Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

1 of 273

Iptables Tutorial 1.2.2

Oskar Andreasson

<oan@frozentux.net>

Copyright © 2001-2006 Oskar Andreasson

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1; with the Invariant Sections being "Introduction” and all sub-sections,
with the Front-Cover Texts being "Original Author: Oskar Andreasson”, and with no Back-Cover Texts. A
copy of the license is included in the section entitled "GNU Free Documentation License".

All scripts in this tutorial are covered by the GNU General Public License. The scripts are free source; you can
redistribute them and/or modify them under the terms of the GNU General Public License as published by the
Free Software Foundation, version 2 of the License.

These scripts are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY ; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License within this tutorial, under the section
entitled "GNU General Public License"; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA

Dedications

I would like to dedicate this document to my wonderful sister, niece and brother-in-law for giving me
inspiration and feedback. They are a source of joy and a ray of light when I have need of it. Thank you!

A special word should also be extended to Ninel for always encouraging my writing and for taking care of me
when | needed it the most. Thank you!

Second of all, I would like to dedicate this work to all of the incredibly hard working Linux developers and
maintainers. It is people like those who make this wonderful operating system possible.

Table of Contents

About the author

How to read

Prerequisites

Conventions used in this document

1. Introduction
Why this document was written
How it was written
Terms used in this document
What's next?

2. TCP/IP repetition

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

2 of 273

TCP/IP Layers
IP characteristics

IP headers

TCP characteristics

TCP headers

UDP characteristics

UDP headers

ICMP characteristics

ICMP headers
ICMP Echo Request/Reply
ICMP Destination Unreachable
Source Quench
Redirect
TTL equals O
Parameter problem
Timestamp request/reply
Information request/reply

SCTP Characteristics
Initialization and association
Data sending and control session
Shutdown and abort

SCTP Headers
SCTP Generic header format
SCTP Common and generic headers
SCTP ABORT chunk
SCTP COOKIE ACK chunk
SCTP COOKIE ECHO chunk
SCTP DATA chunk
SCTP ERROR chunk
SCTP HEARTBEAT chunk
SCTP HEARTBEAT ACK chunk
SCTP INIT chunk
SCTP INIT ACK chunk
SCTP SACK chunk
SCTP SHUTDOWN chunk
SCTP SHUTDOWN ACK chunk

SCTP SHUTDOWN COMPLETE chunk

TCP/IP destination driven routing
What's next?

3. IP filtering introduction

What is an IP filter

IP filtering terms and expressions
How to plan an IP filter

What's next?

4. Network Address Translation Introduction

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

What NAT is used for and basic terms and expressions

Caveats using NAT
Example NAT machine in theory

What is needed to build a NAT machine

Placement of NAT machines
How to place proxies
The final stage of our NAT machine

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

What's next?

5. Preparations
Where to get iptables

Kernel setup
User-land setup
Compiling the user-land applications

Installation on Red Hat 7.1
What's next?
6. Traversing of tables and chains
General
Mangle table
Nat table
Raw table
Filter table
User specified chains
What's next?
7. The state machine
Introduction
The conntrack entries
User-land states
TCP connections
UDP connections
ICMP connections
Default connections
Untracked connections and the raw table
Complex protocols and connection tracking

What's next?

8. Saving and restoring large rule-sets
Speed considerations
Drawbacks with restore
iptables-save
iptables-restore
What's next?

9. How a rule is built
Basics of the iptables command
Tables
Commands
What's next?

10. Iptables matches
Generic matches
Implicit matches

TCP matches
UDP matches
ICMP matches
SCTP matches
Explicit matches
Addrtype match
AH/ESP match
Comment match
Connmark match
Conntrack match

Dscp match

3 of 273

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

Ecn match
Hashlimit match

Helper match
IP range match

Length match
Limit match

Mac match

Mark match
Multiport match
Owner match
Packet type match

Realm match
Recent match
State match
Tcpmss match
Tos match

Ttl match
Unclean match

What's next?
11. Iptables targets and jumps

ACCEPT target

CLASSIFY target

CLUSTERIP target

CONNMARK target

CONNSECMARK target

DNAT target
DROP target
DSCP target

ECN target
LOG target options

MARK target
MASQUERADE target

MIRROR target

NETMAP target

NFQUEUE target

NOTRACK target

QUEUE target
REDIRECT target

REJECT target

RETURN target

SAME target
SECMARK target

SNAT target
TCPMSS target

TOS target
TTL target

ULOG target
What's next?

12. Debugging your scripts

Debugging, a necessity

Bash debugging tips

System tools used for debugging

4 of 273

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

5 of 273

Iptables debugging

Other debugging tools
Nmap
Nessus

What's next?

13. rc.firewall file

example rc.firewall

explanation of rc.firewall
Configuration options
Initial loading of extra modules

proc set up
Displacement of rules to different chains

Setting up default policies

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Setting up user specified chains in the filter table

INPUT chain

FORWARD chain

OUTPUT chain

PREROUTING chain of the nat table

Starting SNAT and the POSTROUTING chain

What's next?

14. Example scripts
rc.firewall.txt script structure

The structure

rc.firewall.txt
rc.DMZ.firewall.txt
rc.DHCP.firewall.txt
rc.UTIN.firewall.txt
rc.test-iptables.txt
rc.flush-iptables.txt
Limit-match.txt
Pid-owner.txt
Recent-match.txt
Sid-owner.txt
Ttl-inc.txt
Iptables-save ruleset
What's next?

15. Graphical User Interfaces for Iptables/netfilter
fwbuilder
Turtle Firewall Project
Integrated Secure Communications System
IPMenu
Easy Firewall Generator
What's next?

16. Commercial products based on Linux, iptables and netfilter

Ingate Firewall 1200
What's next?

A. Detailed explanations of special commands
Listing your active rule-set
Updating and flushing your tables

B. Common problems and questions
Problems loading modules
State NEW packets but no SYN bit set

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

6 of 273

SYN/ACK and NEW packets

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Internet Service Providers who use assigned IP addresses

Letting DHCP requests through iptables

mIRC DCC problems

C. ICMP types

D. TCP options
E. Other resources and links

F. Acknowledgments

G. History
H. GNU Free Documentation License

. PREAMBLE

. APPLICABILITY AND DEFINITIONS

. VERBATIM COPYING

. COPYING IN QUANTITY

. MODIFICATIONS

. COMBINING DOCUMENTS

. COLLECTIONS OF DOCUMENTS

. AGGREGATION WITH INDEPENDENT WORKS

. TRANSLATION
. TERMINATION

O©OoOo~NoOorTh~whNDEFE O

10. FUTURE REVISIONS OF THIS LICENSE

How to use this License for your documents

I. GNU General Public License

0. Preamble

1. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

2. How to Apply These Terms to Your New Programs

J. Example scripts code-base

Example rc.firewall script
Example rc.DMZ.firewall script
Example rc.UTIN.firewall script
Example rc.DHCP.firewall script
Example rc.flush-iptables script
Example rc.test-iptables script

Index

List of Tables

2-1.
2-2.
2-3.
2-4.
6-1.
6-2.
6-3.
7-1.
7-2.
7-3.
9-1.
9-2.
9-3.

SCTP Types
Error Causes

INIT Variable Parameters
INIT ACK Variable Parameters
Destination local host (our own machine)

Source local host (our own machine)
Forwarded packets

User-land states

Internal states

Complex protocols support

Tables

Commands

Options

10-1. Generic matches
10-2. TCP matches
10-3. UDP matches

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

7 of 273

10-4.
10-5.

ICMP matches
SCTP matches

10-6. Address types
10-7. Addrtype match options

10-8. AH match options

10-9.

ESP match options

10-10.
10-11.
10-12.
10-13.
10-14.
10-15.
10-16.
10-17.
10-18.
10-19.
10-20.
10-21.
10-22.
10-23.
10-24.
10-25.
10-26.
10-27.
10-28.
10-29.
10-30.
10-31.

11-1.

Comment match options
Connmark match options
Conntrack match options
Dscp match options

Ecn match options

ECN Field in IP
Hashlimit match options
Helper match options

IP range match options
Length match options
Limit match options
Mac match options
Mark match options
Multiport match options
Owner match options
Packet type match options
Realm match options
Recent match options
State match options
Tcpmss match options
Tos match options

Ttl match options
CLASSIFY target options

11-2.

CLUSTERIP target options

11-3.

CONNMARK target options

11-4.

CONNSECMARK target options

11-5.

DNAT target options

11-6.
11-7.
11-8.
11-9.

11-10.
11-11.
11-12.
11-13.
11-14.
11-15.
11-16.
11-17.
11-18.
11-19.
11-20.
11-21.

DSCP target options

ECN target options

LOG target options

MARK target options
MASQUERADE target options
NETMAP target options
NFQUEUE target options
REDIRECT target options
REJECT target options
SAME target options
SECMARK target options
SNAT target options
TCPMSS target options
TOS target options

TTL target options

ULOG target options

C-1. ICMP types
D-1. TCP Options

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

About the author

The author of the iptables tutorial was born in...

No, jokes aside. At age 8 | got my first computer for christmas present, a Commodore 64 with a C-1541
diskdrive, 8 needle printer and some games etc. It took me several days to even bother. My father managed to
put it together and after 2 days he finally learned himself how to load a game and showed how to do it for
myself. A life immersed in computers was born this day | guess. | played mostly games at this stage, but did
venture into the C-64 basic programming language a couple of times on and off. After some years, | got my
hands on an Amiga 500, which was mainly used for games and some school work and fiddling around. Amiga
1200 was next.

Back in 1993-94 My father was clearsighted enough to understand that Amiga was, unfortunately, not the way
of the future. PC and i386 computers was. Despite my screams in vain he bought me a PC, 486 50MHz with 16
MB of ram, Compaq computer. This was actually one of the worst computer designs | have ever seen,
everything was integrated, including speakers and CRT screen. | guess they where trying to mimic the Apple
designs of the day, but failing miserably to do so. It should be noted though, that this was the computer that got
me really into computers. | started coding for real, started using the Internet and actually installed Linux on this
machine.

I have for a long time been an avid Linux user and administrator. My Linux experience started in 1994 with a
slackware installation from borrowed CD's. This first installation was mostly a trial installation. I had no
previous experience and it took me quite some time to get modems running et cetera, and I kept running a dual
boot system. The second installation, circa 1996, | had no media around so | winded up downloading the whole
slackware A, AP, D and N disksets via FTP on a 28k8 modem. Since | realized | would never learn anything
from using graphical interfaces, | went back to basics. Nothing but console, no X11 or graphics except for
svgalib. In the end, I believe this has helped me a lot. | believe there is nothing to teach you how to use
something as to actually forcing yourself to do it, as I did at this time. | had no choice but to learn. | continued
running like this for close to 2 years. After this, | finally installed XFree86 from scratch. After an 24 hour
compilation, | realized that | had totally misconfigured the compilation and had to restart the compilation from
scratch. As a human, you are always bound to do errors. It simply happens and you better get used to it. Also,
this kind of build process teaches you to be patient. Let things have its time and don't force it.

In 2000-2001 | was part of a small group of people who ran a newssite mainly focusing on Amiga related
news, but also some Linux and general computer news. The site was called BoingWorld, located at
www.boingworld.com (no long available unfortunately). The Linux 2.3 kernels where reaching their end of
line and the 2.4 kernels where starting to pop up. At this point, | realized there was a half-new concept of
firewalling inside of it. Sure | had run into ipfwadm and ipchains before and used it to some extent, but never
truly gone heads first into it. | also realized there was embaerassingly little documentation and 1 felt it might be
an interesting idea to write an iptables tutorial for boingworld. Said and done, | wrote the first 5-10 pages of
what you are currently reading. Becoming a smashing hit, | continued to add material to the tutorial. The
original pages are no longer anywhere to be found in this tutorial/documentation, but the concept lives on.

I have worked several different companies during this time with Linux/network administration, writing
documentation and course material, helped several hundred, if not thousand, people emailing questions
regarding iptables and netfilter and general networking questions. | have attended two CERTconf's and held
three presentations at the same conference, and also the Netfilter workshop 2003. It has been an hectic and
sometimes very ungrateful job to maintain and update this work, but in the end I am very happy for it and this
is something | am very proud of having done. At the time of writing this in end of 2006, the project has been
close to dead for several years, and I regret this. | hope to change this in the coming years, and that a lot of
people will find this work to be of future use, possibly adding to the family of documents with other interesting

8 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

documentation that might be needed.

How to read

This document could either be read as a reference or from start to end. It was originally written as a small
introduction to iptables and to some extent netfilter, but this focus has changed over the years. It aims at being
an as complete reference as possibly to iptables and netfilter and to at least give a basic and fast primer or
repetition to the areas that you might need to understand. It should be noted that this document will not, nor
will it be able to, deal with specific bugs inside or outside the scope of iptables and netfilter, nor does it really
deal with how to get around bugs like this.

If you find peculiar bugs or behaviors in iptables or any of the subcomponents, you should contact the Netfilter
mailing lists and tell them about the problem and they can tell you if this is a real bug or if it has already been
fixed. There are security related bugs found in iptables and Netfilter, one or two do slip by once in a while, it's
inevitable. These are properly shown on the front page of the Netfilter main page, and that is where you should
go to get information on such topics.

The above also implies that the rule-sets available with this tutorial are not written to deal with actual bugs
inside Netfilter. The main goal of them is to simply show how to set up rules in a nice simple fashion that deals
with all problems we may run into. For example, this tutorial will not cover how we would close down the
HTTP port for the simple reason that Apache happens to be vulnerable in version 1.2.12 (This is covered
really, though not for that reason).

This document was written to give everyone a good and simple primer at how to get started with iptables, but
at the same time it was created to be as complete as possible. It does not contain any targets or matches that are
in patch-o-matic for the simple reason that it would require too much effort to keep such a list updated. If you
need information about the patch-o-matic updates, you should read the info that comes with it in patch-o-matic
as well as the other documentations available on the Netfilter main page.

If you have any suggestions on additions or if you think you find any problems around the area of iptables and
netfilter not covered in this document feel free to contact me about this. I will be more than happy to take a
look at it and possibly add what might be missing.

Prerequisites

This document requires some previous knowledge about Linux/Unix, shell scripting, as well as how to compile
your own kernel, and some simple knowledge about the kernel internals.

I have tried as much as possible to eradicate all prerequisites needed before fully grasping this document, but to
some extent it is simply impossible to not need some previous knowledge.

Conventions used In this document

The following conventions are used in this document when it comes to commands, files and other specific
information.

9 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

e Long code excerpts and command-outputs are printed like shown below. This includes screendumps and
larger examples taken from the console.

[blueflux@workl neigh]$ Is
default ethO lo
[blueflux@workl neigh]$

e All commands and program names in the tutorial are shown in bold typeface. This includes all the
commands that you might type, or part of the command that you type.

e All system items such as hardware, and also kernel internals or abstract system items such as the
loopback interface are all shown in an italic typeface.

e computer output is formatted in this way in the text. Computer output could be summed up as all the
output that the computer will give you on the console.

o filenames and paths in the file-system are shown like Zusr/1ocal/bin/iptables.

Chapter 1. Introduction

Why this document was written

Well, | found a big empty space in the HOWTO's out there lacking in information about the iptables and
Netfilter functions in the new Linux 2.4.x kernels. Among other things, I'm going to try to answer questions
that some might have about the new possibilities like state matching. Most of this will be illustrated with an
example rc.firewall.txt file that you can use in your Zetc/rc.d/ scripts. Yes, this file was originally based
upon the masquerading HOWTO for those of you who recognize it.

Also, there's a small script that | wrote just in case you screw up as much as I did during the configuration
available as rc.flush-iptables.txt.

How it was written

I originally wrote this as a very small tutorial for boingworld.com, which was an Amiga/Linux/General
newssite that a small group of people, including me, ran a couple of years back. Due to the fantastic amount of
readers and comments that | got from it, | continued to write on it. The original version was approximately
10-15 A4 pages in printed version and has since been growing slowly but steadily. A huge amount of people
has helped me out, spellchecking, bug corrections, etc. At the time of writing this, the
http://iptables-tutorial.frozentux.net/ site has had over 600.000 unique hits alone.

This document was written to guide you through the setup process step by step and hopefully help you to
understand some more about the iptables package. | have based most of the stuff here on the example
rc.firewall file, since | found that example to be a good way to learn how to use iptables. | decided to just
follow the basic chain structure and from there walk through each and one of the chains traversed and explain
how the script works. That way the tutorial is a little bit harder to follow, though this way is more logical.
Whenever you find something that's hard to understand, just come back to this tutorial.

10 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

11 of 273

Terms used in this document

This document contains a few terms that may need more detailed explanations before you read them. This
section will try to cover the most obvious ones and how | have chosen to use them within this document.

Connection - This is generally referred to in this document as a series of packets relating to each other. These
packets refer to each other as an established kind of connection. A connection is in another word a series of
exchanged packets. In TCP, this mainly means establishing a connection via the 3-way handshake, and then
this is considered a connection until the release handshake.

DNAT - Destination Network Address Translation. DNAT refers to the technique of translating the Destination
IP address of a packet, or to change it simply put. This is used together with SNAT to allow several hosts to
share a single Internet routable IP address, and to still provide Server Services. This is normally done by
assigning different ports with an Internet routable IP address, and then tell the Linux router where to send the
traffic.

IPSEC - Internet Protocol Security is a protocol used to encrypt IPv4 packets and sending them securely over
the Internet. For more information on IPSEC, look in the Other resources and links appendix for other
resources on the topic.

Kernel space - This is more or less the opposite of User space. This implies the actions that take place within
the kernel, and not outside of the kernel.

Packet - A singular unit sent over a network, containing a header and a data portion. For example, an IP packet
or an TCP packet. In Request For Comments (RFC's) a packet isn't so generalized, instead IP packets are called
datagrams, while TCP packets are called segments. | have chosen to call pretty much everything packets in this
document for simplicity.

QoS - Quality of Service is a way of specifying how a packet should be handled and what kind of service
quality it should receive while sending it. For more information on this topic, take a look in the TCP/IP
repetition chapter as well as the Other resources and links appendix for external resources on the subject.

Segment - A TCP segment is pretty much the same as an packet, but a formalized word for a TCP packet.

Stream - This term refers to a connection that sends and receives packets that are related to each other in some
fashion. Basically, I have used this term for any kind of connection that sends two or more packets in both
directions. In TCP this may mean a connection that sends a SYN and then replies with an SYN/ACK, but it
may also mean a connection that sends a SYN and then replies with an ICMP Host unreachable. In other
words, | use this term very loosely.

SNAT - Source Network Address Translation. This refers to the techniques used to translate one source
address to another in a packet. This is used to make it possible for several hosts to share a single Internet
routable IP address, since there is currently a shortage of available IP addresses in IPv4 (IPv6 will solve this).

State - This term refers to which state the packet is in, either according to RFC 793 - Transmission Control
Protocol or according to userside states used in Netfilter/iptables. Note that the used states internally, and
externally, do not follow the RFC 793 specification fully. The main reason is that Netfilter has to make several
assumptions about the connections and packets.

User space - With this term | mean everything and anything that takes place outside the kernel. For example,
invoking iptables -h takes place outside the kernel, while iptables -A FORWARD -p tcp -j ACCEPT takes
place (partially) within the kernel, since a new rule is added to the ruleset.

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Userland - See User space.

VPN - Virtual Private Network is a technique used to create virtually private networks over non-private
networks, such as the Internet. IPSEC is one technique used to create VPN connections. OpenVPN is another.

What's next?

This chapter has given some small insight into why this document was written and how it was written. It also
explained some common terms used throughout the document.

The next chapter will bring up a rather lengthy introduction and repetition to TCP/IP. Basically this means the
IP protocol and some of its sub-protocols that are commonly used with iptables and netfilter. These are TCP,
UDP, ICMP and SCTP. SCTP is a rather new standard in comparison to the other protocols, hence quite a lot
of space and time has gone into describing this protocol for all of those who are still not quite familiar with it.
The next chapter will also discuss some basic and more advanced routing techniques used today.

Chapter 2. TCP/IP repetition

Iptables is an extremely knowledge intensive tool. This means that iptables takes quite a bit of knowledge to be
able to use iptables to it's full extent. Among other things, you must have a very good understanding of the
TCP/IP protocol.

This chapter aims at explaining the pure "must understands” of TCP/IP before you can go on and work with
iptables. Among the things we will go through are the IP, TCP, UDP and ICMP protocols and their headers,
and general usages of each of these protocols and how they correlate to each other. Iptables works inside
Internet and Transport layers, and because of that, this chapter will focus mainly on those layers as well.

Iptables is also able to work on higher layers, such as the Application layer. However, it was not built for this
task, and should not be used for that kind of usage. I will explain more about this in the IP filtering
introduction chapter.

TCP/IP Layers

TCP/IP is, as already stated, multi-layered. This means that we have one functionality running at one depth,
and another one at another level, etcetera. The reason that we have all of these layers is actually very simple.

The biggest reason is that the whole architecture is very extensible. We can add new functionality to the
application layers, for example, without having to reimplement the whole TCP/IP stack code, or to include a
complete TCP/IP stack into the actual application. Just the same way as we don't need to rewrite every single
program, every time that we make a new network interface card. Each layer should need to know as little as
possible about each other, to keep them separated.

12 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

When we are talking about the programming code of TCP/IP which resides inside the
01) kernel, we are often talking about the TCP/IP stack. The TCP/IP stack simply means all of
\ N ,) the sublayers used, from the Network access layer and all the way up to the Application
\ layer.

There are two basic architectures to follow when talking about layers. One of them is the OSI (Open Systems
Interconnect) Reference Model and consists of 7 layers. We will only look at it superficially here since we are
more interested in the TCP/IP layers. However, from an historical point, this is interesting to know about,
especially if you are working with lots of different types of networks. The layers are as follows in the OSI
Reference Model list.

There is some discussion as to which of these reference models is mostly used, but it seems
NU‘B\' that the OSI reference model still is the prevalent reference model. This might also depend
\ ,) on where you live, however, in most US and EU countries it seems as you can default to
OSI reference model while speaking to technicians and salespeople.

However, throughout the rest of this document, we will mainly refer to the TCP/IP reference
model, unless otherwise noted.

1. Application layer
2. Presentation layer
3. Session layer

4. Transport layer
5. Network layer

6. Data Link layer
7. Physical layer

A packet that is sent by us, goes from the top and to the bottom of this list, each layer adding its own set of
headers to the packet in what we call the encapsulation phase. When the packet finally reaches it's destination
the packet goes backwards through the list and the headers are stripped out of the packet, one by one, each
header giving the destination host all of the needed information for the packet data to finally reach the
application or program that it was destined for.

The second and more interesting layering standard that we are more interested in is the TCP/IP protocol
architecture, as shown in the TCP/IP architecture list. There is no universal agreement among people on just
how many layers there are in the TCP/IP architecture. However, it is generally considered that there are 3
through 5 layers available, and in most pictures and explanations, there will be 4 layers discussed. We will, for
simplicities sake, only consider those four layers that are generally discussed.

1. Application layer
2. Transport layer

3. Internet layer

13 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

4. Network Access layer

As you can see, the architecture of the TCP/IP protocol set is very much like the OSI Reference Model, but yet
not. Just the same as with the OSI Reference Model, we add and subtract headers for each layer that we enter
or leave.

For example, lets use one of the most common analogies to modern computer networking, the snail-mail letter.
Everything is done in steps, just as is everything in TCP/IP.

You want to send a letter to someone asking how they are, and what they are doing. To do this, you must first
create the data, or questions. The actual data would be located inside the Application layer.

After this we would put the data written on a sheet of paper inside an envelope and write on it to whom the
letter is destined for within a specific company or household. Perhaps something like the example below:

Attn: John Doe

This is equivalent to the the Transport layer, as it is known in TCP/IP. In the Transport layer, if we were
dealing with TCP, this would have been equivalent to some port (e.g., port 25).

At this point we write the address on the envelope of the recipient, such as this:
V. Andersgardsgatan 2 41715 Gothenburg

This would in the analogy be the same as the Internet layer. The internet layer contains information telling us
where to reach the recipient, or host, in a TCP/IP network. Just the same way as the recipient on an envelope.
This would be the equivalent of the IP address in other words (e.g., IP 192.168.0.4).

The final step is to put the whole letter in a postbox. Doing this would approximately equal to putting a packet
into the Network Access Layer. The network access layer contains the functions and routines for accessing the
actual physical network that the packet should be transported over.

When the receiver finally receives the letter, he will open the whole letter from the envelope and address etc
(decapsulate it). The letter he receives may either require a reply or not. In either case, the letter may be replied
upon by the receiver, by reversing the receiver and transmitter addresses on the original letter he received, so
that receiver becomes transmitter, and transmitter becomes receiver.

It is very important to understand that iptables was and is specifically built to work on the
NU‘B\ headers of the Internet and the Transport layers. It is possible to do some very basic filtering
\ ’) with iptables in the Application and Network access layers as well, but it was not designed
for this, nor is it very suitable for those purposes.

For example, if we use a string match and match for a specific string inside the packet, lets
say get /index.html. Will that work? Normally, yes. However, if the packet size is very
small, it will not. The reason is that iptables is built to work on a per packet basis, which
means that if the string is split into several separate packets, iptables will not see that whole
string. For this reason, you are much, much better off using a proxy of some sort for
filtering in the application layer. We will discuss these problems in more detail later on in
the IP filtering introduction.

As iptables and netfilter mainly operate in the Internet and Transport layers, that is the layers that we will put
our main focus in, in the upcoming sections of this chapter. Under the Internet layer, we will almost

14 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

exclusively see the IP protocol. There are a few additions to this, such as, for example, the GRE protocol, but
they are very rare on the internet. Also, iptables is (as the name implies) not focused around these protocols
very well either. Because of all these factors we will mainly focus around the IP protocol of the Internet layer,
and TCP, UDP and ICMP of the Transport layer.

!
The ICMP protocol is actually sort of a mix between the two layers. It runs in the Internet
NU‘B\' layer, but it has the exact same headers as the IP protocol, but also a few extra headers, and
\ ’) then directly inside that encapsulation, the data. We will discuss this in more detail further
\ on, in the ICMP characteristics.

IP characteristics

The IP protocol resides in the Internet layer, as we have already said. The IP protocol is the protocol in the
TCP/IP stack that is responsible for letting your machine, routers, switches and etcetera, know where a specific
packet is going. This protocol is the very heart of the whole TCP/IP stack, and makes up the very foundation of
everything in the Internet.

The IP protocol encapsulates the Transport layer packet with information about which Transport layer protocol
it came from, what host it is going to, and where it came from, and a little bit of other useful information. All of
this is, of course, extremely precisely standardized, down to every single bit. The same applies to every single
protocol that we will discuss in this chapter.

The IP protocol has a couple of basic functionalities that it must be able to handle. It must be able to define the
datagram, which is the next building block created by the transport layer (this may in other words be TCP,
UDP or ICMP for example). The IP protocol also defines the Internet addressing system that we use today.
This means that the IP protocol is what defines how to reach between hosts, and this also affects how we are
able to route packets, of course. The addresses we are talking about are what we generally call an IP address.
Usually when we talk about IP addresses, we talk about dotted quad numbers (e.g., 127.0.0.1). This is mostly
to make the IP addresses more readable for the human eye, since the IP address is actually just a 32 bit field of
1'sand 0's (127.0.0.1 would hence be read as 01111111000000000000000000000001 within the actual IP
header).

The IP protocol has even more magic it must perform up it's sleeve. It must also be able to decapsulate and
encapsulate the IP datagram (IP data) and send or receive the datagram from either the Network access layer,
or the transport layer. This may seem obvious, but sometimes it is not. On top of all this, it has two big
functions it must perform as well, that will be of quite interest for the firewalling and routing community. The
IP protocol is responsible for routing packets from one host to another, as well as packets that we may receive
from one host destined for another. Most of the time on single network access host, this is a very simple
process. You have two different options, either the packet is destined for our locally attached network, or
possibly through a default gateway. but once you start working with firewalls or security policies together with
multiple network interfaces and different routes, it may cause quite some headache for many network
administrators. The last of the responsibilities for the IP protocol is that it must fragment and reassemble any
datagram that has previously been fragmented, or that needs to be fragmented to fit in to the packetsize of this
specific network hardware topology that we are connected to. If these packet fragments are sufficiently small,
they may cause a horribly annoying headache for firewall administrators as well. The problem is, that once
they are fragmented to small enough chunks, we will start having problems to read even the headers of the
packet, not to mention the actual data.

15 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

As of Linux kernel 2.4 series, and iptables, this should no longer be a problem for most
-"'\?_ linux firewalls. The connection tracking system used by iptables for state matching and
\ ’) NAT'ing etc must be able to read the packet defragmented. Because of this, conntrack
automatically defragments all packets before they reach the netfilter/iptables structure in the
kernel.

The IP protocol is also a connectionless protocol, which in turn means that IP does not "negotiate™ a
connection. a connection-oriented protocol on the other hand negotiates a connection (called a handshake) and
then when all data has been sent, tears it down. TCP is an example of this kind of protocol, however, it is
implemented on top of the IP protocol. The reason for not being connection-oriented just yet are several, but
among others, a handshake is not required at this time yet since there are other protocols that this would add an
unnecessarily high overhead to, and that is made up in such a way that if we don't get a reply, we know the
packet was lost somewhere in transit anyways, and resend the original request. As you can see, sending the
request and then waiting for a specified amount of time for the reply in this case, is much preferred over first
sending one packet to say that we want to open a connection, then receive a packet letting us know it was
opened, and finally acknowledge that we know that the whole connection is actually open, and then actually
send the request, and after that send another packet to tear the connection down and wait for another reply.

IP is also known as an unreliable protocol, or simply put it does not know if a packet was received or not. It
simply receives a packet from the transport layer and does its thing, and then passes it on to the network access
layer, and then nothing more to it. It may receive a return packet, which traverses from network access layer to
the IP protocol which does it's thing again, and then passes it on upwards to the Transport layer. However, it
doesn't care if it gets a reply packet, or if the packet was received at the other end. Same thing applies for the
unreliability of IP as for the connectionless-ness, since unreliability would require adding an extra reply packet
to each packet that is sent. For example, let us consider a DNS lookup. As it is, we send a DNS request for
servername.com. If we never receive a reply, we know something went wrong and re-request the lookup, but
during normal use we would send out one request, and get one reply back. Adding reliability to this protocol
would mean that the request would require two packets (one request, and one confirmation that the packet was
received) and then two packets for the reply (one reply, and one reply to acknowledge the reply was received).
In other words, we just doubled the amount of packets needed to send, and almost doubled the amount of data
needed to be transmitted.

IP headers

The IP packet contains several different parts in the header as you have understood from the previous
introduction to the IP protocol. The whole header is meticuluously divided into different parts, and each part of
the header is allocated as small of a piece as possible to do it's work, just to give the protocol as little overhead
as possible. You will see the exact configuration of the IP headers in the IP headers image.

1

Understand that the explanations of the different headers are very brief and that we will only
NU‘B\' discuss the absolute basics of them. For each type of header that we discuss, we will also list

\ ’) the proper RFC's that you should read for further understanding and technical explanations
of the protocol in question. As a sidenote to this note, RFC stands for Request For
Comments, but these days, they have a totally different meaning to the Internet community.
They are what defines and standardises the whole Internet, compared to what they were
when the researchers started writing RFC's to each other. Back then, they were simply
requests for comments and a way of asking other researchers about their opinions.

16 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

17 of 273

The IP protocol is mainly described in RFC 791 - Internet Protocol. However, this RFC is also updated by
RFC 1349 - Type of Service in the Internet Protocol Suite, which was obsoleted by RFC 2474 - Definition of
the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers, and which was updated by RFC
3168 - The Addition of Explicit Congestion Notification (ECN) to IP and RFC 3260 - New Terminology and
Clarifications for Diffserv.

!
As you can see, all of these standards can get a little bit hard to follow at times. One tip for
T\‘Q\ finding the different RFC's that are related to each other is to use the search functions
) available at RFC-editor.org. In the case of IP, consider that the RFC 791 is the basic RFC,
\ and all of the other are simply updates and changes to that standard. We will discuss these
more in detail when we get to the specific headers that are changed by these newer RFC's.

One thing to remember is, that sometimes, an RFC can be obsoleted (not used at all).
Normally this means that the RFC has been so drastically updated and that it is better to
simply replace the whole thing. It may also become obsolete for other reasons as well. When
an RFC becomes obsoleted, a field is added to the original RFC that points to the new RFC
instead.

Table 1-11. Internet Protocol headers

0 1 2 i
ol1]2]|3]a|s|e6|7]|8|9]o]|1]2]|3]|a|5]|6]|7]|8|9|o]1]2]|3]|a]|5]|6]|7]|8]|9]|0)r
Version IHL TOS/DSCPIECHN Total Length
Identification Flags Fragment Offset
—TmeTolve | Proweol —

Source Address
Destination Address
Options | Padding

Version - bits 0-3. This is a version number of the IP protocol in binary. IPv4 iscalled 0100, while IPv6 is
called 0110. This field is generally not used for filtering very much. The version described in RFC 791 is IPv4.

IHL (Internet Header Length) - bits 4-7. This field tells us how long the IP header is in 32 bit words. As you
can see, we have split the header up in this way (32 bits per line) in the image as well. Since the Options field
is of optional length, we can never be absolutely sure of how long the whole header is, without this field. The
minimum length of this of the header is 5 words.

Type of Service, DSCP, ECN - bits 8-15. This is one of the most complex areas of the IP header for the simple
reason that it has been updated 3 times. It has always had the same basic usage, but the implementation has
changed several times. First the field was called the Type of Service field. Bit [0-2] of the field was called the
Precedence field. Bit [3] was Normal/Low delay, Bit [4] was Normal/High throughput, Bit [5] was
Normal/High reliability and bit [6-7] was reserved for future usage. This is still used in a lot of places with
older hardware, and it still causes some problems for the Internet. Among other things, bit [6-7] are specified to
be set to 0. In the ECN updates (RFC 3168, we start using these reserved bits and hence set other values than 0
to these bits. But a lot of old firewalls and routers have built in checks looking if these bits are set to 1, and if
the packets do, the packet is discarded. Today, this is clearly a violation of RFC's, but there is not much you
can do about it, except to complain.

The second iteration of this field was when the field was changed into the DS field as defined in RFC 2474. DS
stands for Differentiated Services. According to this standard bits [0-5] is Differentiated Services Code Point
(DSCP) and the remaining two bits [6-7] are still unused. The DSCP field is pretty much used the same as in

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

how the ToS field was used before, to mark what kind of service this packet should be treated like if the router
in question makes any difference between them. One big change is that a device must ignore the unused bits to
be fully RFC 2474 compliant, which means we get rid of the previous hassle as explained previously, as long
as the device creators follow this RFC.

The third, and almost last, change of the ToS field was when the two, previously, unused bits were used for
ECN (Explicit Congestion Notification), as defined in RFC 3168. ECN is used to let the end nodes know about
a routers congestion, before it actually starts dropping packets, so that the end nodes will be able to slow down
their data transmissions, before the router actually needs to start dropping data. Previously, dropping data was
the only way that a router had to tell that it was overloaded, and the end nodes had to do a slow restart for each
dropped packet, and then slowly gather up speed again. The two bits are named ECT (ECN Capable Transport)
and CE (Congestion Experienced) codepoints.

The final iteration of the whole mess is RFC 3260 which gives some new terminology and clarifications to the
usage of the DiffServ system. It doesn't involve too many new updates or changes, except in the terminology.
The RFC is also used to clarify some points that were discussed between developers.

Total Length - bits 16 - 31. This field tells us how large the packet is in octets, including headers and
everything. The maximum size is 65535 octets, or bytes, for a single packet. The minimum packet size is 576
bytes, not caring if the packet arrives in fragments or not. It is only recommended to send larger packets than
this limit if it can be guaranteed that the host can receive it, according to RFC 791. However, these days most
networks runs at 1500 byte packet size. This includes almost all ethernet connections, and most Internet
connections.

Identification - bits 32 - 46. This field is used in aiding the reassembly of fragmented packets.

Flags - bits 47 - 49. This field contains a few miscellaneous flags pertaining to fragmentation. The first bit is
reserved, but still not used, and must be set to 0. The second bit is set to 0 if the packet may be fragmented, and
to 1 if it may not be fragmented. The third and last bit can be set to O if this was the last fragment, and 1 if there
are more fragments of this same packet.

Fragment Offset - bits 50 - 63. The fragment offset field shows where in the datagram that this packet belongs.
The fragments are calculated in 64 bits, and the first fragment has offset zero.

Time to live - bits 64 - 72. The TTL field tells us how long the packet may live, or rather how many "hops" it
may take over the Internet. Every process that touches the packet must remove one point from the TTL field,
and if the TTL reaches zero, the whole packet must be destroyed and discarded. This is basically used as a
safety trigger so that a packet may not end up in an uncontrollable loop between one or several hosts. Upon
destruction the host should return an ICMP Time exceeded message to the sender.

Protocol - bits 73 - 80. In this field the protocol of the next level layer is indicated. For example, this may be
TCP, UDP or ICMP among others. All of these numbers are defined by the Internet Assigned Numbers
Authority. All numbers can befound on their homepage Internet Assigned Numbers Authority.

Header checksum - bits 81 - 96. This is a checksum of the IP header of the packet.This field is recomputed at
every host that changes the header, which means pretty much every host that the packet traverses over, since
they most often change the packets TTL field or some other.

Source address - bits 97 - 128. This is the source address field. It is generally written in 4 octets, translated
from binary to decimal numbers with dots in between. That is for example, 127.0.0.1. The field lets the
receiver know where the packet came from.

Destination address - bits 129 - 160. The destination address field contains the destination address, and what a

18 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

surprise, it is formatted the same way as the source address.

Options - bits 161 - 192 <> 478. The options field is not optional, as it may sound. Actually, this is one of the
more complex fields in the IP header. The options field contains different optional settings within the header,
such as Internet timestamps, SACK or record route route options. Since these options are all optional, the
Options field can have different lengths, and hence the whole IP header. However, since we always calculate
the IP header in 32 bit words, we must always end the header on an even number, that is the multiple of 32.
The field may contain zero or more options.

The options field starts with a brief 8 bit field that lets us know which options are used in the packet. The
options are all listed in the TCP Options table, in the TCP options appendix. For more information about the
different options, read the proper RFC's. For an updated listing of the IP options, check at Internet Assigned
Numbers Authority.

Padding - bits variable. This is a padding field that is used to make the header end at an even 32 bit boundary.
The field must always be set to zeroes straight through to the end.

TCP characteristics

The TCP protocol resides on top of the IP protocol. It is a stateful protocol and has built-in functions to see that
the data was received properly by the other end host. The main goals of the TCP protocol is to see that data is
reliably received and sent, that the data is transported between the Internet layer and Application layer
correctly, and that the packet data reaches the proper program in the application layer, and that the data reaches
the program in the right order. All of this is possible through the TCP headers of the packet.

The TCP protocol looks at data as an continuous data stream with a start and a stop signal. The signal that
indicates that a new stream is waiting to be opened is called a SYN three-way handshake in TCP, and consists
of one packet sent with the SYN bit set. The other end then either answers with SYN/ACK or SYN/RST to let
the client know if the connection was accepted or denied, respectively. If the client receives an SYN/ACK
packet, it once again replies, this time with an ACK packet. At this point, the whole connection is established
and data can be sent. During this initial handshake, all of the specific options that will be used throughout the
rest of the TCP connection is also negotiated, such as ECN, SACK, etcetera.

While the datastream is alive, we have further mechanisms to see that the packets are actually received
properly by the other end. This is the reliability part of TCP. This is done in a simple way, using a Sequence
number in the packet. Every time we send a packet, we give a new value to the Sequence number, and when
the other end receives the packet, it sends an ACK packet back to the data sender. The ACK packet
acknowledges that the packet was received properly. The sequence number also sees to it that the packet is
inserted into the data stream in a good order.

Once the connection is closed, this is done by sending a FIN packet from either end-point. The other end then
responds by sending a FIN/ACK packet. The FIN sending end can then no longer send any data, but the other
end-point can still finish sending data. Once the second end-point wishes to close the connection totally, it
sends a FIN packet back to the originally closing end-point, and the other end-point replies with a FIN/ACK
packet. Once this whole procedure is done, the connection is torn down properly.

As you will also later see, the TCP headers contain a checksum as well. The checksum consists of a simple
hash of the packet. With this hash, we can with rather high accuracy see if a packet has been corrupted in any
way during transit between the hosts.

19 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

TCP headers

The TCP headers must be able to perform all of the tasks above. We have already explained when and where
some of the headers are used, but there are still other areas that we haven't touched very deeply at. Below you
see an image of the complete set of TCP headers. It is formatted in 32 bit words per row, as you can see.

Table 1-31. Transmission Control Protocol headers

4] 1 2
o|1|2]|3]|4|5|6|7|8|9]o|1]|2]|3]|4a|5]|6|7|8|9]0|1]|2]|3]|4|5]|6|7|8|9]0]1

Source Port Destination Port

Sequence Mumber
Acknowledgment Number

Data Offset| Reserved [cwr]ecelurglack|psh|rst]syn|fin Window

Checksum Urgent Pointer

Options | Padding
Data

Source port - bit 0 - 15. This is the source port of the packet. The source port was originally bound directly to a
process on the sending system. Today, we use a hash between the IP addresses, and both the destination and
source ports to achieve this uniqueness that we can bind to a single application or program.

Destination port - bit 16 - 31. This is the destination port of the TCP packet. Just as with the source port, this
was originally bound directly to a process on the receiving system. Today, a hash is used instead, which allows
us to have more open connections at the same time. When a packet is received, the destination and source ports
are reversed in the reply back to the originally sending host, so that destination port is now source port, and
source port is destination port.

Sequence Number - bit 32 - 63. The sequence number field is used to set a number on each TCP packet so that
the TCP stream can be properly sequenced (e.g., the packets winds up in the correct order). The Sequence
number is then returned in the ACK field to ackonowledge that the packet was properly received.

Acknowledgment Number - bit 64 - 95. This field is used when we acknowledge a specific packet a host has
received. For example, we receive a packet with one Sequence number set, and if everything is okey with the
packet, we reply with an ACK packet with the Acknowledgment number set to the same as the original
Sequence number.

Data Offset - bit 96 - 99. This field indicates how long the TCP header is, and where the Data part of the packet
actually starts. It is set with 4 bits, and measures the TCP header in 32 bit words. The header should always end
at an even 32 bit boundary, even with different options set. This is possible thanks to the Padding field at the
very end of the TCP header.

Reserved - bit 100 - 103. These bits are reserved for future usage. In RFC 793 this also included the CWR and
ECE bits. According to RFC 793 bit 100-105 (i.e., this and the CWR and ECE fields) must be set to zero to be
fully compliant. Later on, when we started introducing ECN, this caused a lot of troubles because a lot of
Internet appliances such as firewalls and routers dropped packets with them set. This is still true as of writing
this.

CWR - bit 104. This bit was added in RFC 3268 and is used by ECN. CWR stands for Congestion Window
Reduced, and is used by the data sending part to inform the receiving part that the congestion window has been
reduced. When the congestion window is reduced, we send less data per timeunit, to be able to cope with the
total network load.

20 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

ECE - bit 105. This bit was also added with RFC 3268 and is used by ECN. ECE stands for ECN Echo. It is
used by the TCP/IP stack on the receiver host to let the sending host know that it has received an CE packet.
The same thing applies here, as for the CWR bit, it was originally a part of the reserved field and because of
this, some networking appliances will simply drop the packet if these fields contain anything else than zeroes.
This is actually still true for a lot of appliances unfortunately.

URG - bit 106. This field tells us if we should use the Urgent Pointer field or not. If set to 0, do not use Urgent
Pointer, if set to 1, do use Urgent pointer.

ACK - bit 107. This bit is set to a packet to indicate that this is in reply to another packet that we received, and
that contained data. An Acknowledgment packet is always sent to indicate that we have actually received a
packet, and that it contained no errors. If this bit is set, the original data sender will check the Acknowledgment
Number to see which packet is actually acknowledged, and then dump it from the buffers.

PSH - bit 108. The PUSH flag is used to tell the TCP protocol on any intermediate hosts to send the data on to
the actual user, including the TCP implementation on the receiving host. This will push all data through,
unregardless of where or how much of the TCP Window that has been pushed through yet.

RST - bit 109. The RESET flag is set to tell the other end to tear down the TCP connection. This is done in a
couple of different scenarios, the main reasons being that the connection has crashed for some reason, if the
connection does not exist, or if the packet is wrong in some way.

SYN - bit 110. The SYN (or Synchronize sequence numbers) is used during the initial establishment of a
connection. It is set in two instances of the connection, the initial packet that opens the connection, and the
reply SYN/ACK packet. It should never be used outside of those instances.

FIN - bit 111. The FIN bit indicates that the host that sent the FIN bit has no more data to send. When the other
end sees the FIN bit, it will reply with a FIN/ACK. Once this is done, the host that originally sent the FIN bit

can no longer send any data. However, the other end can continue to send data until it is finished, and will then
send a FIN packet back, and wait for the final FIN/ACK, after which the connection is sent to a CLOSED state.

Window - bit 112 - 127. The Window field is used by the receiving host to tell the sender how much data the
receiver permits at the moment. This is done by sending an ACK back, which contains the Sequence number
that we want to acknowledge, and the Window field then contains the maximum accepted sequence numbers
that the sending host can use before he receives the next ACK packet. The next ACK packet will update
accepted Window which the sender may use.

Checksum - bit 128 - 143. This field contains the checksum of the whole TCP header. It is a one's complement
of the one's complement sum of each 16 bit word in the header. If the header does not end on a 16 bit
boundary, the additional bits are set to zero. While the checksum is calculated, the checksum field is set to
zero. The checksum also covers a 96 bit pseudoheader containing the Destination-, Source-address, protocol,
and TCP length. This is for extra security.

Urgent Pointer - bit 144 - 159. This is a pointer that points to the end of the data which is considered urgent. If
the connection has important data that should be processed as soon as possible by the receiving end, the sender
can set the URG flag and set the Urgent pointer to indicate where the urgent data ends.

Options - bit 160 - **. The Options field is a variable length field and contains optional headers that we may
want to use. Basically, this field contains 3 subfields at all times. An initial field tells us the length of the
Options field, a second field tells us which options are used, and then we have the actual options. A complete
listing of all the TCP Options can be found in TCP options.

Padding - bit **. The padding field pads the TCP header until the whole header ends at a 32-bit boundary. This

21 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

ensures that the data part of the packet begins on a 32-bit boundary, and no data is lost in the packet. The
padding always consists of only zeros.

UDP characteristics

The User Datagram Protocol (UDP) is a very basic and simple protocol on top of the IP protocol. It was
developed to allow for very simple data transmission without any error detection of any kind, and it is stateless.
However, it is very well fit for query/response kind of applications, such as for example DNS, et cetera, since
we know that unless we get a reply from the DNS server, the query was lost somewhere. Sometimes it may
also be worth using the UDP protocol instead of TCP, such as when we want only error/loss detection but don't
care about sequencing of the packets. This removes some overhead that comes from the TCP protocol. We may
also do the other thing around, make our own protocol on top of UDP that only contains sequencing, but no
error or loss detection.

The UDP protocol is specified in RFC 768 - User Datagram Protocol. It is a very short and brief RFC, which
fits a simple protocol like this very well.

UDP headers

The UDP header can be said to contain a very basic and simplified TCP header. It contains destination-,
source-ports, header length and a checksum as seen in the image below.

Table 1-33. User Datagram Protocol headers

0 1 2 3
ol1]|2]|3|a|5|6|7|8|9]o|1]|2]|3|4a|5]|6]|7|8|9]0|1|2]|3|4|5]|6]|7]|8]9]0]1
source Port Destination Port
Length Checksum
Data

Source port - bit 0-15. This is the source port of the packet, describing where a reply packet should be sent.
This can actually be set to zero if it doesn't apply. For example, sometimes we don't require a reply packet, and
the packet can then be set to source port zero. In most implementations, it is set to some port number.

Destination port - bit 16-31. The destination port of the packet. This is required for all packets, as opposed to
the source port of a packet.

Length - bit 32-47. The length field specifies the length of the whole packet in octets, including header and
data portions. The shortest possible packet can be 8 octets long.

Checksum - bit 48-63. The checksum is the same kind of checksum as used in the TCP header, except that it
contains a different set of data. In other words, it is a one's complement of the one's complement sum of parts
of the IP header, the whole UDP header, theUDP data and padded with zeroes at the end when necessary.

ICMP characteristics

ICMP messages are used for a basic kind of error reporting between host to host, or host to gateway. Between
gateway to gateway, a protocol called Gateway to Gateway protocol (GGP) should normally be used for error

22 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

23 of 273

reporting. As we have already discussed, the IP protocol is not designed for perfect error handling, but ICMP
messages solves some parts of these problems. The big problem from one standpoint is that the headers of the
ICMP messages are rather complicated, and differ a little bit from message to message. However, this will not
be a big problem from a filtering standpoint most of the time.

The basic form is that the message contains the standard IP header, type, code and a checksum. All ICMP
messages contains these fields. The type specifies what kind of error or reply message this packet is, such as
for example destination unreachable, echo, echo reply, or redirect message. The code field specifies more
information, if necessary. If the packet is of type destination unreachable, there are several possible values on
this code field such as network unreachable, host unreachable, or port unreachable. The checksum is simply a
checksum for the whole packet.

As you may have noticed, | mentioned the IP header explicitly for the ICMP packet. This was done since the
actual IP header is an integral part of the ICMP packet, and the ICMP protocol lives on the same level as the IP
protocol in a sense. ICMP does use the IP protocol as if it where a higher level protocol, but at the same time
not. ICMP is an integral part of IP, and ICMP must be implemented in every IP implementation.

ICMP headers

As already explained, the headers differs a little bit from ICMP type to ICMP type. Most of the ICMP types are
possible to group by their headers. Because of this, we will discuss the basic header form first, and then look at
the specifics for each group of types that should be discussed.

Table 1-2. Internet Control Message Protocol - Basic Headers

o0 1 2 3
o|1]2]|3|a|5]|6|7|8|9]o|1]2]|3]|a|5]|6]|7|8]|9]o|1]|2]|3]a|5]|6]|7|8]|9]o)1
Version | IHL | TOS/DSCP/ECN Total Length
Identification Flags [Fragment Offset
Time to Live | Protocol Header Checksum
Source Address Destination Address
Type] Code Checksum

All packets contain some basic values from the IP headers discussed previously in this chapter. The headers
have previously been discussed at some length, so this is just a short listing of the headers, with a few notes
about them.

e Version - This should always be set to 4.

Internet Header Length - The length of the header in 32 bit words.

Type of Service - See above. This should be set to 0, as this is the only legit setting according to RFC
792 - Internet Control Message Protocol.

Total Length - Total length of the header and data portion of the packet, counted in octets.

Identification , Flags and Fragment offsets - Ripped from the IP protocol.

Time To Live - How many hops this packet will survive.

Protocol - which version of ICMP is being used (should always be 1).

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

e Header Checksum - See the IP explanation.

e Source Address - The source address from whom the packet was sent. This is not entirely true, since the
packet can have another source address, than that which is located on the machine in question. The
ICMP types that can have this effect will be noted if so.

e Destination Address - The destination address of the packet.

There are also a couple of new headers that are used by all of the ICMP types. The new headers are as follows,
this time with a few more notes about them:

e Type - The type field contains the ICMP type of the packet. This is always different from ICMP type to
type. For example ICMP Destination Unreachable packets will have a type 3 set to it. For a complete
listing of the different ICMP types, see the ICMP types appendix. This field contains 8 bits total.

e Code - All ICMP types can contain different codes as well. Some types only have a single code, while
others have several codes that they can use. For example, the ICMP Destination Unreachable (type 3)
can have at least code 0, 1, 2, 3, 4 or 5 set. Each code has a different meaning in that context then. For a
complete listing of the different codes, see the ICMP types appendix. This field is 8 bits in length, total.
We will discuss the different codes a little bit more in detail for each type later on in this section.

e Checksum - The Checksum is a 16 bit field containing a one's complement of the ones complement of
the headers starting with the ICMP type and down. While calculating the checksum, the checksum field

should be set to zero.

At this point the headers for the different packets start to look different also. We will describe the most
common ICMP Types one by one, with a brief discussion of its headers and different codes.

ICMP Echo Request/Reply

Table 1-4. Internet Control Message Protocol - Echo/Echo Reply Message

0 1 2 3
o|1]|]2]|3|a|5]|6|7|8|9]ol1]|2]|3|4a|5]|6|7]|8|9]0|1]2]|3]|4|5|6]|7|8|9]0]1
Type Code Checksum
ldentifier Sequence Number
Data

I have chosen to speak about both the reply and the request of the ICMP echo packets here since they are so
closely related to each other. The first difference is that the echo request is type 8, while echo reply is type 0.
When a host receives a type 8, it replies with a type 0.

When the reply is sent, the source and destination addresses switch places as well. After both of those changes
has been done, the checksum is recomputed, and the reply is sent. There is only one code for both of these
types, they are always set to 0.

e |dentifier - This is set in the request packet, and echoed back in the reply, to be able to keep different
ping requests and replies together.

e Sequence number - The sequence number for each host, generally this starts at 1 and is incremented by 1
for each packet.

The packets also contains a data part. Per default, the data part is generally empty, but it can contain a

24 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

userspecified amount of random data.

ICMP Destination Unreachable

Table 1-3. Internet Control Message Protocol - Destination Unreachable Message

0 1 2
ol1]2|3]|a|s]s6]7|8|9]ol1]|2]|3]|4a]|5]|6|7|B|9]0|1]|2]|3]4|5]|6]|7]|8]9]0]|1
Type Code Checksum
Unused
Internet header + 64 bits of original data datagram

The first three fields seen in the image are the same as previously described. The Destination Unreachable type
has 16 basic codes that can be used, as seen below in the list.

e Code 0 - Network unreachable - Tells you if a specific network is currently unreachable.
e Code 1 - Host unreachable - Tells you if a specific host is currently unreachable.

e Code 2 - Protocol unreachable - This code tells you if a specific protocol (tcp, udp, etc) can not be
reached at the moment.

e Code 3 - Port unreachable - If a port (ssh, http, ftp-data, etc) is not reachable, you will get this message.

e Code 4 - Fragmentation needed and DF set - If a packet needs to be fragmented to be delivered, but the
Do not fragment bit is set in the packet, the gateway will return this message.

e Code 5 - Source route failed - If a source route failed for some reason, this message is returned.

e Code 6 - Destination network unknown - If there is no route to a specific network, this message is
returned.

e Code 7 - Destination host unknown - If there is no route to a specific host, this message is returned.

e Code 8 - Source host isolated (obsolete) - If a host is isolated, this message should be returned. This code
is obsoleted today.

e Code 9 - Destination network administratively prohibited - If a network was blocked at a gateway and
your packet was unable to reach it because of this, you should get this ICMP code back.

e Code 10 - Destination host administratively prohibited - If you where unable to reach a host because it
was administratively prohibited (e.g., routing administration), you will get this message back.

e Code 11 - Network unreachable for TOS - If a network was unreachable because of a bad TOS setting in
your packet, this code will be generated as a return packet.

e Code 12 - Host unreachable for TOS - If your packet was unable to reach a host because of the TOS of
the packet, this is the message you get back.

e Code 13 - Communication administratively prohibited by filtering - If the packet was prohibited by some
kind of filtering (e.qg., firewalling), we get a code 13 back.

e Code 14 - Host precedence violation - This is sent by the first hop router to notify a connected host, to

25 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

notify the host that the used precedence is not permitted for a specific destination/source combination.

e Code 15 - Precedence cutoff in effect - The first hop router may send this message to a host if the
datagram it received had a too low precedence level set in it.

On top of this, it also contains a small "data" part, which should be the whole Internet header (IP header) and
64 bits of the original IP datagram. If the next level protocol contains any ports, etc, it is assumed that the ports
should be available in the extra 64 bits.

Source Quench

Table 1-8. Internet Control Message Protocol - Source Quench Message

0 1 2
ol1]2|3]|a|s]s6]7|8|9]ol1]|2]|3]|4a]|5]|6|7|B|9]0|1]|2]|3]4|5]|6]|7]|8]9]0]|1
Type Code Checksum
Unused
Internet header + 64 bits of original data datagram

A source quench packet can be sent to tell the originating source of a packet or stream of packets to slow down
when continuing to send data. Note that gateway or destination host that the packets traverses can also be quiet
and silently discard the packets, instead of sending any source quench packets.

This packet contains no extra header except the data portion, which contains the internet header plus 64 bits of
the original data datagram. This is used to match the source quench message to the correct process, which is
currently sending data through the gateway or to the destination host.

All source quench packets have their ICMP types set to 4. They have no codes except 0.

!
Today, there are a couple of new possible ways of notifying the sending and receiving host

O&L "'._ that a gateway or destination host is overloaded. One way for example is the ECN (Explicit
\N Congestion Notification) system.

Redirect

Table 1-7. Internet Control Message Protocol - Redirect Message

0 1 2
o|l1]2]|3]|a|5]|6|7|8|9]ol1]|2]|3]|4a|5]|6|7]|8|9]0|1]|2|3]|4a|5|6]|7|8|9]0]1
Type Code Checksum
Gateway Internet address
Internet header + 64 bits of original data datagram

The ICMP Redirect type is sent in a single case. Consider this, you have a network (192.168.0.0/24) with
several clients and hosts on it, and two gateways. One gateway to a 10.0.0.0/24 network, and a default gateway
to the rest of the Internet. Now consider if one of the hosts on the 192.168.0.0/24 network has no route set to
10.0.0.0/24, but it has the default gateway set. It sends a packet to the default gateway, which of course knows
about the 10.0.0.0/24 network. The default gateway can deduce that it is faster to send the packet directly to the
10.0.0.0/24 gateway since the packet will enter and leave the gateway on the same interface. The default

26 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

gateway will hence send out a single ICMP Redirect packet to the host, telling it about the real gateway, and
then sending the packet on to the 10.0.0.0/24 gateway. The host will now know about the closest 10.0.0.0/24
gateway, and hopefully use it in the future.

The main header of the Redirect type is the Gateway Internet Address field. This field tells the host about the
proper gateway, which should really be used. The packet also contains the IP header of the original packet, and
the 64 first bits of data in the original packet, which is used to connect it to the proper process sending the data.

The Redirect type has 4 different codes as well, these are the following.

Code 0 - Redirect for network - Only used for redirects for a whole network (e.g., the example above).

Code 1 - Redirect for host - Only used for redirects of a specific host (e.g., a host route).

Code 2 - Redirect for TOS and network - Only used for redirects of a specific Type of Service and to a
whole network. Used as code 0, but also based on the TOS.

Code 3 - Redirect for TOS and host - Only used for redirects of a specific Type of Service and to a
specific host. Used as code 1, but also based on the TOS in other words.

TTL equals 0

Table 1-9. Internet Control Message Protocol - Time Exceeded Message

0 1 2
o|1]2]|3|a|5|6|7|8]|9]|o|1|2|3]|a|5|6|7]|8|9]o|1]|2]|3|a|5|6]7|8|9]0]|1
Type Code Checksum
Unused
Internet header + 64 bits of oniginal data datagram

The TTL equals 0 ICMP type is also known as Time Exceeded Message and has type 11 set to it, and has 2
ICMP codes available. If the TTL field reaches 0 during transit through a gateway or fragment reassembly on
the destination host, the packet must be discarded. To notify the sending host of this problem, we can send a
TTL equals 0 ICMP packet. The sender can then raise the TTL of outgoing packets to this destination if
necessary.

The packet only contains the extra data portion of the packet. The data field contains the Internet header plus
64 bits of the data of the IP packet, so that the other end may match the packet to the proper process. As
previously mentioned, the TTL equals 0 type can have two codes.

e Code 0 - TTL equals 0 during transit - This is sent to the sending host if the original packet TTL reached
0 when it was forwarded by a gateway.

e Code 1 - TTL equals 0 during reassembly - This is sent if the original packet was fragmented, and TTL
reached O during reassembly of the fragments. This code should only be sent from the destination host.

Parameter problem

27 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Table 1-6. Internet Control Message Protocol - Parameter Problem Message

0 1 2 3
o|1]2|3|a|5|e6|7|8|9]o|1]|2]|3|4a|5]|6]|7|8]9]0|1]2|3]|4a]|5]|6|7]|8]|9]0]1
Type Code Checksum
Pointer Unused

Internet header + 64 bits of original data datagram

The parameter problem ICMP uses type 12 and it has 2 codes that it uses as well. Parameter problem messages
are used to tell the sending host that the gateway or receiving host had problems understanding parts of the IP
headers such as errors, or that some required options where missing.

The parameter problem type contains one special header, which is a pointer to the field that caused the error in
the original packet, if the code is 0 that is. The following codes are available:

e Code 0 - IP header bad (catchall error) - This is a catchall error message as discussed just above.
Together with the pointer, this code is used to point to which part of the IP header contained an error.

e Code 1 - Required options missing - If an IP option that is required is missing, this code is used to tell
about it.

Timestamp request/reply

Table 1-10. Internet Control Message Protocol - Timestamp/Timestamp Reply Message

0 1 2 3
o|l1]|2|3]a|s5]|6|7|8|9]ol1]|2]|3]|a|5]6|7|8|9]o|1]|2]|3]|a|5]6]7|8|9]0]1
Type Code Checksum
Identifier Sequence Number

Originate Timestamp
Receive Timestamp
Transmit Timestamp

The timestamp type is obsolete these days, but we bring it up briefly here. Both the reply and the request has a
single code (0). The request is type 13 while the reply is type 14. The timestamp packets contains 3 32-bit
timestamps counting the milliseconds since midnight UT (Universal Time).

The first timestamp is the Originate timestamp, which contains the last time the sender touched the packet. The
receive timestamp is the time that the echoing host first touched the packet and the transmit timestamp is the
last timestamp set just previous to sending the packet.

Each timestamp message also contains the same identifiers and sequence numbers as the ICMP echo packets.

Information request/reply

Table 1-5. Internet Control Message Protocol - Information Request/Information Reply Message

0 1 2 3
o|1|2]|3|a|5]|6|7|8|9]o|1]|2]|3|4a|5]|6|7|8|9]0|1]|2]|3|4a|5]|6]|7]|8|9]0]1
Type Code Checksum
ldentifier Sequence Number

28 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

29 of 273

The information request and reply types are obsolete since there are protocols on top of the IP protocol that can
now take care of this when necessary (DHCP, etc). The information request generates a reply from any
answering host on the network that we are attached to.

The host that wishes to receive information creates a packet with the source address set to the network we are
attached to (for example, 192.168.0.0), and the destination network set to 0. The reply will contain information
about our numbers (netmask and ip address).

The information request is run through ICMP type 15 while the reply is sent via type 16.

SCTP Characteristics

Stream Control Transmission Protocol (SCTP) is a relatively new protocol in the game, but since it is growing
in usage and complements the TCP and UDP protocols, | have chosen to add this section about it. It has an
even higher reliability than TCP, and at the same time a lower overhead from protocol headers.

SCTP has a couple of very interesting features that can be interesting. For those who wish to learn more about
this, read the RFC 3286 - An Introduction to the Stream Control Transmission Protocol and RFC 2960 -
Stream Control Transmission Protocol document. The first document is an introduction to SCTP and should be
very interesting to people who are still in need of more information. The second document is the actual
specification for the protocol, which might be less interesting unless you are developing for the protocol or are
really interested.

The protocol was originally developed for Telephony over IP, or VVoice over IP (\VolP), and has some very
interesting attributes due to this. Industry grade VVolP requires very high reliability for one, and this means that
a lot of resilience has to be built into the system to handle different kind of problems. The following is a list of
the basic features of SCTP.

e Unicast with Multicast properties. This means it is a point-to-point protocol but with the ability to use
several addresses at the same end host. It can in other words use different paths to reach the end host.
TCP in comparison breaks if the transport path breaks, unless the IP protocol corrects it.

¢ Reliable transmission. It uses checksums and SACK to detect corrupted, damaged, discarded, duplicated
and reordered data. It can then retransmit data as necessary. This is pretty much the same as TCP, but
SCTP is more resilient when it comes to reordered data and allows for faster pickups.

e Message oriented. Each message can be framed and hence you can keep tabs on the structure and order
of the datastream. TCP is byte oriented and all you get is a stream of bytes without any order between
different data inside. You need an extra layer of abstraction in TCP in other words.

¢ Rate adaptive. It is developed to cooperate and co-exist with TCP for bandwidth. It scales up and down
based on network load conditions just the same as TCP. It also has the same algorithms for slow starting
when packets where lost. ECN is also supported.

e Multi-homing. As previously mentioned, it is able to set up different end nodes directly in the protocol,
and hence doesn't have to rely on the IP layer for resilience.

e Multi-streaming. This allows for multiple simultaneous streams inside the same stream. Hence the name
Stream Control Transmission Protocol. A single stream can for example be opened to download a single
webpage, and all the images and html documents can then be downloaded within the same stream
simultaneously. Or why not a database protocol which can create a separate control stream and then use
several streams to receive the output from the different queries simultaneously.

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

30 of 273

e Initiation. 4 packet initiation of connections where packet 3 and 4 can be used to send data. The
equivalent of syncookies is implemented by default to avoid DoS attacks. INIT collision resolution to
avoid several simultaneous SCTP connections.

This list could be made even longer, but I will not. Most of this information is gathered from the RFC 3286 -
An Introduction to the Stream Control Transmission Protocol document, so read on there for more
information.

In SCTP we talk about chunks, not packets or windows anymore. An SCTP frame can

NO‘B\' contain several different chunks since the protocol is message oriented. A chunk can either
be a control or a data chunk. Control chunks is used to control the session, and data chunks
are used to send actual data.

Initialization and association

Each connection is initialized by creating an association between the two hosts that wants to talk to each other.
This association is initialized when a user needs it. It is later used as needed.

The initialization is done through 4 packets. First an INIT chunk is sent, which is replied to with an INIT ACK
containing a cookie, after this the connection can start sending data. However, two more packets are sent in the
initialization. The cookie is replied to with a COOKIE ECHO chunk, which is finally replied to with a
COOKIE ACK chunk.

Data sending and control session

SCTP can at this point send data. In SCTP there are control chunks and data chunks, as previously stated. Data
chunks are sent using DATA chunks, and DATA chunks are acknowledged by sending a SACK chunk. This
works practically the same as a TCP SACK. SACK chunks are control chunks.

On top of this, there are some other control chunks that can be seen. HEARTBEAT and HEARTBEAT ACK
chunks for one, and ERROR chunks for another. HEARTBEATS are used to keep the connection alive, and
ERROR is used to inform of different problems or errors in the connection, such as invalid stream id's or
missing mandatory parameters et cetera.

Shutdown and abort

The SCTP connection is finally closed by either an ABORT chunk or by a graceful SHUTDOWN chunk.
SCTP doesn't have a half-closed state as TCP, in other words one side can not continue sending data while the
other end has closed its sending socket.

When the user/application wants to close the SCTP socket gracefully, it tells the protocol to SHUTDOWN.
SCTP then sends all the data still in its buffers, and then sends a SHUTDOWN chunk. When the other end
receives the SHUTDOWN, it will stop accepting data from the application and finish sending all the data. Once
it has gotten all the SACK's for the data, it will send a SHUTDOWN ACK chunk and once the closing side has
received this chunk, it will finally reply with a SHUTDOWN COMPLETE chunk. The whole session is now
closed.

Another way of closing a session is to ABORT it. This is an ungraceful way of removing an SCTP association.

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

When a connecting party wants to remove an SCTP association instantaneously, it sends an ABORT chunk
with all the right values signed. All data in the buffers et cetera will be discarded and the association will then
be removed. The receiving end will do the same after verifying the ABORT chunk.

SCTP Headers

This will be a very brief introduction to the SCTP headers. SCTP has a lot of different types of packets, and
hence I will try to follow the RFC's as close as possible and how they depict the different headers, starting with
a general overview of the headers applicable to all SCTP packets.

SCTP Generic header format

Table 1-30. Generic chunk headerlayout

0 1 2
o|1]|2|3]|a|5]|6]|7]|8|9]o|1]|2]|3]|a|5]|6|7]|8]9]o]1]2]3]|4a]|5]6]7]8]|9]0]1
Common header
Chunk #1

Chunk #n

This is a generic overview of how a SCTP packet is laid out. Basically, you have a common header first with
information describing the whole packet, and the source and destination ports etc. See more below for
information on the common header.

After the common header a variable number of chunks are sent, up to the maximum possible in the MTU. All
chunks can be bundled except for INIT, INIT ACK and SHUTDOWN COMPLETE, which must not be
bundled. DATA chunks may be broken down to fit inside the MTU of the packets.

SCTP Common and generic headers

Table 1-29. Common SCTP headers

0 1 2 3
o|l|1]|2]|3|a|5]|6|7|8|9]o|1]|2]|3|a|5|6|7|8|9]0|1|2]|3]|4a|5]|6|7]|8|9]0]|1
source Port Destination Port
Verification Tag
Checksum

Every SCTP packet contains the Common header as seen above. The header contains four different fields and
is set for every SCTP packet.

Source port - bit 0-15. This field gives the source port of the packet, which port it was sent from. The same as
for TCP and UDP source port.

Destination port - bit 16-31. This is the destination port of the packet, ie., the port that the packet is going to. It
is the same as for the TCP and UDP destination port.

Verification Tag - bit 32-63. The verification tag is used to verify that the packet comes from the correct

31 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...
sender. It is always set to the same value as the value received by the other peer in the Initiate Tag during the
association initialization, with a few exceptions:

e An SCTP packet containing an INIT chunk must have the Verification tag set to 0.

e A SHUTDOWN COMPLETE chunk with the T-bit set must have the verification tag copied from the
verification tag of the SHUTDOWN-ACK chunk.

e Packets containing ABORT chunk may have the verification tag set to the same verification tag as the
packet causing the ABORT.

Checksum - bit 64-95. A checksum calculated for the whole SCTP packet based on the Adler-32 algorithm.
Read RFC 2960 - Stream Control Transmission Protocol, appendix B for more information about this
algorithm.

Table 1-25. Generic chunk headers

0 1 2 3
0|1]|2|3]|a|5]|6|7|8|9|o]|1]|2]|3]|4a|5|6|7]|8|9]o]|1]|2]|3]|4a|5]|6]|7]|8|9]0]1
Type Chunk Flags Chunk Length

Chunk Value

All SCTP chunks has a special layout that they all adhere to as can be seen above. This isn't an actual header,
but rather a formalized way of how they do look.

Type - bit 0-7. This field specifies the chunk type of the packet, for example is it an INIT or SHUTDOWN
chunk or what? Each chunk type has a specific number, and is specified in the image below. Here is a complete
list of Chunk types:

Table 2-1. SCTP Types

l\ijhrﬁgsr Chunk Name

0 Payload Data (DATA)

1 Initiation (INIT)

2 Initiation Acknowledgement (INIT ACK)

3 Selective Acknowledgement (SACK)

4 Heartbeat Request (HEARTBEAT)

5 Heartbeat Acknowledgement (HEARTBEAT ACK)
6 Abort (ABORT)

7 Shutdown (SHUTDOWN)

8 Shutdown Acknowledgement (SHUTDOWN ACK)
9 Operation Error (ERROR)

10 State Cookie (COOKIE ECHO)

11 Cookie Acknowledgement (COOKIE ACK)

12 Reserved for Explicit Congestion Notification Echo (ECNE)
13 Reserved for Congestion Window Reduced (CWR)
14 Shutdown Complete (SHUTDOWN COMPLETE)
15-62 |Reserved for IETF

63 IETF-defined chunk extensions

32 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

33 of 273

Chunk

Number Chunk Name

64-126 |reserved to IETF

127 IETF-defined chunk extensions

128-190 [reserved to IETF

191 IETF-defined chunk extensions

192-254 |reserved to IETF

255 IETF-defined chunk extensions

Chunk Flags - bit 8-15. The chunk flags are generally not used but are set up for future usage if nothing else.
They are chunk specific flags or bits of information that might be needed for the other peer. According to
specifications, flags are only used in DATA, ABORT and SHUTDOWN COMPLETE packets at this moment.
This may change however.

1
A lot of times when you read an RFC, you might run into some old proven problems. The

Bﬁaﬂ"l RFEC 2960 - Stream Control Transmission Protocol document is one example of this, where
\o®) they specifically specify that the Chunk flags should always be set to 0 and ignored unless
\ used for something. This is written all over the place, and it begs for problems in the future.
If you do firewalling or routing, watch out very carefully for this, since specifications for
fields like this may change in the future and hence break at your firewall without any legit
reason. This happened before with the implementation of ECN in the IP headers for
example. See more in the IP headers section of this chapter.

Chunk Length - bit 16-31. This is the chunk length calculated in bytes. It includes all headers, including the
chunk type, chunk flags, chunk length and chunk value. If there is no chunk value, the chunk length will be set
to 4 (bytes).

Chunk Value - bit 32-n. This is specific to each chunk and may contain more flags and data pertaining to the
chunk type. Sometimes it might be empty, in which case the chunk length will be set to 4.

SCTP ABORT chunk

Table 1-12. ABORT chunk headers

0 1 2 3
ol1]|2]|3|4a|5|6]|7|8|9]o|l1]|2|3|4a|5]|6]|7|8|9]o|1]|2]|3|4|5]6]|7|8]|9]0]1
Type =6 Reserved T Length
Zero or more Error Causes

The ABORT chunk is used to abort an association as previously described in the Shutdown and abort section
of this chapter. ABORT is issued upon unrecoverable errors in the association such as bad headers or data.

Type - bit 0-7. Always set to 6 for this chunk type.

Reserved - bit 8-14. Reserved for future chunk flags but not used as of writing this. See the SCTP Common and
generic headers for more information about the chunk flags field.

T-bit - bit 15. If this bit is set to 0, the sender had a TCB associated with this packet that it has destroyed. If the
sender had no TCB the T-bit should be set to 1.

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Length - bit 16-31. Sets the length of the chunk in bytes including error causes.

SCTP COOKIE ACK chunk

Table 1-13. COOKIE ACK chunk headers
0 1 2 3
ol1]2|3]|a]|s]e|7|8|9|o]1]2|3|a]|5]6]7|8|9]0]1]2|3]|a]|5]6]7|8|9]|0]1

Type =11 Chunk Flags Length =4

The COOKIE ACK chunk is used during the initialization of the connection and never anywhere else in the
connection. It must precede all DATA and SACK chunks but may be sent in the same packet as the first of
these packets.

Type - bit 0-7. Always set to 11 for this type.

Chunk flags - bit 8-15. Not used so far. Should always be set to 0 according to RFC 2960 - Stream Control
Transmission Protocol. You should always watch out for this kind of specific behaviour stated by RFC's since
it might change in the future, and hence break your firewalls etc. Just the same as happened with IP and ECN.
See the SCTP Common and generic headers section for more information.

Length - bit 16-31. Should always be 4 (bytes) for this chunk.

SCTP COOKIE ECHO chunk

Table 1-14. COOKIE ECHO chunk headers

0 1 2 3
o|l1|2]|3]a|5|6|7|8]|9]o]1]|2]|3]|al5]|6|7|8|9]0]|1]|2]|3]4a|5]|6]|7]|8]9]0]1
Type =10 Chunk Flags Length
Cookie

The COOKIE ECHO chunk is used during the initialization of the SCTP connection by the initiating party to
reply to the cookie sent by the responding party in the State cookie field in the INIT ACK packet. It may be
sent together with DATA chunks in the same packet, but must precede the DATA chunks in such case.

Type - bit 0-7. The chunk type is always set to 10 for this chunk.

Chunk flags - bit 8-15. This field is not used today. The RFC specifies that the flags should always be set to 0,
but this might cause trouble as can be seen in the SCTP Common and generic headers section above,
specifically the Chunk flags explanation.

Length - bit 16-31. Specifies the length of the chunk, including type, chunk flags, length and cookie fields in
bytes.

Cookie - bit 32-n. This field contains the cookie as sent in the previous INIT ACK chunk. It must be the exact
same as the cookie sent by the responding party for the other end to actually open the connection. The RFC
2960 - Stream Control Transmission Protocol specifies that the cookie should be as small as possible to insure
interoperability, which is very vague and doesn't say much.

34 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

35 of 273

SCTP DATA chunk

Table 1-15. DATA chunk headers

0 1 2 3
o|1]|2]|3|4|5|6]|7|8|9|o]|1]|2]|3]|4|5|6|7|8|9]0o|1]|2|3|4|5]|6]7|8]|9]0]|1
Type =0 | Reserved |U|B|E| Length
TSN
Stream ldentifier S [Stream Sequence Number n
Payload Protocol Identifier
User Data (seq n of of Stream 5)

DATA chunks are used to send actual data through the stream and have rather complex headers in some ways,
but not really worse than TCP headers in general. Each DATA chunk may be part of a different stream, since
each SCTP connection can handle several different streams.

Type - bit 0-7. The Type field should always be set to 0 for DATA chunks.

Reserved - bit 8-12. Not used today. Might be applicable for change. See SCTP Common and generic headers
for more information.

U-bit - bit 13. The U-bit is used to indicate if this is an unordered DATA chunk. If it is, the Stream Sequence
Number must be ignored by the receiving host and send it on to the upper layer without delay or tries to
re-order the DATA chunks.

B-bit - bit 14. The B-bit is used to indicate the beginning of a fragmented DATA chunk. If this bit is set and the
E (ending) bit is not set, it indicates that this is the first fragment of a chunk that has been fragmented into
several DATA chunks.

E-bit - bit 15. The E-bit is used to indicate the ending of a fragmented DATA chunk. If this flag is set on a
chunk, it signals to the SCTP receiver that it can start reassembling the fragments and pass them on to the
upper layer. If a packet has both the BE-bits set to set to 0, it signals that the chunk is a middle part of a
fragmented chunk. If both BE-bits are set to 1 it signals that the packet is unfragmented and requires no
reassembly et cetera.

Length - bit 16-31. The length of the whole DATA chunk calculated in bytes,including the chunk type field
and on until the end of the chunk.

TSN - bit 32-63. The Transmission Sequence Number (TSN) is sent in the DATA chunk, and the receiving
host uses the TSN to acknowledge that the chunk got through properly by replying with a SACK chunk. This is
an overall value for the whole SCTP association.

Stream Identifier - bit 64-79. The Stream Identifier is sent along with the DATA chunk to identify which
stream the DATA chunk is associated with. This is used since SCTP can transport several streams within a
single association.

Stream Sequence Number - bit 80-95. This is the sequence number of the chunk for the specific stream
identified by the Stream Identifier. This sequence number is specific for each stream identifier. If a chunk has
been fragmented, the Stream Sequence Number must be the same for all fragments of the original chunk.

Payload Protocol Identifier - bit 96-127. This value is filled in by the upper layers, or applications using the
SCTP protocol as a way to identify to each other the content of the DATA chunk. The field must always be
sent, including in fragments since routers and firewalls, et cetera, on the way might need the information. If the
value was set to 0, the value was not set by the upper layers.

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

User data - bit 128-n. This is the actual data that the chunk is transporting. It can be of variable length, ending
on an even octet. It is the data in the stream as specified by the stream sequence number n in the stream S.

SCTP ERROR chunk

Table 1-16. ERROR chunk headers

0 1 2 3
ol1]|2]|3|4a|5|6]|7|8|9]o|1]|2|3|4|5]|6]|7|8|9]0|1]|2]|3|4|5]6]|7|8]|9]0]1
Type =9 Chunk Flags Length
one or more Error Causes

The ERROR chunk is sent to inform the other peer of any problems within the current stream. Each ERROR
chunk can contain one or more Error Causes, which are more specifically detailed in the RFC 2960 - Stream
Control Transmission Protocol document. I will not go into further details here than the basic ERROR chunk,
since it would be too much information. The ERROR chunk is not fatal in and of itself, but rather details an
error that has happened. It may however be used together with an ABORT chunk to inform the peer of the
error before killing the connection.

Type - bit 0-7. This value is always set to 9 for ERROR chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change. See SCTP Common and generic
headers for more information.

Length - bit 16-31. Specifies the length of the chunk in bytes, including all the Error Causes.

Error causes - bit 32-n. Each ERROR chunk may contain one or more Error Causes, which notifies the
opposite peer of a problem with the connection. Each Error Cause follows a specific format, as described in the
RFC 2960 - Stream Control Transmission Protocol document. We will not go into them here more than to say
that they all contain an Cause Code, cause length and cause specific information field. The following Error
Causes are possible:

Table 2-2. Error Causes

Cause

Value Chunk Code

Invalid Stream Identifier

Missing Mandatory Parameter

Stale Cookie Error

Out of Resource

Unresolvable Address

Unrecognized Chunk Type

Invalid Mandatory Parameter
Unrecognized Parameters

No User Data

Cookie Received While Shutting Down

OO |INOO|O BRI W|IN|PF

[y
o

SCTP HEARTBEAT chunk

36 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Table 1-18. HEARTBEAT chunk headers

0 1 2 3
o|1]|2]|3]|a|5|e|7|8|9]o|1]|2|3|a|5]|6|7|8|9]o|1]|2]|3]|4a|5]|6]|7|8|9]0]1
Type = 4 Chunk Flags Length

Heartbeat Information TLV

The HEARTBEAT chunk is sent by one of the peers to probe and find out if a specific SCTP endpoint address
is up. This is sent to the different addresses that was negotiated during the initialization of the association to
find out if they are all up.

Type - bit 0-7. The type is always set to 4 for HEARTBEAT chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change. See SCTP Common and generic
headers for more information.

Length - bit 16-31. The length of the whole chunk, including the Heartbeat Information TLV.

Heartbeat Information TLV - bit 32-n. This is a variable-length parameter as defined inside the RFC 2960 -
Stream Control Transmission Protocol document. This is a mandatory parameter for the HEARTBEAT chunks
that contains 3 fields, info type = 1, info length and a sender-specific Heartbeat Information parameter. The last
field should be a sender-specific information field of some kind, for example a timestamp when the heartbeat
was sent and a destination IP address. This is then returned in the HEARTBEAT ACK chunk.

SCTP HEARTBEAT ACK chunk

Table 1-17. HEARTBEAT ACK chunk headers

0 1 2 3
ol1]|2]|3|4a|5|6]|7|8|9]o|1]|2|3|4|5]|6]|7|8|9]0|1]|2]|3|4|5]6]|7|8]|9]0]1
Type =5 Chunk Flags Length

Heartbeat Information TLV

The HEARTBEAT ACK is used to acknowledge that a HEARTBEAT was received and that the connection is
working properly. The chunk is always sent to the same IP address as the request was sent from.

Type - bit 0-7. Always set to 5 for HEARTBEAT ACK chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change. See SCTP Common and generic
headers for more information.

Chunk length - bit 16-31. The length of the HEARTBEAT ACK chunk including the Heartbeat Information
TLV, calculated in bytes.

Heartbeat Information TLV - bit 32-n. This field must contain the Heartbeat Information parameter that was
sent in the original HEARTBEAT chunk.

SCTP INIT chunk

37 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

38 of 273

Table 1-20. INIT chunk headers

0 1 2 3
o|1]2|3|a|5|6|7|8]|9]o|1|2|3]|a|5|6|7]|8|9]o|1]|2]|3|a|5|6]7|8|9]0]1
Type =1 Chunk Flags Length
Initiate Tag
Advertised Receiver Window Credit (a_rwnd)
MNumber of Outbound Streams | MNumber of Inbound Streams
Initial TSN

Optional Parameters

The INIT chunk is used to initiate a new association with a destination host, and is the first chunk to be sent by
the connecting host. The INIT chunk contains several mandatory fixed length parameters, and some optional
variable length parameters. The fixed length mandatory parameters are already in the above headers, and are
the Initiate Tag, Advertised Receiver Window Credit, Number of Outbound Streams, Number of Inbound
Streams and the Initial TSN parameters. After this comes a couple of optional parameters, they will be listed
with the optional parameters paragraph below.

Type - bit 0-7. The type field is always set to 1 for INIT chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change. See SCTP Common and generic
headers for more information.

Chunk Length - bit 16-31. The chunk length is the length of the whole packet, including everything in the
headers, including the optional parameters.

Initiate Tag - bit 32-63. The Initiate Tag is set within the INIT chunk and must be used by the receiver to
acknowledge all packets henceforth, within the Verification Tag of the established association. The Initiate Tag
may take any value except 0. If the value is 0 anyways, the receiver must react with an ABORT.

Advertised Receiver Window Credit (a_rwnd)- bit 64-95. This is the minimum receiving buffer that the sender
of the INIT chunk will allocate for this association, in bytes. This can then be used by the receiver of the
a_rwnd, to know how much data it can send out without being SACK'ed. This window should not be lessened,
but it might by sending the new a_rwnd in a SACK chunk.

Number of Outbound Streams - bit 96-111. This specifies the maximum number of outbound streams that the
connecting host wishes to create to the receiving host. The value must not be 0, and if it is, the receiving host
should ABORT the association immediately. There is no negotiation of the minimum number of outbound or
inbound streams, it is simply set to the lowest that either host has set in the header.

Number of Inbound Streams - bit 112-127. Specifies the maximum number of inbound connections that the
sending peer will allow the receiving host to create in this association. This must not be set to 0, or the
receiving host should ABORT the connection. There is no negotiation of the minimum number of outbound or
inbound streams, it is simply set to the lowest that either host has set in the header.

Initial TSN - bit 128-159. This value sets the initial Transmit Sequence Number (TSN) that the sender will use
when sending data. The field may be set to the same value as the Initiate Tag.

On top of the above mandatory fixed length headers, there are also some optional variable length parameters
that might be set, and at least one of the IPv4, IPv6 or Hostname parameters must be set. Only one Hostname
may be set, and if a Hostname is set, no IPv4 or IPv6 parameters may be set. Multiple IPv4 and IPv6
parameters may also be set in the same INIT chunk. Also, none of these parameters needs to be set in case the
sender only has one address that can be reached, which is where the chunk should be coming from. These
parameters are used to set up which addresses may be used to connect to the other end of the association. This

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

is a full list of all the parameters available in the INIT chunk:

Table 2-3. INIT Variable Parameters

Parameter Name Status | Type Value
IPv4 Address Optional 5
IPv6 Address Optional 6
Cookie Preservative Optional 9
Host Name Address Optional 11
Supported Address Types |Optional 12
Reserved for ECN Capable|Optional 32768

Below we describe the three most common Parameters used in the INIT chunk.

Table 1-22. |Pvd Parameter headers

0 1 2
o|1]2|3]|a]|5]|e6|7|8|9|o|1]|2]|3]|4a|5]|6]|7]|8|9]0|1]2]3]4a|5]|6]|7]|B|09]0]1
Type =5 Length =8
IPv4 Address

The IPv4 parameter is used to send an IPv4 address in the INIT chunk. The IPv4 address can be used to send
data through the association. Multiple IPv4 and IPv6 addresses can be specified for a single SCTP association.

Parameter Type - bit 0-15. This is always set to 5 for IPv4 address parameters.
Length - bit 16-31. This is always set to 8 for IPv4 address parameters.
IPv4 Address - bit 32-63. This is an IPv4 address of the sending endpoint.

Table 1-23. IPvG Parameter headers

0 1 2
o|1]2|3|a|5]|e|7|8|9]o|1]|2]|3|4a|5]|6]|7|8|9]o|1]|2]|3]4a|5]|6]|7]|8]|9]0]1
Type =8 Length = 20
IPv6 Address

This parameter is used to send IPv6 addresses in the INIT chunk. This address can then be used to contact the
sending endpoint with this association.

Type - bit 0-15. Always set to 6 for the IPv6 parameters.
Length bit 16-31. Always set to 20 for IPv6 parameters.

IPv6 address - bit 32-159. This is an IPv6 address of the sending endpoint that can be used to connect to by the
receiving endpoint.

Table 1-21. Hostname Parameter headers

0 1 2
o|1]2|3]a|5|e|7]|8|9]o|1]|2]|3|a]5]|6]|7|8|9]o|1]2]|3]|4a|5]6]|7]|8|[9]0]1
Type =11 Length
Host Name

39 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

The Hostname parameter is used to send a single hostname as an address. Thea receiving host must then look
up the hostname and use any and/or all of the addresses it receives from there. If a hostname parameter is sent,
no other IPv4, IPv6 or Hostname parameters may be sent.

Type - bit 0-15. This is always set to 11 for Hostname Parameters.

Length - bit 16-31. The length of the whole parameter, including type, length and hostname field. The
Hostname field is variable length. The length is counted in bytes.

Hostname - bit 32-n. A variable length parameter containing a hostname. The hostname is resolved by the
receiving end to get the addresses that can be used to contact the sending endpoint.

SCTP INIT ACK chunk

Table 1-19. INIT ACK chunk headers

o0 1 2 3
o|1|2|3|4|5|6]|7|8|9]o|1]|2|3|4a|5|6]|7|8|9]0|1]|2]|3|4|5]|6|7|8]|9]0]1
Typae =2 Chunk Flags Length
Initiate Tag
Advertised Receiver Window Credit
Number of Cutbound Streams | Number of Inbound Streams
Initial TSN

OptionalfVariable-Length Parameters

The INIT ACK chunk is sent in response to a INIT chunk and contains basically the same headers, but with
values from the recipient of the original INIT chunk. In addition, it has two extra variable length parameters,
the State Cookie and the Unrecognized Parameter parameters.

Type - bit 0-7. This header is always set to 2 for INIT ACK chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change. See SCTP Common and generic
headers for more information.

Chunk Length - bit 16-31. The chunk length is the length of the whole packet, including everything in the
headers, and the optional parameters.

Initiate Tag - bit 32-63. The receiver of the Initiate Tag of the INIT ACK chunk must save this value and copy
it into the Verification Tag field of every packet that it sends to the sender of the INIT ACK chunk. The Initiate
Tag must not be 0, and if it is, the receiver of the INIT ACK chunk must close the connection with an ABORT.

Advertised Receiver Window Credit (a_rwnd) - bit 64-95. The dedicated buffers that the sender of this chunk
has located for traffic, counted in bytes. The dedicated buffers should never be lowered to below this value.

Number of Outbound Streams - bit 96-111. How many outbound streams that the sending host wishes to
create. Must not be 0, or the receiver of the INIT ACK should ABORT the association. There is no negotiation
of the minimum number of outbound or inbound streams, it is simply set to the lowest that either host has set in
the header.

Number of Inbound Streams - bit 112-127. How many inbound streams that the sending endpoint is willing to
accept. Must not be 0, or the receiver of the INIT ACK should ABORT the association. There is no negotiation
of the minimum number of outbound or inbound streams, it is simply set to the lowest that either host has set in
the header.

40 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Initial TSN - bit 128-159. This is set to the Initial Transmission Sequence Number (I-TSN) which will be used
by the sending party in the association to start with.

After this point, the INIT ACK chunk continues with optional variable-length parameters. The parameters are
exactly the same as for the INIT chunk, with the exception of the addition of the State Cookie and the
Unrecognized Parameters parameter, and the deletion of the Supported Address Types parameter. The list in
other words look like this:

Table 2-4. INIT ACK Variable Parameters

Parameter Name Status Type Value

IPv4 Address Optional 5

IPv6 Address Optional 6

State Cookie Mandatory |7
Unrecognized Parameters [Optional 8

Cookie Preservative Optional 9

Host Name Address Optional 11

Reserved for ECN Capable[Optional 32768

Table 1-20. State Cookie Parameter headers

0 1 2
ol1]|2|3|4|5|6]|7|8|9]0|1]|2|3|4|5|6]|7|8|9]0|1]|2]|3|4|5]|6|7|8]|9]0]1
Type =7 Length
State Cookie Parameter

The State Cookie is used in INIT ACK to send a cookie to the other host, and until the receiving host has
replied with a COOKIE ECHO chunk, the association is not guaranteed. This is to prevent basically the same
asa SYN attack in TCP protocol.

Type - bit 0-15. Always set to 7 for all State Cookie parameters.
Length - bit 16-31. The size of the whole parameter, including the type, length and State Cookie field in bytes.

State Cookie - bit 31-n. This parameter contains a cookie of variable length. For a description on how this
cookie is created, see the RFC 2960 - Stream Control Transmission Protocol document.

SCTP SACK chunk

41 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Table 1-24. SACK chunk headers

0 1 2
ol1]|2]|3|a|5]|6|7|8]|9]0|1]|2|3|4a|5]|6|7]|8|9]0|1]|2]|3|4a|5|6]|7]|8|9]0]1
Type =3 Chunk Flags Length
Cumulative TSN Ack
Advertised Recelver Window Credit (a rwnd)

Number of Gap Ack Blocks = N Number of Duplicate TSNs =X
Gap Ack Block #1 Start Gap Ack Block #1 End
Gap Ack Block #N Start | Gap Ack Block #N End

Duplicate TSN #1

Duplicate TSN #X

The SACK chunk is used to tell the sender of DATA chunks which chunks has been received and where there
has been a gap in the stream, based on the received TSN's. Basically, the SACK chunk acknowledges that it
has received data up to a certain point (the Cumulative TSN Ack parameter), and then adds Gap Ack Blocks
for all of the data that it has received after the Cumulative TSN Ack point. A SACK chunk must not be sent
more than once for every DATA chunk that is received.

Type - bit 0-7. This header is always set to 3 for SACK chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change. See SCTP Common and generic
headers for more information.

Chunk Length - bit 16-31. The chunk length is the length of the whole chunk, including everything in the
headers and all the parameters.

Cumulative TSN Ack - bit 32-63. This is the Cumulative TSN Ack parameter, which is used to acknowledge
data. The DATA chunk receiver will use this field to tell the sending host that it has received all data up to this
point of the association. After this point, all data that has not been specifically acknowledged by the Gap Ack
Blocks will, basically, be considered unaccounted for.

Advertised Receiver Window Credit (a_rwnd) - bit 64-95. The a_rwnd field is basically the same as the
a_rwnd in the INIT and INIT ACK chunks, but can be used to raise or lower the a_rwnd value. Please read
more in the RFC 2960 - Stream Control Transmission Protocol document about this.

Number of Gap Ack Blocks - bit 96-111. The number of Gap Ack Blocks listed in this chunk. Each Gap Ack
Block takes up 32 bits in the chunk.

Number of Duplicate TSNs - bit 112-127. The number of DATA chunks that has been duplicated. Each
duplicated TSN is listed after the Gap Ack Blocks in the chunk, and each TSN takes 32 bits to send.

Gap Ack Block #1 Start - bit 128-143. This is the first Gap Ack Block in the SACK chunk. If there are no gaps
in the received DATA chunk TSN numbers, there will be no Gap Ack Blocks at all. However, if DATA chunks
are received out of order or some DATA chunks where lost during transit to the host, there will be gaps. The
gaps that has been seen will be reported with Gap Ack Blocks. The Gap Ack Block start point is calculated by
adding the Gap Ack Block Start parameter to the Cumulative TSN value. The calculated value is the start of
the block.

Gap Ack Block #1 End - bit 144-159. This value reports the end of the first Gap Ack Block in the stream. All
the DATA chunks with the TSN between the Gap Ack Block Start and the Gap Ack Block End has been
received. The Gap Ack Block End value is added to the Cumulative TSN, just as the Start parameter, to get the

42 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

actual last TSN of the block chunks to be Acknowledged.

Gap Ack Block #N Start - bits variable. For every Gap Ack Block counted in the Number of Gap Ack Blocks
parameter, one Gap Ack Block is added, until the final N block. le, if Number of Gap Ack Blocks = 2, then
there will be two Gap Ack Blocks in the SACK chunk. This is the last one simply, and contains the same type
of value as the Gap Ack Block #1 Start.

Gap Ack Block #N End - bits variable. Same as for the Gap Ack Block #N End, but for the end of the gap.

Duplicate TSN #1 - bits variable. These fields report a duplicate TSN, in which case we have already received
a specific chunk, but receive the same TSN several times more. This can either be router glitches
(retransmitting already sent data) or a case of retransmission from the sending endpoint, or a score of other
possibilities. Each instance of a duplicate TSN should be reported once. For example, if 2 duplicate TSN's has
been received after acknowledging the first one, each of these duplicate TSN's should be sent sent in the next
SACK message that is being sent. If even more duplicate TSN's should appear after this second SACK is sent,
the new duplicates should be added in the next SACK, and so on.

Duplicate TSN #X - bits variable. This is the last duplicate TSN parameter, containing the same type of
information as the first parameter.

SCTP SHUTDOWN chunk

Table 1-28. SHUTDOWN chunk headers

o0 1 2 3
ol1]|2]|3]|a|5]|6|7|8]9]0|1]|2]|3|4a|5]|6|7]|8|9]0|1]|2]|3]|4a|5]|6]7]|8|9]0]1
Type =7 Chunk Flags Length =8
Cumulative TSN Ack

The SHUTDOWN chunk is issued when one of the endpoints of a connection wants to close the current
association. The sending party must empty all of its sending buffers before sending the SHUTDOWN chunk,
and must not send any more DATA chunks afterwards. The receiver must also empty its sending buffers and
must then send the responding SHUTDOWN ACK chunk.

Type - bit 0-7. This header is always set to 7 for SHUTDOWN chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change. See SCTP Common and generic
headers for more information.

Chunk Length - bit 16-31. The chunk length is the length of the whole packet, including the Cumulative TSN
Ack parameter. The length of the SHUTDOWN chunk should always be 8.

Cumulative TSN Ack - bit 32-63. This is a Cumulative TSN Ack field, just the same as in the SACK chunk.
The Cumulative TSN Ack acknowledges the last TSN received in sequence from the opposite endpoint. This
parameter does not, nor can the rest of the SHUTDOWN chunk either, acknowledge Gap Ack Blocks. The lack
of a Gap Ack Block in the SHUTDOWN chunk that was acknowledged before should not be interpreted as if
the previously acknowledged block was lost again.

SCTP SHUTDOWN ACK chunk

43 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

44 of 273

Table 1-26. SHUTDOWN ACK chunk headers

0 1 2 3
ol1|/2|3|a|5|6]|7|8|9]o|1]|2]|3|4a|5]|6]|7|8|9]0|1|2]|3|4a|5]|6]|7]|8]9]0]|1
Type =8 Chunk Flags Length =4

The SHUTDOWN ACK chunk is used to acknowledge a SHUTDOWN chunk that has been received. Before
the SHUTDOWN ACK chunk is sent, all data in the sending buffers should be sent, but the buffers must not
accept any new data from the application. SCTP does not support half-open connections as TCP does.

Type - bit 0-7. This header is always set to 8 for SHUTDOWN ACK chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change. See SCTP Common and generic
headers for more information.

Chunk Length - bit 16-31. The chunk length is the length of the whole chunk. The length of the SHUTDOWN
ACK chunk should always be 4.

SCTP SHUTDOWN COMPLETE chunk

Table 1-27. SHUTDOWN COMPLETE chunk headers

0 1 2 3
0|/1|2|3|a|5]6]|7]|8]|9]o|1]|2|3|4a|5]6|7|8]|9]0|1]|2]|3|4|5]|6]7]|8]9]0]1
Type =14 Reserved T Length=4

The SHUTDOWN COMPLETE chunk is sent, by the originating host of the SHUTDOWN, in response to the
SHUTDOWN ACK chunk. It is sent to acknowledge that the association is finally closed.

Type - bit 0-7. Always set to 14 for SHUTDOWN COMPLETE chunks.

Reserved - bit 8-14. Not used today. Might be applicable for change. See SCTP Common and generic headers
for more information.

T-bit - bit 15. The T-bit is not set to signal that the sending host had a Transmission Control Block (TCB)
associated with this connection and that it destroyed. If the T-bit was set, it had no TCB to destroy.

Length - bit 16-31. This is always set to 4 for SHUTDOWN COMPLETE chunks, since the chunk should
never be any larger, as long as no updates to the standards are made.

TCP/IP destination driven routing

TCP/IP has grown in complexity quite a lot when it comes to the routing part. In the beginning, most people
thought it would be enough with destination driven routing. The last few years, this has become more and more
complex however. Today, Linux can route on basically every single field or bit in the IP header, and even
based on TCP, UDP or ICMP headers as well. This is called policy based routing, or advanced routing.

This is simply a brief discussion on how the destination driven routing is performed. When we send a packet

from a sending host, the packet is created. After this, the computer looks at the packet destination address and
compares it to the routing table that it has. If the destination address is local, the packet is sent directly to that
address via its hardware MAC address. If the packet is on the other side of a gateway, the packet is sent to the

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

MAC address of the gateway. The gateway will then look at the IP headers and see the destination address of
the packet. The destination address is looked up in the routing table again, and the packet is sent to the next
gateway, et cetera, until the packet finally reaches the local network of the destination.

As you can see, this routing is very basic and simple. With the advanced routing and policy based routing, this
gets quite a bit more complex. We can route packets differently based on their source address for example, or
their TOS value, et cetera.

What's next?

This chapter has brought you up to date to fully understand the subsequent chapters. The following has been
gone through thoroughly:

e TCP/IP structure

IP protocol functionality and headers.

TCP protocol functionality and headers.

UDP protocol functionality and headers.

ICMP protocol functionality and headers.

TCP/IP destination driven routing.

All of this will come in very handy later on when you start to work with the actual firewall rulesets. All of this
information are pieces that fit together, and will lead to a better firewall design.

Chapter 3. IP filtering introduction

This chapter will discuss the theoretical details about an IP filter, what it is, how it works and basic things such
as where to place firewalls, policies, etcetera.

Questions for this chapter may be, where to actually put the firewall? In most cases, this is a simple question,
but in large corporate environments it may get trickier. What should the policies be? Who should have access
where? What is actually an IP filter? All of these questions should be fairly well answered later on in this
chapter.

What is an IP filter

It is important to fully understand what an IP filter is. Iptables is an IP filter, and if you don't fully understand
this, you will get serious problems when designing your firewalls in the future.

An IP filter operates mainly in layer 2, of the TCP/IP reference stack. Iptables however has the ability to also
work in layer 3, which actually most IP filters of today have. But per definition an IP filter works in the second
layer.

If the IP filter implementation is strictly following the definition, it would in other words only be able to filter

45 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

packets based on their IP headers (Source and Destionation address, TOS/DSCP/ECN, TTL, Protocol, etc.
Things that are actually in the IP header.) However, since the Iptables implementation is not perfectly strict
around this definition, it is also able to filter packets based on other headers that lie deeper into the packet
(TCP, UDP, etc), and shallower (MAC source address).

There is one thing however, that iptables is rather strict about these days. It does not "follow" streams or puzzle
data together. This would simply be too processor- and memoryconsuming . The implications of this will be
discussed a little bit more further on. It does keep track of packets and see if they are of the same stream (via
sequence numbers, port numbers, etc.) almost exactly the same way as the real TCP/IP stack. This is called
connection tracking, and thanks to this we can do things such as Destination and Source Network Address
Translation (generally called DNAT and SNAT), as well as state matching of packets.

As | implied above, iptables can not connect data from different packets to each other (per default), and hence
you can never be fully certain that you will see the complete data at all times. | am specifically mentioning this
since there are constantly at least a couple of questions about this on the different mailing lists pertaining to
netfilter and iptables and how to do things that are generally considered a really bad idea. For example, every
time there is a new windows based virus, there are a couple of different persons asking how to drop all streams
containing a specific string. The bad idea about this is that it is so easily circumvented. For example if we
match for something like this:

cmd.exe

Now, what happens if the virus/exploit writer is smart enough to make the packet size so small that cmd winds
up in one packet, and .exe winds up in the next packet? Or what if the packet has to travel through a network
that has this small a packet size on its own? Yes, since these string matching functions is unable to work across
packet boundaries, the packet will get through anyway.

Some of you may now be asking yourself, why don't we simply make it possible for the string matches,
etcetera to read across packet boundaries? It is actually fairly simple. It would be too costly on processor time.
Connection tracking is already taking way to much processor time to be totally comforting. To add another
extra layer of complexity to connection tracking, such as this, would probably kill more firewalls than anyone
of us could expect. Not to think of how much memory would be used for this simple task on each machine.

There is also a second reason for this functionality not being developed. There is a technology called proxies.
Proxies were developed to handle traffic in the higher layers, and are hence much better at fullfilling these
requirements. Proxies were originally developed to handle downloads and often used pages and to help you get
the most out of slow Internet connections. For example, Squid is a webproxy. A person who wants to download
a page sends the request, the proxy either grabs the request or receives the request and opens the connection to
the web browser, and then connects to the webserver and downloads the file, and when it has downloaded the
file or page, it sends it to the client. Now, if a second browser wants to read the same page again, the file or
page is already downloaded to the proxy, and can be sent directly, and saves bandwidth for us.

As you may understand, proxies also have quite a lot of functionality to go in and look at the actual content of
the files that it downloads. Because of this, they are much better at looking inside the whole streams, files,
pages etc.

Now, after warning you about the inherent problems of doing level 7 filtering in iptables and netfilter, there is
actually a set of patches that has attacked these problems. This is called http://I7-filter.sourceforge.net/. It can
be used to match on a lot of layer 7 protocols but is mainly to be used together with QoS and traffic
accounting, even though it can be used for pure filtering as well. The 17-filter is still experimental and
developed outside the kernel and netfilter coreteam, and hence you will not hear more about it here.

46 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

47 of 273

IP filtering terms and expressions

To fully understand the upcoming chapters there are a few general terms and expressions that one must
understand, including a lot of details regarding the TCP/IP chapter. This is a listing of the most common terms
used in IP filtering.

e Drop/Deny - When a packet is dropped or denied, it is simply deleted, and no further actions are taken.
No reply to tell the host it was dropped, nor is the receiving host of the packet notified in any way. The
packet simply disappears.

e Reject - This is basically the same as a drop or deny target or policy, except that we also send a reply to
the host sending the packet that was dropped. The reply may be specified, or automatically calculated to
some value. (To this date, there is unfortunately no iptables functionality to also send a packet notifying
the receiving host of the rejected packet what happened (ie, doing the reverse of the Reject target). This
would be very good in certain circumstances, since the receiving host has no ability to stop Denial of
Service attacks from happening.)

e State - A specific state of a packet in comparison to a whole stream of packets. For example, if the packet
is the first that the firewall sees or knows about, it is considered new (the SYN packet in a TCP
connection), or if it is part of an already established connection that the firewall knows about, it is
considered to be established. States are known through the connection tracking system, which keeps
track of all the sessions.

e Chain - A chain contains a ruleset of rules that are applied on packets that traverses the chain. Each chain
has a specific purpose (e.g., which table it is connected to, which specifies what this chain is able to do),
as well as a specific application area (e.g., only forwarded packets, or only packets destined for this
host). In iptables, there are several different chains, which will be discussed in depth in later chapters.

e Table - Each table has a specific purpose, and in iptables there are 4 tables. The raw, nat, mangle and
filter tables. For example, the filter table is specifically designed to filter packets, while the nat table is
specifically designed to NAT (Network Address Translation) packets.

e Match - This word can have two different meanings when it comes to IP filtering. The first meaning
would be a single match that tells a rule that this header must contain this and this information. For
example, the --source match tells us that the source address must be a specific network range or host
address. The second meaning is if a whole rule is a match. If the packet matches the whole rule, the jJump
or target instructions will be carried out (e.g., the packet will be dropped.)

e Target - There is generally a target set for each rule in a ruleset. If the rule has matched fully, the target
specification tells us what to do with the packet. For example, if we should drop or accept it, or NAT it,
etc. There is also something called a jump specification, for more information see the jump description in
this list. As a last note, there might not be a target or jump for each rule, but there may be.

e Rule - Arule is a set of a match or several matches together with a single target in most implementations
of IP filters, including the iptables implementation. There are some implementations which let you use
several targets/actions per rule.

e Ruleset - A ruleset is the complete set of rules that are put into a whole IP filter implementation. In the
case of iptables, this includes all of the rules set in the filter, nat, raw and mangle tables, and in all of the
subsequent chains. Most of the time, they are written down in a configuration file of some sort.

e Jump - The jump instruction is closely related to a target. A jump instruction is written exactly the same
as a target in iptables, with the exception that instead of writing a target name, you write the name of

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

another chain. If the rule matches, the packet will hence be sent to this second chain and be processed as
usual in that chain.

e Connection tracking - A firewall which implements connection tracking is able to track
connections/streams simply put. The ability to do so is often done at the impact of lots of processor and
memory usage. This is unfortunately true in iptables as well, but much work has been done to work on
this. However, the good side is that the firewall will be much more secure with connection tracking
properly used by the implementer of the firewall policies.

e Accept - To accept a packet and to let it through the firewall rules. This is the opposite of the drop or
deny targets, as well as the reject target.

e Policy - There are two kinds of policies that we speak about most of the time when implementing a
firewall. First we have the chain policies, which tells the firewall implementation the default behaviour
to take on a packet if there was no rule that matched it. This is the main usage of the word that we will
use in this book. The second type of policy is the security policy that we may have written
documentation on, for example for the whole company or for this specific network segment. Security
policies are very good documents to have thought through properly and to study properly before starting
to actually implement the firewall.

How to plan an IP filter

One of the first steps to think about when planning the firewall is their placement. This should be a fairly
simple step since mostly your networks should be fairly well segmented anyway. One of the first places that
comes to mind is the gateway between your local network(s) and the Internet. This is a place where there
should be fairly tight security. Also, in larger networks it may be a good idea to separate different divisions
from each other via firewalls. For example, why should the development team have access to the human
resources network, or why not protect the economic department from other networks? Simply put, you don't
want an angry employee with the pink slip tampering with the salary databases.

Simply put, the above means that you should plan your networks as well as possible, and plan them to be
segregated. Especially if the network is medium- to big-sized (100 workstations or more, based on different
aspects of the network). In between these smaller networks, try to put firewalls that will only allow the kind of
traffic that you would like.

It may also be a good idea to create a De-Militarized Zone (DMZ) in your network in case you have servers
that are reached from the Internet. A DMZ is a small physical network with servers, which is closed down to
the extreme. This lessens the risk of anyone actually getting in to the machines in the DMZ, and it lessens the
risk of anyone actually getting in and downloading any trojans etc. from the outside. The reason that they are
called de-militarized zones is that they must be reachable from both the inside and the outside, and hence they
are a kind of grey zone (DMZ simply put).

There are a couple of ways to set up the policies and default behaviours in a firewall, and this section will
discuss the actual theory that you should think about before actually starting to implement your firewall, and
helping you to think through your decisions to the fullest extent.

Before we start, you should understand that most firewalls have default behaviours. For example, if no rule in a
specific chain matches, it can be either dropped or accepted per default. Unfortunately, there is only one policy
per chain, but this is often easy to get around if we want to have different policies per network interface etc.

There are two basic policies that we normally use. Either we drop everything except that which we specify, or

48 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

we accept everything except that which we specifically drop. Most of the time, we are mostly interested in the
drop policy, and then accepting everything that we want to allow specifically. This means that the firewall is
more secure per default, but it may also mean that you will have much more work in front of you to simply get
the firewall to operate properly.

Your first decision to make is to simply figure out which type of firewall you should use. How big are the
security concerns? What kind of applications must be able to get through the firewall? Certain applications are
horrible to firewalls for the simple reason that they negotiate ports to use for data streams inside a control
session. This makes it extremely hard for the firewall to know which ports to open up. The most common
applications works with iptables, but the more rare ones do not work to this day, unfortunately.

1
There are also some applications that work partially, such as ICQ. Normal ICQ usage works
N{}*LB\' perfectly, but not the chat or file sending functions, since they require specific code to
handle the protocol. Since the ICQ protocols are not standardized (they are proprietary and
\ may be changed at any time) most IP filters have chosen to either keep the ICQ protocol
handlers out, or as patches that can be applied to the firewalls. Iptables have chosen to keep
them as separate patches.

It may also be a good idea to apply layered security measures, which we have actually already discussed
partially so far. What we mean with this, is that you should use as many security measures as possible at the
same time, and don't rely on any one single security concept. Having this as a basic concept for your security
will increase security tenfold at least. For an example, let's look at this.

LAN DMZ
Linux Web Servers

Cisco PIX

Internet

49 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

As you can see, in this example I have in this example chosen to place a Cisco PIX firewall at the perimeter of
all three network connections. It may NAT the internal LAN, as well as the DMZ if necessary. It may also
block all outgoing traffic except http return traffic as well as ftp and ssh traffic. It can allow incoming http
traffic from both the LAN and the Internet, and ftp and ssh traffic from the LAN. On top of this, we note that
each webserver is based on Linux, and can hence throw iptables and netfilter on each of the machines as well
and add the same basic policies on these. This way, if someone manages to break the Cisco PIX, we can still
rely on the netfilter firewalls locally on each machine, and vice versa. This allows for so called layered
security.

On top of this, we may add Snort on each of the machines. Snort is an excellent open source network intrusion
detection system (NIDS) which looks for signatures in the packets that it sees, and if it sees a signature of some
kind of attack or breakin it can either e-mail the administrator and notify him about it, or even make active
responses to the attack such as blocking the IP from which the attack originated. It should be noted that active
responses should not be used lightly since snort has a bad behaviour of reporting lots of false positives (e.g.,
reporting an attack which is not really an attack).

It could also be a good idea to throw in an proxy in front of the webservers to catch some of the bad packets as
well, which could also be a possibility to throw in for all of the locally generated webconnections. With a
webproxy you can narrow down on traffic used by webtraffic from your employees, as well as restrict their
webusage to some extent. As for a webproxy to your own webservers, you can use it to block some of the most
obvious connections to get through. A good proxy that may be worth using is the Squid.

Another precaution that one can take is to install Tripwire. This is an excellent last line of defense kind of
application, it is generally considered to be a Host Intrusion Detection System. What it does is to make
checksums of all the files specified in a configuration file, and then it is run from cron once in a while to see
that all of the specified files are the same as before, or have not changed in an illegit way. This program will in
other words be able to find out if anyone has actually been able to get through and tampered with the system. A
suggestion is to run this on all of the webservers.

One last thing to note is that it is always a good thing to follow standards, as we know. As you have already
seen with the ICQ example, if you don't use standardized systems, things can go terribly wrong. For your own
environments, this can be ignored to some extent, but if you are running a broadband service or modempool, it
gets all the more important. People who connect through you must always be able to rely on your
standardization, and you can't expect everyone to run the specific operating system of your choice. Some
people want to run Windows, some want to run Linux or even VMS and so on. If you base your security on
proprietary systems, you are in for some trouble.

A good example of this is certain broadband services that have popped up in Sweden who base lots of security
on Microsoft network logon. This may sound like a great idea to begin with, but once we start considering
other operating systems and so on, this is no longer such a good idea. How will someone running Linux get
online? Or VAX/VMS? Or HP/UX? With Linux it can be done of course, if it wasn't for the fact that the
network administrator refuses anyone to use the broadband service if they are running linux by simply
blocking them in such case. However, this book is not a theological discussion of what is best, so let's leave it
as an example of why it is a bad idea to use non-standards.

What's next?

This chapter has gone through several of the basic IP filtering and security measures that you can take to secure
your networks, workstations and servers. The following subjects have been brought up:

e |P filtering usage

50 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

e |P filtering policies

e Network planning

e Firewall planning

e Layered security techniques
e Network segmentation

In the next chapter we will take a quick look at what Network Address Translation (NAT) is, and after that we
will start looking closer at Iptables and it's functionality and actually start getting hands on with the beast.

Chapter 4. Network Address Translation
Introduction

NAT is one of the biggestattractions of Linux and Iptables to this day it seems. Instead of using fairly
expensive third party solutions such as Cisco PIX etc, a lot of smaller companies and personal users have
chosen to go with these solutions instead. One of the main reasons is that it is cheap, and secure. It requires an
old computer, a fairly new Linux distribution which you can download for free from the Internet, a spare
network card or two and cabling.

This chapter will describe a little bit of the basic theory about NAT, what it can be used for, how it works and
what you should think about before starting to work on these subjects.

What NAT is used for and basic terms and expressions

Basically, NAT allows a host or several hosts to share the same IP address in a way. For example, let's say we
have a local network consisting of 5-10 clients. We set their default gateways to point through the NAT server.
Normally the packet would simply be forwarded by the gateway machine, but in the case of an NAT server it is
a little bit different.

NAT servers translates the source and destination addresses of packets as we already said to different
addresses. The NAT server receives the packet, rewrites the source and/or destination address and then
recalculates the checksum of the packet. One of the most common usages of NAT is the SNAT (Source
Network Address Translation) function. Basically, this is used in the above example if we can't afford or see
any real idea in having a real public IP for each and every one of the clients. In that case, we use one of the
private IP ranges for our local network (for example, 192.168.1.0/24), and then we turn on SNAT for our local
network. SNAT will then turn all 192.168.1.0 addresses into it's own public IP (for example, 217.115.95.34).
This way, there will be 5-10 clients or many many more using the same shared IP address.

There is also something called DNAT, which can be extremely helpful when it comes to setting up servers etc.
First of all, you can help the greater good when it comes to saving IP space, second, you can get an more or
less totally impenetrable firewall in between your server and the real server in an easy fashion, or simply share
an IP for several servers that are separated into several physically different servers. For example, we may run a
small company server farm containing a webserver and ftp server on the same machine, while there is a
physically separated machine containing a couple of different chat services that the employees working from
home or on the road can use to keep in touch with the employees that are on-site. We may then run all of these

51 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

services on the same IP from the outside via DNAT.

The above example is also based on separate port NAT'ing, or often called PNAT. We don't refer to this very
often throughout this book, since it is covered by the DNAT and SNAT functionality in netfilter.

In Linux, there are actually two separate types of NAT that can be used, either Fast-NAT or Netfilter-NAT.
Fast-NAT is implemented inside the IP routing code of the Linux kernel, while Netfilter-NAT is also
implemented in the Linux kernel, but inside the netfilter code. Since this book won't touch the IP routing code
too closely, we will pretty much leave it here, except for a few notes. Fast-NAT is generally called by this
name since it is much faster than the netfilter NAT code. It doesn't keep track of connections, and this is both
its main pro and con. Connection tracking takes a lot of processor power, and hence it is slower, which is one
of the main reasons that the Fast-NAT is faster than Netfilter-NAT. As we also said, the bad thing about
Fast-NAT doesn't track connections, which means it will not be able to do SNAT very well for whole
networks, neither will it be able to NAT complex protocols such as FTP, IRC and other protocols that
Netfilter-NAT is able to handle very well. It is possible, but it will take much, much more work than would be
expected from the Netfilter implementation.

There is also a final word that is basically a synonym to SNAT, which is the Masquerade word. In Netfilter,
masquerade is pretty much the same as SNAT with the exception that masquerading will automatically set the
new source IP to the default IP address of the outgoing network interface.

Caveats using NAT

As we have already explained to some extent, there are quite a lot of minor caveats with using NAT. The main
problem is certain protocols and applications which may not work at all. Hopefully, these applications are not
too common in the networks that you administer, and in such case, it should cause no huge problems.

The second and smaller problem is applications and protocols which will only work partially. These protocols
are more common than the ones that will not work at all, which is quite unfortunate, but there isn't very much
we can do about it as it seems. If complex protocols continue to be built, this is a problem we will have to
continue living with. Especially if the protocols aren't standardized.

The third, and largest problem, in my point of view, is the fact that the user who sits behind a NAT server to
get out on the internet will not be able to run his own server. It could be done, of course, but it takes a lot more
time and work to set this up. In companies, this is probably preferred over having tons of servers run by
different employees that are reachable from the Internet, without any supervision. However, when it comes to
home users, this should be avoided to the very last. You should never as an Internet service provider NAT your
customers from a private IP range to a public IP. It will cause you more trouble than it is worth having to deal
with, and there will always be one or another client which will want this or that protocol to work flawlessly.
When it doesn't, you will be called down upon.

As one last note on the caveats of NAT, it should be mentioned that NAT is actually just a hack more or less.
NAT was a solution that was worked out while the IANA and other organisations noted that the Internet grew
exponentially, and that the IP addresses would soon be in shortage. NAT was and is a short term solution to the
problem of the IPv4 (Yes, IP which we have talked about before is a short version of IPv4 which stands for
Internet Protocol version 4). The long term solution to the IPv4 address shortage is the IPv6 protocol, which
also solves a ton of other problems. IPv6 has 128 bits assigned to their addresses, while IPv4 only have 32 bits
used for IP addresses. This is an incredible increase in address space. It may seem like ridiculous to have
enough IP addresses to set one IP address for every atom in our planet, but on the other hand, noone expected
the IPv4 address range to be too small either.

52 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Example NAT machine in theory

This is a small theoretical scenario where we want a NAT server between 2 different networks and an Internet
connection. What we want to do is to connect 2 networks to each other, and both networks should have access
to each other and the Internet. We will discuss the hardware questions you should take into consideration, as
well as other theory you should think about before actually starting to implement the NAT machine.

What is needed to build a NAT machine

Before we discuss anything further, we should start by looking at what kind of hardware is needed to build a
Linux machine doing NAT. For most smaller networks, this should be no problem, but if you are starting to
look at larger networks, it can actually become one. The biggest problem with NAT is that it eats resources
quite fast. For a small private network with possibly 1-10 users, a 486 with 32 MB of ram will do more than
enough. However, if you are starting to get up around 100 or more users, you should start considering what
kind of hardware you should look at. Of course, it is also a good idea to consider bandwidth usage, and how
many connections will be open at the same time. Generally, spare computers will do very well however, and
this is one of the big pros of using a Linux based firewall. You can use old scrap hardware that you have left
over, and hence the firewall will be very cheap in comparison to other firewalls.

You will also need to consider network cards. How many separate networks will connect to your NAT/filter
machine? Most of the time it is simply enough to connect one network to an Internet connection. If you
connect to the Internet via ethernet, you should generally have 2 ethernet cards, etcetera. It can be a good idea
to choose 10/100 mbit/s network cards of relatively good brands for this for scalability, but most any kinds of
cards will do as long as they have drivers in the Linux kernel. A note on this matter: avoid using or getting
network cards that don't have drivers actually in the Linux kernel distribution. | have on several occasions
found network cards/brands that have separately distributed drivers on discs that work dismally. They are
generally not very well maintained, and if you get them to work on your kernel of choice to begin with, the
chance that they will actually work on the next major Linux kernel upgrade is very small. This will most of the
time mean that you may have to get a little bit more costly network cards, but in the end it is worth it.

As a note, if you are going to build your firewall on really old hardware, it is suggested that you at least try to
use PCI buses or better as far as possible. First of all, the network cards will hopefully be possible to use in the
future when you upgrade. Also, ISA buses are extremely slow and heavy on the CPU usage. This means that
putting a lot of load onto ISA network cards can next to Kill your machine.

Finally, one thing more to consider is how much memory you put into the NAT/firewall machine. It is a good

idea to put in at least more than 64 MB of memory if possible, even if it is possible run it on 32MB of memory.
NAT isn't extremely huge on memory consumption, but it may be wise to add as much as possible just in case
you will get more traffic than expected.

As you can see, there is quite a lot to think about when it comes to hardware. But, to be completely honest, in
most cases you don't need to think about these points at all, unless you are building a NAT machine for a large
network or company. Most home users need not think about this, but may more or less use whatever hardware
they have handy. There are no complete comparisons and tests on this topic, but you should fare rather well
with just a little bit of common sense.

Placement of NAT machines

This should look fairly simple, however, it may be harder than you originally thought in large networks. In
general, the NAT machine should be placed on the perimeter of the network, just like any filtering machine out

53 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

there. This, most of the time, means that the NAT and filtering machines are the same machine, of course. Also
worth a thought, if you have very large networks, it may be worth splitting the network into smaller networks
and assign a NAT/filtering machine for each of these networks. Since NAT takes quite a lot of processing
power, this will definitely help keep round trip time (RTT, the time it takes for a packet to reach a destination
and the return packet to get back) down.

In our example network as we described above, with two networks and an Internet connection we should, in
other words, look at how large the two networks are. If we can consider them to be small and depending on
what requirements the clients have, a couple of hundred clients should be no problem on a decent NAT
machine. Otherwise, we could have split up the load over several machines by setting public IP's on smaller
NAT machines, each handling their own smaller segment of the network and then let the traffic congregate
over a specific routing only machine. This of course takes into consideration that you must have enough public
IP's for all of your NAT machines, and that they are routed through your routing machine.

How to place proxies

Proxies are a general problem when it comes to NAT in most cases unfortunately, especially transparent
proxies. Normal proxies should not cause too much trouble, but creating a transparent proxy is a dog to get to
work, especially on larger networks. The first problem is that proxies take quite a lot of processing power, just
the same as NAT does. To put both of these on the same machine is not advisable if you are going to handle
large network traffic. The second problem is that if you NAT the source IP as well as the destination IP, the
proxy will not be able to know what hosts to contact. E.g., which server is the client trying to contact? Since all
that information is lost during the NAT translation since the packets can't contain that information as well if
they are NAT'ed, it's a problem. Locally, this has been solved by adding the information in the internal data
structures that are created for the packets, and hence proxies such as squid can get the information.

As you can see, the problem is that you don't have much of a choice if you are going to run a transparent proxy.
There are, of course, possibilities, but they are not advisable really. One possibility is to create a proxy outside
the firewall and create a routing entry that routes all web traffic through that machine, and then locally on the
proxy machine NAT the packets to the proper ports for the proxy. This way, the information is preserved all
the way to the proxy machine and is still available on it.

The second possibility is to simply create a proxy outside the firewall, and then block all webtraffic except the
traffic going to the proxy. This way, you will force all users to actually use the proxy. It's a crude way of doing
it, but it will hopefully work.

The final stage of our NAT machine

As a final step, we should bring all of this information together, and see how we would solve the NAT machine
then. Let's take a look at a picture of the networks and how it looks. We have decided to put a proxy just
outside the NAT/filtering machine as described above, but inside counting from the router. This area could be
counted upon as an DMZ in a sense, with the NAT/filter machine being a router between the DMZ and the two
company networks. You can see the exact layout we are discussing in the image below.

54 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

LAN 1 LAN 2

N/
A
!

NAT machine

DMZ

Router

Internet

All the normal traffic from the NAT'ed networks will be sent through the DMZ directly to the router, which
will send the traffic on out to the internet. Except, yes, you guessed it, webtraffic which is instead marked
inside the netfilter part of the NAT machine, and then routed based on the mark and to the proxy machine. Let's
take a look at what | am talking about. Say a http packet is seen by the NAT machine. The mangle table can
then be used to mark the packet with a netfilter mark (also known as nfmark). Even later when we should route

55 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

56 of 273

the packets to our router, we will be able to check for the nfmark within the routing tables, and based on this
mark, we can choose to route the http packets to the proxy server. The proxy server will then do it's work on
the packets. We will touch these subjects to some extent later on in the document, even though much of the
routing based part is happening inside the advanced routing topics.

The NAT machine has a public IP available over the internet, as well as the router and any other machines that
may be available on the Internet. All of the machines inside the NAT'ed networks will be using private IP's,
hence saving both a lot of cash, and the Internet address space.

What's next?

We have in this chapter in detail explained NAT and the theory around it. In special we have discussed a
couple of different angles to use, and some of the normal problems that may arise from using NAT together
with proxies. This chapter has covered the following areas in detail.

NAT usage

NAT components

NAT history

Terms and words used about NAT

Hardware discussions regarding NAT

Problems with NAT

All of this will always be of use when you are working with netfilter and iptables. NAT is very widely used in
today's networks, even though it is only an intermediary solution for a very unfortunate and unexpected
problem. NAT will of course be discussed more in depth later on when we start looking at the Linux netfilter
and iptables implementations in more depth.

Chapter 5. Preparations

This chapter is aimed at getting you started and to help you understand the role Netfilter and iptables play in
Linux today. This chapter should hopefully get you set up and finished to go with your experimentation, and
installation of your firewall. Given time and perseverance, you'll then get it to perform exactly as you want it
to.

Where to get iptables

The iptables user-space package can be downloaded from the http://www.netfilter.org/. The iptables package
also makes use of kernel space facilities which can be configured into the kernel during make configure. The
necessary steps will be discussed a bit further down in this document.

Kernel setup

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

57 of 273

To run the pure basics of iptables you need to configure the following options into the kernel while doing make
config or one of its related commands:

CONFIG_PACKET - This option allows applications and utilities that need to work directly with various
network devices. Examples of such utilities are tcpdump or snort.

'
CONFIG_PACKET is strictly speaking not needed for iptables to work, but since it contains

NQ’LB\- so many uses, | have chosen to include it here. If you do not want it, don't include it.

\

CONFIG_NETFILTER - This option is required if you're going to use your computer as a firewall or gateway
to the Internet. In other words, this is most definitely required for anything in this tutorial to work at all. |
assume you will want this, since you are reading this.

And of course you need to add the proper drivers for your interfaces to work properly, i.e. Ethernet adapter,
PPP and SLIP interfaces. The above will only add some of the pure basics in iptables. You won't be able to do
anything productive to be honest, it just adds the framework to the kernel. If you want to use the more
advanced options in Iptables, you need to set up the proper configuration options in your kernel. Here we will
show you the options available in a basic 2.4.9 kernel and a brief explanation:

CONFIG_IP_NF_CONNTRACK - This module is needed to make connection tracking. Connection tracking is
used by, among other things, NAT and Masquerading. If you need to firewall machines on a LAN you most
definitely should mark this option. For example, this module is required by the rc.firewall.txt script to work.

CONFIG_IP_NF_FTP - This module is required if you want to do connection tracking on FTP connections.
Since FTP connections are quite hard to do connection tracking on in normal cases, conntrack needs a so called
helper; this option compiles the helper. If you do not add this module you won't be able to FTP through a
firewall or gateway properly.

CONFIG_IP_NF_IPTABLES - This option is required if you want do any kind of filtering, masquerading or
NAT. It adds the whole iptables identification framework to the kernel. Without this you won't be able to do
anything at all with iptables.

CONFIG_IP_NF_MATCH_LIMIT - This module isn't exactly required but it's used in the example
rc.firewall.txt. This option provides the LIMIT match, that adds the possibility to control how many packets
per minute that are to be matched, governed by an appropriate rule. For example, -m limit --limit 3/minute
would match a maximum of 3 packets per minute. This module can also be used to avoid certain Denial of
Service attacks.

CONFIG_IP_NF_MATCH_MAC - This allows us to match packets based on MAC addresses. Every Ethernet
adapter has its own MAC address. We could for instance block packets based on what MAC address is used
and block a certain computer pretty well since the MAC address very seldom changes. We don't use this option
in the rc.firewall.txt example or anywhere else.

CONFIG_IP_NF_MATCH_MARK - This allows us to use a MARK match. For example, if we use the target
MARK we could mark a packet and then depending on if this packet is marked further on in the table, we can
match based on this mark. This option is the actual match MARK, and further down we will describe the actual
target MARK.

CONFIG_IP_NF_MATCH_MULTIPORT - This module allows us to match packets with a whole range of
destination ports or source ports. Normally this wouldn't be possible, but with this match it is.

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

CONFIG_IP_NF_MATCH_TOS - With this match we can match packets based on their TOS field. TOS
stands for Type Of Service. TOS can also be set by certain rules in the mangle table and via the ip/tc
commands.

CONFIG_IP_NF_MATCH_TCPMSS - This option adds the possibility for us to match TCP packets based on
their MSS field.

CONFIG_IP_NF_MATCH_STATE - This is one of the biggest news in comparison to ipchains. With this
module we can do stateful matching on packets. For example, if we have already seen traffic in two directions
in a TCP connection, this packet will be counted as ESTABLISHED. This module is used extensively in the
rc.firewall.txt example.

CONFIG_IP_NF_MATCH_UNCLEAN - This module will add the possibility for us to match IP, TCP, UDP
and ICMP packets that don't conform to type or are invalid. We could for example drop these packets, but we
never know if they are legitimate or not. Note that this match is still experimental and might not work perfectly
in all cases.

CONFIG_IP_NF_MATCH_OWNER - This option will add the possibility for us to do matching based on the
owner of a socket. For example, we can allow only the user root to have Internet access. This module was
originally just written as an example on what could be done with the new iptables. Note that this match is still
experimental and might not work for everyone.

CONFIG_IP_NF_FILTER - This module will add the basic filter table which will enable you to do IP filtering
at all. In the filter table you'll find the INPUT, FORWARD and OUTPUT chains. This module is required if
you plan to do any kind of filtering on packets that you receive and send.

CONFIG_IP_NF_TARGET_REJECT - This target allows us to specify that an ICMP error message should be
sent in reply to incoming packets, instead of plainly dropping them dead to the floor. Keep in mind that TCP
connections, as opposed to ICMP and UDP, are always reset or refused with a TCP RST packet.

CONFIG_IP_NF_TARGET_MIRROR - This allows packets to be bounced back to the sender of the packet.
For example, if we set up a MIRROR target on destination port HTTP on our INPUT chain and someone tries
to access this port, we would bounce his packets back to him and finally he would probably see his own
homepage.

'
The MIRROR target is not to be used lightly. It was originally built as a test and example

-mg}. module, and will most probably be very dangerous to the person setting it up (resulting in

.\\Iﬁlamf) serious DDoS if among other things).

CONFIG_IP_NF_NAT - This module allows network address translation, or NAT, in its different forms. This
option gives us access to the nat table in iptables. This option is required if we want to do port forwarding,
masquerading, etc. Note that this option is not required for firewalling and masquerading of a LAN, but you
should have it present unless you are able to provide unique IP addresses for all hosts. Hence, this option is
required for the example rc.firewall.txt script to work properly, and most definitely on your network if you do
not have the ability to add unique IP addresses as specified above.

CONFIG_IP_NF_TARGET_MASQUERADE - This module adds the MASQUERADE target. For instance if
we don't know what IP we have to the Internet this would be the preferred way of getting the IP instead of
using DNAT or SNAT. In other words, if we use DHCP, PPP, SLIP or some other connection that assigns us
an IP, we need to use this target instead of SNAT. Masquerading gives a slightly higher load on the computer
than NAT, but will work without us knowing the IP address in advance.

58 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

59 of 273

CONFIG_IP_NF_TARGET_REDIRECT - This target is useful together with application proxies, for example.
Instead of letting a packet pass right through, we remap them to go to our local box instead. In other words, we
have the possibility to make a transparent proxy this way.

CONFIG_IP_NF _TARGET_LOG - This adds the LOG target and its functionality to iptables. We can use this
module to log certain packets to syslogd and hence see what is happening to the packet. This is invaluable for
security audits, forensics or debugging a script you are writing.

CONFIG_IP_NF_TARGET_TCPMSS - This option can be used to counter Internet Service Providers and
servers who block ICMP Fragmentation Needed packets. This can result in web-pages not getting through,
small mails getting through while larger mails don't, ssh works but scp dies after handshake, etc. We can then
use the TCPMSS target to overcome this by clamping our MSS (Maximum Segment Size) to the PMTU (Path
Maximum Transmit Unit).

CONFIG_IP_NF_COMPAT _IPCHAINS - Adds a compatibility mode with the obsolete ipchains. Do not look
to this as any real long term solution for solving migration from Linux 2.2 kernels to 2.4 kernels, since it may
well be gone with kernel 2.6.

CONFIG_IP_NF_COMPAT _IPFWADM - Compatibility mode with obsolescent ipfwadm. Definitely don't
look to this as a real long term solution.

As you can see, there is a heap of options. | have briefly explained here what kind of extra behaviors you can
expect from each module. These are only the options available in a vanilla Linux 2.4.9 kernel. If you would
like to take a look at more options, I suggest you look at the patch-o-matic (POM) functions in Netfilter
user-land which will add heaps of other options in the kernel. POM fixes are additions that are supposed to be
added in the kernel in the future but have not quite reached the kernel yet. This may be for various reasons -
such as the patch not being stable yet, to Linus Torvalds being unable to keep up, or not wanting to let the
patch in to the mainstream kernel yet since it is still experimental.

You will need the following options compiled into your kernel, or as modules, for the rc.firewall.txt script to
work. If you need help with the options that the other scripts need, look at the example firewall scripts section.

e CONFIG_PACKET

e CONFIG_NETFILTER

e CONFIG_IP_NF_CONNTRACK

e CONFIG_IP_NF_FTP

e CONFIG_IP_NF_IRC

e CONFIG_IP_NF_IPTABLES

e CONFIG_IP_NF_FILTER

e CONFIG_IP_NF_NAT

e CONFIG_IP_NF_MATCH_STATE
e CONFIG_IP_NF_TARGET _LOG

e CONFIG_IP_NF_MATCH_LIMIT

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

e CONFIG_IP_NF_TARGET_MASQUERADE

At the very least the above will be required for the rc.firewall.txt script. In the other example scripts | will
explain what requirements they have in their respective sections. For now, let's try to stay focused on the main
script which you should be studying now.

User-land setup

First of all, let's look at how we compile the iptables package. It's important to realize that for the most part
configuration and compilation of iptables goes hand in hand with the kernel configuration and compilation.
Certain distributions come with the iptables package preinstalled, one of these is Red Hat. However, in old Red
Hat it is disabled per default. We will check closer on how to enable it and take a look at other distributions
further on in this chapter.

Compiling the user-land applications

First of all unpack the iptables package. Here, we have used the iptables 1.2.6a package and a vanilla 2.4
kernel. Unpack as usual, using bzip2 -cd iptables-1.2.6a.tar.bz?2 | tar -xvf - (this can also be accomplished with
the tar -xjvf iptables-1.2.6a.tar.bz2, which should do pretty much the same as the first command. However, this
may not work with older versions of tar). The package should now be unpacked properly into a directory
named iptables-1.2.6a. For more information read the iptables-1.2.6a/INSTALL file which contains pretty
good information on compiling and getting the program to run.

After this, there you have the option of configuring and installing extra modules and options etcetera for the
kernel.The step described here will only check and install standard patches that are pending for inclusion to the
kernel, there are some even more experimental patches further along, which may only be available when you
carry out other steps.

1
Some of these patches are highly experimental and may not be such a good idea to install

Noi "'._ them. However, there are heaps of extremely interesting matches and targets in this
\ ’) installation step so don't be afraid of at least looking at them.

To carry out this step we do something like this from the root of the iptables package:

make pending-patches KERNEL_DIR=/usr/src/linux/

The variable KERNEL_DIR should point to the actual place that your kernel source is located at. Normally this
should be /usr/src/1inux/ but this may vary, and most probably you will know yourself where the kernel
source is available.

The above command only asks about certain patches that are just about to enter the kernel anyway. There
might be more patches and additions that the developers of Netfilter are about to add to the kernel, but is a bit
further away from actually getting there. One way to install these is by doing the following:

make most-of-pom KERNEL_DIR=/usr/src/linux/

The above command would ask about installing parts of what in Netfilter world is called patch-o-matic, but
still skip the most extreme patches that might cause havoc in your kernel. Note that we say ask, because that's

60 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

what these commands actually do. They ask you before anything is changed in the kernel source. To be able to
install all of the patch-o-matic stuff you will need to run the following command:

make patch-o-matic KERNEL_DIR=/usr/src/linux/

Don't forget to read the help for each patch thoroughly before doing anything. Some patches will destroy other
patches while others may destroy your kernel if used together with some patches from patch-o-matic etc.

1
You may totally ignore the above steps if you don't want to patch your kernel, it is in other
NU‘B\' words not necessary to do the above. However, there are some really interesting things in
\ ’) the patch-o-matic that you may want to look at so there's nothing bad in just running the
commands and see what they contain.

After this you are finished doing the patch-o-matic parts of installation, you may now compile a new kernel
making use of the new patches that you have added to the source. Don't forget to configure the kernel again
since the new patches probably are not added to the configured options. You may wait with the kernel
compilation until after the compilation of the user-land program iptables if you feel like it, though.

Continue by compiling the iptables user-land application. To compile iptables you issue a simple command
that looks like this:

make KERNEL_DIR=/usr/src/linux/

The user-land application should now compile properly. If not, you are on your own, or you could subscribe to
the Netfilter mailing list, where you have the chance of asking for help with your problems. There are a few
things that might go wrong with the installation of iptables, so don't panic if it won't work. Try to think
logically about it and find out what's wrong, or get someone to help you.

If everything has worked smoothly, you're ready to install the binaries by now. To do this, you would issue the
following command to install them:

make install KERNEL_DIR=/usr/src/linux/

Hopefully everything should work in the program now. To use any of the changes in the iptables user-land
applications you should now recompile and reinstall your kernel and modules, if you hadn't done so before. For
more information about installing the user-land applications from source, check the INSTALL file in the source
which contains excellent information on the subject of installation.

Installation on Red Hat 7.1

Red Hat 7.1 comes preinstalled with a 2.4.x kernel that has Netfilter and iptables compiled in. It also contains
all the basic user-land programs and configuration files that are needed to run it. However, the Red Hat people
have disabled the whole thing by using the backward compatible ipchains module. Annoying to say the least,
and a lot of people keep asking different mailing lists why iptables doesn't work. So, let's take a brief look at
how to turn the ipchains module off and how to install iptables instead.

61 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

'
The default Red Hat 7.1 installation today comes with a hopelessly old version of the

&LB\ user-space applications, so you might want to compile a new version of the applications as
NQ " . . AR
\ ’) well as install a new and custom compiled kernel before fully exploiting iptables.

First of all you will need to turn off the ipchains modules so it won't start in the future. To do this, you will
need to change some filenames in the /etc/rc.d/ directory-structure. The following command should do it:

chkconfig --level 0123456 ipchains off

By doing this we move all the soft links that points to the /etc/rc.d/init.d/ipchains script to K92ipchains.
The first letter which per default would be S, tells the initscripts to start the script. By changing this to K we
tell it to Kill the service instead, or to not run it if it was not previously started. Now the service won't be
started in the future.

However, to stop the service from actually running right now we need to run another command. This is the
service command which can be used to work on currently running services. We would then issue the following
command to stop the ipchains service:

service ipchains stop

Finally, to start the iptables service. First of all, we need to know which run-levels we want it to run in.
Normally this would be in run-level 2, 3 and 5. These run-levels are used for the following things:

e 2. Multiuser without NFS or the same as 3 if there is no networking.

e 3. Full multiuser mode, i.e. the normal run-level to run in.

e 5. X11. This is used if you automatically boot into Xwindows.
To make iptables run in these run-levels we would do the following commands:
chkconfig --level 235 iptables on

The above commands would in other words make the iptables service run in run-level 2, 3 and 5. If you'd like
the iptables service to run in some other run-level you would have to issue the same command in those.
However, none of the other run-levels should be used, so you should not really need to activate it for those
run-levels. Level 1 is for single user mode, i.e, when you need to fix a screwedup box. Level 4 should be
unused, and level 6 is for shutting the computer down.

To activate the iptables service, we just run the following command:
service iptables start

There are no rules in the iptables script. To add rules to an Red Hat 7.1 box, there is two common ways.
Firstly, you could edit the Zetc/rc.d/init.d/iptables script. This would have the undesired effect of
deleting all the rules if you updated the iptables package by RPM. The other way would be to load the rule-set
and then save it with the iptables-save command and then have it loaded automatically by the rc.d scripts.

First we will describe the how to set up iptables by cutting and pasting to the iptables init.d script. To add rules
that are to be run when the computer starts the service, you add them under the start) section, or in the start()
function. Note, if you add the rules under the start) section don't forget to stop the start() function in the start)

62 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

section from running. Also, don't forget to edit a the stop) section either which tells the script what to do when
the computer is going down for example, or when we are entering a run-level that doesn't require iptables.
Also, don't forget to check out the restart section and condrestart. Note that all this work will probably be
trashed if you have, for example, Red Hat Network automatically update your packages. It may also be trashed
by updating from the iptables RPM package.

The second way of doing the set up would require the following: First of all, make and write a rule-set in a
shell script file, or directly with iptables, that will meet your requirements, and don't forget to experiment a bit.
When you find a set up that works without problems, or as you can see without bugs, use the iptables-save
command. You could either use it normally, i.e. iptables-save > /etc/sysconfig/iptables, which would save the
rule-set to the file 7etc/sysconfig/iptables. This file is automatically used by the iptables rc.d script to
restore the rule-set in the future. The other way is to save the script by doing service iptables save, which
would save the script automatically to /etc/sysconfig/iptables. The next time you reboot the computer, the
iptables rc.d script will use the command iptables-restore to restore the rule-set from the save-file
/etc/sysconfig/iptables. Do not intermix these two methods, since they may heavily damage each other
and render your firewall configuration useless.

When all of these steps are finished, you can deinstall the currently installed ipchains and iptables packages.
This because we don't want the system to mix up the new iptables user-land application with the old
preinstalled iptables applications. This step is only necessary if you are going to install iptables from the source
package. It's not unusual for the new and the old package to get mixed up, since the rpm based installation
installs the package in non-standard places and won't get overwritten by the installation for the new iptables
package. To carry out the deinstallation, do as follows:

rpm -e iptables

And why keep ipchains lying around if you won't be using it any more? Removing it is done the same way as
with the old iptables binaries, etc:

rpm -e ipchains

After all this has been completed, you will have finished with the update of the iptables package from source,
having followed the source installation instructions. None of the old binaries, libraries or include files etc
should be lying around any more.

What's next?

This chapter has discussed how to get and how to install iptables and netfilter on some common platforms. In
most modern Linux distributions iptables will come with the default installation, but sometimes it might be
necessary to compile your own kernel and iptables binaries to get the absolutely latest updates. This chapter
should have been a small help managing this.

The next chapter will discuss how tables and chains are traversed, and in what order this happens and so forth.
This is very important to comprehend to be able to build your own working rulesets in the future. All the
different tables will be discussed in some depth also since they are created for different purposes.

Chapter 6. Traversing of tables and chains

In this chapter we'll discuss how packets traverse the different chains, and in which order. We will also discuss

63 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

the order in which the tables are traversed. We'll see how valuable this is later on, when we write our own
specific rules. We will also look at the points which certain other components, that also are kernel dependent,
enter into the picture. Which is to say the different routing decisions and so on. This is especially necessary if
we want to write iptables rules that could change routing patterns/rules for packets; i.e. why and how the
packets get routed, good examples of this are DNAT and SNAT. Not to be forgotten are, of course, the TOS
bits.

General

When a packet first enters the firewall, it hits the hardware and then gets passed on to the proper device driver
in the kernel. Then the packet starts to go through a series of steps in the kernel, before it is either sent to the
correct application (locally), or forwarded to another host - or whatever happens to it.

First, let us have a look at a packet that is destined for our own local host. It would pass through the following
steps before actually being delivered to our application that receives it:

Table 6-1. Destination local host (our own machine)

Step | Table Chain Comment
1 On the wire (e.g., Internet)
2 Comes in on the interface (e.g., eth0)

This chain is used to handle packets before the connection tracking takes place.
3 raw |PREROUTING/It can be used to set a specific connection not to be handled by the connection
tracking code for example.

This is when the connection tracking code takes place as discussed in the The
state machine chapter.

5 mangle|PREROUTING|This chain is normally used for mangling packets, i.e., changing TOS and so on.
This chain is used for DNAT mainly. Avoid filtering in this chain since it will
be bypassed in certain cases.

Routing decision, i.e., is the packet destined for our local host or to be
forwarded and where.

At this point, the mangle INPUT chain is hit. We use this chain to mangle
8 mangle(INPUT packets, after they have been routed, but before they are actually sent to the
process on the machine.

This is where we do filtering for all incoming traffic destined for our local host.
9 filter |INPUT Note that all incoming packets destined for this host pass through this chain, no
matter what interface or in which direction they came from.

6 nat PREROUTING

10 Local process or application (i.e., server or client program).

Note that this time the packet was passed through the INPUT chain instead of the FORWARD chain. Quite
logical. Most probably the only thing that's really logical about the traversing of tables and chains in your eyes
in the beginning, but if you continue to think about it, you'll find it will get clearer in time.

Now we look at the outgoing packets from our own local host and what steps they go through.

Table 6-2. Source local host (our own machine)

64 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Step | Table Chain Comment
1 Local process/application (i.e., server/client program)
5 Routing decision. What source address to use, what outgoing interface to use,

and other necessary information that needs to be gathered.

This is where you do work before the connection tracking has taken place for
3 raw |[OUTPUT locally generated packets. You can mark connections so that they will not be
tracked for example.

This is where the connection tracking takes place for locally generated

4 packets, for example state changes et cetera. This is discussed in more detail in
the The state machine chapter.

This is where we mangle packets, it is suggested that you do not filter in this
chain since it can have side effects.

nat OUTPUT This chain can be used to NAT outgoing packets from the firewall itself.

Routing decision, since the previous mangle and nat changes may have
changed how the packet should be routed.

filter |OUTPUT This is where we filter packets going out from the local host.

The POSTROUTING chain in the mangle table is mainly used when we want
to do mangling on packets before they leave our host, but after the actual
routing decisions. This chain will be hit by both packets just traversing the
firewall, as well as packets created by the firewall itself.

This is where we do SNAT as described earlier. It is suggested that you don't
10 [nat POSTROUTING/|do filtering here since it can have side effects, and certain packets might slip
through even though you set a default policy of DROP.

11 Goes out on some interface (e.g., eth0)

12 On the wire (e.g., Internet)

mangle|OUTPUT

ol N O O

9 manglePOSTROUTING

In this example, we're assuming that the packet is destined for another host on another network. The packet
goes through the different steps in the following fashion:

Table 6-3. Forwarded packets

Step | Table Chain Comment
1 On the wire (i.e., Internet)
2 Comes in on the interface (i.e., eth0)
Here you can set a connection to not be handled by the connection tracking

3 raw PREROUTING
system.

This is where the non-locally generated connection tracking takes place, and is
also discussed more in detail in the The state machine chapter.

This chain is normally used for mangling packets, i.e., changing TOS and so
on.

This chain is used for DNAT mainly. SNAT is done further on. Avoid filtering
in this chain since it will be bypassed in certain cases.

Routing decision, i.e., is the packet destined for our local host or to be
forwarded and where.

The packet is then sent on to the FORWARD chain of the mangle table. This
can be used for very specific needs, where we want to mangle the packets after
the initial routing decision, but before the last routing decision made just
before the packet is sent out.

5 manglePREROUTING

6 nat PREROUTING

8 mangle[FORWARD

65 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Step | Table Chain Comment

The packet gets routed onto the FORWARD chain. Only forwarded packets go
through here, and here we do all the filtering. Note that all traffic that's
forwarded goes through here (not only in one direction), so you need to think
about it when writing your rule-set.

This chain is used for specific types of packet mangling that we wish to take
10 |mangle|POSTROUTING place after all kinds of routing decisions have been done, but still on this
machine.

This chain should first and foremost be used for SNAT. Avoid doing filtering
11 |nat POSTROUTING here, since certain packets might pass this chain without ever hitting it. This is
also where Masquerading is done.

12 Goes out on the outgoing interface (i.e., ethl).

13 Out on the wire again (i.e., LAN).

9 filter |FORWARD

As you can see, there are quite a lot of steps to pass through. The packet can be stopped at any of the iptables
chains, or anywhere else if it is malformed; however, we are mainly interested in the iptables aspect of this lot.
Do note that there are no specific chains or tables for different interfaces or anything like that. FORWARD is
always passed by all packets that are forwarded over this firewall/router.

!

Do not use the INPUT chain to filter on in the previous scenario! INPUT is meant solely for
c auﬁgﬂ". packets to our local host that do not get routed to any other destination.

We have now seen how the different chains are traversed in three separate scenarios. If we were to figure out a
good map of all this, it would look something like this:

66 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

NETWORK

raw
PREROUTING
mangle
PREROUTING

nat

PREROUTING

Local Routing \
Process Decision /
;
Routing FORWARD
Decision

filter
FORWARD

Routing
Decision

mangle
POSTROUTING
nat
POSTROUTING

67 of 273 1/6/2007 12:55 PM

mangle
OUTPUT

filter
ouTPUuT

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

To clarify this image, consider this. If we get a packet into the first routing decision that is not destined for the
local machine itself, it will be routed through the FORWARD chain. If the packet is, on the other hand,
destined for an IP address that the local machine is listening to, we would send the packet through the INPUT
chain and to the local machine.

Also worth a note, is the fact that packets may be destined for the local machine, but the destination address
may be changed within the PREROUTING chain by doing NAT. Since this takes place before the first routing
decision, the packet will be looked upon after this change. Because of this, the routing may be changed before
the routing decision is done. Do note, that all packets will be going through one or the other path in this image.
If you DNAT a packet back to the same network that it came from, it will still travel through the rest of the
chains until it is back out on the network.

!

If you feel that you want more information, you could use the rc.test-iptables.txt script. This
-"\?_ test script should give you the necessary rules to test how the tables and chains are

\ ’) traversed.

Mangle table

This table should as we've already noted mainly be used for mangling packets. In other words, you may freely
use the mangle targets within this table, to change TOS (Type Of Service) fields and the like.

!
You are strongly advised not to use this table for any filtering; nor will any DNAT, SNAT
Gauﬁgﬂ". or Masquerading work in this table.

The following targets are only valid in the mangle table. They can not be used outside the mangle table.
e TOS
o TTL

MARK

SECMARK
e CONNSECMARK

The TOS target is used to set and/or change the Type of Service field in the packet. This could be used for
setting up policies on the network regarding how a packet should be routed and so on. Note that this has not
been perfected and is not really implemented on the Internet and most of the routers don't care about the value
in this field, and sometimes, they act faulty on what they get. Don't set this in other words for packets going to
the Internet unless you want to make routing decisions on it, with iproute2.

The TTL target is used to change the TTL (Time To Live) field of the packet. We could tell packets to only
have a specific TTL and so on. One good reason for this could be that we don't want to give ourself away to
nosy Internet Service Providers. Some Internet Service Providers do not like users running multiple computers
on one single connection, and there are some Internet Service Providers known to look for a single host

68 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

69 of 273

generating different TTL values, and take this as one of many signs of multiple computers connected to a
single connection.

The MARK target is used to set special mark values to the packet. These marks could then be recognized by
the iproute2 programs to do different routing on the packet depending on what mark they have, or if they don't
have any. We could also do bandwidth limiting and Class Based Queuing based on these marks.

The SECMARK target can be used to set security context marks on single packets for usage in SELinux and
other security systems that are able to handle these marks. This is then used for very fine grained security on
what subsystems of the system can touch what packets et cetera. The SECMARK can also be set on a whole
connection with the CONNSECMARK target.

CONNSECMARK is used to copy a security context to or from a single packet from or to the whole
connection. This is then used by the SELinux and other security systems to do more fine-grained security on a
connection level.

Nat table

This table should only be used for NAT (Network Address Translation) on different packets. In other words, it
should only be used to translate the packet's source field or destination field. Note that, as we have said before,
only the first packet in a stream will hit this table. After this, the rest of the packets will automatically have the
same action taken on them as the first packet. The actual targets that do these kind of things are:

e DNAT

e SNAT

e MASQUERADE
e REDIRECT

The DNAT target is mainly used in cases where you have a public IP and want to redirect accesses to the
firewall to some other host (on a DMZ for example). In other words, we change the destination address of the
packet and reroute it to the host.

SNAT is mainly used for changing the source address of packets. For the most part you'll hide your local
networks or DMZ, etc. A very good example would be that of a firewall of which we know outside IP address,
but need to substitute our local network's IP numbers with that of our firewall. With this target the firewall will
automatically SNAT and De-SNAT the packets, hence making it possible to make connections from the LAN
to the Internet. If your network uses 192.168.0.0/netmask for example, the packets would never get back from
the Internet, because IANA has regulated these networks (among others) as private and only for use in isolated
LANS.

The MASQUERADE target is used in exactly the same way as SNAT, but the MASQUERADE target takes a
little bit more overhead to compute. The reason for this, is that each time that the MASQUERADE target gets
hit by a packet, it automatically checks for the IP address to use, instead of doing as the SNAT target does -
just using the single configured IP address. The MASQUERADE target makes it possible to work properly
with Dynamic DHCP IP addresses that your ISP might provide for your PPP, PPPOE or SLIP connections to
the Internet.

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Raw table

The raw table is mainly only used for one thing, and that is to set a mark on packets that they should not be
handled by the connection tracking system. This is done by using the NOTRACK target on the packet. If a
connection is hit with the NOTRACK target, then conntrack will simply not track the connection. This has
been impossible to solve without adding a new table, since none of the other tables are called until after
conntrack has actually been run on the packets, and been added to the conntrack tables, or matched against an
already available connection. You can read more about this in the The state machine chapter.

This table only has the PREROUTING and OUTPUT chains. No other chains are required since these are the
only places that you can deal with packets before they actually hit the connection tracking.

1
For this table to work, the iptable_raw module must be loaded. It will be loaded

NO‘B\' automatically if iptables is run with the -t raw keywords, and if the module is available.

b

'
The raw table is a relatively new addition to iptables and the kernel. It might not be

| NU‘B\' available in early 2.6 and 2.4 kernels unless patched.

I

Filter table

The filter table is mainly used for filtering packets. We can match packets and filter them in whatever way we
want. This is the place that we actually take action against packets and look at what they contain and DROP or
/ACCEPT them, depending on their content. Of course we may also do prior filtering; however, this particular
table is the place for which filtering was designed. Almost all targets are usable in this table. We will be more
prolific about the filter table here; however you now know that this table is the right place to do your main
filtering.

User specified chains

If a packet enters a chain such as the INPUT chain in the filter table, we can specify a jump rule to a different
chain within the same table. The new chain must be userspecified, it may not be a built-in chain such as the
INPUT or FORWARD chain for example. If we consider a pointer pointing at the rule in the chain to execute,
the pointer will go down from rule to rule, from top to bottom until the chain traversal is either ended by a
target or the main chain (l.e., FORWARD, INPUT, et cetera) ends. Once this happens, the default policy of the
built-in chain will be applied.

70 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

chainl

rulel chain2
—> rule2 rulel
2 rule3 | rule2
5N ruled4 rule3
|:. rules

If one of the rules that matches points to another userspecified chain in the jump specification, the pointer will
jump over to this chain and then start traversing that chain from the top to bottom. For example, see how the
rule execution jumps from rule number 3 to chain 2 in the above image. The packet matched the matches
contained in rule 3, and the jump/target specification was set to send the packet on for further examination in
chain 2.

Userspecified chains can not have a default policy at the end of the chain. Only built in
\\\01 "‘-_ chains can have this. This can be circumvented by appending a single rule at the end of the
chain that has no matches, and hence it will behave as a default policy. If no rule is matched
\ in a userspecified chain, the default behaviour is to jJump back to the originating chain. As
' seen in the image above, the rule execution jumps from chain 2 and back to chain 1 rule 4,
below the rule that sent the rule execution into chain 2 to begin with.

Each and every rule in the user specified chain is traversed until either one of the rules matches -- then the
target specifies if the traversing should end or continue -- or the end of the chain is reached. If the end of the
user specified chain is reached, the packet is sent back to the invoking chain. The invoking chain can be either
a user specified chain or a built-in chain.

What's next?

In this chapter we have discussed several of the chains and tables and how they are traversed, including the
standard built-in chains and userspecified chains. This is a very important area to understand. It may be simple,
but unless fully understood, fatal mistakes can be equally easily.

71 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

The next chapter will deal in depth with the state machine of netfilter, and how states are traversed and set on
packets in a connection tracking machine. The next chapter is in other words just as important as this chapter
has been.

Chapter 7. The state machine

This chapter will deal with the state machine and explain it in detail. After reading through it, you should have
a complete understanding of how the State machine works. We will also go through a large set of examples on
how states are dealt with within the state machine itself. These should clarify everything in practice.

Introduction

The state machine is a special part within iptables that should really not be called the state machine at all, since
it is really a connection tracking machine. However, most people recognize it under the first name. Throughout
this chapter | will use these names more or less as if they were synonymous. This should not be overly
confusing. Connection tracking is done to let the Netfilter framework know the state of a specific connection.
Firewalls that implement this are generally called stateful firewalls. A stateful firewall is generally much more
secure than non-stateful firewalls since it allows us to write much tighter rule-sets.

Within iptables, packets can be related to tracked connections in four different so called states. These are
known as NEW, ESTABLISHED, RELATED and INVALID. We will discuss each of these in more depth
later. With the --state match we can easily control who or what is allowed to initiate new sessions.

All of the connection tracking is done by special framework within the kernel called conntrack. conntrack may
be loaded either as a module, or as an internal part of the kernel itself. Most of the time, we need and want
more specific connection tracking than the default conntrack engine can maintain. Because of this, there are
also more specific parts of conntrack that handles the TCP, UDP or ICMP protocols among others. These
modules grab specific, unique, information from the packets, so that they may keep track of each stream of
data. The information that conntrack gathers is then used to tell conntrack in which state the stream is currently
in. For example, UDP streams are, generally, uniquely identified by their destination IP address, source IP
address, destination port and source port.

In previous kernels, we had the possibility to turn on and off defragmentation. However, since iptables and
Netfilter were introduced and connection tracking in particular, this option was gotten rid of. The reason for
this is that connection tracking can not work properly without defragmenting packets, and hence defragmenting
has been incorporated into conntrack and is carried out automatically. It can not be turned off, except by
turning off connection tracking. Defragmentation is always carried out if connection tracking is turned on.

All connection tracking is handled in the PREROUTING chain, except locally generated packets which are
handled in the OUTPUT chain. What this means is that iptables will do all recalculation of states and so on
within the PREROUTING chain. If we send the initial packet in a stream, the state gets set to NEW within the
OUTPUT chain, and when we receive a return packet, the state gets changed in the PREROUTING chain to
ESTABLISHED, and so on. If the first packet is not originated by ourself, the NEW state is set within the
PREROUTING chain of course. So, all state changes and calculations are done within the PREROUTING and
OUTPUT chains of the nat table.

The conntrack entries

72 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

73 of 273

Let's take a brief look at a conntrack entry and how to read them in /proc/net/ip_conntrack. This gives a list
of all the current entries in your conntrack database. If you have the ip_conntrack module loaded, a cat of
/proc/net/ip_conntrack might look like:

tcp 6 117 SYN_SENT src=192.168.1.6 dst=192.168.1.9 sport=32775 \
dport=22 [UNREPLIED] src=192.168.1.9 dst=192.168.1.6 sport=22 \
dport=32775 [ASSURED] use=2

This example contains all the information that the conntrack module maintains to know which state a specific
connection is in. First of all, we have a protocol, which in this case is tcp. Next, the same value in normal
decimal coding. After this, we see how long this conntrack entry has to live. This value is set to 117 seconds
right now and is decremented regularly until we see more traffic. This value is then reset to the default value
for the specific state that it is in at that relevant point of time. Next comes the actual state that this entry is in at
the present point of time. In the above mentioned case we are looking at a packet that is in the SYN_SENT
state. The internal value of a connection is slightly different from the ones used externally with iptables. The
value SYN_SENT tells us that we are looking at a connection that has only seen a TCP SYN packet in one
direction. Next, we see the source IP address, destination IP address, source port and destination port. At this
point we see a specific keyword that tells us that we have seen no return traffic for this connection. Lastly, we
see what we expect of return packets. The information details the source IP address and destination IP address
(which are both inverted, since the packet is to be directed back to us). The same thing goes for the source port
and destination port of the connection. These are the values that should be of any interest to us.

The connection tracking entries may take on a series of different values, all specified in the conntrack headers
available in linux/include/netfilter-ipv4/ip_conntrack*.h files. These values are dependent on which
sub-protocol of IP we use. TCP, UDP or ICMP protocols take specific default values as specified in
linux/include/netfilter-ipv4/ip_conntrack.h. We will look closer at this when we look at each of the
protocols; however, we will not use them extensively through this chapter, since they are not used outside of
the conntrack internals. Also, depending on how this state changes, the default value of the time until the
connection is destroyed will also change.

Recently there was a new patch made available in iptables patch-o-matic, called
NU‘B\' tcp-window-tracking. This patch adds, among other things, all of the above timeouts to
\ ,) special sysctl variables, which means that they can be changed on the fly, while the system
is still running. Hence, this makes it unnecessary to recompile the kernel every time you
want to change the timeouts.

These can be altered via using specific system calls available in the
/proc/sys/net/ipv4/netfilter directory. You should in particular look at the
/proc/sys/net/ipva/netfilter/ip_ct_* variables

When a connection has seen traffic in both directions, the conntrack entry will erase the [UNREPLIED] flag,
and then reset it. The entry that tells us that the connection has not seen any traffic in both directions, will be
replaced by the [ASSURED] flag, to be found close to the end of the entry. The [ASSURED] flag tells us that
this connection is assured and that it will not be erased if we reach the maximum possible tracked connections.
Thus, connections marked as [ASSURED] will not be erased, contrary to the non-assured connections (those
not marked as [ASSUREDY]). How many connections that the connection tracking table can hold depends upon
a variable that can be set through the ip-sysctl functions in recent kernels. The default value held by this entry
varies heavily depending on how much memory you have. On 128 MB of RAM you will get 8192 possible
entries, and at 256 MB of RAM, you will get 16376 entries. You can read and set your settings through the
/proc/sys/net/ipv4/ip_conntrack_max Setting.

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

A different way of doing this, that is more efficient, is to set the hashsize option to the ip_conntrack module
once this is loaded. Under normal circumstances ip_conntrack_max equals 8 * hashsize. In other words, setting
the hashsize to 4096 will result in ip_conntrack_max being set to 32768 conntrack entries. An example of this
would be:

work3:/home/blueflux# modprobe ip_conntrack hashsize=4096
work3:/home/blueflux# cat /proc/sys/net/ipv4/ip_conntrack max
32768

work3:/home/blueflux#

User-land states

As you have seen, packets may take on several different states within the kernel itself, depending on what
protocol we are talking about. However, outside the kernel, we only have the 4 states as described previously.
These states can mainly be used in conjunction with the state match which will then be able to match packets
based on their current connection tracking state. The valid states are NEW, ESTABLISHED, RELATED and
INVALID. The following table will briefly explain each possible state.

Table 7-1. User-land states

State Explanation

The NEW state tells us that the packet is the first packet that we see. This means that the first
packet that the conntrack module sees, within a specific connection, will be matched. For
example, if we see a SYN packet and it is the first packet in a connection that we see, it will
NEW match. However, the packet may as well not be a SYN packet and still be considered NEW.
This may lead to certain problems in some instances, but it may also be extremely helpful
when we need to pick up lost connections from other firewalls, or when a connection has
already timed out, but in reality is not closed.

The ESTABLISHED state has seen traffic in both directions and will then continuously
match those packets. ESTABLISHED connections are fairly easy to understand. The only
requirement to get into an ESTABLISHED state is that one host sends a packet, and that it
ESTABLISHEDlater on gets a reply from the other host. The NEW state will upon receipt of the reply packet
to or through the firewall change to the ESTABLISHED state. ICMP reply messages can also
be considered as ESTABLISHED, if we created a packet that in turn generated the reply
ICMP message.

The RELATED state is one of the more tricky states. A connection is considered RELATED
when it is related to another already ESTABLISHED connection. What this means, is that for
a connection to be considered as RELATED, we must first have a connection that is
considered ESTABLISHED. The ESTABLISHED connection will then spawn a connection
outside of the main connection. The newly spawned connection will then be considered
RELATED, if the conntrack module is able to understand that it is RELATED. Some good
RELATED examples of connections that can be considered as RELATED are the FTP-data connections
that are considered RELATED to the FTP control port, and the DCC connections issued
through IRC. This could be used to allow ICMP error messages, FTP transfers and DCC's to
work properly through the firewall. Do note that most TCP protocols and some UDP
protocols that rely on this mechanism are quite complex and send connection information
within the payload of the TCP or UDP data segments, and hence require special helper
modules to be correctly understood.

74 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

75 of 273

State Explanation

The INVALID state means that the packet can't be identified or that it does not have any
state. This may be due to several reasons, such as the system running out of memory or
ICMP error messages that do not respond to any known connections. Generally, it is a good
idea to DROP everything in this state.

INVALID

This is the UNTRACKED state. In brief, if a packet is marked within the raw table with the
NOTRACK target, then that packet will show up as UNTRACKED in the state machine.
UNTRACKED [This also means that all RELATED connections will not be seen, so some caution must be
taken when dealing with the UNTRACKED connections since the state machine will not be

able to see related ICMP messages et cetera.

These states can be used together with the --state match to match packets based on their connection tracking
state. This is what makes the state machine so incredibly strong and efficient for our firewall. Previously, we
often had to open up all ports above 1024 to let all traffic back into our local networks again. With the state
machine in place this is not necessary any longer, since we can now just open up the firewall for return traffic
and not for all kinds of other traffic.

TCP connections

In this section and the upcoming ones, we will take a closer look at the states and how they are handled for
each of the three basic protocols TCP, UDP and ICMP. Also, we will take a closer look at how connections are
handled per default, if they can not be classified as either of these three protocols. We have chosen to start out
with the TCP protocol since it is a stateful protocol in itself, and has a lot of interesting details with regard to
the state machine in iptables.

A TCP connection is always initiated with the 3-way handshake, which establishes and negotiates the actual
connection over which data will be sent. The whole session is begun with a SYN packet, then a SYN/ACK
packet and finally an ACK packet to acknowledge the whole session establishment. At this point the
connection is established and able to start sending data. The big problem is, how does connection tracking
hook up into this? Quite simply really.

As far as the user is concerned, connection tracking works basically the same for all connection types. Have a
look at the picture below to see exactly what state the stream enters during the different stages of the
connection. As you can see, the connection tracking code does not really follow the flow of the TCP
connection, from the users viewpoint. Once it has seen one packet(the SYN), it considers the connection as
NEW. Once it sees the return packet(SYN/ACK), it considers the connection as ESTABLISHED. If you think
about this a second, you will understand why. With this particular implementation, you can allow NEW and
ESTABLISHED packets to leave your local network, only allow ESTABLISHED connections back, and that
will work perfectly. Conversely, if the connection tracking machine were to consider the whole connection
establishment as NEW, we would never really be able to stop outside connections to our local network, since
we would have to allow NEW packets back in again. To make things more complicated, there are a number of
other internal states that are used for TCP connections inside the kernel, but which are not available for us in
User-land. Roughly, they follow the state standards specified within RFC 793 - Transmission Control Protocol
on pages 21-23. We will consider these in more detail further along in this section.

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

76 of 273

Client Firewall Server

SYN/ACK

ESTABLISHED
ACK

" Vs
ol

As you can see, it is really quite simple, seen from the user's point of view. However, looking at the whole
construction from the kernel's point of view, it's a little more difficult. Let's look at an example. Consider
exactly how the connection states change in the /proc/net/ip_conntrack table. The first state is reported
upon receipt of the first SYN packet in a connection.

tcp 6 117 SYN_SENT src=192.168.1.5 dst=192.168.1.35 sport=1031 \
dport=23 [UNREPLIED] src=192.168.1.35 dst=192.168.1.5 sport=23 \
dport=1031 use=1

As you can see from the above entry, we have a precise state in which a SYN packet has been sent, (the
SYN_SENT flag is set), and to which as yet no reply has been sent (witness the [UNREPLIED] flag). The next
internal state will be reached when we see another packet in the other direction.

tcp 6 57 SYN_RECV src=192.168.1.5 dst=192.168.1.35 sport=1031 \
dport=23 src=192.168.1.35 dst=192.168.1.5 sport=23 dport=1031 \
use=1

Now we have received a corresponding SYN/ACK in return. As soon as this packet has been received, the state
changes once again, this time to SYN_RECV. SYN_RECV tells us that the original SYN was delivered
correctly and that the SYN/ACK return packet also got through the firewall properly. Moreover, this
connection tracking entry has now seen traffic in both directions and is hence considered as having been
replied to. This is not explicit, but rather assumed, as was the [UNREPLIED] flag above. The final step will be
reached once we have seen the final ACK in the 3-way handshake.

tcp 6 431999 ESTABLISHED src=192.168.1.5 dst=192.168.1.35 \
sport=1031 dport=23 src=192.168.1.35 dst=192.168.1.5 \
sport=23 dport=1031 [ASSURED] use=1

In the last example, we have gotten the final ACK in the 3-way handshake and the connection has entered the
ESTABLISHED state, as far as the internal mechanisms of iptables are aware. Normally, the stream will be
ASSURED by now.

A connection may also enter the ESTABLISHED state, but not be[ASSURED]. This happens if we have
connection pickup turned on (Requires the tcp-window-tracking patch, and the ip_conntrack_tcp_loose to be
set to 1 or higher). The default, without the tcp-window-tracking patch, is to have this behaviour, and is not

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

changeable.

When a TCP connection is closed down, it is done in the following way and takes the following states.

FIN/ACK

-
<

ESTABLISHED

>< ACK
ESTABLISHED

/<FIN/ACK
ESTABLISHED

ACK

CLOSED

CLOSED

As you can see, the connection is never really closed until the last ACK is sent. Do note that this picture only
describes how it is closed down under normal circumstances. A connection may also, for example, be closed
by sending a RST(reset), if the connection were to be refused. In this case, the connection would be closed
down immediately.

When the TCP connection has been closed down, the connection enters the TIME_WAIT state, which is per
default set to 2 minutes. This is used so that all packets that have gotten out of order can still get through our
rule-set, even after the connection has already closed. This is used as a kind of buffer time so that packets that
have gotten stuck in one or another congested router can still get to the firewall, or to the other end of the
connection.

If the connection is reset by a RST packet, the state is changed to CLOSE. This means that the connection per
default has 10 seconds before the whole connection is definitely closed down. RST packets are not
acknowledged in any sense, and will break the connection directly. There are also other states than the ones we
have told you about so far. Here is the complete list of possible states that a TCP stream may take, and their
timeout values.

Table 7-2. Internal states

State Timeout value
NONE 30 minutes
ESTABLISHED|5 days

77 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

State Timeout value

SYN_SENT 2 minutes

SYN_RECV 60 seconds

FIN_WAIT 2 minutes

TIME_WAIT |2 minutes

CLOSE 10 seconds

CLOSE_WAIT (12 hours

LAST_ACK 30 seconds

LISTEN 2 minutes

These values are most definitely not absolute. They may change with kernel revisions, and they may also be
changed via the proc file-system in the /proc/sys/net/ipv4/netfilter/ip_ct_tcp_* variables. The default
values should, however, be fairly well established in practice. These values are set in seconds. Early versions
of the patch used jiffies (which was a bug).

e
v

Also note that the User-land side of the state machine does not look at TCP flags (i.e., RST,
ACK, and SYN are flags) set in the TCP packets. This is generally bad, since you may want
to allow packets in the NEW state to get through the firewall, but when you specify the
NEW flag, you will in most cases mean SYN packets.

This is not what happens with the current state implementation; instead, even a packet with
no bit set or an ACK flag, will count as NEW. This can be used for redundant firewalling
and so on, but it is generally extremely bad on your home network, where you only have a
single firewall. To get around this behavior, you could use the command explained in the
State NEW packets but no SYN bit set section of the Common problems and guestions
appendix. Another way is to install the tcp-window-tracking extension from patch-o-matic,
and set the /proc/sys/net/ipva/netfilter/ip_conntrack_tcp_loose to zero, which will
make the firewall drop all NEW packets with anything but the SYN flag set.

UDP connections

UDP connections are in themselves not stateful connections, but rather stateless. There are several reasons
why, mainly because they don't contain any connection establishment or connection closing; most of all they

lack sequencing.

Receiving two UDP datagrams in a specific order does not say anything about the order in

which they were sent. It is, however, still possible to set states on the connections within the kernel. Let's have
a look at how a connection can be tracked and how it might look in conntrack.

78 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

79 of 273

Client Firewall Server

UDP Packet

ESTABLISHED

UDP Packet
NEW

As you can see, the connection is brought up almost exactly in the same way as a TCP connection. That is,
from the user-land point of view. Internally, conntrack information looks quite a bit different, but intrinsically
the details are the same. First of all, let's have a look at the entry after the initial UDP packet has been sent.

udp 17 20 src=192.168.1.2 dst=192.168.1.5 sport=137 dport=1025 \
[UNREPLIED] src=192.168.1.5 dst=192.168.1.2 sport=1025 \
dport=137 use=1

As you can see from the first and second values, this is an UDP packet. The first is the protocol name, and the
second is protocol number. This is just the same as for TCP connections. The third value marks how many
seconds this state entry has to live. After this, we get the values of the packet that we have seen and the future
expectations of packets over this connection reaching us from the initiating packet sender. These are the
source, destination, source port and destination port. At this point, the [UNREPLIED] flag tells us that there's
so far been no response to the packet. Finally, we get a brief list of the expectations for returning packets. Do
note that the latter entries are in reverse order to the first values. The timeout at this point is set to 30 seconds,
as per default.

udp 17 170 src=192.168.1.2 dst=192.168.1.5 sport=137 \
dport=1025 src=192.168.1.5 dst=192.168.1.2 sport=1025 \
dport=137 [ASSURED] use=1

At this point the server has seen a reply to the first packet sent out and the connection is now considered as
ESTABLISHED. This is not shown in the connection tracking, as you can see. The main difference is that the
[UNREPLIED] flag has now gone. Moreover, the default timeout has changed to 180 seconds - but in this
example that's by now been decremented to 170 seconds - in 10 seconds' time, it will be 160 seconds. There's
one thing that's missing, though, and can change a bit, and that is the [ASSURED] flag described above. For
the [ASSURED] flag to be set on a tracked connection, there must have been a legitimate reply packet to the
NEW packet.

udp 17 175 src=192.168.1.5 dst=195.22.79.2 sport=1025 \
dport=53 src=195.22.79.2 dst=192.168.1.5 sport=53 \
dport=1025 [ASSURED] use=1

At this point, the connection has become assured. The connection looks exactly the same as the previous
example. If this connection is not used for 180 seconds, it times out. 180 Seconds is a comparatively low value,

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

80 of 273

but should be sufficient for most use. This value is reset to its full value for each packet that matches the same
entry and passes through the firewall, just the same as for all of the internal states.

ICMP connections

ICMP packets are far from a stateful stream, since they are only used for controlling and should never establish
any connections. There are four ICMP types that will generate return packets however, and these have 2
different states. These ICMP messages can take the NEW and ESTABLISHED states. The ICMP types we are
talking about are Echo request and reply, Timestamp request and reply, Information request and reply and
finally Address mask request and reply. Out of these, the timestamp request and information request are
obsolete and could most probably just be dropped. However, the Echo messages are used in several setups such
as pinging hosts. Address mask requests are not used often, but could be useful at times and worth allowing.
To get an idea of how this could look, have a look at the following image.

Client Firewall Server
/CCMP Echo
NEW request
ESTABLISHED Client
processing

As you can see in the above picture, the host sends an echo request to the target, which is considered as NEW
by the firewall. The target then responds with a echo reply which the firewall considers as state
ESTABLISHED. When the first echo request has been seen, the following state entry goes into the
ip_conntrack

CMP Echo
Reply

icmp 1 25 src=192.168.1.6 dst=192.168.1.10 type=8 code=0 \
1d=33029 [UNREPLIED] src=192.168.1.10 dst=192.168.1.6 \
type=0 code=0 i1d=33029 use=1

This entry looks a little bit different from the standard states for TCP and UDP as you can see. The protocol is
there, and the timeout, as well as source and destination addresses. The problem comes after that however. We
now have 3 new fields called type, code and id. They are not special in any way, the type field contains the
ICMP type and the code field contains the ICMP code. These are all available in ICMP types appendix. The
final id field, contains the ICMP ID. Each ICMP packet gets an ID set to it when it is sent, and when the
receiver gets the ICMP message, it sets the same ID within the new ICMP message so that the sender will
recognize the reply and will be able to connect it with the correct ICMP request.

The next field, we once again recognize as the [UNREPLIED] flag, which we have seen before. Just as before,

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

this flag tells us that we are currently looking at a connection tracking entry that has seen only traffic in one
direction. Finally, we see the reply expectation for the reply ICMP packet, which is the inversion of the
original source and destination IP addresses. As for the type and code, these are changed to the correct values
for the return packet, so an echo request is changed to echo reply and so on. The ICMP ID is preserved from
the request packet.

The reply packet is considered as being ESTABLISHED, as we have already explained. However, we can
know for sure that after the ICMP reply, there will be absolutely no more legal traffic in the same connection.
For this reason, the connection tracking entry is destroyed once the reply has traveled all the way through the
Netfilter structure.

In each of the above cases, the request is considered as NEW, while the reply is considered as
ESTABLISHED. Let's consider this more closely. When the firewall sees a request packet, it considers it as
NEW. When the host sends a reply packet to the request it is considered ESTABLISHED.

'
Note that this means that the reply packet must match the criterion given by the connection
NO‘B\' tracking entry to be considered as established, just as with all other traffic types.

ICMP requests has a default timeout of 30 seconds, which you can change in the
/proc/sys/net/ipva/netfilter/ip_ct_icmp_timeout entry. This should in general be a good timeout
value, since it will be able to catch most packets in transit.

Another hugely important part of ICMP is the fact that it is used to tell the hosts what happened to specific
UDP and TCP connections or connection attempts. For this simple reason, ICMP replies will very often be
recognized as RELATED to original connections or connection attempts. A simple example would be the
ICMP Host unreachable or ICMP Network unreachable. These should always be spawned back to our host if it
attempts an unsuccessful connection to some other host, but the network or host in question could be down,
and hence the last router trying to reach the site in question will reply with an ICMP message telling us about
it. In this case, the ICMP reply is considered as a RELATED packet. The following picture should explain how

it would look.
Client Firewall Server
SYN
NEW

ICMP Net
Unreach

Client RELATED

Aborts

81 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

In the above example, we send out a SYN packet to a specific address. This is considered as a NEW
connection by the firewall. However, the network the packet is trying to reach is unreachable, so a router
returns a network unreachable ICMP error to us. The connection tracking code can recognize this packet as
RELATED. thanks to the already added tracking entry, so the ICMP reply is correctly sent to the client which
will then hopefully abort. Meanwhile, the firewall has destroyed the connection tracking entry since it knows
this was an error message.

The same behavior as above is experienced with UDP connections if they run into any problem like the above.
All ICMP messages sent in reply to UDP connections are considered as RELATED. Consider the following
image.

Client Firewall Server

ICMP Net
Prohibited

Client RELATED

Abort

UDP Packet
NEW

This time an UDP packet is sent to the host. This UDP connection is considered as NEW. However, the
network is administratively prohibited by some firewall or router on the way over. Hence, our firewall receives
a ICMP Network Prohibited in return. The firewall knows that this ICMP error message is related to the
already opened UDP connection and sends it as a RELATED packet to the client. At this point, the firewall
destroys the connection tracking entry, and the client receives the ICMP message and should hopefully abort.

Default connections

In certain cases, the conntrack machine does not know how to handle a specific protocol. This happens if it
does not know about that protocol in particular, or doesn't know how it works. In these cases, it goes back to a
default behavior. The default behavior is used on, for example, NETBLT, MUX and EGP. This behavior looks
pretty much the same as the UDP connection tracking. The first packet is considered NEW, and reply traffic
and so forth is considered ESTABLISHED.

When the default behavior is used, all of these packets will attain the same default timeout value. This can be
set via the /proc/sys/net/ipv4/netfilter/ip_ct_generic_timeout variable. The default value here is 600
seconds, or 10 minutes. Depending on what traffic you are trying to send over a link that uses the default
connection tracking behavior, this might need changing. Especially if you are bouncing traffic through
satellites and such, which can take a long time.

82 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Untracked connections and the raw table

UNTRACKED is a rather special keyword when it comes to connection tracking in Linux. Basically, it is used
to match packets that has been marked in the raw table not to be tracked.

The raw table was created specifically for this reason. In this table, you set a NOTRACK mark on packets that
you do not wish to track in netfilter.

1
Notice how | say packets, not connection, since the mark is actually set for each and every

Gﬁaﬂﬁ packet that enters. Otherwise, we would still have to do some kind of tracking of the
_\\m‘D connection to know that it should not be tracked.

As we have already stated in this chapter, conntrack and the state machine is rather resource hungry. For this
reason, it might sometimes be a good idea to turn off connection tracking and the state machine.

One example would be if you have a heavily trafficked router that you want to firewall the incoming and
outgoing traffic on, but not the routed traffic. You could then set the NOTRACK mark on all packets not
destined for the firewall itself by ACCEPT'ing all packets with destination your host in the raw table, and then
set the NOTRACK for all other traffic. This would then allow you to have stateful matching on incoming
traffic for the router itself, but at the same time save processing power from not handling all the crossing
traffic.

Another example when NOTRACK can be used is if you have a highly trafficked webserver and want to do
stateful tracking, but don't want to waste processing power on tracking the web traffic. You could then set up a
rule that turns of tracking for port 80 on all the locally owned IP addresses, or the ones that are actually serving
web traffic. You could then enjoy statefull tracking on all other services, except for webtraffic which might
save some processing power on an already overloaded system.

There is however some problems with NOTRACK that you must take into consideration. If a whole connection
is set with NOTRACK, then you will not be able to track related connections either, conntrack and nat helpers
will simply not work for untracked connections, nor will related ICMP errors do. You will have to open up for
these manually in other words. When it comes to complex protocols such as FTP and SCTP et cetera, this can
be very hard to manage. As long as you are aware of this, you should be able to handle this however.

Complex protocols and connection tracking

Certain protocols are more complex than others. What this means when it comes to connection tracking, is that
such protocols may be harder to track correctly. Good examples of these are the ICQ, IRC and FTP protocols.
Each and every one of these protocols carries information within the actual data payload of the packets, and
hence requires special connection tracking helpers to enable it to function correctly.

This is a list of the complex protocols that has support inside the linux kernel, and which kernel version it was
introduced in.

Table 7-3. Complex protocols support

Protocol name Kernel versions
FTP 2.3

83 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

84 of 273

Protocol name Kernel versions
IRC 2.3
TFTP 25
Amanda 25
e FTP
e IRC
e TFTP

Let's take the FTP protocol as the first example. The FTP protocol first opens up a single connection that is
called the FTP control session. When we issue commands through this session, other ports are opened to carry
the rest of the data related to that specific command. These connections can be done in two ways, either
actively or passively. When a connection is done actively, the FTP client sends the server a port and IP address
to connect to. After this, the FTP client opens up the port and the server connects to that specified port from a
random unprivileged port (>1024) and sends the data over it.

The problem here is that the firewall will not know about these extra connections, since they were negotiated
within the actual payload of the protocol data. Because of this, the firewall will be unable to know that it
should let the server connect to the client over these specific ports.

The solution to this problem is to add a special helper to the connection tracking module which will scan
through the data in the control connection for specific syntaxes and information. When it runs into the correct
information, it will add that specific information as RELATED and the server will be able to track the
connection, thanks to that RELATED entry. Consider the following picture to understand the states when the
FTP server has made the connection back to the client.

Client Firewall Server
/(SYN
RELATED
SYN/ACK
ESTABLISHED
\A.(ACK

Passive FTP works the opposite way. The FTP client tells the server that it wants some specific data, upon
which the server replies with an IP address to connect to and at what port. The client will, upon receipt of this
data, connect to that specific port, from its own port 20(the FTP-data port), and get the data in question. If you
have an FTP server behind your firewall, you will in other words require this module in addition to your
standard iptables modules to let clients on the Internet connect to the FTP server properly. The same goes if

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

85 of 273

you are extremely restrictive to your users, and only want to let them reach HTTP and FTP servers on the
Internet and block all other ports. Consider the following image and its bearing on Passive FTP.

Client Firewall Server

SYN/ACK

ESTABLISHED
ACK

SYN
RELATED

Some conntrack helpers are already available within the kernel itself. More specifically, the FTP and IRC
protocols have conntrack helpers as of writing this. If you can not find the conntrack helpers that you need
within the kernel itself, you should have a look at the patch-o-matic tree within user-land iptables. The
patch-o-matic tree may contain more conntrack helpers, such as for the ntalk or H.323 protocols. If they are not
available in the patch-o-matic tree, you have a number of options. Either you can look at the CVS source of
iptables, if it has recently gone into that tree, or you can contact the Netfilter-devel mailing list and ask if it is
available. If it is not, and there are no plans for adding it, you are left to your own devices and would most
probably want to read the Rusty Russell's Unreliable Netfilter Hacking HOW-TO which is linked from the
Other resources and links appendix.

Conntrack helpers may either be statically compiled into the kernel, or as modules. If they are compiled as
modules, you can load them with the following command

modprobe ip_conntrack_ftp
modprobe ip_conntrack_irc
modprobe ip_conntrack_tftp
modprobe ip_conntrack_amanda

Do note that connection tracking has nothing to do with NAT, and hence you may require more modules if you
are NAT'ing connections as well. For example, if you were to want to NAT and track FTP connections, you
would need the NAT module as well. All NAT helpers starts with ip_nat_ and follow that naming convention;
so for example the FTP NAT helper would be named ip_nat_ftp and the IRC module would be named
ip_nat_irc. The conntrack helpers follow the same naming convention, and hence the IRC conntrack helper
would be named ip_conntrack_irc, while the FTP conntrack helper would be named ip_conntrack_ftp.

What's next?

This chapter has discussed how the state machine in netfilter works and how it keeps state of different
connections. The chapter has also discussed how it is represented toward you, the end user and what you can
do to alter its behavior, as well as different protocols that are more complex to do connection tracking on, and

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

how the different conntrack helpers come into the picture.

The next chapter will discuss how to save and restore rulesets using the iptables-save and iptables-restore
programs distributed with the iptables applications. This has both pros and cons, and the chapter will discuss it
in detail.

Chapter 8. Saving and restoring large rule-sets

The iptables package comes with two more tools that are very useful, specially if you are dealing with larger
rule-sets. These two tools are called iptables-save and iptables-restore and are used to save and restore rule-sets
to a specific file-format that looks quite a bit different from the standard shell code that you will see in the rest
of this tutorial.

!
iptables-restore can be used together with scripting languages. The big problem is that you

-"\9_ will need to output the results into the stdin of iptables-restore. If you are creating a very big
\ ,) ruleset (several thousand rules) this might be a very good idea, since it will be much faster
\ to insert all the new rules. For example, you would then run make_rules.sh | iptables-restore.

Speed considerations

One of the largest reasons for using the iptables-save and iptables-restore commands is that they will speed up
the loading and saving of larger rule-sets considerably. The main problem with running a shell script that
contains iptables rules is that each invocation of iptables within the script will first extract the whole rule-set
from the Netfilter kernel space, and after this, it will insert or append rules, or do whatever change to the
rule-set that is needed by this specific command. Finally, it will insert the new rule-set from its own memory
into kernel space. Using a shell script, this is done for each and every rule that we want to insert, and for each
time we do this, it takes more time to extract and insert the rule-set.

To solve this problem, there is the iptables-save and restore commands. The iptables-save command is used to
save the rule-set into a specially formatted text-file, and the iptables-restore command is used to load this
text-file into kernel again. The best parts of these commands is that they will load and save the rule-set in one
single request. iptables-save will grab the whole rule-set from kernel and save it to a file in one single
movement. iptables-restore will upload that specific rule-set to kernel in a single movement for each table. In
other words, instead of dropping the rule-set out of kernel some 30,000 times, for really large rule-sets, and
then upload it to kernel again that many times, we can now save the whole thing into a file in one movement
and then upload the whole thing in as little as three movements depending on how many tables you use.

As you can understand, these tools are definitely something for you if you are working on a huge set of rules
that needs to be inserted. However, they do have drawbacks that we will discuss more in the next section.

Drawbacks with restore

As you may have already wondered, can iptables-restore handle any kind of scripting? So far, no, it cannot and
it will most probably never be able to. This is the main flaw in using iptables-restore since you will not be able
to do a huge set of things with these files. For example, what if you have a connection that has a dynamically

86 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

assigned IP address and you want to grab this dynamic IP every-time the computer boots up and then use that
value within your scripts? With iptables-restore, this is more or less impossible.

One possibility to get around this is to make a small script which grabs the values you would like to use in the
script, then sed the iptables-restore file for specific keywords and replace them with the values collected via the
small script. At this point, you could save it to a temporary file, and then use iptables-restore to load the new
values. This causes a lot of problems however, and you will be unable to use iptables-save properly since it
would probably erase your manually added keywords in the restore script. It is, in other words, a clumsy
solution.

A second possibility is to do as previously described. Make a script that outputs rules in iptables-restore
format, and then feed them on standard input of iptables-restore. For very large rulesets this would be to be
preferred over running iptables itself, since it has a bad habit of taking a lot of processing power on very large
rulesets as previously described in this chapter.

Another solution is to load the iptables-restore scripts first, and then load a specific shell script that inserts
more dynamic rules in their proper places. Of course, as you can understand, this is just as clumsy as the first
solution. iptables-restore is simply not very well suited for configurations where IP addresses are dynamically
assigned to your firewall or where you want different behaviors depending on configuration options and so on.

Another drawback with iptables-restore and iptables-save is that it is not fully functional as of writing this. The
problem is simply that not a lot of people use it as of today and hence there are not a lot of people finding bugs,
and in turn some matches and targets will simply be inserted badly, which may lead to some strange behaviors
that you did not expect. Even though these problems exist, | would highly recommend using these tools which
should work extremely well for most rule-sets as long as they do not contain some of the new targets or
matches that it does not know how to handle properly.

iptables-save

The iptables-save command is, as we have already explained, a tool to save the current rule-set into a file that
iptables-restore can use. This command is quite simple really, and takes only two arguments. Take a look at the
following example to understand the syntax of the command.

iptables-save [-C] [-t table]

The -c argument tells iptables-save to keep the values specified in the byte and packet counters. This could for
example be useful if we would like to reboot our main firewall, but not lose byte and packet counters which we
may use for statistical purposes. Issuing a iptables-save command with the -c argument would then make it
possible for us to reboot without breaking our statistical and accounting routines. The default value is, of
course, to not keep the counters intact when issuing this command.

The -t argument tells the iptables-save command which tables to save. Without this argument the command
will automatically save all tables available into the file. The following is an example on what output you can
expect from the iptables-save command if you do not have any rule-set loaded.

Generated by iptables-save vl1.2.6a on Wed Apr 24 10:19:17 2002
*filter

- INPUT ACCEPT [404:19766]

:FORWARD ACCEPT [0:0]

OUTPUT ACCEPT [530:43376]

COMMIT

Completed on Wed Apr 24 10:19:17 2002

Generated by iptables-save vl1.2.6a on Wed Apr 24 10:19:17 2002
*mangle

87 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

:PREROUTING ACCEPT [451:22060]

INPUT ACCEPT [451:22060]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [594:47151]

:POSTROUTING ACCEPT [594:47151]

COMMIT

Completed on Wed Apr 24 10:19:17 2002
Generated by iptables-save vl1.2.6a on Wed Apr 24 10:19:17 2002
*nat

:PREROUTING ACCEPT [0:0]

POSTROUTING ACCEPT [3:450]

OUTPUT ACCEPT [3:450]

COMMIT

Completed on Wed Apr 24 10:19:17 2002

This contains a few comments starting with a # sign. Each table is marked like *<table-name>, for example
*mangle. Then within each table we have the chain specifications and rules. A chain specification looks like
:<chain-name> <chain-policy> [<packet-counter>:<byte-counter>]. The chain-name may be for example
PREROUTING, the policy is described previously and can, for example, be ACCEPT. Finally the
packet-counter and byte-counters are the same counters as in the output from iptables -L -v. Finally, each table
declaration ends in a COMMIT keyword. The COMMIT keyword tells us that at this point we should commit
all rules currently in the pipeline to kernel.

The above example is pretty basic, and hence | believe it is nothing more than proper to show a brief example
which contains a very small Iptables-save ruleset. If we would run iptables-save on this, it would look
something like this in the output:

Generated by iptables-save vl1.2_6a on Wed Apr 24 10:19:55 2002
*Filter

INPUT DROP [1:229]

:FORWARD DROP [0:0]

OUTPUT DROP [0:0]

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -i ethO -m state --state RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -i ethl -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT
-A OUTPUT -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT
COMMIT

Completed on Wed Apr 24 10:19:55 2002

Generated by iptables-save vl1.2.6a on Wed Apr 24 10:19:55 2002
*mangle

:PREROUTING ACCEPT [658:32445]

INPUT ACCEPT [658:32445]

:FORWARD ACCEPT [0:0]

OUTPUT ACCEPT [891:68234]

:POSTROUTING ACCEPT [891:68234]

COMMIT

Completed on Wed Apr 24 10:19:55 2002

Generated by iptables-save vl1.2.6a on Wed Apr 24 10:19:55 2002
*nat

PREROUTING ACCEPT [1:229]

:POSTROUTING ACCEPT [3:450]

OUTPUT ACCEPT [3:450]

-A POSTROUTING -0 ethO -j SNAT --to-source 195.233.192.1

COMMIT

Completed on Wed Apr 24 10:19:55 2002

As you can see, each command has now been prefixed with the byte and packet counters since we used the -c
argument. Except for this, the command-line is quite intact from the script. The only problem now, is how to
save the output to a file. Quite simple, and you should already know how to do this if you have used linux at all
before. It is only a matter of piping the command output on to the file that you would like to save it as. This
could look like the following:

iptables-save -c > /etc/iptables-save

88 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

89 of 273

The above command will in other words save the whole rule-set to a file called /etc/iptables-save with byte
and packet counters still intact.

iptables-restore

The iptables-restore command is used to restore the iptables rule-set that was saved with the iptables-save
command. It takes all the input from standard input and can't load from files as of writing this, unfortunately.
This is the command syntax for iptables-restore:

iptables-restore [-c] [-n]

The -c argument restores the byte and packet counters and must be used if you want to restore counters that
were previously saved with iptables-save. This argument may also be written in its long form --counters.

The -n argument tells iptables-restore to not overwrite the previously written rules in the table, or tables, that it
is writing to. The default behavior of iptables-restore is to flush and destroy all previously inserted rules. The
short -n argument may also be replaced with the longer format --noflush.

To load a rule-set with the iptables-restore command, we could do this in several ways, but we will mainly
look at the simplest and most common way here.

cat /etc/iptables-save | iptables-restore -c

The following will also work:

iptables-restore -c < /etc/iptables-save

This would cat the rule-set located within the Zetc/iptables-save file and then pipe it to iptables-restore
which takes the rule-set on the standard input and then restores it, including byte and packet counters. It is that
simple to begin with. This command could be varied until oblivion and we could show different piping
possibilities, however, this is a bit out of the scope of this chapter, and hence we will skip that part and leave it
as an exercise for the reader to experiment with.

The rule-set should now be loaded properly to kernel and everything should work. If not, you may possibly
have run into a bug in these commands.

What's next?

This chapter has discussed the iptables-save and iptables-restore programs to some extent and how they can be
used. Both applications are distributed with the iptables package, and can be used to quickly save large rulesets
and then inserting them into the kernel again.

The next chapter will take a look at the syntax of a iptables rule and how to write properly formatted rule-sets.
It will also show some basic good coding styles to adhere to, as required.

Chapter 9. How a rule is built

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

This chapter and the upcoming three chapters will discuss at length how to build your own rules. A rule could
be described as the directions the firewall will adhere to when blocking or permitting different connections and
packets in a specific chain. Each line you write that's inserted in a chain should be considered a rule. We will
also discuss the basic matches that are available, and how to use them, as well as the different targets and how
we can construct new targets of our own (i.e.,new sub chains).

This chapter will deal with the raw basics of how a rule is created and how you write it and enter it so that it
will be accepted by the userspace program iptables, the different tables, as well as the commands that you can
issue to iptables. After that we will in the next chapter look at all the matches that are available to iptables, and
then get more into detail of each type of target and jump.

Basics of the iptables command

As we have already explained, each rule is a line that the kernel looks at to find out what to do with a packet. If
all the criteria - or matches - are met, we perform the target - or jump - instruction. Normally we would write
our rules in a syntax that looks something like this:

iptables [-t table] command [match] [target/jump]

There is nothing that says that the target instruction has to be the last function in the line. However, you would

usually adhere to this syntax to get the best readability. Anyway, most of the rules you'll see are written in this

way. Hence, if you read someone else's script, you'll most likely recognize the syntax and easily understand the
rule.

If you want to use a table other than the standard table, you could insert the table specification at the point at
which [table] is specified. However, it is not necessary to state explicitly what table to use, since by default
iptables uses the filter table on which to implement all commands. Neither do you have to specify the table at
just this point in the rule. It could be set pretty much anywhere along the line. However, it is more or less
standard to put the table specification at the beginning.

One thing to think about though: The command should always come first, or alternatively directly after the
table specification. We use ‘command' to tell the program what to do, for example to insert a rule or to add a
rule to the end of the chain, or to delete a rule. We shall take a further look at this below.

The match is the part of the rule that we send to the kernel that details the specific character of the packet, what
makes it different from all other packets. Here we could specify what IP address the packet comes from, from
which network interface, the intended IP address, port, protocol or whatever. There is a heap of different
matches that we can use that we will look closer at further on in this chapter.

Finally we have the target of the packet. If all the matches are met for a packet, we tell the kernel what to do
with it. We could, for example, tell the kernel to send the packet to another chain that we've created ourselves,
and which is part of this particular table. We could tell the kernel to drop the packet dead and do no further
processing, or we could tell the kernel to send a specified reply to the sender. As with the rest of the content in
this section, we'll look closer at it further on in the chapter.

Tables

The -t option specifies which table to use. Per default, the filter table is used. We may specify one of the
following tables with the -t option. Do note that this is an extremely brief summary of some of the contents of
the Traversing of tables and chains chapter.

90 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Table 9-1. Tables

Table Explanation

The nat table is used mainly for Network Address Translation. "NAT"ed packets get their IP addresses
altered, according to our rules. Packets in a stream only traverse this table once. We assume that the
first packet of a stream is allowed. The rest of the packets in the same stream are automatically
"NAT"ed or Masqueraded etc, and will be subject to the same actions as the first packet. These will, in
other words, not go through this table again, but will nevertheless be treated like the first packet in the
stream. This is the main reason why you should not do any filtering in this table, which we will discuss
at greater length further on. The PREROUTING chain is used to alter packets as soon as they get in to
the firewall. The OUTPUT chain is used for altering locally generated packets (i.e., on the firewall)
before they get to the routing decision. Finally we have the POSTROUTING chain which is used to
alter packets just as they are about to leave the firewall.

nat

This table is used mainly for mangling packets. Among other things, we can change the contents of
different packets and that of their headers. Examples of this would be to change the TTL, TOS or
MARK. Note that the MARK is not really a change to the packet, but a mark value for the packet is set
in kernel space. Other rules or programs might use this mark further along in the firewall to filter or do
advanced routing on; tc is one example. The table consists of five built in chains, the PREROUTING,
POSTROUTING, OUTPUT, INPUT and FORWARD chains. PREROUTING is used for altering
mangle|packets just as they enter the firewall and before they hit the routing decision. POSTROUTING is used
to mangle packets just after all routing decisions have been made. OUTPUT is used for altering locally
generated packets after they enter the routing decision. INPUT is used to alter packets after they have
been routed to the local computer itself, but before the user space application actually sees the data.
FORWARD is used to mangle packets after they have hit the first routing decision, but before they
actually hit the last routing decision. Note that mangle can't be used for any kind of Network Address
Translation or Masquerading, the nat table was made for these kinds of operations.

The filter table should be used exclusively for filtering packets. For example, we could DROP, LOG,
ACCEPT or REJECT packets without problems, as we can in the other tables. There are three chains
built in to this table. The first one is named FORWARD and is used on all non-locally generated
packets that are not destined for our local host (the firewall, in other words). INPUT is used on all
packets that are destined for our local host (the firewall) and OUTPUT is finally used for all locally
generated packets.

filter

The raw table and its chains are used before any other tables in netfilter. It was introduced to use the
NOTRACK target. This table is rather new and is only available, if compiled, with late 2.6 kernels and
later. The raw table contains two chains. The PREROUTING and OUTPUT chain, where they will
handle packets before they hit any of the other netfilter subsystems. The PREROUTING chain can be
used for all incoming packets to this machine, or that are forwarded, while the OUTPUT chain can be
used to alter the locally generated packets before they hit any of the other netfilter subsystems.

raw

The above details should have explained the basics about the three different tables that are available. They
should be used for totally different purposes, and you should know what to use each chain for. If you do not
understand their usage, you may well dig a pit for yourself in your firewall, into which you will fall as soon as
someone finds it and pushes you into it. We have already discussed the requisite tables and chains in more
detail within the Traversing of tables and chains chapter. If you do not understand this fully, I advise you to go

91 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

92 of 273

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

back and read through it again.

Commands

In this section we will cover all the different commands and what can be done with them. The command tells
iptables what to do with the rest of the rule that we send to the parser. Normally we would want either to add or
delete something in some table or another. The following commands are available to iptables:

Table 9-2. Commands

Command |-A, --append
Example |iptables -A INPUT ...
. |This command appends the rule to the end of the chain. The rule will in other words always be put
Explanation)
last in the rule-set and hence be checked last, unless you append more rules later on.
Command |-D, --delete
Example |iptables -D INPUT --dport 80 -j DROP, iptables -D INPUT 1
This command deletes a rule in a chain. This could be done in two ways; either by entering the
whole rule to match (as in the first example), or by specifying the rule number that you want to
Explanation|match. If you use the first method, your entry must match the entry in the chain exactly. If you use
the second method, you must match the number of the rule you want to delete. The rules are
numbered from the top of each chain, starting with number 1.
Command |-R, --replace
Example |iptables -R INPUT 1 -5 192.168.0.1 -j DROP
This command replaces the old entry at the specified line. It works in the same way as the --delete
Explanation|command, but instead of totally deleting the entry, it will replace it with a new entry. The main
use for this might be while you're experimenting with iptables.
Command |-I, --insert
Example |iptables -1 INPUT 1 --dport 80 -j ACCEPT
Insert a rule somewhere in a chain. The rule is inserted as the actual number that we specify. In
Explanation|other words, the above example would be inserted as rule 1 in the INPUT chain, and hence from
now on it would be the very first rule in the chain.
Command |-L, --list
Example |iptables -L INPUT
This command lists all the entries in the specified chain. In the above case, we would list all the
entries in the INPUT chain. It's also legal to not specify any chain at all. In the last case, the
Explanation|command would list all the chains in the specified table (To specify a table, see the Tables
section). The exact output is affected by other options sent to the parser, for example the -n and -v
options, etc.
Command |-F, --flush
Example |iptables -F INPUT
This command flushes all rules from the specified chain and is equivalent to deleting each rule
Explanation|one by one, but is quite a bit faster. The command can be used without options, and will then
delete all rules in all chains within the specified table.
Command |-Z, --zero
Example |iptables -Z INPUT

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

93 of 273

Explanation

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

This command tells the program to zero all counters in a specific chain, or in all chains. If you
have used the -v option with the -L command, you have probably seen the packet counter at the
beginning of each field. To zero this packet counter, use the -Z option. This option works the
same as -L, except that -Z won't list the rules. If -L and -Z is used together (which is legal), the
chains will first be listed, and then the packet counters are zeroed.

Command |-N, --new-chain
Example |iptables -N allowed
This command tells the kernel to create a new chain of the specified name in the specified table.
Explanation|In the above example we create a chain called allowed. Note that there must not already be a
chain or target of the same name.
Command |-X, --delete-chain
Example |iptables -X allowed
This command deletes the specified chain from the table. For this command to work, there must
Explanation be no rules that refer to _the chain that_ is to be deleted. In oth_er words, you Wou_ld have to re_place
or delete all rules referring to the chain before actually deleting the chain. If this command is used
without any options, all chains but those built in to the specified table will be deleted.
Command |-P, --policy
Example |iptables -P INPUT DROP
This command tells the kernel to set a specified default target, or policy, on a chain. All packets
Explanation|that don't match any rule will then be forced to use the policy of the chain. Legal targets are
DROP and ACCEPT (There might be more, mail me if so).
Command |-E, --rename-chain
Example |iptables -E allowed disallowed
The -E command tells iptables to change the first name of a chain, to the second name. In the
Explanation example above we would, in other words, change the name of the chain from al 1owed to

disallowed. Note that this will not affect the actual way the table will work. It is, in other words,

just a cosmetic change to the table.

You should always enter a complete command line, unless you just want to list the built-in help for iptables or
get the version of the command. To get the version, use the -v option and to get the help message, use the -h
option. As usual, in other words. Next comes a few options that can be used with various different commands.
Note that we tell you with which commands the options can be used and what effect they will have. Also note
that we do not include any options here that affect rules or matches. Instead, we'll take a look at matches and
targets in a later section of this chapter.

Table 9-3. Options

Option -v, --verbose

S;?Tv?tr;]ds --list, --append, --insert, --delete, --replace
This command gives verbose output and is mainly used together with the --list command. If used
together with the --list command, it outputs the interface address, rule options and TOS masks.
The --list command will also include a bytes and packet counter for each rule, if the --verbose

Explanation|option is set. These counters uses the K (x1000), M (x1,000,000) and G (x1,000,000,000)
multipliers. To overrule this and get exact output, you can use the -x option, described later. If this
option is used with the --append, --insert, --delete or --replace commands, the program will output
detailed information on how the rule was interpreted and whether it was inserted correctly, etc.

Option -X, --exact

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

Commands
used with

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

--list

Explanation

This option expands the numerics. The output from --list will in other words not contain the K, M
or G multipliers. Instead we will get an exact output from the packet and byte counters of how
many packets and bytes that have matched the rule in question. Note that this option is only
usable in the --list command and isn't really relevant for any of the other commands.

Option -n, --numeric
Commgnds —list
used with
This option tells iptables to output numerical values. IP addresses and port numbers will be
Explanation pri_nted b_y u_sing their nL_JmericaI values_and not host-names, n_etwork names or application names.
This option is only applicable to the --list command. This option overrides the default of resolving
all numerics to hosts and names, where this is possible.
Option --line-numbers
Commgnds —list
used with
The --line-numbers command, together with the --list command, is used to output line numbers.
Explanation|Using this option, each rule is output with its number. It could be convenient to know which rule
has which number when inserting rules. This option only works with the --list command.
Option -C, --Set-counters
E;rgrmtr;]ds --insert, --append, --replace
This option is used when creating a rule or modifying it in some way. We can then use the option
Explanation to initialize the packet and _byte counters for the rule. The syntax would be something like
--set-counters 20 4000, which would tell the kernel to set the packet counter to 20 and byte
counter to 4000.
Option --modprobe
Commands
used with Al
The --modprobe option is used to tell iptables which module to use when probing for modules or
Explanation adding them to the kernel. It could be used if your modprobe command is not somewhere in the

search path etc. In such cases, it might be necessary to specify this option so the program knows
what to do in case a needed module is not loaded. This option can be used with all commands.

What's next?

This chapter has discussed some of the basic commands for iptables and the tables very briefly that can be used
in netfilter. The commands makes it possible to do quite a lot of different operations on the netfilter package
loaded inside kernel as you have seen.

The next chapter will discuss all the available matches in iptables and netfilter. This is a very heavy and long

chapter, and

I humbly suggest that you don't need to actually learn every single match available in any detail,

except the ones that you are going to use. A good idea might be to get a brief understanding of what each
match does, and then get a better grasp on them as you need them.

Chapter 10. Iptables matches

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

95 of 273

In this chapter we'll talk a bit more about matches. I've chosen to narrow down the matches into five different
subcategories. First of all we have the generic matches, which can be used in all rules. Then we have the TCP
matches which can only be applied to TCP packets. We have UDP matches which can only be applied to UDP
packets, and ICMP matches which can only be used on ICMP packets. Finally we have special matches, such
as the state, owner and limit matches and so on. These final matches have in turn been narrowed down to even
more subcategories, even though they might not necessarily be different matches at all. I hope this is a
reasonable breakdown and that all people out there can understand it.

As you may already understand if you have read the previous chapters, a match is something that specifies a
special condition within the packet that must be true (or false). A single rule can contain several matches of any
kind. For example, we may want to match packets that come from a specific host on a our local area network,
and on top of that only from specific ports on that host. We could then use matches to tell the rule to only apply
the target - or jump specification - on packets that have a specific source address, that come in on the interface
that connects to the LAN and the packets must be one of the specified ports. If any one of these matches fails
(e.g., the source address isn't correct, but everything else is true), the whole rule fails and the next rule is tested
on the packet. If all matches are true, however, the target specified by the rule is applied.

Generic matches

This section will deal with Generic matches. A generic match is a kind of match that is always available,
whatever kind of protocol we are working on, or whatever match extensions we have loaded. No special
parameters at all are needed to use these matches; in other words. | have also included the --protocol match
here, even though it is more specific to protocol matches. For example, if we want to use a TCP match, we
need to use the --protocol match and send TCP as an option to the match. However, --protocol is also a match
in itself, since it can be used to match specific protocols. The following matches are always available.

Table 10-1. Generic matches

Match -p, --protocol

Kernel 2.3,2.4,25and 2.6

Example |iptables -A INPUT -p tcp

This match is used to check for certain protocols. Examples of protocols are TCP, UDP and
ICMP. The protocol must either be one of the internally specified TCP, UDP or ICMP. It may
also take a value specified in the /etc/protocols file, and if it can't find the protocol there it will
reply with an error. The protocl may also be an integer value. For example, the ICMP protocol is
Explanation|integer value 1, TCP is 6 and UDP is 17. Finally, it may also take the value ALL. ALL means that
it matches only TCP, UDP and ICMP. If this match is given the integer value of zero (0), it means
ALL protocols, which in turn is the default behavior, if the --protocol match is not used. This
match can also be inversed with the ! sign, so --protocol ! tcp would mean to match UDP and
ICMP.

Match -S, --Src, --source

Kernel 2.3,2.4,25and 2.6

Example |iptables -A INPUT -5 192.168.1.1

This is the source match, which is used to match packets, based on their source IP address. The
main form can be used to match single IP addresses, such as 192.168.1.1. It could also be used
with a netmask in a CIDR "bit" form, by specifying the number of ones (1's) on the left side of the
network mask. This means that we could for example add /24 to use a 255.255.255.0 netmask. We
could then match whole IP ranges, such as our local networks or network segments behind the

Explanation

firewall. The line would then look something like 192.168.0.0/24. This would match all packets in

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

the 192.168.0.x range. Another way is to do it with a regular netmask in the 255.255.255.255 form
(i.e., 192.168.0.0/255.255.255.0). We could also invert the match with an ! just as before. If we
were, in other words, to use a match in the form of --source ! 192.168.0.0/24, we would match all
packets with a source address not coming from within the 192.168.0.x range. The default is to
match all IP addresses.

Match -d, --dst, --destination
Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -d 192.168.1.1

The --destination match is used for packets based on their destination address or addresses. It
works pretty much the same as the --source match and has the same syntax, except that the match
is based on where the packets are going to. To match an IP range, we can add a netmask either in
Explanation|the exact netmask form, or in the number of ones (1's) counted from the left side of the netmask
bits. Examples are: 192.168.0.0/255.255.255.0 and 192.168.0.0/24. Both of these are equivalent.
We could also invert the whole match with an ! sign, just as before. --destination ! 192.168.0.1
would in other words match all packets except those destined to the 192.168.0.1 IP address.

Match -i, --in-interface
Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -i ethO

This match is used for the interface the packet came in on. Note that this option is only legal in
the INPUT, FORWARD and PREROUTING chains and will return an error message when used
anywhere else. The default behavior of this match, if no particular interface is specified, is to
assume a string value of +. The + value is used to match a string of letters and numbers. A single
Explanation|+ would, in other words, tell the kernel to match all packets without considering which interface it
came in on. The + string can also be appended to the type of interface, so eth+ would be all
Ethernet devices. We can also invert the meaning of this option with the help of the ! sign. The
line would then have a syntax looking something like -i ! ethO, which would match all incoming
interfaces, except ethO0.

Match -0, --out-interface
Kernel 2.3,2.4,25and 2.6
Example |iptables -A FORWARD -0 eth0

The --out-interface match is used for packets on the interface from which they are leaving. Note
that this match is only available in the OUTPUT, FORWARD and POSTROUTING chains, the
opposite in fact of the --in-interface match. Other than this, it works pretty much the same as the
Explanation|--in-interface match. The + extension is understood as matching all devices of similar type, so
eth+ would match all eth devices and so on. To invert the meaning of the match, you can use the !
sign in exactly the same way as for the --in-interface match. If no --out-interface is specified, the
default behavior for this match is to match all devices, regardless of where the packet is going.

Match -f, --fragment
Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -f

This match is used to match the second and third part of a fragmented packet. The reason for this
is that in the case of fragmented packets, there is no way to tell the source or destination ports of
the fragments, nor ICMP types, among other things. Also, fragmented packets might in rather
special cases be used to compound attacks against other computers. Packet fragments like this will
Explanation|not be matched by other rules, and hence this match was created. This option can also be used in
conjunction with the ! sign; however, in this case the ! sign must precede the match, i.e. ! -f.
When this match is inverted, we match all header fragments and/or unfragmented packets. What
this means, is that we match all the first fragments of fragmented packets, and not the second,
third, and so on. We also match all packets that have not been fragmented during transfer. Note

96 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

also that there are really good defragmentation options within the kernel that you can use instead.
As a secondary note, if you use connection tracking you will not see any fragmented packets,
since they are dealt with before hitting any chain or table in iptables.

Implicit matches

This section will describe the matches that are loaded implicitly. Implicit matches are implied, taken for
granted, automatic. For example when we match on --protocol tcp without any further criteria. There are
currently three types of implicit matches for three different protocols. These are TCP matches, UDP matches
and ICMP matches. The TCP based matches contain a set of unique criteria that are available only for TCP
packets. UDP based matches contain another set of criteria that are available only for UDP packets. And the
same thing for ICMP packets. On the other hand, there can be explicit matches that are loaded explicitly.
Explicit matches are not implied or automatic, you have to specify them specifically. For these you use the -m
or --match option, which we will discuss in the next section.

TCP matches

These matches are protocol specific and are only available when working with TCP packets and streams. To
use these matches, you need to specify --protocol tcp on the command line before trying to use them. Note that
the --protocol tcp match must be to the left of the protocol specific matches. These matches are loaded
implicitly in a sense, just as the UDP and ICMP matches are loaded implicitly. The other matches will be
looked over in the continuation of this section, after the TCP match section.

Table 10-2. TCP matches

Match --sport, --source-port
Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -p tcp --sport 22

The --source-port match is used to match packets based on their source port. Without it, we imply
all source ports. This match can either take a service name or a port number. If you specify a
service name, the service name must be in the /etc/services file, since iptables uses this file in
which to find. If you specify the port by its number, the rule will load slightly faster, since
iptables don't have to check up the service name. However, the match might be a little bit harder
to read than if you use the service name. If you are writing a rule-set consisting of a 200 rules or
more, you should definitely use port numbers, since the difference is really noticeable. (On a slow
box, this could make as much as 10 seconds' difference, if you have configured a large rule-set
containing 1000 rules or so). You can also use the --source-port match to match any range of
ports, --source-port 22:80 for example. This example would match all source ports between 22
and 80. If you omit specifying the first port, port 0 is assumed (is implicit). --source-port :80
would then match port 0 through 80. And if the last port specification is omitted, port 65535 is
assumed. If you were to write --source-port 22:, you would have specified a match for all ports
from port 22 through port 65535. If you invert the port range, iptables automatically reverses your
inversion. If you write --source-port 80:22, it is simply interpreted as --source-port 22:80. You
can also invert a match by adding a ! sign. For example, --source-port ! 22 means that you want to
match all ports but port 22. The inversion could also be used together with a port range and would
then look like --source-port ! 22:80, which in turn would mean that you want to match all ports
but ports 22 through 80. Note that this match does not handle multiple separated ports and port
ranges. For more information about those, look at the multiport match extension.

Match --dport, --destination-port

Explanation

97 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

98 of 273

Kernel

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

2.3,2.4,25and 2.6

Example

iptables -A INPUT -p tcp --dport 22

Explanation

This match is used to match TCP packets, according to their destination port. It uses exactly the
same syntax as the --source-port match. It understands port and port range specifications, as well
as inversions. It also reverses high and low ports in port range specifications, as above. The match
will also assume values of 0 and 65535 if the high or low port is left out in a port range
specification. In other words, exactly the same as the --source-port syntax. Note that this match
does not handle multiple separated ports and port ranges. For more information about those, look
at the multiport match extension.

Match

--tcp-flags

Kernel

2.3,24,25and 2.6

Example

iptables -p tcp --tcp-flags SYN,FIN,ACK SYN

Explanation

This match is used to match on the TCP flags in a packet. First of all, the match takes a list of
flags to compare (a mask) and secondly it takes list of flags that should be set to 1, or turned on.
Both lists should be comma-delimited. The match knows about the SYN, ACK, FIN, RST, URG,
PSH flags, and it also recognizes the words ALL and NONE. ALL and NONE is pretty much self
describing: ALL means to use all flags and NONE means to use no flags for the option.
--tcp-flags ALL NONE would in other words mean to check all of the TCP flags and match if
none of the flags are set. This option can also be inverted with the ! sign. For example, if we
specify I SYN,FIN,ACK SYN, we would get a match that would match packets that had the ACK
and FIN bits set, but not the SYN bit. Also note that the comma delimitation should not include
spaces. You can see the correct syntax in the example above.

Match

--syn

Kernel

2.3,24,25and 2.6

Example

iptables -p tcp --syn

Explanation

The --syn match is more or less an old relic from the ipchains days and is still there for backward
compatibility and for and to make transition one to the other easier. It is used to match packets if
they have the SYN bit set and the ACK and RST bits unset. This command would in other words
be exactly the same as the --tcp-flags SYN,RST,ACK SYN match. Such packets are mainly used
to request new TCP connections from a server. If you block these packets, you should have
effectively blocked all incoming connection attempts. However, you will not have blocked the
outgoing connections, which a lot of exploits today use (for example, hacking a legitimate service
and then installing a program or suchlike that enables initiating an existing connection to your
host, instead of opening up a new port on it). This match can also be inverted with the ! sign in
this, ! --syn, way. This would match all packets with the RST or the ACK bits set, in other words
packets in an already established connection.

Match

--tcp-option

Kernel

2.3,24,25and 2.6

Example

iptables -p tcp --tcp-option 16

Explanation

This match is used to match packets depending on their TCP options. A TCP Option is a specific
part of the header. This part consists of 3 different fields. The first one is 8 bits long and tells us
which Options are used in this stream, the second one is also 8 bits long and tells us how long the
options field is. The reason for this length field is that TCP options are, well, optional. To be
compliant with the standards, we do not need to implement all options, but instead we can just
look at what kind of option it is, and if we do not support it, we just look at the length field and
can then jump over this data. This match is used to match different TCP options depending on
their decimal values. It may also be inverted with the ! flag, so that the match matches all TCP
options but the option given to the match. For a complete list of all options, take a closer look at
the Internet Engineering Task Force who maintains a list of all the standard numbers used on the

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

99 of 273

\Internet.

UDP matches

This section describes matches that will only work together with UDP packets. These matches are implicitly
loaded when you specify the --protocol UDP match and will be available after this specification. Note that
UDP packets are not connection oriented, and hence there is no such thing as different flags to set in the packet
to give data on what the datagram is supposed to do, such as open or closing a connection, or if they are just
simply supposed to send data. UDP packets do not require any kind of acknowledgment either. If they are lost,
they are simply lost (Not taking ICMP error messaging etc into account). This means that there are quite a lot
less matches to work with on a UDP packet than there is on TCP packets. Note that the state machine will work
on all kinds of packets even though UDP or ICMP packets are counted as connectionless protocols. The state
machine works pretty much the same on UDP packets as on TCP packets.

Table 10-3. UDP matches

Match --sport, --source-port

Kernel 2.3,2.4,25and 2.6

Example |iptables -A INPUT -p udp --sport 53

This match works exactly the same as its TCP counterpart. It is used to perform matches on
packets based on their source UDP ports. It has support for port ranges, single ports and port
inversions with the same syntax. To specify a UDP port range, you could use 22:80 which would
match UDP ports 22 through 80. If the first value is omitted, port 0 is assumed. If the last port is
omitted, port 65535 is assumed. If the high port comes before the low port, the ports switch place
with each other automatically. Single UDP port matches look as in the example above. To invert
the port match, add a ! sign, --source-port ! 53. This would match all ports but port 53. The match
can understand service names, as long as they are available in the /etc/services file. Note that this
match does not handle multiple separated ports and port ranges. For more information about this,
look at the multiport match extension.

Explanation

Match --dport, --destination-port

Kernel 2.3,2.4,25and 2.6

Example |iptables -A INPUT -p udp --dport 53

The same goes for this match as for --source-port above. It is exactly the same as for the
equivalent TCP match, but here it applies to UDP packets. It matches packets based on their UDP
destination port. The match handles port ranges, single ports and inversions. To match a single
port you use, for example, --destination-port 53, to invert this you would use --destination-port !
53. The first would match all UDP packets going to port 53 while the second would match
Explanation|packets but those going to the destination port 53. To specify a port range, you would, for
example, use --destination-port 9:19. This example would match all packets destined for UDP
port 9 through 19. If the first port is omitted, port 0 is assumed. If the second port is omitted, port
65535 is assumed. If the high port is placed before the low port, they automatically switch place,
so the low port winds up before the high port. Note that this match does not handle multiple ports

and port ranges. For more information about this, look at the multiport match extension.

ICMP matches

These are the ICMP matches. These packets are even more ephemeral, that is to say short lived, than UDP
packets, in the sense that they are connectionless. The ICMP protocol is mainly used for error reporting and for
connection controlling and suchlike. ICMP is not a protocol subordinated to the IP protocol, but more of a

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

protocol that augments the IP protocol and helps in handling errors. The headers of ICMP packets are very
similar to those of the IP headers, but differ in a number of ways. The main feature of this protocol is the type
header, that tells us what the packet is for. One example is, if we try to access an unaccessible IP address, we
would normally get an ICMP host unreachable in return. For a complete listing of ICMP types, see the ICMP
types appendix. There is only one ICMP specific match available for ICMP packets, and hopefully this should
suffice. This match is implicitly loaded when we use the --protocol ICMP match and we get access to it
automatically. Note that all the generic matches can also be used, so that among other things we can match on
the source and destination addresses.

Table 10-4. ICMP matches

Match --icmp-type
Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -p icmp --icmp-type 8

This match is used to specify the ICMP type to match. ICMP types can be specified either by their
numeric values or by their names. Numerical values are specified in RFC 792. To find a complete
listing of the ICMP name values, do an iptables --protocol icmp --help, or check the ICMP types
appendix. This match can also be inverted with the ! sign in this, --icmp-type ! 8, fashion. Note
that some ICMP types are obsolete, and others again may be "dangerous™ for an unprotected host
since they may, among other things, redirect packets to the wrong places. The type and code may
~|also be specified by their typename, numeric type, and type/code as well. For example
Explanation|--jcmp-type network-redirect, --icmp-type 8 or --icmp-type 8/0. For a complete listing of the
names, type iptables -p icmp --help.

!
Please note that netfilter uses ICMP type 255 to match all ICMP types. If you
NO&L "‘._ try to match this ICMP type, you will wind up with matching all ICMP types.

SCTP matches

SCTP or Stream Control Transmission Protocol is a relatively new occurence in the networking domain in
comparison to the TCP and UDP protocols. The SCTP Characteristics chapter explains the protocol more in

detail. The implicit SCTP matches are loaded through adding the -p sctp match to the command line of
iptables.

The SCTP protocol was developed by some of the larger telecom and switch/network manufacturers out there,

and the protocol is specifically well suited for large simultaneous transactions with high reliability and high
throughput.

Table 10-5. SCTP matches

Match --source-port, --sport
Kernel 2.6
Example |iptables -A INPUT -p sctp --source-port 80

Explanation|The --source-port match is used to match an SCTP packet based on the source port in the SCTP
packet header. The port can either be a single port, as in the example above, or a range of ports

100 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

specified as --source-port 20:100, or it can also be inverted with the !-sign. This looks, for
example, like --source-port ! 25. The source port is an unsigned 16 bit integer, so the maximum
value is 65535 and the lowest value is 0.

Match --destination-port, --dport
Kernel 2.6
Example |iptables -A INPUT -p sctp --destination-port 80

This match is used for the destination port of the SCTP packets. All SCTP packets contain a
destination port, just as it does a source port, in the headers. The port can be either specified as in
the example above, or with a port range such as --destination-port 6660:6670. The command can
also be inverted with the !-sign, for example, --destination-port ! 80. This example would match
all packets but those to port 80. The same applies for destination ports as for source ports, the
highest port is 65535 and the lowest is 0.

Explanation

Match --chunk-types
Kernel 2.6
Example |iptables -A INPUT -p sctp --chunk-types any INIT,INIT_ACK

This matches the chunk type of the SCTP packet. Currently there are a host of different chunk
types available. For a complete list, see below. The match begins with the --chunk-types keyword,
and then continues with a flag noting if we are to match all, any or none. After this, you specify
the SCTP Chunk Types to match for. The Chunk Types are available in the separate list below.

Additionally, the flags can take some Chunk Flags as well. This is done for example in the form
--chunk-types any DATA:Be. The flags are specific for each SCTP Chunk type and must be valid
according to the separate list after this table.

Explanation

If an upper case letter is used, the flag must be set, and if a lower case flag is set it must be unset
to match. The whole match can be inversed by using an ! sign just after the --chunk-types
keyword. For example, --chunk-types ! any DATA:Be would match anything but this pattern.

Below is the list of chunk types that the --chunk-types match will recognize. The list is quite extensive as you
can see, but the mostly used packets are DATA and SACK packets. The rest are mostly used for controlling the
association.

SCTP Chunk types as used in --chunk-types
e ABORT

e ASCONF

ASCONF_ACK

COOKIE_ACK

COOKIE_ECHO

DATA

ECN_CWR

101 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

e ECN_ECNE
e ERROR

HEARTBEAT

HEARTBEAT_ACK

INIT

INIT_ACK

SACK

SHUTDOWN

SHUTDOWN_ACK
e SHUTDOWN_COMPLETE

The following flags can be used with the --chunk-types match as seen above. According to the RFC 2960 -
Stream Control Transmission Protocol all the rest of the flags are reserved or not in use, and must be set to 0.
Iptables does currently not contain any measures to enforce this, fortunately, since it begs to become another
problem such as the one previously experienced when ECN was implemented in the IP protocol.

SCTP Chunk flags as used in --chunk-types

e DATA - U or u for Unordered bit, B or b for Beginning fragment bit and E or e for Ending fragment bit.

e ABORT - T or t for TCB destroy flag.

e SHUTDOWN_COMPLETE - T or t for TCB destroyed flag.

Explicit matches

Explicit matches are those that have to be specifically loaded with the -m or --match option. State matches, for
example, demand the directive -m state prior to entering the actual match that you want to use. Some of these
matches may be protocol specific . Some may be unconnected with any specific protocol - for example
connection states. These might be NEW (the first packet of an as yet unestablished connection),
ESTABLISHED (a connection that is already registered in the kernel), RELATED (a new connection that was
created by an older, established one) etc. A few may just have been evolved for testing or experimental
purposes, or just to illustrate what iptables is capable of. This in turn means that not all of these matches may at
first sight be of any use. Nevertheless, it may well be that you personally will find a use for specific explicit
matches. And there are new ones coming along all the time, with each new iptables release. Whether you find a
use for them or not depends on your imagination and your needs. The difference between implicitly loaded
matches and explicitly loaded ones, is that the implicitly loaded matches will automatically be loaded when, for
example, you match on the properties of TCP packets, while explicitly loaded matches will never be loaded
automatically - it is up to you to discover and activate explicit matches.

Addrtype match

102 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

The addrtype module matches packets based on the address type. The address type is used inside the kernel to
put different packets into different categories. With this match you will be able to match all packets based on
their address type according to the kernel. It should be noted that the exact meaning of the different address
types varies between the layer 3 protocols. I will give a brief general description here however, but for more
information | suggest reading Linux Advanced Routing and Traffic Control HOW-TO and Policy Routing using
Linux. The available types are as follows:

Table 10-6. Address types

Type Description

This is a one-to-many associative connection type, where only one of the many receiver
hosts actually receives the data. This is for example implemented in DNS. You have single
address to a root server, but it actually has several locations and your packet will be
directed to the closest working server. Not implemented in Linux IPv4.

ANYCAST

A blackhole address will simply delete the packet and send no reply. It works as a black

BLACKHOLE hole in space basically. This is configured in the routing tables of linux.

A broadcast packet is a single packet sent to everyone in a specific network in a
one-to-many relation. This is for example used in ARP resolution, where a single packet is
sent out requesting information on how to reach a specific IP, and then the host that is
authoritative replies with the proper MAC address of that host.

BROADCAST

LOCAL An address that is local to the host we are working on. 127.0.0.1 for example.

A multicast packet is sent to several hosts using the shortest distance and only one packet is
sent to each waypoint where it will be multiple copies for each host/router subscribing to
the specific multicast address. Commonly used in one way streaming media such as video
or sound.

MULTICAST

NAT An address that has been NAT'ed by the kernel.

Same as blackhole except that a prohibited answer will be generated. In the IPv4 case, this

PROHIBIT means an ICMP communication prohibited (type 3, code 13) answer will be generated.

Special route in the Linux kernel. If a packet is thrown in a routing table it will behave as if
THROW no route was found in the table. In normal routing, this means that the packet will behave as
if it had no route. In policy routing, another route might be found in another routing table.

UNICAST A real routable address for a single address. The most common type of route.

103 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Type Description

This signals an unreachable address that we do not know how to reach. The packets will be

UNREACHABLE| jiscarded and an ICMP Host unreachable (type 3, code 1) will be generated.

UNSPEC An unspecified address that has no real meaning.

This address type is used to send route lookups to userland applications which will do the
XRESOLVE lookup for the kernel. This might be wanted to send ugly lookups to the outside of the
kernel, or to have an application do lookups for you. Not implemented in Linux.

The addrtype match is loaded by using the -m addrtype keyword. When this is done, the extra match options in
the following table will be available for usage.

Table 10-7. Addrtype match options

Match --src-type
Kernel 2.6
Example |iptables -A INPUT -m addrtype --src-type UNICAST

The --src-type match option is used to match the source address type of the packet. It can either
take a single address type or several separated by coma signs, for example --src-type
BROADCAST,MULTICAST. The match option may also be inverted by adding an exclamation
sign before it, for example ! --src-type BROADCAST,MULTICAST.

Explanation

Match --dst-type
Kernel 2.6
Example |iptables -A INPUT -m addrtype --dst-type UNICAST

The --dst-type works exactly the same way as --src-type and has the same syntax. The only

Explanation difference is that it will match packets based on their destination address type.

AH/ESP match

These matches are used for the IPSEC AH and ESP protocols. IPSEC is used to create secure tunnels over an
insecure Internet connection. The AH and ESP protocols are used by IPSEC to create these secure connections.
The AH and ESP matches are really two separate matches, but are both described here since they look very
much alike, and both are used in the same function.

I will not go into detail to describe IPSEC here, instead look at the following pages and documents for more
information:

e RFC 2401 - Security Architecture for the Internet Protocol

e FreeS/WAN

e |PSEC Howto

104 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

¢ Linux Advanced Routing and Traffic Control HOW-TO

There is also a ton more documentation on the Internet on this, but you are free to look it up as needed.

To use the AH/ESP matches, you need to use -m ah to load the AH matches, and -m esp to load the ESP
matches.

'
In 2.2 and 2.4 kernels, Linux used something called FreeS/WAN for the IPSEC

O*LB‘" implementation, but as of Linux kernel 2.5.47 and up, Linux kernels have a direct
N) implementation of IPSEC that requires no patching of the kernel. This is a total rewrite of
\ the IPSEC implementation on Linux.

Table 10-8. AH match options

Match --ahspi
Kernel 2.5and 2.6
Example |iptables -A INPUT -p 51 -m ah --ahspi 500

This matches the AH Security Parameter Index (SPI) number of the AH packets. Please note that
you must specify the protocol as well, since AH runs on a different protocol than the standard
TCP, UDP or ICMP protocols. The SPI number is used in conjunction with the source and
destination address and the secret keys to create a security association (SA). The SA uniquely
identifies each and every one of the IPSEC tunnels to all hosts. The SPI is used to uniquely
distinguish each IPSEC tunnel connected between the same two peers. Using the --ahspi match,
we can match a packet based on the SPI of the packets. This match can match a whole range of
SPI values by using a : sign, such as 500:520, which will match the whole range of SPI's.

Explanation

Table 10-9. ESP match options

Match --espspi

Kernel 2.5and 2.6

Example |iptables -A INPUT -p 50 -m esp --espspi 500

The ESP counterpart Security Parameter Index (SP1) is used exactly the same way as the AH
variant. The match looks exactly the same, with the esp/ah difference. Of course, this match can

match a whole range of SPI numbers as well as the AH variant of the SPI match, such as --espspi
200:250 which matches the whole range of SPI's.

Explanation

Comment match

The comment match is used to add comments inside the iptables ruleset and the kernel. This can make it much
easier to understand your ruleset and to ease debugging. For example, you could add comments documenting
which bash function added specific sets of rules to netfilter, and why. It should be noted that this isn't actually a
match. The comment match is loaded using the -m comment keywords. At this point the following options will
be available.

Table 10-10. Comment match options

Match --comment
Kernel 2.6

105 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Example |iptables -A INPUT -m comment --comment "A comment"

The --comment option specifies the comment to actually add to the rule in kernel. The comment

Explanation can be a maximum of 256 characters.

Connmark match

The connmark match is used very much the same way as the mark match is in the MARK/mark target and
match combination. The connmark match is used to match marks that has been set on a connection with the
CONNMARK target. It only takes one option.

'
To match a mark on the same packet as is the first to create the connection marking, you
ottt must use the connmark match after the CONNMARK target has set the mark on the first

Table 10-11. Connmark match options

Match --mark
Kernel 2.6
Example |iptables -A INPUT -m connmark --mark 12 -j ACCEPT

The mark option is used to match a specific mark associated with a connection. The mark match
must be exact, and if you want to filter out unwanted flags from the connection mark before
actually matching anything, you can specify a mask that will be anded to the connection mark.
For example, if you have a connection mark set to 33 (10001 in binary) on a connection, and want
to match the first bit only, you would be able to run something like --mark 1/1. The mask (00001)
would be masked to 10001, so 10001 && 00001 equals 1, and then matched against the 1.

Explanation

Conntrack match

The conntrack match is an extended version of the state match, which makes it possible to match packets in a
much more granular way. It let's you look at information directly available in the connection tracking system,
without any "frontend" systems, such as in the state match. For more information about the connection tracking
system, take a look at the The state machine chapter.

There are a number of different matches put together in the conntrack match, for several different fields in the
connection tracking system. These are compiled together into the list below. To load these matches, you need
to specify -m conntrack.

Table 10-12. Conntrack match options

Match --Ctstate
Kernel 2.5and 2.6
Example |iptables -A INPUT -p tcp -m conntrack --ctstate RELATED

106 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

Explanation

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

This match is used to match the state of a packet, according to the conntrack state. It is used to
match pretty much the same states as in the original state match. The valid entries for this match
are:

e INVALID

ESTABLISHED

NEW

RELATED

SNAT
e DNAT

The entries can be used together with each other separated by a comma. For example, -m
conntrack --ctstate ESTABLISHED,RELATED. It can also be inverted by putting a ! in front of
--ctstate. For example: -m conntrack ! --ctstate ESTABLISHED,RELATED, which matches all
but the ESTABLISHED and RELATED states.

Match --ctproto
Kernel 2.5and 2.6
Example |iptables -A INPUT -p tcp -m conntrack --ctproto TCP
This matches the protocol, the same as the --protocol does. It can take the same types of values,
Explanation|and is inverted using the ! sign. For example, -m conntrack ! --ctproto TCP matches all protocols
but the TCP protocol.
Match --ctorigsrc
Kernel 2.5and 2.6
Example |iptables -A INPUT -p tcp -m conntrack --ctorigsrc 192.168.0.0/24
--ctorigsrc matches based on the original source IP specification of the conntrack entry that the
Exolanation packet is related to. The match can be inverted by using a ! between the --ctorigsrc and IP
P specification, such as --ctorigsrc ! 192.168.0.1. It can also take a netmask of the CIDR form, such
as --ctorigsrc 192.168.0.0/24.
Match --ctorigdst
Kernel 2.5and 2.6
Example |iptables -A INPUT -p tcp -m conntrack --ctorigdst 192.168.0.0/24
. |This match is used exactly as the --ctorigsrc, except that it matches on the destination field of the
Explanation ;
conntrack entry. It has the same syntax in all other respects.
Match --ctreplsrc
Kernel 2.5and 2.6
Example |iptables -A INPUT -p tcp -m conntrack --ctreplsrc 192.168.0.0/24

107 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

The --ctreplsrc match is used to match based on the original conntrack reply source of the packet.

Basically, this is the same as the --ctorigsrc, but instead we match the reply source expected of the
upcoming packets. This target can, of course, be inverted and address a whole range of addresses,

just the same as the the previous targets in this class.

Explanation

Match --ctrepldst
Kernel 2.5and 2.6
Example |iptables -A INPUT -p tcp -m conntrack --ctrepldst 192.168.0.0/24

The --ctrepldst match is the same as the --ctreplsrc match, with the exception that it matches the
Explanation|reply destination of the conntrack entry that matched the packet. It too can be inverted, and accept
ranges, just as the --ctreplsrc match.

Match --ctstatus
Kernel 2.5and 2.6
Example |iptables -A INPUT -p tcp -m conntrack --ctstatus RELATED

This matches the status of the connection, as described in the The state machine chapter. It can
match the following statuses.

e NONE - The connection has no status at all.

e EXPECTED - This connection is expected and was added by one of the expectation
handlers.

Explanation

e SEEN_REPLY - This connection has seen a reply but isn't assured yet.

e ASSURED - The connection is assured and will not be removed until it times out or the
connection is closed by either end.

This can also be inverted by using the ! sign. For example -m conntrack ! --ctstatus ASSURED
which will match all but the ASSURED status.

Match --ctexpire
Kernel 2.5and 2.6
Example |iptables -A INPUT -p tcp -m conntrack --ctexpire 100:150

This match is used to match on packets based on how long is left on the expiration timer of the
conntrack entry, measured in seconds. It can either take a single value and match against, or a

Explanation|range such as in the example above. It can also be inverted by using the ! sign, such as this -m

conntrack ! --ctexpire 100. This will match every expiration time, which does not have exactly
100 seconds left to it.

Dscp match

This match is used to match on packets based on their DSCP (Differentiated Services Code Point) field. This is
documented in the RFC 2638 - A Two-bit Differentiated Services Architecture for the Internet RFC. The match
is explicitly loaded by specifying -m dscp. The match can take two mutually exclusive options, described

108 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

below.

Table 10-13. Dscp match options

Match --dscp
Kernel 2.5and 2.6
Example |iptables -A INPUT -p tcp -m dscp --dscp 32

This option takes a DSCP value in either decimal or in hex. If the option value is in decimal, it
Explanation|would be written like 32 or 16, et cetera. If written in hex, it should be prefixed with 0x, like this:
0x20. It can also be inverted by using the ! character, like this: -m dscp ! --dscp 32.

Match --dscp-class
Kernel 2.5and 2.6
Example |iptables -A INPUT -p tcp -m dscp --dscp-class BE

The --dscp-class match is used to match on the DiffServ class of a packet. The values can be any
Explanation|of the BE, EF, AFxx or CSx classes as specified in the various RFC's. This match can be inverted
just the same way as the --dscp option.

!
Please note that the --dscp and --dscp-class options are mutually exclusive and can not be
NU‘B\ used in conjunction with each other.

)

Ecn match

The ecn match is used to match on the different ECN fields in the TCP and IPv4 headers. ECN is described in
detail in the RFC 3168 - The Addition of Explicit Congestion Notification (ECN) to IP RFC. The match is
explicitly loaded by using -m ecn in the command line. The ecn match takes three different options as
described below.

Table 10-14. Ecn match options

Match --ecn
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -p tcp -m ecn --ecn-tcp-cwr

This match is used to match the CWR (Congestion Window Received) bit, if it has been set. The
CWR flag is set to notify the other endpoint of the connection that they have received an ECE,
and that they have reacted to it. Per default this matches if the CWR bit is set, but the match may
also be inversed using an exclamation point.

Explanation

Match --ecn-tcp-ece
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -p tcp -m ecn --ecn-tcp-ece

109 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

This match can be used to match the ECE (ECN-Echo) bit. The ECE is set once one of the
endpoints has received a packet with the CE bit set by a router. The endpoint then sets the ECE in
Explanation|the returning ACK packet, to notify the other endpoint that it needs to slow down. The other
endpoint then sends a CWR packet as described in the --ecn-tcp-cwr explanation. This matches
per default if the ECE bit is set, but may be inversed by using an exclamation point.

Match --ecn-ip-ect
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -p tcp -m ecn --ecn-ip-ect 1

The --ecn-ip-ect match is used to match the ECT (ECN Capable Transport) codepoints. The ECT
codepoints has several types of usage. Mainly, they are used to negotiate if the connection is ECN
capable by setting one of the two bits to 1. The ECT is also used by routers to indicate that they
are experiencing congestion, by setting both ECT codepoints to 1. The ECT values are all
Explanation|available in the in the ECN Field in IP table below.

The match can be inversed using an exclamation point, for example ! --ecn-ip-ect 2 which will
match all ECN values but the ECT(0) codepoint. The valid value range is 0-3 in iptables. See the
above table for their values.

Table 10-15. ECN Field in IP

IF\)/t;tJI:S ECT|CE [Obsolete] RFC 2481 names for the ECN bits.

0 0 [0 |Not-ECT, ie. non-ECN capable connection.

1 0 1 |ECT(1), New naming convention of ECT codepoints in RFC 3168.

2 1 |0 |[ECT(0), New naming convention of ECT codepoints in RFC 3168.

3 1 1 |CE (Congestion Experienced), Used to notify endpoints of congestion

Hashlimit match

This is a modified version of the Limit match. Instead of just setting up a single token bucket, it sets up a hash
table pointing to token buckets for each destination IP, source IP, destination port and source port tuple. For
example, you can set it up so that every IP address can receive a maximum of 1000 packets per second, or you
can say that every service on a specific IP address may receive a maximum of 200 packets per second. The
hashlimit match is loaded by specifying the -m hashlimit keywords.

Each rule that uses the hashlimit match creates a separate hashtable which in turn has a specific max size and a
maximum number of buckets. This hash table contains a hash of either a single or multiple values. The values
can be any and/or all of destination IP, source IP, destination port and source port. Each entry then points to a
token bucket that works as the limit match.

Table 10-16. Hashlimit match options

Match --hashlimit
Kernel 2.6
E iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit --hashlimit 1000/sec --hashlimit-mode
xample . g
dstip,dstport --hashlimit-name hosts

110 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

The --hashlimit specifies the limit of each bucket. In this example the hashlimit is set to 1000. In
this example, we have set up the hashlimit-mode to be dstip,dstport and destination 192.168.0.3.
Hence, for every port or service on the destination host, it can receive 1000 packets per second.
This is the same setting as the limit option for the limit match. The limit can take a /sec, /minute,
/hour or /day postfix. If no postfix is specified, the default postfix is per second.

Explanation
1
This option is mandatory for all hashlimit matches.

‘-.m?“)
Match --hashlimit-mode
Kernel 2.6

iptables -A INPUT -p tcp --dst 192.168.0.0/16 -m hashlimit --hashlimit 1000/sec

Example

--hashlimit-mode dstip --hashlimit-name hosts

The --hashlimit-mode option specifies which values we should use as the hash values. In this
example, we use only the dstip (destination IP) as the hashvalue. So, each host in the
192.168.0.0/16 network will be limited to receiving a maximum of 1000 packets per second in
this case. The possible values for the --hashlimit-mode is dstip (Destination IP), srcip (Source IP),
dstport (Destination port) and srcport (Source port). All of these can also be separated by a
comma sign to include more than one hashvalue, such as for example --hashlimit-mode
Explanation|dstip,dstport.

This option is mandatory for all hashlimit matches.

‘-.'GT'-?“)

Match --hashlimit-name
Kernel 2.6
iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit --hashlimit 1000 --hashlimit-mode

Example dstip,dstport --hashlimit-name hosts
This option specifies the name that this specific hash will be available as. It can be viewed inside
the /proc/net/ipt_hashlimit directory. The example above would be viewable inside the
/proc/net/ipt_hashlimit/hosts file. Only the filename should be specified.
Explanation '
This option is mandatory for all hashlimit matches.
‘-.m?“)
Match --hashlimit-burst
Kernel 2.6
Example iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit --hashlimit 1000 --hashlimit-mode

dstip,dstport --hashlimit-name hosts --hashlimit-burst 2000

111 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

Explanation

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

This match is the same as the --limit-burst in that it sets the maximum size of the bucket. Each
bucket will have a burst limit, which is the maximum amount of packets that can be matched
during a single time unit. For an example on how a token bucket works, take a look at the Limit
match.

Match --hashlimit-htable-size
Kernel 2.6
Example iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit --hashlimit 1000 --hashlimit-mode
P dstip,dstport --hashlimit-name hosts --hashlimit-htable-size 500
. [This sets the maximum available buckets to be used. In this example, it means that a maximum of
Explanation . X
500 ports can be open and active at the same time.
Match --hashlimit-htable-max
Kernel 2.6
Example iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit --hashlimit 1000 --hashlimit-mode
P dstip,dstport --hashlimit-name hosts --hashlimit-htable-max 500
The --hashlimit-htable-max sets the maximum number of hashtable entries. This means all of the
Explanation|connections, including the inactive connections that doesn't require any token buckets for the
moment.
Match --hashlimit-htable-gcinterval
Kernel 2.6
Example iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit --hashlimit 1000 --hashlimit-mode
P dstip,dstport --hashlimit-name hosts --hashlimit-htable-gcinterval 1000
How often should the garbage collection function be run. Generally speaking this value should be
lower than the expire value. The value is measured in milliseconds. If it is set too low it will be
Explanation|taking up unnecessary system resources and processing power, but if it's too high it can leave
unused token buckets lying around for too long and leaving other connections impossible. In this
example the garbage collector will run every second.
Match --hashlimit-htable-expire
Kernel 2.6
Examole iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit --hashlimit 1000 --hashlimit-mode
P dstip,dstport --hashlimit-name hosts --hashlimit-htable-expire 10000
This value sets after how long time an idle hashtable entry should expire. If a bucket has been
Explanation|unused for longer than this, it will be expired and the next garbage collection run will remove it

from the hashtable, as well as all of the information pertaining to it.

Helper match

This is a rather unorthodox match in comparison to the other matches, in the sense that it uses a little bit
specific syntax. The match is used to match packets, based on which conntrack helper that the packet is related
to. For example, let's look at the FTP session. The Control session is opened up, and the ports/connection is

112 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

negotiated for the Data session within the Control session. The ip_conntrack_ftp helper module will find this

information,

and create a related entry in the conntrack table. Now, when a packet enters, we can see which

protocol it was related to, and we can match the packet in our ruleset based on which helper was used. The
match is loaded by using the -m helper keyword.

Table 10-17. Helper match options

Match --helper
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -p tcp -m helper --helper ftp-21
The --helper option is used to specify a string value, telling the match which conntrack helper to
match. In the basic form, it may look like --helper irc. This is where the syntax starts to change
Explanation from the normal syntax. We can also choose to only match packets based on which port that the

original expectation was caught on. For example, the FTP Control session is normally transferred
over port 21, but it may as well be port 954 or any other port. We may then specify upon which
port the expectation should be caught on, like --helper ftp-954.

IP range match

The IP range match is used to match IP ranges, just as the --source and --destination matches are able to do as
well. However, this match adds a different kind of matching in the sense that it is able to match in the manner
of from IP - to IP, which the --source and --destination matches are unable to. This may be needed in some
specific network setups, and it is rather a bit more flexible. The IP range match is loaded by using the -m
iprange keyword.

Table 10-18. IP range match options

Match --Src-range
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -p tcp -m iprange --src-range 192.168.1.13-192.168.2.19
This matches a range of source IP addresses. The range includes every single IP address from the
first to the last, so the example above includes everything from 192.168.1.13 to 192.168.2.19. The
Explanation|match may also be inverted by adding an !. The above example would then look like -m iprange !
--src-range 192.168.1.13-192.168.2.19, which would match every single IP address, except the
ones specified.
Match --dst-range
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -p tcp -m iprange --dst-range 192.168.1.13-192.168.2.19
. |The --dst-range works exactly the same as the --src-range match, except that it matches
Explanation

destination IP's instead of source IP's.

Length match

113 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

The length match is used to match packets based on their length. It is very simple. If you want to limit packet
length for some strange reason, or want to block ping-of-death-like behaviour, use the length match.

Table 10-19. Length match options

Match --length
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -p tcp -m length --length 1400:1500

The example --length will match all packets with a length between 1400 and 1500 bytes. The
match may also be inversed using the ! sign, like this: -m length ! --length 1400:1500 . It may also
Explanation|be used to match only a specific length, removing the : sign and onwards, like this: -m length
--length 1400. The range matching is, of course, inclusive, which means that it includes all packet
lengths in between the values you specify.

Limit match

The limit match extension must be loaded explicitly with the -m limit option. This match can, for example, be
used to advantage to give limited logging of specific rules etc. For example, you could use this to match all
packets that do not exceed a given value, and after this value has been exceeded, limit logging of the event in
question. Think of a time limit: You could limit how many times a certain rule may be matched in a certain
time frame, for example to lessen the effects of DoS syn flood attacks. This is its main usage, but there are
more usages, of course. The limit match may also be inverted by adding a ! flag in front of the limit match. It
would then be expressed as -m limit ! --limit 5/s.This means that all packets will be matched after they have
broken the limit.

To further explain the limit match, it is basically a token bucket filter. Consider having a leaky bucket where
the bucket leaks X packets per time-unit. X is defined depending on how many matching packets we get, so if
we get 3 packets, the bucket leaks 3 packets per that time-unit. The --limit option tells us how many packets to
refill the bucket with per time-unit, while the --limit-burst option tells us how big the bucket is in the first
place. So, setting --limit 3/minute --limit-burst 5, and then receiving 5 matches will empty the bucket. After 20
seconds, the bucket is refilled with another token, and so on until the --limit-burst is reached again or until they
get used.

Consider the example below for further explanation of how this may look.

1. We set a rule with -m limit --limit 5/second --limit-burst 10/second. The limit-burst token bucket is set to
10 initially. Each packet that matches the rule uses a token.

2. We get packet that matches, 1-2-3-4-5-6-7-8-9-10, all within a 1/1000 of a second.

3. The token bucket is now empty. Once the token bucket is empty, the packets that qualify for the rule
otherwise no longer match the rule and proceed to the next rule if any, or hit the chain policy.

4. For each 1/5 s without a matching packet, the token count goes up by 1, upto a maximum of 10. 1 second
after receiving the 10 packets, we will once again have 5 tokens left.

5. And of course, the bucket will be emptied by 1 token for each packet it receives.

Table 10-20. Limit match options

114 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Match --limit
Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -m limit --limit 3/hour

This sets the maximum average match rate for the limit match. You specify it with a number and
an optional time unit. The following time units are currently recognized: /second /minute /hour
/day. The default value here is 3 per hour, or 3/hour. This tells the limit match how many times to
allow the match to occur per time unit (e.g. per minute).

Match --limit-burst
Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -m limit --limit-burst 5

This is the setting for the burst limit of the limit match. It tells iptables the maximum number of
tokens available in the bucket when we start, or when the bucket is full. This number gets
decremented by one for every packet that arrives, down to the lowest possible value, 1. The
bucket will be refilled by the limit value every time unit, as specified by the --limit option. The
Explanation|default --limit-burst value is 5. For a simple way of checking out how this works, you can use the
example Limit-match.txt one-rule-script. Using this script, you can see for yourself how the limit
rule works, by simply sending ping packets at different intervals and in different burst numbers.
All echo replies will be blocked when the burst value has been exceeded, and then be refilled by
the limit value every second.

Explanation

Mac match

The MAC (Ethernet Media Access Control) match can be used to match packets based on their MAC source
address. As of writing this documentation, this match is a little bit limited, however, in the future this may be
more evolved and may be more useful. This match can be used to match packets on the source MAC address
only as previously said.

!

Do note that to use this module we explicitly load it with the -m mac option. The reason that
&LB_ I am saying this is that a lot of people wonder if it should not be -m mac-source, which it

\NO) should not.

Table 10-21. Mac match options

Match --mac-source
Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -m mac --mac-source 00:00:00:00:00:01

This match is used to match packets based on their MAC source address. The MAC address
specified must be in the form XX:XX:XX:XX:XX:XX, else it will not be legal. The match may be
reversed with an ! sign and would look like --mac-source ! 00:00:00:00:00:01. This would in
Explanation|other words reverse the meaning of the match, so that all packets except packets from this MAC
address would be matched. Note that since MAC addresses are only used on Ethernet type
networks, this match will only be possible to use for Ethernet interfaces. The MAC match is only
valid in the PREROUTING, FORWARD and INPUT chains and nowhere else.

Mark match

115 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

The mark match extension is used to match packets based on the marks they have set. A mark is a special field,
only maintained within the kernel, that is associated with the packets as they travel through the computer.
Marks may be used by different kernel routines for such tasks as traffic shaping and filtering. As of today,
there is only one way of setting a mark in Linux, namely the MARK target in iptables. This was previously
done with the FWMARK target in ipchains, and this is why people still refer to FWMARK in advanced routing
areas. The mark field is currently set to an unsigned integer, or 4294967296 possible values on a 32 bit system.
In other words, you are probably not going to run into this limit for quite some time.

Table 10-22. Mark match options

Match --mark
Kernel 2.3,2.4,25and 2.6
Example |iptables -t mangle -A INPUT -m mark --mark 1

This match is used to match packets that have previously been marked. Marks can be set with the
MARK target which we will discuss in the next section. All packets traveling through Netfilter
get a special mark field associated with them. Note that this mark field is not in any way
propagated, within or outside the packet. It stays inside the computer that made it. If the mark
field matches the mark, it is a match. The mark field is an unsigned integer, hence there can be a
maximum of 4294967296 different marks. You may also use a mask with the mark. The mark
specification would then look like, for example, --mark 1/1. If a mask is specified, it is logically
AND ed with the mark specified before the actual comparison.

Explanation

Multiport match

The multiport match extension can be used to specify multiple destination ports and port ranges. Without the
possibility this match gives, you would have to use multiple rules of the same type, just to match different
ports.

'
You can not use both standard port matching and multiport matching at the same time, for
NO&@"‘-_ example you can't write: --sport 1024:63353 -m multiport --dport 21,23,80. This will simply
) not work. What in fact happens, if you do, is that iptables honors the first element in the
\ rule, and ignores the multiport instruction.

Table 10-23. Multiport match options

Match --source-port
Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -p tcp -m multiport --source-port 22,53,80,110

This match matches multiple source ports. A maximum of 15 separate ports may be specified. The
ports must be comma delimited, as in the above example. The match may only be used in
conjunction with the -p tcp or -p udp matches. It is mainly an enhanced version of the normal
--source-port match.

Match --destination-port

Kernel 2.3,2.4,25and 2.6

Example |iptables -A INPUT -p tcp -m multiport --destination-port 22,53,80,110

This match is used to match multiple destination ports. It works exactly the same way as the
above mentioned source port match, except that it matches destination ports. It too has a limit of

Explanation

Explanation

116 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

15 ports and may only be used in conjunction with -p tcp and -p udp.

Match --port
Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -p tcp -m multiport --port 22,53,80,110
This match extension can be used to match packets based both on their destination port and their
source port. It works the same way as the --source-port and --destination-port matches above. It
Explanation|can take a maximum of 15 ports and can only be used in conjunction with -p tcp and -p udp. Note

that the --port match will only match packets coming in from and going to the same port, for

example, port 80 to port 80, port 110 to port 110 and so on.

Owner match

The owner match extension is used to match packets based on the identity of the process that created them. The
owner can be specified as the process ID either of the user who issued the command in question, that of the
group, the process, the session, or that of the command itself. This extension was originally written as an
example of what iptables could be used for. The owner match only works within the OUTPUT chain, for
obvious reasons: It is pretty much impossible to find out any information about the identity of the instance that
sent a packet from the other end, or where there is an intermediate hop to the real destination. Even within the
OUTPUT chain it is not very reliable, since certain packets may not have an owner. Notorious packets of that
sort are (among other things) the different ICMP responses. ICMP responses will never match.

Table 10-24. Owner match options

Match --cmd-owner

Kernel 2.3,2.4,25and 2.6

Example |iptables -A OUTPUT -m owner --cmd-owner httpd
This is the command owner match, and is used to match based on the command name of the

Explanation|process that is sending the packet. In the example, httpd is matched. This match may also be
inverted by using an exclamation sign, for example -m owner ! --cmd-owner ssh.

Match --uid-owner

Kernel 2.3,2.4,25and 2.6

Example |iptables -A OUTPUT -m owner --uid-owner 500
This packet match will match if the packet was created by the given User ID (UID). This could be

Explanation used to match outgoing packets baged on who creat_ed them._One poss_ible use would be to plock
any other user than root from opening new connections outside your firewall. Another possible
use could be to block everyone but the http user from sending packets from the HTTP port.

Match --gid-owner

Kernel 2.3,2.4,25and 2.6

Example |iptables -A OUTPUT -m owner --gid-owner 0
This match is used to match all packets based on their Group ID (GID). This means that we match

Explanation all packets ba_sed on what group the user cregting the packets is in. This could bq used to block all
but the users in the network group from getting out onto the Internet or, as described above, only
to allow members of the http group to create packets going out from the HTTP port.

Match --pid-owner

Kernel 2.3,2.4,25and 2.6

Example |iptables -A OUTPUT -m owner --pid-owner 78

117 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

This match is used to match packets based on the Process ID (PID) that was responsible for them.
This match is a bit harder to use, but one example would be only to allow PID 94 to send packets

Explanation|from the HTTP port (if the HTTP process is not threaded, of course). Alternatively we could write
a small script that grabs the PID from a ps output for a specific daemon and then adds a rule for it.
For an example, you could have a rule as shown in the Pid-owner.txt example.

Match --sid-owner
Kernel 2.3,2.4,25and 2.6
Example |iptables -A OUTPUT -m owner --sid-owner 100

This match is used to match packets based on the Session ID used by the program in question.
The value of the SID, or Session ID of a process, is that of the process itself and all processes
resulting from the originating process. These latter could be threads, or a child of the original
process. So, for example, all of our HTTPD processes should have the same SID as their parent
Explanation|process (the originating HTTPD process), if our HTTPD is threaded (most HTTPDs are, Apache
and Roxen for instance). To show this in example, we have created a small script called
Sid-owner.txt. This script could possibly be run every hour or so together with some extra code to
check if the HTTPD is actually running and start it again if necessary, then flush and re-enter our
OUTPUT chain if needed.

!
The pid, sid and command matching is broken in SMP kernels since they use different
\\\01 \ process lists for each processor. It might be fixed in the future however

Packet type match

The packet type match is used to match packets based on their type. l.e., are they destined to a specific person,
to everyone or to a specific group of machines or users. These three groups are generally called unicast,
broadcast and multicast, as discussed in the TCP/IP repetition chapter. The match is loaded by using -m

pkttype.

Table 10-25. Packet type match options

Match --pkt-type
Kernel 2.3,2.4,25and 2.6
Example |iptables -A OUTPUT -m pkttype --pkt-type unicast

The --pkt-type match is used to tell the packet type match which packet type to match. It can
either take unicast , broadcast or multicast as an argument, as in the example. It can also be
inverted by using a ! like this: -m pkttype --pkt-type ! broadcast, which will match all other packet

types.

Explanation

Realm match

The realm match is used to match packets based on the routing realm that they are part of. Routing realms are
used in Linux for complex routing scenarios and setups such as when using BGP et cetera. The realm match is
loaded by adding the -m realm keyword to the commandline.

118 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

A routing realm is used in Linux to classify routes into logical groups of routes. In most dedicated routers
today, the Routing Information Base (RIB) and the forwarding engine are very close to eachother. Inside the
kernel for example. Since Linux isn't really a dedicated routing system, it has been forced to separate its RIB
and Forwarding Information Base (FIB). The RIB lives in userspace and the FIB lives inside kernelspace.
Because of this separation, it becomes quite resourceheavy to do quick searches in the RIB. The routing realm
is the Linux solution to this, and actually makes the system more flexible and richer.

The Linux realms can be used together with BGP and other routing protocols that delivers huge amounts of
routes. The routing daemon can then sort the routes by their prefix, aspath, or source for example, and put them
in different realms. The realm is numeric, but can also be named through the /etc/iproute2/rt_realms file.

Table 10-26. Realm match options

Match --realm
Kernel 2.6
Example |iptables -A OUTPUT -m realm --realm 4

This option matches the realm number and optionally a mask. If this is not a number, it will also
try and resolve the realm from the /etc/iproute2/rt_realms file also. If a named realm is used,
no mask may be used. The match may also be inverted by setting an exclamation sign, for
example --realm ! cosmos.

Explanation

Recent match

The recent match is a rather large and complex matching system, which allows us to match packets based on
recent events that we have previously matched. For example, if we would see an outgoing IRC connection, we
could set the IP addresses into a list of hosts, and have another rule that allows identd requests back from the
IRC server within 15 seconds of seeing the original packet.

Before we can take a closer look at the match options, let's try and explain a little bit how it works. First of all,
we use several different rules to accomplish the use of the recent match. The recent match uses several
different lists of recent events. The default list being used is the DEFAULT list. We create a new entry in a list
with the set option, so once a rule is entirely matched (the set option is always a match), we also add an entry
in the recent list specified. The list entry contains a timestamp, and the source IP address used in the packet that
triggered the set option. Once this has happened, we can use a series of different recent options to match on
this information, as well as update the entries timestamp, et cetera.

Finally, if we would for some reason want to remove a list entry, we would do this using the --remove match
option from the recent match. All rules using the recent match, must load the recent module (-m recent) as
usual. Before we go on with an example of the recent match, let's take a look at all the options.

Table 10-27. Recent match options

Match --name
Kernel 2.4,25and 2.6
Example |iptables -A OUTPUT -m recent --name examplelist

The name option gives the name of the list to use. Per default the DEFAULT list is used, which is

Explanation probably not what we want if we are using more than one list.

119 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Match --set
Kernel 2.4,25and 2.6
Example |iptables -A OUTPUT -m recent --set

This creates a new list entry in the named recent list, which contains a timestamp and the source
Explanation|IP address of the host that triggered the rule. This match will always return success, unless it is
preceded by a ! sign, in which case it will return failure.

Match --rcheck
Kernel 2.4,25and 2.6
Example |iptables -A OUTPUT -m recent --name examplelist --rcheck

The --rcheck option will check if the source IP address of the packet is in the named list. If it is,
the match will return true, otherwise it returns false. The option may be inverted by using the !

Explanation sign. In the later case, it will return true if the source IP address is not in the list, and false if it is
in the list.
Match --update

Kernel 2.4,25and 2.6
Example |iptables -A OUTPUT -m recent --name examplelist --update

This match is true if the source combination is available in the specified list and it also updates the
Explanation|last-seen time in the list. This match may also be reversed by setting the ! mark in front of the
match. For example, ! --update.

Match --remove
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -m recent --name example --remove

This match will try to find the source address of the packet in the list, and returns true if the
Explanation|packet is there. It will also remove the corresponding list entry from the list. The command is also
possible to inverse with the ! sign.

Match --seconds
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -m recent --name example --check --seconds 60

This match is only valid together with the --check and --update matches. The --seconds match is
used to specify how long since the "last seen™ column was updated in the recent list. If the last
Explanation|seen column was older than this amount in seconds, the match returns false. Other than this the
recent match works as normal, so the source address must still be in the list for a true return of the
match.

Match --hitcount
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -m recent --name example --check --hitcount 20

Explanation|The --hitcount match must be used together with the --check or --update matches and it will limit
the match to only include packets that have seen at least the hitcount amount of packets. If this

120 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

match is used together with the --seconds match, it will require the specified hitcount packets to
be seen in the specific timeframe. This match may also be reversed by adding a ! sign in front of
the match. Together with the --seconds match, this means that a maximum of this amount of
packets may have been seen during the specified timeframe. If both of the matches are inversed,
then a maximum of this amount of packets may have been seen during the last minumum of
seconds.

Match --rttl
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -m recent --name example --check --rttl

The --rttl match is used to verify that the TTL value of the current packet is the same as the
original packet that was used to set the original entry in the recent list. This can be used to verify
that people are not spoofing their source address to deny others access to your servers by making
use of the recent match.

Explanation

Match --rsource
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -m recent --name example --rsource

The --rsource match is used to tell the recent match to save the source address and port in the

Explanation recent list. This is the default behavior of the recent match.

Match --rdest
Kernel 2.4,25and 2.6
Example |iptables -A INPUT -m recent --name example --rdest

The --rdest match is the opposite of the --rsource match in that it tells the recent match to save the

Explanation destination address and port to the recent list.

I have created a small sample script of how the recent match can be used, which you can find in the
Recent-match.txt section.

Briefly, this is a poor replacement for the state engine available in netfilter. This version was created with a
http server in mind, but will work with any TCP connection. First we have created two chains named
http-recent and http-recent-final. The http-recent chain is used in the starting stages of the connection, and for
the actual data transmission, while the http-recent-final chain is used for the last and final FIN/ACK, FIN
handshake.

!
This is a very bad replacement for the built in state engine and can not handle all of the

Wa@ﬁg}. possibilities that the state engine can handle. However, it is a good example of what can be
) done with the recent match without being too specific. Do not use this example in a real
\ world environment. It is slow, handles special cases badly, and should generally never be
used more than as an example.

For example, it does not handle closed ports on connection, asyncronuous FIN handshake
(where one of the connected parties closes down, while the other continues to send data),
etc.

121 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Let's follow a packet through the example ruleset. First a packet enters the INPUT chain, and we send it to the
http-recent chain.

1. The first packet should be a SYN packet, and should not have the ACK,FIN or RST bits set. Hence it is
matched using the --tcp-flags SYN,ACK,FIN,RST SYN line. At this point we add the connection to the
httplist using -m recent --name httplist --set line. Finally we accept the packet.

2. After the first packet we should receive a SYN/ACK packet to acknowledge that the SYN packet was
received. This can be matched using the --tcp-flags SYN,ACK,FIN,RST SYN,ACK line. FIN and RST
should be illegal at this point as well. At this point we update the entry in the httplist using -m recent
--name httplist --update and finally we ACCEPT the packet.

3. By now we should get a final ACK packet, from the original creater of the connection, to acknowledge
the SYN/ACK sent by the server. SYN, FIN and RST are illegal at this point of the connection, so the
line should look like --tcp-flags SYN,ACK,FIN,RST ACK. We update the list in exactly the same way
as in the previous step, and ACCEPT it.

4. At this point the data transmission can start. The connection should never contain any SYN packet now,
but it will contain ACK packets to acknowledge the data packets that are sent. Each time we see any
packet like this, we update the list and ACCEPT the packets.

5. The transmission can be ended in two ways, the simplest is the RST packet. RST will simply reset the
connection and it will die. With FIN/ACK, the other endpoint answers with a FIN, and this closes down
the connection so that the original source of the FIN/ACK can no longer send any data. The receiver of
the FIN, will still be able to send data, hence we send the connection to a "final" stage chain to handle
the rest.

6. In the http-recent-final chain we check if the packet is still in the httplist, and if so, we send it to the
http-recent-finall chain. In that chain we remove the connection from the httplist and add it to the
http-recent-final list instead. If the connection has already been removed and moved over to the
http-recent-final list, we send te packet to the http-recent-final2 chain.

7. In the final http-recent-final2 chain, we wait for the non-closed side to finish sending its data, and to
close the connection from their side as well. Once this is done, the connection is completely removed.

As you can see the recent list can become quite complex, but it will give you a huge set of possibilities if need
be. Still, try and remember not to reinvent the wheel. If the ability you need is already implemented, try and
use it instead of trying to create your own solution.

State match

The state match extension is used in conjunction with the connection tracking code in the kernel. The state
match accesses the connection tracking state of the packets from the conntracking machine. This allows us to
know in what state the connection is, and works for pretty much all protocols, including stateless protocols
such as ICMP and UDP. In all cases, there will be a default timeout for the connection and it will then be
dropped from the connection tracking database. This match needs to be loaded explicitly by adding a -m state
statement to the rule. You will then have access to one new match called state. The concept of state matching is
covered more fully in the The state machine chapter, since it is such a large topic.

Table 10-28. State match options

Match --state

122 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -m state --state RELATED,ESTABLISHED

This match option tells the state match what states the packets must be in to be matched. There are
currently 4 states that can be used. INVALID, ESTABLISHED, NEW and RELATED. INVALID
means that the packet is associated with no known stream or connection and that it may contain
faulty data or headers. ESTABLISHED means that the packet is part of an already established
connection that has seen packets in both directions and is fully valid. NEW means that the packet
has or will start a new connection, or that it is associated with a connection that has not seen
Explanation|packets in both directions. Finally, RELATED means that the packet is starting a new connection
and is associated with an already established connection. This could for example mean an FTP
data transfer, or an ICMP error associated with a TCP or UDP connection. Note that the NEW
state does not look for SYN bits in TCP packets trying to start a new connection and should,
hence, not be used unmodified in cases where we have only one firewall and no load balancing
between different firewalls. However, there may be times where this could be useful. For more
information on how this could be used, read the The state machine chapter.

Tcpmss match

The tcpmss match is used to match a packet based on the Maximum Segment Size in TCP. This match is only
valid for SYN and SYN/ACK packets. For a more complete explanation of the MSS value, see the TCP
options appendix, the RFC 793 - Transmission Control Protocol and the RFC 1122 - Requirements for Internet
Hosts - Communication Layers documents. This match is loaded using -m tcpmss and takes only one option.

Table 10-29. Tcpmss match options

Match --mss
Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -p tcp --tcp-flags SYN,ACK,RST SYN -m tcpmss --mss 2000:2500

The --mss option tells the tcpmss match which Maximum Segment Sizes to match. This can either
be a single specific MSS value, or a range of MSS values separated by a :. The value may also be

inverted as usual using the ! sign, as in the following example:
Explanation

-m tcpmss ! --mss 2000:2500

This example will match all MSS values, except for values in the range 2000 through 2500.

Tos match

The TOS match can be used to match packets based on their TOS field. TOS stands for Type Of Service,
consists of 8 bits, and is located in the IP header. This match is loaded explicitly by adding -m tos to the rule.
TOS is normally used to inform intermediate hosts of the precedence of the stream and its content (it doesn't
really, but it informs of any specific requirements for the stream, such as it having to be sent as fast as possible,
or it needing to be able to send as much payload as possible). How different routers and administrators deal
with these values depends. Most do not care at all, while others try their best to do something good with the
packets in question and the data they provide.

123 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Table 10-30. Tos match options

Match --tos
Kernel 2.3,2.4,25and 2.6
Example |iptables -A INPUT -p tcp -m tos --tos 0x16

This match is used as described above. It can match packets based on their TOS field and their
value. This could be used, among other things together with the iproute2 and advanced routing
functions in Linux, to mark packets for later usage. The match takes a hex or numeric value as an
option, or possibly one of the names resulting from 'iptables -m tos -h'. At the time of writing it
contained the following named values: Minimize-Delay 16 (0x10), Maximize-Throughput 8
(0x08), Maximize-Reliability 4 (0x04), Minimize-Cost 2 (0x02), and Normal-Service 0 (0x00).
Minimize-Delay means to minimize the delay in putting the packets through - example of
standard services that would require this include telnet, SSH and FTP-control.
Maximize-Throughput means to find a path that allows as big a throughput as possible - a
standard protocol would be FTP-data. Maximize-Reliability means to maximize the reliability of
the connection and to use lines that are as reliable as possible - a couple of typical examples are
BOOTP and TFTP. Minimize-Cost means minimizing the cost of packets getting through each
link to the client or server; for example finding the route that costs the least to travel along.
Examples of normal protocols that would use this would be RTSP (Real Time Stream Control
Protocol) and other streaming video/radio protocols. Finally, Normal-Service would mean any
normal protocol that has no special needs.

Explanation

Ttl match

The TTL match is used to match packets based on their TTL (Time To Live) field residing in the IP headers.
The TTL field contains 8 bits of data and is decremented once every time it is processed by an intermediate
host between the client and recipient host. If the TTL reaches 0, an ICMP type 11 code 0 (TTL equals 0 during
transit) or code 1 (TTL equals 0 during reassembly) is transmitted to the party sending the packet and
informing it of the problem. This match is only used to match packets based on their TTL, and not to change
anything. The latter, incidentally, applies to all kinds of matches. To load this match, you need to add an -m ttl
to the rule.

Table 10-31. Ttl match options

Match --ttl-eq

Kernel 2.3,2.4,25and 2.6

Example |iptables -A OUTPUT -m ttl --ttl-eq 60

This match option is used to specify the TTL value to match exactly. It takes a numeric value and
matches this value within the packet. There is no inversion and there are no other specifics to
match. It could, for example, be used for debugging your local network - e.g. LAN hosts that
Explanation|seem to have problems connecting to hosts on the Internet - or to find possible ingress by Trojans
etc. The usage is relatively limited, however; its usefulness really depends on your imagination.
One example would be to find hosts with bad default TTL values (could be due to a badly
implemented TCP/IP stack, or simply to misconfiguration).

Match --ttl-gt

Kernel 2.3,2.4,25and 2.6

Example |iptables -A OUTPUT -m ttl --ttl-gt 64

124 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

This match option is used to match any TTL greater than the specified value. The value can be
between 0 and 255 and the match can not be inverted. It could, for example, be used for matching
Explanation|any TTL greater than a specific value and then force them to a standardized value. This could be
used to overcome some simple forms of spying by ISP's to find out if you are running multiple
machines behind a firewall, against their policies.

Match --ttl-It
Kernel 2.3,2.4,25and 2.6
Example |iptables -A OUTPUT -m ttl --ttl-1t 64

The --ttl-It match is used to match any TTL smaller than the specified value. It is pretty much the
same as the --ttl-gt match, but as already stated; it matches smaller TTL's. It could also be used in
the same way as the --ttl-gt match, or to simply homogenize the packets leaving your network in
general.

Explanation

Unclean match

The unclean match takes no options and requires no more than explicitly loading it when you want to use it.
Note that this option is regarded as experimental and may not work at all times, nor will it take care of all
unclean packages or problems. The unclean match tries to match packets that seem malformed or unusual, such
as packets with bad headers or checksums and so on. This could be used to DROP connections and to check for
bad streams, for example; however you should be aware that it could possibly break legal connections.

What's next?

The last chapter has been about the matches that can be used in iptables and what they are capable of doing.
The matching capability of iptables and netfilter is extremely well developed and very flexible as you have
seen. The next chapter will discuss the targets in detail and what they are able to do. You will notice in that
chapter as well the capabilities of Linux firewalling.

Chapter 11. Iptables targets and jumps

The target/jumps tells the rule what to do with a packet that is a perfect match with the match section of the
rule. There are a couple of basic targets, the ACCEPT and DROP targets, which we will deal with first.
However, before we do that, let us have a brief look at how a jump is done.

The jump specification is done in exactly the same way as in the target definition, except that it requires a chain
within the same table to jump to. To jump to a specific chain, it is of course a prerequisite that that chain exists.
As we have already explained, a user-defined chain is created with the -N command. For example, let's say we
create a chain in the filter table called tcp_packets, like this:

iptables -N tcp_packets

We could then add a jump target to it like this:

iptables -A INPUT -p tcp -j tcp_packets

We would then jump from the INPUT chain to the tcp_packets chain and start traversing that chain. When/If

125 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

we reach the end of that chain, we get dropped back to the INPUT chain and the packet starts traversing from
the rule one step below where it jumped to the other chain (tcp_packets in this case). If a packet is ACCEPTed
within one of the sub chains, it will be ACCEPT'ed in the superset chain also and it will not traverse any of the
superset chains any further. However, do note that the packet will traverse all other chains in the other tables in
a normal fashion. For more information on table and chain traversing, see the Traversing of tables and chains
chapter.

Targets on the other hand specify an action to take on the packet in question. We could for example, DROP or
ACCEPT the packet depending on what we want to do. There are also a number of other actions we may want
to take, which we will describe further on in this section. Jumping to targets may incur different results, as it
were. Some targets will cause the packet to stop traversing that specific chain and superior chains as described
above. Good examples of such rules are DROP and ACCEPT. Rules that are stopped, will not pass through any
of the rules further on in the chain or in superior chains. Other targets, may take an action on the packet, after
which the packet will continue passing through the rest of the rules. A good example of this would be the
LOG, ULOG and TOS targets. These targets can log the packets, mangle them and then pass them on to the
other rules in the same set of chains. We might, for example, want this so that we in addition can mangle both
the TTL and the TOS values of a specific packet/stream. Some targets will accept extra options (What TOS
value to use etc), while others don't necessarily need any options - but we can include them if we want to (log
prefixes, masquerade-to ports and so on). We will try to cover all of these points as we go through the target
descriptions. Let us have a look at what kinds of targets there are.

ACCEPT target

This target needs no further options. As soon as the match specification for a packet has been fully satisfied,
and we specify ACCEPT as the target, the rule is accepted and will not continue traversing the current chain or
any other ones in the same table. Note however, that a packet that was accepted in one chain might still travel
through chains within other tables, and could still be dropped there. There is nothing special about this target
whatsoever, and it does not require, nor have the possibility of, adding options to the target. To use this target,
we simply specify -j ACCEPT.

!
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

e

CLASSIFY target

The CLASSIFY target can be used to classify packets in such a way that can be used by a couple of different
qdiscs (Queue Disciplines). For example, atm, cbq, dsmark, pfifo_fast, htb and the prio gdiscs. For more
information about qdiscs and traffic controlling, visit the Linux Advanced Routing and Traffic Control
HOW-TO webpage.

The CLASSIFY target is only valid in the POSTROUTING chain of the mangle table.

Table 11-1. CLASSIFY target options

Option --set-class
Example |iptables -t mangle -A POSTROUTING -p tcp --dport 80 -j CLASSIFY --set-class 20:10

126 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

The CLASSIFY target only takes one argument, the --set-class. This tells the target how to class
the packet. The class takes 2 values separated by a coma sign, like this MAJOR:MINOR. Once
again, if you want more information on this, check the Linux Advanced Routing and Traffic
Control HOW-TO webpage.

Explanation

1
Works under Linux kernel 2.5 and 2.6.

e

CLUSTERIP target

The CLUSTERIP target is used to create simple clusters of nodes answering to the same IP and MAC address
in a round robin fashion. This is a simple form of clustering where you set up a Virtual IP (VIP) on all hosts
participating in the cluster, and then use the CLUSTERIP on each host that is supposed to answer the requests.
The CLUSTERIP match requires no special load balancing hardware or machines, it simply does its work on
each host part of the cluster of machines. It is a very simple clustering solution and not suited for large and
complex clusters, neither does it have built in heartbeat handling, but it should be easily implemented as a
simple script.

All servers in the cluster uses a common Multicast MAC for a VIP, and then a special hash algorithm is used
within the CLUSTERIP target to figure out who of the cluster participants should respond to each connection.
A Multicast MAC is a MAC address starting with 01:00:5e as the first 24 bits. an example of a Multicast MAC
would be 01:00:5e:00:00:20. The VIP can be any IP address, but must be the same on all hosts as well.

1
Remember that the CLUSTERIP might break protocols such as SSH et cetera. The

\ mgﬂﬁaﬁﬁ connegtion will go through properly, but_if you try the same _time a_gain to the same host,

\ ’) you might pe con_nected to another machme_ in the cluster, with a_dlfferent ke.yset_, and hence
your ssh client might refuse to connect or give you errors. For this reason, this will not work
very well with some protocols, and it might be a good idea to add separate addresses that
can be used for maintenance and administration. Another solution is to use the same SSH
keys on all hosts participating in the cluster.

The cluster can be loadbalanced with three kinds of hashmodes. The first one is only source IP (sourceip), the
second is source IP and source port (sourceip-sourceport) and the third one is source IP, source port and
destination port (sourceip-sourceport-destport). The first one might be a good idea where you need to
remember states between connections, for example a webserver with a shopping cart that keeps state between
connections, this load-balancing might become a little bit uneven -- different machines might get a higher loads
than others, et cetera -- since connections from the same source IP will go to the same server. The
sourceip-sourceport hash might be a good idea where you want to get the load-balancing a little bit more even,
and where state does not have to be kept between connections on each server. For example, a large
informational webpage with perhaps a simple search engine might be a good idea here. The third and last
hashmode, sourceip-sourceport-destport, might be a good idea where you have a host with several services
running that does not require any state to be preserved between connections. This might for example be a
simple ntp, dns and www server on the same host. Each connection to each new destination would hence be
"renegotiated" -- actually no negotiation goes on, it is basically just a round robin system and each host
receives one connection each.

127 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Each CLUSTERIP cluster gets a separate file in the /proc/net/ipt_CLUSTERIP directory, based on the VIP of
the cluster. If the VIP is 192.168.0.5 for example, you could cat /proc/net/ipt. CLUSTERIP/192.168.0.5 to see
which nodes this machine is answering for. To make the machine answer for another machine, lets say node 2,
add it using echo "+2" >> /proc/net/ipt. CLUSTERIP/192.168.0.5. To remove it, run echo "-2" >>
/proc/net/ipt CLUSTERIP/192.168.0.5.

Table 11-2. CLUSTERIP target options

Option --new

Example |iptables -A INPUT -p tcp -d 192.168.0.5 --dport 80 -j CLUSTERIP --new ...
This creates a new CLUSTERIP entry. It must be set on the first rule for a VIP, and is used to

Explanation|create a new cluster. If you have several rules connecting to the same CLUSTERIP you can omit
the --new keyword in any secondary references to the same VIP.

Option --hashmode

Example iptables -A INPUT -p tcp -d 192.168.0.5 --dport 443 -j CLUSTERIP --new --hashmode sourceip
The --hashmode keyword specifies the kind of hash that should be created. The hashmode can be
any of the following three.

e sourceip
e sourceip-sourceport

Explanation e sourceip-sourceport-destport
The hashmodes has been extensively explained above. Basically, sourceip will give better
performance and simpler states between connections, but not as good load-balancing between the
machines. sourceip-sourceport will give a slightly slower hashing and not as good to maintain
states between connections, but will give better load-balancing properties. The last one may create
very slow hashing that consumes a lot of memory, but will on the other hand also create very
good load-balancing properties.

Option --clustermac

Example iptables -A INPUT -p tcp -d 192.168.0.5 --dport 80 -j CLUSTERIP --new --hashmode sourceip
--clustermac 01:00:5e:00:00:20 ...

Explanation The MAC address that the cluster is_ Iiste_ning to for new connections. This is a s_hared I\/I_ulticast
MAC address that all the hosts are listening to. See above for a deeper explanation of this.

Option --total-nodes

Example iptables -A INPUT -p tcp -d 192.168.0.5 --dport 80 -j CLUSTERIP --new --hashmode sourceip
--clustermac 01:00:5e:00:00:20 --total-nodes 2 ...

. |The --total-nodes keyword specifies how many hosts are participating in the cluster and that will

Explanation .
answer to requests. See above for a deeper explanation.

Option --local-node

Example iptables -A INPUT -p tcp -d 192.168.0.5 --dport 80 -j CLUSTERIP --new --hashmode sourceip
--clustermac 01:00:5e:00:00:20 --total-nodes 2 --local-node 1
This is the number that this machine has in the cluster. The cluster answers in a round-robin

Explanation|fashion, so once a new connection is made to the cluster, the next machine answers, and then the
next after that, and so on.

Option --hash-init

128 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

iptables -A INPUT -p tcp -d 192.168.0.5 --dport 80 -j CLUSTERIP --new --hashmode sourceip
--clustermac 01:00:5e:00:00:20 --hash-init 1234

Explanation|Specifies a random seed for hash initialization.

Example

1
This target is in violation of the RFC 1812 - Requirements for IP Version 4 Routers RFC, so
Wa@ﬁg}. be wary of any problems that may arise. Specifically, section 3.3.2 which specifies that a
\ router must never trust another host or router that says that it is using a multicast mac.

'
Works under late Linux 2.6 kernels, marked experimental.

)

CONNMARK target

The CONNMARK target is used to set a mark on a whole connection, much the same way as the MARK target
does. It can then be used together with the connmark match to match the connection in the future. For example,
say we see a specific pattern in a header, and we don't want to mark just that packet, but the whole connection.
The CONNMARK target is a perfect solution in that case.

The CONNMARK target is available in all chains and all tables, but remember that the nat table is only
traversed by the first packet in a connection, so the CONNMARK target will have no effect if you try to use it
for subsequent packets after the first one in here. It can take one of four different options as seen below.

Table 11-3. CONNMARK target options

Option --set-mark
Example |iptables -t nat -A PREROUTING -p tcp --dport 80 -j CONNMARK --set-mark 4

This option sets a mark on the connection. The mark can be an unsigned long int, which means
values between 0 and 4294967295l is valid. Each bit can also be masked by doing --set-mark
12/8. This will only allow the bits in the mask to be set out of all the bits in the mark. In this
example, only the 4th bit will be set, not the 3rd. 12 translates to 1100 in binary, and 8 to 1000,
and only the bits set in the mask are allowed to be set. Hence, only the 4th bit, or 8, is set in the
actual mark.

Option --save-mark

Example |iptables -t mangle -A PREROUTING --dport 80 -j CONNMARK --save-mark

The --save-mark target option is used to save the packet mark into the connection mark. For
example, if you have set a packet mark with the MARK target, you can then move this mark to
mark the whole connection with the --save-mark match. The mark can also be masked by using
the --mask option described further down.

Option --restore-mark

Example |iptables -t mangle -A PREROUTING --dport 80 -j CONNMARK --restore-mark

This target option restores the packet mark from the connection mark as defined by the

Explanation| CONNMARK. A mask can also be defined using the --mask option as seen below. If a mask is
set, only the masked options will be set. Note that this target option is only valid for use in the

Explanation

Explanation

129 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

mangle table.

Option --mask

Example |iptables -t mangle -A PREROUTING --dport 80 -] CONNMARK --restore-mark --mask 12

The --mask option must be used in unison with the --save-mark and --restore-mark options. The
--mask option specifies an and-mask that should be applied to the mark values that the other two
Explanation|options will give. For example, if the restored mark from the above example would be 15, it

would mean that the mark was 1111 in binary, while the mask is 1100. 1111 and 1100 equals
1100.

!
Works under Linux kernel 2.6.

)

CONNSECMARK target

The CONNSECMARK target sets a SELinux security context mark to or from a packet mark. For further
information on SELinux, read more at the Security-Enhanced Linux homepage. The target is only valid in the
mangle table and is used together with the SECMARK target, where the SECMARK target is used to set the
original mark, and then the CONNSECMARK is used to set the mark on the whole connection.

SELinux is beyond the scope of this document, but basically it is an addition of Mandatory Access Control to
Linux. This is more finegrained than the original security systems of most Linux and Unix security controls.
Each object can have security attributes, or security context, connected to it, and these attributes are then
matched to eachother before allowing or denying a specific task to be performed. This target will allow a
security context to be set on a connection.

Table 11-4. CONNSECMARK target options

Option --save
Example |iptables -t mangle -A PREROUTING -p tcp --dport 80 -j CONNSECMARK --save

Save the security context mark from the packet to the connection if the connection is not marked
since before.

Option --restore
Example |iptables -t mangle -A PREROUTING -p tcp --dport 80 -j CONNSECMARK --restore

If the packet has no security context mark set on it, the --restore option will set the security
context mark associated with the connection on the packet.

Explanation

Explanation

DNAT target

The DNAT target is used to do Destination Network Address Translation, which means that it is used to
rewrite the Destination 1P address of a packet. If a packet is matched, and this is the target of the rule, the
packet, and all subsequent packets in the same stream will be translated, and then routed on to the correct
device, host or network. This target can be extremely useful, for example,when you have a host running your
web server inside a LAN, but no real IP to give it that will work on the Internet. You could then tell the firewall
to forward all packets going to its own HTTP port, on to the real web server within the LAN. We may also

130 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

specify a whole range of destination IP addresses, and the DNAT mechanism will choose the destination IP
address at random for each stream. Hence, we will be able to deal with a kind of load balancing by doing this.

Note that the DNAT target is only available within the PREROUTING and OUTPUT chains in the nat table,
and any of the chains called upon from any of those listed chains. Note that chains containing DNAT targets
may not be used from any other chains, such as the POSTROUTING chain.

Table 11-5. DNAT target options

Option --to-destination

iptables -t nat -A PREROUTING -p tcp -d 15.45.23.67 --dport 80 -j DNAT --to-destination
192.168.1.1-192.168.1.10

The --to-destination option tells the DNAT mechanism which Destination IP to set in the IP
header, and where to send packets that are matched. The above example would send on all
packets destined for IP address 15.45.23.67 to a range of LAN IP's, namely 192.168.1.1 through
10. Note, as described previously, that a single stream will always use the same host, and that
each stream will randomly be given an IP address that it will always be Destined for, within that
stream. We could also have specified only one IP address, in which case we would always be
Explanation|connected to the same host. Also note that we may add a port or port range to which the traffic
would be redirected to. This is done by adding, for example, an :80 statement to the IP addresses
to which we want to DNAT the packets. A rule could then look like --to-destination
192.168.1.1:80 for example, or like --to-destination 192.168.1.1:80-100 if we wanted to specify a
port range. As you can see, the syntax is pretty much the same for the DNAT target, as for the
SNAT target even though they do two totally different things. Do note that port specifications are
only valid for rules that specify the TCP or UDP protocols with the --protocol option.

Example

Since DNAT requires quite a lot of work to work properly, | have decided to add a larger explanation on how
to work with it. Let's take a brief example on how things would be done normally. We want to publish our
website via our Internet connection. We only have one IP address, and the HTTP server is located on our
internal network. Our firewall has the external IP address SINET _IP, and our HTTP server has the internal IP
address SHTTP_IP and finally the firewall has the internal IP address $LAN_IP. The first thing to do is to add
the following simple rule to the PREROUTING chain in the nat table:

iptables -t nat -A PREROUTING --dst $INET_IP -p tcp --dport 80 —-j DNAT \
--to-destination $HTTP_IP

Now, all packets from the Internet going to port 80 on our firewall are redirected (or DNAT'ed) to our internal
HTTP server. If you test this from the Internet, everything should work just perfect. So, what happens if you
try connecting from a host on the same local network as the HTTP server? It will simply not work. This is a
problem with routing really. We start out by dissecting what happens in a normal case. The external box has IP
address SEXT_BOX, to maintain readability.

1. Packet leaves the connecting host going to $SINET _IP and source $EXT_BOX.

2. Packet reaches the firewall.

3. Firewall DNAT's the packet and runs the packet through all different chains etcetera.
4. Packet leaves the firewall and travels to the SHTTP_IP.

5. Packet reaches the HTTP server, and the HTTP box replies back through the firewall, if that is the box
that the routing database has entered as the gateway for SEXT_BOX. Normally, this would be the default
gateway of the HTTP server.

131 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

6. Firewall Un-DNAT's the packet again, so the packet looks as if it was replied to from the firewall itself.
7. Reply packet travels as usual back to the client $SEXT_BOX.

Now, we will consider what happens if the packet was instead generated by a client on the same network as the
HTTP server itself. The client has the IP address SLAN_BOX, while the rest of the machines maintain the
same settings.

1. Packet leaves SLAN_BOX to $INET _IP.
2. The packet reaches the firewall.

3. The packet gets DNAT'ed, and all other required actions are taken, however, the packet is not SNAT'ed,
so the same source IP address is used on the packet.

4. The packet leaves the firewall and reaches the HTTP server.

5. The HTTP server tries to respond to the packet, and sees in the routing databases that the packet came
from a local box on the same network, and hence tries to send the packet directly to the original source
IP address (which now becomes the destination IP address).

6. The packet reaches the client, and the client gets confused since the return packet does not come from the
host that it sent the original request to. Hence, the client drops the reply packet, and waits for the "real”

reply.

The simple solution to this problem is to SNAT all packets entering the firewall and leaving for a host or IP
that we know we do DNAT to. For example, consider the above rule. We SNAT the packets entering our
firewall that are destined for SHTTP_IP port 80 so that they look as if they came from $LAN_IP. This will
force the HTTP server to send the packets back to our firewall, which Un-DNAT's the packets and sends them
on to the client. The rule would look something like this:

iptables -t nat -A POSTROUTING -p tcp --dst $HTTP_IP —-dport 80 -j SNAT \
--to-source $LAN_IP

Remember that the POSTROUTING chain is processed last of the chains, and hence the packet will already be
DNAT'ed once it reaches that specific chain. This is the reason that we match the packets based on the internal
address.

'
This last rule will seriously harm your logging, so it is really advisable not to use this
\Jﬁlaﬂ‘;‘“ \ method, but the whole example is still a valid one. What will happen is this, packet comes
\ ’) from the Internet, gets SNAT'ed and DNAT'ed, and finally hits the HTTP server (for
\ example). The HTTP server now only sees the request as if it was coming from the firewall,
' and hence logs all requests from the internet as if they came from the firewall.

This can also have even more severe implications. Take an SMTP server on the LAN, that
allows requests from the internal network, and you have your firewall set up to forward
SMTP traffic to it. You have now effectively created an open relay SMTP server, with
horrenduously bad logging!

One solution to this problem is to simply make the SNAT rule even more specific in the
match part, and to only work on packets that come in from our LAN interface. In other
words, add a --src SLAN_IP_RANGE to the whole command as well. This will make the

132 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

rule only work on streams that come in from the LAN, and hence will not affect the Source
IP, so the logs will look correct, except for streams coming from our LAN.

You will, in other words, be better off solving these problems by either setting up a separate
DNS server for your LAN, or to actually set up a separate DMZ, the latter being preferred if
you have the money.

You think this should be enough by now, and it really is, unless considering one final aspect to this whole
scenario. What if the firewall itself tries to access the HTTP server, where will it go? As it looks now, it will
unfortunately try to get to its own HTTP server, and not the server residing on $HTTP_IP. To get around this,
we need to add a DNAT rule in the OUTPUT chain as well. Following the above example, this should look
something like the following:

iptables -t nat -A OUTPUT --dst $INET_IP -p tcp --dport 80 -j DNAT \
--to-destination $HTTP_IP

Adding this final rule should get everything up and running. All separate networks that do not sit on the same
net as the HTTP server will run smoothly, all hosts on the same network as the HTTP server will be able to
connect and finally, the firewall will be able to do proper connections as well. Now everything works and no
problems should arise.

!
Everyone should realize that these rules only affect how the packet is DNAT'ed and
NU‘B\' SNAT'ed properly. In addition to these rules, you may also need extra rules in the filter table
\ ,) (FORWARD chain) to allow the packets to traverse through those chains as well. Don't
\ forget that all packets have already gone through the PREROUTING chain, and should
' hence have their destination addresses rewritten already by DNAT.

|
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

e

DROP target

The DROP target does just what it says, it drops packets dead and will not carry out any further processing. A
packet that matches a rule perfectly and is then Dropped will be blocked. Note that this action might in certain
cases have an unwanted effect, since it could leave dead sockets around on either host. A better solution in
cases where this is likely would be to use the REJECT target, especially when you want to block port scanners
from getting too much information, such as on filtered ports and so on. Also note that if a packet has the DROP
action taken on it in a subchain, the packet will not be processed in any of the main chains either in the present
or in any other table. The packet is in other words totally dead. As we've seen previously, the target will not
send any kind of information in either direction, nor to intermediaries such as routers.

133 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

!
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

e

DSCP target

This is a target that changes the DSCP(Differentiated Services Field) marks inside a packet. The DSCP target
is able to set any DSCP value inside a TCP packet, which is a way of telling routers the priority of the packet
in question. For more information about DSCP, look at the RFC 2474 - Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers RFC document.

Basically, DSCP is a way of differentiating different services into separate categories, and based on this, give
them different priority through the routers. This way, you can give interactive TCP sessions (such as telnet,
SSH, POP3) a very high fast connection, that may not be very suitable for large bulk transfers. If on the other
hand the connection is one of low importance (SMTP, or whatever you classify as low priority), you could
send it over a large bulky network with worse latency than the other network, that is cheaper to utilize than the
faster and lower latency connections.

Table 11-6. DSCP target options

Option --set-dscp

Example |iptables -t mangle -A FORWARD -p tcp --dport 80 -j DSCP --set-dscp 1

This sets the DSCP value to the specified value. The values can be set either via class, see below,
or with the --set-dscp, which takes either an integer value, or a hex value.

Option --set-dscp-class

Example |iptables -t mangle -A FORWARD -p tcp --dport 80 -j DSCP --set-dscp-class EF

This sets the DSCP field according to a predefined DiffServ class. Some of the possible values are
EF, BE and the CSxx and AFxx values available. You can find more information at Implementing
Explanation|Quality of Service Policies with DSCP site. Do note that the --set-dscp-class and --set-dscp

commands are mutually exclusive, which means you can not use both of them in the same
command!

Explanation

!
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

e’y

ECN target

This target can be great, used in the correct way. Simply put, the ECN target can be used to reset the ECN bits
from the IPv4 header, or to put it correctly, reset them to 0 at least. Since ECN is a relatively new thing on the
net, there are problems with it. For example, it uses 2 bits that are defined in the original RFC for the TCP
protocol to be 0. Some routers and other internet appliances will not forward packets that have these bits set to
1. If you want to make use of at least parts of the ECN functionality from your hosts, you could for example

134 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

reset the ECN bits to 0 for specific networks that you know you are having troubles reaching because of ECN.

Please do note that it isn't possible to turn ECN on in the middle of a stream. It isn't allowed
NU‘B\' according to the RFC's, and it isn't possible anyways. Both endpoints of the stream must
\ ’) negotiate ECN. If we turn it on, then one of the hosts is not aware of it, and can't respond
\ properly to the ECN notifications.

Table 11-7. ECN target options

Option --ecn-tcp-remove
Example |iptables -t mangle -A FORWARD -p tcp --dport 80 -j ECN --ecn-tcp-remove

The ECN target only takes one argument, the --ecn-tcp-remove argument. This tells the target to
remove the ECN bits inside the TCP headers. Read above for more information.

Explanation

!

e

LOG target options

Works under Linux kernel 2.5 and 2.6.

The LOG target is specially designed for logging detailed information about packets. These could, for example,
be considered as illegal. Or, logging can be used purely for bug hunting and error finding. The LOG target will
return specific information on packets, such as most of the IP headers and other information considered
interesting. It does this via the kernel logging facility, normally syslogd. This information may then be read
directly with dmesg, or from the syslogd logs, or with other programs or applications. This is an excellent
target to use to debug your rule-sets, so that you can see what packets go where and what rules are applied on
what packets. Note as well that it could be a really great idea to use the LOG target instead of the DROP target
while you are testing a rule you are not 100% sure about on a production firewall, since a syntax error in the
rule-sets could otherwise cause severe connectivity problems for your users. Also note that the ULOG target
may be interesting if you are using really extensive logging, since the ULOG target has support for direct
logging to MySQL databases and suchlike.

Note that if you get undesired logging direct to consoles, this is not an iptables or Netfilter
NU‘B\' problem, but rather a problem caused by your syslogd configuration - most probably

\ ,) /etc/syslog.conf. Read more in man syslog.conf for information about this kind of
problem.

You may also need to tweak your dmesg settings. dmesg is the command that changes
which errors from the kernel that should be shown on the console. dmesg -n 1 should
prevent all messages from showing up on the console, except panic messages. The dmesg
message levels matches exactly the syslogd levels, and it only works on log messages from
the kernel facility. For more information, see man dmesg.

The LOG target currently takes five options that could be of interest if you have specific information needs, or

135 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

want to set different options to specific values. They are all listed below.

Table 11-8. LOG target options

Option --log-level

Example |iptables -A FORWARD -p tcp -j LOG --log-level debug
This is the option to tell iptables and syslog which log level to use. For a complete list of log
levels read the syslog.conf manual. Normally there are the following log levels, or priorities as
they are normally referred to: debug, info, notice, warning, warn, err, error, crit, alert, emerg and
panic. The keyword error is the same as err, warn is the same as warning and panic is the same as
emerg. Note that all three of these are deprecated, in other words do not use error, warn and panic.

Explanation|The priority defines the severity of the message being logged. All messages are logged through
the kernel facility. In other words, setting kern.=info /var/log/iptables in your syslog.conf file
and then letting all your LOG messages in iptables use log level info, would make all messages
appear in the /var/log/iptables file. Note that there may be other messages here as well from
other parts of the kernel that uses the info priority. For more information on logging | recommend
you to read the syslog and syslog.conf man-pages as well as other HOWTOs etc.

Option --log-prefix

Example |iptables -A INPUT -p tcp -j LOG --log-prefix "INPUT packets”
This option tells iptables to prefix all log messages with a specific prefix, which can then easily be

Explanation|combined with grep or other tools to track specific problems and output from different rules. The
prefix may be up to 29 letters long, including white-spaces and other special symbols.

Option --log-tcp-sequence

Example |iptables -A INPUT -p tcp -j LOG --log-tcp-sequence
This option will log the TCP Sequence numbers, together with the log message. The TCP
Sequence numbers are special numbers that identify each packet and where it fits into a TCP

Explanation|sequence, as well as how the stream should be reassembled. Note that this option constitutes a
security risk if the logs are readable by unauthorized users, or by the world for that matter. As
does any log that contains output from iptables.

Option --log-tcp-options

Example |iptables -A FORWARD -p tcp -j LOG --log-tcp-options
The --log-tcp-options option logs the different options from the TCP packet headers and can be

Explanation vall_JabIe when trying to debgg Wha}t could go wrong, or what _has actually gone wrong. This
option does not take any variable fields or anything like that, just as most of the LOG options
don't.

Option --log-ip-options

Example |iptables -A FORWARD -p tcp -j LOG --log-ip-options
The --log-ip-options option will log most of the IP packet header options. This works exactly the

Explanation same as the --log-tcp-options option, but instead works on the IP options. These logging messages

may be valuable when trying to debug or track specific culprits, as well as for debugging - in just
the same way as the previous option.

o\
\N

!

\

Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

136 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

MARK target

The MARK target is used to set Netfilter mark values that are associated with specific packets. This target is
only valid in the mangle table, and will not work outside there. The MARK values may be used in conjunction
with the advanced routing capabilities in Linux to send different packets through different routes and to tell
them to use different queue disciplines (qdisc), etc. For more information on advanced routing, check out the
Linux Advanced Routing and Traffic Control HOW-TO. Note that the mark value is not set within the actual
packet, but is a value that is associated within the kernel with the packet. In other words, you can not set a
MARK for a packet and then expect the MARK still to be there on another host. If this is what you want, you
will be better off with the TOS target which will mangle the TOS value in the IP header.

Table 11-9. MARK target options

Option --set-mark
Example |iptables -t mangle -A PREROUTING -p tcp --dport 22 -j MARK --set-mark 2

The --set-mark option is required to set a mark. The --set-mark match takes an integer value. For
Explanation|example, we may set mark 2 on a specific stream of packets, or on all packets from a specific host
and then do advanced routing on that host, to decrease or increase the network bandwidth, etc.

!
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

e
'\-_NU)

MASQUERADE target

The MASQUERADE target is used basically the same as the SNAT target, but it does not require any
--to-source option. The reason for this is that the MASQUERADE target was made to work with, for example,
dial-up connections, or DHCP connections, which gets dynamic IP addresses when connecting to the network
in question. This means that you should only use the MASQUERADE target with dynamically assigned IP
connections, which we don't know the actual address of at all times. If you have a static IP connection, you
should instead use the SNAT target.

When you masquerade a connection, it means that we set the IP address used on a specific network interface
instead of the --to-source option, and the IP address is automatically grabbed from the information about the
specific interface. The MASQUERADE target also has the effect that connections are forgotten when an
interface goes down, which is extremely good if we, for example, kill a specific interface. If we would have
used the SNAT target, we may have been left with a lot of old connection tracking data, which would be lying
around for days, swallowing up useful connection tracking memory. This is, in general, the correct behavior
when dealing with dial-up lines that are probably assigned a different IP every time they are brought up. In
case we are assigned a different IP, the connection is lost anyways, and it is more or less idiotic to keep the
entry around.

It is still possible to use the MASQUERADE target instead of SNAT even though you do have a static IP,
however, it is not favorable since it will add extra overhead, and there may be inconsistencies in the future
which will thwart your existing scripts and render them "unusable”.

Note that the MASQUERADE target is only valid within the POSTROUTING chain in the nat table, just as the
SNAT target. The MASQUERADE target takes one option specified below, which is optional.

137 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Table 11-10. MASQUERADE target options

Option --to-ports
Example |iptables -t nat -A POSTROUTING -p TCP -] MASQUERADE --to-ports 1024-31000

The --to-ports option is used to set the source port or ports to use on outgoing packets. Either you
can specify a single port like --to-ports 1025 or you may specify a port range as --to-ports
1024-3000. In other words, the lower port range delimiter and the upper port range delimiter
separated with a hyphen. This alters the default SNAT port-selection as described in the SNAT
target section. The --to-ports option is only valid if the rule match section specifies the TCP or
UDP protocols with the --protocol match.

Explanation

!
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

e
'\-_NU)

MIRROR target

1
Be warned, the MIRROR is dangerous and was only developed as an example code of the
waﬂi‘“ \ new conntrack and NAT code. It can cause dangerous things to happen, and very serious
\ ’) DDoS/DoS will be possible if used improperly. Avoif using it at all costs! It was removed
\ from 2.5 and 2.6 kernels due to it's bad security implications!

The MIRROR target is an experimental and demonstration target only, and you are warned against using it,
since it may result in really bad loops hence, among other things, resulting in serious Denial of Service. The
MIRROR target is used to invert the source and destination fields in the IP header, and then to retransmit the
packet. This can cause some really funny effects, and I'll bet that, thanks to this target, not just one red faced
cracker has cracked his own box by now. The effect of using this target is stark, to say the least. Let's say we
set up a MIRROR target for port 80 at computer A. If host B were to come from yahoo.com, and try to access
the HTTP server at host A, the MIRROR target would return the yahoo host's own web page (since this is
where the request came from).

Note that the MIRROR target is only valid within the INPUT, FORWARD and PREROUTING chains, and
any user-defined chains which are called from those chains. Also note that outgoing packets resulting from the
MIRROR target are not seen by any of the normal chains in the filter, nat or mangle tables, which could give
rise to loops and other problems. This could make the target the cause of unforeseen headaches. For example, a
host might send a spoofed packet to another host that uses the MIRROR command with a TTL of 255, at the
same time spoofing its own packet, so as to seem as if it comes from a third host that uses the MIRROR
command. The packet will then bounce back and forth incessantly, for the number of hops there are to be
completed. If there is only 1 hop, the packet will jump back and forth 240-255 times. Not bad for a cracker, in
other words, to send 1500 bytes of data and eat up 380 kbyte of your connection. Note that this is a best case
scenario for the cracker or script kiddie, whatever we want to call them.

138 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

!
Works under Linux kernel 2.3 and 2.4. It was removed from 2.5 and 2.6 kernels due to it's
NO&LB_ inherent insecurity. Do not use this target!

g

NETMAP target

NETMAP is a new implementation of the SNAT and DNAT targets where the host part of the IP address isn't
changed. It provides a 1:1 NAT function for whole networks which isn't available in the standard SNAT and
DNAT functions. For example, lets say we have a network containing 254 hosts using private IP addresses (a
/24 network), and we just got a new /24 network of public IP's. Instead of walking around and changing the IP
of each and every one of the hosts, we would be able to simply use the NETMAP target like -j NETMAP -to
10.5.6.0/24 and voila, all the hosts are seen as 10.5.6.x when they leave the firewall. For example,
192.168.0.26 would become 10.5.6.26.

Table 11-11. NETMAP target options

Option --to
Example |iptables -t mangle -A PREROUTING -s 192.168.1.0/24 -j NETMAP --to 10.5.6.0/24

This is the only option of the NETMAP target. In the above example, the 192.168.1.x hosts will
be directly translated into 10.5.6.x.

Explanation

!
Works under Linux kernel 2.5 and 2.6.

)

NFQUEUE target

The NFQUEUE target is used much the same way as the QUEUE target, and is basically an extension of it.
The NFQUEUE target allows for sending packets for separate and specific queues. The queue is identified by a
16-bit id.

This target requires the nfnetlink_queue kernel support to run. For more information on what you can do with
the NFQUEUE target, see the QUEUE target.

Table 11-12. NFQUEUE target options

Option --queue-num

Example |iptables -t nat -A PREROUTING -p tcp --dport 80 -j NFQUEUE --queue-num 30

The --queue-num option specifies which queue to use and to send the queue'd data to. If this
option is skipped, the default queue 0 is used. The queue number is a 16 bit unsigned integer,

which means it can take any value between 0 and 65535. The default O queue is also used by the
QUEUE target.

Explanation

139 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

!
Works under Linux kernel 2.6.14 and later.

e

NOTRACK target

This target is used to turn off connection tracking for all packets matching this rule. The target has been
discussed at some length in the Untracked connections and the raw table section of the The state machine

chapter.

The target takes no options and is very easy to use. Match the packets you wish to not track, and then set the
NOTRACK target on the rules matching the packets you don't wish to track.

!
The target is only valid inside the raw table.

e
'\-_NU)

!
Works under late Linux 2.6 kernels.

e

QUEUE target

The QUEUE target is used to queue packets to User-land programs and applications. It is used in conjunction
with programs or utilities that are extraneous to iptables and may be used, for example, with network
accounting, or for specific and advanced applications which proxy or filter packets. We will not discuss this
target in depth, since the coding of such applications is out of the scope of this tutorial. First of all it would
simply take too much time, and secondly such documentation does not have anything to do with the
programming side of Netfilter and iptables. All of this should be fairly well covered in the Netfilter Hacking

HOW-TO.

'
As of kernel 2.6.14 the behavior of netfilter has changed. A new system for talking to the

gﬂﬁaﬂ"l QUEUE has been deviced, called the nfnetlink_queue. The QUEUE target is basically a
.\‘-.ﬁ'- pointer to the NFQUEUE 0 nowadays. For programming questions, still see the above link.
\ This requires the nfnetlink_queue.ko module.

140 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

!
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

e

REDIRECT target

The REDIRECT target is used to redirect packets and streams to the machine itself. This means that we could
for example REDIRECT all packets destined for the HTTP ports to an HTTP proxy like squid, on our own
host. Locally generated packets are mapped to the 127.0.0.1 address. In other words, this rewrites the
destination address to our own host for packets that are forwarded, or something alike. The REDIRECT target
is extremely good to use when we want, for example, transparent proxying, where the LAN hosts do not know
about the proxy at all.

Note that the REDIRECT target is only valid within the PREROUTING and OUTPUT chains of the nat table.
It is also valid within user-defined chains that are only called from those chains, and nowhere else. The
REDIRECT target takes only one option, as described below.

Table 11-13. REDIRECT target options

Option --to-ports
Example |iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-ports 8080

The --to-ports option specifies the destination port, or port range, to use. Without the --to-ports
option, the destination port is never altered. This is specified, as above, --to-ports 8080 in case we
only want to specify one port. If we would want to specify a port range, we would do it like
--to-ports 8080-8090, which tells the REDIRECT target to redirect the packets to the ports 8080
through 8090. Note that this option is only available in rules specifying the TCP or UDP protocol
with the --protocol matcher, since it wouldn't make any sense anywhere else.

Explanation

|
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

e

REJECT target

The REJECT target works basically the same as the DROP target, but it also sends back an error message to
the host sending the packet that was blocked. The REJECT target is as of today only valid in the INPUT,
FORWARD and OUTPUT chains or their sub chains. After all, these would be the only chains in which it
would make any sense to put this target. Note that all chains that use the REJECT target may only be called by
the INPUT, FORWARD, and OUTPUT chains, else they won't work. There is currently only one option which
controls the nature of how this target works, though this may in turn take a huge set of variables. Most of them
are fairly easy to understand, if you have a basic knowledge of TCP/IP.

141 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Table 11-14. REJECT target options

Option --reject-with
Example |iptables -A FORWARD -p TCP --dport 22 -j REJECT --reject-with tcp-reset

This option tells the REJECT target what response to send to the host that sent the packet that we
are rejecting. Once we get a packet that matches a rule in which we have specified this target, our
host will first of all send the associated reply, and the packet will then be dropped dead, just as the
DROP target would drop it. The following reject types are currently valid: icmp-net-unreachable,
icmp-host-unreachable, icmp-port-unreachable, icmp-proto-unreachable, icmp-net-prohibited and
icmp-host-prohibited. The default error message is to send a port-unreachable to the host. All of
the above are ICMP error messages and may be set as you wish. You can find further information
on their various purposes in the appendix ICMP types. Finally, there is one more option called
tcp-reset, which may only be used together with the TCP protocol. The tcp-reset option will tell
REJECT to send a TCP RST packet in reply to the sending host. TCP RST packets are used to
close open TCP connections gracefully. For more information about the TCP RST read RFC 793 -
Transmission Control Protocol. As stated in the iptables man page, this is mainly useful for
blocking ident probes which frequently occur when sending mail to broken mail hosts, that won't
otherwise accept your mail.

Explanation

1
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

)

RETURN target

The RETURN target will cause the current packet to stop traveling through the chain where it hit the rule. If it
is the subchain of another chain, the packet will continue to travel through the superior chains as if nothing had
happened. If the chain is the main chain, for example the INPUT chain, the packet will have the default policy
taken on it. The default policy is normally set to ACCEPT, DROP or similar.

For example, let's say a packet enters the INPUT chain and then hits a rule that it matches and that tells it to
--jump EXAMPLE_CHAIN. The packet will then start traversing the EXAMPLE_CHAIN, and all of a sudden
it matches a specific rule which has the --jump RETURN target set. It will then jump back to the INPUT chain.
Another example would be if the packet hit a --jump RETURN rule in the INPUT chain. It would then be
dropped to the default policy as previously described, and no more actions would be taken in this chain.

!
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

e

SAME target

The SAME target works almost in the same fashion as the SNAT target, but it still differs. Basically, the
SAME target will try to always use the same outgoing IP address for all connections initiated by a single host

142 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

on your network. For example, say you have one /24 network (192.168.1.0) and 3 IP addresses (10.5.6.7-9).
Now, if 192.168.1.20 went out through the .7 address the first time, the firewall will try to keep that machine
always going out through that IP address.

Table 11-15. SAME target options

Option --to
Example |iptables -t mangle -A PREROUTING -s 192.168.1.0/24 -j SAME --t0 10.5.6.7-10.5.6.9

As you can see, the --to argument takes 2 IP addresses bound together by a - sign. These IP
addresses, and all in between, are the IP addresses that we NAT to using the SAME algorithm.
Option --nodst

Example |iptables -t mangle -A PREROUTING -s 192.168.1.0/24 -j SAME --to0 10.5.6.7-10.5.6.9 --nodst
Under normal action, the SAME target is calculating the followup connections based on both
destination and source IP addresses. Using the --nodst option, it uses only the source IP address to

find out which outgoing IP the NAT function should use for the specific connection. Without this
argument, it uses a combination of the destination and source IP address.

Explanation

Explanation

!
Works under Linux kernel 2.5 and 2.6.

\iod)

SECMARK target

The SECMARK target is used to set a security context mark on a single packet, as defined by SELinux and
security systems. This is still somewhat in it's infancy in Linux, but should pick up more and more in the
future. Since SELinux is out of the scope of this document, | suggest going to the Security-Enhanced Linux
webpage for more information.

In brief, SELinux is a new and improved security system to add Mandatory Access Control (MAC) to Linux,
implemented by NSA as a proof of concept. SELinux basically sets security attributes for different objects and
then matches them into security contexts. The SECMARK target is used to set a security context on a packet
which can then be used within the security subsystems to match on.

!
The SECMARK target is only valid in the mangle table.

\iod)

Table 11-16. SECMARK target options

Option --selctx
Example |iptables -t mangle -A PREROUTING -p tcp --dport 80 -j SECMARK --selctx httpcontext

The --selctx option is used to specify which security context to set on a packet. The context can
then be used for matching inside the security systems of linux.

Explanation

143 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

SNAT target

The SNAT target is used to do Source Network Address Translation, which means that this target will rewrite
the Source IP address in the IP header of the packet. This is what we want, for example, when several hosts
have to share an Internet connection. We can then turn on ip forwarding in the kernel, and write an SNAT rule
which will translate all packets going out from our local network to the source IP of our own Internet
connection. Without doing this, the outside world would not know where to send reply packets, since our local
networks mostly use the IANA specified IP addresses which are allocated for LAN networks. If we forwarded
these packets as is, no one on the Internet would know that they were actually from us. The SNAT target does
all the translation needed to do this kind of work, letting all packets leaving our LAN look as if they came from
a single host, which would be our firewall.

The SNAT target is only valid within the nat table, within the POSTROUTING chain. This is in other words
the only chain in which you may use SNAT. Only the first packet in a connection is mangled by SNAT, and
after that all future packets using the same connection will also be SNATted. Furthermore, the initial rules in
the POSTROUTING chain will be applied to all the packets in the same stream.

Table 11-17. SNAT target options

Option --to-source

iptables -t nat -A POSTROUTING -p tcp -0 ethO -j SNAT --to-source
194.236.50.155-194.236.50.160:1024-32000

The --to-source option is used to specify which source the packet should use. This option, at its
simplest, takes one IP address which we want to use for the source IP address in the IP header. If
we want to balance between several IP addresses, we can use a range of IP addresses, separated
by a hyphen. The --to--source IP numbers could then, for instance, be something like in the above
example: 194.236.50.155-194.236.50.160. The source IP for each stream that we open would then
be allocated randomly from these, and a single stream would always use the same IP address for
all packets within that stream. We can also specify a range of ports to be used by SNAT. All the
source ports would then be confined to the ports specified. The port bit of the rule would then
Explanation|look like in the example above, :1024-32000. This is only valid if -p tcp or -p udp was specified
somewhere in the match of the rule in question. iptables will always try to avoid making any port
alterations if possible, but if two hosts try to use the same ports, iptables will map one of them to
another port. If no port range is specified, then if they're needed, all source ports below 512 will
be mapped to other ports below 512. Those between source ports 512 and 1023 will be mapped to
ports below 1024. All other ports will be mapped to 1024 or above. As previously stated, iptables
will always try to maintain the source ports used by the actual workstation making the connection.
Note that this has nothing to do with destination ports, so if a client tries to make contact with an
HTTP server outside the firewall, it will not be mapped to the FTP control port.

Example

!
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

e
'\-_NU)

TCPMSS target

The TCPMSS target can be used to alter the MSS (Maximum Segment Size) value of TCP SYN packets that

144 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

the firewall sees. The MSS value is used to control the maximum size of packets for specific connections.
Under normal circumstances, this means the size of the MTU (Maximum Transfer Unit) value, minus 40 bytes.
This is used to overcome some ISP's and servers that block ICMP fragmentation needed packets, which can
result in really weird problems which can mainly be described such that everything works perfectly from your
firewall/router, but your local hosts behind the firewall can't exchange large packets. This could mean such
things as mail servers being able to send small mails, but not large ones, web browsers that connect but then
hang with no data received, and ssh connecting properly, but scp hangs after the initial handshake. In other
words, everything that uses any large packets will be unable to work.

The TCPMSS target is able to solve these problems, by changing the size of the packets going out through a
connection. Please note that we only need to set the MSS on the SYN packet since the hosts take care of the
MSS after that. The target takes two arguments.

Table 11-18. TCPMSS target options

Option --set-mss

iptables -t mangle -A POSTROUTING -p tcp --tcp-flags SYN,RST SYN -0 ethO -j TCPMSS
Example

--set-mss 1460

The --set-mss argument explicitly sets a specific MSS value of all outgoing packets. In the
Explanation example above, we set the MSS of all SYN packets going out over the ethO interface to 1460

bytes -- normal MTU for ethernet is 1500 bytes, minus 40 bytes is 1460 bytes. MSS only has to
be set properly in the SYN packet, and then the peer hosts take care of the MSS automatically.
Option --clamp-mss-to-pmtu

iptables -t mangle -A POSTROUTING -p tcp --tcp-flags SYN,RST SYN -0 eth0 - TCPMSS
--clamp-mss-to-pmtu

The --clamp-mss-to-pmtu automatically sets the MSS to the proper value, hence you don't need to
Explanation|explicitly set it. It is automatically set to PMTU (Path Maximum Transfer Unit) minus 40 bytes,
which should be a reasonable value for most applications.

Example

1
Works under Linux kernel 2.5 and 2.6.

e

TOS target

The TOS target is used to set the Type of Service field within the IP header. The TOS field consists of 8 bits
which are used to help in routing packets. This is one of the fields that can be used directly within iproute2 and
its subsystem for routing policies. Worth noting, is that if you handle several separate firewalls and routers, this
is the only way to propagate routing information within the actual packet between these routers and firewalls.
As previously noted, the MARK target - which sets a MARK associated with a specific packet - is only
available within the kernel, and can't be propagated with the packet. If you feel a need to propagate routing
information for a specific packet or stream, you should therefore set the TOS field, which was developed for
this.

There are currently a lot of routers on the Internet which do a pretty bad job at this, so as of now it may prove
to be a bit useless to attempt TOS mangling before sending the packets on to the Internet. At best the routers
will not pay any attention to the TOS field. At worst, they will look at the TOS field and do the wrong thing.
However, as stated above, the TOS field can most definitely be put to good use if you have a large WAN or

145 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

LAN with multiple routers. You then in fact have the possibility of giving packets different routes and
preferences, based on their TOS value - even though this might be confined to your own network.

1

The TOS target is only capable of setting specific values, or named values on packets. These
Gaﬁﬁﬂn" predefined TOS values can be found in the kernel include files, or more precisely, the

\) Linux/ip.h file. The reasons are many, and you should actually never need to set any other
values; however, there are ways around this limitation. To get around the limitation of only
being able to set the named values on packets, you can use the FTOS patch available at the
Paksecured Linux Kernel patches site maintained by Matthew G. Marsh. However, be
cautious with this patch! You should not need to use any other than the default values,
except in extreme cases.

!

e

Note that this target is only valid within the mangle table and can't be used outside it.

!
Also note that some old versions (1.2.2 or below) of iptables provided a broken
NU‘B\' implementation of this target which did not fix the packet checksum upon mangling, hence
rendering the packets bad and in need of retransmission. That in turn would most probably
lead to further mangling and the connection never working.

\

The TOS target only takes one option as described below.

Table 11-19. TOS target options

Option --set-tos
Example |iptables -t mangle -A PREROUTING -p TCP --dport 22 -j TOS --set-tos 0x10

The --set-tos option tells the TOS mangler what TOS value to set onpackets that are matched. The
option takes a numeric value, either in hex or in decimal value. As the TOS value consists of 8
bits, the value may be 0-255, or in hex 0x00-OxFF. Note that in the standard TOS target you are
limited to using the named values available (which should be more or less standardized), as
mentioned in the previous warning. These values are Minimize-Delay (decimal value 16, hex
Explanation|value 0x10), Maximize-Throughput (decimal value 8, hex value 0x08), Maximize-Reliability
(decimal value 4, hex value 0x04), Minimize-Cost (decimal value 2, hex 0x02) or Normal-Service
(decimal value 0, hex value 0x00). The default value on most packets is Normal-Service, or 0.
Note that you can, of course, use the actual names instead of the actual hex values to set the TOS
value; in fact this is generally to be recommended, since the values associated with the names may
be changed in future. For a complete listing of the "descriptive values”, do an iptables -j TOS -h.

|
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

o

146 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

TTL target

The TTL target is used to modify the Time To Live field in the IP header. One useful application of this is to
change all Time To Live values to the same value on all outgoing packets. One reason for doing this is if you
have a bully ISP which don't allow you to have more than one machine connected to the same Internet
connection, and who actively pursues this. Setting all TTL values to the same value, will effectively make it a
little bit harder for them to notice that you are doing this. We may then reset the TTL value for all outgoing
packets to a standardized value, such as 64 as specified in the Linux kernel.

For more information on how to set the default value used in Linux, read the ip-sysctl.txt, which you may find
within the Other resources and links appendix.

The TTL target is only valid within the mangle table, and nowhere else. It takes 3 options as of writing this, all
of them described below in the table.

Table 11-20. TTL target options

Option --ttl-set
Example |iptables -t mangle -A PREROUTING -i ethO -j TTL --ttl-set 64

The --ttl-set option tells the TTL target which TTL value to set on the packet in question. A good
value would be around 64 somewhere. It's not too long, and it is not too short. Do not set this
value too high, since it may affect your network and it is a bit immoral to set this value to high,
Explanation|since the packet may start bouncing back and forth between two mis-configured routers, and the
higher the TTL, the more bandwidth will be eaten unnecessarily in such a case. This target could
be used to limit how far away our clients are. A good case of this could be DNS servers, where we
don't want the clients to be too far away.

Option --ttl-dec
Example |iptables -t mangle -A PREROUTING -i eth0 -j TTL --ttl-dec 1

The --ttl-dec option tells the TTL target to decrement the Time To Live value by the amount
specified after the --ttl-dec option. In other words, if the TTL for an incoming packet was 53 and
we had set --ttl-dec 3, the packet would leave our host with a TTL value of 49. The reason for this
is that the networking code will automatically decrement the TTL value by 1, hence the packet
will be decremented by 4 steps, from 53 to 49. This could for example be used when we want to
limit how far away the people using our services are. For example, users should always use a
close-by DNS, and hence we could match all packets leaving our DNS server and then decrease it
by several steps. Of course, the --set-ttl may be a better idea for this usage.

Option --ttl-inc
Example |iptables -t mangle -A PREROUTING -i ethO -j TTL --ttl-inc 1

The --ttl-inc option tells the TTL target to increment the Time To Live value with the value
specified to the --ttl-inc option. This means that we should raise the TTL value with the value
specified in the --ttl-inc option, and if we specified --ttl-inc 4, a packet entering with a TTL of 53
would leave the host with TTL 56. Note that the same thing goes here, as for the previous
example of the --ttl-dec option, where the network code will automatically decrement the TTL
Explanation|value by 1, which it always does. This may be used to make our firewall a bit more stealthy to
trace-routes among other things. By setting the TTL one value higher for all incoming packets, we
effectively make the firewall hidden from trace-routes. Trace-routes are a loved and hated thing,
since they provide excellent information on problems with connections and where it happens, but
at the same time, it gives the hacker/cracker some good information about your upstreams if they
have targeted you. For a good example on how this could be used, see the Ttl-inc.txt script.

Explanation

147 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

!
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

)

ULOG target

The ULOG target is used to provide user-space logging of matching packets. If a packet is matched and the
ULOG target is set, the packet information is multicasted together with the whole packet through a netlink
socket. One or more user-space processes may then subscribe to various multicast groups and receive the
packet. This is in other words a more complete and more sophisticated logging facility that is only used by
iptables and Netfilter so far, and it contains much better facilities for logging packets. This target enables us to
log information to MySQL databases, and other databases, making it much simpler to search for specific
packets, and to group log entries. You can find the ULOGD user-land applications at the ULOGD project

page.

Table 11-21. ULOG target options

Option --ulog-nlgroup
Example |iptables -A INPUT -p TCP --dport 22 -j ULOG --ulog-nlgroup 2

The --ulog-nigroup option tells the ULOG target which netlink group to send the packet to. There
Explanation|are 32 netlink groups, which are simply specified as 1-32. If we would like to reach netlink group
5, we would simply write --ulog-nlgroup 5. The default netlink group used is 1.

Option --ulog-prefix

Example |iptables -A INPUT -p TCP --dport 22 -j ULOG --ulog-prefix "SSH connection attempt: "

The --ulog-prefix option works just the same as the prefix value for the standard LOG target. This
Explanation|option prefixes all log entries with a user-specified log prefix. It can be 32 characters long, and is
definitely most useful to distinguish different log-messages and where they came from.

Option --ulog-cprange
Example |iptables -A INPUT -p TCP --dport 22 -j ULOG --ulog-cprange 100

The --ulog-cprange option tells the ULOG target how many bytes of the packet to send to the
user-space daemon of ULOG. If we specify 100 as above, we would copy 100 bytes of the whole
Explanation|packet to user-space, which would include the whole header hopefully, plus some leading data
within the actual packet. If we specify 0, the whole packet will be copied to user-space, regardless
of the packets size. The default value is 0, so the whole packet will be copied to user-space.

Option --ulog-gthreshold
Example |iptables -A INPUT -p TCP --dport 22 -j ULOG --ulog-gthreshold 10

The --ulog-qgthreshold option tells the ULOG target how many packets to queue inside the kernel
before actually sending the data to user-space. For example, if we set the threshold to 10 as above,
the kernel would first accumulate 10 packets inside the kernel, and then transmit it outside to the
user-space as one single netlink multi part message. The default value here is 1 because of
backward compatibility, the user-space daemon did not know how to handle multi-part messages
previously.

Explanation

148 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

!
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

e

What's next?

This chapter has discussed in detail each and every target that is available in Linux. This list is still growing as
people write more and more target extensions for iptables and netfilter, and it is already quite extensive as you
have seen. The chapter has also discussed the different target options available for each target.

The next chapter will delve into debugging your firewall scripts and what techniques are available for doing
this. It will both show you moderate debugging techniques such as using bash and echo, to some more
advanced tools such as nmap and nessus.

Chapter 12. Debugging your scripts

One large and rather overlooked sides of writing your own rulesets is how to debug the rulesets on your own,
and how to find where you have done your mistakes in the rulesets. This chapter will show you a few basic
steps you can take to debug your scripts and find out what is wrong with them, as well as some more elaborate
things to look for and what can be done to avoid being unable to connect to your firewall in case you
accidentally run a bad ruleset on it.

Most of what is taught here is based upon the assumption that the ruleset was written in bash shell scripts, but
they should be easy to apply in other environments as well. Rulesets that have been saved with iptables-save
are another piece of code alltogether unfortunately, and pretty much none of these debugging methods will
give you much luck. On the other hand, iptables-save files are much simpler and since they can't contain any
scripting code that will create specific rules either, they are much simpler to debug as well.

Debugging, a necessity

Debugging is more or less a necessity when it comes to iptables and netfilter and most firewalls in general. The
problem with 99% of all firewalls is that in the end there is a human being that decides upon the policies and
how the rulesets are created, and | can promise you, it is easy to make a mistake while writing your rulesets.
Sometimes, these errors are very hard to see with the naked eye, or to see the holes that they are creating
through the firewall. Holes that you don't know of or didn't intend to happen in your scripts can create havoc
on your networks, and create an easy entry for your attackers. Most of these holes can be found rather easily
with a few good tools.

Other than this, you may write bugs into your scripts in other ways as well, which can create the problem of
being unable to login to the firewall. This can also be solved by using a little bit of cleverness before running
the scripts at all. Using the full power of both the scripting language as well as the system environment can
prove incredibly powerful, which almost all experienced Unix administrators should already have noticed from
before, and this is basically all we do when debugging our scripts as well.

149 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Bash debugging tips

There are quite a few things that can be done with bash to help debugging your scripts containing the rulesets.
One of the first problems with finding a bug is to know on which line the problem appears. This can be solved
in two different ways, either using the bash -x flag, or by simply entering some echo statements to find the
place where the problem happens. Ideally, you would, with the echo statement, add something like the
following echo statement at regular intervals in the code:

ééﬁo "Debugging message 1."

ééﬁo ""Debugging message 2."

In my case, | generally use pretty much worthless messages, as long as they have something in them that is
unique so | can find the error message by a simple grep or search in the script file. Now, if the error message
shows up after the "Debugging message 1." message, but before "Debugging message 2.", then we know that
the erroneous line of code is somewhere in between the two debugging messages. As you can understand, bash
has the not really bad, but at least peculiar, idea of continuing to execute commands even if there is an error in
one of the commands before. In netfilter, this can cause some very interesting problems for you. The above
idea of simply using echo statements to find the errors is extremely simple, but it is at the same time very nice
since you can narrow the whole problem down to a single line of code and see what the problem is directly.

The second possibility to find the above problem is to use the -x variable to bash, as we spoke of before. This
can of course be a minor problem, especially if your script is large, and if your console buffer isn't large
enough. What the -x variable means is quite simple, it tells the script to just echo every single line of code in
the script to the standard output of the shell (generally your console). What you do is to change your normal
start line of the script from this:

#1/bin/bash

Into the line below:

#1/bin/bash -x

As you will see, this changes your output from perhaps a couple of lines, to copious amounts of data on the
output. The code shows you every single command line that is executed, and with the values of all the
variables et cetera, so that you don't have to try and figure out exactly what the code is doing. Simply put, each
line that gets executed is output to your screen as well. One thing that may be nice to see, is that all of the lines
that bash outputs are prefixed by a + sign. This makes it a little bit easier to discern error or warning messages
from the actual script, rather than just one big mesh of output.

The -x option is also very interesting for debugging a couple of other rather common problems that you may
run into with a little bit more complex rulesets. The first of them is to find out exactly what happens with what
you thought was a simple loop, such as an for, if or while statement? For example, let's look at an example.

#1/bin/bash
iptables="/sbin/iptables"
$iptables -N output_int_iface
cat /etc/configs/machines | while read host; do
$iptables -N output-$host
$iptables -A output_int_iface -p tcp -d $host -j output-$host

cat /etc/configs/${host}/ports | while read row2; do

150 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

$iptables -A output-$host -p tcp --dport $row2 -d $host -j ACCEPT
done
done

This set of rules may look simple enough, but we continue to run into a problem with it. We get the following
error messages that we know come from the above code by using the simple echo debugging method.

work3:~# _/test.sh

Bad argument ~output--

Try Tiptables -h" or "iptables --help®” for more information.
cat: /etc/configs//ports: No such Ffile or directory

So we turn on the -x option to bash and look at the output. The output is shown below, and as you can see there
is something very weird going on in it. There are a couple of commands where the $host and $row2 variables
are replaced by nothing. Looking closer, we see that it is only the last iteration of code that causes the trouble.
Either we have done a programmatical error, or there is something strange with the data. In this case, itis a
simple error with the data, which contains a single extra linebreak at the end of the file. This causes the loop to
iterate one last time, which it shouldn't. Simply remove the trailing linebreak of the file, and the problem is
solved. This may not be a very elegant solution, but for private work it should be enough. Otherwise, you
could add code that looks to see that there is actually some data in the $host and $row?2 variables.

work3:~# _/test.sh

iptables=/sbin/iptables

/sbin/iptables -N output_int_iface

cat /etc/configs/machines

read host

/sbin/iptables -N output-sto-as-101

/sbin/iptables -A output_int_iface -p tcp -d sto-as-101 -j output-sto-as-101
cat /etc/configs/sto-as-101/ports

read row2

/sbin/iptables -A output-sto-as-101 -p tcp --dport 21 -d sto-as-101 -j ACCEPT
read row2

/sbin/iptables -A output-sto-as-101 -p tcp --dport 22 -d sto-as-101 -j ACCEPT
read row2

/sbin/iptables -A output-sto-as-101 -p tcp --dport 23 -d sto-as-101 -j ACCEPT
read row2

read host

/sbin/iptables -N output-sto-as-102

/sbin/iptables -A output_int_iface -p tcp -d sto-as-102 -j output-sto-as-102
cat /etc/configs/sto-as-102/ports

read row2

/sbin/iptables -A output-sto-as-102 -p tcp --dport 21 -d sto-as-102 -j ACCEPT
read row2

/sbin/iptables -A output-sto-as-102 -p tcp --dport 22 -d sto-as-102 -j ACCEPT
read row2

/sbin/iptables -A output-sto-as-102 -p tcp --dport 23 -d sto-as-102 -j ACCEPT
read row2

read host

/sbin/iptables -N output-sto-as-103

/sbin/iptables -A output_int_iface -p tcp -d sto-as-103 -j output-sto-as-103
cat /etc/configs/sto-as-103/ports

read row2

/sbin/iptables -A output-sto-as-103 -p tcp --dport 21 -d sto-as-103 -j ACCEPT
read row2

/sbin/iptables -A output-sto-as-103 -p tcp --dport 22 -d sto-as-103 -j ACCEPT
read row2

/sbin/iptables -A output-sto-as-103 -p tcp --dport 23 -d sto-as-103 -j ACCEPT
read row2

read host

/sbin/iptables -N output-

+ /sbin/iptables -A output_int_iface -p tcp -d -j output-

Bad argument “output--

Try Tiptables -h" or "iptables --help®” for more information.

R T Ik I T T T T T i T S S S S S S S A S S R

151 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

+ cat /etc/configs//ports

cat: /etc/configs//ports: No such Ffile or directory
+ read row2

+ read host

The third and final problem you run into that can be partially solved with the help of the -x option is if you are
executing the firewall script via SSH, and the console hangs in the middle of executing the script, and the
console simply won't come back, nor are you able to connect via SSH again. In 99.9% of the cases, this means
there is some kind of problem inside the script with a couple of the rules. By turning on the -x option, you will
see exactly at which line the script locks dead, hopefully at least. There are a couple of circumstances where
this is not true, unfortunately. For example, what if the script sets up a rule that blocks incoming traffic, but
since the ssh/telnet server sends the echo first as outgoing traffic, netfilter will remember the connection, and
hence allow the incoming traffic anyways if you have a rule above that handles connection states.

As you can see, it can become quite complex to debug your ruleset to its full extent in the end. However, it is
not impossible at all. You may also have noticed, if you have worked remotely on your firewalls via SSH, for
example, that the firewall may hang when you load bad rulesets. There is one more thing that can be done to
save the day in these circumstances. Cron is an excellent way of saving your day. For example, say you are
working on a firewall 50 kilometers away, you add some rules, delete some others, and then delete and insert
the new updated ruleset. The firewall locks dead, and you can't reach it. The only way of fixing this is to go to
the firewall's physical location and fix the problem from there, unless you have taken precautions that is!

System tools used for debugging

One of the best precautions you may take against a locked down firewall is to simply use cron to add a script
that is run every 5 minutes or so that resets the firewall, and then remove that cron line once you are sure the
installation works fine. The cron line may look something like the one below and be entered with the command
crontab -e.

*/5 * * * * fetc/init.d/rc.flush-iptables.sh stop

Make absolutely sure, that the line will actually work and do what you expect it to do before you start doing
something you expect will or may freeze the server you are working on.

Another tool that is constantly used to debug your scripts is the syslog facility. This is the facility that logs all
log-messages created by a ton of different programs. In fact, almost all large programs support syslog logging,
including the kernel. All messages sent to syslog have two basic variables set to them that are very important to
remember, the facility and the log level/priority.

The facility tells the syslog server from which facility the log entry came from, and where to log it. There are
several specified facilities, but the one in question right now is the Kern facility, or kernel facility as it may
also be called. All netfilter generated messages are sent using this facility.

The log level tells syslog how high priority the log messages have. There are several priorities that can be used,
listed below.

1. debug
2. info

3. notice

152 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

4. warning
5. err

6. crit

7. alert

8. emerg

Depending on these priorities, we can send them to different log files using the syslog.conf. For example, to
send all messages from the kern facility with warning priority to a file called /var/log/kernwarnings, we
could do as shown below. The line should go into the /etc/syslog.conf.

kern.warning /var/log/kernwarnings

As you can see, it's quite simple. Now you will hopefully find your netfilter logs in the file
/var/log/kernwarnings (after restarting, or HUP'ing the syslog server). Of course, this also depends on what
log levels you set in your netfilter logging rules. The log level can be set there with the --log-level option.

The logs entered into this file will give you information about all the packets that you wish to log via specific
log rules in the ruleset. With these, you can see if there is anything specific that goes wrong. For example, you
can set logrules in the end of all the chains to see if there are any packets that are carried over the boundary of
the chains. A log entry may look something like the example below, and include quite a lot of information as
you can see.

Oct 23 17:09:34 localhost kernel: IPT INPUT packet died: IN=ethl OUT=
MAC=08:00:09:cd:f2:27:00:20:1a:11:3d:73:08:00 SRC=200.81.8.14 DST=217.215.68.146
LEN=78 TOS=0x00 PREC=0x00 TTL=110 1D=12818 PROTO=UDP SPT=1027 DPT=137 LEN=58

As you can understand, syslog can really help you out when debugging your rulesets. Looking at these logs
may help you understand why some port that you wanted to open doesn't work.

Iptables debugging

Iptables can be rough to debug sometimes, since the error messages from iptables itself aren't very user friendly
at all times. For this reason, it may be a good idea to take a look at the most common error messages you can
get from iptables, and why you may have gotten them.

One of the first error messages to look at is the "Unknown arg" error. This may show up for several reasons.
For example, look below.

work3:~# iptables -A INPUT --dport 67 -j ACCEPT
iptables v1.2.9: Unknown arg ~--dport”
Try Tiptables -h" or "iptables --help® for more information.

This error is simpler than normal to solve, since we have only used a single argument. Normally, you may have
used a long, long command and get this error message. The problem in the above scenario is that we have
forgotten to use the --protocol match, and because of that, the --dport match isn't available to us. Adding the
--protocol match would also solve the problem in this match. Make absolutely certain that you are not missing
any special preconditions that are required to use a specific match.

153 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Another very common error is if you miss a dash (-) somewhere in the command line, like below. The proper
solution is to simply add the dash, and the command will work.

work3:~# iptables -A INPUT --protocol tcp -dport 67 -j ACCEPT
Bad argument “67°
Try Tiptables -h" or "iptables --help® for more information.

And finally, there is the simple misspelling, which is rather common as well. This is shown below. The error
message, as you will notice, is exactly the same as when you forget to add another prerequisite match to the
rule, so it needs to be carefully looked into.

work3:~# iptables -A INPUT --protocol tcp --destination-ports 67 -j ACCEPT
iptables v1.2.9: Unknown arg ~--destination-ports”
Try Tiptables -h" or "iptables --help® for more information.

There is also one more possible cause for the "Unknown arg™ error shown above. If you can see that the
argument is perfectly written, and no possible errors in the prerequisites, there is a possibility that the
target/match/table was simply not compiled into the kernel. For example, let's say we forgot to compile the
filter table support into the kernel, this would then look something like this:

work3:~# iptables -A INPUT -j ACCEPT

iptables v1.2.9: can"t initialize iptables table “filter": Table does not exist
(do you need to insmod?)

Perhaps iptables or your kernel needs to be upgraded.

Normally, iptables should be able to automatically modprobe a specific module that isn't already inside the
kernel, so this is generally a sign of either not having done a proper depmod after restarting with the new
kernel, or you may simply have forgotten about the module(s). If the problematic module would be a match
instead, the error message would be a little bit more cryptic and hard to understand. For example, look at this
error message.

work3:~# iptables -A INPUT -m state
--state ESTABLISHED -j ACCEPT
iptables: No chain/target/match by that name

In this case, we forgot to compile the state module, and as you can see the error message isn't very nice and
easy to understand. But it does give you a hint at what is wrong. Finally, we have the same error again, but this
time, the target is missing. As you understand from looking at the error message, it get's rather complicated
since it is the exact same error message for both errors (missing match and/or target).

work3:~# iptables -A INPUT -m state
--state ESTABLISHED -j REJECT
iptables: No chain/target/match by that name

The easiest way to see if we have simply forgotten to depmod, or if the module is actually missing is to look in
the directory where the modules should be. This is the /lib/modules/2.6.4/kernel/net/ipv4/netfilter
directory. All ipt_* files that are written in uppercase letters are targets, while all the ones with lowercase
letters are matches. For example, ipt REJECT .ko is a target, while the ipt_state.ko is a match.

154 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

'
In 2.4 kernels and older, the file extension for all kernel modules was .0, which changed to

| NO‘B\' .ko for files in the 2.6 kernels.

I

Another way of getting help from iptables itself is to simply comment out a whole chain from your script to see
if that fixes the problem. This is kind of a last resort problem solver, that may be very effective if you don't
even know which chain is causing the problem. By removing the whole chain and simply setting a default
policy of ACCEPT, and then testing, if it works better, then this is the chain that is causing the problems. If it
doesn't work better, then it is another chain, and you can go on to find the problem elsewhere.

Other debugging tools

There are of course other tools that may be extremely useful when debugging your firewall scripts. This
section will briefly touch the most common tools used to find out fast how your firewall looks from all sides of
it (inside, outside, etc). The tools | have chosen here are the nmap and nessus tools.

Nmap

Nmap is an excellent tool for looking at the pure firewall perspective, and to find out which ports are open and
more low level information. It has support for OS fingerprinting, several different port scanning methods, IPv6
and IPv4 support and network scanning.

The basic form of scanning is done with a very simple commandline syntax. Don't forget to specify which
ports to scan through with the -p option, for example -p 1-1024. As an example, take a look below.

blueflux@work3:~$% nmap -p 1-1024 192.168.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-03-18 17:19 CET
Interesting ports on firewall (192.168.0.1):

(The 1021 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

587/tcp open submission

Nmap run completed -- 1 IP address (1 host up) scanned in 3.877 seconds

It is also able to automatically guess the operating system of the scanned host by doing OS fingerprinting.
Fingerprinting requires root privileges though, but it may also be very interesting to use to find out what most
people will think of the host. Using OS fingerprinting may look something like the example listing below.

work3:/home/blueflux# nmap -0 -p 1-1024 192.168.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-03-18 17:38 CET
Interesting ports on firewall (192.168.0.1):

(The 1021 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

587/tcp open submission

Device type: general purpose

Running: Linux 2.4_X]2.5.X

155 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

OS details: Linux Kernel 2.4.0 - 2.5.20
Uptime 6.201 days (since Fri Mar 12 12:49:18 2004)

Nmap run completed -- 1 IP address (1 host up) scanned in 14.303 seconds

OS fingerprinting isn't perfect, as you can see, but it will help narrow it down, both for you, and for the
attacker. Hence, it is interesting for you to know as well. The best thing to do, is to give as little material as
possible for the attacker to get a proper fingerprint on, and with this information you will know fairly well
what the attacker knows about your OS as well.

Nmap also comes with a graphical user interface that can be used, called the nmapfe (Nmap Front End). It is an
excellent frontend of the nmap program, and if you know that you will need a little bit more complicated
searches, you may wish to use it. For an example screenshot, take a look below.

FrontEndv3dso o .0 X

= Nmae

127.0.0.1

ETIE

Starting nmap 3,50 (http://uum,insecure.org/nnap/) at 2004-03-18 18:14 CET
Interesting ports on localhost (127.0,0,1):
{The 1650 ports scanned but not shown below are in state: closed)
; SERYICE OHNER YERSION
ssh OpenSSH 3.6.1p2 {protocol 2.0)
sntp Exim sntpd 3.36
rpcbind (rpcbind V2) 2 (rpc #100000)
netbios-ssn Samba smbd 3.X (workgroup: FROZENTUX)
nethios-ssn Samba smbd 3.X (workgroup: FROZENTUX)
ipp CuPs 1.1
status {(status V1) 1 {rpc #100024}
mountd {mountd V1-3} 1-3 {rpc #100005)
somet imes-rpcl9

map run compeleted -- 1 IP address (1 host up) scanned in 80,909 seconds

nmap -sT -sR -sV -1 -PT 127.0.0.1

156 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Of course, the nmap tool has more usages than this, which you can find out more about on the nmap homepage.
For more information, take a look at the Nmap resources.

As you may understand, this is an excellent tool to test your host with, and to find out which ports are actually
open and which are not. For example, after finishing your setup, use nmap to see if you have actually
succeeded in doing what you wanted to do. Do you get the correct responses from the correct ports, and so on.

Nessus

While nmap is more of a low level scanner, showing open ports etcetera, the nessus program is an actual
security scanner. Nmap tries to connect to different ports, and to find out at most, what kind of version the
different servers are running. Nessus takes this a step further, by finding all open ports, finding out what is
running on that specific port, what program and which version is running, and then testing for different
security threats to that program, and finally creating a complete report of all the security threats that are
available.

As you can understand, this is an extremely useful tool to find out more about your host. The program is built
up in a server client way, so it should be fairly easy to find out more about your firewall from the outside by
using an external nessus daemon, or internal for that matter. The client is a graphical user interface where you
login to the nessus daemon, set your settings, and specify which host you would like to scan for vulnerabilities.
The generated report may look something like in the example below.

157 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

- Nessus "NG" Report

= = =
- =

submission (S87/4cp) security Waming = 192.168.0.1

ssh (22cp) & Security Hole
smtp (25cp)
generalfudp

neneralicp

generalficmp The remote host answers o an ICMP timestamp request. This allows an attacker
to know the date which is set on your machine.

This may help him to defeat all your time based authentication protocols.

Solution : filter out the ICMP timestamp requests (13), and the oulgoing ICMP
timestamp replies (14).

Risk factor : Low
CVE : CAN-1939-0524

Nessus should be used with some caution however, since it can crash a machine or a service

Gauﬁgn"s that it is specified to attack. Those attacks that risk crashing a machine are per default turned
‘) off luckily.

What's next?

In this chapter we have looked in detail at different techniques you can use to debug your firewall scripts.
Debugging of firewall scripts can become rather tedious and longwinded, however it is a necessity. If you use
some small simple steps while doing this, it can become very easy in the end as well. We have looked at the
following techniques in particular:

e Bash help in debugging

e System tools fit for debugging

158 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

e Iptables debugging
e Other tools for debugging

Chapter 13. rc.firewall file

This chapter will deal with an example firewall setup and how the script file could look. We have used one of
the basic setups and dug deeper into how it works and what we do in it. This should be used to get a basic idea
on how to solve different problems and what you may need to think about before actually putting your scripts
to work. It could be used as is with some changes to the variables, but is not suggested since it may not work
perfectly together with your network setup. As long as you have a very basic setup however, it will very likely
run quite smooth with just a few fixes to it.

!
note that there might be more efficient ways of making the rule-set, however, the script has

NU‘B\' been written for readability so that everyone can understand it without having to know too
\ ,) much BASH scripting before reading this

example rc.firewall

OK, so you have everything set up and are ready to check out an example configuration script. You should at
least be if you have come this far. This example rc.firewall.txt (also included in the Example scripts code-base
appendix) is fairly large but not a lot of comments in it. Instead of looking for comments, | suggest you read
through the script file to get a basic hum about how it looks, and then you return here to get the nitty gritty
about the whole script.

explanation of rc.firewall

Configuration options

The first section you should note within the example rc.firewall.txt is the configuration section. This should
always be changed since it contains the information that is vital to your actual configuration. For example, your
IP address will always change, hence it is available here. The $INET_IP should always be a fully valid IP
address, if you got one (if not, then you should probably look closer at the rc.DHCP.firewall.txt, however, read
on since this script will introduce a lot of interesting stuff anyways). Also, the SINET_IFACE variable should
point to the actual device used for your Internet connection. This could be eth0, eth1, ppp0, tr0, etc just to
name a few possible device names.

This script does not contain any special configuration options for DHCP or PPPOE, hence these sections are
empty. The same goes for all sections that are empty, they are, however, left there so you can spot the
differences between the scripts in a more efficient way. If you need these parts, then you could always create a
mix of the different scripts, or (brace yourself) create your own from scratch.

The Local Area Network section contains most of the configuration options for your LAN, which are
necessary. For example, you need to specify the IP address of the physical interface connected to the LAN as
well as the IP range which the LAN uses and the interface that the box is connected to the LAN through.

159 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Also, as you may see there is a Localhost configuration section. We do provide it, however you will with 99%
certainty not change any of the values within this section since you will almost always use the 127.0.0.1 IP
address and the interface will almost certainly be named lo. Also, just below the Localhost configuration, you
will find a brief section that pertains to the iptables. Mainly, this section only consists of the $IPTABLES
variable, which will point the script to the exact location of the iptables application. This may vary a bit, and
the default location when compiling the iptables package by hand is Zusr/local/sbin/iptables. However,
many distributions put the actual application in another location such as Zusr/sbin/iptables and so on.

Initial loading of extra modules

First, we see to it that the module dependencies files are up to date by issuing a /shin/depmod -a command.
After this we load the modules that we will require for this script. Always avoid loading modules that you do
not need, and if possible try to avoid having modules lying around at all unless you will be using them. This is
for security reasons, since it will take some extra effort to make additional rules this way. Now, for example, if
you want to have support for the LOG, REJECT and MASQUERADE targets and don't have this compiled
statically into your kernel, we load these modules as follows:

/sbin/insmod ipt_LOG
/sbin/insmod ipt_REJECT
/sbin/insmod ipt_MASQUERADE

In these scripts we forcedly load the modules, which could lead to failures of loading the
Gauﬁgﬂ". modules. If a module fails to load, it could depend upon a lot of factors, and it will generate
' ’) an error message. If some of the more basic modules fail to load, its biggest probable error
is that the module, or functionality, is statically compiled into the kernel. For further
information on this subject, read the Problems loading modules section in the Common
problems and guestions appendix.

Next is the option to load ipt_owner module, which could for example be used to only allow certain users to
make certain connections, etc. | will not use that module in this example but basically, you could allow only
root to do FTP and HTTP connections to redhat.com and DROP all the others. You could also disallow all
users but your own user and root to connect from your box to the Internet. Might be boring for others, but you
will be a bit more secure to bouncing hacker attacks and attacks where the hacker will only use your host as an
intermediate host. For more information about the ipt_owner match, look at the Owner match section within
the How a rule is built chapter.

We may also load extra modules for the state matching code here. All modules that extend the state matching
code and connection tracking code are called ip_conntrack_* and ip_nat_*. Connection tracking helpers are
special modules that tell the kernel how to properly track the specific connections. Without these so called
helpers, the kernel would not know what to look for when it tries to track specific connections. The NAT
helpers on the other hand, are extensions of the connection tracking helpers that tell the kernel what to look for
in specific packets and how to translate these so the connections will actually work. For example, FTP is a
complex protocol by definition, and it sends connection information within the actual payload of the packet.
So, if one of your NATed boxes connect to a FTP server on the Internet, it will send its own local network IP
address within the payload of the packet, and tell the FTP server to connect to that IP address. Since this local
network address is not valid outside your own network, the FTP server will not know what to do with it and
hence the connection will break down. The FTP NAT helpers do all of the translations within these
connections so the FTP server will actually know where to connect. The same thing applies for DCC file
transfers (sends) and chats. Creating these kind of connections requires the IP address and ports to be sent

160 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

within the IRC protocol, which in turn requires some translation to be done. Without these helpers, some FTP
and IRC stuff will work no doubt, however, some other things will not work. For example, you may be able to
receive files over DCC, but not be able to send files. This is due to how the DCC starts a connection. First off,
you tell the receiver that you want to send a file and where he should connect to. Without the helpers, the DCC
connection will look as if it wants the receiver to connect to some host on the receiver's own local network. In
other words, the whole connection will be broken. However, the other way around, it will work flawlessly
since the sender will (most probably) give you the correct address to connect to.

'
If you are experiencing problems with mIRC DCCs over your firewall and everything works

O#LB_ properly with other IRC clients, read the mIRC DCC problems section in the Common
\ N problems and guestions appendix.

As of this writing, there is only the option to load modules which add support for the FTP and IRC protocols.
For a long explanation of these conntrack and nat modules, read the Common problems and questions
appendix. There are also H.323 conntrack helpers within the patch-o-matic, as well as some other conntrack as
well as NAT helpers. To be able to use these helpers, you need to use the patch-o-matic and compile your own
kernel. For a better explanation on how this is done, read the Preparations chapter.

'
Note that you need to load the ip_nat_irc and ip_nat_ftp if you want Network Address

\\\0‘ "‘-_ Translation to work properly on any of the FTP and IRC protocols. You will also need to
\ ’) load the ip_conntrack_irc and ip_conntrack_ftp modules before actually loading the NAT
modules. They are used the same way as the conntrack modules, but it will make it possible
for the computer to do NAT on these two protocols.

proc set up

At this point we start the IP forwarding by echoing a 1 to /proc/sys/net/ipva/ip_forward in this fashion:
echo "1" > /proc/sys/net/ipv4/ip_forward

!
It may be worth a thought where and when we turn on the IP forwarding. In this script and

Waﬂi‘m}}' all others within the tutorial, we turn it on before actually creating any kind of IP filters (i.e.,

\ ,) iptables rule-sets). This will lead to a brief period of time where the firewall will accept
forwarding of any kind of traffic for everything between a millisecond to a minute
depending on what script we are running and on what box. This may give malicious people
a small time-frame to actually get through our firewall. In other words, this option should
really be turned on after creating all firewall rules, however, | have chosen to turn it on
before loading any rules to maintain consistency with the script breakdown currently used in
all scripts.

In case you need dynamic IP support, for example if you use SLIP, PPP or DHCP you may enable the next
option, ip_dynaddr by doing the following :

echo "1" > /proc/sys/net/ipv4/ip_dynaddr

161 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

If there is any other options you might need to turn on you should follow that style. There's other
documentation on how to do these things and this is out of the scope of this documentation. There is a good but
rather brief document about the proc system available within the kernel, which is also available within the
Other resources and links appendix. The Other resources and links appendix is generally a good place to start
looking when you have specific areas that you are looking for information on, that you do not find here.

!
The rc.firewal 1 .txt script, and all other scripts contained within this tutorial, do contain

NU‘B\' a small section of non-required proc settings. These may be a good primer to look at when
\ something is not working exactly as you want it to, however, do not change these values
\ before actually knowing what they mean.

Displacement of rules to different chains

This section will briefly describe my choices within the tutorial regarding user specified chains and some
choices specific to the rc. firewal I . txt script. Some of the paths | have chosen to go here may be wrong
from one or another aspect. | hope to point these aspects and possible problems out to you when and where
they occur. Also, this section contains a brief look back to the Traversing of tables and chains chapter.
Hopefully, this will remind you a little bit of how the specific tables and chains are traversed in a real live
example.

I have displaced all the different user-chains in the fashion I have to save as much CPU as possible but at the
same time put the main weight on security and readability. Instead of letting a TCP packet traverse ICMP,
UDP and TCP rules, | simply match all TCP packets and then let the TCP packets traverse a user specified
chain. This way we do not get too much overhead out of it all. The following picture will try to explain the
basics of how an incoming packet traverses Netfilter. With these pictures and explanations, | wish to explain
and clarify the goals of this script. We will not discuss any specific details yet, but instead further on in the
chapter. This is a really trivial picture in comparison to the one in the Traversing of tables and chains chapter
where we discussed the whole traversal of chains and tables in depth.

Incoming Outgoing

———)- Routing Decision FORWARD)..

Local Process OUTPUT

Based upon this picture, let us make clear what our goals are. This whole example script is based upon the
assumption that we are looking at a scenario containing one local network, one firewall and an Internet
connection connected to the firewall. This example is also based upon the assumption that we have a static IP
to the Internet (as opposed to DHCP, PPP and SLIP and others). In this case, we also want to allow the firewall
to act as a server for certain services on the Internet, and we trust our local network fully and hence we will not
block any of the traffic from the local network. Also, this script has as a main priority to only allow traffic that

162 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

we explicitly want to allow. To do this, we want to set default policies within the chains to DROP. This will
effectively kill all connections and all packets that we do not explicitly allow inside our network or our
firewall.

In the case of this scenario, we would also like to let our local network do connections to the Internet. Since the
local network is fully trusted, we want to allow all kinds of traffic from the local network to the Internet.
However, the Internet is most definitely not a trusted network and hence we want to block them from getting to
our local network. Based upon these general assumptions, let's look at what we need to do and what we do not
need and want to do.

FORWARD
Policy: DROP

ACCEPT everything
_) ESTABLISHED or
RELATED

ACCEPT everything
from LAN to Internet

First of all, we want the local network to be able to connect to the Internet, of course. To do this, we will need
to SNAT all packets since none of the local computers have real IP addresses. All of this is done within the
POSTROUTING chain, which is created last in this script. This means that we will also have to do some
filtering within the FORWARD chain since we will otherwise allow outsiders full access to our local network.
We trust our local network to the fullest, and because of that we specifically allow all traffic from our local
network to the Internet. Since no one on the Internet should be allowed to contact our local network computers,
we will want to block all traffic from the Internet to our local network except already established and related
connections, which in turn will allow all return traffic from the Internet to our local network.

INPUT
Policy: DROP

udpincoming_ Localhost ESTABLISHED,

icmp_packets [3| tcp_packets |3 packets —» Localnet »| RELATED

As for our firewall, we may be a bit low on funds perhaps, or we just want to offer a few services to people on
the Internet. Therefore, we have decided to allow HTTP, FTP, SSH and IDENTD access to the actual firewall.
All of these protocols are available on the actual firewall, and hence it should be allowed through the INPUT

163 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

chain, and we need to allow the return traffic through the OUTPUT chain. However, we also trust the local
network fully, and the loopback device and IP address are also trusted. Because of this, we want to add special
rules to allow all traffic from the local network as well as the loopback network interface. Also, we do not want
to allow specific packets or packet headers in specific conjunctions, nor do we want to allow some IP ranges to
reach the firewall from the Internet. For instance, the 10.0.0.0/8 address range is reserved for local networks
and hence we would normally not want to allow packets from such a address range since they would with 90%
certainty be spoofed. However, before we implement this, we must note that certain Internet Service Providers
actually use these address ranges within their own networks. For a closer discussion of this, read the Common
problems and questions chapter.

Since we have an FTP server running on the server, as well as the fact we want to traverse as few rules as
possible, we add a rule which lets all established and related traffic through at the top of the INPUT chain. For
the same reason, we want to split the rules down into sub-chains. By doing this, our packets will hopefully only
need to traverse as few rules as possible. By traversing less rules, we make the rule-set less time-consuming for
each packet, and reduce latency within the network.

In this script, we choose to split the different packets down by their protocol family, for example TCP, UDP or
ICMP. All TCP packets traverse a specific chain named tcp_packets, which will contain rules for all TCP ports
and protocols that we want to allow. Also, we want to do some extra checking on the TCP packets, so we
would like to create one more subchain for all packets that are accepted for using valid port numbers to the
firewall. This chain we choose to call the allowed chain, and should contain a few extra checks before finally
accepting the packet. As for ICMP packets, these will traverse the icmp_packets chain. When we decided on
how to create this chain, we could not see any specific needs for extra checks before allowing the ICMP
packets through if we agree with the type and code of the ICMP packet, and hence we accept them directly.
Finally, we have the UDP packets which need to be dealt with. These packets, we send to the udp_packets
chain which handles all incoming UDP packets. All incoming UDP packets should be sent to this chain, and if
they are of an allowed type we should accept them immediately without any further checking.

Since we are running on a relatively small network, this box is also used as a secondary workstation and to
give some extra leeway for this, we want to allow certain specific protocols to make contact with the firewall
itself, such as speak freely and 1CQ.

OUTPUT
Policy: DROP

ACCEPT everything ACCEPT everything ACCEPT everything
from 127.0.0.1) from 192.168.1.2) from 194.236.50.155

Finally, we have the firewalls OUTPUT chain. Since we actually trust the firewall quite a lot, we allow pretty
much all traffic leaving the firewall. We do not do any specific user blocking, nor do we do any blocking of
specific protocols. However, we do not want people to use this box to spoof packets leaving the firewall itself,
and hence we only want to allow traffic from the IP addresses assigned to the firewall itself. We would most

164 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

likely implement this by adding rules that ACCEPT all packets leaving the firewall in case they come from one
of the IP addresses assigned to the firewall, and if not they will be dropped by the default policy in the
OUTPUT chain.

Setting up default policies

Quite early on in the process of creating our rule-set, we set up the default policies. We set up the default
policies on the different chains with a fairly simple command, as described below.

iptables [-P {chain} {policy}]

The default policy is used every time the packets do not match a rule in the chain. For example, let's say we get
a packet that matches no single rule in our whole rule-set. If this happens, we must decide what should happen

to the packet in question, and this is where the default policy comes into the picture. The default policy is used

on all packets that does not match with any other rule in our rule-set.

!
Do be cautious with what default policy you set on chains in other tables since they are

| Ga\lﬁnﬂ" simply not made for filtering, and it may lead to very strange behaviors.

Setting up user specified chains in the filter table

Now you have a good picture of what we want to accomplish with this firewall, so let us get on to the actual
implementation of the rule-set. It is now high time that we take care of setting up all the rules and chains that
we wish to create and to use, as well as all of the rule-sets within the chains.

After this, we create the different special chains that we want to use with the -N command. The new chains are
created and set up with no rules inside of them. The chains we will use are, as previously described,
icmp_packets, tcp_packets, udp_packets and the allowed chain, which is used by the tcp_packets chain.
Incoming packets on $INET_IFACE, of ICMP type, will be redirected to the chain icmp_packets. Packets of
TCP type, will be redirected to the tcp_packets chain and incoming packets of UDP type from $INET_IFACE
go to udp_packets chain. All of this will be explained more in detail in the INPUT chain section below. To
create a chain is quite simple and only consists of a short declaration of the chain as this:

iptables [-N chain]

In the upcoming sections we will have a closer look at each of the user defined chains that we have by now
created. Let us have a closer look at how they look and what rules they contain and what we will accomplish
within them.

The bad_tcp_packets chain

The bad_tcp_packets chain is devoted to contain rules that inspect incoming packets for malformed headers or
other problems. As it is, we have only chosen to include a packet filter which blocks all incoming TCP packets
that are considered as NEW but do not have the SYN bit set, as well as a rule that blocks SYN/ACK packets
that are considered NEW. This chain could be used to check for all possible inconsistencies, such as above or
XMAS port-scans etc. We could also add rules that looks for state INVALID.

165 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

If you want to fully understand the NEW not SYN, you need to look at the State NEW packets but no SYN bit
set section in the Common problems and guestions appendix regarding state NEW and non-SYN packets
getting through other rules. These packets could be allowed under certain circumstances but in 99% of the
cases we wouldn't want these packets to get through. Hence, we log them to our logs and then we DROP them.

The reason that we REJECT SYN/ACK packets that are considered NEW is also very simple. It is described in
more depth in the SYN/ACK and NEW packets section in the Common problems and questions appendix.
Basically, we do this out of courtesy to other hosts, since we will prevent them from being attacked in a
sequence number prediction attack.

The allowed chain

If a packet comes in on $INET_IFACE and is of TCP type, it travels through the tcp_packets chain and if the
connection is against a port that we want to allow traffic on, we want to do some final checks on it to see if we
actually do want to allow it or not. All of these final checks are done within the allowed chain.

First of all, we check if the packet is a SYN packet. If it isa SYN packet, it is most likely to be the first packet
in a new connection so, of course, we allow this. Then we check if the packet comes from an ESTABLISHED
or RELATED connection, if it does, then we, again of course, allow it. An ESTABLISHED connection is a
connection that has seen traffic in both directions, and since we have seen a SYN packet, the connection then
must be in state ESTABLISHED, according to the state machine. The last rule in this chain will DROP
everything else. In this case this pretty much means everything that has not seen traffic in both directions, i.e.,
we didn't reply to the SYN packet, or they are trying to start the connection with a non SYN packet. There is
no practical use of not starting a connection with a SYN packet, except to port scan people pretty much. There
is no currently available TCP/IP implementation that supports opening a TCP connection with something else
than a SYN packet to my knowledge, hence, DROP it since it is 99% sure to be a port scan.

The rule regarding ESTABLISHED,RELATED packets is actually redundant in this script
NU‘B\' and will not be used, but has been included for the sake of being complete. The rule that will
\ ’) be used is placed at the top of the INPUT chain, and contains ESTABLISHED,RELATED
as well.

The TCP chain

The tcp_packets chain specifies what ports are allowed to use on the firewall from the Internet. There is,
however, even more checks to do, hence we send each and every one of the packets on to the allowed chain,
which we described previously.

-A tcp_packets tells iptables in which chain to add the new rule, the rule will be added to the end of the chain.
-p TCP tells it to match TCP packets and -s 0/0 matches all source addresses from 0.0.0.0 with netmask 0.0.0.0,
in other words all source addresses. This is actually the default behavior but I am using it just to make
everything as clear as possible. --dport 21 means destination port 21, in other words if the packet is destined
for port 21 they also match. If all the criteria are matched, then the packet will be targeted for the allowed
chain. If it doesn't match any of the rules, they will be passed back to the original chain that sent the packet to
the tcp_packets chain.

As itis now, I allow TCP port 21, or FTP control port, which is used to control FTP connections and later on |
also allow all RELATED connections, and that way we allow PASSIVE and ACTIVE connections since the

166 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

ip_conntrack_ftp module is, hopefully, loaded. If we do not want to allow FTP at all, we can unload the
ip_conntrack_ftp module and delete the $IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 21 -j allowed line
from the rc.firewall . txt file.

Port 22 is SSH, which is much better than allowing telnet on port 23 if you want to allow anyone from the
outside to use a shell on your box at all. Note that you are dealing with a firewall. It is always a bad idea to
give others than yourself any kind of access to a firewall box. Firewalls should always be kept to a bare
minimum and no more.

Port 80 is HTTP, in other words your web server, delete it if you do not want to run a web server directly on
your firewall.

And finally we allow port 113, which is IDENTD and might be necessary for some protocols like IRC, etc to
work properly. Do note that it may be worth it to use the oidentd package if you NAT several hosts on your
local network. oidentd has support for relaying IDENTD requests on to the correct boxes within your local
network.

If you feel like adding more open ports with this script, well, it should be quite obvious how to do that by now.
Just cut and paste one of the other lines in the tcp_packets chain and change it to the port you want to open.

The UDP chain

If we do get a UDP packet on the INPUT chain, we send them on to udp_packets where we once again do a
match for the UDP protocol with -p UDP and then match everything with a source address of 0.0.0.0 and
netmask 0.0.0.0, in other words everything again. Except this time, we only accept specific UDP ports that we
want to be open for hosts on the Internet. Do note that we do not need to open up holes depending on the
sending hosts source port, since this should be taken care of by the state machine. We only need to open up
ports on our host if we are to run a server on any UDP port, such as DNS etc. Packets that are entering the
firewall and that are part of an already established connection (by our local network) will automatically be
accepted back in by the --state ESTABLISHED,RELATED rules at the top of the INPUT chain.

As it is, we do not ACCEPT incoming UDP packets from port 53, which is what we use to do DNS lookups.
The rule is there, but it is per default commented out. If you want your firewall to act as a DNS server,
uncomment this line.

I personally also allow port 123, which is NTP or network time protocol. This protocol is used to set your
computer clock to the same time as certain other time servers which have very accurate clocks. Most of you
probably do not use this protocol and hence I am not allowing it per default. The same thing applies here,
however, the rule is there and it is simple to uncomment to get it working.

We do not currently allow port 2074, which is used for certain real-time multimedia applications like speak
freely which you can use to talk to other people in real-time by using speakers and a microphone, or even
better, a headset. If you would like to use this, you could turn it on quite simply by removing the comment.

Port 4000 is the 1CQ protocol. This should be an extremely well known protocol that is used by the Mirabilis
application named ICQ. There are at least 2-3 different ICQ clones for Linux and it is one of the most widely
used chat programs in the world. I doubt there is any further need to explain what it is.

At this point, two extra rules are available if you are experiencing a lot of log entries due to different
circumstances. The first rule will block broadcast packets to destination ports 135 through 139. These are used
by NetBIOS, or SMB for most Microsoft users. This will block all log entries we may get from iptables
logging Microsoft network activity on the outside of our firewall. The second rule was also created to take care

167 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

of excessive logging problems, but instead takes care of DHCP queries from the outside. This is specifically
true if your outside network consists of a non-switched Ethernet type of network, where the clients receive
their IP addresses by DHCP. During these circumstances, you could wind up with a lot of logs from just that.

'
Do note that the last two rules are specifically opted out since some people may be
NO‘B\' interested in these kind of logs. If you are experiencing problems with excessive legit
\ ’) logging, try to drop these types of packages at this point. There are also more rules of this
type just before the log rules in the INPUT chain.

The ICMP chain

This is where we decide what ICMP types to allow. If a packet of ICMP type comes in on ethO on the INPUT
chain, we then redirect it to the icmp_packets chain as explained before. Here we check what kind of ICMP
types to allow. For now, I only allow incoming ICMP Echo requests, TTL equals 0 during transit and TTL
equals 0 during reassembly. The reason that we do not allow any other ICMP types per default here, is that
almost all other ICMP types should be covered by the RELATED state rules.

!
If an ICMP packet is sent as a reply to an already existing packet or packet stream it is

NU‘B\' considered RELATED to the original stream. For more information on the states, read the
\ The state machine chapter.

The reason that I allow these ICMP packets is as follows, Echo Requests are used to request an echo reply,
which in turn is used to mainly ping other hosts to see if they are available on any of the networks. Without this
rule, other hosts will not be able to ping us to see if we are available on any network connection. Do note that
some people would tend to erase this rule, since they simply do not want to be seen on the Internet. Deleting
this rule will effectively render any pings to our firewall totally useless from the Internet since the firewall will
simply not respond to them.

Time Exceeded (i.e., TTL equals 0 during transit and TTL equals 0 during reassembly), is allowed in the case
we want to trace-route some host or if a packet gets its Time To Live set to 0, we will get a reply about this.
For example, when you trace-route someone, you start out with TTL = 1, and it gets down to 0 at the first hop
on the way out, and a Time Exceeded is sent back from the first gateway en route to the host we are trying to
trace-route, then TTL = 2 and the second gateway sends Time Exceeded, and so on until we get an actual reply
from the host we finally want to get to. This way, we will get a reply from each host on our way to the actual
host we want to reach, and we can see every host in between and find out what host is broken.

For a complete listing of all ICMP types, see the ICMP types appendix . For more information on ICMP types
and their usage, i suggest reading the following documents and reports:

e RFC 792 - Internet Control Message Protocol by J. Postel.

!
As a side-note, | might be wrong in blocking some of these ICMP types for you, but in my
NU‘B\' case, everything works perfectly while blocking all the ICMP types that | do not allow.

168 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

INPUT chain

The INPUT chain, as | have written it, uses mostly other chains to do the hard work. This way we do not get
too much load from iptables, and it will work much better on slow machines which might otherwise drop
packets at high loads. This is done by checking for specific details that should be the same for a lot of different
packets, and then sending those packets into specific user specified chains. By doing this, we can split down
our rule-set to contain much less rules that need to be traversed by each packet and hence the firewall will be
put through a lot less overhead by packet filtering.

First of all we do certain checks for bad packets. This is done by sending all TCP packets to the
bad_tcp_packets chain. This chain contains a few rules that will check for badly formed packets or other
anomalies that we do not want to accept. For a full explanation of the bad_tcp_packets chain, take a look in the
The bad tcp packets chain section in this chapter.

At this point we start looking for traffic from generally trusted networks. These include the local network
adapter and all traffic coming from there, all traffic to and from our loopback interface, including all our
currently assigned IP addresses (this means all of them, including our Internet IP address). As it is, we have
chosen to put the rule that allows LAN activity to the firewall at the top, since our local network generates
more traffic than the Internet connection. This allows for less overhead used to try and match each packet with
each rule and it is always a good idea to look through what kind of traffic mostly traverses the firewall. By
doing this, we can shuffle around the rules to be more efficient, leading to less overhead on the firewall and
less congestion on your network.

Before we start touching the "real” rules which decide what we allow from the Internet interface and not, we
have a related rule set up to reduce our overhead. This is a state rule which allows all packets part of an already
ESTABLISHED or RELATED stream to the Internet IP address. This rule has an equivalent rule in the
allowed chain, which are made rather redundant by this rule, which will be evaluated before the allowed ones
are. However, the --state ESTABLISHED,RELATED rule in the allowed chain has been retained for several
reasons, such as people wanting to cut and paste the function.

After this, we match all TCP packets in the INPUT chain that comes in on the $INET_IFACE interface, and
send those to the tcp_packets, which was previously described. Now we do the same match for UDP packets
on the SINET_IFACE and send those to the udp_packets chain, and after this all ICMP packets are sent to the
icmp_packets chain. Normally, a firewall would be hardest hit by TCP packets, than UDP and last of them all
ICMP packets. This is in normal case, mind you, and it may be wrong for you. The absolute same thing should
be looked upon here, as with the network specific rules. Which causes the most traffic? Should the rules be
thrown around to generate less overhead? On networks sending huge amounts of data, this is an absolute
necessity since a Pentium 111 equivalent machine may be brought to its knees by a simple rule-set containing
100 rules and a single 100mbit Ethernet card running at full capacity if the rule-set is badly written. This is an
important piece to look at when writing a rule-set for your own local network.

At this point we have one extra rule, that is per default opted out, that can be used to get rid of some excessive
logging in case we have some Microsoft network on the outside of our Linux firewall. Microsoft clients have a
bad habit of sending out tons of multicast packets to the 224.0.0.0/8 range, and hence we have the opportunity
to block those packets here so we don't fill our logs with them. There are also two more rules doing something
similar to tasks in the udp_packets chain described in the The UDP chain.

Before we hit the default policy of the INPUT chain, we log it so we may be able to find out about possible
problems and/or bugs. Either it might be a packet that we just do not want to allow or it might be someone who
is doing something bad to us, or finally it might be a problem in our firewall not allowing traffic that should be
allowed. In either case we want to know about it so it can be dealt with. Though, we do not log more than 3
packets per minute as we do not want to flood our logs with crap which in turn may fill up our whole logging
partition, also we set a prefix to all log entries so we know where it came from.

169 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Everything that has not yet been caught will be DROPed by the default policy on the INPUT chain. The default
policy was set quite some time back, in the Setting up default policies section, in this chapter.

FORWARD chain

The FORWARD chain contains quite a few rules in this scenario. We have a single rule which sends all
packets to the bad_tcp_packets chain, which was also used in the INPUT chain as described previously. The
bad_tcp_packets chain is constructed in such a fashion that it can be used recycled in several calling chains,
regardless of what packet traverses it.

After this first check for bad TCP packets, we have the main rules in the FORWARD chain. The first rule will
allow all traffic from our SLAN_IFACE to any other interface to flow freely, without restrictions. This rule
will in other words allow all traffic from our LAN to the Internet. The second rule will allow ESTABLISHED
and RELATED traffic back through the firewall. This will in other words allow packets belonging to
connections that were initiated from our internal network to flow freely back to our local network. These rules
are required for our local network to be able to access the Internet, since the default policy of the FORWARD
chain was previously set to DROP. This is quite clever, since it will allow hosts on our local network to
connect to hosts on the Internet, but at the same time block hosts on the Internet from connecting to the hosts
on our internal network.

Finally we also have a logging rule which will log packets that are not allowed in one or another way to pass
through the FORWARD chain. This will most likely show one or another occurrence of a badly formed packet
or other problem. One cause may be hacker attacks, and others may be malformed packets. This is exactly the
same rule as the one used in the INPUT chain except for the logging prefix, "IPT FORWARD packet died: ".
The logging prefix is mainly used to separate log entries, and may be used to distinguish log entries to find out
where the packet was logged from and some header options.

OUTPUT chain

Since | know that there is pretty much no one but me using this box which is partially used as a Firewall and a
workstation currently, | allow almost everything that goes out from it that has a source address
SLOCALHOST _IP, SLAN_IP or $STATIC_IP. Everything else might be spoofed in some fashion, even
though I doubt anyone that I know would do it on my box. Last of all we log everything that gets dropped. If it
does get dropped, we will most definitely want to know about it so we may take action against the problem.
Either it is a nasty error, or it is a weird packet that is spoofed. Finally we DROP the packet in the default

policy.

PREROUTING chain of the nat table

The PREROUTING chain is pretty much what it says, it does network address translation on packets before
they actually hit the routing decision that sends them onward to the INPUT or FORWARD chains in the filter
table. The only reason that we talk about this chain in this script is that we once again feel obliged to point out
that you should not do any filtering in it. The PREROUTING chain is only traversed by the first packet in a
stream, which means that all subsequent packets will go totally unchecked in this chain. As it is with this script,
we do not use the PREROUTING chain at all, however, this is the place we would be working in right now if
we wanted to do DNAT on any specific packets, for example if you want to host your web server within your
local network. For more information about the PREROUTING chain, read the Traversing of tables and chains
chapter.

170 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

The PREROUTING chain should not be used for any filtering since, among other things,
uﬁgﬂ". this chain is only traversed by the first packet in a stream. The PREROUTING chain should

\ Ca ’) be used for network address translation only, unless you really know what you are doing.

Starting SNAT and the POSTROUTING chain

So, our final mission would be to get the Network Address Translation up, correct? At least to me. First of all
we add a rule to the nat table, in the POSTROUTING chain that will NAT all packets going out on our
interface connected to the Internet. For me this would be ethO. However, there are specific variables added to
all of the example scripts that may be used to automatically configure these settings. The -t option tells iptables
which table to insert the rule in, in this case the nat table. The -A command tells us that we want to Append a
new rule to an existing chain named POSTROUTING and -0 $INET_IFACE tells us to match all outgoing
packets on the INET_IFACE interface (or eth0, per default settings in this script) and finally we set the target
to SNAT the packets. So all packets that match this rule will be SNAT'ed to look as if they came from your
Internet interface. Do note that you must set which IP address to give outgoing packets with the --to-source
option sent to the SNAT target.

In this script we have chosen to use the SNAT target instead of MASQUERADE for a couple of reasons. The
first one is that this script was supposed to run on a firewall that has a static IP address. A follow up reason to
the first one, would hence be that it is faster and more efficient to use the SNAT target if possible. Of course, it
was also used to show how it would work and how it would be used in a real live example. If you do not have a
static IP address, you should definitely give thought to use the MASQUERADE target instead which provides
a simple and easy facility that will also do NAT for you, but that will automatically grab the IP address that it
should use. This takes a little bit extra computing power, but it may most definitely be worth it if you use
DHCP for instance. If you would like to have a closer look at how the MASQUERADE target may look, you
should look at the rc.DHCP.firewall.txt script.

What's next?

This chapter has explained some of the layout of the different scripts, but specifically the rc.firewall . txt
script. The layout and inner workings of scripts described here and those found in other places can differ
tremenduously. Everyone has their own coding style and how we write rulesets or code or scripts differ from
person to person, and the style you've seen here is my style.

The next chapter will give some brief introductions to the different scripts available within this document.
They will give you some basic idea what scenarios the scripts where written for, and then you should hopefully
have taught yourself enough to grasp the rest of the scripts on your own. All of these scripts are also available
for download on the main site of this document.

Chapter 14. Example scripts

The objective of this chapter is to give a fairly brief and short explanation of each script available with this
tutorial, and to provide an overview of the scripts and what services they provide. These scripts are not in any
way perfect, and they may not fit your exact intentions perfectly. It is, in other words, up to you to make these
scripts suitable for your needs. The rest of this tutorial should most probably be helpful in making this feat.

171 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

The first section of this tutorial deals with the actual structure that | have established in each script so we may
find our way within the script a bit easier.

rc.firewall.txt script structure

All scripts written for this tutorial have been written after a specific structure. The reason for this is that they
should be fairly similar to each other and to make it easier to find the differences between the scripts. This
structure should be fairly well documented in this brief chapter. This chapter should hopefully give a short
understanding to why all the scripts have been written as they have, and why | have chosen to maintain this
structure.

Even though this is the structure | have chosen, do note that this may not be the best
\\\0‘ "‘-_ structure for your scripts. It is only a structure that I have chosen to use since it fits the need
\ ’) of being easy to read and follow the best according to my logic.

The structure

This is the structure that all scripts in this tutorial should follow. If they differ in some way it is probably an
error on my part, unless it is specifically explained why | have broken this structure.

1. Configuration - First of all we have the configuration options which the rest of the script should use.
Configuration options should pretty much always be the first thing in any shell-script.

1. Internet - This is the configuration section which pertains to the Internet connection. This could be
skipped if we do not have any Internet connection. Note that there may be more subsections than
those listed here, but only such that pertain to our Internet connection.

1. DHCP - If there are possibly any special DHCP requirements with this specific script, we
will add the DHCP specific configuration options here.

2. PPPOE - If there is a possibility that the user that wants to use this specific script, and if
there are any special circumstances that raises the chances that he is using a PPPoE
connection, we will add specific options for those here.

2. LAN - If there is any LAN available behind the firewall, we will add options pertaining to that in
this section. This is most likely, hence this section will almost always be available.

3. DMZ - If there is any reason to it, we will add a DMZ zone configuration at this point. Most
scripts lacks this section, mainly because any normal home network, or small corporate network,
will not have one.

4. Localhost - These options pertain to our localhost. These variables are highly unlikely to change,
but we have put most of it into variables anyway. Hopefully, there should be no reason to change
these variables.

5. iptables - This section contains iptables specific configuration. In most scripts and situations this
should only require one variable which tells us where the iptables binary is located.

172 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

6. Other - If there are any other specific options and variables, they should first of all be fitted into
the correct subsection (If it pertains to the Internet connection, it should be sub-sectioned there,
etc). If it does not fit in anywhere, it should be sub-sectioned directly to the configuration options
somewhere.

2. Module loading - This section of the scripts should maintain a list of modules. The first part should
contain the required modules, while the second part should contain the non-required modules.

!
Note that some modules that may raise security, or add certain services or

te"‘-_ possibilities, may have been added even though they are not required. This
\\\0 ; - .
\ ’) should normally be noted in such cases within the example scripts.

As of the later iptables versions, modules are automatically loaded and
NU‘B\' most module loading should not be required, but from a control
\ perspective, it is better to load the modules on your own. For example, the
\ conntrack helpers are never automatically loaded.

1. Required modules - This section should contain the required modules, and possibly special
modules that add to the security or add special services to the administrator or clients.

2. Non-required modules - This section contains modules that are not required for normal operations.
All of these modules should be commented out per default, and if you want to add the service it
provides, it is up to you.

3. proc configuration - This section should take care of any special configuration needed in the proc file
system. If some of these options are required, they will be listed as such, if not, they should be
commented out per default, and listed under the non-required proc configurations. Most of the useful
proc configurations will be listed here, but far from all of them.

1. Required proc configuration - This section should contain all of the required proc configurations
for the script in question to work. It could possibly also contain configurations that raise security,
and possibly which add special services or possibilities for the administrator or clients.

2. Non-required proc configuration - This section should contain non-required proc configurations
that may prove useful. All of them should be commented out, since they are not actually necessary
to get the script to work. This list will contain far from all of the proc configurations or nodes.

4. Rules set up - By now the scripts should most probably be ready to insert the rule-set. I have chosen to
split all the rules down after table and then chain names in the rule-sets, to make them easier to follow
and read. All user specified chains are created before we do anything to the system built in chains. | have
also chosen to set the chains and their rule specifications in the same order as they are output by the
iptables -L. command.

1. Filter table - First of all we go through the filter table and its content. First of all we should set up
all the policies in the table.

1. Set policies - Set up all the default policies for the system chains. Normally | will set DROP
policies on the chainsa in the filter table, and specifically ACCEPT services and streams that
| want to allow inside. This way we will get rid of all ports that we do not want to let people

173 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

174 of 273

use.

2. Create user specified chains - At this point we create all the user specified chains that we
want to use later on within this table. We will not be able to use these chains in the system
chains anyway if they are not already created so we might as well get to it as soon as
possible.

3. Create content in user specified chains - After creating the user specified chains we may as
well enter all the rules within these chains. The only reason I have to enter this data at this
point already is that you may as well put it close to the creation of the user specified chains.
You may as well put this later on in your script, it is totally up to you.

4. INPUT chain - When we have come this far, we do not have a lot of things left to do within
the filter table so we get onto the INPUT chain. At this point we should add all rules within
the INPUT chain.

!
At this point we start following the output from the iptables -L
the"‘-_ command as you may see. There is no reason for you to stay
\ ,) with this structure, however, do try to avoid mixing up data
\ from different tables and chains since it will become much
harder to read such rule-sets and to fix possible problems.

5. FORWARD chain - At this point we go on to add the rules within the FORWARD chain.
Nothing special about this decision.

6. OUTPUT chain - Last of all in the filter table, we add the rules dealing with the OUTPUT
chain. There should, hopefully, not be too much to do at this point.

2. nat table - After the filter table we take care of the nat table. This is done after the filter table
because of a number of reasons within these scripts. First of all we do not want to turn the whole
forwarding mechanism and NAT function on at too early a stage, which could possibly lead to
packets getting through the firewall at just the wrong time point (i.e., when the NAT has been
turned on, but none of the filter rules has been run). Also, I look upon the nat table as a sort of
layer that lies just outside the filter table and kind of surrounds it. The filter table would hence be
the core, while the nat table acts as a layer lying around the filter table, and finally the mangle
table lies around the nat table as a second layer. This may be wrong in some perspectives, but not
too far from reality.

1. Set policies - First of all we set up all the default policies within the nat table. Normally, 1
will be satisfied with the default policy set from the beginning, namely the ACCEPT policy.
This table should not be used for filtering anyways, and we should not let packets be
dropped here since there are some really nasty things that may happen in such cases due to
our own presumptions. | let these chains be set to ACCEPT since there is no reason not to
do so.

2. Create user specified chains - At this point we create any user specified chains that we want
within the nat table. Normally I do not have any of these, but I have added this section
anyways, just in case. Note that the user specified chains must be created before they can
actually be used within the system chains.

3. Create content in user specified chains - By now it should be time to add all the rules to the

1/6/2007 12:55 PM

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

user specified chains in the nat table. The same thing goes here as for the user specified
chains in the filter table. We add this material here since | do not see any reason not to.

4. PREROUTING chain - The PREROUTING chain is used to do DNAT on packets in case
we have a need for it. In most scripts this feature is not used, or at the very least commented
out. The reason being that we do not want to open up big holes to our local network without
knowing about it. Within some scripts we have this turned on by default since the sole
purpose of those scripts is to provide such services.

5. POSTROUTING chain - The POSTROUTING chain should be fairly well used by the
scripts | have written since most of them depend upon the fact that you have one or more
local networks that we want to firewall against the Internet. Mainly we will try to use the
SNAT target, but in certain cases we are forced to use the MASQUERADE target instead.

6. OUTPUT chain - The OUTPUT chain is barely used at all in any of the scripts. As it looks
now, it is not broken, but I have been unable to find any good reasons to use this chain so
far. If anyone has a reason to use this chain, send me a line and | will add it to the tutorial.

3. mangle table - The last table to do anything about is the mangle table. Normally I will not use this
table at all, since it should normally not be used for anyone, unless they have specific needs, such
as masking all boxes to use the exact same TTL or to change TOS fields etc. | have in other words
chosen to leave these parts of the scripts more or less blank, with a few exceptions where | have
added a few examples of what it may be used for.

1. Set policies - Set the default policies within the chain. The same thing goes here as for the
nat table, pretty much. The table was not made for filtering, and hence you should avoid it
alltogether. I have not set any policies in any of the scripts in the mangle table one way or
the other, and you are encouraged not to do so either.

2. Create user specified chains - Create all the user specified chains. Since | have barely used
the mangle table at all in the scripts, | have neither created any chains here since it is fairly
unusable without any data to use within it. However, this section was added just in case
someone, or |, would have the need for it in the future.

3. Create content in user specified chains - If you have any user specified chains within this
table, you may at this point add the rules that you want within them here.

4. PREROUTING - At this point there is barely any information in any of the scripts in this
tutorial that contains any rules here. Basically, the PREROUTING chain can be used to set
netfilter, routing and SEC marks, both on a per packet basis and on a per connection basis.

5. INPUT chain - The INPUT chain is barely used in the current scripts of the tutorial, but it
could be used for mark handling for example.

6. FORWARD chain - The FORWARD chain of the mangle table can be used for mark
handling and for mangling packet headers of packets that are traveling across the firewall in
question. Changing TTL and TOS for example.

7. OUTPUT chain - The OUTPUT chain could be used to mangle the packets leaving the
firewall or host itself, for example setting different marks or setting TTL or TOS values.
This is not done in most of the scripts here, but the section has been added however.

8. POSTROUTING chain - This chain is basically not in use by any of the scripts in the tutorial
as of writing this, but it could be used to setting values for all packets leaving both the host

175 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

or firewall itself, and traffic traversing the machine. For example, it could be used to reset
the MTU of packets, set TTL or TOS et cetera.

Hopefully this should explain more in detail how each script is structured and why they are structured in such a
way.

Do note that these descriptions are extremely brief, and should mainly just be seen as a brief
c auﬁgn". explanation to what and why the scripts have been split down as they have. There is nothing
' that says that this is the only and best way to go.

rc.firewall.txt

176 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Trusted Internal Network
IP: 192.168.0.0/24

IFACE: ethl
IP: 192.168.0.2

FIREWALL

IFACE: ethO
IP: 194.236.50.155

Internet

The rc.firewall.txt script is the main core on which the rest of the scripts are based upon. The rc.firewall file
chapter should explain every detail in the script most thoroughly. Mainly it was written for a dual homed
network. For example, where you have one LAN and one Internet Connection. This script also makes the
assumption that you have a static IP to the Internet, and hence don't use DHCP, PPP, SLIP or some other
protocol that assigns you an IP automatically. If you are looking for a script that will work with those setups,
please take a closer look at the rc.DHCP.firewall.txt script.

The rc.Ffirewal I.txt script requires the following options to be compiled statically to the kernel, or as

177 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

modules. Without one or more of these, the script will become more or less flawed since parts of the script's
required functionalities will be unusable. As you change the script you use, you could possibly need more
options to be compiled into your kernel depending on what you want to use.

e CONFIG_NETFILTER
e CONFIG_IP_NF_CONNTRACK

e CONFIG_IP_NF_IPTABLES

e CONFIG_IP_NF_MATCH_LIMIT
e CONFIG_IP_NF_MATCH_STATE
e CONFIG_IP_NF_FILTER

e CONFIG_IP_NF_NAT

e CONFIG_IP_NF_TARGET LOG

rc.DMZ.firewall.txt

178 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

DMZ
D HTTP
_J IP: 192.168.1.2
Trusted Internal Network Dl DNS
IP: 192.168.0.0/24 IP: 192.168.1.3

IFACE: eth2
IFACE: ethl IP: 192.168.1.1

IP: 192.168.0.1 ’:'li"”"

FIREWALL

IFACE: ethO
IP: 194.236.50.152, 194.236.50.153,
194.236.50.154,

194.236.50.155
Internet

The rc.DMZ . firewall.txt script was written for those people out there that have one Trusted Internal Network,
one De-Militarized Zone and one Internet Connection. The De-Militarized Zone is in this case 1-to-1 NATed
and requires you to do some IP aliasing on your firewall, i.e., you must make the box recognize packets for
more than one IP. There are several ways to get this to work, one is to set 1-to-1 NAT, another one if you have
a whole subnet is to create a subnetwork, giving the firewall one IP both internally and externally. You could
then set the IP's to the DMZed boxes as you wish. Do note that this will "steal” two IP's for you, one for the
broadcast address and one for the network address. This is pretty much up to you to decide and to implement.
This tutorial will give you the tools to actually accomplish the firewalling and NATing part, but it will not tell
you exactly what you need to do since it is out of the scope of the tutorial.

The rc.DMZ firewall.txt script requires these options to be compiled into your kernel, either statically or as
modules. Without these options, at the very least, available in your kernel, you will not be able to use this
scripts functionality. You may in other words get a lot of errors complaining about modules and targets/jumps
or matches missing. If you are planning to do traffic control or any other things like that, you should see to it
that you have all the required options compiled into your kernel there as well.

e CONFIG_NETFILTER

e CONFIG_IP_NF_CONNTRACK

179 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

e CONFIG_IP_NF_IPTABLES

CONFIG_IP_NF_MATCH_LIMIT

CONFIG_IP_NF_MATCH_STATE

CONFIG_IP_NF_FILTER

CONFIG_IP_NF_NAT

CONFIG_IP_NF_TARGET_LOG

You need to have two internal networks with this script as you can see from the picture. One uses IP range
192.168.0.0/24 and consists of a Trusted Internal Network. The other one uses IP range 192.168.1.0/24 and
consists of the De-Militarized Zone which we will do 1-to-1 NAT to. For example, if someone from the
Internet sends a packet to our DNS_IP, then we use DNAT to send the packet on to our DNS on the DMZ
network. When the DNS sees our packet, the packet will be destined for the actual DNS internal network IP,
and not to our external DNS IP. If the packet would not have been translated, the DNS wouldn't have answered
the packet. We will show a short example of how the DNAT code looks:

$IPTABLES -t nat -A PREROUTING -p TCP -i $INET_IFACE -d $DNS_IP \
--dport 53 -j DNAT --to-destination $DMZ_DNS_IP

First of all, DNAT can only be performed in the PREROUTING chain of the nat table. Then we look for TCP
protocol on our $INET_IFACE with destination IP that matches our $DNS_1P, and is directed to port 53, which is
the TCP port for zone transfers between name servers. If we actually get such a packet we give a target of
DNAT. After that we specify where we want the packet to go with the --to-destination option and give it the
value of $DMZ_DNS_ 1P, in other words the IP of the DNS on our DMZ network. This is how basic DNAT
works. When the reply to the DNATed packet is sent through the firewall, it automatically gets un-DNATed.

By now you should have enough understanding of how everything works to be able to understand this script
pretty well without any huge complications. If there is something you don't understand that hasn't been gone
through in the rest of the tutorial, mail me since it is probably a fault on my side.

rc.DHCP. firewall.txt

180 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Trusted Internal Network
IP: 192.168.0.0/24

IFACE: ethl
IP: 192.168.0.2

W 7 Z

FIREWALL

IFACE: ethO
IP: Unknown

Internet

The rc.DHCP.firewall.txt script is pretty much identical to the original rc.firewall.txt. However, this script no
longer uses the STATIC_IP variable, which is the main change to the original rc.firewall.txt script. The reason
is that this won't work together with a dynamic IP connection. The actual changes needed to be done to the
original script are minimal, however, I've had some people mail me and ask about the problem so this script

181 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

will be a good solution for you. This script will allow people who uses DHCP, PPP and SLIP connections to
connect to the Internet.

The rc.DHCP. Firewal I . txt script requires the following options to be compiled statically to the kernel, or as
modules, as a bare minimum to run properly.

e CONFIG_NETFILTER

e CONFIG_IP_NF_CONNTRACK

e CONFIG_IP_NF_IPTABLES

e CONFIG_IP_NF_MATCH_LIMIT

e CONFIG_IP_NF_MATCH_STATE

e CONFIG_IP_NF_FILTER

e CONFIG_IP_NF_NAT

e CONFIG_IP_NF_TARGET_MASQUERADE
e CONFIG_IP_NF_TARGET LOG

The main changes done to the script consist of erasing the STATIC_IP variable as | already said and deleting all
references to this variable. Instead of using this variable the script now does its main filtering on the variable
INET_IFACE. In other words -d $STATIC_IP has been changed to -i $INET_IFACE. This is pretty much the
only change made and that's all that's needed really.

There are some more things to think about though. We can no longer filter in the INPUT chain depending on,
for example, --in-interface $LAN_IFACE --dst SINET _IP. This in turn forces us to filter only based on
interfaces in such cases where the internal machines must access the Internet addressable IP. One great
example is if we are running an HTTP on our firewall. If we go to the main page (i.e., http://192.168.0.1/),
which contains static links back to the same host (i.e., http:/foobar.dyndns.net/fuubar.html), which could be
some dyndns solution, we would get a minor problem. The NATed box would ask the DNS for the IP of the
HTTP server, then try to access that IP. In case we filter based on interface and IP, the NATed box would be
unable to get to the HTTP because the INPUT chain would DROP the packets flat to the ground. This also
applies in a sense to the case where we got a static IP, but in such cases it could be gotten around by adding
rules which check the LAN interface packets for our INET_IP, and if so ACCEPT them.

As you may read from above, it may be a good idea to get a script, or write one, that handles dynamic IP in a
better sense. We could for example make a script that grabs the IP from ifconfig and adds it to a variable, upon
boot-up of the Internet connection. A good way to do this, would be to use, for example, the ip-up scripts
provided with pppd and some other programs. For a good site, check out the linuxguruz.org iptables site which
has a huge collection of scripts available to download. You will find a link to the linuxguruz.org site from the
Other resources and links appendix.

1
This script might be a bit less secure than the rc.firewal I . txt script. | would definitely

Noi "'._ advise you to use that script if at all possible since this script is more open to attacks from

-\) the outside.

182 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Also, there is the possibility to add something like this to your scripts:

INET_IP="1ifconfig $INET_IFACE | grep inet | cut -d : -f 2 | \
cut -d * * -F 17

The above would automatically grab the IP address of the $INET_IFACE variable, grep the correct line which
contains the IP address and then cuts it down to a manageable IP address. For a more elaborate way of doing
this, you could apply the snippets of code available within the retreiveip.txt script, which will automatically
grab your Internet IP address when you run the script. Do note that this may in turn lead to a little bit of
"weird" behavior, such as stalling connections to and from the firewall on the internal side. The most common
strange behaviors are described in the following list.

1. If the script is run from within a script which in turn is executed by, for example, the PPP daemon, it will
hang all currently active connections due to the NEW not SYN rules (see the State NEW packets but no
SYN bit set section). It is possible to get by, if you get rid of the NEW not SYN rules for example, but it
IS questionable.

2. If you got rules that are static and always want to be around, it is rather harsh to add and erase rules all
the time, without hurting the already existing ones. For example, if you want to block hosts on your LAN
to connect to the firewall, but at the same time operate a script from the PPP daemon, how would you do
it without erasing your already active rules blocking the LAN?

3. It may get unnecessarily complicated, as seen above which, in turn, could lead to security compromises.
If the script is kept simple, it is easier to spot problems, and to keep order in it.

rc.UTIN.firewall.txt

183 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

UnTrusted Internal Network
IP: 192.168.0.0/24

IFACE: ethl
IP: 192.168.0.2

V7

FIREWALL

IFACE: ethO
IP: 194.236.50.155

Internet

The rc.UTIN.firewall.txt script will in contrast to the other scripts block the LAN that is sitting behind us. In
other words, we don't trust anyone on any networks we are connected to. We also disallow people on our LAN
to do anything but specific tasks on the Internet. The only things we actually allow are POP3, HTTP and FTP
access to the Internet. We also don't trust the internal users to access the firewall more than we trust users on
the Internet.

The rc_UTIN.Firewal I . txt script requires the following options to be compiled statically to the kernel, or as
modules. Without one or more of these, the script will become more or less flawed since parts of the script's

184 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...
required functionalities will be unusable. As you change the script you use, you could possibly need more
options to be compiled into your kernel depending on what you want to use.

e CONFIG_NETFILTER

e CONFIG_IP_NF_CONNTRACK

e CONFIG_IP_NF_IPTABLES

e CONFIG_IP_NF_MATCH_LIMIT
e CONFIG_IP_NF_MATCH_STATE
e CONFIG_IP_NF_FILTER

e CONFIG_IP_NF_NAT

e CONFIG_IP_NF_TARGET_LOG

This script follows the golden rule to not trust anyone, not even our own employees. This is a sad fact, but a
large part of the hacks and cracks that a company gets hit by are a matter of people from their own staff
perpetrating the hit. This script will hopefully give you some clues as to what you can do with your firewall to
strengthen it. It's not very different from the original rc.firewal I txt script, but it does give a few hints at
what we would normally let through etc.

rc.test-iptables.txt

The rc.test-iptables.txt script can be used to test all the different chains, but it might need some tweaking
depending on your configuration, such as turning on ip_forwarding, and setting up masquerading etc. It will
work for most everyone who has all the basic set up and all the basic tables loaded into kernel. All it really
does is set some LOG targets which will log ping replies and ping requests. This way, you will get information
on which chain was traversed and in which order. For example, run this script and then do:

ping -c 1 host.on.the.internet

And tail -n 0 -f /var/log/messages while doing the first command. This should show you all the different chains
used, and in which order, unless the log entries are swapped around for some reason.

'
This script was written for testing purposes only. In other words, it's not a good idea to have
NO‘B\' rules like this that log everything of one sort since your log partitions might get filled up
\ ’) quickly and it would be an effective Denial of Service attack against you and might lead to
\ real attacks on you that would be unlogged after the initial Denial of Service attack.

rc.flush-iptables.txt

The rc.flush-iptables.txt script should not really be called a script in itself. The rc.flush-iptables.txt script will
reset and flush all your tables and chains. The script starts by setting the default policies to ACCEPT on the
INPUT, OUTPUT and FORWARD chains of the filter table. After this we reset the default policies of the

185 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

PREROUTING, POSTROUTING and OUTPUT chains of the nat table. We do this first so we won't have to
bother about closed connections and packets not getting through. This script is intended for actually setting up
and troubleshooting your firewall, and hence we only care about opening the whole thing up and resetting it to
default values.

After this we flush all chains first in the filter table and then in the NAT table. This way we know there are no
redundant rules lying around anywhere. When all of this is done, we jump down to the next section where we
erase all the user specified chains in the NAT and filter tables. When this step is done, we consider the script
done. You may consider adding rules to flush your mangle table if you use it.

One final word on this issue. Certain people have mailed me asking me to put this script into
NU‘B\' the original rc.firewall script using Red Hat Linux syntax where you type something like
\ ,) rc.firewall start and the script starts. However, | will not do that since this is a tutorial and
should be used as a place to fetch ideas mainly and it shouldn't be filled up with shell scripts
and strange syntax. Adding shell script syntax and other things makes the script harder to
read as far as | am concerned and the tutorial was written with readability in mind and will
continue being so.

Limit-match.txt

The limit-match.txt script is a minor test script which will let you test the limit match and see how it works.
Load the script up, and then send ping packets at different intervals to see which gets through, and how often
they get through. All echo replies will be blocked until the threshold for the burst limit has again been reached.

Pid-owner.txt

The pid-owner.txt is a small example script that shows how we could use the PID owner match. It does nothing
real, but you should be able to run the script, and then from the output of iptables -L -v be able to tell that the
rule actually matches.

Recent-match.txt

The recent-match.txt script is a small example of how the recent match can be used. For a complete explanation
of this script take a look at the Recent match section in the Iptables matches chapter.

Sid-owner.txt

The sid-owner.txt is a small example script that shows how we could use the SID owner match. It does nothing
real, but you should be able to run the script, and then from the output of iptables -L -v be able to tell that the
rule actually matches.

Ttl-inc.txt

186 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

A small example ttl-inc.txt script. This script shows how we could make the firewall/router invisible to
traceroutes, which would otherwise reveal much information to possible attackers.

Iptables-save ruleset

A small example script used in the Saving and restoring large rule-sets chapter to illustrate how iptables-save
may be used. This script is non-working, and should hence not be used for anything else than a reference.

What's next?

The chapter you have just read basically gave you a brief overlook of all the different scripts that are available
with this tutorial and the basic idea that they are trying to bring across to you. Hopefully it has been able to
explain something at the very least.

The next chapter will discuss some different graphical user interfaces that are available for iptables and
netfilter. This is far from a complete listing of all the different interfaces available, but as you can see, there are
quite a lot of othem. These interfaces mostly tries to simplify creating iptables scripts for you, and for simple
setups they are more than enough most of the time. At other times, you may have higher and more complex
needs and you must have to write your own script none the less.

Chapter 15. Graphical User Interfaces for
Iptables/netfilter

One side of iptables and netfilter that we haven't looked at very much yet, is the graphical user interfaces that
are available for iptables and netfilter. One of the biggest problems with this is that netfilter is a very complex
and flexible setup, that can perform the strangest of tasks. For this reason, it can become a very daunting task
to create a GUI for netfilter.

Several persons and organisations have tried to create GUI's for netfilter and iptables, and some have
succeeded better than others, while others have given up after some time. All have different reasoning behind
their tries as well, so it isn't an easy task to show them all. However, this chapter is a small compilation of some
of the GUI's for iptables and netfilter that may be worth looking at. Suggestions on others to add are always
welcome.

fwbuilder

Firewall Builder, or simply fwbuilder, is an extremely versatile and powerful tool that can be used to build
your own firewalls, or to maintain several firewalls for that matter. It can be used to create policies for several
different types of firewalls, including iptables (Linux 2.4 and 2.6), ipfilter (freebsd, netbsd, etc), openbsd pf,
and, a module that must be bought, Cisco PIX.

Fwbuilder has, as you can see, a very big audience and is well taken care of and continues to be developed. It is
run on a separate host system, where you create the policy files, and then copy them over and run them on the
target system. It is able to handle everything from very simple rulesets to large and rather complicated ones. It

187 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

has extensive abilities to handle different versions and installations of iptables, by configuration of which
targets/matches are available on each host system, etcetera. The end result may be saved in an xml file, or a
system parsable configuration file (e.g., the real firewall scripts).

Tum legging ON on all rules {overridas

i Enable support for NAT of locally originated connections

* fwbuilder Eas]
File Edit View Inset Rules Tools Help
User|Standard|
General | Sysinfo | Compite / instal Firewall | Network |
Name
i”? Objects Version =l | Options marked (7) require patch-o-matic
o ?.el".'rce&
& Groups Global Logging Parameters Options
-;- ICMP e 24
X IP A use LOG _jlog TCP seq. numbers F Load modules
X TCP
& UDP I log TCP options F Verify Interfaces before loading firewall policy
&8 ;_Q' *:”5:':”" i log IP options Assume firewall object is part of 'Any’
A Firewalls
o i lsotond i Use numeric syslog log levels _{ Clamp MSS 1o MTU ()
& | etheme Log Level & info = | |
Paolicy Accept TCP sessions opened prior to
5 laph « Use ULOG [A firewall restan
< ml wifi 1 A
o I 7 - Accepl ESTABLISHED and RELATED
Palicy i | - packels before first rule
T NAT i Bridging firewall
- Ime
o, P R BM — %A
Log Prefix | ULE %N r~ Detect rule shadowing in policy
_ILog ai dropped packets ()
_Jlgnore emply groups in rules
Logging Limit: {0 -:‘.‘ = | ¢ b

rule oplions, use for debugging) Script Options
_I Turn on debug output in iptables script
Default Action on ‘Reject’
J r Configure inlerfaces
ICMP admin prohibited =l
r Add vifual addresses for NAT
o o] »
= |

You can see the configuration of the “firewall™ in the above example, and the main menus of the whole
fwbuilder system. fwbuilder can be found at http://www.fwbuilder.org.

Turtle Firewall Project

Turtle Firewall is an excellent, yet simpler kind of user interface to iptables. It is integrated in something called
webmin (a web administration interface). It is fairly basic, and neither as complex nor able to handle as
complex changes as the fwbuilder package, but it is more than able to handle most simpler firewalls, as well as
some more advanced ones as well.

One big advantage with Turtle Firewall is the fact that it is web-based, and hence can be remotely controlled in
a totally different manner than with fwbuilder and most other tools. Of course, it also adds more of a security

188 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

risk since webmin is a separate extra service running on the firewall itself.

*| Firewall Items -
. File Edit View Go Eaukmnrks Tools Window Help

~ G]
“ \ ‘f"i “‘* Q;. https_.l’ﬂncnlhnst mﬂnoﬂurtiaﬂrﬂﬂ

L

Webmin Index
e F|rewall Items

. Zee mteface | Descripon
FIREWALL |

lan eth0 My Ethernet interface.

hm o — MvModen;;

W ro

| Net Netaddress | Netmask | Zome | Descripon
creale new net
| Host | IPaddress MACaddress Zome | Deseripon
create new host
. Grwp Mems | Descripon

lan s is a personal firewall, I'm
nodem onnected to Internet via lan or modem.

creile new group

€= Rewm to wrile firewall index

| [& ©4 [| root bgged into Webmin 1.130 on work3 frazentux.net (Deban GNU/Linu...| E~T

The above screenshot shows the items page of the Turtle Firewall, where you can configure network interfaces
and networks, and other items.

189 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

* Turtle Firewall - M
. FEile Edit View Go Bookmarks Tools Window Help

L Q Q Q Q | % https.mncalhnat 10000/turtlefirewis

.| 4 Home | E3Bookmarks < Red Hat, Inc. < Red Hat Network E3Support (3Shop EProducts »

Wel
Index .
weene | UFHIE Firewall
Module
Config

S E—

oy M

. °

Rules Services
I,___
0 10

Apply changes | Stop | Show iptables chains |
Turtle Firewall 1.27 www. tirtlefire wall. com

Chain PEEFOUTI0G (policy ACCKFT 139 packets, TEBE bytes)

phts byt=s targ=t prot opt in out BOWEE= d=nt i nat ion |
Chain PONTROUTING (policy ACCEPT 67 packets, 4020 bytes) |
pkts byt=s targ=t prot opt in out sourcs dentination
[0 MANQUEEADE all == ¢ (] 0.0.0.0/0 0.0.0.0/0
221 15BTH PADQUEPADNE all -- ¢ =thi 0.0.0.0/0 0.0.0.0/0

Chain CUTFUT (policy ACCEFT 288 pack=tn, 19899 bytes)
phts byt=s targ=t prot opt in out BOUEC= dent inat ion I

Chain THPUT (policy DROPF 0 packs=ts, 0 byt=a)

pkts byt=s targ=t Prot opt in out HOUECe de=nt i nat lon

T142 12768 ACCKPT all == lo L 0.0.0.0/0 0.0.0.0/0
w[mwhnmm 130 on work3 frozentux net (Deban GNU/Linu... | - @

This final screenshot shows the turtlefirewalls main screen, and with the whole ruleset expanded at the bottom.
The whole ruleset isn't showing, as you can see, but you get a good general idea of what it looks like in Turtle
Firewall.

You can find the Turtle Firewall Project and more information over at http://www.turtlefirewall.com/.

190 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Integrated Secure Communications System

The Integrated Secure Communications System, or shortly ISCS, is still undergoing development, and no
public version has been released. However, this looks like it will become an extremely helpful tool once it is
finished. The developer has very high standards, and this is the main reason that it has not been released yet.
ISCS integrates several functionalities into a single suite of administration and management user interface.
Basically this means that once this project is released, you will be able to fully configure all your firewalls
from a centralized point using a single GUI, including VPN's, VLAN's, Tunnels, sysctl's, etcetera.

The main attack angle that the developer(s) of ISCS has, is to simplify management and administration and to
remove tedious work for the administrators, so to save as much work hours as possible for the administrators.
This is done by putting together policies, and then the programs creates the rulesets and "pushes" them out to
the "enforcements points™ (e.g., firewalls, proxies, etcetera). The administrator doesn't actually "write™ or
"click" together the rulesets, just simply put together policies that are then enforced by ISCS.

This tool isn't finished yet, as of writing this. However, | have been in touch with the main developer of this
project before, and this is indeed a very large project. When it is finished, | believe this will be one of the best
tools on the market. Of course, time can only tell, but it is well worth mentioning here. You can find the ISCS
project over at http://iscs.sourceforge.net/.

!
The main developer, John Sullivan, of ISCS has specifically asked me to ask people to join
*LB\' his development efforts. The project is very big, and he would definitely like as much help
Ng . : : .
\ ,) with the project as possible. If you are able to help, you are, in other words, more than
\ welcome.

IPMenu

IPMenu is a very able program, yet simple to operate and not too demanding on resources nor bandwidth. It is
a console based program, so it works perfect over an SSH connection for example. It works perfectly on
machines running over a simple and old modem as well.

As you can see from the screenshot, it is able to handle all iptables functionality, including filtering, mangling
and nating. It is also able to handle routing tables and bandwidth shaping and to save and restore rulesets. You
can add new rules directly into the currently running iptables script easily, and handle all of the different tables.
Including adding and removing custom chains.

191 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Filter Input
NAT >2, Forward
Mangle 5. Output
Route 4, Add
Shape 5. Delete
Save . Custom
Restore

X1t

1
>1
i
R
:

Let packets through

=] O LN &= O r'-:.::i = [#N]

Show
Append
Edit
Insert
Delete
F 1 I.!:E'h
Policy

2, Dr op
5. Log

k. F-:E',_] ect
?. EUStDm

Elﬂ*ﬁ

| W ENTER PREV-FRMENEXT-FRHIM CANCEL BCHMD-MENUR |

As you can see from the screenshot above, the program is rather basic, but still able to handle most situations
rather well. And first of all, it is very simple, and can be used for remote administration simply enough, and
since it runs on top of ssh via a standard console, it should also be fairly secure. You can find the homepage of
IPMenu at http://users.pandora.be/stes/ipmenu.html.

Easy Firewall Generator

Easy Firewall Generator is another interesting development when it comes to iptables and netfilter. Basically,
Easy Firewall Generator is a PHP webpage where you specify options and specifics of your firewall, and once
all of the configurations are done, you click a button, and the webpage spits out an iptables ruleset that you can

utilize.

The script contains all the basic rules, and more specific ones to contain strange patterns in packets. It also
contains specific IP sysctl changes that may be needed, loads necessary modules, et cetera. The whole ruleset is

also written in a redhat init.d format.

192 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

193 of 273

i
fdd

=

EFile Edit View Go Bookmarks Tools Window Help

Easy Firewall Generator for iptables - Mozilla <2>

Q @ 0 Q | http//easyfwgen.mid

-

text dm:ument. Save the resull as lptables for rcdh&l systems or rc.firewall for many

45 Humn BBunkmnrks %Hod I-Iat Inc. %Hodl-hlt Naftwmk ESupport Elshop »

others.

Internet Interface: Fthu Help

Select Type of Internet Address Help

@ Static Internet [P Address | Help
¢ Dynamic Internet IP Address

Single System or Private Network Gateway? Help

" Single System
& Gateway/Firewall

a. Internal Network Interface: |;th1 Help
b. Internal Network IP Address: [192.168.1.1 Help

Internal Network: |1 92.168.1.0/24 Help
d. Internal Network Broadcast: |1 92.168.1.255 Help

Lr]

[T Advanced Network Options Help
[« Allow Inbound Services Help

[+ SSH

[~ DNS Server Help

[~ Web Server [with SSL

[~ FTP Server [~ Allow Passive FTP Connections? Help
[~ Email Server [~ with SSL

[T Time Server (NTP)

[~ DHCP Server (on the Internet interface)
[~ ICQ & AIM File Transfers Help

[~ MSN Messenger File Transfers Help

I~ NFS Server Help

[~ Specify a custom port range Help

P e il R o W e e e AR R

-

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

This screenshot shows one of the final stages of configuring the firewall script that is about to be created by the
script. You can find more information, and a working version of the Easy Firewall Generator at
http://easyfwgen.morizot.net/.

What's next?

In this chapter we have looked closer at what can be done with some different graphical user interfaces, and
other user interfaces as well. Note that there are several more user interfaces around on the market. This
chapter has mainly given you an idea of the different types of firewall administration interfaces around on the
market. Most of them are open source and free to use, while some will cost a bit of money to get full support or
functionality from.

Chapter 16. Commercial products based on Linux,
Iptables and netfilter

This section was added so that corporations may have their products tested and added to this tutorial. If you are
a company and would like to have your products tested and reviewed in this section, you are more than
welcome to contact the author through usual channels (see the top of this tutorial). Mind you that this section is
not the definite place to look for product testing. It is rather a try to offer something to all of the corporate
producers of Linux based products, and who contribute to the development of GNU/Linux software.

If someone feels that their product has been badly reviewed here, they are more than welcome to contact the
author for a more complete description of the problem, or to have their revised product possibly re-reviewed
with newer firmwares etc. This might change, since the author doesn't know how popular this review section
will be.

Ingate Firewall 1200

In short, the InGate Firewall 1200 is a commercial firewall product. To be fairly honest, they are definitely in
the pricey range and not for most/any home-users. However, you get what you pay for, and this is an excellent
product in other words. Before we go any further, it should be noted that the InGate firewalls are hardware and
software solutions. Basically it is a very small computer running a modified Linux kernel. Of course, you will
pretty much never see that it is actually running Linux (except for naming conventions in the interface, and so
forth).

A lot of effort has been put into creating a nicely advanced webinterface to configure and administrate the
firewall from. The InGate 1200 firewall has 2 10/100 Mbps Ethernet connectors and the larger versions has
more (up to 6 10/100/1000 Mbps Ethernet connectors and 2 mini Gbic ports).

They also have SIP traversal support and SIP support for Internet telephony, and built in support for TLS. The
1200 came with 2 SIP user licenses, and the number differs depending on which firewall/SIParator you buy.
The user interface for handling SIP is excellent and very intuitive, though it does use quite a lot of tech heavy
jargon. It might be a good idea to keep the manual around in other words, which might actually be true
whatever you are doing on this machine, for multiple reasons really. The manual is excellently written, and it
might also be very hard to understand the interface before you get used to the highly technical language they
have chosen to use. The manual is 250+ pages and available both in English and Swedish as of this writing,

194 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

and as I've already said, very well written.

On top of this, the InGate firewalls has ipsec based VPN and QoS support. The ipsec based VPN should be
interoperable with all other ipsec implementations, including "Road Warrior" roaming.

The device also has a very simple to setup logging facility. The machine can either log locally, or via syslog
and/or mail. The local logging facility has exceptionally good and finegrained search capabilities through the
logs. My only problem with the local logging facility is that the search engine might be a little bit too slow.
This is actually my main and only concern with the whole firewall, the whole user interface is a bit slow, and
sometimes it jumps to the main page after editing. This might have been fixed in newer versions however. All
things considered, this isn't a bad fault at all, and it could have been much worse than a slow user
interface/weird linking.

The first time | tried the test machine that | got, | borked the configuration pretty badly (l.e., I inverted the
interfaces among other things). Because of this, my original setup time was around 4-5 hours before | could
reach the Internet. If | hadn't done these initial errors, the original configuration time would probably have been
around 1 hour or so. Of course, this can only be expected when using a new and unknown (to you) interface.

The default values are very good. In other words, they are non-existant except for the most basic options. The
first thing you do, is to set the IP address of the device via a "magic ping" (set the device mac address to an IP
address and then ping the IP address - this must be done locally). The opposite ethernet port is per default
turned off, until you turn it on, and no configuration except the most basic is done by the InGate developers
(log groups and so on).

In conclusion, this is one of the best commercial firewalls | have seen on the market. The only real flaw is that
the user interface is a tad slow and that the device is rather high priced. The pros of the device far far
outweighs most cost issues that any company would have, and the simplicity of not having to scratch install a
system of your own could actually make this a simpler and cheaper device to set up than a scratch installed
system for most companies - especially if the process consists of a large quantity of firewalls and the
administrators are experienced in other InGate products. Of course, this is always the case | assume!

What's next?

This chapter has discussed some different commercial firewalling products based on iptables, netfilter and
linux. This list is much, much longer than what you have seen in this chapter. However, for me to try them out,
I must have something to test to begin with. If you know of a product that you think I should have in this
section, why not either give me access to it for a couple of days, or call the producer and see if they wouldn't
like to send me a sample/demo copy?

Well, this was the last chapter. What's left is just the different appendices. Some of them contains some rather
interesting information that didn't quite fit into any specific chapter, and others are just generic tables, and so
forth. If you have any further interest in the area, there is tons and tons of material to read, and why not join the
mailinglists available at the netfilter website? Or why not start developing for iptables and netfilter? I hope you
have enjoyed reading this document and that you have been able to set some of it to the real world test.

Appendix A. Detailed explanations of special
commands

195 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Listing your active rule-set

To list your currently active rule-set you run a special option to the iptables command, which we have
discussed briefly previously in the How a rule is built chapter. This would look like the following:

iptables -L

This command should list your currently active rule-set, and translate everything possible to a more readable
form. For example, it will translate all the different ports according to the /etc/services file as well as DNS
all the IP addresses to get DNS records instead. The latter can be a bit of a problem though. For example, it
will try to resolve LAN IP addresses, i.e. 192.168.1.1, to something useful. 192.168.0.0/16 is a private range
though and should not resolve to anything and the command will seem to hang while resolving the IP. To get
around this problem we would do something like the following:

iptables -L -n

Another thing that might be interesting is to see a few statistics about each policy, rule and chain. We could get
this by adding the verbose flag. It would then look something like this:

iptables -L -n -v
Don't forget that it is also possible to list the nat and mangle tables. This is done with the -t switch, like this:
iptables -L -t nat

There are also a few files that might be interesting to look at in the /proc file system. For example, it might be
interesting to know what connections are currently in the conntrack table. This table contains all the different
connections currently tracked and serves as a basic table so we always know what state a connection currently
is in. This table can't be edited and even if it was possible, it would be a bad idea. To see the table you can run
the following command:

cat /proc/net/ip_conntrack | less

The above command will show all currently tracked connections even though it might be a bit hard to
understand everything.

Updating and flushing your tables

If at some point you screw up your iptables, there are actually commands to flush them, so you don't have to
reboot. I've actually gotten this question a couple times by now so | thought I'd answer it right here. If you
added a rule in error, you might just change the -A parameter to -D in the line you added in error. iptables will
find the erroneous line and erase it for you, in case you've got multiple lines looking exactly the same in the
chain, it erases the first instance it finds matching your rule. If this is not the wanted behavior you might try to
use the -D option as iptables -D INPUT 10 which will erase the 10th rule in the INPUT chain.

There are also instances where you want to flush a whole chain, in this case you might want to run the -F
option. For example, iptables -F INPUT will erase the whole INPUT chain, though, this will not change the
default policy, so if this is set to DROP you'll block the whole INPUT chain if used as above. To reset the
chain policy, do as you did to set it to DROP, for example iptables -P INPUT ACCEPT.

I have made a rc.flush-iptables.txt (available as an appendix as well) that will flush and reset your iptables that

196 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

you might consider using while setting up your rc.firewall.txt file properly. One thing though; if you start
mucking around in the mangle table, this script will not erase those, it is rather simple to add the few lines
needed to erase those but | have not added those here since the mangle table is not used in my

rc.Firewal I . txt script so far.

Appendix B. Common problems and questions

Problems loading modules

You may run into a few problems with loading modules. For example, you could get errors claiming that there
is no module by such a name and so on. This may, for example look like the following.

insmod: iptable_filter: no module by that name found

This is no reason for concern yet. This or these modules may possibly have been statically compiled into your
kernel. This is the first thing you should look at when trying to solve this problem. The simplest way to see if
these modules have been loaded already or if they are statically compiled into the kernel, is to simply try and
run a command that uses the specific functionality. In the above case, we could not load the filter table. If this
functionality is not there, we should be unable to use the filter table at all. To check if the filter table is there,
we do the following.

iptables -t filter -L

This should either output all of the chains in the filter table properly, or it should fail. If everything is 0.k., then
it should look something like this depending on if you have rules inserted or not.

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

If you do not have the filter table loaded, you would get an error that looks something like this instead.

iptables v1.2.5: can"t initialize iptables table “filter": Table \
does not exist (do you need to insmod?)
Perhaps iptables or your kernel needs to be upgraded.

This is a bit more serious since it points out that we, first of all, do not have the functionality compiled into the
kernel, and second, that the module is not possible to find in our normal module paths. This may either mean
that you have forgotten to install your modules, you have forgotten to run depmod -a to update your module
databases, or you have not compiled the functionality as either module or statically into the kernel. There may
of course be other reasons for the module not to be loaded, but these are the main reasons. Most of these
problems are easily solved. The first problem would simply be solved by running make modules_install in the
kernel source directory (if the source has already been compiled and the modules have already been built). The
second problem is solved by simply running depmod -a once and see if it works afterward. The third problem
is a bit out of the league for this explanation, and you are more or less left to your own wits here. You will

197 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

most probably find more information about this on the Linux Documentation Project homepage.

Another error that you may get when running iptables is the following error.

iptables: No chain/target/match by that name

This error tells us that there is no such chain, target or match. This could depend upon a huge set of factors, the
most common being that you have misspelled the chain, target or match in question. Also, this could be
generated in case you are trying to use a match that is not available, either because you did not load the proper
module, it was not compiled into the kernel, or iptables failed to automatically load the module. In general, you
should look for all of the above solutions but also look for misspelled targets of some sort or another in your
rule.

State NEW packets but no SYN bit set

There is a certain feature in iptables that is not so well documented and may therefore be overlooked by a lot of
people (yes, including me). If you use state NEW, packets with the SYN bit unset will get through your
firewall. This feature is there because in certain cases we want to consider that a packet may be part of an
already ESTABLISHED connection on, for instance, another firewall. This feature makes it possible to have
two or more firewalls, and for one of the firewalls to go down without any loss of data. The firewalling of the
subnet could then be taken over by our secondary firewall. This does however lead to the fact that state NEW
will allow pretty much any kind of TCP connection, regardless if this is the initial 3-way handshake or not. To
take care of this problem we add the following rules to our firewalls INPUT, OUTPUT and FORWARD chain:

$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"
$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

The above rules will take care of this problem. This is a badly documented behavior of the
Netfilter/iptables project and should definitely be more highlighted. In other words, a huge

Qaﬂﬁ“ﬂ" RO - : .
' warning is in its place for this kind of behavior on your firewall.

Note that there are some troubles with the above rules and bad Microsoft TCP/IP implementations. The above
rules will lead to certain conditions where packets generated by Microsoft product gets labeled as state NEW
and hence get logged and dropped. It will however not lead to broken connections to my knowledge. The
problem occurs when a connection gets closed, the final FIN/ACK is sent, the state machine of Netfilter closes
the connection and it is no longer in the conntrack table. At this point the faulty Microsoft implementation
sends another packet which is considered as state NEW but lacks the SYN bit and hence gets matched by the
above rules. In other words, don't worry to much about this rule, or if you are worried anyways, set the
--log-headers option to the rule and log the headers too and you'll get a better look at what the packet looks
like.

There is one more known problem with these rules. If someone is currently connected to the firewall, let's say
from the LAN, and you have the script set to be activated when running a PPP connection. In this case, when
you start the PPP connection, the person previously connected through the LAN will be more or less killed.
This only applies when you are running with the conntrack and nat code bases as modules, and the modules are
loaded and unloaded each time you run the script. Another way to get this problem is to run the

rc.firewal I . txt script from a telnet connection from a host not on the actual firewall. To put it simply, you

198 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

connect with telnet or some other stream connection. Start the connection tracking modules, then load the
NEW not SYN packet rules. Finally, the telnet client or daemon tries to send something. the connection
tracking code will not recognize this connection as a legal connection since it has not seen packets in any
direction on this connection before, also there will be no SYN bits set since it is not actually the first packet in
the connection. Hence, the packet will match to the rules and be logged and after-wards dropped to the ground.

SYN/ACK and NEW packets

Certain TCP spoofing attacks uses a technique called Sequence Number Prediction. In this type of attack, the
attacker spoofs some other hosts IP address, while attacking someone, and tries to predict the Sequence number
used by that host.

Let's look on typical TCP spoofing by sequence number prediction. Players: "attacker" [A], trying to send
packets to a "victim" [V], pretending to be some "other host" [O].

1. [A] sends SYN to [V] with source IP of [O].
2. [V] replies to [O] by SYN/ACK.

3. now [O] should reply to an unknown SYN/ACK by RST and the attack is unsuccesful, but let's assume
[O] is down (flooded, turned off or behind firewall that has dropped the packets).

4. if [O] didn't mess it up, [A] now can talk to [V] pretending to be [O] as long as it predicts correct
sequence numbers.

As long as we do not send the RST packet to the unknown SYN/ACK in step 3, we will allow [V] to be
attacked, and ourselves to be incriminated. Common courtesy, would hence be to send the RST to [V] in a
proper way. If we use the NEW not SYN rules specified in the ruleset, SYN/ACK packets will be dropped.
Hence, we have the following rules in the bad_tcp_packets chain, just above the NEW not SYN rules:

iptables -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK \
-m state --state NEW -j REJECT --reject-with tcp-reset

The chance of being [O] in this scenario should be relatively small, but these rules should be safe in almost all
cases. Except when you run several redundant firewalls which will often take over packets or streams from
each other. In such case, some connections may be blocked, even though they are legit. This rule may actually
also allow a few portscans to see our firewall as well, but they should not be able to tell much more than that.

Internet Service Providers who use assigned IP addresses

I have added this since a friend of mine told me something | have totally forgotten. Certain stupid Internet
Service Providers use IP addresses assigned by IANA for their local networks on which you connect to. For
example, the Swedish Internet Service Provider and phone monopoly Telia uses this approach for example on
their DNS servers, which uses the 10.x.x.x IP address range. A common problem that you may run into when
writing your scripts, is that you do not allow connections from any IP addresses in the 10.x.X.X range to
yourself, because of spoofing possibilities. Well, here is unfortunately an example where you actually might
have to lift a bit on those rules. You might just insert an ACCEPT rule above the spoof section to allow traffic
from those DNS servers, or you could just comment out that part of the script. This is how it might look:

/usr/local/sbin/iptables -t nat -1 PREROUTING -i ethl -s \

199 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...
10.0.0.1/32 -j ACCEPT

I would like to take my moment to bitch at these Internet Service Providers. These IP address ranges are not
assigned for you to use for dumb stuff like this, at least not to my knowledge. For large corporate sites it is
more than o.k., or your own home network, but you are not supposed to force us to open up ourselves just
because of some whim of yours. You are large Internet providers, and if you can't afford buying some 3-4 IP
addresses for your DNS servers, | have a very hard time trusting you.

Letting DHCP requests through iptables

This is a fairly simple task really, once you get to know how DHCP works, however, you must be a little bit
cautious with what you do let in and what you do not let in. First of all, we should know that DHCP works
over the UDP protocol. Hence, this is the first thing to look for. Second, we should check which interface we
get and send the request from. For example, if our eth0 interface is set up with DHCP, we should not allow
DHCP requests on eth1. To make the rule a bit more specific, we only allow the actual UDP ports used by
DHCP, which should be ports 67 and 68. These are the criteria that we choose to match packets on, and that we
allow. The rule would now look like this:

$IPTABLES -1 INPUT -i $LAN_IFACE -p udp --dport 67:68 —--sport \
67:68 -j ACCEPT

Do note that we allow all traffic to and from UDP port 67 and 68 now, however, this should not be such a huge
problem since it only allows requests from hosts doing the connection from port 67 or 68 as well. This rule
could, of course, be even more restrictive, but it should be enough to actually accept all DHCP requests and
updates without opening up too large of holes. If you are concerned, this rule could of course be made even
more restrictive.

MIRC DCC problems

mIRC uses a special setting which allows it to connect through a firewall and to make DCC connections work
properly without the firewall knowing about it. If this option is used together with iptables and specifically the
ip_conntrack_irc and ip_nat_irc modules, it will simply not work. The problem is that mIRC will automatically
NAT the inside of the packets for you, and when the packet reaches the firewall, the firewall will simply not
know how and what to do with it. mIRC does not expect the firewall to be smart enough to take care of this by
itself by simply querying the IRC server for its IP address and sending DCC requests with that address instead.

Turning on the "I am behind a firewall" configuration option and using the ip_conntrack_irc and ip_nat_irc
modules will result in Netfilter creating log entries with the following content "Forged DCC send packet".

The simplest possible solution is to just uncheck that configuration option in mIRC and let iptables do the
work. This means, that you should tell mIRC specifically that it is not behind a firewall.

Appendix C. ICMP types

This is a complete listing of all ICMP types. Note the reference pointing to the RFC or person who introduced
the type and code. For a complete and absolute up to date listing of all ICMP types and codes, look at the

200 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

icmp-parameters document at Internet Assigned Numbers Authority.

!
Iptables and netfilter uses ICMP type 255 internally since it is not reserved for any real

Ote"‘-_ usage, and most likely will never have any real usage. If you set a rule to match iptables -A
N ’) INPUT -p icmp --icmp-type 255 -j DROP, this will DROP all ICMP packets. It is in other
\ words used to match all ICMP types.

Table C-1. ICMP types

TYPE|CODE Description Query|Error|Reference
0 0 Echo Reply X RFC792
3 0 Network Unreachable X RFC792
3 1 Host Unreachable X RFC792
3 2 Protocol Unreachable X RFC792
3 3 Port Unreachable X RFC792
3 4 Fragmentation needed but no frag. bit set X RFC792
3 5 Source routing failed X RFC792
3 6 Destination network unknown X RFC792
3 7 Destination host unknown X RFC792
3 8 Source host isolated (obsolete) X RFC792
3 9 Destination network administratively prohibited X RFC792
3 10 Destination host administratively prohibited X RFC792
3 11 Network unreachable for TOS X RFC792
3 12 Host unreachable for TOS X RFC792
3 13 Communication administratively prohibited by filtering X RFC1812
3 14 Host precedence violation X RFC1812
3 15 Precedence cutoff in effect X RFC1812
4 0 Source quench RFC792
5 0 Redirect for network RFC792
5 1 Redirect for host

5 2 Redirect for TOS and network RFC792
5 3 Redirect for TOS and host RFC792
8 0 Echo request X RFC792
9 0 Router advertisement - Normal router advertisement RFC1256
9 16 Router advertisement - Does not route common traffic RFC2002
10 0 Route selection RFC1256
11 0 TTL equals 0 during transit X RFC792
11 1 TTL equals 0 during reassembly X RFC792
12 0 IP header bad (catchall error) X RFC792
12 1 Required options missing X RFC1108
12 2 IP Header bad length X RFC792
13 0 Timestamp request (obsolete) X RFC792
14 Timestamp reply (obsolete) X RFC792

201 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

TYPE|CODE Description Query|Error|Reference
15 0 Information request (obsolete) X RFC792
16 0 Information reply (obsolete) X RFC792
17 0 Address mask request X RFC950
18 0 Address mask reply X RFC950
20-29 Reserved for robustness experiment gSW-Smg
30 0 Traceroute X RFC1393
31 0 Datagram Conversion Error X RFC1475
32 0 Mobile Host Redirect David
Johnson
33 0 IPv6 Where-Are-You X B.'“
Simpson
Bill
34 0 IPv6 I-Am-Here X .
Simpson
35 0 Mobile Registration Request X B.'“
Simpson
. o Bill
36 0 Mobile Registration Reply X Simpson
Tom
39 0 SKIP Markson
40 0 Photuris RFC2521

Appendix D. TCP options

This appendix is a simple and brief list of all the TCP options that are officially recognized. These references
and numbers were all retreived from the Internet Assigned Numbers Authority website. The master file can be
found at this location. The full contact details of the people referenced in this document has been removed, so
to create less workload for them hopefully.

Table D-1. TCP Options

Copy|Class|Number|Value Name Reference
o b o 0 |EOOL - End of Options List 5';?,?791'
] . [RFC791,
0 0 1 1 NOP - No Operation JBP]
1 0 130 |SEC - Security [RFC1108]
1 o P 131 |LSR - Loose Source Route 5';';;3791'
. [RFC791,
0 2 4 68 |TS - Time Stamp JBP]
1 0 5 133 |E-SEC - Extended Security [RFC1108]
1 0 6 134 |CIPSO - Commercial Security [777]
] [RFC791,
0 0 7 7 RR - Record Route JBP]

202 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

Copy|Class|Number{Value Name Reference
i [RFC791,

1 0 8 136 |[SID - Stream ID JBP]

1 o o 137 |SSR - Strict Source Route 5';E§3791'

0 0 10 10 |ZSU - Experimental Measurement |[ZSu]

0 0 11 11 |MTUP - MTU Probe [RFC1191]*

0 0 12 12 |MTUR - MTU Reply [RFC1191]*

1 2 13 205 |FINN - Experimental Flow Control [[Finn]

1 0 14 142 |VISA - Experimental Access Control|[Estrin]

0 0 15 15 |ENCODE - 7?? [VerSteeq]

1 0 16 144 |IMITD - IMI Traffic Descriptor [Lee]

1 0 17 145 |EIP - Extended Internet Protocol [RFC1385]

0 2 18 82 [TR - Traceroute [RFC1393]

1 o |9 147 |ADDEXT - Address Extension fg\'/'%‘a””

1 0 20 148 |RTRALT - Router Alert [RFC2113]

1 0 21 149 |SDB - Selective Directed Broadcast [[Graff]

1 0 22 150 [NSAPA - NSAP Addresses [Carpenter]

1 0 23 151 |DPS - Dynamic Packet State [Malis]

1 0 24 152 |UMP - Upstream Multicast Pkt. [Farinacci]

Appendix E. Other resources and links

Here is a list of links to resources and where | have gotten information from, etc :

203 of 273

ip-sysctl.txt - from the 2.4.14 kernel. A little bit short but a good reference for the IP networking controls
and what they do to the kernel.

InGate - InGate is a commercial firewall producer that uses Linux as the base for their firewall products.
Their productrange goes from basic firewalls to SIP gateways and QoS machines.

RFC 768 - User Datagram Protocol - This is the official RFC describing how the UDP protocol should
be used, in detail, and all of it's headers.

RFC 791 - Internet Protocol - The IP specification as still used on the Internet, with additions and
updates. The basic is still the same for IPv4.

RFC 792 - Internet Control Message Protocol - The definitive resource for all information about ICMP
packets. Whatever technical information you need about the ICMP protocol, this is where you should
turn first. Written by J. Postel.

RFC 793 - Transmission Control Protocol - This is the original resource on how TCP should behave on
all hosts. This document has been the standard on how TCP should work since 1981 and forward.
Extremely technical, but a must read for anyone who wants to learn TCP in every detail. This was
originally a Department of Defense standard written by J. Postel.

RFC 1122 - Requirements for Internet Hosts - Communication Layers - This RFC defines the

1/6/2007 12:55 PM

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

requirements of the software running on a Internet host, specifically the communication layers.

e RFC 1349 - Type of Service in the Internet Protocol Suite - RFC describing some changes and
clarifications of the TOS field in the IP header.

e RFC 1812 - Requirements for IP Version 4 Routers - This RFC specifies how routers on the Internet
should behave and how they are expected to handle different situations. Very interesting reading.

e RFC 2401 - Security Architecture for the Internet Protocol - This is an RFC talking about the IPSEC
implementation and standardisation. Well worth reading if you are working with IPSEC.

e RFC 2474 - Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers - In
this document you will find out how the DiffServ works, and you will find much needed information
about the TCP/IP protocol additions/changes needed for the DiffServ protocol to work.

e RFC 2638 - A Two-bit Differentiated Services Architecture for the Internet - This RFC describes a
method of implementing two different differentiated service architecture into one. Both where described
originally by D. Clark and van Jacobsen at the Munich IETH meeting 1997.

e RFC 2960 - Stream Control Transmission Protocol - This is a relatively new protocol developed by
several large telecoms companies to complement UDP and TCP as a layer 3 protocol with higher
reliability and resilience.

e RFC 3168 - The Addition of Explicit Congestion Notification (ECN) to IP - This RFC defines how ECN
is to be used on a technical level and how it should be implemented in the TCP and IP protocols. Written
by K. Ramakrishnan, S. Floyd and D. Black.

e RFC 3260 - New Terminology and Clarifications for Diffserv - This memo captures Diffserv working
group agreements concerning new and improved terminology, and provides minor technical
clarifications.

e RFC 3286 - An Introduction to the Stream Control Transmission Protocol - RFC introducing the Stream
Control Transmission Protocol, a relatively new layer 3 protocol in the TCP/IP stack. Developed by
several large telecom companies.

e ip_dynaddr.txt - from the 2.4.14 kernel. A really short reference to the ip_dynaddr settings available via
sysctl and the proc file system.

e iptables.8 - The iptables 1.3.1 man page. This is an HTMLized version of the man page which is an
excellent reference when reading/writing iptables rule-sets. Always have it at hand.

o Ipsysctl tutorial - Another tutorial | have written about the IP System Control in Linux. A try to make a
complete listing of all the IP variables that can be set on the fly in Linux.

e Policy Routing Using Linux - This is an excellent book that has now been opened up on the Internet
regarding Policy routing in Linux. It is well written and most definitely worth buying. Written by
Matthew G. Marsh.

e Security-Enhanced Linux - The official site of the Security-Enhanced Linux (SELinux) system
developed as a proof of concept by the National Security Agency (NSA). SELinux is a fine grained
Mandatory Access Control system, which lets you have a much higher control on who can do what and
what processes has what privileges, et cetera.

o Firewall rules table - A small PDF document gracefully given to this project by Stuart Clark, which gives

204 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

a reference form where you can write all of the information needed for your firewall, in a simple manner.

o http://I7-filter.sourceforge.net/ - The I7-filter project is basically a set of patches and files to make
iptables and netfilter able to handle layer 7 filtering, mainly for QoS and traffic accounting. It works less
reliably for filtering however, since it will allow the first couple of packets through before actually
blocking traffic.

o http://www.netfilter.org/ - The official Netfilter and iptables site. It is a must for everyone wanting to set
up iptables and Netfilter in linux.

o http://www.insecure.org/nmap/ - Nmap is one of the best, and most known, port scanners available. It is
very useful when debugging your firewall scripts. Take a closer look at it.

o http://www.netfilter.org/documentation/index.htmI#FAQ - The official Netfilter Frequently Asked
Questions. Also a good place to start at when wondering what iptables and Netfilter is about.

o http://www.netfilter.org/unreliable-guides/packet-filtering-HOWTO/index.html - Rusty Russells
Unreliable Guide to packet filtering. Excellent documentation about basic packet filtering with iptables
written by one of the core developers of iptables and Netfilter.

o http://www.netfilter.org/unreliable-guides/NAT-HOWTO/index.html - Rusty Russells Unreliable Guide
to Network Address Translation. Excellent documentation about Network Address Translation in
iptables and Netfilter written by one of the core developers, Rusty Russell.

o http://www.netfilter.org/unreliable-guides/netfilter-hacking-HOWTO/index.html - Rusty Russells
Unreliable Netfilter Hacking HOW-TO. One of the few documentations on how to write code in the
Netfilter and iptables user-space and kernel space code-base. This was also written by Rusty Russell.

o http://www.linuxguruz.org/iptables/ - Excellent link-page with links to most of the pages on the Internet
about iptables and Netfilter. Also maintains a list of iptables scripts for different purposes.

e Policy Routing using Linux - The best book I have ever read on Policy routing nad linux. This is an
absolute must when it comes to routing in linux. Written by Matthew G. Marsh.

¢ Implementing Quality of Service Policies with DSCP - A link about the cisco implementation of DSCP.
This shows some classes used in DSCP, and so on.

e |ETF SIP Working Group - SIP is one of the "next big things" it seems. Basically it is the defacto
standards for Internet telephony today. It is horribly complex as you can see from the amount of
documentation on the working groups homepage, and should hopefully be able to cope with pretty much
any needs of session initiation in the future. It is used mainly to setup peer to peer connections between
known users, for example to connect to user@example.org and setup a phone connection to that user.
This is the IETF Working group handling all SIP work.

e IETF TLS Working Group - TLS is a transport layer security model that is one of the most common host
to server based security mechanisms. The current version is running is 1.1 and work is ongoing to get 1.2
out the door with support for newer and better cryptos as of this writing. This is a standardized way of
sending and receiving public keys for servers and handling trusted certificate agents etc. For more
information, read the RFC's on this page.

e |PSEC Howto - This is the official IPSEC howto for Linux 2.6 kernels. It describes how IPSEC works in
the 2.6 kernels and up, however, it is not the place to find out exactly how the Linux 2.2 and 2.4 kernels
worked when it comes to IPSEC. Go to the FreeS/WAN site for that information.

205 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

e FreeS/WAN - This is the official site for FreeS/WAN, an IPSEC implementation for the Linux 2.2 and
2.4 kernel series. This site contains documentation and all necessary downloads for the IPSEC
implementation. This effort has been discontinued due to several reasons discussed on the page, but
efforts will still be put into bugfixes, documentation and the forums. For an IPSEC implementation for
Linux 2.6 kernels, please look at the IPSEC Howto site and the information there.

o http://www.islandsoft.net/veerapen .html -Excellent discussion on automatic hardening of iptables and
how to make small changes that will make your computer automatically add hostile sites to a special ban
list in iptables .

e /etc/protocols - An example protocols file taken from the Slackware distribution. This can be used to
find out what protocol number different protocols have, such as the IP, ICMP or TCP protocols have.

e /etc/services - An example services file taken from the Slackware distribution. This is extremely good
to get used to reading once in a while, specifically if you want to get a basic look at what protocols runs
on different ports.

o Internet Assigned Numbers Authority - The IANA is the organisation that is responsible for fixing all
numbers in the different protocols in an orderly fashion. If anyone has a specific addition to make to a
protocol (for example, adding a new TCP option), they need to contact the IANA, which will assign the
numbers requested. In other words, extremely important site to keep an eye on.

e RFC-editor.org - This is an excellent site for finding RFC documents in a fast and orderly way.
Functions for searching RFC documents, and general information about the RFC community (l.e., errata,
news, et cetera).

e Internet Engineering Task Force - This is one of the biggest groups when it comes to setting and
maintaining Internet standards. They are the ones maintaining the RFC repository, and consist of a large
group of companies and individuals that work together to ensure the interoperability of the Internet.

e Linux Advanced Routing and Traffic Control HOW-TO - This site hosts the Linux Advanced Routing
and Traffic Control HOWTO. It is one of the biggest and best documents regarding Linux advanced
routing. Maintained by Bert Hubert.

e Paksecured Linux Kernel patches - A site containing all of the kernel patches written by Matthew G.
Marsh. Among others, the FTOS patch is available here.

e ULOGD project page - The homepage of the ULOGD site.

e The Linux Documentation Project is a great site for documentation. Most big documents for Linux is
available here, and if not in the TLDP, you will have to search the net very carefully. If there is anything
you want to know more about, check this site out.

e Snort - this is an excellent open source "network intrusion detection system"” (NIDS) which looks for
signatures in the packets that it sees, and if it sees a signature of some kind of attack or break-in it can do
different actions that can be defined (notifying the administrator, or take action, or simply logging it).

e Tripwire - tripwire is an excellent security tool which can be used to find out about host intrusions. It
makes checksums of all the files specified in a configuration file, and then it tells the administrator about
any files that has been tampered with in an illegit way every time it is run.

e Squid - This is one of the most known webproxies available on the market. It is open source, and free. It
can do several of the filtering tasks that should be done before the traffic actually hits your webserver, as
well as doing the standard webcaching functions for your networks.

206 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

o http://kalamazoolinux.org/presentations/20010417/conntrack.html - This presentation contains an
excellent explanation of the conntrack modules and their work in Netfilter. If you are interested in more
documentation on conntrack, this is a "must read".

o http://www.docum.org - Excellent information about the CBQ, tc and the ip commands in Linux. One of
the few sites that has any information at all about these programs. Maintained by Stef Coene.

o http://lists.samba.org/m ailman/listinfo/netfilter- The official Netfilter mailing-list. Extremely useful in
case you have questions about something not covered in this document or any of the other links here.

And of course the iptables source, documentation and individuals who helped me.

Appendix F. Acknowledgments

I would like to thank the following people for their help on this document:

e Fabrice Marie, For major updates to my horrible grammar and spelling. Also a huge thanks for updating
the tutorial to DocBook format with make files etc.

e Marc Boucher, For helping me out on some aspects on using the state matching code.

e Frode E. Nyboe, For greatly improving the rc.firewal I rules and giving great inspiration while i was to
rewrite the rule-set and being the one who introduced the multiple table traversing into the same file.

e Chapman Brad, Alexander W. Janssen, Both for making me realize | was thinking wrong about how
packets traverse the basic NAT and filters tables and in which order they show up.

e Michiel Brandenburg, Myles Uyema, For helping me out with some of the state matching code and
getting it to work.

e Kent "Artech’ Stahre, For helping me out with the graphics. I know I suck at graphics, and you're better
than most | know who do graphics;). Also thanks for checking the tutorial for errors etc.

e Anders 'DeZENT' Johansson, For hinting me about strange ISPs and so on that uses reserved networks
on the Internet, or at least on the Internet for you.

e Jeremy Spliffy' Smith, For giving me hints at stuff that might screw up for people and for trying it out
and checking for errors in what I've written.

And of course everyone else | talked to and asked for comments on this file, sorry for not mentioning
everyone.

Appendix G. History

Version 1.2.2 (19 Nov 2006)
http://iptables-tutorial.frozentux.net

By Oskar Andreasson

Contributors: Jens Larsson and G. W. Haywood.

Version 1.2.1 (29 Sep 2006)
http://iptables-tutorial .frozentux.net

207 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

By: Oskar Andreasson
Contributors: Ortwin Glueck, Mao, Marcos Roberto Greiner, Christian Font,
Tatiana, Andrius, Alexey Dushechkin, Tatsuya Nonogaki and Fred.

Version 1.2.0 (20 July 2005)

http://iptables-tutorial .frozentux.net

By: Oskar Andreasson

Contributors: Corey Becker, Neil Perrins, Watz and Spanish translation team.

Version 1.1.19 (21 May 2003)

http://iptables-tutorial . frozentux.net

By: Oskar Andreasson

Contributors: Peter van Kampen, Xavier Bartol, Jon Anderson, Thorsten Bremer
and Spanish Translation Team.

Version 1.1.18 (24 Apr 2003)

http://iptables-tutorial .frozentux.net

By: Oskar Andreasson

Contributors: Stuart Clark, Robert P. J. Day, Mark Orenstein and Edmond Shwayri .

Version 1.1.17 (6 Apr 2003)

http://iptables-tutorial .frozentux.net

By: Oskar Andreasson

Contributors: Geraldo Amaral Filho, Ondrej Suchy, Dino Conti, Robert P. J. Day,
Velev Dimo, Spencer Rouser, Daveonos, Amanda Hickman, Olle Jonsson and

Bengt Aspvall.

Version 1.1.16 (16 Dec 2002)
http://iptables-tutorial.frozentux.net

By: Oskar Andreasson

Contributors: Clemens Schwaighower, Uwe Dippel and Dave Wreski.

Version 1.1.15 (13 Nov 2002)

http://iptables-tutorial .frozentux.net

By: Oskar Andreasson

Contributors: Mark Sonarte, A. Lester Buck, Robert P. J. Day, Togan Muftuoglu,
Antony Stone, Matthew F. Barnes and Otto Matejka.

Version 1.1.14 (14 Oct 2002)

http://iptables-tutorial .frozentux.net

By: Oskar Andreasson

Contributors: Carol Anne, Manuel Minzoni, Yves Soun, Miernik, Uwe Dippel,
Dave Klipec and Eddy L O Jansson.

Version 1.1.13 (22 Aug 2002)

http://iptables-tutorial .haringstad.com

By: Oskar Andreasson

Contributors: Tons of people reporting bad HTML version.

Version 1.1.12 (19 Aug 2002)

http://www.netfilter.org/tutorial/

By: Oskar Andreasson

Contributors: Peter Schubnell, Stephen J. Lawrence, Uwe Dippel, Bradley
Dilger, Vegard Engen, Clifford Kite, Alessandro Oliveira, Tony Earnshaw,
Harald Welte, Nick Andrew and Stepan Kasal.

Version 1.1.11 (27 May 2002)

http://www.netfilter.org/tutorial/

By: Oskar Andreasson

Contributors: Steve Hnizdur, Lonni Friedman, Jelle Kalf, Harald Welte,
Valentina Barrios and Tony Earnshaw.

Version 1.1.10 (12 April 2002)
http://www.boingworld.com/workshops/linux/iptables-tutorial/

By: Oskar Andreasson

Contributors: Jelle Kalf, Theodore Alexandrov, Paul Corbett, Rodrigo
Rubira Branco, Alistair Tonner, Matthew G. Marsh, Uwe Dippel, Evan
Nemerson and Marcel J.E. Mol.

208 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Version 1.1.9 (21 March 2002)
http://www.boingworld.com/workshops/linux/iptables-tutorial/

By: Oskar Andreasson

Contributors: Vince Herried, Togan Muftuoglu, Galen Johnson, Kelly Ashe, Janne
Johansson, Thomas Smets, Peter Horst, Mitch Landers, Neil Jolly, Jelle Kalf,
Jason Lam and Evan Nemerson.

Version 1.1.8 (5 March 2002)
http://www.boingworld.com/workshops/linux/iptables-tutorial/
By: Oskar Andreasson

Version 1.1.7 (4 February 2002)
http://www.boingworld.com/workshops/linux/iptables-tutorial/

By: Oskar Andreasson

Contributors: Parimi Ravi, Phil Schultz, Steven McClintoc, Bill Dossett,
Dave Wreski, Erik Sj?lund, Adam Mansbridge, Vasoo Veerapen, Aladdin and
Rusty Russell.

Version 1.1.6 (7 December 2001)

http://people.unix-fu.org/andreasson/

By: Oskar Andreasson

Contributors: Jim Ramsey, Phil Schultz, G?ran B?ge, Doug Monroe, Jasper
Aikema, Kurt Lieber, Chris Tallon, Chris Martin, Jonas Pasche, Jan
Labanowski, Rodrigo R. Branco, Jacco van Koll and Dave Wreski.

Version 1.1.5 (14 November 2001)
http://people.unix-fu.org/andreasson/

By: Oskar Andreasson

Contributors: Fabrice Marie, Merijn Schering and Kurt Lieber.

Version 1.1.4 (6 November 2001)

http://people.unix-fu.org/andreasson

By: Oskar Andreasson

Contributors: Stig W. Jensen, Steve Hnizdur, Chris Pluta and Kurt Lieber.

Version 1.1.3 (9 October 2001)
http://people._unix-fu.org/andreasson

By: Oskar Andreasson

Contributors: Joni Chu, N_Emile Akabi-Davis and Jelle Kalf.

Version 1.1.2 (29 September 2001)
http://people.unix-fu.org/andreasson
By: Oskar Andreasson

Version 1.1.1 (26 September 2001)
http://people.unix-fu.org/andreasson
By: Oskar Andreasson

Contributors: Dave Richardson.

Version 1.1.0 (15 September 2001)
http://people.unix-fu.org/andreasson
By: Oskar Andreasson

Version 1.0.9 (9 September 2001)
http://people.unix-fu.org/andreasson
By: Oskar Andreasson

Version 1.0.8 (7 September 2001)
http://people.unix-fu.org/andreasson
By: Oskar Andreasson

Version 1.0.7 (23 August 2001)
http://people.unix-fu.org/andreasson
By: Oskar Andreasson

Contributors: Fabrice Marie.

Version 1.0.6

http://people.unix-fu.org/andreasson
By: Oskar Andreasson

209 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Version 1.0.5
http://people.unix-fu.org/andreasson
By: Oskar Andreasson

Contributors: Fabrice Marie.

Appendix H. GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free™ in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft”, which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does.
But this License is not limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying
it can be distributed under the terms of this License. The "Document”, below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section™ is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant

210 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts,
in the notice that says that the Document is released under this License.

A "Transparent™ copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup has been designed to thwart or discourage subsequent modification by
readers is not Transparent. A copy that is not "Transparent" is called "Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that
can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may
not use technical measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document's license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include

211 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

a machine-readable Transparent copy along with each Opaqgue copy, or state in or with each Opaque copy a
publicly-accessible computer-network location containing a complete Transparent copy of the Document, free
of added material, which the general network-using public has access to download anonymously at no charge
using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History"”, and its title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section
entitled "History" in the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of
the Document, and likewise the network locations given in the Document for previous versions it was
based on. These may be placed in the "History" section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

212 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

K. Inany section entitled "Acknowledgements” or "Dedications”, preserve the section’s title, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements”. Such a section may not be included in the Modified Version.
N. Do not retitle any existing section as "Endorsements” or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements™, provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may
be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a unique number. Make the same adjustment to the
section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History™ in the various original documents,
forming one section entitled "History™; likewise combine any sections entitled "Acknowledgements”, and any
sections entitled "Dedications"”. You must delete all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and

213 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in
all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate”, and this License does not apply to the other self-contained works thus compiled with the
Document, on account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that
surround only the Document within the aggregate. Otherwise they must appear on covers around the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License provided that you also
include the original English version of this License. In case of a disagreement between the translation and the
original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a

214 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

particular numbered version of this License "or any later version™ applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number
of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (¢) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the Invariant Sections being LIST
THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST. A copy of the license is included in the section entitled "GNU Free Documentation
License".

If you have no Invariant Sections, write "with no Invariant Sections™ instead of saying which ones are
invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being
LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.

Appendix I. GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

0. Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation's software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License instead.) You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

215 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

1. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on the Program" means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term "modification™.) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made
by running the Program). Whether that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program'’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and give any other recipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

216 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

217 of 273

1. You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

2. You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

3. If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based on
the Program, the distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or

executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

A. Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

B. Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

C. Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

218 of 273

the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this

License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

6. You are not required to accept this License, since you have not signed it. However, nothing else grants

you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the recipient automatically

receives a license from the original licensor to copy, distribute or modify the Program subject to these
terms and conditions. You may not impose any further restrictions on the recipients' exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not

limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version™, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published
by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

11. NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

2. How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file
to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and
a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.> Copyright (C) <year>
<name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU

219 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with
ABSOLUTELY NO WARRANTY:; for details type 'show w'. This is free software, and you are
welcome to redistribute it under certain conditions; type “show c' for details.

The hypothetical commands “show w' and “show c¢' should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than “show w' and “show c'; they
could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright
disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program “Gnomovision' (which
makes passes at compilers) written by James Hacker. <signature of Ty Coon>, 1 April 1989 Ty
Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Library General Public License instead of this License.

Appendix J. Example scripts code-base

Example rc.firewall script

#1/bin/sh
rc.firewall - Initial SIMPLE IP Firewall script for Linux 2.4.x and iptables
Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

HHETHE RS

220 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple

Place, Suite 330, Boston, MA 02111-1307
#

HHAH AR AR AR R AR AR AR AR AR AR AR

#
1. Configuration options.
#

#

1.1 Internet Configuration.
#

INET_IP="194.236.50.155"

INET_IFACE=""eth0"
INET_BROADCAST="194_236.50.255"

1.1.1 DHCP

1.1.2 PPPoOE

1.2 Local Area Network configuration.

HHBRE OEHR ORITI

LAN_IP="192.168.0.2"
LAN_IP_RANGE="192.168.0.0/16"
LAN_IFACE=""ethl"

#
1.3 DMZ Configuration.
#

#
1.4 Localhost Configuration.
#

LO_IFACE="10"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES=""/usr/sbin/iptables"
#

1.6 Other Configuration.
#

your LAN"s IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0

HHAH R R R

#
2. Module loading.
#

#
Needed to initially load modules
#

/sbin/depmod -a

221 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#
2.1 Required modules
#

/sbin/modprobe ip_tables
/sbin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/sbin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit
/sbin/modprobe ipt_state

#
2.2 Non-Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_REJECT
#/sbin/modprobe ipt_MASQUERADE
#/sbin/modprobe ip_conntrack ftp
#/sbin/modprobe ip_conntrack_irc
#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

HHHHH R R R R R R R R R R R R R
#

3. /proc set up.

#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4a/conf/all/rp_Ffilter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

P
#

4. rules set up.

#

HEHHHH
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#

Create chain for bad tcp packets
#

222 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

$IPTABLES -N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES -N allowed

$IPTABLES -N tcp_packets
$IPTABLES -N udp_packets
SIPTABLES -N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK \

-m state --state NEW -j REJECT --reject-with tcp-reset

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP

#
allowed chain
#

$IPTABLES -A allowed -p TCP --syn -j ACCEPT
$IPTABLES -A allowed -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A allowed -p TCP -j DROP

#
TCP rules
#

$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 21 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 22 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 80 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 113 -j allowed

#
UDP ports
#

#$I1PTABLES -A udp_packets -p UDP -s 0/0 --destination-port 53 -j ACCEPT

#$IPTABLES -A udp_packets -p UDP -s 0/0 --destination-port 123 -j ACCEPT
#$I1PTABLES -A udp_packets -p UDP -s 0/0 --destination-port 2074 -j ACCEPT
#$I1PTABLES -A udp_packets -p UDP -s 0/0 --destination-port 4000 -j ACCEPT

#

In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.

#

#$I1PTABLES -A udp_packets -p UDP -i $INET_IFACE -d $INET_BROADCAST \
#--destination-port 135:139 -j DROP

#

IT we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.

#

#$IPTABLES -A udp_packets -p UDP -i $INET_IFACE -d 255.255.255.255 \
#--destination-port 67:68 -j DROP

#

223 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

ICMP rules
#

$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 8 -j ACCEPT
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

#
4.1.4 INPUT chain
#

#
Bad TCP packets we don"t want.
#

$IPTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Rules for special networks not part of the Internet
#

$IPTABLES -A INPUT -p ALL -i $LAN_IFACE -s $LAN_IP_RANGE -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LO_IP —-j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LAN_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s S$INET_IP -j ACCEPT

#

Special rule for DHCP requests from LAN, which are not caught properly
otherwise.

#

$IPTABLES -A INPUT -p UDP -i $LAN_IFACE --dport 67 --sport 68 -j ACCEPT

#
Rules for incoming packets from the internet.
#

$IPTABLES -A INPUT -p ALL -d $INET_IP -m state --state ESTABLISHED,RELATED \
-j ACCEPT

$IPTABLES -A INPUT -p TCP -i S$INET_IFACE -j tcp_packets

$IPTABLES -A INPUT -p UDP -i SINET_IFACE -j udp_packets

$IPTABLES -A INPUT -p ICMP -i $INET_IFACE -j icmp_packets

#

1f you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs

#

#$IPTABLES -A INPUT -i $INET_IFACE -d 224.0.0.0/8 -j DROP
#

Log weird packets that don"t match the above.

#

$IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT INPUT packet died:

#

4.1.5 FORWARD chain

#

#

Bad TCP packets we don"t want

#

$IPTABLES -A FORWARD -p tcp -j bad_tcp_packets

#
Accept the packets we actually want to forward

224 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#

$IPTABLES -A FORWARD -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

#
Log weird packets that don"t match the above.
#

$IPTABLES -A FORWARD -m limit —--limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT FORWARD packet died: ™

#

4.1.6 OUTPUT chain

#

#

Bad TCP packets we don"t want.

#

$IPTABLES -A OUTPUT -p tcp -j bad_tcp_packets

#

Special OUTPUT rules to decide which IP"s to allow.
#

$IPTABLES -A OUTPUT -p ALL -s $LO_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $INET_IP -j ACCEPT
#

Log weird packets that don"t match the above.
#

$IPTABLES -A OUTPUT -m limit —-limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT OUTPUT packet died: "

H
4.2 nat table

4_.2.1 Set policies

4.2.2 Create user specified chains

4.2.3 Create content in user specified chains

4.2_.4 PREROUTING chain

4.2.5 POSTROUTING chain

Enable simple IP Forwarding and Network Address Translation

WHHE W HE I KT OEEE BEE R

$IPTABLES -t nat -A POSTROUTING -o $INET_IFACE -j SNAT --to-source $INET_IP

#
4.2.6 OUTPUT chain

225 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

HHHHH
4.3 mangle table

4.3.1 Set policies

4.3.2 Create user specified chains

4_3.3 Create content in user specified chains

4.3.4 PREROUTING chain

4.3.5 INPUT chain

4.3.6 FORWARD chain

4.3.7 OUTPUT chain

4_.3.8 POSTROUTING chain

WHHE O OWE I OKIH OKREIE BEE OBWE OERHW OEF® R

Example rc.DMZ . firewall script

/bin/sh
rc.DMZ._firewall - DMZ IP Firewall script for Linux 2.4.x and iptables
Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

HHAHHHH AR

HHHFT HHIFHFHHFHBEHIFHHFEHFHEHFRTFERHRSR

1. Configuration options.

226 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

#

#
1.1 Internet Configuration.
#

INET_I1P=""194_236.50.152"
HTTP_IP="194.236.50.153""

DNS_1P="194_236.50.154"
INET_IFACE=""eth0"

1.1.1 DHCP

1.1.2 PPPoE

HHTRE OEF® OERR

LAN_1P="192.168.0.1"
LAN_IFACE=""ethl"

#
1.3 DMZ Configuration.
#

DMZ_HTTP_IP="192.168.1.2"
DMZ_DNS_1P="192.168.1.3"
DMZ_1P="192.168.1.1"
DMZ_IFACE=""eth2"

#
1.4 Localhost Configuration.
#

LO_IFACE="10"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES=""/usr/sbin/iptables"
#

1.6 Other Configuration.
#

1.2 Local Area Network configuration.

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

your LAN"s IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0

HHHAHHHA AR AR R AR A

#
2. Module loading.
#

#

Needed to initially load modules
#

/sbin/depmod -a

#
2.1 Required modules

227 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

#

/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe

#

ip_tables
ip_conntrack
iptable_filter
iptable_mangle
iptable_nat
ipt_LOG
ipt_limit
ipt_state

2.2 Non-Required modules

#

#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe

ipt_owner
ipt_REJECT
ipt_MASQUERADE
ip_conntrack_ ftp
ip_conntrack_irc
ip_nat_ftp
ip_nat_irc

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

HHAH R R R R

#

3. /proc set up.

#

#

3.1 Required proc configuration

#

echo "1" > /proc/sys/net/ipv4/ip_forward

#

3.2 Non-Required proc configuration

#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_Ffilter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp

#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

HHAH A A AR AR AR AR AR AR AR AR AR

#

4. rules set up.

#

HHAHH

4.1 Filter table

#

#
4.1.1 Set pol
#

icies

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

#

4.1.2 Create userspecified chains

#

#

Create chain for bad tcp packets

#

$IPTABLES -N bad_tcp_packets

228 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES -N allowed
SIPTABLES -N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK \

-m state --state NEW -j REJECT --reject-with tcp-reset

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP

#
allowed chain
#

$IPTABLES -A allowed -p TCP --syn -j ACCEPT
$IPTABLES -A allowed -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A allowed -p TCP -j DROP

#
ICMP rules
#

Changed rules totally
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 8 -j ACCEPT
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

#
4.1.4 INPUT chain
#

#

Bad TCP packets we don"t want

#

$IPTABLES -A INPUT -p tcp -j bad_tcp_packets

#

Packets from the Internet to this box

#

$IPTABLES -A INPUT -p ICMP -i $INET_IFACE -j icmp_packets
#

Packets from LAN, DMZ or LOCALHOST

#

#

From DMZ Interface to DMZ firewall IP

#

$IPTABLES -A INPUT -p ALL -i $DMZ_IFACE -d $DMZ_IP -j ACCEPT
#

From LAN Interface to LAN firewall IP

#

SIPTABLES -A INPUT -p ALL -i $LAN_IFACE -d $LAN_IP -j ACCEPT

229 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#
From Localhost interface to Localhost IP"s
#

SIPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LO_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -1 $LO_IFACE -s $LAN_IP —j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $INET_IP —j ACCEPT

#

Special rule for DHCP requests from LAN, which are not caught properly
otherwise.

#

$IPTABLES -A INPUT -p UDP -i $LAN_IFACE --dport 67 --sport 68 -j ACCEPT

#

All established and related packets incoming from the internet to the
firewall

#

$IPTABLES -A INPUT -p ALL -d S$INET_IP -m state —-state ESTABLISHED,RELATED \
-j ACCEPT

#

In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.

#

#$IPTABLES -A INPUT -p UDP -i $INET_IFACE -d $INET_BROADCAST \
#--destination-port 135:139 -j DROP

#

IT we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.

#

#$IPTABLES -A INPUT -p UDP -i $INET_IFACE -d 255.255.255.255 \
#--destination-port 67:68 -j DROP

#

1f you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs

#

#$IPTABLES -A INPUT -i $INET_IFACE -d 224.0.0.0/8 -j DROP

#
Log weird packets that don"t match the above.
#

$IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT INPUT packet died:

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don"t want
#

$IPTABLES -A FORWARD -p tcp -j bad_tcp_packets
#
DMZ section

#
General rules

230 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#

$IPTABLES -A FORWARD -i $DMZ_IFACE -o $INET_IFACE -j ACCEPT
$IPTABLES -A FORWARD -i $INET_IFACE -0 $DMZ_IFACE -m state \
--state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A FORWARD -1 $LAN_IFACE -o $DMZ_IFACE -j ACCEPT
$IPTABLES -A FORWARD -i $DMZ_IFACE -0 $LAN_IFACE -m state \
--state ESTABLISHED,RELATED -j ACCEPT

#
HTTP server
#

$IPTABLES -A FORWARD -p TCP -i $INET_IFACE -0 $DMZ_IFACE -d $DMZ_HTTP_IP \
--dport 80 -j allowed

$IPTABLES -A FORWARD -p ICMP -i S$INET_IFACE -0 $DMZ_IFACE -d $DMZ _HTTP_IP \
-Jj icmp_packets

#
DNS server
#

$IPTABLES -A FORWARD -p TCP -1 $INET_IFACE -0 $DMZ_IFACE -d $DMZ_DNS_IP \
--dport 53 -j allowed

$IPTABLES -A FORWARD -p UDP -i $INET_IFACE -0 $DMZ_IFACE -d $DMZ_DNS_IP \
—--dport 53 -j ACCEPT

$IPTABLES -A FORWARD -p ICMP -i $INET_IFACE -0 $DMZ_IFACE -d $DMZ_DNS_IP \
-j icmp_packets

#
LAN section
#

$IPTABLES -A FORWARD -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

#
Log weird packets that don"t match the above.
#

$IPTABLES -A FORWARD -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT FORWARD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don"t want.
#

$IPTABLES -A OUTPUT -p tcp -j bad_tcp_packets

#

Special OUTPUT rules to decide which IP"s to allow.
#

$IPTABLES -A OUTPUT -p ALL -s $LO_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $INET_IP -j ACCEPT

#

Log weird packets that don"t match the above.

#

$IPTABLES -A OUTPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT OUTPUT packet died: "

HHAHHH

231 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

4.2 nat table

4.2.1 Set policies

4.2.2 Create user specified chains

4_2.3 Create content in user specified chains

4.2.4 PREROUTING chain

HFHE BB BB OBHH ORH

$IPTABLES -t nat -A PREROUTING -p TCP -1 $INET_IFACE -d $HTTP_IP --dport 80 \
-j DNAT --to-destination $DMZ_HTTP_IP
$IPTABLES -t nat -A PREROUTING -p TCP -i $INET_IFACE -d $DNS_IP --dport 53 \
-j DNAT --to-destination $DMZ DNS_IP
$IPTABLES -t nat -A PREROUTING -p UDP -1 $INET_IFACE -d $DNS_IP --dport 53 \
-j DNAT --to-destination $DMZ_DNS_IP

#

4.2.5 POSTROUTING chain

#

#

Enable simple IP Forwarding and Network Address Translation

#

$IPTABLES -t nat -A POSTROUTING -0 $INET_IFACE -j SNAT --to-source S$INET_IP
#

4.2.6 OUTPUT chain

#

HHEH
4.3 mangle table

4_3.1 Set policies

4.3.2 Create user specified chains

4.3.3 Create content in user specified chains

4.3.4 PREROUTING chain

4.3.5 INPUT chain

4_.3.6 FORWARD chain

H O IW OKRIEI OEET BEE OBWE OEHR OER

232 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

4.3.7 OUTPUT chain
#

#

4.3.8 POSTROUTING chain
#

Example rc.UTIN.firewall script

/bin/sh

rc.UTIN.Ffirewall - UTIN Firewall script for Linux 2.4.x and iptables
Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

HHEHHHH I

1. Configuration options.

1.1 Internet Configuration.

HHHF OHHHTHFE HHIFHFHFITHFHFEHFTEHRFHFEHFHR

INET_I1P="194.236.50.155"
INET_IFACE=""eth0"
INET_BROADCAST="194.236.50.255"

1.1.1 DHCP

1.1.2 PPPoE

1.2 Local Area Network configuration.

your LAN"s IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0

HHIFHHEH HHHF HHHF

LAN_1P="192.168.0.2"
LAN_IP_RANGE="192.168.0.0/16"
LAN_IFACE=""ethl"

#
1.3 DMZ Configuration.

233 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#

#
1.4 Localhost Configuration.
#

LO_IFACE=""10"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES=""/usr/sbin/iptables"

#
1.6 Other Configuration.
#

HHHHHHHHHHHHHHHH A
#

2. Module loading.

#

#

Needed to initially load modules
#

/sbin/depmod -a

#

2.1 Required
#

/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe

#
2.2 Non-Requi
#

#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe

HHHAHHHA AR AR R AR AR

#
3. /proc set
#

#

3.1 Required proc configuration

#

echo "1" > /proc/sys/net/ipv4/ip_forward

#

3.2 Non-Required proc configuration

#

234 of 273

modules

ip_tables
ip_conntrack
iptable_filter
iptable_mangle
iptable_nat
ipt_LOG
ipt_limit
ipt_state

red modules

ipt_owner
ipt _REJECT
ipt_MASQUERADE

ip_conntrack_ ftp
ip_conntrack_irc

ip_nat_ftp
ip_nat_irc

up-

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#echo "1 > /proc/sys/net/ipv4/conf/all/rp_Ffilter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

HHHHH R R R R R R R R R R R R
#

4. rules set up.

#

HHHHHHH
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$IPTABLES -N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES -N allowed

$IPTABLES -N tcp_packets
$IPTABLES -N udp_packets
$IPTABLES -N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK \

-m state --state NEW -j REJECT --reject-with tcp-reset

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP

#
allowed chain
#

$IPTABLES -A allowed -p TCP --syn -j ACCEPT
$IPTABLES -A allowed -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A allowed -p TCP -j DROP

#
TCP rules
#

$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 21 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 22 -j allowed

235 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 80 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 113 -j allowed

#
UDP ports
#

#$I1PTABLES -A udp_packets -p UDP -s 0/0 --source-port 53 -j ACCEPT

#$I1PTABLES -A udp_packets -p UDP -s 0/0 --source-port 123 -j ACCEPT
#$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 2074 -j ACCEPT
#$I1PTABLES -A udp_packets -p UDP -s 0/0 --source-port 4000 -j ACCEPT

#

In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.

#

#$IPTABLES -A udp_packets -p UDP -1 $INET_IFACE -d $INET_BROADCAST \
#--destination-port 135:139 -j DROP

#

1T we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.

#

#$IPTABLES -A udp_packets -p UDP -i $INET_IFACE -d 255.255.255.255 \
#--destination-port 67:68 -j DROP

#
ICMP rules
#

$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 8 -j ACCEPT
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

#
4.1.4 INPUT chain
#

#
Bad TCP packets we don"t want.
#

$IPTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Rules for special networks not part of the Internet
#

SIPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LO_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -1 $LO_IFACE -s $LAN_IP —j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $INET_IP —-j ACCEPT

#
Rules for incoming packets from anywhere.
#

$IPTABLES -A INPUT -p ALL -d S$INET_IP -m state --state ESTABLISHED,RELATED \
-j ACCEPT

$IPTABLES -A INPUT -p TCP -j tcp_packets

$IPTABLES -A INPUT -p UDP -j udp_packets

$IPTABLES -A INPUT -p ICMP -j icmp_packets

#

IT you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs

#

236 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#$IPTABLES -A INPUT -i $INET_IFACE -d 224.0.0.0/8 -j DROP

#
Log weird packets that don"t match the above.
#

$IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don"t want
#

$IPTABLES -A FORWARD -p tcp -j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$IPTABLES -A FORWARD -p tcp --dport 21 —-i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -p tcp --dport 80 -i $LAN_IFACE —-j ACCEPT
$IPTABLES -A FORWARD -p tcp --dport 110 -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

#
Log weird packets that don"t match the above.
#

$IPTABLES -A FORWARD -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT FORWARD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don"t want.
#

$IPTABLES -A OUTPUT -p tcp -j bad_tcp_packets

#
Special OUTPUT rules to decide which IP"s to allow.
#

$IPTABLES -A OUTPUT -p ALL -s $LO_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $INET_IP -j ACCEPT

#
Log weird packets that don"t match the above.
#

$IPTABLES -A OUTPUT -m limit —-limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT OUTPUT packet died: ™

T

4.2 nat table

#

#

4.2.1 Set policies
#

#

237 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

4_2_.2 Create user specified chains

4.2.3 Create content in user specified chains

4.2 .4 PREROUTING chain

4.2.5 POSTROUTING chain

Enable simple IP Forwarding and Network Address Translation

HFHE BB BB OBHH ORH

$IPTABLES -t nat -A POSTROUTING -o $INET_IFACE -j SNAT --to-source $INET_IP

#
4.2.6 OUTPUT chain
#

HHEH
4.3 mangle table

4_.3.1 Set policies

4_.3.2 Create user specified chains

4.3.3 Create content in user specified chains

4.3.4 PREROUTING chain

4.3.5 INPUT chain

4_.3.6 FORWARD chain

4.3.7 OUTPUT chain

4.3.8 POSTROUTING chain

HHE OWE W OHIIH OKTIH OEET RWE OEHR O OER

Example rc.DHCP.firewall script

#1/bin/sh

238 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

rc.DHCP.firewall - DHCP IP Firewall script for Linux 2.4.x and iptables
Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
HHHHH R A A A R R R R R R R R

1. Configuration options.

1.1 Internet Configuration.

HHT HHET HHETHBEEEHBERTHRBRER

INET_IFACE=""eth0"

1.1.1 DHCP

Information pertaining to DHCP over the Internet, if needed.

Set DHCP variable to no if you don"t get IP from DHCP. If you get DHCP
over the Internet set this variable to yes, and set up the proper IP
address for the DHCP server in the DHCP_SERVER variable.

HEHTHRTEE BRH

DHCP=""no""
DHCP_SERVER="195.22_.90.65"

1.1.2 PPPoOE

Configuration options pertaining to PPPoOE.

If you have problem with your PPPOE connection, such as large mails not
getting through while small mail get through properly etc, you may set
this option to "yes"™ which may fix the problem. This option will set a
rule in the PREROUTING chain of the mangle table which will clamp
(resize) all routed packets to PMTU (Path Maximum Transmit Unit).

Note that it is better to set this up in the PPPoE package itself, since
the PPPoOE configuration option will give less overhead.

HHHH I IR

PPPOE_PMTU=""no™

#

1.2 Local Area Network configuration.

#

your LAN"s IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0

239 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#

LAN_1P="192.168.0.2"
LAN_IP_RANGE="192.168.0.0/16"
LAN_IFACE="eth1"

#
1.3 DMZ Configuration.
#

#
1.4 Localhost Configuration.
#

LO_IFACE=""10"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES=""/usr/sbin/iptables"

#
1.6 Other Configuration.
#

P
#

2. Module loading.

#

#

Needed to initially load modules
#

/sbin/depmod -a

#

2.1 Required
#

/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe
/sbin/modprobe

#
2.2 Non-Requi
#

#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe
#/sbin/modprobe

HHAH R R R

#
3. /proc set
#

#

3.1 Required proc configuration

240 of 273

modules

ip_conntrack
ip_tables
iptable_Tfilter
iptable_mangle
iptable_nat
ipt_LOG
ipt_limit
ipt_MASQUERADE

red modules

ipt_owner
ipt_REJECT

ip_conntrack_ ftp
ip_conntrack_irc

ip_nat_ftp
ip_nat_irc

up.

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#
echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_Ffilter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo 1" > /proc/sys/net/ipv4/ip_dynaddr

P
#

4. rules set up.

#

HEHHHH
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$IPTABLES -N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES -N allowed

$IPTABLES -N tcp_packets
$IPTABLES -N udp_packets
SIPTABLES -N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK \

-m state --state NEW -j REJECT --reject-with tcp-reset

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP

#
allowed chain
#

$IPTABLES -A allowed -p TCP --syn -j ACCEPT

$IPTABLES -A allowed -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A allowed -p TCP -j DROP

241 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#
TCP rules
#

$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 21 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 22 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 80 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 113 -j allowed

#
UDP ports
#

$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 53 -j ACCEPT
if [$DHCP == "yes"] ; then

$IPTABLES -A udp_packets -p UDP -s $DHCP_SERVER --sport 67 \
--dport 68 -j ACCEPT
fi

#$I1PTABLES -A udp_packets -p UDP -s 0/0 --source-port 53 -j ACCEPT

#$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 123 -j ACCEPT
#$I1PTABLES -A udp_packets -p UDP -s 0/0 --source-port 2074 -j ACCEPT
#$1PTABLES -A udp_packets -p UDP -s 0/0 --source-port 4000 -j ACCEPT

#

In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.

#

#$I1PTABLES -A udp_packets -p UDP -i $INET_IFACE \
#--destination-port 135:139 -j DROP

#

1T we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.

#

#$IPTABLES -A udp_packets -p UDP -1 $INET_IFACE -d 255.255.255.255 \
#--destination-port 67:68 -j DROP

#
ICMP rules
#

$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 8 -j ACCEPT
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

#
4.1.4 INPUT chain
#

#
Bad TCP packets we don"t want.
#

$IPTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Rules for special networks not part of the Internet
#

$IPTABLES -A INPUT -p ALL -i $LAN_IFACE -s $LAN_IP_RANGE -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -j ACCEPT

#

Special rule for DHCP requests from LAN, which are not caught properly
otherwise.

#

242 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

$IPTABLES -A INPUT -p UDP -i $LAN_IFACE --dport 67 --sport 68 -j ACCEPT

#
Rules for incoming packets from the internet.
#

$IPTABLES -A INPUT -p ALL -i S$INET_IFACE -m state --state ESTABLISHED,RELATED \
-j ACCEPT

$IPTABLES -A INPUT -p TCP -i S$INET_IFACE -j tcp_packets

$IPTABLES -A INPUT -p UDP -i S$INET_IFACE -j udp_packets

$IPTABLES -A INPUT -p ICMP -i S$INET_IFACE -j icmp_packets

#

IT you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs

#

#$IPTABLES -A INPUT -1 $INET_IFACE -d 224.0.0.0/8 -j DROP

#
Log weird packets that don"t match the above.
#

$IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT INPUT packet died:

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don"t want
#

$IPTABLES -A FORWARD -p tcp -j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$IPTABLES -A FORWARD -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

#
Log weird packets that don®t match the above.
#

$IPTABLES -A FORWARD -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT FORWARD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don"t want.
#

$IPTABLES -A OUTPUT -p tcp -j bad_tcp_packets

#

Special OUTPUT rules to decide which IP"s to allow.
#

$IPTABLES -A OUTPUT -p ALL -s $LO_IP -j ACCEPT

$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -o $INET_IFACE -j ACCEPT

243 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#
Log weird packets that don"t match the above.
#

$IPTABLES -A OUTPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT OUTPUT packet died: "

HEHHHH
4.2 nat table

4.2.1 Set policies

4.2.2 Create user specified chains

4_2_.3 Create content in user specified chains

4.2.4 PREROUTING chain

4_.2.5 POSTROUTING chain

HHE W E OBIW KT OEEF BH

if [$PPPOE_PMTU == "yes"™] ; then
$IPTABLES -t nat -A POSTROUTING -p tcp --tcp-flags SYN,RST SYN \
-j TCPMSS --clamp-mss-to-pmtu
fi
$IPTABLES -t nat -A POSTROUTING -0 $INET_IFACE -j MASQUERADE
#
4.2.6 OUTPUT chain
#

HHHHHT
4.3 mangle table

4.3.1 Set policies

4_3.2 Create user specified chains

4.3.3 Create content in user specified chains

4.3.4 PREROUTING chain

4.3.5 INPUT chain

4.3.6 FORWARD chain

HHE W E OBWW OEIWR KT OEET RH

244 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

#
#
#

#
#
#

4_.3.7 OUTPUT chain

4.3.8 POSTROUTING chain

Example rc.flush-iptables script

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
|

#
#
#
$
$
$

#
#
#
$
$
$

#
#
#
$
$
$
$
$

#
#
#
$
$

245 of 273

1/bin/sh
rc.flush-iptables - Resets iptables to default values.
Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

Configurations

PTABLES=""/usr/sbin/iptables"

reset the default policies in the filter table.

IPTABLES -P INPUT ACCEPT
IPTABLES -P FORWARD ACCEPT
IPTABLES -P OUTPUT ACCEPT

reset the default policies in the nat table.

IPTABLES -t nat -P PREROUTING ACCEPT
IPTABLES -t nat -P POSTROUTING ACCEPT
IPTABLES -t nat -P OUTPUT ACCEPT

reset the default policies in the mangle table.

IPTABLES -t mangle -P PREROUTING ACCEPT
IPTABLES -t mangle -P POSTROUTING ACCEPT
IPTABLES -t mangle -P INPUT ACCEPT
IPTABLES -t mangle -P OUTPUT ACCEPT
IPTABLES -t mangle -P FORWARD ACCEPT

flush all the rules iIn the filter and nat tables.

IPTABLES -F
IPTABLES -t nat -F

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

$IPTABLES -t mangle -F

#

erase all chains that"s not default in filter and nat table.
#

$IPTABLES -X

$IPTABLES -t nat -X

$IPTABLES -t mangle -X

Example rc.test-iptables script

/bin/bash
rc.test-iptables - test script for iptables chains and tables.
Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

Filter table, all chains

I HETHBEEE LRSI

ke
-+
o))
o
D
n

-t filter -A INPUT -p icmp --icmp-type echo-request \
-j LOG --log-prefix="filter INPUT:"

iptables -t filter -A INPUT -p icmp --icmp-type echo-reply \

-j LOG --log-prefix="filter INPUT:"

iptables -t Filter -A OUTPUT -p icmp --icmp-type echo-request \
-j LOG --log-prefix="Ffilter OUTPUT:"

iptables -t filter -A OUTPUT -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="filter OUTPUT:"

iptables -t filter -A FORWARD -p icmp --icmp-type echo-request \
-Jj LOG --log-prefix="filter FORWARD:"

iptables -t filter -A FORWARD -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="filter FORWARD:"

#

NAT table, all chains except OUTPUT which don"t work.

#

iptables -t nat -A PREROUTING -p icmp --icmp-type echo-request \
-j LOG --log-prefix="nat PREROUTING:"

iptables -t nat -A PREROUTING -p icmp --icmp-type echo-reply \
-Jj LOG --log-prefix=""nat PREROUTING:"

iptables -t nat -A POSTROUTING -p icmp --icmp-type echo-request \
-j LOG --log-prefix="nat POSTROUTING:"

iptables -t nat -A POSTROUTING -p icmp —-icmp-type echo-reply \
-j LOG --log-prefix=""nat POSTROUTING:"

iptables -t nat -A OUTPUT -p icmp --icmp-type echo-request \

-Jj LOG --log-prefix="nat OUTPUT:"

iptables -t nat -A OUTPUT -p icmp --icmp-type echo-reply \

-Jj LOG --log-prefix="nat OUTPUT:"

246 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

#

Mangle table, all chains

#

iptables -t mangle -A PREROUTING -p icmp --icmp-type echo-request \
-Jj LOG --log-prefix="mangle PREROUTING:"

iptables -t mangle -A PREROUTING -p icmp —--icmp-type echo-reply \
-j LOG --log-prefix="mangle PREROUTING:""

iptables -t mangle -1 FORWARD 1 -p icmp --icmp-type echo-request \
-j LOG --log-prefix="mangle FORWARD:"

iptables -t mangle -1 FORWARD 1 -p icmp --icmp-type echo-reply \

-Jj LOG --log-prefix="mangle FORWARD:"

iptables -t mangle -1 INPUT 1 -p icmp --icmp-type echo-request \

-Jj LOG --log-prefix="mangle INPUT:"

iptables -t mangle -1 INPUT 1 -p icmp --icmp-type echo-reply \

-Jj LOG --log-prefix="mangle INPUT:"

iptables -t mangle -A OUTPUT -p icmp --icmp-type echo-request \

-j LOG --log-prefix="mangle OUTPUT:""

iptables -t mangle -A OUTPUT -p icmp —--icmp-type echo-reply \

-Jj LOG --log-prefix="mangle OUTPUT:""

iptables -t mangle -1 POSTROUTING 1 -p icmp —--icmp-type echo-request \
-Jj LOG --log-prefix="mangle POSTROUTING:"

iptables -t mangle -1 POSTROUTING 1 -p icmp --icmp-type echo-reply \
-Jj LOG --log-prefix="mangle POSTROUTING:""

Index

Symbols

$INET _IP, Configuration options
$LAN_IFACE, FORWARD chain
SLAN_IP, OUTPUT chain
$LOCALHOST_IP, OUTPUT chain
$STATIC_IP, OUTPUT chain
--ahspi, AH/ESP match
--chunk-types, SCTP matches
--clamp-mss-to-pmtu, TCPMSS target
--clustermac, CLUSTERIP target
--cmd-owner, Owner match
--comment, Comment match
--ctexpire, Conntrack match
--ctorigdst, Conntrack match
--ctorigsrc, Conntrack match
--ctproto, Conntrack match
--ctrepldst, Conntrack match
--ctreplsrc, Conntrack match
--ctstate, Conntrack match

--ctstatus, Conntrack match
--destination, Generic matches
--destination-port, TCP matches, UDP matches, SCTP matches, Multiport match

--dscp, Dscp match
--dscp-class, Dscp match

--dst-range, IP range match
--dst-type, Addrtype match

247 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

--ecn, Ecn match

--ecn-ip-ect, Ecn match

--ecn-tcp-ece, Ecn match
--ecn-tcp-remove, ECN target

--espspi, AH/ESP match

--fragment, Generic matches
--gid-owner, Owner match

--hash-init, CLUSTERIP target
--hashlimit, Hashlimit match
--hashlimit-burst, Hashlimit match
--hashlimit-htable-expire, Hashlimit match
--hashlimit-htable-expire match, Hashlimit match
--hashlimit-htable-gcinterval, Hashlimit match
--hashlimit-htable-max, Hashlimit match
--hashlimit-htable-size, Hashlimit match
--hashlimit-mode, Hashlimit match
--hashlimit-name, Hashlimit match
--hashmode, CLUSTERIP target
--helper, Helper match

--hitcount, Recent match

--icmp-type, ICMP matches
--in-interface, Generic matches
--length, Length match

--limit, Limit match

--limit-burst, Limit match

--local-node, CLUSTERIP target
--log-ip-options, LOG target options
--log-level, LOG target options
--log-prefix, LOG target options
--log-tcp-options, LOG target options
--log-tcp-sequence, LOG target options
--mac-source, Mac match

--mark, Connmark match, Mark match
--mask, CONNMARK target

--match, Implicit matches

--mss, Tcpmss match

--name, Recent match

--new, CLUSTERIP target

--nodst, SAME target

--out-interface, Generic matches
--pid-owner, Owner match

--pkt-type, Packet type match
--pkt-type match, Packet type match
--port, Multiport match

--protocol, Generic matches
--queue-num, NFQUEUE target
--rcheck, Recent match

--rdest, Recent match

--realm, Realm match

--reject-with, REJECT target

--remove, Recent match

--restore, CONNSECMARK target

248 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

--restore-mark, CONNMARK target
--rsource, Recent match

--rttl, Recent match

--save, CONNSECMARK target
--save-mark, CONNMARK target
--seconds, Recent match

--selctx, SECMARK target

--set, Recent match

--set-class, CLASSIFY target
--set-dscp, DSCP target
--set-dscp-class, DSCP target
--set-mark, CONNMARK target, MARK target
--set-mss, TCPMSS target

--set-tos, TOS target

--sid-owner, Owner match

--source, Generic matches
--source-port, TCP matches, UDP matches, SCTP matches, Multiport match
--src-range, IP range match
--src-type, Addrtype match

--state, State match

--syn, TCP matches

--tcp-flags, TCP matches
--tcp-option, TCP matches

--to, NETMAP target, SAME target
--to-destination, DNAT target
--to-destination target, DNAT target
--to-ports, MASQUERADE target, REDIRECT target
--to-source, SNAT target

--tos, Tos match

--total-nodes, CLUSTERIP target
--ttl-dec, TTL target

--ttl-eq, Ttl match

--ttl-gt, Ttl match

--ttl-inc, TTL target
--ttl-It, Ttl match

--ttl-set, TTL target
--uid-owner, Owner match
--ulog-cprange, ULOG target
--ulog-nlgroup, ULOG target

--ulog-prefix, ULOG target
--ulog-qthreshold, ULOG target

--update, Recent match
[ASSURED], TCP connections
[UNREPLIED], TCP connections

A

Accept, IP filtering terms and expressions
ACCEPT target, ACCEPT target, Displacement of rules to different chains, The UDP chain
ACK, TCP headers

249 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Acknowledgment Number, TCP headers

Addrtype match, Addrtype match
--dst-type, Addrtype match
--src-type, Addrtype match
ANYCAST, Addrtype match
BLACKHOLE, Addrtype match
BROADCAST, Addrtype match
LOCAL, Addrtype match
MULTICAST, Addrtype match
NAT, Addrtype match
PROHIBIT, Addrtype match
THROW, Addrtype match
UNICAST, Addrtype match
UNREACHABLE, Addrtype match
UNSPEC, Addrtype match
XRESOLVE, Addrtype match

Advanced routing, TCP/IP destination driven routing

AH/ESP match, AH/ESP match
--ahspi, AH/ESP match

Ahspi match, AH/ESP match

Amanda, Complex protocols and connection tracking

ANYCAST, Addrtype match

Application layer, TCP/IP Layers
ASSURED, The conntrack entries, TCP connections

B

Bad_tcp_packets, The bad tcp _packets chain, INPUT chain
Bash, Bash debugging tips
+-sign, Bash debugging tips
-X, Bash debugging tips
Basics, Where to get iptables
Commands, Commands
Compiling iptables, Compiling the user-land applications
Displacement, Displacement of rules to different chains
Drawbacks with restore, Drawbacks with restore
Filter table, Tables
Installation on Red Hat 7.1, Installation on Red Hat 7.1
iptables-restore, Saving and restoring large rule-sets, iptables-restore
iptables-save, Saving and restoring large rule-sets
Mangle table, Tables
Modules, Initial loading of extra modules
see also Modules
NAT, Network Address Translation Introduction
Nat table, Tables
Policy, Setting up default policies
Preparations, Preparations
Proc set up, proc set up
Raw table, Tables
Speed considerations, Speed considerations

250 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

State machine, Introduction
Tables, Tables
User specified chains, Setting up user specified chains in the filter table
User-land setup, User-land setup
BLACKHOLE, Addrtype match
BROADCAST, Addrtype match

C

Chain, IP filtering terms and expressions
FORWARD, General, Displacement of rules to different chains, FORWARD chain, PREROUTING
chain of the nat table, The structure, The structure
INPUT, General, Displacement of rules to different chains, The ICMP chain, INPUT chain, The
structure, The structure
OUTPUT, General, Raw table, Displacement of rules to different chains, OUTPUT chain, The structure,
The structure, The structure
POSTROUTING, General, Starting SNAT and the POSTROUTING chain, The structure, The structure
PREROUTING, General, Raw table, PREROUTING chain of the nat table, The structure, The structure
Traversing, Traversing of tables and chains
User specified, User specified chains
Checksum, TCP headers, UDP headers, ICMP headers
Chkconfig, Installation on Red Hat 7.1
Chunk flags (SCTP), SCTP matches
Chunk types (SCTP), SCTP matches
Chunk-types match, SCTP matches
Cisco PIX, How to plan an IP filter
Clamp-mss-to-pmtu target, TCPMSS target
CLASSIFY target, CLASSIFY target
--set-class, CLASSIFY target
CLUSTERIP target, CLUSTERIP target
--clustermac, CLUSTERIP target
--hash-init, CLUSTERIP target
--hashmode, CLUSTERIP target
--local-node, CLUSTERIP target
--new, CLUSTERIP target
--total-nodes, CLUSTERIP target
Clustermac target, CLUSTERIP target
Cmd-owner match, Owner match
cmd.exe, What is an IP filter
Code, ICMP headers
Commands, Commands
--append, Commands
--delete, Commands
--delete-chain, Commands
--flush, Commands
--insert, Commands
--list, Commands
--new-chain, Commands
--policy, Commands
--rename-chain, Commands

251 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

--replace, Commands
--zero, Commands
Comment match, Comment match
--comment, Comment match
Commercial products, Commercial products based on Linux, iptables and netfilter
Ingate Firewall 1200, Ingate Firewall 1200
Common problems, Common problems and questions
DHCP, Letting DHCP requests through iptables
IRC DCC, mIRC DCC problems
ISP using private IP's, Internet Service Providers who use assigned IP addresses
Listing rule-sets, Listing your active rule-set
Modules, Problems loading modules
NEW not SYN, State NEW packets but no SYN bit set
SYN/ACK and NEW, SYN/ACK and NEW packets
Updating and flushing, Updating and flushing your tables
Complex protocols
Amanda, Complex protocols and connection tracking
FTP, Complex protocols and connection tracking
IRC, Complex protocols and connection tracking
TFTP, Complex protocols and connection tracking
Connection, Terms used in this document
Connection tracking, IP filtering terms and expressions
connection-oriented, IP characteristics
Connmark match, Connmark match
--mark, Connmark match
CONNMARK target, CONNMARK target
--mask, CONNMARK target
--restore-mark, CONNMARK target
--save-mark, CONNMARK target
--set-mark, CONNMARK target
CONNSECMARK target, Mangle table, CONNSECMARK target
--restore, CONNSECMARK target
--save, CONNSECMARK target
Conntrack, The state machine
Entries, The conntrack entries
Helpers, Complex protocols and connection tracking
ip_conntrack, The conntrack entries
Conntrack match, Conntrack match
--ctexpire, Conntrack match
--ctorigdst, Conntrack match
--ctorigsrc, Conntrack match
--ctproto, Conntrack match
--ctrepldst, Conntrack match
--ctreplsrc, Conntrack match
--ctstate, Conntrack match
--ctstatus, Conntrack match
console, Bash debugging tips
cron, How to plan an IP filter, Bash debugging tips
crontab, System tools used for debugging
Ctexpire match, Conntrack match
Ctorigdst match, Conntrack match
Ctorigsrc match, Conntrack match

252 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

Ctproto match, Conntrack match
Ctrepldst match, Conntrack match
Ctreplsrc match, Conntrack match
Ctstate match, Conntrack match
Ctstatus match, Conntrack match
CWR, TCP headers

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

D

Data Link layer, TCP/IP Layers

Data Offset, TCP headers

De-Militarized Zone (DMZ), rc.DMZ firewall.txt
Debugging, Debugging your scripts

Bash, Bash debugging tips

Common problems, Common problems and questions
DHCP, Letting DHCP requests through iptables

Echo, Bash debugging tips

Iptables, Iptables debugging

IRC DCC, mIRC DCC problems

ISP using private IP's, Internet Service Providers who use assigned IP addresses
Listing rule-sets, Listing your active rule-set

Modules, Problems loading modules

Nessus, Debugging your scripts

NEW not SYN, State NEW packets but no SYN bit set
Nmap, Debugging your scripts

Other tools, Debugging your scripts

SYN/ACK and NEW, SYN/ACK and NEW packets
System tools, System tools used for debugging

Updating and flushing, Updating and flushing your tables

Deny, IP filtering terms and expressions

Destination address, IP headers, ICMP headers
Destination match, Generic matches

Destination port, TCP headers, UDP headers

Destination Unreachable, ICMP Destination Unreachable

253 of 273

Communication administratively prohibited by filtering, ICMP Destination Unreachable

Destination host administratively prohibited, ICMP Destination Unreachable
Destination host unknown, ICMP Destination Unreachable

Destination network administratively prohibited, ICMP Destination Unreachable
Destination network unknown, ICMP Destination Unreachable
Fragmentation needed and DF set, ICMP Destination Unreachable

Host precedence violation, ICMP Destination Unreachable

Host unreachable, ICMP Destination Unreachable

Host unreachable for TOS, ICMP Destination Unreachable

Network unreachable, ICMP Destination Unreachable

Network unreachable for TOS, ICMP Destination Unreachable

Port unreachable, ICMP Destination Unreachable

Precedence cutoff in effect, ICMP Destination Unreachable

Protocol unreachable, ICMP Destination Unreachable

Source host isolated, ICMP Destination Unreachable

Source route failed, ICMP Destination Unreachable

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Destination-port match, TCP matches, UDP matches, SCTP matches, Multiport match
Detailed explanations, Detailed explanations of special commands
Listing rule-sets, Listing your active rule-set
Updating and flushing, Updating and flushing your tables
DHCP, MASQUERADE target, Configuration options, Displacement of rules to different chains
Differentiated Services, IP headers
DiffServ, IP headers
Displacement, Displacement of rules to different chains
Dmesg, LOG target options
DMZ, How to plan an IP filter
DNAT, Terms used in this document, What is an IP filter, What NAT is used for and basic terms and
expressions
DNAT target, General, Nat table, DNAT target, PREROUTING chain of the nat table
--to-destination, DNAT target
DNAT target examples, DNAT target
DNS, IP characteristics, The UDP chain
Drawbacks with iptables-restore, Drawbacks with restore
Drop, IP filtering terms and expressions
DROP target, DROP target, The UDP chain, FORWARD chain, OUTPUT chain
DSCP, IP headers
Dscp match, Dscp match

--dscp, Dscp match
--dscp-class, Dscp match
DSCP target, DSCP target
--set-dscp, DSCP target
--set-dscp-class, DSCP target
Dscp-class match, Dscp match
Dst-range match, IP range match
Dst-type match, Addrtype match
Dynamic Host Configuration Protocol (DHCP), rc.DHCP.firewall.txt

E

e-mail, How to plan an IP filter
Easy Firewall Generator, Easy Firewall Generator
ECE, TCP headers
Echo, Bash debugging tips
Echo Request/Reply, ICMP Echo Request/Reply
ECN, IP headers, Source Quench
ECN IP field, Ecn match
Ecn match, Ecn match
--ecn, Ecn match
--ecn-ip-ect, Ecn match
--ecn-tcp-ece, Ecn match
ECN target, ECN target
--ecn-tcp-remove, ECN target
Ecn-ip-ect match, Ecn match
Ecn-tcp-ece match, Ecn match
Ecn-tcp-remove target, ECN target
Errors

254 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Table does not exist, Iptables debugging
Unknown arg, Iptables debugging
ESP match
--espspi, AH/ESP match
Espspi match, AH/ESP match
Example
Hardware requirements, What is needed to build a NAT machine
Machine placement, Placement of NAT machines
Example scripts, Debugging your scripts, Example scripts code-base
biggest, Network Address Translation Introduction
Configuration, The structure
DHCP, The structure
DMZ, The structure
Filter table, The structure
Internet, The structure
iptables, The structure
Iptables-save ruleset, Iptables-save ruleset
iptsave-ruleset.txt, iptables-save
LAN, The structure
Limit-match.txt, Limit-match.txt
Localhost, The structure
Module loading, The structure
NAT, Example NAT machine in theory
Non-required modules, The structure
Non-required proc configuration, The structure
Other, The structure
Pid-owner.txt, Pid-owner.txt
PPPoOE, The structure
proc configuration, The structure
rc.DHCP.firewall.txt, rc. DHCP.firewall.txt, Example rc. DHCP.firewall script
rc.DMZ . firewall.txt, rc.DMZ . firewall.txt, Example rc.DMZ . firewall script
rc.firewall.txt, rc.firewall file, rc.firewall.txt script structure, rc.firewall.txt, Example rc.firewall script
rc.flush-iptables.txt, rc.flush-iptables.txt, Example rc.flush-iptables script
rc.test-iptables.txt, rc.test-iptables.txt, Example rc.test-iptables script
rc.UTIN.firewall.txt, rc. UTIN.firewall.txt, Example rc. UTIN.firewall script
Recent-match.txt, Recent match, Recent-match.txt
Required modules, The structure
Required proc configuration, The structure
Rules set up, The structure
Set policies, The structure
Sid-owner.txt, Sid-owner.txt
Structure, example rc.firewall, The structure, example rc.firewall
see also Example structure
TTL-inc.txt, Ttl-inc.txt
User specified chains, The structure
User specified chains content, The structure
Example structure
Configuration, Configuration options
Explicit Congestion Notification, IP headers
Explicit matches, Explicit matches

255 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

F

Fast-NAT, What NAT is used for and basic terms and expressions
File

ip_ct_generic_timeout, Untracked connections and the raw table

Ip_dynaddr, proc set up

Ip_forward, proc set up
Files

ip_conntrack, The conntrack entries
ip_conntrack_max, The conntrack entries
ip_conntrack_tcp_loose, TCP connections

Filter table, Tables, The structure

Filtering, TCP/IP Layers
Introduction, IP filtering introduction
Layer 7, What is an IP filter

FIN, TCP characteristics, TCP headers

FIN/ACK, TCP characteristics

Firewall Builder, fwbuilder

Flags, IP headers

Flush iptables, rc.flush-iptables.txt

fragment, IP headers

Fragment match, Generic matches

Fragment Offset, IP headers

FreeSWAN, AH/ESP match

FTP, Complex protocols and connection tracking

fwbuilder, fwbuilder

G

Generic matches, Generic matches
GGP, ICMP characteristics
Gid-owner match, Owner match
Graphical user interfaces, Graphical User Interfaces for Iptables/netfilter
Easy Firewall Generator, Easy Firewall Generator
fwbuilder, fwbuilder
Integrated Secure Communications System, Integrated Secure Communications System
IPmenu, IPMenu
Turtle Firewall Project, Turtle Firewall Project

GRE, TCP/IP Layers

H

Handshake, IP characteristics

Hardware
Machine placement, Placement of NAT machines
Placement, How to place proxies
Requirements, What is needed to build a NAT machine
Structure, How to place proxies

256 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Hash-init target, CLUSTERIP target
Hashlimit match, Hashlimit match
--hashlimit, Hashlimit match
--hashlimit-burst, Hashlimit match
--hashlimit-htable-expire, Hashlimit match
--hashlimit-htable-gcinterval, Hashlimit match
--hashlimit-htable-max, Hashlimit match
--hashlimit-htable-size, Hashlimit match
--hashlimit-mode, Hashlimit match
--hashlimit-name, Hashlimit match
Hashlimit-burst match, Hashlimit match
Hashlimit-htable-gcinterval match, Hashlimit match
Hashlimit-htable-max match, Hashlimit match
Hashlimit-htable-size match, Hashlimit match
Hashlimit-mode match, Hashlimit match
Hashlimit-name match, Hashlimit match
Hashmode target, CLUSTERIP target
Header checksum, IP headers, ICMP headers
Helper match, Helper match
--helper, Helper match
Hitcount match, Recent match
How a rule is built, How a rule is built
Http, Displacement of rules to different chains

ICMP, TCP/IP repetition, ICMP characteristics, ICMP connections, The ICMP chain

Characteristics, ICMP characteristics

Checksum, ICMP headers

Code, ICMP headers

Destination Address, ICMP headers

Destination Unreachable, ICMP Destination Unreachable
see also Destination Unreachable

Echo Request/Reply, ICMP Echo Request/Reply
see also Echo Request/Reply

Header Checksum, ICMP headers

Headers, ICMP headers

Identification, ICMP headers

Identifier, ICMP Echo Request/Reply

Information request, Information request/reply
see also Information request

Internet Header Length, ICMP headers

Parameter problem, Parameter problem
see also Parameter problem

Protocol, ICMP headers

Redirect, Redirect
see also Redirect

Sequence number, ICMP Echo Request/Reply

Source Address, ICMP headers

Source Quench, Source Quench

257 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

see also Source Quench
Time To Live, ICMP headers
Timestamp, Timestamp request/reply
see also Timestamp
Total Length, ICMP headers
TTL equals zero, TTL equals 0
see also TTL equals zero
Type, ICMP headers
Type of Service, ICMP headers
Types, Listing your active rule-set
Version, ICMP headers
ICMP match, ICMP matches, The ICMP chain
--icmp-type, ICMP matches
Icmp-type match, ICMP matches
icmp_packets, The ICMP chain
ICQ, How to plan an IP filter
Identd, Displacement of rules to different chains
Identification, IP headers, ICMP headers
Identifier, ICMP Echo Request/Reply
IHL, IP headers
Implicit matches, Implicit matches
In-interface match, Generic matches
Information request, Information request/reply
Ingate, Ingate Firewall 1200
Ingate Firewall 1200, Ingate Firewall 1200
Integrated Secure Communications System, Integrated Secure Communications System
Interface, Configuration options
Internet Header Length, ICMP headers
Internet layer, TCP/IP Layers, IP characteristics
Introduction, Introduction
NAT, Network Address Translation Introduction
Intrusion detection system
Host-based, How to plan an IP filter
Network, How to plan an IP filter
IP, TCP/IP repetition
Characteristics, IP characteristics
Destination address, IP headers
DSCP, IP headers
ECN, IP headers
Flags, IP headers
Fragment Offset, IP headers
Header checksum, IP headers
Headers, IP headers
Identification, IP headers
IHL, IP headers
Options, IP headers
Padding, IP headers
Protocol, IP headers
Source address, IP headers
Time to live, IP headers
Total Length, IP headers
Type of Service, IP headers

258 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Version, IP headers
IP filtering, IP filtering introduction
Planning, How to plan an IP filter

IP range match, IP range match
--dst-range, IP range match

--src-range, IP range match
Ipchains, Installation on Red Hat 7.1

IPmenu, IPMenu
IPSEC, Terms used in this document, AH/ESP match
Iptables
Basics, Basics of the iptables command
Iptables debugging, Debugging your scripts
Iptables matches, Iptables matches
see also Match
Iptables targets, Iptables targets and jumps
see also Target
iptables-restore, Saving and restoring large rule-sets, iptables-restore
drawbacks, Drawbacks with restore
Speed considerations, Speed considerations
iptables-save, Saving and restoring large rule-sets, iptables-save, Debugging your scripts
drawbacks, Drawbacks with restore
Speed considerations, Speed considerations
Iptables-save ruleset, Iptables-save ruleset
ipt_*, Iptables debugging
ipt REJECT ko, Iptables debugging
ipt_state.ko, Iptables debugging
Ip_conntrack, The conntrack entries
ip_conntrack_max, The conntrack entries
ip_conntrack_tcp_loose, TCP connections
IRC, Complex protocols and connection tracking

J

Jump, IP filtering terms and expressions

K

Kernel setup, Kernel setup
Kernel space, Terms used in this document

kernwarnings, System tools used for debugging

L

LAN, How to plan an IP filter, Configuration options, FORWARD chain
layered security, How to plan an IP filter

Length, UDP headers

Length match, Length match

259 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

--length, Length match
Limit match, Limit match, Limit-match.txt

--limit, Limit match
--limit-burst, Limit match
Limit-burst match, Limit match
Limit-match.txt, Limit-match.txt
LOCAL, Addrtype match
Local-node target, CLUSTERIP target
LOG target, LOG target options, The UDP chain, FORWARD chain
--log-ip-options, LOG target options
--log-level, LOG target options
--log-prefix, LOG target options
--log-tcp-options, LOG target options
--log-tcp-sequence, LOG target options
Log-ip-options target, LOG target options
Log-level target, LOG target options
Log-prefix target, LOG target options
Log-tcp-options target, LOG target options
Log-tcp-sequence target, LOG target options

M

Mac match, Mac match
--mac-source, Mac match
Mac-source match, Mac match
Mangle table, Tables
Mark match, Connmark match, Mark match
--mark, Mark match
MARK target, Mangle table, MARK target
--set-mark, MARK target
Mask target, CONNMARK target
MASQUERADE target, Nat table, MASQUERADE target, Starting SNAT and the POSTROUTING chain
--to-ports, MASQUERADE target
Match, IP filtering terms and expressions, Iptables matches
--destination, Generic matches
--fragment, Generic matches
--in-interface, Generic matches
--match, Implicit matches, Explicit matches
--out-interface, Generic matches
--protocol, Generic matches
--source, Generic matches
Addrtype, Addrtype match
see also Addrtype match
AH/ESP, AH/ESP match
see also AH/ESP match
Basics, Basics of the iptables command
Comment, Comment match
see also Comment match
Connmark, Connmark match
see also Connmark match

260 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

261 of 273

Conntrack, Conntrack match

see also Conntrack match
Dscp, Dscp match

see also Dscp match
Ecn, Ecn match

see also Ecn match
Explicit, Explicit matches

see also Explicit matches
Generic, Generic matches
Hashlimit, Hashlimit match

see also Hashlimit match
Helper, Helper match

see also Helper match
ICMP, ICMP matches

see also ICMP match
Implicit, Implicit matches
IP range, IP range match

see also IP range match
Length, Length match

see also Length match
Limit, Limit match

see also Limit match
Mac, Mac match

see also Mac match
Mark, Mark match

see also Mark match
Multiport, Multiport match

see also Multiport match
Owner, Owner match

see also Owner match
Packet type, Packet type match

see also Packet type match
Realm, Realm match

see also Realm match
Recent, Recent match

see also Recent match
SCTP, SCTP matches

see also SCTP match
State, State match

see also State match
TCP, TCP matches

see also TCP match
Tcpmss, Tcpmss match

see also Tcpmss match
Tos, Tos match

see also Tos match
Ttl, Ttl match

see also Ttl match
UDP, UDP matches

see also UDP match
Unclean, Unclean match

see also Unclean match

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

MIRROR target, MIRROR target

Modules, Initial loading of extra modules
FTP, Initial loading of extra modules
H.323, Initial loading of extra modules
IRC, Initial loading of extra modules
Patch-o-matic, Initial loading of extra modules

Mss match, Tcpmss match

MTU, SCTP Generic header format

MULTICAST, Addrtype match

Multiport match, Multiport match
--destination-port, Multiport match
--port, Multiport match
--source-port, Multiport match

N

Name match, Recent match
NAT, How to plan an IP filter, Network Address Translation Introduction, Addrtype match, MASQUERADE
target, Starting SNAT and the POSTROUTING chain
Caveats, Caveats using NAT
Examples, Example NAT machine in theory
Hardware, What is needed to build a NAT machine
Placement, Placement of NAT machines
Nat table, Tables
Negotiated ports, How to plan an IP filter
Nessus, Debugging your scripts
Netfilter-NAT, What NAT is used for and basic terms and expressions
NETMAP target, NETMAP target
--to, NETMAP target
Network Access layer, TCP/IP Layers
Network address translation (NAT), Tables
Network layer, TCP/IP Layers
New target, CLUSTERIP target
NFQUEUE target, NFQUEUE target
--queue-num, NFQUEUE target
NIDS, How to plan an IP filter
Nmap, Debugging your scripts
Nmapfe, Nmap
Nodst target, SAME target
non-standards, How to plan an IP filter
NOTRACK target, Raw table, Untracked connections and the raw table, NOTRACK target
NTP, The UDP chain

O

Options, IP headers, TCP headers, Kernel setup
--exact, Commands
--line-numbers, Commands
--modprobe, Commands

262 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

--numeric, Commands
--set-counters, Commands
--verbose, Commands

oSl
Application layer, TCP/IP Layers
Data Link layer, TCP/IP Layers
Network layer, TCP/IP Layers
Physical layer, TCP/IP Layers
Presentation layer, TCP/IP Layers
Reference model, TCP/IP Layers
Session layer, TCP/IP Layers

Transport layer, TCP/IP Layers
Other resources, Other resources and links

Out-interface match, Generic matches
Owner match, Owner match, Pid-owner.txt, Sid-owner.txt
--cmd-owner, Owner match
--gid-owner, Owner match
--pid-owner, Owner match
--sid-owner, Owner match
--uid-owner, Owner match
Pid match, Pid-owner.txt
Sid match, Sid-owner.txt

P

Packet, Terms used in this document
Packet type match, Packet type match
--pkt-type, Packet type match
Padding, IP headers, TCP headers
Parameter problem, Parameter problem
IP header bad (catchall error), Parameter problem
Required options missing, Parameter problem
Physical layer, TCP/IP Layers
Pid-owner match, Owner match
Pid-owner.txt, Pid-owner.txt
Planning
IP filters, How to plan an IP filter
PNAT, What NAT is used for and basic terms and expressions
Policy, IP filtering terms and expressions, How to plan an IP filter, Setting up default policies, FORWARD
chain
Port

Negotiated, How to plan an IP filter
Port match, Multiport match
POSTROUTING, SNAT target, Displacement of rules to different chains
PPP, Displacement of rules to different chains
PPPoE, Configuration options
precautions, Bash debugging tips
Preparations, Preparations
Where to get, Where to get iptables
PREROUTING, DNAT target

263 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Presentation layer, TCP/IP Layers

Proc set up, proc set up

PROHIBIT, Addrtype match

Protocol, IP headers, ICMP headers

Protocol match, Generic matches

Proxy, TCP/IP Layers, What is an IP filter, How to plan an IP filter
Placement, How to place proxies

PSH, TCP headers

PUSH, TCP headers

Q

Qdisc, MARK target
QoS, Terms used in this document

QUEUE target, QUEUE target
Queue-num target, NFQUEUE target

R

Raw table, Tables
rc.DHCP.firewall.txt, rc. DHCP.firewall.txt
rc.DMZ . firewall.txt, rc. DMZ firewall.txt
rc.firewall explanation, rc.firewall file
rc.firewall.txt, rc.firewall.txt script structure, rc.firewall.txt
rc.flush-iptables.txt, rc.flush-iptables.txt
rc.test-iptables.txt, rc.test-iptables.txt
rc.UTIN.firewall.txt, rc. UTIN.firewall.txt
Rcheck match, Recent match
Rdest match, Recent match
Realm match, Realm match

--realm, Realm match
Recent match, Recent match, Recent-match.txt

--hitcount, Recent match

--name, Recent match

--rcheck, Recent match

--rdest, Recent match

--remove, Recent match

--rsource, Recent match

--rttl, Recent match

--seconds, Recent match

--set, Recent match

--update, Recent match
Recent match example, Recent match
Recent-match.txt, Recent-match.txt
Redirect, Redirect

Redirect for host, Redirect

Redirect for network, Redirect

Redirect for TOS and host, Redirect

Redirect for TOS and network, Redirect

264 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

REDIRECT target, REDIRECT target
--to-ports, REDIRECT target
Reject, IP filtering terms and expressions
REJECT target, REJECT target, The bad tcp packets chain
--reject-with, REJECT target
Reject-with target, REJECT target
Remove match, Recent match
Reserved, TCP headers
Restore target, CONNSECMARK target
Restore-mark target, CONNMARK target
Restoring rulesets, Saving and restoring large rule-sets
RETURN target, RETURN target
RFC, IP headers
1122, Tcpmss match
1349, IP headers
1812, CLUSTERIP target
2401, AH/ESP match
2474, IP headers, IP headers, DSCP target
2638, Dscp match
2960, SCTP Characteristics
3168, IP headers, IP headers, Ecn match
3260, IP headers, IP headers
3268, TCP headers, TCP headers
3286, SCTP Characteristics
768, UDP characteristics
791, IP headers, IP headers
792, ICMP headers, The ICMP chain
793, Terms used in this document, TCP headers, TCP connections, Tcpmss match, REJECT target
Routing, TCP/IP destination driven routing, MARK target
ANYCAST, Addrtype match
BLACKHOLE, Addrtype match
BROADCAST, Addrtype match
LOCAL, Addrtype match
MULTICAST, Addrtype match
NAT, Addrtype match
PROHIBIT, Addrtype match
THROW, Addrtype match
UNICAST, Addrtype match
UNREACHABLE, Addrtype match
UNSPEC, Addrtype match
XRESOLVE, Addrtype match
Routing realm, Realm match
Rsource match, Recent match
RST, TCP headers
Rttl match, Recent match
Rule, IP filtering terms and expressions
Rules, How a rule is built
Basics, Basics of the iptables command
Ruleset, IP filtering terms and expressions

265 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

S

SACK, IP headers
SAME target, SAME target

--nodst, SAME target

--to, SAME target
Save target, CONNSECMARK target

Save-mark target, CONNMARK target
Saving rulesets, Saving and restoring large rule-sets
Script structure, The structure
SCTP, SCTP Characteristics
ABORT, Shutdown and abort, SCTP Common and generic headers, SCTP ABORT chunk
Advertised Receiver Window Credit, SCTP INIT chunk, SCTP INIT ACK chunk, SCTP SACK chunk
B-bit, SCTP DATA chunk
Characteristics, SCTP Characteristics
Checksum, SCTP Common and generic headers
Chunk Flags, SCTP Common and generic headers, SCTP COOKIE ECHO chunk, SCTP ERROR chunk,
SCTP HEARTBEAT chunk, SCTP INIT chunk, SCTP INIT ACK chunk, SCTP SACK chunk, SCTP
SHUTDOWN chunk, SCTP SHUTDOWN ACK chunk, SCTP matches
Chunk Length, SCTP Common and generic headers, SCTP HEARTBEAT ACK chunk, SCTP INIT
chunk, SCTP INIT ACK chunk, SCTP SACK chunk, SCTP SHUTDOWN chunk, SCTP SHUTDOWN
ACK chunk
Chunk types, SCTP matches
Chunk Value, SCTP Common and generic headers
Cookie, SCTP COOKIE ECHO chunk
COOKIE ACK, Initialization and association, SCTP COOKIE ACK chunk
COOKIE ECHO, Initialization and association, SCTP COOKIE ECHO chunk
Cumulative TSN Ack, SCTP SACK chunk, SCTP SHUTDOWN chunk
DATA, Data sending and control session, SCTP Generic header format, SCTP DATA chunk
Data sending and control session, Data sending and control session
Destination port, SCTP Common and generic headers
Duplicate TSN #1, SCTP SACK chunk
Duplicate TSN #X, SCTP SACK chunk
E-bit, SCTP DATA chunk
ECN, SCTP Characteristics
ERROR, Data sending and control session, SCTP ERROR chunk
Cookie Received While Shutting Down, SCTP ERROR chunk
Invalid Mandatory Parameter, SCTP ERROR chunk
Invalid Stream Identifier, SCTP ERROR chunk
Missing Mandatory Parameter, SCTP ERROR chunk
No User Data, SCTP ERROR chunk
Out of Resource, SCTP ERROR chunk
Stale Cookie Error, SCTP ERROR chunk
Unrecognized Chunk Type, SCTP ERROR chunk
Unrecognized Parameters, SCTP ERROR chunk
Unresolvable Address, SCTP ERROR chunk
Error causes, SCTP ERROR chunk
Gap Ack Block #1 End, SCTP SACK chunk
Gap Ack Block #1 Start, SCTP SACK chunk
Gap Ack Block #N End, SCTP SACK chunk
Gap Ack Block #N Start, SCTP SACK chunk

266 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Generic Header format, SCTP Generic header format

Headers, SCTP Headers

HEARTBEAT, Data sending and control session, SCTP HEARTBEAT chunk

HEARTBEAT ACK, Data sending and control session, SCTP HEARTBEAT ACK chunk

Heartbeat Information TLV, SCTP HEARTBEAT chunk, SCTP HEARTBEAT ACK chunk

INIT, Initialization and association, SCTP Generic header format, SCTP Common and generic headers,

SCTP INIT chunk
Variable Parameters, SCTP INIT chunk

INIT ACK, Initialization and association, SCTP Generic header format, SCTP INIT ACK chunk
Variable Parameters, SCTP INIT ACK chunk

Initial TSN, SCTP INIT chunk, SCTP INIT ACK chunk

Initialization, Initialization and association

Initiate Tag, SCTP INIT chunk, SCTP INIT ACK chunk

Length, SCTP ABORT chunk, SCTP COOKIE ACK chunk, SCTP COOKIE ECHO chunk, SCTP

DATA chunk, SCTP ERROR chunk, SCTP HEARTBEAT chunk, SCTP SHUTDOWN COMPLETE

chunk

Message oriented, SCTP Characteristics

MTU, SCTP Generic header format

Multicast, SCTP Characteristics

Number of Duplicate TSNs, SCTP SACK chunk

Number of Gap Ack Blocks, SCTP SACK chunk

Number of Inbound Streams, SCTP INIT chunk, SCTP INIT ACK chunk

Number of Outbound Streams, SCTP INIT chunk, SCTP INIT ACK chunk

Payload Protocol Identifier, SCTP DATA chunk

Rate adaptive, SCTP Characteristics

SACK, SCTP Characteristics, Data sending and control session, SCTP SACK chunk

SHUTDOWN, Shutdown and abort, SCTP SHUTDOWN chunk

SHUTDOWN ACK, Shutdown and abort, SCTP SHUTDOWN ACK chunk

Shutdown and abort, Shutdown and abort

SHUTDOWN COMPLETE, Shutdown and abort, SCTP Generic header format, SCTP Common and

generic headers, SCTP SHUTDOWN COMPLETE chunk

Source port, SCTP Common and generic headers

Stream ldentifier, SCTP DATA chunk

Stream Sequence Number, SCTP DATA chunk

T-bit, SCTP ABORT chunk, SCTP SHUTDOWN COMPLETE chunk

TCB, SCTP ABORT chunk

TSN, SCTP DATA chunk

Type, SCTP ABORT chunk

U-bit, SCTP DATA chunk

Unicast, SCTP Characteristics

User data, SCTP DATA chunk

Verification tag, SCTP Common and generic headers

SCTP match, SCTP matches

--chunk-types, SCTP matches
--destination-port, SCTP matches
--source-port, SCTP matches

SECMARK target, Mangle table, SECMARK target

--selctx, SECMARK target

Seconds match, Recent match

Segment, Terms used in this document

Selctx target, SECMARK target

SELinux, CONNSECMARK target, SECMARK target

267 of 273

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Sequence Number, TCP headers, ICMP Echo Request/Reply
Session layer, TCP/IP Layers
Set match, Recent match
Set-class target, CLASSIFY target
Set-dscp target, DSCP target
Set-dscp-class target, DSCP target
Set-mark target, CONNMARK target, MARK target
Set-mss target, TCPMSS target
Set-tos target, TOS target
Sid-owner match, Owner match
Sid-owner.txt, Sid-owner.txt
SLIP, Displacement of rules to different chains
SNAT, Terms used in this document, What is an IP filter, What NAT is used for and basic terms and
expressions
SNAT target, Nat table, SNAT target, Displacement of rules to different chains, Starting SNAT and the
POSTROUTING chain
--to-source, SNAT target
Snort, How to plan an IP filter
Source address, IP headers, ICMP headers
Source match, Generic matches
Source port, TCP headers, UDP headers
Source Quench, Source Quench
Source-port match, TCP matches, UDP matches, SCTP matches, Multiport match
Speed considerations, Speed considerations
Spoofing, SYN/ACK and NEW packets
Squid, What is an IP filter, How to plan an IP filter, REDIRECT target
Src-range match, IP range match
Src-type match, Addrtype match
SSH, Bash debugging tips, Displacement of rules to different chains
Standardized, How to plan an IP filter
State
Conntrack match, Conntrack match
see also Conntrack match
State machine, The state machine
Default connections, Default connections
State match, Terms used in this document, IP filtering terms and expressions, The state machine, State match
--state, State match
CLOSED, TCP headers
Complex protocols, Complex protocols and connection tracking
see also Complex protocols
ESTABLISHED, Introduction, User-land states, ICMP connections, The TCP chain, INPUT chain
ICMP, ICMP connections
INVALID, Introduction, User-land states, The bad tcp packets chain
NEW, Introduction, User-land states, ICMP connections, The bad tcp packets chain
NOTRACK, Untracked connections and the raw table
see also NOTRACK target
RELATED, Introduction, User-land states, TCP connections, The TCP chain, The ICMP chain, INPUT
chain
TCP, TCP connections
UDP, UDP connections
UNTRACKED, User-land states
Untracked connections, Untracked connections and the raw table

268 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2

[ASSURED], UDP connections
[UNREPLIED], UDP connections

Stream, Terms used in this document

SYN, TCP headers, The bad tcp packets chain, SYN/ACK and NEW packets

Syn match, TCP matches

SYN_RECV, TCP connections

SYN_SENT, The conntrack entries

Syslog, LOG target options, System tools used for debugging

alert, System tools used for debugging
crit, System tools used for debugging
debug, System tools used for debugging
emerg, System tools used for debugging
err, System tools used for debugging

info, System tools used for debugging
notice, System tools used for debugging
warning, System tools used for debugging

syslog.conf, System tools used for debugging
System tools, Debugging your scripts

http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

T

Table, IP filtering terms and expressions

Filter, General, Filter table

Mangle, General, Mangle table, The structure
Nat, General, Nat table, The structure

Raw, General, Raw table

Traversing, Traversing of tables and chains

Table does not exist error, Iptables debugging
Tables, Tables
Target, IP filtering terms and expressions, Iptables targets and jumps

269 of 273

ACCEPT, ACCEPT target
Basics, Basics of the iptables command
CLASSIFY, CLASSIFY target
see also CLASSIFY target
CLUSTERIP, CLUSTERIP target
see also CLUSTERIP target
CONNMARK, CONNMARK target
see also CONNMARK target
CONNSECMARK, CONNSECMARK target
see also CONNSECMARK target
DNAT, DNAT target
see also DNAT target
DROP, DROP target
see also DROP target
DSCP, DSCP target
see also DSCP target
ECN, ECN target
see also ECN target
LOG, LOG target options
see also LOG target

1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

MARK, MARK target

see also MARK target
MASQUERADE, MASQUERADE target

see also MASQUERADE target
MIRROR, MIRROR target

see also MIRROR target
NETMAP, NETMAP target

see also NETMAP target
NFQUEUE, NFQUEUE target

see also NFQUEUE target
NOTRACK, NOTRACK target

see also NOTRACK target
QUEUE, QUEUE target

see also QUEUE target
REDIRECT, REDIRECT target

see also REDIRECT target
REJECT, REJECT target

see also REJECT target
RETURN, RETURN target

see also RETURN target
SAME, SAME target

see also SAME target
SECMARK, SECMARK target

see also SECMARK target
SNAT, SNAT target

see also SNAT target
TCPMSS, TCPMSS target

see also TCPMSS target

TOS, TOS target
see also TOS target

TTL, TTL target

see also TTL target
ULOG, ULOG target

see also ULOG target

TCP, TCP/IP repetition, TCP connections, The bad _tcp packets chain, The TCP chain

ACK, TCP headers
Acknowledgment Number, TCP headers
Characteristics, TCP characteristics
Checksum, TCP headers
CWR, TCP headers
Data Offset, TCP headers
Destination port, TCP headers
ECE, TCP headers
FIN, TCP characteristics, TCP headers
FIN/ACK, TCP characteristics
Handshake, TCP characteristics
Headers, TCP headers
Opening, TCP connections
Options, TCP headers, TCP options
Padding, TCP headers
PSH, TCP headers
PUSH, TCP headers

270 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

Reserved, TCP headers
RST, TCP headers
Sequence number, TCP headers
Source port, TCP headers
SYN, TCP characteristics, TCP headers
URG, TCP headers, TCP headers
Urgent Pointer, TCP headers
Window, TCP headers
TCP match, TCP matches
--destination-port, TCP matches
--source-port, TCP matches
--syn, TCP matches
--tcp-flags, TCP matches
--tcp-option, TCP matches
Tcp-flags match, TCP matches
Tcp-option match, TCP matches
TCP/IP, TCP/IP repetition

Application layer, TCP/IP Layers
Internet layer, TCP/IP Layers

Layers, TCP/IP Layers

Network Access layer, TCP/IP Layers
Stack, TCP/IP Layers

Transport layer, TCP/IP Layers
TCP/IP routing, TCP/IP destination driven routing

Tcpmss match, Tcpmss match
--mss, Tcpmss match
TCPMSS target, TCPMSS target
--clamp-mss-to-pmtu, TCPMSS target
--set-mss, TCPMSS target
tcp_chain, The TCP chain
Terms, Terms used in this document
NAT, What NAT is used for and basic terms and expressions
TFTP, Complex protocols and connection tracking
THROW, Addrtype match
Time Exceeded Message, TTL equals 0
Time to live, IP headers, ICMP headers
Timestamp, Redirect
To target, NETMAP target, SAME target
To-ports target, MASQUERADE target, REDIRECT target
To-source target, SNAT target
TOS, Mangle table
Tos match, Tos match
--tos, Tos match
TOS target, TOS target
--set-tos, TOS target
Total Length, IP headers, ICMP headers
Total-nodes target, CLUSTERIP target
Transport layer, TCP/IP Layers
Traversing of tables and chains, Traversing of tables and chains
General, General
Tripwire, How to plan an IP filter
TTL, The ICMP chain

271 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

TTL equals zero, TTL equals 0
TTL equals 0 during reassembly, TTL equals 0
TTL equals 0 during transit, TTL equals 0
Ttl match, Ttl match
--ttl-eq, Ttl match
--ttl-gt, Ttl match
--ttl-It, Ttl match
TTL target, Mangle table, TTL target, Ttl-inc.txt

--ttl-dec, TTL target
--ttl-inc, TTL target

--ttl-set, TTL target
Ttl-dec target, TTL target

Ttl-eq match, Ttl match

Ttl-gt match, Ttl match

Ttl-inc target, TTL target

TTL-inc.txt, Ttl-inc.txt

Ttl-It match, Ttl match

Ttl-set target, TTL target

Turtle Firewall Project, Turtle Firewall Project
Type, ICMP headers

Type of Service, IP headers, ICMP headers

U

UDP, TCP/IP repetition, UDP characteristics, UDP connections, UDP matches, The UDP chain
Characteristics, UDP characteristics
Checksum, UDP headers
Destination port, UDP headers
Length, UDP headers
Source port, UDP headers

UDP match, The UDP chain
--destination-port, UDP matches
--source-port, UDP matches

udp_packets, The UDP chain

Uid-owner match, Owner match

ULOG target, ULOG target

--ulog-cprange, ULOG target
--ulog-nlgroup, ULOG target
--ulog-prefix, ULOG target
--ulog-gthreshold, ULOG target
Ulog-cprange target, ULOG target
Ulog-nlgroup target, ULOG target
Ulog-prefix target, ULOG target
Ulog-qgthreshold target, ULOG target
Unclean match, Unclean match
UNICAST, Addrtype match
Unknown arg, Iptables debugging
UNREACHABLE, Addrtype match
unreliable protocol, IP characteristics
UNREPLIED, TCP connections

272 of 273 1/6/2007 12:55 PM

Iptables Tutorial 1.2.2 http://iptables-tutorial.frozentux.net/iptables-tutorial.ntmI#TABLE.TC...

UNSPEC, Addrtype match

Update match, Recent match

URG, TCP headers, TCP headers

Urgent Pointer, TCP headers

User interfaces, Graphical User Interfaces for Iptables/netfilter
Graphical, Graphical User Interfaces for Iptables/netfilter

see also Graphical user interfaces

User space, Terms used in this document

User specified chains, User specified chains, Setting up user specified chains in the filter table

User-land setup, User-land setup

User-land states, User-land states

Userland, Terms used in this document

\Y

Version, IP headers, ICMP headers
VPN, Terms used in this document

wW

Webproxy, What is an IP filter
see also Proxy
Window, TCP headers
Words, Terms used in this document

X

XRESOLVE, Addrtype match

273 of 273 1/6/2007 12:55 PM

