JAY JACOBS + BOB RUDIS

Data Driven Security

Analysis, Visualization
and Dashboards

Data-

Driven Security

Analysis, Visualization
and Dashboards

JAY JACOBS + BOB RUDIS

WILEY

Data-Driven Security: Analysis, Visualization and Dashboards

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-79372-5

ISBN: 978-1-118-79366-4 (ebk)

ISBN: 9789-1-118-79382-4 (ebk)

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or onlineathttp: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or complete-
ness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty
may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisheris not engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that
anorganization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet websites
listed in this work may have changed or disappeared between when this work was written and wheniitis read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be
included in e-books orin print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download
this material athttp: //booksupport . wiley. com. For more information about Wiley products, visit www . wiley . com.

Library of Congress Control Number: 2013954100
Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other

countries, and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not asso-
ciated with any product or vendor mentioned in this book.

About the Authors

Jay Jacobs has over 15 years of experience within IT and information security with a focus on cryptography,
risk, and data analysis. As a Senior Data Analyst on the Verizon RISK team, he is a co-author on their annual Data
Breach Investigation Report and spends much of his time analyzing and visualizing security-related data. Jay
is a co-founder of the Society of Information Risk Analysts and currently serves on the organization’s board of
directors. He is an active blogger, a frequent speaker, a co-host on the Risk Science podcast and was co-chair of
the 2014 Metricon security metrics/analytics conference. Jay can be found on twitter as @jayjacobs. He holds
a bachelor’s degree in technology and management from Concordia University in Saint Paul, Minnesota, and
a graduate certificate in Applied Statistics from Penn State.

Bob Rudis has over 20 years of experience using data to help defend global Fortune 100 companies. As Director
of Enterprise Information Security & IT Risk Management at Liberty Mutual, he oversees their partnership with
the regional, multi-sector Advanced Cyber Security Center on large scale security analytics initiatives. Bob is a
serial tweeter (ehrbrmstr), avid blogger (rud.is), author, speaker, and regular contributor to the open source
community (github.com/hrbrmstr).He currently serves on the board of directors for the Society of Information
Risk Analysts (SIRA), is on the editorial board of the SANS Securing The Human program, and was co-chair of the
2014 Metricon security metrics/analytics conference. He holds a bachelor’s degree in computer science from the
University of Scranton.

About the Technical Editor

Russell Thomas is a Security Data Scientist at Zions Bancorporation and a PhD candidate in Computational
Social Science at George Mason University. He has over 30 years of computer industry experience in techni-
cal, management, and consulting roles. Mr. Thomas is a long-time community member of Securitymetrics.
org and a founding member of the Society of Information Risk Analysts (SIRA). He blogs at http://
exploringpossibilityspace.blogspot.com/ andis @MrMeritology on Twitter.

Credits

Executive Editor
Carol Long

Senior Project Editor
Kevin Kent

Technical Editor
Russell Thomas

Senior Production Editor
Kathleen Wisor

Copy Editor
Kezia Endsley

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Vice President and Executive Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreader
Nancy Carrasco

Indexer
Johnna VanHoose Dinse

Cover Image
Bob Rudis

Cover Designer
Ryan Sneed

Acknowledgments

While our names are on the cover, this book represents a good deal of work by a good number of (good) people.
A huge thank you goes out to Russell Thomas, our technical editor. His meticulous attention to detail has not only
made this book better, but it's also saved us from a few embarrassing mistakes. Thank you for those of you who
have taken the time to prepare and share data for this project: Symantec, AlienVault, Stephen Patton, and David
Severski. Thank you to Wade Baker for his contagious passion, Chris Porter for his contacts, and the RISK team
at Verizon for their work and contribution of VERIS to the community. Thank you to the good folks at Wiley—
especially Carol Long, Kevin Kent, and Kezia Endsley—who helped shape this work and kept us on track and
motivated.

Thank you also to the many people who have contributed by responding to our emails, talking over ideas,
and providing your feedback. Finally, thanks to the many vibrant and active communities around R, Python,
data visualizations, and information security; hopefully, we can continue to blur the lines between those
communities.

Jay Jacobs

Firstand foremost, | would like to thank my parents. My father gave me his passion for learning and the confidence
to try everything. My mother gave me her unwavering support, even when | was busy discovering which paths
not to take. Thank you for providing a good environment to grow and learn. | would also like to thank my wife,
Ally. She is my best friend, loudest critic, and biggest fan. This work would not be possible without her love, sup-
port, and encouragement. And finally, | wish to thank my children for their patience: I'm ready for that game now.

Bob Rudis

This book would not have been possible without the love, support, and nigh-unending patience through many
a lost weekend of my truly amazing wife, Mary, and our three still-at-home children, Victoria, Jarrod, and lan.
Thank you to Alexandre Pinto, Thomas Nudd, and Bill Pelletier for well-timed (though you probably didn’t
know it) messages of encouragement and inspiration. A special thank you to the open source community and
reproducible research and open data movements who are behind most of the tools and practices in this text.
Thank you, as well, to Josh Corman who came up with the spiffy title for the tome.
And, a final thank you—in recipe form—to those that requested one with the book:

Pan Fried Gnocchi with Basil Pesto
® 2 Cfresh Marseille basil
® 1/2 Cfresh grated Romano cheese
® 1/2 C+ 2 tbsp extra virgin olive oil

® 1/4 Cpine nuts

ACKNOWLEDGMENTS

® 4garlicscapes
@ Himalayan sea salt; cracked pepper
@ 1lb. gnocchi(fresh or pre-made/vacuum sealed; gnocchi should be slightly dried if fresh)

Pulse (add in order): nuts, scapes, basil, cheese. Stream in 1/2 cup of olive oil, pulsing and scraping as needed
until creamy, adding salt and pepper to taste. Set aside.

Heat a heavy-bottomed pan over medium-high heat; add remaining olive oil. When hot, add gnocchi, but
don't crowd the pan or go above one layer. Let brown and crisp on one side for 3—-4 minutes then flip and do the
same on the other side for 2-3 minutes. Remove gnocchi from pan, toss with pesto, drizzle with saba and serve.
Makes enough for 3—-4 people.

Contents

10T o Yo [T 4 T TR AP XV
Chapter 1 - The Journey to Data-Driven Security.........ccoviiuiiiiiiiiiiieiniennenns 1
A Brief History of Learning from Data.ttt e 2
Nineteenth Century DAta@ ANGIYSISooonnunn e 2
Twentieth Century DAta@ ANQIYSIsoounenn e 3
Twenty-First Century Data@ ANQGIYSIS.oooeeeeeee ittt et eeeeeeaaans 4
Gathering Data Analysis SKills. oot e e 5
DOMQIN EXPEITISE. . ..o eeeee ettt e ettt e ettt ettt e e 6
Programming SKillso e 8
DataManagementcooueeeeee it 10

R (1171 o S 12
Visualization (a.k.a. COMMUNICAtoN).oouiiii e 14
CombBINING ENE SKIllSt ettt ettt ettt iaas 15
Centering 0N @ QUESTION. .. vttt ettt e e e e 16
Creating a Good Research QUESTIONuuuuuuu ettt et eeeeaanans 17
EXploratory DAta ANGIYSIS.oooeeene ettt 18
YU 4T 0T 18
Recommended Readingc.iiniie ittt 19

Chapter 2 - Building Your Analytics Toolbox: A Primer on

Using R and Python for Security Analysisc.coviiiiiiiiiiiiiiiiiiiiiiinnene, 21
Why Python? Why R? And Why Both?.oo i e e 22
WY PYENON? ..ottt ettt et 23
WHY R? .o 23

WHY BOTRZ. ... 4
Jumpstarting Your Python Analytics with Canopy...........ooiiiiiii it 24
Understanding the Python Data Analysis and Visualization Ecosystem............................ 25

Setting Up Your RENVIFONMENT.ooeo ettt ettt iiaees 29
INtroducing Data Frames .. ou ettt et ettt et e e 33
Organizing ANAlYSES ...ttt ettt et et ettt et e e 36
SUMIMIAIY ettt ettt ettt e e e et e e et e et e et e e e e e e e e et e e 37
Recommended Readingc.uinniut ittt e e 38
Chapter 3 « Learning the “Hello World” of Security Data Analysis..................... 39
SOIVING @ Problem. . .o 40

(T {0 T D | - 4
Reading IN Data. . ..ottt e e e 43
Lo Lo T4 To D | - 47

CONTENTS

Homing Inon @ QuUEeSTION e ettt e et 58
R0 0T 11T 12 70
Recommended Readingc.uiiiniit ittt e 70
Chapter 4 - Performing Exploratory Security Data Analysisccoevvevinen... 71
Dissecting the [P AAress.oeuni it e e 73
Representing IP AdAreSSes.t e 73
Segmenting and Grouping IPAAAIesseso e 75
LOCAtING IP AQAIESSES e ettt ettt ettt ettt e e e e e et aas 77
Augmenting [P Address Dataouiieniii ettt et e e 80
Association/Correlation, Causation, and Security Operations Center Analysts Gone Rogue.......... 86
Mapping Outside the CONTINENTS.couu ettt et 90
Visualizing the ZeuS BOtNet ...ttt 92
Visualizing Your Firewall Data.cccooommmi e 98
SUMIMIY . ¢ ettt ettt et e et e et e et et e et 100
Recommended Readingouuiinii it e 101
Chapter5 « From Mapsto Regressioncveeiieiiiiniinerneeneeenenneeneanns 103
SIMPLIfYING MAPS . e e ettt e ettt et 105
How Many ZeroAccess Infections per COUNTIY?oueeeuiniuuieiee e iaaiiiieaeeanns 108
Changing the SCOPe Of YOUI DALA.ooiiinn e 11
TREPOLWIN EffECtottt e et 113
ISTRISWEITA?o e ettt e e 17
CoUNLING IN COUNTIBS. ..o v v v ettt e e e e ettt et e e et e e et ien e e e eeeaannns 120
MoVING DOWN 0 COUNTIES. . .o v v ettt ettt e e e e e et et e e et e e e eineaes 122
Introducing Linear REGIeSSION eun ettt ettt e e e e ie s 125
Understanding Common Pitfalls in Regression Analysis.ovuiiiiiiiiiieeennnnnnnn. 130
Regression on ZeroAccess INfECHIONSou et 131
R80T 11T 2 136
Recommended Reading.oeeuniii e e 136
Chapter 6 - Visualizing SecurityData..........covviieiiiiiiiiiiiiiiiinenneeneenns 137
WHhy VISUBIIZE? . . . et e 138
Unraveling Visual Perceptioneeeeae o 139
Understanding the Components of Visual Communicationsccoovviiiiiineinennn. 144
Avoiding the TRIrd DIMeNSIONttt ettt e e e et eeeaeaaans 144
L0 el 0 o 146
VLT oo T3 T 148
Communicating DiStribULIONSooueeu ettt 154
Visualizing Time SEriEsoooe e e 156
EXperiment On YOUIr OWN. ...ttt et ettt et e iee e 157
Turning Your Datainto @ MOVIe Starc.utiuitu ettt 158
YU 33T - N 159
Recommended Readingueini i 160

Chapter 7 - Learning from SecurityBreachesccoviiiiiiiiiiiiiininnnn.. 161

Setting Up the Research e e e e e e 162
Considerations in a Data Collection Frameworkoouiiiiiiiiiiii e, 164
Aiming fOr ObJECtiVE ANSWELSttt ettt ettt ettt et e e e e e e e eeeaaaans 164
Limiting POSSIbIE ANSWEISovvoeee ettt ettt et ettt 164
Allowing “Other,” and “Unknown” Optionsoeiuuuueieeeiiiiiiiiiieeanaannns 164
Avoiding Conflation and Merging the Minutiaeccooueiiiiiiiiiiiinaeenannnnnns 165
AnIntroduction to VERIS i 166
INCIAENE TIACKING oo e e 168
L] 02Tl (o G 168
TRAFEAT ACLIONSo e ettt e e et et et 169
INFOIMALION ASSEES. e ettt ettt e e e 173
o = 173
DiSCOVEIY/RESPONSE. oo oot et ettt 176
1] et 176

7 1. 177
e Tae] o) 179
Extending VERIS With PIUSooie ettt ettt et e e et aas 179
SeeING VERIS N ACHION ottt et e et 179
Working With VEDB Datavv vttt ettt e et e e e e eeas 181
Getting the Most OUt Of VERISDALA.ooveruuiiiii ettt 185
SUMIMIAIY ettt ettt et ettt e e e e ettt e e et e et e e e e e e e e et e e e 189
Recommended Readingc..iiniiiir ettt 189
Chapter 8 - Breaking Up with Your Relational Database 191
Realizing the Container Has CoNSTraintso.veutiineie et iie e ieenans 195
Constrained by SCNeMQooooiiii it 196
CoNstrained by SEOTAGEooveee ettt ettt 198
Constrained By RAM ... e e 199
CONSLAINEA DY DAL v e e 200
Exploring Alternative Data StOresv .ttt ettt et et 200
BErkeleyDB e 201
ROIS. . .. e e e e 203
HIVE. .o oo s 207
MONGODB e 210
Special Purpose DAtabases.co.uuueee e 214
R80T 11T T2 215
Recommended Readingeeinit s 216
Chapter 9 « Demystifying MachineLearning.........cccoveiiiiiiiiiinennnennnnnns 217
Detecting Malware.o e e e 218
Developing a Machine Learning Algorithmo, 220
Validating the AIGorithm.o e 221
Implementing the AIGOrithm oot 222

CONTENTS

Benefiting from Machine Learningcouuiiiiiiniiiii et 226
Answering Questions with Machine Learningoouuuuuiiiiiiiieeee i 226
Measuring Good Performance.ouuuuiui e 227
SEIECHING FEATUIES ... et 228
Validating Your Modelo e e 230

Specific Learning Methods.vvue ittt e e et e e 230
SUPBIVISEAttt e ettt ettt 231
UNSUPEIVISEA. ... oeveeeeeeet et aaaaas 234

Hands On: Clustering Breach Data.ooeeuuiiiiiin e 236
Multidimensional Scaling on Victim Industriescccooiiiiiiiiiiii i, 238
Hierarchical Clustering on Victim INAUSEIES 240

Y0011 T2 242

Recommended Readingoeiuniii e e 243

Chapter 10 - Designing Effective Security Dashboards.................c.coovvvnnnn.. 245

What Is a Dashboard, Anyway?.ttt 246
ADashboard Is Not an Automobileooooiii i 246
ADashboard Is NOt GREPOITttt ettt e e e e e aaeaaans 248
ADashboardIs Not aMoving Vancoueeeiiiiiii it eeeeaaannns 251
ADashboard s NOt an Art SROW.oonnnni e 253

Communicating and Managing “Security” through Dashboardscooiivinn.... 258
Lending a Hand to HaNAIEIS.oooeeemen e 258
Raising Dashboard AWGIenessoouuuuuuueeeeeei i 260
The Devil (and Incident Response Delays) Isin the Details.ccoviiiiiiiiiinnn. 262
Projecting “SECUITLY”ttt ettt 263

Y0011/ 267

Recommended Readingovuiiei ettt e e e e e, 267

Chapter 11 « Building Interactive Security Visualizations 269

Moving from Static to INteractive oot 270
Interaction for AUGMENTAtoNouuuuuuue ittt e et et eenas 271
Interaction for EXpIOrationoouuuuuuuuuii ittt ettt 274
Interaction for UMINGLIONoouiiii e 276

Developing Interactive Visualizationsoveuniiiiin i it 281
Building Interactive Dashboards with Tableaucooviiiiiiiiiiiiiiiiiiiinnnnnn. 281
Building Browser-Based Visualizations with D3.ccooiiiiiieeiiiiiiiiiiinnnn. 284

R80T 11T T2 294

Recommended REAdiNgot 295

Chapter 12 « Moving Toward Data-Driven Securitycoovviiiieiiiiniennennn. 297

Moving Yourself toward Data-Driven SeCUrityooeuueeiiineiiii i 298
LT 5 e (=T 299
TRE SEALISHICIAN oo oo ettt 302
The SecUrity DOMQAIN EXPEIt. ettt ettt ettt ettt eaa e e e e e e e eaaaaaaans 302
Q0 e LT 4 o) - 303

Moving Your Organization toward Data-Driven Security.............coooiiiiiiiiiiini e 303

Ask Questions That Have Objective ANSWETSoueueeuuee e eeeeeeanns 304

Find and Collect Relevant Data.oouuuuuee et 304

Learn through Iterationoouuiiii e e 305

FINA SEAUISHICS. . .o ettt et 306
SUMIMAIY oo ettt ettt ettt et ettt ettt e e et e e e 308
Recommended Reading veuuiieii ettt et et et e e 308
Appendix A « Resourcesand Toolsccvuiiiiiniiiiiiiiiiiiiiienenneanennn. 309
AppendiXx B o RefereNCeS ... cvut ittt ittt ittt ieneeneeneeanenneaneenns 313
3T =D G A 321

Introduction

“It’s a dangerous business, Frodo, going out your door. You step onto the road, and
if you don’t keep your feet, there’s no knowing where you might be swept off to.”

Bilbo Baggins, The Fellowship of the Ring

INTRODUCTION

In recent years, cybersecurity has taken center stage in the personal and professional lives of the majority of
the global population. Data breaches are a daily occurrence, and intelligent adversaries target consumers,
corporations, and governments with practically no fear of being detected or facing consequences for their
actions. This is all occurring while the systems, networks, and applications that comprise the backbones
of commerce and critical infrastructure are growing ever more complex, interconnected, and unwieldy.

Defenses built solely on the elements of faith-based security—unaided intuition and “best” practices—
are no longer sufficient to protect us. The era of the security shaman is rapidly fading, and it's time to
adopt the proven tools and techniques being used in other disciplines to take an evolutionary step into
Data-Driven Security.

Overview of the Book and Technologies

Data-Driven Security: Analysis, Visualization and Dashboards has been designed to take you on a journey
into the world of security data science. The start of the journey looks a bit like the word cloud shown in
Figure 1, which was created from the text in the chapters of this book. You have a great deal of information
available to you, and may be able to pick out a signal or two within the somewhat hazy noise on your own.
However, it's like looking for a needle in a haystack without a magnet.

aroject ML vy
a:mbﬁ:éfﬁnfﬁ'ﬁg code ma e combination .
raly BREACH REGRESSION following require
o VERIS mdimnnsu“:mteractwe algonthm FIE%HE little
tesr features S © L communicate work PETIOITIL scii

gapio) on HELF DASHEORRD pomrs it (15 E NEED o™

tefiitely Jgyg] executive OlIt ut significant
development Understand P
Ex%ignn%mu |mpgrtant []USSIMB fucu:value t d|ﬁerent fleldsa“swerstart NODES

correlation
malwara n u rm atl U " quanmatlve RESEARCH hon selection interesting
S"Empﬂiectlons watcogauzaroy NUMDET !g riables enerate LIST *ut,
““l':lsﬂg;%(:lmm FUNCTION uestlons Wallt relationship snfy
QUERY appLICATION OFERHTI?HIS“S FHO"IDE BHI“E DISTRIBUTION

come EXPLORE ook
== TSUALIZATION: SeCUIity., rees.
movement; TN— exa m e cha ter gnn country plot Allenvalllt
rusle EToub o) ETATISTILS D odel e %,g,gﬁﬁ%@'&
completely hg,?lg%uelfgcetilv-&tl me Loo K prediction INCIDENT designed " especially
L] run PrOCESS s L v cinctudetont
new struecture . EHE HTE it chart management column e

omain order reputaton
= language atahest v iy pprcee neproAzy MERN™= """t
Ilmﬂa:z"m RETION results '“"""’"“'mﬂthﬂds collect m!{{&#msﬂt}n

table program TRAINING

components relational

valnerabilities

FIGURE 1

You'll have much more success identifying what matters (see Figure 2) if you apply the right tools in
the most appropriate way possible.

How This Book Is Organized

This book focuses on Python and R as the foundational data analysis tools, but also introduces the
design and creation of modern static and interactive visualizations with HTML5, CSS, and JavaScript. It also
provides background on and security use cases for modern NoSQL databases.

How This Book Is Organized

Rather than have you gorge at an all-you-can-eat buffet, the chapters are more like tapas—each with
their own distinct flavor profiles and textures. Like the word tapas itself suggests, each chapter covers a
different foundational topic within security data science and provides plenty of pointers for further study.

Chapter 1 lays the foundation for the journey and provides examples of how other disciplines have
evolved into data-driven practices. It also provides an overview of the skills a security data scientist needs.

Chapters 2, 3, and 4 dive right into the tools, technologies, and basic techniques that should be
part of every security data scientists’ toolbox. You'll work with AlienVault's IP Reputation database (one of
the most thorough sources of malicious nodes publicly available) and take a macro look at the ZeuS and
ZeroAccess botnets. We introduce the analytical side of Python in Chapters 2 and 3. Then we thrust you
into the world of statistical analysis software with a major focus on the R language in the remainder of the
book. Unlike traditional introductory texts in R (or statistics in general), we use security data throughout the
book to help make the concepts as real and practical as possible for the information security professional.

Chapter 5 introduces some techniques for creating maps and introduces some core statistical concepts,
along with a lesson or two about extraterrestrial visitors.

HOWTHIS BOOK IS ORGANIZED

Chapter 6 delves into the biological and cognitive science foundations of visual communication (data
visualization) and even shows you how to animate your security data.

This lays a foundation for learning how to analyze and visualize security breaches in Chapter 7, where
you'll also have an opportunity to work with real incident data.

Chapter 8 covers modern database concepts with new tricks for traditional database deployments and
new tools with a range of NoSQL solutions discussed. You'll also get tips on how to answer the question,
“Have we seen this IP address on our network?”

Chapter 9 introduces you to the exciting and relatively new world of machine learning. You'll learn
about the core concepts and explore a handful of machine-learning techniques and develop a new
appreciation for how algorithms can pick up patterns that your intuition might never recognize.

Chapters 10 and 11 give you practical advice and techniques for building effective visualizations
that will both communicate and (hopefully) impress your consumers. You'll use everything from Microsoft
Excel to state of the art tools and libraries, and be able to translate what you've learned outside of security.
Visualization concepts are made even more tangible through “makeovers” of security dashboards that
many of you may be familiar with.

Finally, we show you how to apply what you've learned at both a personal and organizational level in
Chapter 12.

Who Should Read This Book

We wrote this book because we both thoroughly enjoy working with data and wholeheartedly believe that
we can make significant progress in improving cybersecurity if we take the time to understand how to ask
the right questions, perform accurate and reproducible analyses on data, and communicate the results in
the most compelling ways possible.

Readers will get the most out of this book if they come to it with some security domain experience
and the ability to do basic coding or scripting. If you are already familiar with Python, you can skip the
introduction to it in Chapter 2 and can skim through much of Chapter 3. We level the field a bit by introducing
and focusing on R, but you would do well to make your way through all the examples and listings that use R
throughout the book, as it is an excellent language for modern data science. If you are new to programming,
Chapters 2, 3, and 4 will provide enough of an immersive experience to help you see if it’s right for you.

We place emphasis on statistical and machine learning across many chapters and do not recommend
skipping any of that content. However, you can hold off on Chapter 9 (which discusses machine learning)
until the very end, as it will not detract significantly from the flow of the book.

If you know databases well, you need only review the use cases in Chapter 8 to ensure you're thinking
about all the ways you can use modern and specialized databases in security use cases.

Unlike many books that discuss dashboards, the only requirements for Chapter 10 are Microsoft Excel
or OpenOffice Calc, as we made no assumptions about the types of tools and restrictions you have to work
with in your organization. You can also save Chapter 11 for future reading if you have no desire to build
interactive visualizations.

In short, though we are writing to Information Technology and Information Security professionals,
students, consultants, and anyone looking for more about the how-to of analyzing data and making it
understandable for protecting networks will find what they need in this book.

The Journey Begins

Tools You Will Need

Everything you need to follow along with the exercises is freely available:

o TheRproject (http://www.r-project.org)—Most of the examples are writtenin R, and
with the wide range of community developed packages like ggplot2 (http: //ggplot?2.org)
almostanything is possible.

® RStudio (http://www.rstudio.com/)—It will be much easier to get to know Rand run the
examples if you use the RStudio IDE.

® Python (http://www.python.org)—A few of the examples leverage Python and with add-on
packages like pandas (http: //pandas.pydata . org) makes this a very powerful platform.

® Sublime Text (http://www.sublimetext .com/)—This, or another robust text editor, will
come in very handy especially when working with HTML/CSS/JavaScript examples.

® D3.js(http://d3js.org/)—Grabbing a copy of D3 and giving the basics a quick read through
ahead of Chapter 11 will help you work through the examples in that chapter a bit faster.

® Git (http://git-scm.com/)—You'll be asked to use git to download data at various points in the
book, so installing it now will save you some time later.

® MongoDB (http://www.mongodb.org/)—MongoDBis used in Chapter 8, so getting it set up
early will make those examples less cumbersome.

® Redis (http://redis.io/)—This, too, is used in some examplesin Chapter 8.

o Tableau Public(http://www.tableausoftware.com/)—If youintend to work with the sur-
vey data in Chapter 11, having a copy of Tableau Public will be useful.

Additionally, all of the code, examples, and data used in this book are available through the companion
website for this book (www.wiley.com/go/datadrivensecurity).

We recommend using Linux or Mac OS, but all of the examples should work fine on modern flavors of
Microsoft Windows as well.

What's on the Website

As mentioned earlier, you’ll want to check out the companion website www.wiley.com/go/
datadrivensecurity for the book, which has the full source code for all code listings, the data files
used in the examples, and any supporting documents (such as Microsoft Excel files).

The Journey Begins!

You have everything you need to start down the path to Data-Driven Security. We hope your journey will
be filled with new insights and discoveries and are confident you'll be able to improve your security posture
if you successfully apply the principles you're about to learn.

The Journey to Data-Driven
Security

THE JOURNEY TO DATA-DRIVEN SECURITY

This book isn't really about data analysis and visualization.

Yes, almost every section is focused on those topics, but being able to perform good data analysis and
produce informative visualizations is just a means to an end. You never (okay, rarely) analyze data for the
sheer joy of analyzing data. You analyze data and create visualizations to gain new perspectives, to find
relationships you didn't know existed, or to simply discover new information. In short, you do data analysis
and visualizations to learn, and that is what this book is about. You want to learn how your information
systems are functioning, or more importantly how they are failing and what you can do to fix them.

The cyber world is just too large, has too many components, and has grown far too complex to simply
rely on intuition. Only by augmenting and supporting your natural intuition with the science of data analysis
will you be able to maintain and protect an ever-growing and increasingly complex infrastructure. We are
not advocating replacing people with algorithms; we are advocating arming people with algorithms so
that they can learn more and do a better job. The data contains information, and you can learn better with
the information in the data than without it.

This book focuses on using real data—the types of data you have probably come across in your work.
But rather than focus on huge discoveries in the data, this book focuses more on the process and less on
the result. As a result of that decision, the use cases are intended to be exemplary and introductory rather
than knock-your-socks-off cool. The goal here is to teach you new ways of looking at and learning from data.
Therefore, the analysis is intended to be new ground in terms of technique, not necessarily in conclusion.

A Brief History of Learning from Data

One of the best ways of appreciating the power of statistical data analysis and visualization is to look back
in history to a time when these methods were first put to use. The following cases provide a vivid picture
of “before” versus “after,” demonstrating the dramatic benefits of the then-new methods.

Nineteenth Century Data Analysis

Prior to the twentieth century, the use of data and statistics was still relatively undeveloped. Although great
strides were made in the eighteenth century, much of the scientific research of the day used basic descrip-
tive statistics as evidence for the validity of the hypothesis. The inability to draw clear conclusions from
noisy data (and almost all real data is more or less noisy) made much of the scientific debates more about
opinions of the data than the data itself. One such fierce debate' in the nineteenth century was between
two medical professionals in which they debated (both with data) the cause of cholera, a bacterial infection
that was often fatal.

The cholera outbreak in London in 1849 was especially brutal, claiming more than 14,000 lives in a single
year. The cause of the illness was unknown at that time and two competing theories from two research-
ers emerged. Dr. William Farr, a well-respected and established epidemiologist, argued that cholera was
caused by air pollution created by decomposing and unsanitary matter (officially called the miasma theory).
Dr. John Snow, also a successful epidemiologist who was not as widely known as Farr, put forth the theory
that cholera was spread by consuming water that was contaminated by a “special animal poison” (this was
prior to the discovery of bacteria and germs). The two debated for years.

Farr published the “Report on the Mortality of Cholera in England 1848-49" in 1852, in which he included
atable of data with eight possible explanatory variables collected from the 38 registration districts of London.

' And worthy of a bona fide Hollywood plot as well. See ht tp: //snowthemovie . com/

A Brief History of Learning from Data

In the paper, Farr presented some relatively simple (by today’s standards) statistics and established a rela-
tionship between the average elevation of the district and cholera deaths (lower areas had more deaths).
Although there was also a relationship between cholera deaths and the source of drinking water (another
one of the eight variables he gathered), he concluded that it was not nearly as significant as the elevation.
Farr's theory had data and logic and was accepted by his peers. It was adopted as fact of the day.

Dr. John Snow was passionate and vocal about his disbelief in Farr’s theory and relentless in proving his
own. It’s said he even collected data by going door to door during the cholera outbreak in the Soho district
of 1854. It was from that outbreak and his collected data that he made his now famous map in Figure 1-1.
The hand-drawn map of the Soho district included little tick marks at the addresses where cholera deaths
were reported. Overlaying the location of water pumps where residents got their drinking water showed a
rather obvious clustering around the water pump on Broad Street. With his map and his passionate pleas,
the city did allow the pump handle to be removed and the epidemic in that region subsided. However,
this wasn’t enough to convince his critics. The cause of cholera was heavily debated even beyond John
Snow’s death in 1858.

The cholera debate included data and visualization techniques (long before computers), yet neither had
been able to convince the opposition. The debate between Snow and Farr was re-examined in 2003 when
statisticians in the UK evaluated the data Farr published in 1852 with modern methods. They found that
the data Farr pointed to as proof of an airborne cause actually supported Snow’s position. They concluded
that if modern statistical methods were available to Farr, the data he collected would have changed his
conclusion. The good news of course, is that these statistical methods are available today to you.

Twentieth Century Data Analysis

A few years before Farr and Snow debated cholera, an agricultural research station north of London at
Rothamsted began conducting experiments on the effects of fertilizer on crop yield. They spent decades
conducting experiments and collecting data on various aspects such as crop yield, soil measurements, and
weather variables. Following a modern-day logging approach, they gathered the data and diligently stored
it, but they were unable to extract the full value from it. In 1919 they hired a brilliant young statistician
named Ronald Aylmer Fisher to pore through more than 70 years of data and help them understand it.
Fisher quickly ran into a challenge with the data being confounded, and he found it difficult to isolate the
effect of the fertilizer from other effects, such as weather or soil quality. This challenge would lead Fisher
toward discoveries that would forever change not just the world of statistics, but almost every scientific
field in the twentieth century.

What Fisher discovered (among many revolutionary contributions to statistics) is that if an experiment
was designed correctly, the influence of various effects could not just be separated, but also could be
measured and their influence calculated. With a properly designed experiment, he was able to isolate the
effects of weather, soil quality, and other factors so he could compare the effects of various fertilizer mix-
tures. And this work was not limited to agriculture; the same techniques Fisher developed at Rothamsted
are still used widely today in everything from medical trials to archaeology dig sites. Fisher’s work, and the
work of his peers, helped revolutionize science in the twentieth century. No longer could scientists simply
collect and present their data as evidence of their claim as they had in the eighteenth century. They now
had the tools to design robust experiments and the techniques to model how the variables affected their
experiment and observations.

THE JOURNEY TO DATA-DRIVEN SECURITY

°

W
% 3
% <
5) 7y
=

SCALE 30 INCHES TO A MILE.

Hand-drawn map of the areas affected by cholera

At this point, the world of science included statistical models. Much of the statistical and science edu-
cation focused on developing and testing these models and the assumptions behind them. Nearly every
statistical problem started with the question—"What's the model?"—and ended with the model populated
to allow description and even prediction using the model. This represented a huge leap forward and enabled
research never before possible. If it weren’t for computers, the world would probably still consider these
techniques to be modern. But computers are ubiquitous and they have enabled a whole new approach to
data analysis that was both impossible and unfathomable prior to their development.

Twenty-First Century Data Analysis

It's difficult to pull out any single person or event that captures where data analysis is today like Farr and
Fisher captured the previous stages of data analysis. The first glimpse at what was on the horizon came

Gathering Data Analysis Skills

from John Tukey, who wrote in 1962 that data analysis should be thought of as different from statistics
(although analysis leveraged statistics). He stated that data analysis must draw from science more than
mathematics (can you see the term “data science” in there?). Tukey was not only an accomplished statistician,
having contributed numerous procedures and techniques to the field, but he was also an early proponent
of visualization techniques for the purpose of describing and exploring the data. You will come back to
some of Tukey’s work later in this chapter.

Let’s jump ahead to a paper written in 2001 by Leo Breiman, a statistician who focused on machine
learning algorithms (which are discussed in Chapter 9). In the paper he describes a new culture of data
analysis that does not focus on defining a data model of nature but instead derives an algorithmic model
from nature. This new culture has evolved within computer science and engineering largely outside (or
perhaps alongside) traditional statistics. New approaches are born from the practical problems created
by the information age, which created large quantities of complex and noisy data. The revolutionary idea
that Breiman outlined in this paper is that models should be judged on their predictive accuracy instead
of validating the model with traditional statistical tests (which are not without value by the way).

At face value you may think of testing “predictive accuracy” by gathering data today and determining
how it predicts the world of tomorrow, but that’s not what the idea is about. The idea is about splitting
the data of today into two data sets, using the first data set to generate (or “train”) an algorithm and then
validating (or “test”) its predictive accuracy on the second data set. To increase the power of this approach,
you can iterate through this process multiple times, splitting the data into various training and test sets,
generating and validating as you go. This approach is not well suited to small data sets, but works remark-
ably well with modern data sets.

There are several main differences between data analysis in the modern information age and the agri-
cultural fields of Rothamsted. First, there is a large difference in the available sample size. “Classic” statistical
techniques were largely limited by what the computers of the day could handle (“computers” were the
people hired to “compute” all day long). With generally smaller samples, generating a training and test
was impractical. However, modern environments are recording hundreds of variables generated across
thousands of systems. Large sample sizes are the norm, not the exception.

Second, for many environments and industries, a properly designed experiment is unlikely if not com-
pletely impossible. You cannot divide your networks into control and test groups, nor would you want to
test the efficacy of a web application firewall by only protecting a portion of a critical application. One effect
of these environmental limits is a much higher noise-to-signal ratio in the data. The techniques of machine
learning (and the related field of data mining) have evolved with the challenges of modern data in mind.

Finally, knowledge of statistics is just one skill of many that contributes to successful data analysis in
the twenty-first century. With that in mind, the next section spends some time looking at the various skills
and attributes that support a good data analysis.

Gathering Data Analysis Skills

We know there is a natural allure to data science and everyone wants to achieve that sexy mystique
surrounding security data analysis. Although we have focused on this concept of data analysis so far, it
takes more than just analytic skills to create the mystique that everyone is seeking. You need to combine
statistics and data analysis with visualization techniques, and then leverage the computing power and mix
with a healthy dose of domain (information security) knowledge. All of this begins not with products or
tools but with your own skills and abilities.

THE JOURNEY TO DATA-DRIVEN SECURITY

Before getting to the skills, there are a couple underlying personality traits we see in data analysts
that we want to discuss: curiosity and communication. Working with data can at times be a bit like an
archeological dig—spending hour after hour with small tools in the hope of uncovering even the tiniest
of insights. So it is with data analysis—pearls of wisdom are nestled deep within data just waiting to be
discovered and presented to an eagerly awaiting audience. It is only with that sense of wonder and curiosity
that the hours spent cleaning and preparing data are not just tolerable, but somehow exciting and worth
every moment. Because there is that moment, when you’re able to turn a light on in an otherwise dark
room, when you can describe some phenomenon or explain some pattern, when it all becomes worth it.
That’s what you're after. You are uncovering those tiny moments of enlightenment hidden in plain sight
if you know where to look.

Once you turn that light on, you have to bring others into the room for the discovery; otherwise, you
will have constructed a house that nobody lives in. It's not enough to point at your work and say, “see!” You
have to step back and think of the best way to communicate your discovery. The complexity present in the
systems and the analysis makes it difficult to convey the results in a way that everyone will understand what
you have discovered. Often times it takes a combination of words, numbers, and pictures to communicate
the data’s insights. Even then, some people will take away nothing, and others will take away too much.
But there is still a need to condense this complexity into a paragraph, table, or graphic.

Although we could spend an entire book creating an exhaustive list of skills needed to be a good secu-
rity data scientist, this chapter covers the following skills/7domains that a data scientist will benefit from
knowing within information security:

© Domain expertise—Setting and maintaining a purpose to the analysis
e Data management—Being able to prepare, store, and maintain data
® Programming—The glue that connects data to analysis

o Statistics—To learn from the data

® Visualization—Communicating the results effectively

It might be easy to label any one of these skills as the most important, but in reality, the whole is greater
than the sum of its parts. Each of these contributes a significant and important piece to the workings of
security data science.

Domain Expertise

The fact that a data scientist needs domain expertise should go without saying and it may seem obvious,
but data analysis is only meaningful when performed with a higher purpose in mind. It's your experience
with information security that will guide the direction of the analysis, provide context to the data, and help
apply meaning to the results. In other words, domain expertise is beneficial in the beginning, middle, and
end of all your data analysis efforts.

And Why Expertise Shouldn’t Get in the Way

We are probably preaching to the choir here. If you are reading this book, it is probably safe to assume that
you have domain expertise and see value in moving toward a data-driven approach in information security.
Therefore, rather than spend the effort discussing the benefits of domain expertise in data analysis, this

Gathering Data Analysis Skills

section covers some objections you might encounter as other domain experts (or skeptical leadership) are
brought into the data analysis effort.

People are smarter than models. There are those who hold the opinion that people will always
outperform algorithms (or statistics, or models) and there is some truth to this. Teaching a machine, for
example, to catch a fly ball is remarkably challenging. As Kahneman and Klein point out in their 2009 paper
titled Conditions for Intuitive Expertise: a Failure to Disagree, however, determining when people will
outperform algorithms is heavily dependent on the environment of the task. If the environment is complex
and feedback is delayed or ambiguous, algorithms will generally and relatively consistently outperform
human judgment. So, the question then becomes, how complex is the security of the information systems
and how clear is the feedback? When you make a change or add a security control, how much feedback do
you receive on how well it is actually protecting the information asset?

The result is that information security occurs in a very complex environment, but that doesn’'t mean you
put all your eggs in the algorithm basket. What it does mean is that you should have some healthy skepti-
cism about any approach that relies purely on human judgment, and you should seek ways to augment
and support that expertise. That's not to compare algorithms to human judgment. It's not wise to set up
an either-or choice. You do, however, want to compare human judgment combined with algorithms and
data analysis against human judgment alone. You do not want to remove the human element, but you
should be skeptical of unsupported opinion. In a complex environment, it is the combination of human
intuition and data analysis that will produce the best results and create the best opportunity for learning
and securing the infrastructure.

It’s just lying with statistics. This expresses a general distrust in statistics and data analysis, which
are often abused and misused (and in some cases flat out made up) for the sake of serving some ulte-
rior motive. In a way, this distrust is grounded in a collective knowledge of just how easy it is to social-
engineer people. However, you are in a different situation since your motive is to learn from the data. You are
sitting on mounds of data that hold information and patterns just waiting to be discovered. Not leveraging
data analysis because statistics are misused is like not driving a car because they are sometimes used as
get-away vehicles. You need to be comfortable with adding statistics to your information security toolkit.

This is not to say that data analysis is infallible. There may be times when the analysis provides the wrong
answer, perhaps through poor data collection, under-trained analysts, a mistake in the process, or simply
using Excel (couldn't resist). But what you should see is simply fewer mistakes when you apply the rigor
of data analysis combined with your expertise. Again, the key is combining data analysis and expertise.

This ain’t rocket science. This statement has two insinuations. First, it says that whatever the problem
is you're trying to solve, you should be able to solve it with common sense. But this concern goes back to
the first point, which is thinking that people outperform algorithms consistently and a group of people
around a conference table looking at a complex environment can solve the (complex) problem without
the need for data analysis. But as we discussed, you should pull a chair up to the conference table for the
data analysis because you are generally better off with it than without it.

The second implication of the statement is that data analysis is too complicated and will cost too much (in
time, money, or resources). This view is simply misinformed and the objection is more likely to be a concern
about an uncomfortable change in practices than a concern about time spent with data analysis. Many of
the tools are open source (if the organization is averse to open source, there are plenty of commercial solu-
tions out there as well) and the only real commitment is in the time to learn some of the basic techniques
and methods in this book. The actual analysis itself can be fairly quick, and with the right combination of
tools and experience, it can be done in real time.

THE JOURNEY TO DATA-DRIVEN SECURITY

We don’t have the data. An alternate form of this objection is saying that we don't have actuarial-
quality data (which is more prevalent when you start talking about risk analysis). Data detractors argue that
anything less than perfect data is worthless and prevents you from creating well-designed experiments.
This statement is untrue and quite harmful. If you were to wait around for perfect data, you would always
be waiting and many learning opportunities would be missed. More importantly and to the heart of this
objection, you don't need perfect data. You just need methods to learn from the messy data you do have.
As Douglas Hubbard wrote in 2010 in his book How to Measure Anything, “The fact is that we often have
more data than we think, we need less data than we think, and getting more data through observation is
simpler than we think.” So, generally speaking, data for security analysis absolutely exists; often times it
is just waiting to be collected. You can, with a few alterations, collect and accurately analyze even sketchy
data. Modern data analysis methods have evolved to work with the noisy, incomplete, and imperfect data
you have.

But we will fall off the edge of the world. There is one last point to consider and it's not so much an
objection to data analysis, but an obstacle in data analysis. When you are seen as a domain expert, you
are expected to provide answers with confidence. The conflict arises when confidence is confused with
certainty. Data analysis requires just enough self-awareness and humility to create space for doubt in the
things you think you know. Even though you may confidently state that passwords should be so many
characters long with a certain amount of complexity, the reality is you just don’t know where the balance
is between usability and security. Confidence needs to be balanced with humility and the ability to update
your beliefs based on new evidence. This obstacle in data analysis is not just limited to the primary analyst.
Other domain experts involved in the analysis will have to come face to face with their own humility. Not
everyone will want to hear that his or her world isn’t flat.

Programming Skills

As much as we'd like to portray data science as a glamorous pursuit of truth and knowledge, as we've said,
it can get a little messy. Okay, that’s an understatement. Working with data is a great deal more uncertain
and unkempt than people think and, unfortunately, the mess usually appears early on when you're attempt-
ing to collect and prepare the data. This is something that many classes in statistics never prepare their
students for. Professors hand out rather nice and neat data sets ready to be imported into the analysis tool
du jour. Once you leave the comfort of the classroom, you quickly realize that the world is a disorganized
and chaotic place and data (and its subsequent analyses) are a reflection of that fact.

This is a cold, hard lesson in data science: Data comes to you in a wide range of formats, states, and
quality. It may be embedded in unstructured or semi-structured log files. It may need to be scraped from
a website. Or, in extreme cases, data may come in an overly complex and thoroughly frustrating format
known as XML. Somehow, you must find a way to collect, coax, combine, and massage what you're given
into a format that supports further analysis. Although this could be done with a lot of patience, a text editor,
and judicious use of summer interns, the ability to whip together a script to do the work will provide more
functionality, flexibility, and efficiency in the long run. Learning even basic programming skills opens up
a whole range of possibilities when you're working with data. It frees you to accept multiple forms of data
and manipulate it into whatever formats work best with the analysis software you have. Although there
is certainly a large collection of handy data conversion tools available, they cannot anticipate or handle
everything you will come across. To be truly effective while working with data, you need to adapt to the
data in your world, not vice versa.

Gathering Data Analysis Skills

AES-256-Bit Keys Are Twice as Good as AES-128, Right?

One natural assumption about AES-256-bit keys is that because they are twice as long as AES-128-
bit keys, they are twice as secure. We've been around information security people when they force
a project to use 256-bit keys because they are “twice as good.” Well, let’s look into the math. First,
you are talking about bits here, and although 256 bits is twice as many bits as 128, 256-bit keys
actually have 2'8 times more keys. Break out your slide rules and work through an exercise to try
to answer a simple question: If you had access to the world’s fastest super-computer, how many
128-bit keys could you crack?

The world’s fastest super computer (at the time of this writing) is the Tianhe-2 in China, which does
around 34 petaflops (34 x 10" floating point operations) per second. If you assume it takes one
operation to generate a key and one operation to test it (this is an absurd and conservative assump-
tion), you can testan amazing 17 x 10'° keys per second. But a 128-bit key has 3.4 x 10% possibilities,
which means after a full year of cracking 128-bit keys, you will have exhausted 1.6 x 107 percent
of the key space. Even if you run the super-computer for 1,000 years, you will only have searched
0.0000000000016 percent of all the possible keys (and spent a fortune on electricity).

To put this simply, the probability of brute-force cracking a 128-bit key is already so infinitesi-
mally small that you could easily round off that probability to zero. But let’s be professional
here and say, “Moving from a 128-bit key to a 256 is moving the probability from really-super-duper-
infinitesimally-small to really-super-duper-infinitesimally-small x 212"

Any modern language will support basic data manipulation tasks, but scripting languages such as
Python and R appear to be used slightly more often in data analysis than their compiled counterparts (Java
and C). However, the programming language is somewhat irrelevant. The end results (and a happy analyst)
are more important than picking any “best” language. Whatever gets the job done with the least amount
of effort is the best language to use. We generally flip between Python (pandas) and R for cleaning and
converting data (or perhaps some Perl if we're feeling nostalgic) and then R or pandas for the analysis and
visualization. Learning web-centric languages like HTML, CSS, and JavaScript will help create interactive
visualizations for the web, as you'll see in Chapter 11, but web languages are not typically involved in the
preparation and analysis of data.

There is a tool worth mentioning in this section—the “gateway tool” between a text editor and program-
ming—known as the spreadsheet (such as Microsoft Excel or OpenOffice Calc). Spreadsheets allow non-
programmers to do some amazing things and get some quick and accessible results. Although spreadsheets
have their own sets of challenges and drawbacks, they also have some benefits. If the data is not too large
or complex and the task is not deciding the future of the world economy (see the following sidebar), Excel
may be the best tool for the job. We strongly suggest seeing Excel as a temporary solution. It does well at
quick one-shot tasks. But if you have a repeating analytic task or model that is used repeatedly, it’s best to
move to some type of structured programming language.

As a cleaning tool, spreadsheets seem like a very good solution at first (especially for those who have
developed some skill with them). But spreadsheets are event-driven, meaning they work through clicking,
typing, and dragging. If you want to apply a conversion to a row of data, you have to click to select the row
and apply a conversion. This works for small data sets or quick tasks, but trust us, you will (more often than

THE JOURNEY TO DATA-DRIVEN SECURITY

you think) have to go back to the source data and re-clean it. Another day of log files needs to be processed,
or you realize you should have pulled another relationship from the source data, or (gasp) you identify an
error in the cleaning process. Something, somewhere, and probably more than once, will cause you to go
back to the source and repeat the data cleaning and conversion. Leveraging a spreadsheet means a lot
more clicking. Writing a script, on the other hand, enables an easy, flexible, and consistent execution of
the cleaning process each time it runs.

The Limits of Spreadsheets

On January 16™, 2013, J.P. Morgan issued a report to shareholders titled “Report of JPMorgan Chase
& Co. Management Task Force Regarding 2012 CIO Losses” (full citation in Appendix B) in which they
investigate the loss of $6 billion in trades. They perform a detailed examination of the breakdown and
describe the spreadsheet as a contributory factor. “During the review process, additional operational
issues became apparent. For example, the model operated through a series of Excel spreadsheets,
which had to be completed manually, by a process of copying and pasting data from one spread-
sheet to another.” They uncovered a huge challenge with spreadsheets, which is the consistency
and integrity of the computations made in the data. “Data were uploaded manually without suf-
ficient quality control. Spreadsheet-based calculations were conducted with insufficient controls
and frequent formula and code changes were made.” They continue on and label the Excel-based
model as “error prone” and “not easily scalable.” As with any complex system, catastrophe requires
multiple failures.? We cannot point to their use of an “error-prone” spreadsheet as the primary cause,
but certainly it appears to have contributed in the loss of $6 billion.

2 See Richard Cook’s “How Complex Systems Fail” for a brief and wonderful discussion of this topic:
http://www.ctlab.org/documents/How%20Complex%20Systems%20Fail.pdf

After the data is ready for analysis, you can continue to benefit from understanding how to program.
Many of the languages mentioned here have robust data analysis features built into (or onto) them. For
example, statisticians developed the R language specifically for the purpose of performing data analysis.
Python—with the addition of packages like NumPy, SciPy, and pandas—offers a rich and comparable data
analysis environment. But, preparing and analyzing the data is not enough. You also need to communicate
your results, and one of the most effective methods for that is data visualization (covered in several chapters
of this book). Again, Excel can produce graphics. With judicial modification of the default settings, you can
get good visualization with Excel. However, in our opinion, flexibility and detail in data visualization are
best achieved through programming. Both Python and R have some feature-rich packages for generating
and exporting data visualization. In many cases, however, you can combine all these steps and functions
in the same script. You can write one script to grab the source data, manipulate/clean it, run the analysis
on it, and then visualize the results.

Data Management

If there is one skill you can hold off on learning, it's data management, but you can put it off only for a
while. Within information security (as well as most other disciplines), your data can quickly multiply. If you

Gathering Data Analysis Skills

don't learn to manage it, the strain of ever-expanding data will take its toll on efficiency and effectiveness.
As mentioned, you can leverage spreadsheets for the simple analyses. You will quickly outgrow that stage
and should be resolved to expanding your repertoire to programming languages and simple formats like
comma-separated value (CSV) files. At this point, you may see some benefits by moving your data into a
database, but it still may not be necessary.

As the data repository grows, you reach a tipping point, either through the complexity of the data or
the volume of data. Moving to a more robust data management solution becomes inevitable. There is a
misconception that the large relational databases of yesteryear are reserved for the biggest projects, and
that is not a helpful mindset. Many of the database systems discussed in Chapter 8 can be installed on a
desktop and make the analysis more efficient and scalable. Once your data management skills become more
natural, such skill can benefit even the smallest projects. We've installed a local database and imported the
data even for some smaller one-time projects.

When discussing data management skills, we naturally focus on databases. You want to have enough
knowledge to install a relational or NoSQL database to dump the data in and leverage it for analysis.
However, data management is more than databases. Data management is also about managing the quality
and integrity of the data. You want to be sure the data you are working with isn't inadvertently modified
or corrupted. [t doesn’t hurt to have some checks that keep an eye on data quality and integrity, especially
over long-term data analysis efforts (metrics). It's like the concept of unit tests in software development
where the smallest piece of testable code in an application is isolated from the larger body of code and
checked to determine whether it behaves exactly as expected. You may want to automate some data
integrity checking after any new import or conversion, especially when the data analysis has sufficient
efficacy to be performed regularly and used as a metric or control.

Finally, we work in information security, and we'd be negligent if we didn't talk about the security of
the data for a bit here. Take a step back for some context first. There seems to be a pattern repeating: Some
passionate need drives a handful of geniuses to work their tails off to produce an elegant solution, but the
security of their system is not their primary concern; meeting the functional need is. As an example, when
the UNIX platform was first developed it was intended to be a shared (but closed) platform for multiple
users who use the platform for programs they would write. As a result, most of the authentication and
permissions were constructed to protect the system from unintentional errors in their programs, and not
from malicious users.3 The point here is that “young” technology typically places an emphasis on functional-
ity over security.

With the fast-paced and passionate push of the current data revolution, we are definitely seeing more
emphasis on functionality and less on security. New data management platforms such as Hadoop and
NoSQL environments were designed to solve a data problem and were not designed (initially) with many
of the security policies or compliance requirements of most enterprise networks (though they are quickly
learning). The result is a distributed computing platform with some difficult security challenges. The authen-
tication and security features are far better than the early days of UNIX; they typically do not compare to
the security and features of the more established relational databases. We won't focus too much on this
point, but whatever data management platform is chosen, don’t assume the security is built in.

3 For an example of the focus on functionality and preventing error over stopping misuse, early authentication systems
would store the user passwords in a clear text file. See Morris and Thompson, 1979 (full reference in Appendix B) for a
discussion.

THE JOURNEY TO DATA-DRIVEN SECURITY

Statistics

Perhaps we are a little biased here, but picking up some statistics skills willimprove almost every aspect of
your life. Not only will it change the way to see and learn from the world around you, but it will also make you
more interesting and probably even a bit more attractive to those around you. Seriously, though, statistics
(we are discussing it as a single skill here) is a very broad topic and quite a deep well to drink from. We use
the term to describe the varied collection of techniques and methods that have evolved (and continue to
evolve) to attempt to learn from data. These skills include the classic statistical approaches as well as newer
techniques like data mining and machine learning. Luckily, you can learn from the successes and mistakes
of the generations of rather brilliant people who have worked with data very similar to ours, even if their
calculations were performed with pencil and paper versus silicon circuits. Regardless of your personal belief
in the utility of statistics and data analysis, when it comes to information security, there is a vast amount of
evidence showing its significant influence and benefit to almost every other field of science.

Aside from the obvious “learning from data” approach, there are a few perhaps more subtle reasons to
focus on improving your statistics skills:

e Even though data never lies, itis far too easy to be tricked by it—As heuristic beings, we
are capable of pulling out patterns and meaning from the world around us. The ability to see sub-
tle connections and patterns is usually helpful, and people use that skill on a daily basis. However,
that skill can also mislead you, and you may think you see patterns and connections when none
exist. A good understanding of statistics can raise awareness of this, and its tactics can help mini-
mize incorrect conclusions.

e Even though we just said that data never lies, the way it's generated and collected can
create deceptive conclusions—Consider that asking for the opinions of those around us may
mistakenly confirm our own opinions, because we naturally surround ourselves with like-minded
people. Data itself may not be deceptive, butit’s quite easy to think the data means something it
does not, as in the story of the 1936 election polling (see the following sidebar).

Statistics is not just a collection of tools; it is a collection of toolboxes each with their own set of tools.
You can begin with descriptive statistics, which attempt to simplify the data into numbers that describe
aspects of the data. For example, you can calculate the center of the data by calculating the mean, mode,
or median; you can describe how spread out the data is with the standard deviation; you can explain the
symmetry of the data with skew; and you can describe the width of peak with the kurtosis. However, any
time you simplify the data, you lose some level of detail and this is where visualization can serve you well.
With visualizations, you create a single representation, or message, that can contain and communicate every
data point, without simplification. Think of this type of visualization as being a “descriptive visualization”
since it is doing nothing more than simply describing the data to its viewers.

Aside from the challenge of oversimplifying, descriptive statistics is also limited to describing only
the data that you collect. It is not correct to simply scan a few systems, calculate the mean number of
vulnerabilities, and announce that the statistic describes all the systems in the environment. Inferential
statistics helps you go beyond just describing the observations and enables you to make statements about
a larger population given a smaller representative sample from that population. The key word there is
“representative.” Statistics teaches you about the “design of experiments” (thanks to Fisher and his peers)
and this will help you gather data so that you reduce the probability of being misled by it. You want to
have confidence that the samples you collect are representative of the whole. That lesson has been learned
many times in the past by a good number of people.

Gathering Data Analysis Skills

When Data Deceives

The magazine Literary Digest ran a large public opinion poll in an attempt to predict the 1936
presidential race. They gathered names from a variety of sources, including the telephone direc-
tory, club memberships, and magazine subscriptions. They ended up with more than 2 million
responses and predicted a clear winner: Alfred Landon (for those not up on their American history,
the Democratic candidate, Theodore Roosevelt, won that election, carrying 46 states). The problem
with the Literary Digest poll began long before a single response was collected or counted. Their
trouble began with where they went looking for the data. Remember the year was 1936 and the
great depression in the United States hadn't let up yet. Yet, they polled people with phones, club
memberships, and magazine subscriptions. They systematically polled the middle and upper class,
which generally leaned toward Landon, and arrived at an answer that was mathematically correct
and yet completely wrong.

The data did not lie. If they wanted to know which presidential candidate would get the most votes
among Americans with a phone, club membership, or magazine subscription, the data told an accu-
rate story. However, they weren’t looking for that story. They wanted to know about all registered
voters in the United States, but through their selection of sources they introduced bias into their
sample and drew meaning from the data that simply did not exist.

The fact that they had an unprecedented 2 million responses did not help improve the accuracy of
their poll. Gathering more data with the same systemic flaw just generates a larger sample with the
bias. To drive that point home, in the same 1936 election, a young man named George Gallup had
gathered a relatively small sample of just 50,000 voters but he applied a much more representative
sampling method and correctly predicted Franklin Roosevelt as the winner of the 1936 elections.
The Literary Digest closed its doors a few years later, but Gallup, Inc. is now an international orga-
nization, still conducting surveys and gathering data.

You should always approach statistics with a healthy degree of respect and humility. As you slide more
and more into the depths of applied mathematics, you'll realize how easy it is to find meaning where none
exists (technically called a type I error). But what is more important to understand here is that this error
can occur with or without data. Even before you fill a single cell in an Excel spreadsheet, you can make
this mistake. The best tools in the toolbox are designed to limit the chance of these types of errors, but
statistics alone is not enough. You need the combination of experience and data to decrease the chance
of being misled. Errors can and will occur even with this combination, but you can reduce the frequency of
these errors by applying the rigor and methods within statistics. Such rigor will place you in a much better
position to learn from mistakes when they do occur.

Having built up the application of statistics on a pedestal, we should point out that you can learn a lot
from data without advanced statistical techniques. Recall the “descriptive visualization” mentioned previ-
ously. Take some time to look around at many of visualizations out there; they are generally not built from
statistical models, but describe some set of data and show the relationships therein. Snow’s map of the
areas around the water pump on Broad Street in Figure 1-1 did not involve logistic regression or machine
learning; this map was just a visual description of the relationship between address and deaths. There is no
doubt that you can improve your ability to secure your information assets with simple statistical methods
and descriptive visualizations. All it takes is the patience to ask a question, gather the evidence, make sense
of it, and communicate it to others.

THE JOURNEY TO DATA-DRIVEN SECURITY

Visualization (a.k.a. Communication)

The final skill is visualization, but really it is about communication. There are multiple ways to classify
the types of visualizations out there, but for this discussion we want to talk about two general types of
visualization, which are separated by who you want to read and interpret the visualization. The distinction

we make here is quite simple: 1) visualizing for ourselves, or 2) everyone else.

For example, Figure 1-2 shows four common plots, which are automatically generated by R's 1m ()
function (for linear regression) and they are used to diagnose the fit of a linear regression model (which
you'll run in Chapter 5). Let’s face it; these plots are quite ugly and confusing unless you've learned how
to read them. We would not include these in our next presentation to the Board of Directors. This type
of visualization serves to provide information to the analyst while working with the data, or in this case

about a data model.

Residuals vs Fitted

o40
8 . 043
- o
w e o _o_ .
[] — —
= O P -
o o & o ©
w o
[i+] Bea
4 1 % -
[=]
2
8
o 490
T T T T T T
0 5000 10000 15000 20000 25000
Fitted values
Scale—Location
< |
z s 040
=1
2
2 -7 043
'8 a 00 o1 o~
N 2| ° ——
T - 2 o o
@ o & c:"’p'--
€ | B3es o
n © S & o
- [+] ” =] o
< |
= T T T T T T
0 5000 10000 15000 20000 25000
Fitted values

Diagnostic plots for regression model of bot infections

Standardized residuals

Standardized residuals

Normal Q-Q
40a
430
OO s
Mo
oo
o @ °®
248
T I T T T
-2 -1 0 1 2
Theoretical Quantiles
Residuals vs Leverage
040 3
o
o
-V o ———
s e
£3

-- Cobk_'_s’distanoe aay

T T T T T T T

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Leverage

Gathering Data Analysis Skills

These graphs are generated as a way to understand certain relationships and attributes of the model.
They communicate from the data to the analyst and are used to visually inspect for anomalies, strength
of relationships, or other aspects of the data for the purpose of understanding it better. Very little effort is
spent on making these attractive or presentable since they are part of the analysis, not the result.

The other type of visualization exists to communicate from the analyst to others and serves to explain
the story (or the lack of a story) the analyst uncovered in the data. These are typically intended to be
attractive and carry a clear message, as it is a communication tool for non-analysts. Figure 1-3 (which you'll
learn to generate in Chapter 5) is derived from the same data as Figure 1-2 but is intended for a completely
different audience. Therefore, it is cleaner and you can pull a message for each of the 48 continental states
from this one picture.

Zero Access Infections per Capita

Above
W Average

I Below

Average

Visualization for communicating density of ZeroAccess bot infections

Combining the Skills

You need some combination of skills covered in this chapter in order to make the analysis run smoother and
improve what you can learn from the data. Although we may have portrayed these skills as belonging to a
single person, that is not required. As the data grow and the demands for analysis become more embed-
ded into the culture, spreading the load among multiple individuals will help lighten the load. Moreover,
if you are just beginning to build your security data science team, you may be setting yourself up for an
impossible task if you try to find even one individual with all these skills. Take the time to talk through each
of these points with candidates to ensure there is at least some element of each of the skills discussed here.

THE JOURNEY TO DATA-DRIVEN SECURITY

Centering on a Question

While we consider data analysis to be quite fun, it is never performed for its own sake. Data analysis
is always performed within a larger context and understanding that context is the key to successful data
analysis. Losing sight of that context is like running a race without paying attention to where the finish line is.
You want to have a good concept of what you're trying to learn from the data. Therefore, every good data
analysis project begins by setting a goal and creating one or more research questions. Perhaps you have
come across a visualization or research and thought, “Yeah, but so what?” That reaction is probably caused
by the lack of a well-prepared research question in the analysis. Remember, the purpose of data analysis
is to learn from the environment; learning can be done with or without data (with varying degrees of
success). Creating and following a good research question is a component of good learning, not just of
good data analysis. Without a well-formed question guiding the analysis, you may waste time and energy
seeking convenient answers in the data, or worse, you may end up answering a question that nobody
was asking in the first place.

For example, Figure 1-4 shows the amount and categories of spam blocked at an organization during a
given month. Thanks to the logs generated by an email filtering system, it is entirely possible to collect and
show this information. However, the questions this data answers (and whatever subsequent actions it may
drive) are of little interest to the typical organization. It's hard to imagine someone looking at this graphic and
thinking, “Let’s understand why travel spam was up in December.” Outcomes like those shown in Figure 1-4
are the result of poor question selection or skipping a question altogether—data analysis for the sake
of analyzing data, which does not help to inform anyone about the environment in any meaningful way.

A good research question around spam might be, “How much time do employees spend on spam that
is not blocked by the spam filter?” Just counting how much spam is blocked has little value since it will have
no contextual meaning (nobody can internalize the effective difference between 1,000 and 5,000 spam
emails). What you want to know is the impact spam has on employee productivity. Although “productivity”
may be a challenge to measure directly, you can flip that around and just assume it is impossible to be
productive when employees are reading and deleting spam. Therefore, what you really want to measure
is the time employees spend dealing with unfiltered spam.

Now that you've framed the question like this, it's clear that you can’t look to the spam filter logs to
answer this spam-related question. You really don’t care that thousands of emails were blocked at the
perimeter or even what proportion of spam is blocked. With a research question in hand, you now know
to collect a measurement of employee time. Perhaps you can look for logs from the email clients of events
when users select the “mark as spam” option. Or perhaps, it's important enough to warrant running a short
survey in which you select a sample of users and ask them to record the amount of spam and time spent
going through it for some limited period of time. Either way, the context and purpose of the analysis is
being set by the research question, not by the availability of data.

Centering on a Question

100000
Misc

Internet
75000

Health
Other Products
50000 Education
Adult
25000 Travel
Prescriptions

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Amount of spam by category—the result of a poor research question

o

Creating a Good Research Question
Creating a good research question is relatively straightforward but requires a bit of practice, critical think-
ing, and discipline. Most research questions will serve as pivot points for a decision or action (or inaction).
Knowing the context of the result may also help determine what to collect. Going back to the spam example,
maybe you learn there is some tolerance for wasted time. If so, maybe you don’t need to how much time is
wasted, but just whether the time spent dealing with spam is simply above or below that tolerance. Planning
the analysis with that information could change how data is sought or simplify data storage and analysis.
You usually begin with some topic already in mind. Perhaps you are measuring the possible benefit from
a technical change or you are trying to protect a specific asset or data type, or simply trying to increase your
visibility into a network segment. Even if you just have a general sense of direction, you can begin by coming
up with a series of questions or things you'd like to know about it. Once you have a good list of questions,
you can whittle those down to one or just a few related questions. Now the fun really begins—you have
to make those questions objective.

THE JOURNEY TO DATA-DRIVEN SECURITY

Consider this simple example. The Human Resources department submits a proposal to post a search-
able lunch menu from the company’s cafeteria to the Internet. Although this may raise all sorts of questions
around controls, processes, and procedures, suppose the core security-oriented decision of the proposal is
limited to either allowing authentication with the corporate username and password, or investing in a more
expensive two-factor authentication mechanism. You may brainstorm a question like “How much risk does
single factor authentication represent?” Or perhaps, “How effective is two-factor authentication?” These
types of questions are really nice and squishy for the initial phase of forming a research question, but not
well suited to serious analysis. You would struggle to collect evidence of “risk” or “effectiveness” in these
questions. So, you must transform them to be more specific and measurable as an approach to inform the
decisions or actions in context. Perhaps you start by asking how many services require single-factor versus
dual-factor authentication. You might also like to know how many of those services have been attacked, and
with what success, and so on. Perhaps you have access to a honey pot and can research and create a profile
of Internet-based brute force attempts. Perhaps you can look at the corporate instance of Microsoft Outlook
Web Access and create a profile of authentication-based attacks on that asset. These are all good questions
that are very answerable with data analysis. They can produce outcomes that can help support a decision.

Exploratory Data Analysis

Now that we've explained how a good data analysis should begin, we want to talk about how things will
generally occur in the real world. It'd be great to start each day with a hot, caffeinated beverage, a clear
research question, and a bucket of clean data, but in reality you'll usually have to settle for just the hot,
caffeinated beverage. Often times, you do start off with data and a vague question like, “Is there anything
useful in this data?” This brings us back to John Tukey (remember him from earlier in this chapter?). He
pioneered a process he called exploratory data analysis, or EDA. It's the process of walking around
barefoot in the data, perhaps even rolling around a bit in it. You do this to learn about the variables in the
data, their significance, and their relationships to other variables. Tukey developed a whole range of tech-
niques to increase your visibility into and understanding of the data, including the elegantly simple stem
and leaf plot, the five-number summary, and the helpful box plot diagram. Each of these techniques
is explained or used later in this book.

Once you get comfortable with the data, you'll naturally start to ask some question of it. However, and
this is important, you always want to circle back and form a proper research question. As Tukey said in his
1977 book, “Exploratory data analysis can never be the whole story.” He refers to EDA as the foundation
stone and the first step in data analysis. He also said that, “Exploratory data analysis is an attitude, a state
of flexibility, a willingness to look for those things that we believe are not there, as well as those we believe
to be there.” With that in mind, most of the use cases in this book use exploratory analysis. We will take an
iterative approach, and you'll learn as you walk around in the data. In the end though, you need to remember
that data analysis is performed to find an answer to a question that’s worthy of asking.

Summary

The cyber world is just too large, has too many components, and has grown far too complex to simply rely
on intuition. Generations of people before us have paved the way; and with a mixture of domain expertise,
programing experience and statistics combined with data management and visualization skills, we can
improve on our ability to learn from this complex environment through the data it produces.

Recommended Reading

In the next chapter we will walk you through setting up your data analysis environment, and then
proceed into Chapter 3, where you will be guided through a gentle introduction to data analysis techniques.

Recommended Reading

The following are some recommended readings that can further your understanding on some of the topics
we touch on in this chapter. For full information on these recommendations and for the sources we cite in
the chapter, please see Appendix B.

“Conditions for Intuitive Expertise: A Failure to Disagree” by Daniel Kahneman and

Gary Klein—This dense article covers a lot of ground but gets at the heart of when and why you
should look for help in complex environments and when your expertise is enough. The references in
this paper also provide a good jumping point to answer questions about how people learn.

“How Complex Systems Fail” by Richard Cook—If you are wondering whether or not you are
dealing with complexity, this short and brilliant paper looks at qualities of complex systems and how
they fail.

Naked Statistics: Stripping the Dread from Data by Charles Wheelan—This is a great introduc-
tory book to statistical concepts and approaches, written in an easy-to-consume style and written so
that the math is not required (but it is included).

Building Your Analytics
Toolbox: A Primer on
Using R and Python for
Security Analysis

BUILDING YOURANALYTICS TOOLBOX

Before you jump right into the various use cases in the book, it's important to ensure you at least have a
basic familiarity with the two most prominent languages featured in nearly all of the scenarios: Python
(www.python.org/)and R (www.r-project .org/). Although there are an abundance of tools
available for data analysis, we feel these two provide virtually all the features necessary to help you go
from data to discovery with the least amount impedance.

A sub-theme throughout the book, and the distilled process at the heart of security data science, is idea,
exploration, trial (and error) and iteration. It is ineffective at best to attempt to shoehorn this process
into the edit/compile/run workflow found in most traditional languages and development environments.
The acts of performing data analyses and creating informative visualizations are highly interactive and
iterative endeavors. Despite all of their positive features, even standalone Python and R do not truly enable
rich, dynamic interaction with code and data. However, when they are coupled with IPython (http://
ipython.org/)andRStudio (www . rstudio. com/), respectively, they are transformed into power-
ful exploration tools, enabling rapid development and testing of everything from gnarly data munging to
generating sophisticated visualizations.

This chapter provides pointers to installation resources for each tool, introduces core features of each
language and development environment, and explains the structure of the examples you will find in the
remaining chapters of the book. Each chapter will have the following “setup” code (Listing 2-0) at the begin-
ning to ensure you have the proper environment in place to run the code examples. There are example
scripts at the end of this chapter that will help you create structured directories if you are typing as you go.

This is for the R code in the chapter

set working directory to chapter location

(change for where you set up files in ch 2)
setwd ("~/book/ch02")

This is for the Python code in the chapter

loads the necessary Python library for chdir
import os

set working directory to chapter location
os.chdir (os.path.expanduser ("~") + "/book/ch02")

Why Python? Why R? And Why Both?

A discussion of which programming language is better than another for a certain set of tasks often turns
(quickly) into a religious war of words that rarely wins converts and never becomes fully resolved. As a
security data scientist, you will find that you do not have the luxury of language bias. There will be times
when one language shines in one area while a different one shines in another, and you need the skills of a
diplomat to bring them both together to solve real problems.

We've honed in on both R/RStudio and Python/IPython/pandas in this book, as they are the two leading
data analysis languages/environments with broad similarities but also with unique elements that make
them work well for some tasks and not others. As you read about the rationale behind each choice and
as you become proficient in one or both environments, do not lull yourself into a sense of complacency.

For readers with an existing programming background, getting up to speed with Python should be
pretty straightforward and you can expect to be fairly proficient within 3—6 months, especially if you convert

Why Python? Why R? And Why Both?

some of your existing scripts over to it as a learning exercise. Your code may not be “pythonic” (that is,
utilizing the features, capabilities, and the syntax of the language in the most effective way), but you will
be able to “get useful stuff done.” For those who are new to statistical languages, becoming proficientin R
may pose more of a challenge. Statisticians created R, and that lineage becomes fairly obvious as you delve
into the language. If you can commit to suffering through R syntax and package nuances, plus commit to
transitioning some of your existing Excel workflows into R, you too should be able to hang with the cool
kidson the #rstats Twitter stream in 3—6 months.

Note

A hallmark of a good data scientist is adaptability and you should be continually scouring
the digital landscape for emerging tools that will help you solve problems. We introduce
you to some of these upstarts in Appendix A.

Why Python?

Guido van Rossum created the Python programming language in December of 1989 to solve a problem.
He and his colleagues needed a common way to orchestrate system administration tasks that could take
advantage of specific features in the operating systems they were using at that time. Although there
were existing interpreted, administrator-friendly tools and languages available, none were designed (from
Guido van Rossum’s point of view) with either the flexibility or extensibility features baked into the design
principles of Python.

Python's flexibility and extensibility (and the fact that it was free as in both “speech” and “beer”) were espe-
cially appealing to the scientific, academic, and industrial communities starting in the early 2000s. Innovators
in these fields quickly adapted this general-purpose programming language to their own disciplines to solve
problems easier than—ostensibly—the domain-specific languages available at that time.

You have to search long and hard to find a file-type Python cannot read, a database Python cannot
access, and an algorithm Python cannot execute. As you familiarize yourself with the language, Python’s
ability to acquire, clean, and transform source data will quickly amaze you, but those tasks are just the early
steps in your analysis and visualization process. It wasn’t until 2008 that the pandas (http://pandas
.pydata.org/) module was created by AQR Capital Management to provide “Pythonic” counterparts
to the analytical foundations of languages like R, SAS, or MATLAB, which is where the “real fun” begins.

Although Python's interpreter provides an interactive execution shell, aficionados recognized the need
to extend this basic functionality and developed an even more dynamic and robust interactive environ-
ment—IPython—to fill the need. When coupled with the pandas module, budding data analysts now have
a mature and data-centric toolset available to drive their quest for knowledge.

Why R?

Unlike Python, R’s history is inexorably tied to its domain specific predecessors and cousins, as it is 100
percent focused and built for statistical data analysis and visualization. Although it too can access and
manipulate various file types and databases (and was also designed for flexibility and extensibility), R’s
lisp- and S-like syntax plus extreme focus on foundational analytics-oriented data types has kept it, mostly,
in the hands of the “data crunchers.”

BUILDING YOURANALYTICS TOOLBOX

Base R makes it remarkably simple to run extensive statistical analyses on your data and then generate
informative and appealing visualizations with just a few lines of code. More modern R libraries such as
plyr and ggplot2 extend and enhance these base capabilities and are the foundations of many of
mind- and eye-catching examples of cutting-edge data analysis and visualization you have no doubt come
across on the Internet.

Like Python, R also provides an interactive execution shell that has enough basic functionality for general
needs. Yet, the desire for even more interactivity sparked the development of RStudio, which is a combina-
tion of integrated development environment (IDE), data exploration tool, and iterative experimentation
environment that exponentially enhances R’s default capabilities.

Why Both?

If all you have is a hammer, everything starts looking like a nail. There are times when the flexibility of a
general-purpose programming language comes in very handy, which is when you use Python. There are
other times when three lines of R code will do something that may take 30 or more lines of Python code
(even with pandas) to accomplish. Since your ultimate goal is to provide insightful and accurate analyses
as quickly and as visually appealing as possible, knowing which tool to use for which job is a critical insight
you must develop to be as effective and efficient as possible.

We would be a bit dishonest, though, if we did not concede that there are some things that Python can
do (easily or at all) that R cannot, and vice-versa. We touch upon some of these in the use cases through-
out the book, but many of the—ah—"learning opportunities” will only come from performing your own
analyses, getting frustrated (which is the polite way of saying “stuck”), and finding resolution by jumping to
another tool to “get stuff done.” This situation comes up frequently enough that there is even an rJython
package for R that lets you call Python code from R scripts, and rpy and rpy2 modules for Python that
let you call R code from Python scripts.

By having both tools in your toolbox, you should be able to tackle most, if not all, of the tasks that come
your way. If you do find yourself in a situation where you need functionality you don’t have, both R and
Python have vibrant communities that are eager to provide assistance and even help in the development
of new functions or modules to fit emerging needs.

Jumpstarting Your Python Analytics
with Canopy

It is possible to set up an effective and efficient installation of Python, IPython, and pandas from the links
we've provided, especially if you are already familiar or proficient with Python; however, we don’t recom-
mend it. For those new to Python, the base installation leaves you with the core interpreter and extensive set
of built-in, standard libraries. You can think of it as a having an inexpensive blank canvas and introductory
set of paints and brushes. You'll need better materials to create a work of art, and that’s where the enhanced
statistics, computational and graphing libraries come in. Even the most stalwart Python aficionado can find
it challenging to manage dependencies and updates for the numerous necessary components. This can
waste hours of your time. This is especially true if you have to manage analytics processes across multiple
operating systems and environments.

Jumpstarting Your Python Analytics with Canopy

To facilitate both ease of installation and maintenance, we highly recommend using the freely avail-
able Enthought Canopy Python data analysis environment (www . enthought . com/products
/canopy /). Canopy works on Linux, Microsoft Windows, and Mac OS X; has a built-in Python integrated
development environment (IDE); incorporates a meta-package manager that will help you keep current
with changes in every dependent package and module; and also comes with an IPython console. For those
working in organizations that shy away from open source solutions, Enthought also offers commercially
supported options for Canopy.

Given that there is a comprehensive installation, setup, and update guide available (http://docs
.enthought .com/canopy/quick-start.html), we will not go over step-by-step instruc-
tions on how to install Canopy for each platform, but we strongly recommend reviewing the documenta-
tion before attempting any of the Python examples in the book. Once the base installation is complete,
getting started should be as straightforward as opening up the Canopy application, which will display the
welcome screen (see Figure 2-1).

One of the first steps you should perform is to instruct Canopy to display all images inline within the
IPython console. This is an optional step, but it will help keep all output self-contained within the Canopy
environment. You can change this setting once you have an open Canopy editor session by going into the
Preferences window, finding the Python tab, and selecting the Inline (SVG) option for the PyLab Backend
preference (see Figure 2-2).

To validate that your environment is set up properly, run the following code in the IPython console
area in the editor:

import pandas as pd

import numpy as np

np.random.seed (1492)

test df = pd.DataFrame({ "varl": np.random.randn(5000) })
test df.hist ()

and verify that it produces the output shown in Figure 2-3. If it does, you have the basic environment
installed and are ready to start working through the data analysis examples. If the bar chart is not displayed,
you may need to check your installation steps or verify that you have the proper graphics display options
mentioned earlier.

Once everything is working properly, you should carve out 10 minutes to read through “Learn Python
in 10 Minutes” (www.stavros.io/tutorials/python/) by Stavros Korokithakis, if you are not
familiar with Python, and then spend 10 additional minutes to go through the “10 Minutes to Pandas”
tutorial (http://pandas.pydata.org/pandas-docs/dev/10min.html) to learn a bit
more about the pandas data analysis module.

Understanding the Python Data Analysis and Visualization Ecosystem
Although there are scores of libraries available for Python, a few stand out when it comes to crunching
data. We call these libraries an “ecosystem” because each library is developed and supported by a different
organization, community, or individual. They coordinate with each other, but the coordination is loose.

BUILDING YOURANALYTICS TOOLBOX

000 Welcome to Canopy
pp— Hi, welcome to Canopy!
CANOPY Log in to your Enthought account or ereate one.

e
++
o

hsf =

Editor Package Manager Doc Browser

Recent files

Mo recent filas. Restore previous session G

Open an existing file — i

Varsion: 1.0.3.1262
No updates found.

Canopy welcome screen

Here are some libraries that you will find yourself using in nearly every project:

® NumPy (www . numpy . org/)—A library providing foundational capabilities for creating multi-
dimensional containers of generic data, performing a wide range of operations on data and gen-
erating random numbers. It also implements the capability to “broadcast” operations to Python
objects, which can make for succinct and highly efficient code.

o SciPylibrary (www. scipy.org/scipylib/index.html)—Built on top of NumPy, this
library makes quick work of array-oriented operations and provides a facility to expand NumPy’s
“broadcast” operations to other types of data elements in Python; it also provides additional
statistical operations.

Jumpstarting Your Python Analytics with Canopy

e Matplotlib (http://matplotlib.org/)—The most powerful and commonly used library
to turn your data into production-quality images in Python.

e pandas (http://pandas.pydata.org)—Alibrary providing high-performance, easy-to-
use data structures and data analysis tools; pandas introduces the Data . Frame typeinto the
Python namespace, which we discuss in more detail in the “Introducing Data Frames” section later
in the chapter. Although this may cause some die-hard Python folks to cringe, pandas, in essence,
makes Python more like R and should make it easier for you to jump between languages.

These modules, combined with IPython, are sometimes referred to the core components of the SciPy
stack (which is confusing, since it contains the SciPy library). You can read more about the stack at
www.scipy.org/.

0.0.6 W Editor - Canopy
= | General Editor
0 Kernel options (require kernel restart) i
Filter: [All Supportec Use PylLab: [
[| Prompton exit: M
> .
] Recent Files PyLab backend: | Inline (SVG) A
Frontend options
Theme: | Dark background o
!
imputer
[}
Cancel | [OK |
— — S —— —— T
Cursor pos 111 Python : 2

Canopy IDE with preferences open
As you make your way through this ecosystem, you will notice the following code pattern emerge:

import numpy as np

import scipy as sp

import matplotlib as mpl

import matplotlib.pyplot as plt
import pandas as pd

BUILDING YOURANALYTICS TOOLBOX

In [1]: import pandas as pd
...: import numpy as np
np.random. seed(1492)
test_df = pd.DataFrame({ "varl": np.random.randn(5@28) 1)
test_df.hist()

out[1]: array([[<matplotlib.axes.AxesSubplot object at @x7e@cbbe=]],
dtype=object)

wvarl
1800 ;

1600

1400

1200

1000

800

600

400

200

Test IPython console output

The import statement loads the functions and variables of the Python code in those libraries and makes
their names and overall functionality available in the current Python working session. The as component
of the statement provides an abbreviated reference for the functions, objects, and variables in the module.

Since you'll be using many of the components of each of the modules in the SciPy stack on a regular
basis, you will save time and typing if you create a text file to use as a basic template and include these
importsand other (future) much reused code built into it.

You will, of course, use other packages for connecting to databases, reading from files, and performing
other functions and you can burn countless hours perusing all the nifty modules at the Python Package
Index (PyPl), https://pypi.python.org/pypi, butthe ones associated with the SciPy stack will
become familiar and regular companions on your data science journey.

Jumpstarting Your Python Analytics with Canopy

Python “Gotchas”

There are two features of Python that are liable to both frustrate and perhaps become problematic
for new users. The first “gotcha” is whitespace. Spaces are significant in Python code. There are no
{ } braces or begin/end pairs to signify a block of code. You must use consistent indentation to
identify groups of statements that will execute together. Inconsistency will result either in error
messages from the interpreter or cause your code to fail or just not work as expected. Most modern
text editors or IDE can be configured to take care of this for you.

The second “gotcha” is the lack of a requirement to declare variables before using them. Initializing
avariable named breaches to some value then inadvertently referring to it later as breached may
not throw an error in the interpreter, but will most assuredly generate unexpected output.

Canopy’s package manager (http://docs.enthought.com/canopy/quick-start/
package manager.html) makes it very easy to keep the core Python installation and all associated
packages updated and current. If you've chosen the manual installation route, you should rely on the pack-
age manager of your operating system for the base Python interpreter installation. Updating the individual
add-on modules can be accomplished with the following short Python script:

import pip from subprocess

import call

for distributions in pip.get installed distributions():
call ("pip install --upgrade " +
distributions.project_name, shell=True)

A Word about Python Versions

The Python examples in this book were created under Python 2.7. At the time of this writing, Canopy
also uses Python 2.7. There are currently two major production versions of Python, 2.7.x and 3.3.x.
Python 3 introduced numerous changes into the default behavior of Python 2.7, and a good number
of packages have updated to be compatible with the newer version. However, many packages are
still compatible only with Python 2.7. The stability and ubiquity of Python 2.7 make it a good choice
to begin exploring Python for data analysis.

For more information on the changes between Python 2.7 and Python 3.3 refer to “What’s New In
Python 3.0" (http://docs.python.org/3/whatsnew/3.0.html).

Setting Up Your R Environment

To build your R/RStudio environment, you will need to download and install R (http://cran
.rstudio.com/), and then do the same for RStudio (www.rstudio.com/ide/download/).

BUILDING YOURANALYTICS TOOLBOX

Both links provide full installation details for Linux, Windows, and Mac OS X systems, so we won't delve
into the minutiae in this section. You do, however, need to make a choice when you install RStudio, as it
comes in two flavors: Desktop and Server. Both provide the same core features:

® Built-in IDE

® Data structure and workspace exploration tools
® Quickaccess to the R console

® Rhelpviewer

® Graphics panel viewer

® File system explorer

® Package manager

® Integration with version control systems

The primary difference is that one runs as a standalone, single-user application (RStudio Desktop) and
the other (RStudio Server) is installed on a server, accessed via browser, and enables multiple users to take
advantage of the compute infrastructure. If you are not familiar with R or RStudio, begin by downloading
and installing RStudio Desktop. (All examples in this book involving RStudio assume you are working in
the Desktop version.)

Note

For those of you limited to working with commercially supported tools, Revolution Analytics
(www.revolutionanalytics.com/support/) provides commercial offerings
and technical support for R.

Once everything is installed, open RStudio and verify that you see the default workspace, which should
look similar to Figure 2-4.

If all is working correctly, you should take some time to walk through “A (Very) Short Introduction
to R” by Paul Torfs and Claudia Brauer (http://cran.r-project.org/doc/contrib/
Torfs%2BBrauer-Short-R-Intro.pdf). It will run through just enough of the basics of the R
language and RStudio environment to make you dangerous.

Although you can use the built-in package manager with RStudio to install packages, you will eventually
come to the realization that using the console method is much more convenient. To get familiar with this pro-
cess right away, you should install the ggp 1ot 2 package, which is the primary graphics library used in the
book’s examples. Installation is as straightforward as entering the following into the RStudio console pane:

> install.packages ("ggplot2")
Installing package(s) into '/Library/Frameworks/R.framework/

Jumpstarting Your Python Analytics with Canopy

Versions/3.0.0/Resources/library’

(as 'lib' is unspecified)

trying URL 'http://cran.mirrors.hoobly.com/bin/macosx/leopard/
contrib/3.0.0/ggplot2 0.9.3.1.tgz"'

Content type 'application/x-gzip' length 2659920 bytes (2.5 Mb)
opened URL

downloaded 2.5 Mb

The downloaded binary packages are in
/var/folders/qg/vmtfcvlj7vjfqg p5zw8emk7mxkhymk/T/
/RtmpiZ5FD3/downloaded packages

AN RStudio
ol-| & -

3 Project: (None) =

Console Workspace History
#load~ | [Savev | #ImportDataset ¥ Clear All
R version 2.15.@ {2@12-83-3@)
Copyright {C) 2812 The R Foundation for Statistical Computing
ISBN 3-000051-07-8
Platform: x86_64-apple-darwing.8.@/x86_64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

‘citation(}' on how te cite R or R packages in publications.
Files Plots Packages Help

Type ‘demo()' for some demos, 'help{)' for on-line help, or @ | NewFolder | @ Delete | " Rename | ¥ More~

‘help.start()' for an HTML browser interface to help.

O 42 Home
Type 'q()' to quit R.

 Name Size Modified
| Applications

v
O

Il Desktop

] @ (

Documents

| Downloads

_l Dropbox

Il Library

A !

I Movies

| Music

3 B3

]l Pictures

I |

| Projects v

RStudio’s default workspace

BUILDING YOURANALYTICS TOOLBOX

Run the following code to verify that ggplot2 has been installed correctly and to ensure your R/
RStudio environment is functional:

library (ggplot2)

set.seed(1492)

test.df = data.frame(varl=rnorm(5000))

ggplot (data=test.df) + geom histogram(aes (x=varl))

If there are no errors and you see the bar chart in Figure 2-5, your environment is ready to run through
the examples in the book. If you do encounter errors, try starting the standalone R (not RStudio) application,
re-install the ggplot2 package in that R console, and execute the bar chart code in that environment. If
that works, try uninstalling and re-installing RStudio to fix the errors.

500 -

400 -

300 -

count

200 -

100 -

vari

Test R/RStudio output

Like Python, R has a vast repository of useful modules that can simplify many tasks. We will introduce
a few of them in the coming chapters, but you should also peruse the Comprehensive R Archive Network

(CRAN) (http://cran.r-project.org/web/packages/)toseethe breadth and depth covered
by a host of contributors.

Introducing Data Frames

A Word about R Versions

The Rexamplesin this book were created under R version 3.0. Some package managers may still have
R version 2.15 as the default version. It is recommended that you install R from the sources identi-
fied in this chapter to ensure maximum compatibility with the packages we use in later chapters.

Introducing Data Frames

If you are coming from another programming language you should have a basic understanding of general
data types such as strings, integers, and arrays. R and Python offer the standard set of data types, but both
have one data type in common—the data frame—which truly gives them power. On the surface, a data
frame is just a way to hold tabular data (the type of data you see organized in a typical Excel spreadsheet)
and may feel like a two-dimensional (2D) array. If you dig a bit deeper, though, you will find that these
data frames are really an all-in-one combination of a database table, matrix, 2D array, and pivot table with
many additional time-saving features.

Much like a database table, each column in a data frame has a column name and holds elements of
the same type of data. You can perform operations on whole columns, rows, or subsets of each. Adding,
merging, flattening, expanding, changing, deleting, and searching for data are all—usually—one-line
operations in both languages, as are methods to read and write the contents of data frames to and from
files. In essence, Python and R achieve this expressive power by putting intelligence into the data structure
and the functions that operate on them. In contrast, other programming languages have less sophisticated
data structures, meaning you need to write your own code and create your own data structures to achieve
similar results.

The following code (Listings 2-1 and 2-2) provides a compact overview of data frame operations on
both Rand Python, respectively, but it is still highly recommended that you check out the aforementioned
introductory resources before moving into Chapter 3. As indicated in the Introduction, you can find all code
on the book’s companion website at www .wiley.com/go/datadrivensecurity.

Listing 2-1

R Data Frame Example

create a new data frame of hosts & high vuln counts

assets.df <- data.frame(
name=c ("danube", "gander", "ganges", "mekong", "orinoco"),
os=c ("W2K8", "RHEL5", "W2K8", "RHEL5", "RHEL5") ,
highvulns=c(1,0,2,0,0))

take a look at the data frame structure & contents
str (assets.df)

'data.frame': 5 obs. of 3 variables:
##S name : Factor w/ 5 levels "danube","gander",..: 1 2 3 4 5
$ os : Factor w/ 2 levels "RHEL5","W2K8": 2 1 2 1 1

(continues)

BUILDING YOURANALYTICS TOOLBOX

(continued)
$ highvulns: num 1 0 2 0 0

head (assets.df)

name os highvulns
1 danube W2K8 1
2 gander RHELS5 0
3 ganges W2K8 2
4 mekong RHELS5 0
5 orinoco RHEL5 0

show a "slice" just the operating systems

by default R creates "factors" for categorical data so
we use as.character() to expand the factors out

head (assets.df$os)

[1] W2K8 RHEL5 W2K8 RHEL5 RHEL5S

Levels: RHEL5 W2K8

add a new column

assets.df$ip <- c("192.168.1.5","10.2.7.5","192.168.1.7",
"10.2.7.6", "10.2.7.7")

extract only nodes with more than one high vulnerability

head (assets.df [assets.dfShighvulns>1,])

name os highvulns ip

3 ganges W2K8 2 192.168.1.7

create a 'zones' column based on prefix IP value
assets.df$zones <-
ifelse(grepl (""192",assets.df$ip), "Zonel", "Zone2")

take a final look at the dataframe
head (assets.df)

H## name os highvulns ip zones
1 danube W2K8 1 192.168.1.5 Zonel
2 gander RHELS5 0 10.2.7.5 Zone2
3 ganges W2K8 2 192.168.1.7 Zonel
4 mekong RHELS5 0 10.2.7.6 Zone2
5 orinoco RHELS5 0 10.2.7.7 Zone2

Listing 2-2

Python (pandas) DataFrame Example

import numpy as np

import pandas as pd

create a new data frame of hosts & high vuln counts

assets df = pd.DataFrame({
"name" : ["danube", "gander", "ganges", "mekong", "orinoco"],
"os" : ["W2K8","RHELS5","W2K8", "RHELS5", "RHEL5"]

Introducing Data Frames

(continued)
"highvulns" : [1,0,2,0,0]

1)

take a look at the data frame structure & contents
print (assets_df.dtypes)

highvulns inté64
name object
os object

dtype: object

assets_df.head()
H## highvulns name os

0 1 danube W2K8
1 0 gander RHEL5
#H# 2 2 ganges W2K8
3 0 mekong RHEL5
4 0 orinoco RHELS

show a "slice" just the operating systems
assets_df.os.head()

0 W2K8
1 RHELS5
2 W2K8
3 RHELS
4 RHELS5

Name: os, dtype: object

add a new column
assetsidf['ip'] = ["192.168.1.5","10.2.7.5","192.168.1.7",
"10.2.7.6", "10.2.7.7" 1

show only nodes with more than one high vulnerability
assets_df [assets_df.highvulns>1] .head()
highvulns name os ip
2 2 ganges W2K8 192.168.1.7

divide nodes into network 'zones' based on IP address
assets_df['zones'] = np.where(
assets_df.ip.str.startswith("192"), "Zonel", "Zone2")

get one final view
assets_df .head ()

highvulns name os ip zones
0 1 danube W2K8 192.168.1.5 Zonel
1 0 gander RHEL5 10.2.7.5 Zone2
2 2 ganges W2K8 192.168.1.7 Zonel
3 0 mekong RHELS 10.2.7.6 Zone2
#4# 4 0 orinoco RHELS5 10.2.7.7 Zone2

BUILDING YOURANALYTICS TOOLBOX

The data frame is the core data structure you will find yourself using in either language for most
analytics projects. It lets you focus on what you want to do with the data versus how to do it. This is one
of the core differences between domain-specific and general-purpose programming languages. If you
were still on the fence about switching to R or Python for performing data analysis, hopefully this brief
introduction to the power of each language has helped convince you of their efficacy.

Organizing Analyses

Finally, as you prepare to jump into data-analysis projects, it's a good idea to set up an area where you
organize input data, analysis scripts, output (visualizations, reports, and/or data), and any supporting
documentation. For the purposes of the examples in this book, we use the following directory structure:

/book/ch02
|-R
| -data
| -docs
| -output
| -python
| -support
| -tmp

Like most elements of programming, there is no single best way to set up this structure, but you should
strive to find one that works for you and stick with it. A great way to do that is to take a lesson from modern
web framework builders and use a simple setup shell script that builds the structure for you. We've provided
example shell scripts in Bourne shell for Mac OS X/Linux and in the Windows CMD shell (Listings 2-3 and 2-4):

Listing 2-3

Sample Analysis Preparation Script (Bourne Shell Script)
#!/bin/sh

#

prep: prep analytics directory structure

#

usage: prep DIRNAME

#

lf [n$#n == "Q"],. then
echo "ERROR: Please specify a directory name"
echo
echo "USAGE: prep DIRNAME"

fi

DIR=S$1

if [! -d "${DIR}" 1; then

(continues)

Summary

(continued)
mkdir -p ${DIR}/R \
${DIR}/data \
${DIR}/docs \
${DIR}/output \
${DIR}/python \
${DIR}/support \
${DIR}/tmp
> ${DIR}/readme.md
1s -1R ${DIR}
else
echo "Directory "${DIR}" already exists"
fi

REM Listing 2-4

REM Sample Analysis Preparation Script (Windows Shell Script)
SET PDIR=%1

IF EXIST %%PDIR GOTO HAVEPDIR

MKDIR %%PDIR

MKDIR %%PDIR\R
MKDIR %%PDIR\data
MKDIR %%$PDIR\docs
MKDIR %%$PDIR\output
MKDIR %$%PDIR\python
MKDIR %%PDIR\support
MKDIR %%PDIR\tmp

<NUL (SET/P Z=) >%%PDIR\readme.md
DIR %%PDIR

:HAVEPDIR

ECHO "Directory exists"

You now only need to type prep NAME whenver you want to start a new project (so, for this project,
youtypeprep ch02).Asyoudevelop yourown stylesand patterns, you can expand this script to include
the generation of various templates and even initialization of source code repositories. Once the structure
is in place, it's time to retrieve, explore, and analyze some data!

Summary

Python and R are key components of a security data scientist’s toolbox. Python’s similarity to existing
scripting languages; its large and supportive community; its diverse data manipulation capabilities; and
recent additions of robust statistics, graphics, and computational packages make it an excellent choice for
many kinds of analytics work. R’s statistical foundations, equally large and supportive contributor base,
robust library of packages, and growing popularity within the analytics community make it one of the “must
learn/use” languages for data science tasks. While it's possible to work with standard/base installations

BUILDING YOURANALYTICS TOOLBOX

of each language, using specialized development environments will enable you to focus on your analysis
work instead of system administration tasks.

The “data frame” is an “intelligent data structure” that is behind much of the power of both R and
Python’s data crunching capabilities. It combines the capabilities of a database, pivot table, matrix, and
spreadsheet, and we'll be introducing more features of data frames in the next chapter as we walk you
through the basic framework of a security data analysis project.

Recommended Reading

The following are some recommended readings that can further your understanding on some of the topics
we touch on in this chapter. For full information on these recommendations and for the sources we cite in
the chapter, please see Appendix B.

The R Book by Michael J. Crawley—One of the most comprehensive R texts that provides exam-
ples but also serves as a complete R reference book.

Learning R by Richard Cotton—This provides an excellent conversational introduction to the R
programming language through numerous step-by-step examples.

Learn Python the Hard Way by Zed A. Shaw—Pressure makes diamonds out of coal, and the
disciplined nature of the text and exercises requiring actual typing to complete will have you going
from “0” to “Python” in short order if you can stick with it.

Learning Python by Mark Lutz—If the brutal nature of Learn Python the Hard Way is a bit
much for you, this text offers a more traditional approach to getting acclimated to the Python
ecosystem.

Learning the“Hello World"
of Security Data Analysis

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

If you've ever tried to learn a new programming language there’s a good chance you started off with a
“Hello World” example that quickly introduces basic language structure and code execution. The immediate
sense of accomplishment as the syntax is verified by the compiler/interpreter and the familiar two-word
output is displayed becomes a catalyst for the notion that, soon, you shall have the ability to bend this
new language to your will.

This chapter takes the “Hello World” concept and expands it to a walk-through of a self-contained,
introductory security data analysis use case that you will be able to follow along with, execute, and take
concepts from as you start to perform your own analyses. There are parallel examples in Python and R to
provide a somewhat agnostic view of the similarities, strengths, and differences between both languages
in a real-life data analysis context. If you're not familiar with one or both of those languages, you should
read Chapter 2 and at least skim some of the external resources referenced there.

This is a good place to reinforce the recommendation to use IPython Notebooks or RStudio for your
analyses and exploration because they provide very robust and forgiving environments, which means you
will be much more productive compared to the alternative of writing, saving, and executing scripts within
the bare interpreter shells. Remember, all the source code, sample data, and visualizations are on the book’s
website (www.wiley.com/go/datadrivensecurity), sothere’s no need for transcription. You
can just cut/paste and focus on the flow and concepts presented in the examples. Listings 3-0 and 3-1
provide you with the setup code for this chapter.

This is for the R code in the chapter

set working directory to chapter location

(change for where you set up files in ch 2)

setwd ("~/book/ch03")

make sure the packages for this chapter

are installed, install if necessary

pkg <- c("ggplot2", "scales", "maptools",
"sp", "maps", "grid", "car")

new.pkg <- pkgl! (pkg %in% installed.packages())]

if (length (new.pkg)) ({

install.packages (new.pkg)

This is for the Python code in the chapter

loads the necessary Python library for chdir
import os

set working directory to chapter location

(change for where you set up files in ch 2)
os.chdir (os.path.expanduser ("~") + "/book/ch03")

Solving a Problem

Chapter 1 emphasized the criticality of developing a solid research question before going off and “playing
with data.” For this “Hello World” example, you are working on a problem given to you by the manager

Getting Data

of the Security Operations Center (SOC). It seems the SOC analysts are becoming inundated with “trivial”
alerts ever since a new data set of indicators was introduced into the Security Information and Event
Management (SIEM) system. They have asked for your help in reducing the number of “trivial” alerts with-
out sacrificing visibility.

This is a good problem to tackle through data analysis, and we should be able to form a solid, practical
question to ask after we perform some exploratory data analysis and hopefully arrive at an answer that
helps out the SOC.

Getting Data

We are entering the age of data in information security. The challenge is no longer where to get data
from, but what to do with it. And, the kind of information in each data set will drive the type of research
you perform.

For this example, the SOC chose to integrate AlienVault's IP Reputation database (http://labs
.alienvault.com/labs/index.php/projects/open-source-ip-reputation
-portal/download-ip-reputation-database/)into the SIEM. AlienVault itself develops
0SSIM—an open source security information manager—and a proprietary unified security manage-
ment (USM) product, both of which make use of this freely available data set that contains information on
various types of “badness” across the Internet. AlienVault provides this data in numerous formats free of
charge. The version you work with is the OSSIM Format (http: //reputation.alienvault.com/
reputation.data)since it provides the richest information of all the available formats.

Note

AlienVault updates their IP reputation data set hourly and produces a companion “revision”
file (http://reputation.alienvault.com/reputation.rev), enabling
you to ensure you are working with the latest data set or keep a history of data sets. If you
plan on performing a long term analysis of this data set—often referred to as a longitu-
dinal study—it’s a good idea to script some code to perform this check to see if it's time
to download a new one, even in scheduled jobs.

When performing an exploratory analysis or getting a first look at a data set, you might find it helpful to
perform an initial download via browser (or use wget/curl if you are handy on the command line). The
AlienVault database hovers near 16MB, so it may take a minute or two to download on slower connections.
When you download the AlienVault IP Reputation database and examine the first few data elements, you
can get an idea of the contents and format, which will come in handy when you start to read in and work
with the data. In the following code, you use some simple Linux/UNIX commands to inspect the download:

$ head -10 reputation.data # look at the first few lines in the file
222.76.212.189#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11
222.76.212.185#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11
222.76.212.186#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11
5.34.246.67#6#3#Spamming#US##38.0,-97.0#12

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

178.94.97.176#4#5#Scanning Host#UA#Merefa#49.823001861,36.0507011414#11
66.2.49.232#4#2#Scanning Host#US#Union City#37.59629821,-122.0656966#11
222.76.212.173#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11
222.76.212.172#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11
222.76.212.171#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11
174.142.46.19#6#3#Spamming###24.4797992706,118.08190155#12

$ we -1 reputation.data # see how many total records there are
258626 reputation.data

For most projects, it's better to get into the habit of retrieving the data source directly from your analysis
scripts. If you still prefer to download files manually you should provide some type of comment in your
programs that provides details about where the source data comes from and when you retrieved the data
for your current analysis. These comments make it easier to repeat the analyses at a later date, and trust
us, you'll revisit your code and analyses more often than you think.

The following examples (Listings 3-2 and 3-3) show how to perform the data retrieval in both R and
Python. If you are following along with RStudio or IPython, all the code examples assume a working direc-
tory of the top level of the project structure (such as executing in the book /ch03 directory that was
suggested in Chapter 2, which you either manually created or created using the prep script we provided).
Code blocks are, for the most part, self-contained, but each block expects this first snippet and the snippet
in the next section on “Reading in Data” to have been executed in the running RStudio or IPython session.

URL for the AlienVault IP Reputation Database (OSSIM format)
storing the URL in a variable makes it easier to modify later

if it changes. NOTE: we are using a specific version of the data
in these examples, so we are pulling it from an alternate

H B FH H W

book-specific location.
avURL <-
"http://datadrivensecurity.info/book/ch03/data/reputation.data"

use relative path for the downloaded data
avRep <- "data/reputation.data"

using an if{}-wrapped test with download.file() vs read.xxx()
directly avoids having to re-download a 16MB file every time
we run the script
if (file.access (avRep)) {

download.file (avURL, avRep)
}
trying URL 'http://datadrivensecurity../ch03/data/reputation.data’
Content type 'application/octet-stream' length 17668227 bytes
opened URL
==
downloaded 16.8 Mb

Reading In Data

URL for the AlienVault IP Reputation Database (OSSIM format)
storing the URL in a variable makes it easier to modify later
if it changes. NOTE: we are using a specific version of the data
in these examples, so we are pulling it from an alternate

H o FH H W

book-specific location.
import urllib
import os.path

avURL = "http://datadrivensecurity.info/book/ch03/data/reputation.data"

relative path for the downloaded data
avRep = "data/reputation.data"

using an if-wrapped test with urllib.urlretrieve() vs direct read
via panads avoids having to re-download a 16MB file every time we
run the script
if not os.path.isfile (avRep) :

urllib.urlretrieve (avURL, filename=avRep)

The Rand Python code looks very similar and follow the same basic structure: using variables whenever
possible for URL and filenames plus testing for the existence of the data file before downloading it again.
These are good habits to get into and we’ll be underscoring other suggested good practices throughout
the rest of the book.

With the IP reputation data in hand, it's now time to read in the data so you can begin to work with it.

Reading In Data

R and Python (especially with pandas) abstract quite a bit of complexity when it comes to reading and
parsing data into structures for processing.R's read . table (), read.csv (),andread.delim()
functions and pandas’ read_csv () function cover nearly all your delimited file-reading needs and
provide robust configuration options for even the most gnarly input file. Both tools, as you learn in later
chapters, also provide ways to retrieve data from SQL and NoSQL databases, HDFS “big data” setups, and
even handle unstructured data quite well.

The Revolution Will Be Properly Delimited!

Base R and Python’s pandas package both excel at reading in delimited files. Although they are
also both agnostic when it comes to what that delimiter is, there is a general acceptance in the data
science community that it should be either a comma-separated value (CSV) or a tab-separated value
(TSV), and the majority of the sample data sets available to practice with come in one of those two
flavors. The CSV format is thoroughly defined in RFC 4180 (ht tp: / /www.rfc-editor.org/
rfc/rfc4180. txt)and has the following high-level attributes:

® There should only be one record per line.
@ Data files can include an optional header line.

(continues)

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

(continued)

® Header and data rows have fields separated by commas (or tabs).
® Each line should have the same number of fields.

® Spaces in fields should be treated as significant.

Though RFC 4180 explicitly specifies the comma as the separator, the same rules apply when using
tabs (there is no corresponding RFC for tab-separated files).

Many tools in the security domain can import and export CSV-formatted files. If you intend to do
any work in environments like Hadoop, you have to become familiar with CSV/TSV.

Another established format is JSON (JavaScript Object Notation), which has grown to become the
preferred way to transport data between servers and browsers. As you'll see in Chapter 8, it is also
the foundational data format behind many NoSQL database environments/tools. The JSON format
is defined in RFC 4627 (http://www.rfc-editor.org/rfc/rfc4627.txt)and has
two primary structures:

® A collection of name/value pairs (a “dictionary”)

® An ordered list of values (an “array”)

JSON enables richer and more complex data representation than CSV/TSV and is rapidly supersed-
ing another popular, structured format—the Extensible Markup Language (XML)—as the preferred
data exchange representation. This is because it's syntactically less verbose, much easier to parse,
and (usually) more readable. XML has and will continue to excel at document representation, but
you should strongly consider using JSON for your structured data-processing needs.

From a cursory examination of the downloaded file, you can see the AlienVault data has a fairly straight-
forward record format with eight primary fields using a # as the field separator/delimiter.

222.76.212.189#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11

Notice also that the reputation data file lacks the optional header, so the example code segment assigns
more meaningful column names manually. This is a completely optional step, but it helps avoid confusion
as you expand your analyses and, as you see in later chapters, helps build consistency across data frames
if you bring in additional data sets.

The consistency in the record format makes the consumption of the data equally as straightforward in
each language. In each language/environment, we follow a typical pattern of:

® Readingin data
® Assigning meaningful column names (if necessary)
@ Using built-in functions to get an overview of the structure of the data

® Taking alook at the first few rows of data, typically with the head () function

that we'll cover in more detail in Chapter 4.

Reading In Data 45

The code that follows (Listings 3-4 and 3-5) builds on the code from the previous section. It won’t work
correctly otherwise. This is the pattern we will follow in the book, so you should load and run the code in
each chapter sequentially.

read in the IP reputation db into a data frame
this data file has no header, so set header=FALSE
av <- read.csv(avRep,sep="#", header=FALSE)

assign more readable column names since we didn't pick

any up from the header

colnames (av) <- c("IP", "Reliability", "Risk", "Type",
"Country", "Locale", "Coords", "x")

str(av) # get an overview of the data frame

'data.frame': 258626 obs. of 8 variables:

$ IP : Factor w/ 258626 levels "1.0.232.167",..: 154069 154065
154066 171110 64223 197880 154052 154051 154050 56741

S Reliability: int 4 4 4 6 4 4 4 4 4 6

$ Risk : int 2 2 23522223

$ Type : Factor w/ 34 levels "APT;Malware Domain",..: 25 25 25 31 25
25 25 25 25 31

$ Country : Factor w/ 153 levels "","Al","A2","AE",..: 34 34 34 143

#i# 141 143 34 34 34 1

$ Locale : Factor w/ 2573 levels "","Aachen","Aarhus",..: 2506 2506

H## 2506 1 1374 2342 2506 2506 2506 1

$ Coords : Factor w/ 3140 levels "-0.139500007033,98.1859970093",..:
#i# 489 489 489 1426 2676 1384 489 489 489 489

$ x : Factor w/ 34 levels "11","11;12","11;2",..: 111 71 11 11
7

head(av) # take a quick look at the first few rows of data

IP Reliability Risk Type Country Locale
1 222.76.212.189 4 2 Scanning Host CN Xiamen
2 222.76.212.185 4 2 Scanning Host CN Xiamen
3 222.76.212.186 4 2 Scanning Host CN Xiamen
4 5.34.246.67 6 3 Spamming us

5 178.94.97.176 4 5 Scanning Host ua Merefa
6 66.2.49.232 4 2 Scanning Host US Union City
Coords x

1 24.4797992706,118.08190155 11

2 24.4797992706,118.08190155 11

3 24.4797992706,118.08190155 11

4 38.0,-97.0 12

5 49.8230018616,36.0507011414 11

6 37.5962982178,-122.065696716 11

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

first time using the pandas library so we need to import it

import pandas as pd

read in the data into a pandas data frame

av = pd.read csv(avRep,sep="#")

make smarter column names

av.columns = ["IP","Reliability","Risk", "Type", "Country",
"Locale", "Coords", "x"]

print (av) # take a quick look at the data structure

<class 'pandas.core.frame.DataFrame'>

Int64Index: 258626 entries, 0 to 258625

Data columns (total 8 columns) :

IP 258626 non-null values
Reliability 258626 non-null values
Risk 258626 non-null values
Type 258626 non-null values
Country 248571 non-null values
Locale 184556 non-null values
Coords 258626 non-null values
#H# x 258626 non-null values

dtypes: inté64(2), object(6)

take a look at the first 10 rows

av.head() .to_csv(sys.stdout)

,IP,Reliability,Risk, Type,Country,Locale,Coords,x

0,222.76.212.189,4,2,Scanning Host,CN,Xiamen, "24.4797992706,
118.08190155",11

1,222.76.212.185,4,2,Scanning Host,CN,Xiamen, "24.4797992706,
118.08190155",11

2,222.76.212.186,4,2,Scanning Host,CN,Xiamen, "24.4797992706,
118.08190155",11

3,5.34.246.67,6,3,Spamming,US,,"38.0,-97.0",12

4,178.94.97.176,4,5,Scanning Host,UA,Merefa,"49.8230018616,
36.0507011414",11

Within Canopy, IPython has a set of functions to output data to a more viewer-friendly HTML format (see
Listing 3-6) that can be used to make the head () outputin Listing 3-5 much easier to read (see Figure 3-1).

require object: av (3-5)

See corresponding output in Figure 3-1

import the capability to display Python objects as formatted HTML
from IPython.display import HTML

display the first 10 lines of the dataframe as formatted HTML
HTML (av.head (10) .to_html ())

Exploring Data 47

IP Reliability|Risk Type Country| Locale Coords %
B)|222.76.212. 1894 2 Scanning Host|CN Xiamen 24.47979927@6,118.88198155 |11
1)]222.76.212.185)4 2 Scanning Host|CN Xiamen 24.47979927@6,118.88198155 |11
2)|222.76.212.186]4 2 Scanning Host|CN Xiamen 24.47979927@6,118.88198155 |11
3)|5.34.246.67 6 3 Spamming Us Mah 38.@,-97.8 12
4)[178.94.97.176 |4 5 Scanning Host|UA Merefa 49.8230@18616,36. 8587811414 |11
5|66.2.49,232 4 2 Scanning Host|US Union City|37.5962982178,-122.865696716|11
6)|222.76.212. 1734 2 Scanning Host|CN Xiamen 24.47979927@6,118.88198155 |11
7l222.76.212.172)4 2 Scanning Host|CN Xiamen 24.47979927@6,118.88198155 |11
222.76.212.171)4 2 Scanning Host|CN Xiamen 24.47979927@6,118.88198155 |11
9I174.142.46.19 |6 3 Spamming NaN Mah 24.4797992786,118.88198155 |12

IPython HTML head() output

Exploring Data

Now that you have a general idea of the variables and how they look, it’s time to bring your security domain
expertise into the mix to explore and discover what is interesting about the data. This will enable you to
form good questions to ask and answer. Despite having almost 260,000 records, you have many tools at
your disposal to help get a feel for what it contains.

Before going any deeper into the data, however, there are some tidbits of information you know about
the data, so we will summarize them here:

® Reliability,Risk,andxareintegers.
® IP, Type, Country, Locale,and Coords are character strings.
® The IP address is stored in the dotted-quad notation, not in hostnames or decimal format.

® Eachrecord is associated with a unique IP address, so there are 258,626 IP addresses (in this
download).

® Each IP address has been geo-located into the latitude and longitude pair in the Coords field, but
they arein asingle field separated by a comma. You will have to parse that further if you want to
use that field.

When you have quantitative variables (which is a fancy way to say “numbers representing a quantity”),
agood first exploratory step is to look at the basic descriptive statistics on the variables. These are com-
prised of the following:

® Minimum and maximum values; taking the difference of these will give you the
range (range =max - min)

® Median (the value at the middle of the data set)

o Firstand third quartiles (the 25" and 75" percentiles, or you could think of it as the median value of
the first and last halves of the data, respectively)

® Mean (sum of all values divided by the number of count)

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

You may see the min, max, median, and quartiles referred to as the five number summary of a data
set (as developed by Tukey), and both languages have built-in functions to calculate them—summary ()
inRanddescribe () in Python— along with the mean. Take a look at the summary on the two primary
numeric columns: Reliability and Risk (Listings 3-7 and 3-8).

require object: av (3-4)

summary (avSReliability)

Min. 1lst Qu. Median Mean 3rd Qu. Max.
1.000 2.000 2.000 2.798 4.000 10.000

summary (avSRisk)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 2.000 2.221 2.000 7.000

require object: av (3-5)
av['Reliability'] .describe ()
count 258626.000000

mean 2.798040
std 1.130419
min 1.000000
25% 2.000000
50% 2.000000
75% 4.000000
max 10.000000

Length: 8, dtype: floaté4

av['Risk'] .describe ()
count 258626.000000

mean 2.221362
std 0.531571
min 1.000000
25% 2.000000
50% 2.000000
75% 2.000000
max 7.000000

Length: 8, dtype: floaté4

As you look at these results, note that the Reliability column spreads across the docu-
mented potential range of [1...10] (Slide 10 of http: //www.slideshare.net/alienvault/
building-an-ip-reputation-engine-tracking-the-miscreants), buttheRisk
column—which AlienVault says has a documented potential range of [1...10]—only has a spread of [1...7].
You can also see that both Risk and Reliability appear to center on a value of 2.

You can now dig a bit deeper and use the fact thattheReliability, Risk, Type, and Country
fields can be used together to define data set categories. Even though we just treated Reliability

Exploring Data

and Risk as numbers, they actually are ordinal, meaning each entry is assigned an integer, and a value
of 4 is not necessarily twice the Reliability or Risk of 2. It only means that Reliability or Risk that is scored
4 is higher than that scored 2. In other words, the number has more meaning as a label than a measure-
ment. Categorical data may also be referred to as nominal values, factors, or in some cases, qualitative
variables.

Isn’t “Data” Just “Data”?

You may be used to treating data holistically, thinking that the contents of a log file or database
extract is just, well, data. If you're used to working with data in spreadsheet form (like Microsoft
Excel), you aren't really encouraged to think of it any other way. Individual data elements can, how-
ever, be broken down into two broad categories: quantitative and qualitative. Quantitative data
elements represent actual quantities whereas qualitative (or categorical) data elements are more
descriptive in nature.

TCP or UDP port numbers may be numeric, but they don’t actually represent a quantity; they are
just parts of a category, in this case numerically named entities. Port “22” is not truly greater or less
port “7070.” Conversely, “number of bytes transferred” or “number of infected hosts” represents
actual quantities that can be compared numerically.

Categorical data is easily manipulated in Ras factorsand in Python asa pandas Categorical
class. In fact, both R and Python have extensive functions that allow you to group, split, extract,
and perform analysis on and with factors. You can see in Listing 3-4 that R made a correct educated
guess that IP, Type, Country, and Locale were all categorical in nature as it scanned through
the AlienVault IP reputation data file. Country names and malware types are easily identified as just
classifications (nominal data in statistics terms). You can also see that R did not properly recognize
thatReliability and Risk were both qualitative in nature. Even though there is a meaning-
ful sequence to them—risk level “5” is greater than “1"—the numeric, ordinal arrangement is not
expressing quantity (that is, you should not try to calculate the mean of the Ri sk values or subtract
one Risk value from another).

Within R, the difference between the two is automatically handled by the summary () function (Listing
3-9), and it displays the count for each category. This doesn't work on the quantitative variables though. In
order to get a count of those, you can use the table () function if there are not too many unique values
in the variable. Within Python, you can create a short function that leverages pandas to convert a data
frame column (which is just an array) into a very appropriately named Categorical object (Listing
3-10), which you can tweak a bit to give you similar helpful output.

require object: av (3-4)
table (av$Reliability)

#H# 1 2 3 4 5 6 7 8 9
5612 149117 10892 87040 7 4758 297 21 686
10

(continues)

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

(continued)
196

table (av$SRisk)
1 2 3 4 5 6
39 213852 33719 9588 1328 90 10

summary sorts by the counts by default
maxsum sets how many factors to display
summary (avSType, maxsum=10)

Scanning Host Malware Domain
234180 9274
Malware IP Malicious Host
6470 3770
Spamming c&C
#i# 3487 610
Scanning Host;Malicious Host Malware Domain;Malware IP
H## 215 173
Malicious Host;Scanning Host (Other)
163 284

summary (av$SCountry, maxsum=40)

CN uUs TR DE NL RU GB
68583 50387 13958 10055 9953 7931 6346 6293
Hit IN FR TW BR UA RO KR cA
5480 5449 4399 3811 3443 3274 3101 3051
#it AR MX TH IT HK ES CL AE
3046 3039 2572 2448 2361 1929 1896 1827
JpP HU PL VE EG 1D RS PK
1811 1636 1610 1589 1452 1378 1323 1309
VN LV NO CZ BG SG IR (Other)
1203 1056 958 928 871 868 866 15136

require object: av (3-5)

factor col (col)

#

helper function to mimic R's "summary ()" function

for pandas "columns" (which are really just Python arrays)

def factor_col(col):
factor = pd.Categorical.from array(col)
return pd.value counts (factor,sort=True) .reindex (factor.levels)

rel ct = pd.value counts(av['Reliability'])
risk ct = pd.value_counts(av['Risk'])
type ct = pd.value_counts(av['Type']l)
country ct = pd.value_counts (av['Country'])

(continues)

Exploring Data

(continued)
print factor col(av['Reliability'])
1 5612
2 149117
3 10892
4 87040
5 7
6 4758
7 297
8 21
9 686
10 196

Length: 10, dtype: inté4

print factor col(av['Risk'])

1 39
2 213852
3 33719
4 9588
5 1328
6 90
7 10

Length: 7, dtype: inté4

print factor col(av['Type'l) .head(n=10)
APT;Malware Domain 1
C&C 610
C&C;Malware Domain 31
C&C;Malware IP 20
C&C;Scanning Host 7
Malicious Host 3770
Malicious Host;Malware Domain 4
Malicious Host;Malware IP 2
Malicious Host;Scanning Host 163
Malware Domain 9274

Length: 10, dtype: inté4

print factor col(av(['Country']) .head(n=10)
Al 267
A2 2
AE 1827
AL 4
AM 6
AN 3
AO 256
AR 3046
AT 51
AU 155

Length: 10, dtype: inté4

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

These numerical tables help you get a general view of the data, but a graph of the distribution of
the data has the potential to provide a whole new perspective, oftentimes giving insights that numbers
alone cannot reveal. We start with a simple bar chart to get a very quick visual overview of the Count ry,
RiskandReliability factors (see Figures 3-2 through 3-4, respectively). You'll need to execute each
R code listing individually (Listings 3-11, 3-12, and 3-13) to see each graph.

require object: av (3-4)

We need to load the ggplot2 library to make the graphs

See corresponding output in Figure 3-2

NOTE: Graphing the data shows there are a number of entries without
a corresponding country code, hence the blank entry

library (ggplot2)

Bar graph of counts (sorted) by Country (top 20)

get the top 20 countries' names

country.top20 <- names (summary (avsCountry)) [1:20]

give ggplot a subset of our data (the top 20 countries)

map the x value to a sorted count of country

gg <- ggplot (data=subset (av,Country %$in% country.top20),

aes (x=reorder (Country, Country, length)))

tell ggplot we want a bar chart

gg <- gg + geom bar (fill="#000099")

ensure we have decent labels

gg <- gg + labs(title="Country Counts", x="Country", y="Count")

rotate the chart to make this one more readable

gg <- gg + coord flip()

remove "chart junk"

gg <- gg + theme (panel.grid=element blank(),
panel.background=element blank())

display the image

print (gg)

requires packages: ggplot2

#

require object: av (3-4)

See corresponding output in Figure 3-3

Bar graph of counts by Risk

gg <- ggplot (data=av, aes(x=Risk))

gg <- gg + geom bar (£1i11="#000099")

force an X scale to be just the limits of the data

and to be discrete vs continuous

gg <- gg + scale x discrete(limits=seqg(max(av$Risk)))

gg <- gg + labs(title="'Risk' Counts", x="Risk Score", y="Count")

gg <- gg + theme (panel.grid=element blank(),
panel.background=element blank())

print (gg)

=4 C O
T wmZ
[|

ollllllllllllllllll

Exploring Data

Country Counts

1 1 1
20000 40000 60000
Count

Country factor bar chart (R)

requires packages: ggplot2

require object: av (3-4)

See corresponding output in Figure 3-4

Bar graph of counts by Reliability

<- ggplot (data=av, aes(x=Reliability))

99

99 <- g9 +
99 <- g9 +
99 <- 99 +
99 <- 99 +
print (gg)

geom bar (£i11="#000099")

scale x discrete(limits=seqg(max(av$Reliability)))

labs(title=""'Reliabiity' Counts", x="Reliability Score",
y="Count")

theme (panel.grid=element blank(),
panel.background=element blank())

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

'Risk’ Counts

200000 -
150000 -
c
3
o 100000 -
50000 -
0- - [
1 1 1 1 1 1
1 2 3 4 5 6 7
Risk Score
Risk factor bar chart (R)
'Reliability’ Counts
150000 -
100000 -
c
=
o
O
50000 -
o — L] I —
1 1 1 1 1] 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Reliability Score
Reliability factor bar chart (R)

Exploring Data

The Python versions of these visualizations are offered in Listings 3-14, 3-15, and 3-16.

require object: av (3-5), factor col (3-10)

See corresponding output in Figure 3-5

NOTE: Notice the significant differnce in the Python graph in that the
blank/empty country code entries are not in the graph

need some functions from matplotlib to help reduce 'chart junk'

import matplotlib.pyplot as plt

sort by country

country ct = pd.value_counts (av['Country'])

plot the data
plt.axes (frameon=0) # reduce chart junk
country ct[:20] .plot (kind="bar',
rot=0, title="Summary By Country", figsize=(8,5)).grid(False)

require object: av (3-5), factor col (3-10)
See corresponding output in Figure 3-6

plt.axes (frameon=0) # reduce chart junk

factor col(av['Reliability']) .plot (kind='bar', rot=0,
title="Summary By 'Reliability'", figsize=(8,5)).grid(False)
require object: av (3-5), factor col (3-10)

See corresponding output in Figure 3-7
plt.axes (frameon=0) # reduce chart junk
factor col(av['Risk']) .plot (kind='bar', rot=0,
title="Summary By 'Risk'", figsize=(8,5)) .grid(False)

The Country chart, as shown in Figure 3-5, shows there are definitely some countries that are contrib-
uting more significantly to the number of malicious nodes, and you can go back to numbers fora moment
to look at the percentages for the top ten in the list (Listings 3-17 and 3-18):

require object: av (3-4)

countryl0 <- summary (av$Country, maxsum=10)

now convert to a percentage by dividing by number of rows
country.percl0 <- countrylO/nrow(av)

and print it

print (country.perclO)

H## CN Us TR DE NL
0.26518215 0.19482573 0.05396983 0.03887854 0.03848414 0.03066590
RU GB IN (Other)

0.02453736 0.02433243 0.02118890 0.30793501

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

Summary By Country

I | | | I I | | I I | | | I | | [

CN US TR DE NL RU GB IN FR TW BR UA RO KR CA AR MX TH IT HK
Country factor bar chart (Python)

S B 'RI bilit
160000- | ummary By ‘Relia ||y | | o

140000 - -

120000 - -

100000 - -

80000 -

60000 -

40000 -

20000 - -
—— - L L - L

7 8 9 10

Rel:ablhty factor bar chart (Python)

Exploring Data 57
250000 - | | | Summar¥ By 'Risk’ |
200000 - -
150000 - -

100000 -

50000 -

0_—|__

1 2
Risk factor bar chart (Python)

require object: av (3-5)

extract the top 10 most prevalent countries
topl0 = pd.value counts(av['Country']) [0:9]

calculate the % for each of the top 10
topl0.astype (float) / len(av['Country'])

CN 0.265182
US 0.194826
TR 0.053970
DE 0.038484
NL 0.030666
RU 0.024537
GB 0.024332
IN 0.021189
FR 0.021069

Length: 9, dtype: floate64

These quick calculations show that China and the United States together account for almost 46 percent
of the malicious nodes in the list, and Russia accounts for just 2.4 percent. One avenue to explore here is to
see how this compares with various industry reports since you would expect many of these countries to
be in the top ten. However, the amount that some countries contribute suggest that there might be some
bias in the data set. You can also see that 3 percent of the nodes cannot be geo-located (in the R output,
[Other] category).

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

Note

Chapter 5 covers the challenges and pitfalls of IP address geolocation, so we'll refrain from
exploring that further here.

Looking at the Ri sk variable, you can see that the level of risk of most of the nodes is negligible (that
is, so low that they can be disregarded). There are other elements that stand out with this data though,
foremost being that practically no endpoints are in categories 1,5, 6, or 7, and none in the rest of the defined
possible range [8-10]. This anomaly is a sign to you that it is worth digging a bit deeper, but the anomaly
is significant evidence of bias in the data set.

Finally, the Reliability rating of the nodes also appears to be a bit skewed (that is, the distribu-
tion is extended to one side of the mean or central tendency). The values are mostly clustered in levels 2
and 4, with not many ratings above level 4. The fact that it completely skips a reliability rating of 3 should
raise some questions in your mind. It could indicate a systemic flaw in the assignment of the rating, or it
could be that you have at least two distinct data sets. Either way, that large quantity of 2s and 4s and low
quantity of 3sis a clear sign that you should investigate further, because it's just a little odd and surprising.

You now have some leads to pursue and a much better idea of the makeup of the key components of
the data. This preliminary analysis gives you enough information to formulate a research question.

Homing In on a Question

Consider both the problem and the primary use case for the AlienVault reputation data: importingitintoa
SEIM or Intrusion Detection System/Intrusion Prevention System (IDS/IPS) to alert incident response team
members or to log/block malicious activity. How can this quick overview of the reputation data influence
the configuration of the SIEM in this setting to ensure that the least number of “trivial” alerts are generated?

Let’s take a slightly more practical view of those questions by asking, “Which nodes from the Reputation
database represent a potentially real threat?”

There is a reason AlienVault included both Risk and Reliability fields, and you should be able
to use these attributes to classify nodes into two categories: 1) the nodes you really care about, and 2)
everything else. The definition of “really care about” can be somewhat subjective, but it is unrealistic to
believe you would want to generate an alert on all detected activity by one of these 258,626 nodes. Some
form of prioritization triage and prioritization must occur, and it is a far better approach to base the triage
and prioritization on statistical analysis of data and evidence rather than a “gut call” or solely on “expert
opinion” alone.

It's possible to see which nodes should get your attention by comparingtheRiskandReliability
factors. To do this, you use a contingency table, which is a tabular view of the multivariate frequency
distribution of specific variables. In other words, a contingency table helps show relationships between
two variables. After building a contingency table, you can take both a numeric and graphical look at the
results to see where the AlienVault nodes “cluster.”

The output from the R code in Listing 3-19 is Figure 3-8, which shows the output of the contingency
table as a level plot and uses size and color to show quantity, whereas the Python code in Listing 3-20 is
used to generate a standard heatmap (Figure 3-9) that relies on color alone to show quantity. (A heatmap

Homing In on a Question

is a graphical representation of data where the individual values contained in a matrix are represented as
colors. Seehttp://en.wikipedia.org/wiki/Heat map for more information.) With both
factors combined, it is very apparent that the values in this data set bias are concentrated around [2, 2],
which might be a sign of bias.

require object: av (3-4)

See corresponding output in Figure 3-8

compute contingency table for Risk/Reliability factors which
produces a matrix of counts of rows that have attributes at
each (x, y) location

rr.tab <- xtabs(~Risk+Reliability, data=av)

ftable (rr.tab) # print table

virtually identical output to pandas (See Listing 3-20)

graphical view of levelplot

need to use levelplot function from lattice package

library(lattice)

cast the table into a data frame

rr.df = data.frame(table(av$SRisk, av$SReliability))

set the column names since table uses "Varl" and "Var2"

colnames (rr.df) <- c("Risk", "Reliability", "Freq")

now create a level plot with readable labels

levelplot (Freg~Risk*Reliability, data=rr.df, main="Risk ~ Reliabilty",
ylab="Reliability", xlab = "Risk", shrink = c(0.5, 1),
col.regions = colorRampPalette (c ("#F5F5F5", "#01665E")) (20))

require object: av (3-5)

See corresponding output in Figure 3-9

compute contingency table for Risk/Reliability factors which
produces a matrix of counts of rows that have attributes at
each (x, y) location

need cm for basic colors

need arange to modify axes display

from matplotlib import cm

from numpy import arange

pd.crosstab(av['Risk'], av['Reliability'])

Reliability 1 2 3 4 5 6 7 8 9 10
Risk

1 0 0 16 7 0 8 8 0 0 0
2 804 149114 3670 57653 4 2084 85 11 345 82
3 2225 3 6668 22168 2 2151 156 7 260 79
4 2129 0 481 6447 0 404 43 2 58 24
5 432 0 55 700 1 103 5 1 20 11

(continues)

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

(continued)
6 19 0 2 60 0 8 0 o0 1 0
7 3 0 0 5 0 0 0 o0 2 0

graphical view of contingency table (swapping risk/reliability)
xtab = pd.crosstab(av['Reliability'], av['Risk'])
plt.pcolor (xtab, cmap=cm.Greens)
plt.yticks (arange (0.5, len(xtab.index), 1),xtab.index)

plt.xticks (arange(0.5,len(xtab.columns), 1),xtab.columns)

plt.colorbar ()

Risk ~ Reliability

10 - -
140000
9 — —
120000
g - i 0
7 - 100000
2 54
= 80000
9
D 54 _
- - 60000
4 —] —
- 40000
3 _
- 2
1 - - 0
I I I I I I I -
1 2 3 4 5 6 7
Risk

Risk/reliability contingency table level plot (R)

Homing In on a Question

Risk ~ Reliability

10f -

135000
9._ =

120000
8_ =

105000
7_ -

90000
6._ =

- 75000
5_ =

160000
4_ o

145000
3_ -

{30000
2_ i

{15000
1_ .

L ' ' —— LJg

1 2 3 4 5 6 7
Risk/reliability contingency table heatmap (Python)

As a fun aside, you can determine whether the patterns you're seeing are occurring by chance, or
whether there is some underlying meaning to them. Although you could do some fancy-pants statistics
here and maybe apply Fisher’s exact test, you don’t need to get crazy. What if you assumed that every
value of Risk and Reliability had an equal chance of occurring? What would the level plot look
like? You should expect some amount of natural variation—both in the systems and the data collection
process—so some combinations would naturally occur more often than others. But how different would
it look from the current data?

You can use the sample () function to generate random samples from a Uniform distribution [1, 7]
and [1, 10] and then build a contingency table from those random samples. Running this multiple times
should produce a different set of random tables each time. Each run is called a realization of the random
processes.

LEARNING THE“HELLO WORLD"” OF SECURITY DATA ANALYSI

S

The R code in Listing 3-21 produces the levelplot in Figure 3-10 and shows two things. First, you can
make some pretty and colorful random boxes with a few lines of code. Second, there is definitely some-
thing pulling nodes into the lower Risk and Reliability categories (that is, toward zero for each).
It could be because the world just has low risk and reliability or the sampling method or scoring system

is introducing the skew.

Risk ~ Reliability

10

Reliability

3800

3750

3700

—- 3650

~- 3600

|
4

Risk

FIGURE 3-10 “Unbiased” risk/reliability contingency table (R)

Homing In on a Question

require object: av (3-4), lattice (3-19)

See corresponding output in Figure 3-10

generate random samples for risk & reliability and re-run xtab
starting PRNG from reproducable point

set.seed(1492) # as it leads to discovery

generate 260,000 random samples

rel=sample(1:7, 260000, replace=T)

rsk=sample (1:10, 260000, replace=T)

cast table into data frame

tmp.df = data.frame (table(factor(rsk), factor(rel)))

colnames (tmp.df) <- c("Risk", "Reliability", "Freqg")

levelplot (Freg~Reliability*Risk, data=tmp.df, main="Risk ~ Reliabilty",
ylab="Reliability", xlab = "Risk", shrink = c(0.5, 1),
col.regions = colorRampPalette (c ("#FS5F5F5", "#01665E")) (20))

Now turn your attention to the Type variable to see if you can't establish a relationship with the
Riskand Reliability ratings. Looking closely at the Type variable, you notice that some entries
have more than type assigned to them, and they are separated by a semicolon (there are 215 Scanning
Host;Malicious Host values, for example). Since you want to see how those types compare, those
with a combination of types shouldn’t be mixed with other types. So, rather than try to parse out the nodes
with multiple types, you can just reassign all of them into a category of Multiples to show that they
were assigned more than one type. Then you can create a three-way contingency table and see how that
looks. Pull in the Type column and see how that impacts the view.

The R code in Listing 3-22 produces the three-way contingency table lattice graph in Figure 3-11,
enabling you to visually compare the amount of impact Type hasonthe Risk andReliability
classifications. The Python code in Listing 3-23 also computes the three-way contingency table, but shows
an alternate output representation in a simple bar chart (Figure 3-12).

require object: av (3-4), lattice (3-19)

#

See corresponding output in Figure 3-11

Create a new varible called "simpletype"

replacing mutiple categories with label of "Multiples"
av$Ssimpletype <- as.character (av$SType)

Group all nodes with mutiple categories into a new category
av$simpletypel[grep(';', av$simpletype)] <- "Multiples"

Turn it into a factor again

avSsimpletype <- factor(avsSsimpletype)

rrt.df = data.frame (table(av$SRisk, avS$Reliability, av$Ssimpletype))

colnames (rrt.df) <- c("Risk", "Reliability", "simpletype", "Freq")
levelplot (Freq ~ Reliability*Risk|simpletype, data =rrt.df,
main="Risk ~ Reliabilty | Type", ylab = "Risk",
xlab = "Reliability", shrink = c(0.5, 1),
col.regions = colorRampPalette (c ("#FS5F5F5", "#01665E")) (20))

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

Risk ~ Reliability | Type

12345678910
[N S Y I S I S [Sy A |
Scanning Host Spamming
77 - 140000
6 -
5 — —
47 B 120000
3 — —
24 B -
1 N 100000
Malware IP Malware distribution Multiples
- - 7
T -6 - 80000
x -1 — 5
= . — 4
o
7 ~ 3 - 60000
-1 - 2
- — 1
C&C Malicious Host Malware Domain - 40000
7 — -
6 — -
5 — - 20000
4 - L
3 — -
27 - -0
1 — I
T 17 rr1r 17 r1T 17 17T 17T 17 17T 17T 17 17T 17T 17" 7T 17T T T 1T T T 1T T T 1T -
12345678910 12345678910
Reliability
Three-way risk/reliability/type contingency table (R)
require object: av (3-5)
See corresponding output in Figure 3-12
compute contingency table for Risk/Reliability factors which
produces a matrix of counts of rows that have attributes at
create new column as a copy of Type column
av['newtype'] = av['Type'l]
replace multi-Type entries with Multiples
(continues)

Homing In on a Question

(continued)
v[av['newtype'] .str.contains(";")] = "Multiples"

setup new crosstab structures
typ = av['newtype'l]

rel = av['Reliability']

rsk = av['Risk']

compute crosstab making it split on the

new type column

xtab = pd.crosstab(typ, [rel, rsk],
rownames=['typ'], colnames=['rel', 'rsk'l])

the following print statement will show a huge text

representation of the contingency table. The output

#

#

is too large for the book, but is worth looking at
as you run through the exercise to see how useful
#

visualizations can be over raw text/numeric output

print xtab.to_string() #output not shown

xtab.plot (kind='bar', legend=False,
title="Risk ~ Reliabilty | Type").grid(False)

Risk ~ Reliability | T
160000 T T T a2 T el ||y‘| ype

140000 h

120000} h

T

100000 1

80000 1

60000 7

T

40000 :

20000

0

C&Cl

Malicious Host -
Malware Domain -
Malware IP f

Malware distribution |-
Multiples |

Scanning Host |-
Spamming.r

Type
Three-way risk/reliability/type contingency table bar chart (Python)

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

They say a picture is worth a thousand words, but in this case it’s worth about 234,000 data points
inthe Scanning Hosts category (about 90 percent of the entries are classified as scanning hosts).
That category is so large and generally low risk that it is overshadowing the rest of the categories.
Remove it from the Type factors and regenerate the image. This isn't to say the Scanning Hosts
category isn’t important, but remember you are trying to understand which of these entries you really
care about. Nodes with low risk and reliability ratings are things you don’t want to be woken up from
your nap for. You want to peel those away and look at the relationships that exist underneath the scan-
ning hosts. We continue the examples from Listings 3-22 and 3-23 and generate new corresponding
Figures 3-13 (R lattice) and 3-14 (Python bar chart) in Listings 3-24 and 3-25.

require object: av (3-4), lattice (3-19)
See corresponding output in Figure 3-13

from the existing rrt.df, filter out 'Scanning Host'

rrt.df <- subset (rrt.df, simpletype != "Scanning Host")

levelplot (Freq ~ Reliability*Risk|simpletype, data =rrt.df,
main="Risk ~ Reliabilty | Type", ylab = "Risk",
xlab = "Reliability", shrink = c(0.5, 1),

col.regions = colorRampPalette (c ("#F5F5F5", "#01665E")) (20))

Risk ~ Reliability | Type

12345678910
111

Malware distribution Multiples Spamming
_ L - 7000
. -6
_ L5 6000
- - 4
— -3 5000
— -2
« - -1 - 4000
2 C&C Malicious Host Malware Domain Malware IP
T B - 3000
6 — —
5 | - 2000
4 — L
3 L - 1000
2] . | to
I I I I —
12345678910 12345678910
Reliability

Three-way risk/reliability/type contingency table without “Scanning Host” (R)

8000

7000

6000

5000

4000

3000

2000

1000

Homing In on a Question

require object: av (3-5)
See corresponding output in Figure 3-14
filter out all "Scanning Hosts"
rrt_df = av[av['newtype'] != "Scanning Host"]
typ = rrt_df ['newtype']
rel = rrt_df['Reliability']
rsk = rrt df ['Risk']
xtab = pd.crosstab(typ, [rel, rsk],
rownames=['typ'], colnames=['rel', 'rsk'l])
xtab.plot (kind='bar', legend=False,
title="Risk ~ Reliabilty | Type").grid(False)

Now you are getting somewhere. In Figure 3-13, you can see the Malware domain type has risk
ratings limited to 2s and 3s, and the reliability is focused around 2, but spreads the range of values. You
can also start to see the patterns in the other categories as well even in Figure 3-14, but it’s time to regen-
erate the graphics once more after you remove the Malware domain. Also, it looks like Malware
distribution doesnotseem to be contributing any risk, so you can filter that factor out of the remain-
ing types as well (in Listings 3-26 and 3-27) to get the final results in Figure 3-15 (R lattice plot) and Figure
3-16 (Python bar chart).

Risk ~ Reliability | Type

=
P
=
e

C&CE
Malicious Host -
Malware Domain j—
Malware IP p—
Multiplest
Spamming

Malware distribution [-

Type
Three-way risk/reliability/type contingency table bar chart without “Scanning Host” (Python)

67

LEARNING THE“HELLO WORLD” OF SECURITY DATA ANALYSIS

require object: av (3-4), lattice (3-19), rrt.df (3-24)
See corresponding output in Figure 3-15
rrt.df = subset (rrt.df,
! (simpletype %in% c("Malware distribution",
"Malware Domain")))

sprintf ("Count: %d; Percent: %2.1f£%%",

sum(rrt.dfSFreq) ,

100*sum(rrt.df$Freq) /nrow (av))
[1] Count: 15171; Percent: 5.9%

levelplot (Freq ~ Reliability*Risk|simpletype, data =rrt.df,

main="Risk ~ Reliabilty | Type", ylab = "Risk",
xlab = "Reliability", shrink = c(0.5, 1),
col.regions = colorRampPalette (c ("#FS5F5F5", "#01665E")) (20))

Risk ~ Reliability | Type

12345678910
N Y Y

Multiples Spamming

4000

3500

3000

2500

|
I
- NDWhHOoOoO N

Risk

C&C Malicious Host Malware IP [~ 2000
- 1500

. u —- 1000

1 e | - - 500

- N WhHoo N
|
I

_
N
w_
g
m_
o -
~N
m_
(o_
-
o
—_ —
N
w_
-
U"_
c’_
~N
0 —
@_
—
o

Reliability
Three-way risk/reliability/type contingency table—final (R)

Homing In on a Question

require object: av (3-5), rrt df (3-25)
See corresponding output in Figure 3-16
rrt_df = rrt df [rrt df['newtype'] != "Malware distribution"]
rrt_df = rrt df [rrt_df['newtype'] != "Malware Domain"]
typ = rrt_df ['newtype']
rel = rrt_df['Reliability']
[

rsk = rrt df ['Risk']
xtab = pd.crosstab(typ, [rel, rsk],
rownames=['typ'], colnames=['rel', 'rsk'l])
print "Count: %d; Percent: %2.1f£%%" % (len(rrt df), (float(len(rrt_df))

/ len(av)) * 100)
Count: 15171; Percent: 5.9%

xtab.plot (kind='bar', legend=False)

Risk ~ Reliability | Type

4500 T T T T
4000 R
3500} R
30001 R
2500 R
2000 R
1500 i
1000} R
500 l R
0 l 1h m 1 L L. oa | d
Q + o u o
y; 3 v 3 £
O T o =3 IS
© E=]
3 2 S €
o © = 3
L = n
©
=
Type

Three-way-Waly risk/reliability/type contingency table—final (Python)

(] LEARNINGTHE“HELLO WORLD” OF SECURITY DATA ANALYSIS

With this final bit of filtering, you've reduced the list to less than 6 percent of the original and have honed
in fairly well on the nodes representing the ones you really should care about. If you wanted to further
reduce the scope, you could filter by various combinations of Reliability and/or Risk. Perhapsyou
want to go back to the categories you filtered out and bring a subset of those back in.

The rather simple parsing and slicing done here doesn’t show which variables are most important; it
simply helps you understand the relationships and the frequency with which they occur. Just because 90
percent of the data was Scanning Hosts, perhaps you only want to filter those hosts with a risk of 2 or below.
This analysis has merely helped you identify a set of nodes on which you can generate higher priority alerts.
You can still capture the other types into a lower priority or into an informational log.

Since AlienVault updates this list hourly, you can create a script to do this filtering before importing new
revisions into your security tools. You can then keep track of the percentage of nodes filtered out as a flag
for the need to potentially readjust the rules. Furthermore, you should strongly consider performing this
exploratory analysis on a semi-frequent basis. This will help you determine whether you need to re-think
your perspective on what constitutes non-trivial nodes.

Summary

This chapter introduced the core structure and concepts of data analyses in Python and R. It incorporated
basic statistics, foundational scripting/analysis patterns, and introductory visualizations to help you ask
and answer a pertinent question. In addition, each example demonstrated the similarity of Python (with
pandas) and R coding techniques and generated output. The steps presented are just one direction this
particular analysis could lead. Every situation is different and will require you to pull in different tools and
techniques as needed.

Future chapters focus mainly on R code, with some Python sprinkled in on occasion. If you are familiar
with Python/pandas, the previous examples should help you translate between the two languages. If you
are new to both R and Python, the standardization of future examples in one language should help you
follow along with less confusion and help you learn R a bit better.

Recommended Reading

The following are some recommended readings that can further your understanding on some of the topics
we touch on in this chapter. For full information on these recommendations and for the sources we cite in
the chapter, please see Appendix B.

Statistics and Data with R: An Applied Approach Through Examples by Yosef Cohen and
Jeremiah Y. Cohen

Python for Data Analysis by Wes McKinney

Performing Exploratory
Security Data Analysis

y#4 PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

What constitutes “security data” is often in the eye of the beholder. Malware analysts gravitate toward
process, memory and system binary dumps. Vulnerability researchers dissect new patch releases, and
network security professionals tap wired and wireless networks to see what secrets can be sifted from the
packets as they make their way from node to node.

This chapter focuses on exploring IP addresses by starting with further analyses on the AlienVault IP
Reputation database first seen in Chapter 3. You'll examine aspects of the Zeus$ botnet (a fairly nasty bit of
malware) from an IP address perspective and then perform some basic analyses on real firewall data. To
fully understand the examples in this chapter, you should be familiar with the description of the AlienVault
data set and have at least followed along with all previous, preliminary analyses. The other major goal of
the chapter is to help you get more proficient in R by walking you through a diversity of examples that
bring into play many core programming idioms of the language.

IP addresses—along with domain names and routing concepts—are the building blocks of the Internet.
They are defined in RFC 791, the “Internet Protocol / DARPA Internet Program / Protocol Specification”
(http://tools.ietf.org/html/rfc791), which has an elegant and succinct way of describ-
ing them:

A name indicates what we seek. An address indicates where it is. A route indicates
how to get there.

Global entities slice and dice IP address space for public and private use; devices, systems, and applica-
tions log IP addresses for reference; network management systems test, group, display, and report on IP
addresses; and security tools often make critical decisions based on IP addresses. But, what—exactly—is
an IP address? What can you learn from them and what part do they play in the quest for finding and
mitigating malicious activity?

Note

We make no attempt to incorporate consideration of or conduct analyses on Internet
Protocol (IP) version 6 (IPv6) addresses. Likewise, all the examples in this chapter are based
on IPv4. Given the slow adoption and migration to IPv6, the plethora of malicious activity
still found on IPv4 networks, and the fact that it’s fairly straightforward to extrapolate IPv4
concepts to IPv6, this should not be a practical limitation.

If you plan on typing the code from the chapter versus executing each snippet from the ch04 .R
source file, you will need to download the data files in the ch04 /data directory from the repository
on the book’s website (www.wiley.com/go/datadrivensecurity) for many of the listings to
work correctly. You will also need to run the code in Listing 4-0 to set up your R environment for the code
examples in this chapter.

Listing 4-0
This code sets up the R environemnt for the chapter

set working directory to chapter location

*

(continues)

Dissecting the IP Address 73

(continued)
(change for where you set up files in ch 2)
setwd ("~/book/ch04")
make sure the packages for this chapter
are installed, install if necessary
pkg <- c("bitops", "ggplot2", "maps", "maptools",
"sp", "maps", "grid", "car")
new.pkg <- pkgl! (pkg %in% installed.packages())]
if (length (new.pkg)) ({
install.packages (new.pkg)

}

Dissecting the IP Address

Some information security practitioners may think of IP addresses as simply the strings used with aping,
nessus, nmap, or other commands. But to perform security-oriented analyses of your system and net-
work data, you must fully understand as much as you can about security domain data elements, just as
those who perform data analyses in financial, agricultural, or bio-medial disciplines must understand the
underpinnings of the data elements in those fields. IP addresses are, perhaps, the most fundamental of
security domain data elements. In this section you'll dig a bit deeper into them so you can fully integrate
them into your own analytics endeavors.

Representing IP Addresses

IPv4 addresses comprise four bytes, which are known as octets, and you'll usually come across them
in a form called dotted-decimal notation (such as 192.168.1.1). Practically everyone reading this book
understands this representation, if only by sight. This method of representation was briefly introduced
in the IETF RFC 1123 in 1989 when they denoted it as # . # . # . #, but it was more clearly defined in the
IETF’s uniform resource identifier (URI) generic syntax draft (RFC 3986, http://tools.ietf.org
/html/rfc3986)in 2005.

Note

When you come across other security domain elements, you'll want to do plenty of similar
digging to ensure you have all the information you need to process them or create complete
regular expressions to locate them in unstructured data.

Since you know an 8-bit byte can range in value from 0 to 255, you also know the dotted-decimal range
is0.0.0.0through 255.255.255.255,whichis 32 bits. If you count the possible address space, you
have a total of 4,294,967,296 possible addresses (the maximum value of a 32-bit integer). This brings up
another point of storing and handling IP addresses: Any IP address can be converted to/from a 32-bit
integer value. This is important because the integer representation saves both space and time and you
can calculate some things a bit easier with that representation than with the dotted-decimal form. If you
are writing or using a tool that perceives an IP address only as a character string or as a set of character

74

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

strings, you are potentially wasting space by trading a 4-byte, 32-bit representation for a 15-byte, 120-bit
representation (worst case). Furthermore, you are also choosing to use less efficient string comparison code
versus integer arithmetic and comparison plus bitwise operations to accomplish the same tasks. Although
this may have little to no impact in some scenarios, the repercussions grow significant when you're deal-
ing with large volumes of IP addresses (and become worse in the IPv6 world) and repeated operations.

Converting IPv4 Addresses to/from 32-Bit Integers

To take advantage of integer operations for IPv4 addresses, you need to have some method of
converting them to and from dotted-decimal notation. IEEE Standard 1003.1 defines the common
low-level (for example, C) method of performing this conversion via the inet _addr () and inet
ntoa () functions (http://pubs.opengroup.org/onlinepubs/009695399/
functions/inet addr.html). However, these functions are not exposed to R. Although
it would be possible to write a C library and corresponding R glue module, it’s easier to write the
functions in pure R with some help from the bitops package. In Listing 4-1 you will find R functions
that convert IPv4 address strings to/from 32-bit integer format.

Listing 4-1
requires packages: bitops

library (bitops) # load the bitops functions

Define functions for converting IP addresses to/from integers
take an IP address string in dotted octets (e.g.
#"192.168.0.1")
take an IP address string in dotted octets (e.g.
#"192.168.0.1")
and convert it to a 32-bit long integer (e.g. 3232235521)
ip2long <- function(ip) {
convert string into vector of characters
ips <- unlist(strsplit(ip, '.', £fixed=TRUE))
set up a function to bit-shift, then "OR" the octets
octet <- function(x,y) bitOr (bitShiftL(x, 8), y)
Reduce applys a function cumulatively left to right
Reduce (octet, as.integer(ips))

take an 32-bit integer IP address (e.g. 3232235521)
and convert it to a (e.g. "192.168.0.1").
long2ip <- function(longip) ({
set up reversing bit manipulation
octet <- function (nbits) bitAnd(bitShiftR(longip, nbits),
0XFF)

(continues)

Dissecting the IP Address 75

(continued)

Map applys a function to each element of the argument
paste converts arguments to character and concatenates them
paste (Map (octet, c(24,16,8,0)), sep="", collapse=".")

}

You can test the functionality by reviewing the output from the following test code:

long2ip (ip2long ("192.168.0.0"))
[1] "192.168.0.0"

long2ip (ip2long ("192.168.100.6"))
[1] "192.168.100.6"

Note: Python coders can use the preexisting ipaddr package (https://code.google
.com/p/ipaddr-py/), which has been incorporated into the Python 3 code base as the
ipaddress module.

Segmenting and Grouping IP Addresses

There are a few different reasons you’d want to divide and group IP addresses. Internally, you might sepa-
rate hosts by functionality or sensitivity, which means the routing tables would be overwhelmed if they
needed to track each individual IP address. Due to the way TCP/IP was designed and how IPv4 networks are
implemented, there are numerous ways to segment or group them so that it's easier to manage individual
networks (subnets) and interoperate in the global Internet. The original specification identified top-level
classes (2 through E), which were nothing more than a list of corresponding bitmasks for consuming
consecutive octets. This limited the usable range of addresses in each class and put some structure around
the suggested use of each class.

A more generalized, classless method of segmentation was established in RFC 4632 (http://
tools.ietf.org/html/rfc4632).Rather than segment on whole octets, you can now specify
address ranges in the CIDR (Classless Inter-Domain Routing) prefix format by appending the number of
bits in the mask to a specified IP address. So, 172 .16 . 0. 0 (which has amask of 255.255. 0. 0) now
becomes172.16.0.0/16.These CIDR blocks themselves can be used to look for “bad neighborhoods”
(that is, identifying network packets coming from or going to groups of malicious nodes).

It's important to understand these points because you'll want to leverage the groupings to dig into the
data and relationships to pull out meaning. Once you understand the CIDR prefix format, you can see how
those prefixes are grouped and defined as an autonomous system (AS) that are all assigned a numerical
identifier known as the autonomous system number (ASN). ASNs have many uses (and associated data);
for example, they are used by the border gateway protocol (BGP) for efficient routing of packets across
the Internet. Because of the relationship between ASN and BGP, it’s also possible to know the adjacent
“neighbors” of each ASN. If one ASN “neighborhood” is rife with malicious nodes, it might be a leading
indicator that ASNs around it are also harboring malicious traffic. You'll use this relationship later in the
chapter to get an ASN view of malicious activity.

There are many more details regarding autonomous systems that you should investigate even if you only
occasionally work with IP addresses in your analyses. To get a feel for the global make-up of autonomous

76

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

systems, you can explore public ASN information at the CIDR Report (http://www.cidr-report
.org/as2.0/).But keep reading, as you'll be looking at malicious traffic through an ASN lens later in
the chapter.

Testing IPv4 Address Membership in a CIDR Block

When you're performing ASN- and CIDR-based analyses, one task that comes up regularly is the
need to determine whether an address falls within a given CIDR range. To do this in R, you just
expand on the previously defined IPv4 address operations, convert both the IP address in question
and the network block address to integers, and then perform the necessary bitwise operations to
see if they do, indeed, line up. Listing 4-2 defines a new R function for testing membership of an
IPv4 address in a specified CIDR block.

Listing 4-2
requires packages: bitops
requires all objects from 4-1

Define function to test for

take an IP address (string)

H o H W

return whether the given IP

IP CIDR membership
and a CIDR

address 1is in the CIDR range

(string) and

ip.is.in.cidr <- function(ip, cidr) {

long.ip <- ip2long(ip)

cidr.parts <- unlist (strsplit(cidr, "/"))
cidr.range <- ip2long(cidr.parts([1])
cidr.mask <- bitShiftL(bitFlip(0),

(32-as.

return (bitAnd(long.ip,

integer (cidr.parts[2])))
cidr.mask) == bitAnd(cidr.range,
cidr.mask))

1

ip.is.in.cidr("10.0.1.15","10.0.1.3/24")
TRUE
ip.is.in.cidr(”l0.0.l.lS”,”10.0.2.255/24”)
FALSE

Your organization most likely uses CIDRs and ASNs internally as well, but these are not the only logical
grouping mechanisms of sets of IP addresses. For example, you might have “workstations” as a high-level
grouping that covers all the user-endpoint DHCP-assigned address space or “printers” to logically associate
all statically assigned single- or multi-function output devices. Servers can be grouped according to func-
tion or operating system type (or both). The concept of “internal” and “external” groupings for nodes may
apply even if you use publicly routable addresses across your entire network. When looking for malicious
activity, do not discount the power of these logical groupings, since you may be able to tie characteristics
of them (data!) to various indicators you may be looking for. For example, it's reasonable to expect the
typical end-user workstation to make attempts to access nodes on the Internet. However, the same is

Dissecting the IP Address 77

probably not true for printers. Therefore, one of the keys to learning about malicious activity is this type
of metadata and relationships.

Locating IP Addresses

Going down in detail, IP addresses map to individual devices that (usually) have unique media access control
(MAC) addresses. It's a fairly straightforward process to identify the switch and port of a node on your local
network. With the proper metadata, you can create logical groupings based on this physical information
and tie additional attributes to it, such as where the node lives—organizationally-geographically speaking.
By tying this information to an IP address, you won't have to wait until a barrage of help desk calls come
in to discover that there is something amiss in a particular department.

On a broader scale, there are also ways to tie an IP address that lives on the Internet to a geographical
location, with varying degrees of accuracy. One of the most popular ways to do so is with the Maxmind GeolP
database and APIs (http://dev.maxmind.com/geoip/), which are also used by the freegeoip
project (http://freegeoip.net/). The Maxmind data has varying degrees of precision depending
on whether you use the free databases or their commercial offerings. For country-level identification, using
the freely available databases should provide sufficient precision for most organizations. The freegeoip
project provides an online query interface to the free Maxmind data set, but it also provides all the code
for the service that you can then clone and set up internally to avoid working directly with Maxmind's low-
level APIs and avoid rate-limiting and other restrictions from the free service. Chapter 5 goes into more
detail on working with geolocated data.

Once you know where a malicious node physically is, it’s a fairly straightforward process to visualize it
on a map. The AlienVault data provides over 250,000 pre-geolocated addresses, but you'll need to extract
the pairs from the coords field first. You'll find example code for performing this extraction in Listing 4-3.
Note that if you have a slightly slower machine, it may take 30-60 seconds to read and parse the data.

Listing 4-3
R code to extract longitude/latitude pairs from AlienVault data

read in the AlienVault reputation data (see Chapter 3)

avRep <- "data/reputation.data"

av.df <- read.csv(avRep, sep="#", header=FALSE)

colnames (av.df) <- c("IP", "Reliability", "Risk", "Type",
"Country", "Locale", "Coords", "x")

moon

create a vector of lat/long data by splitting on ",
av.coords.vec <- unlist (strsplit (as.character(av.df$Coords), ","))
convert the vector in a 2-column matrix

av.coords.mat <- matrix(av.coords.vec, ncol=2, byrow=TRUE)

project into a data frame

av.coords.df <- as.data.frame(av.coords.mat)

name the columns

colnames (av.coords.df) <- c("lat","long")

convert the characters to numeric values

av.coords.df$long <- as.double(as.character (av.coords.dfS$long))
av.coords.dfslat <- as.double(as.character (av.coords.dfslat))

¥t PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

With the latitude and longitude coordinates in hand, you could avoid R or Python code altogether and
use Google Maps to visualize the locations—if you felt like grabbing a caffeinated beverage while it uploads
to Google Fusion Tables (http://tables.googlelabs.com/)and renders. Even though Google
has considerably sped up their online mapping API, the resultant—albeit, handsome—map would end
up being partially obscured with map markers. For example, mapping the AlienVault data set with Google
Maps (see Figure 4-1) produces a result that makes it seem like malicious hosts have consumed Japan.
Rather than rely solely on Google, you can use the mapping functions in R (see Listing 4-4) to accomplish
a similar task (see Figure 4-2) with far greater precision.

Note

There are more examples of geographical mapping and analysis in Chapter 5.

Google Fusion Table + Google Maps chart of AlienVault malicious nodes

Listing 4-4
requires packages: ggplot2, maps, RColorBrewer

requires object: av.coords.df (4-3)

H H W R

generates Figure 4-2

T+

R code to extract longitude/latitude pairs from AlienVault data
need plotting and mapping functions

library (ggplot2)

Dissecting the IP Address 79

library (maps)
library (RColorBrewer)
library (scales)

extract a color pallete from the RColorBrewer package

set2 <- brewer.pal(8,"Set2")

extract the polygon information for the world map, minus Antarctica
world <- map_data('world')
world <- subset (world, region != "Antarctica")

plot the map with the points marking lat/lon of the geocoded entries
Chapter 5 examples explain mapping in greater detail

gg <- ggplot ()
gg <- gg + geom polygon (data=world, aes(long, lat, group=group),
fill="white")
gg <- gg + geom point (data=av.coords.df, aes(x=long, y=lat),
color=set2[2], size=1, alpha=0.1)

gg <- gg + labs(x="", y="")

gg <- gg + theme(panel.background=element rect (fill=alpha(set2[3],0.2),
colour="'white')))

99

-50 -

1) 1
-100 0 100 200

R ggplot/maps package dot-plot map of AlienVault malicious nodes

The ability to associate an IP address with a physical location and display it on a map has inherent util-
ity (which will become even more apparent in Chapter 5). It’s one thing to read the destinations of your
Internet users and quite another to “see” them on a map, especially when you're trying to communicate
the groupings versus just analyze them. Yet, you do not necessarily need to generate a pretty picture to
looking at malicious activities geographically.

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

Augmenting IP Address Data

In an analyst’s dream world, every data set you are asked to crunch through would be error-free and have
all the attributes necessary for thorough and robust analyses. Sadly, information security is no different
from other disciplines when it comes to imperfect data sets and highly distributed referential data or just
a plethora of potential metadata sources. This less than perfect data can pose challenges to effective data
analyses, but it is usually possible to find and use the data you need.

Even though you have geographic information in the AlienVault data set, the Internet has, as indicated,
physical and logical groupings. It might be interesting to see how this data looks through a different lens.
For this example, the data set (see Listing 4-3) is augmented with additional data from the IANA IPv4
Address Space Registry (https://www. iana.org/assignments/ipv4-address-space/
ipv4-address-space.xml). This data represents a very high-level grouping of IPv4 address space
registry allocations, and it should be emphasized that most of the registrants are not responsible for the
malicious activity of individual nodes. So, although you cannot use this information to cast blame, it will
give you one view of where malicious nodes are clustered, setting up possible, additional investigations.

Note

On their web page under the heading “Alternative Formats,” the IANA provides a handy link
to the CSV version of the IPv4 address space allocations as well as a link to the traditional
annotated text file. If you run the example code, you may see some strange behavior at
times due to the CSV file being incomplete. It seems there is an automated process that
converts a source of the IP table into the various formats and stops processing when the
first octet hits three digits. You can either practice your data-munging skills and convert
the fixed-width version in the text file to CSV or use the version of the CSV that's on the
companion website if you encounter any issues.

The data frame foundational data structure in R and pandas makes it very straightforward to reference
and incorporate new data into your analyses, and your own projects will follow something close to this
basic data-analysis workflow pattern:

1. Downloading (if necessary) new data

2. Parsing/munging and converting the new data into a data frame

3. Validating the contents and structure of the new data

4. Extracting or computing relevant information from the new data source
5. Creating one or more new columns in the existing data frame

6. Running new analyses

For the example Listing 4-5, you'll process the IANA data to see which registry allocations have the
most malicious nodes. Note that the sapply () function call may take some time to execute depending
on the speed of your machine.

Augmenting IP Address Data

Listing 4-5
requires object: av.df (4-3)
R code to incporporate IANA IPv4 allocations
retrieve IANA prefix list
ianaURL <- "http://www.iana.org/assignments/ipv4-address-space/ipv4-
address-space.csv"
ianaData <- "data/ipv4-address-space.csv"
if (file.access(ianaData))
download.file (ianaURL, ianaData)

}

read in the IANA table
iana <- read.csv(ianaData)

clean up the iana prefix since it uses the old/BSD-

number formatting (i.e. allows leading zeroes and

we do not need to know the CIDR component.

iana$Prefix <- sub("*(00|0)", "", iana$Prefix, perl=TRUE)
iana$Prefix <- sub("/8$", "', ianaS$Prefix, perl=TRUE)

define function to strip 'n' characters from a string
(character vector) and return the shortened string.
note that this function is 'vectorized' (you can pass it a single
string or a vector of them)
rstrip <- function(x, n){
substr(x, 1, nchar(x)-n)

}

extract just the prefix from the AlienVault list
av.IP.prefix <- rstrip(str_ extract (as.character(av.df$IP),
"A([0-91+)\\."), 1)

there are faster ways than 'sapply()' but we wanted you to

see the general "apply" pattern in action as you will use it
quite a bit throughout your work in R

av.df$Designation <- sapply(av.IP.prefix, function(ip) f{

iana[iana$Prefix == ip,]$Designation

3]

Administered by AFRINIC Administered by APNIC
H## 322 2615
Administered by ARIN Administered by RIPE NCC
17974 5893
#4# AFRINIC APNIC
1896 93776
#i# ARIN AT&T Bell Laboratories
H## 42358 24
Digital Equipment Corporation Hewlett-Packard Company

(continues)

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

(continued)
#i# 1 3
LACNIC Level 3 Communications, Inc.
18914 31
PSINet, Inc. RIPE NCC
30 74789

You can do a quick check against the main IANA allocation table to see if this matches overall
block assignments. The code in Listing 4-6 makes a data frame from the table () summary of the
iana$Designation column and merges that data with the AlienVault data.

Listing 4-6

requires packages: ggplot2, maps, RColorBrewer

requires object: av.coords.df (4-3), iana (4-5)

Code to extract IANA block assignments & compare w/AlienVault groups
create a new data frame from the iana designation factors

iana.df <- data.frame (table(ianasSDesignation))
colnames (iana.df) <- c("Registry", "IANA.Block.Count")

make a data frame of the counts of the av iana

designation factor

tmp.df <- data.frame (table (factor (av.dfsDesignation)))
colnames (tmp.df) <- c("Registry", "AlienVault.IANA.Count")

merge (join) the data frames on the "reg" column

combined.df <- merge(iana.df, tmp.df)

print (combined.df [with (combined.df, order (-IANA.Block.Count)),],
row.names=FALSE)

Registry IANA.Block.Count AlienVault.IANA.Count
#4# APNIC 45 93776
Administered by ARIN 44 17974
ARIN 36 42358
RIPE NCC 35 74789
LACNIC 9 18914
Administered by APNIC 6 2615
Administered by RIPE NCC 4 5893
AFRINIC 4 1896
Administered by AFRINIC 2 322
Level 3 Communications, Inc. 2 31
#4 AT&T Bell Laboratories 1 24
Digital Equipment Corporation 1 1
#4# Hewlett-Packard Company 1 3
PSINet, Inc. 1 30

Then you plot the data (see Listing 4-7) to generate the chart in Figure 4-3.

Augmenting IP Address Data

Listing 4-7

requires packages: reshape, grid, gridExtra, ggplot2, RColorBrewer
requires object: combined.df (4-6), set2 (4-4)

generates Figure 4-3

plot charts from IANA data

flatten the data frame by making one entry per '"count'" type
versus having the counts in individual columns

need the 'melt()' function from the reshape package

to transform the data frame shape

library (reshape)

library (grid)

library (gridExtra)

normalize the IANA and AV values to % so bar chart scales
match and make it easier to compare
combined.df$IANA.pct <- 100 * (combined.df$IANA.Block.Count /
sum (combined.df$SIANA.Block.Count))
combined.df$AV.pct <- 100 * (combined.df$AlienVault.IANA.Count /
sum (combined.df$AlienVault.IANA.Count))

combined.df$IANA.vs.AV.pct <- combined.df$IANA.pct - combined.df$AV.pct

melted.df <- melt (combined.df)

plot the new melted data frame values

ggl <- ggplot (data=melted.df [melted.dfs$variable=="IANA.pct",],

aes (x=reorder (Registry, -value), y=value))

set min/max for axis so scale is same for both charts

ggl <- ggl + ylim(0,40)

ggl <- ggl + geom bar(stat="identity", fill=set2[3]) # using bars

make a better label for the y axis

ggl <- ggl + labs(x="Registry", y="%", title="IANA %")

make bar chart horizontal

ggl <- ggl + coord flip()

rotate the x-axis labels and remove the legend

ggl <- ggl + theme(axis.text.x = element text (angle = 90, hjust = 1),
panel.background = element blank(),
legend.position = "none")

gg2 <- ggplot (data=melted.df [melted.dfsvariable=="AV.pct",],
aes (x=reorder (Registry, -value), y=value))

gg2 <- gg2 + ylim(0,40)

gg2 <- gg2 + geom bar (stat="identity", fill=set2[4]) # using bars
gg2 <- gg2 + labs(x="Registry", y="%", title="AlienVault IANA %")

gg2 <- gg2 + coord flip()

gg2 <- gg2 + theme(axis.text.x = element text (angle = 90, hjust = 1),

panel.background = element blank(),
legend.position = "none")

(continues)

Registry

Registry

Digital Equipment Corporation -

Level 3 Communications, Inc. -

Level 3 Communications, Inc.

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

Listnc4-7 (continued)

grid.arrange makes it possible to do very precise placement of
multiple ggplot objects
grid.arrange(ggl, gg2, ncol=1l, nrow=2)

IANA %
PSINet, Inc. -
Hewlett-Packard Company -

AT&T Bell Laboratories -

Administered by AFRINIC -
AFRINIC -

Administered by RIPE NCC -
Administered by APNIC -
LACNIC -

RIPE NCC -

ARIN -

Administered by ARIN -
APNIC -

o-
o
o
S
o

30 40

X

AlienVault IANA %

Digital Equipment Corporation -

Hewlett-Packard Company -
AT&T Bell Laboratories
PSINet, Inc.

Administered by AFRINIC
AFRINIC -

Administered by APNIC -
Administered by RIPE NCC -
Administered by ARIN -

LACNIC -
ARIN -
RIPE NCC -
APNIC -
1 I 1 1 1
0 10 20 30 40
%

FIGURE 4-3 R bar charts comparing IANA block allocations

There is some variation, but overall the larger blocks contribute the majority of malicious hosts. We've
highlighted RIPE NCC,Administered by ARIN, and LACNIC in the text/console outputin
Listing 4-6 since RIPE NCC has a significantly larger number of malicious hosts than its allocation block
count might imply (nearly double that of its very close neighbor ARIN). LACNIC and Administered

Registry

Augmenting IP Address Data

by ARIN both have a similar number of malicious hosts yet have different allocation block counts. Even
with these discrepancies, can you make a more confident statement regarding the comparison between
the number of malicious hosts in the /8s managed by a registrar and the number of /8s managed by a
registrar? You can if you do one more visualization (see Listing 4-8), displaying the number of AlienVault
malicious nodes per IANA block, sorted by IANA block (lowest to highest), as seen in Figure 4-4.

Listing 4-8
requires packages: ggplot2
requires object: combined.df (4-7), set2 (4-4)
gg <- ggplot (data=combined.df,

aes (x=reorder (Registry, -IANA.Block.Count), y=AV.pct))
gg <- gg + geom bar (stat="identity", fill=set2([2])
gg <- gg + labs(x="Registry", y="Count",

title="AlienVault/IANA sorted by IANA (low-to-high")
gg <- gg + coord_flip()
gg <- gg + theme(axis.text.x = element text (angle = 90, hjust = 1),
panel.background = element blank(),
legend.position = "none")

99

The AlienVault population does gravitate toward the IANA blocks with the most allocations, but we can do
better by introducing some basic statistics into the mix in the next section.

AlienVault/IANA sorted by IANA Block Size (low-to—high)
PSINet, Inc. -
Hewlett—Packard Company -
Digital Equipment Corporation -
AT&T Bell Laboratories -
Level 3 Communications, Inc. -
Administered by AFRINIC -
AFRINIC -
Administered by RIPE NCC -
Administered by APNIC -
LACNIC -
RIPE NCC -
ARIN -
Administered by ARIN -
APNIC -

1
0 10 20 30
Count

Plotting AlienVault population per IANA block sorted by IANA block size

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

Association/Correlation, Causation, and Security Operations Center
Analysts Gone Rogue

Since this chapter contains the first examples where you group data elements (variables) and compare them
to other variables, this is a good place to mention the concept of association or, as you'll see it referred
to more often, correlation. Correlation is simply a measurement of the linear relationship between two
or more variables.

® Apositive correlation is a relationship between two or more variables whereby their values increase
or decrease together.

o Similarly, a negative correlation is a negative relationship, whereby when one variable increases, the
other will decrease, and vice versa.

If there is no consistent linear pattern in the change between variables, they are said to be uncorrelated.
When you calculate the correlation value (stats nerds call it the r value or correlation coefficient), you get a
value between 1 (perfect positive correlation) and -1 (perfect negative correlation). As r gets closer to zero,
the linear correlation decreases. At zero, you say there is no correlation between the two values.

It's important to remember that a simple correlation like this is a linear comparison. By contrast, look
at the scatterplot in Figure 4-5 that has the parabola (upside down U shape). Obviously there is a pattern
and some type of relationship, butit's not a linear correlation, so the calculated r value is very close to zero.
Like most elements of statistics (or any complex discipline), there are many methods available to perform
various tasks. This is also true when calculating correlation between two variables. Chapter 5 looks at a
topic called linear regression, which provides more detailed insight into correlation. Linear regression is
also the basis for one type of predictive modeling. For the purposes of this chapter, you'll use a basic form
of correlation. The code to generate the scatterplots in Figure 4-5 is in the ch04 /R /ch04 . R file on the
book's web site.

Correlation Caveats

Believe it or not, there are parallels between statistics and information security. Statisticians use
strange symbols and tools to perform their dark art much like malware researchers and network
security specialists stare at rows of hexadecimal, octal, and binary data to derive meaning. Security
researchers also understand which tool to use for the job at hand (you wouldn't use NetFlow data
to try to understand detailed payload information in a communication session between two nodes).
The same holds true for data scientists. There are, unfortunately, further considerations to take into
account when working with even basic correlation techniques.

This chapter describes the Pearson correlation method, which is widely used given that
it can work with data on an interval or ratio scale, with no restrictions placed on both vari-
ables being the same type. If you have ordinal or ranked data, you should use two other
algorithms—Spearman or Kendall’'s Tau—instead. We aren’t delving into the correlation algo-
rithm subtleties in this book, but you should have a solid understanding of the uses and lim-
its of each before applying correlation in your own analyses. You can find out more details
about these correlation coefficientsat http: //www.statisticssolutions.com/
academic-solutions/resources/directory-of-statistical-analyses/
correlation-pearson-kendall-spearman/

Finally, correlation is a descriptive statistical measure versus an inferential one, meaning that you
can only describe the population you are studying and cannot use the outcome to generalize a
statement about a larger group or make predictions based on the outcome.

Augmenting IP Address Data :74

Designation: 0.98 Correlation: -0.95 Correlation: -0.02

Scatterplots showing correlations

It's also important to remember that correlation is just showing some existence of a relationship between
variables, with no implication of causation. For example, imagine that a hypothetical analyst looked at the
relationship between security incidents and the number of security operations staff, and reported, “There
is a strong positive correlation between the number of SOC analysts in an organization and the number
of incidents reported.” This could be misunderstood to imply that SOC analysts cause security incidents.
In reality, the patterns of data have similar trends with nothing else implied. Perhaps organizations with
more incidents hire more SOC analysts, or after hiring more analysts, organizations discover more incidents.
Perhaps the two are both a product of something else completely, such as larger organizations are targeted
more and have both more incidents and analysts. When you calculate relationships like correlation, you have
to be careful to keep it in context. People (and especially those looking for a headline) put a lot of faith in
mathematically derived answers and in “having a number.” That overconfidence may cause an analyst to
take the results out of context and into some really weird places, such as “Researchers suggest we fire SOC
analysts to reduce breaches!” You have to be careful of how you position your work and be sure to present
the results with an appropriate communication of confidence in the techniques.

For the IANA data, it makes sense that there would be more malicious nodes in larger groups of assigned
network blocks. This is an expert opinion that’s based on a cursory observation of data and an intuitive
feel for the “right” answer. To make a more statistically backed statement, use the code in Listing 4-9 to

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

generate the plot in Figure 4-6 of the relationship between the two variables TANA . Block . Count and
AlienVault.IANA.Count.

Listing 4-9
requires packages: ggplot2
requires object: combined.df (4-7), set2 (4-4)

H oH H

generates figure 4-6
gg <- ggplot (data=combined.df)
gg <- gg + geom point (aes (x=IANA.Block.Count,
y=AlienVault.IANA.Count),
color=set2[1], size=4)
gg <- gg + labs(x="IANA Block Count", y="AlienVault IANA Count",
title="IANA ~ AlienVault")
gg <- gg + theme(axis.text.x = element text(angle = 90, hjust = 1),
panel.background = element blank(),
legend.position = "none")

99

The scatterplot in Figure 4-6 appears to show a positive correlation, but to be sure, you should move
from eyeballs to keyboards to run a statistical comparison. There are a number of methods available to
perform basic pairwise correlation. R provides access to three fundamental algorithms via the built-in
cor () function:

cor (combined.dfSIANA.Block.Count,
combined.df$AlienVault.IANA.Count, method="spearman")
[1] 0.9488598

The value returned by cor () is known as the correlation coefficient and, as pointed out earlier, if it
falls close to +1, this indicates there is a strong positive linear relationship between the two variables. As
previously noted, R’s built-in cor () function offers three methods of correlation:

® pearson (which is the default if no parameter is specified) refers to the Pearson product moment
correlation function and was designed to be most effective when run on continuous data sets
with a normal distribution (see later in this chapter) that is free of outliers;

® spearman refers to the Spearman rank-order correlation coefficient and—as the name implies
—uworks on rank-ordered data, in other words, if you have two columns in an R data frame that
have either pre-ranked data (for example, ordered “top 10" elements) or can be putinto rank
order (especially to avoid the outlier problems that reduce the efficacy of the Pearson algorithm).
Algorithmically, the Spearman calculation is actually the Pearson correlation coefficient calculated
from ranked variables;

® kendall refersto Kendall’s tau scorrelation coefficient and was specifically designed to work on
ranked, ordinal variables. It represents the difference between the probabilities of the outcome
variable increasing and decreasing with respect to an input variable.

AlienVault IANA Count

Augmenting IP Address Data

IANA ~ AlienVault

IANA Block Count

Scatterplot of malicious node counts to number of /8 blocks managed by a registrar
For this example, we applied the Spearman correlation, as it produces a rank correlation coefficient and
is generally more suited to variables that do not have a normal distribution (you can execute thehist ()
function on each list to see how far removed each data set is from the normal distribution) and are better
compared by rank. For readers who are unfamiliar with what a normal distribution is, a simplified explana-
tion is that a data set is normally distributed if:

@ |thas an equal mean and median.

® 68 percent of the values lie within one standard deviation of the mean.
® 95 percent of the values lie within two standard deviations of the mean.
® 99.7 percent (or more) lie within three standard deviations of the mean.

You now have some statistical backing to help validate the visual pattern and logical (common sense)
view that larger blocks of networks will contain more malicious hosts. You could run a similar analysis of
your own internal data and, say, determine if there’s a relationship between the number of employees in
a department and the number of viruses detected.

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

Note

Chapter 5 goes into more detailed methods for determining relationships between
variables.

Mapping Outside the Continents

Calculating and graphing information about malicious nodes is highly useful and vital to the operation of
most, if not all, security technologies deployed in today's organizations. However, as a security data scientist,
it's a good idea to get into the habit of visualizing data to pick up structures or patterns you might not see
otherwise. The classic example of this is Anscombe’s quartet, illustrated in Figure 4-7.

Here (Listing 4-10) are the (x,y) pairs that make up the plots in Figure 4-7:

Listing 4-10

anscombe is a data set that comes with R
Use the column indexing feature of the

data frame to show them as pairs
anscombe[,c(1,5,2,6,3,7,4,8)]

x1 yl =x2 y2 x3 y3 x4 v4
1 10 8.04 10 9.14 10 7.46 8 6.58
2 8 6.95 8 8.14 8 6.77 8 5.76
3 13 7.58 13 8.74 13 12.74 8 7.71
4 9 8.81 9 8.77 9 7.11 8 8.84
5 11 8.33 11 9.26 11 7.81 8 8.47
6 14 9.96 14 8.10 14 8.84 8 7.04
7 6 7.24 6.13 6.08 8 5.25
8 4 4.26 4 3.10 4 5.39 19 12.50
9 12 10.84 12 9.13 12 8.15 8 5.56
10 7 4.82 7 7.26 6.42 8 7.91
11 5 5.68 5 4.74 5 5.73 8 6.89

calculate mean and standard deviation for each column
sapply (anscombe, mean)

x1 X2 x3 x4 vyl v2 v3
9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000
v4

7.500909
sapply (anscombe, sd)

x1 X2 X3 x4 vyl v2 v3

3.316625 3.316625 3.316625 3.316625 2.031568 2.031657 2.030424
v4

2.030579

sapply (anscombe, var)

#4# x1 X2 x3 x4 vyl y2

yVal

Mapping Outside the Continents

11.000000 11.000000 11.000000 11.000000 4.127269 4.127629

y3 v4
4.122620 4.123249
for (i in 1:4) cat(cor(anscombel[,i], anscombel[,i+4]), "\n")

0.8164205
0.8162365
0.8162867
0.8165214

Anscombe's 4 Regression data sets

xVal
Anscombe’s quartet

All four data sets have the same statistical description (mean, standard deviation, variance, correlation),
and they even fit the same linear regression—the blue diagonal line—in the charts in Figure 4-7. Yet, when
visualized, patterns emerge. Panel 1 in Figure 4-7 shows a basic linear relationship of a data set that is dis-
tributed fairly normally. Panel 2 is definitely not exhibiting a linear relationship, but there is clearly some
relationship between them. Panel 3 has a mostly linear relationship but with an obvious outlier. Finally,
Panel 4 shows the power outliers hold, as the extreme point in the upper right is strong enough to have
the data still show a strong correlation despite the lack of a linear relationship. Visualizations like this are
often key to gaining a much better understanding of the data.

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

As you learned earlier in the chapter, maps can also be powerful tools for communicating information
visually. However, there are other logical and physical visual representations of IP addresses available,
especially when you want to see the interconnectedness of nodes. One very versatile representation is
the graph structure since it provides statistical data and has a myriad of options for visual presentation.
Do not confuse the term “graph structure” here with producing a graphic or chart. A graph structure is
nothing more than a collection of nodes (vertices) and links between nodes (edges). Nodes and edges have
inherent attributes, such as a name/label, but also have attributes that are calculated, such as the number
of links going into and coming from the node (the degree). In a traditional graph structure, the direction
of an edge (in or out) can be specified as well. In fact, as you'll see in Chapter 8, graphs are becoming so
generally useful that there are extremely popular, custom databases that make it very straightforward to
store, modify, and analyze large graph structures.

Visualizing the Zeu$S Botnet

In this section, you combine the metadata you can pull from IP addresses and apply the graph structure to
that data to visualize relationships in IP addresses that have been affiliated with malicious behavior. You'll
mostly be focusing on building and visualizing graph structures and touching on graph-based analytics for
the remainder of this chapter. Previous examples have worked with the AlienVault IP Reputation database,
but it’s time to switch things up a bit and look at one particularly pervasive bit of maliciousness on the
Internet: the Zeu$S botnet. Most security professionals have heard of ZeuS before, but just in case, here’s
the description from the abuse . ch ZeuS tracker site (ht tps: //zeustracker.abuse.ch/):

Zeus (also known as Zbot/WSNPoem) is a crimewatre kit that steals credentials from
various online services like social networks, online banking accounts, FTP accounts,
email accounts, and other (phishing).

Despite some prominent attempts at taking down this botnet, it continues to hum along siphoning
credentials. The abuse . chsite provides a handy blocklist (ht tps: //zeustracker.abuse.ch/
blocklist.php?download=badips) of IP addresses that organizations can use to both identify
ZeuS infected nodes and prevent infected systems from communicating with ZeuS command and control
(C&QC) servers, which orchestrate all operations within the botnet. To work with the blocklist, you need to use
the code in Listing 4-11 to get the data file into R (a task you're hopefully getting very familiar with by now).

Listing 4-11

Retrieve and read ZeuS blocklist data into R

zeusURL <- "https://zeustracker.abuse.ch/blocklist.php?\

download=ipblocklist™"

zeusData <- "data/zeus.csv"

if (file.access(zeusData))
need to change download method for universal "https" compatibility
download.file (zeusURL, =zeusData, method="curl")

1

read in the ZeuS table; skip junk; no header; assign colnames

zeus <- read.table(zeusData, skip=5, header=FALSE, col.names=c("IP"))

Mapping Outside the Continents

We've switched to read. table () (read.csv () isa variant of that function) in Listing 4-11
since there’s only one column. This particular data file has no header but it does have five lines at the
beginning of the file that are comments and of no use to you programmatically. We also use some short-
hand by avoiding a separate call to colnames () and embedding the column names right in the read
.table () function call.

Let’s start by determining which countries host Zeu$S bots. You could use a geolocation service to get this
data, but we'll take a different approach here since you will also require some additional information for the
next part of your analysis. The Team Cymru firm provides a number of IP-based lookup services (http: //
www . team-cymru.org/Services/ip-to-asn.html), including anIPto ASN mapping service
that supports bulk queries over port 43 and returns quite a bit of handy information:

® AS number

® BGP prefix

e Country code

® Registry

® Whenitwas allocated

@ ASorganization name

The Team Cymru site clearly states that the country code data is only as accurate as the regional registry
databases, but we've run some comparisons against geolocation databases and for the purposes of the
examples in this chapter the data is accurate enough. To use this data, you need some helper functions
that can be found in the ch04 . Rfilein ch04 /R directory provided on the book’s website (www . wiley
.com/go/datadrivensecurity):

e trim (c) —Takesa character string and returns the same string with leading and trailing spaces
removed

® BulkOrigin (ips) —Takes a list of IPv4 addresses and returns a detailed list of ASN origins
® BulkPeer (ips) —Takes a list of IPv4 addresses and returns a detailed list of ASN peers
To build the graph structure, you'll perform the following steps:
1. Look up the ASN data.
2. Turn the IP addresses into graph vertices.
3. Turn the AS origin countries into graph vertices.
4. Create edges from each IP address to its corresponding AS origin country.

Surprisingly, it's simple R code, as shown in Listing 4-12.

Listing 4-12
Building ZeuS blocklist in a graph structure by country

H H R

requires packages: igraph, plyr, RColorBrewer, colorspace
requires object: set2 (4-4)

T

(continues)

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

(continued)
library (igraph)
library (plyr)
library (colorspace)
load the zeus botnet data used to perform the
remainder of the analyses in the chapter
zeus <- read.table("data/zeus-book.csv", skip=5, header=FALSE,
col.names=c("IP"))
ips <- as.character(zeus$SIP)
get BGP origin data & peer data;
origin <- BulkOrigin (ips)

g <- graph.empty () # start graphing

Make IP vertices; IP endpoints are red

g <- g + vertices(ips, size=4, color=set2[4], group=1)

Make BGP vertices

g <- g + vertices(origin$CC, size=4, color=set2[2], group=2)
for each IP address, get the origin AS CC and return

them as a pair to create the IP->CC edge list

ip.cc.edges <- lapply(ips, function(x) {
iCC <- originlorigin$IP==x,]S$CC
lapply (icc, function (y) {
c(x, v)
3]

)

<- g + edges (unlist(ip.cc.edges)) # build CC->IP edges
simplify the graph by combining commmon edges
<- simplify(g, edge.attr.comb=1list (weight="sum"))
delete any standalone vertices (lone wolf ASNs). In "graph" terms
delete any vertex with a degree of 0

Q # # Q I Q

<- delete.vertices (g, which(degree(g) < 1))
E(g) $arrow.size <- 0 # we hate arrows

blank out all the IP addresses to focus on ASNs
V(g) [grep ("\\.", V(g)$name)] $name <- ""

Now that you have a graph structure, it's equally as straightforward to make the graph visualization
in Figure 4-8 just by passing the graph structure to the plot () function with some layout and label
parameters as seen in Listing 4-13.

Listing 4-13

Visualizing the ZeuS blocklist country cluster graph

requires packages: igraph, plyr

requires all objects from Listing 4-11

this is a great layout for moderately sized networks. you can
tweak the "n=10000" if this runs too slowly for you. The more

oH I E I W I

iterations, the cleaner the graph will look

Mapping Outside the Continents

A

L <- layout.fruchterman.reingold(g, niter=10000, area=30*vcount (g)” 2)
plot the graph
par (bg = 'white', mfrow=c(1,1))
plot (g, margin=0, layout=L, vertex.label.dist=0.5,
vertex.label.cex=0.75,
vertex.label.color="black",
vertex.label.family="sans",
vertex.label.font=2,

main="ZeuS botnet nodes clustered by country")

If your country code memory is a bit rusty, you can use the R code in Listing 4-14 to provide a
lookup table.

Listing 4-14

require package: igraph (4-11)

requires object: V() (4-11), g (4-11)

read in country code to name translation table

zeus.cc <- grep("[A-Z]", V(g)Sname, value=TRUE)

zeus.cc <- zeus.cc [order (zeus.cc)]

read in the country codes data frame

cc.df <- read.csv("data/countrycode data.csv")

display cc & name for just the ones from our data set

print (head(cc.df [cc.df$iso2c %in% zeus.cc, c(7,1)], n=10),
row.names=FALSE)

iso2c country.name

AR ARGENTINA
#it AU AUSTRALIA
AT AUSTRIA
AZ AZERBAIJAN
BG BULGARIA
H## ca CANADA
H## CL CHILE
CN CHINA
CZ CZECH REPUBLIC
DE GERMANY

As stated earlier, simple bar charts and tables make it easier to understand quantities, but the graph
tends to add a visual impact that traditional presentation techniques lack. Therefore, depending on the
consumers, it may be useful/helpful to put them both together when presenting your output.

From your previous work with ASNs, you know that IPs live in both physical and logical space. Now
that you have a graph view of the physical world, you can use the code in Listing 4-15 to create the graph
network in Figure 4-9 and take look at the ZeuS IP addresses in relation to their ASNs of origin and include
ASN peers to truly start to see it as a network.

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

Listing 4-15

requires objects: BulkOrigin() & BulkPeer () from book's web site
require package: igraph (4-11)

create connected network of ZeuS IPs, ASNs, and ASN peers

generates Figure 4-9

g <- graph.empty ()

g <- g + vertices(ips, size=3, color=set2[4], group=1)

origin <- BulkOrigin (ips)
peers <- BulkPeer (ips)
add ASN origin & peer vertices
g <- g + vertices (unique (c(peers$Peer.AS, origin$AS)),
size=3, color=set2[2], group=2)
build IP->BGP edge list
ip.edges <- lapply(ips, function (x) {
iAS <- originlorigin$IP==x,]SAS
lapply (iAS, function (y) {
c(x, v)
I
I3

bgp.edges <- lapply(
grep ("NA" ,unique (origin$BGP.Prefix) ,value=TRUE, invert=TRUE) ,
function (x) {
startAS <- unique (origin[origin$BGP.Prefix==x,]$AS)
lapply (startAS, function(z) {
PAS <- peers[peers$BGP.Prefix==x,]$Peer.AS
lapply (pAS, function (y) {
c(z,y)
3]
I
I3
g <- g + edges(unlist (ip.edges))
g <- g + edges (unlist (bgp.edges))
g <- delete.vertices (g, which(degree(g) < 1))
g <- simplify (g, edge.attr.comb=1list (weight="sum"))
E(g) Sarrow.size <- 0
V(g) [grep ("\\.", V(g)$name)]$name = ""
L <- layout.fruchterman.reingold(g, niter=10000, area=30*vcount (g)

A

2)
par (bg = 'white')
plot (g, margin=0, layout=L, vertex.label.dist=0.5,

vertex.label=NA,

main="ZeuS botnet ASN+Peer Network")

By expanding the network with the ASN peers, you can see a cluster of interconnected ASNs that might
be worth exploring further, but you'll need to reference the resources in the “Recommended Reading”
section to take that next step.

Mapping Outside the Continents

Zeu$S botnet nodes clustered by country

Q- ATo
R
09 oogo 00 0 "2

R e, 0y Odte
OO0 O
&z o 00 0g w ©g.0 &N
od® 0,0 0 ¢
0700 O O o &9
og® veoo 0% 9/5% °
Q Q0 O YA O Cf\TéE
CS;A O o
o @) @ o o © O
(fLO @) OO @) @) OéG
®) O (SEBO o O Opw
d‘R o O O ®)
OO o 9O o/ O dQ |8|Y
© 009500 Go©® oo T 9y
00 0.8 00 o ge0 © o 4
0o [00 ojie 0y o® 06
O o O @ @) o Lo
@) @)
Oogo C o/ 0 St ¢

ZeusS nodes clustered by origin country

With basic graph network concepts well in hand, you can turn your attention to a more practical appli-
cation of these functions—visualizing malicious activity on your network using actual data from a real
environment and attempting to visualize the answer to the question, “What potentially malicious nodes
are attempting to come into/get out of my network?”

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

ZeuS botnet ASN+Peer Network

o @ 0 o
00 .0 0 @ o0 oo
o o 0 o
® o 90 o 97, o
oo o oOOo 00 00 o
[6) oo o 10 o9 ©° o
o) (@]
OOOO o OOOO @] OOOOOO
Oc)oo oo o) OOO o 0 0y 0
oO po ooo 00 0 ¢4 0 o 09 o o ©
(0] o0 (o] o
e} o ° ° 00 o
", 0 o © 00 9% @ "o ©
%0 o 09 0% o o o © % o0 % ©%4°
o ¢ oo o (0] (o) o 0o
0 © 0 o0 0/ o © 0%¢ °
o o o » P o o© o
OO o 0o \O% & o o © o © (oRe)
o) 6! Q o © 0 o o)
o Q o o o) (o)fo) o)
o) o) 9 9% 6 Q o) o
oo 0o. o © o) o © o ©° 5 9§
o o)
OO o O _ o 0.0 (o) O (©) o o (@) o© o
o)
(o} o 0% o o o
[0) (@]
o o o) o o}
o ~0° o002 "5 O 05 0-0¢ o S o
(0] o—0 o OO OOOO o) OOQO o o (@)
o o o © o 00 oooo
o © (0) o) o o o
e & e N 00 0o o
o o° 00 o} 0L % 0o ° 0 o
Plo 0% o 00 o
Ooo oOooOo o 0.0 ¢ o°
OOO OO '0) OOOO o) OO
0o % 0066 %0 o ©

Zeus$ nodes graph with ASNs and peers

Visualizing Your Firewall Data

Examining generic data about malicious nodes has some merit, but it's more helpful to apply these analysis
and visualization techniques to your own organization. To that end, this last example provides a way to
use both the AlienVault IP Reputation database and the graphing techniques presented in this chapter to
examine what’s happening on a perimeter firewall. Rather than generate some artificial data, we obtained 24
hours’ worth of Internet-bound IP addresses from volunteers, which can be found in thefile dest . ipsin
the ch04 /data directory on the book’s website (www . wiley.com/go/datadrivensecurity).

Mapping Outside the Continents

This example has also created two new functions, which can be found on the website in the ch04 . R
file in the ch04 /R directory:

® graph.cc (ips, av.df)—Takesinallist of IPv4 addresses and an AlienVault data frame and
returns a complete graph network structure of nodes clustered by country code. It also (option-
ally) plots the graph with a summary of malicious traffic types.

® graph.asn (ips, av.df)—Takesinalist of IPv4 addresses and an AlienVault data frame and
returns a complete graph network structure of nodes clustered by ASN. It also (optionally) plots
the graph with a summary of malicious traffic types.

You can start by loading the destination IP addresses and filtering out everything that isn't in the
AlienVault database. You then assess the result and try to get a feel for what type of malicious activity to
hone in on. Even with the potential bias in the data (as described in Chapter 3), a higher reliability rating
should still mean there is a better chance the node is actually “bad.” Therefore, you can focus on entries
with reliability greater than 6, which will give you 127 nodes to send to graph . cc () to process and
plot. See Listing 4-16.

Listing 4-16
requires objects: BulkOrigin() & BulkPeer (), graph.cc(), graph.asn()
from book's web site & set2 (4-4)

create connected network of ZeuS IPs, ASNs, and ASN peers

#

#

#

working with Real Data
#

generates Figure 4-10

#

require package: igraph, RColorBrewer

avRep <- "data/reputation.data"

av.df <- read.csv(avRep, sep="#", header=FALSE)

colnames (av.df) <- c("IP", "Reliability", "Risk", "Type",
"Country", "Locale", "Coords", "x")

read in list of destination IP addresses siphoned from firewall logs
dest.ips <- read.csv("data/dest.ips", col.names= c("IP"))

take a look at the reliability of the IP address entries
(you could also plot a histogram)

table(av.df [av.df$IP %$in% dest.ips$SIP,]SReliability)

1 2 3 4 5 6 7 8 9 10

16 828 831 170 1 266 92 2 23 24

extract only the "bad" ones, designated by presence in alienvault

database with a reliability greater than 6 since there seems to

be a trailing off at that point

ips <- as.character(av.df[(av.dfsSIP %$in% dest.ips$IP) &
(av.df$Reliability > 6),]1S$SIP)

graph it

g.cc <- graph.cc(ips, av.df)

PERFORMING EXPLORATORY SECURITY DATA ANALYSIS

The bar chart on the right serves as a legend for the colors of the graph nodes and also provides a
summary of the totals of each classification type. In Figure 4-10, you can see there is some potential C&C
traffic and that the United States has the highest number of possible malicious destinations. With graph
.cc () 's ASN cousin and the slicing and dicing example in Listing 4-16, you should have enough tools to
generate your own views in order to look at different aspects of the malicious traffic.

DE o .CL Spamming;Malware IP
.
© Q
FR o
¢ ° ° 5] TR
ot ©
® i Spamming
.
e -Tv\P
e ° @
o my? ;
e s @ le/g =] % - sG Scanning Host :|
a]
ey Biol e/ N @ o
e - * o °
L] o o
o g o @ MK Malware IP
% o @ BE *
@ 8 ') =1 @
@ @ a . o ¢
i > o ° °© e e
b4 ® b o L] ® @ @ . Mabware Domain;Malware IP
a
— o> AN e GR o ©
.
L A e Y L] o o PL
gl || @ oy o
L iy Y, R Malware Domain
o @ - - ® e o b ®
© ® . .
]
i /%" ® © g ©
e o @ o . .
e WU ° C&C;Malware Domain
.
ca © SE »
. .
& .NL ° i e CaC
@ L]

T T T T 71 1
0 10 20 30 40 50 &0 7O

Graph of malicious destination traffic by country

Summary

The goal of this chapter was to show you the importance of fully understanding the data elements you
want to analyze and visualize, as well as the need to start with a question and iterate through computations
and visualizations to work toward an answer. There are plenty of other similar data sets available on the
Internet to substitute for the ones provided in most of the examples. Hunting those down (or just using
your own firewall data in the last example), working through the sample analyses, and formulating your
own questions will help to ingrain the pattern of the data analysis workflow in your mind.

There are many ways to look at IP-based malicious activity and this chapter was by no means com-
prehensive. Furthermore, R was not entirely necessary for anything but the visualizations and statistical
analyses. Much of the sorting, slicing, and dicing could have been performed in a database and—as you'll
see in Chapter 8—that is definitely the place to start when working with larger data sets.

The next chapter expands on these analyses and should give you a new “out of this world” perspective
on botnet data.

Recommended Reading

Recommended Reading

The following are some recommended readings that can further your understanding on some of the topics
we touch on in this chapter. For full information on these recommendations and for the sources we cite in
the chapter, please see Appendix B.

Mining Graph Data by Diane J. Cook and Lawrence B. Holder

Graphical Models with R by Seren Hojsgaard, David Edwards, and Steffen Lauritzen

From Maps to Regression

FROM MAPS TO REGRESSION

You have been learning some basics about security data and how to pull meaning from IP addresses. As
briefly discussed in Chapter 4, IP addresses can be associated with geographic data if you look them up
using a geolocation service. But what is the value in doing that? How much can you learn by associating a
longitude and latitude with your data? The answer to that is dependent on what the IP represents and how
deep you are willing to go. In order to describe the value of mapping the virtual world into the physical,
this chapter begins with a list of over 800,000 latitude/longitude pairs shared by our friends at Symantec.
The location data is from client IP addresses infected with the ZeroAccess rootkit, collected over a 24-hour
period during the month of July in 2013.
Now that you know these are locations of hosts with ZeroAccess, you could ask a series of questions:

® How is ZeroAccess distributed across geographic areas and is there any significance to this
distribution?

® What types of clients are more likely to be infected with ZeroAccess? Do things like education and
income affect the rate of infection?

® Are ZeroAccess infections the result of alien visitors?

Obviously, this chapter hones in on that last question. It is the most important and worthy of some
serious research (anyone have some spare grant money?). But seriously, our purpose is to explore the
benefits (and pitfalls!) you'll get from tying secondary data points, like alien visitors, to the primary data.
Oftentimes, more can be learned through the combination and merging of related data, than just the
original data in isolation. Therefore, as you bring the lessons from this chapter back to your own work,
realize that insight may not just be in the primary data you collect, but in how it relates to other data you
can collect from your environment. For example, we could ask the following questions that will combine
two or more sources of data:

@ |s there arelation between phishing victims and their HR data (education, pay grade, etc.)?

® Isthere arelation between netflow (network) patterns and the software and services running on
hosts?

@ |sthere arelationship between surfing habits and productivity or performance review scores of
employees?

This is where you are heading in this chapter. You'll begin with one single data point (location data
for systems infected with ZeroAccess) and explore the relationships within the data. Then you'll combine
the location data with other geographic observations and apply a statistical technique known as linear
regression to test the relationships of the various data points and look for significant (and perhaps even
spurious) relationships. Prepare for the examples in this chapter by setting the directory to the working
directory for this chapter and make sure the R libraries are installed (Listing 5-0).

set working directory to chapter location
(change for where you set up files in ch 2)
setwd ("~/book/ch05")

(continues)

Simplifying Maps 105

(continued)

make sure the packages for this chapter
are installed, install if necessary
pkg <- c("ggplot2", "scales", "maptools",

"sp", "maps", "grid", "car")
new.pkg <- pkgl! (pkg %$in% installed.packages())]
if (length (new.pkg)) {

install.packages (new.pkg)

Simplifying Maps

It's easy to get all wrapped up thinking that visualizing spatial data (maps) is special, complicated, or will
somehow take a lot more effort. But with the right tools (and there are plenty available), working with
spatial data can not only be relatively simple, but also quite fun. In order to take some of the mystique out
of maps, we want to start by loading the latitude and longitude points from Symantec and treating them
as x,y coordinates to create a simple scatterplot (Listing 5-1).

Load ggplot2 to create graphics

library (ggplot2)

read the CSV with headers

za <- read.csv("data/zeroaccess.csv", header=T)

create a ggplot instance with zeroaccess data

gg <- ggplot (data=za, aes(x=long, y=lat))

add the points, set transparency to 1/40th

gg <- gg + geom point (size=1, color="#000099", alpha=1/40)
add axes labels

gg <- gg + xlab("Longitude") + ylab("Latitude")

simplify the theme for aesthetics

gg <- gg + theme bw()

this may take a while, over 800,000 points plotted
print (gg)

Figure 5-1 looks remarkably like a world map without placing borders or loading any map specific tasks.
This works with this data because there are over 800,000 coordinate pairs and one point is covering more
than a large city. We made the points a little less overwhelming by setting the alpha (transparency of the
color) to be 1/40 of a full color. With the alpha at 1/40, it will take 40 points on top of one another to create a
non-transparent color. With 20 points, for example, on top of one another, you see 50 percent transparency.

From this basic scatterplot, you can see the density in the Eastern half and West coast of the United
States and most of Europe is covered. You see some concentration in Brazil, and India is outlined quite well.
One interesting thing to note here is that China has almost no density and Japan is clearly visible. But at
this point, you can only make guesses as to what'’s going on with what looks like a significant difference
in Asian countries.

FROM MAPS TO REGRESSION

40 =

&

Latitude
(=]
1

-40 - 5

T T

T
=100 100

0
Longitude

Basic scatterplot using latitude and longitude

There is something unique about maps, because you need to “project” the three-dimensional spherical
world onto a two-dimensional flat canvas. When you do that, aspects of the map are distorted—shapes
will be distorted, land areas will shrink or be over-represented, or distances will be skewed. But for most
applications within information security, you are simply trying to represent some attribute of, or differ-
ence between, geographic areas. So the choice of map projections is more about personal preference and
aesthetics rather than communicating a specific geographic message. Figure 5-2 shows a few different
map projections.

Polyconic

Winkel Tripel
Equirectangular

Map projections

Simplifying Maps

If you take another look at Figure 5-1,it's a little hard to know where all those points land unless you were
among the few who didn’t fall asleep during world geography in high school. Let's recreate thatimage, build
a map with a specific projection of the landmasses, and then add the points on top of it. Luckily, within R,
most of the basic map data is already available with a few packages installed. The ggplot2 package has a
function calledmap data () thatwraps the maps package to return a ggplot2-compatible data frame.

Callingmap_data () with one character string of “wor1d” will load just over 25 thousand rows of
map data into a data frame, which means, as you've seen in Chapter 3, you can explore any and all of this
data with commands like str (), head (), and summary (). You can plot the countries by tracing a
path along the latitude and longitude pairs in the map data, which has the effect of drawing the country
borders. Paths are grouped by the column labeled group (in this data, groups are the country), and the
data frame must be sorted in order (an important detail, as you'll see later). To create the final map (see
Listing 5-2), you call coord_map () to create the map projections (you will use the Mercator projection
for this example), and you'll use a simple black and white theme on it with the theme bw () function.
Once you have the countries traced, you then add the points from the ZeroAccess data on the map as if
you are creating a scatterplot like you did before (see Figure 5-3).

requires package : ggplot2

requires object: za (5-1)

the "maps" and "mapproj" packages are used by ggplot2

load map data of the world

world <- map data ("world")

nothing personal penguins, but strip out Antarctica

world <- subset (world, worldSregion!="Antarctica")

load world data into ggplot object

gg <- ggplot (data=world, aes(x=long, y=lat))

trace along the lat/long coords by group (countries)

gg <- gg + geom path (aes (group=group), colour="gray70")

now project using the mercator projection

try different projections with ?Pmapproject

gg <- gg + coord map ("mercator", xlim=c(-200, 200))

load up the ZeroAccess points, overiding the default data set

gg <- gg + geom point (data=za, aes(long, lat),

colour="#000099", alpha=1/40, size=1)

remove text, axes ticks, grid lines and do gray border on white

gg <- gg + theme(text=element blank(),
axis.ticks=element blank(),
panel.grid=element blank(),
panel.background=element rect (color="gray50",

fill="white"))
print (gg)

107

FROM MAPS TO REGRESSION

Worldwide ZeroAccess infections

Now, that’s a real map; but, what can you learn from it? The answer is not much. This map commu-
nicates very little beside the fact that the ZeroAccess botnet is an international traveler, and that should
surprise nobody. It's time to probe a bit deeper and see whether you can use maps to help you visualize
the data a bit better.

How Many ZeroAccess Infections per Country?

It's very difficult to look at Figure 5-3 and determine which countries have the most infections. You can't
expect anyone to look at a map like this and extract the proportion of bot infections in countries. It looks
like the United States and Europe are blanketed in bots; so, let’s try a different type of map. You need
to count how many infections you have in each country and then you can visualize the results with a
choropleth. A choropleth is a map in which the country is shaded or filled with color that is then associated
with the data. For your first choropleth, you will have to figure out which country the latitude/longitude
points are in and then you will use a single continuous color scale to represent that quantity (see Listing
5-3). To convert latitude and longitude to a country, you will adapt a function from Ryan Weald and call the
function latlong2map () . That function will accept a data frame of longitude and latitude pairs along
with the name of a map to translate onto.

require packages: maps, maptools

packages are not required to create function

(continues)

Simplifying Maps

(continued)
but it cannot be executed without these loaded
library (maps)
library (maptools)
slightly modified verison of Ryan Weald's (@rweald) function
https://gist.github.com/rweald/4720788
latlong2map <- function (pointsDF, mapping) {
load up the map data
local.map <- map (mapping, f£ill=TRUE, col="transparent", plot=FALSE)
pull out the IDs from the name
IDs <- sapply(strsplit(local.mapS$names, ":"), function(x) x[1])
Prepare SpatialPolygons object
maps_sp <- map2SpatialPolygons (local.map, IDs=IDs,
proj4string=CRS ("+proj=longlat +datum=wgs84"))
Convert pointsDF to a SpatialPoints object
pointsSP <- SpatialPoints (pointsDF,
proj4string=CRS ("+proj=longlat +datum=wgs84"))
Use 'over' to get _indices of the Polygons object containing each
point
indices <- over(pointsSP, maps_ sp)
Return the names of the Polygons object containing each point
mapNames <- sapply(maps_sp@polygons, function(x) x@ID)
now return a vector of names that match the points
mapNames [indices]

}

The function returns a vector of names (country names in this case), and you can count how many times
the country appears with the table () command. Nextin Listing 5-4, you'llwant tomerge () the count
of countries with the map data and reorder it for the plotting. By merging the data directly into the map
data, you can associate the shading of the country with an attribute in the data, specifically the count of
infections in that country. You will use the scale £ill gradient2 () function within ggplot2
to get the color gradient associated with the quantity of infections. See the result in Figure 5-4.

requires packages: ggplot2, maps and maptools

requires objects: za (5-1), world (5-2), latlong2map (5-3)

convert ZeroAccess long/lat into country names from world map
zworld <- latlong2map (data.frame (x=za$long, y=za$lat), "world")

count up points in the country and conver to data frame

wct <- data.frame(table (zworld))

label the country as "region" to match map data

colnames (wct) <- c("region", "count")

merge will match on "region" in each and add "count" to "world"
za.choro <- merge (world, wct)

(continues)

109

FROM MAPS TO REGRESSION

(continued)
now we sort the map data to original sequence
otherwise the map is disasterous
za.choro <- za.choro[with(za.choro, order (group, order)),]
and plot

gg <- ggplot (za.choro, aes(x=long, y=lat, group=group, fill=count))

gg <- gg + geom path(colour="#666666") + geom polygon ()

gg <- gg + coord map ("mercator", xlim=c(-200, 200), ylim=c(-60,200))

gg <- gg + scale fill gradient2 (low="#FFFFFF", high="#4086AA",
midpoint=median (za.choro$count),
name="Infections")

remove text, axes ticks, grid lines and do gray border on white

gg <- gg + theme (axis.title=element blank(),
axis.text=element blank(),
axis.ticks=element blank(),
panel.grid=element blank(),
panel.background=element rect (color="gray50",
fill="white"))

print (gg)

Choropleth of ZeroAccess infections

Infections

250000
200000
150000
100000
50000

Voila! You have a rather good-looking (some might say, “spiffy”) map and it looks like the United States
has cornered the market on ZeroAccess infections. There would be no way you could learn that from the
points in Figure 5-3. However, it's very difficult to tell the specific quantity by color density (Chapter 6
discusses visualization techniques in more detail); all you can tell from this type of map is that the United
States has more infections. To learn just how much more, you can look into the wct variable and then

calculate the proportion of infections in the United States (Listing 5-5).

Simplifying Maps 11

requires object: wct (5-4)

head (wct)

region count
1 Afghanistan 53
2 Albania 1166
3 Algeria 3014
#4# 4 Andorra 4
5 Angola 160
6 Argentina 6016

for each wctScount, divide by sum, gives us proportion of the whole
perc <- wctScount/sum(wct$count)

covert to a readable format, round it and create percent

wct$Sperc <- round(perc, 4)*100

now order the highest percentages on top

wct <- wet[with(wct, order (perc, decreasing=T)),]

look at the top few entries.

head (wct)

region count perc
148 USA 261627 35.23
24 Canada 35607 4.79
74 Japan 33590 4.52
145 UK 31813 4.28
50 Germany 27336 3.68
71 Italy 25717 3.46

You could have just created this table in the beginning to answer the question, “How is ZeroAccess
distributed across geographic areas?” The map visually highlights the gap between the United States and
the rest of the world. Also keep in mind that these are just total counts and not normalized for population
or anything. So at this point, the 35 percent represents a proportion solely within the ZeroAccess data, and
you should not infer more without further analysis.

Changing the Scope of Your Data

You can't lose sight of the goal here, which is to find a way to correlate Zero Access infections with other data
points like alien visits. To get closer to answering this, you can simplify the data set to the U.S. infections.
We chose to do this not just because working with over 800,000 data points can be a bit slow on some
systems, but also because it will be much easier to focus in on the United States because of our knowledge
of the geography and accessibility of data (especially around alien visitors).

However, as you change the scope within the data like this, you need to consider how this may change
the question you're able to answer. You can no longer generalize about every infection everywhere because
you cannot readily transfer what you learn from infections in the United States to other countries and/or
cultures. Another way to state this is that you cannot be sure that the factors that contribute to infections
in the United States will match the factors elsewhere. Those considerations go beyond and outside the data

FROM MAPS TO REGRESSION

you are looking at now, so be sure to avoid making any broad assumptions as you continue your analysis
and present your results.

If you attempt to plot a U.S. map and then project all the points on it, the auto-scaling feature in ggplot
will create a rather funny picture. It will show all of the world points in the data set, but will trace out only
the U.S. map. You need to reduce the data size and remove data that are not in the United States. You can
reuse the lat long2map () function, this time mapping the points to the United States by specifying
“state” as the second argument. From an R-perspective, this means anything that does not get mapped to
a U.S. state will be retuned as the NA value, which can then be filtered out of the data.

Once all that processing is done, you can make a nice map of the continental United States show-
ing all the ZeroAccess infections in the country (Figure 5-5). Notice that for this plot and the last few
you have been removing all the extra chartjunk (a term coined by Edward Tufte) on the map. This is
done with the theme () function at the end and removing graphical features by assigning them to
element blank ().See Listing 5-6.

requires package: ggplot2, maps, maptools

requires objects: za (5-1), latlong2map (5-3)

zstate <- latlong2map (data.frame (x=za$long, y=za$lat), "state")
select rows from za where the zstate is not NA

za.state <- zal[which(!is.na(zstate)),]

load map data of the U.S.

state <- map _data("state")

gg <- ggplot (data=state, aes(x=long, y=lat))

gg <- gg + geom path (aes (group=group), colour="gray80")

gg <- gg + coord map ("mercator")

gg <- gg + geom point (data=za.state, aes(long, lat),

colour="#000099", alpha=1/40, size=1)

stripping off the "chart junk"

gg <- gg + theme(axis.title=element blank(),
axis.text=element blank(),
axis.ticks=element blank(),
panel.grid=element blank(),
panel.background=element blank())

print (gg)

Consider Figure 5-5 for a moment. Does it look...strange? This is where you really have to be careful
because after working with spatial data, we can tell you this looks like a reflection of population density
and not infections. Therefore, after reviewing Figure 5-5, you might find yourself asking a slightly differ-
ent question: Could ZeroAccess infections just be a reflection of the population? You could stop and
apply a statistical technique called regression analysis (you will later), but for now stick with pictures and
create another choropleth. This time you'll break up the data and perform counts based on the U.S. states.

Simplifying Maps 113

" o . = » ’
».. {95 by
o ’ . S S e hge £ | 3 4
, . . - ‘ u.
k = B H {..' . L%
‘ ¥ . e viL of
. 7 . N e TR “"
. .. e - ‘.?.‘ .-I- ".k'
i = 2ok P 40 1
A L Y] . . ‘! .“ - - .‘.-,_.
~ Yo . " b
,‘ - BTy % SR
o - Y - e 1 “ 3. s e g - %
ot % " 3 .

: .j 9‘.~; :l“?':""“; -c".‘;

oy
ZeroAccess infections in the United States

The Potwin Effect

As you dig deeper than just country, you have to account for something we call the “Potwin Effect” after
the town by that name in Kansas with a population of 449. The population is important because if you
examine the data, you'll see that there are 12,643 reported ZeroAccess infections in the town of Potwin,
Kansas. We first stumbled across this “anomaly” in a different (and more subtle) analysis and spent days
trying to understand why Potwin was so odd. We realized that these couldn’t be valid entries after we had
some crazy ideas about Potwin trying to justify the data. Finally, we remembered that there were several
data points that were strangely rounded off to integers and they were all 38,-97.

Then, it dawned on us. IP geolocation services should always know what country an IP address is in
because the IANA records are clear about that. But if the geolocation service cannot get any more granular
than identifying the country, they return a rounded-off integer location near the geographic center of the
country. In the United States, the geographic center is just outside of Potwin, Kansas. For this purpose, they
are “unknown U.S. locations” and not really in Kansas, so you are going to remove these data points from
the next bit of code to avoid unfairly assigning infections to Kansas.

In this map, you want to again use color to show quantity. Rather than just using a single hue (a fancy
term for color), you'll use a diverging color scheme (two opposite colors) and assign the mid-point of the
range to the mean count per state (see Listing 5-7). This will allow you to show states with above average
infection counts with one hue and the below average states with another. As a side note, let’s also change
the projection from the Mercator projection to the Polyconic. That projection looks odd at the world level

FROM MAPS TO REGRESSION

(as you can see in Figure 5-2), but it puts a nice slope and curve in a U.S. map. It's good (and dare we say
fun!) to play around with different projections.

requires package: ggplot2, maps, maptools
requires objects: za (5-1), latlong2map (5-3)
create a choropleth of the U.S. states
because all of these vectors are from the same source (za),
we can cross the indexes of the vectors
zstate <- latlong2map (data.frame (x=za$long, y=za$lat), "state")
pull out those that are not NA, and take care of Potwin effect
state.index <- which(!is.na(zstate) & za$lat!=38 & za$long!=-97)
now create a count of states and filter on those indexes
sct <- data.frame(table(zstate[state.index]))
colnames (sct) <- c("region", "count")
merge with state map data
za.sct <- merge (state, sct)
Now plot a choropleth using a diverging color
colors <- c("#A6611A", "#DFC27D", "#FS5F5F5", "#80CDC1", "#018571")
gg <- ggplot(za.sct, aes(x=long, y=lat, group=group, fill=count))
gg <- gg + geom polygon (colour="black")
gg <- gg + coord map ("polyconic")
gg <- gg + scale fill gradient2(low=colors[5], mid=colors[3],
high=colors[1],
midpoint=mean (za.sct$count),
name="Infections")
gg <- gg + theme(axis.title=element blank(),
axis.text=element blank(),
axis.ticks=element blank(),
panel.grid=element blank(),
panel.background=element blank())
print (gg)

Figure 5-6 shows another handsome but relatively useless map. You can easily see that California,
Texas, Florida, and New York are above average, but it’s also good to have the wherewithal to realize that
the four most populated states are California, Texas, New York, and Florida, in that order.

In other words, you are just seeing a reflection of population in this map, so you have to normalize
this data to the population. In order to normalize you can take multiple approaches. The simplest ways to
normalize involve answering one of these questions:

® How many people per one infection?
® What proportion of the people are infected?

® How many infections per 1,000 people?

Simplifying Maps 115

Infections
! 25000
- 20000
15000

10000
5000

Choropleth of U.S. states with ZeroAccess

The differences between these questions are subtle, and in this case you will do the first method because
you will get whole numbers, and it will be a little easier to conceptualize for your reader. In order to deter-
mine the number of people per infection, you divide the population in a state by the number of infec-
tions in that state (Listing 5-8). In this case, we have already scraped population data fromhttp: //www
.internetworldstats.com/stats26.htmand madeitavailable in an easy format on the book’s
website (state-internets. csvinthe Chapter 5 download materials at www . wiley.com/go/
datadrivensecurity).

requires package: ggplot2, maps, maptools

#
requires objects: sct (5-7), colors (5-7), latlong2map (5-3)
read in state population and internet users

data scraped from http://www.internetworldstats.com/stats26.htm
users <- read.csv("data/state-internets.csv", header=T)

all the state names are lower case in map data, so convert
userssSstate <- tolower (users$Sstate)

now merge with the sct data from previous example

merge by sctSregion and usersS$state

za.users <- merge (sct, users, by.x="region", by.y="state")

calculate people to infection

change this to internet users if you would like to try that

za.usersSpop2inf <- round(za.users$Spopulation/za.users$count, 0)

(continues)

FROM MAPS TO REGRESSION

(continued)
and create a simple data frame and merge
za.norm <- data.frame (region=za.usersSregion,
count=za.usersS$Spop2inf)
za.norm.map <- merge (state, za.norm)
now create the choropleth
gg <- ggplot (za.norm.map, aes(x=long, y=lat, group=group, fill=count))
gg <- gg + geom polygon (colour="black")
gg <- gg + coord map ("polyconic")
gg <- gg + scale fill gradient2(low=colors[5], mid=colors[3],
high=colors[1],
midpoint=mean (za.norm.map$count),
name="People per\nInfection")
gg <- gg + theme(axis.title=element blank(),
axis.text=element blank(),
axis.ticks=element blank(),
panel.grid=element blank(),
panel.background=element blank())

print (gg)

Remember California, Texas, Florida, and New York having the highest infection counts? Using the
za .normdata generated in Listing 5-8, you can view the exact counts. When you normalize to population,
California and New York drop to below average with one infection per 1,440 and 1,287 people on average,
respectively (see Figure 5-7). Wyoming now sticks out as the most infected state since one in 724 people
in Wyoming appear to have ZeroAccess infections.

People per
Infection

f—
1400

1200
1000

l 800

Normalized ZeroAccess infections: Number of people in the state per one infection

Simplifying Maps 117

Note

Inthe state-internets. csv data, we also included the count of Internet users if
you want to try to create a choropleth normalized on estimated Internet users per state
(itis a prettier picture).

Is This Weird?

Let’s stop for a moment and look at the current results. You have a range of normalized values from 1 in
724 people with an infection in Wyoming to 1 in 1,550 people in Washington state. Does this mean that
the citizens in Wyoming are much more careless than those in Washington? Perhaps more Washingtonians
run Linux? Or—and this is an important concept—is the range of observations simply from natural
variation in the measuring accuracy and the world? Is Wyoming the most infected state because some-
one had to bein last place and in this data it just so happened to be Wyoming? You need to understand if the
extreme values are outliers or if they are within expectations. There are two key methods to test for outliers:

® Using a boxplot (the “IQR” method)

® Calculating a z-score

Using a Boxplot to Find Outliers

The boxplot was developed by John Tukey (you met him briefly in Chapter 1) and was designed to show a
distribution of values visually. It does this by plotting a box from the 25th percentile to the 75th percentile
in the distribution. This distance is called the inter-quartile range (IQR). Then lines are extended from the
box for a distance one and half times the length of the IQR. Anything beyond the length of these lines is a
good candidate to be labeled as an outlier, and is represented by point. The further these points are, the
more likely they an outlier. In order to create a boxplot, you will use the default R graphics boxplot ()
function. You'll save the results returned into a variable called popbox (see Listing 5-9) for exploring in
Listing 5-10. While there are multiple ways to create a boxplot, the default function just accepts in a vector
of values for the distribution, and then it works its magic (see Figure 5-8).

requires objects: za.norm (5-8)
create a box plot of the count
popbox <- boxplot (za.norm$count)

Looks like you may have a few outliers, which are represented by individual points. There are clearly
three points above the plot and two points below. Although you could sort the data in za . norm and
look for the top three and bottom two, you saved the output from boxplot (), which has various data
points about the boxplot, into the popbox variable, so you can look up the values in the popboxSout
(the outliers) vector in the original data (Listing 5-10).

FROM MAPS TO REGRESSION

Distribution of Normalized
State Infections

§
= ‘
o p— 1
V 1
el 1
1
1
1
1
1
1
1
1
'
o
o |
Al
—
1
:
o ,
o _| |
o '
>~ 1
1
o
8 p—
(0]
(@)
Distribution of normalized state infections
requires objects: za.norm (5-8), popbox (5-9)

the values that are considered outliers
print (popboxS$Sout)
[1]1 777 1536 1525 1550 724

pull the rows from za.norm that have those values

za.norm[za.norm$count %in% popboxS$Sout, |

(continues)

Simplifying Maps 119

(continued)
H## region count
8 district of columbia 777
43 utah 1536
44 vermont 1525
46 washington 1550
49 wyoming 724

According to the method employed by Tukey in the boxplot, you could consider these five states as
being odd (outliers).

Calculating a Z-Score to Find Outliers

There's another measure of determining oddballs; you can calculate what's known as a z-score. It will help
you get a feel for just how much of an outlier a point is by showing how many standard deviations from
the mean it is. A z-score is most often used to compare distributions from completely different scales, a
method sometimes labeled “standardizing” the data. In order to do this calculation, you need to know the
standard deviation and mean of the distribution. Then, for each value in the distribution, you calculate how
many standard deviations from the mean the observation is. That is, you subtract the mean from each value
and divide by the standard deviation. (See Listing 5-11.)

If your eyes started to glaze over from the z-score description, don't worry—every time we calculate
one, we have to look up how it’s done. You’ll want to compare what you see in the distribution to some-
thing known as the “empirical rule” of a standard normal distribution. In a normal distribution (the familiar
bell curve, which is also known as the Gaussian distribution), you expect that roughly 68 percent of the
distribution will fall within one standard deviation (above or below) of the mean, and 95 percent of the data
will fall within two standard deviations, and then 99.7 percent should be within three standard deviations.

One point to note—this method doesn’t work well if the data is skewed, so you should probably check a
quick histogram (pass za . norm$count intothe hist () function) to be sure it’s not obviously skewed.

When using this approach, anything outside of three standard deviations is typically labeled as an
outlier, and you might even consider anything more than two standard deviations as a possible outlier.

requires objects: za.norm (5-8)

get the standard deviation

za.sd <- sd(za.norm$Scount)

get the mean

za.mean <- mean (za.normS$Scount)

now calculate the z-score and round to 1 decimal
za.norm$z <- round((za.norm$Scount-za.mean)/za.sd, 1)

we can inspect the "z" variable for the specific z-scores
pull out values where absolute value of z-score is > 2

za.norm[which (abs (za.norm$z) >2),]

H## region count z
8 district of columbia 777 -2.4
43 utah 1536 2.2

(continues)

FROM MAPS TO REGRESSION

(continued)
#H# 44 vermont 1525 2.1
46 washington 1550 2.2
49 wyoming 724 -2.7

It appears those same five entries fall within three standard deviations. This knowledge calls into ques-
tion the use of population in the normalization process (perhaps “Internet users” would be a better mea-
sure—hint, hint).

Rather than focus on solving things at the state level, you could bring this data down to the county level
within the states. Doing so will supply more data points and allow a finer separation of the population,
which will open up more possibility.

Note

Overall, it'd be okay to consider these values within expectations given they are within three
standard deviations, but if you had time, it would be a good practice to look into these more
and be sure the measurements are valid. The takeaway is that you must answer the ques-
tion, “Is this weird?” with either a squishy “probably not” or a non-committal “not so sure.”

What'’s the P-Value?

Trying to identify weird versus normal is a core concept within statistics, and, depending on the
circumstances, there is usually more than one way to identify it. At the heart of “statistically signifi-
cant” is knowing whether something is weird or just the result of natural variations. One very com-
mon and widespread approach is the p-value. Don’t mistake its widespread use with a widespread
understanding or even consistent use. The p-value has a very specific (and difficult to remember)
meaning. In order to define and calculate a p-value, you begin with a statement (technically called
a null hypothesis) and calculate the probability of the data being generated by chance if the state-
ment is true—this is the p-value. Now the subtlety of the p-value is often lost, and people jump to
convenient (and wrong) assumptions, like it's the probability of the statement being true (it's not).

To complicate this concept even more, somehow it became generally accepted that a p-value of
0.05 (1/20th) or less was “statistically significant,” creating what is essentially an arbitrary cut-off
point. You will be revisiting the value of p-values when you read about regression analysis later in
this chapter. Just tuck the term “p-value” away in your memory bank as a measure of significance
or, in this case, of “weirdness.”

Counting in Counties

It is difficult to generalize at the state level because, well, it is a very generalized population. You would
be obscuring a wide range of diversity among people behind a single label. You would be hard-pressed

Simplifying Maps

to calculate the influence of something like income or—more importantly—alien visits on ZeroAccess
infections at the state level. You can get more granular by repeating 1at long2map () again, but at
the county level.

There are a few additional items to consider as you get into a more detailed breakdown of geolocation
of IP addresses. Most of the popular IP geolocation services publish estimations of their accuracy beyond
country. For example, the service used on this data claims that just over four out of five entries are accu-
rate to about 25 miles and about one out of seven are resolved to an incorrect city. Does that mean you
should be very wary of this data? In order to answer that question, you need to understand a statistical
concept—natural variations will cancel out more often than stack up, especially as you get more data (and
over 3,000 U.S. counties do represent more data).

Does Variation Stack or Cancel?

Within statistics, natural variations generally cancel each other out, but this is counterintuitive to
fields in engineering (like computer science) where people are taught that if they add components
that all have a slight variation, the effect will compound itself and they should expect a wide range
of results. What's the difference? Which viewpoint is right?

This is kind of a tricky concept, so consider an example. Say you are manufacturing a physical part and
you want it to be 100 millimeters (mm) long. Natural variation in the quality of materials and manufac-
turing process produces parts that range equally between 98 and 102 millimeters. Engineers are taught
thatifthey stack up 100 of those parts, they can expect something equally likely between plus or minus
two times the number of parts (100). Meaning, it is possible that all 100 parts will be 98 millimeters, orit’s
possible that all the parts will be 102 millimeters, so they can expect a wide range in the output.
The more they stack, the wider the range of output.

In statistics, if you can assume that each part has an equal chance of being any length within the
range (and you'll want to validate that assumption in the real world), the differences in lengths will
begin to cancel each other out. Thanks to a basic understanding of programming, you can model
this and see how variation occurs across multiple parts.

The example generates 100 parts and uniformly “manufactures” them between 98 and 102 mil-
limeters. It then averages the length (it could also be the sum or some other measurement, but the
mean works here). The engineering brains out there will guess that this will appear between 98
and 102, but let’s see (Listing 5-12).

#setting seed for reproducibility

set.seed (1492)

run 100 times, getting random values between 98 and 102
mean (runif (100, min=98, max=102))

[1] 100.0141

After one run, you get 100.0141. Let’s manufacture 10,000 sets of 100 stacked parts and see how
many get to the edge of the range (Listing 5-13). Surely if it's possible, you should see at least a few
sets in 10,000 push toward the edge, right?

(continues)

121

FROM MAPS TO REGRESSION

(continued)

#setting seed for reproducibility

set.seed(1492)

iterate seq(10000) times, generate a set of 100 parts and calc mean
parts <- sapply(seqg(10000), function(x) mean(runif (100, min=98, max=102)))
result is a vector of 10,000 sets

show the min and max of these parts

range (parts)

[1] 99.57977 100.47559

What is up with this? Even with 10,000 iterations of 100 random parts, none of them get close to the
ranges of 98 or 102. You can visualize all of the parts in a quick histogram by running hist (parts) .
You see a nice symmetric distribution centering around 100. Even though the parts could all be 98 or
102, the variation will cancel out, especially as the sets increase (rather than 100 in a set, try 1,000 or
10,000 in the runi £ function). As you add more parts within the range, the results are more likely
to cluster even closer around the mean.

There are a couple of takeaways from this tangent. First, it's really fun to geek out a bit and generate
data to answer questions with “what if” scenarios. Second, you shouldn’t toss out less-than-per-
fect data. If the variations are caused by natural or random variations, you can assume the variation
has more of a cancelling effect than a stacking effect. Now, this doesn’t mean you should ignore
variations like this, but instead it means that the variation will have less of an impact on throwing
the analysis off than you think. You should still account for this variation in your work.

Relating this back to the analyses, you have all sorts of items in the spatial data that may be throwing
off the calculations. All of the geolocation lookups have a 25-mile radius of accuracy (so, some points
that are supposed to be, say, in Southern Maine, end up in New Hampshire). Several of the data points
will be farther off than that. But these might cancel out if the variation is random (meaning points in
New Hampshire could also just as easily end up in Maine). This doesn’t mean the data is worthless.
Until you can learn some more advanced techniques, you can just take the error introduced as a
grain a salt. In other words, you can use this data to estimate how much of an effect alien visits have,
but you wouldn’t want to balance the fate of a company on this analysis—at least not without a lot
more rigor and investigation of the data.

Moving Down to Counties

To transition the data down to the county level, you'll begin by calling the same 1lat long2map ()
function on the same ZeroAccess data, but ask it to translate to the county names (Listing 5-14). Keep in
mind, there are over 3,000 counties in the United States and over 800,000 latitude/longitude pairs to go
through, so depending on the system, this could take a few seconds or so to run. Like last time, you want
to ignore anything that doesn't resolve in the United States (is set to NA in the data) and account for the
Potwin Effect (anything below country should account for it). But rather than count things with table ()
and toss them into a data frame, you have to do some transformation on the returned names. The county
names come back from latlong2map () as a single text string in the “state, county” format. You can

Simplifying Maps 123

use the strsplit () function to split the county names. It returns a list object, so you convert it to a
vector with the unlist () function. The result will be one long vector with the values alternating state
and county, which is okay because you'll transform this into a matrix with two columns (state and county)
withthencol=2 argumentand tellit to go row by row (rather than column by column). The resultis then
converted into a data frame, along with the count of infections in each county. And now you're beginning
to see how fun this data-munging thing can be, right?

requires package: maps, maptools

requires objects: za (5-1), latlong2map (5-3)

now mapping lat/long down to county

county <- latlong2map (data.frame (x=zaslong, y=za$lat), "county")
za.county <- county[which(!is.na(county) & za$lat!=38 & zaS$long!=-97)]
count the occurances

county.count <- table(za.county)

need to convert "county, state" into a data frame

so we split it out by comma

temp.list <- strsplit (names (county.count), ",")

convert the list into a vector

temp.list <- unlist (temp.list)

force the vector into a 2 column matrix, filling row by row
temp.matrix <- matrix(temp.list, ncol=2, byrow=T)

and now create the data frame with the count of county infections
za.county <- data.frame(temp.matrix, as.vector (county.count))

finally assign names to the fields

names match the field names in the county map data

colnames (za.county) <- c("region", "subregion", "infections")
head (za.county)

region subregion infections

1 alabama autauga 44

2 alabama baldwin 184

3 alabama barbour 13

4 alabama bibb 13

5 alabama blount 26

6 alabama bullock 11

You now have a data frame with three columns—the state, county, and count of infections—and you
need to label the columns accordingly. There is a lingering “so what?” you need to answer before proceeding.
Aside from the initial “wow” factor of generating a cool-looking map, there is not much to learn from a raw
count being displayed on a map. You may see some hot spots and you may be able to compare different
areas on the map, but you can’t really learn much from this amount of detailed data on a map. Moving
forward, you'll switch from creating maps with this data to performing some real analysis to see whether
you can find an explanation for the infections.

FROM MAPS TO REGRESSION

You'll need to pull in other data here (also split out by the county), just as you did at the state level with
population. Then you may be able to understand a bit more about these malware infections. Perhaps
there is some foreign (some would say alien) data that would either help explain variations in the malware
infections or help support the techniques we want to cover.

We scoured the Internet, pulled together a collection of rather interesting data points, and did the
data-munging to produce the data you'll use here. For the purposes of creating a tutorial, we've extracted
afew statistics by county from various places and made it available on the book’s website (county-data
.csvon www.wiley.com/go/datadrivensecurityaspartof Chapter 5's download materials).

® regionand subregion are the state and county, respectively.
® pop is the estimated county population.
® income is the median income for the county.

® ufo2010 isthe number of UFO sightings in the county during 2010 (as recorded on the national
UFOreporting center:nuforc. org).

® ipaddristhe number of IP addresses that translate to the county (pulled from the open
freegeoip.net package).

As luck would have it (for you), the data is in a perfect state so it can be read in and simply merged with
the ZeroAccess county data you just created. There is one special note with the merge () function: By
default, it will drop any rows that are not in both data sets. In this case, you have 160 counties not repre-
sented in the ZeroAccess data. This could be for a variety of reasons; perhaps the IP geolocation services
are especially inaccurate in those counties or they are just sparsely populated counties and not having
infections isn't weird.

Feel free to dig into the values, but sure enough, 90 percent of the uninfected counties have a population
of less than 10,000. By specifyingall .x=Tinthe merge () command, you are telling it not to drop any
rows from the x data, which is the first argument passed into the merge () function, or county.datain the
command (see Listing 5-15). To help illustrate we are including the argument labels when we call merge () .

requires objects: za.county (5-14)

read up census data per county

county.data <- read.csv("data/county-data.csv", header=T)
notice the all.x option here

za.county <- merge (x=county.data, y=za.county, all.x=T)

replace all NA's with 0
za.countyS$infections[is.na(za.county$infections)] <- 0
summary (za.county)

H## subregion region pop income

washington: 32 texas : 254 Min. : 71 Min. : 19344
jefferson : 26 georgia : 159 1st Qu.: 11215 1st Qu.: 37793
franklin : 25 kentucky: 120 Median : 26047 Median : 43332
jackson : 24 missouri: 115 Mean : 101009 Mean : 45075
lincoln . 24 kansas : 105 3rd Qu.: 67921 3rd Qu.: 50010
madison : 20 illinois: 102 Max. :9962789 Max. :120096

(continues)

Introducing Linear Regression

(continued)

(Other) 12921 (Other) :2217

ipaddr ufo2010 infections

Min. : 0 Min. : 0.000 Min. : 0.00
1st Qu.: 5367 1st Qu.: 0.000 1st Qu.: 6.00
Median : 15289 Median : 2.000 Median : 17.00
Mean : 387973 Mean :7.943 Mean : 83.33
3rd Qu.: 62594 3rd Qu.: 6.000 3rd Qu.: 55.25
Max. 1223441040 Max. :815.000 Max. :7692.00

Running summary (za.county) on the data, you can get a good feel for what things look like in
there (and you learn that people who name counties have an affinity for the founding fathers).

Now that you've looked at the data, can you pick out the relationship with UFO visits? Not yet? How
can you begin to pick apart the relationships in this data? Thanks to the work of statisticians, you have a
technique known as linear regression that is extremely powerful and yet extremely dangerous.

Introducing Linear Regression

This section discusses a collection of techniques loosely called linear regression, but it's important to know
that college courses focus on nothing but linear regression for a semester and still don’t cover all aspects of
it. Books such as Applied Linear Statistical Models by John Neter, William Wasserman, and Michael
H. Kutner are over 1,300 pages and packed with statistical notation (it's a page-turner!). This is all to say
that regression analysis is an incredibly rich and deep topic and we will barely scratch the surface here.
What we hope to do here is clear up some of the mystery around regression analysis and put the technique
in context, while at the same time introduce enough warnings and common pitfalls so that you don’t end
up shooting yourself in the foot with this powerful and flexible technique.

Note

This section applies some techniques that you should not take lightly. This section focuses
more on walking through the concepts and techniques rather than attempting to perform
insightful research. Using statistical methods without fully understanding them is akin to
an unlicensed teenager taking a car out for a spin.

Regression analysis is a workhorse, and it is behind many of the scientific findings you hear about.
Works that say, “Scientists find a link between something and something else” are almost always based
on regression analysis. Researchers use regression analysis for two general purposes.

o First, it can be used to estimate how different observable inputs contribute to an
observable output. In this case, you want to estimate how alien visits to U.S. counties (observ-
able inputs) contribute to the rate of ZeroAccess infections in that county (observable output).
With regression analysis, not only can you estimate the significance (or lack thereof) of each vari-
able, you can also estimate how strong that contribution is. Don’t worry if it is a bit confusing now;
we will cover this more as you get into the data. Regression analysis is a powerful tool to describe
relationships between observations.

FROM MAPS TO REGRESSION

o The second purpose for regression analysis is prediction. The output of regression analysis
is aformula. Given specificinputs, you can make an estimate, or predict what the output will be.
A classic example with this is the relationship between height and weight. It's relatively intuitive
that taller people weigh more, but if you add other variables such as male and female, age, and so
on, you can determine an expected value, and establish an expected range of a person’s weight.
Thisis the method doctors use to tell patients they are above or below their expected weight,
height, and so on. Regression analysis is a powerful tool for estimating and comparing observed
outputs.

To demonstrate these two purposes, you'll create fictitious (and rather simple) data. You'll start with
a single input variable and generate random data points from a normal distribution (any distribution will
work, the normal is just pretty). You'll use the rnorm () command and create 200 points with a mean of
10 and a standard deviation of 1 (the default). See Listing 5-16.

for reproducability

set.seed (1)

generate 200 random numbers around 10

input <- rnorm (200, mean=10)

summary (input)

Min. 1lst Qu. Median Mean 3rd Qu. Max.
7.785 9.386 9.951 10.040 10.610 12.400

If you look at the summary in Listing 5-16, you see the result is data that ranges from 7.2 to 12.9. You
now need to generate the output data. You want to create a linear relationship between the input and the
output, so you'll pass the mean in as double the input variables. By using rnorm () you are introducing
more random variations so you don't have perfectly linear relationship, but by centering the randomness
(mean) on the input variable you are creating enough of a linear relationship to model. You then create a
data frame out of the input and output for easy handling and plotting.

With the input and output created, you can pass all of this into ggplot (Listing 5-17) and create a
scatterplot to visualize the relationship. Let’s add something special by including the geom_smooth ()
function and telling it to use a linear model, "1m™". This will overlay a single straight line that best describes
the relationship between the input and output data (see Figure 5-9).

generate output around a mean of 2 x input

output <- rnorm(200, mean=input*2)

put into data frame to plot it

our.data <- data.frame (input, output)

gg <- ggplot (our.data, aes(input, output))

gg <- gg + geom_point ()

gg <- gg + geom smooth(method = "lm", se=F, color="red")
gg <- gg + theme bw()

print (gg)

Introducing Linear Regression

26 -

24 -

22

output
3
1

18 -

16 -

14

T
8 9 10 11 12
input

Sample data with regression line

You can see from Figure 5-9 that the data isn't exactly nice and neat (this is rnorm () introducing some
random variation), but there is a definite trend. As the input variable increases, the output variable also
increases, and the data flows from the lower left to the upper right. It sure looks like there is a relationship
from this data (of course), but it’s difficult to describe it beyond simple descriptions . . . enter regression
analysis.

In order to run a linear regression on the data, you call one very simple command (Listing 5-18):

requires objects: input (5-16), output (5-17)
model <- lm(output ~ input)

Congratulations! You have just run your first linear regression. Take a look at the output with the
summary () function, and we'll walk through it.

summary (model)

Call:

1lm(formula = output ~ input)

##

(continues)

127

FROM MAPS TO REGRESSION

(continued)
Residuals:
Min 1Q Median 3Q Max
-2.93275 -0.54273 -0.02523 0.66833 2.58615
##
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 0.27224 0.77896 0.349 0.727
input 1.97692 0.07729 25.577 <2e-16 **x*

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

Residual standard error: 1.013 on 198 degrees of freedom
Multiple R-squared: 0.7677, Adjusted R-squared: 0.7665
F-statistic: 654.2 on 1 and 198 DF, p-value: < 2.2e-16

There are many, many things to look at here. It starts with the function you used (“Call”) and a summary
of the residuals. The residuals are the difference between what the model predicts and what you observed
in the output. The line is specifically calculated so the mean of the residuals is zero (making it the “best fit”
for the data). Oftentimes, we'll skip over this residuals section, as there are better methods for interpreting
the residuals.

The next section talks about the coefficients. In this model there are two—the intercept, which is always
present, and the input variable. If you had more observed inputs, they would be listed here, one per line.
The first column is the estimated value for the coefficient. For most linear models, the intercept has little
to no meaning. The intercept coefficient signifies that if the input is at zero, you could estimate the output
to be around 0.27 (which doesn’t make sense if you were talking about a person’s height for example). We
didn’t set this when we created this data (which made it zero), so 0.27 is pretty close.

Looking at the coefficients, you can construct the model:

output =0.27224 4+ 1.97692 X input

You would use this model to estimate new output values given an observed input (or just use the
predict.1lm() command passingin your model and new input variables to predict with). But remember
that you generated the data by multiplying the input by 2? The linear model here thinks you multiplied
by 1.97692, which is pretty close. This coefficient for the input variable (or variables) is where you can
begin to see the power of regression analysis when used for inference about the input variables. You can
interpret it like this:

If all the other input variables are held constant, a one-unit change in this input variable is associated
with an average change of 1.97 in the output.

Since you have only one input variable, you have nothing else to hold constant. Even if you have dozens
of variables, you can isolate the effect of the individual variables with regression analysis. In the next sec-
tion you'll go back to the ZeroAccess infection data and use this approach to make inferences about the
effects of alien visits on infections.

Introducing Linear Regression 129

The next column in the coefficients represents the standard error. You can use this along with the
estimated coefficient to generate a confidence interval for the coefficient. Or you can do this by passing
the output of the 1m () command to the confint () function (Listing 5-19) and the confidence interval
is calculated for you:

requires objects: model (5-18)
confint (model)

2.5 % 97.5 %
(Intercept) -1.263895 1.808368
input 1.824502 2.129343

The output tells you that, with 95 percent confidence, the input coefficient is between 1.82 and 2.13
(the value of 2 is well within that range).

The next two columns are measurements of how much the variable contributes to the model. The
last column is called the p-value, which was introduced earlier in this chapter. As a simplification, smaller
p-values contribute more significantly to the overall model and larger p-values mean the relationship
between this input variable and the output is more likely to be chance. When you have a high p-value, you
might want to look for other explanatory variables and remove any variables with a high p-value.

Most people settle on 0.05 as the threshold for significance. This means that if the p-value is less than
0.05 (and your p-value is well beneath it), the variable is significant and should stay in the model. When you
have a p-value that is above 0.05, you should consider tossing it to the curb. Although, it's slowly becom-
ing a common practice to evaluate p-values using at least three different thresholds of significance: 0.1,
0.05, and 0.01, which allows some flexibility to enter into the model and reduces an arbitrary cutoff point
that was traditional in academic publications. You can see in the output of the model in Listing 5-18 that
it denotes which level of significance our p-value is rated at (0.001 in this case).

There are two other points to consider with linear regression output. Look at the Adjusted R-squared
value in the second-to-last line in Listing 5-18. The adjusted R? (or technically the adjusted coefficient of
determination) signifies the amount of variation explained by the model. Values ranges from 0, meaning
the model is no better than using the output mean, to 1, meaning the model describes the output perfectly.
In this model it was calculated as 0.76, which means the linear model can reasonably explain 76 percent
of the variation in the output data. There is no magic number you want the R? to be because it’s relative. If
you are starting from a place where you are simply guessing at the output (that is, you can't explain any of
the variation in the output), then an R? of 0.05 is a little helpful. But if you have an existing model at 0.76,
then 0.05 is a large step backward.

Note

When people want a quick understanding of a model, they focus on the R? value.

FROM MAPS TO REGRESSION

The last thing to consider is the p-value on the bottom line in Listing 5-18. This is the p-value of the
entire model. At this point, you probably have a feel as to whether this is a good model or not, but keep
an eye on this p-value. In this example, the p-value is tiny, so you should have confidence in this model.

Understanding Common Pitfalls in Regression Analysis

We hesitated even discussing regression analysis in this book. There are so many ways things can go wrong
and so many ways to screw up, not to mention all the assumptions within the process that must be kept in
check. However, we did include it and so we must also include some of the common pitfalls.

You Cannot Extrapolate Beyond the Data

Your data represents the entire range of your knowledge. You can verify that there is a linear relationship
in the data you have, but you cannot extend that belief beyond the input values. As an example, say you've
developed a simple model to estimate the cost of a data breach (output) from a count of records lost (input).
If you look only at breaches that have lost 1,000 to 100,000 records, you cannot extend this to breaches
with more than 100,000 or less than 1,000 records lost. You have no confidence that the relationship holds
beyond the data you have. (Although if you did develop such a blatantly ridiculous model, you'd be sure
to discuss the small R? value so people may have a fair shot at dismissing such a simple model.)

Outliers Have a Lot of Influence

Before regression analysis is performed, it's worthwhile to validate the data and identify any outliers that
are the result of mistakes or errors. Outliers will have a large influence in the output of the model and will
greatly influence the model selection. This doesn’t mean that you remove all of the oddball observations
(even though this was a common practice many years ago). For every observation that appears to be an
outlier, itis good practice to verify its validity before continuing. Sometimes outliers are valid, and you must
include them and account for them in the model. Other times, they may just be a result of mistyping or
recording something in different units of measurement. Those types of outliers should be fixed or removed.

Hidden Relationships Hide Well

It's easy to gather a whole bunch of variables and toss them into a linear regression and have many of
them turn out to be significant. But you have to approach these relationships with some element of com-
mon sense. It's standard practice to keep the number of variables to a minimum (see the next pitfall).
But internal relationships in the data can be misleading and you want to be careful of something called
multicollinearity. If you have two or more input variables that are highly correlated to each other, you may
be incorrectly assigning meaning where none exits. You will see an example of this when you get back to
the ZeroAccess data later in this chapter.

Too Many Variables

If you gather enough variables and toss them into regression analysis, it is inevitable that something in
there will be significantly correlated. This actually applies to many concepts beyond regression analysis.
These misleading findings occur because as more and more variables are added to the model, the likeli-
hood of a spurious relationship (statistically significant correlation caused by pure chance) increases and

Introducing Linear Regression 131

is exacerbated if the analysis is complex or done without the common sense of domain expertise. It's
common and a good practice with linear regression to seek out the smallest set of input variables, and not
uncommon to exclude variables that only marginally improve the model for the sake of simplicity (even if
the variable has a tiny p-value). This is also leading to a discussion of overfitting, which is when the model
works really well on the initial data, but performs quite poorly when applied to real data.

Note

We'll be discussing challenges with overfitting in Chapter 9 and methods to reduce overfitting.

Visualize and Apply the Sniff Test

It's a good idea to visually inspect the data before jumping into regression analysis. In the example here,
you created a simple scatterplot and added the regression line. This gets a little more complicated as you
add multiple variables, but it's a good habit to get into. But even beyond that, you want to apply a healthy
dose of logic to the variables and make sure that they have at least some reason to be included. This will
help reduce the overall number of variables and hopefully help the analyst get to know the data if they
didn’t before.

Regression on ZeroAccess Infections

If you made it through the previous section, you should have a basic understanding of a regression model
and some of the ways you can screw up when using it. Now you can start to pull more meaning from the
spatial data than maps would allow.

Let’s do a simple regression on the real data and see how well “visits from aliens” describes ZeroAccess
infections. Although this may be silly to non-believers, we should be open to the possibility as researchers.
We couldn’t find any hard data related to alien visits, but the good folks at the National UFO Reporting Center
have collected sightings of the visitors. You will be using that data as a proxy, and it's in the uf 02010 vari-
able in the prepared data. In order to run the linear regression, you again call the built-in 1m () functionand
specify the output variable (infect ionsinthe za . county data frame), and then the tilde character,
followed by, the variable with alien sightings (see Listing 5-20). If you wanted to add more variables you
could add them—Tliterally—with the plus (+) symbol. If you wrap the whole command in the summary ()
call, you get the output immediately. The output is trimmed to the relevant information.

requires object: za.county (5-14 and 5-15)
summary (lm(infections ~ ufo2010, data=za.county))
Coefficients:

#H# Estimate Std. Error t value Pr(>|t])

(Intercept) 17.97998 2.63775 6.816 1.12e-11 ***
ufo2010 8.22677 0.08843 93.029 < 2e-16 ***
B o---

(continues)

FROM MAPS TO REGRESSION

(continued)
Signif. codes: 0 '**x' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 140.9 on 3070 degrees of freedom
Multiple R-squared: 0.7382, Adjusted R-squared: 0.7381
F-statistic: 8654 on 1 and 3070 DF, p-value: < 2.2e-16

Using your new skills, you can see the p-value of the UFO variable is really tiny at < 2e-16, indicating the
connection is significant and the R? value is 0.74. That’s quite impressive. The coefficient on UFO sightings
(8.31867) tells you that for every UFO sighting, you should expect about eight more ZeroAccess infections.
This is an incredibly strong model, and there is enough to submit to a hoity-toity peer-reviewed journal
explaining how you have scientifically proven that UFOs are causing the spread of ZeroAccess malware!
We can see the headlines already:

Researchers Link ZeroAccess Infections to Alien Visitors

Before you get ahead of yourself, maybe you should looks at some of these other variables. Even though
we cautioned about adding in too many variables, you'll need to explore these relationships and various
models. Chapter 9 will discuss some techniques for variable selection. For now, run another regression with
all of these variables and see what happens (Listing 5-21).

requires object: za.county (5-14 and 5-15)

summary (lm(infections ~ pop + income + ipaddr + ufo2010,
data=za.county))

Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 1.091e+01 5.543e+00 1.968 0.0492 *

pop 7.700e-04 9.072e-06 84.876 < 2e-16 ***

income -2.353e-04 1.215e-04 -1.937 0.0528 .

ipaddr 2.28le-06 3.027e-07 7.534 6.41le-14 **%*

ufo2010 5.495e-01 9.943e-02 5.526 3.54e-08 ***

#H oo

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

Residual standard error: 74.9 on 3067 degrees of freedom
Multiple R-squared: 0.9261, Adjusted R-squared: 0.926
F-statistic: 9610 on 4 and 3067 DF, p-value: < 2.2e-16

Scanning down the p-values, it looks like all of these are quite tiny with the exception of income,
which looks like it may be suspect, and you could try re-running this with income removed. However, the
influence of IP address and UFO visits still appear strong. Notice that as you've added more variables, the
influence of UFO visits has dropped (the coefficient is smaller and the p-value increased) and is accounted
for in other variables.

Although you have all of these variables in this model, you should check for something we discussed
in the “Understanding Common Pitfalls in Regression Analysis” section earlier in this chapter called

Introducing Linear Regression 133

multicollinear variables. This is when two or more of the input variables are correlated and that rela-
tionship is masking the [in]significance of a variable. You check for this by looking at something called the
variance inflation.R has anice vif () function in the Companion to Applied Regression (car) package
(see Listing 5-22). As a general rule, if the square root of the variance inflation is greater than 2 (something
I have to look up every time | do this), the variables are correlated and you shouldn’t trust that both are
significantly contributing to the model.

requires object: za.county (5-14 and 5-15)

library(car) # for the vif() function

model <- lm(infections ~ pop + income + ipaddr + ufo2010,
data=za.county)

sgrt (vif (model))

pop income ipaddr ufo2010

2.165458 1.038467 1.046051 2.115512

You can see that the population and uf02010 are collinear. Oh no! Is it possible that UFO sightings
are just a function of population? In order to test that, you normalize the population. To do so, you just
divide both values by the population, making them infections and sighting per capita, and rerun the single
regression (Listing 5-23).

requires object: za.county (5-14 and 5-15)
za.countyS$za.by.pop <- za.county$infections/za.county$pop
za.countysufo.by.pop <- za.county$ufo2010/za.county$pop
summary (lm(za.by.pop ~ ufo.by.pop, data=za.county))

Coefficients:

Estimate Std. Error t value Pr(s|t])

(Intercept) 7.050e-04 1.213e-05 58.106 < 2e-16 ***

ufo.by.pop 2.679e-01 6.956e-02 3.852 0.00012 ***

Signif. codes: 0 '"***' Q.001 '**' Q.01 '*' 0.05 '.' 0.1 ' "1
#i#

Residual standard error: 0.0005793 on 3070 degrees of freedom
Multiple R-squared: 0.004809, Adjusted R-squared: 0.004485
F-statistic: 14.84 on 1 and 3070 DF, p-value: 0.0001197

Great! The p-value is still under 0.05! But ... oh . . . wait a second, the R? value is telling you that this
model is quite useless, as it describes 0.4 percent of the data (R? is 0.004). At this point, it might be safe to
listen to that little voice of logic and conclude that UFO visits and ZeroAccess infections are not related (so
much for the grant money).

Let’s run one more analysis, but keep in mind that all of this data is available for download from the
book’s website along with the code in this chapter. There is plenty of room for exploration here.

FROM MAPS TO REGRESSION

What Is Correlated to ZeroAccess Infections?

Say you have a strong suspicion (or you've applied some of the variable selection techniques discussed in
Chapter 9) that the population of a county is the best overall predictor of how many infections occur in
that county (see Listing 5-24).

requires object: za.county (5-14 and 5-15)
summary (1lm(infections ~ pop, data=za.county))
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 4.545e-01 1.435e+00 0.317 0.752

pop 8.204e-04 4.247e-06 193.199 <2e-16 **x*

#Ht ---

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#H#

Residual standard error: 75.92 on 3070 degrees of freedom
Multiple R-squared: 0.924, Adjusted R-squared: 0.924
F-statistic: 3.733e+04 on 1 and 3070 DF, p-value: < 2.2e-16

With an R? value of 0.94, you're going to be hard pressed to add more variables in here that mean much.
Sure enough, when you cycle through the other variables, you'll find that income and the number of IP
addresses in that county do not add much to the overall model. What you can draw from the output of the
regression on population is in the coefficient of 8.313e-04, which is engineering notation for 0.0008313. If
you invert that number (1/0.0008313), you can determine that for about every 1,200 people a county has,
you can expect one more infection of ZeroAccess.

Go back to the maps to see whether you can't visualize what this looks like at the county level. You
can generate a choropleth map at the county level for the number of infections and the population. If the
regression analysis is accurate, you should see a very clear relationship between the two (see Figure 5-10).

Introducing Linear Regression

ZeroAccess Infections

U.S. Population

Visual relationship between ZeroAccess infections and population

FROM MAPS TO REGRESSION

Summary

You created quite a few maps in this chapter, with points and with choropleths. Although you can pick out
variations across the map quite rapidly with the visual representation, you shouldn’t rely solely on visualiza-
tions with spatial data. Even though the maps showed variation, the data showed through linear regression
that population largely explains the variation. That's something to consider when you're creating maps
(or any other visualization for that matter). Be sure to take a step back and ask the ever-popular question of
“So what?!” If you can't answer that question, maybe you don’t need the map at all and the analysis needs
to go in a different direction.

Recommended Reading

The following are some recommended readings that can further your understanding on some of the topics
we touch on in this chapter. For full information on these recommendations and for the sources we cite in
the chapter, please see Appendix B.

Data Points: Visualization That Means Something by Nathan Yau—Yau provides several
beautiful geospatial visualizations and discusses the design principles behind them. There is no
example code, but plenty of inspiration among the pages, plus he included a map of UFO sightings.

R Graphics Cookbook by Winston Chang—If you will be doing any visualizations with R, you
should have this book. Winston Chang goes into more depth on map creation than we do here and
includes hands-on examples and explanations for R.

Naked Statistics: Stripping the Dread from the Data by Charles Wheelan—When it comes
to introductory material on statistics, nothing beats this book. Wheelan presents the statistical
concepts without heavy math and builds up to a chapter on linear regression, covering many of the
assumptions and pitfalls of the technique.

Visualizing Security Data

“The human visual system is a pattern seeker of enormous power and subtlety.
The eye and the visual cortex of the brain form a massively parallel processor that
provides the highest bandwidth channel into human cognitive centers.”

Colin Ware, Information Visualization

VISUALIZING SECURITY DATA

Chapter 1 briefly mentioned that data analysis is similar to how archeology might be: spending hour after
hour with small tools in the hope of uncovering even the tiniest of insights in the earth. That analogy can
be extended into the shared desire to create a narrative. Archeologists attempt to recreate the stories of
history by digging up parts of a story; it's the same with data analysts. There are stories buried in the data;
and it’s up to the data analyst to uncover that narrative, piece it back together, and communicate that story
to others. When it comes to data, with its unique blend of complexity and subtlety, nothing can tell a good
story—a data story—Ilike a well-crafted visualization.

A data story is built from several attributes, the two most important of which are truth and relevance.
Although you can have a good story without truth, you cannot have a good data story without truth. You
cannot affect meaningful and successful change if your stories are built on lies or half-truths. Therefore,
you need all the skills to uncover the truth within the data, and then you need the visualization skills to
be sure the story the reader perceives matches the story you uncovered. The visual language should be a
wrapper around the truth; thus, it needs to be clear and unambiguous. Every point, line, color, and shape
you place into a visualization should carry some piece of information supporting the truth in the data and
in the data story.

A good story is good only when it is relevant and actionable to the reader. You wouldn’t want to show
a board-level executive the Security Incident & Event Management (SIEM) dashboard any more than you'd
want to force market reports on the SIEM operator. Stories fail to communicate if the readers don't feel
they apply to them. Therefore you have to know the audience for your visualizations. Are you trying to
elicit a budget change or firewall change? As you create your message, a good question to ask yourself is
“so what?” and if you struggle to answer that question for the reader, rethink the approach. Another good
mental exercise is to run through a few other possible outcomes of the story. If the result of the visualiza-
tion is the same (from the reader’s perspective), you should be rethinking the visualizations. For example,
if you're showing a line graph with an obvious upward slant, imagine if that line went down. Would the
reader have a different reaction? If it went up much more than it does, so what?

We aren't suggesting that all data should be visualized. If the story in the data is best summarized with
asentence in an email, so be it. If the data can be expressed in a simple lookup table, so be it. The goal here
is communicating the data. If you can communicate better, more succinctly, or simpler in any other way,
you should go with that method. We also aren’t suggesting that visualizations be the center of the story. All
data exists within a context, and all our stories need to have a beginning, middle, and end. Visualizations
can play an important and supporting role in the entire communication process, but it should not be the
only means of communication. Your focus is on the successful communication of the narrative and
the method of communication is just a means to that end.

Why Visualize?

By far, the most efficient path to human understanding is through the visual sense. Like a good hacker, you
need to learn about the system, understand how it functions (or why it doesn’t function), and then exploit
this cognitive system to achieve your goal. In this case, the goal is to effectively and efficiently communicate
the stories you find in the data. There are many advantages to using data visualization as a communication

Why Visualize?

tool compared to other methods. To paraphrase Colin Ware (who we quoted to open this chapter), data
visualization has the following advantages:

o Data visualizations communicate complexity quickly. Descriptive statistics (mean, median,
variance, and so on) exist to describe and simplify data but tend to remove subtleties that exist. It's
possible to communicate millions of data points in seconds while minimizing the loss of detail and
resolution through visualization.

o Datavisualizations enable recognition of latent patterns. Patterns that would never be appar-
ent using statistical methods or scanning the data may be revealed through visualization. When
datais visually presented, patterns in a single variable or relationships across many variables may
leap off the screen.

o Data visualizations enable quality control on the data. Mistakes and errors in data collection or
preparation can often be revealed through visualization. Data visualizations can serve as a good
and quick sanity check on your work.

o Data visualizations can serve as amuse. It's been said that most breakthroughs in science didn’t
start with a “Eureka!” but instead with a “Huh, that’s odd.” Laying out the data visually can give you
anew perspective and help facilitate your thinking and discovery processes.

Unraveling Visual Perception
The human system for processing visual information is incredibly complex and much of our knowledge
around it is still evolving. There are a few key (and hopefully easy) concepts that you should understand
since knowing how the brain visually processes information will help you create great visuals. Equally as
important, knowing this information will also help you avoid creating visuals that aren't effective or helpful.
Our eyes convert visual stimulus in the form of light into electrical signals for our brains. This informa-
tion passes through stages of our visual memory, each with a specific set of strengths, limitations, and
functions. Before we are consciously aware of it, our brains rapidly scan the visual field, which is called
preattentive processing. Finally, the brain will instruct the eyes to focus elsewhere, and through a series
of saccadic movements, our eyes will focus on various features to help build the image in our mind.
The goal is to use three concepts from our visual processing system to create a solid foundation for good
visuals and dashboards.

Visual Thinking

This section steps through the various stages of memory within our visual perception: iconic memory,
working memory, and long-term memory.

® lconicmemory is the first stop for the visual information. It is a very brief stop, lasting around
half a second or until new information comes in. What happens in this tiny window is critical to
creating good visualizations and dashboards. Using the information stored in iconic memory,
the brain preprocesses the image prior to giving it any conscious attention. From an evolution-
ary perspective, this is quite helpful; this preattentive processing can help you quickly identify

VISUALIZING SECURITY DATA

possible threats in your environment. For example, anyone who has been driving when an animal
dashes in front of the car has probably felt that urgent message from the brain when it recognizes
a possible threat. We begin to reactimmediately even before we can process the full extent of the
threat. Even though you don’t want your visualizations to be treated like a threat, through the use
of colors, shapes and other cues, you can leverage this visual searching and preattentive process-
ing in order to draw attention and communicate some basic attributes of your data. This will make
processing much easier when viewers begin to consciously process it, and we will discuss preat-
tentive processing in detail later in this chapter.

® Working memory is the next stop and things get a little more complicated here. First the brain
groups visual aspects into meaningful objects and holds these in working memory. Thereis a lot
of flexibility within working memory. We can rapidly replace or drop objects as we take in more
information, but this flexibility comes at a cost in capacity. We can hold only three to five objects in
working memory depending on the task and objects. This limit is important when you are design-
ing visualizations and dashboards. If you create a visualization with a legend that has 10 different
attributes, viewers will have to continually reference the legend in order to understand what
they're looking at. Therefore, as you communicate the stories in your data, limit each visual to no
more than five objects (or four to be safe).

® Long-term memory is not directly involved in the visual processing but instead affects visual commu-
nication through the expectations and norms built up in long-term memory. In order for something
to move into long-term memory, the viewer needs to visually “rehearse” the information to transi-
tion it from working memory into long-term memory. If the reader has seen visualizations before
(and chances are very good they have), they have a certain level of expectation for what they are
looking at. For example, if you create a scatterplot, the reader expects the origin of the graph to be in
the lower left corner, with positive values of each axis extended up and to the right. If multiple colors
are used, the reader will expect meaning to the color and will seek it out. It’s very important to know
what those norms and expectations might be, and if you deviate from them, do so for a very good
reason and give visual queues to help people understand those deviations.

Tracking Eye Movements

When people focus on something like a dashboard or graphics on a computer screen, they do not simply
fix their gaze on it and take in the image as a whole. Their eyes actually dash around the screen, focusing
on very small portions for very short periods of time in order to build the image in their mind. These rapid
eye movements are called saccades, and overall they are called saccadic movements. They are anything
but random. The brain has a set of rules (guidelines really) for how the next fixation point is prioritized. As
an example, when another person greets you, your eyes perform scanning saccades over their entire face,
bouncing from the distinct features of the face (eyes, nose, and mouth) and establishing the edges. The scan-
ning saccades help you recognize not only the person, but also cues to allow you to judge their emotions.

The same applies to visualizations and dashboards. The eyes will fixate on an obvious feature and bounce
around and between the points it considers important. Viewers build up the entire picture over a series of
these movements and over time. Understanding these movements can help you build a visualization flow
that seems natural (or at least not strained).

The saccadic motion is largely unconscious and is thought to be a ballistic movement. Once the brain
initiates a saccadic movement, the muscles take over and handle the rapid acceleration and deceleration
from beginning to end. This is important for two reasons—once it is initiated it cannot be changed or

Why Visualize?

stopped and during the motion we suppress much of the visual input. We will want to limit the distance
of these motions by creating compact dashboards and visualizations.

We can pull together a few important learning points from saccadic eye movements. Knowing that the
eyes will bounce around from feature to feature and understanding the ballistic nature of the movement,
you should keep several points in mind as you create dashboards and graphics:

® Don’toverload the dashboard with visual features. Keep the number of attention-grabbing
features under control because if everything is important visually, nothing will be important visu-
ally, and the reader will have to put more effort into understanding the visual.

© Make theimportant messages obvious visual features. Just as we scan the important parts of
a human face, we look for the similar attention-grabbing features on the screen. Make sure that
those features are clear and important to the viewer.

o Limit time wasted on saccadic movements. Saccadic movements that jump longer distances take
longer to execute. Do not push the visual features into the corners or toward the edges. Forcing
the viewer to bounce across large distances will decrease the amount of time they are actually
seeing the features (and increase the time spent in saccadic movements).

The role of saccadic movements is more significant in the design of dashboards than with static data
visualizations. A static visualization will typically have one, perhaps two, visual features we want to draw
attention to, and the eye movements are contained in a relatively compact space. A dashboard may be
designed to communicate several independent messages simultaneously with varying degrees of urgency.
Good dashboard design, as you'll see in Chapter 10, limits the time viewers spend in a saccadic movement
and exploits eye movements for efficiency.

Preattentive Processing

The best way to describe preattentive processing is through pictures. Take a look at Figure 6-1 and try to
count how many capital Xs there are in this completely random mix of letters and numbers.

Count the number of “X” characters

Because all of the letters are the same color and contain the same relative space, nothing about any of
the characters really stands out. The brain simply sees a collection of shapes. In order to count the Xs, you
have to scan through each letter across the four rows. While you're doing that you also have to remember
how many you've found so far. In contrast, look at a completely random mix of letters and numbers with
the X characters emphasized (see Figure 6-2).

You can immediately see the Xs and count four of them. When you first ook at this, your brain sees
a background of gray symbols with four completely different objects that are similar to each other. Your
preattentive processing mentally creates two groups: one of all the gray symbols and a second with the

VISUALIZING SECURITY DATA

dark red Xs. A split-second later, you will consciously recognize the second group as what you're interested
in (the Xs). It becomes trivial to visually exclude the gray characters and now you can scan just through this
group. Counting the Xs becomes a simple and quick task.

X X

X

Now, count the number of “X” characters

That mental grouping and ease of focus is what you're after. You want to enable your preattentive
processing to effortlessly group similar objects and highlight where you want attention to be focused. But
you have to keep in mind that the preattentive processing is not all that smart. It cannot project meaning,
interpret the objects, or make meaningful associations (beyond simple visual grouping).

Through hundreds of studies, researchers have been able to differentiate between visual attributes
based on those that can be identified preattentively and those that can’t. Some of these studies seem a
little silly or abstract (for example, how easy is parallel detected?), but by looking at them as a whole, we
can create some basic visual attribute categories that can be preattentively processed.

These categories are:

® Form (line, shape, and size)
® Color (hue and intensity)
® Spatial position (two-dimensional, stereoscopic)

® Motion (blink, direction)

The list of specifics within those categories can get quite long, but, thankfully, you can experiment with
your graphics to find what works. If one version doesn’t highlight the data, try something different. If it’s
easy for you to pick out what's important, chances are that it’ll be easy for others. Of course, it's always a
good idea to run things by others as a sanity check. Figure 6-3 shows some ways to differentiate based on
preattentive attributes.

Not all preattentive attributes are created equal. Look at Figure 6-3 again. Although they all highlight the
three data points, some make the three points slightly easier to see than others. In Figure 6-3(e) for exam-
ple, if you used pink and red, it would be slightly more difficult to pick out the subtle difference in colors.
The amount of “pop” for preattenttive attributes depends on how different the attributes are. The shapes in
the example in Figure 6-3(a) are more different from each other than the circles and squares in Figure 6-3(b)
and slightly easier to see. It's still possible to distinguish the difference in Figure 6-3(b), but it's just not as obvious.

This concept of preattentive processing should be treated as just that—a concept. The line between
our preattentive processing and conscious processing is blurry. When looking at a visualization, you can
slip between the two quickly and quietly. With repeated exposure, you can actually train our preattentive
processing. Meaning, over time, no matter how poorly designed a dashboard is, analysts will eventually
pick up skills to quickly identify important features depending on environment and culture. But the point
remains—if you want to direct the viewer’s focus and attention, you should leverage some basic elements
like form and color to highlight the point you need to make in the data.

Why Visualize?

Shape (a) Shape (b) Size (c)
O o &
O o O e o © ® o ©
O - ®
o O X o o N o o @
O & &
O > 'S o - @ o . &
O o ®
2 X0 . o . ®.
Intensity (d) Hue (e) Enclosure (f)
@
® e ©
o
o ® O,
¢ ° T @
. ° T e, vt @,

Examples of preattentive attributes

Finally, one last word of caution about preattentive processing: It's possible to overload this process
and negate any benefit. Take a look at Figure 6-4.

® In Figure 6-4(a), we have separated the data into three groups and then coded them by color. It’s easy
to tell them apart. Not only are they spatially grouped, but color highlights their differences.

® In Figure 6-4(b), we separated the data into two groups—different from the groups in
Figure 6-4(a)—and then coded them by shape. It’s a little harder to tell them apart, but you can
still pick out the two groups.

® When we combine the methods in Figure 6-4(c), things get a bit more complicated. To separate them
based on shape, you have to actively inspect individual elements and separate them consciously.

The lesson here is that you have to be careful to keep the visuals as simple as possible to exploit the
viewer's preattentive processing for their benefit.

Note

This chapter has a lot of visualizations and not a lot of source code. If you are interested in
how we created the figures in this chapter, the accompanying source code for the chapter
is on the book’s website (www.wiley.com/go/datadrivensecurity).

VISUALIZING SECURITY DATA

Color (a) Shape (b) Shape and Color (c)
® e By ., °
® © ®
6] @ - @
® » o - = -
o T 0] m° o me®
e 063(300%-_) 6) @ od %HUC,D—J &) @ e'-.l o
® O O
o) ® o O o)
® @ O O | O
= o © o o °
® . O _ O
Too many attributes

Understanding the Components of Visual
Communications

The chapter began by looking at how the brain visually processes information, including how you can
leverage your preattentive processing and saccadic movements to increase the viewer’s visual perception.
This section focuses on the visual building blocks and material that you have to work with. You need to
begin with the data and encode the values through various attributes like position, shape, length, and size.
Perhaps you'll want to encode changes over time with slopes or angles and separate categories by color
hue, saturation, or lightness. If you combine elements, you can communicate relationships and groupings.
Every choice you make in creating a visualization will affect how well others will decode the data.

Avoiding the Third Dimension

First and foremost, unless you are creating a physical data sculpture, or are working with special software
that allows you to model in three dimensions, you are dealing in two dimensions. The screens you look at,
the reports you print, and the slides you project on the wall are all limited to width and height. Of course,
you can simulate a third dimension of depth, but this is a challenge. Simulating a third dimension will
always be just that, a simulation.

In order to simulate depth, you need to change the very attributes you are using to convey the mean-
ing of your data. Elements that are closer in the simulation will need to be bigger and those further away
will be smaller. The effect from the simulated perspective will modify the viewer’s ability to compare and
consume the data accurately. For this reason, we strongly recommend staying away from plotting in three
dimensions. Plus, two dimensions offer a tremendous amount of flexibility. Even though readily available
desktop tools like Excel make 3D charts incredibly easy, you should fight the urge if your goal is to com-
municate your data to others.

Don’t think of working with two dimensions as a limiting factor any more than just 12 notes in a chro-
matic scale is limiting to Western music. Much research has been conducted into communicating in two
dimensions; we will highlight two seminal papers published in the mid-1980s by two statisticians—William
S. Cleveland and Robert McGill. They open the first paper, “Graphical Perception: Theory, Experimentation,
and Application to the Development of Graphical Methods” with, “The subject of graphical methods for data
analysis and for data presentation needs a scientific foundation.” And, they did just that. They conducted

Understanding the Components of Visual Communications

experiments where subjects were shown various graphics

A] _akue o .
! i""f‘ - Position on a common scale and measured how accurately they were able to visually
More| — T decode the quantitative information in them. In their sec-
Position with unaligned scales ond paper, “Graphical Perception and Graphical Methods
ol paglet II for Analyzing Scientific Data,” they updated their results
£ BRI Length and offered an ordered list of visual encodings and the

S - relative accuracy in their decoding. See Figure 6-5.

o . .
a >‘:;::C Direction/Slope These are not mutually exclusive and the distinctions
E,E,‘- < ' B | ~ between these methods can get a little blurry. For exam-
® V Angle ple to decode a simple bar chart, you might use position
§ o —~0O Area on a common scale to determine the quantity, but then
< O O use length to compare two bars within the same chart.
. ; In a pie chart, you might primarily use angles, but the
- Density/Saturation P . y ghtp y g .

Less area of the slice and arc length may also factor into your
J I - Color Hue perception. The findings from this research should serve

as a guideline. If your goal is communicating quantita-
tive data accurately, a bar chart is always better than
a pie chart and a grouped bar chart is better than a
stacked bar chart.

As with all guidelines, you can deviate from this advice. Sometimes your goal is not to convey specific
quantitative data, and the lack of accuracy in decoding is desired. As an example, look at Figure 6-6. When
looking at the pie chart on the left, it is relatively difficult to gauge the specific difference between the five
slices. Looking at just the pie chart, you'd probably conclude that they are all about equal. However, if you
look at the bar chart on the right, it's relatively trivial to see the differences because you are using position
on a common scale. Obviously, if you had confidence in the accuracy of the data, the bar chart on the right
is far easier to interpret. But what if the data you have is from a small opinion survey? Although you can
calculate precise values, the differences in the values could easily be explained with sample error. In this
case, you could justify using a less accurate method to communicate the data.

0.20 -
0.15
0.10
0.05
0.00 =
A B c D E

FiGure 6-5 Accuracy of decoding

Ficure 6-6 Comparing pie and bar charts

VISUALIZING SECURITY DATA

Save the Pies for Dessert

If you are new to data visualization, there are essentially two distinct (and sometimes very passionate)
opinions when it comes to visualizations that use techniques lower on Cleveland’s accuracy list. Pie
charts are often at the center of debate since they are used (and abused) more often than others.
The core argument against pie charts is that the data can always be represented better and more
accurately with other methods. As Stephen Few said in his 2007 paper “Save the Pies for Dessert,”
“Of all the graphs that play major roles in the lexicon of quantitative communication, the pie chart
is by far the least effective. Its colorful voice is often heard, but rarely understood. It mumbles when
it talks.” On the other side is the point we made here—that the goal of communication may not be
precision. There are other less convincing arguments in the defense of pie charts, but there is one
piece of common ground: Choose the visualization method deliberately and be sure it communicates
the message you want to send.

Using Color

If you've not been tasked with selecting colors for a project, this brief introduction may make color selec-
tion seem easy. There are a few guidelines about which types of color palettes go with which types of
variables, and a deep well of knowledge from color research has created a handful of easy rules for palette
creation. However, it won't be until you're trying yet another set of colors in your visualization that you will
truly appreciate the words of Edward Tufte from his book Envisioning Information: “Avoiding catastrophe
becomes the first principle in bringing color to information: Above all, do no harm.”

There are many websites and tools that apply color theory to make palette selection relatively painless
(see Appendix A for a complete list of resources, but ColorBrewer [http://colorbrewer2.org/]
and HCL Picker [http://tristen.ca/hcl-picker/] are our favorites). With some understand-
ing of your data, picking pertinent colors is the easy part. Colors also have to support and hopefully even
highlight the message and be pleasing to the eye, which has a large element of subjectivity and is unique to
each and every visual story. This creates the challenge with color: You have to balance function, aesthetics,
and theory across just a handful of colors.

Color Is Relative

The first and perhaps most important aspect of color selection is that colors are always interpreted relative
to the surrounding environment. For example, Figure 6-7 shows two rows of gray boxes on a gradient back-
ground. Even if you know each row has a consistent shade of gray, you will still see different shades on the
same row as you scan from side to side. And to some, the upper-left box looks to be the same color as
the lower-right box. That's because you see the shade in the boxes relative to the surrounding background.
The boxes appear darker on a white background and lighter on a dark background. You can use this fact
to your benefit. If you want to emphasize one variable above all else, you can choose a contrasting color
from the rest. For example, red shapes will stand out among shades of light blue shapes, but will blend in
with pink and orange shapes.

Understanding the Components of Visual Communications 147

Visual signal and noise detection illusion

We Are the 99 Percent 10 Percent

Nearly 10 percent of males and about 1 percent of the females are color blind. This means that at
some point (probably sooner than you think) your visualizations and dashboards will be viewed by
someone incapable of seeing the entire spectrum of the rainbow. Having some understanding of
the types of color blindness can help you choose colors that everyone can see. The largest portion
of color blind people have either protanomaly (red blindness) or deuteranomaly (green blindness),
making red and green a poor choice to include in the same graphic. Some color-selection tools (like
ColorBrewer) factor in color blindness and have an option to select colorblind safe palettes. Whatever
your color tools are, keep in mind the 10 percent.

Palettes Depend on Data

We briefly discussed data types in a sidebar in Chapter 3 titled, “Isn't ‘data’ just ‘data’?” There are only a
handful of high-level data types that you'll need to be aware of and most of them fall into either categori-
cal or quantitative values.

® Categorical data are represented as groups with category names, such as operating systems by
type or lists of programming languages. Categorical data sometimes has a natural order. Rankings
such as “first,” “second,” “third,” or “high,” “medium,” and “low" are treated like categorical values
but have an added sense of order.

® Quantitative data are numerical values, which are things you count or measure such as bytes, pack-
ets, sessions, number of servers, and so on.

VISUALIZING SECURITY DATA

The difference between categorical and quantitative can sometimes be tricky. For example, TCP/UDP
port numbers appear quantitative since they are sequential numbers going up to 65,535. But you have
to treat them as categories: You would never add echo and two telnet ports to get DNS because the
sum would make no sense in terms of port numbers. Another confusing data type is date/time. Most of
the time you'll treat it as an ordered categorical variable (such as the year, month, day of week, and so on),
but other times you'll store it as a quantity (seconds since the epoch) to enable calculations on time and
time series data.

You have to be careful when using colors to represent a quantity. Consumers are relatively inaccurate
when decoding quantity from a color scale. But color can be used in circumstances where rough compari-
sons are enough. For example, back in Figure 5-7 in Chapter 5, you don’t need to see that exactly 1in 724
people in Wyoming were infected with ZeroAccess. The color is simply communicating that Wyoming had
more infections per person than any other state.

Figure 6-8 shows three types of color palettes—sequential, divergent, and qualitative—from the
ColorBrewer website.

® You selecta palette of sequential colors to represent quantity or perhaps ordered categorical data.
Sequential color palettes are built using a single hue (blue, for example) and then adjust the light-
ness or saturation of that color to cover the range of the quantitative data.

® Divergent colors are also used on quantitative or ordered data, but help communicate above or
below some middle value. Typically, the middle value is white and two divergent hues are used on
either end. Divergent color scales may be used to convey two directions in the data such as above
or below average (as it was used in Figure 5-7).

@ Finally, you have qualitative colors, which are intended to simply be distinct from one another. This
makes them well suited for visualizing categorical data.

Sequential Diverging Qualitative

I e I B Ros N st
B e B B PiYG Set2
D vcreu B I BBG B Accent

Sample color palettes from ColorBrewer

Putting It All Together

We've laid some good groundwork here, so it’s time to look at how these things come together to help
communicate your data. This section spends less time talking about how to create these and more time on
why we create these as we do. All of the source data and code needed to create these visualizations in this
chapter are on the book’s website. Creating the basic types of plots is relatively easy using the R language
and ggplot2. Most of these plots are available as options in more familiar tools such as Excel.

Using Points

The easiest method to communicate and compare two quantitative variables is the basic scatterplot.
Scatterplots position points along a common scale (both x and y scales) and allow the viewer to very

Bytes

19 GB

16 GB

13 GB

10 GB

Understanding the Components of Visual Communications

accurately determine the value of each variable for each data point and to make comparisons between
points. It is insanely simple to create scatterplotsin R (plot (x, y)).You cando this often just to “see”
the data you are working with. For example, Figure 6-9 shows 8 hours of firewall traffic. Each dot represents
total number of packets (x-axis) and total number of bytes transferred (y-axis) processed by the firewall
over 5 minutes.

This is a good example of a pattern quickly jumping out of a plot. You can see that the firewall traffic
for the day ranges from 7 to 19 gigabytes, and packets range from 12 to 27 million. The linear relationship
is very apparent here: As you see more packets, you see more bytes. Now this isn't exactly a news flash or
all that informative, but a simple scatterplot can show patterns when you're not sure whether they exist.
Figure 6-10 shows an example of a scatterplot that reveals something you didn't know. The time of day is
along the x-axis and the number of sessions is on the y-axis.

°
°
o []
°
°
°
°
s,
o e ° °
® . °
®)
#& v
Voo
°
o'}"o
° .o % °
°
X
12 M 15M 18 M 21 M 24 M 27 M
Packets
Basic scatterplot

The scatterplot in Figure 6-10 has a few extra features. Note the faint lines down from the points; they
give just a hint of a bar chart and visually tie the points (which are rather bunched up) back to the x-axis.
To highlight the repeating element of time, the line at the top of the hour is thickened (and falls on the grid
lines); the points also change to red every 30 minutes. There is a noticeable dip at the top of the hour and
not much change at the half-hour marks, and it's important to emphasize those times for easier comparison
(remember the preattentive processing?). What is the cause of this dip? Perhaps this organization has a
meeting-heavy culture, and network activity drops as people head to their next meeting? You can’t know
the cause from this data, but the dip pattern really jumps out with a simple scatterplot.

VISUALIZING SECURITY DATA

400 k

300 k

Sessions
N
o
o
~

100 k

10 GB

100 MB

Bytes

1MB

10 kB

Bam

8am 9am 10am
Dot plot: packets over time

Creating Directions with Lines

11am

12pm
Time

1pm 2pm 3pm

You may have heard at some point that “lines are just points in motion,” and that’s true—you generally
see lines having a sense of direction. In this section, you'll take the same firewall traffic and separate the

types of devices on the network:
® Desktops
® Servers
® Printers

® Networking equipment

You'll see two plots: first, the same type of scatterplot as the time series and then a line plot (see

Figure 6-11).

9am 10am 1lam 12pm 1pm 2pm 3pm
Time
Server = Workstation

* Metwork + Printer «

Line plot: traffic by device

Bytes

10GB

100 MB

1MB

10 kB

U
Bam

Bam 10am 11am

12pm 1pm 2pm 3pm

Time
Metwork Printer Server Workstation

Understanding the Components of Visual Communications

It's rather clear what'’s going on with the line plot and it's easy to follow the traffic over time for each
of the four devices. The scatterplot on the left is a little difficult to follow, although you can see trends and
differences between the categories. Line plots are quite good at accurately communicating data; they
compare points on the line along a common scale and use the slope of the line as a sign of change. For
example, notice the steep slopes in the data series for printers. Most commonly, line plots have an ordered
variable on the horizontal axis (often “time”) and one or more quantitative variables on the vertical axis.
(It's possible to flip the orientation depending on the presentation circumstances.) In this case, you are
plotting number of packets (quantitative) on the y-axis against successive five-minute periods (ordered)
with each line representing a category of device.

Log Scales for Logs

In Figure 6-11 the y-axis is plotted on a logarithmic scale. Notice how the values on the axis increase
by powers of ten for a given physical distance on the plot. If this plot was plotted on a linear scale,
you'd see the workstation traffic at the top and the other three lines would be reduced to almost
zero. We chose a log scale because we needed to show these data series on the same chart, even
though they differed by three orders of magnitude. . You have to be careful when you use a log scale.
Most people in business are used to seeing linear scales, and they are conditioned to do comparisons
assuming a linear scale. For example, the viewers might come to the conclusion that the networking
equipment has about half the traffic of the workstations because it's visually about half the distance
from the axis. But, in reality, workstations are generating about 10,000 times more traffic than net-
work devices. If the logarithmic scale isn’t clear to the viewers, they could draw incorrect conclusions.

Building Bar Charts

Bar charts are one of the most effective ways to communicate when one variable is quantitative and the
other variable is categorical. There are a few variations on the basic bar chart. Figure 6-12 shows three differ-
ent ways of displaying vulnerability counts and severity classification per device. On the far left, you have a
typical bar chart with vertical bars. One simple modification (not shown) would be to flip the orientation so
that the bars are horizontal. The difference between vertical and horizontal orientation is largely aesthetic
and depends on where the chart will appear. The vertical bar chart is simple: The length of each bar is pro-
portional to the total number of vulnerabilities for each device type. You can easily see that workstations
have the most vulnerabilities, and servers are close, with 20 percent less or so. In comparison, it is obvious
that the number of vulnerabilities in networking devices and printers are quite small.

The other two bar charts have an additional categorical variable for the severity of the vulnerability
—High, Medium, or Low. The stacked and group bar charts use sequential color scheme severity levels.
With the stacked bar charts, you are still able to compare totals. It's still clear that workstations have more
vulnerabilities than all others. But comparing across severity is difficult as you lose the common scale. As
an example, attempt to visually compare the high vulnerabilities of workstations to servers. Since they
are not aligned you judge them purely by length on a non-aligned scale and are therefore less accurate.

Now look at the grouped bar chart and it quickly becomes clear that workstations have more high-
severity vulnerabilities than servers. The one drawback to the grouped bar chart is that you lose the overall
count comparison. When the overall totals are close, it's more difficult to tell that workstations have more
vulnerabilities overall from the grouped bar chart. The type of bar chart you choose is largely dependent
on the message you are trying to send.

VISUALIZING SECURITY DATA

Vulnerabilities

Bytes

2.5MB

2MB

1.5 MB

1MB

500 kB

0B

Vertical Bar Chart Stacked Bar Chart Grouped Bar Chart

w w

= =

g €

@ @

= L

3 50 S I I

Server Matwork rkstatlon Server Metwork rinte: Workstation Servel Network Printer
Device Type Device Type Device Type
Wlish mMed Low WHisn | Med Low

Bar charts: vulnerability counts

Leveraging Opacity

Another technique for communicating differences in variable values is the opacity or transparency of colors
within graphs. If the data is overlapping or dense and you plot it with a solid opaque color, you have no
way of knowing just how many points are stacked up underneath that. Luckily, you can simply make the
color semi-transparent. This will allow any points beneath to show through a given point. Within R there
are two methods for doing this. First within ggplot2 most (perhaps all) of the chart types allow for an
alpha setting between 0 and 1 (alpha is the term used in color specifications to define opacity). Or you
can code the alpha right into the color with a 4th byte, meaning a red value of #7F0000 is the same as
#FF0000FF (with the last FF setting opacity to maximum). If you want to set opacity to 50 percent,
255/2 =128 =0x80, so you can set the color to #5F000080. The red color is now 50 percent opaque. The
benefit of adjusting the alpha (opacity) is demonstrated in Figure 6-13.

alpha =1 alpha =1/3
2.5MB
2MB
1.5 MB
w
i
=
o
1MB
500 kB
0B
600 800 1k 600 800 1k
Sessions Sessions

Bubble chart: opacity shows stacking

Understanding the Components of Visual Communications

These two charts show the same data: 8 hours of firewall data for networking devices split into 5-minute
totals. The number of network sessions is plotted along the x-axis and the number of bytes is on the y-axis.
The size of each point (“bubble”) is proportional to the packet count. One challenge in this visualization is
that many points overlap. By setting the alpha value to 1/3 in the chart on the right, you can see through
any bubble to bubbles that lie underneath it.

It's handy for you to set the alpha as a fraction (such as 1/3 instead of 0.33) because it makes it obvious
how many points or bubbles will stack up to equal the maximum color value (solid). This allows you to
tweak the alpha for how many layers you have. If you have 50 layers (some of the maps in Chapter 5 have
code that use small alpha values like this), you can set the alpha to 1/50 (as opposed to converting to 0.02
and typing that in).

Size Encoding

Figure 6-13 is encoding another quantitative variable by mapping the size (area) of the circle (“bubble”)
to the number of packets in a 5-minute period. Looking back at the accuracy chart in Figure 6-5, you can
see that area is relatively low on the list. This difficulty is compounded in Figure 6-13 because there is no
legend for bubble size (an intentional oversight on our part). But for the purposes of this chapter, note the
relative values here—the relatively large versus relatively small number of packets. In a more formal set-
ting, you'd want to add a description to the title or use some other annotation to indicate the significance
of the “bubble” size. For the purposes of this exercise, you are simply looking for any obvious patterns and
this type of graphic shows relative sizes. Bubble charts like this are good for crude estimates, and are thus
similar in communication capability to pie charts.

Another visualization method with similar traits is the treemap. A treemap uses area and color to
encode two quantitative variables (see Figure 6-14). The treemap visualization method relies on area,
and thus is relatively low in visual accuracy.

Linux-Dev Router

Mac-Laptops

Ficure 6-14 Treemap: devices and traffic on the network

VISUALIZING SECURITY DATA

Figure 6-14 portrays the number of devices on a network and the traffic volume for each type. It uses
the size of rectangles to communicate a quantity and the color of the rectangle to communicate a different
quantitative variable. Often times the rectangles are visually grouped to depict categorical relationships.
In Figure 6-14, the size of each rectangle is proportional to the quantity of devices on the network by type
(workstations, servers, and networking devices), and the lightness of color of each rectangle is proportional
to the volume of traffic they produce (normalized).

We should reiterate—a treemap combines two relatively inaccurate methods of encoding quantities.
This makes treemaps difficult to execute well and often confusing to viewers. The same rule applies to
treemaps as to pie charts and bubble plots—there are usually better visualization methods to communi-
cate the data.

Communicating Distributions

Sometimes you'll just want to show the values within a single variable and how they are distributed.
Within classical statistics, you have descriptive statistics that attempt to reduce a distribution to a set
of descriptive values. For example, if you go back to the 8 hours of firewall data shown in Figures 6-9
and 6-10, you could describe the distribution of total sessions within each 5-minute window like this:

Description Statistic

Min 265,800

Median 356,500

Mean 350,500

Standard Dev. 32,093

Max 410,700

Skew -0.5

Kurtosis —0.457

Most people can’t look at these numbers and understand what the data is telling them. Nor will they
be able to see any subtle patterns; descriptive statistics are about reducing a distribution of values to a set
of individual numbers. This is where visualizations can help out considerably.

Histograms and Density Plots

Rather than reduce a distribution to a few descriptive statistics, you can represent every value in the variable.
Figure 6-15 shows a basic histogram on the left and a density plot on the right, both for the same data set.

A histogram uses a simple process called binning. It works by creating equally spaced “bins” and then
counting how many of the measurements are in each bin. In this example, we created bins that are 12,000
sessions wide. You can see that at the peak—around 350,000 sessions—we had about 18 sessions within

Count

Understanding the Components of Visual Communications

1.56-05-
15-
n - 1.06-05-
10- — =
[72]
C
[0
o
5.06-06 -
5
0- | 0.06+00 -
250 k 300 k 350 k 400 k 250 k 300 k 350 k 400 k
Number of Sessions Number of Sessions

Histogram and density plot of the firewall sessions

that bin. Part of the criticism of histograms is that you can affect how histograms appear by adjusting the
size and position of the bins. But these plots are indispensable when you want to get a feel for a distribution
and they are quite effective in communicating the basic shape.

The plot on the rightin Figure 6-15 is a density plot. It uses the same approach as the histogram, but the
bins are quite small and a smoothing process is applied over it. By projecting the original histogram behind
it, you can see how it flattens the peaks and diminishes the valleys. There’s no right or wrong between the
two—Dboth involve some approximations. When you are exploring your data, it’s quite easy to pass in data
tohist () and get an immediate (although maybe not pretty) histogram.

Boxing in Boxplots

Another method, which was developed by John Tukey (remember him from Chapter 1?), is the boxplot,
which we touched on in Chapter 5 when discussing outliers. This is not something your viewers will intui-
tively understand if they haven’t seen one before, so it may require a little more supporting material than
other methods need. In the fall of 2012, one of the authors (Jay) set up a simple honey pot to record the
packets it saw on the Internet. How often is a host scanned when it's on the Internet? You can get a feel for
the answer in the boxplot in Figure 6-16.

The boxplot begins with the median (middle) value of the distribution and it places the center bar there.
Then it computes the 25th and 75th percentiles. This means that 25 percent of the data is below the 25th
percentile, 25 percent of the data is above the 75th percentile, and 50 percent of the data is between the
two. These two points form the length of the box and represent the inter-quartile range or IQR.

There are a few different methods used to represent the length of the lines. The most common method
places the lines one and a half times the IQR away from the box. Other methods place the end of the line

VISUALIZING SECURITY DATA

at the minimum and maximum of the data. Figure 6-17 attempts to convey a large number of distributions
within one chart with boxplots.

How long before a system is
“probed” by opportunistic
attackers on the Internet?

75% of the systems
were probed within

about 14 minutes.
14m7s —

31m7s —— Most systems were
30 - : probed within about
31 minutes.
25 A '
20 -

Duration (minutes)
&

On average, systems
were probed in just
10 - over 11 minutes.
6mo2s ~~_ 50% of the systems
5 1 were probed in less
Om4Ts : than 7 minutes.
0 - 1s ——

Honey pot traffic: boxplot

What's interesting about Figure 6-17 is that it was generated with over 100 million values. It not only
conveys a large quantity of data, but it's also able to represent a certain amount of confidence in the data.
In this case, just stating the mean or median would have been a disservice, since some of these have a very
wide range of possible observations. How well could you have explained these values and the variations
with anything other than a visualization of the distributions?

Visualizing Time Series

This chapter has glossed over time series data even though you've been working with it in most of the
visualizations. Time series data are data collected over the same and repeated time intervals. For most of
the firewall figures in this chapter, we parsed the log files and counted up the bytes, sessions, and packets
within a sequence of 5-minute time windows. This allows aggregation of individual entries into more
manageable data points. But depending on how you slice up time and aggregate the data, you can get
and see different types of things.

Figure 6-18 is looking at 21 days of firewall traffic sliced into 5-minute chunks. This is quite a bit of data
for a small line graph (over 6,000 data points in a few inches), and when you try to represent that data with
a line plot, the lines crisscross over one another so much that they look like one thick and jittery line. If
you try to reduce the mess by simplifying the underlying data with an hourly average (the middle plot in

Understanding the Components of Visual Communications 157

Figure 6-18), you lose the extremes and the details, which is not generally good in a field like information
security where extremes matter. In the bottom plot, we replaced the lines in the first plot with points. This

How long will a service go undiscovered
by opportunistic attackers?

By measuring the time between packets received, it is mysql database
possible to estimate how long a service may be on the will be discovered
Internet before it is discovered by opportunistic attackers. in about 8 hours*\ o
N
o
N
telnet will be

discovered in less
than 4 hours*

15

t

10
Time between attempts (hours)

MS SQL Server Open Web Proxies

will be discovered ; ;
will be discovered
MS Remote Desktop in 66 minutes* in 210 4 hours*

will be discovered in
36 minutes™ /

A N R
I I —
L B
1 S i R
I I S
|
0 5

8008 |--{]___}--------
4899 oo

_ — - T
T P
R B [
[I
" v
TR '
- '
'
i
— = T T 7 —
:::: [| ['
=" S R T T T B T S A TR T — L
O NN - LD D M MO WOAN O LW O — © D O O O © 0 ©
O N+~ 0 MDN I O~ O 0O O 0 +— 0 DN — [SR=}
S o O o o, < N NO OO MmMO T O O I — ™
N MW © K~ O ® O AN O D O O N © ™

Destination Ports (TCP) *average (mean) for distribution
Boxplots: opportunistic packets

removes much of the mess and allows you to see the general trends and the extreme points.

Time series data can get very dense to visualize when you are talking about data from logs. We even
made it easier by looking at 5-minute slices instead of 1-minute slices. How you prepare and visualize the
data is dependent on what you are looking for in the data. If you are looking for specific spikes or gaps
in traffic, you should avoid using a rolling average. However, if you want to understand general patterns,
averages are usually good enough.

Experiment on Your Own

We've covered quite a few techniques so far in this chapter. Feel free to get creative and try one or more
techniques on your time series data. What if you tried showing each hour with a boxplot? What if you used

VISUALIZING SECURITY DATA

larger points and varied color based on size and turned down the alpha? Creating good visualizations is
generally an iterative process, so take this as a license to experiment! Remember that you aren’t limited
to static visualizations. You can create interactive visualizations (as you'll see Chapter 11) or turn the time
series into a video fit for YouTube, as you will see in the next section.

Basic Line Plot
20 GB - '
o« 156 GB -
o
Z1oGB-
5GB-
0B-

One hour averages

20 GB -
o 15GB -
o
1068~
5GB-
0B- |

20 GB -
«» 15GB -
ol
1068~
5GB-
0B-

FiGURre 6-18 Time series: 21 days of traffic

Turning Your Data into a Movie Star

This chapter has focused primarily on foundational components of data visualizations. These apply to static
or interactive graphics, dashboards, and as you'll now see, to videos as well. One of the more fun “tricks”
we've learned is how to turn data into a video. In order to do this, you combine two techniques: automated
sequential graphics and stop-motion software.

If you aren’t familiar with stop-motion by name, you're certainly familiar with it by sight. It's the
Claymation technology of setting up a scene, taking a picture, and then changing it slightly, taking another

Summary

picture, and so on. When you string all of those pictures together you get the appearance of motion and
you have a video. Same concept with data animation, but instead of taking a picture, you want to gener-
ate a graphic and save it as a picture. Then you can use any number of stop-motion software packages
(mencoder, avcony, FFmpeg, iMovie, and so on) to create a movie from the pictures. If you want to get fancy,
you can include music or voice-overs so you can explain the data as it’s progressing.

To see how this looks, try Listing 6-1 in an open R session.

random walk
set.seed (1)
set up nine directions
dirs <- matrix(c(rep(seq(-1, 1), 3),
rep(seq(-1, 1), each=3)), ncol=2, byrow=T)
start in the center
cpos <- matrix(c(0, 0), ncol=2)
set full screen
par (mar=c(0,0,0,0))
take 200 steps
for(i in seq(200)) {
plot (cpos, type="p", col="gray80", xlim=c(-20, 20), ylim=c(-20,20),
yaxt="n", ann=FALSE, xaxt="n", bty="n")
cpos <- rbind(cpos, cpos[nrow(cpos), 1 + dirs[sample(1:9, 1), 1)
points (cpos [nrow(cpos), 1], cpos[nrow(cpos), 2],
type="p", pch=16, col="red")
Sys.sleep(0.1)
1
reset screen back to default
par (mar=c(5.1,4.1,4.1,2.1))

This code will set up a matrix of nine directions. It will loop 200 times, adjusting the point in some ran-
dom direction and drawing the new plot for it. It then will sleep for a tenth of a second so you can view the
plot. On all but the slowest machines this looks like a random walking point on the screen. If you want a
challenge, modify this script to write each of the images (hint, take alook at help (png)) and then create
avideo of it. We've done this and it’s available at ht tp: / /datadrivensecurity.info/book/
ch06/movie/chapter6-movie.mov (oras part of the Chapter 6 materials on the book’s website
atwww.wiley.com/go/datadrivensecurity) if you'd like to see this random walk in action!

Summary

Communicating data visually allows you to communicate complex data and relationships quickly, enable
pattern recognition, spot anomalies, and gain new perspectives. Understanding how the brain processes
and stores information allows you to create visuals that leverage preattentive cues and minimize saccadic
movements for efficiency. Through the work of Cleveland and McGill, you've learned that some visual meth-
ods are better for communicating quantity (in contrast, some methods “mumble”). You should combine
these lessons into colors, points, lines, and shapes to communicate the stories you uncover in the data.

VISUALIZING SECURITY DATA

Recommended Reading

The following are some recommended readings that can further your understanding on some of the topics
we touch on in this chapter. For full information on these recommendations and for the sources we cite
in the chapter, please see Appendix B. Resources for visualization are plentiful and we had a hard time
keeping this list as short as we did.

Data Points: Visualization That Means Something by Nathan Yau—This is Nathan Yau's second
book on visualization, and it offers a gentle introduction to the topic of visualization. His first book,
Visualize This, offers examples and source code if you'd like that more. But both books are good
places to start exploring visualizations.

Show Me the Numbers: Designing Tables and Graphs to Enlighten by Stephen Few—Stephen
Few is known for his many technical contributions to the visualization field. His books lean toward
the technical side, yet carry coherent and valuable lessons for communicating through data
visualizations.

Envisioning Information by Edward R. Tufte—Another well-known name in the field, but with a
much more design-centric approach with a little more emphasis on aesthetics and function. Any one
of Tufte’s books is worth their price, and if you can catch his touring seminar, his books are usually
included in the price of the registration.

Information Visualization by Colin Ware—This is a hardcore book on the mechanics and cogni-
tive science behind visualization. If you are really curious how humans interpret data visually, this is
the book to read.

Learning from
Security Breaches

LEARNING FROM SECURITY BREACHES

When organizations experience a security event, their natural reaction is to focus on getting back to normal
as fast as possible. They see the event as a sign of failure or an embarrassment and everything they do
centers on minimizing the impact and putting the event behind them. In that environment, they often
overlook one important task and miss the silver lining.

During such an event, a rich set of a data is generated and just waiting to be collected and analyzed.
Think of it—If you could somehow gather that data, make sense of it, and perhaps even compare and
contrast it with other security events, you could learn how to prevent the next attack. Maybe even better,
you could identify trends and patterns so that you could prevent multiple common attacks with a single
preventative control. Achieving such a benefit is the goal of this chapter. You'll learn how to determine
what data to collect and how to manage it. The chapter also discusses how to analyze and share this data.

In order to tackle the challenge of learning from breach data, this chapter leverages the Vocabulary
for Event Recording and Incident Sharing (VERIS) framework. One of the authors of this book (Jay) and
the RISK team at Verizon have been developing and evolving VERIS in order to produce the Data Breach
Investigation Report (DBIR). In an effort to promote adoption and use, Verizon has opened VERIS. Details
about its use and implementation are hostedatht tp: //veriscommunity.net.Becauseitis open,
any organization can adopt the framework and start collecting data from their own internal events. When
it comes to information sharing, the data will be ready to pass around and exchange.

Note

The Verizon Data Breach Investigations Report (DBIR) leverages the VERIS framework for
its data collection and data analysis and may help you get a context for this chapter. The
most recent report can be found at www . verizonenterprise.com/DBIR/

Besides being an open framework, VERIS has another benefit. There is a relatively new project called
the VERIS Community Database (VCDB) that offers a free and downloadable data set of publicly disclosed
security events, which are all recorded using the VERIS format. This means you have thousands of VERIS
records you can download and analyze throughout this chapter. At the time of this writing, the VCDB data
is being housed at GitHub (https://github.com/vz-risk/VCDB).

Setting Up the Research

First and foremost, you should approach this breach analysis as a research project. If you think of this as
a “metrics program” or a “security project,” you might fool yourself into thinking this is somehow unique
to information security, but it isn't. This is all about data collection and analysis, something that has been
done countless times before across many disciplines and generations. Approaching this as if it were a
unique project and trying to reinvent the (data analysis) wheel is not only wasteful of time and resources,
but you'd be laughed at and ridiculed by all the grown-up data scientists. Let’s avoid all that and call this
what it is—a research project.

Most of the work in this book has been of an exploratory nature. You worked with data to see what it
contained and then formed the questions you wanted to answer with the data and went back into the data.

Setting Up the Research

This effort is different because you are starting with no data. If you jumped right in and started to collect
the breach data, you'd waste countless resources, capture data that you'd discover later to be meaningless,
and end up wishing you had data you didn't collect. Therefore, it's better to set a frame for this effort and
think of a handful of questions you'd like to explore. From that, you can determine which data points you
want to collect.

VERIS was developed to support the strategic decision process. In other words, where can you focus
your limited resources to get the biggest benefit for your security spending? Given a list of audit findings
or remediation projects, how can you prioritize those so you fix the most critical first? Perhaps even more
importantly, you also want to answer the opposite questions. Can you identify areas and tasks where you
do not want to spend your time and money? Supporting these questions is the goal of this chapter and
can be summarized as follows:

The goal in collecting and analyzing breach data is to support the decision-making process
within security leadership.

Notice the word support in there. This research will exist to support a decision process. It is not
intended to be or replace the decision process. You need to have the wherewithal to recognize that security
prioritization is a complex issue, and those working in the industry are just beginning to scrape away at it.
At this point in that scraping, where you have very little data, you should not make the assumption that
you'll get the research perfect right out of the gate. You want to focus on how much uncertainty you have
now and strive to reduce that uncertainty as much as you can through this work. The decisions have been
made for far too long without data analysis. You need to support that decision process so it uses every bit
of information you can gather.

Breach Data Reduces Uncertainty

Although it would be great to collect breach data to create a perfect and prescriptive list of priori-
ties, it just won't happen. The data will simply help you know more than you currently do, but it
can't definitively show you the path forward. This raises the question for some whether it's worth it
to collect this data. Is it worth spending the time and resources to create information that doesn't
tell you exactly what to do?

The answer is an emphatic yes.

Uncertainty exists in the gap between what you know and what you need to know to make the best
decision. Although it's tempting to toss out imperfect information because it contains uncertainty,
the value of the information should be assessed by comparison. Not between the perfect information
you'd want and the information you'll get, but instead between the information you currently have
and the information you will have. This is where you see the value of this type of data analysis. Data
will help you reduce your uncertainty by reducing the gap between what you know and what you
need to know. It will help you work from a better place than you were working from before. You will
be making progress and setting a foundation for reducing even more uncertainty next time. This
is how scientific knowledge has evolved: a series of small steps, each reducing uncertainty a little
more. Therefore, the goal is not to aim for perfect information and give up when you miss that. You
should aim to simply learn more than you know now. That is where you will find value.

LEARNING FROM SECURITY BREACHES

Considerations in a Data Collection
Framework

Generating data manually from a process has several pitfalls, and if that process isn’t approached carefully,
it can produce shaky data and probably several big headaches. Since we have an inside view of how VERIS
has developed (and some of those headaches), we have gathered the following set of guidelines for manual
data collection. These are not limited to the collection of security event data, though. Any type of manual
data collection can benefit from these guidelines.

Aiming for Objective Answers

First and foremost the questions you ask should aim for objective answers. If a question asks for an
opinion, the answers will have a whole lot of variety and be influenced by strange things like the weather
or what the analyst had for lunch. In some cases this may be okay, because inconsistent answers might be
better than no answers at all, and sometimes you do want to solicit the opinion of an expert with some
restrictions. Most of the time, however, the questions should be focused on asking about facts that are
observable or deducible from observations.

For example, it's far better to ask whether malware was involved in the attack and which functions it
performed instead of asking how advanced the malware was. The investigator during the breach can answer
yes or no as to whether malware was used. If the investigator has the resources to analyze the malware
(or the malware is identifiable), there isnt a lot of guesswork about what it's capable of. These are things
you either know or don’t know.

Limiting Possible Answers

Next, constrain the possible answers to a short set of options. If the question asks for a sentence or descrip-
tion, it won't be useful directly in the data analysis without a lot more effort. Most of the time, free text
fields are helpful to record unique aspects or to set context if you ever want to understand why these data
points look like they do. With this in mind, manual data collection should make judicious use of Notes
fields and a field for the overall Summary of the event. But remember, all of the data analysis will use the
data found in the constrained lists or numbers. Having the data limited to a set of values will make that
analysis easier in the long run.

Allowing “Other,” and “Unknown” Options

Most every constrained list of answers must allow “Unknown” and “Other” answers. Even though a question
may seem so easy that everyone should know the answer, the world will always create a circumstance to
prove that assumption wrong. Including an “Unknown” option allows you to differentiate between when
you really don't know and when the question isn’t applicable. This is a subtle distinction, but one that can
really mess up the analysis. There are a few rare questions that don’t need an “Unknown” option, but they
are rare, and you'll know them when you see them.

For example, if you'd like to know if a server is virtualized or not, it may be tempting to create a simple
checkbox if it was virtualized. But that doesn’t account for the circumstances when the information isn’t
available (and there will always be a circumstance when it won’t be available). Now you've set up the
response as “yes” and “everything else,” where “everything else” represents both “no” and “I don’t know.”

Considerations in a Data Collection Framework

The result is you would not be able to create a percentage of hosts that were virtualized or look at non-
virtualized systems because you can't tell a “no” answer from an “I don’t know” answer.

The second field you need to add is “Other” or, depending on the question, “Not Applicable.” Avoid
trying to capture all the options in an exhaustive list. Exhaustive lists become unmanageable (which slows
down data entry), and you need to capture only most of the answers. You'll find that a handful of common
answers, especially within security events, will be used most of the time. The common answers create
the trends and statistics, whereas the uncommon answers do little more than create interesting stories.
Therefore, you want to capture the common things for data analysis and relegate the uncommon to the
“Other” category and the Notes field. Keep an eye on anything marked “Other,” but if you create a good
list of options, they should show up few and far between.

Note

It’s okay to be lazy when creating lists of selection options by seeking out standards to refer-
ence and leverage. For example, don’t create your own list ofindustries to gather. Leverage
the good work of the U.S. Census Bureau and its North American Industry Classification
System (NAICS). The Census Bureau has already figured out that industries are nested has
and created a system to capture both the general industry and an organization’s specific
function within that industry. They assign a six-digit code where each digit adds a level of
detail about the industry of the organization. Details about the NAICS classification can
befoundathttp://www.census.gov/eos/www/naics/ .

Avoiding Conflation and Merging the Minutiae

The last two points may seem subtle, but you want to avoid conflation and merge the minutiae where
possible. These two concepts are opposites, and you have to find the middle ground between them.
Conflation occurs when a question (and its answers) combines more than one concept.

For example, the breach types used by DataLossDB (http://datalossdb.org/analysis)
conflate the actor, actions, and assets into the type. Their framework lists a type of “Hack” for a “computer
based intrusion” (no asset or actor defined), or “snooping,” which is an “employee . .. accessing confidential
records” (conflating the actor and action). You can specify “stolen media” or “stolen drive” or “stolen tape,”
which are all unique options that conflate and repeat the action (physical loss) with the asset.

The assignment of a single conflating “breach type” should not be thought of as wrong or bad, it just
represents a different goal within the research. Just be aware that conflation of terms like this will create a
challenge during data analysis. You have the most flexibility and see the most benefit when you can compare
and contrast across specific categories, but with conflated terms you'll find it challenging to clearly separate
the categories. The result is that the data analysis may not be able to do anything more than simply count
the frequency of the conflated breach types.

Where conflation combines more than one concept into a single variable, you have to be careful of the
opposite, whereby you split a single concept into too many details. You want to get just enough detail and
separation in the list to support your goal.

LEARNING FROM SECURITY BREACHES

An example of collecting too much detail is when you try to collect how incidents are discovered and
want to classify the discovery method. Although it may be interesting to know if it was an external security
researcher, and perhaps amusing to know what color hat they wore (white, black, or even grey), creating
several options based on details wouldn’t help you achieve your goals. You have to split one concept (an
external security researcher) across multiple selections (such as Researcher-white hat, Researcher-gray hat).
In this case, maybe you'll just want to drop the distinction of an external security researcher altogether and
merge everything into one broad field of “an external unrelated party.”

Having said this, don't be afraid to go into detail when necessary. As an example, the list of possible
assets within VERIS is split into several categories and dozens of detailed assets under each category. There
are times you'll want to split details and times you can combine them—the trick is getting that balance right.

Luckily, all these issues have been in consideration as VERIS has been evolving. One of the biggest chal-
lenges is saying no to new questions. We've found there is always more we'd like to know, but we know that
each data point we try to collect has a cost. And it's sometimes proven to be a higher cost than imagined.

Consider the Cost per Datum

During a manual data-collection effort, it is very tempting to dream up all sorts of questions you'd
like answered. Creating such a listisn't bad, and it may even be helpful to lay out all the questions to
answer. But choose the questions you are going to ask very carefully because every question adds
exponential cost across the lifetime of the data. Even before the question is answered, you have to
build a method to collect it, so every question must be built into the data-collection methodology.
When the analyst is entering an incident, each question will require some thought and perhaps
even some research before it can be answered, again adding time and effort. That data point may
require processing and cleanup, and will need to be stored and managed. Anytime you want to
parse the data (and you'll want to parse it in many different ways), you might have to consider this
field, or worse, consider all the interactions of all the fields. Beyond that, there are dozens of other
subtle interactions with the data that will increase the cost of each data point beyond what you can
imagine, as the questions and data points are selected.

It's helpful to pretend you are about to take a long journey to a wise sage who lives on top of a
mountain. You will have a limited amount of time to ask questions before the sage says something
mysterious and vanishes. What questions will have the greatest impact? You'll want to identify a
handful of questions you really need answered—maybe a handful of questions you'd like to have
answered, and then you'll have a mountain of questions you wish you had time to ask, but you'll just
have to make do without them. The same is true with manual data collection. If the post-incident
questionnaire asks too many questions or is too painful, people will lose interest quickly and the
answers will end up being of poor quality—including the handful of questions you need answered.
You must choose your questions wisely.

An Introduction to VERIS

When a security event is investigated, a narrative naturally emerges from the process. The investigator
will typically try to answer the question, “Who did what to what (or whom) with what result?” That ques-
tion presents a good core set of data points to collect. Therefore, as a starting point, you'll want to focus

An Introduction to VERIS 167

on those four points—"“Who (threat actor) did what (action) to what or whom (asset) with what result
(attribute)?”

But that’s not all you may be interested in; you may also want to know how you discovered and
responded to the incident and if possible the impact you experienced as a result. Finally, you'll have some
housekeeping items (an identifier, summary, workflow status, and so on) and if you aggregate breaches or
share the information, you'll want to record some victim demographics. Overall, you can break down the
sections of data you want to gather like those in the VERIS framework, as shown in Table 7-1.

Sections within VERIS

VERIS Section Purpose

Incident Tracking Metadata about the incident for management and tracking purposes
Threat Actor One or more people who cause or contribute to an incident

Threat Actions What the threat actor(s) did or used to cause or contribute to the incident
Information Assets Information assets that were compromised or affected during the incident
Attributes What happened to the asset during the incident

Discovery/Response Timeline, discovery method, and lessons learned

Impact What was the overall effect of the incident to the organization

Victim Demographicinformation like industry and organizational size

Indicators Optional indicators of compromise (IP addresses, malware hashes, domains,
and soon)

Plus Optional section for extending VERIS

Although it’s tempting to dig into the data (and you will), it’s important to understand the significance
of these fields so you don’t misapply them. Therefore, the following sections go through each part of VERIS
in more detail and discuss these fields. Keep in mind that these sections are separated so analysts can think
about the structure. There is nothing in the actual data denoting the incident _id field as helping with
incident tracking, for example.

Warning

Although we are covering VERIS with some depth, we will not go into every field, and
we don’t cover every detail about the framework. For example, we won't call out all the
places the framework specifies a “Notes” field (which is almost every section), and we don't
cover the “Indicators” section in detail. Just keep in mind that the framework is actively
maintained and evolving. This chapter discusses the 1.2.1 release, so be sure to refer to
http://veriscommunity.net/ forall the details and current specification of the
VERIS framework.

LEARNING FROM SECURITY BREACHES

Incident Tracking

Some of the fields within VERIS exist to simply describe or track the incident. These fields help you keep
records straight by identifying each with a unique identifier and tracking the source of the incident and
any related incidents. You use the source_id field to compare your unique “source” of incidents to
something like the VCDB (which has vcdb in that field). If something has a value of factoz, that means
itis a restrictive list (we discussed creating those lists previously), and only those values are expected. See
Table 7-2 to see the incident tracking fields.

Incident Tracking Fields

Field Value Description

schema_version string VERIS version (currently 1.2.1)

incident_id string Unique identifier (VCDB uses GUID)

source_id string Origin of the data (VCDB data has vcdb)
reference string URL or internal ticketing system ID
security_incident factor Confirmed, Suspected, False Positive, Near Miss
confidence factor High, Medium, Low, None

summary string Free text summary of incident
related_incidents string Free text, otherincident_ids

notes string Free text

There are only one or two fields you'll use during analysis and those are the two factor variables
(again, this means they are restricted to a list of expected answers). The security incident is required and will
help you split the analysis on whether the event was a confirmed security incident (an asset has a security
attribute affected). The confidence rating is a rare subjective field. It enables the analysts to record their
subjective assessments as to how confident they are in the accuracy of the data they entered. This optional
field is not heavily used and won't appear much in the VCDB incidents that you'll look at.

Threat Actor

Earlier in this chapter you read about the challenge of conflation. This is something you want to be aware of,
especially in these next three sections (actor, actions, and assets). You read about the framework DataLossDB
used with a single conflated breach type, and you'll see the same thing with the framework used by Privacy
Rights Clearinghouse (http: //www.privacyrights.org/data-breach). Their framework also
uses a singular “breach type” to define each event, and again it simplifies the actors and actions into the one label.

For example, they have an “insider (INSD)” type, which is defined as “someone with legitimate access
intentionally breaches information—such as an employee or contractor.” There is also the “physical loss
(PHYS)" type, which is defined as “lost, discarded, or stolen non-electronic records, such as paper documents.”

An Introduction to VERIS

These simplified labels can quickly become confusing during data entry if, for example, an insider steals
paper documents.

You may see insiders breach systems, drop malware, and social engineer, just as an external actor would
and you want to separate the insiders from external actors clearly in the data. VERIS tackles that conflation
by separating the who from what they did and what was affected. Note that the method that the Privacy
Rights Clearinghouse uses isn't wrong. It just has a different focus and represents different priorities and
goals. VERIS has the goal to inform and support security decisions, which benefits from more detail than
a single “breach type” label. Table 7-3 shows the threat actor fields.

Threat Actor Fields
Actor Field Value Description
external motive factor Helps understand intentions; same enumeration for the
three actor types
variety factor Defines resources and capabilities of external actor

country factor ISO-3166-1 two-digit country field

internal motive factor Helps understand intentions
variety factor Defines resources and capabilities of internal actor
partner motive factor Helps understand intentions

industry string U.S. Census NAICS code

country factor ISO-3166-1 two-digit country field

The threat actor section also introduces the nesting feature of VERIS. At the top level is the actor, so
there is a section in the data for “actor,” and then there are three classes of actors—external, internal, and
partner—all of which are optional. Within each of those classes you'll want to add details about that type
of actor. Looking down the values in this section, you can see all factors. That means you should be able to
include any of these or use them as pivot points. In other words, if you want to support a threat-modeling
exercise that compares different threat communities, you could extract the actions for financially motivated
actors and compare them to disgruntled employees. See Figure 7-1.

Threat Actions

This section collects variables to describe what the threat actor(s) did or used during the event. Again, there
are nest variables under the top-level categories:

e Malware—Malicious software, script, or code run on an asset that alters its state or function
® Hacking—Person (at a keyboard) attempting to access or harm an asset without authorization
® Social—Exploiting the human element (phishing, pretexting, and so on)

® Misuse—Abusing resources or privileges contrary to intended use

170

LEARNING FROM SECURITY BREACHES

® Physical—Personal actions involving proximity, possession, or force

® Error—Anything done (or left undone) incorrectly or inadvertently

o Environmental—Natural events and hazards within the immediate environment or infrastructure
of assets

Financial 30%

NA

Ideology -5%
-
b

24%

Grudge

Espionage %

Other I1%
0

Fear 0%

Ficure 7-1 Known motives across all actors (Percentage of Events)

You have to be careful as you work with these categories. There are many opportunities for misinter-
pretation and misclassification across categories. These categories and the factors in each category are
explained in detail along with use-case examples at the VERIS website (http://veriscommunity
.net/).Once you spend some time and look at a few examples, these categories become more clear and
eventually will become intuitive. See Table 7-4 to see the action fields.

TABLE 7-4 Action Fields

Action Field Value Description
malware variety factor Functionality of malware
vector factor How the malware was installed/infected

An Introduction to VERIS

Action Field Value Description
hacking variety factor Type(s) of hacking action
vector factor Path of attack
social variety factor Type(s) of social action
vector factor Path or method of communication
target factor Role of targeted person
misuse variety factor Type(s) of misuse action
vector factor Path or access method for misuse
physical variety factor Type(s) of physical actions
vector factor Method of physical access
location factor Physical location of action
error variety factor Type(s) of error actions
vector factor Cause of error
environmental variety factor Type(s) of environmental actions

Notice how varietyand vector are repeated over and over? Every action category hasavariety
field with unique enumerations for each category. All but the environmental actions have a vector field,
again with unique enumerations for each category. Finally, social actions also ask for the target of the social
action, and physical actions ask for a location of the action. That explains the whole section! Notice how
every field here is a factor, meaning you can split, pivot, and/or filter based on these fields. See Figure 7-2.

Multiple Events in the Attack Chain

Anyone who has been around information security knows that breaches tend not to be simple and
single events. Oftentimes, the attacker will perform multiple actions, which complicates the recording
process. Most of the factors in the VERIS framework support multiple answers. On one hand, this is
very nice because you don’t have to pick “the one best answer” for a complex security event, but
on the flip side, this adds complexity for data management and analysis. As you'll see later in this
chapter, this isn't as hard as it first seems.

(continues)

171

iV} LEARNING FROM SECURITY BREACHES

(continued)

As an example, suppose an attacker sends a phishing email to an executive’s assistant and quickly
follows that up with a phone call pretending to be a business partner who sent the email. These
are two actions, and you should see both “pretexting” and “phishing” selected in the social
.varietyfield.f the phishing email contained malware that s installed, you'd also see the malware
action along the variety and vector of “email,” since it was installed via the phishing attack. When
you represent this data and count the actions, you'll have more individual actions than total events.
This naturally precludes the use of pie charts, which ends up being beneficial for all parties involved.

There is also a common notion within information security of the “attack chain” or “kill chain.” The
concept is to establish the actions of the attacker in the order they happened. Although VERIS allows
multiple actions, it does not record the order in which they occurred. This was a conscious trade-off
of cost versus benefit. Attempting to put the events in order created substantial overhead for the
analysts and was taking too long to enter. Most of the time the order of events in reports and tickets
(definitely in media articles) are either vague or missing. As a result, VERIS simply records the pres-
ence of events within an attack to reduce the time and effort spent in data collection.

Theft (phy) 31%

Unknown (hac) 22%

Privilege abuse (mis) 10%

Loss (err) 8%

Misdelivery (err) -6%
Disposal error (err) -5%
Publishing error (err) -5%
Knowledge abuse (mis) -5%

Data mishandling (mis) .2%

Unknown (mal) .2%

Ficure 7-2 Top 10 varieties of threat actions

An Introduction to VERIS 173

Information Assets

Assets are the information containers (servers or other devices) that you are trying to protect. Like the other
sections we've covered so far, there are top-level categories, which are as follows:

® Server (S)—System providing service(s)

o Network (N)—Infrastructure device or appliance

® User Device (U)—End-user equipment (laptop or desktop)
® Media (M)—Data storage devices or physical documents
® People (P)—Since people can be affected

® Kiosk/Public Terminal (K)—Public-use devices

Within each category there are several varieties of assets, but the category and variety are stored in
the same field. For example a mail server is stored as “S - Mail” and a desktop computer is a “U - Desktop.”
Associated with each asset is an optional amount field, which allows you to record multiple assets with
the same variety as when they are involved in one event. Table 7-5 shows the asset fields.

Asset Fields
Asset Field Value Description
assets variety factor Specific type of asset; prepended with letter for category
amount integer Count of the above asset
asset accessibility factor How accessible the assets are
ownership factor Who owns the assets?
management factor Who manages the assets?
hosting factor Where (physically) is it hosted?
country factor Location of assets (if different from victim)
cloud factor Type of cloud service, if cloud

There is quite a bit packed into the assets, and these are relatively recent additions to the VERIS frame-
work (version 1.2). There is a lot of focus on mobile devices and employees bringing their own devices
into the corporate environment. Also, there may be unique exposures from cloud hosted applications and
assets, so that is captured here as well. Note also that these are all factors, so there are only a handful of
possible answers. You cannot write in “very” for accessibility of the asset as an example. See Figure 7-3.

Attributes

The attributes of the preceding assets are what you work hard in information security to not have
affected. Attributes are based on the C.I.A. triad, which stands for confidentiality, integrity, and availability.

iVZ3) LEARNING FROM SECURITY BREACHES

For a while VERIS extended these three with three more attributes to record the Parkerian Hexad (named
after their originator, security pioneer, and long-time security researcher, Donn Parker). The extra three
attributes included possession/control, authenticity, and utility. But the added fields just did not yield
enough benefit for the added cost of separate categories, so they were combined with the three top
categories. For simplicity, when a VERIS record is stored, the sections are labeled with the three primary
categories (confidentiality, integrity, and availability). The three main sections of attributes are as follows:

® Confidentiality, possession, and control—Data was observed or disclosed to an unauthorized
actor; owner may no longer have exclusive custody.

® Integrity and authenticity—Asset is incomplete or changed from authorized content and func-
tion; conforms to expected state.

® Availability and utility—Asset is not accessible, useful, or fit for use.

These categories can be quite helpful to the security team in determining the areas to focus on. The
Verizon Data Breach Investigation report has exclusively focused only on breaches where the confiden-
tiality attribute was affected and there was a confirmed data disclosure. See Table 7-6 for a look at the
attribute fields.

Server 40%

Media 33%

26%

User Dev

Unknown

Person

Kiosk/Term

Network §0%

Ficure 7-3 Asset categories

An Introduction to VERIS 175

Attribute Fields

Attribute Field Value Description

confidentiality data_disclosure factor Status of confidentiality breach
data_total integer Number of records (see below)
data.variety factor Type of data disclosed
data.amount integer Number of records
state factor State of data when disclosed

integrity variety factor Nature of effect

availability variety factor Nature of effect
duration timerange Duration of availability/utility loss

There is a new field type called time range, which is actually two fields, a “unit” of time and a
“value” for that unit of time. The unit has basic measurements of time: seconds, minutes, hours, days,
weeks, months, and years. The value represents how many of those, such as 3 weeks or 6 months. VERIS
tried to support specific date/time fields instead of time ranges but found specific date/time was either
time consuming or just impossible. However, VERIS analysts found knowing whether a range was days
versus weeks was obvious even if a specific range was not known. For example, analysts might know that
the server went offline during the DDoS attack, and that it was down for more than 60 minutes but not a
full day. Tracking down the specific times may be difficult, but in that case, you would see “hours” in the
unit, and if the specific number of hours is known, you'd see a value. Otherwise, it's blank if the precision
is unknown.

Counting Records

One of the more common pieces of information disclosed in publicly disclosed breaches is the
number of records affected. Perhaps reporters and the general public demand this, and the victims
are forced to provide a number, even if it’s all the records in a database. Records can be relatively
easy to count when the data is obviously separated. Payment (credit) cards, identities, and medical
records are all quite clear in their separation and lend themselves to being counted. But when you
get into more complex types like classified information or trade secrets, the capability to count
records becomes more difficult. Perhaps the number of physical documents could be used, or the
number of files disclosed, but oftentimes it’s difficult to count them. Overall, analysts struggle to
record a precise number for the data varieties of classified or internal information and trade secrets.
You will have to account for that in the analyses and visualizations.

iV{3 LEARNING FROM SECURITY BREACHES

Discovery/Response

You just saw your first time range in the availability attribute and you'll see that a lot more in this section for
the timeline data. Some of these fields are not in a section as you saw in the previous four VERIS sections,
but the timeline does have its own section. See Table 7-7.

Discovery and Response Fields

Section Field Value Description
discovery_method factor How the event was discovered
control_failure string Free text field to describe what, under the victim’s

control, failed

corrective_action string Free text field describing what the victim should do
targeted factor Targeted or opportunistic attack

timeline incident_date date Date of incident
compromise timerange Time toinitial compromise
exfiltration timerange Time from initial compromise to data exfiltration
discovery timerange Time from initial compromise to discovery
containment timerange Time from discovery to containment

Notice the new type of value called date here, which is not a standard date field. Because VERIS has
to account for unknown values, the date fields are in separate variables. Too often than you'll like for your
analyses, the precise date of the incident isn't known or isn't reported precisely. The framework assumes
at least the year is known, but the month, day, and time fields are all optional in that date field. The other
fields in the timeline are the same time range values you saw in the availability attribute.

Notice also that the control failure and corrective action suggestions are free text. This makes them
difficult to include in the data analysis without more effort. Finally, the discovery method is one of the rare
enumerations that cannot have multiple answers. The framework assumes that once the incident was
discovered it could not be discovered again, so only one method of discovery is allowed.

Impact

The impact section (see Table 7-8) is perhaps one of the most, if not the most, sparsely populated section
in the incidents. This has nothing to do with the framework, and everything to do with the lack of accurate
data to collect and record about the impact. The result is that this section has some subjective measure-
ments and estimates.

Notice the repeating rating and monetary estimations. There is a dedicated overall field here for
those fields, but the loss section is defined in the data as an array. This means that the analyst can add
multiple loss sections in the data for each variety of loss being recorded. The loss varieties are specific types
of loss, for example “response and recovery” costs or “legal and regulatory” costs.

An Introduction to VERIS

Impact Fields
Section Field Value Description
currency factor 1SO 4217 currencies for monetary estimations
overall rating factor Qualitative rating of overall impact
min_amount number Minimum estimated monetary amount
amount number Most likely estimated monetary amount
max_amount number Maximum estimated monetary amount
loss variety factor Specific category of loss
rating factor Qualitative rating of overall impact
min_amount number Minimum estimated monetary amount
amount number Most likely estimated monetary amount
max_amount number Maximum estimated monetary amount

Victim

The last section to cover is the victim entry. If VERIS is being implemented inside a single organization and
the victim is always the same, you can skip or hard-code the fields in this section. (This assumes that you
aren’t tracking incidents at partner organizations, suppliers, or customers.) For cases like the VCDB, which
is aggregating across many victims, this section is vital. You want to capture data about the victim with the
intention of contrasting and comparing breach data when you split these fields.

Chapter 5 discussed regression analysis, and you attempted to find independent variables that could
help describe the outcomes you observed. The data you are collecting about the victim can go along way
to describe the types of threat actors and their actions. For example, in the 2013 DBIR, Verizon saw state-
affiliated espionage in at least three out of every four cases within the manufacturing industry, yet none
in the retail industry. Although industry alone is not a perfect predicting variable, it does help reduce the
uncertainty, which is what you are after here. Table 7-9 shows the victim fields.

Victim Fields
Victim Field Value Description
victim victim_id string Identifier or name of victim
industry string U.S. Census NAICS code
employee_count factor Label for number of employees

(continues)

iV£:) LEARNING FROM SECURITY BREACHES

Victim Fields (continued)

Victim Field Value Description
country factor ISO 3166-1 two-digit country code
state string State, province, or region in country
locations_affected integer Number of locations affected
revenue integer Annual revenue of the victim
secondary victim_id string List of secondary victim_id or name(s)
amount integer And/or count of secondary victims

The most recent change to the VERIS framework (version 1.2.1) changed how this section is stored. In
version 1.2 and before, the entire victim section could be repeated for each victim involved in the incident.
For example, if an organization is breached and was processing data on behalf of another organization,
they would become a victim of the same breach. This was found to be confusing though, and the victim
was reduced to just supporting one single victim. The fields in the “secondary” section were added in
1.2.1 to capture what was treated as a multiple victim breach. See Figure 7-4 to see the top five victimized
industries according to the VCDB data set.

-
3
3

Top five industries in VCDB data set

Healthcare 35%

Public Administration

Finance and Insurance

Educational Services

Information

Seeing VERIS in Action 179

Anywhere there is an industry (which is in this victim section and in the threat actor partner section),
they are listed as a “string” but they should not be free text. Following one of the guidelines to leverage
other resources wherever possible, VERIS leverages the U.S. Census Bureau’s North American Industry
Classification System (NAICS) mentioned earlier in this chapter. Doing so adds flexibility and a level of
detail not possible with other industry classification systems. If analysts tried to create a list of industries,
they’d probably come up with a dozen or so high-level categories and call it a day. NAICS started there
(20 top-level categories actually), but then made it extendible and includes more detail for the industry
specification. Industries within NAICS are represented by two- to six-digit integers, which is why VERIS
stores them as a string and not a factor. The list is enormous (you can find itat ht tp: / /www . census
.gov/eos/www/naics/).

As an example, consider the pizza shop down the street. The NAICS code for such a place is 722511,
which represents “pizza parlors, full service.” Maybe in this case, however, the analyst just knows it’s
a restaurant, so she records 7225, or maybe she knows the place offers some type of food or beverage
service, so she enters 722. If she is unsure as to what type of service establishment it is, she might just
enter 72 for “accommodation and food services.” When you analyze this field, you can drill down or up
depending on the level of detail you want.

Indicators

We didn’t want to go into detail about the indicators section, and that’s because VERIS is set up to capture
indicators from a security incident, which is often just a handful of IP address and malware hashes. If
you're looking to capture indicators from multiple sources, we suggest you look at the Structured Threat
Information Expression (STIX). It is a “collaborative community-driven effort to define and develop a stan-
dardized language to represent structured cyber threat information,” and details about it can be found at
http://stix.mitre.org/.Ifyou'dlike to see the details of the indicators section, they are covered
on the VERIS community website athttp://veriscommunity.net/.

Extending VERIS with Plus

Finally, VERIS has the catch-all section labeled “plus.” Within the VERIS specifications there technically is
nothing specified in this field, and the data schema simply allows anything to exist in this section. It exists to
allow individual implementations to record additional fields not in the base VERIS schema. If you look at the
VCDB repository, for example, each incident has a plus section with the analyst who recorded the incident
and the time it was created along with a few other fields. Any implementation can apply the guidelines we
presented earlier in this chapter (or not, at your own peril) and add their own fields here. If you have fields
that are particularly useful, feel free to suggest the change to the core framework!

Seeing VERIS in Action

It's always helpful to take some time before jumping into the analysis to look directly at the data. It helps
set the context and may help shape your approach to the analysis. Since the average incident is about 100
lines of JSON, we don't include the whole incident. Please take some time to surf around the VCDB reposi-
tory and look at the data there for full records. As a good example, Listing 7-1 shows the actor and action
sections from an incident from VCDB.

LEARNING FROM SECURITY BREACHES

"actor": {
"external": {
"country": ["Sy" 1,
"motive": ["Ideology"],
"variety": ["State-affiliated"
}
b
"action": {
"hacking":
"variety": ["Use of stolen creds"],
"vector": ["Web application"]
¥
"social": {
"target": ["End-user"],

"variety": ["Phishing"],
"vector": ["Email"]

If you have never seen JSON before, this is what it looks like. Rarely if ever would you want to edit the
JSON by hand. It's not that JSON is terribly difficult, but it is terribly easy to mistype something. You could
forget a comma or quote or something would prevent the data from loading properly. If you do attempt
to create or modify a JSON file by hand, be sure you have a way to check your work, validate the JSON, and
if possible, validate the values and factors within the data.

The best part about working with JSON is that it typically imports right into native objects in the
languages you use. Within Python, an incident in JSON is imported directly into a Python dictionary. The
Python code to load a JSON object and view the hacking variety is relatively simple (Listing 7-2).

python to load JSON and read hacking variety:

import os, json

set working directory to chapter location

(change for where you set up files in ch 2)

os.chdir ("~/book/ch07")

Open the JSON file and read the raw contents into jsondata

jsondata = open("data/vcdb/F58E9169-AC07-400E-ABOE-DB784C6CAE59.json")
convert the contents into a python dictionary

incident = json.load(jsondata)

now access the hacking variety (assuming it exists)

print (incident ['action'] ['hacking'] ['variety'])

This code would print the Python list object for hacking variety and display [u'SQL1i '] (an array of one
Unicode string showing SQL injection was the only hacking variety used). In production code, you should
wrap the json. load () command with try-except. If the file has any errors in the JSON syntax, they

Working with VCDB Data

will be caught that way. Plus the hacking action is optional, and you'd want to test if the hacking key
existed before you attempt to read it. But this example shows how easy JSON can be to load and work with.

Within R, JSON files are converted to a native list object. Before you run the R code in this chapter, you'll
need to set your working directory and load the libraries used in this chapter (see Listing 7-3).

set working directory to chapter location
(change for where you set up files in ch 2)
setwd ("~/book/ch07")
make sure the packages for this chapter
are installed, install if necessary
pkg <- c("devtools", "ggplot2", "scales", "rjson")
new.pkg <- pkgl! (pkg %$in% installed.packages())]
if (length(new.pkg)) {

install.packages (new.pkg)

}

Now within R, in order to performing the same function we did in the python example in Listing 7-2,
you need to load the rj son library in order to read in JSON data (Listing 7-4).

library (rjson)

fromJSON accepts a filename to read from

jsonfile <- "data/vcdb/F58E9169-AC07-400E-ABOE-DB784C6CAE59.json"
incident <- fromJSON(file=jsonfile)

print the hacking variety

print (incidentsSaction$Shackingsvariety)

[1] "sQLin

The R code returns a one-element vector with the value in the hacking variety. Again, in full-featured
code, you'd want better error checking than this, but it does show how easy JSON data is to load into native
objects and work with.

Working with VCDB Data

This section walks through some data from VCDB using R. While the data from the book website (at www

.wiley.com/go/datadrivensecurity)hasthe VCDB data we use in this chapter, you may want
to grab the current version of the VCDB data (there will be more incidents when you are reading this). Head
on over to the VCDB GitHub repositoryatht tps: //github. com/vz-risk/VCDB and either fork,
copy, or download the VCSB-master . zip file of the repository (use the Download ZIP button on the
right side of the window). The incidents themselves are quite small, but you can still learn quite a bit in spite
of the data not being “big.” Feel free to explore the incidents in the repository and get a feel for the files
and the data. Keep in mind that all of these incidents are collected from publicly disclosed events, which
makes many of the incidents rather light on the details.

LEARNING FROM SECURITY BREACHES

For this analysis you'll leverage the verisr package, which was developed by our own Jay Jacobs
and is in his GitHub repository (found at ht tps: //github.com/jayjacobs/verisr/tree/
master/R). Note that the verisr package is actively in development, so be sure to refer to the latest
documentation of the package for the most current description of its functions. By the time you are reading
this, there may be all sorts of wonderful features in the package that aren’t there at the time of this writing.
Also, that means that some of the figures and output may be slightly different for you.

In order to install the verisr package from GitHub, you have to load the devtools package first
(see Listing 7-5). This is one of many great packages from Hadley Wickham, and it allows you to install R
packages directly from their GitHub repositories, which is what you'll do with verisr.

load up devtools

library (devtools)

install the verisr package

install github ("verisr", "jayjacobs")
load the verisr package

library (verisr)

You can now load up the VCDB data with the verisr package, if you downloaded current VCDB data,
you must first modify the directory shown to be the location where you stored the VCDB JSON files (see
Listing 7-6).

requires package : verisr

set this to where VCDB incidents are stored
jsondir <- 'data/vcdb/'

create a veris instance with the vcdb data

vedb <- json2veris (jsondir)

This should load fairly quickly, but on slower machines it may take a moment or two. If you're on a com-
puter with just a few gig of RAM or if VCDB grows exponentially, you might not be able to load all of them
into memory. (We've loaded over 100,000 incidents into 8G of RAM with veri sr, so you shouldn't hit that
limit anytime soon.) After you load this data, it's time to get to know the data a little bit. Let’s begin with
the summary () command (see Listing 7-7). The verisr package implemented its own summary (),
so the output is very specific to VERIS data.

requires package : verisr

requires object: vcdb (7-6)
summary (vcdb)

1643 incidents in this object.
#i#

Actor:

Working with VCDB Data

external internal partner unknown

955 535 100 85

##

Action:

error hacking malware misuse physical social

H## 398 416 42 216 508 31

##

Asset:

Kiosk/Term Media Network Person Server Unknown User Dev
17 534 8 33 656 80 429
H##

Attribute:

confidentiality availability confidentiality integrity
2 614 1604 165

If you've grabbed the latest data from VCDB, you'll undoubtedly see different numbers than these.

JSON Notation

It might take a while to get used to the naming structure in JSON and understand how the variables
are accessed in different settings. If you load VERIS JSON data into a mongo database, you'd use
JavaScript to query the data and leverage a dot-notation approach to the variables. That dot-notation
isused in the verisr package since the fields are referenced and retrieved by passing in character
strings. This means you can access the top-level action data by referencing act ion. If you want to
access the social section within the action, you reference act ion . social, and the variety data
under thatisaction.social.variety. Take some time and look at the JSON, and then try
writing some code in R using verisr . With this hands-on experience, the dot-notation method
will become second nature.

There are two high-level functions from the verisr package that you'll use to dig into the data. The
firstis a function to create a filter so you focus on certain aspects of the data. The second is a flexible function
called getenum (), which will get the enumerated data from the data set with a variety of options and
extensions. Let’s start by looking at the actors. You can replicate the information in the previous summary
with the following bit of code (Listing 7-8).

requires package : verisr

requires object: vcdb (7-6)
actors <- getenum(vcdb, "actor")
actors is a data frame

print (actors)

enum X

(continues)

LEARNING FROM SECURITY BREACHES

(continued)
1 external 955
2 internal 535
3 partner 100
4 unknown 85

Within this data frame, you can see the raw numbers, but that isn’t very helpful. Some incidents will contain
multiple actors, so you can't simply add them and get a total number of incidents. Luckily, the get enum
function can also return the total number of incidents where the field is defined. If you add add . n=TRUE,
you get an additional column of the full sample. If you add add . £ reg=TRUE, you can get the percentage
associated with each entry. Let’s look at both of those options in one example (see Listing 7-9).

requires package : verisr

requires object: vcdb (7-6)

actors <- getenum(vcdb, "actor", add.n=TRUE, add.freq=TRUE)
print (actors)

enum X n freq

1 external 955 1643 0.581
2 internal 535 1643 0.326
3 partner 100 1643 0.061
4 unknown 85 1643 0.052

From this you can see that there were 1,643 incidents with something defined in the actor section, and
external actors were present in 58 percent of them. Since this function returns a data frame, it's relatively
straightforward to feed into the ggplot2 library and produce any number of visuals (see the book'’s
website, www.wiley.com/go/datadrivensecurity, for this chapter’s R code to see how to
create the figures in this chapter).

The getenum () function is quite versatile. You can pass in any of the variable names within the VERIS
framework and get an object you can visualize right away. As an example, create a function that accepts a
VERIS variable name, such as act ion.hacking.vector, and returns an image object that you can
print or save or whatever (see Listing 7-10). This could be extendable to include in a report or dashboard.

requires package : verisr, ggplot2
requires object: vcdb (7-6)
library (ggplot2)
take in the vcdb object and the field to plot
verisplot <- function(vedb, field) {
get the data.frame for the field with frequency
localdf <- getenum(vcdb, field, add.freg=T)
now let's take first 5 fields in the data frame.
localdf <- localdf[c(1:5),]
add a label to the data.frame
localdf$lab <- paste(round(localdf$freg*100, 0), "%", sep="")
now we can create a ggplot2 instance

(continues)

Working with VCDB Data

(continued)
gg <- ggplot (localdf, aes(x=enum, y=freq, label=1lab))
gg <- gg + geom bar (stat="identity", fill="steelblue")
add in text, adjusted to the end of the bar
gg <- gg + geom_text (hjust=-0.1, size=3)
flip the axes and add in a title
gg <- gg + coord_flip() + ggtitle(field)
remove axes labels and add bw theme
gg <- gg + xlab("") + ylab("") + theme bw()
fix the y scale to remove padding and fit our label (add 7%)
gg <- gg + scale_y continuous (expand=c(0,0),
limits=c (0, max(localdfS$freq)*1.1))

make it slightly prettier than the default
gg <- gg + theme(panel.grid.major = element blank(),

panel.border = element blank(),

axis.text.x = element blank(),

axis.ticks = element blank())

}

What'’s a little funny about that function is that it will get all of the data ready in the first line of the
function, trim to the top five entries in the second line, and spend the rest of the function making a pretty
picture. But once this function is written and loaded, you can create any number of pictures from the data
with a single line of code.

print (verisplot (vedb, "action"))

Figure 7-5 shows a few of the possible values passed and printed.

Getting the Most Out of VERIS Data

One of our favorite images from the 2013 Verizon Data Breach Investigation Report was a heat map that
compared the assets and actions overall and then separated the individual comparisons by the type of threat
actors. You can create a similar image with the verisr package without too much effort (Listing 7-11).

requires package : verisr, ggplot2

#

requires object: vcdb (7-6)

get a data.frame comparing the actions to the assets

this will add zero's in missing squares and include a frequency

a2 <- getenum(vcdb, enum="action", primary="asset.assets", add.freqg=T)
trim unknown asset and environment action for space

a2 <- a2[which(a2$enum!="environmental" & a2$primary!="Unknown"),]

so we should create a "slim" version without zeros to color it
slim.a2 <- a2([which(a2sx!=0), 1]

could sort these by converting to factors (we did in Fig 7-6)

now make a nice plot
gg <- ggplot (a2, aes(x=enum, y=primary, fill=freq))
gg <- gg + geom tile(fill="white", color="gray80")

(continues)

LEARNING FROM SECURITY BREACHES

Listne7-11 (continued)

gg <- gg + geom tile(data=slim.a2, color="gray80")
gg <- gg + scale fill gradient (low = "#FOF6FF",

high = "#4682B4", guide=F)
+ theme bw ()

scale_y discrete(expand=c(0,0))
element blank())

gg <- gg + xlab("") + ylab("")
gg <- gg + scale_x discrete (expand=c(0,0))
99 <- 99 +
gg <- gg + theme(axis.ticks
and view it
print (gg)
action

physical

hacking

error

misuse

malware

action.physical.variety

Tampering I4%

Other (0%

Surveillance (0%

Connection |0%

attribute.confidentiality.data.variety

Payment -
Credentials .7%
Bank l4%

Ficure 7-5 Various top 5 views of VCDB data

Medical

Personal

10%

actor.external.variety

Unknown

Unaffiliated

Organized crime

Former employee

action.hacking.vector

Other

1%
Physical access §1%

Backdoor or C2 |1%

asset.assets

Unknown .5%

2%

Person

Working with VCDB Data 187

This code looks through all of the incidents and produces the simple colored heatmap shown in
Figure 7-6. Keep in mind that the specifics vary depending on incidents in the VCDB.

Server

Network

User Dev

Media

Person

Kiosk/Term

malware hacking social misuse physical error

A2 grid comparing assets and actions

The real benefit of working with VERIS data is the ability to compare across disparate data sets. If
you were to collect your own internal incidents in the VERIS format, it would be a relatively trivial task to run
comparisons on very specific slices of data across multiple data sets. Since one of us works for Verizon and
has access to the DBIR data set, we decided to show this point by example. You should be able to quickly
see differences across the two data sets. Remember, VCDB is collected from news articles and various public
sources. Generally speaking, the details are far less prevalent than what you might want.

The Verizon data set is gathered from a variety of primary sources, but primarily from first-hand accounts
of the forensic investigators that were brought in after the security event. This means this data has bias—it
is generally limited to breaches that were complex or big enough for a victim to seek external help, either
from law enforcement (many of the contributing partners are law enforcement) or from an incident response
consulting company.

188

LEARNING FROM SECURITY BREACHES

In this example, you could use the same code that generated Figure 7-6 and compare four differ-
ent fields from the VCDB data and the Verizon DBIR data over the last 3 years. Start with all of the inci-
dents in both data sets in the first row. Then filter out confirmed data loss events (where attributes
.confidentiliaty.data_disclosure= "Yes")inthesecondrow.Then focuson financially
motivated attackers with confirmed data loss events in the third row. Finally, look only at attackers motivated
by ideology, curiosity, fun, or pride (which covers attackers labeled as activists), again with confirmed data
loss. See Figure 7-7.

You can see a rather significant difference that’s worth talking through. Because the VCDB data set
includes only publicly disclosed events, there are a lot of daily “low hanging fruit” type things that would
never make it into the DBIR data. Events like lost or stolen laptops, documents tossed in a dumpster without
being shredded, or envelopes with personal information mailed to the wrong person appear quite often
in the VCDB data set. That's why you see physical (theft/loss) and error (disposal error and bad delivery) in
the row labeled “All Events” for VCDB, and those all but disappear when you filter for confirmed data loss
in the second row for “Confirmed Data Loss.” Keep in mind a lost or stolen laptop just has the potential
for data loss.

VCDB DBIR

sover [1 .

Network |
User Dev - |
Media |
Person
Kiosk/Term |

sover | [N |

Network

All Events

|
User Dev |
Media |
Person |
Kiosk/Term |
server | []
Network
User Dev |
Media
Person
Kiosk/Term | |
Server - . -
Network
User Dev
Media
Person
Kiosk/Term

* Confirmed Data Loss

Financial Motives

Ideclogy or Fun

Malware
Hacking
Social
Misuse
Physical
Error
Malware
Hacking
Social
Misuse
Physical
Error

The strength of VERIS: Comparing the same views from two very different sources of data

Recommended Reading

Another interesting comparison is the malware category. The public disclosures rarely mention whether
malware was used, but we know from the DBIR research that malware is often used, either to escalate
privilege or to capture and exfiltrate data, yet the malware column is almost completely empty in the
VCDB data. You will probably see the same type of effect for user devices. Even though user devices are
often leveraged during a breach, a company that is publicly disclosing information will often neglect to
mention which assets were involved and just say something vague like “the database was compromised.”
As a result, you'll see very little recorded events involving user devices.

We could go on and on about the subtle differences across these columns, but it's pretty clear that there
is a lot to be learned by recording and comparing breach data.

Summary

You may never be able to shake the “blame the victim” mentality when it comes to data breaches. This
means the victims will always try to be discrete and focus only on getting back to normal. You may always
be fighting for more disclosures and more data when it comes to security breaches. That data is exactly
what you need though, because these events produce a very rich set of data that has yet to be fully
explored.

When you break the event down into its atomic components—“Who did what to what (or whom)
with what result?”—you can do more research, develop better comparisons, and learn much more than if
you apply a label or two on the whole chain of events. Identifying and recording the actors, their actions,
the assets involved, and the attributes affected are a very good start. But remember—every data point
comes with a cost and you will have to make some tough trade-offs between the time investment and the
veracity of the results.

Using JSON has some direct advantages. You can quickly load it into a variety of languages and it feeds
right into databases that can take JSON (like MongoDB). Within R you can use the verisr package to
read in VERIS data and rapidly analyze fields and create visualizations. But the real strength of leveraging
a framework like VERIS is when making comparisons. Are your problems unique? Or are others in your
industry or across all industries seeing the same trends and attacks? Until recently, analysts struggled to
answer those questions, but as more organizations take a data-driven approach to security, they’ll be ask-
ing and answering those questions soon.

Recommended Reading

The following are some recommended readings that can further your understanding on some of the topics
we touch on in this chapter.

Verizon RISK Team. “2013 data breach investigations report.” Available at ht tp: / /www
.verizonenterprise.com/DBIR—Thisreportis based on data collected using the VERIS
framework. You might find it handy to look at some of the graphics in the report and then attempt
to repeat them using the verisr package, discussed in this chapter, and the VCDB data.

LEARNING FROM SECURITY BREACHES

http://veriscommunity.net—All of the documentation about VERIS and a mailing list is
hosted at that website. If you are uncertain what a field is, or what one of the options represents, this
is the place to check first.

https://github.com/vz-risk/VCDB—This is the location for the VCDB data (at the time
of this writing). Be sure to check back often as new events are added regularly.

Breaking Up With Your
Relational Database

BREAKING UP WITH YOUR RELATIONAL DATABASE

It's an all-too-familiar story. You've been faithful companions for years. You knew everything about your
partner and came to depend and rely on it for many of your core needs. But, times have changed. Your
needs are more nuanced and complex, and you're starting to have doubts about your relational structure.
Your thoughts and queries begin to stray; you survey and index the field and find new, vibrant and exotic
options that you never knew of before. And, then, you realize the hard truth: it's time to break up with
your relational database.

Relational databases (RDBMS) have been around since the 1970s when Edgar Codd proposed “a
relational model of data for large shared data banks" as an alternative to the network models—heavily
inter-linked, on-disk structures—prevalent at that time.

Note

Codd proposed this in 1970 in “A Relational Model of Data for Large Shared Data Banks,”
Communications of the ACM, Vol. 13, No. 6, pp. 377-387. So much for big data being a
2Ist-century concept.

Despite the hype surrounding newer database technologies, relational databases still have quite a bit to
offer. However, they should not be the only tool you look to when trying to solve a problem, find “badness,”
or organize your security data. In this chapter, we'll explore these newer technologies through security use
cases, but also show you how to breathe life into your existing RDBMS relationship.

You will need to run the code in Listings 8-0 and 8-1 to set up your R and Python environments (respec-
tively) for the code examples in this chapter (which you can find online at www.wiley.com/go/
datadrivensecurity).

This code sets up the R environemnt for the chapter
set working directory to chapter location
(change for where you set up files in ch 2)
setwd ("~/book/ch08")
make sure the packages for this chapter
are installed, install if necessary
pkg <- c("RBerkeley")
new.pkg <- pkgl! (pkg %$in% installed.packages())]
if (length(new.pkg)) ({
install.packages (new.pkg)

This code sets up the python environemnt for the chapter
set working directory to chapter location

(change for where you set up files in ch 2)

setwd ("~/book/ch08")

make sure the packages for this chapter are installed

Realizing the Container Has Constraints

For the Python examples, you will need to ensure the proper libraries are installed. First, if you did
install Python with Canopy (see Chapter 2), you'll need to refer to this knowledge base article (https: //
support.enthought.com/entries/23389761-Installing-packages-into-
Canopy-User-Python-from-the-0S-command-1ine) on the Enthought support site that
will enable you to install Python packages from external sources. You will also need a working Redis server
before installing the Python redis component. Refer to the Redis quickstart guide (http://redis
.1o/topics/quickstart)forinformation on how to get Redis up and running. The following code
sets up the necessary environment from a typical Debain-style system shell prompt:

dds$ # install the Berkeley DB library

dds$ sudo apt-get install libdb-dev

dds$ # install Python package for Berkeley DB interface

dds$ # note that you may not need sudo depending on your environment
dds$ sudo pip install bsddb3

dds$ # install Python package for Redis interface

dds$ sudo pip install redis

A Primer on SQL/RDMBS Databases

Due to the regular attention given to InfoSec’s “most wanted”—SQL Injection (SQLi) vulnerabilities—
this chapter assumes the reader has some familiarity with traditional RDBMS systems such as MySQL
(http://www.mysqgl .com/downloads/), MariaDB (https://mariadb.org/), Oracle
(http://www.oracle.com/technetwork/database/enterprise-edition/
downloads/index.html)or PostgreSQL (http://www.postgresqgl .org/).

If you are coming at this chapter without prior experience in relational databases you will have
an edge up on many readers who have a predisposition toward them, but some of the topics and
references could be a bit confusing. This short primer on RDBMS systems should help introduce
you to the basic concepts.

Most RDBMS systems have the following core attributes:

Data is organized by tables, with attributes (fields) in columns and individual records stored
in rows. For example, an RDBMS table to hold firewall log entries could have a structure that looks
like Figure 8-1a with each log entry being a row and the individual data elements broken down into:

® A unique identifier for the firewall (fw_id)
® Atimestamp (ts)

® Source IP address (src_ip)

® Source port (src_port)

® Destination IP address (dst_ip)

® Destination port (dst_port)

® Accept/Deny (action)

® Number of bytes transferred (num_bytes)

The complete structure of a table or set of tables is called a schema.

(continues)

BREAKING UP WITH YOUR RELATIONAL DATABASE

(continued)

Data in tables is referenced by rows and fields. Individual fields or combinations of fields called
keys ensure each record within a table can be uniquely identified and help distinguish the relation-
ships between tables. The firewall (Figure 8-1a) and proxy (Figure 8-1b) tables are “linked” together
by source IP address (src_ip) and both of them are “linked” to the asset database (Figure 8-1c) by

their id fields.
(a) W
fw_id S
ts
src_ip
src_port
dst_ip
dst_port
action
num_bytes
fw_id ts src_ip src_port dst_ip dst_port action num_bytes
e001 1381227193 | 10.0.1.10 21330 74.125.226.233 443 A 1522
e001 1381227354 | 10.0.7.22 31765 99.59.150.7 443 A 1000
(b)
proxylog.entry
pxy_id
ts asset_name
—src_ip asset_location
src_user - asset_fq_dn
dst_url asset_ip
dst_ip pci_asset
request sox_asset
B (ga_center_id

Graphical representation of example firewall, proxy, and asset database tables

Fields can also be part of one or more indexes, which are separate data structures that provide
optimized ways to organize data in those fields and can dramatically speed up operations that look up
data (queries).

Data is accessed and manipulated through a structured query language (SQL). SQL was
designed to be both a human-readable and platform-independent way to perform insert, update

Realizing the Container Has Constraints

and delete actions, plus run queries against the data. For the example database in Figure 8-1, you
can query the destination information (timestamp and IP) for a source IP address in both the proxy
and firewall tables with the following SQL statement:

SELECT ts, dst ip
FROM proxy log entry
WHERE src ip = "10.20.30.40"

UNION

SELECT ts, dst ip
FROM fw log entry
WHERE src ip = "10.20.30.40";

Application programs should not rely on the physical structure of the data. There are a host
of options when it comes to deciding how to physically store data in a database and indicating how
indexes are organized. All of these choices should be fully abstracted from the application or user
who should be able to execute the same high-level query and have it work regardless of changes
to physical representation.

The relational structure, mostly uniform query language, and physical abstraction properties were
major contributors to the popularity of SQL databases, especially since mapping problems like cus-
tomer records and sales orders into fields and rows is fairly straightforward and just “makes sense.”
Yet, as you'll see later in the chapter, the relational structure is not well suited for all types of data
or problems.

Realizing the Container Has Constraints

Compared to Codd’s era, we are awash in computing resources. Memory, storage, CPU, and network capacity
are all relatively cheap and the need to accommodate the underlying architecture of physical storage when
designing, building, and using databases is (for the most part) no longer present. Becoming an amateur
DBA is now as simple as executing sudo apt-get install mariadb-server onany Debian-ish
Linux box (with similar, easy installation options for Windows and MacOS). In some ways, this simplicity and
ubiquity has contributed to the fallacy that traditional SQL/RDBMS databases are destined for extinction
due to “lack of scalability and functionality.”

The reality is that modern SQL databases are comparable to web servers, proxy servers, firewalls, and
mail servers in that their out-of-the-box configuration is going to be in jack-of-all-trades mode. The default
features and capabilities will be enough to get you off and running, and may even perform moderately well
as your record counts and schema complexities increase. But, when the types or amounts of data begin to
push the boundaries of the default configuration, you will run into problems. It's important to understand
the most common types of constraints you will face as your SQL needs grow and where to turn when you
begin to encounter them.

BREAKING UP WITH YOUR RELATIONAL DATABASE

Constrained by Schema

It may not be obvious at first glance, but there are significant differences between the following two,
simple SQL table structures:

CREATE TABLE fwl (
src varchar (15) NOT NULL,
dst wvarchar (15) NOT NULL,
dpt int NOT NULL,
d int (11) NOT NULL)

CREATE TABLE fw2 (
src int(10) unsigned NOT NULL,
dst int(10) unsigned NOT NULL,
dpt smallint(5) unsigned NOT NULL,
d date NOT NULL)

For those who may be new to SQL, the statement in in the first code block creates a database table with
IP address src and dst fields stored as a string of characters (“0” ... “9"), while the statement in the second
block creates a table with those fields stored as an unsigned integer with a display width of 10 characters.

When you are creating a table to store “network” information, it’s tempting to use character storage for
IP addresses since that's how humans interact with them. It’s also tempting to just handle a UNIX timestamp
(as seen in the t s field in Figure 8-1) as a big integer value since, well, that's what it is. Also, destination
TCP/UDP ports (dpt) technically are integers. There are, however, potentially significant issues at play
with these choices.

If the src and dst fields are indexed you may not notice any issues at first if all you're doing is issuing
queries for individual IP addresses, like this:

SELECT * FROM fwl WHERE src = "10.35.14.16"

The index will speedily find the rows containing the value for src and the database engine will return the
results as quickly as it can transfer data from disk to your query client. If you do not have an index on those
fields, then the same query will have to perform a full table sequential scan, which could be a fairly long
operation when you have millions of rows.

If you needed to find all matching rows for portions of a subnet, you may be faced with creating complex
regular expressions (regex) or carving up the IP space into multiple slices to get the benefit of intelligent
query prefix optimization for SQL's LIKE operator. Or you might have to split out the subnet into individual
IP addresses to ensure you gain the benefit of full speed queries. Non-optimized wildcard searches—
especially ones without a common prefix—will result in a full table scan, performing regex string com-
parisons for every field value.

By switching to the numeric representation of IP addresses (shown in the preceding code for table
fw2 and discussed in Chapter 4), you can gain disk space, memory size, and query time efficiency since
many index types are optimized for numeric range selections. Converting to/from integers is usually as
simple as using built-in INET ATON or INET NTOA functions. Similarly, moving from a straight integer
timestamp to a date field brings with it more straightforward query composition and increased query
execution speed. Finally, switching dpt froman integer toa smallint will save you two bytes per
record which can be important if you plan on using in-memory tables or start racking up billions of records.

Realizing the Container Has Constraints 197

If you regularly work with specialized field types (for example, IP addresses and geolocation data), you
could even consider using different database platforms—such as PostgreSQL—that have direct support
for a diverse array of custom fields.

RDBMS schemas also tend to be somewhat fixed structures. Although it’s possible to add or remove
columns to/from existing tables, there are real penalties for doing so, both at creation time and beyond. You
will immediately incur a space penalty as the new field is added to each row with that operation (whether
necessary or not) also occupying a decent amount of time on large, established table structures. Some
RDBMS systems can compensate for these issues, but you may need to leave your “amateur DBA” status
at the door as you start to become a professional database administrator in order to solve these issues.

You've Got Some EXPLAINin’ To Do!

To become a true database wizard requires delving into the dark arts of the subject matter. SQL
queries are a bit like magic spells in that the wrong inflection can drastically change the results (usu-
ally for the worse). You can get an idea of how to tweak your schemas and optimize your queries
with the EXPLAIN statement, available in most RDBMS systems.

EXPLAIN will, well, explain what the query engine will do with the SQL you've given it without
executing it. For example, if you were to load the AlienVault database mentioned in Chapter 4 into
a simple SQL database, it might look like this:

MariaDB> DESCRIBE avrep;

e R e T e T to----- +----- e to------ +
| Field | Type | Null | Key | Default | Extra |
Hommmmo- Hmmmmm oo Hommm- +om- - Hommmmmoo- Hommmm - +
ipn	int(10)	YES	MUL	NULL	
bad	tinyint(3) unsigned	YES		NULL	
con	tinyint(3) unsigned	YES		NULL	
type	varchar(50)	YES		NULL	
cc	varchar(2)	YES		NULL	
city	varchar(30)	YES		NULL	
latlon	varchar(30)	YES		NULL	
Hmmmmm - Hmmmm oo Hmmm o R Hmmmmmm o e +

To get a count of all IP addresses coming from China (CN), you might issue the following query:

MariaDB> SELECT COUNT (ipn) FROM avrep WHERE cc="CN";

You can see how optimal that query is (or isn’t) by prefixing it with EXPLAIN (we've added the
EXTENDED and \ G to make the output clearer for the book’s printed format):

EXPLAIN EXTENDED
-> SELECT COUNT (ipn) FROM avrep WHERE cc="CN"\G
kkkkkkkkkkkkkkkkkkkkkkkkkk* 1 TOW ***kkkkkhhdhhhhhhhhhhhhhhdd
id: 1
select_type: SIMPLE
table: avrep
type: ref

(continues)

BREAKING UP WITH YOUR RELATIONAL DATABASE

(continued)

possible_keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 265597
Extra: Using where

For this query, no keys are being used, so this will require a table scan. You can optimize it by adding
an index on the cc field:

CREATE INDEX cc_idx ON avrep (cc);
and rerun EXPLAIN:

EXPLAIN EXTENDED
-> SELECT COUNT (ipn) FROM avrep WHERE cc="CN"\G
Ihrkkkkkkkkkkkkkxxdxxkxkx*x%%x] poOw Frrxrxrxxkkkkkkkkkkkkkkkkkkkkx
id: 1
select_type: SIMPLE
table: avrep
type: ref
possible keys: cc_idx
key: cc_idx
key len: 5
ref: const
rows: 132798
filtered: 100.00
Extra: Using where

to see if there are any changes. In this case, the EXPLAIN output shows that the SQL query engine
identified the index for the cc field and that using it will reduce the number of rows scanned.

It's a good idea to use EXPLAIN on more complex queries, especially ones that may be run often.
You may be able to identify bottlenecks that you are attributing to “those darn old school SQL
databases” when it’s really your schema or SQL composition that needs work.

Constrained by Storage

When this book hits the shelves in 2014, consumers will have access to 5TB hard drives. With that type
of capacity being a general user commodity it’s difficult to contemplate how a database could be con-
strained by storage given that enterprise-class disks have even more options through larger and faster
disks and disk arrays. Open source SQL databases such as MySQL or MariaDB can have individual tables

Realizing the Container Has Constraints

as large as 256TB, which will fit comfortably on, say, a BTRFS (https://btrfs.wiki.kernel
.org/index.php/Main_Page)file system capable of holding 16EiB of data. What, then, are these
storage “constraints”?

® Speed—Ifyouranalytics needs are modest, it's tempting to stick with consumer-grade equipment
for both cost and ease of deployment. However, that 5400RPM USB 2.0 disk may be the bottleneck
for even modestly sized projects, given the way consumer drives are designed (since they aren’t
designed to serve database workloads). You could use consumer disks in a consumer storage
array, but this would only temporarily mask the problem. If your analytics workflow performance
declines significantly when you increase the size of data sets, consider investing in faster disks
with increased cache. Plus, if the impacts are severe enough, it may be time to switch to true
commodity server hardware with faster enterprise-class storage—or even solid-state disks
(SSD)—and a proper industrial-class storage array.

® Caching—Databases use both disk and RAM in concert when performing most of their operations.
Delving into RAM and cache discussions can stir up as much debate in the DBA community as
sparking a similar conversation about desktop signature antivirus in the defender community.
Increasing the amount of RAM will help your database perform faster, especially when you need
toissue the same query more than once (think a nested SELECT query used in multiple, but
diverse main SELECT statements). RAM and disk caching will also help when inserting data into a
database since write-caching can be employed to mask I/0 bottlenecks.

® Capability—Just because you can store a huge quantity of data in a single table doesn’t mean you
should. For example, storing 3 years of enterprise firewall log data in a single RDBMS table is pos-
sible, butit's truly a bad idea because of all the performance problems this causes. By optimizing
the underlying storage configuration and using table partitioning techniques available in most
modern RDBMS systems, you can turn what may have been a marathon of a query into a sprint
and probably still keep everything on one system.

Constrained by RAM

Lack of sufficient active RAM or using a traditional RDBMS with a configuration that cannot take advantage
of large amounts of RAM is the harbinger of doom for any project that needs to scale. As indicated in the
previous section, databases use RAM to (among other things) cache portions of tables that are on disk and
also to cache query results. More advanced SQL databases can also use RAM for in-memory tables. If you
know you're going to have regular use of referential data (for example, asset metadata, non-frequently
changing IP lists), loading that information into an in-memory SQL table can reap huge rewards as you
perform JOINs, UNIONSs, and sub-SELECTs. It's usually as simple as identifying the query—which can be
the full set of rows and fields from an existing table—you want to populate in an in-memory configuration.
For example, if you wanted to store all the IP addresses contained in the AlienVault table in an in-memory
table (to guarantee it stays there versus rely on the cache keeping it there) you could do the following:

CREATE TABLE avrep mem ENGINE=MEMORY
-> SELECT ipn AS ip
-> FROM avrep;

It's also best to avoid consumer-grade RAM and opt for high quality ECC (error-correcting code) memory
to avoid the perils of data corruption.

BREAKING UP WITH YOUR RELATIONAL DATABASE

Constrained by Data

There are definitely examples of “security data” that fit well into the relational model including firewall
logs, web server logs, anti-malware logs and asset information. Each of those example sources easily maps
into interconnected rows and columns. But, what about the JSON structure of an incident recorded in
VERIS format, as seen in Chapter 7? Although it's possible to develop a relational structure for this data,
it's hardly an optimal solution.

To optimize database table structures and query efficiency, Codd came up with the notion of
normalization, which is just a way of describing a method to organize fields and tables so as to eliminate
as many redundancies as is feasible and make it easier to modify or extend the database schema with
as little impact as possible. “Over-normalizing” a database can make working with the underlying data
awkward and complex. “Under-normalizing” a database can increase the complexity of the application
code or database stored procedures and will—most likely—needlessly expand the size of your data store.

Normalizing tabular data that is designed to fit into tables is generally a straightforward task. Mapping
and normalizing hierarchical data (like the JSON VERIS data) means converting the hierarchies into graph
adjacency lists, materialized paths, or nested sets that definitely increase query complexity. You could
always go halfway and limit the nesting by storing large chunks of the JSON tree as BLOBs (binary large
objects) in special fields, but that also makes queries complex and slow, since you'll likely be performing
full text searches of those fields.

RDBMS systems are great for a wide variety of problem sets and data types, but they should not be the
only tool in your toolbox since there are so many custom options available, as you'll see in the next section.

Who/What Is This ‘Maria’?

Many readers may have used or come into contact with the MySQL RDBMS. For many years, it was
afoundational element of the initial “LAMP” (Linux/Apache/MySQL/PHP) stack of components you
would use to build websites. After Oracle acquired MySQL, there was a community-developed fork
of the code created under the name “MariaDB."” MariaDB is a drop-in replacement for MySQL. You
can uninstall MySQL (preserving data, of course) and install MariaDB and everything will “just work.”

MariaDB versioning and features have been on par with counterpart MySQL releases, but significant
divergence is occurring with newer iterations, including support for cutting-edge storage engines,
dynamic columns, and interfacing with NoSQL environments (Cassandra).

Choosing MariaDB over MySQL, PostgreSQL, or traditional commercial RDBMS offerings is a decision
you and your security and analytics team members must make yourselves and may be highly depen-
dent on corporate requirements, if you're constrained by them. Even if you “can’t” use MariaDB, it's
definitely a project that should be on your watch list.

Exploring Alternative Data Stores

There are many longstanding and new database storage and database management systems that have
shunned the conventions and conformity of straight-laced SQL. These technologies are usually grouped

Exploring Alternative Data Stores

under the term NoSQL (Not only SQL), which makes it easier to classify them, but also adds confusion since
the features and functionality each provides can be radically different. By “not being SQL” they all offer
alternate ways of designing solutions and storing information that can be of huge benefit when incorpo-
rating data analysis into your security strategy. This section takes a look at some of the more prominent
ones and sneaks in a security use case or two along the way to give you an idea of when you might want
to pick one over the other.

BerkeleyDB

Perl wonks will no doubt be familiar with Berkeley DB (BDB) (http://www.oracle.com/
technetwork/products/berkeleydb/overview/index.html),and you canfind support
foritin R (RBerkeley), Python (pybsddb), and most other scripting/programming languages. BDB is
a local (that is, embedded) key/value store that does what the description suggests: It lets you identify
a key and store arbitrary data associated with it, and then perform highly efficient lookups with the key.
By its own definition, it's not a relational database, an object-oriented database, a network database, or a
database server. Unlike keys and fields in RDBMS systems, BDB is completely value-agnostic.

If you've ever worked with the default configuration of SpamAssassin (http://spamassassin
.apache.org/)orpostfix (http://www.postfix.org/)or dealt with open source LDAP servers
such as OpenLDAP (http://www.openldap.org/), you've encountered BDB.

Key/value stores perform well in situations where data writes are infrequent but reads are potentially
plentiful, for example, caches. Consider, once again, the IPv4 address space. If you needed to cache only
certain attributes of an IP address (for example, geolocation data or reputation data) and needed only local
resources, choosing BDB as your platform has some serious merit. It doesn’t have the overhead that comes
with traditional RDBMS databases (though modern versions of BDB “speak” SQL) and can be optimized for
the key and value data structures. Plus, the keys and values can also be language-independent (that is, you
can populate BDB stores with R and read them with Python, or vice versa). Listing 8-2 shows a very basic
example of storing IP geolocation data with R:

requires packages: RBerkeley
R code to interface with BDB

library (RBerkeley)

create and open BDB database

dbh <- db_create()

db <- db_open(dbh, txnid = NULL, file = "av.db",
type = "BTREE",
flags = mkFlags (DB_CREATE, DB_EXCL))

store geolocation data
db_put (dbh, key = charToRaw("24.62.253.107"),

BREAKING UP WITH YOUR RELATIONAL DATABASE

(continued)
data = charToRaw("43.2555,-70.8829"))

read it back to show it works
coords <- rawToChar (db_get (dbh,
key = charToRaw("24.62.253.107")))

db close(dbh) # close BDB db

print (coords)
[1] "43.2555,-70.8829"

Note

Note that R will return a warning message about the database handle being unusable after
thedb_close () function call. This is just an informative message and can be ignored.

Listing 8-3 shows a similar example of reading the same data back with Python:

Requires: bsddb3 and Berkeley DB library
Python code to interface with BDB

from bsddb3 import db

import struct

import socket

initialize and open BDB database
av _db = db.DB()
av_db.open('av.db', None,db.DB BTREE, db.DB DIRTY READ)

get first key/value pair
cursor = av_db.cursor ()
av_rec = cursor.first()

print it out to show it worked

print av_rec
('24.62.253.107', '43.2555,-70.8829'

av_db.close() # close BDB file

It would be very straightforward to expand this example to store the entire AlienVault database, indexed
by IP address and with the other associated fields stored in the value component.

Berkeley DB also has solid thread support and scales as large as 256TB. If your workloads can deal with
disk-seek times, you do not want the hassle of maintaining a server process or multi-node infrastructure for

Exploring Alternative Data Stores

your caches, and if there’s a chance you need multi-platform and multi-programming language support,
it's definitely a good choice.

BDB Alternatives

Oracle is now the proprietor of Berkeley DB. Although it's still provided under a GNU AGPL v3 license,
Oracle also offers a commercial version with fairly steep licensing options. If you are concerned
that this may become fully commercial in the future, there are alternatives that provide the same
feature set, including:

® Kyoto Cabinet (http://fallabs.com/kyotocabinet/)
® MapDB (http://www.mapdb.org/fag-general .html)

Redis

Redis is an open source, BSD licensed, advanced key-value store (http://redis.io/).It's tempting
to think of Redis as just a server version of a key/value store since that’s what it looks like on the surface. Its
most basic commands are GET and SET, and its basic data type is a binary safe string (so you can store
virtually any type of data in the key or value components). What Redis really is, however, is more of an
in-memory data structure server that is also persisted on disk (that also has many other useful features).
The in-RAM requirement should not be glossed over lightly since every data structure and element must fit
into RAM for Redis to work. This constraint should help prevent you from trying to shoehorn large relational
or hierarchical structures into Redis, since that’s definitely not what it's designed for.

Redis operates as a data structure server by providing a framework of operations for four fundamental
data storage types: lists, hashes, sets, and sorted sets.

® Lists store single binary safe strings that are pushed on to the front (LPUSH) or back (RPUSH) of
the list. Lists make superb message queue structures and excel at keeping the “last n” number of
items available.

® Hashes expand the key/value NoSQL model by providing a way to identify and manipulate fields
within the value component in a very space-efficient manner. You could replicate the geolocation
Berkeley DB geolocation example quite easily with Redis hashes, straight from the Redis com-
mand line interface:

redis> HMSET ip:24.62.253.107 lon 43.2555 lat -70.8829 zip 03878
redis> HMGET ip:24.62.253.107 lon lat

1) "43.2555"

2) "-70.8829"

The main differences here are that you can query this database server from any client on the net-
work versus be constrained by just local file access and that everything is in memory, so lookups
will be almost instantaneous.

BREAKING UP WITH YOUR RELATIONAL DATABASE

® Sets store non-repeating collections of binary safe strings. This makes them ideal for associating
elements together for quick membership determination. For example, creating a “workstations”
setand populating the members with IP addresses makes it trivial to determine whether an IP
address you've seen in a packet is coming from a workstation node:

redis> SADD workstations "10.23.34.45"
redis> SADD workstations "10.32.43.54"
redis> SADD workstations "10.45.34.32"
redis> SADD workstations "10.34.23.45"
redis> SISMEMBER workstations "10.10.10.10"
(integer) 0 // not in set

redis> SISMEMBER workstations "10.23.34.45"
(integer) 1 // in set

® Sorted sets provide a means to associate a ranked value with a member of a set. You could create risk
or reliability sets for each of the malicious host types in the AlienVault database, using the values
from those fields. You could also keep a running count of times you've seen those known-bad hosts
attempt to access your resources (or when your resources have attempted to access those bad ones).

Advanced Redis Features

Redis supports partitioning which lets you use memory on other systems to hold portions of Redis
data structures. This is similar to the way you can partition tables in MariaDB, MySQL, and Oracle
and helps you get around single-system RAM constraints.

Redis also has a built-in publish-subscribe service. With it, you can create a number of clients that
subscribe to a channel that is publishing log entries or just new, individual IP addresses that make
their way on to your internal “suspicious” list. When any new value is pushed, each client will get the
message and can take some type of action, like running a set of analytics routines or parsing and
storing the information into multiple SQL and NoSQL data stores for later processing.

There is robust Redis support in Python (redis-py) and R (rredis), and the APl is very straight-
forward to work with. Say you want a centralized and efficient way to know whether you've seen an IP
address in an indicator of compromise (IoC) that you've received from some external source. Rather than
rely on a query to return from your clunky centralized log management system, set up a workload that
takes IP addresses from the log streams and stores them in a centralized Redis simple key/value or hash data
structure with as much metadata as you need. Listing 8-4 provides a Python example of how to “watch” a
log file (in this case, a web server log) and store the data in Redis.

Note

Listings 8-4 (ch08 /python/watcher.py) and 8-5 (ch08/python/lastseen

. py) will work better as standalone shell scripts (each in their own file, as directed in the
comments for each listing) versus within the Canopy environment. You will also need to
have a web server running. To fully mimic the examples, you can install nginx (the one
used in the 8-4 example) via sudo apt-get install nginxatashell promptand
startitwith sudo /etc/init.d/nginx start togenerate output for the logs.

Web server log watcher/Redis importer

Save this as "watcher.py"

Exploring Alternative Data Stores

Start it in one shell window prompt with

python watcher.py

Requires: Python redis package
import time

import re

import redis

import pickle

setup regex to parse web log entries
logparts = r' (\S+) (\S+) (\S+) \[(.*?)\]
"(\S+) (\s+) (\S+)" (\S+) (\S+)"'

logpart = re.compile (logparts)

map field names to extracted regex values

def field map (dictseq,name, func) :
for d in dictseq:
d[name] = func(d[name])
yield d

extract data from weblog
def web_log(lines):

groups = (logpart.match(line) for line in lines)

tuples = (g.groups() for g in groups if g)

colnames = ('host', 'referrer', 'user',
'datetime', 'method', 'request',

'proto', 'status', 'bytes')

log = (dict(zip(colnames,t)) for t in tuples)

log = field map(log, "bytes",

lambda s: int(s) if s != '-

log = field map(log, "status",int)
return log

"tail" for python
def follow(thefile):
thefile.seek (0,2)
while True:
line = thefile.readline()
if not line:
time.sleep(0.1)
continue
yield line

setup log watching

' else 0)

change this to an active, accessible web server log

(continues)

BREAKING UP WITH YOUR RELATIONAL DATABASE

(continued)
logfile = open("/var/log/nginx/access.log")
loglines = follow(logfile)
log = web log(loglines)

setup Redis connection

for large environments, you will substitute

localhost with a dedicated server host name

red = redis.StrictRedis (host='localhost',
port=6379, db=0)

for each entry, store pythonic-data structure in
associated with a key (could also use Redis hash
for more language-independence)
for line in log:
1 = line['host']
a = red.get ("ip:%s" % 1)
if (a == None) :
a = {}
al'ls'] = time.time()
al'ect'] =1
red.set ("ip:%s" % 1,pickle.dumps(a))
else:
a = pickle.loads(a)
al'ls'] = time.time()
al'et'] += 1
red.set ("ip:%s" % 1,pickle.dumps(a))
Listing 8-5 shows the query component:

Listing 8-5

Redis log watcher python query script
Save this as "lastseen.py"

Start it in one shell window prompt with

python query.py
Requires: Python redis package

ST S

from datetime import datetime
import redis

import pickle

import sys

setup Redis connection
red = redis.StrictRedis (host='localhost', port=6379, db=0)

get IP address from the command line & query Redis
ipaddr = sys.argv[1l]

Exploring Alternative Data Stores 207

ioc = red.get("ip:%s" % ipaddr)
if found
if (ioc != None):

b = pickle.loads (ioc)
print ("IP [%s] was last seen on [%s].\nTotal times seen ")

print ("since we started counting: [%d]." %
(ipaddr, datetime.fromtimestamp(b['ls']),bl'ct']))
else:
print ("$s has not been seen, yet." % ipaddr)

Now, it's quick work from the command line to know whether you've seen an IP address (substitute
24.62.253.107 with aknown address to get a “found” result in your setup):

dds$ python lastseen.py 24.62.253.107
IP [24.62.253.107] was last seen on [2013-10-13 18:57:59.875430].
Total times seen since we started counting: [80787].

If you're thinking, “l could just use grep,” remember that this is a constantly streaming, online activity
from potentially hundreds or thousands of sources spanning weeks or months. If you architect it properly,
Redis will always beat grep.

Hive

It's virtually impossible to write a book about data analysis without mentioning Hadoop (http: //wiki
.apache.org/hadoop), and if you're already investigating or using Hadoop, then you may have
come across Hive (http://wiki.apache.org/hadoop/Hive/LanguageManual). Hive sits
on top of the Hadoop Distributed file System http: //hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html)thatpartitions data across—
potentially—thousands of nodes. Hadoop MapReduce jobs execute across these nodes using this data.
The map component takes a set of data elements, breaks them into key/value pairs, and performs a com-
parison and/or computation on them. The reduce component takes these results and combines them to
come up with a final result set (which may involve another comparison and/or computation).

MapReduce Redux

MapReduce is a Google creation (http://static.googleusercontent.com/
external content/untrusted_dlcp/research.google.com/en/us/
archive/mapreduce-osdi04.pdf) and was designed to enable efficient computations
across huge (for example, multi-thousand node) clusters. It does this by splitting the data across
the entire cluster then instructing worker nodes to perform some operation on that local data set
(the map). Those intermediary results are then collected and summarized by other worker nodes
into a final operation (the reduce). Figure 8-2 illustrates the process.

(continues)

BREAKING UP WITH YOUR RELATIONAL DATABASE

(continued)

7

Each node The “map” workers The “reduce” workers When finished, the
holds a "slice™ count the number take the intermediary output could be a
of a firewall log. of times each map output and CSV listing of IP
destination IP aggregate/combine the address and count
address appears results. of times seen.
and emit this.
69.49,159,1350118.1,1, 25180 18.1.1,19]1 19.1.1.19,1
69.49.150.235118.1.1. 24122 18.1.1.2211 19.1.1.22,2
10.1.1,2412 18.1.1.24,3
69.49.150.11111@.1.1. 25180 18.1.1.2514 18.1.1.25,6
69.49,150.135116.1.1. 191443 19.1.1.19I11 18.1.1.2711 18.1.1.2711
10.1.1.2211
69.49.150.15118.1.1.25/50 10.1.1.2512 18.1.1.2211
69.49.150.51118.1.1.22(22 18.1.1.2411
10.1.1.2211 18.1.1.2512
63.49.159.135118.1.1. 25180 10.1.1.2411
69.49.150.135118.1.1,271443 10.1.1.2512
69.49,150.111110.1.1,25180
69.49,150.235110.1,1, 241443
69.49,150,77118.1,1, 251 58

69.49,150.96116.1,1. 22| 443

Illustration of MapReduce

Hive provides a SQL-like interface to this HDFS data. Rather than becoming an expert Java coder to
compose and execute MapReduce jobs, Hive abstracts this complexity and converts SQL into MapReduce
jobs for you. This is a very important point to remember: In the Hadoop ecosystem, everything boils
down to a MapReduce job across very large amounts of data. The complexities of setting up a Hadoop
environment and keeping it running are mixed into the cost/benefit analysis when choosing this as part
of your analytics platform.

While Hive provides the comfort of SQL, some key features of SQL do not come along for the ride.
For example, the Hive query language (HiveQL) provides only limited support for SQL JOINs. If your
needs go beyond combining tables on equality conditions, you cannot use Hive due to the limitations
of the Hadoop MapReduce paradigm. You also need to use caution when ordering result sets with SQL’s

Exploring Alternative Data Stores

ORDER BY, since Hive currently only uses a single reduce engine to perform that sorting task, creating
potential bottlenecks. There are many other subtleties to Hive and HiveQL as well. While you may not
need to become a Java expert, you will have to thoroughly understand how HiveQL queries translate to
MapReduce jobs and learn how to optimize queries to take advantage of this platform.

Analyzing “At-Scale” NetFlow Data with Hadoop

If you ever enter a conversation about data and Hadoop, the concepts of volume, velocity, and
variety will inevitably come up.

® Volume refers to how much data you have.
® Velocity refers to how fast that data is coming in or being analyzed.

® Variety speaks to the diversity of data types being ingested and processed.

Most security data falls somewhere on the lower end or middle section of each of those spectrums.
However, even in a medium-sized network, NetFlow data can easily peg all the way to the upper
bounds on the velocity and volume scales.

If you aren’t familiar with NetFlow, here’s the definition straight from RFC 3954 (http: //www
.ietf.org/rfc/rfc3954.txt):

Aflow is defined as a unidirectional sequence of packets with some common
properties that pass through a network device. These collected flows are exported
to an external device, the NetFlow collector. Network flows are highly granular;
forexample, flow records include details such as IP addresses, packet and byte
counts, timestamps, Type of Service (ToS), application ports, input and output
interfaces, etc.

NetFlow data is extremely useful for security analytics, but can be challenging to work with. For
example, if you have a 10 Gbps link that is only 50 percent utilized, you can expect to churn out 2.3TB
of NetFlow data per hour. This is definitely a job for Hadoop since the input stream gathering and
storage functions can be distributed across a large cluster (since it would overwhelm a single host)
and converted on the fly to work with Hadoop native file formats. Then, you can begin to design
MapReduce jobs such as performing anomaly detection or analyzing DDoS captures for patterns.

Tools such as PacketPig (http://hortonworks.com/blog/big-data-security-
part-one-introducing-packetpig/) can help reduce some of the tedium involved in
getting NetFlow data into an environment where analysis can be performed, but it cannot abstract
the complexity of such an environment. You will need to thoroughly understand numerous NoSQL
technologies if you wish to head down the path of analyzing NetFlow data at-scale.

If you have the time, space, personnel, budget, and use cases to set up Hadoop/HDFS/Hive, it may be
well worth the investment. Imagine being able to keep a full year’s online archive of every log file from every
system, network device, firewall, and mail server in a massively efficient data warehouse and perform basic
inquiries across all of those components. That’s where the real power of Hive+Hadoop lies.

BREAKING UP WITH YOUR RELATIONAL DATABASE

What about HBase, Cassandra, Pig ...?

The full Hadoop ecosystem continues to expand at a relentless pace. Advancements within the envi-
ronment itself (for example, Hadoop 2.0) as well as integration with the environment (for example,
Cassandra, MongoDB) and unique vendor-specific offerings are introducing nascent alternatives
that have their own strengths, trade-offs, and idiosyncrasies.

You will need to spend some effort looking at all the options you have available and mapping
them to your perceived needs. Then choose a direction and stick with it. A Hadoop analytics envi-
ronment—much like Rome—cannot be built in a day. Despite the continuing advancements, this
ecosystem is far from mature, and you will be forging new ground over a long period of time with
each step you take.

MongoDB

MongoDB (http: //www.mongodb.org/) could be called the “MySQL of NoSQL" databases as it has
a large and active community, is easy to deploy in development, and scales fairly well in production. At
its core, Mongo provides a way to do extremely quick prototyping given the schema-less nature of the
platform. Unlike traditional SQL databases, where you need to define the fields you will be using up front,
Mongo lets you start with a basic pseudo-schema and refine your needs along the way.

Note

To follow along with these examples, install MongoDB via sudo apt-get
install mongodb ata shell prompt and then start it with sudo /etc/init.d/
mongodb start.

For example, it's very straightforward to start storing IP geolocation info from the AlienVault Reputation
database for an IP address with the following commands starting at a Linux shell prompt:

dds$ mongo
> db.av.insert ({ ip:"193.147.49.42",
geo:"40.4085,-3.6921" })
> db.av.find ({ ip:"193.147.49.42" })
{ " _id" : ObjectId("525bfbe02074bfa7aaad8316"),
"ip"™ : "193.147.49.42",
"geo" : "40.4085,-3.6921" }

and then choose to add other information later, like the type of malicious activity the host is engaged in:

> db.av.update ({ ip:"193.147.49.42" },

{ $set : { maltype:"Scanning Host" } })
> db.av.find ({ ip:"193.147.49.42" })
{ "_id" : ObjectId("525bfbe02074bfa7aaad8316"),

Exploring Alternative Data Stores

"geo" : "40.4085,-3.6921",
"ip"™ : "193.147.49.42",
"maltype" : "Scanning Host" }

You do pay a price for these incremental field updates given the way Mongo stores the data and man-
ages the on-the-fly schema changes, and you may need to dump and reload the database to regain storage
and query efficiency if you perform these types of changes in production versus just experiment during
development.

Mongo breathes JSON and uses binary JSON (BJSON) in API calls. This means you need to be comfortable
with JavaScript notation and will definitely want to keep the JSONLint (http://jsonlint.com/)
URL handy to assist you when errors crop up in your input data. The use of JSON provides the capability of
storing deeply nested or hierarchical records and structures, which will require you to re-think any notions
you may have on normalization. If you're used to performing RDBMS normalization, then you'll need to
take a step back, ignore most of what you've been taught or have learned, and embrace the verbosity of
this side of the NoSQL universe.

For example, malicious nodes in the AlienVault database can have multiple malicious activities associ-
ated with them. In traditional, normalized SQL, you would likely set up a separate table with host key and
malicious node type field and have a row for each entry:

to-mmm - to-mmm - +
|193.147.49.42|Scanning Host |
|193.147.49.42| Spamming |
domm - domm - +

then, perform a JOIN when retrieving results. With Mongo, you would store those components as a JSON
array within the record:

> db.av.update ({ ip:"193.147.49.42" },
{ $set : { maltype:["Scanning Host","Spamming" 1 } })

It may be difficult to see the value of this additional complexity with such a trivial example, but the power
this holds starts to become much clearer if you look back at the VERIS JSON data in Chapter 7. Creating a
normalized table structure to store all the fields in an incident is possible, but not necessary given Mongo's
ability to efficiently store, process, and query complex field structures. If you have Mongo installed from
the previous example, you can install the git tool via sudo apt-get install git, which will
allow you to follow the steps in Listing 8-6 (found in other/ch08 . sh) to download and import the
complexincident data in the entire VERIS Community Database from their GitHub repository (ht tps: //
github.com/vz-risk/)inabout5 minutes, without the need to create a database or table schema
ahead of time.

Retrieve VCDB files, import into mongo and perform a query

Requires mongodb and git
clone the VCDB github repository
dds$ git clone https://github.com/vz-risk/VCDB.git

import all the incdients

(continues)

BREAKING UP WITH YOUR RELATIONAL DATABASE

(continued)
dds$ cd VCDB/incidents
dds$ 1ls | head -5
0012CC25-9167-40D8-8FE3-3D0DFD8FB6BB. json
002599D4-A872-433B-9980-BD9F257B283F.json
005C42A3-3FE8-47B5-866B-AFBB5E3F5B95. json
0096EF99-D9CB-4869-9F3D-F4E0D84F419B. json
00CC39F6-D2E0-4FF4-9383-AE3E28922015.json
dds$ for f£ in *.json ; do \
mongoimport -d veris -c public --jsonArray S$f ;
done
find all financial firms with security incident in the VCDB

52 is NAICS code for financial firms

dds$ echo 'db.public.find({"victim.industry": { $regex : ""52" } },
{ "victim.victim id" : 1, id : 0 })' | mongo veris

{ "victim" : [

{ nm"victim id" : "Blue Cross & Blue Shield of Rhode Island" }] }

{ "victim" : [

{ mvictim id" : "Group Health Incorporated" }] }

{ "victim" : [

{ "victim id" : "Delta Dental of Pennsylvania" },

{ "victim id" : "zpI" }] }

{ "victim" : [

{ m"victim id" : "UK National Health Service" }] }

{ "victim" : [

{ "victim id" : "Mundo.com" },

{ "victim id" : "Public Defender of Venezula" },

{ "victim id" : "Caroni Seguros SA" } 1 }

If your record count is large enough to span multiple Mongo nodes, these simple queries will work
unaltered. Mongo can also perform data aggregation or even run MapReduce jobs across a whole cluster,
mimicking some of the functionality of both Hadoop and more traditional SQL databases.

Mongo can also be used as a tool in your data acquisition and cleanup processes, where you may have
traditionally used built-in structures in your programming or scripting languages. For example, log process-
ing is one of the less glamorous activities of security data analysis. They come in all shapes and sizes and
some, like Cisco’s IronPort email logs, require extra processing to get into a form useful for analytics. Take
alook at the following sample in Listing 8-7 (found in ch08 /other/ironport . log):

Listing 8-7

Example of an IronPort log file

Fri Oct 18 11:05:01 2011 Info: Start MID 346564 ICID 1042862

Fri Oct 18 11:05:01 2011 Info: MID 346564 ICID 1042862 From:
<dave@example.com>

Exploring Alternative Data Stores

Fri Oct 18 11:05:01 2011 Info: MID 346564 ICID 1042862 RID 0 To:
<steveetest.com>

Fri Oct 18 11:05:01 2011 Info: MID 346564 Message-ID

'<112067.438985349-em02@steel>"

Fri Oct 18 11:05:01 2011 Info: MID 346564 Subject 'TPS Reports Due'

Fri Oct 18 11:05:02 2011 Info: MID 346564 ready 864 bytes from
<dave@example.com>

Fri Oct 18 11:05:02 2011 Info: MID 346564 matched all recipients for
per-recipient policy local domains in the outbound table

Fri Oct 18 11:05:03 2011 Info: MID 346564 interim AV verdict using
Sophos CLEAN

Fri Oct 18 11:05:03 2011 Info: MID 346564 antivirus negative

Fri Oct 18 11:05:03 2011 Info: MID 346564 DLP no violation

Fri Oct 18 11:05:03 2011 Info: MID 346564 queued for delivery

Fri Oct 18 11:05:03 2011 Info: Delivery start DCID 178987 MID 346564
to RID [0]

Fri Oct 18 11:05:04 2011 Info: Message done DCID 178987 MID 346564
to RID [0]

Fri Oct 18 11:05:04 2011 Info: MID 346564 RID [0] Response 'ok:
Message 10569973 accepted'

Fri Oct 18 11:05:04 2011 Info: Message finished MID 346564 done

Because Mongo allows incremental schema build out, you can use that feature to create records for
each message (MID) as you parse the log file. You can then add fields as you go, ending up with a final,
complete database and an idea of how a complete per-record schema might look. The Mongo entry for the
previous record could look like the one found in Listing 8-8 (found in ch08 /other/ironport . json).

// Example of an IronPort log file translated to JSON via MongoDB

{
mid : "346564",
icid : "1042862",
from : "dave@example.com",
to : "steve@test.com",
messageID : "112067.438985349-em02@steel",
subj: "TPS Reports Due",
bytes: "864"
matchStatus : 1,
delivered : 1,
av : { engine : "Sophos", verdict: "CLEAN" },
dlp : { violation : "none" },
start : "Fri Oct 18 11:05:01",
finish : "Fri Oct 18 11:05:01"
}

Once all the records have been created, you can use Mongo and Python or R to perform time series
analysis, z-scaled anomaly detection, clustering, or a host of other analyses.

BREAKING UP WITH YOUR RELATIONAL DATABASE

Why Not Use Mongo for Everything?

It's possible to fall into the trap of trying to use Mongo for everything, especially since it allows
you to be a bit lazy up front. Although it's great for some tasks, the platform still has some rough
edges at the time this chapter was written. You might want to take into account when deciding on
Mongo for a project:

@ Record counting operations are improving but are still slower than other database plat-
forms due to the way Mongo uses the underlying b-tree database file structures.

® Field names are not compressed and take up real space per-record. This leads to prac-
tices such as using sipinstead of src_ip or sourceIP and ufor“username,”
making queries somewhat unreadable unless you're extremely familiar with the data.

e Maintenance operations are still required and can impair operations. You will need to
compact the database regularly and this can be a time-consuming, blocking operation
across a whole cluster. Although this is most likely not a problem for your analytics
environment, be careful if you're using Mongo to present an interactive data interface
to other users.

® By default, writes to a Mongo database work a bit like UDP packets in that it's “send, and
pray it's received.” You need to explicitly set options for enabling “write concern” to
get more TCP-like behavior. This can have a serious impact on performance such as
the need to guarantee writes of log entries you are aggregating into Mongo.

Special Purpose Databases

It's far too easy to get snarled on what truly constitutes a “database.” For those still entrenched in the SQL
world, NoSQL is a serious affront to their sensibilities. For those who've adjusted to the NoSQL paradigm,
tools such as ElasticSearch (http://www.elasticsearch.org/)and Neodj (http://www
.neo4j.org/) may be equally as world jarring.

Databases will be an essential element in your analytics workflow, which might look like this:

1. Identify the data sources (for example, logs, traditional databases, alerts).
2. Collect, transform (if needed), and store the data.

3. Query the data store.

4. Provide analytics on the results.

If you choose to work with raw SQL or NoSQL databases, then you will need to perform most of the setup
and cleanup tasks on your own, which requires DBA-like intimacy with the underlying database platforms.

ElasticSearch for Logs

If you're focused on the goal of analytics more than the journey of how to get your data there, you may be
interested in tools like ElasticSearch that abstract the complexities of the back end and give you an input,
query, and analytics interface to work with on the front end.

Summary

ElasticSearch consumes practically anything you give it and provides straightforward ways to ask it
questions and get data out of it. You just need to feed it semi- or unstructured data and fold in some domain
intelligence to enable smart indexing. It works its multi-node NoSQL magic in conjunction with a layer of
full-text searching to give you almost instantaneous query results even for large amounts of data. It's highly
geared toward log data and supports an aggregation framework similar to that of Mongo.

If you are analyzing a wide variety of logs in your security work, ElasticSearch may be something you
should consider investigating.

Neod4j for “Connections”

As indicated in several previous chapters, many areas of information security analytics involve looking
at connections between nodes. You've also seen how network graph structures can make working with
these connections a bit easier. Although it’s possible to model graph structures in SQL databases or Mongo,
Redis, and so on, it’s easier to use a something like Neo4j that provides direct support for network graph
models and operations.

If the igraph operations in Chapter 4 intrigued you, then you'll be even more impressed with the
feature set in Neo4j because it essentially scales similar computations and analytics across millions or
billions of nodes. You can import high level vertex + edge connection data into Neo4;j from NetFlow sources,
firewall, proxy, email, and DNS logs, and augment the connection and node information with detail data
from each of those sources.

You still need to have a graph model in mind when you're designing for Neo4j and will need to learn a
new graph-specific query language—Cypher—to get work done. However, many fine-grained tasks will
require that you either roll up your sleeves and code a bit in Java or Python or use the Neo4j REST interface
to funnel query output into your analytics platform of choice.

Summary

Becoming truly effective as a security data scientist requires a shift in mindset from any monolithic relational
database fidelity you may have. Solving real problems requires you to keep your options open, recognizing
that each database technology has unique benefits for specific tasks.

This chapter has presented a survey of various technologies combined with small examples in many
different types of SQL and NoSQL database environments. We've outlined strengths and weaknesses in
the choices you have and even provided some counseling on how to enhance interactions with your tra-
ditional SQL stores.

We've focused on some core database offerings, but have not provided an exhaustive reference since
that would be a book on its own. You will need to keep abreast of developments in the database space—
both SQL and NoSQL—to see where you may need to make adjustments in the future. If you are working
with larger and larger amounts of data, it may be time to wade a bit deeper into the Hadoop ecosystem,
provided you understand the level of commitment required and the constraints you will be facing.

Finally, you've seen that databases can take many forms, that they can be used as a means to an end
(for example, log parsing) as well as an end in and of themselves.

BREAKING UP WITH YOUR RELATIONAL DATABASE

Recommended Reading

The following are some recommended readings that can further your understanding on some of the topics
we touch on in this chapter. For full information on these recommendations and for the sources we cite in
the chapter, please see Appendix B.

Relational Database Design Clearly Explained, Second Edition, by Jan L. Harrington—One
of the most complete and accessible resources available; especially helpful to nascent arrivals to the
world of RDBMS systems.

Professional Hadoop Solutions by Boris Lublinsky, Kevin T. Smith, and Alexey Yakubovich—
An excellent and thorough introduction to the Hadoop ecosystem with modern, real-world examples
and advice on how to secure your Hadoop analytics environments.

Professional NoSQL by Shashank Tiwari—Far more comprehensive reference on NoSQL database
technologies that digs a bit deeper into many of the options described in this chapter.

Demystifying Machine
Learning

DEMYSTIFYING MACHINE LEARNING

There are two types of people in information security—those who are completely intimidated by machine
learning and those who know machine learning largely solved the spam problem and are completely intimi-
dated by machine learning. It's easy to be intimidated when machine learning is described as “a type of
artificial intelligence that provides computers with the ability to learn without being explicitly programmed”
by TechTarget. (http://whatis.techtarget.com/definition/machine-learning).
How can a computer do anything without being explicitly programmed? Or better yet, consider this rather
well known definition from Tom M. Mitchell in his 1997 book titled Machine Learning:

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E.

Are you clear now on what machine learning is? This broad definition doesn’t help much because it only
describes the abstract results of machine learning, not what it is or how to use it. To help you understand
machine learning at a practical and concrete level, we start this chapter with a learning task associated with
realistic data. Prepare for the examples in this chapter by setting the directory to the working directory for
this chapter and make sure the R libraries are installed (Listing 9-0).

set working directory to chapter location
(change for where you set up files in ch 2)
setwd ("~/book/ch09")
make sure the packages for this chapter
are installed, install if necessary
pkg <- c("ggplot2", "RColorBrewer")
new.pkg <- pkgl[! (pkg %$in% installed.packages())]
if (length (new.pkg)) ({
install.packages (new.pkg)

Detecting Malware

Assume that you have been able to record memory and processor usage on all of your systems. With some
effort, you have been able to inspect almost 250 of the computers, discovering that some of the systems
are infected with malware and some are operating normally (without malware). But you have 445 other
systems that haven’t been inspected, and you want to save time and use the data you have to determine
if the other 445 systems you have are infected or not.

Note

Please keep in mind that this is a contrived demonstration of a machine learning approach;
for a much more complete application of machine learning to detect malware, see
“Disclosure: Detecting Botnet Command and Control Servers Through Large-Scale NetFlow
Analysis” from the Proceedings of the 28th Annual Computer Security Applications
Conference by Leyla Bilge, et al. (Full reference is available in Appendix B.)

Detecting Malware

This example will use R to build an algorithm that can be trained to perform the task of classifying
systems as either infected or not. Start by loading the data on the hosts you know about and inspecting
it (Listing 9-1).

memproc <- read.csv("data/memproc.csv", header=T)
summary (memproc)

host proc mem state
crisnd0004: 1 Min. :-3.1517 Min. :-3.5939 Infected: 53
crisnd0062: 1 1st Qu.:-1.2056 1st Qu.:-1.4202 Normal :194
crisnd0194: 1 Median :-0.4484 Median :-0.6212
crisnd0203: 1 Mean :-0.4287 Mean :-0.5181
crisnd0241: 1 3rd Qu.: 0.3689 3rd Qu.: 0.2413
crisnd0269: 1 Max. : 3.1428 Max . : 3.2184
(Other) 1241

Note

The data/memproc . csv fileis available as part of the Chapter 9 download materials
for this book, which you can find at www . wiley .com/go/datadrivensecurity.

You can see there are 53 hosts identified as “infected” and 194 identified as “normal.” Also notice that
both the processor data and the memory information have been normalized (see the discussion of z-score
in Chapter 5). That will keep the numbers on the same scale. Scaling the variables like this is important in
some machine learning approaches when you're comparing across variables. In order to explore this data
a bit more, let’s plot this data (Listing 9-2), comparing the processor data to the memory, and differentiate
it based on the malware state (see Figure 9-1).

requires package : ggplot2

requires object: memproc (9-1)

library (ggplot2)

gg <- ggplot (memproc, aes(proc, mem, color=state))
gg <- gg + scale_color_brewer (palette="Set2")

gg <- gg + geom point (size=3) + theme bw/()

print (gg)

Notice how the infected systems appear to generally use more processor and memory? Perhaps you
could develop an algorithm to classify this data just based on the relative location (on the scatterplot in
Figure 9-1) of the known hosts. But before you get too far, you'll want to do a little planning. First you'll
want to determine which machine learning algorithm you want to apply, and then you should figure out

mem

DEMYSTIFYING MACHINE LEARNING

how to test if the algorithm is any good. In a real problem, you would try several different algorithms and
features; you'll learn about model and feature selection later in this chapter.

state
Infected

Normal

-2 0 2
proc

Processor and memory across systems

Developing a Machine Learning Algorithm

Does that title give you flashes of fear that we'll start talking about mathematical formulas and make you
say things like “sub i of x"? Don't worry, we will keep this as light as we can, and we will start by demysti-
fying the word algorithm. Anytime you see the word algorithm, try to mentally replace it with “a series
of instructions” because that’s all an algorithm is. You'll want to develop a series of instructions for the
computer on how to inspect and understand the data (so it can learn about it). Then the computer can
apply that learning to the systems you don’t know about and classify them.

Do you see how you are not explicitly programming? Even though you are absolutely writing a program
for the computer, you will not be explicitly writing the decision criteria the computer will use and that’s the
difference. Your series of instructions (the algorithm) will explicitly tell the computer how to inspect the data
and how it should build its own decision criteria from the data. It will not tell the computer the decision
criteria directly. Compare that to the traditional approach of programming firewall and intrusion-detection/
prevention systems. With the traditional approach, humans try to think up what’s best and then explicitly
program the rules the machines should follow. There is a limit to that approach, and unfortunately, our

Detecting Malware

security systems reached that limit years ago. In machine learning, you are asking the computer to learn
from the data and then apply that learning to other data. The computer is far more capable of uncovering
the differences and subtleties in the data than humans, and that is exactly what machine learning is doing.

Note

It may seem like this chapter uses the terms model and algorithm somewhat interchange-
ably. The difference is subtle and may even be a bit confusing at first. The term model is
more general and just defines how the elements fit together. An algorithm is a specific
way of implementing a model, so there can be many alternative algorithms that fit the
same model.

Getting back to the data shown in Figure 9-1, you'll want to create a series of instructions to learn about
the processor and memory usage on the normal hosts and then compare it to the processor and memory
usage on the infected hosts. Once the computer has some notion of a difference between the two sets, you
can give it some instructions on how to apply that information to the data collected from the unknown/
unclassified systems. Remember the goal here is to have the computer guess whether or not a system
is infected with malware. Consider this short algorithm, which is easy to understand and easy to follow:

1. Define and train an algorithm:
a. Calculate the average (mean) processor and memory usage for known infected systems.

b. Calculate the average (mean) processor and memory usage for known normal systems.

2. Make a prediction using processor and memory usage for an unknown host:

a. Ifthe processor and memory usage are closer to the average infected machine, label it as
infected.

b. Ifthe processor and memory usage are closer to the average normal machine, label it as
normal.

Congratulations! You have written your first machine learning algorithm and now the computers are
one step closer to world domination with this extra bit of artificial intelligence! Notice the choice of word-
ing in the first step, you'll want to train the algorithm. That’s the term used to describe when the machine
is learning from the data; it's being trained by the data just as an apprentice is trained by its master. The
data used to train the algorithm is referred to as the training data. In this simple example, the “training”
simply involved calculating the mean usage for infected and non-infected using the training data. This is
a single-step training procedure. In contrast, most real machine learning algorithms use iterative or multi-
step training procedures, as we'll describe later.

Validating the Algorithm

Before you rely on this algorithm for real decisions, you need to make sure it is valid. You'll want some way to
test how accurate this algorithm is at predicting infected systems. Rather than using all of this data to train

DEMYSTIFYING MACHINE LEARNING

the algorithm, how about you hold back some of the data to test how accurate the algorithm can predict
malware? The process of “making sure” you have a good approach is one of the strong suits of machine
learning. It has evolved just as much (if not more so) in computer science as it has in statistics, and there
is a strong element of pragmatism in the field. Many techniques have evolved to validate the decisions
you'll make and they are so ingrained in the process, it becomes impossible not to perform those steps as
part of the model selection.

For this example, you will keep it simple and split the original data into two data sets. In serious machine
learning projects, you would probably create multiple data sets from the original data, and train and test
the data over multiple iterations (and validations).

Once you split the data into two groups, as we mentioned, call the first group the training data, since
you'll use it to train the algorithm, and call the second group the test data, since you'll use it to (yup, you
guessed it) test your approach. To split the data randomly, make use of the sample () command. You will
pull a random sample of the indexes (the index is the location in the vector data) of the original data and
use that sample to split into the train and test data. There’s no definitive rule as to where to make the split
(different techniques split in different ways), so you will simply take one third for the test data and train
the algorithm on the other two thirds. Since there is an element of randomness here we make the splitting
repeatable by setting the seed for the random number generator (see Listing 9-3).

requires package : ggplot2

requires object: memproc (9-1)

make this repeatable

set.seed(1492)

count how many in the overall sample
n <- nrow(memproc)

set the test.size to be 1/3rd
test.size <- as.integer(n/3)

randomly sample the rows for test set
testset <- sample(n, test.size)

now split the data into test and train
test <- memproc[testset,]

train <- memproc[-testset, 1]

Now you can train the algorithm on the t rain data and verify how good it is with test data. Please
keep in mind that there are much more robust methods for validation. Splitting the data once like this is
better than just assuming the algorithm is good, but in the real world, you'd need something more robust
like cross-validation, which we discuss later in this chapter.

Implementing the Algorithm

Recall that the first step in training this algorithm is to calculate the average (mean) for the infected proces-
sor and memory usage and the mean for the normal processor and memory usage. You do this by taking a
subset of the rows based on the state field (so only infected or normal is returned) and then apply that
to the columns of the proc and mem fields. That reduced data can be passed directly into colMeans (),

Detecting Malware

which will compute the means on the two columns and return a named vector with two elements (see
Listing 9-4).

requires object: train (9-3)

pull out proc and mem columns for infected then normal

then use colMeans () to means of the columns

inf <- colMeans (train[train$state=="Infected", c("proc", "mem")])
nrm <- colMeans (train[train$state=="Normal", c("proc", "mem")])
print (inf)

proc mem

1.152025 1.201779

print (nrm)

proc mem

-0.8701412 -0.9386983

The differences between the means here is not exactly small, so this rather simple approach may do
okay with your simple algorithm. With the algorithm now trained and ready to predict, the next step is
to create apredict ..malware () function (Listing 9-5). This will take in a single named vector called
data, extract out the proc and mem values, than calculate how far those are from the means that you
generated during the training. What is the best way to calculate distance? Think back to geometry class
and the Pythagorean theorem—a? + b? = ¢, where a and b are the two sides of the triangle and c is the
hypotenuse. This is called “Euclidean distance,” since it is based on Euclidean geometry. In your case, a is
the difference between the trained proc mean and the test proc value, and b is the difference between
the trained mem mean and the test mem value. Once you get the two distances, you simply compare them.
Whichever is smaller is the one you will predict.

requires object: inf (9-4), nrm (9-4)
predict.malware <- function(data) {
get 'proc' and 'mem' as numeric values
proc <- as.numeric(datal[['proc']])
mem <- as.numeric(datal[['mem']])
set up infected comparison
inf.a <- inf['proc'] - proc
inf.b <- inf['mem'] - mem
pythagorean distance c = sqgrt(a”2 + b*2)
inf.dist <- sgrt(inf.a”2 + inf.b"2)
repeat for normal systems
nrm.a <- nrm['proc'] - proc
nrm.b <- nrm['mem'] - mem
nrm.dist <- sgrt(nrm.a”2 + nrm.b”2)
assign a label of the closest (smallest)
ifelse (inf.dist<nrm.dist, "Infected", "Normal")

DEMYSTIFYING MACHINE LEARNING

Feel free to pass in a few values if you like and inspect the output. At this point, everything is ready to run
against the test data. To pass in the test data you can use the apply () function with the first argument
being the test data set and the second argument being a 1 to denote to apply it over the rows (instead of a 2
for columns). Then you'll pass in the function we just created called predict . malware (see Listing 9-6).
The apply function will convert in each row to a named vector. We have to be careful here, because the
state and host variables are characters, so the whole vector is converted to a character vector when
apply passes it in. This is why you convert the proc and mem variables back to numeric variables with
the as.numeric () functioninthe predict .malware () function.

requires object: test (9-3), predict.malware (9-5)
prediction <- apply(test, 1, predict.malware)

First, Do No Harm; Second, Do Better Than the Null Model

This is a great time to point out that this is a very basic algorithm and it's only for discussion purposes.
There is a concept within statistics known as the null model, which is a very simple model that
you'll always want to do better than (or at least no worse). For example, in the ZeroAccess infection
data in Chapter 5, the null model could be the calculation of the average (mean) infection across
all the states (5,253 infections). The null model (for prediction) would estimate 5,253 infections for
any new state regardless of any data about that state. In this case you are omitting or “nullifying”
the variables to simplify the model. Intuitively, you know that the average across the states will be
avery poor predictor, but that's the purpose. You'll want to use this as a reference point and exceed
it. And even though this seems like a “well duh” type of statement, we are not kidding about this.
You could spend days preparing data and training an intricate support vector machine and do worse
than a much simpler model. Just take the time to create a simple “must be this tall to ride” mark,
and then make sure you surpass it.

Once the test data runs through that code, you'll have a set of predictions and the ability to compare
them to the real values (see the power of this method?). To determine how well it did, you'll want to look at
the proportion of correctly predicted results on the test data. You can calculate that by taking the number
of correct predictions (where the real test$state and the predicted prediction match) and then
dividing that by the total number of predictions (Listing 9-7).

requires object: test (9-3), prediction (9-6)
sum(test$state==prediction) /nrow(test)
[1] 0.8780488

mem

Detecting Malware

This very simple algorithm predicted almost 88 percent of the values correctly, which is probably more
a statement about how segregated the data is than the strength of the algorithm. But overall, 88 percent is
pretty good for your first machine learning algorithm; congratulations! The results are pictured in Figure 9-2.

3 =
2 -
Accurate
14 ® Yes
Fero
0- state
Infected
Normal
-1-
2+

T T T T T 5
-3 -2 -1 0 1 2

Predictions from the algorithm

This classifier creates a line halfway between the two means and perpendicular to an intersecting line.
Anything above the line is predicted as infected; anything below is predicted to be normal. The misclassified
values are clearly marked in Figure 9-2. You can see how any normal systems above the line are mislabeled
as well as any infected systems below the line.

Spam, Spam, Spam

Open any non-InfoSec book on machine learning (which may be all of them) and you will probably
see spam filtering mentioned, and perhaps even see an in-depth example. We've decided not to go
into spam filtering, given that we've got a single chapter to cover everything and there are already
some great examples out there. One of the better discussions of spam filtering (including a guided
walkthrough) isin Machine Learning for Hackers by Drew Conway and John Myles White. Another
good thing about playing with spam classification is that there is no end to the available data, right?

DEMYSTIFYING MACHINE LEARNING

Benefiting from Machine Learning

Now that you've seen a rather simple example (perhaps too simple), you should have a basic understanding
of the change in thinking that machine learning brings. Rather than focusing on rule sets and signatures,
machine learning can shift the focus toward continual adaptation based on the computers learning directly
from the data. Hopefully, the days of thresholds and regular expressions rules will soon be behind us.

Before you can read about the benefits of machine learning, you need to learn about the two types of
machine learning algorithms—supervised and unsupervised. Which type you use is determined more
by the type of data you have than by personal preference.

® Supervised algorithms require that the training set have known samples just like the opening example
of this chapter. The data in that example was collected from hosts that were identified as infected with
malware or not. Another example is the ZeroAccess data in Chapter 5, where you knew how many
infections there were in each state and county and you could correlate that with other data about the
states and counties. Supervised learning is possible only when you have labeled or known data.

® Unsupervised algorithms are usually applied to data when you don't know ahead of time what
outcome you are seeking. Unsupervised learning “lets the data speak for itself,” as much as pos-
sible. As an example, think of the recommendation systems at Amazon or Netflix. Those systems
begin with data on the history of movie rentals or purchases and apply unsupervised learning
techniques to group similar people (their habits actually) based on patterns in the data. This
enables them to recommend products that other people like you have purchased. You don’t
decide ahead of time what the groups should be. Unsupervised methods enable you to dis-
cover groupings and relationships, and do other and typically deeper explorations like no other
approach. Given the unsupervised nature of these approaches, it is difficult to definitively prove
something with unsupervised methods, but that’s not what these are designed to do. As you'll
see, you can discover some interesting relationships with unsupervised learning methods.

To Parametric or Not to Parametric, That Is the Question

In addition to supervised and unsupervised, machine learning algorithms may also be separated
into parametric methods and non-parametric methods. The term parametric refers to one or more
parameters in the model or algorithm that must be estimated as a result of the training step. The
linear regression performed in Chapter 5 is an example of a parametric model. Part of the output of
the 1m () command is the linear coefficients (parameters), which are then used in both prediction
and inference within regression analysis. Compare this to the random forest algorithm (discussed
later in this chapter). When you train a random forest algorithm, there are no parameters to estimate.
Instead, you grow a series of decision trees that are then used for further classification.

Answering Questions with Machine Learning

What types of questions can machine learning answer? What sort of problems can it solve? Broadly speak-
ing machine learning can help you with questions of:

o (Classification

® Quantitative prediction

Benefiting from Machine Learning 227

® Inference
® Exploration and discovery

The opening example in this chapter already introduced the concept of classification, where you tried
to determine if the hosts were infected or not. Classification is the process of identifying the category
something belongs in, or determining which label should be applied. Classification always begins with a list
of possible categories and known data that describes those categories (so they are supervised algorithms).
Many of the tactical challenges within information security revolve around a single classification problem,
such as “Is this malicious or not?” Mechanisms exist to authenticate and authorize users, but do their actions
match that of a normal user or a malicious user? Is this HTTP request valid or is the source attempting
something they shouldn’t be? These are all questions that classification algorithms are best at tackling.

What if you wanted to forecast a quantity instead? Machine learning (and classical statistics) offers
methods to do quantitative prediction. The overall approach may make people with a strong engineer-
ing background a bit uneasy thinking that prediction is impossible. But relax—nobody is claiming that the
precise future is hidden in the data. However you can use the data to make a pretty good estimate. Given a
set of observations and the outcome that resulted (so again, these are supervised methods), you can build
a predictive model that will provide estimates of future values.

Think back to the linear regression analysis performed in Chapter 5. If by some strange turn of events
another state appears with 6 million people, the regression analysis using just population would predict
just under 5,000 ZeroAccess infections in that state. Although that example isn't exactly practical, you could
use techniques to estimate bandwidth usage next month, or even forecast the probable magnitudes for
the next DDoS attack.

Sometimes the end result isn't a prediction of a quantity or category. Sometimes you just want to know
about the variables you observe and determine how they contribute to and interact with the outcome. In
these cases you'll want to apply methods for inference. Inferential methods allow you to describe your
environment. How important are these variables? Are data around processor and memory usage the best
predictors of an infected machine? For example, linear regression enables you to toss multiple variables into
a single analysis and see how each of them contributes to the outcome and see the quantitative relation-
ships around them. Both supervised and unsupervised methods support inference about the variables,
and that inference is an important part of any model or algorithm.

The last application of machine learning is for exploration and discovery. This is an area where
unsupervised algorithms truly excel, but supervised methods can also support exploration. Sometimes
you may find yourself just sitting on a mound of data and you want to know what sort of relationships
or patterns exist in the data. Using methods like multidimensional scaling and hierarchical clustering
will help you explore and gain perspectives on the data that just aren’t possible with simple descriptive
statistics.

Measuring Good Performance

At the core of good learning is good feedback. If you're creating models and algorithms and never check
if they are doing well, you're doomed to repeat the same mistakes and improvement is nigh impossible.
This is such afundamental concept that several techniques have been developed to measure performance
within supervised algorithms. It's important to understand that unsupervised algorithms are generally not
used to prove (or disprove) a theory. We don't have the space to go into the mathematical details for each
method; instead this section explains a few basic approaches and some of the terms for further exploration.

DEMYSTIFYING MACHINE LEARNING

Following common sense, the best way to measure the performance of any predictive algorithm is to
simply see how well it predicts (or how poorly it predicts if you are a pessimist). There is no single, perfect
approach, so you will want to choose an approach that performs better than all the available approaches
(don't toss out a helpful approach simply because it's imperfect). All of the fancy math formulas that describe
this process are just variations on a simple theme: If you are working with quantitative values, select the
approach in which predictions are the closest to the observations. If you are working with a classification
system, choose the model with the highest number of correct classifications.

Within classic regression analysis, the difference between the calculated prediction and the observed
value is squared for each of the values and then added up. When the difference is squared, it amplifies the
larger distances and rewards the smaller values and gives a better indication of quality. The fancy term
for this is the sum square of errors (SSE). In the grand tradition of multiple ways to express the same
thing, this is also called the error sum of squares, sum square of residuals (SS residual), or the residual sum
of squares (RSS).

Since calculating SSE involves adding the squared differences, larger sample sizes have larger SSE values.
That makes it impossible to compare between a training data set and the test data set when they don't
have the same number of data points. To standardize the SSE, it is divided by the number of data points
(sample size), and the result can be compared when the sample size is not the same. That result is called
the mean squared error (MSE). Prior to the concept of a training data set and test data set, this was (and
still is in default classic approaches) calculated on the data set used to train the model. The challenge with
just relying on the MSE of the training data is that it is prone to overfitting (see the sidebar on overfitting).
One approach to comparing quantitative models and algorithms is to calculate the MSE and compare it
across multiple approaches and feature selections. You'll read more about this process in the section titled
“Validating Your Model” later in this chapter.

Overfitting

Since learning algorithms “learn” what to do from the data, it's possible that they'll learn too much
or put too much confidence in the data. When this happens, the algorithm may do very well on
the training data, but fail miserably when run on real data. This is called overfitting and occurs
when the training algorithm is too aggressive in fitting to the training data. Because it's a sample,
the training data will have it’s own quirks and characteristics that may not match the population.
Ideally, you want the learning process to ignore the quirks of the training data and just focus on
the characteristics that apply to the general population. It's a good thing to be aware of overfitting,
but awareness alone doesn't help all that much. Several approaches exist to help detect and avoid
overfitting, and you'll read about a few in the next section.

Selecting Features

Before you can train an algorithm and measure its performance, you need to have data to run on. One of the
less talked about topics within machine learning is how you go about selecting the data to collect and include
in your analysis. The variables that you collect and use within your algorithm are called features. Within clas-
sic statistics they are also called explanatory, independent, or predictor variables (and a few other things).

Benefiting from Machine Learning

The processor and memory usage in the opening example of this chapter were the features you used to train
your algorithm.

The tricky part with feature selection is that there are no guidelines in selecting the initial set of features,
so this is where your domain expertise comes into play. You collect the data points that may be important
and then (as discussed in the previous section) run them through the algorithm and check if they are actually
contributing to the outcome. (By doing this relatively simple step that is supported in almost every statistical
approach, you will have surpassed every risk analysis model within information security; congratulations.)
Although it's tempting to grab everything and anything, remember that data collection and cleaning has
a cost (at least in time and resources). And be aware that many approaches benefit from fewer variables
and may perform quite poorly with a lot of variables.

As an example, if you were thinking of improving on the malware classifier, you could pull variables
from network traffic logs, such as the ports and protocols used, how often, and how much, as a starting
point. The first pass of variables doesn't really matter all that much because whatever you choose initially
will undoubtedly be wrong-—and that’s okay. Grab data that makes sense and then try to make sense of it.
You may find that only some of the variables are helpful, or that none of the variables do well, or variables
do well only when used in combination. But the point is that feature selection is an iterative process. In
the end, you should not only look at how well the features contribute to the outcome, but also how well
(or accurately) the whole algorithm performs and then try to improve on it.

Using the Best Subset

Given a bunch of features, how could you determine which ones to include or exclude? One approach
is to try every possible combination of features and select the subset of features that performs the best.
This technique is rather appropriately named the best subset approach. The benefit and drawback of this
approach is the same—every possible combination is tested. On one hand, this approach may discover
a combination of features that you wouldn't have found without this brute force method. On the other
hand, you have to run through all the combinations of features and that may take considerable time. As a
reference point, using the best subset selection method on 20 variables will require well over one million
iterations through the algorithm and validation steps.

There is another caveat with the best subset approach. As the number of features increases, the prob-
ability of finding bogus relationships in the features also increases. The good news is that it will generally
not happen silently. Overfitting with this method may look “best” on the training data, but perform very
poorly on the test data. One way to tackle that problem is to apply several of the best subsets to the test
data or move to another technique.

Using Stepwise Comparison

When the brute force method of the best subset is infeasible or undesirable, the stepwise approach may
be a good compromise. Rather than tossing everything in, you build up the correct set of features by step-
ping over them. In a forward stepwise process, the method begins by training with each of the features
individually. Whichever feature performs the best is kept and the process is repeated by adding one more
feature to the previous results. The features are added in one by one based on their contribution. Once all
of the features have been added, all of the best performing algorithms at each of the steps are compared.
The overall best set of features is selected as the final set.

DEMYSTIFYING MACHINE LEARNING

The benefit of this method is that it constitutes an enormous reduction in the number of iterations
compared to the best subset method. But the drawback is that not all the combinations are tried and so
the best combination may be hidden. In some cases, a feature that performs best alone may not perform
best when other features are added. You can also perform a reverse stepwise comparison, where you start
with all the features and then sequentially step backward, removing the least helpful feature until you're
down to one feature again. Then, you look at all of the best combinations and select the best that way.

Validating Your Model

However you go about selecting the features to include, you still need to validate how well the approach
performs. Each algorithm may have subtle differences in how it works and the test statistics it generates
and focuses on. Still, there are a few general approaches for validating how you're doing, and they apply
to almost all the methods. The most widely used method is cross-validation, and it's discussed here. As
a second validation pass, you could look at any other resampling methods, such as bootstrapping or the
jackknife method.

The opening example started with 247 observations and then was split into a training set to train the
algorithm and a test set to test how the training set did. Recall that the data was arbitrarily split so that
two thirds was training data and the remaining one third was test data. One drawback in doing that is that
you can't train on the one third that you pulled out, and that introduces more variation in the outcome of
the training process.

What if you were to repeat the splitting and testing process so all data could contribute to both the
training and test of the algorithm? It is possible to increase the accuracy of the algorithm by generating
multiple training and test data sets and comparing the results from all of the splits. This approach is called
cross-validation, and it works better than when you just split the data once.

The common method of performing cross-validation is to split the data into some number of equal
partitions (more than a few) and then iterate over the data using each partition as the test data once. This is
known as k-fold cross-validation, because you fold the data k times (once for each partition). For example,
you could go back to the data in the first example and divide it into 10 partitions and iterate through the
process 10 times each, with a different test data set and a slightly different training data set. By combining
(averaging) the estimation of the accuracy across each of the iterations, you can have more confidence in
how that approach will perform on new data.

A variation on the k-fold cross-validation is to set the number of partitions equal to the number of
samples in the data. The result is the leave-one-out cross-validation. Named because you can sequen-
tially leave out one value from the training set and test against that one value across the whole data
set. The results from this method are often more accurate in assessing the algorithm, but it comes at a
computational cost.

Specific Learning Methods

There are a lot of learning methods, and it isn't possible to survey all of them in one chapter. We chose
a handful of approaches and will briefly touch on what makes them unique, including their strengths,
weaknesses, and so on. But the field of machine learning is as wide as it is deep, and there are many methods
we don't touch on here. Do not take that to mean they are less important or not as good. On the contrary, a

Specific Learning Methods

method such as neural networks or support vector machines may perform better in some circumstances.
We have just picked a few to serve as an introduction and overview.

Supervised

Supervised methods require that you begin with known or labeled data. You will not be able to apply
supervised methods for malware detection unless you have data from known infection and known normal
systems. While this may present a challenge in some circumstances, the power of supervised learning may
make the extra effort well worth it.

Linear Regression (and Transformation)

Linear regression is a very popular approach when it comes to quantitative prediction and inference about
the independent variables, and for good reason. Linear regression has been around since the late 1800s and
has evolved into a robust and flexible approach. One of the early “a-ha” moments with linear regression is
that it can be used on data that is not actually linear. For example, look at the line in Figure 9-3. That line
was fit to the data with linear regression.

3000 -

2000 -

1000 —

Linear regression on non-linear data

DEMYSTIFYING MACHINE LEARNING

Can you see the linear relationship in Figure 9-3? Believe it or not, it's there. The linear part of linear
regression is a reference to the linear coefficients estimated, not the data. In other words, you can use a
linear model to describe non-linear data. The trick (although it’s not really a trick) is to transform the data
prior to running linear regression on it. Looking back at Figure 9-3, the relationship between xand y is a
cubic polynomial, and some variation around y = x. Therefore, you would want to transform the x variable
and include thatin the model so you can estimate the (linear) coefficients for each of those variables. When
transforming the variables like this, you must be careful not to overfit the data. It would be possible to
add enough transformed variables to perfectly fit the training data, but such an approach would perform
horribly on the test or real data.

Linear regression has many variations and nuances that make it powerful, especially when combined
to some of the techniques mentioned earlier in this chapter. Classic linear regression relies on computing
a p-value (see Chapter 5) to assess the strength of the model and variables. The recent trend is to also
integrate validation methods such as cross-validation to support model selection and validation. See the
1m() and glm () commands within R for the specifics on how to execute linear regression.

Logistic Regression

Although linear regression is designed for predicting quantitative variables, it isnt helpful when the problem
isn't quantitative. For example, in the opening example, you needed to classify the hosts as infected or
not; linear regression wouldn't be helpful in that circumstance. Instead, you can turn to logistic regression,
which is an extension of linear regression. It models a yes/no output, that is, choosing between just two
outcomes. Figure 9-4 shows logistic regression applied to that training data.

»

()

T

SYes - X X X X X XX X X MK X X X KK
3

c

g No- KX X X X XX

(@)

c I T I I]
x 0.00 0.25 0.50 075 1.00

Estimated Probability of Infected Host

Logistic regression on infection test data

The output (on the x-axis) is an estimated probability of a host being infected based on the input
variables. That output is plotted against the known value in the test data (on the y-axis, and remember
the y-axis is not known in real life). It's clear that, given these input values, you would be able to estimate
a large portion of the hosts correctly. No matter where the cutoff is set (for example, hosts above 0.4 are
classified as “infected”), you will undoubtedly have some false positives (identifying hosts as infected when
they are not) and false negatives (identifying hosts as not infected when they are). Traditionally, logistic
regression is used to make a logical classification (this is or is not something). There are techniques for
applying logistic regression to multiple categories, which we won't cover here.

Specific Learning Methods

Within R, there are several approaches to logistic regression; however, the glm () function can handle
most situations.

K-Nearest Neighbors

The technique of k-nearest neighbors is best described using a generic sports analogy. Suppose you want to
choose a person at random from anywhere in the world and predict his or her favorite sports teams. When
you choose that person at random, you can ask his or her neighbors and friends (“k” of them, where k is any
consistent number) which teams that person cheers for. Then, you determine which teams the majority
of those neighbors cheer for and assume the person you plucked has similar taste as their neighbors.

The k-nearest neighbors algorithm does the same thing. Given a set of known (this is supervised algo-
rithm) variables, for each new data point, this algorithm looks at the nearest k data points (you pick the value
for k) and assumes that the new data point is like its neighbors. This gets away from the linear classification
of the opening example. This approach increases in accuracy as the number of observations increases. One
drawback is that it is sensitive to the selection of k. With very large values of k, this approach gets closer
and closer to creating a linear boundary. Overall, the k-nearest neighbors can be a very effective classifier
and outperform many other techniques. It's worth understanding.

Within R, the class package offers support for k-nearest neighbors (and other knn functions).

Random Forests

Random forests are built on the concept of the decision tree and excel at multidimensional data (data with
a lot of features). The decision tree is what IT people think of as a flowchart. You start at the top of the tree
and branch off in different directions, depending on the criteria within the tree compared to the observed
features. Imagine the various types of decisions that could be built given data types—if the data is above
average, fork here; if data fits into that category, go there. If you have complex data, you must use more
than one decision tree. A technique called boosting was developed to create a whole lot of decision trees
and then look at the aggregate result from all of them. Boosting provides a huge improvement. Although
each individual tree performs poorly, they all performed poorly in a predictable spread around the best
answer. Therefore, the best answer can be derived from looking at all the trees (see where this is going
with the forest?).

Boosting decision trees works quite well, but it's influenced by noisy features. One or two bad eggs in
the basket can bias the result by consistently pulling trees in a weird (and difficult to detect) direction. The
random forest technique gets around that problem by growing the trees with only a small subset of the
features. This makes each individual tree an even worse predictor, but the aggregate improves because
the noisy variables are included only in a subset of the features selected for each tree, and not influenced
by every tree in the forest.

Random forests bring a new way of thinking and are squarely in the non-parametric camp. They do not
attempt to create a model of reality and then derive the parameters of the model (such as with regression
techniques). Instead, random forests create a huge set of relatively weak predictors and then aggregate
across them all. This is like going to a new town and asking only tourists for directions. Many of the answers
will be way off, but if you look at the aggregation of all the answers, you'll probably get where you're going.

As you may be thinking, you would never attempt to apply the random forest technique with pencil
and paper. This technique grows hundreds or even thousands of multi-branched decision trees based on

DEMYSTIFYING MACHINE LEARNING

random points in random features and can be done only with the aid of a computer. Within R, random
forests are available from the appropriately named randomForest package. It's also worthwhile to
explore parallel processing solutions, and the R package doParallel offers a good solution for spread-
ing the processing across multiple cores and reducing the computational time needed for random forests.

Comprehension versus Performance

One of the challenges with machine learning is that some of the techniques are so complex and
abstract that they push the boundaries of human comprehension. At some point, you'll reach a
trade-off between the ability to comprehend an approach and the performance it brings. Neural
networks are an example of this trade-off. In some cases, neural networks offer better performance,
but they are rather complex and difficult to comprehend and difficult to tune properly without that
comprehension. You may opt for an approach that is easier to comprehend, easier to explain to
others, and easier to use at the expense of a slight deterioration in performance, and you should be
comfortable with that. Given the complex nature of many decisions with information security, any
approach with machine learning is better than any decision without machine learning.

Unsupervised

As we mentioned earlier in this chapter, unsupervised approaches are quite useful to find underlying pat-
terns and relationships in the data. Given some pile of data, what kinds of trends exist in there?

K-Means Clustering

K-means, like k-nearest neighbor, uses the “k” to represent a variable that you will set as part of the approach.
The kin this technique represents the number of clusters to be generated. The k-means approach follows
the following algorithm:

1. Setk “center points” randomly among the data.

2. Assign all the data points to the nearest center point.

3. Calculate a new (mean) center of the data points assigned.
4. Move the center points to the new calculated (mean) center.
5. Repeat Steps 2-4 until all centers no longer move in Step 4.

Notice how Step 1 in the k-means technique uses randomness? This means that if you rerun a k-means
clustering, you may get different clusters. Figure 9-5 shows the same data with multiple different k-values.
The kmeans () function in base R will perform k-means clustering.

Hierarchical Clustering

The downside to k-means is that you have to specify the number of clusters. This is where hierarchical
clustering can help by deriving all of the clusters within the data. The output of hierarchical clustering is

Specific Learning Methods

called a dendrogram (see Figure 9-7 later in this chapter) and looks like a tree, starting at the top and
branching off into two groups at a time until all of the objects are in their own cluster. Algorithmically, the
approach actually starts at the bottom with everything in its own cluster. It then scans across all the pairs,
comparing and looking for the most similar pairing. When it finds similar clusters, it will combine those
two. This repeats until there is one cluster with everything at the top.

k-means with 3 clusters k-means with 4 clusters

FIGURE 9-5 K-means clustering with centers shown

The advantage to hierarchical clustering is that it is possible to “cut” the tree down and inspect the
clusters at any point in the tree, which is what you'll do later in this chapter when you use the hclust ()
function on breach data.

Principal Component Analysis

Principal component analysis (PCA) reduces the number of features you look at to those that really matter
and is one of a few techniques to perform this dimension reduction. PCA works best on data that is highly
correlated because it can capture most of the variation in the data with a reduced number of variables. The
outcome of PCA is a list of derived components ordered by how much variance they describe in the data.
Once the data is reduced to that format, you can pull out the significant components and use those moving

DEMYSTIFYING MACHINE LEARNING

forward rather than the larger (and possibly noisy) number of dimensions. Running PCA in R requires the
single command of prcomp ().

Multidimensional Scaling

Sometimes you'll just want to see the clusters. This can be problematic with multidimensional data because
you cannot visualize in more than three dimensions (and even that third dimension is tough on a flat
screen or paper). The solution is to use a technique called multidimensional scaling (MDS). Like PCA,
MDS performs dimension reduction. It can squish the multidimensional data into two dimensions so you
can visualize the relative similarities between objects. You'll run through an example of this technique
later in this chapter, using the R command cmdscale () forclassic multidimensional scaling. In the next
section you will see the output of multidimensional scaling when applied to the industries of breach data.

Hands On: Clustering Breach Data

In this section, you revisit the VERIS community database (VCDB) data you used in Chapter 7 in order to see
multidimensional scaling and hierarchical clustering in action.

The natural approach to breach data is to simply count the categories, see what occurs more often,
and then draw some conclusions from that information. But the challenge with that approach is that any
conclusions drawn may be applied too broadly if the conclusions don’t apply across the board. After working
with breach data for a while, it becomes clear that different industries have different problems. Each industry
shares some common traits, like they all deal with the same type of information, causing some industries
to be targeted more or less than others. Organizations in the same industry are more likely to copy others
in the same industry, so the breach data may also show some type of pattern because of that.

The problem then is this:

Just how different (or similar) are the incidents across industries?

This is a rather interesting challenge because the only thing you start with is a hunch that industries
are in fact, different. The best approach to this question is in some of the clustering algorithm. If you can
isolate variables across the industries, you can calculate a “distance” between the industries in order to
determine which are alike and which display some unique traits.

You’ll begin this analysis by converting the VCDB data to a matrix (see Listing 9-8). You haven't read
much about matrices in R, but they are similar to a data frame in that they have fixed row and column widths
(think of spreadsheet cells, which are “rows” long and “columns” wide). The unique aspect of matrices is
that they can contain only one type of variable (such as just characters or just numbers). For this work, you
will convert the VCDB to a numeric matrix. Luckily, the verisr package has a function for just such an
occasion, and it’s appropriately called veris2matrix () . Begin by loading the verisr package (see
Listing 7-5 in Chapter 7 if you haven't installed it yet).

requires package : verisr (7-5)
requires VCDB data from chapter 7 (see comments)
library (verisr)

if you have grabbed the incidents from the VCDB repository at

Hands On: Clustering Breach Data 237

https://github.com/vz-risk/VCDB you can set the directory to that
Otherwise, this should reference the data from chapter 7
jsondir <- '../ch07/data/vcdb/'

create a veris instance with the vcdb data

vedb <- json2veris(jsondir)

finally, you can convert veris object into a numeric matrix
vmat <- veris2matrix(vcdb)

you may look at the size of

the matrix with the dim() command

dim (vmat)

[1] 1643 264

Looking at the output from the dim () command, the data from VCDB at this point is providing 1,643
rows (one row per incident in the data repository) and 264 columns. Each column is a single enumeration in
the data, and you can see what the columns are by looking at the column names with the colnames ()
command. Whenveris2matrix () createsthe matrix, it will create a unique column for every enumera-
tion it sees within the VERIS data. For example, if the hacking variety of a SQL injection attack is present,
one column in the matrix will be act ion.hacking.variety.SQLi and the column will bea 0 or
a 1, depending on if that particular value was present in the incident, and will be set for all the incidents in
the matrix. If none of the incidents is recorded with SQL injection, the whole column will not be present.
The entire matrix is just a collection of ones and zeros at this point. This matrix isn't directly helpful as is,
but it will serve as the base data from which you'll generate the training data.

Next, you'll identify the variables that you want to compare—the victim industries. In order to get that
list, you can simply look at the column names, pull out columns with victim. industry in the title,
and use them as the variables (see Listing 9-9). You will want to pass that into the function from verisr
called foldmatrix (), which will take in the numeric matrix you just created and the list of variables
you're going to fold this matrix on (the victim industries).

You will also pass in two other variables. The first variable is min, which enables you to set a minimum
threshold for the number of incidents in each industry. If an industry has less than the minimum, it will not
be included in the analysis. For this exercise, you'll set 10 as the minimum. The last variable to pass in is
clean, which asks the function to clean up the final matrix by removing the rows less than the minimum
and any columns that are all the same. You will need to clean it up since those variables will not contribute
to the analysis. If you were using this approach to do PCA analysis, it would throw an error if you didn't
first clean up the matrix.

requires package : verisr (7-5),

requires object : vmat (9-8)

now pull the column names and extract industries

vmat.names <- colnames (vmat)

industry <- vmat.names[grep('victim.industry', vmat.names)]

"fold" the matrix on industries

this pulls all the incidents for the industry

and compresses so the proportions of the features are represented.

(continues)

DEMYSTIFYING MACHINE LEARNING

(continued)
imat <- foldmatrix(vmat, industry, min=10, clean=T)
dim(imat)
[1] 17 251

There were 17 industries (actually 17 unique two-digit industry codes from the NAICS specification
discussed in Chapter 7). It also looks like the function cleaned up 13 columns after folding the matrix.
Now you have one row per industry; the columns represent a VERIS variable, and the value represents the
proportion of incidents in the industry with the VERIS variable present.

For example, if you were looking at healthcare and SQL injection (again), and 40 of the 100 healthcare
incidents involved SQL injection, you would see a 0.4 in the column of action.hacking.variety.
SQL1 in the healthcare row. This is where the comparison occurs. You compare the differences in all of
these variables across the industries.

Multidimensional Scaling on Victim Industries

The purpose of all that prep work was to get the data ready to apply some multidimensional scaling to the
industries. And finally, this is where the magic happens! As with many tasks within data analysis, you spent
more time preparing the data than you spend actually running the analysis. The first command converts
your matrix of industries and variables into a distance matrix. This matrix uses the Canberra metric of
distance (it does better with values around the origin) to calculate a distance metric between each pair of
industries. Then you can feed that distance matrix into the cmdscale () function, which projects it onto
a two-dimensional plane for plotting (see Listing 9-10).

requires object : imat (9-9), vmat (9-8),
convert the distance matrix

idist <- dist (imat, method='canberra')

run it through classical MDS

cmd <- cmdscale (idist)

and take a look at the first few rows returned
head (cmd)

[,1] [,2]
victim.industry2.32 -75.080869 -50.662403
victim.industry2.33 -29.457487 -2.942502
victim.industry2.42 -24.727909 21.751872
victim.industry2.44 3.692422 7.840992
victim.industry2.45 -18.855236 93.787627
victim.industry2.48 -54.382350 23.166301

Look at what is returned from cmdscale (). It looks ready to be visualized because those are x and
y points. In fact, at this point you could run plot (cmd) and see where those points are. However, the
points would be unlabeled, and it’s worth it to spend some time to create a good-looking plot. In a final
plot, it'd be nice if you gave some indication of size per industry, and since you still have that original vmat
matrix, you should be able to pull out a count of incidents in each industry. Then you should fix those labels
because the VERIS data deals with the NAICS industry codes. Although very helpful, the industry codes

Hands On: Clustering Breach Data

are not all that user friendly. You can get nicer labels by loading the industry?2 datainthe verisr
package and mapping the industry codes to the shorter labels (see Listing 9-11).

requires package : verisr (7-5),
requires object : cmd (9-10), vmat (9-8),
get the size of bubbles
ind.counts <- colSums (vmat[, rownames(cmd)])
extract the industry label
ind.label <- sapply (rownames (cmd), function(x)
tail (unlist(strsplit(x, "[.1")), 1)
3]
load up industry data, included with verisr package
data (industry2)
create a new list of short tet
txt.label <- industry2$short [which (industry2S$Scode %$in% ind.label)]

And now you have variables called ind . counts and txt . label in the same order as the cmd
object. Now you can create a data frame and create a plot with ggplot2 (Listing 9-12).

requires package : ggplot2

requires object : cmd (9-10), ind.counts, txt.label (9-11)

library (ggplot2)

indf <- data.frame(x=cmd[,1], y=cmd[, 2], label=txt.label,
size=ind.counts)

gg <- ggplot (indf, aes(x, y, label=label, size=size))

gg <- gg + scale_size(trans="log2", range=c(10,30), guide=F)

gg <- gg + geom point (fill="lightsteelblue", color="white", shape=21)

g9 <- g9 +

gg <- gg + geom text (size=4)

99 <- 99 +

xlim(range (indf$x) *1.1) # expand x scale

theme (panel.grid = element blank(),
panel.border = element blank(),
panel.background = element blank(),
axis.text = element blank(),
axis.title = element blank(),
axis.ticks = element blank())
print (gg)

You use the ggplot theme () command to strip out everything because the scales and labels are irrel-
evant for viewing. You want to view the relative location of the industries in respect to other industries. In
this plot the x- and y-axes are a distance measurement using the Canberra metric, and the numbers don't
have any meaning or significance for a person viewing them.

Figure 9-6 is rather interesting. You can see that healthcare and government (public) victims
appear to be similar (probably due to the large amount of lost devices and error that is reported

DEMYSTIFYING MACHINE LEARNING

within those demographics). The little cluster on the top of accommodation and retail is interesting.
Those two industries see the bulk of the “point of sale smash and grab” attacks. The cluster of three in
the lower-left corner might be worth more investigation. It’s hard to say exactly why those three are
grouped up there without looking further into the data.

Retail(45)

Accommodation (72)

Information (51)

Transportation (48) Trade (42)

Administrative (56)Retall (44)

Manufacturing (33)

Professional (54) %?Hgﬁgg?glzgm)

Other Services (81)

Entertainment (71) Healthcare (62)

Real Estate (53 S
Manufacturing 532? ublic (92)

Basic MDS plot of breaches within an industry

Hierarchical Clustering on Victim Industries

Althoughit’s possible to look at Figure 9-6 and make some clusters visually, you should be careful in doing
so. MDS reduces (approximates) a multidimensional object into two dimensions so there will be some
perspective and detail lost. Figure 9-6 can serve as a visual to some talking points or, better yet, a point
from which to jump into more analysis.

So let’s keep going with this data and apply some hierarchical clustering on this data to derive the clus-
ters mathematically. You can simply feed the 1d1 st distance matrix right into the hc1lust command and
plotit (Listing 9-13). To make the labels on the plot user friendly, you should relabel the rows of the original
industry matrix and rerun the dist () command to recreate the 1dist object with readable labels:

requires object : imat (9-9), txt.label (9-11)

#
go back and relabel imat

Height

160 200

120

Hands On: Clustering Breach Data

rownames (imat) <- txt.label

rerun idist

idist <- dist (imat, 'canberra')
hclust couldn't be easier

hc <- hclust(idist) #
plot (hc)

, method="complete")

Cluster Dendrogram

}

}

Information (51)

T
b

l
Retail(45) m

Retail (44)
Trade (42)
Healthcare (62)

Public (92)

Accomodation (72) —|
Finance (52)

Administrative (56)
Manufacturing (33)
Other Services (81)
Transportation (48)
Entertainment (71) «\
Manufacturing (32)
Real Estate (53)
Professional (54)
Educational (61)

idist
hclust (*, "complete")

Hierarchical clustering on victim industries

From Figure 9-7, you can see how and when things are split off into clusters. The end result is that they
are all “clustered” into their own groups since each is unique. Now you can use the cutree () command
to cut the hierarchical tree down into an appropriate number of clusters. You can try whatever number
you like, but this example shows six clusters. Since you are subjectively choosing where to cut the tree,
you cannot use this approach to prove there are six clusters here (or however many you choose). But what
you can say is that, if the hierarchical cluster is cut at six, these are the clusters it produces. Of course, many
people won't have a clue what you're talking about, but at least now you do.

When you run the cutree () command, it will take in the output from the hclust () command
and the number of clusters to cut it off at. It will return a vector of the numbered clusters that each industry
is assigned. You can then use that vector to assign a unique fill color per cluster so the plot will visually be
clustered by color (Listing 9-14). You do this by converting the cut tree () command to a factor and then
adding it to the indf object created previously. Then plot it again with the colors, as shown in Figure 9-8.

DEMYSTIFYING MACHINE LEARNING

requires package : ggplot2

requires object : indf (9-12), hc (9-13)

we can now cut off the heirarchical clustering at some level

and use those levels to color the MDS plot

indfscluster <- as.factor(cutree(hc, 6))

gg <- ggplot (indf, aes(x, y, label=label, size=size, fill=cluster))

gg <- gg + scale size(trans="log2", range=c(10,30), guide=F)

gg <- gg + geom point (color="gray80", shape=21)

gg <- gg + scale fill brewer (palette="Set2")

g9 <- 99 +

gg <- gg + geom_text (size=4)

gg <- gg + theme(panel.grid = element blank(),
panel.border = element blank(),

xlim(range (indf$x) *1.06) # expand x scale

panel.background = element blank(),
axis.text = element blank(),
axis.title = element blank(),
legend.position="none",
axis.ticks = element blank())

print (gg)

Remember earlier we mentioned that this process converts multi-dimensional data into two dimensions?
Inlooking at Figure 9-8, you can see how the transportation industry is clustered with the industries in the
lower left, instead of the visually closer trade industry. Feel free to try changing experimenting with the
number of clusters fed into the cut t ree command. What you can take away from this particular visualiza-
tion is that there are a lot more questions than answers from it. Why is healthcare in its own cluster? Why
is the retail industry with NAICS code 44 so distant from the retail industry with NAICS code 45? What is
going on in the Information industry that they are out on their own like that? The good news is that we've
got the data, and the answers to these questions are just waiting to be discovered.

Summary

Open source applications like R and Python have made running machine learning algorithms accessible
and relatively easy. However, there is a big difference between running a machine learning algorithm and
running a machine learning algorithm well. Like it or not, machine learning has very deep roots in statistics
and mathematics. Attempting to dive into these techniques without an understanding of the subtleties
and nuances may create more problems than they solve. Having said that, the best way to learn is to jump
in head first and splash around. Grab (or generate) data, read the blogs, books, and documentation, and
try several approaches. | can guarantee there will be some frustration along the way, but the outcome
will be better learning and an overall better understanding of the data and, thus, the world around you.
Such knowledge can feed directly into the security decisions you and your organization are facing on a
daily basis.

Recommended Reading

Retail(45)
Accommodation (72)

Information (51)

Transportation (48) Trade (42)

AdmideRER: (55

Manufacturing (33)

Professional (54) %?#gggg?glzgm)

Other Services (81)

éEnt?Eg;n{r)'e(gg 571) Healthcare (62)
eal Estate Sias
Manufaeturing (32) ublic (92)

Clustered MDS plot of victim industries

Recommended Reading

The following are some recommended readings that can further your understanding on some of the topics
we touch on in this chapter. For full information on these recommendations and for the sources we cite in
the chapter, please see Appendix B.

Machine Learning for Hackers by Drew Conway and John Myles White—There aren’t many
machine learning books for beginners, but this book is one of them. It does a very good job at giving
hands-on examples in both R and Python. They avoid most of the math but not the challenges with
the approaches. Overall, this is a good first book to purchase.

An Introduction to Statistical Learning with Applications in R by Gareth James, Daniela
Witten, Trevor Hastie, and Robert Tibshirani—As you progress beyond the basics and begin
looking for that next step, this book is a fantastic next resource. It doesn’t shy away from the math,
but at the same time, it doesn’t dive too deep into it and provides just enough explanation to make
sense. The authors spend quite a bit of time on the algorithms, including covering resampling meth-
ods, model-selection techniques, and the foundations of all the algorithms.

Designing Effective Security
Dashboards

DESIGNING EFFECTIVE SECURITY DASHBOARDS

Just when you thought it was safe to leave the comfort of your analytics lab to grab another caffeinated
beverage you find yourself in a conversation with one of the security managers and are asked the inevitable
and dreaded question, “Can you help us build a security dashboard?” If that sentence did not cause even
a flicker of your own fight-or-flight response, you may not truly understand the difficulty of designing
succinct, meaningful displays of quantitative information in order to drive some type of action. This chapter
presents techniques and advice that will enable you to design dashboards to help measure, monitor, and
mobilize every layer of security in your organization.

What Is a Dashboard, Anyway?

It's nigh impossible to discuss the subject of dashboards without quoting the definition of dashboard
coined by the “Godfather” of dashboards, Stephen Few:

“Adashboardis a visual display of the most important information needed to achieve
one or more objectives that has been consolidated in a single computer screen [or
printed page] so it can be monitored at a glance.”

—Stephen Few, Information Dashboard Design

We've added “or printed page” since organizations are still quite fond of paper, and there are special
design considerations when including printed output.

We can make Few’s definition a bit more real by phrasing it another way: A dashboard provides a single
screen/page opportunity to provide the most critical/relevant information in the most concise and effective
ways possible to enable the viewer to quickly understand the elements being described and, if necessary,
make the most appropriate decision(s).

If you present data that is irrelevant, your dashboard will not be used. If you have too many or too
complex encodings, your dashboard will be ignored. If it's ugly ... well, at least you won't be asked to make
dashboards anymore! Dashboard creation truly is a daunting endeavor. To fully grasp the nuances of what
a dashboard is we'll start by chipping away at the marble block of what a dashboard is not to reveal the
underlying true nature.

A Dashboard Is Not an Automobile

The term dashboard originally referred to a board in a horse-drawn carriage that helped prevent mud
from splashing on occupants. When the automobile was invented, the term morphed into something that
we all recognize today as the crucial set of performance indicators available to drivers. It was this familiarity
(almost everyone knows what an automobile dashboard is) that caused the computer industry to associate
the term with the summary displays in executive information systems.

The automobile dashboard has the elements it does because they make sense in context. Gauges react to
the point-in-time changes we make when accelerating or decelerating; we get an accurate—but not neces-
sarily precise—understanding of fuel supply and battery condition; and, we know how far we've gone—all
ata quick glance. Somewhere along the way, designers of executive information systems forgot the concept
of “makes sense in context” and brought these (and other) real-world elements into the digital world.

What Is a Dashboard, Anyway? 247

Gauges, dials, thermometers, stoplights, and other skeuomorphic elements consume valuable space
and rarely communicate information better than other visual elements, but they can hold useful informa-
tion, including:

@ Current value of key measure(s)
® Comparison to target measure(s)
® Arange of possible values of the measure(s) with a qualitative association

Consider Splunk’s dashboard example for “Notable Events by Security Domain” gauges in Figure 10-1.
The gauges are huge and the information displayed in each—47, 81, 8, 2, 31, 30—is repeated in the top-
level labels, making them also redundant. It's also hard to mentally correlate the gauge needle position to
any type of urgency, since each one has a giant red arrow above it, but not all needles are in the red zone
on the gauge.

real-time

Notable Events by Security Domain

Change: Change: Change: Change: Change: Change:
+47 1 +81 +8 i +2 +31 1 +30 f

Access Endpoint Network Identity Audit Threat

Sample Splunk dashboard

If you apply the knowledge gained from Chapter 6, you can combine a few basic plots to make what'’s
known as a bullet graph and replace the skeuomorphic gauges (see Figure 10-2), although you have to
invent some of the comparative measures and guess at the quantitative scale since the original did not
encode those well (or at all). This new view makes it much easier to see where you are exceeding event
thresholds in various areas than you could in the figure using the gauges.

The value change is also important to display, but the giant red, upward-pointing arrows in Figure 10-1
do not help to tell an accurate story. You can augment the bullet graph with paired sparklines—“data-
intense, design-simple, word-sized graphics” (from Tufte and Graves-Morris, 1983, which you can find in
the references in Appendix B of this book)—of each 24-hour measure to provide a quick picture of what
happened in the various event streams. See Figure 10-4.

The file ch10/R/bullet .R on the book's website (www.wiley.com/go/data
drivensecurity)showshow to create bullet graphsin R, but you can easily create basic bullet graphs
in Google Charts by building a simple URL such as (enter the following as one, contiguous line in your
browser or look at the examplein ch10/docs/bullet.html):

http://chart.apis.google.com/chart?cht=bhs&chs=250x30&chd=t:93
&chm=r, DDDDDD, 0,0.0,0.57|r,999999,0,0.57,0.85|r,888888,0,0.85,
l.O|r,FFOOO0,0,0.85, 0.86&chco=000000&chbh=15

DESIGNING EFFECTIVE SECURITY DASHBOARDS

You can even use Excel to make enhanced visualization elements. The source for the sparklines used in
Figure 10-4 can be foundin ch10/docs/ch10-sparklines.x1sx, and Excel offers both sparkline
and sparkbar chart options with many options for customization.

Ironically, Splunk has a rich visualization library that includes bullet graphs and sparklines, so if you're
building your dashboards in that tool, ditch the gauges and switch to the more informative options.

Access v
0 10 20 30 40 50
Endpoint Ve
0 20 40 60 80
Network v
0 10 20 30
Identity . v
0 5 10 15 20 25
Audit | v
0 10 20 30
Threat 7
o] 10 20 30

Bullet graph makeover

A Dashboard Is Not a Report

IT and information security professionals tend to be very detail-oriented people. They are the type of people
who get excited at the “show your work” directive on school assignments and love to dig into the details to
show folks how they arrived at their conclusions. It's absolutely necessary to have multiple levels of detail
behind the dashboards you create to enable verification/validation and to support drilling into specific areas
as needed. However, the top-level view should be designed solely to give the viewer situational awareness
of the desired task. Just because the onboard diagnostic system in an automobile can tell you the value of
the “Bank 2, Sensor 3: Oxygen sensor voltage, Short term fuel trim” does not mean that we need another

What Is a Dashboard, Anyway?

gauge in our cars that displays this value while we're driving. The “check engine” light is enough for us to
know that something requires more deliberate attention and detailed examination.

Bullet Graph Basics

The bullet graph is a fairly new chart type, especially when compared to more traditional visual-
izations, such as bar charts and line graphs. It was invented in 2005 by Stephen Few as a way to
incorporate the positive attributes of gauges into a more utilitarian graphic. As such, there is a bit
of a learning curve both in creating them (encoding) and understanding (decoding) them.

As seen in Figure 10-3, there are five core components of a bullet graph:

® A bar that encodes the performance measure of the actual item you are measuring
and trying to communicate the value of

® The overall scale of measures
® Atleast one marker with a comparison measure
® Background shades or colors that represent qualitative ranges for values

® A label for the bullet graph

Comparison measure

SIEM Events Per Second - 6,450 EPS
(Thousands)

0 2 4 6 8 10

Performance measure Scale
Elements of a bullet graph

The sixth component shown in Figure 10-3—the actual value of the number of events per second
being processed by the security information and event management (SIEM) system on the right
side—is optional, but useful if your viewers need more precision.

Although these examples are sized a bit larger for the purposes of explanation, bullet graphs resize/
shrink quite well without losing their ability to communicate effectively and efficiently.

Do not take this caution to mean that you shouldn’t use text, lists, and tables in a dashboard. Those
elements are valid to include where you need precision, provided they support quick perception, compre-
hension, and a call to action. If you wanted to communicate number of events per second being processed

DESIGNING EFFECTIVE SECURITY DASHBOARDS

by the SIEM from Figure 10-3 with just straight text, there are multiple possibilities to choose from, as
shown in Figure 10-5, including plain text or colored text (if highlighting the value as “interesting”), or
even a simple textual table. If you really just need to drive action without presenting underlying detail, the
simple “Variance +43%" statement should be enough to motivate someone to find out why the system is
suddenly seeing 43 percent more events than usual.

AcCCess v W

v] 10 20 30 40 50

Endpoint , o /\/V\/\/\/\/
[t] 20 40 60 B8O
Network pe v /\/\/\/\/\/\/\

0 10 20 30
Identity p 5 /\/\/\/\/\/\/\f\
o 5 10 15 20 25
Audit , _)
o 10 20 30
Threat m— /\/\/\/\/\/\——\/
o 10 20 30
Sparklines

SIEM EPS 6,450
SIEM EPS 6,450

Current Normal Variance %
SIEM EPS 6,450 4,500 +43%

SIEM EPS Variance +43%

Encoding measures with text

What Is a Dashboard, Anyway?

Asindicated in Chapter 6, it's usually best to display a graphic instead of large amounts of tabular data.
Numbers and text always require attention whereas shapes and colors can draw attention preattentively.
Just be ready to call up specific values or provide a data table if there is a call to action that requires a
detailed review before making a decision. This can be easily done online, since most dashboard-creation
tools provide some sort of drill-down capability. For printed or non-interactive dashboards, you can pro-
vide a standalone, supplemental report or a link to an online resource that supports further investigation.

When Dashboards Fail

Dashboards establish a partnership between the viewers and producers. Viewers need to trust
that the summarized views they are interpreting represent a good-faith attempt on the part of
the producers to provide the most accurate data in the most effective way possible. Similarly,
producers must have some assurance that the “messenger won’t be shot” for providing honest,
accurate information.

This seems obvious, but how many times have you been in a dashboard review meeting where you
cringed at some measure being reported as acceptable when you knew that there was cause for
concern (especially as it relates to the status of highly visible projects). This is a situation even the
most elegantly crafted dashboard cannot resolve. Chapter 6 presented the concept of “truth” as it
relates to data, and it’s vital that a dashboard always display truthful measures if an organization is
serious about managing operations with them.

Dashboards also fail when they regularly miscommunicate or overcommunicate the performance
measures. It's a far easier task to make a lazy guess and put a green stoplight in a PowerPoint docu-
ment than it is to admit you don’t have enough real data to back the analysis and quantification
of an important measure. Similarly, if the viewers always review the supporting material for every
performance measure, they probably don't trust the producers and should trade their dashboards
in for reports.

A Dashboard Is Not a Moving Van

Boxes are great for shipping items, but they are detrimental to the effective display of information on a
dashboard, as seen in Figure 10-6.

Most of the elements contained in those boxes are themselves boxes, making the extra framing redun-
dant. Excessive framing is often an issue with online dashboards. This is because many interfaces tend to
align items in singular cells in a fixed grid and provide options for “on-the-fly” modification.

Figure 10-7 shows a transformation of Figure 10-6 using Microsoft Excel. You start by removing super-
fluous markings, borders, and annotations. We also take the opportunity to change the encoding of some
of the measures to enhance the readability.

Whitespace now frames each element and there is a more cohesive feel to the entire dashboard. We've
removed the map, since a color-coded table is a better choice for the type of information displayed. We've
also replaced the “funnel” with a normalized, grouped bullet graph. We significantly reduced the “chartjunk”
and used a more subdued but deliberate color. You can find an Excel version of most of the components for
thisexamplein ch10/docs/chl0-overhaul . x1sx on the book’s website at www . wiley . com/
go/datadrivensecurity, which should be a good starting point for your own dashboard makeovers.

DESIGNING EFFECTIVE SECURITY DASHBOARDS

Eveats By Severty e Cumtemer tvent Ansiyais O x| | Source ouiries Hap o
1= ans Estarge View

"
Totsl Excatstons

Business Bivk Tremd t-] Highest Cancern Ausets - Lecurmy Intedigence Tremd -
-1-Fg aes ans
Dhatess Wi OB Ordees W @ Gsnns Bl ke S — A
e ——— = a

. - s —— ¢ g
& R &
o+ & eas o t00 & L AR G R
Aftack Events Monared Lecusity Event Trend X} Aot Becent incidents £
aps ans
RN T
i 0 severtty | i Description
e
kv
ans 400
s i
T i 0 000
1 ['\./,m

F A EF TSP
P R P

Sample “boxy” dashboard

There are still some core issues with this dashboard. The individual elements seem haphazardly chosen
and put together with almost no opportunity for logical groupings. The foremost issue is that there are
no indicators of what is good or bad (we had to fabricate thresholds for the bullet graphs in order to use
them). Without those indicators, a dashboard like this more appropriately belongs in the “report” category,
although it falls short of those requirements as well.

Dashboard Excel-lence

We chose to model the dashboard in Figure 10-7 in Excel, as this will likely be the only tool available
to most readers. Books dedicated to dashboards often provide examples of perfect dashboards that
require specialized tools or post-processing by hand in applications like Adobe lllustrator to generate.
With a little extra effort, it is possible to make well-designed charts, graphs, and dashboards in Excel.

What Is a Dashboard, Anyway?

It's important to note that the single-cell, fixed-grid is not your only option. Different layouts can layer
on top of a virtual landscape grid to provide more room for larger or more prominent chart types or to
allow for logical groupings of elements that naturally fit together. You must take your output medium into
consideration when planning your dashboard elements and layout. Your dashboard may look wonderful
on the 27-inch “retina” display where you designed it, but it may be unintelligible on a standard resolution,
15-inch laptop screen. There may also be times when a vertical (portrait) layout works better with your data,
so you should not box yourself into a corner by having only one layout system handy.

Customer Event Analysis Events By Severity Attack Event Types
Total m————— g ®High = Med * Low Urkncram
~ -4 i) . AO00 ALOD ACOO Recon [N
Security — Leakage I
D L) e
. o o 100 S Hostie
e — Trojan [N
o 50 100 sugh [
SOC — y— Exploit
® o 1o Bes
EScalatians e P = == o . » ,, P =
o 50 100
Business Risk Trend Monitored Security Event Trend Attack Sources

200000
180000

som soon 160000 United States

140000

120000 China -2%
100000
Booon Russia 1%
1000 1000 so000
20000 Germany -1%
. i . Ao i Great Britain 0%
D

13 May Jun Jul Aug Ses Cet New Dec dan

®inicdents Sintel @ Expenures

Security Intelligence Trend Highest Concern Assets Most Recent Incidents

Lo Medium = legh 000 W incidents ®intel ™ Expasures ™ i - ’
oo ri, IN3542719 Nov 04 11:11 HIGH OPEN

250

0 o . o IN3542766 Nov 04 11:27 MED Closed
300
pos s 00 IN3543045 Nov 04 02:24 MED Closed
200
7 o aam IN3543069 Nov 04 02:45 MED Closed
00 75 Lol
S [P 2 e - IN3543801 Nov 1502:07 MED Closed
s o - a

Dashboard makeover

Be sure to follow the advice on eye movements in Chapter 6 and reserve the upper-left area for the
most critical information that needs attention by your viewers.

A Dashboard Is Not an Art Show

Given the graphical nature of dashboards, it's easy to fall into the trap of making them look like pieces
of modern (or fringe) art when they are far more akin to architectural/industrial diagrams that require
more controlled, deliberate, and constrained design. To put it simply: Just because you can do some-
thing in the context of a dashboard does not mean you should. Take Figure 10-8 (from http://www
.securitywizardry.com/radar.htm), for example.

This is an example of a situational awareness dashboard from Security Wizardry. It uses the “modern”
light-on-black design with quite a diversity of colors and tries to pull in data from multiple sources. It's
“glitzy” but it is not informative.

DESIGNING EFFECTIVE SECURITY DASHBOARDS

. Cyber Security
Security News Situational Awareness

g firm puts out hacks

Virus News

U McAfee

BM Cisco

3141 £2i2: e e

. v 4948
Click for alert details © Generic Downloaderk

© Generic Dropperlo
© Generic.dxlgky
+ Complets list

ALERTCON" EEp://isc. sans-edu

ARBOR Networks Attack Sources Map Latest Tool Versions

Cain & Abel 27
Kismet
Metasploit

Nessus
Nmap

168ep13 2855
i freshark 108ep13 1102
st Forgery Latest IDS Signatures
;] 13 751
3crinting

7.6209

Proventia 080ci13 33100
Sourcefire IPS 3 SEU 990

Stonesoft IP§ 3 17-5211

Los Angeles Ft Belvoir (VA) New York UTC/Zulu London Europe Baghdad Kandahar Sydney Wellington NZ

17:23:36 20:23:36 20:23:36 01:23:36 01:23:36 02:23:.36 04:23:36 05:53:36 12:23:36 14:23:36

Example of a monitoring dashboard from Security Wizardry

The system dashboard in Figure 10-9 pushes the artistic envelope even further with considerable use
of various 3D charts. If you can overlook the redundancy between the “Recently Completed Scans” and
“Current Threat Level” panels (even with the discrepancy between where the gauge reports the value
versus the marked, segmented bar), you are faced with having to spend real mental cycles processing
3D shapes for “Current License Usage” and “Total Vulnerabilities Last 12 Months” when a simple numeric
value would have sufficed. The pyramid in the “Vulnerability Severities” forces you to perform even more
cognitive processing to decode and inverts the usual “most critical on top” rule that is usually associated
with triangular charts. In other words, you spend far more time deciphering and decoding these panels
than understanding what information they are trying to convey and reacting to those messages.

RECENTLY COMPLETED SCANS CURRENT THREAT LEVEL TOTAL VULRERABLITIES THS WONTH TOTAL VUILHERASILITIES LAST 12 MONTHS

SEal 4 THREAT LDVEL aroen ek

-3D dashboard

What Is a Dashboard, Anyway?

To be effective, dashboards must be pleasant to view, so there must be some amount of artistic choice
going into the creation. However, it's necessary to design within constraints. It's similar to the difference
between free verse poetry and more formal types—such as a haiku or a Shakespearean sonnet—where
constraints provide context for creativity without muting it in any way. Likewise, there are some design
guidelines that can help channel your creative side when building dashboards.

Limit Chart Types

When encoding information into a chart, stick with the ones that are easiest for viewers to decode. Some
good choices are:

® Bar graphs/bullet graphs

® Dot plots/scatterplots

® Line graphs/sparklines

® Boxplots

® Spatial maps/heatmaps/treemaps

Limit the diversity of chart types used in any single dashboard and ensure that the chart you've
chosen is the most appropriate one for the type of information you are encoding. Tools such as Chart
Chooser (http://labs.juiceanalytics.com/chartchooser/index.html) by Juice
Analytics and Chart Suggestions (http://extremepresentation.typepad.com/files/
choosing-a-good-chart-09.pdf) can help refresh your memory if that book isn’t handy and
you are unsure which chart to use.

Remember Space Constraints

You have one page or screen. That's it. Choose the best encoding element for the medium you are using.
This may mean re-thinking the types of elements you choose if you learn that your viewers prefer viewing
information on their phones or mini-tablet-sized screens.

You should also be wary of cramming elements into that single screen and use whitespace whenever
possible to group and separate elements. If the information density of the dashboard is too high to enable
the use of whitespace, subtle placement of very light lines and borders can facilitate the same grouping
and separation.

Take Care with Colors

Choose a focused color palette and stick with it throughout the dashboard. Color has a strong ability to tie
elements together, even when they are separated onscreen. Your viewers may draw erroneous correlations
if your dashboard lacks color consistency. Take a look back at Figure 10-7. We deliberately used consistent
colors for categorical measures—(High, Medium, Low) and (Incidents, Intel, Exposures)—to logically tie
elements with similar attributes together even though they were not physically grouped together.
Remember the lessons of Chapter 6 and also consider that your digital creations may find their way to
black-and-white laser printers more often than you would like to admit. The charts in the dashboard in
Figure 10-7 lose much of their meaning when they become black and white (Figure 10-10). In this case, we

DESIGNING EFFECTIVE SECURITY DASHBOARDS

knew our graphics were destined for a four-color press. Make sure your creations can withstand such a
transformation without completely losing their meaning.

Customer Event Analysis Events By Severity Attack Event Types
Total ———— cxpio= mrh S e =aw e
o 50 100 DG -0 4000 Rocor -
Securlty f—— Leskage EG——
M 0 w0 Hosrlle | —
500 2500 3300
- 2000 7000 2000 Trajsn ._
o 50 0o Hal _
O — v e
o 50 100 Dos |
Escalations .. m—t: oer o) Dec - o 5 1w 15 E £
o = o
Business Risk Trend Maonitored Security Event Trend Attack Sources
Wipicdents Wietel ™ Exposuies e |

120000

3000 3000 160000 | United States
140000
120000 China -2%
ploc iy -
w00 | Russia 1%
1000 1000 0000 |
40000 Germany 1%
. . . i e Great Britain 0%
Dec

mn May sun Wl Aug Sep Ot Moy Dec lan

Security Intelligence Trend Highest Concern Assets Most Recent Incidents
s Ao gy W -

alipetoc oy oen Bkt M- R IN3542719 Nov 04 11:11 HIGH OPEN
e 0 50
0 . i IN3542766 Mov 04 11:27 MED Closed
300
50 - 000 IN3543045 Nov 04 02:24 MED Closed
ool
150 P o IN3543069 Nov 04 02:45 MED Closed
00 £ L
il R . 2 20 e IN3543801 Nov 1502:07 MED Closed
il - ® f - - - o — 0

tan Febs Mar aar AusetOrpl At Grp? AsetSmS Asstdrpd Asset drp S

De-saturated dashboard

Use Fonts Wisely

Stick to a single font if at all possible. Choose serif (such as Palatino or Times New Roman) or sans-serif (such
as Verdana or Arial) and be consistent where and how you apply the font. If you look to more modern or
esoteric font choices, be sure to select one that scales consistently, supports variable width text, and has
fixed-width numbers. Finally, use bold, italics, and color sparingly with fonts to highlight only the most
important qualitative elements.

No One Dashboard to Rule Them All
DASHBOARD EVOLUTION

From their first physical incarnations, dashboards have been living, evolving organisms. For exam-
ple, the dashboard on the Ford Model T—produced in 1908—contained a single element: an
ammeter (an instrument used to measure the electric current) that helped show the health of ignition
system. It was one of the only components that could not be visually inspected without a specialized
instrument. To know the status of gas reserves, you just checked the dipstick. To see whether the
car was overheating, you just looked for the signs of smoke and steam coming out of the engine
compartment!

(continues)

What Is a Dashboard, Anyway? 257

(continued)

Drivers who were concerned about violating the speed limit (8 mph city/20 mph highway at that
time) could purchase an optional speedometer, which eventually joined the ammeter as standard
equipment years later. It was also possible to replace the radiator cap with a motometer, a very
fancy and expensive temperature gauge that was more ornamental than operational (perhaps a sign
of things to come in modern dashboards?). As drivers became more dependent on the automobile,
other elements were added to the dashboard out of both need and convenience.

Dashboards in many modern vehicles retain most of the same elements as the updated Model T
instrument panel, but some require new and customized elements to, say, monitor the performance
of their electric, natural gas, or hybrid systems. Similarly, vehicles that can switch between two-
wheel and four-wheel drive require a special indicator letting the driver know which mode they
are operating in.

AN ITERATIVE PROCESS

This same process of evolution and customization should occur in the digital realm where each
dashboard must be tailored to:

® The specific process(es) being monitored
® The viewers of the information

® The display medium

® The data available for encoding

® The expected update frequency

For example, when creating a dashboard for the chief information security office (CISO), it's unlikely
that executive will care about the number of events per second being processed by the SIEM.
However, this is a performance measure that the Security Operations Manager may be keenly inter-
ested in, especially when if there have been performance issues with the SIEM.

Indeed, if SIEM issues are emerging, you should consider adding salient performance measures
to the interactive, daily or weekly operations dashboard until the situation is resolved. Once
stable, the measure can be replaced with other important items requiring evaluation and response.
Thoughtful, regular updates to dashboard’s core content will help keep it fresh and—more impor-
tantly—reviewed and processed by your viewers. If a dashboard developed 2 years ago has
never changed a single element, chances are good that your organization is not using dash-
boards effectively.

The only way to know what truly belongs on a dashboard is to have regular dialogue with the various
viewers/process owners to understand what they care about and inform them as to what data is
available. Ask them to identify what they view as the model for the processes or objectives they
find most important. Ask them how they mentally assess the efficacy of those models now and then
ask them what data would help support a more quantitative view of this model. This will help you
make the dashboard a success while also identifying and resolving gaps in your ability to provide
situational awareness for a given process.

DESIGNING EFFECTIVE SECURITY DASHBOARDS

Communicating and Managing “Security”
through Dashboards

Thereis an inherent “call to action” nature to dashboards, with each element being either quantitative (has
a value) or categorical (a list of items). Most of us have a great deal of readily available quantitative data
related to information security ranging from lost assets, to security incidents, to SIEM events-per-second,
to firewall/IPS operational data. In order for this data to be useful in the context of a dashboard, these
quantitative measures must be able to answer two questions:

® What's going on?

® Sowhat?

For the categorical measures, you are usually identifying a set of elements that:

o Provide useful information—such as “which incident handlers are primary for the day?”;

® Require the most attention—such as “which Payment Card Industry Data Security Standard (PCl
DSS) controls are slipping?”; or

o Need follow up—such as “what are the top expedited firewall port open requests?”

Let’s take a look at these measures through some examples.

Lending a Hand to Handlers

The incident response team has asked for help in creating an incident response dashboard and—among
other items—would like a view of “bad port” activity. You decide, without probing any further, that the
problem is the number of denied firewall transactions for a port for the month-to-date, so you whip up
the graphic shown in Figure 10-11.

Top Port Denies
123 -
1853 -
514 -
16385 -
16384 -
16386 -
445 -
53 -
80 -
443 -

1
0 142M
Top port denies

Communicating and Managing“Security” through Dashboards

Although the chart answers a “what’s going on?” question, it may not fully answer the “what'’s going
on?” question for the incident response team. It definitely lacks an answer to the “so what?” question. It's
back to the drawing board and back to the incident response team to see if you can glean more about what
they are looking for and whether you have the data to support it.

Through your investigation, you learn that the team really wants a view of the top five ports with
anomalous activity. This is quite a different measure than just a raw port count and requires answering
both questions—"what’s going on” and “so what?"—in order to provide the view they are looking for.

In general, “what’s going on?” will be a count of some kind (it's a quantitative value, after all). For the
anomalous port measure, what will you count? Session attempts and/or bytes transferred? What time frame
will you count over? The past hour, intra-day to now, or the past week/month? Will you focus on denies and
accepts or just denies (which will shape the answers to some of the previous questions)?

After further consultation with the team, you agree that “what’s going on” is answered by counting
denied attempts over the past 24 hours. But...so what? This measure alone has little value. It requires
context or comparison to be useful and comparisons are trickier than you might expect at first glance. For
the port activity, for example, do you compare the measure against:

@ The same port’s position in SANS trending portlist (ht tps://isc.sans.edu/trends.
html) for that time period (that is, the same measure but from a different source)?

® The same value against the same 24-hour period (that is, the same day of the week) at one or more
pointsin the past?

® The same value against a different 24-hour period (that is, a different day of the week)?
@ The same value as it relates to daily activity across the previous week or month?

If you choose to compare the port activity against the same value for the same day the previous week
(in this case, percentage change from previous week), you get a much different view/list (Figure 10-12).

Top Anomalous Ports (% vs Prev Wk)

8008 -
111 -
45751 -
8192 -
6666 -
22151 -
9797 -
62124 -
32004 -

8800 -
] I
0 2173

Top anomalous ports

DESIGNING EFFECTIVE SECURITY DASHBOARDS

Knowing there was a 2,000+ percent change in volume for this port is definitely more actionable that a
raw session count. That’s a significant change that should trigger an investigation into why. For example, you
might examine which nodes were involved in the communication, and check to see if external Information
Sharing and Analysis Centers (ISACs) identified malicious activity on this port. Although it’s not perfect,
it's a good starting place for this new dashboard element. As the team uses this data and as you perform
additional exploratory data analyses using the other comparative conditions, you may find that one or
more of the other measures works better for the team.

Raising Dashboard Awareness

Your dashboard prowess is garnering quite a bit of attention with your latest request coming from the CISO.
She wants a new measure added to the CISO dashboard that shows how well the new security awareness
initiatives are working. You can't say “no” to the CISO, but this request lies far outside your comfort zone of
bytes, sessions, and IP addresses. How are you going to measure the effectiveness of an awareness program?

Consider the advice offered on the website of the SANS “Securing the Human” project (http: / /www
.securingthehuman.org/resources/metrics). There, you will find some seemingly “easy”
measures such as “percent completion of annual security awareness training,” but these you should quickly
dismiss. That example may be good for a compliance dashboard, but it's not what the CISO is looking for.
Instead, there are some good candidates that you can hone in on:

® Tracking the number of people who fall victim to a phishing attack
® Tracking the number of people who detect and report a phishing attack
® Tracking the results from a comprehensive security awareness survey

You might offer these to your CISO to see which one(s) meet her objectives. After your discussion, she
chooses to go the security awareness survey route. For you, this means working with the appropriate internal
groups to regularly set up the survey; select the recipients; distribute the survey; and collect, analyze, and
publish the results. However, dealing with the mechanics of the survey is the easy part.

This dashboard request is going a bit more smoothly than the last one, but still poses some challenges.
Which part of the organization is going to get the survey, and when will they receive it? How frequently
will you run the survey? What supplemental data will be required if the CISO asks for more information?

Although it may seem intuitive to decide who will receive the survey, you actually need to step back and
define whom you want to describe with the survey. In statistics, this is known as defining the population
from which you want to sample. For example, if you want to measure all employees, you should survey a
random sample of employees. If you limit these surveys to one or two departments, you could be introduc-
ing bias and might not be able to apply these results to all employees. You may also want to think about
how and if this survey will be repeated. If you know the survey will be repeated and you want the results
to be comparable (conducting a benchmark study), you need to focus on standardizing the questions
and the long-term goals. Conducting a survey like this has some challenges and pitfalls, but with a little
preparation you can get some interesting and informative data from surveys.

After significant collaboration, you decide to focus on new hires as the population, so the samples are
defined as the monthly new hires as the survey recipients. Most of these individuals are completely unfa-
miliar with the security awareness program. There is a full multi-month training program that interleaves
security awareness messages throughout this introduction period. By waiting 3 months after the hire date,

Communicating and Managing“Security” through Dashboards

you can see how much each new hire class retains. You can also get a feel for how tweaks to the awareness
program impact new groups.

You get only one measure for the CISO dashboard, so let’s opt for the summary effectiveness metric
recommended by SANS (the calculation is documented in their survey materials). See Table 10-1.

Security Program Effectiveness Measures

SECURITY
AWARENESS RISK

LEVEL DESCRIPTION

Low (25-39) Users are aware of good security principles and threats, have been properly
trained, and comply with all organizational security standards and policies.

Elevated (40-60) Users have already been trained on organizational security standards and poli-
cies; they are aware of threats, but may not follow good security principles and
controls.

Moderate (61-81) Users are aware of threats and know they should follow good security prin-
ciples and controls, but need training on organizational security standards and
policies. They also may not know how to identify or report a security event.

Significant Users are not aware of good security principles or threats, nor are they aware of
(82-96) or compliant with organizational security standards and policies.
High (97-120) Users are not aware of threats and disregard known security standards and

policies or do not comply. They engage in activities or practices that are easily
attacked and exploited.

Source:http://www.securingthehuman.org/resources/metrics

The benefit of the SANS approach is that you get standardized questions and a defined and open source
method for computing the metric. This should provide a good measure for the CISO and you can refer to
the individual responses to the survey questions when you're asked for more details. This new process also
tracks the number of new hires per survey, the primary “handlers” responsible for the new hires during
their introductory period, and the date the survey was held along with the survey results. None of this
detail should or will make it to the dashboard chart, but may be invaluable when seeking to make changes
based upon the dashboard element.

As this new process runs, data is accumulated and the awareness performance measure becomes popu-
lated. As you can see in Figure 10-13, the measure begins to trend in the wrong direction but never gets to
the point where it needs immediate action; instead, it seems to level off. Rather than bombard the CISO with
colored bands, this method uses subtle, colored level markers that delineate when an individual month mea-
sure moves into a different zone. It also shows, at a glance, how well the awareness program is performing.

The CISO becomes curious and asks someone to look at the supplementary data you collected to see
what happened in June and July. It turns out that there is usually a single “handler” for the new hires and
she was out on maternity leave in June and July, leaving a substitute to take her place. The new individual

DESIGNING EFFECTIVE SECURITY DASHBOARDS

was not as familiar with the security elements of the new hire program and did not follow up in the same
ways the primary handler typically does. Because of this knowledge, the CISO was able to ensure that all
potential handlers were familiar with the elements of the security awareness program.

Security Awareness Risk
High

Mod
Elev

Low

Mar Apr May Jun Jul Aug

Security awareness risk

This measure will no doubt change yearly. Once there is a comfort level that the awareness program is
reaching new employees, you might want to consider running the survey against other areas of the orga-
nization or switch to one or both of the phishing measures to get a different view of program effectiveness.

The Devil (and Incident Response Delays) Is in the Details

Just as you are about to dive into a new data set, you get an instant message from the incident response
manager stating that her dashboard is “broken.” Since you take a great deal of pride in your professional
work, you head down to her office to see what the problem is and (hopefully) find a quick resolution.

It seems that she received a call from one of the application teams complaining about how long it took
to resolve an incident last week. She was surprised, given that there were no indications on the weekly
dashboard that anything was amiss. The performance measure showed that Tier 4 incidents (the level
of the incident that was flagged by the application team) were handled within the standard one-day
timeframe. You immediately suspect what'’s causing the issue and you head to the data to validate your
assumptions. Sure enough, the culprit lies in the name of the performance measure itself: “Mean Time to
Incident Resolution.”

The mean is often used as a singular, descriptive statistic for a data set, and it can be used as a quick
comparative measure of performance (such as batting average in baseball), but it isn't perfect. Consider
the resolution times (in days) for the incidents on the “broken” dashboard:

0.50 1.10 1.10 1.10 0.10 0.30 0.20
0.10 0.60 0.10 0.10 0.10 0.60 7.00

Communicating and Managing“Security” through Dashboards

The mean works out to be 0 . 9286, which falls within normal parameters. Now, look at the last value
(7.00). This incident took substantially longer than normal, but did not generate a call to action on the
dashboard. There are a few ways to fix this. If there is room, you could add a new performance measure that
lists all incidents that fall within a certain percentage outside of an expected range. However, the incident
manager really likes the single line encoding you've provided for the measure:

MTT Incident Resolution: 0.93

You need to come up with a way to programmatically identify problematic conditions and fit the encod-
ing in the same space without losing any detail. The ultimate solution comes from three data analysis and
visualization allies: the five number summary from Chapter 3, boxplots from Chapter 6, and sparklines
(introduced in this chapter).

As a refresher, the five number summary consists of:

® The minimum (smallest observation)
® The lower quatrtile or first quartile
® The median (middle value)

® The upper quartile or third quartile
® The maximum (largest observation)

These values are important for encoding many types of per-
formance measures and can be used to succinctly summarize
data without losing as much detail as you currently do with the
mean alone. A boxplot provides a visual representation of these
values that you can augment with a line for the performance
Boxplot sparkline measure threshold, as shown in Figure 10-14.

The incident manager now has an at-a-glance view that

MTT Incident Res

encodes valuable details without sacrificing space. If necessary, the boxplot can be color-coded to more
overtly call attention to measures outside normal parameters. The mean value can be displayed next to
the boxplot if that measure still provides value.

Projecting “Security”

The word “security” is in quotes here and in the section title because the definition of security is up to
individual interpretation. A penetration tester might think of security in a completely different way than
a CISO, just as an application developer will likely have a different view of it than a firewall engineer. From
a big picture perspective, these interpretations are complementary because they are all parts of a whole.
Each activity is necessary to ensure the protection of an organization’s information assets.

Perhaps one of the least “security-like” elements that readily lends itself to a dashboard is the venerable
project or task “status view.” This could involve tracking projects for remediation of internal audit issues or
monitoring full-scale, enterprise-wide security programs. Security, IT, and business executives need some
way to get a quick overview of all these moving parts so they know where resources and attention should
potentially be redirected. It might not be sexy, but there would be little happening in “security” without
this governance layer.

DESIGNING EFFECTIVE SECURITY DASHBOARDS

If you become known as the “dashboard person” in your organization, you must face the inevitable
request to build a set of measures to track program, project, and remediation status. These initiatives will
have their own set of detailed measures and reports, which project and program managers will gladly
provide. The challenge lies in how to communicate the status of 35-50 (or more) measures at a glance as
one component of an executive-level dashboard.

The first step is to identify the components that your viewers want to track. For our make-believe
organization, the components will be:

@ Internal auditissues remediation items
® Enterprise-wide security program initiatives

® Customer audit-remediation process (these are the items your customers are requesting that your
organization remediate)

@ PC|I DSS compliance controls remediation progress

From your discussions with the CISO you know that you are constrained to one quadrant of the execu-
tive dashboard, and that the items of most importance to her are PCl controls and customer audits. You've
verified that the data for the performance measures are readily available and accurate, and you set off to
meet this challenge head on.

The prioritization and list of measures provided by the CISO gives you logical groupings for the measures
you need to encode. For each group, you must decide how to prioritize the elements within the group. Given
that all of these elements will themselves be grouped together, the individual encoding for each measure
you choose should be common across all four groups. Finding a way to satisfy all these constraints will cre-
ate a seamless message for the “Security Program, Project, & Remediation Status” dashboard component.

After reviewing the data, you settle on four sections and draw a rough sketch showing how you
want to present the information. This sketch eventually turns into the wireframe concept, as shown in
Figure 10-15 (the phrases “Lorem ipsum” are placeholders for real text labels).

This will become a common process for your dashboard development:

1. Stakeholder/viewer identifies a need.

2. You work to understand the need and determine if you have the data to support the dashboard
or dashboard element.

3. You sketch a set of rough concepts for the dashboard, and then wireframe and model the ones
that seem to work best.

4. You choose a final model and find the most efficient process to encode the measures in support
of the frequency requirements.

For encoding each list of items, the proper order becomes apparent after examining the project and
program artifacts:

® The PCl program has been laid out according to the 12 requirements.

@ The customer audits make the most sense in reverse date order (so the ones that should be closing
soon are at the top).

Communicating and Managing“Security” through Dashboards

@ The enterprise-wide security program initiatives are displayed in the order they appear in the budget
documents.

e Theinternal audit items are ordered like the customer audits.

Lorem ipsum Lorem ipsum

Lorem ipsum Lorem ipsum

Loremipsum ——— | Loremipsum ———
Lorem ipsum C—— | Lorem ipsum ——
Lorem ipsum C— Lorem ipsum C—
Lorem ipsum C— Lorem ipsum C—
Loremipsum ————— | Loremipsum ——

Lorem ipsum Lorem ipsum

Loremipsum ————— | Loremipsum ————
Lorem ipsum E— | Loremipsum E=—=w—
P R —

) —)
Lorem ipsum Lorem ipsum

Dashboard wireframe

This ordering is part of the dashboard contract with the CISO and other viewers. Once established, the
expectation will be that it does not change without informing involved parties.

Given that projects track completion to 100 percent, bars are good choices for the overall encoding.
However, shorter does not necessarily mean “bad” in this case. You could use a variation on a bullet graph
to provide more details, but that level of encoding is not necessary for this scenario. The viewers can always
head to the supporting data (which includes detailed Gantt charts, project risks, and status history) for
more detail. A subtle color highlight for the projects or program elements that are truly in danger of missing
their dates is all that is needed to identify areas of concern, projects or elements that may need help from
senior management to get back on track. Management will need to dig into the details of each wayward
issue, so make sure the project and program managers have armed the CISO with all the necessary details.

The finished product can be seen in Figure 10-16, and the Excel template can be found in ch10/
docs/chlO0-project-security.x1lsx onthe book’s website (www.wiley.com/go/
datadrivensecurity).

l DESIGNING EFFECTIVE SECURITY DASHBOARDS

Note

Excel’s built-in ability to make sparkline-like “data bars” can drastically reduce the time
it takes to produce an effective dashboard component. These elements implement user-
defined rules to apply color and size from cell values.

Security Program, Project & Remediation Status

PCI Compliance Remediation Progress
Requirement 1
Requirement 2
Requirement 3
Requirement 4
Requirement 5
Requirement 6
Requirement 7
Requirement 8
Requirement 9
Requriement 10
Requirement 11
Requirement 12

Enterprise Security Program Initiatives
IDM Phase 1
GRC Phase 2
Fortify Rollout
AV Migration
MDM Upgrade
SANS Top 20

FIGURE 10-16 Project and program status dashboard

Q1-Q3 2012

Customer Audit Remediation Progress
Bank of Uraguay
Unted Prezel Service I
McDougal's

HN

Funeral Express
Royal Bank of Tunesia [N
Miner's Trust
Holey Foods
Chaotic Airlines

Internal Audit Issues Remediation Progress
IN5674311
IN5687731
IN1456681
IN7871134
IN0192837
IN3433817
IN8976554

Recommended Reading 267

Summary

Designing, building, and delivering dashboards is not for the casual practitioner. It takes skill, practice, and
a great deal of trial and error to create minimal, optimal encodings for critical measures and present them
in a logical and visually appealing manner.

This chapter presented core dashboard concepts through both real-world scenarios and critiques/
makeovers of actual dashboards found in the wild. You also learned about innovative encodings (such
as bullet graphs and sparklines) along with design techniques that you can replicate in Excel and R using
materials provided on the companion website.

Recommended Reading

The following are some recommended readings that can further your understanding on some of the topics
we touch on in this chapter. For full information on these recommendations and for the sources we cite in
the chapter, please see Appendix B.

Information Dashboard Design: The Effective Visual Communication of Data by Stephen
Few—If you can acquire only one other resource for designing dashboards, pick this one. It provides
detail on every level of element creation with numerous examples.

Security Metrics: Replacing Fear, Uncertainty, and Doubt by Andrew Jaquith—Dashboards
are about displaying the most important information and driving action. Jaquith’s book is your gate-
way drug into finding the right security information to present and how best to present it.

The Visual Display of Quantitative Information by Edward R. Tufte and P. R. Graves-
Morris—This book is required reading for anyone who wishes to fully understand how information
should be presented. While not a “dashboards” book, it emphasizes how best to communicate with
visualizations with numerous examples.

Design, Evaluation, and Analysis of Questionnaires for Survey Research by Willem E. Saris
and Irmtraud N. Gallhofer—This book will help you see that designing surveys is no trivial task.
Even researchers in fields that are reliant upon surveys have trouble building ones that are effective
at getting to the information that they truly want captured. If you dare to delve into this area for your
security program, you'll absolutely need this book as a guide.

Modern Analysis of Customer Surveys: with Applications Using R by Ron Kenett and Silvia
Salini—If you're still adamant on using surveys, you'll need to know how to analyze them. This text
will provide you with the proper statistical foundations along with a good set of reusable R code that
should make you more confident in presenting your results.

Building Interactive Security
Visualizations

p¥()) BUILDINGINTERACTIVE SECURITY VISUALIZATIONS

The main purpose behind any of your data visualization efforts should be to help consumers understand
and learn from the data. In other words, effective communication is the primary goal of your visual creations.

As you've seen in previous chapters, developing simple and successful fixed tables and charts requires
knowledge, skill, and practice, but can provide substantive illumination of a topic, issue, or problem if
executed correctly. In most cases—probably 95 percent of the time—these fixed views are all that is
needed to achieve the goal of communication. There are situations, however, when static views of data are
either insufficient or just not practical, requiring the move to a more dynamic medium to help consumers
explore the messages the data has to offer. This chapter helps you understand when the move to interac-
tive visualizations makes sense and introduces you to some of the resources and techniques that will help
you craft effective messages, dashboards, and exploration tools.

Note

The skills, art, and science surrounding interactive visualizations span a multitude of dis-
ciplines across many decades. As a result, this single chapter serves more as a survey and
reference for further study for the topic as a whole. It provides practical guidance for where
to apply interactivity within the scope of information security.

Moving from Static to Interactive

Assuming the “95 percent” premise holds true, your first instinct when planning visualizations should be
to “go static.” It will generally take much less time to construct fixed visualizations even with the tweaking
and polishing necessary to produce an audience-worthy graphic. You should also consider sticking with
stationary images if the project you're working on is fairly discrete with a data set having a minimal number
of dimensions (that is, rows, variables/columns/fields). As Scott Murray put it in his book Interactive Data
Visualization for the Web, “A fixed image is ideal when alternate views are neither needed nor desired,
and required when publishing to a static medium, such as print.”

If you're still feeling the “interactive itch,” there are three primary goals to consider when contemplat-
ing a new visualization:

e Augmentation—If adding interactive capabilities helps speed up or automate tasks consumers
would normally perform manually, going interactive is definitely the right thing to do.

o Exploration—If the number of dimensions and size/diversity of the data set grow sufficiently
large, it may be better to enable consumers to explore the relationships and outcomes on their
own rather than trying to guess which set of static graphics will be most useful.

o lllumination—If a topic is complex enough, it may help to provide a well-executed, interactive
visualization that provides a user-friendly interface for directed/constrained navigation around
the data you've chosen to present.

Let’s delve a bit further into each of these areas with a focus on information security examples.

Moving from Static to Interactive 271

Interaction for Augmentation

There are many repetitive, time-consuming, data-driven tasks in information security. Logs must be col-
lected and correlated, alerts must be received and attended to, and anomalies must be investigated. These
actions often involve running a variety of utilities over individual pieces of data or sets of data elements to
determine whether there truly is an issue on your network. Any tool that helps alleviate this tedium and
speeds up reliable detection of malicious activity is a welcome addition to any security engineer’s toolbox.

Recognizing this fact, a research team led by Robert Erbacher worked to understand both the prob-
lem domain—situational awareness of malicious network activity—and how incident responders think
and process information. This resulted in the creation of VisAlert (http://digital.cs.usu
.edu/~erbacher/publications/VisAlertCGA2006 .pdf), avisual correlation tool that
facilitates situational awareness in complex network environments. Figure 11-1 shows an example screen
from the VisAlert tool that we'll be focusing on in the remainder of this section. This single image places a
logical network layout at the center so there is immediate, practical context for the viewer. The concentric
circles represent delta time intervals for when security events happened (that is now, 5 minutes ago, 15 min-
utes ago, etc.). The lines from those events to the resources provide quick context for what type of attacks
were happening to what systems and when, all without having to stare at multiple lines in multiple log files.

With tools such as Circos (http: //circos. ca/),it's fairly straightforward to build a radial diagram
similar to the VisAlert model in Figure 11-1 and add some interactive features. However, it takes more than
eye-candy appeal for any visualization—fixed or interactive—to be truly useful. VisAlert's detailed focus
on the following areas makes it notable.

Define the Problem

This is merely an extension of the “start with a question” mantra you've seen in many of the preceding
chapters. Although there is merit in building visualizations in a vacuum to learn how to work with a new
language or framework, it is imperative that you understand what problem you're trying to solve with
a consumer-oriented interactive visualization and who the users will be before you attempt to deliver a
finished product. Even if you're an established practitioner, your personal experiences may give you insight
into only one aspect of a problem domain, and collaboration with others—especially those who you
believe to be the natural consumers of your interactive visualization work—can make or break a project.

For the VisAlert team, this ultimately meant their goal was to aid analysts’ decision-making processes
by providing a robust visual correlation mechanism. Rather than try to build a new intrusion-detection
system or deliver a “toy model” solution that works only with perfect and limited data sets, they chose to
design a system that works at-scale with real-world data volumes and types that security analysts already
use in their daily workflows. Although the problem scope is narrowly defined, it has sufficient breadth and
scope to be useful as well as visually appealing.

Seek Domain Expertise

The VisAlert team started with real-world information security analysts to understand their mental models
of how they go about identifying badness. Mental models are conceptual models of the way things work
or people’s understanding of how to interact with the world or systems around them. Security analysts

byF) BUILDINGINTERACTIVE SECURITY VISUALIZATIONS

develop domain-specific mental models through their training and practical work experiences. These
models evolve with each successful (or failed) identification and eradication of malicious activity. With each
investigation, analysts learn which processes provided the most value, and these are automatically added
to their existing mental framework. By working with these individuals throughout the design process, the
team was able to identify what parts of the analysts’ workflows would benefit from enhanced visualiza-
tions (for example, inclusion of salient parts of network diagrams and automatically highlighting specific
protocols and paths) and automation (for example, DNS lookups and targeted correlations).

—8—— N
— : s
) = _'_._0_'_-._-_' = ~ -
[o)
[e]®]
000, ‘%
O—C\)—O 0"500 Z
0000 %
o
o900
oS00
00°
o0
™ [
| ;
/ =
o 1@
o [/
0000530 o9 Sggoo
0%000, 69595026360
Ot 0%0%0°
0950 °
O-n
ol

The VisAlert Visual Correlation Tool

Figures based on Foresti, Stefano, James Agutter, Yarden Livnat, Shaun Moon, and Robert Erbacher. "Visual correlation of
network alerts." Computer Graphics and Applications, IEEE 26, no. 2 (2006): 48-59.

Moving from Static to Interactive

Take an Interdisciplinary Approach

The team drew on the talents and works of experts in the fields of information architecture, cognitive
psychology, application development, and computer science—along with the domain experts—to build
and refine the tool. They called this process a “modified hermeneutic circle”—the movement back and
forth between the parts and the whole. It's shown in Figure 11-2.

Problem space

SR R S B S -
Mental models Refine !
Salient data
Conceptual representation
ot MO A ——
Scenario development #------co0oes :
) B 1
User interface
: . Refine !
Team Design evaluation --------omooeees
Technical representation
&
clence Prototype development
Cognitive Full production interface ... Rt
Esychiology High-fidelity simulation

The VisAlert Visual Correlation Tool design methodology

Figures based on Foresti, Stefano, James Agutter, Yarden Livnat, Shaun Moon, and Robert Erbacher. "Visual correlation of
network alerts." Computer Graphics and Applications, IEEE 26, no. 2 (2006): 48-59.

273

p¥L) BUILDINGINTERACTIVE SECURITY VISUALIZATIONS

Their methodology has a strong resemblance to the Agile development process (http://
agilemanifesto.org/principles.html), where all those involved are equal partners, each
working together to yield a successful finished product. If your organization has an application develop-
ment team and you're not familiar with Agile, you would do well to invite a member to lunch to understand
how Agile works in the real world. (Plus, you'll have made a friend in the development community and can
hopefully help them understand application security a bit better as well.)

Fundamentally, both concepts employ highly effective and efficient feedback loops to help ensure your
project stays on the rails and arrives at the desired destination as quickly as possible. You may be the one
building the finished product and you may be a savvy practitioner, but you should also regularly seek input
and feedback from others in and outside your domain to ensure you're constructing the right elements.

The VisAlert tool has been featured in papers and security-oriented conferences since 2006 but has not
been developed as a commercial or open source product as of this book’s publication.

Interaction for Exploration

Most networks contain their fair share of vulnerabilities. The Nessus (http://www.tenable.com/
products/nessus) vulnerability scanner (by Tenable) is one of the most commonly used tools that can
help you find them. If you've ever seen the output from a detailed Nessus report (Figure 11-3), you know
that each host will have a listing of vulnerable components and each component will have many attributes,
including basic and detailed descriptions, overall rating, and Common Vulnerability Scoring System (CVSS)
(http://www.first.org/cvss)score.Afull report can be hundreds of pages long and makes for
excellent nighttime reading if you're having trouble sleeping.

Even a small network, such as the one created for the VAST 2011 visualization challenge (http: //
hcil.cs.umd.edu/localphp/hcil/vast11/), can have thousands of vulnerability findings.
(The VAST network data—included as ch11/data/vast_2011.nbe on this book’s website at www
.wiley.com/go/datadrivensecurity—nhasover 2,000.) Although it's possible to spin the
data multiple ways and produce reams of static visualizations, this is definitely a perfect example of how
an interactive tool can help security analysts explore and prioritize how they will attack the problem of
which vulnerabilities to remediate first.

Tenable does provide interactive reporting tools, but this chapter focuses on an innovative open
source tool released in 2013 by John Goodall called the Nessus Vulnerability Explorer (NV) (http: //
ornl-sava.github.io/nv/#). NV allows you to take an export from your Nessus scans, drag the
file right into your browser, and begin exploring the vulnerabilities contained within. See Figure 11-4.

The interface is based on a treemap, which is a visualization that enables presentation of hierarchical
data in a very compact way through nested rectangles, with the size and color of each rectangle being
mapped to categorical or quantitative variables within the data set. Treemaps take a bit of getting used
to, but once you learn how to decode them they can become valuable allies in targeted visualizations.

Goodall’s interactive treemap lets the consumer rearrange the structure of the hierarchy through a
simple drag-and-drop action, so you can present a traditional IP address-centric view of the vulnerabilities
or switch to a view based on Nessus vulnerability (plug-in) ID or even by port. Through a single click, nodes
can be sized by volume or potential impact and vulnerability details are revealed through single clicks on
individual rectangles.

Moving from Static to Interactive

56860 (1) - USN-1263-1 : Icedtea-web, openjdk-8, openjdk-6b18 vulnerabilities

Synopsis
The remote Ubuntu host is missing one or more security-related patches.
Description

Deepak Bhole discovered a flaw in the Same Origin Policy (SOP) implementation in the lcedTea web browser
plugin. This could allow a remote attacker to open connections to certain hosts that should not be permitted.
(CVE-2011-3377)

Juliano Rizzo and Thai Duong discovered that the block-wise AES encryption algorithm block-wise as used in
TLS/S5L was vulnerable to a chosen-plaintext attack. This could allow a remote attacker to view confidential data.
(CVE-2011-3389)

It was discovered that a type confusion flaw existed in the in the Internet Inter-Orb Protocol (IIOF) deserialization
code. A remote attacker could use this to cause an untrusted application or applet to execute arbitrary code by
deserializing malicious input.

(CVE-2011-3521)

It was discovered that the Java scripting engine did not perform SecurityManager checks. This could allow a remote
attacker to cause an untrusted application or applet to execute arbitrary code with the full privileges of the JVM,
(CVE-2011-3544)

It was discovered that the InputStream class used a global buffer to store input bytes skipped. An attacker could
possibly use this to gain access to sensitive information. (CVE-2011-3547)

It was discovered that a vulnerability existed in the AWTKeyStroke class. A remote attacker could cause an untrusted
application or applet to execute arbitrary code. (CVE-2011-3548)

It was discovered that an integer overflow vulnerability existed in the TransformHelper class in the Java2D
implementation. A remote attacker could use this cause a denial of service via an application or applet crash or
possibly execute arbitrary code. (CVE-2011-3551)

It was discovered that the default number of available UDP sockets for applications running under SecurityManager
restrictions was set oo high. A remote attacker could use this with a malicious application or applet exhaust the
number of available UDP sockets to cause a denial of service for other applets or applications running within the same
JWM. (CVE-2011-3552)

It was discovered that Java APl for XML Web Services (JAX-WS) could incorrectly expose a stack trace. A remote
attacker could potentially use this to gain access to sensitive information. (CVE-2011-3553)

It was discovered that the unpacker for pack200 JAR files did not sufficiently check for errors. An attacker could cause
a denial of service or possibly execute arbitrary code through a specially crafted pack200 JAR file, (CVE-2011-3554)
It was discovered that the RMI registration implementation did not propery restrict privileges of remotely executed
code. A remolte attacker could use this to execute code with elevated privileges.

(CVE-2011-3556, CVE-2011-3557)

It was discovered that the HotSpot VM could be made to crash, allowing an attacker to cause a denial of service or
possibly leak sensitive information. (CVE-2011-3558)

It was discovered that the HttpsURL Connection class did not properly perform SecurityManager checks in certain
situations. This could allow a remote attacker to bypass restrictions on HTTPS connections.

(CVE-2011-3560)

See Also
hitp:ffwww.ubuntu. com/usn/usn-1263-1/
Solution
Update the affected package(s).
Risk Factor
Critical
CVSS Base Score
10.0 (CVSSZHAVNIAC.LIALN/C:CICIAC)

Ficure 11-3 Sample Nessus detailed vulnerability report

b¥(3 BUILDINGINTERACTIVE SECURITY VISUALIZATIONS

v ip wulnid: port— 7 Size nodes by:
— Sevorly Ciltealty | Count
Calor nodes by:

Severty | Crtealty | Count

10: 11536
Tak 05 idonfication
Famiy: Ganeeal

Rish factor : None

Syropal: itk poaskls o guess the
N DOBILNg SyENeM.

Description: Using 2 combnation of
remces pranes, [TCRYIP, SME, HTTR,
NTP. SWMP, g1c.) 1l possbio 1o
QuisEs The name of the romone
operating system in Lse, and
sametmes b versen.

Solution: e

I_ _-_l I I I IIIII..-- e
| 2 3 4 52585 18680 20

"""" 36634 45618 48762 43118 36184 31 1103631 48042 35718 34401 17851

FiIGURE 11-4 Nessus Vulnerability Explorer interactive treemap interface

The view in Figure 11-4 has over 240 nodes, yet it's very straightforward (and quick) to see all nodes with
similar vulnerability profiles. All necessary information is kept onscreen and the bar charts at the bottom
of the display provide a useful high-level overview to help guide exploration. A traditional summarized
report view would no doubt require much scrolling and panning to provide the same type of information
and it would be almost impossible to discern patterns in the environment.

However, all exploratory interfaces do not need to be this elaborate. Figure 11-5 shows a simple Excel
workbook of a firewall log extract that includes filtering controls at the top of the log entry data table.
It also has two pivot tables showing views by firewall and port (respectively), with matching bar charts
that dynamically change as you manipulate the pivot table values. More modern versions of Excel do not
have the workbook size limitations of previous offerings and can comfortably fit over a million rows and
16,000 columns, provided you have a robust enough system to support such a large workbook. You might
be surprised just how useful it can be to simply provide intelligently summarized tabular views of data
sets—paired with basic visualizations—that can be easily sorted on demand by the consumer. It may
sound simple, but remember: You still need to do the hard work of finding, cataloging, acquiring, cleaning,
augmenting, and processing the data (ah, the glamorous life of a security data scientist).

Interaction for lllumination

Although everyone may seem to be carrying an i-device of some sort and is constantly plugged in to every-
thing, the truth is that most individuals still have only a surface-level understanding of the digital world
they live in. For instance, they know that their Instagram app requires an account with a username and
password before they can post pictures for their friends to see, but the details of the binary world below
that process—where hue, saturation, and brightness are digitized; network packets are exchanged; and

Moving from Static to Interactive 277

information is transported and stored potentially thousands of miles away—remains as much a mystery
as does most of the inner workings of a modern automobile engine.

[Time [=[msg[*[Action [=Firewall = Protod=|Source wDest | *|SourcePa¥|DestPg|Service |*|Directid> 9% of Connections by Destination by Firewall
|4/6/1217:20 Info Built ASA-6-302013 TCP 172232750 10.32.0100 4348 80 hrtp outbound | Service i [=

4/6/1217:20 Info Teardown ASA-6-302014 TCP 172232750 10.32.0.100 4388 80 http outbound

|4/6/1217:20 Info Built ASA-6-302013 | TCP 1722323876 1032554 13494 80 hrtp outbound | [T | asne-0201

4/6/1217:20 Info Teardown ASA6-302014 TCP 1722323876 10.32.554 28494 80 http Err A Firewall B Total

|4/6/12 17:20 Info_ Built ASA-6-302013 TCP 172.23.2485 1032.0.100 4343 80 http outbound | ASA-2-106001 Lagy | Ashea02013

4/6/1217:20 Info Teardown ASA-6-302014 TCP 172232485 10.32.0.100 1349 80 http outbound || ASA-6-106015 369% | asasi0s01s

|4/6/1217.20 Infa Built ASA-6-302013 TCP 1722336140 |10.32.0.100 4319 80 http outbound | ASA-G-302013 ATAT%| |

|4/6/1217:20 Info Teardown ASA-6-302014 TCP 1722336140 |10.32.0100 4319 80 hrtp outbound | ASA-6-302014 47.40% |

4/6/1217:20 Info Bullt ASA6-302013 TCP 172.23.19.146 10.32.0.100 4391 80 http outbound Grand Total 100.00% 0.00% 20,0040 DOXE.00%80. 05000 005
|4/6/1217:20 Info Teardown ASA-6-302014 TCP 1722319146 10.32.0100 4391 80 hrtp cutbound |
|4/6/1217:20 info Built ASA-6-302013 TCP 172231246 10.32.0100 4295 80 http outbound

|4/6/1217.20 Infa Teardown ASA-6-302014 TCP 172231245 10.32.0100 4235 80 hrtp outbound |

4/6/1217:20 Infe Bullt ASA6302013 TCP 172233372 10.32.0.100 4361 80 http outbound | Firewall i [=

|4/6/1217:20 Infa Teardown ASA-6-302014 TCP 172233372 10.32.0100 4361 80 http outbound | @rand Total

|4/6/1217:20 Info Built ASA-6-302013 TCP 172.23.234.150 1032557 22958 80 hrtp outbound | [Tt | bt

4/6/1217:20 Info Bullt ASA6-302013 TCP 172.23.17.199 10.32.0.100 4316 80 http outbound | [0S B2 Total 6667_tcp

| 4/6/1217:20 Info Teardown ASA-6-302014 TCP 172.23.17.199 10.32.0.100 4316 80 hrtp outbound 13713_tep 1
4/6/12 17:20 Info Teardown ASA-6-302014 TCP 172.23.234.150 10.32.5.57 22958 80 http outbound 19654_tcp 1 61203 1p
_4}6.1'12 17:20 Info Built ASA-6-302013 TCP 1722334136 10.32.0.100 4344 80 http outbound 2189_tcp 1 53’337Y!D
4/6/1217:20 Info Teardown ASA6-302014 TCP 172.2334.136 |10.32.0.100 4304 80 hrtp outbound 26267_tep T i
_ﬂfG,r'lZ 17:20 Info Built ASA-6-302013 TCP 172.23.42.68 10.32.0.100 4317 80 http outbound 28607_tcp 1) 525157(:;;
| 4/6/1217:20 Info Teardown ASA-6-302014 TCP 172.23.42.68 10.32.0.100 4317 80 hrtp outbound 30450_tep Vil i
| 4/6/12 17:20 Info Built ASA-6-302013 TCP 172.23.36.67 10.32.0.100 4320 80 http outbound 3205_tcp 1 i
| 4/6/1217:20 Info Teardown ASA6-302014 TCP 172.23.36.67 10.32.0.100 4320 80 hrtp outbound 33772_tep 1| :‘:i:;—‘:”
4/6/1217:20 Info Built ASA6-302013 TCP 172233371 10.32.0100 4362 80 http outbound 36211 _tep 1 i
4/6/1217:20 Info Teardown ASA-6-302014 TCP 172.23.33.71 10.32.0.100 4362 80 http outbound 38160_tep 1 42334 scp
|4/6/1217:20 Info Built ASA-6-302013 TCP 172.23.27.106 | 10.32.0.100 4349 80 http outbound 3852_tep 1| | #aeiae
| 4/6/1217:20 Info Teardown ASA-6-302014 TCP 172.23.27.106 10.32.0.100 4349 80 http outbound 43670_tcp i[7] 38s2 b
|4/6/1217:20 Info_ Built ASA-6-302013 | TCP 172.2310.114 10.32.0.100 4285 80 http outbound 46334_tep g| | PAs0ke
4/6/12 17:20 Info Teardown ASA-6-302014 TCP 172.23.10.114 10.32.0.100 4295 80 http outbound 47732_tcp 1 36211 _tep
| 4/6/1217:20 Info Built ASA-6-302013 TCP 172.23.233.157 1032557 23543 80 hrtp outbound | | 48289_tcp 1| | 38772 tep
4/6/1217:20 Info Teardown ASA6-302014 TCP 172.23.233.157 1032557 23543 80 http outbound 52272_tep 1 3205_tp
_4/'6.1'12 17:20 Info Built ASA-6-302013 TCP 172.23.6.27 10.32.0.100 4342 80 http outbound 52326_tcp 1 ke
4/6/1217:20 Info Teardown ASA6-302014 TCP 17223627 10.32.0100 4382 80 hrtp outbound 56400_tep 1| 28607 tep
4/6/12 17:20 Info Built ASA-6-302013 TCP 172.23.21.180 10.32.0.100 4341 80 http outbound 5B738_tcp 1 26367 _tep
| 4/6/1217:20 Info Teardown ASA-6-302014 TCP 172.23.21.180 10.32.0.100 4341 80 hrtp outbound 61293_tep 1| 210w
4/6/1217:20 Infe Built ASA-6-302013 | TCP 172.23.2679 10.32.0.100 4329 80 http outbound 6658_tcp 1 19654_tp
| 4/6/1217:20 Info Teardown ASA-6-302014 TCP 172232679 10.32.0.100 4328 80 hrtp outbound 8667_tcp 716 | 13nssep
4/6/1217:20 Info Built ASA6-302013 TCP 172232036 10.32.0.100 4288 80 http outbound http 727 S ST S (e
|4/6/1217:20 Info Teardown ASA-6-302014 TCP 172232036 10.32.0.100 4288 80 http. outbound Grand Total 1464 |

Excel pivot table with linked charts

Even in our workplaces, where business processes are more often understood, the complexity of the
information technology components that make those processes possible can be somewhat overwhelming
to IT specialists, let alone business professionals.

Consider that a modest application has code that might be touched by over 30 developers, supported
by over 15 operations administrators, span 3 firewall zones, and have components that reside on 16 dispa-
rate systems. It's incredible we have as much security as we do in such diverse and complex environments
and a bit more understandable why all of those individuals involved in the process don't fully grasp all the
nuances of how to ensure that security is a primary emergent property of the system as a whole.

Understanding how complexity is masked, hidden, or ignored should make it easier to see why topics
we security-folk are passionate about—such as encryption, system/data integrity, and data privacy—are
faint blips on the radars of most individuals. However, our cause and profession have merit, and we can
help raise awareness of these important topics. One good way to do this is through the use of interactive
visualizations.

A great example of how to do this is the “World’s Biggest Data Breaches” visualization (http://
www.informationisbeautiful .net/visualizations/worlds-biggest-
data-breaches-hacks/), created by David McCandless and Tom Evans of Information is Beautiful
(http://www.informationisbeautiful .net/).See Figure 11-6.

Data breaches, as discussed in Chapter 7, are a reality, yet are not well understood outside of the security
domain (perhaps not even fully within the security domain). When the technical and general news media

b¥4) BUILDINGINTERACTIVE SECURITY VISUALIZATIONS

report almost one breach per week, it can be difficult for people to keep up, let alone digest the diversity
of the attacks. David and Tom—who are visualization and development experts, not information security
professionals—set out to build an easy-to-use tool that would help consumers gain a better understand-
ing of the quantity, variety, and magnitude of breaches that have made headlines over the past few years.

World's Biggest Data Breaches ®

interesting story
Selected losses greater than 30,000 records

supaLE cotour (Y (METHOD OF LEAK | BUBBLE SIZE [NO.OF RECORDS STOLEN |
2013 | Filter by..
8 J
ORGANISATION METHOD OF LEAK
all VELS
() academic () accidentally published
(O energy () hacked

| () financial () inside job

7 gaming (3 lost / stolen computer
") government (7ylost 7 stolen media

) healthcare () poor security

) media

) military

) retail

(Otech

() telecoms

) web

o000 0O0

| 2012 |

an

él.izzan‘.' i n
~ega

California

i Tricare
)) 4,901, 432
: 2011 \ Writarspace com
E Citigroup ny Online Stratfor

- o State of wasingion

Ficure 11-6 World's Biggest Data Breaches interactive visualization

By following a paradigm of “overview first, zoom and filter, then details-on-demand” put forth by Ben
Shneiderman back in 1996 in his “Visual Information Seeking Mantra,” they created an interactive bubble
chart (see Figure 11-6) organized vertically by year. Consumers can filter the display to show breaches by
organization type or method of leak and can also change the factors that make up bubble size and color.

Publications such as the Verizon Data Breach Investigations Report (http://www
.verizonenterprise.com/DBIR/2013/)and Trustwave Global Security Report (http://
www2 . trustwave.com/rs/trustwave/images/2013-Global-Security-Report
. pdf), plus online databases such as DataLoss DB (http://datalossdb.org/) and the Privacy
Rights Clearinghouse (http://www.privacyrights.org/data-breach), have covered
breaches for many years, yet tend to be read and mined mostly by information security professionals.
What has made David and Tom's interactive tool more appealing and useful to a much broader audience
than these established resources?

Moving from Static to Interactive 279

Make Interfaces Accessible

There’s nothing quite like a never-ending, scrolling table filled with security jargon and wrapped in cold,
official language to make the average person head for the nearest cat picture. Even a well-crafted, com-
prehensive report can be daunting to pick up and look through when the topic is so far removed from the
daily experience of even the most tech-savvy business executive.

The World’s Biggest Data Breaches visualization succeeds because it presents the data within a familiar
and friendly setting—a web page—and makes excellent use of color, style, and design to present a tool
that has an intuitive look and feel with no fear of “breaking” anything. The “buttons” look and behave as
expected. The filtering interface has plenty of whitespace and steers clear from too much jargon or too
little context. Mouse movements and actions provide instant, game-like feedback; and, even without
instruction, the interface is almost instantly usable.

Imagine if this had been released as a Microsoft Excel file (yes, you can make clickable bubble charts
with Excel) with macro warnings popping up on open, and the ribbon and column headers consuming
prime display space, and with your operating system switching between Excel and your default browser
whenever you clicked to see the news story behind the detail. The basic functionality would have been
the same, but the user experience would have been radically different.

Your consumers live in the browser and that’s where most (if not all) your creations should be targeted
for deployment. Latter sections of this chapter introduce some of the technologies that make these visual-
izations possible, but they do notinclude phrases like “Java applet” or “Adobe Flash.” Relying on the native
capabilities of modern browsers and web frameworks will help you reach the largest possible audience in
the most compatible and accessible ways possible. It will have the added benefit of making you sympathize
a bit more with the complexities faced by user-interface developers (whom you should also take to lunch
on occasion to trade security knowledge for useful front-end coding tips and techniques).

Facilitate Directed Exploration

Donald Norman coined the phrase “the tyranny of the blank screen” in his book The Design of Everyday
Things. The perfect, illuminating, interactive visualization lies somewhere between this fully open, onscreen
world and a fixed graphic. Which design choices made the World’s Biggest Data Breaches visualization
easy to explore?

® Critical exploration elements and operations are prominent and visible. Through consis-
tent colors, shapes, and prominent placement, the controls for the visualization are immediately
discernible. By having the filter controls come up right after the visualization loads, there is the
immediate reaction of “Oh, | can click this!” on the part of the consumer. Color also draws attention
to what the creators feel are especially compelling stories.

e All components and actions are consistent and deliberate. Mouse movements highlight
elements and mouse clicks select options and provide detail. There is no jumping between mouse
and keyboard or switching between dragging and clicking. The interface becomesimmediately
predictable with no surprises, apart from interesting and engaging stories.

o Feedbackisinstant and all operations are safe. Although the site loads fairly quickly given
all the data and resources it uses behind the scenes, there is a slight delay and this is where the
helpful feedback starts. A familiar “loading” message appears but quickly fades directly to the
core visualization. Every click produces instant feedback that is 100 percent undoable, either via

BUILDING INTERACTIVE SECURITY VISUALIZATIONS

the controls on the visualization or with a quick click of the browser reload button. This feeling of
safety puts consumers at ease and encourages them to explore.

The (Slow) Demise of Flash and Java

There was a time when Java and Flash applets were the only way to add “decent” visual interactivity to
awebsite. Java was (and is) a formal language taught in many schools, which had made it an especially
easy choice for academic visualizations. Flash was (and is) easy to learn with friendly development
tools that have made it highly popular among the general web development community.

Although Flash still commands a presence on around 17 percent of websites (Figure 11-7), the use
of it as a visualization medium is in a slow, steady decline. In contrast, Java applets hold on to a
razor-thin 0.1 percent share of the web.

28.60%

The decline of Flash

The fading of each technology can be attributed to many factors, including:
® The never-ending vulnerability, breach, and security update cycle

® The rise in popularity of platforms such as the iPad, iPhone, and other touch environ-
ments that do not provide support for website elements built with these tools

® The increased native platform capabilities due to widespread adoption of HTMLS5, CSS,
and JavaScript across the most used browsers

To reach the broadest audience, it’s best to avoid proprietary technologies or visualization toolkits
that require browser extensions.

Developing Interactive Visualizations

® Actions are limited. The interface provides options to change color and size of bubbles
and highlight certain organization and breach types. However, you cannot group
elements together and generate a bar chart or select individual organizations out
from a list of thousands. These constraints make the interface much less daunting—a
condition referred to as the paradox of choice—since some argue that people want
more freedom and more tools and ways to explore. Limiting actions also enables you
to shape or guide the exploration in a particular direction. Considering how fixed
graphics represent the extreme in limiting actions, you should be able to think back
to what made the data interesting to you as you explored it and come up with a set
of constrained, exploratory actions that lie somewhere between the freedom of an
RStudio window and the constraints of a static graphic.

Note

Barry Schwartz writes about The Paradox of Choice: Why Less Is More (Ecco, 2004) in
more detail in his book.

Include Appropriate Detail

Breaches are complex entities, as illustrated by the breadth and depth of the VERIS taxonomy explained in
Chapter 7. This level of technical detail is completely inappropriate for the mass-consumer audience of the
World's Biggest Data Breaches visualization. Rather than bombard the consumer with multi-level taxonomy
details, McCandless and Evans opt for simple summaries and succinct descriptions available upon clicking,
while making detailed news stories also available on demand.

The level of detail you choose to provide in this type of visualization is highly dependent on the target
consumer. Including VERIS-level taxonomy details within a similar tool released at a conference of security
professionals focused on metrics (Metricon, http://securitymetrics.org/)isboth appropriate
and expected by the audience. You must have a solid grasp of who will be using your creations and what
their level of expertise and expectations are in order to build a truly successful interactive visualization.

Developing Interactive Visualizations

Even with the elimination of Flash and Java as options, you are still faced with the aforementioned paradox
of choice when it comes to deciding on how you want to develop interactive visualizations. Most often, you'll
have to roll up your sleeves and write code, especially since you will usually be dealing with sensitive data
that cannot be published on the public Internet. The vast majority of Internet-accessible “point-and-click”
tools store data in the “cloud” and use public websites for the presentation layer, but there are desktop
tools that can be of great assistance when fixed visualizations are not sufficient.

Building Interactive Dashboards with Tableau

One standalone, Office-like tool that excels at building assisted/directed interactive visualizations and
dashboardsis Tableau (http://tableausoftware.com/). Tableauis a Windows-only application

BUILDING

INTERACTIVE SECURITY VISUALIZATIONS

that was heavily influenced by research conducted by Jock Mackinlay in automating the design of graphi-
cal presentations of relational information (http: //cs171.0rg/2008/papers/mackinlay8é
. pdf). Afoundational premise of Tableau, therefore, is to have the system analyze your data and provide
suggestions for the best way to visualize it. If your goal is to build interactive, user-friendly dashboards or
quickly provide an interactive exploratory interface for a complex data set, Tableau should be your “go
to” tool of choice.

If you look back at the security awareness use case in Chapter 10, one way to build such a survey is to
use an in-house tool such as Microsoft SharePoint or look to a commercial solution such as SurveyMonkey
to present the desired survey questions. The raw survey results will look something like the almost end-
less series of data points shown in Figure 11-8. Slicing and dicing that data into generate static views is
possible, butitis neither practical nor useful for communicating the messages contained within the data set.

FEE TR | | s el vl | L I

myar myod

L6 you Lo you
know who know who delele files delele files
{o contact 1o contact Do you Do you from your from your
in case in case Have you Haveyou know how know how Have you Haveyou computer computer
youare youare everfound everfound totellif totellif evergiven evergiven oreven oreven How
Doesour Doesour hacked, hacked. avirusor avirusor | your your outyour outyour format format secure do
company company lost lost Trojanon Trojanon computer computer work work your hard your hard | you feel
have a have a customer customer your your is hacked |is hacked password password drive, all drive, all |your
Business Campus Years security security data orif data orif computer computer or or 1o o the the computer
Leval Unit Identifier Employed team? team? your your atwork? atwork? infected? infected? anyone? anyone? informatio informatio is?
Individual
Confribute Capital Canada 2 Yes 1 Yes 1 No 2 Yes 1/No 1 FALSE 1 Secure
Individual
Confribute Energy Canada 15 Yes 1 Yes 1/No 2| Yes 1 No 1 FALSE 1 Secure
Individual
Confribute Energy Canada 26 Yes 1|Yes 1 No 2 Yes 1 No 1 FALSE 1 Secure
Individual
Contributo
r Energy Canada 7 |Yes 1 Yes 1 /No 2 Yes 1 No 1 FALSE 1| Secure
Individual
Contribute Energy Southwest 22 Yes 1/Yes 1 No 2 Yes 1 No 1 FALSE 1 Secure
Individual
Contributo
r Energy Canada 8 Yes 1 Yes 1 /No 2|Yes 1 No 1 FALSE 1! Secure
Individual
Confribute Energy Canada 14 Yes 1|Yes 1 No 2 Yes 1 No 1 FALSE 1 Secure
Individual
Contributo | Infrastruct
r ure Midwest 13 Yes 1 Yes 1 No 2 Yes 1 No 1 FALSE 1 Secure
Individual Infrasiruct
Contributo |ure Mortheast 2|Yes 1 Yes 1 No 2|Yes 1 No 1 FALSE 1 Secure
Individual
Contribute | Gapital Southwest 21 Yes 1|¥es 1N 2 Yes 1 No 1 FALSE 1 Secure
Individual
Contribuio
r Energy Canada 26 Yes 1i¥es 1 Ne 2 Yes 1/ No 1 FALSE 1 Secure
Individual Very
Contribute Home Midwest 20 Yes 1 Yes 1 No 2 Yes 1 No 1 FALSE 1 Secure
Individual
Confribute Capital Southwest 23 Yes 1|Yes 1|No 2 Yes 1|No 1 FALSE 1 Secure
Individual Very
Confributc | Capital Southwest 1 Yes 1 Yes 1 /No 2|Yes 1 No 1 FALSE 1/ Secure
Individual Very
Confribute Energy Southwest 16 Yes 1 Yes 1 Ne 2 Yes 1 No 1 FALSE 1 Secure
Managem
ent Capital Southwest 16 Yes 1 Yes 1 No 2 Yes 1 No 1 FALSE 1 Secure
Individual
Cantribute Home Canada 13 Yes 1 Yes 1 No 2|Yes 1/No 1 FALSE 1 Secure
Individual Very
Confribute Energy Southwest 2 Yes 1 Yes 1 No 2|Yes 1 No 1 FALSE 1 Secure
Individual
Cantribuio
r Energy Midwest 15 Yes 1 Yes 1 No 2|Yes 1 No 1 FALSE 1 Secure
Individual Very
Cantribute Home Mortheast 13 Yes 1 Yes 1 No 2 Yes 1 No 1 FALSE 1 Secure

Individual | Infrastruct

Raw data from the security awareness survey

Developing Interactive Visualizations

Tableau can easily digest this data, analyze the types of variables it contains, and guide you through
selecting the most appropriate visualizations to encode the individual elements or relationships between
elements. That's great for producing fixed graphics, but Tableau can also be used to quickly generate
interactive visualizations that can be distributed to other Tableau Desktop users or be presented to web
browsers via Tableau Server.

Afterlooking at the data (ch11/data/awareness-survey . csv, whichis available on the book’s
website, www . wiley.com/go/datadrivensecurity, as part of Chapter 11 download materi-
als), we decided it would be most helpful to provide views of each survey answer by business unit, years
employed, and employee level (management or individual contributor), since we could then attempt to
discern if any of those factors stood out (which will help us tailor messages in future awareness initia-
tives). With this goal in mind, we used Tableau to create the interactive dashboard shown in Figure 11-9.
It's viewable athttp://public.tableausoftware.com/views/UserAwareness/
UserAwareness. The whole process—from data import to finished dashboard—took about 20 minutes.

Select a Question to View:
Does our company have a security team? "

Does our company have a security team?

]
>
@
-l
@
@
-y
= Idon't ki 14 144
o Sl _
E
w
. Management . Individual Contrib...
a1 m
-
%
o
a No
E
w
g FERESE . -
a
B
| E3 | | RE | Rl 5 0
=
=
= No
w
0
2
— I don' b
B on't know
3
L 0% 5% 10% 15% 20% 25% 30% 35% A40% 45% 50% 55% 60% 65% T0% 5% 80%
. Infrastructure . Home . Energy . Capital . Business Solutions
~ Share ¥ X oo fus] + Download

= N
44 +ableau

Ficure 11-9 Awareness survey results presented with Tableau

BUILDING INTERACTIVE SECURITY VISUALIZATIONS

Years Employed

Rather than build a giant, scrolling web page, we chose to let consumers explore individual survey
questions and had Tableau automatically pivot the compact detail views on demand. Each visual compo-
nent in each section is also selectable and provides further levels of detail when inspected (Figure 11-10).

Yos

| don't know

6 items selected

 KeepOnly X Exclude

1): 20.33%

Tableau details on demand

This all required nothing more than a few mouse clicks and drags. We never entered even one line of
code, yet produced an interactive tool that can be used by anyone with a web browser. Plus, we can give
the entire workbook (also available at www.wiley.com/go/datadrivensecurityatchll/
data/user-awareness . twbx) to other analysts to produce other customized views—provided
they also have the Tableau Desktop software.

Tableau is great for producing straightforward fixed and interactive visualizations using standard
charting components. However, if you want to create more specialized interactive visualizations or prefer not
to be locked into a proprietary desktop tool, you'll need to head to your favorite text editor and start coding.

Building Browser-Based Visualizations with D3

There is a vast landscape of tools, languages, and techniques available to help you craft engaging, web-
based, fixed, and interactive data visualizations. It would be impossible to cover them all in one book, let
alone part of one chapter, so we'll highlight one of the most flexible and popular visualization libraries avail-
able today—D3—and show you a fully working example using a meta-language built on top of D3—Vega.

D3 (http://d3js.org/)isapowerful JavaScript library created by Mike Bostock that makes it
possible to dynamically transform and manipulate the contents of web pages based on data. To fully bend
D3 to your will, you'll need to:

® Become proficientin the web trifecta%HTML5, Cascading Style Sheets (CSS), and JavaScript
® Be familiar with the structure of Scalable Vector Graphics (SVG)

® Have asolid understanding of the Document Object Model (DOM); see http: //www.w3 .org/
TR/1998/WD-DOM-19980720/introduction.html

Developing Interactive Visualizations

However, you can begin to learn D3 without deep knowledge in those areas, just by
viewing and exploring the plethora of examples found on the “official” D3 GitHub site
(https://github.com/mbostock/d3/wiki/Gallery) and by gathering expertise
along the way.

Unlike most proprietary technologies, you can dissect and inspect all D3 visualizations just by choosing
“view source” from your web browser. Since D3 visualizations are fully driven by the data being visualized,
the data itself is also available for download and should be in a recognizable format—usually CSV, TSV,
JSON, or hardcoded HTML tables and JavaScript arrays.

Getting started with D3 requires only three things—a text editor, the D3 JavaScript library, and
a web server. To prove this, read through this annotated, basic example of a static bar chart (Figure
11-11) to see what it’s like to code in D3. You can find the source for Listing 11-1 in ch11/support/
chll-figurell.html.

<!--
-- Listing 11-1
-- Example of D3 visualization
-=>
<!DOCTYPE htmls>
<html>
<head>
<meta charset="utf-8">
<style>
rect.bar {
fill: #8DAOCB; /* fill color for the bars */
1
.axis text {
font: 10px sans-serif; /* 10-pt text for axis labels */
}
.axis path, .axis line { /* line style for the axes */
£ill: none;
stroke: #000;
shape-rendering: crispEdges;
1
</style>
// Load the D3 js library
<script src="http://d3js.org/d3.v3.min.js"
charset="utf-8"></script>
</head>
<body>
<scripts>
// set up the data that will generate the bar chart
var data = [3, 3, 5, 9, 15, 18];

// define that margins for the plot and document
var margin = {top: 40, right: 40, bottom: 40, left: 40},
(continues)

BUILDING INTERACTIVE SECURITY VISUALIZATIONS

(continued)
width = 960,
height = 500;

// we can use many scales with D3, but we'll stick with a basic
// linear scale for the X axis that is based on the values
// contained in our data set. in ggplot parlance this would
// be akin to using scale x continuous ()
var x = d3.scale.linear ()
.domain ([0, d3.max(data)l)
.range ([0, width - margin.left - margin.right]) ;

// for the Y axis, we'll use an ordinal scale since these are really
// just individual factors being displayed. in ggplot parlance, this
// would be akin to scale y discrete()
var y = d3.scale.ordinal ()

.domain (d3.range (data.length))

.rangeRoundBands ([height - margin.top - margin.bottom, 0], .2);

// apply the scales to each axis, setting attributed for text
// text alignment and tick marks
var xAxis = d3.svg.axis()

.scale(x)

.orient ("bottom")

.tickPadding(8) ;

var yAxis = d3.svg.axis()
.scale(y)
.orient ("left")
.tickSize (0)
.tickPadding(8) ;

// create an SVG element at the top of the the document body
// that will hold the bar chart visualiztion, setting basic
// layout parameters
var svg = d3.select ("body") .append("svg")
.attr ("width", width) // 'attr' sets DOM element attributes
.attr("height", height)
.attr("class", "bar chart")
(
(

.append ("g")
.attr("transform",
"translate (" + margin.left + "," + margin.top + ")");

// this creates all the bars in the chart using SVG 'rects'.
// try chaning the number of entries and values in the 'data' array
// above to see how it affects the display
svg.selectAll (".bar")
.data (data)

Developing Interactive Visualizations

.enter () .append ("rect") // 'enter+append' creates new elements

.attr("class", "bar") // each 'rect' will use the CSS 'bar' format
.attr("y", function(d, i) { return y(i); }) // scaled y coordinate
.attr ("width", x) // width based on the x value

(

.attr("height", y.rangeBand()); // bar widths dynamically scaled to
fit

// display the axes we set up earlier

svg.append ("g")
.attr("class", "x axis")
.attr ("transform", "translate(0," + y.rangeExtent () [1] + ")")
.call (xAxis) ;

// we could have embedded labels in array, but this just assigns
// A-Z+ character codes, which helps show how to make almost any
// D3 element dynamic
svg.append ("g")

.attr("class", "y axis")

.call (yAxis)

.selectAll ("text")

.text (function(d) { return String.fromCharCode(d + 65); });
</scripts>
</body>
</html>

You can test the visualization in your browser by using the built-in HTTP server found in Python standard
library and executing:

python -m SimpleHTTPServer 8888 &

Execute this in the directory containing the example D3 HTML file (ch11/support) and point your
browsertohttp://localhost:8888/chll-figurell.html.

If the syntax looks a bit daunting, remember that it’s just a web page with formatting and JavaScript.
You can start to get more comfortable with this code (or any D3 example) by experimenting with changing
small things like the bar color and axis fonts. Then add, remove, and modify elements in the data array. If
you use Google Chrome or Mozilla Firefox, you can bring up the Developer Tools JavaScript console and
interact directly with the document elements. For instance, you can see all of the objects that were created
by D3 when you told it to make the bars by typing svg.selectAll (" .bar") in the console (once
the visualization displays). You can inspect the results (Figure 11-12).

More complex and interactive D3 code can take a bit of getting used to, but there are ways of using D3
without always having to interact with code on this level.

Going Meta with Vega

If the ggplot library is the R incarnation of the “grammar of graphics,” then Vega (http: //trifacta
.github.io/vega/)is D3's counterpart.

b1:1] BUILDINGINTERACTIVE SECURITY VISUALIZATIONS

Ficure 11-11 Basic D3 bar chart

% Elements Resources Metwork Sources Timeline Profiles Audits | Console |

> swg.selectAll(".bar")
[¥ Array[6] 1
p B: rect.[object SVGAnimatedString]
#1: rect.[object SYGAnimatedString]
p2: rect.[object SYGAnimatedString]
p 3: rect.[object SVGAnimatedString]
w4: rect.[object SVGAnimatedString]
_data__: 15
p attributes: NamedNodeMap
baseURI: "http://localhost:BEBB/"
childElementCount: @
p childNodes: ModelList[®@]
children: HTMLCollection[@]
p classlist: DOMTokenList
» classMName: SVGAnimatedString
clientHeight: @
clientLeft: @
clientTop: @
clientWidth: @
» dataset: DOMStringMap
p externalResourcesRequired: SVGAnimatedBoolean
p farthestViewportElement: svg. [object SWGAnimatedString]
firstChild: null
firstElementChild: null
» height: SVGAnimatedLength
L Rk
lastChild: null
lastElementChild: null

I m . ol ~y tom frarmns w ARAL FORTaVE w o2 | F0k | Errnrc W

Ficure 11-12 Viewing D3-created elements in the JavaScript Console

Developing Interactive Visualizations

Note

For more on the grammar of graphics, read Leland Wilkinson’s The Grammar of Graphics,
Second Edition (Springer, 2005).

With Vega, you describe a visualization using very readable JSON and simply use Vega's parse ()
function to read the file and display the visualization. The Vega library takes care of translating the speci-
fication into the appropriate D3 code. To see the difference, compare the raw D3 bar chart example given
previously with this Vega version described in Listing 11-2 and shown in Figure 11-13.

// Listing 11-2
// Vega chart description
{
"width": 500,
"height": 960,
"padding": {”top”: 40, "left": 40, "bottom": 40, "right": 40},

"data": [
{
"name": "table",
"values": [
{"X": A, ey 3}] {"X": n"Bm, ey 3}]
{"X": ngn, ey 5}' {"X": npn, ey 9}'
{nxn: g, s 15}, {nxn: g, s 18}
]
}
1,
"scales": [
{
"name": "x",
"type": "ordinal",
"range": "width",
"domain": {"data": "table", "field": "data.x"}
}
{
"name": "y",
"range": "height",
"nice": true,
"domain": {"data": "table", "field": "data.y"}
}
1,
"axes": [
{”type”: "x", "gcale": "X"},
{"type": "y, n"gealem nyn}

1,

(continues)

BUILDING INTERACTIVE SECURITY VISUALIZATIONS

Listne11-2 (continued)
"marks": [
{

"type n : "rect" ,

"from": {"data": "table"},

"properties": {

"enter": {

"x": {"scale": "x", "field": "data.x"},
"width": {"scale": "x", "band": true, "offset": -1},
ey {"scale": nyr, nfieldr: "data.y"},

"y {"scale": nyn, nyalue : 0}
¥
"update": {

"f£il1l": {"value": "#8DAOCB"}
}

Ficure 11-13 Basic Vega bar chart output

Developing Interactive Visualizations

This syntax is much more readable than straight D3 code and the JSON format makes it easy to build
graphics based on templates that are populated with computed data and customized styles. You can also
use this flexibility—combined with some extra JavaScript code—to build fully interactive visualizations.

Creating an Interactive “Threat Explorer”

Imagine that you've been asked to visualize which internal hosts are talking to external hosts on a port-
by-port basis using the same visualization technique as the network graphs highlighting malicious traffic
that you saw in Chapter 4. This will require adapting the graph code a bit to work with firewall data, but
that should be a simple exercise at this point.

You find this request intriguing and sit down with the SOC analysts to get more requirements. After
delving into the details with them, you come up with the following objectives:

® Theinterface must let an analyst choose which port to explore.

® The visualization should—if the metadata is available—identify internal nodes by type (server or
workstation) and IP address and also by which data center egress connection attempts were made
from.

® External nodes should be easy to identify, with the default direction for graph edges being internal
to external.

® The analysts would like to be able to view at least a month’s data at a time.

During your interaction with the analysts, you notice that when they are looking for malicious traffic,
they often check IP address reputation using external resources. This gives you an idea to have your code
perform this lookup ahead of time and color-code external nodes that are found in the AlienVault Reputation
database. You want to also provide a way for analysts to quickly check all external nodes against other
external resources. With the problem domain fairly well defined, you set off to create the tool.

You decide to use Vega for the visualization components and the jQuery (http: //jquery.com/)
and Opentip (http://www.opentip.org/) JavaScript libraries to add the interactive layer to the
core, static Vega visualizations. “Interaction” is just a fancy way of saying “listening and responding to mouse
and keyboard events,” something that browser-based JavaScript is very good at. By targeting the browser
environment, you can take advantage of all the other open web development resources to help simplify
and accelerate the development process. You can also work directly with these events in low-level D3 code.

The result is an interactive “threat viewer” shown in Figure 11-14. The entirety of the code for this
visualization is in the Chapter 11 download materials at www .wiley.com/go/datadriven
security, with the main component of the visualization contained in the index . html file in the
chll/support/chll-threat-view/ directory.

Rather than go line-by-line through the file, we'll highlight some of the core components that make up
the interactive visualization. The following jQuery routine starts the whole visualization:

// The S (document) .ready(..) pattern lets us excude a block of code
// once all of the HTML in the document has been read and parsed by
// the browser. This means we can rely on all the base objects being
// ready when we want to start our visualization display
$ (document) .ready (function () {

// Opentip is a very flexible tooltip library that we'll use

BUILDING INTERACTIVE SECURITY VISUALIZATIONS

// to pop-up details of individual nodes on demand
Opentip.defaultStyle = "dark" // dark-styled tooltips

// This tells Opentip to look for mouse events on the vis div
// element which can be found in the <body> of the HTML file
tip = new Opentip (document.getElementById("vis")) ;
tip.deactivate(); // hide tooltip for now

doParse ("22"); // start visualization with port 22

1)

Threat View

Blue (EU), Green (ASPAC) & Orange (NA) nodes belong to Contoso; Red = External; Purple = On Alienvault List
Squares are SERVERS; Circles are non-Servers
You can hover over all nodes for info and click on external/bad ones for a lookup.

Select port: | ssh

INFO:165.160.15.20

CCUSEE
DNS: 165.160.15.20

The “Threat View” interactive visualization

Each “port” visualization has its own pair of files, one for the JSON visualization graph specification
(##-vega . json)and one for the actual graph data (##-data . json). This naming convention makes
it very straightforward to programmatically change the display—via doParse () —when the port popup
registers a new selection.

Developing Interactive Visualizations

<div>Select port: <select name="port" onchange="doParse (this.value)">
<option value="22">ssh</option>

<option value="23">telnet</options>

<option value="prt"s>Printers</options>

<option value="161">SNMP</options>

<option value="554">Streaming (554)</option>

<option value="7070">Streaming (7070)</options>

<option value="16464">Port 16464</option>

</select></div>

The doParse () routine does some minor error checking and then calls Vega's parse () function
to do all the work:

function parse (spec) {

// load the visualization specficication (spec) which,

// in turn, loads the data file and lets us create the graph
// and attach mouse events to the graphic

vg.parse.spec (spec, function(chart) {

// render the chart in the vis div and give us a handy
// reference to it in the graph object

graph = chart ({el:"#vis"})
graph.renderer ("svg") .update ()

// when the user mouses over one of the shapes,
// build the tooltip on the fly and display it.
// tooltips can contain any type of HTML formatting.
// here we add whatever metadata we have, including
// country flag if available.
graph.on ("mouseover", function(event, item) {
if (item.shape == "circle" || item.shape == "square") {
tip.setContent ("<div>INFO: " + item.datum.info + "
CC: " +
item.datum.cc + " <img src=\"images/flags/png/" +
item.datum.cc.toLowerCase() + ".png\"/>
DNS: " +
item.datum.dns + "<br/s></divs");
tip.activate() ;
tip._ storeAndLockDimensions () ;
tip.reposition() ;
tip.show() ;
} else {
tip.deactivate() ;
tip.hide() ;
1
3]

// turn off tooltips when the mouse moves out of an element

graph.on ("mouseout", function(event, item) {

BUILDING INTERACTIVE SECURITY VISUALIZATIONS

tip.hide () ;
tip.deactivate() ;

3]

// 1f the user clicks on an external node, look up the selected IP

// address on the tcpiputils.com site
graph.on("click", function(event, item) {
a = item
if ((item.datum.group == 4) || (item.datum.group == 5)) {
window.open ("http://www.tcpiputils.com/browse/ip-address/" +

item.datum.name, " blank")

}

graph.update ("click", item) ;

1) s
I3

}

There are many additions you could make to enhance this basic interactive tool, including:
® Sizing nodes based on the number of connections

® Incorporating other IP reputation resources

® Performing additional metadata queries on internal hosts that have suspicious activity and display-
ing other layers of information

This should be a good starting point to help you explore both D3 and JavaScript further.

Note

You can find the complete working “threat-view” example on the book’s website (www
.wiley.com/go/datadrivensecurity)and interact with it by starting the
Python web server in the ch11/support/chll-threat-view/ directoryin the
Chapter 11 download materials.

Summary

Creating interactive dashboards and visualizations is a multi-disciplinary endeavor. You must understand
both the problem domain and mental models of your consumers, know which goals—augmentation,
exploration and illumination—must be accounted for in the finished product, and be certain that interac-
tion is truly necessary for effective communication.

Avoid proprietary solutions whenever possible to ensure your creations can be viewed by the larg-
est audience. Make note of characteristics in other visualizations that you find to be effective so you can

duplicate their best parts in your own work.

Recommended Reading

Although there are ways of building useful interactive visuals without coding, you will need to learn
the intricacies of modern web frameworks to build highly customized and tailored interactive tools. As you
work to fine-tune your finished product, you should endeavor to create a regular feedback loop with those
who will end up using your work. This will ensure that you are delivering the most effective tool possible
with just the right amount of functionality to make it a success.

Recommended Reading

The following are some recommended readings that can further your understanding on some of the topics
we touch on in this chapter. For full information on the book included in these recommendations and for
any sources we mention in the chapter, please see Appendix B.

The Design of Everyday Things by Donald A. Norman—This book will change your perspective of
everything around you and how you approach building things for others, whether it be a user inter-
face or a static visualization. You will learn how to approach design in very practical ways and will
come away with a much better perspective on how individuals work in and perceive the world.

Interactive Data Visualization for the Web by Scott Murray—If you endeavor to build D3-based
interfaces, this is the seminal text on the subject. It is a very hands-on and extremely practical text.
The Functional Art by Alberto Cairo—This book is beautiful. You will learn the core elements of
design and come away with a solid understanding of how to approach visualization projects of all
scopes and sizes.

“VisAlert: From Idea to Product” by Stefano Foresti and James Agutter—This paper is one of the few
domain-specific “soup to nuts” explanations of how to apply data science concepts to solve real
world information security problems. It will teach you how to avoid designing in a vacuum and pro-
vide invaluable insight into the development process.

D3 Tips and Tricks: Interactive Data Visualization in a Web Browser by Malcolm Maclean—See
http://leanpub.com/D3-Tips-and-Tricks. Thisbook is one of the most comprehen-
sive D3 reference and “cookbook” texts. With this book and Scott Murray’s book, you will have at
your fingertips almost everything you need to understand and implement D3-based visualizations.

Moving Toward Data-Driven
Security

MOVING TOWARD DATA-DRIVEN SECURITY

If you've been following along up to this point, you have covered a lot of ground, and you've hopefully
realized that there is knowledge buried in the data. As you begin to move your security practice into a
data-driven mindset, we suggest that you take a “panning for gold” approach instead of a “drilling for oil”
stance—meaning that you shouldn’t get bogged down with a single focus (or a single source of data) out
of the gate. Instead, roll your pants up, step into the stream of data, and just explore and learn what you
can about it. Once you understand what’s in the data, you can start to ask (and answer) the interesting
questions that will begin to make a difference.

This last chapter is dedicated to that difference. The first half is about moving yourself (or those you work
with) toward a data-driven approach at a personal level. The second half is about moving your organization
toward a data-driven security program.

Moving Yourself toward Data-Driven Security

Figure 12-1 is a slight modification of Drew Conway’s “Data Science Venn Diagram” (http://
drewconway.com/zia/2013/3/26/the-data-science-venn-diagram), whichisa
simple visualization that can help you quickly evaluate where you currently are on your journey toward
data-driven security. This chapter looks at each major component, along with the interactions between
some components. The idea is to help you identify areas that aren’t currently your strengths. You don't
have to be strong in all the major areas discussed here, but you want to be sure that weakness in any one
area doesn't silently pull you off course.

Machine

Hacking Lestiog Statistics

Skills Knowledge

%
<

N
AZ

o
o7 o o,
3 ooz Q’t;;)"/

2

Security
Domain
Expertise

The Data science venn diagram

Licensed under Creative Commons Attribution-NonCommercial (http://creativecommons.org/
licenses/by-nc/3.0/legalcode)

Moving Yourself toward Data-Driven Security

The Hacker

The term hacker has a great deal of confusion surrounding it, as it has been usurped by news media and
manipulated by marketing firms. In the context of a security data scientist, we are updating the classic use of
“hacker” to describe someone with a passion for using (and perhaps abusing) technology for a benevolent
goal, including skills such as:

® Being able to command computers through code, either via scripting in a language like Python or full
on programming in something like C

® Knowing a wide variety of data formats and understanding how to slice, dice, and bend them to your
will

@ Having the ability to think critically, logically, scientifically (essentially, not jumping to conclusions) as
well as algorithmically (break apart a problem into its composite parts)

® Being able to communicate your work through visualizations, charts, tables, or even a good old-
fashioned collection of words

The Coder

If you are an information security professional who isn't a coder, Chapters 2, 3, and 4 have been designed
to help you bootstrap into that skill. If you are a coder, those same chapters cover a language that is
most likely new to you (R) and place coding in the context of data analysis versus application building or
systems administration, which may be more familiar problem domains for you. Whether you're at the top
of your game as a programmer or just getting started, there is always more to learn. There is no shortage
of resources available, including:

® Codecademy (http: //www.codecademy . com/)—Thisis an especially good resource for
those new to programming in general or those unfamiliar with a particular language. It's worth-
while to take a look at the JavaScript and jQuery offerings given the emphasis on JSON in Chapter
8and D3.jsin Chapter 11. If you don’t know Python well (or at all), their Python course can defi-
nitely help.

® Code School (https://www.codeschool .com/courses)—The offerings at Code
School can be a bit overwhelming and not all are free. However, their R course is freely available at
the time of this writing and will help you navigate the syntax and nuances of the language.

® W3Schools (http://www.w3schools.com/)—Ifyouhaven't had the opportunity to shore
up your HTML/CSS/JavaScript skills, W3Schools provides an extremely friendly environment to
learn and experiment. You'll need at least a basic understanding of these client-side components
if you want your analyses and results to reach the widest audience.

o StackExchange (http://stackexchange.com/)—Althoughyouwon't necessarily learn
how to code at the StackExchange family of websites, you will have a place to look for answers or
ask questions when you're stumped. Whether it's trying to understand some esoteric option in
ggplot2 ordoing something a bit more complex with a pandas data frame, there’s a very good
chance the answer will be in StackExchange.

MOVING TOWARD DATA-DRIVEN SECURITY

The Data Munger

When it comes to data formats, security professionals are in the unenviable position of having to be able
to manipulate everything from NetFlow captures, to full packet capture (PCAP) dumps, and almost every
log format known to humankind. The IronPort log file snippet in the “MongoDB” section of Chapter 8 is
an example of how “imperfect” your data world is. Although that log file contains highly useful data, it’s
in a format that you must parse and convert to make useful. The only way to get good at that is to do it
over and over again, building up reusable bits of code and techniques along the way to save time later.

Note

We can tell you from experience, while data analysis is absolutely about the analysis, that’s
not where you will spend most of your time. Most of your time will be spent transforming,
cleaning, and preparing data. That task is at its core a combination of the previous section
on coding and the next section on thinking, as both of those skills will be used to extract
the useful data and prepare it for analysis. Though the skills of security domain expertise
and statistics will also help to identify what you want to keep and how you want to clean
it to be helpful in the analysis. For a list of helpful tools for this task, see Appendix A, the
section on “Data Cleansing.”

The Thinker

Learning how to think critically, logically, scientifically, and algorithmically requires time, effort, and
practice. Formal, in-person, instructor-led education may work best for some students, especially those
who have shied away from programming. However, introductory sites like Project Euler (http://
projecteuler.net/problems) can get you started down this path; more advanced and diverse
problem sets can be found at Kaggle (http://www.kaggle.com/competitions);andyou can
delve into wide and deep security domain problems at the VAST Challenge (http://vacommunity.
org/VAST+Challenge+2013)site (look in both the current and previous years’ sections).

These resources will supply data in various states. One of the criticisms of competitions like Kaggle
though, is that they offer the data in a ready-to-be-analyzed format. As we mentioned in the last section,
this is very much unlike the real world and so just focusing on things like the Kaggle competitions may
give you a skewed perspective of the real world. As a stark contrast, the VAST Challenge has constructed
real-world logs and device outputs that must be cleaned and prepared prior to analysis, thus giving you a
better idea of what real-world data is like.

The Visualizer

The skill to communicate to outsiders was never part of the original use of the term hacker, though it
certainly is evolving into that. It's not enough to make the technology bend to your will and make a discov-
ery. You must also be able to communicate that in a language that the audience can not only understand,

Moving Yourself toward Data-Driven Security

but also relate to and appreciate. While this skill may mostly be about data visualization skill (and all of
Chapter 6), that shouldn’t be the only tool in your toolbox. Realizing when to scrap those glossy color
pictures and produce a simple table or even just describe the results in an email or in person is more
valuable sometimes than the data visualization skill itself. Many resources are freely available and doing
a quick search over the Internet will lead you to far more resources than we can list here. However, here
are a few to get you started:

o FlowingData (http://flowingdata.com)—Notonly doesthe maintainer Nathan Yau
provide some incredibly inspirational data visualizations, but he will also include a few comments
and insights into the data. Having written two books on the subject of data visualization, Yau
knows good data visualizations!

® JunkCharts (http://junkcharts. typepad.com)—Because sometimes knowing how
not to create a visualization is more helpful than knowing how to create one.

o Storytelling with Data (http://www.storytellingwithdata.com)—Oneofthe
great things about this site is that Cole Nussbaumer has a very pragmatic approach to visualiza-
tions and will talk about visualization makeover and the processes used so almost anyone can
follow along and learn.

There are other sites that aggregate visualizations and are good to keep an eye on suchas http://
visualizing.org http://visual.ly,orhttp://eagereyes.org, andthereare plenty
of other tools and resources in Appendix A.

Overarching these traits is the need to develop and hone a sense of curiosity. In fact, curiosity may be
the single most important trait of a hacker. The need to know why or how something works the way it
does from start to finish is an invaluable driving force when faced with a complex data science problem.
When combined with the other main security data science skills (statistics knowledge and security domain
expertise), you'll eventually get to a place where developing a successful NetFlow-based malware traffic
clustering algorithm is as rewarding as beating the other team in a capture-the-flag competition.

Developing Developer Skills

Although the resources in this section can help you pick up the skills necessary to write code, there
are skills around writing code that come in handy as a code warrior. Two of the not-so-secret skills
you should develop are unit testing and source code control.

® Becoming comfortable with writing and executing unit tests tightens up not just your
code, but how you think about your code. Yes—you are a brilliant person with amazing
skills—but you will still make mistakes and logic errors in your code despite that fact.
Unit testing helps you catch those inevitable oversights that creep into your code.

@ Along the same lines, source code control helps track multiple developers’ code efforts,
and enables more advanced features such as version control and code branching.
More than that, source code repositories also help you avoid that awful question,
“Now where did we put that source code?”

MOVING TOWARD DATA-DRIVEN SECURITY

The Statistician

Given some of the “rookie mistakes” seen in many security industry reports and the prevalence of raw
counts in security dashboards, there’s a high probability that statistics is the weakest area for information
security professionals. You learned about some statistical concepts in depth and read a whirlwind overview
of others in Chapters 4, 5, 7, and 9. Okay, you don’t need a PhD in statistics to be an effective security data
scientist. However, it's important to have an understanding of the fundamentals of statistical analysis and
machine learning, even when you're part of a multidisciplinary team.

Although you can head over to your local college or university and dive into a traditional classroom
program, there are two other options to consider when you want a better understanding of statistics:

® Massively Open Online Courses (MOOCs) like Coursera’s Introduction to Data Science course
(https://www.coursera.org/course/datasci),edX’s Learning From Data course
(https://www.edx.org/course/caltechx/csll56x/
learning-data/1120)and Syracuse University’s Data Science Open Online course
(http://ischool.syr.edu/future/cas/introtodatasciencemooc.aspx)
provide a low-risk way to plug into a formal statistics curriculum, but aren't right for everyone.
Lectures, handouts, and assignments are available at your convenience (within a course’s overall
schedule), and discussion forums provide a way to interact with professors, teaching assistants,
and fellow students. It can be bit overwhelming or even distracting to be in a setting with 2,000
t0 4,000 individuals. Individual attention can also be difficult to obtain if you're struggling.
Employers and professional organizations may also not yet accept the certifications from MOOCs,
making the time investment more for personal benefit than professional credential gains.

® Online certificate or master’s courses such as UC Berkeley’s MIDS program (ht tp: / /www
.ischool .berkeley.edu/programs/mids), University of Washington’s certificate in
datascience (http://www.pce.uw.edu/certificates/data-science.html),
and Penn State’s Applied Statistics online curriculum (http: //www.worldcampus.psu
.edu/degrees-and-certificates/applied-statistics-certificate/
overview)offer the structure and size of a traditional classroom with the convenience
being online.

Understanding and applying statistics correctly is more complex than you might imagine, and indi-
viduals in disciplines with a rich history of using statistics to solve complex problems oftentimes fall into
common traps. Resources such as Alex Reinhart’s Statistics Done Wrong (http://www.refsmmat
.com/statistics/)and DZone's misnamed “Big Data” Machine Learning reference (http://
refcardz.dzone.com/refcardz/machine-learning-predictive)are good to have
on hand to keep your analyses on track.

The Security Domain Expert

When focusing on the topic of security domain expertise as it relates to data science, “thought leaders,”
“gurus,” and “rock stars” need not apply. What I'm talking about here are practitioners with solid, in the
trenches, real-world experience. Depending on your area of focus (information security covers a broad
range of topics), you may be applying your combined hacking skills, statistics knowledge, and expertise to:

4

® Develop smarter endpoint-protection system algorithms.

® Discover new ways to detect anomalous behavior in network data.

Moving Your Organization toward Data-Driven Security

® Uncover patterns from vulnerability assessments to help determine why some systems fall out of
compliance more than others.

® Provide meaningful and useful metrics for various components of your overall security program.

Or a host of other areas.

Your insight is, perhaps, the most valuable component to this data science triad, as it will move com-
putations sans context into the realm of analyses driving action. There is virtually no way for an organiza-
tion or individual to effectively crunch “security data” without this domain expertise. Your assistance and
knowledge is vital in crafting clever questions and confirming results. Your insight into the networks and
systems of your organization, the behaviors and characteristics of malware, and the classification and
qualification incidents is the critical factor in corresponding analyses.

The Danger Zone

Alittle knowledge is a dangerous thing, and having the basic ability to gather and programmatically crunch
data, along with a bit of industry knowledge is tricky. Don't fall into the trap of thinking you're doing data
science when all you're doing is reputational damage to all three component areas (and, potentially, your-
self). How do you steer clear of the danger zone? Try these approaches:

o Embrace (versus dabble in) statistics. Statistics and machine learning have enabled advance-
ments in everything from a deeper understanding of the microscopic workings of human genes,
to telling you how many steps and flights of stairs you've taken, to building spacecraft that even-
tually break past the limits of the solar system. They can absolutely help enhance your knowledge
of security issues and even help solve some of them. Just don’t think you can dip your toe in. Not
everyone can become a genius with statistics, but make sure your team (physical or virtual) has at
least one strong stats person.

o Dig deep, but stay wide. You need to know certain aspects of information security just as thor-
oughly as individual biologists know the deep vertical segments of their discipline. But, because
so many areas outside security (for example, economics, politics, and human rights) have an
impact on security, you'll need to factor those in as you move from asking what and how, to why
and who. Finally, there’s a reason the CISSP certification has 10 domains. You can’t be an expertin
each, but you should know enough about each of them to bring in expert help when needed.

o Challenge assumptions and validate results. Keep an open mind, because data has a way
of changing your mind for you. Hold yourself and ask others to hold you accountable all the way
through your analyses. Whether you're working on internal organizational data or performing
research you intend to publish and/or speak about, pair up with practitioners who can help you
keep on the straight and narrow path. When you've released your findings, take an example from
the reproducible research movement (http: //www. foastat.org/resources.html)
and ensure there is sufficient documentation and data available for others to test your findings.

Moving Your Organization toward Data-
Driven Security

By now you realize that becoming data-driven doesn’t just mean firing up R or Python and tossing in the
data. Becoming data-driven is an evolutionary process that will slowly shift how you and those in your

MOVING TOWARD DATA-DRIVEN SECURITY

organization view the world. The value will not be immediate. Instead, the value will develop over time with
punctuated flashes of brilliance. The components of a good data-driven program within any organization
have some combination of the following:

@ Ask questions that have objective answers.
® Find and collect relevant data.

® Learn through iteration.

® Find statistics (again).

The most difficult part of the transformation is getting started because the first two components present
a chicken and egg problem. You want to ask questions that you have data for, yet you only want to gather
data that answer your questions. But don’t worry; through iteration, you can build up both.

Ask Questions That Have Objective Answers

The opening quote in this chapter was from sabermetrician Bill James. You may know him and his work
portrayed in the book Moneyball by Michael Lewis. He challenged much of the conventional wisdom
within baseball by leveraging data. Recall that he said, “My job was to find questions about baseball that
have objective answers, that's all that | do, that's all that I've done.” His focus was not on simply exploring
and describing the data that is available, nor did he focus on creating colorful visualizations from the data.
His focus was on finding good questions that have answers in the data.

Chapter 1 discussed creating a good question. Remember that a good question has two qualities—it
can be objectively answered with data, and somebody wants to know the answer. Although Bill James
could have asked about the effect of stealing bases on player sponsorships, nobody (except maybe the
players stealing bases) wanted to know that. He focused on relationships with runs scored or players on
base because those are the questions people wanted answered. The same is true in your work. Although
you can count blocked spam or create maps covered with botnet infections, if it's not answering a practical
question that someone wants answered, it might be a waste of time.

Knowing that someone cares about the answer can also help shape the question and make the analysis
easier. Remember back in Chapter 1, we changed the question from asking how much spam was blocked
to asking how much time employees spent dealing with unblocked spam. If, for example, you identified
that nothing would change if employees spent less than an hour a week on unfiltered spam, the question
then becomes “do employees spend more than an hour a week dealing with spam?” With that threshold
in mind, you should be able to simplify the analysis. Rather than calculating how much time, you just need
to know if it's over an hour a week. Context and purpose of the question can only clarify the work you do.

Find and Collect Relevant Data

As mentioned at the beginning of this section, data collection and asking good questions have a natural
interdependency. The questions you ask depend on having data to answer them, yet you don’t want to
collect data you'll never use. Which comes first? Just from being in your environment you should have some
concept of available data—proxy and firewall logs, server authentication logs, and even data within the
company ticketing system are all good candidates to start. Start there and form a few practical questions

Moving Your Organization toward Data-Driven Security

that data can answer. As you get the data to answer your questions, you may need to refine your questions
and then learn more about the data and refine again.

Be prepared to work with others on getting data. Chances are very good you won't be the custodian of
all of the data you'll want. This is why having executive sponsorship is important. If you're a practitioner,
seek executive sponsorship. If you're in executive leadership, make data sharing happen internally. This
will have very limited success as a grassroots effort. You need to involve others and probably even reach
out across corporate silos in order to get data. You will undoubtedly encounter several objections in some
combination of real and imaginary. Keep your eye on the goal, though; the effort will pay off in the long run.

Information Sharing Takes a Lot More Than Information

There is a subtle push across the information security industry that we should all be sharing data,
which is a good thing. The initial objection (and a big objection you may run into internally) is a
lack of trust and/or a concern about the privacy and confidentiality of the data being shared, even
internally within an organization. This is a valid concern and it’s something that you have to address.
But that's actually the easy part of information sharing. Sharing information often turns out to
be a much larger effort than people imagine. There is an eye-opening moment when the people
sharing the information realize that they have underestimated the amount of time and energy it
takes to prepare and share data. There may be some fields that do not or should not be shared and
those must be removed. Then there is a validation step to ensure they are sharing only what they
intend to share. Finally, storage and transfer of the data may present a challenge in logistics, as the
data may be too large to simply email or even to set up for downloading. The best course is to be
open about these challenges and communicate the reality to potential partners. The silver lining
is that the amount of learning you can do when you share data often more than makes up for the
effort to share it.

Learn through Iteration

When you're building a data-driven security program, you won't follow a typical waterfall project plan
where the tasks are defined up front and executed one after another. It's a much more iterative process
like the one shown in Figure 12-2, and the path from question to resolution can easily turn into a twisty
maze. Each source of data offers its own challenges and opportunities. Iteration becomes the name of
the game, and setbacks and challenges become just as much a part of the project as success. But do not
get discouraged; the setbacks will occur less and less frequently, and each one is a learning opportunity.

One of the big lessons you will undoubtedly learn early on is the importance of data quality and the
benefit of building in repeatability. It won’t take long before you pull a data extract and realize a date
variable was corrupted, a field was clipped, or some other act of nature requires that the whole process
be repeated. So not only will the extract, transformation, and loading tools need to be automated, data
validation processes should be introduced often. You'll want to realize that the integrity of the data was
compromised long before you're generating the final report.

MOVING TOWARD DATA-DRIVEN SECURITY

—D-[I_}E;‘CI‘JE‘ OnA QL:estionj

— Acquire Data L‘_.

Clean / Transform Datej -

Update
Analyses

—b[Pen‘orm Data Analyses

5 I Examine Output

Update

Question Explore

ﬁ —-— Alternatives
k Present Results
i Question Resolved I

Finally, with the iteration and constant discovery that comes from working with data, you will be forced
to check your ego at the door. There is very little room for estimations and guesswork. If things go well, you'll
have this lesson forced upon you over and over. Once the data has proven you wrong a few times, you'll
realize that the data works without motive or agenda and may produce unpopular results. Assumptions
should be replaced by questions and data analysis. When things start to come together, you'll be impressed
about the types of questions you can answer.

The data science workflow

Find Statistics

We debated on putting this at the top of the list, but hopefully we've pounded this point home by now.
Proceeding down a data-driven path may head right into the danger zone we talked about in the previous
section without some element of statistics involved. The entire point of moving to a data-driven security
program is to learn from data. The wide field of statistics (encompassing classic, data mining, and machine
learning) has already learned how to learn from data. Not taking advantage of all that history may doom
you to repeat the failures others have already overcome.

There are two options here: Hire someone with a background in statistics or start enhancing
current employees (or yourself!) with training and education we mentioned in the first part of this chapter.

Moving Your Organization toward Data-Driven Security

Unfortunately, candidates with both good domain expertise and good statistics experience are few and
far between. So hiring externally may mean bringing in someone with less experience with information
security, which is fine if you are prepared for it. On the other hand, becoming a professional statistician
isn't possible through a simple weeklong training session. If you are seeking educational programs in
statistics, keep in mind the two cultures Leo Breiman wrote about. Some universities focus on the classic
statistics with less (or no) focus on programming and data management, whereas others focus heavily on
programming at the expense of teaching a strong foundation in classical statistics.

Building a Real-Life Security Data Science Team

When Bob had his internal team start their move into security data science, it was difficult to resist
the urge to spin up a giant, shiny Hadoop cluster and start importing every log from every system
into a massive data store. In truth, his team did start down the Hadoop path and found it fraught
with peril (and screens full of warning messages).

Rather than focus on the technology, they stopped and focused on defining what single question
they would like answered if they had the data. Not five. Not three. One. That single question was
“Have we seen this IP before?” That question set them up for a clear goal: Given an IP address (or
IP/Port combination), search across all our perimeter devices in less than five minutes. For most
organizations—including Bob's—the total volume of such data would fit well within the category
of “medium-sized” (that is, not “big”) data.

His team focused on using traditional SQL (MariaDB), NoSQL (MongoDB & Redis), R, Python, and
JavaScript. For 6 long months, they iterated through tasks, adjusting as they learned, trying differ-
ent ways to acquire, clean, and store data (they call that data curating); structure schemas; and
formulate queries. Along the way, they suffered setbacks when log file formats changed without
warning, when data access issues cropped up, and when the absolute need for referential metadata
reared its ugly head.

Three core principles focused the team.

o First, explore the open source versions of tools before engaging vendors. If you don’t
know how the sausage is being made, you really have no idea what's being done, and
this is vital when working with real data.

® Second, follow the mantra of “no single tool; no single database; and, no single approach
to solving a problem.” Do not put blinders on because you are either comfortable with
certain technologies or have an affinity for a certain tool.

® Third, failure is expected, but you must learn from each journey down the wrong path.
Continuous adaptation and adjustment is the name of the game.

Ultimately, Bob’s team met the 5-minute challenge and is moving on to other questions. Your
team—and it is a team effort—will also be successful if they start with a question, are iterative and
methodical in their approach, and never stop learning from their mistakes.

307

MOVING TOWARD DATA-DRIVEN SECURITY

Summary

You have learned a lot through the pages of this book, and you should realize that you don’t have to do
all of this right out of the gate. Through the mixture of hacking skills, domain expertise, and statistics, you
can move toward a data-driven lifestyle. Combine that with the art of asking the right questions and get-
ting the data to answer those questions, and you'll start to move your organization toward a data-driven
security program. You don’t have to implement everything right away to see value. An iterative approach
should provide more value over time and help you adapt to the inevitable challenges that arise. Start slow,
try everything, try everything again, and let us know how you're doing.

Recommended Reading

The following are some recommended readings that can further your understanding on some of the topics
we touch on in this chapter. For full information on these recommendations and for the sources we cite in
the chapter, please see Appendix B.

“The Data Science Venn Diagram” by Drew Conway (http://drewconway.com/
zia/2013/3/26/the-data-science-venn-diagram)—We discussed this in the chap-
ter but it's worth reading the original post.

Building Data Science Teams by D. J. Patil—This book was written by folks who have real-world
experience recruiting, managing, and retaining data science teams. They include a special section
specifically on fraud, abuse, risk, and security teams and also cover topics on tooling, hiring, and
team/department organization. It's definitely a “must-read” for those who are looking to delve into
data science.

Resources and Tools

RESOURCES ANDTOOLS

Though we've provided contextual links and resources throughout the book, there were a few that
didn't fit properly in the chapters, but are still important go-to resources and part of our daily workflows.
We've compiled them—along with a “best of the best” of links from selected chapters—into an organized
and annotated list for quick reference.

Data Cleansing
® OpenRefine (http://openrefine.org/)—Anopen source, locally installed, cross-platform
toolkit that makes it extremely easy to import, explore, clean, transform, and enrich messy data into
something usable for analysis.

DataWrangler (http://vis.stanford.edu/wrangler/)—Abrowser-based, JavaScript
tool created by Stanford University’s Visualization Group that lets you explore and transform small
data sets in-browser, and then export a custom Python or JavaScript source file, suitable for running
locally on both small and large data sets.

WebPlotDigitizer (http://arohatgi.info/WebPlotDigitizer/app/)—Thisonline
tool makes it possible to quickly “reverse engineer” charts and graphs that have no associated open
datafiles.

® Google CRUSH Tools (https://code.google.com/p/crush-tools/)—Acommand-
line processing engine and data transformation tool that makes it possible to work efficiently with
large data sets from a shell prompt.

csvkit(https://github.com/onyxfish/csvkit)—A suite of open source Python
utilities that are similar to the CRUSH tools, but usable from both the command line and from within
Python scripts.

DataCleaner (http://datacleaner.org/)—This productis similar to OpenRefine, but
with both commercial and open source offerings.

Mr.Data Converter (http://shancarter.github.io/mr-data-converter/)
—In-browserand locally installable open source tool created by Shan Carter to improve data
cleansing workflows at The New York Times.

Miso Dataset (http://misoproject.com/dataset /)—Client-side JavaScript data
transformation and management library.

® Your favorite scripting language—Never underestimate the power of a Python, R, Perl, or awk
script when it comes to cleaning data. You'll have to do more up-front work, but you may be able to
build a far more reusable and customized cleanup and transformation workflow with your own tools.

Data Analytics and Visualization: Core Tools
o R(http://www.r-project.org/)+RStudio (http://www.rstudio.com/)—The
language of data science. Commercial offering available via Revolution Analytics
(http://www.revolutionanalytics.com/).

e Python (http://www.python.org/)+pandas(http://pandas.pydata.org/)—
The other language of data science. Additional open source and commercial offerings available

RESOURCES AND TOOLS

via Enthought Canopy (https: //www.enthought . com/products/canopy/)and
Continuum Analytics Anaconda (http://docs.continuum. io/anaconda
/install.html).

® Tableau (http://www.tableausoftware.com/)—Commercial tool with an emphasis on
producing interactive dashboards and visualizations.

Data Analytics and Visualization: JavaScript Tools

® D3js(http://d3js.org/)—Enables the creation of “data-driven documents” and pro-
vides templates and examples for creating almost every type of modern static and interactive
visualization.

® JavaScript InfoVis Toolkit (http: //philogb.github.io/jit/)—Similarto D3, but may
be more accessible to those new to JavaScript.

® HighchartsJS (http://www.highcharts.com/)—Providesrobust charting and graphing
functions, especially well-suited for dashboards.

Data Analytics and Visualization: Mapping Tools
® OpenHeatMap (http://www.openheatmap . com/)—Produce high-quality heatmaps from
CSV dataright in your browser. No coding required.

o Leaflet (http://leafletjs.com/)—A veryrobustand mobile-friendly JavaScript mapping
library.

Data Analytics and Visualization: Specialized Tools
o TimeFlow (https://github.com/FlowingMedia/TimeFlow/wiki)—Anopen
source tool specifically designed for analysis and visualization of temporal/time series data.

® Gephi(https://gephi.org/)—O0Open source network graph analysis and visualization tool.

® Quadrigram (http://www.quadrigram.com/)—Providesa visual programming interface
for working with data and designing highly customized, interactive visualizations.

Aggregation Sites, Q&A Sites, and Blogs to Follow

® R-Bloggers (http://www.r-bloggers.com/)—Rather than follow a plethora of individual
blogs, you can follow the R-Bloggers RSS feed to see only R-related posts that deal with all aspects
of data analysis and visualization.

® StatsBlogs (http://www.statsblogs.com/)—An aggregation of sites, similar to
R-Bloggers, but with a focus on statistics.

® StackExchange (http: //stackexchange.com/)—The perfect place to goif you have R,
Python, or pandas questions, can't remember a ggplot option, or need some help with a gnarly
statistics problem.

RESOURCES ANDTOOLS

® Junk Charts (http://junkcharts.typepad.com/)—Learn from the visualization
mistakes of others.

® FlowingData (http://flowingdata.com/)—Resources, news, and tutorials that will
improve the way you think and design visualizations.

® DataVisualization.ch (http://selection.datavisualization.ch/)—Aggregation
and index of the most popular and useful visualization tools currently available.

® Data Analysis & Visualization Bit.ly Bundle (http: //bitly.com/bundles/hrbrm-

str/1)—An aggregation of links maintained by us, the authors of this book, along with David
Severski.

Color

® ColorBrewer (http://colorbrewer2.org/)—Designed by Cynthia Brewer, this is the color
resource that should be the first tool you head for when designing visualizations. It provides a wide
range of palettes with options for creating print-safe and colorblind-friendly images.

® HCL Picker(http://tristen.ca/hcl-picker/)—Anopen source, D3-based color picker
that lets you select colors based on hue, chroma, and lightness.

® AdobeKuler (https://kuler.adobe.com/)—Anonlinetool provided by Adobe that
allows you to design compelling color palettes or choose from a wide assortment of pre-made
palettes.

® OS X Color Picker Palettes (ht tps://github.com/sathomas/colors)—Use
ColorBrewer palettes in Excel, Photoshop, and any other application on your Mac.

B

References

REFERENCES

Chapter 1

Barnard, G. A. 1990.“Fisher: A Retrospective.” Chance: New Directions For Statistics and Computing 3(1): 22-28.

Bingham, P, N. Q. Verlander, and M. J. Cheal. 2004. “John Snow, William Farr and the 1849 Outbreak of Cholera that
Affected London: a Reworking of the Data Highlights the Importance of the Water Supply.” Public Health 118(6):
387-394.

Box, Joan Fisher. 1987.“Guinness, Gosset, Fisher, and Small Samples.” Statistical Science 2(1): 45-52.

"

Breiman, Leo. 2001. “Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author)!
Statistical Science 16(3): 199-231.

Cook, Richard. I. 1998. “How Complex Systems Fail." Cognitive Technologies Laboratory, University of Chicago.
Chicago, IL.

Farr, W. 1852. “Report on the Mortality from Cholera in England, 1848-1849." London: HMSO. (Also published as Farr,
W. 1852.“Registrar General’s Report on Cholera in England 1849-1850." London: W. Clowes & Son.)

Fisher, Ronald A. 1925. “The Influence of Rainfall on the Yield of Wheat at Rothamsted.” Philosophical Transactions
of the Royal Society of London. Series B, Containing Papers of a Biological Character 213: 89-142.

General Board of Health (UK). 1855. “Report of the Committee for Scientific Inquiries in Relation to the Cholera-
Epidemic of 1854." London: HMSO.

Hubbard, Douglas W. 2010. How to Measure Anything: Finding the Value of Intangibles in Business. John Wiley
& Sons, Inc.

Kahneman, Daniel, and Gary Klein. 2009. “Conditions for Intuitive Expertise: a Failure to Disagree” American
Psychologist 64(6): 515.

Lipowski, Earlene E. 2008. “Developing Great Research Questions.” American Journal of Health-System
Pharmacy Vol 65(17): 1667-1670.

Morris, Robert, and Ken Thompson. 1979. “Password Security: A Case History. Communications of the ACM 22(11):
594-597.

“Report of JPMorgan Chase & Co. Management Task Force Regarding 2012 CIO Losses.” 2013. Retrieved from
http://files.shareholder.com/downloads/ONE/2532388207x0x628656/
4cb574a0-0bf5-4728-9582-625e4519b5ab/Task _Force Report.pdf

Tukey, John W. 1962. “The Future of Data Analysis” The Annals of Mathematical Statistics 33(1): 1-67.
Retrieved from http://projecteuclid.org/DPubS?service=Ul&version=1
.0&verb=Display&handle=euclid.aoms/1177704711

Tukey and the Prim-9 video. Available from http://flowingdata.com/2008/01/01/
john-tukey-and-the-beginning-of-interactive-graphics/

Watts, Duncan. “The Myth of Common Sense: Why Everything that Seems Obvious Isn't” Speaking to the Santa Fe
institute; viewed on 7/14/2013 fromhttp: //www.youtube.com/watch?v=EF8tdXwa-AE

Wheelan, Charles. 2013. Naked Statistics: Stripping the Dread from the Data. W.W. Norton & Co.

Chapter 2

Cotton, Richard. 2013. Learning R. O'Reilly Media, Inc.

Crawley, Michael J. 2012. The R Book, Second Edition. John Wiley & Sons, Inc.

Lutz, Mark. 2013. Learning Python. O'Reilly Media, Inc.

Shaw, Zed A.2010. Learn Python the Hard Way.Retrieved fromhttp: //learnpythonthehardway.org/

REFERENCES

Chapter 3

Cohen, Yosef, and Jeremiah Y. Cohen. 2008. Statistics and Data with R: An Applied Approach Through
Examples. John Wiley & Sons, Inc.

McKinney, Wes. 2012. Python for Data Analysis. O'Reilly Media, Inc.

Chapter 4

Cook, Diane J., and Lawrence B. Holder, eds. 2006. Mining Graph Data. John Wiley & Sons, Inc.
Hejsgaard, Seren, David Edwards, and Steffen Lauritzen. 2012. Graphical Models with R. Springer Media.

Chapter 5

Chang, Winston. R Graphics Cookbook. O'Reilly Media, Inc. 2012.
Goodman, Steven. 2008. “A Dirty Dozen: Twelve P-Value Misconceptions” Seminars in Hematology 45(3): 135-140.

Neter, John, William Wasserman, and Michael H. Kutner. 1996. Applied Linear Statistical Models. Vol. 4. Chicago.
Irwin.

Wheelan, Charles. 2013. Naked Statistics: Stripping the Dread from the Data. W.W. Norton & Co.
Yau, Nathan. 2013. Data Points: Visualization that Means Something. John Wiley & Sons.

Chapter 6

Cairo, Alberto. 2012. The Functional Art. An Introduction to Information Graphics and Visualization.
New Riders.

Card, Stuart K., and Jock D. Mackinlay. 1997. “The Structure of the Information Visualization Design Space.
Information Visualization, 1997. Proceedings, IEEE Symposium on.

Cleveland, William S., and Robert McGill. 1984. “Graphical Perception: Theory, Experimentation, and Application to
the Development of Graphical Methods.” Journal of the American Statistical Association 79(387): 531-554.

Cleveland, William S., and Robert McGill. 1985. “Graphical Perception and Graphical Methods for Analyzing Scientific
Data.” Science 229(4716): 828-833.

Few, Stephen. 2004. Show Me the Numbers: Designing Tables and Graphs to Enlighten. Analytics Press.

Healey, Christopher G., Kellogg S. Booth, and James T. Enns. 1996. “High-Speed Visual Estimation Using Preattentive
Processing.” ACM Transactions on Computer-Human Interaction (TOCHI) 3(2): 107-135.

Kosara, Robert. “In Defense of Pie Charts” 2011. Retrieved 8/27/2013 from. http://eagereyes.org/
criticism/in-defense-of-pie-charts

Simkin, David, and Reid Hastie. 1987. “An Information-Processing Analysis of Graph Perception.” Journal of the
American Statistical Association 82(398): 454-465.

Stone, Maureen. 2006. “Choosing Colors for Data Visualization.” Business Intelligence Network. Retrieved 9/2013
fromhttp://www.perceptualedge.com/articles/b-eye/choosing colors.pdf

Tufte, Edward R. 1990. Envisioning Information. Graphics Press.
Ware, Colin. 2013. Information Visualization, Third Edition. Morgan Kaufmann.
Yau, Nathan. 2013. Data Points: Visualization that Means Something. John Wiley & Sons.

REFERENCES

Chapter 7

Open Security Foundation. “Data Loss DB." Available from http: //datalossdb.org

Privacy Rights Clearinghouse. “Chronology of Data Breaches.” Available from http://www.privacyrights
.org/data-breach

Verizon RISK Team. “2013 Data Breach Investigations Report” Available from http://www
.verizonenterprise.com/DBIR

Verizon RISK Team. “VERIS Community.” Available from http: //veriscommunity.net
Verizon RISK Team. “VERIS Community Database.” Available from https: //github.com/vz-risk/VCDB

Chapter 8

Codd, Edgar Frank. 1970. “A relational model of data for large shared data banks.” Communications of the ACM
13(6): 377-387.

Harrington, Jan L. 2009. Relational Database Design and Implementation: Clearly Explained, Third Edition.
Morgan Kaufmann.

Lublinsky, Boris, Kevin T. Smith, and Alexey Yakubovich. 2013. Professional Hadoop Solutions. John Wiley & Sons.
Tiwari, Shashank. 2011. Professional NoSQL. John Wiley & Sons.

Chapter 9

Bilge, Leyla, et al. 2012. “Disclosure: Detecting Botnet Command and Control Servers Through Large-Scale NetFlow
Analysis”” Proceedings of the 28th Annual Computer Security Applications Conference. ACM: 129-138.

Cherkassky, Vladimir, and Filip M. Mulier. 2007. Learning from Data: Concepts, Theory, and Methods. John Wiley
& Sons.

Conway, Drew, and John Myles White. Machine Learning for Hackers. 2012. O'Reilly Media, Inc.

Emran, Syed Masum, and Nong Ye. 2001.“Robustness of Canberra Metric in Computer Intrusion Detection.” Proc. IEEE
Workshop on Information Assurance and Security. West Point, NY.

Genuer, Robin, Jean-Michel Poggi, and Christine Tuleau-Malot. 2010. “Variable Selection Using Random Forests.”
Pattern Recognition Letters 31(14-15): 2225-2236.

James, Gareth, et al. 2013. An Introduction to Statistical Learning with Applications in R. Springer.
Mitchell, Tom M. 1997. Machine Learning. McGraw-Hill.

Weston, Steven, and Rich Calaway. 2013. “Getting Started with doParallel and foreach.” Retrieved 10/2013 from
http://cran.r-project.org/web/packages/doParallel/vignettes/
gettingstartedParallel.pdf

Chapter 10

Few, Stephen. 2013. Information Dashboard Design: Displaying Data for At-a-Glance Monitoring, Second
Edition. Analytics Press. 2013.

Jaquith, Andrew. 2007. Security Metrics: Replacing Fear, Uncertainty, and Doubt. Addison-Wesley.

REFERENCES 317

Kenett, Ron, and Silvia Salini. 2012. Modern Analysis of Customer Surveys: With Applications Using R. John Wiley
& Sons.

Saris, Willem E., and Irmtraud N. Gallhofer. 2007. Design, Evaluation, and Analysis of Questionnaires for Survey
Research. John Wiley & Sons.

Tufte, Edward R., and P. R. Graves-Morris. 1983. The Visual Display of Quantitative Information. Graphics Press.

Chapter 11

Cairo, Alberto. 2012. The Functional Art: An Introduction to Information Graphics and Visualization. New
Riders.

Foresti, Stefano, and James Agutter. 2008. “VisAlert: From Idea to Product” In VizSEC 2007: Proceedings of the
Workshop on Visualization for Computer Security: 159-174. Springer Berlin Heidelberg.

Mackinlay, Jock. 1986. “Automating the design of graphical presentations of relational information.” ACM
Transactions on Graphics (TOG) 5(2): 110-141.

Maclean, Malcolm. D3 Tips and Tricks: Interactive Data Visualization in a Web Browser. Available fromhttp: //
leanpub.com/D3-Tips-and-Tricks

Murray, Scott. 2013. Interactive Data Visualization for the Web. O'Reilly Media.

Norman, Donald A. 2002. The Design of Everyday Things. Basic Books.

Schwartz, Barry. 2004. The Paradox of Choice: Why More Is Less. Ecco.

Shneiderman, Ben. 1996. “The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations.” In
Proceedings of the IEEE Symposium on Visual Languages, 1996: 336-343.

Stefano Foresti, James Agutter, Yarden Livnat, Shaun Moon, and Robert Erbacher. 2006.“Visual Correlation of Network
Alerts.” IEEE Computer Graphics and Applications 26(2): 48-59.

Wilkinson, Leland. 2005. The Grammar of Graphics. Springer Berlin Heidelberg.

Chapter 12

James, Bill. 2010. Battling Expertise with the Power of Ignorance. 2010. Available from http://
crllearns.kucrl.org/events/battling-expertise-with-the-power-of-igno-
rance

R Packages Used

aplpack: Peter Wolf and Uni Bielefeld. 2013. aplpack: Another Plot PACKage: stem.leaf, bagplot, faces, spin3R, plot-
summary, plothulls, and some slider functions. R package version 1.2.9. http://CRAN.R-project .org/
package=aplpack

binom: Sundar Dorai-Raj. 2009. binom: Binomial Confidence Intervals For Several Parameterizations. R package ver-
sion 1.0-5.http://CRAN.R-project.org/package=binom

bitops: S original by Steve Dutky initial R port, extensions by Martin Maechler; revised and modified by Steve
Dutky. 2013. bitops: Bitwise Operations. R package version 1.0-6. http://CRAN.R-project.org/
package=bitops

car: John Fox and Sanford Weisberg. 2011. An R Companion to Applied Regression, Second Edition. Thousand
Oaks CA: Sage.http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

REFERENCES

colorspace: Achim Zeileis, Kurt Hornik, and Paul Murrell. 2009. “Escaping RGBland: Selecting Colors for Statistical
Graphics!” Computational Statistics & Data Analysis 53: 3259-3270. doi:10.1016/j.csda.2008.11.033

colorspace:Ross lhaka, Paul Murrell, Kurt Hornik, Jason C. Fisher, and Achim Zeileis. 2013. colorspace: Color Space
Manipulation. R package version 1.2-2. http: //CRAN.R-project .org/package=colorspace

devtools:Hadley Wickham and Winston Chang. 2013. devtools: Tools to make developing R code easier. R package
version 1.3.http://CRAN.R-project.org/package=devtools

effects: John Fox. 2003. “Effect Displays in R for Generalised Linear Models.” Journal of Statistical Software,
8(15):1-27. http://www.jstatsoft.org/v08/1i15/

effects: John Fox and Jangman Hong. 2009. Effect Displays in R for Multinomial and Proportional-Odds
Logit Models: Extensions to the effects Package. Journal of Statistical Software 32(1), 1-24. http://
www.jstatsoft.org/v32/i01/

gdata: Gregory R. Warnes, Ben Bolker, Gregor Gorjanc, Gabor Grothendieck, Ales Korosec, Thomas Lumley, Don
MacQueen, Arni Magnusson, Jim Rogers, et al. 2013. gdata: Various R programming tools for data manipulation. R
package version 2.13.2. http://CRAN.R-project .org/package=gdata

ggdendro: Andrie de Vries and Brian D. Ripley. 2013. ggdendro: Tools for extracting dendrogram and tree dia-
gram plot data for use with ggplot. R package version 0.1-14. http://CRAN.R-project.org/
package=ggdendro

ggmap: David Kahle and Hadley Wickham. 2013. ggmap: A package for spatial visualization with Google Maps and
OpenStreetMap. R package version 2.3. http://CRAN.R-project.org/package=ggmap

ggplot2: H. Wickham. 2009. ggplot2: Elegant Graphics for Data Analysis. New York: Springer.

ggthemes: Jeffrey B. Arnold. 2013. ggthemes: Extra themes, scales and geoms for ggplot. R package version 1.5.1.
http://CRAN.R-project.org/package=ggthemes

grid: R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. http: //www.R-project.org/

gridExtra: Baptiste Auguie. 2012. gridExtra: functions in Grid graphics. R package version 0.9.1. http://
CRAN.R-project.org/package=gridExtra

igraph: G. Csardiand T. Nepusz. 2006. “The igraph software package for complex network research.” InterJournal,
Complex Systems, 1695. http://igraph.sf.net

lattice: Deepayan Sarkar. 2008 Lattice: Multivariate Data Visualization with R. New York: Springer.

maps: Original S code by Richard A. Becker and Allan R. Wilks. 2013. R version by Ray Brownrigg. Enhancements by
Thomas P Minka <tpminka@media.mit .edus>. maps: Draw Geographical Maps. R package version 2.3-6.
http://CRAN.R-project.org/package=maps

maptools:Roger Bivand and Nicholas Lewin-Koh. 2013. maptools: Tools for reading and handling spatial objects. R
package version 0.8-27. http://CRAN.R-project.org/package=maptools

plyr: Hadley Wickham. 2011.“The split-apply-combine strategy for data analysis.’ Journal of Statistical Software
40(1),1-29.http://www.jstatsoft.org/v40/101/

portfolio: Jeff Enos and David Kane, with contributions from Daniel Gerlanc and Kyle Campbell. 2013.
portfolio: Analysing equity portfolios. R package version 0.4-6. http://CRAN.R-project.org/
package=portfolio

RColorBrewer: Erich Neuwirth. 2011. RColorBrewer: ColorBrewer palettes. R package version 1.0-5. http: //
CRAN.R-project.org/package=RColorBrewer

rgdal: Roger Bivand, Tim Keitt, and Barry Rowlingson. 2013. rgdal: Bindings for the Geospatial Data Abstraction
Library. R package version 0.8-11. http: //CRAN.R-project.org/package=rgdal

REFERENCES

reshape: H. Wickham. 2007. “Reshaping data with the reshape package!” Journal of Statistical Software 21(12),
2007
rjson: Alex Couture-Beil. 2013. rjson: JSON for R. R package version 0.2.13. http://CRAN.R-project
.org/package=rjson
RJSONIO: Duncan Temple Lang. 2013. RISONIO: Serialize R objects to JSON, JavaScript Object Notation. R package
version 1.0-3. http://CRAN.R-project.org/package=RJIJSONIO
scales: Hadley Wickham. 2012. scales: Scale functions for graphics. R package version 0.2.3. http://CRAN
.R-project.org/package=scales
splines:R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. http: //www.R-project.org/
ved: David Meyer, Achim Zeileis, and Kurt Hornik. 2013. vcd: Visualizing Categorical Data. R package version 1.3-1.
“The strucplot framework: visualizing multi-way contingency tables with vcd.” Journal of Statistical Software
17(3):1-48. http://www.jstatsoft.org/v17/1i03/
verisr:Jay Jacobs. 2013. verisr: Tools for working with VERIS objects. R package version 0.1.
zoo: Achim Zeileis and Gabor Grothendieck. 2005. “zoo: S3 infrastructure for regular and irregular time series.”
Journal of Statistical Software 14(6): 1-27. http://www.jstatsoft.org/v14/106/

Index

Index

Numbers
3D dashboard, 254

A

abuse. chsite, ZeuS and, 92
accuracy
predictive accuracy, 5
variations, natural variation,
17
adjusted coefficient of
determination, 129
AES-128-bit keys, 9
AES-256-bit keys, 9
Agile development, VisAlert
similarities, 274
algorithms
best subset, 229
machine learning, 5
development, 220-221
features, 229-230
implementation, 222-225
performance measuring,
227-228
supervised, 226,231-234
unsupervised, 226,
234-236
validating model, 230
validation, 221-222
stepwise comparison, 229-230
AlienVault. See also reputation
data
IP Reputation database
data set, 41
revision file, 41
ammeter, 256-257
analyst personality traits, 6
Ansombe’s quartet, 90-91
Applied Linear Statistcal Models
(Neter, Wasserman and Kutner),
125
Applied Statistics online
curriculum (Penn State), 301
apply () function, 224
AS (autonomous system), 75
ASN (autonomous system
number), 75
as.numeric () function,
224

attack chain, events, 171-172

attributes, Information Assets
(VERIS), 173-175

Attributes (VERIS), 167

augmentation, 270

interaction and, 271-274

augmenting IP address data,
80-90

auto-scaling, 112

axes on logarithmic scale, 151

ballistic movements, saccades,
140-141
bar chart
building, 151
grouped, 152
pie chart, depth comparison,
145
stacked, 152
vertical, 152
BerkeleyDB, 201-203
best subset (algorithms), 229
BGP (border gateway protocol), 75
“Big Data” Machine Learning
(DZone), 301
binary safe string, Redis, 203
binning (histograms), 154-155
bitops, 74
box plot diagram, 18, 155-156
opportunistic packets, 157
outliers, 117-119
boxplot () function, 117-110
boxy dashboard, 252
Brauer, Claudia, 30
breach data
clustering, 236-238
DatalossDB, 278
Privacy Rights Clearinghouse,
278
Trustwave Global Security
Report, 278
uncertainty and, 163
Verizon Data Breach
Investiations Report, 278
World’s Biggest Data Breaches,
277-279
breach types, conflation, 165

Breiman, Leo, 5
browser-based visualizations, D3,
284-294
BulkOrigin() function, 93
BulkPeer () function, 93
bullet graphs, 247
comparison measures, 249
creating, 247-248
labels, 249
performance measure, 249
scale, 249

C

Canberra metric, 238-240
Canopy, 24-25
editor session, opening, 25
inline images, 25
installation, 25
knowledge base articles, 193
package manager, 29
setup validation, 25
welcome screen, 26
Cassandra, 210
Categorical class, 49
categorical data, 49
color and, 147
causation, 87
character strings
Coords, 47
Country, 47
IPpP, 47
Locale, 47
Type, 47
Chart Choose, 255
chartjunk, 112, 251
charts in dashboard, limiting, 255
cholera epidemic, 2-3
choropleths, 108-110
ZeroAccess infections, 110, 117
CIDR block, IPv4 addresses, 76-77
classes
Categorical, 49
IP addresses, 75-76
classification, 227
Cleveland, William S., 144-145
clustering, breach data, 236-238
cmdscale () function, 236,
238-240

Codd, Edgar, 192
Code School, 299
Codeacademy, 299
coders, 299
colMeans () function,
222-223
colnames () function, 237
color
categorical data and, 148
ColorBrewer, 146
dashboards, 255-256
depth in graphs, 146
diverging color scheme, 113
HCL Picker, 146
opacity, 152-153
palettes
divergent colors, 148
qualitative, 148
sequential, 148
preattentive processing and,
142-143
quantitative data and, 148
quantity, 148
shading, 146-147
color blindness, 147
ColorBrewer, 146
columns (RDBMS), 193
communication skills, 14-15
complexity, 139
Comprehensive R Archive
Network, 32
confidence interval, 129
confint () function, 129
contingency tables, 58-59
bar charts, risk/reliability/
type, 65
risk/reliability, 60
unbiased, 62
risk/reliability/type, 64, 68, 69
without Scanning Host, 66
Conway, Drew
Data Science Venn Diagram,
298
Machine Learning for Hackers,
225
coord_map () function, 107
Coords character string, 47
cor () function, 88
correlation, 86

causation and, 87
Kendall method, 88
Pearson correlation method,
86
Pearson method, 88
scatterplots, 87
Spearman method, 88
cost per datum, 166
counting records, VERIS, 175
Country character string, 47
Country chart, 55
cross-validation of algorithms, 230
CSS (Cascading Style Sheets), 9,
284
CSV (comma-separated value) files,
11,43,44
JSON, 44
cutree () function, 241
CVSS (Common Vulnerability
Scoring System), 274

D

D3, 284-294

dashboard
3D, 254
ammeter, 256-257
anomalous activity, 259
boxy dashboard, 252
chartjunk, 251
charts, limiting, 255
color, 255-256
Excel and, 252
failures, 251
fonts, 256
framing, excessive, 251-252
graphics, 253-257
handlers, 258-259
interactive

D3,284-294
Tableau, 281-284

interation, 257
measures, 247
motometer, 257
overview, 246-247
report comparison, 248-249
security awareness risk, 262
security through, 258-266
skeuomorphic gauges, 247

Index

space constraints, 255
Splunk, 247
visual features, 141
wireframe, 265
data
categorical, color and, 147
information security and, 41
quantitative, color and, 147
scope, changing, 111-113
splitting, 222
data analysis
analyst personality traits, 6
deceptive conclusions, 12
EDA (exploratory data
analysis), 18
history, 2-5
versus statistics, 5
data collection
framework
conflation, 165-166
cost perdatum, 166
minutiae, 165-166
objective answers, 164
“Other”answers, 164-165
possible answers, 164
“Unknown” answers,
164-165
relevant data, 304-305
data exchange, 44
data exploration, 47-58
data frames, 33-35
data management skills, 10-11
data munger, 300
data normalization, 114-117
data retrieval, 42-43
Data Science Open Online course
(Syracuse Univ.), 301
data science team building, 307
Data Science Venn Diagram, 298
data sets, IP Reputation database,
41
data story, 138
data structure server, Redis, 203
data visualization. See visualization
databases, 11. See also RDBMS
(relational databases)
NoSQL, 200-201
DatalossDB, 168-169, 278

Index

db_close() function,
201-202
DBIR (Data Breach Investigation
Report), 162
decision trees, random forests,
233-234
declaring variables, 29
delimited files, reading in data,
43-44
dendrograms, 235
clusters, 241
density plots, 154-155
depth in graphing, 144-145
color and, 146
describe () function, 48
descriptive statistics, 47
descriptive visualization, 12, 13
design, experiments, 3
The Design of Everyday Things
(Norman), 279-280
detail level, 281
detecting malware, 218-225
developer skills development, 301
dim() function, 237
dimension reduction, 235-236
directed exploration, 279-281
directory structure, 36
shell scripts, 36-37
Discovery/Response (VERIS), 167,
176
distribution
box plots, 155-156
density plots, 154-155
empirical rule, 119
Gaussian distribution, 119
histograms, 154-155
standard deviation, 119
time series, 156157
divergent color palette, 148
diverging color scheme, 113
DOM (Document Object Model),
284
domain expertise, analysts, 6-8
doParse () function, 293
downloads, code snippet data
files, 72-73

ECC (error-correcting code)
memory, 199
ecosystem, Python, 25-26
EDA (exploratory data analysis), 18
edit/compile/run workflow, 22
editors, Canopy, 25
ElasticSearch, 214-215
element_blank() function, 112
empirical rule of standard normal
distribution, 119
Enthought support site, 193
Environmental category (VERUS
Threat Actions), 170
Envisioning Information (Tufte),
146
equirectangular maps, 106
Error category (VERUS Threat
Actions), 170
errors, 22
typel, 13
Euclidean distance, 223
Excel, dashboards and, 252
experiment design, 3
EXPLAIN statement, 197-198
exploration, 22, 270
directed, 279-281
interaction and, 274-276
exploration and discovery, 227
exploring data, 47-58
eye movements, tracking, 140-141

F

factors, 49
Farr, William, 2-3
features, algorithms, 229-230
Few, Stephen, 146
dashboard description, 246
Information Dashboard
Design, 246
fields (RDBMS), 193, 194
firewall data, 98-100
Fisher, Ronald Aylmer, 3
five-number summary, 18, 48
Flash, decline, 280

Flowing Data, 301
foldmatrix () function, 237
fonts, dashboard, 256
form, preattentive processing and,
142-143
functions
apply(), 224
as.numeric(), 224
boxplot(), 117-119
BulkOrigin(), 93
BulkPeer(), 93
cmdscale(), 236,
238-240
colMeans(), 222-223
colnames(), 237
confint(), 129
coord_map(), 107
cor(), 88
cutree(), 241
db_close(), 201-202
dim(), 237
doParse(), 293
element_blank(), 112
foldmatrix(), 237
geom_smooth(), 126
getenum(), 183-185
glm(), 233
graph.asn(ips,av.df), 99
graph.cc(ips,av.df), 99
head () function, 46
hist(), 89 119 155
kmeans(), 234
latlong2map(),
108-109, 112, 121,122
Im(), 129
map_data(), 30
merge(), 124-125
plot(), 94
prcomp(), 236
predict.malware(), 223-224
read.csv(), 43
read.csv () function, 93
read.delim(), 43
read.table(), 43
read.table () function,
93

rnorm(), 126

sample(), 61

scale_fill_gradient2(),
109-110

strsplit(), 123

summary (), 49,6 127-128

table(), 49

theme(), 112

unlist(), 123

veris2matrix(), 236

G

Gallup, George, 13
Gaussian distribution, 119
geolocation of IP addresses, 77-79
geom_smooth () function,
126
getenum () function, 183-185
ggplot
regression analysis and, 126
theme () command, 238
Vega, 287-291
ggplot2 package, 30, 107
auto-scaling, 112
GitHub, D3, 285
glm() function, 233
Goodall, John, 274
Google Charts, bullet graphs,
247-248
Google Fusion Tables, IP address
map location, 78
graph structures, 92
graph.asn(ips,av.df) function, 99
graph.cc(ips,av.df) function, 99
graphical methods, 144-145
graphs
bar charts, 145, 151-152
bullet graphs, 247
comparison measures, 249
creating, 247-248
labels, 249
performance measure, 249
scale, 249
color opacity, 152-153
malicious destination traffic by
country, 100

pie charts, 146

size encoding, 153-154
grep, 207
grouped bar chart, 152
grouping IP addresses, 75-76

H

hackers, 299

hacking, VERIS Threat Actions, 169

hacking key, 181

Hadoop, 11
Cassandra, 210
Hive and, 207-210
MapReduce, 207-208
MongoDb, 210
NetFlow data, 209

handlers, dashboards, 258-259

hashes, Redis, 203

HCL Picker, 146

head () function, 46
output, 47

heatmaps, 58-59
risk/reliability, 61

“Hello World,” 40

hierarchical clustering, 234-235
victim industries, 240-242

hist () function, 89,119,

155

histogram, 119
binning, 154-155

Hive, 207-210

HiveQL, 208

HTML, 9

HTML5, 284

IANA IPv4 Address Space Registry,
80
block allocations, 84
blocks, 84-85, 89
iconic memory, 139-140
idea, 22
IDS/IPS (Intrusion Detection
System/Intrusion Prevention

Index

System), importing reputation
data, 58
illumination, 270
interaction, 276-281
images, inline, 25
Impact (VERIS), 167, 176-177
import statement, 28
Incident Tracking (VERIS), 167, 168
indexes (RDBMS), 194
Indicators (VERIS), 167, 179
inference, 227
Information Assets (VERIS), 167,
173
attributes, 173-175
availability and utility, 174
confidentiality, possession,
and control, 174
integrity and authenticity,
174
Information Dashboard Design
(Few), 246
information security, data and, 41
inline images, Canopy, 25
in-memory tables, RAM and, 199
input variable, residuals, 128
integers
Reliability, 47
Risk, 47
x, 47
interaction
augmentation and, 271-274
exploration and, 274-276
illumination and, 276-281
Tableau, 281-284
Interactive Data Visualization for
the Web (Murray), 270
intercept, residuals, 128
Introduction to Data Science
course (Coursera), 301
IP addresses, 47, 72
32-bit integer value, 73-74
classes method, 75-76
data augmentation, 80-90
dotted-decimal notation, 73
geolocation, 77-79
grouping, 75-76

Index

IANA IPv4 Address Space
Registry, 80
IPv4 addresses
converting to/from 32-bit
integers, 74-75
testing, 76-77
octets, 73
segmenting, 75-76
IP character string, 47
ipaddr package, 75
IPv4 addresses, BerkeleyDB, 201
IPython, 25
IPython Notebooks, benefits, 40
IQR (inter-quartile range), 117, 155
ISACs (Information Sharing and
Analysis Centers), 259
iteration, 22, 305-306
dashboards, 257

J

Java, decline, 280
JavaScript, 9, 284
jQuery, Vega and, 291
JSON format, 44
MongoDB, 211
notation, 183
VERIS and, 179-182
Junk Charts, 301

K

Kaggle, 300
Kendall correlation method,
88
keys
BerkeleyDB, 201
hacking, 181
k-fold cross-validation, 230
Kiosk/Public Terminal (K) category
(VERIS Information Assets), 173
kmeans () function, 234
k-means clustering, 234, 235
k-nearest neighbors, 233
knowledge base, 193
Kutner, Michael H., Applied Linear
Statistical Models, 125
Kyoto Cabinet, 203

L

LAMP (Linux/Apache/MySQL/PHP),
200
latent patterns, 139
latitude/longitude
converting to country,
108-109
scatterplot, 105-106
latlong2map () function,
108-109, 112, 121,122
Learning From Data course (edX),
301
leave-one-out cross-validation,
230
libraries
Matplotlib, 27
NumPy, 26
pandas, 27
rjson, 181
SciPy, 26
linear coefficients, 232
linear comparison, 86
linear regression, 86, 104-105,
125-127
adjusted coefficient of
determination, 129
confidence interval, 129
prediction and, 227
residuals, 128-129
supervised learning and,
231-232
lines, points and, 150-151
lists, Redis, 203
Literary Digest election prediction,
13
1m() function, 129,226
Locale character string, 47
logarithmic scale, 151
logistic regression, 232-233
long-term memory, 140

M

MAC (media access control),
addresses, 77
machine learning
algorithm, 5

development, 220-221
features, 229-230
implementation, 222-225
performance measuring,
227-228
supervised, 226,231-234
unsupervised, 226,
234-236
validating model, 230
validation, 221-222
answering questions, 226-227
definition, 218
quantitative prediction, 227
spam filtering, 225
Machine Learning (Mitchell), 218
Machine Learning for Hackers
(Conway & White), 225
malicious destination traffic by
country, 100
malware
detection, 218-225
VERIS Threat Actions, 169
Malware domain type, 67
map_data () function, 30
MapDB, 203
MapReduce (Hadoop), 207-208
maps
auto-scaling, 112
chartjunk, 112
choropleths, 108-110
ZeroAccess infections, 110,
117
color, diverging color scheme,
113
coord map () function,
107
data normalization, 114-117
equirectangular, 106
ggplot?2 package, 30, 107
graphical features, removing,
112
latitude/longitude conversion
to country, 108-109
plotting countries, 107
polyconic, 106
scatterplot, latitude/
longitude, 105-106

three-dimensional look, 106
Winkel Tripel, 106
x,y coordinates, latitude/
longitude points as, 105
ZeroAccess infections, 108-110
county level, 120-125
MariaDB, 193, 200
Matplotlib, 27
matrices, 236
Maxmind GeolP database, 77
McGill, Robert, 144-145
MDS (multidimensional scaling),
236
Media (M) category (VERIS
Information Assets), 173
memory
iconic memory, 139-140
long-term, 140
working memory, 140
mental grouping, 142
mental models (VisAlert), 271-272
Mercator projection, 113
merge () function, 124-125
miasma theory, cholera and, 2
MIDS program (UC Berkeley), 301
Misuse category (VERIS Threat
Actions), 169
Mitchell, Tom M., Machine
Learning, 218
modules, template, 28
MongoDB, 210-214, 300
VERIS, 211
MOQOCs (Massively Open Online
Courses), 301
motion, preattentive processing
and, 142-143
motometer, 257
MSE (mean squared error), 228
multicollinear variables, 133
multidimensional scaling, 236
VCDB, 238-240
Murray, Scott, Interactive Data
Visualization for the Web,
270
muse, data visualization as,
139
MysQL, 193

NAICS (North American Industry
Classification System), 165
natural variation in measuring
accuracy, 117
negative correlations, 86
Neo4j, 215
Nessus Vulnerability Explorer,
274
report example, 275
treemap interface, 276
Neter, John, Applied Linear
Statistical Models, 125
NetFlow data, Hadoop and, 209
Network (N) category (VERIS
Information Assets), 173
nominal values, 49
normalizing data, 114-117
SQL and, 200
Norman, Donald, The Design of
Everyday Things, 279-280
NoSQL databases, 11,
200-201
BerkeleyDB, 201-203
Hive, 207-210
MongoDB, 210-214
Redis, 203-207
null hypothesis, 120
null model, 224
NumPy library, 26

o

objective answers to questions,
304
online certificates/master’s
courses, 301
opacity of color, 152-153
Oracle, 193
organization, directory structure,
36
shell scripts, 36-37
outliers
boxplots, 117-119
z-score, 119-120
overfitting training data,
228

Index

P

packages
randomForest, 234
verisr, 236-238
panda, read.csv () function,
43
pandas
creation, 23
library, 27
parametrics, 226
Parker, Donn, 174
Parkerian Hexad, 174
partitioning, Redis, 204
patterns, 12, 139
PCA (principal component
analysis), 235-236
Pearson correlation method, 86, 88
penetration testing, 262
People (P) category (VERIS
Information Assets), 173
performance measuring, machine
learning algorithm, 227-228
Perl, 9
BerkeleyDB, 201-203
Physical category (VERUS Threat
Actions), 170
pie chart
arguments against, 146
bar chart, depth comparison,
145
plot () function, 94
Plus (VERIS), 167, 179
points
lines and, 150-151
quantitative variables,
148-150
time series, 158
polyconic maps, 106
Polyconic projection, 113
positive correlations, 86
PostgreSQL, 193
Potwin Effect in ZeroAccess
infections, 113-117
prcomp () function, 236
preattentive processing, 139,
141-144

Index

prediction
predictive accuracy, 5
regression analysis and, 126
ZeroAccess infections, 134
predict.malware ()
function, 223-224
preduct.Im(), 128
Privacy Rights Clearinghouse, 168,
278
programming languages
Perl, 9
Python, 9, 22
pandas, 9
R, 9,22
web-centric, 9
programming skills, 8-10
Project Euler, 300
projection
Mercator, 113
Polyconic, 113
publish-subscribe service, Redis,
204
p-value, 120
linear regression and,
129
Pythagorean theorem, 223
Python, 9, 22. See also Canopy
benefits, 22-24
Canopy, knowledge base
articles, 193
capabilities, 23
creation, 23
ecosystem, 25-26
Matplotlib, 27
NumPy, 10
NumPy library, 26
packages, external sources,
193
pandas, 9, 10
creation, 23
pandas library, 27
Redis server, 193
Redis support, 204
SciPy, 10
SciPy library, 26
versions, 29
whitespace, 29

Q

qualitative color palette, 148
qualitative data, 49
qualititative variables, 49
quality control, 139
quantitative data, 47, 49
color and, 147
scatterplots, 148-150
treemaps, 153
quantitative prediction, 227
queries (RDBMS), 194
queries (SQL), 197-198
questions, 16
creating, 17-18
objective answers, 304

R
R programming language, 9, 22
bar charts, IANA block
allocations, 84
benefits, 22-24
ggplot2 package, 30, 107
introduction, 30
map data packages, 107
modules, 32
read.csv () function, 43
read.delim() function,
43
read.table () function,
43
versions, 33
R2 value, 129
RAM, SQL constraints, 199
random forests, 233-234
randomForest package, 234
RDBMS (relational databases), 192.
See also SQL (Structured Query
Language)
columns, 193
experience with, 193
EXPLAIN statement, 197-198
fields, 193, 194
indexes, 194
MariaDB, 193
MySQL, 193
Oracle, 193

PostgreSQL, 193
queries, 194
records, 193
rows, 193, 194
schema, 193
tables, 193
read.csv () function, 43,93
read.delim() function, 43
reading in data, 43-47
read.table () function, 43,
93
realization, 61
records (RDBMS), 193
Redis, 193, 203-207
hashes, 203
lists, 203
partitioning, 204
publish-subscribe, 204
sets, 204
sorted sets, 204
regression analysis, 112-113
linear regression, 86, 104-105,
125-127
logistic, 232-233
multicollinear variables, 133
observable input versus
observable output, 125
outlier influence, 130
pitfalls in, 130-131
prediction and, 126
rnorm() function, 126-127
variance inflation, 133
ZeroAccess infections, 131-135
relational databases. See RDBMS
(relational databases)
relevance, 138
data collection and, 304-305
Reliability, 47
Reliability field, 58
Reliabilityrating, 58
reports
dashboard comparison,
248-249
Nessus Vulnerabiklity Explorer,
275
reputation data
contingency tables, 58-59

Country character string, 44
header, 44
IDS/IPS (Intrusion Detection
System/Intrusion
Prevention System),
importing to, 58
IP character string, 44
Locale character string, 44
prioritization, 58
SEIM, importing to, 58
Type character string, 44
research questions, 16
creating, 17-18
research setup, 162-163
residuals, 128-129
input variable, 128
intercept, 128
Risk, 47
Risk field, 58
Risk variable, 58
risk/reliability
contingency tables, 60
unbiased, 62
heatmaps, 61
risk/reliability/type
bar charts, 65
without Scanning Host, 67
contingency tables, 64, 68, 69
without Scanning Host, 66
rjson library, 181
rnorm () function, 126
rows (RDBMS), 193, 194
R/RStudio, setup, 29-33
RStudio
benefits, 40
workspace, 31
RStudio Desktop, 30
RStudio Server, 30

S

saccades, 140
saccadic movements, 139, 140-141
limiting, 141
sample () function, 61
scale_fill_gradient2() function,
109-110

scaling, multidimensional,
238-240
Scanning Hosts category, 66
scatterplot
ggplot, 126
maps, 105-106
quantitative variables,
148-150
schema (RDBMS), 193
constraints, 196-197
SciPy library, 26
SciPy stack, 27
scope
auto-scaling, 112
changing, 111-113
security through dashboards,
258-266
Security Wizardry, 253-254
segmenting IP addresses, 75-76
SEIM (Security Incident & Event
Management)
dashboard, 138
importing reputation data, 58
sequential color palette, 148
series, time series, 156157
Server (S) category (VERIS
Information Assets), 173
sets
Redis, 204
sorted, Redis, 204
setup for research, 162-163
shell scripts, 36-37
SIEM (Security Information and
Event Management), 41
size encoding, 153-154
skeuomorphic gauges, 247
skills
combining, 15
communication, 14-15
data management, 10-11
domain expertise, 6-8
programming skills, 8-10
statistics, 12-13
visualization, 14-15
Snow, John, 3
SOC (Security Operations Center),
41

Index

Social category (VERIS Threat
Actions), 169
spam filtering, 225
sparklines, 248, 250
spatial position, preattentive
processing and, 142-143
Spearman correlation method,
88,89
splitting data, 222
Splunk dashboard, 247
spreadsheets, 9-10
limits, 10
SQL (Structured Query Language),
194-195
constraints, 195
data, 200
RAM, 199
schema, 196-197
storage, 198-199
EXPLAIN statement, 197-198
normalization and, 200
queries, 197-198
SQLi (SQL Injection), 193
SSE (sum square of errors), 228
stacked bar charts, 152
StackExchange, 299
standard deviations, z-score and,
119-120
statistics, 12-13
versus data analysis, 5
deceptive conclusions, 12
patterns and, 12
regression analysis, 112-113
variations in, 121-122
Statistics Gone Wrong (Reinhart),
301
stem and leaf plot, 18
stepwise comparison (algorithms),
229
stop-motion software, 158-159
storage
ElasticSearch, 214-215
Neo4j, 215
NoSQL databases, 200-201
BerkeleyDB, 201-203
Hive, 207-210
MongoDB, 210-214

Index

Redis, 203-207
SQL and, 198-199
Storytelling with Data, 301
strsplit () function, 123
summary () function, 48, 49,
127-128
supervised algorithms, 226
k-nearest neighbors, 233
linear regression, 231-232
logistic regression, 232-233
random forests, 233-234
SVG (Scalable Vector Graphics),
284

T

table () function, 49
Tableau, 281-284
tables (RDBMS), 193
TCP port numbers, 49
team building, 307
Team Cymru, ZeuS and, 93
template for statements, 28
theme () function, 112
third dimensions, 144-146
Threat Actions (VERIS), 167,
169-172
Threat Actor (VERIS), 167, 168-169
threat viewer, 291-292
Tianhe-2 computer, 9
time series, 156157
line plot, 158
one hour averages, 158
points, 158
Torfs, Paul, 30
tracking eye movements, 140-141
training data, algorithm, 221, 222
overfitting, 228
SSE and, 228
transparency of color, 152-153
treemaps, 153
Nessus Vulnerability Explorer,
274,276
trial, 22
trim() function, 93
Trustwave Global Security Report,
278

truth, 138
TSV (tab-separated value) files,
43,44
JSON, 44
Tufte, Edward, 112
Envisioning Information, 146
Tukey, John, 5
boxplot, 117-119
Type character string, 47
type | error, 13
Type variable, risk/reliability and,
63
types, 33

V)

UDP port numbers, 49
University of Washington
certificate in data science, 301
unlist () function, 123
unsupervised algorithms, 226
hierarchical clustering,
234-235
k-means clustering, 234, 235
multidimensional scaling, 236
PCA (principal component
analysis), 235-236
User Device (U) category (VERIS
Information Assets), 173

\'}

validation, algorithm, 230
van Rossum, Guido, 23
variables
declaring, 29
multicollinear, 133
Risk, 58
variance inflation, 133
variation in measuring accuracy,
17
variations in statistics,
121-122
VAST 2011 visualization challenge,
274
VAST Challenge, 300
VCDB (VERIS Community
Database), 162

breach data, clustering,
236-238
data, converting to matrix,
236-238
GitHub repository, 181
scaling, multidimensional,
238-240
Vega, 287-291
VERIS (Vocabulary for Event
Recording and Incident Sharing)
framework, 162, 166167
attack chain, 171-172
Attributes, 167
counting records, 175
Discovery/Response,
167,176
disparate data sets, 187
Impact, 167, 176-177
Incident Tracking, 167, 168
Indicators, 167, 179
Information Assets, 167, 173
attributes, 173-175
JSON and, 179-182
Plus, 167, 179
Threat Actions, 167,
169-172
Threat Actor, 167,
168-169
Victim, 167, 177-179
veris2matrix() function, 236
verisr package, 182,
236-238
Verizon Data Breach Investigations
Report, 278
vertical bar chart, 152
Victim (VERIS), 167, 177-179
victim industries
breach data clustering,
236-238
hierarchical clustering,
240-242
multidimensional scaling,
238-240
VisAlert, 271
Correlation Tool, 272
design methodology, 273
mental models, 271-272

visual communications, third
dimension, 144-146
visual memory, 139
mental grouping, 142
visual stimulus, 139
visual thinking
iconic memory,
139-140
long-term memory, 140
saccades, 140
saccadic movements,
140-141
tracking eye movements,
140-141
working memory, 140
visualization
benefits, 139
reasons for,
138-139
visualization skills, 14-15
vulnerability
CVSS (Common Vulnerability
Scoring System), 274
Nessus scanner, 274

w

W3Schools, 299
Wasserman, William, Applied
Linear Statistical Models, 125
Weald, Ryan, 108
web-centric languages, 9
wget/curl, 41
White, John Myles, Machine
Learning for Hackers,
225
whitespace, 29
dashboard framing,
251-252
Winkel Tripel maps, 106
workflow, edit/compile/run, 22
working memory, 140
World’s Biggest Data Breaches,
277-279

XYZ

x, 47
XML (eXtensible Markup
Language), 44

Index

ZeroAccess
infection map, 108
choropleth,
110,117
county level,
120-125
infections per country,
108-110
scope, 111-113
Potwin Effect,
13-117
predicting infections, 134
regression on infections,
131-135
rootkit, 104
ZeuS, 72,92
abuse. chsite, 92
ASN-+peer network, 98
codes by country, 97
malicious destination
traffic by country, 100
Team Cymru and,
93-94
z-score, 119-120

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Introduction�������������������
	Overview of the Book and Technologies
	How This Book Is Organized
	Who Should Read This Book
	Tools You Will Need
	What’s on the Website
	The Journey Begins!

	Chapter 1 The Journey to Data-Driven Security��
	A Brief History of Learning from Data��
	Nineteenth Century Data Analysis���������������������������������������
	Twentieth Century Data Analysis��������������������������������������
	Twenty-First Century Data Analysis���

	Gathering Data Analysis Skills�������������������������������������
	Domain Expertise�����������������������
	Programming Skills�������������������������
	Data Management����������������������
	Statistics�����������������
	Visualization (a.k.a. Communication)���
	Combining the Skills���������������������������

	Centering on a Question������������������������������
	Creating a Good Research Question��
	Exploratory Data Analysis��������������������������������

	Summary��������������
	Recommended Reading��������������������������

	Chapter 2 Building Your Analytics Toolbox: A Primer on Using R and Python for Security Analysis��
	Why Python? Why R? And Why Both?���������������������������������������
	Why Python?������������������
	Why R?�������������
	Why Both?����������������

	Jumpstarting Your Python Analytics with Canopy���
	Understanding the Python Data Analysis and Visualization Ecosystem���
	Setting Up Your R Environment������������������������������������

	Introducing Data Frames������������������������������
	Organizing Analyses��������������������������
	Summary��������������
	Recommended Reading��������������������������

	Chapter 3 Learning the “Hello World” of Security Data Analysis���
	Solving a Problem������������������������
	Getting Data�������������������
	Reading In Data����������������������
	Exploring Data���������������������
	Homing In on a Question������������������������������
	Summary��������������
	Recommended Reading��������������������������

	Chapter 4 Performing Exploratory Security Data Analysis��
	Dissecting the IP Address��������������������������������
	Representing IP Addresses��������������������������������
	Segmenting and Grouping IP Addresses���
	Locating IP Addresses����������������������������

	Augmenting IP Address Data���������������������������������
	Association/Correlation, Causation, and Security Operations Center Analysts Gone Rogue���

	Mapping Outside the Continents�������������������������������������
	Visualizing the ZeuS Botnet����������������������������������
	Visualizing Your Firewall Data�������������������������������������

	Summary��������������
	Recommended Reading��������������������������

	Chapter 5 From Maps to Regression��
	Simplifying Maps�����������������������
	How Many ZeroAccess Infections per Country?��
	Changing the Scope of Your Data��������������������������������������
	The Potwin Effect������������������������
	Is This Weird?���������������������
	Counting in Counties���������������������������
	Moving Down to Counties������������������������������

	Introducing Linear Regression������������������������������������
	Understanding Common Pitfalls in Regression Analysis���
	Regression on ZeroAccess Infections��

	Summary��������������
	Recommended Reading��������������������������

	Chapter 6 Visualizing Security Data��
	Why Visualize?���������������������
	Unraveling Visual Perception�����������������������������������

	Understanding the Components of Visual Communications��
	Avoiding the Third Dimension�����������������������������������
	Using Color������������������
	Putting It All Together������������������������������
	Communicating Distributions����������������������������������
	Visualizing Time Series������������������������������
	Experiment on Your Own�����������������������������

	Turning Your Data into a Movie Star��
	Summary��������������
	Recommended Reading��������������������������

	Chapter 7 Learning from Security Breaches��
	Setting Up the Research������������������������������
	Considerations in a Data Collection Framework��
	Aiming for Objective Answers�����������������������������������
	Limiting Possible Answers��������������������������������
	Allowing “Other,” and “Unknown” Options��
	Avoiding Conflation and Merging the Minutiae���

	An Introduction to VERIS�������������������������������
	Incident Tracking������������������������
	Threat Actor�������������������
	Threat Actions���������������������
	Information Assets�������������������������
	Attributes�����������������
	Discovery/Response�������������������������
	Impact�������������
	Victim�������������
	Indicators�����������������
	Extending VERIS with Plus��������������������������������

	Seeing VERIS in Action�����������������������������
	Working with VCDB Data�����������������������������
	Getting the Most Out of VERIS Data���

	Summary��������������
	Recommended Reading��������������������������

	Chapter 8 Breaking Up with Your Relational Database��
	Realizing the Container Has Constraints��
	Constrained by Schema����������������������������
	Constrained by Storage�����������������������������
	Constrained by RAM�������������������������
	Constrained by Data��������������������������

	Exploring Alternative Data Stores��
	BerkeleyDB�����������������
	Redis������������
	Hive�����������
	MongoDB��������������
	Special Purpose Databases��������������������������������

	Summary��������������
	Recommended Reading��������������������������

	Chapter 9 Demystifying Machine Learning��
	Detecting Malware������������������������
	Developing a Machine Learning Algorithm��
	Validating the Algorithm�������������������������������
	Implementing the Algorithm���������������������������������

	Benefiting from Machine Learning���������������������������������������
	Answering Questions with Machine Learning��
	Measuring Good Performance���������������������������������
	Selecting Features�������������������������
	Validating Your Model����������������������������

	Specific Learning Methods��������������������������������
	Supervised�����������������
	Unsupervised�������������������

	Hands On: Clustering Breach Data���������������������������������������
	Multidimensional Scaling on Victim Industries��
	Hierarchical Clustering on Victim Industries���

	Summary��������������
	Recommended Reading��������������������������

	Chapter 10 Designing Effective Security Dashboards���
	What Is a Dashboard, Anyway?�����������������������������������
	A Dashboard Is Not an Automobile���������������������������������������
	A Dashboard Is Not a Report����������������������������������
	A Dashboard Is Not a Moving Van��������������������������������������
	A Dashboard Is Not an Art Show�������������������������������������

	Communicating and Managing “Security” through Dashboards���
	Lending a Hand to Handlers���������������������������������
	Raising Dashboard Awareness����������������������������������
	The Devil (and Incident Response Delays) Is in the Details���
	Projecting “Security”����������������������������

	Summary��������������
	Recommended Reading��������������������������

	Chapter 11 Building Interactive Security Visualizations��
	Moving from Static to Interactive��
	Interaction for Augmentation�����������������������������������
	Interaction for Exploration����������������������������������
	Interaction for Illumination�����������������������������������

	Developing Interactive Visualizations��
	Building Interactive Dashboards with Tableau���
	Building Browser-Based Visualizations with D3��

	Summary��������������
	Recommended Reading��������������������������

	Chapter 12 Moving Toward Data-Driven Security��
	Moving Yourself toward Data-Driven Security��
	The Hacker�����������������
	The Statistician�����������������������
	The Security Domain Expert���������������������������������
	The Danger Zone����������������������

	Moving Your Organization toward Data-Driven Security���
	Ask Questions That Have Objective Answers��
	Find and Collect Relevant Data�������������������������������������
	Learn through Iteration������������������������������
	Find Statistics����������������������

	Summary��������������
	Recommended Reading��������������������������

	Appendix A Resources and Tools�������������������������������������
	Appendix B References����������������������������
	Index

