Roussev, C. Verbowski, A. Johnson, and D. Ladd. AskStrider: What has
changed on my machine lately? Technical Report MSR-TR-2004-03, Microsoft Research,
2004.

Y. Wang, B. Vo, R. Roussev, C. Verbowski, and A. Johnson. Strider GhostBuster: Why
it’s a bad idea for stealth software to hide files. Technical Report MSR-TR-2004-71,
Microsoft Research, 2004.

G. Wurster, P. van Oorschot, and A. Somayaji. A generic attack on checksumming-based
software tamper resistance. In Proceedings of IEEE Symposium on Security and Privacy,
May 2005.

D. Zovi. Kernel rootkits. http://www.cs.unm.edu/~ghandi/lkr.pdf.

13

Principles of Secure Information Flow Analysis

Geoffrey Smith

School of Computing and Information Sciences, Florida International University
smithg@cis.fiu.edu

In today’s world of the Internet, the World-Wide Web, and Google, information is
more accessible than ever before. An unfortunate corollary is that it is harder than
ever to protect the privacy of sensitive information. In this chapter, we explore a
technique called secure information flow analysis.

Suppose that some sensitive information is stored on a computer system. How
can we prevent it from being leaked improperly? Probably the first approach that
comes to mind is to limit access to the information, either by using some access
control mechanism, or else by using encryption. These are important and useful ap-
proaches, of course, but they have a fundamental limitation—they can prevent infor-
mation from being released, but they cannot prevent it from being propagated. If a
program legitimately needs access to a piece of information, how can we be sure that
it will not somehow leak the information improperly? Simply trusting the program is
dangerous. We might try to monitor its output, but the program could easily disguise
the information. Furthermore, after-the-fact detection is often too late,

Consider for example a scenario involving e-filing of taxes. I might download a
tax preparation program from some vendor to my home computer. I could use the
program to prepare my tax return, entering my private financial information. The
program might then send my tax return to the IRS electronically, encrypting it first
to protect its confidentiality. But the program might also send billing information
back to the vendor so that I could be charged for the use of the program. How can
I be sure that this billing information does not covertly include my private financial
information?

The approach of secure information flow analysis involves performing a static
analysis of the program with the goal of proving that it will not leak sensitive infor-
mation. If the program passes the analysis, then it can be executed safely.

This idea has a long history, going back to the pioneering work of the Dennings
in the 1970s [9]. It has since been heavily studied, as can be seen from the survey
by Sabelfeld and Myers [22], which cites about 150 papers. Our goal here is not to
duplicate that survey, but instead to explain the principles underlying secure informa-
tion flow analysis and to discuss some challenges that have so far prevented secure
information flow analysis from being employed much in practice.

292 Geoffrey Smith

13.1 Basic Principles

The starting point in secure information flow analysis is the classification of program
variables into different security levels. The most basic distinction is to classify some
variables as L, meaning low security, public information; and other variables as H,
meaning high security, private information. The security goal is to prevent informa-
tion in H variables from being leaked improperly. Such leaks could take a variety of
forms, of course, but certainly we need to prevent information in H variables from
flowing to L variables.

More generally, we might want a lattice of security levels, and we would wish to
ensure that information flows only upwards in the lattice [8]. For example, if L < H,
then we would allow flows from L to L, from H to H, and from L to H, but we would
disallow flows from H to L.

Another interesting case involves integrity rather than confidentiality. If we view
some variables as containing possibly tainted information, then we may wish to pre-
vent information from such variables from flowing into untainted variables, as in
Orbzk [19]. We can model this using a lattice with Untainted < Tainted. This idea
is also the basis of recent work by Newsome and Song [18] that attempts to detect
worms via a dynamic taint analysis.

Let us consider some examples from Denning [9], assuming that secret : H
and leak : L. Clearly illegal is an explicit flow:

leak = secret;

On the other hand, the following should be legal:
secret = leak;

as should
leak = 76318;

Also dangerous is an implicit flow:

if ((secret % 2)==0)
leak = 0;

else
leak = 1;

This copies the last bit of secret to leak.
Arrays can lead to subtle information leaks. If array a is initially all 0, then the
program

alsecret] = 1;
for (int 1 = 0; 1 < a.length; i++) {
if (a[i] == 1)
leak = i;

13 Principles of Secure Information Flow Analysis 293

leaks secret.

How can we formalize the idea that program c¢ does not leak information from
H variables to L variables? In Volpano, Smith, and Irvine [32], the desired security
property is formulated as follows:

Definition 1 (Noninterference). Program c satisfies noninterference if, for any mem-
ories |4 and v that agree on L variables, the memories produced by running c on
and on v also agree on L variables (provided that both runs terminate successfully).

The name “noninterference” was chosen because of its similarity to a property pro-
posed earlier by Goguen and Meseguer [10]. The idea behind noninterference is that
someone observing the final values of L variables cannot conclude anything about
the initial values of H variables.

Notice that the noninterference property defined above is applicable only to de-
terministic programs. In later sections, we will consider noninterference properties
that are appropriate for nondeterministic programs.

Of course, leaking H information into L variables is not the only way that
information might be leaked. Consider

while (secret != 0)
7
This program loops iff secret is nonzero. So an attacker who can observe termi-
nation/nontermination can deduce some information about secret. Similarly, the
running time of a program may depend on H information. Such timing leaks are very

hard to prevent, because they can exploit low-level implementation details. Consider
the following example, adapted from Agat [1].

int i, count, xs[4096], ys[4096];

for (count = 0; count < 100000; count++) {
=

if (secret 0)
for (1 = 0; 1 < 4096; 1 += 2)
xs[1]++;
else
for (1 = 0; 1 < 4096; i += 2)
ys[il++;
for (1 = 0; 1 < 4096; 1 += 2)
xs[1i]++;

}

At an abstract level, the amount of work done by this program does not seem to
depend on the value of secret. But, when run on a local Sparc server with a 16K
data cache, it takes twice as long when secret is 0 as it takes when secret is
nonzero. (When secret is nonzero, the array xs can remain in the data cache
throughout the program’s execution; when secret is 0, the data cache holds xs
and ys alternately.)

294 Geoffrey Smith

Because outside observations of the running program make it so hard to prevent
information leaks, most work on secure information flow addresses only leaks of
information from H variables to L variables, as captured by the noninterference
property. Focusing on noninterference can also be justified by noting that when we
run a program on our own computer (as in the e-tax example above) we may be able
to prevent outside observations of its execution.

13.2 Typing Principles

In this section, we describe how type systems can be used to ensure noninterference
properties. For simplicity, we assume that the only security levels are H and L. We
begin by considering a very simple imperative language with the following syntax:

(phrasesy pu=e | ¢

(expressions) e i=z | n | e1+ex | ...
(commands) ¢ =1z :=e€ |
skip |

if e then ¢; else ¢z |
while edo ¢ |
C1;C2

Here metavariable x ranges over identifiers and n over integer literals. Integers are
the only values; we use 0 for false and nonzero for true.

A program c is executed under a memory p, which maps identifiers to values. We
assume that expressions are total and evaluated atomically, with u(e) denoting the
value of expression e in memory p. Execution of commands is given by a standard
structural operational semantics as in Gunter [11], shown in Figure 13.1. These
rules define a transition relation — on configurations. A configuration is either
a pair (¢, u) or simply a memory p. In the first case, ¢ is the command yet to be
executed; in the second case, the command has terminated, yielding final memory 4.
We write —™* for the reflexive, transitive closure of —.,

Going back to Denning’s original work [9], we can identify the following princi-
ples:

e First, we classify expressions by saying that an expression is f if it contains any
H variables; otherwise it is L.

e Next we prevent explicit flows by forbidding a H expression from being assigned
to a L variable.

e Finally, we prevent implicit flows by forbidding a guarded command with a H
guard from assigning to L variables.

We can express these classifications and restrictions using a type system. The
security types that we need are as follows:

(datatypesy 7 == L | H
(phrase types) p == 7 | Tvar | T cmd

13 Principles of Secure Information Flow Analysis 295

(UPDATE) x € dom(p)
(x =€, p)—ulz := ple)]

(N0-0P) (skip, 1) —p1

(BRANCH) ule) #0
(if € then ¢ else ¢z, u)—>{c1, 1)

ule) =0
(if e then c1 else c2, ;1) —(c2, 1)

(LooP) ule) =0
(while e do ¢, u)— 14

we) #0
(while e do c,) ——(c; while e do c,)

(SEQUENCE) {c1, i) ——pt'
(Cl; C2, /")_—*(02’ Nl)

(e1, p)— (e, 1)
(er; ez,)—(cy; 02, 147)

Fig. 13.1. Structural Operational Semantics

The intuition is that an expression e of type T contains only variables of level T or
lower, and a command c of type 7 cmd assigns only to variables of level 7 or higher.

Next, we need an identifier typing I” that maps each variable to a type of the form
T var, giving its security level. A typing judgment has the form I" - p : p, which can
be read as “from identifier typing I, it follows that phrase p has type p”. In addition,
it is convenient to have subtyping judgments of the form p; C p.. For instance, we
would want H ¢cmd C L cmd, because if a command assigns only to variables of
level H or higher then, a fortiori, it assigns only to variables of level L or higher.
The typing rules are shown in Figures 13.2 and 13.3; they first appeared in Volpano,
Smith, and Irvine [32].

Programs that are well typed under this type system are guaranteed to satisfy
noninterference. First, the following two lemmas show that the type system enforces
the intended meanings of expression types and command types:

Lemma 1 (Simple Security). If I" - e : 7, then e contains only variables of level T
or lower.

Lemma 2 (Confinement). If I' & ¢ : 7 cmd, then c assigns to only to variables of
level T or higher.

Next, we say that memories ¢ and v are L-equivalent, written p ~p, v, if 4 and
v agree on the values of L variables. Now we can show noninterference:

296 Geoffrey Smith

(R-VAL) I'(z) =7 var
I'Fx:t
(INT) I'tn:L
(PLUS) I'btei:r, 'Fex:7
I'Hei+ex:7
(ASSIGN) I'zg)=7var, "'Fe:T

'txz:=e:7cmd
(SKIP) I' b skip : H cmd

(IF) I'te:r
I'ke:irTeoemd
I'Fco:Temd

I'+ifethency elseco : 7 cmd

(WHILE) 'rFe:r
I'tc:7cmd
I'-whileedoc: 7 cmd

(COMPOSE) I'ker:7mcomd
I'kFey:Temd
I'keci;e2 ¢ Temd

Fig. 13.2. Typing rules

(BASE) LCH

(cMD ™) 7 Cr
T cmd C 7 emd

(REFLEX) pCop
(TRANS) p1 C p2, p2Cps
1 S p3

(SUBSUMP) I'kFp:p1, p1 € p2
I'kp:p2

Fig. 13.3. Subtyping rules

13 Principles of Secure Information Flow Analysis 297

Theorem 1 (Noninterference). If c is well typed and y ~, v and c runs successfully
under both 1 and v, producing final memories (' and V', respectively, then i/ ~p V',

Proof. The proof is by induction on the length of the execution (¢, u)—pu'. We
describe two interesting cases:

e Suppose cis an assignment z := e. If z is H, then y/ ~7, v/ trivially. And if z is
L, then the type system requires that e : L, which means that by Simple Security,
e contains only L variables. Hence u(e) = v(e), which means that y ~p, v/'.

e Suppose cis while e do ¢’. If e is L, then by Simple Security p(e) = v(e), which
means that the executions from (while e do ¢/, 1) and from (while e do ¢/, v)
begin in the same way; they go either to g and to v (if u(e) = v(e) = Q) or to
(c'; while e do ¢/, 1) and to (¢’; while e do ¢, v) (otherwise). In the former case
we are done immediately, and in the latter case the result follows by induction.
If, instead, e is H, then the type system requires that ¢’ has type H cmd. So,
by Confinement, ¢’ assigns only to H variables. It follows that p ~ u' and
v ~1, V', which implies that p' ~p, nu’.

The remaining cases are similar. [

Of course the language that we have considered so far is very small. In the next
subsections, we consider a number of extensions to it.

13.2.1 Concurrency

Suppose that we extend our language with multiple threads, under a shared memory.
This introduces nondeterminism, which makes the noninterference property in Def-
inition 1 inappropriate—now running a program twice under the same memory can
produce two memories that disagree on the values of L variables.

As a starting point, we might generalize to a possibilistic noninterference prop-
erty that says that changing the initial values of H variables cannot change the ser of
possible final values of L variables:

Definition 2 (Possibilistic Noninterference). Program c satisfies possibilistic non-
interference if; for any memories 1 and v that agree on L variables, if running c on
. can produce final memory ', then running c on v can produce a final memory V'
such that p' and V' agree on L variables.

Do the typing rules in Figures 13.2 and 13.3 suffice to ensure possibilistic non-
interference? They do not, as is shown by the example in Figure 13.4, which is from
Smith and Volpano [28]. The initial values of all variables are 0, except mask, whose
value is a power of 2, and secret, whose value is arbitrary. It can be seen that, un-
der any fair scheduler, this program always copies secret to leak. Yet all three
threads are well typed provided that secret, trigger0, and triggerl are H,
and leak, maintrigger, and mask are L.

So we need to impose additional restrictions on multi-threaded programs. Be-
fore considering such restrictions, however, we must first address the specification of

298 Geoffrey Smith
Thread o

while (mask != 0) {
while (trigger(0 == 0)

r
leak = leak | mask; // bitwise ’'or’
trigger0 = 0;
maintrigger = maintrigger+l;
if (maintrigger == 1)
triggerl = 1;
}

Thread G:

while (mask != 0) {
while (triggerl == 0)
I
leak = leak & "mask; // bitwise "and’ with
// complement of mask
triggerl = 0;
maintrigger = maintrigger+l;
if (maintrigger == 1)
trigger0 = 1;
}

Thread ~v:
while (mask != 0) {

maintrigger = 0;

if (secret & mask == ()
trigger0 = 1;

else
triggerl = 1;

while (maintrigger != 2)

mask = mask/2;
}
trigger0 = 1;
triggerl 1;

Fig. 13.4. A multi-threaded program that leaks secret

the thread scheduler more carefully. Possibilistic noninterference is sufficient only
if we assume a purely nondeterministic scheduler, which at each step can choose
any thread to run for the next step. Under this model, there is no likelihood associ-
ated with the memories that can result from running a program-—each final mem-
ory is simply possible or impossible. But a real scheduler would inevitably be more
predictable. For example, a scheduler might flip coins at each step to choose which
thread to run next. Under such a probabilistic scheduler, possibilistic noninterference

13 Principles of Secure Information Flow Analysis 299

is insufficient. Consider the following example from McLean [14]. Let the program
consist of two threads:

leak = secret;
and
leak = random(100);

Assume that random (100) returns a random number between 1 and 100 and that
the value of secret is between 1 and 100. This program satisfies possibilistic non-
interference, because the final value of 1eak can be any number between 1 and 100,
regardless of the value of secret. But, under a probabilistic scheduler that flips a
coin to decide which thread to execute first, the value of 1eak will be the value of
secret with probability 101/200, and each other number between 1 and 100 with
probability 1/200. This example motivates a stronger security property, probabilistic
noninterference, which says that changing the initial values of H variables cannot
affect the joint probability distribution on the final values of L variables. Further dis-
cussion of possibilistic and probabilistic security properties can be found in McLean
[15].

We now describe a type system for ensuring probabilistic noninterference in
multi-threaded programs. The first such systems (Smith and Volpano [28, 31] and
Sabelfeld and Sands [23]) adopted the severe restriction that guards of while-loops
must be L. This rules out the program in Figure 13.4 (trigger0 and triggerl
are H), but it also makes it hard to write useful programs.

Later, inspired by Honda, Vasconcelos, and Yoshida [12], a better type system
was presented by Smith [26, 27]. (Remarkably, almost the same system was devel-
oped independently by Boudol and Castellani [5].) This type system allows while-
loop guards to contain H variables, but to prevent timing flows it demands that a
command whose running time depends on H variables cannot be followed sequen-
tially by an assignment to a L variable. The intuition is that such an assignment to a
L variable is dangerous in a multi-threaded setting, because if another thread assigns
to the same variable, then the likely order in which the assignments occur (and hence
the likely final value of the L variable) depends on H information.

The type system uses the following set of types:

(datatypes) Tu:=L | H
(phrase types) p v=1 | Tvar | memd Ty | Temdn

The new command types have the following intuition:

o A command c is classified as 7y, cmd 75 if it assigns only to variables of type 7
(or higher) and its running time depends only on variables of type 7 (or lower).

e A command c is classified as 7 ecmd n if it assigns only to variables of type T (or
higher) and it is guaranteed to terminate in exactly n steps.

The new typing and subtyping rules are presented in Figures 13.5 and 13.6.
These rules make use of the lattice join and meet operations, denoted V and A,

300 Geoffrey Smith

(R-VAL)

(INT)

(PLUS)

(ASSIGN)

(SKIP)

(IF)

(WHILE)

(COMPOSE)

(PROTECT)

I'(z) = 7 var

I'kFa:T
I'bn:L

I'Fei:7, 'tex:r
I'ej4ex: ™

I'(z)=7var, 'te:r
I'Fzx:=e:7cmdl

I'-skip: H cmd 1

I'kte:T

I'tci:Temdn

I'te:Temdn
I'~ifethencelsecy : 7emdn +1

I'Fe:n
71 C T2
I'tea:moomdTs
I'tcy:1ocmd T3

I'+ifethencielsecy: o cmd 1 V 13

I'Fe:mn

71 €72

73 C T2

I'bc:mcmdrs
I'+whileedoc: o cmd T Vs

I'kep:7emdm
I'Fex:iTtemdn
I'keci;e2 1 Temdm+n

I'Fey:irmiomdr
T2 C T3
F"CzZTacde4

I'btejer : mAT3emd oV 14

I'kFe:7miemd s
¢ contains no while loops

I' - protect ¢ : 71 emd 1

Fig. 13.5. Typing rules for multi-threaded programs

13 Principles of Secure Information Flow Analysis 301
(BASE) LCH

(CMD ™) HCrm, 2CT
1 emd T2 C 71 cmd T4

7 Cr
Temdn C 7 emdn

Temdn CromdL

(REFLEX) pCp
(TRANS) p1Cp2, p2C p3
p1 C p3

(sussuMp) I'tp:pi, p1 Cp2
I'p:ps

Fig. 13.6. Subtyping rules for multi-threaded programs

respectively. Also, we extend the language with a new command, protect ¢, which
runs command ¢ atomically. This is helpful in masking timing variations.

The key idea behind the soundness of this type system is that if a well-typed
thread ¢ is run under two L-equivalent memories, then in both runs it makes ex-
actly the same assignments to L variables, at the same times. Given this property, we
are able to show that well-typed multi-threaded programs satisfy probabilistic non-
interference. The proof involves establishing a weak probabilistic bisimulation; the
details are in Smith [27].

13.2.2 Exceptions

Another language feature that can cause subtle information flows is exceptions. For
example, here is a Java program that uses exceptions from out-of-bounds array in-
dices to leak a secret:

int secret;
int leak = 0;
int [] a new int[1];

il

for (int bit = 0; bit < 30; bit++) {

try {
all - (secret >> bit) % 2] = 0;
leak |= (1 << bit);

}

catch (ArrayIndexOutOfBoundsException e) { }
}

In this code, bit is L. Here the key is that array a has length 1, so the assignment

302 Geoffrey Smith

all - (secret >> bit) % 2] = 0;
raises an exception iff the current bit of secret is 0. As a result, the assignment
leak |[= (1 << bit);

is executed iff the current bit of secret is 1.

How should leaks due to exceptions be prevented? One possibility is to use an
approach similar to what was used for concurrency: we can require that a command
that might raise exceptions based on the values of H variables must not be followed
sequentially by an assignment to L variables. This is the approach taken by Jif [16].

Because this would seem to be quite restrictive in practice, Deng and Smith [6]
propose a different approach. If we change the language semantics so that array
operations never raise exceptions, then we can type them much more permissively.
The idea is to treat commands with out-of-bounds array indices as no-ops that are
simply skipped.

Under this approach, we give an array type 71 arr T2 to indicate that its contents
have level 7y and its length has level 5. Then, for example, we can use the following
straightforward and permissive typing rule for array assignment:

I'zy=marrm, 'tep:m, NbFea:m
I'tzley] i=eq: 1 emd

The full type system is given in [6].

In contrast, but with the same intent, Flow Caml [25] specifies that an out-of-
bounds array index causes the program to abort. This also prevents out-of-bounds
exceptions from being observed internally, allowing more permissive typing rules.

13.2.3 Other Language Features

Secure information flow analysis can treat larger languages than we have consid-
ered here. Notable is the work of Myers [16] and Banerjee and Naumann [3], which
treats object-oriented languages, and that of Pottier and Simonet [20] which treats a
functional language.

Another useful technology in this context is type inference, which frees the pro-
gramming from having to specify the security levels of all the variables in the pro-
gram. He or she can specify the levels of just the variables of interest, and have
appropriate security levels of all other variables be inferred automatically.

Interestingly, the desire to do type inference is one reason for assuming that the
set of security levels forms a lattice, because type inference is NP-complete over an
arbitrary partial order. This follows from a result of Pratt and Tiuryn [21]. They show
that over the “2-crown” given by

13 Principles of Secure Information Flow Analysis 303

A B

c D

the problem of testing the satisfiability of a set of inequalities between variables (x,
Y, 2, ...) and constants (A4, B, C, D) is NP-complete. We can easily reduce the
satisfiability problem to the inference problem by mapping a set of inequalities C'
to a program p such that C is satisfiable iff some choice of security levels for the
inferable variables of p makes p well typed. For example, we map

{t <A,B<y,z<y}

to the program
a:=z;y:=by:==x

where a and b are variables of levels A and B, respectively, and x and y are variables
whose levels are to be inferred.

In contrast, type inference can be done efficiently over a lattice. Work on type
inference for secure information flow includes Volpano and Smith [30], Pottier and
Simonet [20], Sun, Banerjee, and Naumann [29], and Deng and Smith [7].

13.3 Challenges

In spite of a great deal of research, secure information flow analysis has had lit-
tle practical impact so far. (See, for example, Zdancewic’s discussion [33].) In this
section we discuss some challenges that need to be overcome to make secure infor-
mation flow analysis more useful in practice.

One obvious concern is that much of the work in the research literature has been
theoretical, treating “toy” languages rather than full production languages. While
this has surely hindered adoption of this technology somewhat, in fact there are two
mature implementations of rich languages with secure information flow analysis,
namely Jif [17] and Flow Caml [25]. This fact suggests that the problems largely lie
elsewhere.

In exploring this issue further, it seems helpful to distinguish between two differ-
ent application scenarios: developing secure software and stopping malicious soft-
ware. We consider these in turn.

13.3.1 Scenario 1: Developing Secure Software

In this scenario, the idea is to use secure information flow analysis to help in the de-
velopment of software that satisfies some security goals. Here the analysis serves as

304 Geoffrey Smith

a program development tool. We could imagine such a tool being used interactively
to help the programmer to eliminate improper information leaks. Here, the analysis
could be carried out on source code.

The static analysis tool would alert the programmer to potential leaks. The pro-
grammer could respond to such alerts by rewriting the code as necessary. We also
might allow the programmer to insert explicit declassification statements (in effect,
type casts) to deal with situations where the analysis is overly restrictive. (Such de-
classification statements are allowed in Jif, for example.) Allowing declassification
statements is risky, of course, but it might be reasonable in situations where we can
trust that the programmer is not malicious or incompetent.

An example of this scenario can be found in Askarov and Sablefeld [2] which dis-
cusses the implementation of a “mental poker” protocol in Jif. The program is about
4500 lines long, and it uses a number of declassification statements, for example to
model the intuition that encrypting H information makes it L.

13.3.2 Scenario 2: Stopping Malicious Software

In this scenario, the idea is to use secure information flow analysis as a kind of
Jilter to stop malicious software (“malware”). We might imagine analyzing a piece
of untrusted downloaded code before executing it, with the goal of guaranteeing its
safety.

This scenario is clearly much more challenging than Scenario 1. First of all, we
probably would not have access to the source code, requiring us to analyze binaries.
Analyzing binaries is more difficult than analyzing source code and has not received
much attention in the literature, aside from some recent work on analyzing Java
bytecodes, such as Barthe and Rezk [4].

A further challenge here is that the analysis would need to be fully automatic,
without the possibility of interaction with the programmer. Moreover, declassifica-
tion statements certainly cannot be blindly accepted in this scenario. If we do allow
declassification statements, then it becomes unclear what (if any) security properties
are guaranteed.

13.3.3 Flow Policies

In both scenarios we have a key question: what information flow policies do we
want? As we have discussed above, secure information flow analysis has focused
on enforcing noninterference. But noninterference requires absolutely no flow of
information. As it turns out, this does not seem to be quite what we want in practice.

A first concern is that “small” information leaks are acceptable in practice. For
instance, a password checker certainly must not leak the correct password, but it
must allow a user to enter a purported password, which it will either accept or re-
ject. And, of course, rejecting a password leaks some information about the correct
password, by eliminating one possibility. Similarly, encrypting some H information
would seem to make it L, but there is a flow of information from the plaintext to the
ciphertext, since the ciphertext depends on the plaintext.

13 Principles of Secure Information Flow Analysis 305

As another example, consider census data. Individual census data is expected
to be private (H) but aggregate census data needs to be public (L), since otherwise
the census data is useless. But, of course, aggregate data depends on individual data,
contrary to what noninterference demands.

Flow policies sometimes involve a femporal aspect as well. For example, we
might want to release some secret information after receiving a payment for it.

These examples suggest that, in many practical situations, enforcing noninter-
ference on a static lattice of security levels is too heavy-handed. At the same time,
it seems difficult to allow “small” information leaks without allowing a malicious
program to exploit such loopholes to leak too much.

A major challenge for secure information flow analysis, then, is to develop a good
formalism for specifying useful information flow policies that are more flexible than
noninterference. The formalism must be general enough for a wide variety of appli-
cations, but not too complicated for users to understand. In addition, we must find
enforcement mechanisms that can provably ensure that the flow policy is satisfied.
Such richer information flow policies and their enforcement are the subject of much
current research. One interesting approach is Li and Zdancewic [13], which uses
downgrading policies as security levels, so that the security level specifies what must
be done to “sanitize” a piece of information. More broadly, the survey by Sabelfeld
and Sands [24] gives a useful framework for thinking about recent approaches to
declassification.

13.4 Conclusion

Secure information flow analysis has the potential to guarantee strong security prop-
erties in computer software. But if it is to become broadly useful, it must better
address the security properties that are important in practice.

This work was partially supported by the National Science Foundation under
grants CCR-9900951 and HRD-0317692.

References

1. J. Agat. Type Based Techniques for Covert Channel Elimination and Register Allocation.
PhD thesis, Chalmers University of Technology, Géteborg, Sweden, Dec. 2000.

2. A. Askarov and A. Sabelfeld. Security-typed languages for implementation of crypto-
graphic protocols: A case study. In Proceedings of the 10th European Symposium on
Research in Computer Security (ESORICS 2005), pages 197-221, Sept. 2005.

3. A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement in a
Java-like language. In Proceedings 15th IEEE Computer Security Foundations Workshop,
pages 253-267, Cape Breton, Nova Scotia, Canada, June 2002.

4. G. Barthe and T. Rezk. Non-interference for a JVM-like language. In Proceedings of
TLDI’05: 2005 ACM SIGPLAN International Workshop on Types in Language Design
and Implementation, pages 103-112, Jan. 2005.

306 Geoffrey Smith

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

. G.Boudol and I. Castellani. Noninterference for concurrent programs and thread systems.
Theoretical Computer Science, 281(1):109—130, June 2002.

. Z. Deng and G. Smith. Lenient array operations for practical secure information flow.
In Proceedings 17th IEEE Computer Security Foundations Workshop, pages 115-124,
Pacific Grove, California, June 2004.

. Z. Deng and G. Smith. Type inference and informative error reporting for secure in-
formation flow. In Proceedings ACMSE 2006: 44th ACM Southeast Conference, pages
543-548, Melbourne, Florida, Mar. 2006.

. D. Denning. A lattice model of secure information flow. Commun. ACM, 19(5):236-242,
1976.

. D. Denning and P. Denning. Certification of programs for secure information flow. Com-

mun. ACM, 20(7):504-513, 1977.

J. Goguen and J. Meseguer. Security policies and security models. In Proceedings 1982

IEEE Symposium on Security and Privacy, pages 11-20, Oakland, CA, 1982.

C. A. Gunter. Semantics of Programming Languages. The MIT Press, 1992.

K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as typed process

behaviour. In Proceedings 9th European Symposium on Programming, volume 1782 of

Lecture Notes in Computer Science, pages 180-199, Apr. 2000.

P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In Proceed-

ings 32nd Symposium on Principles of Programming Languages, pages 158-170, Jan.

2005.

J. McLean. Security models and information flow. In Proceedings 1990 IEEE Symposium

on Security and Privacy, pages 180-187, Oakland, CA, 1990.

J. McLean. Security models. In J. Marciniak, editor, Encyclopedia of Software Engineer-

ing. Wiley Press, 1994.

A. Myers. JFlow: Practical mostly-static information flow control. In Proceedings 26th

Symposium on Principles of Programming Languages, pages 228~241, San Antonio, TX,

Jan. 1999.

A. C. Myers, S. Chong, N. Nystrom, L.. Zheng, and S. Zdancewic. Jif: Java + information

Jflow. Cornell University, 2004. Availableathttp://www.cs.cornell.edu/Jjif/.

J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis, and

signature generation of exploits on commodity software. In Proceedings of the 12th An-

nual Network and Distributed System Security Symposium (NDSS 05), Feb. 2005.

P. @rbak. Can You Trust Your Data? In Proceedings 1995 Theory and Practice of Soft-

ware Development Conference, pages 575-589, Aarhus, Denmark, May 1995. Lecture

Notes in Computer Science 915.

F. Pottier and V. Simonet. Information flow inference for ML. ACM Transactions on

Programming Languages and Systems, 25(1):117-158, Jan. 2003.

V. Pratt and J. Tiuryn. Satisfiability of inequalities in a poset. Fundamenta Informaticae,

28(1-2):165-182, 1996.

A. Sabelfeld and A. C. Myers. Language-based information flow security. JEEE Journal

on Selected Areas in Communications, 21(1):5-19, Jan. 2003.

A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs.

In Proceedings 13th IEEE Computer Security Foundations Workshop, pages 200-214,

Cambridge, UK, July 2000.

A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Proceedings

18th IEEE Computer Security Foundations Workshop, June 2005.

V. Simonet. The Flow Caml System: Documentation and user’s manual. In-

stitut National de Recherche en Informatique et en Automatique, July 2003.

26.

27.

28.

29.

30.

3L

32.

33.

13 Principles of Secure Information Flow Analysis 307

Available athttp:// cristal.inria.fr/ “simonet/ soft/ flowcaml/
manual/ index.html.

G. Smith. A new type system for secure information flow. In Proceedings 14th IEEE
Computer Security Foundations Workshop, pages 115-125, Cape Breton, Nova Scotia,
Canada, June 2001.

G. Smith. Probabilistic noninterference through weak probabilistic bisimulation. In
Proceedings 16th IEEE Computer Security Foundations Workshop, pages 3—13, Pacific
Grove, California, June 2003.

G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative lan-
guage. In Proceedings 25th Symposium on Principles of Programming Languages, pages
355-364, San Diego, CA, Jan. 1998.

Q. Sun, A. Banerjee, and D. A. Naumann. Modular and constraint-based information flow
inference for an object-oriented language. In Proc. Eleventh International Static Analysis
Symposium (SAS), Verona, Italy, Aug. 2004.

D. Volpano and G. Smith. A type-based approach to program security. In Proc. The-
ory and Practice of Software Development, volume 1214 of Lecture Notes in Computer
Science, pages 607-621, Apr. 1997.

D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. Journal
of Computer Security, 7(2,3):231-253, 1999.

D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(2,3):167-187, 1996.

S. Zdancewic. Challenges for information-flow security. In Proceedings of the 1st Inter-
national Workshop on Programming Language Interference and Dependence (PLID’04),
2004.

Index

a-loc, see abstract location
abstract location, 50-55
killed, 54, 55
possibly-killed, 54, 55
used, 54, 55
abstract-syntax tree, 55, 59
address arithmetic, 43, 46, 48, 49, 53, 56
affline-relation analysis, 50
aggregate-structure identification, 50, 51, 53,
54, 56, 57
Agobot, 175
analysis
affine-relation, 50
aggregate-structure identification, 50, 51,
53,54, 56,57
information-flow, 55
integer-congruence, 53
numeric, 52, 53
pointer, 52, 53, 59
range, 52, 53
value-set, 49-57, 59
ANSIC, 46,48
Antibody, 149
antibody, 148-150, 161
ARA, see affine-relation analysis
arithmetic
on addresses, 43, 46, 48, 49, 53, 56
ASI, see aggregate-structure identification
assembly code
inlined, 48

base-rate fallacy, 193, 195
Botnet, 172

Botnet Architecture, 175

Botnet Control, 177

Botnet Deception Mechanisms, 188
Botnet Delivery Mechanisms, 186
Botnet Exploits, 185

Botnet Host Control, 181

Botnet Obfuscation, 187

Botnet Propagation, 183

ANSI, 46, 48
call
indirect, 46, 48, 50, 52, 56, 57
virtual-function, 56
call graph, 50, 52, 55, 57
cascade on alert, 199200
cascade on non-alert, 200-202
CFQG, see control-flow graph
CodeSurfer, 43, 49, 54, 55, 59
CodeSurfer/x86, 43-45, 49, 51, 53-58
concurrency, 297
confinement lemma, 295
constant propagation, 53
control-flow graph, 50, 52, 55, 57, 58
cooperative intrusion detector, see intrusion
detection
Cyber crime, 172

dataflow analysis, 49, 58

dependence graph, 55
program, 55
system, 55

detection cost, 197
universal, 197-198

310 Index

detector combination, 194, 197-198

DLL, see dynamically linked library

dynamic root of trust, 254

dynamic taint analysis, 148, 151-153, 156,
165, 166

dynamically allocated object, 46, 54-56

dynamically linked library, 43, 44, 48, 51, 56

evasion techniques, 193
exceptions, 301
explicit flow, 292

false positives, 193
FLIRT, 51

GTBot, 176

IDAPro, 43, 49-51, 53, 54, 57
implicit flow, 292
indirect addressing, 43, 49, 52, 53
indirect call, 46, 48, 50, 52, 56, 57
indirect jump, 50, 52, 56, 57
information-flow analysis, 55
inlined assembly code, 48
integer-congruence analysis, 53
intermediate representation, 44, 45, 48, 49,
51, 55-57

preliminary, 51, 57

recovery, 48, 49
intrusion detection, 193-208

base-rate fallacy, 193, 195

combination problem, 194, 197-198

cascade on alert, 199-200
cascade on non-alert, 200-202

cooperative, 193-208

false positives, 193

host-based, 193

network-based, 193

operational cost, 197

universal detection cost, 197
IR, see intermediate representation

Jjump
indirect, 50, 52, 56, 57

kernel rootkit detector, 254
malware, 171

memory region, 54
summary, 54

memory-access operation, 43, 49
non-aligned, 52

model checking, 45, 48, 49, 51, 57, 58

model extraction, 48

Moped, 57

MOPS, 57

noninterference, 293
numeric analysis, 52, 53

Path Inspector, 45, 49, 58, 59
PDG, see program dependence graph
PDS, see pushdown system
pointer analysis, 52, 53, 59
polymorphism, 154, 155
possibilistic noninterference, 297
probabilistic noninterference, 299
program chopping, 55
program dependence graph, 55
program slicing, 55, 59
pushdown system, 57, 58

configuration, 57, 58

rule, 57

range analysis, 52, 53

SDBot, 175
SDG, see system dependence graph
secure information flow, 291
security types, 294, 299
self-checking function, 254
Self-Verifiable Antibody Alerts, 161, 162,
164-166

semiring, 58

combine operator, 58

extend operator, 58
sequencing property, 58
simple imperative language, 294
simple security lemma, 295
software-based code attestation, 254
SpyBot, 176
SQL injection, 85
static analysis, 44
structural operational semantics, 294
subtyping rules, 295, 299
SVAA, see Self-Verifiable Antibody Alerts
system dependence graph, 55

TaintCheck, 152, 153

timing leaks, 293
type inference, 302
typing rules, 295, 299

universal detection cost, 197
use-def chain, 59

value set, 52-54
value-set analysis, 49-57, 59
verifiable code execution, 253, 256
virtual function, 54

call, 56

Index 311

table, 54
VSA, see value-set analysis
VSEEF, see vulnerability-specific execution-
based filtering
vulnerability signature, 148, 149, 154-159
vulnerability-specific execution-based
filtering, 159, 160

weighted pushdown system, 49, 57, 58
WPDS, see weighted pushdown system
WPDS++, 49, 57, 58

WYSINWYX, 46

