

Raspberry Pi®

Raspberry Pi®

4th Edition

by Sean McManus and Mike Cook

Raspberry Pi® For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2021 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Raspberry Pi is a registered trademark of the Raspberry Pi Foundation. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned
in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2021941416

ISBN 978-1-119-79682-4 (pbk); ISBN 978-1-119-79686-2 (ebk); ISBN 978-1-119-79687-9 (ebk)

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction. . 1

Part 1: Setting Up Your Raspberry Pi. . 5
CHAPTER 1:	 Introducing the Raspberry Pi . . 7
CHAPTER 2:	 Downloading the Operating System. . 25
CHAPTER 3:	 Connecting Your Raspberry Pi . . 33

Part 2: Getting Started with Linux. . 49
CHAPTER 4:	 Using the Desktop Environment . . 51
CHAPTER 5:	 Using the Linux Shell . . 79

Part 3: Using the Raspberry Pi for Both Work and Play. . . 119
CHAPTER 6:	 Being Productive with the Raspberry Pi. . 121
CHAPTER 7:	 Editing Photos on the Raspberry Pi with GIMP. 133
CHAPTER 8:	 Playing Audio and Video on the Raspberry Pi. . 143

Part 4: Programming the Raspberry Pi . . 155
CHAPTER 9:	 Introducing Programming with Scratch. . 157
CHAPTER 10:	Programming an Arcade Game Using Scratch 177
CHAPTER 11:	Writing Programs in Python. . 201
CHAPTER 12:	Creating a Game with Python and Pygame Zero 233
CHAPTER 13:	Programming Minecraft with Python. . 251
CHAPTER 14:	Making Music with Sonic Pi. . 275

Part 5: Exploring Electronics with the Raspberry Pi. 291
CHAPTER 15:	Understanding Circuits . . 293
CHAPTER 16:	Taking Control of Your Pi’s Circuitry . . 319
CHAPTER 17:	Lots of Multicolored LEDs. . 357
CHAPTER 18:	Old McDonald’s Farm and Other RFID Adventures. 391

Part 6: The Part of Tens. . 425
CHAPTER 19:	Ten Great Software Packages for the Raspberry Pi 427
CHAPTER 20:	Ten Inspiring Projects for the Raspberry Pi. . 439
CHAPTER 21:	Ten Great Add-Ons for the Raspberry Pi . . 447

Appendix: Troubleshooting and Configuring
the Raspberry Pi. . 455

Index. . 467

Raspberry Pi®

Table of Contents vii

Table of Contents
INTRODUCTION . . 1

About This Book. . 1
Foolish Assumptions. . 2
Icons Used in This Book. . 3
Beyond the Book. . 3
Where to Go from Here. . 4

PART 1: SETTING UP YOUR RASPBERRY PI 5

CHAPTER 1:	 Introducing the Raspberry Pi. . 7
Introducing the Raspberry Pi Range. . 9

Raspberry Pi 4 Model B. .9
Raspberry Pi 400. . 11
Raspberry Pi 3 Model A+ . . 12
Raspberry Pi Zero . . 13
Older models. . 14

Figuring Out What You Can Do with a Raspberry Pi. 17
Getting Your Hands on a Raspberry Pi. . 18
Determining What Else You Need. . 18

Essentials . . 19
Optional extras . . 22

CHAPTER 2:	 Downloading the Operating System. 25
Introducing Linux . . 26
Imaging a microSD Card for Your Raspberry Pi 27
Choosing the Right Operating System for Your Raspberry Pi. 29

CHAPTER 3:	 Connecting Your Raspberry Pi. 33
Connecting Your Raspberry Pi. . 33
Setting Up Your Raspberry Pi. .36
Configuring Your Raspberry Pi in Raspberry Pi OS. 37
Changing Your Wi-Fi Settings. . 40
Configuring Bluetooth Devices . . 41
Connecting the Raspberry Pi Camera Module 41

Connecting the camera on a Pi Zero . . 42
Connecting the camera on other Raspberry Pi models. 43
Testing the Camera Module. . 44

Connecting Using SSH. . 46
Connecting Using VNC. . 47

viii Raspberry Pi For Dummies

PART 2: GETTING STARTED WITH LINUX. . 49

CHAPTER 4:	 Using the Desktop Environment. . 51
Navigating the Raspberry Pi Desktop. . 52

Using the Applications menu. . 52
Running applications that are not on the menu. 55
Resizing and closing application windows. . 55

Using the Task Manager. . 56
Using File Manager. . 57

Navigating File Manager. . 58
Copying and moving files and folders . . 61
Selecting multiple files and folders. . 61
Creating new folders and blank files . . 62
Deleting files and folders. . 63
Sorting files. . 63
Exploring your Raspberry Pi. . 64

Browsing the Web with Chromium. . 64
Searching within web pages . . 65
Using tabbed browsing. . 66
Adding and using bookmarks. . 66
Protecting your privacy. . 67

Sending and Receiving Email with Claws Mail. . 68
Using the Image Viewer. . 68
Using the Text Editor. . 71
Configuring Printers . . 72
Customizing the Desktop. . 72
Playing the Games. . 72
Finding and Installing New Applications . . 75
Backing Up Your Data. . 76
Logging Out and Shutting Down. . 77

CHAPTER 5:	 Using the Linux Shell. . 79
Understanding the Prompt. . 80
Exploring Your Linux System. . 81

Listing files and directories . . 81
Changing directories. . 81
Changing to the parent directory. . 82
Understanding the directory tree. . 82
Using relative and absolute paths. .85
Checking file types. . 88
Investigating more advanced listing options. 89

Understanding the Long Listing Format and Permissions 91
Slowing Down the Listing and Reading Files with the
Less Command . . 94
Speeding Up Entering Commands. . 95

Table of Contents ix

Using Redirection to Create Files . . 96
Creating Directories . . 98
Deleting Files . . 99
Using Wildcards to Select Multiple Files. . 101
Removing Directories. . 103
Copying and Renaming Files. . 104
Finding Files on Your Raspberry Pi. . 106
Installing and Managing Software on Your Raspberry Pi 106

Updating the cache. . 107
Finding the package name. . 107
Installing software. . 108
Running software . . 109
Upgrading the software. . 109
Removing software and freeing up space. 110
Finding out what’s installed. . 111

Managing User Accounts on Your Raspberry Pi. 112
Learning More about Linux Commands . . 114
Customizing the Shell with Your Own Linux Commands 116
Shutting Down and Rebooting Your Raspberry Pi. 117

PART 3: USING THE RASPBERRY PI FOR BOTH
WORK AND PLAY. . 119

CHAPTER 6:	 Being Productive with the Raspberry Pi. 121
Installing LibreOffice on Your Raspberry Pi. . 122
Working with LibreOffice on the Raspberry Pi 122

Saving your work. . 123
Writing letters in LibreOffice Writer . . 123
Managing your budget in LibreOffice Calc. 125
Creating presentations in LibreOffice Impress. 128
Creating a party invitation with LibreOffice Draw 130

CHAPTER 7:	 Editing Photos on the Raspberry Pi with GIMP. . . . 133
Working with GIMP. . 134

Understanding the GIMP screen layout. . 134
Resizing an image in GIMP. . 136
Cropping your photo. . 137
Rotating and flipping your photo . . 138
Adjusting the colors. .139
Fixing imperfections. . 139
Converting images between different formats. 141

Finding Out More about GIMP. . 141

x Raspberry Pi For Dummies

CHAPTER 8:	 Playing Audio and Video on the Raspberry Pi 143
Setting Up Your Media Center. . 143
Navigating the Media Center. . 144
Adding Media. . 145

Adding music. . 146
Adding videos. . 147
Adding pictures. . 148
Streaming media. . 148

Enjoying Your Media. . 149
Playing music. . 149
Playing videos. .150
Viewing photos. .150

Changing the Settings. . 151
Using a Remote Control. . 151
Turning Off Your Media Center. . 152
Playing Music in the Desktop Environment. . 152

PART 4: PROGRAMMING THE RASPBERRY PI 155

CHAPTER 9:	 Introducing Programming with Scratch. 157
Understanding What Programming Is. . 158
Working with Scratch . . 158

Understanding the Scratch screen layout. 159
Making your sprite move. . 160
Creating scripts . . 165
Changing your sprite’s appearance . . 165
Adding sounds and music . . 170
Using the Wait block to slow down your sprite. 172
Using extensions in Scratch. . 173
Saving your work. . 175

CHAPTER 10:	Programming an Arcade Game Using Scratch 177
Starting a New Scratch Project and Deleting Sprites. 178
Changing the Backdrop . . 178
Adding Sprites to Your Game . . 179
Drawing Sprites in Scratch. . 180
Naming Your Sprites. . 184
Controlling When Scripts Run. . 184

Using the green flag to start scripts. . 185
Using the Forever Control block. . 186
Enabling keyboard control of a sprite . . 186
Enabling a sprite to control another sprite. 188

Using Random Numbers . . 190
Detecting When a Sprite Hits Another Sprite 191

Table of Contents xi

Introducing Variables. . 192
Making Sprites Move Automatically. . 194
Fixing the Final Bug. . 195
Adding Scripts to the Stage . . 198
Duplicating Sprites . . 198
Playing Your Game. . 198
Adapting the Game’s Difficulty . . 199
Taking It Further with Scratch. . 199

CHAPTER 11:	Writing Programs in Python. . 201
Working with Python. . 202

Entering your first Python commands. . 202
Using the shell to calculate sums. . 204

Creating the Times Tables Program. . 206
Creating and running your first Python program. 206
Using variables. . 208
Accepting user input. . 209
Printing words, variables, and numbers together 210
Using for loops to repeat. . 211

Creating the Chatbot Program . . 215
Introducing lists. . 216
Using lists to make a random chat program. 218
Adding a while loop. . 221
Using a loop to force a reply from the user. 222
Using dictionaries . . 223
Creating your own functions. . 225
Creating the dictionary look-up function. . 227
Creating the main conversation loop. . 229
Final thoughts on Chatbot. . 230
The final Chatbot program. . 231

CHAPTER 12:	Creating a Game with Python and Pygame Zero . . . 233
Collecting Your Sounds and Images. . 234
Setting Up Your Folders. . 235
Creating and Running Your First Program. . 235

Detecting mouse clicks. . 238
Animating your actors. .239
Using random numbers. . 241
Adding more clouds . . 242
Making the clouds regenerate. . 244
Enabling multiple clouds to be clicked. . 245
Adding the timer. . 246
Adjusting the game difficulty. . 247
The final game listing . . 247

Exploring Pygame Zero Further . . 249

xii Raspberry Pi For Dummies

CHAPTER 13:	Programming Minecraft with Python. 251
Playing Minecraft. . 252

Moving around. . 253
Making and breaking things. . 253

Preparing for Python. .254
Using the Minecraft Module . . 255

Understanding coordinates in Minecraft. . 256
Repositioning the player. . 256
Adding blocks. . 257
Stopping the player from changing the world 259
Setting the maze parameters . . 259
Laying the foundations. . 261
Placing the maze walls. . 262
Understanding the maze algorithm. . 263
Setting up the variables and lists . . 264
Creating the functions . . 265
Creating the main loop. . 266
Adding a ceiling. . 268
Positioning the player. . 269
The final code. . 269

Adapting the Program . . 273

CHAPTER 14:	Making Music with Sonic Pi. . 275
Understanding the Sonic Pi Screen Layout. . 276
Playing Your First Notes. . 277
Using Note and Chord Names. . 279
Playing Timed Patterns. . 280
Composing Random Tunes Using Shuffle. . 281
Changing the Random Number Seed. . 282
Using List Names in Your Programs. . 282
Playing Random Notes. . 282
Experimenting with Live Loops. . 283
Using Samples. . 285
Adding Special Effects. . 286
Synchronizing with Your Drumbeat. . 287
Bringing It All Together. . 287
Next Steps with Sonic Pi. . 289

PART 5: EXPLORING ELECTRONICS WITH
THE RASPBERRY PI. . 291

CHAPTER 15:	Understanding Circuits. . 293
Discovering What a Circuit Is. . 294

Understanding the nature of electricity. . 294
Determining how a component needs to be treated. 303

Table of Contents xiii

Getting Familiar with the GPIO. . 304
Putting the general purpose in GPIO. . 306
Understanding what GPIOs do. . 306
Putting an output pin to practical use . . 307
Using GPIOs as inputs. . 309
Learning which end is hot: Getting to grips with
a soldering iron. . 311
Making a soldered joint . . 313

Looking at Ready-Made Add-On Boards. . 314
The Sense HAT. . 315
The Trill sensors. . 315
The LED SHIM. . 316
Other boards. . 317

CHAPTER 16:	Taking Control of Your Pi’s Circuitry 319
Accessing Raspberry Pi’s GPIO Pins . . 319

Soldering the GPIO pins onto Pi Zero or Pi ZeroW. 321
Getting at all the pins with one connector. 322
Connecting things together. . 324

Your First Circuit . . 325
Bringing your LED to life. . 326
Using Scratch 3.0. . 326
Control the flashing speed with an input. . 328
Using Python . . 330
Using GPIO ZERO. . 332

Starting Out with a Dice Display. . 336
A dice display. . 336
The project. . 339
The numbers . . 339
The display. . 340
Taking it further. . 345

Pedestrian Crossing . . 346
The Pedestrian Crossing hardware. . 349
The Pedestrian Crossing software . . 350
Taking it further. . 354

CHAPTER 17:	Lots of Multicolored LEDs. . 357
Making Colors . . 359

Using diffusers. . 359
Making more colors . . 360

The Way Forward. . 362
Bit-banging the APA102C protocol. . 365
Creating a class . . 367

xiv Raspberry Pi For Dummies

Rainbow Invaders. . 371
Keepy Uppy . . 376
LEDs Galore . . 379

Current limits. . 379
Signals and memory. . 380
Display update. . 381
Getting more LEDs . . 381

CHAPTER 18:	Old McDonald’s Farm and Other RFID
Adventures . . 391
How RFID Work. . 392

A MIFARE card’s structure . . 395
A simple RFID jukebox . . 398
A better RFID jukebox. . 399
Taking it further. . 403

Dressing Up a Paper Doll. . 403
Runway time. . 408

Old McDonald’s Farm. . 412
Making sound samples. . 412
Making the graphics. . 415

PART 6: THE PART OF TENS. . 425

CHAPTER 19:	Ten Great Software Packages for
the Raspberry Pi. . 427
Penguins Puzzle. . 428
FocusWriter . . 429
Mathematica . . 429
Fraqtive. . 431
Tux Paint. . 432
Grisbi. . 433
Beneath a Steel Sky. . 433
Brain Party. . 434
Pure Data. . 435
Inkscape. . 437

CHAPTER 20:	Ten Inspiring Projects for the Raspberry Pi. 439
One-Button Audiobook Player. . 439
Heartbeat Monitor . . 440
Smart Fridge. . 440
The Next Verse. . 441
Electric Skateboard. . 441
T-Shirt Cannon. . 442
Magic Mirror. . 442

Table of Contents xv

Pi in the Sky . . 443
Raspberry Turk . . 444
Sound Fighter. . 445

CHAPTER 21:	Ten Great Add-Ons for the Raspberry Pi 447
Picade. . 448
CamJam EduKit 3. . 449
Piano HAT. . 450
Rainbow HAT. . 451
Display-O-Tron HAT. . 451
Flick. . 451
Unicorn HAT HD. . 452
Inky pHAT. . 452
Pirate Audio. . 452
Witty Pi . . 453

APPENDIX: TROUBLESHOOTING AND CONFIGURING
THE RASPBERRY PI. . 455

INDEX. . 467

Introduction 1

Introduction

Raspberry Pi computers are at the forefront of the maker movement, where
people make their own inventions using a mixture of traditional craft skills
and modern coding and electronics knowledge. They’ve also given more and

more people access to a computer that provides a gateway into programming,
electronics, and the world of Linux — the technically powerful (and free) rival to
Windows and Mac OS. As a supercheap computer, the Raspberry Pi is also being
pressed into service in media centers and as a family computer for games, music,
photo editing, and word processing.

You might be a geek who relishes learning new technologies, or you might be
someone who wants a new family computer to use with the children. In either
case, Raspberry Pi For Dummies, 4th Edition, helps you get started with your
Raspberry Pi and teaches you about some of the many fun and inspiring things
you can do with it.

About This Book
Raspberry Pi For Dummies, 4th Edition, provides a concise and clear introduction to
the terminology, technology, and techniques that you need to get the most from
your Pi. With this book as your guide, you’ll learn how to

»» Set up your Raspberry Pi.

»» Discover and install great free software you can use on your Raspberry Pi.

»» Use the desktop environment to run programs, manage files, surf the web,
and view photos.

»» Use the Linux command line to manage your Raspberry Pi and its files.

»» Use the Raspberry Pi as a productivity tool.

»» Edit photos.

»» Play music and video.

»» Create animations and arcade games with the child-friendly Scratch program-
ming language.

2 Raspberry Pi For Dummies

»» Write your own games and other programs using the Python programming
language.

»» Compose music by programming with Sonic Pi.

»» Get started with electronics, from an introduction to soldering to the design
and creation of electronic projects controlled by the Raspberry Pi.

Incidentally, within this book, you may note that some web addresses break across
two lines of text. If you’re reading this book in print and want to visit one of these
web pages, simply key in the web address exactly as it’s noted in the text, pre-
tending as though the line break doesn’t exist. If you’re reading this as an ebook,
you’ve got it easy — just click or tap the web address to be taken directly to the
web page.

Foolish Assumptions
Raspberry Pi For Dummies, 4th Edition, is written for beginners, by which we mean
people who have never used a similar computer. However, we do have to make a
few assumptions in writing this book, because we wouldn’t have enough space for
all its cool projects if we had to start by explaining what a mouse is! Here are our
assumptions:

»» You are familiar with other computers, such as Windows or Apple
computers. In particular, we assume that you’re familiar with using windows,
icons, and the keyboard and mouse, and that you know the basics of using
your computer for things like browsing the Internet, installing software, or
copying files.

»» The Raspberry Pi is not your only computer. At times, you’ll need to have
access to another computer — for example, to create your SD or microSD
card for the Pi. (See Chapter 2.) When it comes to networking, we assume you
already have a router set up with an Internet connection and a spare port that
you can plug the Raspberry Pi into if you’re using a wired connection.

»» The Raspberry Pi is your first Linux-based computer. If you’re a Linux
ninja, this book still gives you a solid reference on the Raspberry Pi and the
version of Linux it uses, but no prior Linux knowledge is required.

»» You share our excitement. The Raspberry Pi can open up a world of
possibilities to you!

Other than these assumptions, we hope this book is approachable for everyone.
The Raspberry Pi is being adopted in classrooms and youth groups, and this book

Introduction 3

is a useful resource for teachers and students. The Raspberry Pi is also finding its
way into many homes, where people of all ages (from children to adults) are using
it for education and entertainment.

Icons Used in This Book
If you’ve read other For Dummies books, you know that they use icons in the mar-
gin to call attention to particularly important or useful ideas in the text. In this
book, we use four such icons:

The Tip icon highlights expert shortcuts or simple ideas that can make life easier
for you.

Although we’d like to think that reading this book is an unforgettable experience,
we’ve highlighted some points that you might want to particularly commit to
memory. They’re either important takeaways, or they’re fundamental to the proj-
ect you’re working on.

As you would do on the road, slow down when you see a Warning icon. It high-
lights an area where things could go wrong.

Arguably, the whole book talks about technical stuff, but this icon highlights
something that’s particularly technical. We’ve tried to avoid unnecessary jargon
and complexity, but some background information can give you a better under-
standing of what you’re doing, and sometimes we do need to get quite techy,
given the sophistication of the projects you’re doing. Paragraphs highlighted with
this icon might be worth rereading, to make sure you understand, or you might
decide that you don’t need to know that much detail. It’s up to you!

Beyond the Book
In addition to what you’re reading right now, this book comes with a free access-
anywhere Cheat Sheet with tips on installing software and using Scratch. To get
this Cheat Sheet, simply go to www.dummies.com and type Raspberry Pi Dummies
Cheat Sheet in the Search box.

http://www.dummies.com/

4 Raspberry Pi For Dummies

Also be sure to check out this book’s companion website (www.dummies.com/go/
raspberrypifd4e), where you can download the code listings that appear
throughout this book.

Both of us maintain our own personal websites too, which contain some addi-
tional information on the Raspberry Pi. Mike’s is at www.thebox.myzen.co.uk/
Raspberry/Punnet.html, and Sean’s is at www.sean.co.uk.

Where to Go from Here
It’s up to you how you read this book. It’s been organized to take you on a journey
from acquiring and setting up your Raspberry Pi to learning the software that
comes with it, and from writing your own programs to finally creating your own
electronics projects. Some chapters build on knowledge gained in earlier chapters,
especially the sections on Scratch and Python — and all of Part 5.

We understand, though, that some projects or topics might interest you more than
others, and you might need help in some areas right now. When a chapter assumes
knowledge from elsewhere, we include cross-references to help you quickly find
what you might have missed. We also include some signposts to future chapters,
so you can skip ahead to a later chapter if it provides the quickest answer for you.

If you haven’t set up your Pi yet, start with Part 1. If you have your Pi up and run-
ning, Part 2 shows you how to use the software on it. Part 3 covers productivity,
creativity, and entertainment software. To flex your programming muscles, per-
haps for the first time, read Part 4. You can learn Scratch, Python, or Sonic Pi here,
and feel free to start with any one of those languages. The Python chapters pro-
vide a good foundation for Part 5, where you can start building your own electron-
ics projects.

http://www.dummies.com/go/raspberrypifd4e
http://www.dummies.com/go/raspberrypifd4e
http://www.thebox.myzen.co.uk/Raspberry/Punnet.html
http://www.thebox.myzen.co.uk/Raspberry/Punnet.html
http://www.sean.co.uk/

1Setting Up Your
Raspberry Pi

IN THIS PART . . .

Get to know the Raspberry Pi and what other
equipment you will need to be able to use it.

Download the Linux operating system and prepare a
microSD card for use on your Raspberry Pi.

Connect your Raspberry Pi to the power, keyboard,
mouse, and screen.

Install and test the Raspberry Pi Camera Module.

Change the settings on your Raspberry Pi.

CHAPTER 1 Introducing the Raspberry Pi 7

Chapter 1
Introducing the
Raspberry Pi

The Raspberry Pi is perhaps the most inspiring computer available today.
Although most of the computing devices being used (including phones, tab-
lets, and game consoles) are designed to stop people from tinkering with

them, the Raspberry Pi is exactly the opposite. It invites you to prod it, play with
it, and create with it. It comes with the tools you need to start creating your own
software (or programming), and you can connect your own electronic inventions to
it. Some models are cheap enough that breaking them won’t break the bank, so
you can experiment with confidence.

Lots of people are fired up about the Raspberry Pi’s potential, and they’re discov-
ering exciting new ways to use it. Dave Akerman (www.daveakerman.com) and
friends attached one to a weather balloon and sent it nearly 40 kilometers high to
take pictures of the Earth from near space using a webcam. (You can read about
Dave’s ballooning project in Chapter 20.)

Professor Simon Cox and his team at the University of Southampton connected 64
Raspberry Pi boards to build an experimental supercomputer, held together by
Lego bricks. In the supercomputer (see Figure 1-1), the Raspberry Pis work
together to solve a single problem. The project has been able to cut the cost of a
supercomputer from millions of dollars to thousands or even hundreds of dollars,
making supercomputing much more accessible to schools and students. Others

IN THIS CHAPTER

»» Getting up close and personal with
the Raspberry Pi

»» Taking stock of your Raspberry Pi

»» Purchasing your very own
Raspberry Pi

»» Figuring out what else you need

http://www.daveakerman.com/

8 PART 1 Setting Up Your Raspberry Pi

have also experimented with combining the processing power of multiple Pis.
There’s even an off-the-shelf kit you can use to combine four Raspberry Pi Zeros
with a full-size Raspberry Pi (the Cluster HAT from Pimoroni) so that you can
experiment with running programs across multiple Pis at the same time.

The Pi is also being used to make fitness gadgets, gaming devices, electric skate-
boards, and much more, as you discover in Chapter 20.

Although those projects are grabbing headlines, another story is less visible but
more important: the thousands of people of all ages who are taking their first
steps in computer science, thanks to the Raspberry Pi.

Both of the authors of this book used computers in the 1980s, when the notion of
a home computer first became a reality. Back then, computers were less friendly
than they are today. When you switched them on, you were faced with a flashing
cursor and had to type something in to get it to do anything. As a result, though,
a whole generation grew up knowing at least a little bit about how to give the
computer commands, and how to create programs for it. As computers started to
use mice and windows, people didn’t need those skills any more, and they lost
touch with them.

Eben Upton, designer of the Raspberry Pi, noticed the slide in skill levels when he
was working at Cambridge University’s computer laboratory in 2006. Students

FIGURE 1-1:
Two of the

Raspberry Pi
boards used in

the University of
Southampton’s

supercomputer,
with the

rest of the
supercomputer in

the background.
Courtesy of Simon Cox and Glenn Harris, University of Southampton.

CHAPTER 1 Introducing the Raspberry Pi 9

applying to study computer science started to have less experience with program-
ming than students of the past did. Upton and his university colleagues hatched
the idea of creating a computer that would come supplied with all the tools needed
to program it — and would sell for a target price of $25 (about £20). It had to be
able to do other interesting things, too, so that people were drawn to use it, and it
had to be robust enough to survive being pushed in and out of school bags hun-
dreds of times.

That idea started a six-year journey that led to the Raspberry Pi you probably have
on your desk you as you read this book. It was released in February 2012, and sold
half a million units by the end of the quarter. By July 2017, there were more than
14 million Raspberry Pis in homes, schools, and workplaces, 10 million of them
made in the UK. More than 30 million Raspberry Pi computers have now been sold.
It is, by a large margin, the best-selling British computer of all time.

Introducing the Raspberry Pi Range
Over the years, the Raspberry Pi has evolved, increasing its memory, improving its
performance, and adding features. So which one should you get? Here’s an over-
view designed to help you decide.

Raspberry Pi 4 Model B
This model is a circuit board with components and sockets stuck on it, as shown
in Figure 1-2. In an age when most computing devices are sleek and shiny boxes,
the spiky Pi, with tiny codes printed in white all over it, seems alien. That’s a big
part of its appeal, though: Many of the cases you can buy for the Raspberry Pi are
transparent because people love the look of it.

The Raspberry Pi 4 is the latest Raspberry Pi board. It features the following:

»» Up to 8GB of memory

»» Four USB ports (two USB 2 ports and two higher-speed USB 3 ports)

»» Built-in Wi-Fi and Bluetooth and a Gigabit Ethernet port for a wired Internet or
network connection

»» A headphones-style audio-out socket

»» 40 general-purpose input/output (GPIO) pins, which you can use to connect
your own electronics projects or specially designed add-ons (see Chapter 21)

10 PART 1 Setting Up Your Raspberry Pi

»» Support for two monitors at resolutions of up to 4K

»» Compatibility with the Raspberry Pi Camera Module

»» Power over Ethernet (PoE) support when used with the Raspberry Pi PoE HAT,
which enables you to use your Ethernet cable for both networking and
powering your Pi

Like previous Pi models, the Raspberry Pi 4 is about the size of a deck of cards. As
with any current Raspberry Pi, it uses a microSD card for storage. Its price is
around $35 for 2GB of memory or $75 for 8GB of memory.

The Raspberry Pi Desktop Kit is also available, which includes the accessories
you’ll need, except for the monitor.

The Raspberry Pi 4 is our recommendation for the most powerful budget-friendly
Raspberry Pi. You may be able to use it with your own keyboard and mouse to save
money. The GPIO pins are great for electronics projects.

It’s called the Model B, incidentally, as a tribute to the BBC Microcomputer that
was popular in the UK in the 1980s. It’s sobering to think that the BBC Micro cost
about ten times the price of a Raspberry Pi, which, thanks to 40 years of progress
in computer science, has more than 15,600 times more memory.

FIGURE 1-2:
The Raspberry Pi

4 Model B
(center), Model A+

(top right),
and Pi Zero W

(top left).

CHAPTER 1 Introducing the Raspberry Pi 11

Raspberry Pi 400
The Raspberry Pi 400 (see Figure 1-3) takes even more inspiration from the classic
computers of the ’80s by building the Raspberry Pi 4 computer into a computer
keyboard. It makes the whole setup much more compact, because you don’t have
the separate Pi unit on the table, with a cable going to the keyboard.

There are performance improvements, too. The Raspberry Pi 400 is faster than the
Raspberry Pi 4, and it’s designed with passive cooling built in.

The Raspberry Pi 400 is a white keyboard, with all the sockets on the back of it. It
features the following:

»» 4GB of memory.

»» Three external USB ports (one USB 2 port and two higher-speed USB 3 ports).
This is fewer than the four ports you get on a Raspberry Pi 4. The fourth port
is used to connect the keyboard inside the case.

»» Built-in Wi-Fi and Bluetooth and a Gigabit Ethernet port for a wired Internet or
network connection.

FIGURE 1-3:
The Raspberry Pi

400 hides the
computer inside

the keyboard.

12 PART 1 Setting Up Your Raspberry Pi

»» 40 GPIO pins, but these are on the back of the case, not on the top surface.
You’ll need to use an extension cable or board to use the pins easily and to
use add-on boards (see Chapter 21). Although add-on boards can be con-
nected directly, few will work well because their top surface will face away
from you.

»» Support for two monitors at resolutions of up to 4K.

»» No compatibility with the Raspberry Pi Camera Module. You can use a USB
camera, as you can on any Raspberry Pi computer.

There is no audio out socket, so you’ll need to pass audio through your monitor.

The Raspberry Pi 400 costs $70. The Raspberry Pi 400 Personal Computer Kit adds
the accessories you’ll need, except for the monitor. The Raspberry Pi 400 is a fan-
tastic value, but it’s more expensive than the bare board. We recommend the
Raspberry Pi 400 if your budget will bear it and you plan to use the Raspberry Pi
as a desktop computer. For electronics projects, we find the bare board easier
to use.

The official Raspberry Pi keyboard and the Raspberry Pi 400 look the same. If you
have both on your desk, put a sticker on one of them; otherwise, you’ll waste time
trying to use the wrong one!

Raspberry Pi 3 Model A+
The Model A+ is a cut-down bare-board Raspberry Pi. It’s useful for projects that
need lower power consumption — typically battery-based projects. It is suitable
for robots and projects in remote locations, where a wired electricity supply isn’t
viable and batteries must be used instead.

It features the following:

»» 512MB of memory

»» One USB 2 port

»» Built-in Wi-Fi and Bluetooth

»» A headphones-style audio-out socket

»» 40 GPIO pins

»» Compatibility with the Raspberry Pi Camera Module

CHAPTER 1 Introducing the Raspberry Pi 13

This model has a price of $20. The Model A+ is slightly shorter on the long side
than the Raspberry Pi 3, measuring 2½ inches by 2 inches.

Raspberry Pi Zero
The Raspberry Pi Foundation astounded everyone when it gave the Raspberry Pi
Zero computer away with the print edition of its magazine The MagPi. We’d seen
cover-mounted CDs and even tapes long ago, but never a computer before.

There are three models: Raspberry Pi Zero, Raspberry Pi Zero W (adding wireless
networking), and Raspberry Pi Zero WH (adding wireless networking and GPIO
pins).

The Raspberry Pi Zero family features the following:

»» A lightweight, smaller board measuring just 2½ inches by 1 inch.

»» A single-core 1 GHz processor. This is less powerful than the bigger boards.
The Model B and A+ are quad-core, which means there are four processing
units inside the chip that can all work at the same time. The quad-core
processors run at a higher frequency, too. Here, you get a single core running
at a lower frequency.

»» 512MB of memory.

»» One Micro USB port.

»» Built-in Wi-Fi and Bluetooth, only on the Raspberry Pi Zero W and Zero WH.

»» 40 GPIO pins, only on the Raspberry Pi Zero WH. On other models, you can
solder your own pins.

»» Compatibility with the Raspberry Pi Camera Module, only on the Raspberry Pi
Zero W and Zero WH.

You’ll also need a converter for the Mini HDMI socket, and for the Micro USB
socket, so you should expect to spend a bit more than the price of the Pi (and have
a bit more complexity in your setup). Billed as the $5 computer, the Raspberry Pi
Zero has at times been difficult to get hold of, which is perhaps not surprising
given the phenomenal demand for it.

The Raspberry Pi Zero is great for compact electronics projects that don’t need the
performance of a Model B or Model A+.

14 PART 1 Setting Up Your Raspberry Pi

Older models
Of course, the older Raspberry Pis are still out there. Recent models usually remain
in production while there is demand, and you can buy secondhand versions online
from websites such as eBay. Generally speaking, the newer the model, the faster
its performance. Memory upgrades have made a difference, as well as the use of
more powerful processors, as the Pi has evolved. There are plenty of uses for the
Pi that don’t need especially fast performance, though, so you might find that an
older Pi is perfect for your project. If you want to support the Raspberry Pi Foun-
dation while buying cheaper, secondhand boards, you can donate to the founda-
tion online.

The older models are described in this list:

»» Raspberry Pi 1 Model B with 256MB memory: Although it’s called Model B,
this was the first Raspberry Pi to be released, in February 2012. The Raspberry
Pi Model B features an Ethernet connection for the Internet and two USB
ports. It uses an SD card for storage.

»» Raspberry Pi 1 Model B with 512MB memory: Released in October 2012,
the Raspberry Pi Model B had twice the memory capacity. This improved the
speed of some software, especially applications that used images heavily.

»» Raspberry Pi 1 Model A: The Model A, released in February 2013, is a
stripped-down version of the Model B. It has just one USB port and doesn’t
have an Ethernet port for connecting to the Internet. It has 256MB of memory.

»» Raspberry Pi 1 Model B+: The Model B+, released in July 2014, has been
described by the Raspberry Pi Foundation as “the final evolution of the
original Raspberry Pi.” It runs all the same software as the previous versions of
the Raspberry Pi, but it has four USB ports, more GPIO pins for connecting
electronics projects to the Pi, and lower power consumption and better audio
than the Model B. In common with the Model B, it has 512MB of memory.
Although all previous versions use SD cards for data storage, the Model B+
introduced the smaller microSD cards, which are now standard on the
Raspberry Pi.

»» Raspberry Pi 2 Model B: Launched in February 2015, this model doubled the
memory on the Model B+ to 1GB. It increased performance, compared to the
Model B+, while retaining its physical features. Over the years the Pi’s
performance has been improved through new software releases as well as
updates to the hardware. The Pi 2 represents an immediately noticeable
speed-up, compared to the Model B+.

CHAPTER 1 Introducing the Raspberry Pi 15

»» Raspberry Pi 3 Model B: Launched in February 2016, this model has a new 64-bit
processor, which means it can handle data in bigger chunks than the previous
32-bit processor. The Raspberry Pi 3 Model B is 50 percent to 60 percent faster
than the Raspberry Pi 2 Model B when working in 32-bit mode.

»» Raspberry Pi 3 Model B+: Launched in March 2018, this model has a faster
processor and improved networking speeds. It introduced support for PoE,
which enables the Raspberry Pi to be powered through the Ethernet cable.
You’ll need to add the Raspberry Pi PoE HAT accessory.

If you’re using anything earlier than the Model B+, you’ll need full-size SD cards
(not microSD) for storage, and you’ll only have 26 GPIO pins to play with. Current
add-ons are unlikely to be compatible with the early boards, so check their
requirements before you buy.

Many of the projects in this book will work on older Raspberry Pi models (indeed,
they first appeared in previous editions of this book when those models were the
latest thing). But for best performance, we recommend using a current model, if
possible.

WHAT’S THE RASPBERRY PI
COMPUTE MODULE?
You’ll also see the Raspberry Pi Compute Module in the online stores alongside the
Raspberry Pi, but this is something quite different.

The Compute Module, or C for short, is designed for industrial use and intended to be
built into a product you’re manufacturing. The modules tend to follow the release of
the main Raspberry Pi models. There are also light versions available that correspond to
the Model A of the Raspberry Pi. They’re built on a SODIMM board, which is what is
sometimes used for PC memory modules. You’re supposed to design your own board
to plug the Compute Module into, but a development kit is available with a C module
and an example motherboard containing all the normal plug-in connectors (see www.
raspberrypi.org/products/compute-module-development-kit-2). Note,
however, that this is an expensive way to buy what is otherwise a normal Raspberry Pi.
Currently, the Raspberry Pi Compute Module 4 is the latest one, but the dev kit uses the
Compute Module 3.

We only mention the Compute Module here in case you wonder what it is: It’s not cov-
ered further in this book, and it’s almost certainly not what you want to buy for your first
Raspberry Pi.

https://www.raspberrypi.org/products/compute-module-development-kit-2/
https://www.raspberrypi.org/products/compute-module-development-kit-2/

16 PART 1 Setting Up Your Raspberry Pi

RASPBERRY PI PICO: A MICROCONTROLLER,
NOT A COMPUTER
The Raspberry Pi Pico is a radical new departure for the Raspberry Pi Foundation.
Whereas previous devices were general-purpose computers, Raspberry Pi Pico is a
microcontroller. A microcontroller is usually built into a device that does one job, such
as a heating system or a microwave oven.

You can use the Raspberry Pi Pico for your electronics projects. You program it by con-
necting it to a computer. It’s similar to the Arduino, which you might have heard of, but
the Pico uses the Raspberry Pi Foundation’s own custom chip.

The big advantage of a microcontroller is that there is no operating system to get in the
way of things, so you can get precise control over the signals coming from its pins. This
is important for things like audio generation and motor/servo control.

The Raspberry Pi Pico can be programmed using either MicroPython or C, which are
both programming languages. (A programming language is a way of giving instructions
to a computer or computing device – Part 4 introduces you to some programming lan-
guages). MicroPython is a version of Python optimized for running on microcontrollers.
There are a few differences in some instructions, but MicroPython mostly looks the
same as Python. You can program a Pico using Thonny, a Python programming tool
available in Raspberry Pi OS. You get the option of saving your code into the Pico’s
memory or your computer. Any code saved into a file called main.py will run automati-
cally when power is applied to the Pico, independently of whether you have a computer
attached.

Programming a Pico in C, however, is not for the fainthearted. It requires a long process
to prepare the C code for compiling or the use of a complex piece of software. We
expect it to get easier, but at the moment we would recommend MicroPython instead.

The Raspberry Pi Pico is extremely cheap: It costs just $4, and it doesn’t need an addi-
tional microSD card for storage.

You can find more information on the Raspberry Pi Pico in Chapter 17, but our focus in
this book is on the Raspberry Pi computers and not the microcontroller. When we say
“the Raspberry Pi,” we’re referring to the computers.

CHAPTER 1 Introducing the Raspberry Pi 17

Figuring Out What You Can
Do with a Raspberry Pi

The Raspberry Pi is a fully featured computer, and you can do almost anything
with it that you can do with a desktop computer.

Instead of running Windows or macOS, the Raspberry Pi uses an operating system
called Linux. It’s a leading example of open source, a completely different philoso-
phy to the commercial software industry. Rather than being created within the
heavily guarded walls of a company, with its design treated as a trade secret, Linux
is built by companies and expert volunteers working together. Anyone is free to
inspect and modify the source code (a bit like the recipe) that makes it work. You
don’t have to pay to use Linux, and you’re allowed to share it with other people, too.

You probably won’t be able to run the software you have on your other computers
on your Raspberry Pi. It won’t run Windows or Mac software, and not all Linux
software works on the Raspberry Pi. But a lot of Linux software that is compatible
with the Raspberry Pi is available and is free of charge.

The Raspberry Pi has a graphical windows desktop to start and manage programs
(see Chapter 4) as well as a shell for accepting text commands (see Chapter 5). You
can use it for browsing the Internet (see Chapter 4), for word processing and
spreadsheets (see Chapter 6), or for editing photos (see Chapter 7). You can use it
for playing back music or video (see Chapter 8) or for playing games (see
Chapter 19). You can use the built-in software to write your own music, too (see
Chapter 14). It’s the perfect tool for homework, but it’s also a useful computer for
writing letters, managing your accounts, and paying bills online.

The Raspberry Pi is at its best, however, when it’s being used to learn how com-
puters work, and how you can create your own programs or electronics projects
using them. It comes with Scratch (see Chapter 9), a visual programming lan-
guage that enables people of all ages to create their own animations and games
while learning some of the core concepts of computer programming along the way.

It also comes with Python (see Chapter 11), a professional programming language
used by YouTube, Google, and Industrial Light & Magic (the special effects gurus
for the Star Wars films), among many others.

It has GPIO pins on it that you can use to connect up your own circuits to the
Raspberry Pi, so you can use your Raspberry Pi to control other devices and to
receive and interpret signals from them. In Part 5, we show you how to build some
electronic projects controlled by the Raspberry Pi. In Chapter 21, we show you
some add-ons you can connect to the GPIO pins.

18 PART 1 Setting Up Your Raspberry Pi

Getting Your Hands on a Raspberry Pi
One of the great things about the Raspberry Pi is that it’s established a community
of businesses that have created products for it, or have shared in its success by
selling it. You can now buy the Raspberry Pi from a wide range of electronics
companies for hobbyists. Global retailers include Pimoroni (www.pimoroni.com),
The Pi Hut (https://thepihut.com), and Adafruit (www.adafruit.com). It’s also
available from the Raspberry Pi’s distributors, RS Components (www.rs-components.
com) and Element14 (www.element14.com).

You might also be able to buy it from your local computer or electronics store,
although you’ll probably find it’s only available as part of a kit there. Shops often
bundle the Raspberry Pi with other items you need to use it. It can be convenient
to get everything at once, but it might not represent the cheapest way to get
started.

Determining What Else You Need
The creators of Raspberry Pi have stripped costs to the bone to enable you to own
a fully featured computer for less than $35, so you’ll need to scavenge or buy a few
other bits and pieces in order to use your Pi. We say scavenge because the things
you need are exactly the kind of things many people have lying around their house
or garage already, or can easily pick up from friends or neighbors. In particular, if
you’re using a Raspberry Pi as your second computer, you probably have most of
the peripherals you need.

Not all devices are compatible. In particular, incompatible USB hubs, keyboards,
and mice can cause problems that are hard to diagnose. USB hubs that feed power
back into your Raspberry Pi through the Pi’s USB port (known as backpowering)
could potentially cause damage to the Raspberry Pi if they feed in too much power.

A list of compatible and incompatible devices is maintained at https://elinux.
org/RPi_VerifiedPeripherals, and you can check online reviews to see whether
others have experienced difficulties using a particular device with the Raspberry Pi.

If you’re buying new devices, you can minimize the risk by buying recommended
devices from Raspberry Pi retailers.

In any case, you should set a little bit of money aside to spend on accessories. The
Raspberry Pi is inexpensive, but buying a keyboard, mouse, USB hub, and cables

http://www.pimoroni.com/
https://thepihut.com/
http://www.adafruit.com/
http://www.rs-components.com/
http://www.rs-components.com/
http://www.element14.com/
https://elinux.org/RPi_VerifiedPeripherals
https://elinux.org/RPi_VerifiedPeripherals

CHAPTER 1 Introducing the Raspberry Pi 19

can easily double or triple your costs, and you may have to resort to that if what
you have on hand turns out not to be compatible.

The following sections offer a roundup of what else you may need.

Essentials
There are a few things that are essential to get your Raspberry Pi up and running:

»» Monitor: The Raspberry Pi has a high-definition video feed and uses an HDMI
(high-definition multimedia interface) or Micro HDMI connection for it. If your
monitor has an HDMI socket, you can connect the Raspberry Pi directly to it. If
your monitor does not support HDMI, it probably has a DVI socket, and you
can get a simple and cheap converter that enables you to connect an HDMI
cable to it. Older VGA (video graphics array) monitors require a device to
convert the HDMI signal into a VGA one. If you’re thinking of buying a con-
verter, check online first to see whether it works with the Raspberry Pi. A lot of
cheap cables are just cables, when what you need is a device that converts the
signal from HDMI format to VGA, not one that just fits into the sockets on the
screen and your Raspberry Pi. These converters can be quite expensive, so
Gert van Loo has designed a device that uses the Raspberry Pi’s GPIO pins to
connect to a VGA monitor. He’s published the design specs so that anyone can
build one, and sell it if they want to, too. Take a look at eBay if you need one,
and you might well find what you need. For more information, check out
https://github.com/fenlogic/vga666. (If your monitor is connected using
a blue plug and the connector has three rows of five pins in it, it’s probably a
VGA monitor.)

»» TV: You can connect your Raspberry Pi to a high-definition TV using the HDMI
socket and should experience a crisp picture. If you have an old television in
the garage, you can also press it into service for your Raspberry Pi. The Pi can
send a composite video signal, so it can use a TV as its display. When we tried
this, it worked but the text lacked definition, which made it difficult to read.
You’ll need to get a cable with the right connector to fit your Pi: The original
Model A and Model B have a dedicated RCA video socket, but current models
use the headphone socket for RCA video output, too.

»» USB keyboard and mouse: The Raspberry Pi only supports wired USB
keyboards and mice. If you’re still using ones with PS/2 connectors (round
rather than flat), you may be able to use a PS/2 to USB adapter. Official
Raspberry Pi keyboards and mice are available with an attractive white and
red design. You can use Bluetooth devices, but you’ll need to use a wired
keyboard and mouse to set them up.

https://github.com/fenlogic/vga666

20 PART 1 Setting Up Your Raspberry Pi

When the Raspberry Pi behaves unpredictably, it can be because the key-
board is drawing too much power, so avoid keyboards with too many flashing
lights and features.

»» SD card or microSD card: The Raspberry Pi doesn’t have a hard drive built
into it, so it uses a microSD card (current models) or SD card (older models,
earlier than the Model B+) as its main storage. You probably have some SD
cards that you use for your digital camera, although you might need to get a
higher-capacity one. We recommend a 16GB card as a minimum for Raspberry
Pi OS, but you can use a 4GB card if you use a media center operating system
(OS) like LibreELEC (see Chapter 8 for a guide to LibreELEC). SD and microSD
cards have different class numbers that indicate how fast you can copy
information to and from them. You will be fine with a Class 6 or higher.
If you buy an official Raspberry Pi kit, it includes a microSD card with
Raspberry Pi OS already installed on it.

Note: In this book, when we say microSD card, we also mean SD card if
that’s what you’re using. If we’re talking about something that’s different
for SD cards, we tell you.

»» SD or microSD card writer: Many PCs today have a slot for SD or microSD
cards, so you can easily copy photos from your camera to your computer.
If yours doesn’t, you might want to consider getting an SD or microSD card
writer to connect to your computer. You can use it to copy software to an
SD card for use with your Raspberry Pi, but you won’t be able to use it to
copy files from your Raspberry Pi to a Windows computer. You can also use
the card writer to create a backup copy of your Raspberry Pi’s files and
software. (You can read about making back-ups in Chapter 4.)

»» Power supply: To power your Raspberry Pi, you need to use a 5V power
supply. The Raspberry Pi 4 and Raspberry Pi 400 use a USB-C connector, and
earlier models use a USB-C Micro USB connector. Although you may have
mobile phone and tablet chargers that fit, many of them can’t deliver enough
current (up to 2,500 milliamperes for a Raspberry Pi 3 Model A+, and up to
3,000 milliamperes for Raspberry Pi 4), which can make the Raspberry Pi
perform unreliably. It’s worth checking to see whether you have a 5V charger
that may do the job (it should say on it how much current it provides), but for
best results, we recommend buying a compatible charger from the same
company that you buy your Raspberry Pi from. There is an official Raspberry
Pi 4 power supply available, which has plug styles for the United States,
Canada, United Kingdom, Australia, New Zealand, Europe, India, and China.

Don’t try to power the Pi by connecting its power port to the USB port on your
PC with a cable, because your computer probably can’t provide enough
power for your Pi. You can also power the Pi through the GPIO pins, but you
could damage the Raspberry Pi if there is a spike in current or the wrong
voltage is applied. If you want to provide power through the GPIO pins, a

CHAPTER 1 Introducing the Raspberry Pi 21

safer approach is to use a hardware-attached-on-top (HAT) device designed to
sit on the GPIO pins and provide the consistent power you need while
protecting the Pi underneath. For portable applications, you can power the
Raspberry Pi using a battery pack designed for mobile phone charging. The
Raspberry Pi Foundation advises that you should only use batteries to power
your Raspberry Pi if you know what you’re doing, because there’s a risk of
damaging your Raspberry Pi. There is an official Raspberry Pi PoE HAT if you
want to power your Pi through an Ethernet cable.

For more details on the power requirements of various Raspberry Pi models,
consult the FAQ at www.raspberrypi.org/documentation/faqs.

»» Cables: You’ll need cables to connect it all up, too. In particular, you need an
HDMI cable (if you’re using an HDMI or DVI monitor), an HDMI-to-DVI adapter
(if you’re using a DVI monitor), an RCA cable (if you’re connecting to an older
TV), an audio cable (if you’re connecting the audio jack to your stereo), and an
Ethernet cable (for networking on models with an Ethernet port). The
Raspberry Pi 4 and 400 use Micro HDMI connections, so you’ll need a cable
that connects Micro HDMI to (normal) HDMI for your monitor, or an adapter.
Note that the Raspberry Pi 2 and later (including Raspberry Pi 4) send the RCA
video signal through a 3.5mm jack (headphone socket). Earlier models had a
dedicated RCA socket. You need a different cable, depending on which version
of the Pi’s design you have, if you plan to use RCA. If you have a Raspberry Pi
Zero, you’ll need a converter for the Mini HDMI socket and for the Micro USB
socket (see Figure 1-4). You can get these cables from an electrical compo-
nents retailer, and you may be able to buy them at the same time as you buy
your Raspberry Pi. Any other cables you need (for example, to connect to PC
speakers or a USB hub) should come with those devices.

FIGURE 1-4:
The Micro

USB–to–USB
converter cable

and the Mini
HDMI–to–HDMI

converter for the
Raspberry Pi

Zero.

https://www.raspberrypi.org/documentation/faqs

22 PART 1 Setting Up Your Raspberry Pi

Optional extras
There are a few additional items you may want to get for your Raspberry Pi. They
can make your Raspberry Pi easier to use and enable new applications.

»» USB hub: The Raspberry Pi has one, two, or four USB sockets (depending on
the model you get). Consider using a powered USB hub, for two reasons.
Firstly (and especially if you have a Model A, A+, B, or Zero), you’re going to
want to connect other devices to your Pi at the same time as your keyboard
and mouse, which need two sockets. And secondly, a USB hub provides
external power to your devices and minimizes the likelihood of experiencing
problems using your Raspberry Pi, especially if connecting relatively power-
intensive devices such as hard drives. Make sure your USB hub has its own
power source, independent of the Raspberry Pi.

»» External hard drive: If you want lots of storage, perhaps so that you can use
your music or video collection with the Raspberry Pi, you can connect an
external hard drive to it over USB. You’ll need to connect your hard drive
through a powered USB hub, or use a hard drive that has its own external
power source.

»» Raspberry Pi Camera: The Raspberry Pi has stimulated entrepreneurs to
create all kinds of add-ons for it, but the Camera Module is a product that
originated at the Raspberry Pi Foundation. This fixed-focus camera can be
used to shoot HD video and take still photos. The standard camera has
8-megapixel resolution, and the Raspberry Pi High Quality Camera offers
12-megapixel resolution. There is also a version of the standard camera
without an infrared filter (the PiNoIR Camera), which can be used for wildlife
photography at night or weird special effects by day.

»» Speakers: Raspberry Pis (excluding the Pi 400) have a standard audio out
socket, compatible with headphones and PC speakers that use a 3.5mm audio
jack. You can plug headphones directly into it, or use the audio jack to connect
to speakers, a stereo, or a TV. If you’re using a TV or stereo for sound, you can
get a cable that connects the 3.5mm audio jack and the audio input(s) on your
television or stereo. You won’t always need speakers: If you’re using an HDMI
connection, the audio is sent to the screen with the video signal, so you won’t
need separate speakers. If you’re using a DVI monitor, you can get an
HDMI-to-DVI adapter that includes audio extraction, so you can connect the
audio separately. Some adapters can also convert from HDMI to VGA, with
sound extracted separately.

»» Case: It’s safe to operate your Raspberry Pi as is, but many people prefer to
protect it from spills and precariously stacked desk clutter by getting a case
for it. The Pibow Coupe (https://shop.pimoroni.com/collections/
pibow) is one of the most attractively designed cases, assembled from layers

https://shop.pimoroni.com/collections/pibow
https://shop.pimoroni.com/collections/pibow

CHAPTER 1 Introducing the Raspberry Pi 23

of colored plastic (see Figure 1-5). It’s designed by Paul Beech, who designed
the Raspberry Pi logo. There are also official red-and-white cases for current
Raspberry Pi models. The case for the Pi Zero includes three different tops, so
you can either seal it, leave a camera hole, or have access to the GPIO pins.
You don’t have to buy a case, though. You can go without or make your own
using cardboard or Lego bricks. Whatever case you go with, make sure you
can still access the GPIO pins so that you can experiment with connecting your
Pi to electronic circuits and try the projects in Part 5 of this book.

»» Raspberry Pi 4 Case Fan: If you’re really pushing the performance of your
Raspberry Pi 4, you might find it gets a bit hot. The Raspberry Pi 4 Case Fan
(see Figure 1-6) is an official accessory that fits inside the official Raspberry Pi
case. It connects to your GPIO pins, and the fan spins to keep air flowing
through the case. It’s useful for power users, but most people won’t need one.

FIGURE 1-5:
The Pibow Coupe

case on the
Raspberry Pi 4.

24 PART 1 Setting Up Your Raspberry Pi

FIGURE 1-6:
The Raspberry Pi

4 Case Fan.

CHAPTER 2 Downloading the Operating System 25

Chapter 2
Downloading the
Operating System

Before you can do anything with your Raspberry Pi, you need to provide it
with an operating system (OS). The operating system software enables you
to use the computer’s basic functions and looks after activities such as

managing files and running applications, like word processors or web browsers.
Those applications use the operating system as an intermediary to talk to the
hardware, and they won’t work without it. This concept isn’t unique to the
Raspberry Pi. On your laptop, the operating system might be Microsoft Windows
or macOS. On iPads it’s iPadOS, on iPhones it’s iOS, and on other devices it might
be Android.

In this chapter, we introduce you to Linux, the operating system most frequently
used on the Raspberry Pi, and we show you how to create a microSD card with an
operating system on it. You’ll need to use another computer to set up the microSD
card. It doesn’t matter whether you use a Windows, macOS, or Linux machine, but
the computer needs to be able to write to microSD cards, and must have a connec-
tion to the Internet.

IN THIS CHAPTER

»» Introducing Linux

»» Using Raspberry Pi Imager to set up
your microSD card

»» Choosing an operating system for
your Raspberry Pi

26 PART 1 Setting Up Your Raspberry Pi

Introducing Linux
The operating system used on the Raspberry Pi is GNU/Linux, or often just Linux.
The Raspberry Pi might be the first Linux computer you’ve used, but the operating
system has a long and honorable history.

Richard Stallman created the GNU Project in 1984 with the goal of building an
operating system that users were free to copy, study, and modify. Such software
is known as free software, and although this software is often given away, the ide-
ology is about free as in “free speech” rather than free as in “free beer.” Thou-
sands of people have joined the GNU Project, creating software packages that
include tools, applications, and even games. Stallman aimed to make his operat-
ing system compatible with Unix, an operating system that was created by AT&T’s
Bell Labs and that started to gain popularity in the 1970s. That would make it easy
for existing Unix users to switch to using the GNU Project.

In 1991, Linus Torvalds released the central component of Linux, the kernel, which
acts as a conduit between the applications software and the hardware resources,
including the memory and processor. He still works on the Linux kernel, spon-
sored by the Linux Foundation, which is the nonprofit consortium that promotes
Linux and supports its development. The Linux Foundation reports that 1,730 dif-
ferent organizations contributed to the kernel between 2007 and 2019.

GNU/Linux brings together the Linux kernel with the GNU components it needs to
be a complete operating system, reflecting the work of thousands of people on
both the GNU and Linux projects. That so many people could cooperate to build
something as complex as an operating system, and then give it away for anyone
to use, is a modern miracle.

Because GNU/Linux can be modified and distributed by anyone, lots of different
versions of it exist. They’re called distributions, or distros, but not all of them are
suitable for the Raspberry Pi. The recommended distribution of Linux for the
Raspberry Pi is Raspberry Pi OS. Software created for one version of Linux usually
works on another version, but Linux isn’t designed to run Windows or macOS
software.

Strictly speaking, Linux is just the kernel in the operating system, but as is com-
monly done, we refer to GNU/Linux as Linux in the rest of this book.

Older Raspberry Pi models use SD cards instead of microSD cards. When we say
“microSD card” in this book, the same applies to an SD card.

CHAPTER 2 Downloading the Operating System 27

Imaging a microSD Card for Your
Raspberry Pi

It’s possible to buy a microSD card with Raspberry Pi OS already installed. If
you’ve already got a microSD card, you can skip to Chapter 3 now.

If you want to use a different operating system on your microSD card, or want to
reuse an old microSD card that has no software on it yet, you’ll need to set it up
first.

To set up a microSD card for your Raspberry Pi, there are two steps. You carry
these out on another computer, not your Raspberry Pi.

»» Download the image file of the operating system you want to use. The image
file is a special format that describes all the different files that need to be
created on the microSD card.

»» To convert the image file into a microSD card that will work on the Raspberry
Pi, you need to flash the card. You can’t just copy the file across. (Flashing is a
process for copying an operating system onto the microSD card. During the
process, the many files required by the operating system are extracted from
the single image file you download.)

Raspberry Pi Imager is simple software that downloads the operating system and
flashes it to the microSD card for you. It’s available for the Windows, macOS, and
Ubuntu operating systems. You can download it from www.raspberrypi.org/
software and install it in the same way as any other software for your computer.

When you run Raspberry Pi Imager, you see a simple user interface, as shown in
Figure 2-1. When it runs, you need to give the software permission to make
changes on your computer, even though it will only be changing your microSD
card.

If you press Ctrl+Shift+X on Windows, you can open the advanced settings. Here,
you can set up the Wi-Fi for your new SD card, enable SSH for remote access to the
Raspberry Pi, set the hostname for the Pi on your local network, and change the
locale settings (time zone and keyboard layout). On macOS, press Cmd+Shift+X to
access options to disable overscan, set the hostname, and enable SSH.

https://www.raspberrypi.org/software
https://www.raspberrypi.org/software

28 PART 1 Setting Up Your Raspberry Pi

To use the software, follow these steps:

1.	 Click Choose OS.

Here you choose which operating system you’d like to use. We offer advice on
your choice in the next section. If you’re eager to get started straight away, click
Raspberry Pi OS (other), and choose Raspberry Pi OS Full, including recom-
mended applications. This will give you the software you need for the rest of
this book. Your operating system is stored (or cached) on your computer, so it
can be flashed to another card later without needing to download it again.

2.	 Click Choose Storage.

You need to tell your computer where your SD card is. Take care here: The
selected drive will be wiped, and the software can show options that include
USB drives that are plugged in or even your watch when it’s plugged in to
charge. To be safe, you could disconnect other drives you’re not using. Select
your microSD card. Remember to eject or unmount the drives before discon-
necting them to avoid losing data.

3.	 Click Write.

The operating system is downloaded (if necessary) and written to your
microSD card.

When it finishes, you’re ready to insert your microSD card into your Raspberry Pi,
and connect it up as described in Chapter 3.

FIGURE 2-1:
The Raspberry Pi
Imager software.

Sean McManus

CHAPTER 2 Downloading the Operating System 29

Choosing the Right Operating System for
Your Raspberry Pi

A number of operating systems are supported by the Raspberry Pi Imager software
(see Figure 2-2). They’re all available for free forever, except for TLXOS, which
offers only a free trial. They’re grouped into categories, such as general-purpose
operating systems, media players, and gaming operating systems.

Here’s an overview of the options:

»» Raspberry Pi OS: The distribution that the Raspberry Pi Foundation recom-
mends is called Raspberry Pi OS. It’s a version of a Linux distribution called
Debian that has been optimized for the Raspberry Pi. It includes graphical
desktop software (see Chapter 4), a web browser (see Chapter 4), and various
development and programming tools. Raspberry Pi OS is the quickest way to
get up and running with your Raspberry Pi, and for most users, it’s the one
you’ll want to use. There are three versions available: one with the desktop
and recommended applications, one with the desktop but no recommended
applications, and one that does not have the desktop environment or
recommended applications. We recommend that you choose the one with the
desktop and recommended applications (in this book, we assume that’s what
you’re using). Click Raspberry Pi OS (Other) and select the operating system
with the recommended applications.

FIGURE 2-2:
Some of the

operating system
options that

appear when you
click Choose OS
in Raspberry Pi

Imager.

30 PART 1 Setting Up Your Raspberry Pi

»» Ubuntu: Ubuntu is a popular Linux distribution, and it’s available here in three
versions. The desktop version gives you a familiar desktop environment, the
server edition enables you to use your Raspberry Pi as a server, and the core
version is for if you’re using your Raspberry Pi as part of an Internet of Things
setup. If you don’t know how to use the server and core versions, the desktop
is the one you need!

»» Manjaro ARM Linux: This is another Linux distribution for the desktop, with
built-in features to make it easy to customize.

»» RISC OS Pi: Most people run Linux on the Raspberry Pi, but you can also use
an alternative operating system called RISC OS, which has a graphical user
interface (GUI). RISC OS dates back to 1987, when Acorn Computers created it
for use with the upmarket Archimedes home computer. You can find docu-
mentation at www.riscosopen.org.

»» LibreELEC: This is a version of the Kodi media center for playing music and
video (see Chapter 8 for a guide to using LibreELEC).

»» RetroPie: This retrogaming system includes emulators for a range of vintage
home computers (including the Commodore 64, Amiga, Amstrad CPC, various
Atari machines, and the ZX Spectrum), as well as game consoles (including a
number of Nintendo machines and the Sony PlayStation). You can use the
Multi Arcade Machine Emulator (MAME) option to play games from classic
coin-operated arcade machines. You’ll need to find the game files separately.
A number of games have been released by their creators for free distribution
online (including games for MAME at http://mamedev.org/roms, and Sean’s
Amstrad games at www.sean.co.uk/books/amstrad/index.shtm). You can
transfer games to RetroPie using a USB key, over your home network, or over
the Internet. When you first start RetroPie, you can configure your keys,
including a USB game controller if you have one. Use the key you set as A
(East) to confirm. Press F4 to exit RetroPie, and then you can type in sudo
raspi-config to get into the Raspberry Pi settings and set up your Wi-Fi. See
Chapter 21 for information on an arcade cabinet you can build to work with
RetroPie. The documentation for RetroPie is at https://retropie.org.uk/
docs.

»» Recalbox: This is another games system, with emulators for a huge range of
classic home computers and video game systems. All the emulators include
demonstration games, so an afternoon’s arcade action is built in. In the menu
system, use the cursor keys to move through the options; press A to confirm
and S to go back. If you don’t have a USB games controller, the Enter key on
your keyboard replaces the Start button, and the Spacebar is the Select
button. Tap the Enter key (if your keyboard has one) to enter the settings. In
the games, press Esc to quit.

https://www.riscosopen.org/
http://mamedev.org/roms
http://www.sean.co.uk/books/amstrad/index.shtm
https://retropie.org.uk/docs
https://retropie.org.uk/docs

CHAPTER 2 Downloading the Operating System 31

»» OctoPi: The OctoPi operating system includes OctoPrint, a web interface for
using 3D printers.

»» TLXOS: This is a trial version of ThinLinX’s thin client software, which enables a
Raspberry Pi to work as a virtual desktop, interacting with software that is
running on a different computer. The ThinLinX Management Software also
enables one or more Raspberry Pis to be centrally managed. If you’re using
lots of Raspberry Pis for a project such as digital signage or to implement a
number of virtual desktops, this could help to streamline the process of
managing them. When the trial expires, you’ll need to buy a license for the
software, currently priced at $10.

»» Misc utility images: Here you can find settings to change the boot priority, so
you can set your Raspberry Pi to boot from USB, for example.

»» Erase: This option will format your SD card, deleting all the data on it.

»» Use Custom: Other operating systems may be distributed online, without
testing by the Raspberry Pi Foundation. Using this option, you can flash any
other image files you’ve downloaded.

If you fall in love with Raspberry Pi OS, it’s also available for Windows and Mac
computers. You can download it at www.raspberrypi.org/software/operating-
systems.

You can also download the operating system images at that link, to image using
any microSD card imaging software.

https://www.raspberrypi.org/software/operating-systems
https://www.raspberrypi.org/software/operating-systems

CHAPTER 3 Connecting Your Raspberry Pi 33

Chapter 3
Connecting Your
Raspberry Pi

Now you’ve got a Raspberry Pi, a small pile of cables, and various accesso-
ries. In this chapter, we show you how to connect the cables and acces-
sories to your Raspberry Pi and how to change its settings. We also show

you how to connect to it remotely.

Chapter 1 lists everything you might need in order to use your Raspberry Pi,
including the various cables.

Connecting Your Raspberry Pi
Here’s a guide to setting up your Raspberry Pi. The most important thing to note
here is that the power is connected last.

1.	 Insert your SD or microSD card.

Your SD or microSD card contains the software and data for your Raspberry Pi
(see Chapter 2). On the Raspberry Pi 400, insert the microSD card into the slot

IN THIS CHAPTER

»» Inserting the SD or microSD card

»» Connecting a monitor or TV,
keyboard, and mouse

»» Connecting to your router or Wi-Fi

»» Connecting and testing the Raspberry
Pi Camera Module

»» Using the desktop and raspi-config to
change the settings on your
Raspberry Pi

34 PART 1 Setting Up Your Raspberry Pi

on the back, with the label facing up. The slot is between the general-purpose
input/output (GPIO) pins and the HDMI sockets. On the Raspberry Pi Zero, your
microSD card slides into the slot on the top of the board, with the card label
facing up. On other models, your SD or microSD card goes into the slot on the
bottom of the board. When you put your Raspberry Pi back on the desk, the
card label should be facing the desk.

Gently press the card home to make sure it’s well connected. The card will stick
out from the side of the board. On some models (including the Raspberry Pi
400), you can press the card to pop it out again. On others, you can remove the
card by just pulling it.

To avoid data loss, you should only insert and remove cards with the power
switched off, and you should shut down your Raspberry Pi properly when
you’ve finished using it (see Chapters 4 and 5).

2.	 Connect your keyboard and mouse.

Your keyboard and mouse can be connected directly to the USB sockets on
your Raspberry Pi, and they should work fine on current models. If your
Raspberry Pi has blue USB ports, they’re the USB 3.0 ones, so save them for
other devices that need the extra speed. Connect your mouse and keyboard to
the other ports. For earlier models and those with a single USB socket, we
recommend connecting the keyboard and mouse to an externally powered
USB hub that is connected to the Pi. It reduces the risk of problems caused by
the devices drawing too much power from the Pi, and gives you more sockets
to play with. If you’re using an official Raspberry Pi keyboard or another
keyboard with a built-in hub, you can plug the mouse into the keyboard.

The Pi Zero models use Micro USB sockets. Before you can connect your USB
hub, you need to plug in a converter that will enable you to connect to
standard USB devices. The USB converter goes into the Micro USB socket,
labeled as USB on the board. Take care with this one because the socket is the
same shape and size as the the power socket.

You can set up Bluetooth devices after you’ve entered the desktop environ-
ment. See the “Configuring Bluetooth devices” section, later in this chapter, for
more info.

3.	 Connect an HDMI or DVI monitor.

On the Raspberry Pi Zero models, first plug the HDMI converter into the Mini
HDMI socket. On other models, you can connect your HDMI or micro HDMI
cable directly to your Raspberry Pi. The Raspberry Pi 4 and Raspberry Pi 400
have two micro HDMI ports, so you can use two screens.

If you have a DVI display rather than an HDMI display, you need to use an
adapter on the screen end of the cable. The adapter itself is a simple plug, so
you just plug the HDMI cable into the adapter and then plug the adapter into
your monitor and turn the screws on the adapter to hold the cable in place.

CHAPTER 3 Connecting Your Raspberry Pi 35

4.	 Connect a composite video screen.

If your TV has an HDMI socket, use that socket for optimal results. Alternatively,
you can use the composite video socket if your Raspberry Pi has a socket. On
the original Model A and B, it’s a round, yellow-and-silver socket. On later (and
current) models, it’s the same socket as the audio output. You’ll need to use a
special RCA cable for this socket — you can’t just connect an audio cable.
Connect one end of your RCA cable to the socket and the other end to the
Video In socket on your TV, which is likely to be silver and yellow.

You may need to use your TV’s remote control to switch your TV over to view
the external signal coming from the Raspberry Pi. If you’re using HDMI on your
TV, you may need to turn on the TV so that the Raspberry Pi can detect it when
you switch it on.

Note that the Pi Zero models do not have a composite video socket, but they do
have composite video output. You can solder your own connector to the board
where it’s labelled TV. For instructions, see https://magpi.raspberrypi.org/
articles/rca-pi-zero.

There is no composite video support on the Raspberry Pi 400.

On a Raspberry Pi 4, you need to enable composite output. Enable enable_
tvout=1 in config.txt. See the appendix of this book for guidance on editing
config.txt. The easiest solution is to connect another screen temporarily to
make this change.

5.	 Connect to the network.

The Raspberry Pi Model A, A+, and Zero have no wired network connection on the
board. The other Raspberry Pi models have an Ethernet socket on the right edge
of the board. Use this socket to connect your Raspberry Pi to your Internet router
with a standard Ethernet cable. The Raspberry Pi automatically connects to the
Internet when used with a router that supports the Dynamic Host Configuration
Protocol (DHCP), which means it works with most domestic routers. For advice on
troubleshooting your Internet connection, see the appendix.

If you’re using a Wi-Fi adapter, you can plug it into a USB socket so that it’s
ready for when you switch on your Raspberry Pi. Many models, including the
Raspberry Pi 4, Raspberry Pi 400, and Raspberry Pi Zero W and WH, have
built-in Wi-Fi.

6.	 Connect the audio.

If you’re using an HDMI TV, the sound is routed through the HDMI cable to the
screen, so you don’t need to connect a separate audio cable. Otherwise, the
audio socket of your Raspberry Pi is a small black or blue box stuck along
the top edge of the board on the Model A and B, and on the bottom edge of
the board on later and current models. If you have earphones or headphones

https://magpi.raspberrypi.org/articles/rca-pi-zero
https://magpi.raspberrypi.org/articles/rca-pi-zero

36 PART 1 Setting Up Your Raspberry Pi

from a portable music player, you can plug them directly into this socket.
Alternatively, you can plug a suitable cable into this socket to feed the audio
into a TV, stereo, or PC speakers for a more impressive sound. If you’re using
PC speakers, note that they need to have their own power supply. There is no
audio socket on the Raspberry Pi 400 and Pi Zero models.

7.	 Connect the power.

The last thing you should do is connect the power. Take particular care with
the Raspberry Pi Zero, because the power socket looks the same as the USB
socket to its left.

The Raspberry Pi Foundation warns against using battery power unless you know
what you’re doing, because it’s easy to damage your Pi unless you provide a steady
5 volts (5V) of power. Some cellphone emergency battery chargers can be used to
provide that steady power, but proceed with caution.

The Raspberry Pi has no on/off switch, so when you connect the power, it starts
working. To turn it off again, you disconnect the power. To avoid losing data, you
should shut down first (see Chapters 4 and 5) and wait for that process to finish.

Setting Up Your Raspberry Pi
When you switch on your Raspberry Pi for the first time using Raspberry Pi OS,
you’re guided through the basic settings.

First you set your country, language, and time zone. Then, you’re prompted to
change the password. The default Raspberry Pi OS username is pi and the pass-
word is raspberry. Both of these are case-sensitive, so you can’t use PI instead, for
example. It’s a good idea to change the password, but you can click Next to skip
any step in the setup process. If your screen display has a black border around it,
the Set Up Screen option helps fix this.

Next, you can set up your wireless network. Start by choosing your network from
those that the Raspberry Pi has detected. Click Next, and you’re prompted for the
password. When you click Next again, your Pi connects to the network. There’s an
option to update the software, which checks whether any of the software on your
card needs updating. Even if you’ve just created your microSD card, there may be
updates ready to install. The microSD card images are updated less frequently
than the software updates available.

When the setup is complete, you have the option to restart now, so any changes
you’ve made to the settings take effect, or to restart later. We recommend you
restart now.

CHAPTER 3 Connecting Your Raspberry Pi 37

Configuring Your Raspberry Pi in
Raspberry Pi OS

For most of the rest of this book, we assume that you’re using Raspberry Pi OS
with the desktop. It’s the most user-friendly option and the best way to get started
with the Pi.

When your Pi has finished booting, you should be in the desktop environment.
You’ll learn more about this topic in Chapter 4, but for now, let’s take a look at
how you use it to finish setting up your Pi or adjust its settings in the future.

Click the button in the top left, with the Raspberry Pi logo on it, to open the menu.
Move down to Preferences and choose Raspberry Pi Configuration. The tool that
opens is shown in Figure 3-1.

By default, the tool opens to its System tab. The options here include

»» Change the password. The default password for the username pi is raspberry.

»» Change the hostname (which is the name used for this Raspberry Pi on the
network).

»» Control whether it boots into the desktop or the command line interface (CLI),
which is explained in Chapter 5.

»» Set whether the pi user is automatically logged in.

FIGURE 3-1:
The Raspberry Pi

Configuration
tool in the

desktop.
Sean McManus

38 PART 1 Setting Up Your Raspberry Pi

»» Set the Pi to wait for the network at the start.

»» Display the graphical splash screen that shows when the Pi is booting.

»» Change whether the power LED on the board is constantly lit, or only when
there is activity on the microSD card.

The tool’s Display tab allows you to enable pixel doubling, so you can better see
the screen output on very high-resolution displays and to enable or disable the
screen blanking screensaver. You can also enable or disable underscan. Underscan
and overscan change the size of the displayed screen image to optimally fill the
screen. Underscan should be disabled to fill the screen if you see a black border
around your screen and enabled if the desktop doesn’t all fit on the screen.

The tool’s Interfaces tab enables you to enable or disable various connection
options on your Raspberry Pi, including enabling the Raspberry Pi camera. Other
options here include SSH (short for Secure Shell), which is a way of setting up a
secure connection between computers, usually so that you can control one com-
puter from another computer. The VNC software enables remote access to your
Raspberry Pi with a graphical interface and is also enabled here. (For more on SSH
and VNC, see “Connecting Using SSH” and “Connecting Using VNC,” later in this
chapter.) The other interfaces are SPI, I2C, Serial Port, Serial Console, 1-Wire, and
Remote GPIO (which enables another machine on the network to access the Pi’s
GPIO pins). In most cases, you only need to change these settings if you’re using
a particular add-on or working on a project that requires them.

The tool’s Performance tab gives you access to options for overclocking and
changing the GPU memory.

So, what is overclocking, anyway? It’s when you make a computer work faster than
the manufacturer recommends, by changing some of its settings. That said, the
options offered to you within this tool have been chosen by the Raspberry Pi
Foundation, and they have previously said they don’t expect overclocking to cause
any measurable reduction in your Pi’s lifetime. The speed of the CPU is measured
in MHz, and the highest overclocking setting increases the speed to 1000 MHz.
You won’t necessarily be able to use the top setting: It depends on your Pi and
your power supply. Overclocking is not currently supported on the Raspberry Pi 3,
4, or 400.

As for changing the GPU memory, here’s the lowdown on that particular option:
Your Raspberry Pi’s memory is shared between the central processing unit (CPU)
and the graphics processing unit (GPU). These processors work together to run
the programs on your Raspberry Pi, but some programs are more demanding of
the CPU, and others rely more heavily on the GPU. If you plan to do lots of graphics-
intensive work, including playing videos and 3D games, you can improve your

CHAPTER 3 Connecting Your Raspberry Pi 39

Raspberry Pi’s performance by giving more of the memory to the GPU. Otherwise,
you may be able to improve performance by stealing some memory from the GPU
and handing it over to the CPU. Raspberry Pi OS allocates 76MB to the graphics
processor and gives the rest to the CPU. In most cases, this setting will work fine,
but if you experience problems, you can change how the memory is shared between
the two processors. The configuration menu asks how much memory you want to
give to the GPU and fills the entry box with the current value as a guide. The rest
of the memory is allocated to the CPU. You can safely experiment with the memory
split to see which works best for the kind of applications you like to use.

If you’re using the Raspberry Pi Case Fan (see Chapter 1), you need to enable it in
the Performance tab.

The options on the tool’s Localisation tab enable you to set the character set used
in your language (the locale), your time zone, the keyboard setup you want to use,
and your Wi-Fi country. If you’re using the Raspberry Pi outside its home country
of the U.K., you may find you need to adjust settings here, especially if you see
unexpected results when using the keyboard.

You can adjust the mouse and keyboard sensitivity separately by going through
the main menu to the mouse and keyboard settings, also in the Preferences
folder.

If you’re using Raspberry Pi OS without the desktop, you can find an alternative
tool for configuration options by typing sudo raspi-config on the command line.
Note that you can’t use the mouse to move through its menus. You use up- and
down-arrow keys to select different options on the screen, and left- and right-
arrow keys (or Tab, which is usually above the Caps Lock key) to select actions
such as OK, Cancel, Select, and Finish. Press Enter to confirm a choice.

There’s a screen configuration tool for adjusting the screen resolution and orien-
tation. Open the menu, go to the Preferences category, and choose Screen Config-
uration. In the tool, click Configure on the menu, select Screens, and choose your
screen. Alternatively, you can right-click the large screen name (for example,
HDMI-1). You can then adjust the resolution as shown in Figure 3-2. After choos-
ing your settings, click the green tick to confirm and then click OK if it looks fine.
If the changes stop your screen from working properly, just wait and the previous
settings will revert after 10 seconds.

40 PART 1 Setting Up Your Raspberry Pi

Changing Your Wi-Fi Settings
To change your Wi-Fi settings, click the fan-shaped icon in the top right, shown
in Figure 3-3. It opens a menu that shows you the available networks, together
with an option to turn off Wi-Fi.

Click a network to select it and you’re prompted to enter the Pre-shared Key,
which is the Wi-Fi password. If the connection fails or drops, the Wi-Fi icon
changes to an icon with two red crosses on it.

You can test whether your connection is working by opening the web browser and
visiting a web page with it (see Chapter 4).

After you’ve set up a Wi-Fi network using the tool, your Raspberry Pi remembers
it, so it automatically reconnects whenever you restart your Raspberry Pi or recon-
nect after previously turning off Wi-Fi. You can also use the network connection
you have set up from the command line.

When you connect to a new network, the Pi doesn’t remember the previous net-
work’s password, so you need to reenter it if you want to reconnect to it later.

FIGURE 3-3:
The Bluetooth

and Wi-Fi
buttons, beside

the volume
control and clock.

FIGURE 3-2:
Adjusting the

screen resolution.

CHAPTER 3 Connecting Your Raspberry Pi 41

Configuring Bluetooth Devices
The Raspberry Pi 4, 400, 3, and Pi Zero W are Bluetooth-enabled, so you can use a
wireless Bluetooth keyboard and/or mouse with your Pi.

Not all wireless devices are Bluetooth-enabled: Keyboards and mice that come
with their own USB dongles typically don’t use Bluetooth.

The process of getting two Bluetooth devices to work together is called pairing
them. Check the instructions for your device to see how you make it discoverable
so that your Raspberry Pi can pair with it. This isn’t always obvious: On Sean’s
mouse, the process involved pushing and holding a button and then pushing the
two mouse buttons together and holding them until the mouse started flashing.

Once you have made your device discoverable, click the Bluetooth menu at the top
of the screen (refer to Figure 3-3) and choose Add Device. Your Raspberry Pi will
search for devices. When it finds your device, click it and then click the Pair but-
ton. When setting up a keyboard, we had to enter a code shown on the screen on
the new keyboard. With the mouse, we were asked to confirm that a code was
showing on the mouse (which it couldn’t be, because the mouse has no display),
but we confirmed that it was, to complete the setup.

Connecting the Raspberry
Pi Camera Module

Lots of accessories and add-ons are available for the Raspberry Pi, but the Rasp-
berry Pi Camera Module devices are official products from the Raspberry Pi Foun-
dation. The camera module is a small circuit board with a strip of ribbon cable that
plugs directly into the Raspberry Pi board. The Raspberry Pi High Quality Camera
is a heavier and larger board, with a built-in screw mount for a tripod. You need
to buy a lens separately and fix it to the camera. You can see both in Figure 3-4.

It’s easiest to connect your camera before you plug your Raspberry Pi into any
cables.

The Raspberry Pi 400 does not have a camera connector.

42 PART 1 Setting Up Your Raspberry Pi

Connecting the camera on a Pi Zero
The Pi Zero camera socket uses a different width of cable to the main Raspberry Pi
boards. You can buy the cable separately or get it with the official Pi Zero case.

The camera and the Pi board have similar sockets for the cable. You press the con-
nector between your thumb and finger and gently pull to open the connector. The
parts don’t separate, but there’s enough of a gap to remove and insert the cable.
On the Raspberry Pi, the camera connector is on the right of the board.

Figure 3-5 shows the camera connected to a Raspberry Pi Zero. On the camera,
insert the cable with the shiny contacts facing the camera front, and then press
the socket closed again. On the Raspberry Pi Zero, insert the cable with the shiny
contacts facing the bottom of the board (the flat side). When the cable is flat, the
camera will be facing down, but you can bend the cable so that the camera sits on
top of the board and faces up. One of the covers for the official Pi Zero case has a
hole in it for the camera lens.

FIGURE 3-4:
The Raspberry Pi

High Quality
Camera (left) and

Camera Module
(right). The

Camera Module
has a lens built in,

but there is no
lens fixed to this

High Quality
Camera yet.

CHAPTER 3 Connecting Your Raspberry Pi 43

Connecting the camera on other
Raspberry Pi models
The camera connector socket on the other Raspberry Pi models is about 1 inch
long, and it touches the bottom edge of the board.

To open the camera connector on your Raspberry Pi board, hold the ends between
your finger and thumb and gently lift. The plastic parts don’t separate, but they
move apart to make a gap. This is where you insert the camera’s cable.

At the end of the camera’s cable are silver connectors on one side. Hold the cable
so that this side faces to the left, away from the side with the USB socket(s). Insert
the cable into the connector on the board and press it gently home, and then press
the socket back together again.

If the cable needs to be connected at the camera end, the shiny side of the cable
should point towards the camera front. Figure 3-6 shows a camera connected to a
Raspberry Pi 4.

FIGURE 3-5:
Connecting the

Raspberry Pi
Camera Module

to a Raspberry Pi
Zero.

44 PART 1 Setting Up Your Raspberry Pi

Testing the Camera Module
Let’s test whether your camera is working correctly.

Make sure the camera is enabled: Go into the Raspberry Pi Configuration tool,
click Interfaces, and select Enabled beside the Camera option. For more informa-
tion, see the “Configuring Your Raspberry Pi in Raspberry Pi OS” section, earlier
in this chapter. You’ll need to reboot after enabling the camera.

We’ll test the camera from the command line interface, which is covered in more
depth in Chapter 5. Click the Terminal icon at the top of the screen to start. It has
a >_ symbol on it. To take a still photo, type in this command:

raspistill -o testshot.jpg

You should see what the camera sees onscreen for a moment before it takes the
photo. The picture is saved with the filename testshot.jpg. You can verify that
the image was created by looking at the files in your directory with this command:

ls

FIGURE 3-6:
Connecting the

Raspberry Pi
Camera Module

to a Raspberry
Pi 4.

CHAPTER 3 Connecting Your Raspberry Pi 45

You can use lots of different options to take still photos, too. This example takes a
shot with the pastel filter and flips the picture horizontally (-hf) and vertically
(-vf):

raspistill -ifx pastel -hf -vf -o testshot2.jpg

All those hyphens and letter combinations might seem a bit random to you now,
but after you read Chapter 5, they should make more sense. To see the documen-
tation for raspistill, type

raspistill | less

Use the down-arrow key to move through the information, and press Q to finish.

Your photos are stored in your pi directory. See Chapter 4 for instructions on how
to use File Manager to find your files and Image Viewer to see them.

To shoot video, you use raspivid. Enter this command to shoot a 5-second film:

raspivid -o testvideo.h264 -t 5000

The video is saved with the filename testvideo.h264 and is 5000 milliseconds (5
seconds) long. You can view the video you made using

omxplayer testvideo.h264

The video footage is captured as a raw H264 video stream. For greater compatibil-
ity with media players, it’s a good idea to convert it to an MP4 file. Start by install-
ing MP4Box using this command:

sudo apt install gpac

Then you can convert your video file (called testvideo.h264) into an MP4 file
(called testvideo.mp4) like this:

MP4Box -add testvideo.h264 testvideo.mp4

You can get help on using raspivid with

raspivid | less

There is also a library called picamera that you can use in Python to access the
camera from your own Python programs. By adding the Video Sensing extension

46 PART 1 Setting Up Your Raspberry Pi

in Scratch, you can use the camera to make onscreen characters react to move-
ment in the video.

For more information on using the Raspberry Pi Camera Module, see the docu-
mentation at www.raspberrypi.org/documentation/usage/camera.

Connecting Using SSH
If your Raspberry Pi has a network connection, you should be able to access it with
another computer on the same network using Secure Shell (also known as SSH),
which is a way to make a secure connection between computers. This can be help-
ful if you have set up your Pi to use it headerless (without a screen). Here’s how to
set it up:

1.	 Change your password.

To prevent unauthorized access to your Raspberry Pi after a remote connec-
tion is enabled, start by changing your password. You can use the Raspberry Pi
Configuration tool (see “Configuring Your Raspberry Pi in Raspberry Pi OS,”
earlier in this chapter), or see Chapter 5 for instructions on changing the
password in the command line.

2.	 Enable SSH on your Pi.

Use the Raspberry Pi Configuration tool to enable SSH on the Interfaces tab.
Alternatively, use this instruction to create an empty file in the boot directory
called ssh and then reboot your Pi:

sudo touch /boot/ssh

3.	 Get your Pi’s IP address.

Use ifconfig in the command line to get your Raspberry Pi’s IP address
(shown as inet on wlan0 for a WiFi connection or on eth0 for an Ethernet
connection).

4.	 Connect from your other device.

In Windows 10, macOS, and Linux, the SSH software is already installed. You
can use it from the command line by typing in ssh pi@198.51.100.0. You
replace the numbers with your Raspberry Pi’s IP address. If you changed the
username on your Raspberry Pi, change pi too. If you’re using a computer that
doesn’t have SSH software, or you prefer to use a graphical interface, you can
download an SSH client such as Putty. In Putty, you input the IP address of your

http://www.raspberrypi.org/documentation/usage/camera

CHAPTER 3 Connecting Your Raspberry Pi 47

Raspberry Pi and click the Open button. After you enter your Pi’s password, you
can use the command line on the Raspberry Pi to manage and fix files, viewing
it through your PC screen and using your PC keyboard. SSH apps are also
available for the iPhone/iPad and Android. You can find fuller instructions for
using SSH on your other machine at www.raspberrypi.org/documentation/
remote-access/ssh.

You can only use SSH to access the Raspberry Pi command line, not the desktop.

Connecting Using VNC
Using VNC, you can control your Raspberry Pi’s desktop environment from another
computer. If you register for a RealVNC account, you can access your Raspberry Pi
over the public Internet. Just follow these steps:

1.	 Change your password.

To prevent unauthorized access to your Raspberry Pi after a remote connec-
tion is enabled, start by changing your password. You can use the Raspberry Pi
Configuration tool (see “Configuring Your Raspberry Pi in Raspberry Pi OS,”
earlier in this chapter), or see Chapter 5 for instructions on changing the
password in the command line.

2.	 Enable VNC on your Pi.

Use the Raspberry Pi Configuration tool to enable VNC on the Interfaces tab.

3.	 Get your Pi’s IP address.

Click the VNC icon, which appears in the upper right of your desktop. The
window that opens shows you the IP address you need to connect to your Pi.

4.	 Install VNC Viewer.

You’ll need to install VNC Viewer on the device you want to connect from. You
can download it at www.realvnc.com/en/connect/download/viewer. Apps
are available for Windows, macOS, and Linux. If you want to manage one
Raspberry Pi from another, there’s a version of VNC Viewer for the Raspberry
Pi, too. Apps for Android and iOS are available, but they’re quite hard to use
without a physical mouse and keyboard.

https://www.raspberrypi.org/documentation/remote-access/ssh
https://www.raspberrypi.org/documentation/remote-access/ssh
https://www.realvnc.com/en/connect/download/viewer

48 PART 1 Setting Up Your Raspberry Pi

5.	 Connect from your other device.

Run VNC Viewer, and you’ll be prompted to enter a VNC server address. This is
the IP address displayed by your Raspberry Pi. The first time you connect, VNC
Viewer warns you that it hasn’t connected to this device before. Click Continue.
When you enter your username and password, a window opens that shows
your Raspberry Pi screen. You can now control your Raspberry Pi remotely.

Using VNC, you can share a keyboard and mouse between your PC and your Rasp-
berry Pi. Connect them to your PC; then use VNC to control your Raspberry Pi from
your PC.

2Getting Started
with Linux

IN THIS PART . . .

Use the Raspberry Pi desktop to manage the files and
start the programs on your Raspberry Pi.

Discover some of the games and applications
provided in Raspberry Pi OS.

Surf the web and manage bookmarks for your favorite
sites.

Watch slide shows with the Image Viewer and use it to
rotate your photos.

Explore your Linux system and get to know the
directory tree and file structure.

Back up your Raspberry Pi’s microSD card.

Use the Linux shell to organize, copy, and delete files
on your microSD card, and to manage user accounts.

Use the desktop or the shell to discover, download,
and install new software.

CHAPTER 4 Using the Desktop Environment 51

Chapter 4
Using the Desktop
Environment

The quickest way to start playing with your Raspberry Pi is to use the
Raspberry Pi Desktop. It works in a similar way to the Windows and macOS
operating systems, which let you use icons and the mouse to find and man-

age files and operate applications. That makes it relatively intuitive to navigate,
and it means you can easily find and try out some of the software that comes with
your Linux distribution.

In this chapter, we talk you through using the desktop and introduce you to some
of its programs.

IN THIS CHAPTER

»» Using the Raspberry Pi Desktop to
manage your Raspberry Pi

»» Using external storage devices in the
desktop environment

»» Copying, moving, and managing files
and their permissions

»» Viewing web pages on the
Raspberry Pi

»» Using some of the built-in
applications and games on your
Raspberry Pi

»» Customizing the desktop with your
preferred settings

52 PART 2 Getting Started with Linux

Navigating the Raspberry Pi Desktop
Figure 4-1 shows the Raspberry Pi Desktop. The photo in the middle of the screen
is just a wallpaper (a decorative background image on the screen), so don’t worry
if you see a different image there.

The strip along the top of the screen is called the taskbar, and this is usually visible
in whatever application you’re using.

Using the Applications menu
For most of the applications you might want to run, you use the Applications
menu. At the top left of the screen is the Raspberry Pi icon. Click it and you’ll see
the menu appear, similar to the one shown in Figure 4-2.

As you move the mouse cursor over the categories of applications, a submenu
appears on the right, showing you the applications in that category. Click one of
these once to start it.

FIGURE 4-1:
The Raspberry Pi

Desktop.
LXDE Foundation e.V. / Raspberry Pi Foundation; wallpaper photo by Greg Annandale of the Raspberry Pi Foundation

CHAPTER 4 Using the Desktop Environment 53

If you right-click an application on the menu, you can add its icon to the desktop
so that you can start it more quickly in the future.

Buried among the submenus in the Applications menu, you’ll find a wealth of
applications including the following:

»» Bookshelf: This app gives you access to free magazines and books from the
Raspberry Pi Foundation that you can download. You’ll find it in the Help
section of the Applications menu.

»» Claws Mail: You can use this email package for sending and receiving
messages on your Raspberry Pi. We tell you more about it later in this chapter.
It’s in the Internet section of the Applications menu.

»» Debian Reference: The Raspberry Pi OS version of Linux is a Pi-specific
version of the Debian distribution, so this icon gives you a guide to using Linux
on your Pi. The documentation is stored on your SD card, but appears in a
web browser, like a website. To get started, click the icon and then click the
HTML (Multi-Files) link at the top of the screen. You probably won’t need to
use this resource often, but it’s good to know it’s there if you get stuck. To find
this reference guide, go through the Help section of the Applications menu.

»» LibreOffice: This popular suite of productivity applications includes word
processing, spreadsheets, and presentations. See Chapter 6 for a guide to
getting started with them, and you can find them in the Office section of the
Applications menu.

FIGURE 4-2:
The Applications

menu.
LXDE Foundation e.V. / Raspberry Pi Foundation

54 PART 2 Getting Started with Linux

»» Mathematica: Mathematica, which is based on the Wolfram programming
language, is used for scientific and technical computing. There’s a short
introduction to Mathematica in Chapter 19. Mathematica is in the
Programming section of the Applications menu.

»» Minecraft Pi: This is the Raspberry Pi version of the world-building
game Minecraft, which you can program using Python, as you see in
Chapter 13. Minecraft is in the Games section of the Applications menu.

»» Python games: These games, created by Al Sweigart, are demonstrations of
Python, but they also provide entertainment. In the “Playing the Games”
section, later in this chapter, we show you how to play them.

»» Scratch: This is a simple programming language, approachable for people of
all ages, which can be used to create games and animations and to manage
electronics projects. Chapters 9 and 10 introduce you to Scratch and show
you how to make your own game. Find Scratch in the Programming section of
the Applications menu.

»» Sense HAT emulator: The Sense HAT is a hardware add-on for the Raspberry
Pi that you can use for creating experiments and other projects based on its
built-in sensors. See Chapter 15 for more information on it. This emulator is
also in the Programming section of the Applications menu.

»» Shutdown: When you’ve finished using the Raspberry Pi, use this icon to
switch it off before you remove the power. There are also options here to log
out and restart (reboot) your Pi. This is a top-level option in the Applications
menu.

»» Sonic Pi: This is a programming language for creating music. See Chapter 14
for a guide to making your own tunes with it. You can find Sonic Pi in the
Programming section of the Applications menu.

»» Terminal: Terminal opens a window you can use to issue instructions from a
command line (see Chapter 5). You can find the terminal in the Accessories
section of the Applications menu, and there is also a button on the taskbar to
go straight to the terminal.

»» Thonny Python IDE: Thonny enables you to create and run programs in the
Python programming language. See Chapters 11 and 12 for advice on getting
started with Python. Find Thonny under Programming in the Applications
menu.

»» Wolfram: This is a programming language that aims to incorporate knowl-
edge into it so that programmers can get results more quickly. You can find
out more about it at www.wolfram.com/language. Wolfram is filed under
Programming in the Applications menu.

http://www.wolfram.com/language

CHAPTER 4 Using the Desktop Environment 55

The top-left corner of the screen also includes some buttons (refer to Figure 4-2)
that you can use to gain quick access to (from left to right) the web browser, File
Manager, and Terminal.

Running applications that are
not on the menu
Some applications will install but won’t appear on the Applications menu. In that
case, you can run them using the Run option on the menu. Here’s how:

1.	 Click the icon in the top left of the desktop to open the Applications
menu.

2.	 Select the menu’s Run option.

3.	 In the Run dialog box that appears, type the name of the application and
press Enter.

You might prefer to try running the application using the command line
interface (the shell), so you can see any error messages. See Chapter 5 for
advice on using the shell. To run an application from the shell, type in its name.

Resizing and closing application windows
You’ll probably want to use more than one application in a desktop session, so you
need to know how to close applications when you’ve finished with them and how
to rearrange windows on the screen.

The application windows have controls similar to the ones in Microsoft Windows
that enable you to resize and close them. Figure 4-3 shows the Task Manager
application, with these controls in the top right:

»» X button: Closes the window.

»» Maximize button: Enlarges the application window so that it fills the screen.
After you click this button, you can click the new button that appears in its
place to return the window to its original size (just like in Windows).

»» Minimize button: Hides the application from view but doesn’t stop it from
running. You can return to the application by clicking its name on the taskbar
at the top of the screen.

56 PART 2 Getting Started with Linux

It’s easy to change the size of windows — so that you can see more than one at a
time, for example. Move the mouse cursor to one of the edges until the Mouse icon
changes, and you can click and drag it inward or outward to reshape the window.
You can also click and drag a corner to change the window’s height and width at
the same time. To reposition windows on the screen, click and drag the title bars
at the top of them to move them. For example, you can arrange two windows side
by side.

Using the Task Manager
You can see which applications are running on your Raspberry Pi by running the
Task Manager (refer to Figure 4-3). You can find it on the Applications menu in
the Accessories folder, but you can also go straight to it by holding down the Shift
and Ctrl keys and pressing Esc.

If you have an application that is not responding, you can stop it by using the Task
Manager. To terminate the application, right-click it in the task list and choose
Term from the menu that appears. This sends a request to the application and
gives it a chance to shut down safely, closing any files or other applications it uses.
Alternatively, you can choose Kill. It terminates the application immediately, with
the possible loss of data. We recommend you try using Term first, and then try Kill
if Term doesn’t work.

FIGURE 4-3:
The Task

Manager.
LXTask, written by Hong Jen Yee, Jan Dlabal; derived from Xfce4 Task Manager, by Johannes Zellner

CHAPTER 4 Using the Desktop Environment 57

You should use the Task Manager to close applications only as a last resort. Most of
the tasks you see in the Task Manager are system tasks, which need to be running
for the desktop to work properly. Avoid closing applications you don’t recognize —
that might crash the desktop and result in losing data in any open applications.

Using File Manager
You can manage your files using the command line (see Chapter 5), but it’s often
easier to do it in the desktop. File Manager (see Figure 4-4) is used to browse,
copy, delete, rename, and otherwise manage the files on your Raspberry Pi or con-
nected storage devices.

FIGURE 4-4:
The File Manager
on the Raspberry

Pi Desktop.
LXDE File Manager, written by Hong Jen Yee / Raspberry Pi Foundation

58 PART 2 Getting Started with Linux

You start File Manager by either clicking its button at the top left of the desktop or
using the Applications menu, where it is among the Accessories.

In Linux, people usually talk of storing files in directories, but the Raspberry Pi
Desktop uses the term folders instead, which is probably familiar to you from other
computers you’ve used. A folder is just a way of grouping a collection of files or
applications and giving that collection a name. You can put folders inside other
folders too.

Sometimes you might need to refresh the view of File Manager to reflect your lat-
est changes. To do that, press the F5 key on the keyboard or choose View ➪   Reload
Folder.

Navigating File Manager
On the right of File Manager, you can see the files (and any folders) that are inside
the folder you’re looking at. Each file has an icon indicating the type of file it is. In
Figure 4-4, you can see the icons used for sound files (beep2.ogg), Python pro-
grams (drawing.py), Libre Office documents (letter_to_fred.odt), and images
(f0401.png).

You can double-click a folder in this area to open it, and you can double-click a file
to open it with the default application for that file type, if one is set up. An image
file opens using the Image Viewer, for example, and a Scratch file opens in Scratch.
If you want to choose which application to open a file in instead, you can right-
click the file’s icon to open a menu with an option called Open With. Select it to
bring up a menu of all of the applications available on your Raspberry Pi, and then
make your choice.

On the left is the directory tree, which you can use to navigate to any folder on
your Raspberry Pi. Click a folder here to view its contents on the right. If a folder
has a right-pointing triangle beside it, it means there is at least one other folder
inside that folder. Click the triangle to see these subfolders in the directory tree.
The triangle rotates to point down. You can click it again to hide the subfolder(s).

Your home folder is where you are expected to store most of your files, such as
documents and photos. It is the only place you have permission to write and edit
files as an ordinary user. In Chapter 5, we look at Linux and its directory structure
in more detail, but for now the key thing is to store your files and folders only in
the home folder, or in any folder inside it. You can go to your home folder by click-
ing the Home Folder button in the bookmarks box in the top left, or clicking the
icon on the navbar.

CHAPTER 4 Using the Desktop Environment 59

Rather confusingly, your home folder is actually a directory called pi. There is a
directory called home, but that’s used for storing the home folders for all of the
computer’s users. Your home folder has the name pi because the default user-
name is pi.

The Desktop folder, inside your home folder, shows you the applications and files
that are on the desktop. If you repeatedly edit a document and you want it to be on
the desktop for easy access, simply move it into the Desktop folder. The Down-
loads folder is where you’ll find files you download with the browser. The Book-
shelf folder is where the Bookshelf app puts the books it downloads. There are
empty folders called Documents, Music, Pictures, Public, Templates, and Vid-
eos, too. In Figure 4-4, you can also see a folder called Pimoroni that was created
when Sean installed some software from the company of that name for one of its
add-ons (see Chapter 21).

When you’re using the desktop, you can plug in external USB storage devices, such
as external hard drives or USB keys (also known as flash drives), and the Rasp-
berry Pi automatically recognizes them. Figure 4-5 shows you the window that
appears when you connect a device. You can then view the device in File Manager
to access its files. In Figure 4-4, Sean’s USB key is shown as the folder USB2.
Before removing an external storage device, you should use the Eject button.
There’s one beside the device in the File Manager (see Figure 4-4), and another on
the right of the taskbar. As you may know from other computers you’ve used, this
curiously named process doesn’t propel your drive across the room: it makes it
safe to remove without data loss.

Chapter 5 tells you more about the different folders on your Raspberry Pi.

FIGURE 4-5:
Removable

storage attached
to your Raspberry
Pi is automatically

detected.
LXDE Foundation e.V. / Raspberry Pi Foundation

60 PART 2 Getting Started with Linux

Across the top of File Manager is a menu bar, including File, Edit, View, Sort, Go,
and Tools menus. Many of the activities in these menus can be carried out in other
ways with File Manager, as we show you, but if you get stuck, this menu is a good
way to quickly get back on track.

If there are folders you use particularly often, you can bookmark them — an idea
borrowed from web browsers, and from (in the dim, distant past) print books
before that. A bookmark makes it easy for you to go straight back to where you
were. To add a bookmark to the folder you’re viewing, right-click it, and then
select Add to Bookmarks. Your bookmarks are shown above the directory tree.
Click one of these bookmarks to go straight to its folder.

Underneath File Manager’s menu bar is an icon bar that includes a number of use-
ful shortcuts (refer to Figure 4-4):

»» New Window: You can have several File Manager windows open at the same
time, showing different folders. If you arrange the windows side by side on
your screen, you can easily move and copy files between different folders.

»» New Folder: Click this button to quickly create a new folder inside the folder
you’re viewing.

»» View as Thumbnails, View as Icons, View as Small Icons, and View as
Detailed List: Click these four buttons to change how the current folder is
displayed. We particularly like the View as Thumbnails option, where the icons
for some image files are replaced with the pictures themselves. It makes it
easier to manage folders with lots of images in them. It works for GIF and PNG
files, which are often used for artwork like logos and screenshots. Photos in
JPG format still appear as icons. The detailed list view shows you the file sizes
and when the files were last modified.

»» Home: This button takes you back to your home folder so that you have quick
access to your work.

»» Previous Folder: File Manager keeps a history of the folders you view, and the
Previous Folder button works a bit like a web browser’s Back button. It takes
you back to the last folder you accessed. You can click it repeatedly to keep
going back.

»» Next Folder: After you’ve used the Previous Folder button, you can use the
Next Folder button to go forward through your history again, taking you back
to a folder you visited after the one you’re looking at now. If you click the
Previous Folder button and then the Next Folder button, you’ll end up where
you started.

»» Up a Level: A folder might be inside another folder, known as a parent folder.
The Desktop folder is inside your pi folder, for example, so pi is the parent

CHAPTER 4 Using the Desktop Environment 61

folder for Desktop. Click the Up a Level button to go to the parent folder.
Pressing the Backspace key (usually used when typing to delete a single
character to the left of the cursor) has the same effect as clicking this button.

»» Path: The path is a text description of the location of the folder you’re looking
at, including a list of the folders above it. Chapter 5 covers paths in depth, but
if you know a path, you can type it and then press the Enter key to go straight
to it in File Manager.

The Tools menu includes an option to Open Current Folder in Terminal, so you can
use the shell to manage the files there if it’s quicker. The keyboard shortcut is F4.

Copying and moving files and folders
File Manager makes it easy to copy and move your files and folders, without the
need for any text commands.

When you right-click a file or folder in File Manager, a menu opens that enables
you to rename the file, move it to the trash, or cut or copy it. (If you’re using
British English, you’ll see Move to Wastebasket instead of Move to Trash.)

If you cut a file, it is moved to wherever you choose to paste it. If you copy the file,
a duplicate copy of it is placed where you paste it. You paste by going to the folder
where you want the file to be stored and then right-clicking an empty space inside
a folder and choosing Paste from the menu that appears. (If you copy or cut a file
without pasting it, nothing happens to it.)

You can also drag files onto a folder’s icon to move them into it.

Selecting multiple files and folders
There are several ways to select more than one file at a time so that you can delete,
copy, or move them all at the same time:

»» Hold down the Ctrl key and click each of the files in turn to add them to your
selected files.

»» To select a group of consecutive icons (read from left to right, top to bottom),
click the first icon, hold down the Shift key, and then click the last icon.

»» Click the mouse on the background of File Manager and hold the button down
while you lasso the files you want to select.

62 PART 2 Getting Started with Linux

After you’ve selected a group of files, you can drag them all into a different folder
by clicking one of the selected files and dragging it into the folder. You can also
right-click one of your selected files and choose to cut or copy the whole group, as
shown in Figure 4-6.

The Raspberry Pi Desktop supports some keyboard shortcuts that might be famil-
iar to you from Microsoft Windows. You can use Ctrl+A to select all files and fold-
ers, Ctrl+C to copy, Ctrl+V to paste, and Ctrl+X to cut selected files and folders. It’s
worth remembering, however, that Ctrl+C is used to cancel an operation on the
Linux command line (see Chapter 5), so the Copy shortcut isn’t universal on your
Raspberry Pi the way it is in Windows.

If you’re selecting almost all the files, it’s probably easiest to use Ctrl+A to select
all and then hold down the Ctrl key and click to deselect the files you don’t want.
There’s also an option on the Edit menu to invert your selection (also available
with Ctrl+I), so you can select the files you don’t want and then use this option to
flip your choice so that everything else is selected instead.

Creating new folders and blank files
Organizing your files in folders makes it easier to manage them. You can more
easily see what files you have where, go straight to a file when you need it, and
back up a group of files by copying the folder to an external storage device.

It’s easy to make a new folder. First go to the location where you want the new
folder to be stored. Typically, it’s in your home folder or one of its subfolders, such
as your Desktop. Right-click a blank space in the right pane of File Manager and
choose New Folder from the menu that opens. You’ll be prompted to enter a name
and click OK or press Enter to confirm. If you change your mind, click Cancel
instead.

FIGURE 4-6:
Right-clicking a

file in File
Manager brings

up a menu of
options.

LXDE File Manager, written by Hong Jen Yee / Raspberry Pi Foundation

CHAPTER 4 Using the Desktop Environment 63

You can also use the button underneath File Manager’s menu bar, as shown in
Figure 4-4.

The right-click menu also has an option to create an empty file. If you want to
practice creating folders and moving files around, you can create a few blank files
so that you can do this safely, without worrying about moving anything you didn’t
intend to.

Deleting files and folders
To delete a file or a folder, right-click it in File Manager and choose Move to
Wastebasket from the menu that appears. As you see when copying files, you can
hold down the Ctrl key when you click to select several files or folders at the same
time, and you can click the background of the File Manager window and drag the
mouse to lasso files you want to delete, too. You can also send files to the waste-
basket by selecting them and then pressing the Delete key on the keyboard (usu-
ally marked Del or Delete, and not to be confused with the Backspace key).

The wastebasket is used as a temporary place to put any folders or files you plan to
remove. You can find it on the desktop (refer to Figure 4-1), and double-click its
icon to see what’s inside. You can empty the wastebasket, and delete any files or
folders in it, by right-clicking it and choosing Empty Wastebasket.

If you put something in the wastebasket that you change your mind about, right-
click its icon in the wastebasket and choose to restore it to where it was before.
(This is especially useful if you’ve forgotten where it used to be!) You can also cut
or copy it so that you can paste it wherever you want.

Sorting files
When you right-click an empty space in the right pane in File Manager, a menu
opens with an option to change how the files there are sorted. You can sort files by
name, modification time, size, or file type, in either ascending or descending
order.

The detailed list view reveals more information about each file, showing a short
description, its size, and when it was last modified. You can click the column
headings to sort the view by the filename, description (which groups similar files),
size, or modification date. If you click the column heading again, the sort order is
reversed.

64 PART 2 Getting Started with Linux

Exploring your Raspberry Pi
Linux has a rigorous permissions structure that governs who can access all its
files and whether they have permission to modify them or run them. It’s a good
thing, because it means it’s relatively difficult for you to do any real harm to your
Raspberry Pi’s operating system accidentally. You’re free to use File Manager to
explore all the files your operating system uses, but if you try to delete an essen-
tial file, you’ll be told you don’t have permission.

If you want to explore your system, go to your home folder, click the Up a Level
button twice (refer to Figure 4-4), and then take a look in the folders there.
Chapter 5 covers some of these folders in more depth.

Go to the usr folder and the share subfolder to find a lot of the installed software.
The code-the-classics and python_games folders contain the games that come
with Raspberry Pi OS. After you’ve learned some Python, you could come back
here to tinker with the code.

Browsing the Web with Chromium
Raspberry Pi OS includes the Chromium web browser, which has been optimized
for the Raspberry Pi. You access it from the Globe icon in the top left of the screen
(see Figure 4-2), or through the Internet part of the Applications menu.

Figure 4-7 shows the browser in use. Its layout is similar to other browsers you
might have used in the past, with a thin toolbar at the top and most of the screen
given over to the web page you’re viewing.

If you know the address of the website you want to visit, you can type it into the
Address bar, as shown in Figure 4-7. When you start to type an address, a menu
under the Address bar suggests pages you’ve previously visited that might match
what you want. Click one of these to go straight to it, or carry on typing. When
you’ve finished typing the address, press the Enter key.

You can scroll the page using the scroll bar on the right side of the browser or the
scroll wheel on your mouse.

When the mouse pointer is over a link, the pointer changes to a small hand. You
can then click the left mouse button to follow that link to another web page. The
browser keeps a list of the web pages you visit (called your history), so you can
click the Back button (refer to Figure 4-7) to retrace your steps and revisit the
pages you browsed before the current one. The Forward button beside it takes you
forward through your history again.

CHAPTER 4 Using the Desktop Environment 65

Some web pages update frequently with new information, so you can click the
Reload button to download the current page again and see any updates since you
first opened it. While a page is downloading, this button becomes a Stop button.
Click it to halt the download.

Chromium includes an ad-blocker to strip advertising from the pages you visit.
You can change the settings using the button shown in Figure 4-7.

Searching within web pages
To find a word or phrase within a web page, press Ctrl+F after the page has loaded.
The Find bar opens at the top of the screen, with a box for you to type into. The
first occurrence of the text you’re looking for is highlighted on the page in orange,
and you can press the Enter key or click the Down button in the Find bar to move
to the next one. You can close the Find bar again by clicking the Close button (an
X) on the far right end of the Find bar or pressing the ESC key.

FIGURE 4-7:
The Chromium

browser.
©2017 The Chromium Authors

66 PART 2 Getting Started with Linux

Using tabbed browsing
Like many other browsers today, Chromium uses tabs to enable you to switch
between several websites you have open at the same time. Click the + button (refer
to Figure 4-7) to add a new tab, which opens to show your most often visited
websites. You can click to visit one of these or type an address on the Address bar.

To switch to a page, just click its tab above the main web page area. In Figure 4-7,
Facebook and Sean’s website are open, and we can click the tabs to flick between
those pages instantly. To close a tab, click the Close button to the right of its name.

If you hold down the Ctrl key while you click a link, the link opens in a new tab.

Adding and using bookmarks
Bookmarks make it easy to revisit your favorite web pages. You can add a book-
mark by using the menu in the top right, using Ctrl+D, or clicking the star inside
the Address bar on the right.

The window for adding a new bookmark looks like Figure 4-8. The default name
for a bookmark is the web page’s title, but you can edit it. Folders can be used to
organize your bookmarks so that they’re easier to use. The Folder menu includes
an option to choose another folder. It enables you to create a new folder. You can
also choose to store a bookmark in the Bookmarks Bar folder. You can show the
Bookmarks bar underneath the Address bar, giving you one-click access to your
favorite websites at all times. To display the Bookmarks bar, click the button in
the top right to open the Chromium menu, hover over Bookmarks, and then select
Show Bookmarks Bar from the options that appear. There’s a keyboard shortcut
too: Ctrl+Shift+B.

To add the bookmark, click the Done button (refer to Figure 4-8).

To access your bookmarks while you’re browsing, click the Menu button in the top
right (refer to Figure 4-7) and choose Bookmarks. The bookmarks on the Book-
marks bar are shown on the menu that opens, and others can be found through
the Bookmark manager on this menu. You can visit a website on the Bookmarks
bar by displaying the bar (Ctrl+Shift+B) and clicking its entry on the bar, and
there’s easy access to your other bookmarks on the right of this bar too, in the
Other Bookmarks folder.

To manage your bookmarks, go to the Bookmarks manager with Ctrl+Shift+O. Hover
over a bookmark there, and click the menu button on the right of it to see options
to edit or delete the bookmark.

CHAPTER 4 Using the Desktop Environment 67

If you sign in to your Google account while using Chromium on your Raspberry Pi,
it can synchronize your bookmarks across your different devices.

One of the best Chromium features is the ability to create bookmarks for all open
web pages, in their own folder. It’s handy if you’re doing some research in differ-
ent tabs to be able to store all the pages you’re looking at in one place. To do this,
open the Chromium menu, hover over Bookmarks, and then select Bookmark All
Tabs from the menu that appears. You can enter a new name for the folder, and
then click Save.

Protecting your privacy
As you know, your browser stores the history of web pages you visit. If you want
to make a visit to a website without any traces being left in the browser — perhaps
to plan your Christmas shopping without the risk of other family members com-
ing across the websites you’ve visited — open a new, incognito window first. You
do this from the menu in the top right. When you close the private browsing win-
dow, your secret session stops.

When information has already been stored in the browser, you can delete it by
opening the Chromium menu in the top right and clicking Settings. Click Privacy
and Security on the left (if shown) or scroll down to Privacy and Security, and then
click Clear Browsing Data. From the menu in the top right, you can also visit your
browser history and delete any entries.

FIGURE 4-8:
Adding a

bookmark in
Chromium.

©2017 The Chromium Authors

68 PART 2 Getting Started with Linux

Sending and Receiving Email with
Claws Mail

Claws Mail is an open source email application that is preinstalled on your Rasp-
berry Pi. Find it in the Internet category of the Applications menu.

If you want to use email on your Raspberry Pi, you need to know the details of the
server for sending and receiving your email. Your email provider most likely pub-
lishes this information on its website. You also need to know your user ID and
password, which are likely to be the same as you use when logging on with
webmail.

When you start Claws Mail for the first time, it walks you through a configuration
wizard to add an account. If you experience any difficulties, you can edit your
email accounts (including adding or removing them) by using the Configuration
menu. There is an Auto-configure option, but this didn’t work for our account
when we tried it, so be prepared to do the extra work of putting all the information
in the boxes manually if it doesn’t work for you, either.

When you’re set up, click the Get Mail button in the top left to download your
email. Claws Mail is similar to many other email clients, including Thunderbird
and Outlook. Your mail folders are shown on the left, and your messages are listed
on the right, at the top. You can use the message preview pane at the bottom right
to read messages, or you can double-click a message to open it in its own window.

Across the top is a menu bar with options for composing a new message, replying
to a message, replying to all people copied on that message, and forwarding the
message. There’s also a Trash or Wastebin button you can use to delete a message.

Using the Image Viewer
It’s easy to look at your digital photos and other images. Among the accessories on
the Applications menu is the Image Viewer. You can start it from the menu (in the
Graphics folder) or by double-clicking or right-clicking an image file.

The Image Viewer displays the picture, with a toolbar underneath it, as you can
see in Figure 4-9. From left to right, this is what the buttons do:

CHAPTER 4 Using the Desktop Environment 69

»» Previous: Goes to the previous photo in the folder. Note that any unsaved
changes (such as rotation) are lost. You can also use the left-arrow key on
the keyboard.

»» Next: Goes to the next photo in the folder. As with the Previous button,
clicking this discards any unsaved changes you’ve made to the current photo.
You can also use the right-arrow key on the keyboard.

»» Start Slide show: Begins a slide show of all photos in the folder. The interval
between photos is set at 5 seconds, but you can change it in the preferences.
You can also press the W key to start a slide show. There might be a short
delay before the slide show begins.

»» Zoom Out: Reduces the magnification of the image. The keyboard shortcut is
the Minus (–) key.

»» Zoom In: Increases the magnification of the image. Scroll bars appear if the
image becomes too big to fit in the Image Viewer, and you can use these to
see different parts of the picture. The keyboard shortcut is the plus sign (+)
key, with no need to use Shift.

»» Fit Image to Window: Shrinks a large image to make it fit the Image Viewer
snugly. If an image is smaller than the Image Viewer window, it won’t be blown

FIGURE 4-9:
Gnomes on

phones, as seen
through the

Image Viewer.
GpicView, written by Hong Jen Yee / Raspberry Pi Foundation

70 PART 2 Getting Started with Linux

up to fill it, though. This button (or its keyboard shortcut, F) is a good way to
recover if you get lost zooming in or out.

»» Go to Original Size: Resets any zooming by showing the image at its full
original size. This might be bigger than the Image Viewer window, in which
case scroll bars appear, to enable you to move around the image. The
keyboard shortcut is G.

»» Full Screen: Expands the image to fill the monitor, so you lose the Image
Viewer controls. Right-click the image to open a menu with all the same
options. To revert to using the Image Viewer in a window, choose Full Screen
from the menu or press ESC. You can also use the F11 key to switch the full
screen view on and off. On the Raspberry Pi keyboard, use Fn+F1 in place
of F11.

»» Rotate Left: Rotates the image 90 degrees counterclockwise. The keyboard
shortcut is L.

»» Rotate Right: Rotates the image 90 degrees clockwise. The keyboard shortcut
is R.

»» Flip Horizontally: Mirrors the image horizontally and can also be done with
the H key.

»» Flip Vertically: Turns the image upside down. The V key does the same.

»» Open File: Opens a new image file. You can also drag and drop an image on
the Image Viewer from a folder in File Manager. This doesn’t move the file — it
just opens it.

»» Save File: Saves the image (including any rotations or mirroring you have
done) and replaces the original image. You get a warning before it happens.
Keyboard shortcut: S.

»» Save File As: Saves the image with a new filename so that it doesn’t overwrite
the original image. (You can also press the A key to do this.) Use the menu at
the bottom of the Save File As window to choose the image format.

»» Delete: Deletes an image from your storage device. If you delete an image, it’s
not sent to the wastebasket: It’s deleted and cannot be recovered. You get one
warning, but then it’s toast! You can also use the Delete key.

»» Preferences: Holds the settings you can change for Image Viewer so that you
can customize it for your needs. You can turn off the warnings you get before
overwriting or deleting an image, set Image Viewer to automatically save
rotated images, change the background colors of Image Viewer, and change
the slide show interval. There’s also an option to rotate images by changing
their orientation value in the EXIF tag, which changes some of the information
stored with the image to say which way up the camera was, instead of actually

CHAPTER 4 Using the Desktop Environment 71

rotating the image content itself. It’s okay to keep this selected, but this is
where you disable it, if you prefer.

»» Exit Image Viewer: Closes the Image Viewer application. You can also close
the window by clicking the Close button in the top right as you would with any
other window.

Using the Text Editor
Among the accessories on the Applications menu is Mousepad, which is a simple
text editor. To find it, click Text Editor in the Accessories part of the Applications
menu. You can use Mousepad for writing and word processing, but it’s not ideal
for creating print-ready documents. It’s most useful for editing documents
intended to be read by computers, such as web pages and configuration files.

The menus are logically organized, and if you’ve ever used a text editor on another
computer, you’ll find your way around in Mousepad easily.

The File menu is used to start new documents and open, save, and print files.
There’s also an option to close the window here, although you can just use the
Close button in the upper right of the window to close it.

The Edit menu gives you tools for undoing and redoing your work and for cutting,
copying, pasting, deleting, and selecting all your text. Mousepad uses Windows
shortcuts too, so you can use Ctrl+C to copy, Ctrl+V to paste, Ctrl+X to cut, and
Ctrl+A to select all text.

The Search menu has options to find a particular word or phrase, go to a particular
line in the document, or replace a chosen word or phrase with an alternative.
When using Find and Replace, you can check the box beside Replace All to change
all occurrences of your search term in one go, or you can step through them indi-
vidually using the Replace button.

The Document menu has an option to switch on word wrap (which means text
starts a new line when it reaches the edge of the window, instead of a horizontal
scroll bar appearing). The auto-indent feature means that any indentation used
on one line is automatically applied to the next line when you press Enter.

Under the View menu, you can switch on line numbers and change the color
scheme.

72 PART 2 Getting Started with Linux

Configuring Printers
In the Preferences part of the Applications menu, you can find the Print Settings.
Here you can see the print queue and add and remove printers. On Sean’s Rasp-
berry Pi, Print Settings automatically detected and set up his network-connected
printer.

The underlying Common Unix Printing System software is open source and
depends on the contributions of volunteers, so not every printer is supported. If
you have a reasonably old network-connected printer, it should work fine. Newer
models and USB-connected models are less likely to be well supported.

Customizing the Desktop
You can do quite a few things to stamp your identity on the desktop and make it
easier to use. As with other desktop computers you might have used, you can
change the look and feel of it. To find the options for this, click Appearance Set-
tings in the Preferences section of the Applications menu.

In the desktop options, you can change the picture used as a backdrop (the wall-
paper), change the desktop color if you’re not using wallpaper, and change the
color of icon descriptions (the text color). You can tick a box to display your Docu-
ments folder and mounted disks on the desktop, which makes it easier to find your
files. The Taskbar tab gives you options for changing the size, position, and color
of the menu bar that is usually at the top of the screen. The System tab enables you
to change the default font used throughout the desktop environment and the col-
ors used in the title bars of windows.

You can also get to the appearance settings by right-clicking the desktop and
choosing Desktop Preferences from the menu that appears.

To adjust the sensitivity of the keyboard and mouse, use the mouse and keyboard
settings in the Preferences section of the Applications menu. For left-handers,
you can swap the left and right mouse buttons, too.

Playing the Games
A number of games are included in Raspberry Pi OS. You’ll find them all in the
Games section of the Applications menu. Here’s a quick roundup:

CHAPTER 4 Using the Desktop Environment 73

»» Boing!: This is a version of Pong, a bit like digital tennis. Two players bounce a
ball, left and right, between them. If one player misses, the other player scores
a point. If you play alone, your bat is on the left. You can choose one or two
players on the start screen using the arrow keys. Press the Spacebar to start
the game or get back to the menu when it ends. Player 1 (left) uses the A and
Z or Up and Down keys to move. Player 2 (right) uses the K and M keys. The
computer can be your Player 2. The first player to score 10 points wins.

»» Bunner: This a clone of Frogger, where your challenge is to move safely up
the screen, dodging traffic and crossing rivers by leaping onto logs. Press the
Spacebar to start the game and get back to the title screen at the end, and
press the arrow keys to move.

»» Cavern (see Figure 4-10): This game is inspired by Bubble Bobble, another
classic from the ’80s. Move your monkey character with the arrow keys,
avoiding the robots. Use the Spacebar to fire a bubble to entrap the robots, as
you zip around collecting fruit. When you fall off the bottom of the screen, you
come back at the top.

»» Minecraft Pi: See Chapter 13 for information on playing and programming
this game.

»» Myriapod: Use the arrow keys to move and the Spacebar to fire in this
Centipede clone. Your gun is at the bottom of the screen. Your aim is to shoot
and destroy the centipede that crawls down the screen and to avoid getting
hit by the fly, which you can also zap. Destroy rocks to make it easier to shoot
the centipede. We use a screen resolution of 1,024 x 768 usually, but we had
to change it to 1,152 x 864 to see the whole game arena.

»» Substitute Soccer: This football game has three difficulty levels. Move using
the arrow keys and Spacebar to pass or shoot. If you have a friend over, they
can play using the W, A, S, and D keys to move and the left Shift key to pass/
shoot. A triangle above a player shows which one is active.

These games were coded by Raspberry Pi cofounder Eben Upton, and come from
the book Code the Classics, Volume 1. Find it in the Bookshelf app.

There is also an entry called Python Games, which gives you access to 12 further
games, written by Al Sweigart. Click a game to select it. The games are as follows:

»» Flippy: A version of Reversi. Click to place your counter. Any counters in a line
between your new counter and any of your other counters will switch to your
color. The winner is the one with the most counters in their color.

»» Four in a Row: Click and drag the pieces to drop them into the frame. The
winner is the first to get four pieces in a row, in any direction. The computer AI
is pretty smart!

74 PART 2 Getting Started with Linux

»» Gemgem: In this game, there’s a grid of gems. You can swap any two neigh-
boring gems to make a row of three, which then disappear. Use the mouse to
click the two gems you want to swap. It’s against the clock. Achieving a row of
three extends your time.

»» Inkspill: This is a favorite of Sean’s. You have a grid of colored squares.
Starting at the top left, you change the color of the ink. Any squares of the
same color that are touching the square join your ink spill, making it bigger.
The idea is to keep changing colors to try to fill the screen with a single color.

»» Memory Puzzle: This is a version of Pairs or Concentration, a classic card
game. You click a card to turn it over, and then click another card to see if they
match. Your aim is to pair up all the cards.

»» Pentomino: This version of Tetris uses the arrow keys to move the blocks and
the Q key to rotate them. The aim is to stop the blocks from piling up to the
top of the screen. When you complete a row, it disappears. This game has
some different tile designs from the original game.

»» Simulate: This game is a pattern repeating one. Click the panels to repeat the
sequence that’s played to you.

»» Slide Puzzle: This sliding puzzle game uses the arrow keys or mouse to move
tiles. Can you unscramble the puzzle?

»» Squirrel: Your aim is to eat the smaller squirrels, while avoiding the bigger
ones. Each time you eat, you grow. Move using the arrow keys.

»» Starpusher: This puzzle game starts easy but gets harder. The game chal-
lenges you to move stars onto the target spaces on the floor. You’ll need to
think clearly to avoid getting any stuck in corners. Arrow keys move your

FIGURE 4-10:
Cavern, one of

the games in
Raspberry Pi OS.

Raspberry Pi Foundation

CHAPTER 4 Using the Desktop Environment 75

character, and you’ll probably need to use the Backspace key to restart the
level sometimes.

»» Tetromino: This game is like Tetris with the original tile designs. Arrow keys
move the pieces and the Q key rotates them.

»» Wormy: This version of the classic mobile phone game Snake uses the arrow
keys to move the snake. The aim is to eat the red blocks, without bumping
into your own tail or the edge of the screen. Each time you eat, you grow, so
the game gets harder and harder.

Finding and Installing New Applications
You can discover new software to install using the command line (see Chapter 5),
but there’s also a friendly tool you can use in the desktop environment. On the
Applications menu, hover over the Preferences option and click Add/Remove Soft-
ware to get started. You need to have an active Internet connection.

Figure 4-11 shows you the tool. In the top left is a search box, where you can enter
the name of an application you’re looking for, or a phrase such as puzzle games to
explore what’s available. On the left are categories you can click to see your options.

FIGURE 4-11:
The Add/Remove

Software menu.
Raspberry Pi Foundation

76 PART 2 Getting Started with Linux

The main pane shows you the packages, with a scroll bar on the right that you can
use to see the full list. Those that are already checked (or ticked) and shown in
bold are already installed on your Raspberry Pi. You can click a package to see its
description below. To select a package for installation, tick the box beside it. To
remove it, untick it.

When you’ve finished choosing your software, click the OK button to install and
remove the applications. You will be prompted to enter your password (which is
raspberry if you haven’t changed it). It can take some time to download and install
the software, so it’s a good idea to choose a few applications and leave them to
install in one batch while you do something else.

The menu ensures that any applications that your chosen application requires also
get installed. When I installed Brain Party (see Chapter 19), for example, the menu
automatically installed its separate data package for me.

The menu makes it easy to install software, but you might find that not all the
software works well on the Raspberry Pi. It’s easy enough to try something,
though, and remove it if it doesn’t do what you need. It’s all free.

The Recommended Software app in the Preferences part of the Applications menu
is used to install or remove recommended software. If you chose to install a ver-
sion of Raspberry Pi OS without these recommended applications, you can install
them from here.

Backing Up Your Data
If you want to back up your files, you can easily copy them to a USB key using File
Manager as described earlier in this chapter, or using shell commands. (See
Chapter 5 on file copying, and the Appendix for more on mounting external
storage devices.) If you’ve got a lot of files on the MicroSD card, though, and
you’ve spent time customizing it with your preferred settings and software, you
might prefer to make a backup copy of the entire card. There’s an application to
do this, called SD Card Copier, which you can find in the Accessories section of the
Applications menu.

To use SD Card Copier effectively, you need a USB MicroSD card reader, which will
enable you to read and write additional MicroSD cards from your Raspberry Pi,
using a device plugged into one of the USB ports. If you don’t have a MicroSD card
reader, you can use the application to back up to a USB flash drive; you would need
a card reader, though, to restore the backup to a MicroSD card so that you can use
it in your Raspberry Pi.

CHAPTER 4 Using the Desktop Environment 77

The MicroSD card or the USB key that you back up to will be totally erased. Ensure
that there’s nothing on it you need before you begin.

The application is shown in Figure 4-12. It has two menus, where you choose
which device to copy from and which device to copy to. If you’re not sure which
MicroSD card contains your operating system (the one the Pi is currently using),
check the Copy To Device menu: It won’t be listed there, because you can’t use this
application to write to the card the Raspberry Pi is using for its operating system.

The backup might take some time, during which it can look like nothing’s hap-
pening, so be patient.

Logging Out and Shutting Down
When you’ve finished using your Raspberry Pi, shut it down before removing the
power supply. The options to shut down or restart (reboot) your Pi are on the
Applications menu, under Shutdown, but you can also use Ctrl+Alt+Delete.

Instead of shutting down, you can log out, which will prompt you to log in again.
The default username and password are pi and raspberry. Chapter 5 shows you how
to add additional users with their own logins and home folders.

After your Pi has shut down, you can disconnect the power. When you reconnect
it, your Pi will start up again.

If you have a Raspberry Pi 400, you can use the Fn+F10 combination to power
down or switch on again.

FIGURE 4-12:
The SD Card

Copier
application.

Raspberry Pi Foundation

CHAPTER 5 Using the Linux Shell 79

Chapter 5
Using the Linux Shell

Hollywood loves a screenful of text. If directors want to show how
computer-savvy someone is, or how they’ve managed to break into a
­computer system, they flood the screen with writing. It’s funny to see the

actors staring agog at the screen when often all they’ve done is list a bunch of
files.

This movie cliché contributes to a mystique around the command line interface,
though, that can make it seem harder than it is. We both worked with computers
before graphical interfaces were the norm, so we’re here to reassure you: It’s
going to be okay. You’ll find the text-based interface gives you fast and effective
control over your Raspberry Pi, and it’s often quicker than using the graphical
desktop. It also gives you some understanding of what’s going on behind the
scenes on your Raspberry Pi.

The Linux shell is the text-based way of issuing instructions to your Raspberry Pi.
The shell on the Raspberry Pi is called Bash, which is used in most other Linux
distributions too. Its name is short for Bourne Again Shell, a pun because it was
created to replace the Bourne shell. The Bourne shell gets its name from its crea-
tor, Stephen Bourne. In this chapter, you learn how to use the shell to manage
your Raspberry Pi.

IN THIS CHAPTER

»» Exploring the Linux file system

»» Creating, removing, and browsing
files and directories

»» Discovering and installing great free
software

»» Managing user accounts on your
Raspberry Pi

»» Customizing the shell with your own
commands

80 PART 2 Getting Started with Linux

To open a shell window, click the Terminal icon at the top of the screen, which has
a >_ prompt on it. Alternatively, you can find the Terminal in the Accessories sec-
tion of the Applications menu. Either approach opens a window on the desktop
that you can use to access the shell.

If the screen goes blank while you’re using the shell, don’t worry: You can get it
back again by pressing any key on the keyboard.

Understanding the Prompt
When you log in to your Raspberry Pi, you see a prompt that looks like this, with
a cursor beside it that’s ready for you to enter a command:

pi@raspberrypi:~ $

At first glance, that prompt can look quite foreign and unnecessarily complicated
(why doesn’t it just say OK or Ready?), but it actually contains a lot of information.
This is what the different bits mean:

»» pi: This is the name of the user who is logged in. Later in this chapter, we
show you how to add different users to your Raspberry Pi, and if you log in as
a different user, you see that user’s name here instead.

»» raspberrypi: This is the hostname of the machine, which is the name other
computers might use to identify the machine when connecting to it.

»» ~: In Linux, people talk about organizing files in directories rather than folders,
but it means the same thing. This part of the prompt tells you which directory
you’re looking at (the current working directory). The tilde symbol (a horizontal
wiggly line) is shorthand for what is known as your home directory, and its
presence in the prompt here shows that you’re currently working in that
directory. As we explain in Chapter 4, this is where you should store your work
and other files. An ordinary user doesn’t have permission to put files any-
where except for their home directory or any directories inside that home
directory.

»» $: The dollar sign means that you’re a humble, ordinary user and not an
all-powerful superuser. If you were a superuser, you would see a # symbol
instead.

CHAPTER 5 Using the Linux Shell 81

Exploring Your Linux System
It’s perfectly safe to take a look at any of the files and directories on your Rasp-
berry Pi. As an ordinary user, you’re blocked from deleting or damaging any
essential files in any case, so you can explore without fear of deleting anything
important.

Listing files and directories
The command for listing files and directories is ls. Because you start in your
home directory, if you enter it now, you see the folders and files (if any) in your
home directory. Here’s what the output looks like on Sean’s Raspberry Pi — in
this chapter, we use bold text for the bits you type and use normal text for the
computer’s output:

pi@raspberrypi:~ $ ls

Bookshelf Desktop Documents Downloads Music Pictures Public Templates

Videos

Linux is case-sensitive, which means LS, ls, Ls, and lS are completely different
instructions. Linux doesn’t see that uppercase and lowercase letters are related to
each other, so an S and an s look like completely different symbols to the com-
puter, in the same way that an A and a Z look different to humans. If you get the
capitalization wrong in your command, it won’t work, and that applies to every-
thing in the shell. If you misplace a capital letter in a filename, Linux thinks the
file you want doesn’t exist. When you come to use more-advanced command
options later, you’ll find that some commands use uppercase and lowercase
options to mean different things.

Changing directories
The output is all blue, which means these are all directories, so you can go into
them to take a look at the files they have inside. The command to change a direc-
tory is cd, and you use it together with the name of the directory you would like to
go into, like this:

pi@raspberrypi:~ $ cd Bookshelf

The prompt changes to show the directory you have changed to after the tilde
character, and you can double-check that the current directory has changed by
using ls to view the files there, if any. The Bookshelf directory contains a copy of
the manual, but the other folders are empty.

82 PART 2 Getting Started with Linux

Changing to the parent directory
So far, we’ve used cd to change into a directory that’s inside the current working
directory. However, you will often want to change into the directory above the
current working directory, which is known as its parent directory. The Bookshelf
directory is inside the pi directory, for example, so the pi directory is the parent
directory for it.

To change to the parent directory, you use cd with two dots. You can use that
command while in Bookshelf to change your home directory (indicated by a ~
symbol in the command prompt):

pi@raspberrypi:~/Bookshelf $ cd ..

pi@raspberrypi:~ $

The ~ symbol is really just shorthand for your home directory. The directory’s real
name is the same as your username, which means it is usually pi, the default user-
name. The parent directory of your home directory is, rather confusingly, called
home, and it’s used to store the home directories of all users of the computer.

When you’re in your home directory, try using cd .. to go into the directory called
home. If you use it again, you will find yourself at the highest directory of your
operating system, known as the root and indicated with a / in the command
prompt. Try navigating through the parent directories to get to the root and then
listing what’s there, like this:

pi@raspberrypi:~ $ cd ..

pi@raspberrypi:/home $ cd ..

pi@raspberrypi:/ $ ls

bin boot dev etc home lib lost+found media mnt opt proc root run
sbin srv sys tmp usr var

Feel free to use the cd command to nose around these directories. You can use ls
to see what’s in the directory, and cd to change into any directory you come across.
A lot of directories are empty, but in some you’ll find files. When you’ve finished
in a directory, use cd .. to go back to its parent.

Understanding the directory tree
When people think about how the directories are organized on a computer, they
often use the metaphor of a tree. A tree has a single trunk with many branches
that come off it, secondary branches that sprout from those branches, and so on
until you get down to twigs.

CHAPTER 5 Using the Linux Shell 83

Your Raspberry Pi has a single root at the top, with directories that come off it,
and subdirectories inside those, and maybe subdirectories inside those too.

Figure 5-1 shows a partial picture of the directory tree on your Raspberry Pi. It
doesn’t show all the subdirectories in the root, and it doesn’t show all their sub-
directories either, but it does show you where your home directory is, relative to
other directories and the root. You can think of it as a map. If you’re at the root
and you want to get to the Bookshelf directory, the tree shows you need to go
through the home and pi directories to get there.

When you get to the root, you see approximately 20 directories there. All the pro-
grams, files, and operating system data on your Raspberry Pi are stored in these
directories, or in their subdirectories. It’s safe to go into the various directories
and have a look around, and to use file to investigate any files you find.

You will rarely need to use any of these directories, but in case you’re curious,
here’s what some of them are used for:

»» bin: This is short for binaries, and it contains small programs that behave like
commands in the shell, including ls and mkdir, which you will use to make
directories later.

»» boot: This contains the Linux kernel, the heart of the operating system, and
also contains configuration files that store various technical settings for the
Raspberry Pi. The appendix shows you how you can edit the config.txt file
here to change some of your computer’s settings.

FIGURE 5-1:
Part of the

directory
tree on your

Raspberry Pi.
Sean McManus

84 PART 2 Getting Started with Linux

»» dev: This stores a list of devices (such as disks and network connections) that
the operating system understands.

»» etc: This is used for various configuration files that apply to all users on the
computer.

»» home: As already discussed, this directory contains a directory for each user,
and that is the only place a user is allowed to store or write files by default.

»» lib: This directory contains libraries (shared programs) that are used by
different operating system programs.

»» lost+found: The name looks intriguing, but hopefully you’ll never have to
deal with this directory. It’s used if the file system gets corrupted and recovers
partially. You don’t usually have permission to enter this directory.

»» media: When you connect a removable storage device like a USB key and it is
automatically recognized in the desktop environment, its details are stored in
the media directory.

»» mnt: This directory is used to store the details of removable storage devices
that you mount yourself. (See the section about mounting external storage
devices in the appendix.)

»» opt: This directory is used for optional software on your Raspberry Pi. Usually
in Linux, this directory is used for software you install yourself, but on the
Raspberry Pi, many programs install into /usr/share instead.

»» proc: This directory is used by the Linux kernel to give you information about
its view of the system. Most of this information requires expertise to interpret,
but it’s fun to take a peek anyway. Try entering less /proc/cpuinfo to see how
the kernel views the Raspberry Pi’s processors, or less /proc/meminfo to see
how much memory your Raspberry Pi has and how it’s being used. (You’ll
learn how to use less fully later, but for now, you just need to know that you
press Q to quit.) Shortly, you’ll see how to use the file command to check the
type of a file. If you use the file command on these files, they appear to be
empty, which is a peculiarity that arises because they’re being constantly
updated.

»» root: You don’t have permission to change into this directory as an ordinary
user. It’s reserved for the use of the root user, which in Linux is the all-powerful
user account that can do anything on the computer. The Raspberry Pi discour-
ages the use of the root account and instead encourages you to use sudo to
issue specific commands with the authority of the root user (sometimes called
the superuser). The command is short for “superuser do.” Later in this chapter,
we show you how sudo is used to install software (see “Installing software”).

CHAPTER 5 Using the Linux Shell 85

»» run: This directory provides a place where programs can store data they
need and have confidence it will be available when the operating system
starts up. Data in the tmp folder is vulnerable to being removed by disk
cleanup programs, and the usr directory might not always be available at
start-up on all Linux systems. (It can be on a different file system.)

»» sbin: This directory contains software that is typically reserved for the use of
the root user.

»» srv: This is empty by default, and is sometimes used in Linux for storing
data directories for services such as FTP, which is used to copy files over the
Internet.

»» sys: This directory is used for Linux operating system files.

»» tmp: This directory is used for temporary files.

»» usr: This directory is used for the programs and files that ordinary users can
access and run.

»» var: This directory stores files that fluctuate in size (or are variable), such
as databases and log files. You can see the system message log with the
command less /var/log/messages. (Use the arrow key to move down,
and press Q to quit.)

Using relative and absolute paths
We’ve been discussing how to move between directories that are immediately
above or below each other on the directory tree, a bit like the way you might work
in a desktop environment. You click to open one folder, click to open the folder
inside it, and click to open the folder inside that. It’s easy (which is why it’s popu-
lar), but if you’ve got a complex directory structure, it soon gets tedious.

If you know where you’re going, the shell enables you to go straight there by
specifying a path, which is a description of a file’s location. There are two types of
paths: relative and absolute. A relative path is a bit like giving directions to the
directory from where you are now (go up a directory, down through the Desktop
directory, and there it is!). An absolute path is more like a street address: It’s
exactly the same wherever you are.

The root is represented by a / symbol. Absolute paths are usually measured from
the root, so they start with a / and then they list the directories you go through to
find the one you want. For example, the absolute path to the pi directory is /home/
pi. Whichever directory you’re in, you can go straight to the pi directory using

cd /home/pi

86 PART 2 Getting Started with Linux

If you wanted to go straight to the Desktop directory, you would use

cd /home/pi/Desktop

To go straight to the root, just use a slash by itself, like this:

cd /

Besides using the root as a reference point for an absolute path, you can also use
your home directory, which you represent with a tilde (~). You can use it by itself
to jump back to your home directory:

cd ~

Alternatively, you can use it as the start of an absolute path to another directory
that’s inside your home directory, like this:

cd ~/Desktop

Relative paths use your current working directory as the starting point. It’s shown
in the command prompt, but you can also check it by entering the command

pwd

The pwd command is short for print working directory. As in Python (see
­Chapter 11), print in this case means “display on the screen,” not “write onto
paper.”

Whereas the command prompt uses the tilde (~) character if you’re in your home
directory, pwd tells you where that actually is on the directory tree and reports it
as /home/pi.

A relative path that refers to a subdirectory below the current one just lists the
path through the subdirectories in order, separating them with a slash. For exam-
ple, in Figure 5-1, you can see a directory called home, with a directory called pi
inside it, and a directory called Desktop inside that. When you’re in the directory
with the name home, you can change into the Desktop directory by specifying a
path of pi/Desktop, like this:

pi@raspberrypi:/home $ cd pi/Desktop

pi@raspberrypi:~/Desktop $

You can change into any directory below the current one in this way. You can also
have a relative path that goes up the directory tree by using .. to represent the

CHAPTER 5 Using the Linux Shell 87

parent directory. Referring to Figure 5-1 again, imagine that you want to go from
the Desktop directory into the Bookshelf directory. You can do that by going
through the pi directory using this command:

pi@raspberrypi:~/Desktop $ cd ../Bookshelf

pi@raspberrypi:~/Bookshelf $

As the prompt shows, you’ve moved from the Desktop directory into the Book-
shelf directory. You started in Desktop, went into its parent directory (pi), and
then changed into the Bookshelf directory there. You can go through multiple
parent directories to navigate the tree. If you wanted to go from the pi directory
to the boot directory, you could use

pi@raspberrypi:~ $ cd ../../boot

pi@raspberrypi:/boot $

That takes you into the parent directory of pi (the directory called home), takes
you up one more level to the root, and then changes into the boot directory.

You can choose to use an absolute or relative path, depending on which is most
convenient. If the file or directory you’re referring to is relatively close to your
current directory, it might be simplest to use a relative path. Otherwise, it might
be less confusing to use an absolute path. It’s up to you. Paths like this aren’t used
only for changing directories. You can also use them with other commands and to
refer to a specific file by adding the filename at the end of the path. For example,
you can use the less command like this:

less /boot/config.txt

It shows you the contents of the config.txt file, no matter which directory you’re
in. Press Q to finish.

As you discover more commands in this chapter that work with files, you’ll be able
to use your knowledge of paths to refer to files that aren’t in the same directory as
your current working directory.

Be careful not to confuse absolute and relative paths. In particular, pay attention
to where you use a slash. You should only use a / at the start of the path if you
intend to use an absolute path starting at the root.

If you want to change into a directory for a quick look around and then go back
again, you can use a shortcut to change back to the previous directory:

cd -

88 PART 2 Getting Started with Linux

If you enter this, the shell shows you the previous directory you were in and then
changes your current working directory to that.

You can also change to your home directory quickly by using the cd command
alone, like this:

pi@raspberrypi:/boot $ cd

pi@raspberrypi:~ $

Checking file types
If you want to find out more about a particular file, you can use the file com-
mand. A good place to experiment with this is the python_games folder.

You can find it like this:

pi@raspberrypi:~ $ cd /usr/share/python_games

pi@raspberrypi:/usr/share/python_games $

In this directory, there are lots of images, sounds, and Python files that make up
some of the games that are preinstalled on the system. You can use the file com-
mand to find out more about those files. After the command name, put the name
of the file you’d like more information on.

You can list several files in one command by separating them with spaces, like
this:

pi@raspberrypi:/usr/share/python_games $ file boy.png match0.wav wormy.py

boy.png: PNG image data, 50 x 85, 8-bit/color RGBA, non-interlaced

match0.wav: RIFF (little-endian) data, WAVE audio, Microsoft PCM, 16 bit, mono

44100 Hz

wormy.py: Python script, ASCII text executable

As you can see, the file command can tell you quite a lot about a file. You not only
learn what kind of data is in the first two files (an image and an audio recording),
but also how big the image is (50 x 85 pixels) and that the audio is mono.

If you’re an experienced computer user, you may have been able to guess what
kind of files those were from the file extensions (the .png, .wav, and .py on the
ends of the filenames). Linux doesn’t require files to have extensions like that,
however, so the file command can sometimes be a huge help. (In practice, many
applications choose to use file extensions, and users often prefer to do so because
it’s more user-friendly than having filenames without any context for the file
type.)

CHAPTER 5 Using the Linux Shell 89

You can also use the file command on a directory. For example, when you’re in
your pi directory, you can find out about Desktop and Bookshelf like this:

pi@raspberrypi:~ $ file Desktop Bookshelf

Desktop: directory

Bookshelf: directory

That confirms that both of these are directories. Using a command called file to
find out about a directory may seem counterintuitive, but it illustrates an impor-
tant feature of Linux: Linux considers everything to be a file, including hard drives
and network connections. It’s all just a bunch of files, according to Linux.

Investigating more advanced listing options
You can use ls to look inside any directory outside the current working directory
by specifying its path, like this:

pi@raspberrypi:~ $ ls /boot

Although you’re in your home directory, that command gives you a listing from
the /boot directory.

When we provide information for a command to process like this, such as a file-
name or a path, it’s called an argument. Many Linux commands can accept argu-
ments in this way (including the cd and file commands).

Some commands can also accept options. Options tell the command how to do its
work, and they have the format of a hyphen followed by a code that tells the com-
mand which option(s) to use.

There are several options you can use with ls to change its results, shown in
Table 5-1. For example, use

pi@raspberrypi:~ $ cd /boot

pi@raspberrypi:/boot $ ls -R

This lists all the contents in the boot directory, and then all the contents in the
overlays directory that is inside the boot directory. Use the scroll bar on the right
side of the shell window if you can’t see them all.

When you’re using options and arguments together, the options come before the
arguments, so the format of the typical Linux command is

command -options arguments

90 PART 2 Getting Started with Linux

For example, try using the -X option to list the contents of the python_games
folder. All the .png, .py, and .wav files will be grouped together, so it’s easier to
see what’s there. The command to use is

pi@raspberrypi:~ $ ls –X /usr/share/python_games

You can use several options together by adding all the option codes after a single
hyphen. For example, if you want to look in all your directories under your current
directory (option R) and you want to group the results by file type (option X) and
use symbols to indicate directories and executables beside their filenames (option
F), you would use

pi@raspberrypi:~ $ ls -RXF

TABLE 5-1	 Options for the ls Command
Option Description

-1 Outputs the results in a single column instead of a row. Note that this option is a number 1 and
not a letter l.

-a Displays all files, including hidden files. The names of hidden files start with a single period (full
stop). Hidden files are usually put there (and required) by the operating system, so they’re best left
alone. You can create your own hidden files by using filenames that start with a period.

-F Adds a symbol beside a filename to indicate its type. When you use this option, directories have a
/ after their names, and executables have a * after their names.

-h In the long format, expresses file sizes using kilobytes, megabytes, and gigabytes to save you the
mental arithmetic of working them out. It’s short for human-readable.

-l Displays results in the long format, which shows information about the permissions of files, when
they were last modified, and their size. Note that this option uses a letter l, short for long.

-m Lists the results as a list separated by commas.

-R The recursive option; as well as listing files and directories in the current working directory, opens
any subdirectories and lists their results too, and keeps opening subdirectories and listing their
results, working its way down the directory tree. You can look at all the files on your Raspberry Pi
using ls -R from the root. Be warned: It takes a while. To cancel when you get bored, use Ctrl+C.

-r The reverse option; displays results in reverse order. By default, results are in alphabetical order,
so this shows them in reverse alphabetical order. If your directory listing has multiple columns,
the files are sorted by column, not row. Read down the first column, then the second column, and
so on. Note that -r and -R are completely different options.

-s Shows the file size.

-S Sorts the results by their size.

-t Sorts the results according to the date and time they were last modified.

-X Sorts the results according to the file extension.

CHAPTER 5 Using the Linux Shell 91

This is what it looks like, if you run the command from the /opt/minecraft-pi
directory:

pi@raspberrypi:/opt/minecraft-pi $ ls -RXF

.:

api/ data/ lib/ minecraft-pi* CONTROLS.txt HOW_TO_RUN.txt LICENSE.txt

VERSION.txt

./api:

java/ python/ spec/

./api/java:

doc/ lib/ src-api/ src-demos/ McPiDemos.jar McPi.jar HOW_TO_RUN_DEMOS.txt

The output continues down the screen. This only shows the start of it. One thing
you might notice is that a single period (full stop) is used to refer to the current
directory in the pathnames, so the path for the first set of results is simply a
period. This short code for the current directory is similar to the two periods used
to refer to the parent directory. This directory shows how results are grouped. We
see the directories first, then the executable file minecraft-pi, then the text files.
You can also see how symbols are used to show what’s a directory (/) and an
executable (*).

When you’re experimenting with ls (or at any other time, come to that), use the
command clear to empty the screen if it gets messy and hard to follow.

Understanding the Long Listing
Format and Permissions

One of the most useful ls options is long format, which provides additional infor-
mation on a file, compared to a standard listing. You trigger it using the option –l
(the letter l) after the ls command, like this:

pi@raspberrypi:~ $ ls -l

total 152

-rw-r--r-- 1 pi pi 256 Nov 18 13:53 booknotes.txt

drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Bookshelf

drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Desktop

drwxr-xr-x 5 pi pi 4096 Oct 28 22:35 Documents

drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Downloads

drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Music

92 PART 2 Getting Started with Linux

drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Pictures

drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Public

drwxr-xr-x 2 pi pi 4096 Nov 3 17:43 seanwork

-rw-r--r-- 1 pi pi 20855 Nov 12 2020 spacegame.sb3

drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Templates

drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Videos

This listing includes some of Sean’s work files on the Raspberry Pi (booknotes.
txt, spacegame.sb3, and the directory seanwork), which we can use to show you
how different files are described.

This layout might look a bit eccentric, but it’s easier to follow if you read it from
right to left. Each line relates to one file or directory, with its name on the right
and the time and date it was last modified before the name. For older files, the
date’s year appears in place of the modification time, as you can see for the file
spacegame.sb3 in the preceding list.

The number in the middle of the line is the size of the file. Most of the entries
(including Bookshelf, Desktop, and seanwork) are directories that have the same
file size (4096 bytes), although they have vastly different contents. That’s because
directories are files too, and the number here is telling you how big the file is that
describes the directory, and not how big the directory’s contents are. The file size
is measured in bytes, but you can add the –h option to give you more meaningful
numbers — translating 4096 bytes into 4K, for example.

The rest of the information concerns permissions, which refer to who is allowed to
use the file and what they are allowed to do with it. Linux was designed from the
start to offer a secure way for multiple users to share the same system, and so
permissions are an essential part of how Linux works.

Many people find they can use their Raspberry Pi without needing to know too
much about permissions, but permissions tell you a lot about how Linux works,
and you might find the knowledge useful if you want to be a bit more
adventurous.

The permissions on a file are divided into three categories: things the file’s owner
can do (who is usually the person who created the file), things that group owners
can do (people who belong to a group that has permission to use the file), and
things that everyone can do (known as the world permissions).

In the long listing, you can see that the word pi is shown twice for each file. These
two columns represent the owner of the file or directory (the leftmost of the two
columns) and the group that owns the file. These both have the same name here
because Linux creates a group for each user with just that user in it, and with the

CHAPTER 5 Using the Linux Shell 93

same name as the user. In theory, the group could be called something like stu-
dents and include all students who have usernames for the computer.

The leftmost column contains a code that explains what type of file each file is,
and what the permissions are on that file. To make sense of the code, you need to
break it down into four chunks, as in Table 5-2, which represents the code shared
by booknotes.txt and spacegame.sb3 in our long listing.

The two main file types you’re likely to come across are regular files and directories. Regular files have a
hyphen (–) for their file type at the start of their code, and directories have a d. You can see both of these
symbols used in our long directory listing.

Next come the permissions for the owner, group, and world. These are the three
different types of permission someone can have:

»» Read permission: The ability to open and look at the contents of a file, or to
list a directory

»» Write permission: The ability to change a file’s contents, or to create or delete
files in a directory

»» Execute permission: The ability to treat a file as a program and run it, or to
enter a directory using the cd command

That probably seems logical and intuitive, but there are two potential catches:
First, you can only read or write in a directory if you also have execute permission
for that directory; and, second, you can rename or delete a file only if the permis-
sions of its directory allow you to do so, even if you have write permission for
the file.

The permissions are expressed using the letters r (for read), w (for write), and x
(for execute), and these make up a 3-letter code in that order. Where permission
has not been granted, the letter is replaced with a hyphen. So in Table 5-2, you can
see that the owner can read and write the file, but the group owner and world
(everyone else) can only read it.

The code for the Desktop folder in our long listing is drwxr-xr-x. The first letter
tells you it’s a directory. The next three letters (rwx) tell you that the owner can
read it, write to it, and execute it, which means they have freedom to list its

TABLE 5-2	 Understanding Permissions
File type Owner Group World

- rw- r-- r--

94 PART 2 Getting Started with Linux

contents (read), add or delete files (write), and enter the directory in the first
place to carry out those actions (execute). The next three characters (r-x) tell you
that group owners may enter the directory (execute) and list its contents (read),
but may not create or delete files. The final three characters (r-x) tell you that
everyone else (the world) has been granted those same read-only permissions.

Several commands are used to change the permissions of a file (including chmod
to change the permissions (or mode), chown to change a file’s owner, and chgrp to
change the file’s group owner). We don’t have space to go into detail here, but see
“Learning More about Linux Commands,” later in this chapter, for guidance on
how to get help with them. The easiest way to change permissions, in any case, is
through the desktop environment. Right-click a file in File Manager (see
­Chapter 4) and choose Properties from the menu that appears. You can then use
the Permissions tab in the File Properties window that appears (see Figure 5-2) to
change the permissions associated with a file.

Slowing Down the Listing and Reading
Files with the Less Command

The problem with ls is that it can deluge you with information that flies past your
eyes faster than you can see it. If you open a shell window from the desktop envi-
ronment, you can use a scroll bar to review information that has scrolled off the
screen.

FIGURE 5-2:
Changing file
permissions

using File
Manager.

Raspberry Pi Foundation

CHAPTER 5 Using the Linux Shell 95

The more usual solution, however, is to use a command called less, which takes
your listing and enables you to page through it, one screen at a time. To send the
listing to the less command, you use a pipe character (|) after your listing com-
mand, like this:

ls -RXF | less

When you’re using less, you can move through the listing one line at a time using
the up- and down-arrow keys, or one page at a time using the Page Up (or b) and
Page Down (or space) keys. To page up or down on a Raspberry Pi keyboard, hold
down the Fn key and press the Up or Down arrow key.

You can search by pressing / and then typing what you’d like to search for and
pressing Enter. When you’ve finished, press the Q key (upper- or lowercase) to
quit.

You can cancel a Linux command, including an overwhelming listing, by pressing
Ctrl+C.

You can also use less to view the contents of a text file by giving it the filename
as an argument, like this:

less /boot/config.txt

This is a great way to read files you find as you explore Linux. The less command
warns you if the file you want to read might be a binary file, which means it’s
computer code and likely to be unintelligible, so you can try using the less com-
mand on anything and bow out gracefully if you get the warning. Displaying
binary code onscreen can result in some strange results, including distorting the
character set in the shell.

If you want to see the first ten lines of a file, perhaps just to check which version
it is, you can use the command head followed by the filename.

Now you have all the tools you need to explore your Linux operating system!

Speeding Up Entering Commands
Now that you’ve learned a few basic commands, we can teach you a few tricks to
speed up your use of the shell.

96 PART 2 Getting Started with Linux

First of all, the shell keeps a record of the commands you enter, called your history,
so you can save retyping if you want to reuse a command. If you want to reuse the
last command, just type in two exclamation marks (!!) and press Enter. If you
want to use an earlier command, tapping the up arrow brings back your previous
commands in order (most recent first) and puts them after your prompt. The
down arrow moves through your history in the other direction if you overshoot
the command you want. You can edit the command before pressing Enter to
issue it.

The shell also tries to guess what you want to type and automatically completes it
for you if you tap the Tab key. You can use it for commands and files. For exam-
ple, type

cd /bo

and then press the Tab key, and the path is completed as /boot/.

This technique is particularly helpful if you’re dealing with long and complicated
filenames. If it doesn’t work, you haven’t given the shell enough of a hint, so you
need to give it more letters to be sure what you mean.

Using Redirection to Create Files
Before you look at how you delete files and copy them, you should prepare some
files to play with.

It’s possible to send the results from a command to a file instead of to the screen;
in other words, to redirect them. You could keep some listing results in a file, for
example, so you have a permanent record of them or so you can analyze them
using a text editor. You turn screen output into a file by using a greater-than sign
and the filename you’d like to send the output to, like this:

ls > ~/listing.txt

You don’t need to have the file extension of .txt for it to work in Linux, but it’s a
useful reminder for yourself, and it helps if you ever copy the file back to a Win-
dows machine.

CHAPTER 5 Using the Linux Shell 97

Try using this command twice from two different directories and then looking at
the contents of listing.txt with the less command. You’ll see just how unfor-
giving Linux is. The first time you run the command, the file listing.txt is cre-
ated. The second time you do it, it’s replaced without warning. Linux trusts you to
know what you’re doing, so you need to be careful not to overwrite files.

If you want a bit of variety, you can use other commands to display content
onscreen:

»» echo: This displays whatever you write after it onscreen. You can use it to
solve mathematics problems if you put them between two pairs of brackets
(parentheses) and put a dollar sign in front, for example:

echo $((5*5))

»» date: This shows the current time and date.

»» cal: This shows the current month’s calendar, with today highlighted. You can
see the whole year’s calendar using the option –y.

If you want to add something to the end of an existing file, you use two greater-
than signs, as you can see in this example:

pi@raspberrypi:~ $ echo I made this file on > testfile.txt

pi@raspberrypi:~ $ date >> testfile.txt

pi@raspberrypi:~ $ cal >> testfile.txt

pi@raspberrypi:~ $ echo $((5+31+5)) Days until my birthday! >> testfile.txt

pi@raspberrypi:~ $ less testfile.txt

I made this file on

I made this file on

Wed 25 Nov 10:07:40 GMT 2020

 November 2020

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6 7

 8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30

41 Days until my birthday

98 PART 2 Getting Started with Linux

You can use redirection like this to create some files you can use to practice copy-
ing and deleting. If you don’t want to spend time creating the file contents, you
can make some empty files by redirecting nothing, like this:

> testfile1.txt

Creating Directories
As you may know from other computers you’ve used, it’s a lot easier to manage
the files on your computer if they’re organized into directories (or folders). You
can create a directory using the command mkdir:

mkdir work

TOP TIPS FOR NAMING YOUR FILES
If you plan to use the shell, you can follow a few guidelines when creating files that will
make your Linux life much easier. These tips apply even if you’re creating files using the
desktop environment, but it only really matters when you start working with files in the
shell.

Here’s our advice:

•	Only use lowercase so that you don’t have to remember where the capital letters
are in a filename.

•	Don’t use filenames with spaces. They have to be treated differently in the shell (put
inside single or double quote marks); otherwise, Linux thinks each of the words in
the filename is a different file. An underscore is a good substitute.

•	Don’t use filenames that start with a hyphen. They’re liable to get confused with
command options.

•	Don’t use the forward slash (/) character anywhere in a filename.

•	Avoid using an apostrophe ('), question mark (?), asterisk (*), quotation (or speech)
marks ("), backslash (\), square brackets ([]), or curved braces ({}). If they appear
in a filename in the shell, you’ll need to either put a \ character before each one or
put the whole filename in speech marks (assuming that it doesn’t already have
any). You can’t use a forward slash (/) at all.

CHAPTER 5 Using the Linux Shell 99

To save time, use one command to create several directories, like this:

pi@raspberrypi:~ $ mkdir work college games

pi@raspberrypi:~ $ ls

Bookshelf college Desktop Documents games Music Pictures Public

Templates Videos work

You might see additional files here, especially if you followed the earlier examples
to make some text files, but the important thing is that one command made three
new directories for you.

The mkdir command’s ability to make several directories at the same time isn’t
unusual: Many other commands can also take several arguments and process
them in order. You can see the listing of two different directories like this, for
example:

ls ~ /boot

The mkdir command doesn’t give you a lot of insight into what it’s doing by
default, but you can add the -v option (short for verbose), which gives you a run-
ning commentary as each directory is created. You can see what that looks like in
the next example.

If you want to make some directories with subdirectories inside them, it would be
a nuisance to have to create a directory, go inside it, create another directory, go
inside that, and so on. Instead, use the -p option, like this:

pi@raspberrypi:~ $ mkdir –vp work/writing/books

mkdir : created directory 'work'

mkdir : created directory 'work/writing'

mkdir : created directory 'work/writing/books'

The command keeps you informed of any changes it makes, but if the work direc-
tory already exists, you won’t see the first line of output shown here.

Deleting Files
After experimenting with creating files and directories, you probably have odd bits
of file and meaningless directories all over the place, so it’s time to tidy up.

100 PART 2 Getting Started with Linux

To delete files in Linux, you use the rm command, short for remove. Use it very
carefully. There’s no trash can or recycle bin to recover your file from again, so
when it’s gone, it’s gone. Actually, expert Linux users might be able to get it back
using specialized software and huge amounts of time and patience, so it’s not a
secure deletion. But for an average user without access to such software and
expertise, when you tell Linux to remove a file, it acts fast and decisively.

The rm command has this format:

rm options filename

As with mkdir, the command doesn’t tell you what it’s doing unless you use the
verbose option (-v). As an example, you could remove a file called letter.txt
using

pi@raspberrypi:~ $ rm –v letter.txt

removed 'letter.txt'

Like mkdir, running the rm command can take several arguments, which means it
can remove several files at once if you list all their names, for example:

pi@raspberrypi:~ $ rm –v letter.txt letter2.txt

removed 'letter.txt'

removed 'letter2.txt'

This is where you need to be extremely careful. Imagine that you have two files
called old index.html and index.html. The latter is your new website home page,
which you’ve toiled over all weekend. (You can see where this is going, can’t you?)
You want to clear out the old development file, so you issue this command:

pi@raspberrypi:~ $ rm –v old index.html

rm : cannot remove 'old': No such file or directory

removed 'index.html'

Arrrggh! Because of that space in the old index.html filename, the rm command
thinks that you wanted to remove two files — one called old and the other called
index.html. It tells you it can’t find the file called old, but goes right ahead and
wipes out index.html. Nasty!

To pin up a safety net, use the -i option (for interactive), which tells you which
file(s) will be deleted and prompts you to confirm each deletion. Using that would
have avoided this mistake, as shown here:

CHAPTER 5 Using the Linux Shell 101

pi@raspberrypi:~ $ rm -vi old index.html

rm : cannot remove 'old': No such file or directory

rm : remove regular file 'index.html'?

No, no, no! When prompted, you enter Y to confirm the deletion or N to keep the
file and move on to the next one (if any).

The risk of deleting the wrong file is one reason you should avoid files with spaces
in their names. For the record, the correct way to remove a file whose name con-
tains a space would be to enclose it in quotes:

pi@raspberrypi:~ $ rm –vi 'old index.html'

Using Wildcards to Select Multiple Files
Often, a directory contains lots of files that have similar filenames. Sean’s digital
camera, for example, creates files with names like these:

img_8474.jpg

img_8475.jpg

img_8476.jpg

img_8477.jpg

img_8478.jpg

If you want to delete a group of them, or to copy them or do anything else with
them, you don’t want to repeat the command by typing out each filename in turn.
Computers are good at repetition, so it’s better to leave the donkey work to the
shell.

Wildcards enable you to do that. Instead of giving a specific filename to a com-
mand, you can give it a pattern to match, such as all files that begin with img or
all the files that have the extension .jpg.

The asterisk wildcard replaces any number of any character, so *.jpg returns any
filenames that end with .jpg, no matter how long they are and no matter how
many of them there are. The question mark asterisk replaces just one character,
so img?.jpg would select img1.jpg, img2.jpg, and imgb.jpg but ignore img11.
jpg or any other longer filenames.

102 PART 2 Getting Started with Linux

If you want to choose files that begin with a particular letter, you can use the
square brackets wildcard. To choose any files beginning with the letters a, b, or c,
you would use [abc]*. To narrow that down to just those that end with .jpg, you
would use [abc]*.jpg.

Table 5-3 provides a quick reference to the wildcards you can use, with examples.

You can use wildcards anywhere you would usually use a filename. For example,
you can delete all your files starting with the letters img, like this:

rm –vi img*

To delete all files ending with the extension .txt, use

rm –vi *.txt

Be especially careful about where you insert spaces when you’re using wildcards.
Imagine that you add a sneaky space in the previous example, like this:

rm –vi * .txt

TABLE 5-3	 Raspberry Pi Wildcards
Wildcard What It Means Usage Example What Is Selected in the Example

? Any single character photo?.jpg Any files that start with photo and have exactly
one character after it before the .jpg exten-
sion. For example, photo1.jpg or photox.
jpg but not photo10.jpg.

* Any number of charac-
ters (including no
characters)

photo Any files that have the word photo in their
filenames.

[...] Matches any one of the
characters in brackets

[abc]* All files that start with the letter a, b, or c.

[^...] Matches any single char-
acter that isn’t between
the brackets

[^abc]* Any files that do not start with the letter a, b,
or c.

[a-z] Matches any single char-
acter in the range
specified

[a-c]*.jpg Any files that start with a letter a, b, or c and
end with the .jpg extension.

[0-9] Matches any single char-
acter in the range
specified

photo[2-5].
jpg

Matches photo2.jpg, photo3.jpg,
photo4.jpg, and photo5.jpg.

CHAPTER 5 Using the Linux Shell 103

Doh! The shell thinks you want it to delete *, which is a wildcard for every file, and
then to delete a file called .txt. Luckily, you’ve used the -i option, so you’ll be
prompted before deleting each file — though people often omit that when they’re
deleting a lot of files, because otherwise they spend a long time confirming each
deletion, which is almost as tedious as not using wildcards in the first place.

One way you can test which files match a wildcard is to use the file command
with it before you delete using it. For example:

file *.txt | less

Take care that you don’t introduce any spaces between testing with file and
removing with rm! You can tap the Up arrow key to get the last command back,
and then edit it carefully to change the command, leaving the wildcard alone.

Another thing to be careful about is using wildcards with hidden files. Hidden files
begin with a period (full stop), so you might think that .* would match all the
hidden files. It does, but it also matches the current directory (.) and its parent
directory (..), so .* matches everything in the current directory and the directory
above it.

Removing Directories
You can use two commands for removing directories. The first one, rmdir, is the
safer of the two because it refuses to remove directories that still have files or
directories inside them. Use it with the name of the directory you want to
remove — for example, books, — like this:

rmdir books

If you want to prune a whole branch of the directory tree, you can use the rm com-
mand to remove a directory and delete anything inside it and its subdirectories.
Used with the recursive option (-R), it works its way down the directory tree, and
with the force option (-f), it deletes any files in its way. It’s a rampaging beast of
a command. Here’s an example:

rm –Rf books

It acts silently and swiftly, deleting the books directory and anything in it.

104 PART 2 Getting Started with Linux

You can add the interactive option to cut the risk, which prompts you for confir-
mation of each deletion, as you can see in this example where we’ve left a file in
the folder work/writing/books:

pi@raspberrypi:~ $ rm –Rfi work

rm: descend into directory 'work'? Y

rm: descend into directory 'work/writing'? Y

rm: descend into directory 'work/writing/books'? Y

rm: remove regular file 'work/writing/books/rapidplan.txt'? Y

rm: remove directory 'work/writing/books'? Y

rm: remove directory 'work/writing'? Y

rm: remove directory 'work'? Y

You can use wildcards when removing directories, but take special care with them
and make sure you don’t introduce any unwanted spaces that result in your
removing * (everything). If you use rm –Rf .* to try to remove hidden directories,
you also match the current directory (.) and the parent directory (..). That means
it deletes every file in the current directory (hidden or not), all its subdirectories
and their contents (hidden or not), and everything in the parent directory, includ-
ing its subdirectories (again, whether or not they are hidden).

Our own experience of the Linux community has been that it’s friendly and sup-
portive, and people welcome newcomers who want to join. But occasionally, you
might come across some joker online advising inexperienced users that the solu-
tion to their problems is to issue the command rm -Rf /* as a user with root
permissions. This attempts to delete everything, starting at the root.

Copying and Renaming Files
One of the fundamental things you’ll want to do with your files is copy them, so
let’s take a look at how to do that. The command you need to use is cp, and it takes
this form:

cp -options copy_from copy_to

Replace copy_from with the file you want to copy, and copy_to for where you
want to copy it to.

For example, if you wanted to copy the file config.txt from the /boot directory
to your home directory (~) so that you can safely play with it, you would use

cp /boot/config.txt ~

CHAPTER 5 Using the Linux Shell 105

If you wanted to copy the file into your current working directory, wherever that
is, you could use

cp /boot/config.txt .

You can also specify a path to an existing folder to send the file to by using

cp /boot/config.txt ~/files/

Your original file and the copy don’t have to have the same name. If you specify a
different filename, the copy takes that name. For example:

cp /boot/config.txt ~/oldconfig.txt

That copies config.txt from the /boot directory to your home directory and
renames it as oldconfig.txt. This same technique enables you to keep a safe
copy of a file you’re working on, in case you want to revert to an old version later.
The paths are optional, so you could create a backup copy of the file timeplan.txt
in the same directory by going into the directory that stores timeplan.txt and
using

cp timeplan.txt timeplan.bak

You can use several options with cp, some of them familiar from the rm command.
The cp command overwrites any files in its way without asking you, so use the -i
(interactive) option to force it to ask you before it overwrites any existing files
with the new copies. The -v (verbose) option gives you an insight into what the
command has done, as it does with rm.

You can use wildcards, so you can quickly copy all your files, or all your files that
match a particular pattern. If you want it to copy subdirectories too, however, you
need to use the recursive option, like this:

cp -R ~/Documents/* ~/homebak

That command copies everything in your Documents directory (including any sub-
directories) into a folder called homebak in your home directory. For advice on
using the shell to copy to external storage devices, see the appendix.

If you don’t want to make a copy of a file, but instead want to move it from one
place to another, use the mv command. For example, if you misfiled one of your
files and you want to move it from the australia directory to the japan directory
(both in your home directory), you would use

mv ~/australia/itinerary.txt ~/japan

106 PART 2 Getting Started with Linux

That works as long as the destination directory exists. If it doesn’t, the command
assumes that you want the file to have the new filename of japan, and so the file
stops being itinerary.txt in the australia directory, and becomes a file called
japan in the home directory. It’s confusing if you do it by mistake, but this quirk
is how you rename files in Linux. You move them from being the old name into
being the new name, usually in the same folder, like this:

mv oldname newname

There’s no recursive option with the mv command because it moves directories as
easily as it moves files by default.

Finding Files on Your Raspberry Pi
Handily enough, there’s a command called find that you can use to track down
files on your Raspberry Pi. You can use it with wildcards or a filename. To avoid
filling the screen with warnings about folders you can’t access, it’s best used with
sudo if you’re searching from the root. You can use it like this:

sudo find / -name filename

For example, to find where listing.txt is stored, use:

sudo find / -name listing.txt

Installing and Managing Software
on Your Raspberry Pi

Linux distributions come with thousands of packages, which are software pro-
grams that are ready to download from the Internet and install on your computer.
In this chapter, we show you how to use the command line to install software.
There is also a simple tool for installing software on the Raspberry Pi within the
desktop environment, as described in Chapter 4. You might find it useful to know
what’s going on in the background, though, and the command line gives you more
of a sense of that.

Some packages require other packages to work successfully (known as dependen-
cies), but luckily a program called a package manager untangles all these depen-
dencies and takes responsibility for downloading and installing the software you

CHAPTER 5 Using the Linux Shell 107

want, together with any other software it needs to work correctly. On the Rasp-
berry Pi, the package manager is called apt. It’s short for “Advanced Package
Tool.”

Installing software requires the authority of the root user or superuser of the
computer. The Raspberry Pi doesn’t come with a root account enabled, in common
with some other Linux distributions. One school of thought says that a root
account is a security threat because people are inclined to use it all the time rather
than log in and out of it when they need it. That leaves the whole system and its
files vulnerable, including to any malicious software that might get in. Instead of
using a root account, you use the word sudo before a command on the Raspberry
Pi to indicate that you want to carry it out with the authority of the root user. You
can’t use it before all commands, but it’s essential for installing software.

If you ever get an error message that tells you something can be done only with
the authority of the root, try repeating the command but putting sudo in front
of it.

Updating the cache
The first step in installing software is to update the cache, which is the list of
packages the package manager knows about. You do that by entering the following
command:

sudo apt update

This command needs the permission of the root user, so we put sudo in front of it.

You need to have a working Internet connection for this to work, and it may take
some time. Consider leaving the Raspberry Pi to get on with it while you have a
cup of tea — or a slice of raspberry pie, perhaps.

Finding the package name
The package manager cache (the apt cache, in Linux terminology) contains an
index of all the software packages available. You can search it to find the software
you want using a tool called apt-cache. For example, you can find all the games
by using

apt-cache search game

You don’t need to use sudo this time, but it still works if you do.

108 PART 2 Getting Started with Linux

The list is huge, so you might want to use less to browse it, like this:

apt-cache search game | less

The screen output looks like this (I left out a couple of additional packages near
the top of this list relating to 0ad):

pi@raspberrypi:~ $ apt-cache search game

0ad - Real-time strategy game of ancient warfare

2048-qt - mathematics based puzzle game

3dchess - Play chess across 3 boards!

4digits - guess-the-number game, aka Bulls and Cows

7kaa - Seven Kingdoms Ancient Adversaries: real-time strategy game

7kaa-data - Seven Kingdoms Ancient Adversaries - game data

a7xpg - chase action game

a7xpg-data - chase action game - game data

abe - Side-scrolling game named "Abe's Amazing Adventure"

abe-data - Side-scrolling game named "Abe's Amazing Adventure"

[list continues...]

The bit before the hyphen tells you the name of the package, which is what you
need to be able to install it. That might not be the same as the game’s title or its
popular name. For example, there are lots of solitaire card games you can install,
but none of them has the package name solitaire. To find the package name for
a solitaire game, you would use

apt-cache search solitaire

This search returns 22 results, and the first one is

ace-of-penguins - penguin-themed solitaire games

You can read a longer description of a package and see its download size using apt
show. For example, to find out more about ace-of-penguins, use:

apt show ace-of-penguins

Installing software
If you know the name of the package you would like to install, the following com-
mand downloads it from the Internet and installs it, together with any other
packages it needs to work correctly:

sudo apt install ace-of-penguins

CHAPTER 5 Using the Linux Shell 109

The last bit is the name of the package we found by searching the cache.

When you’re searching the cache, you use apt-cache in the command, and when
you’re installing software, you use apt. It’s easy to get these two commands
mixed up, so if your instruction doesn’t work, double-check that you’re using the
right one. Installing software and updating the cache requires sudo, but searching
the cache doesn’t.

Note that not all of the software available in the packages works well on the Rasp-
berry Pi. It’s easy enough to try, though, and remove it again if it doesn’t work
for you.

Running software
Some programs can be run directly from the command line by just typing their
names, such as

htop

which enables you to see all the processes running on your Raspberry Pi. It’s
already installed for you. Press Q to quit when you’ve seen enough.

Most end-user applications require you to be in the desktop environment to run
them. After installing them, you can find them on the Applications menu. The Ace
of Penguins games, for example, install into the Games folder in your Applications
menu.

Whether a program should be run from the command line or in the desktop envi-
ronment depends on the program, so consult its instructions if you can’t work out
how to start it.

Upgrading the software
The package manager’s responsibility doesn’t end once it has installed software.
It can also be used to keep that software up to date, installing the latest enhance-
ments and security improvements. You can issue a single command to update all
the software on your Raspberry Pi:

sudo apt upgrade

110 PART 2 Getting Started with Linux

Update the cache first to make sure apt installs the latest updates to your installed
packages. You can combine both commands into a single line, like this:

sudo apt update && sudo apt upgrade

The && means that the second command should be carried out only if the first one
succeeds. If the update to the cache doesn’t work, it won’t attempt to upgrade all
the software.

The upgrading process often ties up your Raspberry Pi for some time.

If you want to update just one application, you do that by issuing its install com-
mand again. Imagine that you’ve already installed Ace of Penguins and you enter

sudo apt install ace-of-penguins

That prompts apt to check for any updates to that package and install them. If
there are none, it tells you that you’re already running the newest version.

Removing software and freeing up space
The package manager can also be used to remove software from your Raspberry
Pi. For example:

sudo apt remove ace-of-penguins

This particular command leaves traces of the applications, which might include
user files and any files containing settings. If you’re sure you won’t need any of
this information, you can completely remove and clean up after an application
using

sudo apt purge ace-of-penguins

You can do two other things to free up some precious space on your SD or microSD
card and clean up your system. First, you can automatically remove packages that
are no longer required. When a package is installed, other packages it requires are
usually installed alongside it. These packages can remain after the original pro-
gram has been removed, so there’s a command to automatically remove packages
that are no longer required. It is

sudo apt autoremove

CHAPTER 5 Using the Linux Shell 111

It lists the packages that will be removed and tells you how much space it will free
up before prompting you to enter a Y to confirm that you want to continue.

When you install a package, the first step is to download its installation file to
your Raspberry Pi. After the package has been installed, its installation file remains
in the directory /var/cache/apt/archives. Over time, as you try out more and
more packages, this can amount to quite a lot of space on your SD or MicroSD card.
Take a look in that directory to see what’s built up there. These files aren’t doing
much. If you reinstall a program, you can always download the installation file
again.

The second thing you can do to clean up your SD card is remove these files using

sudo apt clean

Finding out what’s installed
To find out what software is installed on your Raspberry Pi, you can use

dpkg --list

The dpkg command is short for “Debian Package.” Debian is the Linux distribu-
tion that Raspberry Pi OS is based on.

This command doesn’t need root authority to run, so it doesn’t require you to put
sudo at the start.

If you want to find out whether a specific package is installed, use

dpkg --status packagename

For applications that are installed, this also provides a longer description than the
short apt-cache description, which might include a web link for further
documentation.

The Raspberry Pi includes many packages that come with the Linux operating
system and are required for its operation. If you didn’t deliberately install a pack-
age, exercise caution before removing it.

112 PART 2 Getting Started with Linux

Managing User Accounts on
Your Raspberry Pi

If you want to share the Raspberry Pi with family members, you could create a
user account for each one so that they all have their own home directory. The
robust permissions in Linux help to ensure that people can’t accidentally delete
each other’s files, too.

When we looked at the long listing format earlier in this chapter, we discussed
permissions. You might remember that users can be members of groups. On the
Raspberry Pi, groups control access to resources like the audio and video hard-
ware, so before you can create a new user account, you need to understand which
groups that user should belong to. To find out, use the groups command to see
which groups the default pi user is a member of:

pi@raspberrypi:~ $ groups pi

pi adm dialout cdrom sudo audio video plugdev games users input netdev spi i2c

gpio lpadmin

When you create a new user, you want to make him a member of most of these
groups, except for the group pi (which is the group for the user pi).

If you give users membership of the sudo group, they will be able to install soft-
ware, change passwords, and do pretty much anything on the machine (if they
know how). In a home or family setting, that should be fine, however. The
permissions system still protects users from accidentally deleting data they
shouldn’t, as long as they steer clear of the sudo command.

To add a user, you use the useradd command with the -m option to create a home
directory for him and use the -G option to list the groups the user should be a
member of, like this:

sudo useradd –m –G [list of groups] [username]

For example:

sudo useradd –m –G adm,dialout,cdrom,sudo,audio,video,plugdev,games,users,

netdev,input,spi,gpio leo

Make sure the list of groups is separated with a comma and there are no spaces in
there.

CHAPTER 5 Using the Linux Shell 113

You can do a quick check to confirm that a new home directory has been created
with the user’s name in directory /home, alongside the home directory for the
pi user:

ls /home

You also need to set a password for the account, like this:

sudo passwd [username]

For example,

sudo passwd leo

Usernames are case sensitive, so if you use any capital letters, you must do so
consistently. You’re prompted to enter the password twice, to make sure you don’t
mistype it, and you can use this command to change the password for any user.
There is no output on the screen as you type the password, which can be a bit
off-putting, but keep typing and it should work fine.

You can test whether it’s worked and log in as the new user without restarting
your Pi by logging out from your current user account. Close the shell window and
select Applications ➪   Logout. Choose Logout from the options, and you’ll be pre-
sented with the login screen, where you can test that the new username is work-
ing. When you’re ready to return to the pi account, log out of the new account and
log back in as pi. The default password for the pi account is raspberry.

If you use the passwd command to set a password for the username root, you will
be able to log on as the superuser, who has the power to do anything on the
machine. As a last resort, this might enable you to get some types of software
working, but we advise you against using it. It’s safer to take on the mantle of the
superuser only when you need it, by using sudo.

If you want to share the Raspberry Pi with different family members, you could
just give each user their own microSD card to insert when they’re using the
machine, and let them log on with the pi username and password.

Raspberry Pi OS automatically logs in as the user pi, unless you disable that fea-
ture. You can turn it on or off using the Raspberry Pi Configuration tool (see
Chapter 3).

114 PART 2 Getting Started with Linux

Learning More about Linux Commands
Lots of information about Linux is available on the Internet, but plenty of docu-
mentation is also hidden inside the operating system itself. If you want to dig
further into what Linux can do, this documentation can point you in the right
direction, although some of it is phrased in quite a technical way.

Commands in Linux can take several different forms. They might be built into the
shell itself, they might be separate programs in the /bin directory, or they could
be aliases (which are explained in the next section). If you want to look up the
documentation for a command, first find out what kind of command it is, using
the type command, like this:

pi@raspberrypi:~ $ type cd

cd is a shell builtin

pi@raspberrypi:~ $ type mkdir

mkdir is /bin/mkdir

pi@raspberrypi:~ $ type ls

ls is aliased to 'ls --color=auto'

If you want to find out where a particular program is installed, use the which
command together with the program name:

which mkdir

To get documentation for shell built-ins, you can use the shell’s help facility. Just
enter help followed by the filename you’re looking for help with:

help cd

The help command’s documentation uses square brackets for different options
(which you may omit), and uses a pipe (|) character between items that are mutu-
ally exclusive, such as options that mean the opposite of each other.

For commands that are programs, such as mkdir, you can try using the command
with --help after it. Many programs are designed to accept this and to display
help information when it’s used. A usage example is

mkdir --help

When we used this approach on apt, the help page told us that “APT has Super
Cow Powers.” Try apt moo to see what it means!

CHAPTER 5 Using the Linux Shell 115

There is also a more comprehensive manual (or man page) for most programs,
including program-based Linux commands and some applications such as Libre-
Office (see Chapter 6). To view the manual for a program, use

man program_name

For example:

man ls

The manual is displayed using less, so you can use the controls you’re familiar
with to page through it. This documentation can have a technical bent, so it’s not
as approachable to beginners as the help pages.

If you don’t know which command you need to use, you can search across all the
manual pages using the apropos command, like this:

pi@raspberrypi:~ $ apropos delete

argz_delete (3) - functions to handle an argz list

delete_module (2) - unload a kernel module

git-branch (1) - List, create, or delete branches

git-replace (1) - Create, list, delete refs to replace objects

git-symbolic-ref (1) - Read, modify and delete symbolic refs

git-tag (1) - Cre�ate, list, delete or verify a tag object signed

with GPG

groupdel (8) - delete a group

ntfsundelete (8) - recover a deleted file from an NTSF volume.

rmdir (2) - delete a directory

shred (1) - ove�rwrite a file to hide its contents, and optionally

delete it

[list continues ...]

You can then investigate any of these programs further by looking at their man
pages or checking to see whether they can accept a --help request. The number in
brackets (parentheses) tells you which section of the man page contains the word
you searched for.

For a 1-line summary of a program, taken from its man page, use whatis:

pi@raspberrypi:~ $ whatis ls

ls (1) - list directory contents

If you’re not yet drowning in documentation, there’s an alternative to the man
page, which is the info page. Info pages are structured a bit like a website, with

116 PART 2 Getting Started with Linux

a directory of all the pages at the top, and links between the various pages. You use
info like this:

info ls

Move around using the cursor keys or Page Up/Down. When you go off the bottom
of a page, you move to the top of the next page. You can go back up a page by mov-
ing your cursor off the top of the current page, too. When your cursor is on a link
(underlined text), press Enter to follow the link. Press l (a lowercase letter L) to go
back. Press Q to quit. There’s a lot more you can do with info, so if you’re curious
take a look at the documentation at www.gnu.org/software/texinfo.

Customizing the Shell with Your
Own Linux Commands

If you want to stamp your identity on your Raspberry Pi, you can make up your
own Linux commands for it. You can have fun inventing a command that shows a
special message if someone enters your name (use the echo command for this),
but it’s genuinely useful for making more memorable shortcuts so that you don’t
have to remember all the different options you might want to use. We show you
how to make a command for deleting files that uses the recommended options to
confirm each file that will be deleted, and to report on what’s been removed. We
call it pidel, a mashup of Pi and delete.

The first step is to test whether your preferred command name is already in use.
If the type command tells you anything other than not found, you need to think up
another command name, or risk upsetting an existing command. Here’s our test:

pi@raspberrypi:~ $ type pidel

bash: type: pidel: not found

Now that you know that the command pidel is not yet taken, you can create your
command. To do that, make an alias, like this:

alias pidel='rm –vi'

Between the quote marks, put the Linux command that you want to execute when
you enter the pidel command. As you can see from this alias instruction, when
you use pidel, it behaves like rm -vi, but you will no longer have to remember
the letters for those options. For example:

https://www.gnu.org/software/texinfo

CHAPTER 5 Using the Linux Shell 117

pi@raspberrypi:~ $ pidel *.txt

rm: remove regular file 'fm.txt'? y

removed 'fm.txt'

rm: remove regular file 'toc.txt'? n

pi@raspberrypi:~ $

You can combine lists of commands in your alias definition by separating them
with semicolons. For example:

alias pidel='clear;echo This command removes files with the interactive and

verbose options on.;rm –vi'↩

Your alias only lasts until the computer is rebooted, but you can make it perma-
nent by putting the alias instruction into the file .bashrc in your home directory.
To edit that file, use

nano ~/.bashrc

Nano is a simple text editor that is covered in more detail in the appendix, but in
brief, you can edit your file, use Ctrl+O to save, and Ctrl+X to exit.

Your alias can go anywhere in the .bashrc file. For convenience, and to avoid the
risk of disturbing important information there, we suggest you add your aliases at
the top. Each one should be on its own line.

Any commands added in .bashrc take effect when you next start up your
Raspberry Pi. (See the next section, “Shutting Down and Rebooting Your Rasp-
berry Pi.”)

Sometimes you might want to replace an existing command with an alias so that
your chosen options are enforced whenever you use it. If you look at the type for
ls, for example, it’s aliased so that it always uses the color option to classify files.

Shutting Down and Rebooting
Your Raspberry Pi

Usually, you would shut down and reboot your Raspberry Pi using the Applications
menu on the desktop, or the Fn+F10 combination on the Raspberry Pi 400.
However, it’s possible to set the Pi to boot straight into the command line (see

118 PART 2 Getting Started with Linux

Chapter 3) so that you don’t see the desktop. In that case, you can turn off your
Raspberry Pi safely in this way:

sudo shutdown

You can set the shutdown to happen after a delay — for example, 3 minutes — like
this:

sudo shutdown -h 3

You can cancel a scheduled shutdown using the -c option like this:

sudo shutdown -c

There is a shorter version you can use, which works fine on the Raspberry Pi, but
may cause problems on other Linux systems you might use later:

sudo halt

To switch on your Raspberry Pi again, disconnect and reconnect the power, or use
Fn + F10 on a Raspberry Pi 400.

You can reboot (or restart) your Raspberry Pi without disconnecting and recon-
necting the power, like this:

sudo reboot

When you’re in the Terminal window, you can close it by clicking the Close button
in the top-right corner of the window, or by using this command:

exit

3Using the
Raspberry Pi
for Both Work
and Play

IN THIS PART . . .

Use LibreOffice to write letters, manage your budget in a
spreadsheet, create presentations, and design a party
invitation.

Use GIMP to edit your photos, including rotating and
resizing them, retouching imperfections, and cropping
out unnecessary detail.

Watch high-definition movies and play music on your
Raspberry Pi.

CHAPTER 6 Being Productive with the Raspberry Pi 121

Chapter 6
Being Productive with
the Raspberry Pi

There comes a time in most people’s lives when they have to get down to
work, and when it’s your turn to get down to work, the Raspberry Pi can
help. Whether you need to do your homework or work from home, you can

use LibreOffice, a fully featured office suite that’s compatible with the Raspberry Pi.

If you haven’t heard of LibreOffice, you might have heard of its ancestor,
OpenOffice. A team of developers took OpenOffice as a starting point and devel-
oped LibreOffice based on it.

LibreOffice and Microsoft Office for Windows have lots of similarities between
them, so LibreOffice will probably feel familiar to you. You can copy files between
the two programs too, although you might lose some of the layout features
when you do that.

In this chapter, we show you how to use four of the programs in LibreOffice for
common household activities. You’ll learn how to write a letter, use a spreadsheet
to plan a budget, create a presentation, and design a simple party invitation.

LibreOffice is free to download and distribute. If you would like to support the
project, you can donate to the charitable foundation that drives its development,
The Document Foundation, or help to build or promote the software. Visit the
website at www.libreoffice.org.

IN THIS CHAPTER

»» Writing letters in LibreOffice Writer

»» Managing your budget in
LibreOffice Calc

»» Creating presentations in LibreOffice
Impress

»» Creating a party invitation with
LibreOffice Draw

http://www.libreoffice.org/

122 PART 3 Using the Raspberry Pi for Both Work and Play

Installing LibreOffice on Your Raspberry Pi
If you’re using the Raspberry Pi OS image that includes recommended applica-
tions, you should already have LibreOffice installed. If not, you can install it using
the Recommended Software tool in the Preferences category of the Applications
menu.

Alternatively, you can install or update the software using the following two com-
mands in the Linux shell:

sudo apt update

sudo apt install libreoff ice

For further guidance on installing software, and an explanation of how these
commands work, see Chapter 5.

Working with LibreOffice
on the Raspberry Pi

When you enter the desktop environment (see Chapter 4), you should find Libre-
Office on the Applications menu, in the Office category, as shown in Figure 6-1.
The menu has separate entries for LibreOffice Base (databases), LibreOffice Calc
(spreadsheets), LibreOffice Draw (page layouts and drawings), LibreOffice Impress
(presentations), LibreOffice Math (mathematical formulas), and LibreOffice
Writer (word processing).

You can start a new LibreOffice file of any type from the File menu in one of the
applications, irrespective of which application you’re using. For example, you can
create a new spreadsheet from the word processor’s File menu. When you do this,
the correct application opens (Calc, in this case) with a blank file ready for you
to use.

In this chapter, we show you how to get started with Writer, Calc, Impress, and
Draw.

You can also start LibreOffice and open a file in it by double-clicking a LibreOffice
or Microsoft Office file in the desktop environment.

CHAPTER 6 Being Productive with the Raspberry Pi 123

If you’re a student or an academic and you have to write scientific or mathemati-
cal formulae, the suite also includes LibreOffice Math, which is used to lay them
out (but won’t generate the answers for you, unfortunately). To use it, go to the
File menu in LibreOffice and choose New ➪   Formula or choose Applications ➪   Libre-
Office Math.

Saving your work
In all LibreOffice applications, you save your work from the File menu. You have a
choice of formats. The OpenDocument Format (ODF) file types are the default, and
can be read by other applications, including Microsoft Office. You can also save in
the normal file formats of Microsoft Office.

Save frequently. The applications save automatically from time to time and have
some capabilities built in to recover files if the computer crashes, but it’s better to
catch the trapeze than to test the safety net.

Writing letters in LibreOffice Writer
LibreOffice Writer is a word processor, similar to Microsoft Word on Windows,
which makes it the perfect application to use to write a letter.

FIGURE 6-1:
The LibreOffice
entries, on the

Applications
menu.

Sean McManus

124 PART 3 Using the Raspberry Pi for Both Work and Play

It can open Microsoft Word files, and its default file format — the OpenDocument
Text (ODT) file — can be opened and saved by Word, too. For anything but the
most basic files, you’re likely to experience some corruption of the document’s
appearance when you open a Word document in LibreOffice, however. You prob-
ably won’t have the same fonts on your Raspberry Pi, for example, and more
advanced layouts tend to get distorted.

Figure 6-2 shows LibreOffice Writer in action. If you’ve used other word process-
ing packages, it won’t take you long to find your feet here. The icons are similar
to those used in Microsoft Office, and if you hover the mouse cursor over an icon,
a tooltip appears and tells you what it does.

You can change the text appearance and the style using the icons and options on
the toolbars above your document and then type on the page using your chosen
formatting in the document. Alternatively, you can click and drag to highlight text
in your document and then click the toolbar to apply different formatting to your
selected text.

The pull-down menus at the top of the screen provide access to all of LibreOffice
Writer’s features. Browsing them is a good way to see what the application is
capable of.

FIGURE 6-2:
Writing a letter

with LibreOffice.

CHAPTER 6 Being Productive with the Raspberry Pi 125

The Insert menu enables you to add special characters, manual breaks (including
page breaks and line breaks), formatting marks (including nonbreaking hyphens),
document headers and footers, footnotes, bookmarks (they don’t appear onscreen,
but can help you to navigate the document), comments (useful if you are collabo-
rating on documents), frames (boxes for text that you can arrange where you want
on the page), and tables.

The Format menu includes options for character formatting (which includes font
and font effects, underlining, superscript, rotation, links, and background colors),
paragraph formatting (which includes indents and spacing, alignment, text flow,
and borders), bullets and numbering, page formatting (including paper size,
background colors and images, headers, and footers), columns (for multicolumn
layouts), and alignment.

Using those two menus, you can achieve most of what you need. The most com-
mon options are also replicated with icons on the toolbars at the top of the screen.

If you use styles to structure your document (using Heading 1 for the most impor-
tant headings and Heading 2 for subheadings, for example), you can use the Nav-
igator to jump to different parts of your document easily. Tap F5 to open it. The
Navigator also enables you to jump to tables, links, and bookmarks.

Using the File menu, you can save your document as a PDF file (or export it). The
great thing about this is that it preserves the formatting of the file, so you can
share your document with people who might not have the same fonts or software
as you, and guarantee they will see exactly what you see. Most people have soft-
ware for reading PDF files. Microsoft Office can convert PDFs to an editable form,
too, although it may not look the same as the PDF.

Managing your budget in LibreOffice Calc
LibreOffice Calc is a spreadsheet application, similar to Microsoft Excel. A good
way to try it is to open one of your Excel spreadsheets using it. Your formulae
should work fine and the cell formats should carry over. The interface is similar to
LibreOffice Writer, with icons you can roll the mouse pointer over to find out what
they do. Figure 6-3 shows Sean’s holiday budget in LibreOffice Calc. We’ve used
the slider at the bottom of the screen to magnify the content so that it’s easy for
you to read.

More advanced Microsoft Excel spreadsheets that use macros might not be com-
patible with LibreOffice.

We don’t have room to provide an in-depth guide to spreadsheets here, but we can
show you how to work out a simple holiday budget.

126 PART 3 Using the Raspberry Pi for Both Work and Play

A spreadsheet is basically a grid of information, but it’s powerful because you can
use it to perform calculations using that information. The boxes on the spread-
sheet are called cells. To enter information into a cell, you just click it and then
type what you want to enter. Alternatively, you can click a cell and then type into
(or edit the contents of) the Formula bar at the top of the screen (refer to
Figure 6-3).

Each cell has a grid reference, taken from the letter at the top of its column and
the number on the left of its row. The top-left cell is A1, and the next cell to the
right is B1, and the one below that is B2 (refer to Figure 6-3).

To start with, enter a list of the different expenses you’ll incur, working your way
down the screen in column A. Beside each item, in column B, enter how much it
costs. In column C, enter how many of that item you will need. For example, one
row of our spreadsheet shows the name of the hotel in column A, how much it
costs per night (in column B on the same row), and then a 6 for the number of
nights Sean will stay there in column C on that row. In Figure 6-3, you can see
we’ve also written titles in the cells at the top of the columns of data so that we
can easily see what is in each column.

FIGURE 6-3:
How much?!

Planning a
holiday budget in

LibreOffice Calc.

CHAPTER 6 Being Productive with the Raspberry Pi 127

You can make a column wider so that you can more easily enter the descriptions
of your budget items. Click and drag the line between the letter at the top of the
column and the letter at the top of the column to its right. If you double-click this
line, the column will become the right width for its content.

To show a currency sign in a cell, click the Format menu, choose Cells, and then
change the category to Currency and the format to the layout and currency symbol
you would like to use. You can select a group of cells and format them at the same
time by clicking and dragging the cells before you go into the Format menu.

You can enter formulae (or calculations) into cells, and the answers will appear in
the spreadsheet. If you want to enter a formula into a cell, you type the equal sign
(=), followed by the formula. You use an asterisk (*) for multiplication and a slash
(/) for division. For example, click any empty cell and enter

=7*5

The result (35) appears in the cell on the spreadsheet where you entered the for-
mula. You can view or edit the formula itself by clicking the cell and then clicking
the formula bar above the spreadsheet, or by double-clicking the cell.

The magic happens when you start using the numbers in one cell to work out what
should go in another one. You do that by using the grid reference of a cell in your
formula. For the holiday budget, we want to multiply the cost of an item (such as
a night in a hotel) by how many of them we buy (six nights’ worth). The first of
those values is stored in column B, and the second one is beside it in column C,
both on the same row. After the titles and spacing at the top of the spreadsheet,
the first expense is on row 5. In column D5, we enter

=B5*C5

This multiplies the values in cell B5 (the price) and cell C5 (the quantity) and puts
the result (the total amount spent on that particular item) into cell D5. You can
click cell D5 and then copy its contents and paste them into the cells below. There
are options for copying and pasting on the Edit menu, but LibreOffice also sup-
ports Windows shortcuts, including Ctrl+C to copy and Ctrl+V to paste.

You might think the same number would go into those cells, but it actually copies
the formula and not the result, and it updates it for the correct row number as it
goes. If you copy the formula from cell D5 into cell D6 and then click D6 and look
on the Formula bar, you’ll see that it says

=B6*C6

128 PART 3 Using the Raspberry Pi for Both Work and Play

After you’ve copied the formula down the column, you will have a column of
results that shows the total cost of each expense item. The final step is to calculate
the grand total, adding up the values in those cells. To do that, you use a special
type of formula, called SUM, which adds up the values in a set of cells. To use that,
follow these steps:

1.	 Click a cell at the bottom of the cost column and type =sum(. Don’t press
Enter when you’ve finished.

2.	 Click the top cell in the column of expenses (D5), and hold down the
mouse button.

3.	 Drag the mouse down the screen until the red box encloses all your cost
entries.

4.	 Type a closing bracket — the right parenthesis — and then press Enter.

The grand total appears in that cell, and your budget is complete. A spreadsheet is
more than a glorified calculator because you can use it for planning and asking
“What if?” For example, you can see what happens if you use a more expensive
hotel. Just change the price of the hotel per night, and all the other cells that are
calculated from that update automatically, including your total cost at the bottom.
Similarly, you can double the length of your stay at the hotel by changing the
number of nights in column B to see how that affects your budget total.

Creating presentations in
LibreOffice Impress
If you’re called upon to deliver a presentation, or if you want to force your
holiday-photo slide show on your friends, you can use LibreOffice Impress to
create your slides and play them back. You’re probably realizing that most Libre-
Office programs have a counterpart in the Microsoft Office suite, and Impress is a
bit like Microsoft PowerPoint. You can open PowerPoint presentations using it,
and although some of the nifty slide transitions are missing, we found that quite
sophisticated layouts can be carried across without a problem.

Figure 6-4 shows Sean’s holiday-photo slide show in Impress. To create a pres-
entation, simply follow these steps:

1.	 Start Impress, or choose to create a new presentation from the File menu
in any of the LibreOffice applications.

2.	 Click the slide you want to edit in the Slides panel on the left. When you
begin, this will be the single empty slide.

CHAPTER 6 Being Productive with the Raspberry Pi 129

In the panel on the right, you can see 12 different slide layouts to choose from.
You can also show the Layouts by clicking the Properties button from the
vertical menu on the right.

3.	 Click the slide layout you would like to use in the panel on the right.

4.	 In the panel in the middle, click the existing title text and replace it with
the title you’d like to use for the slide.

5.	 Your slide has up to six boxes for content.

Click one of these and start typing to add text in the box. Alternatively, in the
center of the content box are often four buttons you can click to add different
types of content, including a table, a chart, an image, or a video. If you want to
add a picture, click the bottom-left button and then choose the picture you’d
like to use. Note that if you click a different slide layout on the right, it is applied
to the slide you’re already working on. In the slide layouts, boxes with a blue
line in them are for text only, and those without can be used for any content
type.

6.	 To add a new slide, right-click in an empty space in the Slides panel on
the left, or use the Slide menu.

You can also double-click an empty space in the Slides panel to add a
new slide.

FIGURE 6-4:
Creating a photo
slide show using

LibreOffice
Impress.

130 PART 3 Using the Raspberry Pi for Both Work and Play

7.	 Repeat Steps 2 to 5 to fill in the slide.

8.	 To edit a previous slide, click it in the Slides panel on the left.

You change the formatting of a title, piece of text, or picture by clicking it in the
main slide area and then using the Properties panel on the right of the screen. The
panel opens at a different section depending on whether the slide content is an
image or text.

You can start the slide show from the Slide Show menu at the top of the screen or
by pressing F5.

When the slide show is playing, you can use the left and right cursor keys to
advance through the slide show and use the Esc key to exit.

Impress has lots of additional features to explore, including colorful templates
(click the Master Slides button on the vertical menu on the right), transitions that
animate the display of a slide (also found on this menu), and tools (similar to
those in LibreOffice Draw) for making shapes, including speech bubbles and stars.
(See the second row of the menu at the top of the screen.)

If the panel on the right is taking up too much space, you can close it by clicking
the close button (an X) at the upper-right corner of it. Reopen it again using one
of the buttons in the vertical menu.

Creating a party invitation
with LibreOffice Draw
LibreOffice Draw is used for designing simple page layouts and illustrations and
can be used for making posters and invitations. Despite the application’s arty
name, the drawing tools are basic and are best suited to creating flowcharts and
simple business graphics, although children might enjoy the ease with which they
can add stars, smiley faces, and speech bubbles to their pictures.

We’ll show you how to use Draw to make an invitation. Refer to Figure 6-5, which
shows the LibreOffice Draw screen and our design, as you work through this quick
guide. To make an invitation using LibreOffice Draw:

1.	 Start Draw or choose to create a new drawing from the File menu in any
of the LibreOffice applications.

2.	 Use the toolbar on the left of the screen to select a drawing tool. As you
move the cursor over the buttons, a short description appears.

CHAPTER 6 Being Productive with the Raspberry Pi 131

For this example, click the Smiley Face drawing tool in the Symbol shapes on
the toolbar.

3.	 Move the mouse cursor to the page, and then click and hold the mouse
button as you drag the mouse down and to the right.

As you move the mouse, you see the face fill the space you’re making between
where you clicked the button and where the cursor is. When you release the
mouse button, the face is dropped in place. You might find it easier to simply
place the face anywhere onscreen and then reposition and resize it afterward.

4.	 After you have placed the face onscreen, you can reposition it by clicking
and dragging it. To resize it, click it and then click and drag one of the
blue boxes that appears on its edges.

5.	 Use a similar process to add a speech bubble from the group of items
called Callouts on the toolbar. (Click the bubble on the toolbar to select it,
and then click and drag the page to place it.)

When the speech bubble is on the page, you can resize and reposition it in the
same way you arranged the face. To move the tail of the speech bubble, click
and drag the yellow point at the end of it. Arrange it so that it points to the
smiley face.

6.	 Click the speech bubble and type some text.

The text spills out of the bubble if there is too much of it, so press the Enter key
to start a new line when necessary, and resize the bubble to fit.

7.	 Some of the buttons have menus you can open by clicking the small
down arrow to the right of the icon. Click the menu beside the Star
button to find the Vertical Scroll and position it on the page. Add text to it
in the same way you added text to the speech bubble.

8.	 To change the background color of the scroll, face, or bubble, click it on
the page and then change the color in the Area part of the Properties
panel.

Click the color bar to choose a new color. Click the Fill menu that says Color in it
and you can select a gradient, hatching pattern, or bitmap (colored pattern)
instead of a solid color. Use the Properties button in the vertical menu on the
right to show the Properties if you can’t see them.

9.	 To change the color of the text in the speech bubble or scroll, click it,
press Ctrl+A to select it all, and then use the Character part of the
Properties panel.

The Font Color option has an icon with red underlined text. You can also
change the font and size of the text using the Character options.

132 PART 3 Using the Raspberry Pi for Both Work and Play

As you might expect, you can do lots more with Draw. The Curve option (on the
left) enables you to draw freehand by clicking and dragging on the page, and it
smoothes your lines for you. The Text option (the T icon on the toolbar at the top
of the screen) enables you to place text boxes anywhere, so you can create poster-
like layouts. The Fontwork gallery (also on the top toolbar) gives you a choice of
different bulging, curved, bent, and circular text styles to choose from. After
you’ve placed the Fontwork item, click its default Fontwork text and type your
words. Click somewhere else on the page to have your words inserted in the eccen-
tric style of your choice. If you want to use your own pictures or photos, the Insert
Image button on the menu at the top enables you to choose an image file. When
your image loads, you can resize and reposition it to fit your design.

FIGURE 6-5:
Making a party
invitation using

LibreOffice Draw.

CHAPTER 7 Editing Photos on the Raspberry Pi with GIMP 133

Chapter 7
Editing Photos on the
Raspberry Pi with GIMP

We live in probably the best-documented era in our history. Not only do
we write about our daily lives in blogs and on social media, but many
people also carry cameras everywhere they go, built into their phones

or other electronic devices. More serious photographers might have dedicated
digital cameras. Whatever you use, and whatever you do with your day, photogra-
phy is a great way to record your life and express yourself creatively.

The Raspberry Pi can play a part in this activity, enabling you to edit photos to
improve their composition and quality. Although early Raspberry Pi models strug-
gled with the large files generated by digital cameras, you can easily edit photos
using current or recent models. We had no problems using a Raspberry Pi 2, 3,
or 4.

In this chapter, we introduce you to GIMP, one of the most popular image-editing
packages, and we give you some tips for editing your photos with it. You learn how
to resize, crop, rotate, and flip your photos. We also tell you how to change colors
and fix any imperfections, such as dust or unwanted details, in your shots.

IN THIS CHAPTER

»» Installing GIMP

»» Understanding the GIMP screen
layout

»» Resizing, cropping, rotating, and
flipping your photos

»» Adjusting the colors and fixing
imperfections

»» Converting images between different
formats

134 PART 3 Using the Raspberry Pi for Both Work and Play

Working with GIMP
The program we use is the GNU Image Manipulation Program, known as GIMP for
short. It’s a highly sophisticated tool, and it’s available for free download not just
on Linux but on Windows and Mac computers as well.

The easiest way to install GIMP on your Raspberry Pi is to use the Add/Remove
Software tool. You’ll find it in the Preferences category of the Applications menu.
Search for “gimp” and select “GNU Image Manipulation Program” from the
search results. Chapter 4 has more guidance on installing software using the Add/
Remove Software tool.

Alternatively, you can enter the following at the shell:

sudo apt install gimp

If you experience any difficulties, consult Chapter 5 for advice on installing soft-
ware using the shell.

After installation is complete, you can start GIMP from the Graphics category on
the Applications menu in the desktop environment. (See Chapter 4 for more on the
Applications menu.)

Understanding the GIMP screen layout
Figure 7-1 shows the screen layout of GIMP. GIMP can be used in such a way that
each pane of tools or content is a separate window onscreen — though we find it
easier to arrange everything in a single window, especially when we’re using a
smaller screen. If your layout looks different from the one shown in Figure 7-1,
click to open the Windows menu at the top of the screen and select Single Window
Mode.

When GIMP opens, the large area in the middle is empty, with a picture of Wilber,
the GIMP mascot, in the background at the bottom. We’ve used the File menu in
the top left to open a photo for editing, which you can see in the center pane.

Across the top of the screen is a bar with menus for File, Edit, Select, View, Image,
Layer, Colors, Tools, Filters, Windows, and Help. You can browse these menus to
get an idea of what the program can do, and to find options quickly if you don’t
know which icons they use on the toolbar.

CHAPTER 7 Editing Photos on the Raspberry Pi with GIMP 135

On the left is a pane that contains icons for the tools at the top and the tool options
at the bottom. When you roll the cursor over a tool’s icon, a tooltip pops up to tell
you what it does. When you click a tool to select it, the options at the bottom of the
pane change, depending on the tool you’re using. For example, if you’re using the
paintbrush, the options cover properties such as opacity and the brush type.

The pane on the right is also divided into halves. The bottom half has tabs for Lay-
ers, Channels, and Paths. Of these, the Layers tab (refer to Figure 7-1) is the most
important because it enables you to edit your photos safely.

Layers are used for adding new elements to an image without disturbing whatever
is underneath. For example, if you want to add text to an image, you do that in a
new layer on top of the old one. If you change your mind, you can just remove the
layer, and the picture underneath is unchanged. The Text tool (which has an A as
its icon) automatically adds text in a new layer when you use it. If you intend to
use the drawing tools, add a layer for each part of the drawing by clicking the New
Layer button under this pane (refer to Figure 7-1). New layers appear on top of
older layers, but you can change the order of layers by dragging them up or down
in the pane on the right. Those near the top of this pane appear nearer the fore-
ground in the image. To hide a layer temporarily, click the Eye icon next to it in
the pane.

FIGURE 7-1:
GIMP enables

you to edit
photos on your

Raspberry Pi.
©1995–2012 Spencer Kimball, Peter Mattis, and the GIMP Development Team

136 PART 3 Using the Raspberry Pi for Both Work and Play

The top half of the right pane is for Brushes, Patterns, Fonts, and Document His-
tory. The brushes are used when you’re drawing or painting on the image. The
patterns and gradients are used for the Fill tool, which fills in a part of the image
with a particular color or pattern. The Document History tab enables you to open
files you’ve previously opened in GIMP.

You can change the width of the left and right panes to make it easier to see all the
tabs. Put the mouse cursor at the edge of the pane adjoining the central image
area. When the cursor turns into a two-headed arrow, click and drag left or right
to resize the pane.

Resizing an image in GIMP
You can use GIMP to resize an image. All computer images are made up of pixels,
which are tiny colored dots. Sean’s camera produces images that are 4,272 pixels
wide and 2,848 pixels high. High-quality images like these are great for printing
photos, but they’re probably too big if you want to use a photo in a game or a web-
site you’re developing.

Here’s how you can resize an image using GIMP:

1.	 Open the image by choosing File ➪   Open.

2.	 Click to open the Image menu at the top of the screen, and click Scale
Image.

A window like the one in Figure 7-2 opens.

FIGURE 7-2:
The scale options

in GIMP.
©1995–2012 Spencer Kimball, Peter Mattis, and the GIMP

Development Team

CHAPTER 7 Editing Photos on the Raspberry Pi with GIMP 137

3.	 In the Width box, enter in pixels the width you want the final image to
be. Press Enter when you’ve finished entering the width.

If you want to put a holiday snap on your website, you probably wouldn’t want
it to be more than 500 pixels wide. If you want to use a photo as a Scratch
background (see Chapter 10), the ideal size is 480 by 360 pixels.

When you enter a new value for the width and press Enter or Tab, the height is
updated automatically, so the image stays in proportion and doesn’t become
stretched. You can also enter a value for the height and have the width
calculated automatically. If you want to be able to adjust the width and height
independently, click the chain to the right of their boxes to break it.

4.	 Alternatively, instead of using absolute values for the width and height,
you can resize the image to a certain percentage. Click the Units drop-
down list box (it says px) and choose Percent.

The values in the Width and Height boxes will then be percentages. For
example, you would enter 50% to shrink the image by half. The size of the
image in pixels is shown under the Height box.

5.	 When you’ve set the size, click the Scale button.

At the bottom of the screen, underneath the Image pane, you can see some infor-
mation about the file, including the current zoom level, which is how much the
image has been magnified or reduced for you to view it. If you set this to 100%,
you can get an idea of how much detail is in the image now, and it’s easier to
edit too.

Resizing an image reduces its quality. This would be noticeable if you tried to cre-
ate a high-quality print of it later. Don’t overwrite an existing image with a resized
version. Instead, save the resized image by choosing Save As from the File menu
at the top of the screen and giving it a different filename.

Cropping your photo
If your photo has excessive space around an edge, or if you’d like to change the
composition of the picture, you can cut off the sides, or crop it. To do that, follow
these steps:

1.	 Click the icon that looks like two overlapping right-angle tools, or press
Shift+C to choose the Crop tool.

2.	 Click the image in the top left of the area you’d like to keep, hold down
the mouse button, and drag the mouse down and to the right.

When you release the mouse button, a box appears on the image, as you can
see in Figure 7-3.

138 PART 3 Using the Raspberry Pi for Both Work and Play

The inside of the box shows which bits of the image will be kept. Anything
outside the box is cut off when you crop the image. You don’t have to get the
position or size of the box right first time, because it’s easy to adjust.

3.	 Click one of the corners and drag the mouse to change the size and shape
of the box. You can also click and drag along an edge inside the box to
adjust the width or height.

4.	 To reposition the box, click and drag in its center.

5.	 To crop the image, click inside the box or press the Enter key.

If you make a mistake, you can use Ctrl+Z to undo.

Rotating and flipping your photo
If you rotate your camera sideways to take a picture, you might need to rotate the
resulting image too. The easiest way to do this is to click to open the Image menu
and then use the Rotation options on the Transform submenu there. You can
rotate clockwise or anticlockwise (counterclockwise) by 90 degrees, rotate the
image by 180 degrees, and flip it horizontally or vertically.

FIGURE 7-3:
Cropping a photo

in GIMP.
©1995–2012 Spencer Kimball, Peter Mattis, and the GIMP Development Team

CHAPTER 7 Editing Photos on the Raspberry Pi with GIMP 139

For a simple rotation like this, it’s quicker to rotate a photo using the desktop’s
Image Viewer. (See Chapter 4.)

If you have a photo that’s slightly wonky, you can manually adjust it in GIMP. Click
the Rotate tool and then click the image (or press Shift+R) and you can enter an
angle for rotation, or click and drag the image to rotate it. To change the pivot
point about which the picture rotates, click the circle in the middle of the image
and drag it.

This Rotate tool (unlike the options in the Transform menu) only works on the
currently selected layer. (You can select a layer by clicking it in the bottom pane
on the right.) If you plan to make other modifications to your photo, we recom-
mend you correct its rotation before you add other layers.

Adjusting the colors
In common with other image editing programs, GIMP has options for adjusting
the colors in a photo. You can find all these options on the Colors menu at the top
of the screen. If your picture has a tint of color you don’t want, or if you would like
to add a tint, use the Color Balance settings to alter the amount of cyan, magenta,
and yellow in the image. The Brightness and Contrast settings can help to bring
out detail in shadows, or to give the image more impact.

There are also options on this menu (farther down, under Auto) to automatically
adjust the colors using six different methods. These can give strange and undesir-
able results, but you can always undo them with Ctrl+Z if you don’t like them. The
Equalize option can be a quick fix for images that look wishy-washy, and the
White Balance option can fix pictures that don’t already have strong black and
white areas.

The Color options only affect the currently selected layer. If you have added layers
to your image, click the photo layer in the bottom pane on the right before adjust-
ing the color.

Fixing imperfections
On Sean’s holiday to Australia, he found a beautiful unspoiled beach in Darwin. He
took a picture of it: a lone tree in the foreground, the shimmering sea, and wisps
of cloud in a light blue sky. When he got home, he noticed that some idiot had left
a crushed beer can in the foreground.

140 PART 3 Using the Raspberry Pi for Both Work and Play

Thankfully, in GIMP, you can use a handy tool called the Clone tool to make little
details like this vanish. It enables you to use part of the image as a pattern that you
spray over another part of the image. In Sean’s case, he can use a clean piece of
beach as the pattern and spray it on top of the litter. Hey, presto! The rubbish
vanishes.

Here’s how you use the Clone tool:

1.	 Zoom in to the image using the menu underneath it, and then use the
scroll bars at the side of the Image pane to position the image so that you
have a clear view of the imperfection.

2.	 Click the Clone tool, which looks like a rubber stamp, or press the C key.

3.	 Move the cursor to an unspoiled part of the image you would like to use
as the pattern, or clone source.

This needs to be somewhere as plain as possible, more of a texture than a
shape, with no obvious prominent details or lines. Sky, grass, or sand is perfect.

4.	 Hold down the Ctrl key and click the mouse button.

A crosshair icon appears on your image at that spot.

5.	 In the tool options, at the bottom of the left pane, you can see the brush
that is being used. Click the shape (a circle, by default) if you want to
change it.

For the best results, use a brush with a fading edge rather than a solid edge.
You can change the size of the brush in this pane, too, by clicking the Size box
and typing your preferred value. The bigger the brush you use, the bigger the
pattern.

6.	 Move the cursor to the imperfection in the image, and click the mouse
button.

This copies an area the size of the brush from the clone source to the place
where you clicked.

If you’ve done it right, the imperfection should appear to vanish. If you see
unwanted picture details included in the pattern, either reduce the size of the
brush or move the clone source. Repeat this step until the imperfection is
gone.

You can hold down the mouse button as you move the mouse to clear larger
areas, but be aware that the clone source also moves as you move the mouse.
If you replace a large area, you’re likely to stray into a distinctive part of the
image with the clone source, which will break the effect.

CHAPTER 7 Editing Photos on the Raspberry Pi with GIMP 141

7.	 Adjust the magnification at the bottom of the Image pane to view the
image at 100%.

Check whether you can see any evidence of your handiwork. If so, you might
need to try another clone source or brush size. Otherwise, you’ve succeeded!

Converting images between
different formats
There are several different file formats that can be used for images, but not all
programs can open all files. If you want to use a picture as a background in Scratch
(see Chapter 10), for example, you need to use .jpg files, which usually deliver the
best quality for photos, or .png or .gif files, which are optimal for illustrations.

The default format used by GIMP is .xcf, which stores additional information
about your editing session along with the picture, but this format isn’t widely
used in other programs.

You can use GIMP to save the picture in a more widely used format, or to convert
a picture between different file formats. First, open the image from the File menu,
and then select that menu’s Export As option. The Export As window looks a lot
like the Save window, but here you can click Select File Type (By Extension) at the
bottom and choose the file format you’d like to convert the image into.

The conversion is quite memory-intensive, so on an older Raspberry Pi you might
need to resize (shrink) a digital photo before you convert it.

Finding Out More about GIMP
There’s much more you can do with GIMP, and you can find detailed documenta-
tion on its website. To access it, click Help at the top of the screen, and click User
Manual to open a menu showing the different sections. When you select one, it
opens in your browser. Alternatively, in any browser, go to https://docs.gimp.
org/2.8/en.

https://docs.gimp.org/2.8/en
https://docs.gimp.org/2.8/en

CHAPTER 8 Playing Audio and Video on the Raspberry Pi 143

Chapter 8
Playing Audio and Video
on the Raspberry Pi

I
n this chapter, we show you how you can turn your Raspberry Pi into a media
center, capable of playing high-definition video files and music.

To do that, we use dedicated media player software based on the Kodi software
that powers some set-top boxes and smart TVs. You can use it to play music and
video you have on storage devices connected to your Raspberry Pi, or to play back
media from other devices on your home network. To a more limited degree, you
can also use it to play back streaming TV shows and radio stations from the
Internet.

At the end of this chapter, we also show you how to play music on your Raspberry
Pi in the desktop environment.

Setting Up Your Media Center
The Raspberry Pi can play back full HD 1080p video, which makes it ideal as the
heart of a cheap and low-powered media center.

IN THIS CHAPTER

»» Using LibreELEC to turn your Pi into a
media center

»» Playing music and video stored on
USB devices or networked devices

»» Viewing photos in the media center

»» Playing music in the desktop
environment

144 PART 3 Using the Raspberry Pi for Both Work and Play

To start setting up your media center, create a microSD card with LibreELEC on it
(see Chapter 2). LibreELEC is based on Kodi and is the recommended media player
software for the Raspberry Pi. Different versions are available for the Raspberry Pi
4, Raspberry Pi 2/3, and Raspberry Pi Zero or original Raspberry Pi.

When you first boot up LibreELEC, you’ll be guided through its main settings,
including its name on the network, the network connection itself, and the remote
access settings (so that you can access files on your device over the network).

Navigating the Media Center
The Kodi screen looks like Figure 8-1. LibreELEC uses Kodi’s simple interface,
which is designed to work with only a remote control. In this chapter, we assume
you’re using a mouse, but we give you some pointers on using remote controls in
the section “Using a Remote Control,” later in this chapter. If you’re using a
remote control, you should find the interface intuitive.

FIGURE 8-1:
The main menu
on the left and

the empty library
area on the right.

This shows how
Kodi appears

before media is
added.

Sean McManus

CHAPTER 8 Playing Audio and Video on the Raspberry Pi 145

The menu on the left side of the screen gives you access to the different content
types, including movies, TV shows, music, and music videos. When you hover the
mouse pointer over one of these options, the main screen area on the right shows
you options and submenus for accessing your content. The Music section, for
example, shows your top 100 songs and albums, recently played albums, recently
added albums, and albums organized by genre, artist, and year. You can use the
cursor keys to move around the options; or the mouse, with the scroll wheel mov-
ing between the options within a menu. To exit a menu, press the Escape key.

To select an item and start to play it, simply click it. You can pause playback by
tapping the Spacebar. Tap Escape or left-click the mouse when the pointer is on
the background to get back to the menu.

To use the TV and radio features, you’ll need to have a separate tuner device and
TV signal decoding software. For more information, see https://kodi.wiki/
view/PVR. The official Raspberry Pi TV HAT enables you to receive TV streams on
your Raspberry Pi through a TV aerial. It costs about $28.

At the top of the menu on the left are buttons for switching off your Pi, accessing
the settings menus (the Cogwheel icon), and searching for content (the magnify-
ing glass).

Adding Media
Before you can play back content, you need to tell Kodi where it can find it. You
have several options for providing it:

»» USB drive: You can plug a USB drive that stores your movies or music directly
into your Pi or its USB hub. A message appears in the top right, confirming
that the USB device is being mounted, which means it’s being prepared so
that you can use it.

»» Networked media: You can connect your Pi to your home network and then
access other devices on the same network. Sean, for example, was able to
connect his Pi to his Windows PC over the network and use Kodi on the Pi to
play back the music and movies stored there. You might have a router with a
built-in media server, so it can share any files on USB devices you connect to
it. These networked devices most likely use the UPnP (Universal Plug and Play)
standard.

Kodi can create a library of your media and index it to provide you with easy access
to it. You’ll need to add your content to the library first to benefit from this.

https://kodi.wiki/view/PVR
https://kodi.wiki/view/PVR

146 PART 3 Using the Raspberry Pi for Both Work and Play

Adding music
To add music to your library, follow these steps:

1.	 Click Music in the menu on the left.

If you’ve already added music, you’ll see options to browse it by artist, album,
and year, among other categories.

2.	 Choose Files from the menu.

This will show you the folders you have added to your library already, and any
connected storage devices.

3.	 Choose Add Music.

4.	 Choose Browse in the Add Music Source dialog box that opens and use
the options to find where your music is stored (see Figure 8-2).

If you’ve connected a USB drive to your Pi, you can find it by clicking Root
filesystem, media, and then the name of your USB device. To find media
connected on your network, try the Windows Network (SMB) or Network File
System options.

FIGURE 8-2:
The browsing

options for
adding media to

your Kodi
installation.

Sean McManus

CHAPTER 8 Playing Audio and Video on the Raspberry Pi 147

You may need to enter your username and password, and you should enable
the option to remember them for this path if you don’t want to have to enter
them whenever you access your media. Click folders to open them. The .. (two
dots) option at the top takes you up a level in the folder structure.

5.	 Click OK when you have navigated to the folder that contains all the
music folders or files you want to add.

6.	 In the Add Music Source dialog box enter a name for the media source, if
you want.

This will help you to identify the source on the menus.

7.	 Click OK.

8.	 When prompted, confirm that you’d like to add the media to your library.

Content that Kodi doesn’t recognize, including home recordings, won’t be added
to the library, but you can still view them in the folder you added by using the
browser. Start by choosing Music from the menu on the left, choose Files (as you
did when adding media), and then select the folder that contains your added
media. From there, you can open the folders and select the music files to play
them.

Adding videos
To add movies to your library, follow these steps:

1.	 Click Movies in the menu on the left.

If you can’t see it, it’s probably off the top of the screen. Hover the mouse
cursor over the menu and use the scroll wheel to bring the Movies option back
again.

If you’ve already added some movies, you’ll see a list of them with .. (two dots)
at the top of the list. In that case, click .. twice to go up a level and then choose
Files. This will show you the folders you have added to your library already.

2.	 Choose Add Videos at the bottom of the folder list.

3.	 Choose Browse and use the options to find where your movies are
stored.

If you’ve connected a USB drive to your Pi, you can find it by clicking Root
filesystem, media, and then clicking the name of your USB device. To find media
connected on your network, try the Windows Network (SMB) or Network File
System options. Click folders to open them. The .. option at the top takes you
up a level in the folder structure.

148 PART 3 Using the Raspberry Pi for Both Work and Play

4.	 Click OK when you have navigated to the folder that contains all the
video folders or files you want to add.

5.	 In the Set Content options that open, click where it says This directory
contains and select Movies.

6.	 (Optional) If your movies are stored in separate folders that match the
movie title — a common way of organizing them — turn that option on.

7.	 Click OK.

If prompted, confirm that you’d like to refresh items in this path.

Content that Kodi doesn’t recognize, such as your home movies, won’t be added
to the library, but you can still view them in the folder you added by using the
browser. Start by clicking Movies on the left, clicking .. twice, choosing Files, and
then selecting the folder that contains your added media. From there, you can
open the folders and select the movie files to play them.

You can add TV shows or music videos using a similar process — just change the
media type to TV Shows or Music Videos in Step 5.

Adding pictures
To add photos, you follow a similar process to adding music and movies. Start by
clicking Pictures from the main menu on the left, and then choose Add Pictures
from the menu that appears. You can then add a folder of photos.

To view the folder, hover over Pictures on the main menu on the left and then
select the folder name. You can use the left- and right-arrow keys or the scroll
wheel to navigate your photos and click Options in the bottom left to open a menu
that enables you to display a slide show.

If you’re in a folder and you want to view a different folder or add more pictures,
click .. at the start of the photo folder.

Streaming media
Streaming media means that the content flows into your Raspberry Pi over the
Internet as you watch it or listen to it. As a result, streaming services only work
when you have a good Internet connection.

To enable streaming, you use add-ons, which are third-party applications that
access sources of content online. Music add-ons, for example, enable you to listen
to Internet radio stations and access some online music services. Video add-ons

CHAPTER 8 Playing Audio and Video on the Raspberry Pi 149

can give you access to online TV stations. The availability of add-ons varies over
time as new services launch and older services disappear. The music and video
add-ons can be particularly short-lived and unreliable because broadcasters are
often keen to keep viewers using their own software and gateways.

To install an add-on, hover over Add-ons on the main menu on the left, and then
choose Install from Repository from the menu at the top of the screen. From the
new menu that appears, choose Kodi Add-On Repository to find add-ons from the
official Kodi repository, which offers a range of add-ons that have undergone
basic testing.

As well as music and video add-ons, there are options for a weather forecast pro-
vider, screensavers (in the Look and Feel category), and picture add-ons. Note
that if you add a screensaver, you’ll also need to enable it in the Interface settings.
If you install a weather add-on, you’ll need to select it in the Services settings.

Enjoying Your Media
After you’ve added your music, movies, and pictures to your Raspberry Pi, you can
listen to, watch, and view them.

Playing music
To get started with playing music, hover over Music on the main menu to show
your music collection in the main part of the screen. You can use the Categories
menu at the top to browse by genre, artist, album, or song, among others. You can
also choose Files from the Categories menu to go to the music folders you have
added. In the main part of the screen are options for recently played or added
albums, and random artists and albums too. Use the scroll wheel to go left and
right through the media and options, and the up and down keys to move through
the rows of options. Click an album to play it.

From the top of the main menu, click the icon showing four arrows, like a com-
pass, to view the song full screen, where there are options to play, pause, stop, or
skip the track. There are also options for repeating the track or setting a random
song order. Note that there is a screensaver, so the screen display disappears after
a moment or two. Press Escape to go back to the menu. You can tap the spacebar
to pause or unpause the audio.

150 PART 3 Using the Raspberry Pi for Both Work and Play

You can continue to browse your music while it is playing, and queue songs or
albums to play next, by right-clicking them and choosing Queue Item from the
menu that appears.

The Playlists option in the Categories section of the Music menu enables you to
create lists of songs for playback that you can save and play whenever you want.
Start by clicking New Playlist in the Playlists option to create a new playlist. To
add a song from the Playlist browser, right-click its name and click Add from the
menu that opens. When you’ve finished creating your playlist, choose Save from
the menu on the left.

You can also make smart playlists, which are playlists that are generated from
rules, such as songs that belong to particular years, genres, or artists. You need to
add your rules before you can give your playlist a name. You use a simple menu
system to set up your playlist rules.

Smart playlists can only contain songs that have been added to the music library,
but standard playlists can contain songs from any of your connected media
devices.

Playing videos
Use the Movies, TV Shows, Music Videos, and Videos options to view your video
content. What’s available under each option will depend on the media you added
in each section, and what type of media you told Kodi it was at the time (such as
movie or TV show).

Note that content protected by digital rights management, including files bought
from iTunes, can’t be played in Kodi.

To play movies, hover over Movies on the main menu to see options for different
categories, recently added movies, random movies, and unwatched movies. Click
a movie to start watching it. You can also click Movies on the main menu to see a
list of your movies, together with artwork and a synopsis downloaded from the
Internet. Click the .. option at the top of this menu, and then click it again on
the next menu to get to your files if you want to play media that isn’t indexed in
the library. As with audio, you can tap the spacebar to pause or unpause a movie.

Viewing photos
Click Pictures from the main menu to see a simple file browser that you can use to
access your pictures, with your added folders listed. The media center software
supports standard image formats, including JPEG, BMP, and TIFF, and generates

CHAPTER 8 Playing Audio and Video on the Raspberry Pi 151

thumbnails of your photos and folders. Navigate to a photo and click it. You use
the left and right keys to move through your photos, and the Escape key (or right-
click the mouse) to return to the menu.

Changing the Settings
The cogwheel at the top of the main menu gives you access to the settings for
Kodi, divided into several sections. They include, among others:

»» Player settings, covering options such as whether the next song or video
plays automatically, whether there is cross-fading between songs, and the use
of subtitles.

»» Media settings, which enable you to manage your sources of media in the
library and choose information providers for artist and album information.

»» Interface settings, which enable you to choose a skin (or design) for Kodi,
your region, and a screensaver. If you install a screensaver add-on, you’ll need
to enable it here.

»» System settings, which can be used to choose the correct audio output
device, configure notification sounds in Kodi, and configure power saving and
the Internet connection.

»» LibreELEC, which includes options for managing the Internet connections
available to the system and for enabling Secure Shell (SSH) for remote access
to your Pi.

»» File Manager, which enables you to copy files between different folders and
storage devices.

By default, the sound is set to pass through your HDMI cable. If you want to use
your Raspberry Pi’s audio output (and speakers) but you’re using HDMI for your
screen, you’ll need to change the audio setting from HDMI to Analog. You’ll find
this option on Kodi’s System Settings menu. When you’re viewing the settings
menu, select Audio on the left and select Audio Output Device.

Using a Remote Control
Considering all the functionality we’ve covered in this chapter, you’re not that far
away from running a low-power home media center. To complete it, you can use
a remote control.

152 PART 3 Using the Raspberry Pi for Both Work and Play

There are many ways to remotely control your Raspberry Pi media center. You can
use a USB device, a cheap infrared remote, a keyboard remote, or even your games
console controller, if you have one. Or you can use the Kodi remote app (available
for iOS and Android operating systems) to control Kodi on your Raspberry Pi.

You can find the remote-control settings on Kodi’s System Settings menu, and
then under Input. You might find that your remote control works without needing
to change any settings, so try it first.

If you have a television that supports the HDMI CEC (Consumer Electronics Coun-
cil) standard, a neat option is to enable your existing television remote to control
your Pi. To do this, connect your networked Pi to your television’s HDMI socket.
Your Raspberry Pi appears as a new input. Use the TV’s remote control to change
to this input, and your Home screen then appears on the television.

Turning Off Your Media Center
To turn off your media center properly, click the Shutdown button in the top left
of the Kodi main menu. You can just switch off the power supply, but you mini-
mize the risk of corrupting your microSD card by shutting down properly.

Playing Music in the Desktop Environment
Looking for musical inspiration while you program? The good news is that you can
also play music and video from the Raspberry Pi OS desktop environment (see
Chapter 4). If you’re still using LibreELEC, shut down your Raspberry Pi using the
Shutdown icon in the top left and then reboot into Raspberry Pi OS. You will need
to swap microSD cards.

VLC Media Player is a music and video player that works on the Raspberry Pi desk-
top. It’s in the version of the desktop with recommended applications. If you don’t
have it, you can install VLC at the command line (see Chapter 5) using:

sudo apt install vlc

After VLC has been installed, you can find it in the Sound and Video category of the
Applications menu and click its name there to start it up.

CHAPTER 8 Playing Audio and Video on the Raspberry Pi 153

On the Media menu of VLC are options to open a file or directory. Usually, you’ll
want to open a directory so that you can play a whole album. By default, VLC
shows you the album artwork (where available), but you can open the View menu
and choose Playlist to see a list of songs so that you can pick another to play (as
shown in Figure 8-3). In the box on the left, you can pick a device to play from,
including several Internet services for streaming music. Choose Playlist from the
View menu again to revert to the full-window artwork.

The playback controls to pause, play, skip, shuffle, and repeat songs are at the
bottom left of the window. The volume control is at the bottom right.

FIGURE 8-3:
Playing music in

VLC Media Player.
Written by Hong Jen Yee and Juergen Hoetzel; icon by Arnaud Didry

4Programming
the Raspberry Pi

IN THIS PART . . .

Get familiar with the Scratch interface and how you can
use it to create your own simple animations or games
programs.

Use Scratch to build an arcade game, which you can
customize with your own artwork.

Learn how to use Python to create a times table
calculator and Chatbot, a program that simulates basic
artificial intelligence.

Use Pygame Zero with Python to create a simple arcade
game that you can customize with your own sounds and
artwork.

Discover how you can use Python to build worlds in
Minecraft, including a maze you can explore.

Use Sonic Pi to compose your own computer music on
your Raspberry Pi.

CHAPTER 9 Introducing Programming with Scratch 157

Chapter 9
Introducing
Programming
with Scratch

The Raspberry Pi was created partly to inspire the next generation of pro-
grammers, and Scratch is the perfect place to start. With it, you can make
your own cartoons and games and discover some of the concepts that pro-

fessional programmers use every day.

Scratch is designed to be approachable for people of all ages. The visual interface
makes it easy to see what you can do at any time, without having to remember any
strange codes, and you can rapidly achieve great results. Scratch comes with a
library of images and sounds, so it takes only a few minutes to write your first
Scratch program.

IN THIS CHAPTER

»» Starting Scratch

»» Understanding the Scratch screen
layout

»» Making your sprite move

»» Creating scripts

»» Changing your sprite’s appearance

»» Adding sounds

»» Adding extensions

158 PART 4 Programming the Raspberry Pi

In this chapter, we introduce you to Scratch so that you can start to experiment
with it. In Chapter 10, we show you how to use Scratch to make a simple arcade
game.

Understanding What Programming Is
Before we dip into Scratch, we should clear up some of the jargon surrounding it.
A program is a repeatable set of instructions to make a computer do something,
such as play a game. Those instructions can be extremely complicated because
they have to describe what the computer should do in detail. Even a simple
bouncing-ball game requires instructions for drawing the ball, moving it in
different directions, detecting when it hits something, and then changing its
direction to make it bounce.

Programming is the art and science of creating programs. You can create programs
in lots of different ways, and Scratch is just one of them. In Chapter 11, you read
about Python, another one.

Scratch and Python are both programming languages, different ways of writing
instructions for the computer. Different programming languages are best suited
for different tasks. Scratch is ideal for making games, for example, but it’s not
much use if you want to create a word processor. Using Python to create games
takes longer, but it is more powerful than Scratch and gives you much more flex-
ibility in the type of things you can get the computer to do.

Working with Scratch
There are two versions of Scratch in the recommended programs for Raspberry
Pi OS:

»» Scratch: This is the original version of Scratch, widely known as Scratch 1.4.
This version was optimized to perform well on the early Raspberry Pi models.
If you’re using an old Raspberry Pi model, you may prefer to use this version
because it’s faster, although it doesn’t have all the features of the latest
Scratch version. The screen layout is similar to Scratch 3, except that the Code
Area is called the Scripts Area, and the tabs for Scripts, Costumes, and Sounds
are above the Scripts Area. Additionally, the buttons to select different parts of
the Blocks Palette are above it, instead of to its left.

CHAPTER 9 Introducing Programming with Scratch 159

»» Scratch 3: If you use the online version of Scratch (at https://scratch.mit.
edu), Scratch 3 is the version you’re familiar with. New features in this latest
version of the language include Extensions. These enable you to add new
capabilities to Scratch, including for text to speech, and for electronics on the
Raspberry Pi. We recommend you use Scratch 3, so you can benefit from the
latest improvements to Scratch.

In this chapter, we assume you’re using Scratch 3.

To start Scratch, select your chosen version from the Applications menu in the
upper left of the screen. You can find all three versions of Scratch in the Program-
ming folder. If they aren’t installed on your computer, you can add Scratch using
the Recommended Software application in the Applications menu. It’s in the
Preferences folder.

Understanding the Scratch screen layout
Scratch divides the screen into four main areas, as you can see in Figure 9-1. The
Stage is where you can see your game or animation take shape. There’s a cat on it
already, so you can get started straightaway by making it do things, as you see in
a minute. The Stage is in the upper right.

Underneath the Stage is your Sprite List. You can think of sprites as the characters
in your game. They’re images that you can make do things, such as move around
or change their appearance. For now, there’s just the cat, which has the name
Sprite1.

You create a Scratch program by snapping together blocks, which are short instruc-
tions. You find the blocks in the Blocks Palette, which is on the left. It displays the
Motion blocks by default. They include instructions to move ten steps, rotate, go
to a particular grid reference, and point in a particular direction.

The Code Area is where the magic happens! You assemble your program in this
space by dragging blocks into it from the Blocks Palette. The Code Area is between
the Blocks Palette and the Stage.

There are two buttons in the upper right of the screen (refer to Figure 9-1) to
toggle the Stage between full size and small. When the Stage is small, the Code
Area is bigger, so you may find that useful when you’re writing scripts later in this
chapter. You can also make the Stage fill the screen when you’re running your
program.

https://scratch.mit.edu/
https://scratch.mit.edu/

160 PART 4 Programming the Raspberry Pi

Making your sprite move
You can drag and drop your sprite (the cat) around the Stage to position it where
you would like it to be at the start of your program.

Experimenting with Scratch is easy. To try out different blocks, just click them in
the Blocks Palette. For example, try clicking the Move 10 Steps block, and you
should see the cat move in the direction it is facing, which is to the right. You can
also turn the sprite 15 degrees in either direction by clicking the appropriate
blocks.

If your cat goes somewhere that you don’t want it to (don’t they always?), you can
click it on the Stage and drag it back to where you want it. In the Sprite List, you
can also edit the sprite’s x and y position, direction, and visibility (using the eye
icons), if you’re using Scratch 3. Set x to 0, y to 0, and direction to 90 to reposition
your sprite in the middle of the screen, facing right.

FIGURE 9-1:
The screen layout

in Scratch.
Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See https://scratch.mit.edu.

https://scratch.mit.edu/

CHAPTER 9 Introducing Programming with Scratch 161

Not all of the blocks will work at the moment because some of them need to be
combined with other blocks. There’s no harm in experimenting, however. Even if
you click something that doesn’t work, you won’t cause any harm to Scratch or
your Raspberry Pi.

Next, we talk you through the different Motion blocks you can use.

Using directions to move your sprite
You can use two different methods to position and move sprites. The first is to
make your sprite “walk,” and to change its direction when you want it to walk the
other way.

Here are the five blocks you use to move your sprite in this way:

»» Move 10 Steps: This makes your sprite walk in the direction it is facing. If your
sprite has been rotated, the steps taken could move it in a diagonal line across
the Stage. You can click the number in this block and then type another
number to increase or decrease the number of steps taken, but much bigger
numbers spoil the illusion of animation. It stops looking like the sprite is
walking across the screen when the number of steps taken is too big.

»» Turn Clockwise or Counterclockwise 15 Degrees: These two blocks rotate
your sprite. As with the number of steps, you can edit the number to change
the degree by which your sprite is rotated. It walks in the direction it is facing
when you use the Move 10 Steps block.

»» Point in Direction 90: Whatever direction your sprite is facing, this block
points it in the direction you want it to face. Use this block as is to reset your
sprite to face right. You can change the number in this block to change the
direction you want your sprite to face, and the numbers are measured in
degrees from the position of facing up (see Figure 9-2). It helps to think of it
like the hands of a clock: When the hand is pointing right, it’s 90 degrees from
the 12 o’clock position; when it’s pointing down, it’s 180 degrees from the top.
To point left, you use –90. When you click the number box to type into it, a dial
appears that you can use to select the angle.

You might be wondering whether you can use 270 to point left instead of –90.
Try it. You’ll see Scratch changes 270 to –90 if you type it into the block. It is
possible to force the block to accept a value of 270 by using a variable. (You
learn about variables in Chapter 10.) This can cause errors in your program,
though. If you turn your cat to direction 270 and then ask Scratch which way
the cat is facing, it tells you –90. To avoid any inconsistencies like this, keep
direction numbers in the range from –179 to 180.

162 PART 4 Programming the Raspberry Pi

»» Point Towards: You can also tell the sprite to point toward the mouse pointer
or another sprite. Use the menu in this block to choose what you would like
your sprite to point toward.

»» Set Rotation Style: When the cat is facing left, it appears to stand on its head.
You can change the rotation style to fix this. The style left-right keeps your
sprite upright. The style all around will restore it to facing the direction it’s
moving in. There is also an option in this block to not rotate the sprite at all,
even if its direction changes.

»» If On Edge, Bounce: This block reverses the direction of your sprite if it’s
touching the edge of the Stage. It’s useful for games or animations where you
want sprites to bounce off the edges of the Stage.

If you’re changing the number value in a block, you still need to click the block to
run it.

Using grid coordinates to move
and position your sprite
The second way you can move and position your sprite is to use grid coordinates.
That makes it easy to position your sprite at an exact place on the screen, irre-
spective of where it is now.

FIGURE 9-2:
The number of

degrees used to
face in different

directions.
Sean Mcmanus

CHAPTER 9 Introducing Programming with Scratch 163

Every point on the Stage has two coordinates: an X position (indicating where it is
horizontally) and a Y position (indicating where it is vertically). The X positions
are numbered from –240 at the far left to 240 at the far right. The Y positions are
numbered from –180 at the bottom edge of the Stage to 180 at the top edge. That
means the Stage is a total of 480 units wide and 360 units tall. The center point of
the screen, where your cat begins its day, is where X equals 0 and Y equals 0.
Figure 9-3 provides a quick visual reference of how the coordinates work.

Seven Motion blocks use the X and Y coordinates:

»» Go to x:0 y:0: You can use this block to position your sprite at a specific point
on the Stage.

»» Go to: Use this block to move your sprite to a random position, the mouse
pointer’s location, or to the location of another sprite, if you have more
than one.

»» Glide 1 secs to: When you use the Go To block, your sprite just jumps to its
new position. The Glide block makes your sprite float there smoothly instead.
Like the Go To block, you can use this block to glide your sprite to a random
position, the mouse pointer, or another sprite. You can change the number of
seconds the glide takes, including using decimals for part of a second (for
example, 0.5 for half a second).

»» Glide 1 secs to x:0 y:0: Use this block to smoothly move your sprite to a new
coordinate on the screen.

FIGURE 9-3:
The grid

coordinates on
the Stage.

Sean McManus

164 PART 4 Programming the Raspberry Pi

»» Change X by 10: This moves your sprite ten units to the right. You can change
the number of units and use a negative number if you want to move left
instead. Note that this doesn’t affect your sprite’s vertical position and is
independent of which way around your sprite is facing.

»» Set X to 0: This changes the horizontal position of your sprite on the Stage,
without affecting its vertical position. The value 0 returns it to the center of the
screen horizontally, and you can edit the number to position it left or right of
that. Use a negative number for the left half of the screen and a positive
number for the right half.

»» Change Y by 10: This moves your sprite ten units up the Stage, without
affecting its horizontal position, and irrespective of which direction it is facing.
You can change the number of units and use a negative number to move the
sprite down the screen instead.

»» Set Y to 0: This changes the vertical position of your sprite on the Stage
without affecting its horizontal position, and without regard to which way it
faces. Use a positive value for the top half of the Stage and a negative value
for the lower half.

You need to run a block to actually see its effect on your sprite. Do this by click-
ing it.

Showing sprite information on the Stage
It can be hard to keep track of where your sprite is and in which direction it’s fac-
ing, but you can show the values for its X position, Y position, and direction on the
Stage. Select the check boxes at the bottom of the Motion part of the Blocks Palette
to do this, as shown in Figure 9-4. They clutter the screen a bit, but they can be
essential tools for testing when you’re creating a game.

You can also refer to the Sprite List, where you can see a sprite’s coordinates, size,
and direction in Scratch 3.

FIGURE 9-4:
The blocks used

to show sprite
information on

the Stage.
Scratch is developed by the Lifelong

Kindergarten Group at the MIT Media Lab. See
https://scratch.mit.edu.

https://scratch.mit.edu/

CHAPTER 9 Introducing Programming with Scratch 165

Creating scripts
Clicking blocks in the Blocks Palette is one way to issue commands to Scratch, but
if that’s all you’re doing, you’re not really programming. The fact is, if you have
to click each block every time you want to run it, you’re doing all the hard work of
remembering the instructions, and the computer can work only as fast as you can
click the blocks.

A program is a reusable set of instructions that can be carried out (or run) when-
ever you want. To start to create a program, you drag blocks from the Blocks Pal-
ette and drop them in the Code Area in the middle of the screen. Most blocks
mentioned so far in this chapter have a notch on the top and a lug on the bottom,
so they fit together like jigsaw pieces. You don’t have to align them perfectly:
Scratch snaps them together for you if they’re close enough when you release the
mouse button.

You put your blocks in the order you want Scratch to run them, starting at the top
and working your way down. It’s a bit like making a to-do list for the computer.

A group of blocks in the Code Area is called a script, and you can run the script by
clicking anywhere on it. Its border is highlighted, and you’ll see the cat move
around the Stage as you’ve instructed it to.

You can have multiple different scripts in the Code Area, so you could have one to
make the cat walk left and another to make it walk right, for example. When you
add multiple sprites (see Chapter 10), each sprite has its own Code Area and scripts
there to control it.

If you want to tidy up the Code Area, you can move a script by dragging its top
block. If you drag a block that is lower down in the script, it’s separated from
the blocks above it and carries with it all the blocks below it. If you want to delete
a block or set of blocks, drag it back to the Blocks Palette on the left.

Figure 9-5 shows a script Sean built using some of the Motion blocks. Try building
it in your Code Area, by dragging in the blocks and joining them together. Remem-
ber to change the numbers in the blocks. When you’ve finished, click the script to
run it. The script makes the cat go to the middle of the screen, walk around the
Stage in a square shape, and then point toward the mouse pointer. As you learn
about new blocks in the rest of this chapter, you can try adding them to this script,
or build your own new script.

Changing your sprite’s appearance
As well as moving your sprite around the screen, you can change what it looks like.

166 PART 4 Programming the Raspberry Pi

Using costumes
One way to think of sprites is as the characters in a game (although they can be
used for lots of other objects, too, such as obstacles). Each sprite can have a num-
ber of costumes, which are different pictures of it. If the costumes look fairly simi-
lar, you can create the illusion of animation by switching between them. Your cat
sprite comes with two costumes, and when you switch between them, it looks like
the cat is running. You can think of a costume as being one image in an animation
sequence (an animation frame).

You can see the costumes for your sprite by clicking the Costumes tab at the top of
the Blocks Palette, as shown in Figure 9-6. If you want to modify the cat’s appear-
ance, you can click the costume on the left and use the editing canvas to its right.
If you want to create a new animation frame, you can right-click the costume and
choose duplicate from the menu that opens. You can then edit the bits you want to
change.

It doesn’t matter much when you’re experimenting with sprites, but when you
make your own games and animations, you can save yourself a lot of brain ache
by giving your costumes meaningful names. It’s much easier to remember that
the costume with the name game over should be shown when the player is defeated
than it is to remember it’s called costume7. To rename a costume, click the Cos-
tumes tab to show the costumes, and then click the costume’s current name (refer
to Figure 9-6) and type its new name. The costume’s name is shown above the
editing canvas.

FIGURE 9-5:
A simple script to

make the cat walk
around the Stage.

Scratch is developed by the Lifelong
Kindergarten Group at the MIT Media Lab. See

http://scratch.mit.edu.

https://scratch.mit.edu/

CHAPTER 9 Introducing Programming with Scratch 167

When you’ve finished using the Costumes Area, click the Code tab to get back to
the Code Area.

In the Blocks Palette, there are two blocks you can use to switch between costumes
(see Figure 9-7). Click the Looks button beside the Blocks Palette to show them:

»» Switch Costume to: If you want to switch to a particular costume, choose its
name from the menu in this block and then click the block.

»» Next Costume: Each time you use this block, the sprite changes to its next
costume. When the costumes run out, it goes back to the first one again.

You can show a sprite’s costume number on the Stage, too, so that it’s easier for
you to work out what’s going on. Just select the check box next to Costume # in
the Blocks Palette. In that block, you can choose to show the costume’s name
instead.

FIGURE 9-6:
You can

change a sprite’s
appearance by
giving it a new

costume.
Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See

https://scratch.mit.edu.

https://scratch.mit.edu/

168 PART 4 Programming the Raspberry Pi

Using speech and thought bubbles
The Say blocks display a speech bubble, and the Think blocks show thought bub-
bles (see Figure 9-8). To see them, and to see the other blocks that change a
sprite’s appearance, click the Looks button beside the Blocks Palette. The speech
and thought bubbles are great for giving a message to the player or viewer. You
can edit the word in the block (Hello! or Hmm . . .) to change the text in the bubble.
Figure 9-8 shows the speech bubbles (at the top) and thought bubbles (center and
bottom) in action.

If you use one of the options with a length of time in it, the sprite pauses for that
length of time and the bubble disappears when it has elapsed.

If you use a block without a length of time, you can make the bubble disappear
again by using the Say or Think block again but editing the text so that the text
box in the block is empty.

Using graphic effects
You can apply several graphic effects to your sprite using Looks blocks. In
Figure 9-8, we’ve used eight sprites to demonstrate them on the Stage. The Color
effect changes the sprite’s Color Palette, turning orange to turquoise in the case of

FIGURE 9-7:
Some of the

Looks blocks you
can use to change

your sprite’s
appearance.

Scratch is developed by the Lifelong
Kindergarten Group at the MIT Media Lab.

See https://scratch.mit.edu.

https://scratch.mit.edu/

CHAPTER 9 Introducing Programming with Scratch 169

the cat. The Fisheye effect works like a fish-eye lens, making the central parts of
the sprite appear bigger. Whirl distorts the sprite by twisting its features around
its middle. Pixelate makes the sprite blocky. Mosaic shrinks the sprite and repeats
it within the space it usually occupies. The Brightness and Ghost effects can some-
times look similar, but the Brightness effect changes the intensity of the colors,
and the Ghost effect fades out all colors evenly. In Figure 9-8, we’ve used a nega-
tive number with the Brightness effect to make the sprite darker.

Here are the three blocks you use to control graphic effects:

»» Change Color Effect by 25: You can select the effect you want to change (by
default, it’s the color effect) and enter the amount of it you want to add. You
can use negative numbers to reduce the extent to which the effect is applied
to your sprite. The color effect has 200 different levels (from 0 to 200), and the
ghost effect has 100 different levels from 0 to 100. The other effects typically
look best with levels in the range from –100 to 100. Experiment!

»» Set Color Effect to 0: Use this block to set a chosen effect to a specific level.
Choosing 0 turns the effect off again. You can use any of the seven effects
with this block.

»» Clear Graphic Effects: This block removes all graphic effects you’ve applied to
a particular sprite so that it looks normal again.

FIGURE 9-8:
The different

graphic effects
you can apply to
your sprite, with
thought bubbles

and speech
bubbles used to

describe them.
Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab.

See http://scratch.mit.edu.

https://scratch.mit.edu/

170 PART 4 Programming the Raspberry Pi

Resizing your sprite
You can use blocks to change a sprite’s size, so you could make it grow larger as
the game progresses, for example.

There are two blocks you can use to resize your sprite:

»» Change Size by 10: This block enables you to change the size of your sprite by
a certain number of units, relative to its current size. As usual, you can edit the
number. If you want to decrease the sprite’s size, use a negative number.

»» Set Size to 100%: This block sets the size to a percentage of its original size, so
with the default value of 100 percent, it effectively resets any resizing you’ve
done.

You can also select the check box beside the Size block to show the sprite’s size on
the Stage, in the same way you display other sprite information there. (See “Show-
ing sprite information on the Stage,” earlier in this chapter.) This can be useful
for testing purposes.

Changing your sprite’s visibility
Sometimes, you might not want your sprite to be seen on the Stage. If a spaceship
is blown up in your game, for example, you want it to disappear from view. These
two blocks give you control over whether a sprite is visible:

»» Hide: Use this block to make your sprite invisible on the Stage. If a sprite is
hidden, Scratch won’t detect when it touches other sprites, but you can still
move a hidden sprite’s position on the Stage so that it’s in a different place
when you show it again.

»» Show: By default, your sprite is visible, but you can use this block to reveal it
again after you have hidden it.

Sometimes, sprites might get on top of each other. You can use the Go to Front
Layer block to make a sprite appear on top of all the others, or use the menu in it
to change it to Go to Back Layer, so you can force a sprite to go behind all the oth-
ers. The Go Forward 1 Layers block enables you to move sprites forward and back-
ward so you can precisely control which sprites are on top of which other sprites.

Adding sounds and music
As well as changing a sprite’s appearance, you can give it some sound effects.
Scratch comes with sounds, including slurps, sneezes, and screams; ducks, geese,

CHAPTER 9 Introducing Programming with Scratch 171

and owls; and pops, whoops, and zoops. You can find effects for most occasions,
and many of them are natural partners for one of the sprites that Scratch
provides.

To add a sound to your sprite, you have to do one task first: Import the sound to
your sprite. Here’s how you’d do that:

1.	 Click the Sounds tab above the Blocks Palette, and then click the Choose
a Sound button.

The button is in the lower left and it looks like a speaker.

2.	 In the file browser that appears, browse the provided sounds.

There is a search box you can use if you know the name of the sound you’re
looking for, and there are category buttons that group the effects into loops,
animal sounds, musical notes, and more.

3.	 (Optional) Click the play button on a sound to hear it.

4.	 Click the sound to bring it into your sprite.

After you’ve imported a sound, you can preview it (see Figure 9-9). Click the
play button in the Sounds Area. You can choose different sounds to preview
using the panel on the left. Click the trashcan icon on a sound in this panel to
delete it from your project.

If you a delete a sound in this way, it remains on your SD card so that you can
import it again later.

After a sound has been imported, you use one of the Sound blocks to play a sound.
To see all available Sound blocks, click the Sound button beside the Blocks Palette
first. Use the Code tab to return to the Code Area if you can’t see any blocks.

The Play Sound block enables you to choose which sound you’d like to play from
those you have imported. The Play Sound Until Done block stops the program
from running any blocks joined underneath this one until the sound has finished
playing.

The sound is imported to a particular sprite, so if you can’t see it as one of the
choices in the Play Sound block, be sure you’ve imported it to the correct sprite. In
Chapter 10, we cover how to use multiple sprites in a project.

172 PART 4 Programming the Raspberry Pi

Using the Wait block to
slow down your sprite
As you put your script together, you might find that some movements happen so
fast that you can hardly see what’s going on.

If you click the Control button to the left of the Blocks Palette, you can find a set
of blocks that are used to govern when particular things happen. You can read
more about these in Chapter 10, but for now it’s worth knowing that the Wait
1 Seconds block here enables you to wait for a certain number of seconds. Drag this
into your script where necessary to introduce a delay so that you can see each of
your blocks in action. The length of the delay is 1 second by default, but you can
change it to whatever you want, including parts of a second (for example, 0.5 for
half a second).

The Say Hello! for 2 Secs block can be also be used to force the script to pause
before running any more blocks.

FIGURE 9-9:
Adding sound
effects to your

sprite.
Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab.

See https://scratch.mit.edu.

https://scratch.mit.edu/

CHAPTER 9 Introducing Programming with Scratch 173

Using extensions in Scratch
The latest version of Scratch includes a feature to add new sections to the Blocks
Palette, called Extensions. If you’re familiar with earlier versions of Scratch, this
is where you’ll find the Music and Pen blocks that used to be part of the main
Blocks Palette.

Adding extensions
The button to add extensions is at the lower left of the screen when you’re in the
Code Area (refer to Figure 9-1, earlier in this chapter). When you hover over it, it
says Add Extension. It takes you to a screen where you can see the extensions
available, and click to add one to your Blocks Palette.

We don’t have space to cover all the extensions here, but here are some you may
want to start experimenting with first.

Using the music extension
The music extension has blocks that let you use virtual drums and pitched instru-
ments to create music using Scratch. Notes are numbered: C is 60, C# is 61, D is
62, and so on. There’s a block called Play Note 60 for 0.5 Beats that plays a note
with a particular number for a certain duration. When you click the menu in this
block to specify which note to play, a piano opens that you can use to select the
note.

There are also blocks you can use to change the sound of the instrument and set
or change the tempo of the music.

If you’re new to music, you can generally get a good result by starting with C,
sticking to the white notes, and making sure no two consecutive notes are too far
apart on the piano.

The note numbers used in Scratch are the same as those used in Sonic Pi (see
Table 14-1, in Chapter 14).

Using the pen extension
The pen extension includes blocks for drawing on the Stage. As a sprite moves, it
draws a line behind it in your chosen color. Try adding a Pen Down block at the top
of the script in Figure 9-5 to see it in action. There are blocks to set the pen color
and size (which determines the thickness of the line). You can use the Change Pen
Color block to cycle through the colors in the pen’s palette, by increasing the pen
number by a certain number.

174 PART 4 Programming the Raspberry Pi

Using the electronics extensions
There are two electronics extensions for the Raspberry Pi. The Raspberry Pi Sim-
ple Electronics extension is ideal for getting light-emitting diodes (LEDs) and
buttons working with your Raspberry Pi. The Raspberry Pi general-purpose input/
output (GPIO) extension gives you more control over the default state of the cir-
cuit (pulled up or down). For most purposes, the simple electronics extension is
all you need. For more on the electronics extensions, see Chapter 16.

Using the Sense HAT extension
The Sense HAT is an official add-on for the Raspberry Pi. It includes an 8 x 8 grid
of LEDs, motion sensors, a joystick, and some environmental sensors. You can
program it in Scratch using the Sense HAT extension.

If you don’t have a Sense HAT, you can use Scratch together with the Sense HAT
Emulator to test your Scratch project (see Figure 9-10).

The Sense HAT blocks include blocks to scroll text across the LEDs and to display
a letter, a shape of your own design, a sprite, or the Stage. Given the extremely low
resolution of the LED grid, the sprite and Stage are not always recognizable on the
Sense HAT.

There are blocks to change the color used for text and shapes and the background
color used for other LEDs. You can set the color of each LED individually, too.

There are blocks you can use to detect joystick movements and tilts and shakes of
the device. You can also read the temperature, pressure, humidity, roll, pitch, and
yaw sensors.

FIGURE 9-10:
Emulating the

Sense HAT.

CHAPTER 9 Introducing Programming with Scratch 175

When you’ve made something you like, you can take it into the real world by buy-
ing a Sense HAT (which costs about $40).

Saving your work
Remember to save your work so that you can come back to it later. You can find
the option to save on the File menu, at the top of the window. If you use Scratch
online at the Scratch website instead of using the installed software on your Rasp-
berry Pi, your work is saved automatically for you every few minutes. There is an
option to Save Now in the upper right when you have unsaved changes.

CHAPTER 10 Programming an Arcade Game Using Scratch 177

Chapter 10
Programming an Arcade
Game Using Scratch

In this chapter, we show you how to use Scratch to create and play an arcade
game. You get a chance to customize the game with your own graphics, but
more importantly, you learn how to put a game project together so that you can

invent your own games.

In this sample game, you control a flying saucer as it defends its planet from
invasion. Grumpy-looking aliens zoom in from above, but you can stop them by
hurling fireballs at them. If they get to you, it’s game over — not just for you, but
for your entire planet. . . .

This chapter explains the Events and Control blocks that enable you to coordinate
the actions of different sprites with each other and with the player. The chapter
assumes a basic understanding of the Scratch interface and how you use blocks to
build a script, so refer to Chapter 9 for a refresher, if you need it.

In this chapter, we use Scratch 3.

IN THIS CHAPTER

»» Adding sprites to your game

»» Drawing and naming sprites

»» Controlling when scripts are run

»» Using random numbers

»» Detecting when a sprite hits another
sprite

»» Introducing variables

»» Making sprites move automatically

»» Adding scripts to the Stage

178 PART 4 Programming the Raspberry Pi

You can download the Scratch file for this chapter’s arcade game from this book’s
companion website. (See the Introduction for more on how to access the book’s
online content.) You might find it helpful to look at the color-coded script onscreen
while you read this chapter. You can use the File menu at the top of the Scratch
window to open the project when you download it.

Don’t forget to save your game frequently. It’s a good idea to save a new copy of
your game with a new filename as you reach each significant point in its develop-
ment. That way, you can go back if you introduce an unexpected error. Plus, if a
file gets corrupted, you won’t lose too much work.

Starting a New Scratch Project
and Deleting Sprites

If you’ve been playing with Scratch and have blocks and scripts scattered all over
the screen, you can start a new project by clicking File on the menu at the top of
the screen and then choosing New.

All projects start with the Cat sprite in them, so the first thing you need to do is
delete it. Find it in the Sprite List and click the trashcan icon on it.

Deleting a sprite is not the same as hiding it. If you hide a sprite, it’s still part of
your project, but it’s not visible. You can bring it back later by showing it. If you
delete a sprite, its scripts, costumes, and sounds are removed from your project
altogether.

Changing the Backdrop
The Stage can have scripts and different images, just like a sprite can. You can
change the Stage’s background to something more inspiring than the plain white
space you see when you start Scratch.

Hover over the Choose a Backdrop button in the lower right of the screen. A menu
of icons opens (see Figure 10-1). When you mouse over an icon, a description
appears. You have four options:

»» Choose a Backdrop: Pick an image from those supplied with Scratch. They’re
organized into categories: fantasy, music, sports, outdoors, indoors, space,
and underwater.

CHAPTER 10 Programming an Arcade Game Using Scratch 179

»» Paint: You can design your own backdrop using the built-in art package (see
the section “Drawing Sprites in Scratch,” a little later in this chapter).

»» Surprise: This option gives you a random backdrop from the Scratch library.

»» Upload Backdrop: This option enables you to use an existing image file.
Scratch can open images in .jpg, .gif, and .png format.

»» Camera: This option enables you to take a photo using the Raspberry Pi
Camera. To find this option, click Stage beside the Sprite List, click the
Backdrops tab above the Blocks Palette, and then use the Choose a Backdrop
button in the lower left of the screen.

You can manage your backdrops in the Backdrops Area. Click the Stage box beside
the Sprite List, and then click the Backdrops tab at the top of the Blocks Palette to
see the Backdrops Area.

For the backdrop for this chapter’s game, we’ve used a space-themed backdrop
from Scratch’s collection.

Adding Sprites to Your Game
There wouldn’t be much demand for a programming language that could only be
used to create games about cats. (Actually, given the popularity of cat videos
online, maybe there would.) In any case, Scratch gives you four ways to bring new
sprites into your game. Hover your mouse over the Choose a Sprite button in the

FIGURE 10-1:
Mousing over the

Choose a
Backdrop button
reveals different

ways to add a
backdrop.

Scratch is developed by the Lifelong Kindergarten Group at the MIT
Media Lab. See https://scratch.mit.edu.

https://scratch.mit.edu/

180 PART 4 Programming the Raspberry Pi

lower-right corner of the Sprite List to find them (see Figure 10-1). The menu
looks the same as the one for backdrops.

The options to add a new sprite are:

»» Choose a Sprite: Use this option to select a sprite from Scratch’s extensive
library. Scratch comes with a wide range of sprites, including dancing people,
flying hippos, and fire-breathing dragons. Our kind of party!

»» Paint: This opens the Paint Editor so that you can draw your sprite in Scratch.

»» Surprise: Looking for some inspiration? This button fires up your creativity by
bringing in a randomly chosen sprite from those that Scratch comes with. It’s
also a quick way to get started if you want to experiment with scripting. If you
don’t like the sprite you get, you can always delete it and try another surprise.

»» Upload Sprite: You can use this button to bring in a graphic you’ve created
using a different art package.

Drawing Sprites in Scratch
One of the most distinctive ways to put your fingerprint on your game is to draw
your own sprites for it. Even if it plays the same as a well-known game, it’ll look
unique if you hand-craft your images. Figure 10-2 shows the Paint Editor in
Scratch.

The checkered area is the Canvas. The checkered pattern has a special meaning
and is used to indicate parts of the image that are transparent, where the backdrop
will show through. Usually, you want everything outside the outline of your sprite
to be transparent and everything inside it to be another color.

By default, Scratch uses vector images, which are made up of shapes that you can
modify. Vector images are great for Scratch because they still look good when you
change their size. The process for creating them may be a bit different from what
you’re used to, though. The best way to learn how to use the Paint Editor is to
experiment with it.

Beside the Canvas, you can see your drawing and editing tools. Click one to select
it, and you can then use it on the Canvas. The icon for your chosen tool is high-
lighted in blue so that you can easily see which tool you’re using. Above the Canvas
is the Options Area (refer to Figure 10-2). This is where you can choose how to use
a particular tool. The main tools are described (from top to bottom) in this list:

CHAPTER 10 Programming an Arcade Game Using Scratch 181

»» Select: Use this tool to select a shape that you would like to modify or
remove. If you select a rectangle you’ve drawn on the canvas, you can use the
handles on its sides and corners to change its width and height, for example.
The handle underneath the shape can be used to rotate it. To select multiple
shapes within a rectangular area, click and hold the mouse button in one
corner, drag to the opposite corner, and then release the mouse button. You
can click a shape in your selected area and drag it to move all the selected
shapes to a different part of the canvas. Alternatively, you can use the buttons
at the top of the Paint Editor to flip your selected area horizontally or verti-
cally. You can also press Delete on your keyboard to delete the selected area.
If you select a shape, you can change its Fill (inside) and Outline color in the
Options Area. Selected shapes can also be copied and pasted using the
Options Area (or the keyboard shortcuts Ctrl+C and Ctrl+V).

»» Reshape: The Reshape tool is perhaps the most important one for creating
vector images. It enables you to distort shapes on the Canvas. Choose the tool
and then click a shape, and you can manipulate the handles on it. Whereas the
Select tool enables you to resize a shape with the handles while preserving its
form, the Reshape tool changes the outline of the shape. You can flatten the

FIGURE 10-2:
The Paint Editor

in Scratch.
Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab.

See https://scratch.mit.edu/.

https://scratch.mit.edu/

182 PART 4 Programming the Raspberry Pi

bottom of an ellipse, for example, or turn a rectangle into a triangle by dragging
two corners together. Click on the outline of the shape to add a new reshaping
point, which you can drag and manipulate to further distort the shape.

»» Brush: Hold down the mouse button as you move over the Canvas to leave a
line. In the Options Area, you can select the brush size and the color, where it
says “Fill.” Your line becomes a shape that you can edit using the Reshape tool.

»» Eraser: The Eraser takes a chunk out of your shapes when you put the Eraser
over them and click the mouse button. You can hold down the button and
move the mouse if you want to delete large parts of the image, or to delete
small sections with a steady hand. In the Options Area, you can choose the
eraser size beside the Eraser icon.

»» Fill: Click inside a shape on the image to fill it with your chosen color.

In the Options Area, you can click the Fill color to open the color options (see
Figure 10-3). At the top, you can choose a graduated pattern that fades from
one color to another. The fade can be vertical, horizontal, or circular. You
choose the type of fade at the top of the color panel. You then click each color
box to select it, and use the Color, Saturation, and Brightness sliders to choose
your color. To reverse the fade, click the Swap icon between the color boxes.
The icon in the lower left enables you to choose invisible ink, which enables
anything behind the sprite to show through. The pipette in the lower right is
used to copy a color from the canvas. Select it and then click the canvas to
choose that ink. The Fill color options are also available when drawing or
editing shapes.

FIGURE 10-3:
Setting a

graduated fill
pattern.

Scratch is developed by the Lifelong
Kindergarten Group at the MIT Media Lab.

See https://scratch.mit.edu.

https://scratch.mit.edu/

CHAPTER 10 Programming an Arcade Game Using Scratch 183

»» Text: This tool enables you to write on the sprite. You can choose a different
font in the Options Area, and press Enter in the text box to start a new line.
To resize the text, use the Select tool. You can’t reshape text.

»» Line: Click and hold the mouse button at the start of the line, move the mouse
to the end of the line, and then release the mouse button. The options let you
choose the line thickness and Outline color. Lines do not have a Fill color.

»» Ellipse: Click to indicate the point where lines from the top and left of the
ellipse would meet, and then drag the mouse to the opposite side before
releasing the button. Again, you have options to draw a filled or empty shape.

»» Rectangle: Click and hold the mouse button to mark one corner of the
rectangle, and then drag your mouse to the opposite corner and release the
button. In the Options Area, choose the Fill and Outline colors you want. You
can also adjust the thickness of the Outline.

The Delete button clears the Canvas if you don’t have anything selected. If you
make a mistake, click Undo (refer to Figure 10-2).

When drawing ellipses and rectangles, you can make them perfect circles or
squares by holding down the Shift key while you drag the mouse. With the Line
tool, holding down the Shift key forces your line to be horizontal, vertical, or
diagonal at 45 degrees.

Your canvas has a target in the middle. This is the point around which your sprite
will rotate. Usually, you want to align the middle of your sprite with this center
point. It’s easiest to draw your sprite and then select all of its shapes and move
them into position on top of the center point.

To help you build your shapes, you can use the Forward and Backward options to
decide which shapes are on top of others. You can also Group shapes, so you can
manipulate them as if they were a single shape.

Figure 10-2 shows an alien Sean created for the game in this chapter. He started
with an ellipse and then flattened the base of it. He used the Ellipse tool to create
circles for the eyes and the eyeballs, the Line tool for the eyebrows and mouth, and
the Brush tool to draw the nose. The horned top started off as a rectangle. He
added reshaping points along the top edge of it, and then dragged every other one
down to create a row of spiky peaks. To make the horns the same on each side, he
copied and flipped the entire spiky rectangle and arranged the duplicate to put the
horn in position on the right.

Using vector images can be strange at first, but it’s worth persevering with. You
can, though, choose to edit bitmaps instead. In that case, you manipulate pixels
(colored dots) instead of shapes, so it’s more like Microsoft Paint or a similar basic

184 PART 4 Programming the Raspberry Pi

art package. Click Convert to Bitmap at the bottom of the Paint Editor to enter
bitmap mode. If you convert a vector to a bitmap, you’ll likely lose some image
quality, and you won’t be able to edit your shapes, even if you convert back again.

If you want to edit your picture later, click your sprite’s Costumes tab and then
click the costume you want to change. If you want to create additional costumes
for a sprite, you can also do that in your sprite’s Costumes tab. Use the button at
the bottom to paint a new one.

Naming Your Sprites
Whenever you’re programming, you should give things meaningful names so that
you (and others) can easily understand what your program does. Scratch gives
your sprites names like Sprite1 and Sprite2, but you can rename them. To rename a
sprite, select it in the Sprite List, click the box beside where it says Sprite at the
top of the Sprite list, and then type its new name.

Your sprite’s costumes are called costume1, costume2, and so on. If you’ve created
different costumes for your sprite, you should also give them sensible names so
that you can easily tell which is which. Go to your sprite’s Costumes tab, click a
costume, and then type the new name into the box at the top of the Paint Editor
(see Figure 10-2).

For the space game, you need to add a spaceship sprite named ship and a sprite
named fireball to represent the ship’s weapon. The baddie, a sprite called alien,
should have two costumes: alienok, which shows it looking menacing, and alienhit,
which shows the same entity after it’s been hit by the fireball.

To make it easier to see what you’re doing, we recommend you drag your ship to
the bottom of the screen, drag the alien to the top, and put the fireball somewhere
in the middle. That roughly reflects where they will be in the finished game.

We’re using the Rocketship sprite that comes with Scratch for our spaceship, and
we’ve designed our own alien and fireball.

Controlling When Scripts Run
In Chapter 9, we show you how to start scripts by clicking them in the Code Area.
Most of the time, you’ll want your scripts to run automatically when certain
things happen, such as a player pressing the Fire key.

CHAPTER 10 Programming an Arcade Game Using Scratch 185

This is where the Events blocks come in: They allow you to trigger scripts to run
when a particular event happens, such as a sprite being clicked or a key being
pressed.

Using the green flag to start scripts
One of the Events blocks is particularly useful for starting your game and syn-
chronizing your scripts across all your sprites. Above the Stage are two buttons: a
green flag and a red Stop button. The green flag is used to start scripts running,
and you can use an Events block to detect when it’s clicked. This Events block has
a curved top on it — because no other block can go above it— but it has a notch
underneath so that you can join Motion, Looks, Sound, or other blocks to it. You
can put scripts that are triggered by the green flag being clicked into all your
sprites so that clicking the flag makes it easy to start scripts on different sprites
at the same time.

At the end of a game, aliens and the ship could be anywhere, so at the start of the
game, you need to reset each sprite to its starting position. For the player’s ship,
you need to reset the x position to the center of the screen, set the y position near
the bottom of the screen, reset the ship’s direction, and bring the ship to the front
so that any other sprites are behind it. Later on, this makes the fireball come from
behind the ship, so it looks like it’s being fired from inside rather than appearing
on top of it. It’s also a good idea to adjust the size of the sprite for your game.
We’ve set our ship at 50%. If you’ve drawn your own sprite, you can adjust its size
depending on how big you’ve drawn it.

Figure 10-4 shows the script you should assemble to reset your ship when the
green flag is clicked. If you’re making your own graphics, the y position might
need to be higher, depending on the size of your sprite.

FIGURE 10-4:
Using a green flag

Events block to
reset your sprite.

Scratch is developed by the Lifelong
Kindergarten Group at the MIT Media

Lab. See https://scratch.mit.edu.

https://scratch.mit.edu/

186 PART 4 Programming the Raspberry Pi

When you have multiple sprites in your project, make sure you’re adding blocks to
the correct one (the ship, in this case). Each sprite has its own Code Area. To
choose a sprite, click it in the Sprite List in the lower right.

Using the Forever Control block
Computers are great at repetitive tasks, and a game program often requires the
computer to do the same things over and over again until the game is finished.

Repeated bits of program like this are called loops.

You use the Control blocks to craft the rules and instructions that govern how your
game works. There are Control blocks for repeating a set of blocks. The Repeat
block enables you to specify how many times you want a block or set of blocks to
run. The Forever block runs a block or set of blocks repeatedly until the program
is stopped.

Both blocks are shaped like a bracket, so they can enclose the blocks you want to
repeat inside them. The Forever block doesn’t have a notch on the bottom because
it doesn’t make sense to put any other blocks after it: They would never be run,
because forever never comes to an end.

For the ship in this space game, you need to continue checking for key presses
until the game is finished. Without the Forever loop, the script would check once
for a key press and then finish.

You can find the Forever block by clicking the Control button at the left of the
Blocks Palette to reveal all the Control blocks, and then looking down the list. Drag
it into the script for your ship at the end of your green flag script. The first time
you use it, we recommend you test how it works by dragging a Motion block into
its bracket. Figure 10-5 shows a script that makes the ship sprite rotate for as long
as the program runs. You’ve already built some of this script, so just add the new
blocks at the end. Click the green flag to start it, but don’t forget to take that rota-
tion block out again when you’ve finished testing.

Enabling keyboard control of a sprite
For our space game, the player needs to be able to move the ship sprite left and
right using the arrow keys. In plain English, you need to use a set of blocks that
says, “If the player presses the left-arrow key, move the ship left.” And, you need
to put those blocks inside a Forever block so that Scratch keeps checking and
moving the sprite all the way through the game. You need a similar set of blocks
that move the sprite right, too.

CHAPTER 10 Programming an Arcade Game Using Scratch 187

The If block is a Control block that enables a set of blocks to be run only under
certain conditions. For that reason, it’s often called a conditional statement in pro-
gramming. Like the Forever block, it’s shaped like a bracket, so you can put other
blocks inside it. In the case of the If block, the blocks inside are ones you want to
run only in certain circumstances. Drag the If block into the Code Area, inside the
Forever block.

Scratch is designed like a jigsaw puzzle, so it gives you visual hints about what
blocks can go where if the program is to make sense. The If block has a diamond-
shaped hole in it, which is where you describe the circumstances under which you
want its blocks to run. There are diamond-shaped Operator and Sensing blocks as
well, and we use both in this program.

The block you need for keyboard control is a Sensing block called Key Space
Pressed? — it detects a tap on the spacebar. If you want it to detect the pressing
of a key other than the spacebar, use its menu to set the key. In this case, you want
it to detect the left-arrow key. You can drag and drop this Sensing block into the
diamond-shaped hole in the If block in the Code Area.

Figure 10-6 shows the piece of script you need to move the ship left. We’ve used a
Motion block to change its x position by –10 units, and we’ve also adjusted its
direction, which makes it tilt toward the direction it’s moving. You could change
its costume so that it looks different when it’s moving left or right, or add any
other visual effects or sounds here. This code goes inside your Forever block in
your existing script.

FIGURE 10-5:
The Forever block

can be used to
make the ship

rotate the entire
time the program

runs.
Scratch is developed by the Lifelong

Kindergarten Group at the MIT Media
Lab. See https://scratch.mit.edu.

https://scratch.mit.edu/

188 PART 4 Programming the Raspberry Pi

Enabling a sprite to control another sprite
In programming, you can often choose between several ways to achieve the same
effect. The game’s firing mechanism is one such example. You could sense the
spacebar (the Fire key) being pressed using a script on the fireball, for example,
and then use that to trigger the fireball’s ascent.

We use the firing mechanism as an opportunity to show you how you can make
one sprite control another sprite, however. You can’t actually make the ship move
the fireball, but you can send a message from the ship to tell the fireball you want
it to move itself.

There are two parts to this: The first is that you need to use the Broadcast block
on the ship to send a message to all the other sprites. You only want to do this
when the spacebar (the Fire button in this game) is pressed, so you need to drag
an If block to the Code Area of your ship, add a diamond Sensing block to check
whether the spacebar is pressed, and, finally, put the Broadcast block inside the If
block’s bracket.

The Broadcast block, which is one of the Events blocks, has a menu built into it.
Click the menu and click New Message to create a new message. We’ve called our
message fire.

This approach has a couple of advantages. First, you can keep all your game con-
trol scripts on one sprite (the ship), which makes the program easier to manage.
Second, it’s an efficient way to coordinate multiple sprites. We could, for example,
make our alien look terrified when the Fire button is pressed, by just changing its
costume, and that requires only two blocks: An Events block for when the message
fire is received, and the block to change to a new costume which shows the alien
looking scared. It’s much more efficient than having to look out for the Fire button
on the alien, too.

FIGURE 10-6:
The If block is

used to enable
keyboard

movement
of the sprite.

Scratch is developed by the Lifelong Kindergarten Group at the
MIT Media Lab. See https://scratch.mit.edu.

https://scratch.mit.edu/

CHAPTER 10 Programming an Arcade Game Using Scratch 189

Figure 10-7 shows the script for the ship. When the green flag is clicked, it resets
the ship’s position and then enters a loop where it moves the ship left if the left-
arrow key is pressed, moves the ship right if the right-arrow key is pressed, sends
the fire message if the spacebar is pressed, and then keeps checking for those
keys forever. You can run this script to confirm that the ship moves as expected.

If your script doesn’t behave as expected, check your brackets. You’re allowed to
put an If block inside another If block, but that doesn’t make sense here, and it
will stop the game’s controls from working properly. If you put the bracket for
detecting the Fire key inside the bracket for detecting the right-arrow key, the
game will check for the Fire key only when the right-arrow key is pressed.

Click the fireball sprite in the Sprite List. You can now add scripts to that sprite.
An Events block called When I Receive fire is used to trigger a script when the
fire message is broadcast. This script is quite simple: You move the fireball sprite

FIGURE 10-7:
The script for
resetting and

then controlling
the ship.

Scratch is developed by the Lifelong
Kindergarten Group at the MIT Media Lab.

See https://scratch.mit.edu.

https://scratch.mit.edu/

190 PART 4 Programming the Raspberry Pi

to where the ship is, show the fireball sprite (although it will be behind the ship),
play a suitably sci-fi sound from the effects included with Scratch, glide the sprite
to the top of the screen, and then hide it again.

In the Glide block, you can drop a block called X Position in place of entering a
number for the x position. That means you can keep the x position the same as it
already is while changing the y position with a gliding movement. The result is
that the fireball moves vertically.

The other script you need on the fireball sprite is one to hide it when the green flag
is clicked, just in case it’s onscreen from the previous game when a new game
starts. We’ve also added a block to adjust the size of our fireball. It looks best if the
fireball is smaller than the ship. Depending on your design, you may need a dif-
ferent number in this block.

Make sure you’re adding scripts to the correct sprite.

Figure 10-8 shows the scripts for the fireball sprite. Remember to add the Laser1
sound effect to the fireball sprite using the sprite’s Sounds tab before creating this
script. Click Choose a Sound (see Chapter 9) and then use the Search box to find
Laser1. After you’ve added this script, you can confirm that it works by tapping the
spacebar.

Using Random Numbers
Games wouldn’t be much fun if they were always exactly the same, so Scratch
enables you to use random numbers in your scripts. To keep players on their toes,
you can make the alien appear at a random x position at the top of the screen.

FIGURE 10-8:
The scripts for

the fireball sprite.
Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab.

See https://scratch.mit.edu.

https://scratch.mit.edu/

CHAPTER 10 Programming an Arcade Game Using Scratch 191

Click your alien in the Sprite List, and then drag in the When Green Flag Clicked
Events block. As with the other sprites, you need to create a script that resets the
alien to its starting position and sets it to the correct size. In the case of the alien,
the sprite switches to a different costume when it’s hit, so you should make sure
it is using its normal costume at the start of a new game and that it is visible
onscreen.

For its screen position, the alien needs to have a y-coordinate of 150, which is near
the top of the screen. You don’t want to use the full width of the Stage, because it
looks odd when half the alien is off the edge of the Stage. From experimentation,
we have found that the ideal starting x position for our alien is between -180 and
180, but yours might vary, depending on its size.

Drag in the Motion block you used previously to go to a particular x and y position.
If you click Operators at the left of the Blocks Palette, you can find a block called
Pick Random 1 to 10, which generates random numbers. Drag this block into the
hole where you would normally type the x position, and then change the numbers
in the random number block to –180 and 180.

Figure 10-9 shows the initial script for the alien. You can use the green flag to test
whether it works and positions the alien at a random point at the top of the screen
each time.

Detecting When a Sprite Hits
Another Sprite

There’s no point in throwing flaming fireballs at an alien if it won’t even raise an
eyebrow. To make this game fun, you need to make the alien sprite react whenever
it’s hit. Most games involve sprites hitting each other (bats and balls, targets and

FIGURE 10-9:
The script to reset

the alien at the
start of the game.

Scratch is developed by the Lifelong Kindergarten Group at the
MIT Media Lab. See https://scratch.mit.edu.

https://scratch.mit.edu/

192 PART 4 Programming the Raspberry Pi

weapons, chasing and catching), so collision detection, as it is often called, is a sta-
ple of game design.

You can detect whether the fireball is touching the alien sprite from the fireball,
but it is the alien that must react, so that’s where you need to put your script.

You can use a Sensing block to check whether a sprite is touching another sprite
and then combine that with an If block to trigger a reaction when the alien and the
fireball touch each other.

As with the key press detection for the ship, you should keep checking for the alien
being hit throughout the game, so you should put the If block inside a Forever
block (see Figure 10-10 in the next section). Inside the first If block are the instruc-
tions for what to do when the alien is touching the fireball: Change the alien’s
costume to what it looks like when it’s been hit, make it say “Arggh!” in a speech
bubble, play a sound effect, and then hide the alien. After a random delay of a few
seconds, the alien is repositioned at the top of the screen, switched back to its
normal costume, and shown so that the horrible cycle of invasion and destruction
can begin again.

Introducing Variables
Variables are a way of storing information in a program so that you can refer back
to it later or reuse it. You give that piece of information a name, and then you can
refer to it by that name in your script. For example, if you want to keep a running
tally of the score, you use a variable to do that. They’re called variables because
their values can change over time. The score is zero at the start of the game, for
example, but it goes up each time the player zaps an alien out of the sky.

You can tell your script to reset the score to zero, increase it when an alien is hit,
and display the score at the end. Each time, you just refer to it as score, and the
program works out what number that refers to.

To create a variable, click the Variables button beside the Blocks Palette. In the
Blocks Palette itself is a button called Make a Variable. Click that, and you will be
asked to enter a name for the variable — in this case, use score.

You’re also asked whether this variable should be for all sprites or only the sprite
you’re working on now. It’s important to get this right. For the score, you want to
make a variable that all your sprites can see. If you have a variable that’s used by
only one sprite, it’s better to create a variable that’s only for that sprite, because
it stops other sprites from being able to interfere with it. When you duplicate a
sprite, all its scripts and variables are duplicated with it too, so you might find that

CHAPTER 10 Programming an Arcade Game Using Scratch 193

you have sprites that use variables sharing the same name, but that you want to
use independently of each other. In that case, you would set the variable to be for
that sprite only. Each sprite would have its own independent version of the
variable.

There are blocks in the Variables section of the Blocks Palette that you can use to
change the variable’s value and show or hide it on the Stage. If you want the score
to go up by 50 each time the alien is hit (be generous — it’s not an easy game!),
you drag the Change my variable by 1 block into your script, change the variable
name to score, and edit the number in it to 50. This block needs to go inside the
If bracket that detects whether the alien touches the fireball, as you can see in
Figure 10-10.

In Chapter 9, you see how you can display a sprite’s position and direction on the
Stage. By default, the values of variables are shown on the Stage, too. They appear
in the upper left, but you can drag them wherever you want them. This can be
useful for tracing and fixing problems, but it can get in the way of the game. We
recommend that you deselect the check box beside your new score variable in the
Blocks Palette to remove the score from the Stage again.

FIGURE 10-10:
Setting up the

alien and
detecting when

it’s hit.
Scratch is developed by the Lifelong

Kindergarten Group at the MIT Media Lab.
See https://scratch.mit.edu.

https://scratch.mit.edu/

194 PART 4 Programming the Raspberry Pi

In the finished game, the alien comes down the screen toward the ship, and the
game ends when the alien catches the player’s flying saucer. At this point, you
want to show the score variable on the Stage and use a special Control block that
stops all scripts so that the program comes to an end. Figure 10-11 shows the
blocks that do this, which use a similar pattern to the blocks used for detecting
when the alien is hit. Add these blocks at the bottom of the script you created in
Figure 10-10. The first new blocks is the If Touching Ship block. Pay attention to
the brackets!

Making Sprites Move Automatically
If you’re wondering why we left the alien’s movement to the end, it’s because it
makes it easier to test the game. You now have a spaceship that the player can
move, a working firing mechanism, and an alien that dies and then regenerates
when shot. You can test all that at your leisure and fix any problems without hav-
ing to keep up with the alien.

The alien moves from left to right and then from right to left, and then back again.
Each time it changes direction, it moves down the screen a little.

Figure 10-12 shows the movement script you need to insert into your alien’s For-
ever loop as its first blocks. You’ll find it easiest to assemble this set of blocks to
the side of your main script and then drag it into the brackets of the Forever block
in your main script.

FIGURE 10-11:
Detecting when

the alien catches
the player’s
spaceship.

Scratch is developed by the Lifelong
Kindergarten Group at the MIT Media Lab.

See https://scratch.mit.edu.

https://scratch.mit.edu/

CHAPTER 10 Programming an Arcade Game Using Scratch 195

The Touching block, from the Sensing part of the Blocks Palette, can detect
whether a sprite is at the edge of the Stage. When our alien touches the edge of the
screen, we change our sprite’s direction by 180 degrees. We immediately move 10
steps so that we can get away from the edge of the Stage. Otherwise, the sprite
might get stuck there. We change its y position to move it down the screen, too.

To make this work well, you should insert two additional blocks at the top of your
alien’s script, after the When Green Flag Clicked block but before the Forever
block:

»» Point in Direction 90: This is the default value anyway, but it’s a good idea to
positively set any values you’re relying on. This makes the sprite move right
when the game begins.

»» Set Rotation Style Left-Right: This will stop your sprite flipping onto its head
when it moves left.

You’ll find both blocks in the Motion section of the Blocks Palette. You can insert
them as the first blocks under the When Green Flag Clicked block.

Fixing the Final Bug
In many commercial software development projects, most of the time and money
is spent testing programs to make sure they work as expected, and then fixing
them when they don’t. Errors in programs are often called bugs, and even in the
simple game in this chapter, we have a bug that would enable the player to cheat.

FIGURE 10-12:
The alien’s

movement script.
Scratch is developed by the Lifelong

Kindergarten Group at the MIT Media Lab.
See https://scratch.mit.edu.

https://scratch.mit.edu/

196 PART 4 Programming the Raspberry Pi

If the fireball is moving up the screen and the player presses the Fire key again,
the firing sequence starts over. That means the fireball that was traveling through
the air disappears, and a new one is sent up from the ship. That doesn’t make any
logical sense, and it means players suffer no consequences if they misfire: They
can just fire again and it’s as if the misfired shot never happened.

You can use a variable to keep note of when the fireball is moving up the screen so
that you can stop the ship from allowing a fireball to be fired again at that time.
Variables like this, which are used only to keep track of whether something is
happening, are called flags. The firing flag needs to be able to say whether the fire-
ball is in play or not, so it has two values. While the fireball is onscreen, give the
firing flag a value of 1. When it isn’t, give the firing flag a value of 0.

Let’s set up the firing flag on the fireball sprite. Start by clicking that sprite in the
Sprite List. Click the Variables button at the left of the Blocks Palette, and click the
button to make a variable. Give it the name firingflag and make sure the option
is selected so that it’s available for all sprites. Untick the box beside its name in
the Blocks Palette to hide it on the Stage.

After you’ve created the variable, you can drag in a block from the Variables sec-
tion of the Blocks Palette to set its value to 1 at the start of the fireball’s firing
sequence, and to 0 at the end again. You should also update the fireball’s green
flag script so that it resets the firing flag to 0 at the start of a game, in case a game
ended while the fireball was onscreen. Figure 10-13 shows the final scripts for the
fireball.

FIGURE 10-13:
The final scripts
for the fireball,

including the
firing flag.

Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab.
See https://scratch.mit.edu.

https://scratch.mit.edu/

CHAPTER 10 Programming an Arcade Game Using Scratch 197

You also need to modify the script for the ship so that it fires only if the
firingflag variable is 0 at the time the spacebar is pressed. This is a little bit
complicated because you need to lock together lots of different blocks to express
this idea.

Go back to the ship’s script. You need to modify the If block that checks whether
the spacebar is pressed. Figure 10-14, read from top to bottom, shows how to
modify your If block. For simplicity’s sake, we’ve emptied the instructions from
inside the If block and separated it out from the rest of the script.

Start by dragging the Sensing block for the spacebar out of the If block’s
diamond-shaped hole. In its place, drag the And Operator block. This means the
blocks inside the If block’s bracket are run only if two things are true. The first is
that the spacebar must be pressed, so drag your Sensing block for the spacebar
into one of the diamond-shaped holes inside the And statement. The second
is that we need to make sure the firingflag is 0. Drag the '=50' Operator block
into the And Operator block on the right, and then drag the firingflag variable
into the left of the = Operator block. Change the number 50 to 0.

This should ensure that the ship can fire only one fireball at a time. They might be
aliens, but they still deserve a fair fight!

FIGURE 10-14:
How to build the

If block that
checks whether
the ship should

fire.
Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab.

See https://scratch.mit.edu.

https://scratch.mit.edu/

198 PART 4 Programming the Raspberry Pi

Adding Scripts to the Stage
As well as sprites, you can add scripts to the Stage. Click the Stage in the Sprite
List and you’ll find that it has its own Code Area. It’s a real pain to have to hunt
through your sprites to find where you put a particular block so that you can
change it, so this is a good place to put scripts that affect the whole game and that
aren’t associated with a particular sprite.

For this game, you should add a block to the Stage to set the score to 0 when the
green flag is clicked. Otherwise, the score will increase ever higher with each suc-
cessive game, and it will never be set back to 0 when a new game starts. You can
also add a block to hide the score when the game begins, to tidy up the Stage. The
alien will show it again when the game ends. Figure 10-15 shows what we mean.

Duplicating Sprites
You can add more aliens by simply duplicating the first one. Right-click the
alien in the Sprite List and choose Duplicate. Having two or more aliens adds a
nail-biting aspect to the game.

Playing Your Game
To play your game without the distraction of your scripts and other clutter on the
screen, near the top right of the screen, click the Four Arrows icon that says Full
Screen Control when you hover over it. The Stage enlarges to fill the screen. You
can use the green flag to play as usual. To close the full-screen view again, click
the button above the Stage in the top right. Figure 10-16 shows the final game,
though yours might look quite different with your own art in it.

FIGURE 10-15:
The scripts for

the Stage.
Sean McManus

CHAPTER 10 Programming an Arcade Game Using Scratch 199

Adapting the Game’s Difficulty
If the game is too fast or slow for you, you can change the speed of the aliens by
changing the number in their first Move 10 Steps block. Use a higher number to
make the aliens move faster. On Sean’s Raspberry Pi, 20 is a good speed. The
aliens don’t all have to move at the same speed, and you can add more of them,
too, to make the invasion harder to defeat.

Taking It Further with Scratch
In this chapter, we cover many fundamental concepts that are used in program-
ming, including loops, operators, and variables. We’ve described how you can use
Scratch to design your own games, where sprites interact with each other and
respond to the player’s control. You can do lots of things to customize this game —
draw your own sprites or change the speed of the aliens each time they’re shot, or
the way they move. But your next real adventure is to use Scratch and the skills
learned in this chapter, perhaps with some of the other blocks we haven’t had the
space to cover, to make your own game.

FIGURE 10-16:
The final game.

Sean McManus

200 PART 4 Programming the Raspberry Pi

To find out more about Scratch, and to find games and animations that others
have made, visit the website at https://scratch.mit.edu. You can also share
your own work there and get feedback from other Scratch fans. There is a sup-
portive forum where you can get help with your scripts at https://scratch.mit.
edu/discuss, too.

To dig deeper into Scratch and find more programs to build, see Sean’s books
Scratch Programming in Easy Steps and Cool Scratch Projects in Easy Steps. You can find
Scratch tutorials and resources at www.sean.co.uk/scratch.

https://scratch.mit.edu/
https://scratch.mit.edu/discuss
https://scratch.mit.edu/discuss
http://www.sean.co.uk/scratch

CHAPTER 11 Writing Programs in Python 201

Chapter 11
Writing Programs in
Python

I
n this chapter, we introduce you to Python, a powerful programming language
that’s widely used commercially.

One of the best ways to learn programming is to study other people’s programs,
so in this chapter, we talk you through two different programs: One is a simple
calculator for multiplication tables; the other is an artificial intelligence simula-
tion that enables you to chat with your Raspberry Pi.

You’ll probably find Python easiest to learn if you create the examples with us, but
you can also download the finished programs from this book’s website. For more
information on accessing the website, see the Introduction.

In a book of this size, it’s not possible to cover everything you can do with Python,
but this chapter gets you started with your first programs. As you work through
these examples, you’ll learn about some of the fundamental principles in Python
and in programming generally, and you’ll gain an understanding of how Python
programs are put together.

IN THIS CHAPTER

»» Using variables, strings, lists, and
dictionaries

»» Accepting user input and printing to
the screen

»» Using for and while loops

»» Using conditional statements for
decision-making

»» Creating and using your own
functions

202 PART 4 Programming the Raspberry Pi

You’ll be able to draw upon this knowledge when exploring the electronics pro-
grams in Part 5 of this book and when creating an arcade game with Pygame Zero
in Chapter 12.

Some lines of code are too wide for the page. We use a curving arrow at the end of
a line of code to indicate that a line continues. When you see the curving arrow,
just carry on typing and ignore the indent on the next line.

Working with Python
Programmers often use something called an integrated development environment
(IDE), which is a set of tools for creating and testing programs. There is a Python
IDE called Thonny on your Raspberry Pi. Click the Applications menu, select the
Programming category, and then click the Thonny Python IDE icon to get started.

Entering your first Python commands
When you start Thonny, a window opens with two boxes in it — the window
should look something like Figure 11-1.

FIGURE 11-1:
The Thonny

Python IDE, just
after it opens.

Copyright © 2017 Aivar Annamaa

CHAPTER 11 Writing Programs in Python 203

The top box is the editor, and we show you how to use that to make programs later
in this chapter. For now, you can ignore it.

The bottom box is the Python shell, and the three arrows are called the prompt. The
prompt shows that Python is ready for you to enter a command. You can test this
by entering the license() command, which shows you a history of Python, before
displaying the terms and conditions of using it. Use the scroll bar to see it all.
If you don’t want to get bogged down in legalese, abort when prompted by
typing q (in lowercase) and then pressing Enter.

You can increase the size of the shell to make it easier to read the output. Click and
drag the bottom border of the editor box above to adjust the amount of space ded-
icated to each of the two boxes. Use the button in the top right of the Thonny title
bar to maximize the window too. (See Chapter 4.)

One of the most basic commands in any programming language is the one that
tells the computer to put some text on the screen. In Python, this command is
print(), and you use it like this:

>>> print("hello world")

hello world

>>>

A simple demonstration like this one that displays a greeting on the screen is
often called a “hello world” program. It’s the starting point for learning most
programming languages.

The brackets are used to enclose whatever you want to output to the screen. The
quotes are used to mark the start and end of the text you want to show.

As you type, you might notice that Thonny highlights your text using different
colors. Gray is used to highlight a section that still needs a closing bracket, and
green is used for the text you want to display. The highlighting is a feature of
Thonny that helps Python beginners avoid common mistakes. Don’t press Enter
yet if your code is still highlighted: You’ve left something out.

Whatever you type in the quotes after the print() command is “printed” on the
screen, and Python then returns you to the prompt so that you can enter another
command.

Like the Linux shell, Python is case-sensitive — it won’t work if you use capital
letters where you shouldn’t. The command print() must be entered in lowercase;
otherwise, Python tells you you’ve made a name error, because what you entered
hasn’t been defined. You can mess around with the word in quotes as much as you

204 PART 4 Programming the Raspberry Pi

like, however: This is the text that you want to appear onscreen. Take a look at
these examples:

>>> PRINT("Hello Leo!")

Traceback (most recent call last):

File "<pyshell>", line 1, in <module>

NameError: name 'PRINT' is not defined

>>> Print("Hello Leo!")

Traceback (most recent call last):

File "<pyshell>", line 1, in <module>

NameError: name 'Print' is not defined

>>> print("Hello Leo!")

Hello Leo!

Using the shell to calculate sums
You can also use the shell to carry out simple calculations. Table 11-1 shows you
the mathematical operators you can use. Just put the sum after the print() com-
mand, like this:

>>> print(5 + 5)
10

>>> print(9 - 4)

5

>>> print(7 * 7)

49

>>> print(10 / 2)

5.0

TABLE 11-1	 Mathematical Operators in Python
Operator Description

+ Addition

– Subtraction

* Multiplication

/ Division

// Division, discarding any decimal portion

% Modulo, which shows the remainder after a division

CHAPTER 11 Writing Programs in Python 205

Don’t use quotes around the sum in the print() command. What would happen if
you did? Python would put on the screen literally whatever characters you asked
it to, like this:

>>> print("5 + 5")
5 + 5

If you want to force a rounding effect to remove any decimal portion from your
answer after dividing a number, you can use the floor division (//) operator, like
this:

>>> print(10 / 3)

3.3333333333333335

>>> print(10 // 3)

3

An operator you might not have come across before is modulo: It uses the % sign
and tells you the remainder after a division. Here are some examples:

>>> print(10 % 3)

1

>>> print(10 % 2)

0

You can use the modulo operator to tell whether one number is divisible by another
(the modulo is 0, if so).

These sums are quite basic, but you can enter more advanced sums by stringing
together numbers and operators. As in algebra, you use parentheses to surround
the bits of the sum that belong together and should be carried out first. You still
need to put parentheses around the whole sum for the print() command. For
example:

>>> print((10/3) * 2)

6.666666666666667

>>> print(10 / (3*2))

1.6666666666666667

You can also do mathematics in the shell by entering the sums without a print()
command, but it’s essential to use the command when you’re creating programs,
as you see shortly.

The spaces we’ve used around the mathematical operators are optional. They help
with readability and, in that last example, help to show which parts of the sum
belong together.

206 PART 4 Programming the Raspberry Pi

Creating the Times Tables Program
In this section, we show you how to make a program that generates multiplication
tables. For example, if the user requests a multiplication table for the number 7,
the program outputs the sequence 7, 14, 21, and so on. The program is only a few
lines long, but it teaches you how to create programs, use variables to store num-
bers, ask the user for information, and create loops — sections of program that
repeat. You build on your understanding of the print() command to do all this,
and if you’ve read Chapters 9 and 10 (on Scratch), some of the ideas should be
familiar to you.

Creating and running your
first Python program
The problem with entering instructions in the shell is that you have to enter them
each time you want to use them. The commands are carried out straightaway, too,
which limits the sophistication of the kinds of things you can do. You can solve
these problems by creating a program, a set of repeatable instructions that you can
save as a file and use again.

To create a program, you use the editor, which is the box above the shell that says
<untitled> on its tab.

When you enter commands in the editor, they’re not carried out straightaway. The
editor acts like a simple text editor; it enables you to enter your list of commands
(or program) and gives you control over when those commands are carried out.

Enter the following commands in the editor, using Enter to start a new line:

simple times table program

print("This program calculates times tables")

print("It is from Raspberry Pi For Dummies")

The window should now look like Figure 11-2. The two print() commands should
look familiar to you, though the first line is new. In Python, anything after a hash
mark (#) on the same line is ignored by the computer. The hash mark indicates a
comment, used to add notes to programs so that you can understand them later.
The very best programs are written in such a way that you can understand them
easily anyway, but it’s a good idea to leave little messages to your future self (or
other people) so that you can quickly understand important aspects of the pro-
gram. We’ve put a 1-line summary at the start of the program here so that if we
open it later, we can immediately see what it does.

CHAPTER 11 Writing Programs in Python 207

To save your program, click the Save button at the top of the Thonny window. You
use the Load button beside it to reopen previously saved programs.

The term used for starting a program is running it, so click the Run button to see
your program in action. Alternatively, the keyboard shortcut to run the program is
F5. When you run the program, you see those two lines of text printed out on the
screen in the shell window.

Congratulations! You’ve just written your first Python program!

Before you can run your program, you must save it. If you’ve made changes since
the last time it was saved, your program will be automatically saved for you. This
overwrites the previous version of the program. If you might want to revert to an
earlier version of the program, you should save a copy of it with a different file-
name. You do this using the Save As option, which is hidden by default. Thonny
has three different user interfaces:

»» Simple: Thonny starts in the simple interface, which is ideal for beginners. To
minimize distractions and the potential for mistakes, the menus are hidden.

»» Regular: If you click Switch to Regular Mode in the top right and then close
and restart Thonny, you’ll enter regular mode. Here, there is a File menu that
includes a Save As option. The View menu includes an option to show the

FIGURE 11-2:
Using the editor.

Copyright © 2017 Aivar Annamaa

208 PART 4 Programming the Raspberry Pi

variables in use, which you might find useful later. To choose the simple or
expert mode, choose Tools ➪   Options ➪   General ➪   UI Mode; the change you
select takes effect when you restart Thonny.

»» Expert: There is also an expert mode, which is helpful for teachers. It enables
them to double-click a tab (such as the Shell tab) to maximize it to fill the
screen. Choose View ➪   Maximize View to get back to normal. To choose
simple or regular mode, choose Tools ➪   Options ➪   General ➪   UI Mode; the
change you select takes effect when you restart Thonny.

Using variables
The next step in the program is to ask the user which multiplication table to gen-
erate. You store this number in a variable. A variable is a way of storing a number
or a piece of text so that you can refer to it later. (We talk more about variables in
Chapter 10, where it plays a role in our Scratch discussion.)

For example, you might have a variable that stores your bank balance. It might go
up (ka-ching!) or it might go down (sadly, more often), but you can always refer
to it as your bank balance. Variables are one of the basic building blocks of pro-
gramming, and not just in Python.

In the example of a bank balance, you can create a variable in Python for your bank
balance called balance by just giving it a value, like this:

balance = 500

(If you want to try this, enter the commands in the shell. This isn’t part of our
Times Tables program.) You can vary the value later (which is why it’s called a
variable) by just giving it a new value:

balance = 250

More often, you’ll want to do sums with the balance, such as taking some money
off the total when money is withdrawn or adding money to it when a deposit is
received. To do that, you change the variable’s value to a number that’s calculated
from its current value. Here’s an example:

balance = balance - 250

CHAPTER 11 Writing Programs in Python 209

This example takes the value of the balance variable, knocks 250 off, and then
puts the answer back into the variable balance. You can display the value of a
variable onscreen using the print() command with the variable name:

print(balance)

Programmers often use a shorthand form when they’re adding numbers to, or
subtracting them from, a variable. The shorthand is += for addition and -= for
subtraction. Here’s an example:

balance = 500

balance += 20
print(balance)

If you run this tiny program, or enter these instructions in the shell, Python prints
520 on the screen.

Here’s another example:

balance = 500

balance –= 70

print(balance)

This program subtracts 70 from the initial balance of 500, so it shows 430
onscreen. This shorthand is an elegant way and concise way to express the idea of
changing a variable’s value, and you’ll see it used widely in Python.

Accepting user input
Before we go any further, we should clarify one piece of jargon: function. A func-
tion is a set of commands that do a particular job, and lots of functions are built in
to Python. You’ve already seen one of them: print(). Later on, you’ll learn how to
make your own, too. (See “Creating your own functions,” later in this chapter.) To
use a function, enter its name, followed by parentheses. If you want to send it any
information to work with, you put that inside the parentheses, as you already have
with print().

When the program runs, we want to ask the user which multiplication table to
generate and then store that number in a variable that we call tablenum. To do
that, we set up the tablenum variable using a built-in function called input(),
which asks the question, waits for the user to enter something, and then puts
whatever is entered into the variable.

210 PART 4 Programming the Raspberry Pi

Here’s how the input() function works:

tablenum = input("Which multiplication table shall I generate for you? ")

We’ve inserted a space after the question mark and before the closing quotation
mark, because, otherwise, the cursor would appear right next to the question
mark. That extra space separating the question and the user’s answer makes
things look clear and more professional.

Add this new line of code to your program and run it, and you’ll see that the pro-
gram displays the question in the shell and then displays a cursor and waits for
you to enter a number. Enter any number to try it out. The program doesn’t do
anything else yet, however, because you haven’t told it to do anything with the
number you enter.

Printing words, variables,
and numbers together
It’s time to make your program do something with its user input. Start by having
the program print a title for the multiplication table the user has requested. This
requires something we haven’t discussed before: the capability to print text and
variables on the same line of text. The print() function can be used to print more
than one thing in a line, if they’re separated by commas, so you can combine text
and the variable tablenum, like this:

print("\nHere is your", tablenum, "times table:")

The first two characters here, \n, have a special meaning. They’re known as an
escape sequence, and they’re used to start a new line. Here they create a bit of space
between the question asking for input and the resulting heading.

Any characters that appear between the quote marks are printed onscreen. If you
put the variable name tablenum between quotes, you’ll see the word tablenum
onscreen instead of the number the user typed.

Now you need to print a line for each entry in the times table, from 1 to 12. As you
know, you can use variables in sums, and you can print sums, so you could display
the times table like this:

print("1 times", tablenum, "is", tablenum)

print("2 times", tablenum, "is", tablenum * 2)

print("3 times", tablenum, "is", tablenum * 3)

print("4 times", tablenum, "is", tablenum * 4)

CHAPTER 11 Writing Programs in Python 211

What happens when you run it? You might be surprised:

1 times 7 is 7

2 times 7 is 77

3 times 7 is 777

4 times 7 is 7777

That’s not the result you were looking for! The problem is that the variable table-
num is being treated as a string, or a group of letters and other characters, rather
than a number. This is what happens by default with the input() function. The
user could enter anything when prompted for a number, and the program would
give a similar result — simply repeating whatever was entered. (If you want to
read a rap by your Raspberry Pi, try entering yeah.)

To fix that problem, you need to convert the user’s input, stored in tablenum, into
an integer, using the int function. If you cast your mind back to your mathemat-
ics lessons in school, you might remember integers are whole numbers, which
have no decimal portion. The int function can be used to convert numbers into
integers, or to turn a string into an integer. Add the following line after the
input() line:

tablenum = int(tablenum)

It works, as you can see in Figure 11-3. But it’s still not really a good solution. For
each line of output, you’re entering a new line in the program and adding a new
sum at the end of it. (Even using the Editor’s Copy and Paste commands (in the
Edit menu), we ran out of patience at Line 4.) What if you want to create a times
table that goes up to 50? Or 500? Or 5,000? Clearly, you need a more scalable
solution.

Using for loops to repeat
To save you from the slog of entering all those print commands, and to make our
program more flexible, you can use a for loop. This enables you to repeat a section
of program a set number of times, and to increase a variable each time the code
repeats. That’s exactly what you need for the Times Table program: You want to
display one line for each number from 1 to 12, showing the result of multiplying
that number by the figure the user entered.

Here’s how the code looks that makes it happen:

for i in range(1, 13):

 print(i, "times", tablenum, "is", i * tablenum)

212 PART 4 Programming the Raspberry Pi

This tiny program snippet introduces several new programming concepts. First,
take a look at the range function. It’s used to create a sequence of numbers, and
you give it a number to start at (1) and the end point (13). The end point is never
included in the sequence, so we had to use 13 to make the multiplication tables go
up to 12.

If you add a third number between the brackets (parentheses) of the range()
function, it’s used to specify the size of the gap between numbers. To show only
the odd numbers (starting at 1 and adding 2 each time the program repeats), you’d
use range(1, 13, 2). (You don’t need to do that now, but you can experiment
with the ranges later.) The rest of the line containing the range() function sets up
the start of the bit to be repeated and says that the variable i should be given the
next value from the number sequence each time it repeats. The first time around,
i has a value of 1, the first number in the sequence. The second time around, i has
a value of 2, which is the second number in the sequence. This goes all the way up
to the last repetition, when i has a value of 12.

You tell Python which commands should be repeated by indenting them. The
print() command we’ve used has four spaces in front of it, and in Python these
spaces are meaningful. Many languages let you space programs out however you
want, but in Python the spacing is often part of how the computer understands

FIGURE 11-3:
The Times Table

program, in
development.

Copyright © 2017 Aivar Annamaa

CHAPTER 11 Writing Programs in Python 213

your intentions. By enforcing the use of indentations like this, Python makes it
easier to read programs because you can see at a glance which bits belong together.
They’re all indented to the same depth.

You can repeat multiple commands by indenting them all:

for i in range(1, 13):

 print(i, "times", tablenum, "is", i*tablenum)

 print("------------------")

print("Hope you found that useful!")

If you can’t get your loop to work, make sure you’ve included the colon at the end
of the for line.

The previous snippet works its way through numbers 1 to 12 and prints the times
table line for each one, followed by a line of dashes to space it out. When it has
finished all 12 lines, it prints Hope you found that useful! just once because
that command isn’t indented with the others in the loop.

Pulling it all together, the final program looks like this:

simple times table program

print("This program calculates times tables")

print("It is from Raspberry Pi For Dummies")

tablenum = input("\nWhich multiplication table shall I generate for you? ")

tablenum = int(tablenum)

print("\nHere is your", tablenum, "times table:\n")

for i in range(1, 13):

 print(i, "times", tablenum, "is", i * tablenum)

 print("------------------")

print("\nHope you found that useful!")

Although an indentation at the start of a line has special meaning, you can use
blank lines to help lay out your program however you want. We’ve used some
blank lines here to make it easier to see which bits of program go together. We’ve
also added some extra \n escape sequences in the print and input commands to
add blank lines in the screen output.

214 PART 4 Programming the Raspberry Pi

Many people find that they learn best from actually typing in programs, but you
can download this program from the book’s website to save time or if you can’t
get the program to work. See the Introduction for more on accessing the website.

Figure 11-4 shows what the screen looks like when the program runs. If you want
to experiment with the program, there are a few things you can try. How about
making it go up to 20, or making it show only the odd lines (1, 3, 5) in the times
table? You can make both these changes by playing with the range() function
used in the loop. You can customize the screen output, too, to provide more in-
depth instructions, or to strip them out entirely. Perhaps you can use keyboard
characters such as dashes and bars to put your multiplication table into a box.

You can stop a running program using the red Stop button on the menu bar.

If you get unexpected results, you can open the Variables pane in Thonny to see
what’s stored in each of your variables. This can be extremely helpful when track-
ing down errors in programs, especially as the programs you create become longer
and more sophisticated. In regular mode, open the View menu and select Variables
to reveal the pane. Use the same process to hide the pane again.

FIGURE 11-4:
The finished

multiplication
table. Now, what

was 8 times 7
again?

Copyright © 2017 Aivar Annamaa

CHAPTER 11 Writing Programs in Python 215

Creating the Chatbot Program
Do you ever find yourself talking to your computer? Wouldn’t it be great if it could
chat back? The next program in this chapter, Chatbot, enables you to have a con-
versation with your computer onscreen. Using a few tricks, we make the program
appear to be intelligent — and able to learn from what you type in. It’s not actual
artificial intelligence, of course — that discipline of computer science is highly
evolved, and this is a simple demo program. Chatbot can throw out some sur-
prises, however, and you can expand its vocabulary to make it smarter. For a
sneak preview of what Chatbot can do, look ahead at the end of this chapter.

As you build this Chatbot program, you’ll deepen your understanding of Python.
In particular, you’ll learn about conditional statements, lists, dictionaries, and
random choices.

The program works like this:

1.	 Chatbot introduces itself and then invites the user to respond.

2.	 The user types something in.

3.	 If the user types in bye, the computer replies with a message to say thanks for
chatting and then finishes the program.

4.	 The program has stock responses for certain words, so it checks to see
whether it recognizes any of the words the user has entered. If it does, it uses
one of the appropriate stock responses. If more than one stock response
applies, the computer chooses one at random.

5.	 If none of the words is recognized, the program chooses a random phrase for
its reply. To stop the random phrases from repeating, it replaces the phrase
that’s used with what the user typed in. Over time, the program learns from
the user and starts to talk like them.

6.	 The program keeps chatting with the user until the user types in bye.

Now that you know the final goal, take your first steps toward it by setting up the
random responses.

You can download the finished program from this book’s website. See the Intro-
duction for more on accessing the website.

216 PART 4 Programming the Raspberry Pi

Introducing lists
There are several different ways you can organize information in Python, and one
of the most fundamental is called a list. We’ll use lists to store the computer’s
random responses in the Chatbot program.

The following code shows you how to create a list that has the name shopping_
list. You can enter this code in the shell or create a program in the editor so that
you can more easily edit and refine it. To start a new program in the editor, click
the New button. Your new file opens in a new tab in the editor. If you create a
program, make sure you run it, so that the shopping list is set up.

If you enter the instructions in the shell, you can press Enter at the end of each
line to go to a new line. Python will know you’re not finished if you haven’t given
it the final bracket yet.

shopping_list = ["eggs",

 "bacon",

 "tomatoes",

 "bread",

 "tin of beans",

 "milk"]

It’s similar to the way you create a variable. After the list name comes an equal
sign, and then square brackets that contain the list. Each item in the list is sepa-
rated by a comma. Because each item is a piece of text (or a string), you put quotes
around it so that Python knows where it starts and ends.

Python doesn’t mind whether you use double quotes or single quotes around the
strings in your list, but we recommend that you use double quotes. That’s because
strings often include apostrophes. If you’re using a single quote mark (the same
symbol as an apostrophe) to close the string, Python thinks it has reached the end
of the string when it hits the apostrophe. If you do need to use an apostrophe
inside a string that’s marked at each end with a single quote, put a slash (\) in
front of the apostrophe (for example, 'Mum\'s custard'). It’s easier to just use
double quotes for strings.

You can put all list items on one line, but the program is easier to read if you put
each item on a new line. Using the editor, if you press Enter at the end of a list
item, it indents the next line to the same depth as the item above it, so your list
looks neat, as in the previous example.

CHAPTER 11 Writing Programs in Python 217

When you’re entering lists, pay particular attention to the commas; otherwise
your program might not work: One should appear after every list item except for
the last one. This is another reason it’s a good idea to put list items on separate
lines: You can more easily see at a glance when a comma is missing. Your program
is color-coded, so the black commas stand out against the strings, which makes it
easier to spot errors.

You can print a list to the screen in the same way you print a variable to the screen.
Try this in the shell:

>>> print(shopping_list)

['eggs', 'bacon', 'tomatoes', 'bread', 'tin of beans', 'milk']

Python uses single quotes around the strings in your list, irrespective of the kind
of quotes you used to set it up. To find out how many items are in a list, use the
len() function, like this:

>>> print(len(shopping_list))

6

What if you’ve forgotten something? You can easily add items to the end of the list
by using the append() function. Here’s an example:

>>> print(shopping_list)

['eggs', 'bacon', 'tomatoes', 'bread', 'tin of beans', 'milk']

>>> shopping_list.append("fish")

>>> print(shopping_list)

['eggs', 'bacon', 'tomatoes', 'bread', 'tin of beans', 'milk', 'fish']

Each item in the list has a number, starting at 0, which means the second item is
number 1 and the third item is number 2, and so on. You can refer to a particular
item by putting the item number (known as the item’s index) in square brackets:

>>> print(shopping_list[3])

bread

That gives you the fourth item in the list (remember?) because the first item has
the index 0. You can also change items in the list by using their index numbers.
For example, if you want to change the fourth item from bread to a baguette, you
would use

>>> shopping_list[3] = "baguette"

218 PART 4 Programming the Raspberry Pi

For Chatbot, that’s everything you need to know about lists, but they’re an incred-
ibly flexible way of organizing information and there’s much more you can do
with one. Table 11-2 provides a cheat sheet covering some of the other functions,
if you want to experiment.

For other projects you work on, it’s worth knowing that lists can include numbers
as well as strings, and can even include a mixture of strings and numbers.

For example, here’s a list of answers to quiz questions:

my_quiz_answers = ["Isambard Kingdom Brunel", 2012, "Suffragettes", ↩
7500, "Danny Boyle"]

A list can have any items in any order. Python doesn’t understand what the list
contents mean or how they’re organized. To make sense of it, you need to write a
program that interprets the list.

Using lists to make a random chat program
After you’ve mastered the list structure, you can create a simple chat program. For
this first version, you take some input from the user, display a random response,
and then replace that random response with whatever the user types in.

Here’s the program that does that. It introduces a few new ideas, but we talk you
through them all shortly:

TABLE 11-2	 Additional List Operations
Action Code to Use Notes

Sort a list. shopping_list.sort() Sorts alphabetically, or from low to high in lists of
numbers.

Sort a list in
reverse order.

shopping_list.
sort(reverse=True)

Sorts in reverse alphabetical order, or from high to low
in lists of numbers.

Delete a list
item.

del shopping_list[2] Deletes the list item with the index number specified.
List items after it move up the list, so there is no gap.

Remove an item
from the list.

if "eggs" in ↩
shopping_list:

 shopping_list. ↩
remove("eggs")

Deletes the list item that matches the item given.
Results in an error if the item isn’t in the list, so use the
if command to avoid this.

CHAPTER 11 Writing Programs in Python 219

Chatbot - random-only version

Example program from Raspberry Pi For Dummies

import random

random_replies = ["Oh really?",

 "Are you sure about that?",

 "Hmmmmm.",

 "Interesting...",

 "I'm not sure I agree with that...",

 "Definitely!",

 "Maybe!",

 "So what are you saying, exactly?",

 "Meaning what?",

 "You're probably right.",

 "Rubbish! Absolute nonsense!",

 "Anyway, what are your plans for tomorrow?",

 "I was just thinking exactly the same.",

 "That seems to be a popular viewpoint.",

 "A lot of people have been telling me that.",

 "Wonderful!",

 "That could be a bit embarrassing!",

 "Do you really think so?",

 "Indeed...",

 "My point exactly!",

 "Perhaps..."]

print("What's on your mind?")

user_says = input("Talk to me: ")

reply_chosen = random.randint(1, len(random_replies)) - 1

print(random_replies[reply_chosen])

random_replies[reply_chosen] = user_says

The first two lines are comments — quick reminders of what the program does.

Python has been designed to be easily extended, so the next line, import random,
tells Python you want to use the extension for generating random numbers.
Extensions like this one are called modules, and you use several different modules
as you play with the projects in this book. The modules provide prewritten func-
tions you can reuse in your programs, so they simplify and accelerate your own
programming. The random module includes functions for generating random
numbers and will be essential when you want to pick a random response for the
computer to display.

220 PART 4 Programming the Raspberry Pi

The next part of the program creates a list called random_replies, which contains
statements the computer can output in response to whatever the user enters. You
can personalize this by changing the responses or by adding more. The more
responses there are, the more effective the illusion of intelligence is, but for this
demo, we’ve kept the list fairly short. It doesn’t matter what order the responses
are in, but keep an eye on those commas at the end of each line. After printing a
short line that invites the user to share with the computer what’s on her mind,
you request input from her using the input() function. Whatever the user enters
is stored in a variable called user_says. The next line picks an index number for
the random response.

To understand how this works, it helps to break it down. First, you need to know
how to generate random numbers. You give the random.randint() function two
integer numbers to work with (or arguments). The two numbers specify how big
you want your random number to be: The first figure is the lowest possible value,
and the second figure is the highest possible number. For example, if you want to
display a random number between 1 and 10, you would use

print(random.randint(1, 10))

You can try this multiple times to confirm that it works. Sometimes the numbers
repeat, but that’s the nature of random numbers. It’s like rolling the dice in
Monopoly: Sometimes you’re stuck in jail, and sometimes you throw doubles.

The range of numbers you want to use for the random number is the size of the
random_replies list. You can use the len() function to see what this is, so you
can add things to your list or remove them without having to worry about updat-
ing this part of your program. In the random.randint() statement, you replace
the second number with the length of the list:

print(random.randint(1, len(random_replies)))

You don’t want to just print the result onscreen, however, so you store the number
chosen in a variable called reply_chosen.

There’s one final twist: Because list indexes start counting at 0, you need to sub-
tract 1 from the random number. Otherwise, the program would never choose the
first list item, and would try instead to choose one at the end of the list that isn’t
there. Here’s the final command to use:

reply_chosen = random.randint(1, len(random_replies)) - 1

CHAPTER 11 Writing Programs in Python 221

The final two lines print the randomly selected list item and then replace that list
item with whatever the user entered:

print(random_replies[reply_chosen])

random_replies[reply_chosen] = user_says

You can run the program to test it, but one thing is missing. At the moment, it
gives you only one turn before finishing. To fix that, you need to master the while
loop.

Adding a while loop
Previously, we showed you how to use the for loop to repeat a piece of code a set
number of times. For this program, we want the computer to keep the conversa-
tion going until the user types in bye, so you need to use something called a while
loop.

The section we want the computer to repeat begins with the line that requests the
user’s input and finishes where the program currently ends, with the user’s entry
going into the list of random replies.

To repeat this section, you add two lines at the top of the section (see the bold
lines in the following code) and then indent the rest of the section by adding four
spaces at the start of each line so that Python knows which commands to repeat:

user_says = ""

while user_says != "bye":

 user_says = input("Talk to me: ")

 reply_chosen = random.randint(1, len(random_replies)) - 1

 print(random_replies[reply_chosen])

 random_replies[reply_chosen] = user_says

The while command tells Python to repeat the indented block below as long as the
second half of the while command is true. The != operator means not equal to. In
our Chatbot program, the second half of the while command is user_says !=
"bye", which means the block below should keep repeating as long as the contents
of the variable user_says are not equal to bye. The while command ends with a
colon, so if you see an error message, be sure that you’ve included it.

To use the user_says variable in the while command, you have to set it up first
because it triggers an error if you try to use a variable that doesn’t exist yet in a
while command. Immediately before the while command, you create the variable

222 PART 4 Programming the Raspberry Pi

and give it a blank value (user_says = "") just to get the program past the while
command and into the loop. Almost immediately, it changes when the user types
something in — but that doesn’t matter.

If you run the program now, you should find that the conversation rambles on
until you type in bye. Remember that you can improve the quality of the experi-
ence by adding more random sayings in the program’s list of random replies.

Using a loop to force a reply from the user
Another trick you can perform with the while loop is to make sure that the user
doesn’t press Enter without typing anything in, either accidentally or deliberately.
That protects the extremely high quality of the random replies list (ahem!) by
preventing empty entries from being added to it. In more complex programs, a
quality-control check like this one can be essential for preventing errors.

You can put loops inside loops, which is called nesting them. In this case, we’ll
have a small loop that keeps asking for input until it receives it, running inside the
bigger loop that repeats the whole process of the conversation until the user
enters bye.

To see whether something is equal to something else, use two equal signs together
(==). This can be confusing to new programmers, but a single equal sign is only
used to assign a value to something, such as when putting a value into a variable.
When you want to compare the value of two things to see whether they’re the
same, you use two equal signs together. In English, we use the same word, but
they’re completely different ideas when you think about it, and Python certainly
considers them as separate and unique concepts.

The following code puts a while loop around the input so that it repeats as long as
the user_says variable is empty. If the user doesn’t type anything in and just
presses Enter, they’re prompted to enter something again — and again, and
again, if necessary:

user_says = ""

while user_says != "bye":

 user_says = ""

 while user_says == "":

 user_says = input("Talk to me: ")

 reply_chosen = random.randint(1, len(random_replies)) - 1

 print(random_replies[reply_chosen])

 random_replies[reply_chosen] = user_says

CHAPTER 11 Writing Programs in Python 223

Notice how we indented the input command, so that Python knows what should
be repeated while the user_says string is empty.

You might read this program code and wonder why we’ve set up user_says as an
empty variable twice. (Notice the new line that now appears between the while
commands.) The first time is necessary because the while command can’t refer-
ence a variable that doesn’t exist yet. The second time is a special case: If you
don’t reset the value to nothing, the second time around the loop, user_says still
contains what the user typed in the first time. The way a while loop works means
that the block underneath, the input() function, isn’t run because user_says
already has something in it. That code only runs if user_says is empty. This is a
nice example of a logic error. The program works in that Python doesn’t complain
or crash. The program chatters away to itself, however, not letting you get a word
in, so it doesn’t work as intended.

Using dictionaries
Besides lists, there is another data structure that we use in our program, called a
dictionary. To access an item in a list, you use an index number, which represents
its position in the list. Dictionaries are different because you access an item using
its key — a string or a number that uniquely identifies it. The idea is used a lot in
computing. Your bank account number, for example, belongs to you and only you,
so it’s a unique key for your data.

Unlike with a list, you don’t need to know where that item is in the dictionary to
be able to use it — you just need to know the key that identifies it.

Dictionaries use curly braces, and contain pairs of items, which are the keys and
the values for those keys. If that sounds confusing, here’s an example that won’t
seem too different from the paper dictionary on your bookshelf:

chat_dict = {"happy": "I'm happy today too!",

 "sad": "Tell me all about it.",

 "raspberry": "Oh yum! I love raspberries!",

 "computer": "Computers will take over the world! You're already ↩
 talking to one",

 "music": "Have you heard the latest Depeche Mode album?",

 "art": "But what is art really, anyway?",

 "joke": "I only know this joke: How do you kill a circus? ↩
 Go for the juggler.",

 "python": "I hate snakes!",

 "stupid": "Who are you calling stupid, jelly brain?",

 "weather": "I wonder if the sun will shine on Saturday?",

224 PART 4 Programming the Raspberry Pi

 "you": "Leave me out of this!",

 "certain": "How can you be so confident?",

 "talk": "You're all talk! Do something!",

 "think": "You can overthink these things, though.",

 "hello": "Why, hello to you too, buddy!"}

In this example, we’ve given the dictionary the name chat_dict, but you can call it
anything. You can have more than one dictionary in your program too, if you give
them different names.

In this dictionary, we look up a word to see what the reply to it should be. For
example, if someone uses the word happy, the computer should reply, “I’m happy
today too!” If you look up the word hello, you can see that the computer’s response
should be, “Why, hello to you too, buddy!” Each dictionary entry is made up of the
key and its value, separated by a colon; for example, the key happy and its value,
which is the computer’s response to that word. The entries are separated from
each other with a comma.

The punctuation here is quite fiddly, so take care; otherwise your program might
not work. The text strings have quotes around them, but the colon between the
keys and their values must be outside the quotes. Each pair needs to end with a
comma except the last one, and we use curly braces to enclose everything. (You
can usually find curly braces on your keyboard on the same keys as the square
brackets.)

Dictionaries only work if every key is unique. You can’t have two entries in there
for the word happy, for example; otherwise, Python wouldn’t know which one to
choose.

Dictionaries only work one way around: You can’t use the value to look up the key.
One way to remember this is to think of a real paper dictionary. It would be almost
impossible to trace a particular definition back to a word because you wouldn’t
know on which page you could find the definition. Finding definitions from the
words is simple, though.

Here’s how to print a value from the dictionary:

>>> print(chat_dict["hello"])

Why, hello to you too, buddy!

>>> print(chat_dict["weather"])

I wonder if the sun will shine on Saturday?

CHAPTER 11 Writing Programs in Python 225

If you try to use a key that doesn’t exist in the dictionary, you trigger an error.
Later in this chapter (see “Creating the dictionary look-up function”), we show
you how to test whether a key is in the dictionary.

In the real program, we’ve extended the vocabulary to cover some other words,
too, and this is where you can stamp your identity on the program most clearly.
The words you put into the vocabulary, and the responses you give to go with
them, are what gives the chat character its intelligence and personality. After
you’ve got the demo working, it’s worth spending time refining the language
here. When you try playing with the finished program, remember the kinds of
words you type in, and the kinds of things you want to chat about, and use that
understanding to shape your Chatbot’s vocabulary.

You can use the responses you give here to steer the conversation. We’ve included
a joke for when users ask the computer to tell them one (as they inevitably do).
Our full definition list also recognizes the word funny because that is reasonably
likely to come up in the user’s response to the joke. (Possibly in the context of
“not very,” but heigh-ho!)

Creating your own functions
One of the things you can do in Python, and many other programming languages,
is parcel up a set of instructions into a function. A function can receive some infor-
mation from the rest of the program (one or more arguments), work on it, and
then send back a result. In our Chatbot program, we use a function to look up
whether any words that are entered are in the dictionary of known words and
responses.

Before you can use a function, you have to define it, which you do using a def
statement. To tell Python which instructions belong in the function, you indent
them underneath the def statement. Here’s a program to familiarize you with the
idea of functions and how we’ll be using it:

Example of functions

def dictionary_check(message):

 print("I will look in the dictionary for", message)

 return "hello"

dictionary_check("blue")

result = dictionary_check("red")

print("Reply is:", result)

226 PART 4 Programming the Raspberry Pi

We talk you through that program in a moment, but here’s a glimpse of what is
shown onscreen when you run it:

I will look in the dictionary for blue

I will look in the dictionary for red

Reply is: hello

This is a short but powerful program because it tells you nearly everything you
need to know about functions. As you can see, we defined the function at the start
of the program, with this line:

def dictionary_check(message):

This sets up a function with the name dictionary_check() but also sets it up to
receive a piece of information from the rest of the program and to put it into the
variable called message. The next line prints out a statement saying, “I will look
in the dictionary for” followed by the contents of the variable message. That
means it prints out whatever information is sent to the function. The next line
starting with return exits the function and sends a message back, which in the
example is hello.

Functions are self-contained units, so the variable message can’t be used by the
rest of the program. (It’s known as a local variable.) When you’re writing your own
functions, you should give them a job to do and then use return to send the result
back to the rest of the program.

Functions aren’t run until you specifically tell the program to run them, so when
Python sees the function definition, it just remembers it for when it needs it later.
That time comes shortly afterward, when you issue the command:

dictionary_check("blue")

This runs the dictionary_check() function and sends it the text blue to work
with. When the function starts, Python puts blue into the function’s variable
called message and then prints onscreen the text that contains it. The text hello
is sent back by the function, but you don’t have a way to pick up that message.

The next code snippet shows you how you can pick up information coming back
from a function. Instead of just running the function, you set a variable to be equal
to its output, like this:

result = dictionary_check("red")

print("Reply is:", result)

When the text hello is sent back by the function, it goes into the variable result,
and the main program can then print it on the screen.

CHAPTER 11 Writing Programs in Python 227

This simple example illustrates a few reasons why functions are a brilliant idea
and have become fundamental building blocks in many programming languages:

»» Functions enable you to reuse parts of your program. For example, we’ve
used our function to display two different messages here, just by sending the
function a different argument each time. When you use more sophisticated
programs, being able to reuse parts of your program makes your program
shorter, simpler, and faster to write.

»» Functions make understanding the program easier because they give a
name and a structure to a set of instructions. Whenever someone sees
dictionary_check() in our program, they can make a good guess at what’s
going on. So far, our programs haven’t been particularly complex, but as you
work on bigger projects, you’ll find that readability becomes increasingly
important.

»» Functions make it easier to maintain and update your program. You can
easily find which bits of the program to change, and all the changes you need
to make will be in the same part of the program. If you think of a better way to
do a dictionary look-up later, you can just modify the function, without
disturbing the rest of the program.

»» Functions make testing and development easier. We’ve built an experi-
mental program that takes some text and sends back a message. That’s what
the finished dictionary_check() function will do, except that this one just
sends the same message back every time, and the finished one will send
different messages back depending on what the user said. You could build the
rest of the program around this simple test function to ensure that it works,
and then go back and finish the dictionary_check() function.

Creating the dictionary look-up function
Now that you know how to create a function, we’re going to tell you how to build
a function that takes the user’s text and checks for any relevant responses. To do
this, you’ll use what you already know about dictionaries and functions, and we’ll
add some new ideas relating to loops, strings, and decision-making.

The function is only 12 lines long, but it’s quite sophisticated. It needs to take
what the user entered and check each word in it to see whether the dictionary has
a response for that word. The user might use more than one word that’s in the
dictionary. For example, if the user says “I love pop music,” both the words love
and music might be in the dictionary. We’ll deal with that eventuality by showing
one of the possible responses, chosen at random. Alternatively, the user might use
no words that the program recognizes, so you need to design the function to cope
with that situation, too.

228 PART 4 Programming the Raspberry Pi

Before we start to break it down, here’s the function in its entirety so that you can
see how all the bits fit together:

def dictionary_check(message):

 message = message.lower()

 user_words = message.split()

 smart_replies = []

 for each_word in user_words:

 if each_word in chat_dict:

 answer = chat_dict[each_word]

 smart_replies.append(answer)

 if smart_replies:

 reply_chosen = random.randint (1, len(smart_replies)) - 1

 return smart_replies[reply_chosen]

 else:

 return ""

The function definition is the same as we used earlier in our function example.
When we use it, we send it what the user has typed in, so this goes into the vari-
able called message.

The next two lines introduce something new: string methods. These are like built-
in functions that are attached to a string and transform it in some way. The
lower() method converts a string into lowercase. This is important because if a
user uses capital or mixed-case letters, they won’t match the lowercase words
used in the dictionary keys. As far as Python is concerned, hello and Hello aren’t
the same thing. The split() method takes a string and splits it into a list of its
constituent words. The first two lines in the function, then, turn the contents of
the message variable into a lowercase version of itself and then create a new list
of the words the user entered, called user_words.

We store possible replies to the user in a list called smart_replies, so we create
that as an empty list. The next step is to set up a loop that goes through the list of
words that the user entered. When you used a for loop previously, you worked
your way through a sequence of numbers. This time, you work your way through
a list of words. Each time around the loop, the variable each_word contains the
next item from the list of words the user entered.

The next line introduces a new idea, the conditional statement, which starts with
if. A conditional statement is used to enable the computer to make a decision about
whether it should carry out certain instructions, and you’ll come across one in
almost every program you write. Here, it’s being used to prevent the program
from stopping and reporting an error if you try to use a key that isn’t in the
dictionary:

CHAPTER 11 Writing Programs in Python 229

if each_word in chat_dict:

 answer = chat_dict[each_word]

 smart_replies.append(answer)

The each_word variable contains one of the words the user entered, so the if
statement checks to see whether that word is in the dictionary and carries out the
next two instructions only if they are. Notice how indenting (by a further four
spaces) is used here to show which commands belong together — in this case,
which commands are controlled by the if statement. If the word is in the diction-
ary, the program looks it up and adds the resulting response to the smart_replies
list, using append().

This process is repeated for every word the user entered, but that’s all that hap-
pens in the loop. The next line is not indented below the for statement, so it’s not
controlled by it.

When the program comes out of the loop, it checks to see whether the list smart_
replies has anything in it, by using simply

if smart_replies:

In English, this means “if smart_replies has content in it.” The commands
indented underneath are carried out only if some entries were added to the smart_
replies list, which only happens if one or more of the words the user entered
were found in the dictionary. In that event, you want to return one of the items in
the smart_replies list to the main program, so the program picks one at random
from the list and uses return to send it back to the main program and exit the
function.

After that, you use the else command. In plain English, this means otherwise, and
it’s joined to the if command, so it’s lined up with it. If smart_replies has con-
tent in it, the commands are carried out to send back an appropriate reply, chosen
at random. If none of the user’s words was found in the dictionary and so smart_
replies is empty, the instructions indented underneath the else command are
carried out instead. The function sends an empty message ("") back to the main
program and exits the function.

Creating the main conversation loop
We previously showed you how to create a version of Chatbot that could only pro-
vide random responses. Now you need to change the main conversation loop so
that it checks for words in the dictionary and shows an intelligent response if
they’re found; and if not, shows a random response and replaces it with what the

230 PART 4 Programming the Raspberry Pi

user entered. This final version brings together all the ideas we’ve helped you
explore as you’ve built this program.

After the command that accepts the user’s input, you put the following:

smart_response = dictionary_check(user_says)

if smart_response:

 print(smart_response)

else:

 reply_chosen = random.randint(1,len(random_replies)) - 1

 print(random_replies[reply_chosen])

 random_replies[reply_chosen] = user_says

This starts by using the dictionary_check() function (or calling it, to use the
jargon), sending it whatever the user typed in and putting the response from the
function into the variable smart_response.

The next line checks to see whether smart_response has any content in it (or is
not empty) and, if so, prints it onscreen. Otherwise, the instructions under the
else command are used to show a random response from the list of random
replies, and to replace it with what the user entered. Those last three instructions
were in the previous version of your program, but they need indenting now, by
adding four spaces at the start of each line.

Final thoughts on Chatbot
That completes the Chatbot program. Along the way, you’ve learned how to use
variables, lists, loops, random choices, dictionaries, conditional statements (if
and else), and functions. You’ve learned how to take input from the user and
print responses onscreen, and you’ve created the skeleton of a chat program that
you can flesh out with your own personality.

The program works best if you don’t use punctuation at the end of your sentence.
When the program splits up your sentence, your last word would include any
punctuation symbol next to it. That stops the program matching that word against
any words it knows. Perhaps you could modify the program to strip out
punctuation?

Here is a sample run of the program, albeit a fairly contrived one to show the pro-
gram at its best, using lots of words it knows:

What would you like to talk about today?

Let's talk about the future

Who knows what tomorrow will bring?

CHAPTER 11 Writing Programs in Python 231

I guess weather forecasters do

I wonder if the sun will shine on Saturday?

Fingers crossed! I hope so!

You've got to keep the hope alive!

Yes

A healthy positive attitude!

I think it's important to stay positive.

You can overthink these things, though.

That's true. Tell me a joke.

I feel I can tell you anything

That's so lovely to hear

Do you really think so?

Of course.

Perhaps...

Go on! Tell me a joke

How do you kill a circus? Go for the juggler.

That's funny

There's a big difference between funny peculiar and funny ha-ha

True, but I laughed.

Anyway, what are your plans for tomorrow?

As you expand the vocabulary in the dictionary and include more random replies
in the list, you’ll find that the program can often surprise you with its apparent
intelligence. You’re never alone with a Raspberry Pi!

The final Chatbot program
For your reference, here’s a final listing of the Chatbot program, ready for you to
customize with your own responses:

Chatbot

Example program from Raspberry Pi For Dummies

import random

Following list is heavily abbreviated

to save space in the book. Should be 20+ entries.
random_replies = ["Oh really?",

 "Are you sure about that?",

 "Perhaps..."]

Following dictionary is also heavily abbreviated

chat_dict = {"happy": "I'm happy today too!",

 "sad": "Cheer up, mate!",

"computer": "Computers will take over the world! You're already talking to one"}

232 PART 4 Programming the Raspberry Pi

def dictionary_check(message):

 message = message.lower()

 user_words = message.split()

 smart_replies = []

 for each_word in user_words:

 if each_word in chat_dict:

 answer = chat_dict[each_word]

 smart_replies.append(answer)

 if smart_replies:

 reply_chosen = random.randint (1, len(smart_replies)) - 1

 return smart_replies[reply_chosen]

 else:

 return ""

print("What would you like to talk about today?")

user_says = ""

while user_says != "bye":

 user_says = ""

 while user_says == "":

 user_says = input("Talk to me: ")

 smart_response = dictionary_check(user_says)

 if smart_response:

 print(smart_response)

 else:

 reply_chosen = random.randint (1, len(random_replies)) - 1

 print(random_replies[reply_chosen])

 random_replies[reply_chosen] = user_says

print("Goodbye. Thanks for chatting today. Drop in again soon!")

CHAPTER 12 Creating a Game with Python and Pygame Zero 233

Chapter 12
Creating a Game with
Python and Pygame Zero

Developing games is one of the best ways to explore programming. It gives
you rapid, visual results, so you can easily see what’s going on and you get
to have some fun playing your creation at the end. Game development also

makes it easy to think of fresh coding challenges to solve, as you dream up new
features to add.

One of the most popular tools for making games in Python is called Pygame: It’s
a set of functions that makes it easier to manage your images and sounds, among
other things. Pygame has a few complexities, though, and can be difficult to get
started with.

That inspired Daniel Pope to make Pygame Zero, a library of routines that simpli-
fies Pygame so that you can get started more easily. It also includes a number of
built-in functions that manage animations, loops, and images. Pygame Zero was
designed for education, but is great fun for anyone to tinker with.

Pygame Zero is also available for Mac and Windows, so the games you make on the
Raspberry Pi can be enjoyed by your friends even if they have different
computers.

IN THIS CHAPTER

»» Using Pygame Zero to display images
and play sounds

»» Making a simple click-the-clouds
game

»» Using a list to manage multiple
images

»» Animating your images

»» Adding a countdown timer

234 PART 4 Programming the Raspberry Pi

In this chapter, we show you how to make a game called Cloudbusting, where you
have to “pop” the clouds as they drift up the screen. You have ten seconds to click
as many as you can. For the smoothest experience, we recommend using a Rasp-
berry Pi 2, 3, or 4.

Collecting Your Sounds and Images
To follow the examples in this chapter, you need the sounds and images described
in the following list. You can either create your own or download our examples.
(See the Introduction for more on downloading our supporting files.) This simple
game works equally well whatever images you use.

Here are the assets needed for the Cloudbusting game:

»» Six images, named target0.png to target5.png: In our game, we use
colored clouds, but you could use anything. Our images measure about 100
pixels by 90 pixels, and you should aim for a similar size, give or take 10 or 20
pixels in either direction. (We’ve noticed that it adds a sense of depth to the
game if a couple of the images are a slightly different size from the rest, so
you may want to try that out.) Use a transparent background so that your
images can overlap without their backgrounds blocking out the images
behind them. The PNG format is recommended, but Pygame Zero can also
use GIF and JPEG images (although JPEGs don’t support transparency). The
simplest way to make your own images is to use the built-in Paint Editor in
Scratch 3 (refer to Chapter 10). When you’ve designed your sprite, save your
Scratch project. Click the button in the Paint Editor to convert your costume to
a bitmap, and then right-click the costume in the Costumes Area and choose
to export it from the menu that appears. Now close your Scratch project
without saving it if you want to keep a high-quality version of the sprite in
your project.

»» One image named pop.png: This image is shown when the target is hit. Ours
is a cartoon-style spiky bubble with “Pop!” written in it. We made this image in
Scratch too.

»» Two sound effects — one for the popping of a target and the other to
play when the game ends: We’re using a sound effect we found online called
blop.ogg for when a cloud bursts, and a tune Sean made on the iPad called
whoops.ogg for when the game ends.

The .ogg format is a sound format often used in open source software. You
can also use a .wav file in Pygame Zero. If you’re using sound effects different
from ours, change the filenames in the programs to your choices.

CHAPTER 12 Creating a Game with Python and Pygame Zero 235

As always, you can download the code for this chapter, too, if you have any diffi-
culties getting it working or you don’t want to type the examples yourself. See the
Introduction for instructions on downloading the supporting materials. You can
also see the full listing for this game at the end of this chapter.

Setting Up Your Folders
Pygame Zero lays down strict rules about what your files can be called and where
they should be saved. Filenames must be in all lowercase, which helps to ensure
that they work across different computers. Your images must be stored in a folder
called images, and your sounds in a folder called sounds.

Let’s set up those folders now. Follow these steps:

1.	 In the desktop environment, click the taskbar’s File Manager icon.

For more on the taskbar and the File Manager, see Chapter 4.

2.	 In the pi folder, right-click, and then choose New Folder from the
contextual menu that appears.

3.	 Name your folder images.

4.	 Repeat Step 2, but this time name your new folder sounds.

5.	 Copy your image files into the images folder, and your sounds into the
sounds folder.

Remember that when you download files with your web browser, they will be
saved in your Downloads folder, which is also in your pi folder. You may need
to extract them from a .zip file, by right-clicking the .zip file and then clicking
Extract Here. If you want to unzip the folder and put its contents somewhere
else, use the Extract To option instead. After extracting the files, you can copy
them to the images and sounds folders. For guidance on using the File
Manager to copy and move files, see Chapter 4.

Creating and Running Your First Program
The lines of code in Listing 12-1 show your very first Pygame Zero program, which
puts an image in the center of the window. Type it into Thonny and save it in your
pi folder. See Chapter 11 for more on Thonny.

236 PART 4 Programming the Raspberry Pi

LISTING 12-1:	 Your First Pygame Zero Program

import pgzrun

WIDTH = 500

HEIGHT = 500

cloud = Actor('target5')

cloud.x = 250

cloud.y = 250

def draw():

 screen.clear()

 cloud.draw()

As of this writing, Pygame Zero behaves differently depending on which mode of
Thonny you’re using. Listing 12-1 works in the simple mode. In the regular and
expert modes, you need to add the instruction pgzrun.go() to the end of your
listing. If you add that instruction and run your program in the simple mode, your
program runs twice. In this chapter, we assume you’re using the simple mode. If
you can’t get the listings in this chapter to work, add pgzrun.go() at the end. For
more on the different modes in Thonny, see Chapter 11.

To start the program, click the Run button at the top of Thonny. You should see
something like Figure 12-1, with an image in the middle of a new window that opens.
You might need to wait a moment for the window to open. When you’ve finished
with it, you can click the Close button in the top right of the window to quit.

FIGURE 12-1:
Your first Pygame

Zero program
puts an image in

the middle of the
window.

Sean McManus

CHAPTER 12 Creating a Game with Python and Pygame Zero 237

Looking at the code shows you how easy it is to use images in Pygame Zero.

The first line imports the Pygame Zero library, so you can use its functions in your
program.

The WIDTH and HEIGHT variables are used to set up the size of the window — in our
case, a square of 500 pixels.

Pygame Zero introduces the idea of actors, which are like sprites in Scratch. An
actor stores an image and its position in one place, which makes it easier to man-
age the characters and obstacles in your games. This kind of thing is already built
into Scratch, but it’s not part of Python, or even Pygame. The use of actors in
Pygame Zero makes it much easier to move from programming in Scratch to using
Python.

To create an actor, you give it a name and tell it which filename to use for the
actor’s picture, like this:

cloud = Actor('target5')

Here you’ve created an actor called cloud that uses the image target5.png. Note
that you don’t need to give Pygame Zero the file extension of the image; that’s
another way it keeps things simple.

The coordinates are measured from the top left of the window, so they go from 0
to 500 from left to right (the x direction), and from 0 to 500 down the window (in
the y direction). If you want to change the x position of the cloud actor, you can
assign it a new value, like this:

cloud.x = 250

Because the window is 500 pixels across and the actor’s position is measured from
its center, changing the actor’s x position to 250 centers it in the window.

The last thing you need to do is draw the sprite. The draw() function is run regu-
larly by Pygame Zero, and it’s where you tell it what to draw on the screen. (See
Chapter 11 for more on how functions work and are defined.) When things start
moving around, they’ll leave a trail if you don’t remove the previous images before
drawing each screenful, so you start this function by clearing the screen with this
instruction:

screen.clear()

238 PART 4 Programming the Raspberry Pi

In this case, you just want to draw the cloud actor at its current position, so
you use

cloud.draw()

Can you work out how to add another cloud to the program and position it to the
left of the first one? Call it cloud2, and remember to change its x position and to
draw it when you’ve finished. Listing 12-2 shows one possible answer. You could
use a different number for the x position of cloud2.

LISTING 12-2:	 Adding a Second Cloud

import pgzrun

WIDTH = 500

HEIGHT = 500

cloud = Actor('target5')

cloud.x = 250

cloud.y = 250

cloud2 = Actor('target5')

cloud2.x = 80

cloud2.y = 250

def draw():

 screen.clear()

 cloud.draw()

 cloud2.draw()

Detecting mouse clicks
Pygame Zero makes it easy to respond to mouse clicks. Add the following function
to the end of your existing program. It doesn’t matter whether you’re using the
one-cloud or two-cloud program from Listing 12-2:

def on_mouse_down(pos):

 if cloud.collidepoint(pos):

 cloud.image = 'pop'

 sounds.blop.play()

This function runs when the mouse button is clicked, and stores the position of
the mouse pointer in pos, which is something called a tuple.

CHAPTER 12 Creating a Game with Python and Pygame Zero 239

You don’t need to know this to use Pygame Zero, but if you’re curious, a tuple is a
sequence a bit like a list. The main differences are that you can’t change the items
in it, and it’s defined using parentheses () instead of using square brackets [].
The pos tuple used in this function contains the x and y values for the mouse
pointer.

Using the mouse position stored in pos, we can work out whether the player
clicked on the actor. Collision detection is all about working out whether one
sprite is touching another or touching the mouse pointer. It can often be tricky to
code, but Pygame Zero includes some features built in to do it for you. You can
check whether the mouse pointer (in pos) is touching the cloud actor using the if
command together with the collidepoint() function, as shown earlier. If so, you
can change the image of the actor to the pop.png image using

cloud.image = 'pop'

Again, you don’t need the file extension of the image file.

This function for detecting mouse clicks also shows how to play a sound: blop is
the name of our sound file, minus the extension (.ogg), which Pygame Zero works
out for itself. The rest of the line that plays the sound would be the same for any
sound. You might find that a simple program like this one is a useful template
when you’re building your own programs.

Run the program. When you click the background, nothing happens. When you
click the cloud in the center of the screen, though, you see it change to a “Pop!”
image. One thing you might notice is that you can click near, but not on, the image
and it will sometimes register as a hit. That’s because an actor is always rectan-
gular. The cloud has rounded corners, but the empty spaces in those corners are
still part of the rectangular image, as far as collision detection is concerned.

When you’re making your own images, try to stretch the image out to a rectangle
shape as much as possible, and trim any unused space from the edges. That helps
your collision detection look accurate. With fast-moving images, nobody will
notice if the collision detection is slightly off. If your game includes lots of circles,
though, the unused corners of the image will also register a hit, which might feel
unfair or unrealistic when playing the game.

Animating your actors
Pygame Zero includes a simple function for animating your actors so that they can
move across the screen automatically. This is another way it makes Python more
accessible for people who have previously used Scratch: Usually, movement is

240 PART 4 Programming the Raspberry Pi

achieved by having a loop that repeatedly changes the x or y position of the image.
Pygame Zero handles all that complexity for you.

Here’s an example of the animate() function:

animate(cloud, tween='linear', duration=5, pos=(cloud.x, -200))

It breaks down like this:

»» Give it the name of the actor you want to animate first — in this case, cloud.

»» Tell it the type of animation you want to use. This describes whether the actor
speeds up or slows down over the course of the animation. You can consult
the documentation for a list of options (see the “Exploring Pygame Zero
Further” section at the end of this chapter), but we are using 'linear' so that
the animation is an even speed throughout.

»» The duration is how long the animation will take, measured in seconds.

»» The pos is the finishing position. You give it the x and y position in brackets,
like this: (x, y). As with the mouse position, this is a tuple. I’ve used the
existing x position (cloud.x), and set the y position to be -200, which is off
the top of the screen. As a result, the cloud will drift up the screen in a straight
line until it’s no longer visible.

Try this animation by adding the preceding line of code into the section where you
set up your cloud actor, in the following snippet. The new instruction is shown in
bold. Note that what you see in this example isn’t the full program: You need to
keep the WIDTH and HEIGHT instructions, and the draw() and on_mouse_down(pos)
functions from your previous program:

cloud = Actor('target5')

cloud.x = 250

cloud.y = 250

animate(cloud, tween='linear', duration=5, pos=(cloud.x, -200))

You need the second bracket at the end of the new line. One pair of brackets
encloses the position, and another goes around everything given to the animate
function.

When the program runs, the cloud actor will be set up as before, but this time its
animation will be started. Each time the draw() function runs, it draws the cloud
in its latest position, making it appear to move up the screen.

You can still click the cloud to make it pop, so you have the engine for a basic game
here. Next, let’s add an element of chance.

CHAPTER 12 Creating a Game with Python and Pygame Zero 241

Using random numbers
Chapter 11 shows you how you can use the random.randint() function to pick a
random integer (whole number) in a certain range. You can also pick a random
floating-point number, with a decimal point in it, using random.uniform. To pick
a random floating-point number between 1 and 3, for example, you can use

random.uniform(1, 3)

You can try this in the shell window (without making a program) if you type

>>> import random

>>> for i in range(10):

 print(random.uniform(1, 3))

Remember the colon at the end of the second instruction there, and you’ll find
that the next line is indented for you and that Python waits for you to enter it
before doing anything. Enter a blank line at the end to tell Python you’ve finished,
and then you’ll see ten numbers that look like a bit like this:

2.660707438900764

1.5292264804300049

2.9317931171330924

Now you can add some random numbers into the animation to make it less pre-
dictable, and to make it feel more “floaty.” Add this line at the start of your pro-
gram to import the random module:

import random

Now edit the animation line in your program as shown here:

animate(cloud, tween='linear', duration=random. uniform(1, 3), ↩
 pos=(cloud.x + random.randint(10, 100), -200))

Here the duration is set to a random floating-point number between 1 and 3 sec-
onds. While we were making this game, we tried using a random integer first, but
it made the clouds bunch up, and it looked fake when they obviously moved at the
same speed. With a random floating-point number between 1 and 3, the clouds all
move at different speeds, sometimes overtaking each other but also with a pace
that makes sense for gameplay.

We’ve also added a random whole number between 10 and 100 to the x coordinate
of the end point of the animation. This makes the cloud drift sideways slightly.
Run the program a few times to see the difference. It’s fairly subtle, but it makes
it feel much more organic when there are several clouds moving up the screen.

242 PART 4 Programming the Raspberry Pi

If you find the game too fast, you can change the numbers between the random.
uniform brackets. The first number is the minimum time taken to move up the
screen. The second one is the maximum. Changing it to random.uniform(3, 5),
for example, will give you between 3 and 5 seconds to catch each cloud. Experi-
ment to find a speed you’re comfortable with.

Adding more clouds
Chapter 11 shows you how to create a list to store strings, but you can also use a
list to store actors, which means you can have several in your game and manage
them using loops. In this game, you’ll use six clouds in total. When one goes off
the top of the screen, you’ll put it back at the bottom again, if there is still time
left on the timer.

We’ll be building on the ideas and code presented earlier, but you might find it
easier to start a new file to make this program, to avoid the risk of overlooking
some of the changes we’ve made.

Listing 12-3 shows the first part of the program.

LISTING 12-3:	 Adding Yet More Clouds

import pgzrun

import random

WIDTH = 500

HEIGHT = 500

score = 0

timer = 10

clouds = list()

for i in range(6):

 filename = 'target' + str(i)
 clouds.append(Actor(filename))

 this_cloud = clouds[i]

 this_cloud.x = random.randint(int(this_cloud.width / 2), ↩
 int(WIDTH - this_cloud.width / 2))

 this_cloud.y = HEIGHT + this_cloud.height
 animate(this_cloud, tween='linear', duration=random.uniform(1, 3), ↩
 pos=(this_cloud.x + random.randint (10, 100), -200))

def draw():

 screen.clear()

 for i in range(6):

 this_cloud = clouds[i]

 this_cloud.draw()

CHAPTER 12 Creating a Game with Python and Pygame Zero 243

 screen.draw.text("Score: " + str(score), (2, 2), color="orange")
 screen.draw.text("Timer: " + str(timer), (WIDTH - 70, 2), color="orange")
 if timer == 0:

 screen.draw.text(str(score), (130, 120), color="white", fontsize=300)

This program sets up some new variables for the score and the timer, which we’ll
use later. It also creates a new list called clouds.

The loop at the start sets up the multiple clouds. It loops six times, giving the
variable i the values 0 to 5 in turn. It creates the filename for this actor’s image,
by joining 'target' to i, making the filenames target0, target1, and so on. The
program has to use the str() function to convert i from a number to a string
before it can be joined to the 'target' string. The program then adds a new actor
to the clouds list, using that filename for the image.

To make the program easier to read, it uses a variable called this_cloud to refer
to the cloud it’s currently setting up. Its x position is set to a random position in
the window. To make sure it won’t spill off the edge, the program uses the image’s
width to work out minimum and maximum possible values for the x position. The
image is positioned from its center, so half its width is the minimum x position for
it all to fit on the screen. If the image is 100 pixels wide, for example, its center
must be at least 50 pixels from the left to fit in. On the right, the program makes
a similar calculation, but it subtracts half the image’s width from the WIDTH of the
window. The x position that’s chosen is a random integer between those mini-
mum and maximum positions on the left and right.

The y position is set to be the HEIGHT of the window plus the height of the image
itself, which puts it comfortably off the bottom of the screen.

As the program sets up each cloud, it also animates it so that it starts to float up
the window.

The draw() function uses a loop to extract each actor in turn from the clouds list,
put it into this_cloud, and then draw it.

This function also now draws the score in the top left and the timer in the top
right. Because the clouds are drawn first and the text is drawn afterward, the text
appears on top of the clouds. That makes it look like the clouds float behind the
text, which is a cool effect. The text is drawn using the screen.draw.text()
function, which takes the text you want to draw, the (x, y) position for it, and its
color as arguments. Optionally, you can add the font size, which we’ve used for
the final score when the timer reaches 0, making the score unmissably big in the
middle of the window.

244 PART 4 Programming the Raspberry Pi

When you run this program, you see six clouds drift up the screen (see Figure 12-2).
Although they all start at the same time, their different animation durations make
them quickly spread out.

Making the clouds regenerate
The way your code works right now, the clouds disappear off the top of the win-
dow, and that’s the last you see of them. Add the following function to your latest
program to make the clouds reappear at the bottom when they go off the top:

def update():

 for i in range(6):

 this_cloud = clouds[i]

 if this_cloud.y < 0 - this_cloud.height:

 this_cloud.y = HEIGHT + this_cloud.height
 if timer > 0:

 this_cloud.x = random.randint(int(this_cloud.width / 2), ↩
 int(WIDTH - this_cloud.width / 2))

 this_cloud.image = 'target' + str(i)
 animate(this_cloud, tween='linear', duration=random.uniform ↩
 (1, 3), pos=(this_cloud.x + random.randint(10, 100), -200))

The update() function is like Pygame Zero’s draw() function in that it is auto-
matically run regularly. It’s where you put the instructions to change the position
of your actors, or to otherwise update the game’s progress. The update() function
in this game uses a loop to look at each cloud in turn, and uses the variable this_
cloud as shorthand for each cloud while it works with it. If the cloud is fully off

FIGURE 12-2:
Clouds drifting up

the screen.
Sean McManus

CHAPTER 12 Creating a Game with Python and Pygame Zero 245

the screen (its y position is less than 0 minus its height), then the function resets
the y position to the bottom of the screen. In fact, this creates some margin
because the program only needs to subtract half the height from the cloud’s y
position, which is in the middle of the image, to be certain it’s off the screen. But
doing it as we show you here is simpler, and also makes it look more like a stream
of clouds — and less like the same clouds keep wrapping around the screen. If
there is still time on the clock, we also reset it and start it moving again. We set its
x position randomly and reset its image to the target image, because in some
cases the cloud will have become a 'pop' image if it was clicked. (We’ll add that
code shortly.) We also start a new animation, using the same instruction as we did
at the start of the program.

You can run the program now to see an unending stream of clouds floating up the
window.

Enabling multiple clouds to be clicked
We’ve already described how you can make one cloud respond to a click, and how
you can create, display, and update multiple clouds. We’ll combine those ideas in
a new function that enables you to click multiple clouds. Add this to the end of
your program so far:

def on_mouse_down(pos):

 global score

 for i in range(6):

 this_cloud = clouds[i]

 if this_cloud.collidepoint(pos) and timer > 0 and ↩
 this_cloud.image != 'pop':

 this_cloud.image = 'pop'

 sounds.blop.play()

 score += 1

This function runs when the mouse button is clicked. When that happens, the
function goes through a loop, checking to see whether each cloud has been hit.
You only want to pop the cloud if these conditions are true:

»» It’s been hit by the mouse, expressed as this_cloud.collidepoint(pos).

»» There’s still time on the clock for the player to catch clouds, expressed as
timer > 0.

»» The cloud hasn’t already been popped, which you can check by making sure
its image isn’t 'pop', expressed as this_cloud.image != 'pop'.

246 PART 4 Programming the Raspberry Pi

If all these conditions are true, the program changes the cloud’s image to the
'pop' image, plays the sound, and increases the score by 1. After the image
changes to 'pop', the cloud continues to float up and off the screen.

Variables used within a function belong only to that function, by default, and are
called local variables. This isolation stops functions from changing the data that
other functions are using by accident. Global variables are variables that can be
used by any functions. The score, for example, needs to be used in this function
(where the program changes it) and the draw() function (where the program dis-
plays it), so it’s a global variable. If you want to change a global variable inside a
function, you have to start the function by telling Python you intend to use that
global variable, so that’s what the first line in this function does.

At this point, you should be able to play the game almost fully: You can click mul-
tiple clouds, see your score increase in the top left, and see the clouds keep coming
around at the bottom of the screen again. It can be quite hypnotic. Let’s add a time
limit, before you fall into a trance.

Adding the timer
Pygame Zero includes the ability to schedule a function to run regularly, which
you can use to run a timer. You’ve already set the timer variable to 10 at the start
of the program. You just need to create a function to decrease it by 1 each time it
runs, and then schedule that to run every second. Here’s what that code looks like.
You need to add it to the end of your existing program:

def countdown():

 global timer

 timer -= 1

 if timer == 0:

 clock.unschedule(countdown)

 sounds.whoops.play()

clock.schedule_interval(countdown, 1)

The line at the end isn’t part of any function. You can tell because it’s not indented.
As a result, this instruction runs when the game begins. The clock.schedule_
interval() function sets another function to run at regular intervals. In our case,
we’re running the countdown() function every 1 second. Note that we don’t use
brackets after countdown here. We have to put this clock.schedule_
interval(countdown, 1) line after the function because it can only be used to
schedule a function that has been defined earlier in the program.

CHAPTER 12 Creating a Game with Python and Pygame Zero 247

The countdown() function itself reduces the global variable timer by 1 each time
it runs. If the timer is now 0, it uses clock.unschedule to stop countdown() from
running regularly and then plays the Game Over music.

When you run the game, you should now see the timer counting down in the top
right. When the timer runs out, no new clouds will appear on the screen, although
those that are already there will drift off the top in the usual way. When the time
is up, your score will be shown large in the middle of the window.

Adjusting the game difficulty
There are several things you can do to adjust the game and its difficulty:

»» Change the size or shape of the window by changing the WIDTH and HEIGHT
variables at the start. A wider window makes them harder to catch, but a taller
window gives you more time.

»» Change the speed of the moving clouds, by changing their duration in the
animate() functions. Remember that there’s one animate() function at the
start, and one when they reappear at the bottom of the screen.

»» Increase the amount of time on the clock.

The final game listing
To help you find your way around creating this program, and provide you with it
all in one place, here’s the final listing (Listing 12-4):

LISTING 12-4:	 The final Cloudbusting game

Cloudbusting game

From Raspberry Pi For Dummies 4th Edn

By Sean McManus - www.sean.co.uk

import pgzrun

import random

WIDTH = 500

HEIGHT = 500

score = 0

timer = 10

clouds = list()

(continued)

248 PART 4 Programming the Raspberry Pi

for i in range(6):

 filename = 'target' + str(i)
 clouds.append (Actor(filename))

 this_cloud = clouds[i]

 this_cloud.x = random.randint(int(this_cloud. width / 2), ↩
 int(WIDTH - this_cloud.width / 2))

 this_cloud.y = HEIGHT + this_cloud.height
 animate(this_cloud, tween='linear', duration=random.uniform(1, 3), ↩
 pos=(this_cloud.x + random.randint(10, 100), -200))

def draw():

 screen.clear()

 for i in range(6):

 this_cloud = clouds[i]

 this_cloud.draw()

 screen.draw.text("Score: " + str(score), (2, 2), color="orange")
 screen.draw.text("Timer: " + str(timer), (WIDTH - 70, 2), color="orange")
 if timer == 0:

 screen.draw.text(str(score), (130, 120), color="white", fontsize=300)

def update():

 for i in range(6):

 this_cloud = clouds[i]

 if this_cloud.y < 0 - this_cloud.height:

 this_cloud.y = HEIGHT + this_cloud.height
 if timer > 0:

 this_cloud.x = random.randint(int(this_cloud.width / 2), ↩
 int(WIDTH - this_cloud.width / 2))

 this_cloud.image = 'target' + str(i)
 animate(this_cloud, tween='linear', duration=random.uniform ↩
 (1, 3), pos=(this_cloud.x + random.randint(10, 100), -200))

def on_mouse_down(pos):

 global score

 for i in range(6):

 this_cloud = clouds[i]

 if this_cloud.collidepoint(pos) and timer > 0 and ↩
 this_cloud.image != 'pop':

 this_cloud.image = 'pop'

 sounds.blop.play()

 score += 1

def countdown():

 global timer

 timer -= 1

LISTING 12-4:	 (continued)

CHAPTER 12 Creating a Game with Python and Pygame Zero 249

 if timer == 0:

 clock.unschedule(countdown)

 sounds.whoops.play()

clock.schedule_interval(countdown, 1)

Exploring Pygame Zero Further
We hope this project has given you a taste for what Pygame Zero can do. As well
as supporting mouse clicks, you can use it to detect keypresses, making it possible
to make more conventional games with characters moving under keyboard con-
trol. As such, it’s a good foundation for most types of game.

To find out more, we recommend that you check out the following resources:

»» Daniel Pope’s blog post announcing Pygame Zero: http://mauveweb.co.uk/
posts/2015/05/pygame-zero.html

»» The Pygame Zero documentation, including simple examples: https://
pygame-zero.readthedocs.io/en/latest

»» The Pygame Zero built-in objects list, with information about actors,
images, sounds and the clock: https://pygame-zero.readthedocs.io/
en/latest/builtins.html

You can also read Sean’s book Mission Python to see how Pygame Zero can be used
as the foundation for a 3D adventure game. See www.sean.co.uk/books/mission-
python/index.shtm.

http://mauveweb.co.uk/posts/2015/05/pygame-zero.html
http://mauveweb.co.uk/posts/2015/05/pygame-zero.html
https://pygame-zero.readthedocs.io/en/latest
https://pygame-zero.readthedocs.io/en/latest
https://pygame-zero.readthedocs.io/en/latest/builtins.html
https://pygame-zero.readthedocs.io/en/latest/builtins.html
https://www.sean.co.uk/books/mission-python/index.shtm
https://www.sean.co.uk/books/mission-python/index.shtm

CHAPTER 13 Programming Minecraft with Python 251

Chapter 13
Programming Minecraft
with Python

Minecraft appeals to the Lego fan in everyone. It enables you to build
immersive 3D worlds from blocks of materials, and it has fired up imagi-
nations to the extent that over 200 million copies have been sold across

various platforms, including the PC and Xbox.

A version of Minecraft is available for the Raspberry Pi. It features only the Crea-
tive mode, where you can build items peacefully without the threat of monster
attacks or starvation. The best feature is that you can program it using Python.
This means that you can build a grand palace without having to manually place
every block, and you can write programs that can invent original new structures
for you to roam around and explore, as you see in this chapter.

The project in this chapter uses a Python program to build a maze in Minecraft.
Each time you run the program, it builds a new maze for you, and you can control
how big you want it to be and which materials you want it to be made of. During
the course of this project, you’ll find out how to place and remove blocks in Mine-
craft using Python so that you’ll have the skills to write your own programs that
supercharge your construction work.

Minecraft: Pi Edition is labeled as alpha software, which means that it’s a very early
test version (less well developed than a beta version). We had only a minor issue

IN THIS CHAPTER

»» Exploring the Minecraft world

»» Manipulating the Minecraft world in
Python

»» Generating a random Minecraft maze
in Python

252 PART 4 Programming the Raspberry Pi

with it: The cursor misbehaved when we maximized the window. You might also
experience issues with the screen display not being aligned with the window cor-
rectly, and there is no sound. It’s highly unlikely there will be changes to this
version of Minecraft in the future — since its first release in 2013, there haven’t
been any updates.

See the Introduction for details of where you can download the code for this
chapter. The full listing is at the end of the chapter, which can help you to find
your way around the code as you build this project.

Playing Minecraft
Minecraft is preinstalled in Raspbian. You start it by clicking it on the Applications
menu at the top left of the screen, where Minecraft Pi is filed under Games. When
you start Minecraft on the Raspberry Pi, the title screen gives you two options:

»» Start Game: Generates your own game world to explore. You can also use
this option to choose a previously generated world to revisit, when you replay
Minecraft later. To choose between the different worlds, click and drag them
left and right to position your chosen one in the middle, and then click it
to open it.

»» Join Game: Lets you join other players in a game on a local network. A discussion
of this option is outside the scope of this chapter, but this option can enable
collaborative or competitive play in a Minecraft world.

Click Start Game and choose Create New, and Minecraft then generates a new
world for you, with its own, distinctive terrain of mountains, forests, and oceans.
When it’s finished, you see a first-person view of it (see Figure 13-1).

You can change your perspective to show the player’s character in the game. Press
the Esc key to open the Game menu, and then click the icon beside the Speaker
icon in the top left to change the perspective.

When you’ve finished playing, you can exit the game by pressing the Esc key to
open the Game menu and then choosing Quit To Title.

CHAPTER 13 Programming Minecraft with Python 253

Moving around
Minecraft is easiest to play using two hands — one on the mouse and one on the
keyboard. Use the mouse to look around you and change your direction, sliding it
left and right to turn sideways, and forward and backward on the desk to look up
and down. To move, you use the keys W and S for forward and backward, and A
and D to take a sidestep left and right. Those keys form a cluster on the keyboard,
which makes it easy to switch between them.

You character automatically jumps onto low blocks if you walk into them, but you
can deliberately jump by pressing the spacebar.

For the best view of your world, take to the skies by double-tapping the spacebar.
When you’re flying, hold the spacebar to go higher, and the left Shift key to go
lower. Double-tap the spacebar to stop flying and drop to the ground. There’s no
health or danger in this edition of Minecraft, so you can freefall as far as you like.

Making and breaking things
To break blocks in your world, use the mouse to aim the crosshair at the block you
want to destroy, and click and hold the left mouse button. Some blocks are easier
to break than others. There’s a limit on how far away you can be, so move closer
if you can’t see chips flying off the blocks as you attempt to smash them.

FIGURE 13-1:
Minecraft on

the Pi.
Sean McManus

254 PART 4 Programming the Raspberry Pi

The panel at the bottom of the window shows the blocks you can place in the
world (refer to Figure 13-1). You choose between them using the scroll wheel on
the mouse or by pressing a number between 1 and 8 to pick one (from left to
right). Press E to open your full inventory, and then you can use the movement
keys (W, A, S, D) to navigate around it or Enter to choose a block — or you can
simply click your chosen block with the mouse.

To position a block, right-click where you would like to place it. You can put a
block on top of another one only if you can see the top of it, so you might need to
fly to make tall structures.

You can build towers and rise into the air on them by looking down and repeatedly
jumping and placing a block under you.

Although Python makes it much easier to build things, we recommend that you
spend some time familiarizing yourself with how players experience the world. In
particular, it’s worth experimenting with how blocks interact with each other.
Stone blocks can float in the air unsupported, but sand blocks fall to the ground.
Cacti can’t be planted in grass, but can be placed on top of sand. If you chip away
at the banks of a lake, the water flows to fill the space you made. You can’t place
water and lava source blocks within the game, although you can program them
using Python and they can cascade down and cover a wide area. When water and
lava come into contact with each other, water sometimes cools lava into stone.

Preparing for Python
One of the peculiarities of Minecraft is that it takes control of the mouse, so you
have to press Tab to take back control when you want to use any other programs
on your desktop. To start using the mouse in Minecraft again, click the Minecraft
window. You’ll soon become used to pressing Tab before you try to do any pro-
gramming. Press Tab now to leave Minecraft running but bring the mouse cursor
back into the desktop. To make your Minecraft programs, you’ll use Thonny, so
open the Applications menu in the top left, click Programming, and choose Thonny
Python IDE. You might have to click the top of the Minecraft window and drag it
out of the way first, or click the first button in the top right of its window to min-
imize it.

One of the first things you’ll notice is that Minecraft sits on top of other windows,
and your Python window might well be underneath it, so a certain amount of
reorganization is necessary. If your screen is big enough, you might be able to
show the Minecraft and Thonny windows on screen at the same time.

CHAPTER 13 Programming Minecraft with Python 255

If your screen isn’t big enough, you’ll have to switch between the windows as
necessary. To hide Minecraft, click it on the taskbar at the top of the desktop and
then click the button in Minecraft’s title bar (at the top of its window) to minimize
it. To bring Minecraft back or activate it, click it on the taskbar again. If you can’t
see Minecraft’s title bar, it won’t respond to the mouse and keyboard controls, so
you need to click it on the taskbar. (See Chapter 4 for a guide to using the desktop.)

Using the Minecraft Module
For your first Python program for Minecraft, we will show you how to send a mes-
sage to the Chat feature in the game.

We’ll use the editor in Thonny (the top part of the window). Enter the following,
use the File menu to save it in your pi folder, and then press F5 or click the Run
button to run it (note that you must have a Minecraft game session running for
this to work):

import sys, random

from mcpi import minecraft

mc = minecraft.Minecraft.create()

mc.postToChat("Welcome to Minecraft Maze!")

Your first line of code imports the sys and random modules. The random module,
you’ll need later to build a random maze as you develop this program.

To issue Python commands to Minecraft, you use the minecraft.Minecraft.cre-
ate() function and then add the command at the end. For example, to put a greet-
ing in the Chat window, you might use the following:

minecraft.Minecraft.create().postToChat("Welcome to Minecraft Maze!")

That soon gets hard to read, so in the program you’re working with, you set up mc
so that you can use it as an abbreviation for minecraft.Minecraft.create(). As
a result, you can use the shorter line that you see in the program to post a message.

If your code isn’t working, pay particular attention to the case. Python is case-
sensitive, so you have to use upper- and lowercase exactly as shown here. Look
out for the mixed upper- and lowercase in postToChat, and the capital M in mine-
craft.Minecraft.create().

256 PART 4 Programming the Raspberry Pi

When you run the program, switch back to Minecraft to see your message on
screen. It disappears after about 10 seconds.

Understanding coordinates in Minecraft
As you might expect, everything in the Minecraft world has a map coordinate.
Three axes are required in order to describe a position in the game world:

»» x: This axis runs parallel to the ground, from west (negative numbers) to east
(positive numbers). The world measures 255 blocks in this direction.

»» y: This axis runs vertically and could be described as the height. You can fly at
least as high as 500 blocks, but you can’t see the ground from higher than
about 70 blocks, so there’s not much point. Sea level is 0. You can break blocks
to tunnel under the sea too. We made it down to about –70 before we fell out
of the world and died. This is the only way we’ve seen that you can die in
Minecraft on the Pi.

»» z: This is the other axis parallel to the ground, running from north (negative
numbers) to south (positive numbers). The world measures 255 blocks in this
direction too.

We put the axes in this order deliberately because that’s the order that Minecraft
uses. If, like us, you often use x and y to refer to positions in 2D (as you do in
Scratch), it takes a short while to get your head around the fact that y represents
height. Most of the time in this chapter, you’ll use the x and z coordinates to
describe a wall’s position (which differs depending on the wall), and the y coordi-
nate to describe its height (which doesn’t, in our project).

As you move in the game, you can see the player’s coordinates in the top left of the
Minecraft window change. If you try to move outside the game world, you hit a
wall of sky that you can’t penetrate, like in The Truman Show (except that he had a
door).

Repositioning the player
You can move your character to any position in the Minecraft world, using this
command:

mc.player.setTilePos(x, y, z)

CHAPTER 13 Programming Minecraft with Python 257

For example, to parachute into the world, use

mc.player.setTilePos(0, 100, 0)

You don’t have to put this command into a program and run it. If you’ve already
run the program to set up the Minecraft module, you can type commands to move
the player and add blocks in the Python shell.

Assuming that the game is not in Flying mode, you’ll drop from the sky into the
world. If it is in Flying mode, click Minecraft on the taskbar and double-tap the
spacebar to turn it off and start your descent.

Note that this coordinate won’t always be in the middle of the world, even though
worlds are the same size. In one of our worlds, the coordinates run from –85.7 to
169.7 in the x plane and from –98.7 to 156.7 in the z plane.

You can put the player anywhere in the game world, and sometimes that means
she’ll appear in the middle of a mountain or another structure, where she can’t
move. If that happens, reposition the player using code. Putting her somewhere
high is usually a reasonably safe bet because she can fall to the highest ground
from there.

Adding blocks
To add a block to the world, you use this command:

mc.setBlock(x, y, z, blockTypeId)

blockTypeId is a number that represents the material of the block you’re adding.
You can find a full list of materials at https://minecraft.gamepedia.com/
Bedrock_Edition_data_value. (Take the number from the Dec column in the
table on that page. You want the decimal number rather than the hexadecimal
one.) Any number from 0 to 108 is valid, and a few higher numbers are as well.
Table 13-1 shows some of the materials you might find most useful for this project
and for experimentation.

If you use the water and lava blocks, you could flood your world, so create a new
world to experiment with.

https://minecraft.gamepedia.com/Bedrock_Edition_data_value
https://minecraft.gamepedia.com/Bedrock_Edition_data_value

258 PART 4 Programming the Raspberry Pi

There is another command you can use to create a large, cuboid shape built of
blocks of the same material. To use it, you provide the coordinates of two opposite
corners and the material you’d like to fill the space with, like this:

mc.setBlocks(x1, y1, z1, x2, y2, z2, blockTypeId)

You can quickly build a brick shelter by making a large cuboid of brick and then
putting a cuboid of air inside it. Air replaces any other block, effectively deleting it
from the world. Here’s an example:

mc.setBlocks(0, 0, 0, 10, 5, 7, 45) #brick

mc.setBlocks(1, 0, 1, 9, 5, 6, 0) #air

These lines build a shelter that is 10 × 7 blocks in floor space and 5 blocks high,
starting at coordinate 0, 0, 0. The walls have a thickness of 1 block because you fill

TABLE 13-1	 Materials in Minecraft: Pi Edition
blockTypeId Block Type

0 Air

1 Stone

2 Grass

3 Dirt

5 Wooden plank

8 Water

10 Lava

12 Sand

20 Glass brick

24 Sandstone

41 Gold brick

45 Brick

47 Bookshelf

53 Oak stairs

57 Diamond block

64 Oak door

81 Cactus

CHAPTER 13 Programming Minecraft with Python 259

with air the space from 1 to 9 on the x-axis, from 1 to 6 on the z-axis, and from
0 to 5 on the vertical axis, leaving intact 1 block of brick from the original cuboid
on four sides and the roof open.

If your Minecraft window goes black when you try this, you’ve probably built the
walls on top of the player. Reposition the player using code to get the view back.

The # symbol represents a comment that’s there only as a reminder for you. The
computer ignores anything on the same line after the #.

Although players can have coordinate positions with decimal portions (such
as 1.7), when you place a block, its position is rounded down to the nearest whole
number.

Stopping the player from
changing the world
We know you wouldn’t cheat, but there’s no fun in a maze that you might acciden-
tally just hack your way through, is there? To stop players from being able to
destroy or place blocks in the world, use the following:

mc.setting("world.immutable", True)

The word immutable is often used in programming, and it means
“unchangeable.”

Setting the maze parameters
Now that you know how to place blocks in the world and use the air block to
remove them again, you’re ready to start making the maze program. In this pro-
gram, you’ll use a number of constants to keep track of important information
about the maze. Constants are just variables that you decide not to change the val-
ues of as the program is running, so their values are always the same. It’s conven-
tional to use uppercase letters for the names of constants to signal your intent to
others reading the program, and to remind yourself that you’re not supposed to be
letting the program change these values. Replacing numbers in your program
with constants makes it easier to customize your program later, but also makes it
much easier to read your program and understand what different numbers
represent.

Variable names are case sensitive, so Python would think SIZE and size were two
different variables. You’d be unwise to use both in the same program, though!

260 PART 4 Programming the Raspberry Pi

The program starts by setting up these constants:

SIZE = 10

HEIGHT = 2

MAZE_X = 0

GROUND = 0

MAZE_Z = 0

MAZE_MATERIAL = 1 #stone

GROUND_MATERIAL = 2 #grass

CEILING = False

To build the maze, you start with a grid of walls with 1-block spaces (or cells)
between them, which looks a bit like a waffle (see Figure 13-2). Each cell starts
with four walls, and the program knocks down walls to create paths between them
and build the maze. The maze is square, and its SIZE is measured in cells. A maze
with a SIZE of 10 will have 10 cells in the x and z dimensions, but will occupy
double that space in the Minecraft world (that is, 20 blocks by 20 blocks) because
there is a 1-block wall between each cell. This becomes clearer as you start to build
the maze. We’ve tried mazes as big as 40, but they take some time to build and
ages to explore. Ten is big enough for now.

The HEIGHT is how many blocks tall the maze walls are. We chose 2 because a value
of 1 means that the player can just walk over the maze. (The player automatically
steps onto blocks 1 unit high.) Higher values obscure any mountains in the dis-
tance that can otherwise give a nice visual hint to the player.

FIGURE 13-2:
The starter grid.

CHAPTER 13 Programming Minecraft with Python 261

The constants MAZE_X, GROUND, and MAZE_Z are used for the starting coordinates of
the maze. The MAZE_MATERIAL is stone (1), and the GROUND_MATERIAL is grass (2).
We’ve added an option for a ceiling, to stop players from just flying out of the top
of the maze, but we’ve turned it off for now so that you can freely explore the
maze as you’re building it.

The program stops with an error if there isn’t enough room for all of the maze in
your world. In that case, you can try using a smaller maze, try moving the MAZE_X
and MAZE_Z coordinates, or try using a different world.

A maze of bookshelves (MAZE_MATERIAL=47) looks great!

Laying the foundations
One of the first things you need to do before you build the maze is make sure that
you’re building on solid land. Because Minecraft worlds are dynamically gener-
ated, you might find that, otherwise, you’re building a maze inside a mountain or
in the sea.

You’ll need to clear, as well as the area the maze will occupy, an area of ten blocks
all the way around it so that the players can approach it easily and walk around the
outside of it. First you clear the area by filling it with air blocks, which will wipe
out anything else in that space. Then you add the floor, a layer of blocks made of
the ground material.

The maze occupies a ground space measured in blocks from MAZE_X to MAZE_
X+(SIZE*2), and from MAZE_Z to MAZE_Z+(SIZE*2). (Remember: * is the symbol
for multiplication.) The number of blocks is twice the number of cells (SIZE)
because each cell has a wall on its right and below it (when viewed from above, as
in Figure 13-2). The middle of the maze in the Minecraft world is MAZE_X+SIZE,
MAZE_Z+SIZE.

You need to clear 10 blocks farther in each direction. The following code clears
everything as high as 150 above the ground level of the maze, to stop the risk of
any remaining mountain blocks falling from the sky into the maze, and then lays
the floor:

mc.setBlocks(MAZE_X-10, GROUND, MAZE_Z-10, MAZE_X+(SIZE*2)+10, GROUND+150, ↩
 MAZE_Z+(SIZE*2)+10, 0)
mc.setBlocks(MAZE_X-10, GROUND, MAZE_Z-10, MAZE_X+(SIZE*2)+10, GROUND, ↩
 MAZE_Z+(SIZE*2)+10, GROUND_MATERIAL)

262 PART 4 Programming the Raspberry Pi

We recommend adding a block to indicate the starting corner of the maze (where
MAZE_X and MAZE_Z are). You will find it useful when writing and debugging the
program, because it will enable you to tell which way around the maze is as you
fly around it. To do so, use the following:

mc.setBlock(MAZE_X, GROUND+HEIGHT+1, MAZE_Z, MAZE_MATERIAL)

Put your player character above the middle of the maze, too, so that you can watch
it being built by looking down, as follows — if you’re not flying, you’ll fall onto
the maze wall, but you can just fly up again:

mc.player.setTilePos(MAZE_X+SIZE, GROUND+25, MAZE_Z+SIZE)

Placing the maze walls
To make the waffle-like grid, use the following code:

for line in range(0, (SIZE+1)*2, 2):
 mc.setBlocks(MAZE_X+line, GROUND+1, MAZE_Z, MAZE_X+line, GROUND+HEIGHT, ↩
 MAZE_Z+(SIZE*2), MAZE_MATERIAL)
 mc.setBlocks(MAZE_X, GROUND+1, MAZE_Z+line, MAZE_X+(SIZE*2), ↩
 GROUND+HEIGHT, MAZE_Z+line, MAZE_MATERIAL)

The for loop gives the variable line the values of even numbers starting at 0 and
finishing at SIZE*2, in turn. Note that you have to add 1 to SIZE before doubling
it, because the range function doesn’t include the last number in the sequence. If
you use range(1, 10), for example, you get the numbers 1 to 9. The 2 at the end
of the range function is the step size, so it adds 2 each time it goes around the
loop, and only gives you the even numbers. That means you leave a gap for the cell
between each wall. Each time around the loop, it uses cuboids to draw two walls
that stretch across the maze from edge to edge in the x and z dimensions. It does-
n’t matter that the same block is set twice where those lines intersect. You build
the wall starting at GROUND+1, so the grass is still underneath when you knock
down the walls to make paths.

Don’t forget the colon at the end of the for statement, and that the next two lines
should each be indented by four spaces to tell Python that they belong to the loop.

You should now have a grid that looks like Figure 13-3.

CHAPTER 13 Programming Minecraft with Python 263

Understanding the maze algorithm
Before you dig into the code that turns your waffle into a maze, let us tell you how
it works. You’re going to make what’s known as a perfect maze (that’s a technical
term, not us bragging): That means there are no loops in it and every part of the
maze can be visited. There is only one path between any two points in the maze.

An algorithm is a set of rules or a process for solving a particular problem. It is
typically performed by a computer, but you could carry out the maze making algo-
rithm using paper and pencil, and an eraser to wipe out the walls as you go. Here’s
how it works:

1.	 You start with the “waffle” you’ve built, with every cell having all four walls.

2.	 You pick a random cell in the maze to start at.

3.	 You look at your current cell’s neighbors and make a list of all those that have
all four walls intact. These are the cells that have not yet been visited.

4.	 If you found some unvisited neighbors, you pick one at random, knock down
the wall between it and your current cell, and then move into that cell, making
it your current cell.

5.	 If your current cell has no unvisited neighbors, you go back one cell in the path
you’ve taken, and make that your current cell.

6.	 Repeat Steps 3 to 5 until you’ve visited every cell.

FIGURE 13-3:
Your grid in

Minecraft.

264 PART 4 Programming the Raspberry Pi

Setting up the variables and lists
To implement this algorithm, you’ll use the following variables:

»» numberOfCells: This is the total number of cells in the maze, which will be
SIZE*SIZE.

»» numberOfVisitedCells: This keeps track of how many cells you’ve visited.
When this is the same as the numberOfCells, every cell has been visited and
had a wall demolished, and is therefore reachable. The maze is finished.

»» xposition: This remembers your x position as you move through the maze
generating it. It’s measured in cells, and it starts as a random number between
1 and the maze SIZE.

»» zposition: This remembers your z position as you move through the maze
generating it, also measured in cells and also starting as a random number.

»» cellsVisitedList[]: This is a list that stores the path you’ve taken so that
the program can retrace its steps. When you set it up, you put your starting
position into it using the append() list method.

»» playerx and playerz: These are used to remember the starting position, so
you can put the player there when the maze has been built.

When an algorithm like this is implemented (it’s called a depth-first maze genera-
tion algorithm), it often requires a list or similar data structure to store the loca-
tions of walls. You don’t need that, because you have actual walls in Minecraft you
can look at. The game world stores your maze, if you like.

The following code lines set up your starting variables:

numberOfCells = SIZE * SIZE

numberOfVisitedCells = 1 # 1 for the one you start in

cellsVisitedList = []

xposition = random.randint(1, SIZE)

zposition = random.randint(1, SIZE)

playerx = xposition

playerz = zposition

see the next section, "Creating the functions"

showMaker(xposition, zposition)

cellsVisitedList.append((xposition, zposition))

CHAPTER 13 Programming Minecraft with Python 265

Creating the functions
There are a number of basic functions you will need for your program:

»» realx(x) and realz(z): These convert coordinates in the maze (measured
in cells) into coordinates in the Minecraft world (measured in blocks and offset
from the maze’s starting position).

»» showMaker(x, z) and hideMaker(x, z): These functions use a gold block
to show which cell the program has reached as it builds the maze. It’s fun to
watch from above and is useful while building and debugging the program.

»» demolish(realx, realz): This knocks down a wall in the maze and takes
real x and z coordinates in the Minecraft world as its parameters.

»» testAllWalls(cellx, cellz): This checks whether the four walls on a cell
are intact. If all of them are, it returns True. Otherwise, it returns False. It uses
the command mc.getBlock(x, y, z), which tells you the blockTypeId at a
particular location. You use two equal signs, as usual, to test whether a block
in a wall position is the same as the MAZE_MATERIAL, which means that there’s
a wall there.

Add these function definitions at the start of your program, right after where you
set up the Minecraft module:

def realx(x):

 return MAZE_X + (x*2) - 1

def realz(z):

 return MAZE_Z + (z*2) - 1

def showMaker(x, z):

 mc.setBlock(realx(x), GROUND+1, realz(z), 41) # 41=gold

def hideMaker(x, z):

 mc.setBlock(realx(x), GROUND+1, realz(z), 0)

def demolish(realx, realz):

 mc.setBlocks(realx, GROUND+1, realz, realx, HEIGHT+GROUND, realz, 0)

def testAllWalls(cellx, cellz):

 if mc.getBlock(realx(cellx)+1, GROUND+1, realz(cellz))==MAZE_MATERIAL ↩
 and mc.getBlock (realx(cellx)-1, GROUND+1, realz(cellz))==MAZE_MATERIAL ↩

266 PART 4 Programming the Raspberry Pi

 and mc.getBlock(realx(cellx), GROUND+1, realz(cellz)+1)==MAZE_MATERIAL ↩
 and mc.getBlock(realx(cellx), GROUND+1, realz(cellz)-1)==MAZE_MATERIAL:
 return True

 else:

 return False

If you have an error, check for missing colons at the end of your def and if
statements.

Creating the main loop
Your maze algorithm runs until you’ve visited every cell, so it starts with the fol-
lowing statement:

while numberOfVisitedCells < numberOfCells:

You need to test whether your current cell’s neighbor cells have all their walls
intact. To do that, you check each direction in turn, using the testAllWalls(x,
z) function. When you find a cell with all the walls intact, you add its direction to
the list possibleDirections[] using the append() list method. This implements
Step 3 in the algorithm — and keep in mind that it’s all indented underneath the
while statement:

possibleDirections = []

if testAllWalls(xposition - 1, zposition):

 possibleDirections.append("left")

if testAllWalls(xposition + 1, zposition):
 possibleDirections.append("right")

if testAllWalls(xposition, zposition - 1):

 possibleDirections.append("up")

if testAllWalls(xposition, zposition + 1):
 possibleDirections.append("down")

The values of up, down, left, and right are somewhat arbitrary in 3D space, but
we’ve used them because they’re easy to understand. If you fly into the air and
look down on the maze as it’s being generated and you have the block identifying
the starting corner of the maze (MAZE_X, MAZE_Z) in the top left, these directions
will look correct to you.

CHAPTER 13 Programming Minecraft with Python 267

Incidentally, you might have noticed that there’s no check for whether these cell
positions are inside the maze borders. What happens if you look for a cell off the
left edge of the maze, or off the bottom edge? No problem. The program imple-
mentation automatically respects the borders of the maze because when it looks
at “cells” outside the borders, they don’t have all four walls (their only wall is the
maze’s border), so they are never visited.

Step 4 in the algorithm is to pick a random direction if you found any unvisited
neighbors, knock down the wall in that direction, and move into that cell. To
decide whether you found any possible directions, you check the length of the
possibleDirections list and act if it is not equal to 0 (expressed as !=0). All of
this should be indented under the while loop. (If you get lost in the indenting,
consult the full code in Listing 13-1, near the end of this chapter.)

Before you start moving your position, you hide the gold brick that shows where
you are in the maze:

hideMaker(xposition, zposition)

if len(possibleDirections) != 0:

 directionChosen=random.choice(possibleDirections)

 if directionChosen == "left":

 demolish(realx(xposition) - 1, realz(zposition))

 xposition -= 1

 if directionChosen == "right":

 demolish(realx(xposition) + 1, realz(zposition))
 xposition += 1

 if directionChosen == "up":

 demolish(realx(xposition), realz(zposition) - 1)

 zposition -= 1

 if directionChosen == "down":

 demolish(realx(xposition), realz(zposition) + 1)
 zposition += 1

After you’ve moved into a new cell, you need to increase your tally of cells visited
by one, and add the new cell to the list that stores the path taken. This is also a
good time to show the gold block in the cell to highlight how the maze is being
built:

numberOfVisitedCells += 1
cellsVisitedList.append((xposition, zposition))

showMaker(xposition, zposition)

268 PART 4 Programming the Raspberry Pi

The way you’ve stored the list of cells visited deserves some explanation. You’ve
put the xposition and zposition in parentheses, which are used to indicate a
tuple. A tuple is a data sequence, a bit like a list, with a key difference that you
can’t change its values. (It’s immutable.) So cellsVisitedList is a list that con-
tains tuples, which in turn contain pairs of x and z coordinates. You can use the
Python shell to take a look inside this list. Here’s an example from one run of the
program, showing a path taken through the maze:

>>> print(cellsVisitedList)

[(6, 6), (6, 7), (6, 8), (5, 8), (4, 8), (3, 8), (3, 7)]

For Step 5 in the algorithm, you go back to the previous position in the path if your
cell has no unvisited neighbors. This involves taking the last position out of the
list. There’s a list method called pop() that you can use. It takes the last item from
a list and deletes it from that list. In your program, you put it into a variable called
retrace, which then stores a tuple for the x and z positions in the maze. As with
a list, you can use index numbers to access the individual elements in a tuple. The
index numbers start at 0, so retrace[0] will hold your previous x position, and
retrace[1] will hold your previous z position. Here’s the code, including a line to
show the gold block in its new position:

else: # do this when there are no unvisited neighbors

 retrace = cellsVisitedList.pop()

 xposition = retrace[0]

 zposition = retrace[1]

 showMaker(xposition, zposition)

Note that the else statement should be in line with the if statement it’s paired
with — in this case, the one that tests whether you found any possible directions
to move in.

Step 6 in the algorithm has already been implemented because the while loop will
keep repeating the indented code underneath it until every cell has been visited.

Adding a ceiling
Personally, we think it’s more fun to leave the ceiling open and be free to fly up
and marvel at your maze and then drop into it at any point. If you want to build a
game around your maze, though, and stop people from cheating, you can add a
ceiling using the following code. Just change the variable CEILING to True at the
start of the program. We’ve made the ceiling out of glass bricks, so it doesn’t get
too dark in there:

CHAPTER 13 Programming Minecraft with Python 269

if CEILING == True:

 mc.setBlocks(MAZE_X, GROUND+HEIGHT+1, MAZE_Z, MAZE_X+(SIZE*2), ↩
 GROUND+HEIGHT+1, MAZE_Z+(SIZE*2), 20)

Positioning the player
Finally, let’s place the player at the random position where you started generating
the maze. You could put the player anywhere, but this seems as good a place as
any, and it uses random numbers you have already generated:

mc.player.setTilePos(realx(playerx), GROUND+1, realz(playerz))

Now you’re ready to play! Figure 13-4 shows the maze from the inside.

The final code
Listing 13-1 shows the final and complete code:

LISTING 13-1:	 The Minecraft Maze Maker

Minecraft Maze Generator

by Sean McManus

From Raspberry Pi For Dummies

FIGURE 13-4:
Finding your way

around the maze.

(continued)

270 PART 4 Programming the Raspberry Pi

import sys, random

from mcpi import minecraft

mc = minecraft.Minecraft.create()

mc.postToChat("Welcome to Minecraft Maze!")

def realx(x):

 return MAZE_X + (x*2) - 1

def realz(z):

 return MAZE_Z + (z*2) - 1

def showMaker(x, z):

 mc.setBlock(realx(x), GROUND+1, realz(z), 41) # 41=gold

def hideMaker(x, z):

 mc.setBlock(realx(x), GROUND+1, realz(z), 0)

def demolish(realx, realz):

 mc.setBlocks(realx, GROUND+1, realz, realx, HEIGHT+GROUND, realz, 0)

def testAllWalls(cellx, cellz):

 if mc.getBlock(realx(cellx)+1, GROUND+1, realz(cellz))==MAZE_MATERIAL ↩
 and mc.getBlock (realx(cellx)-1, GROUND+1, realz(cellz))==MAZE_MATERIAL ↩
 and mc.getBlock(realx(cellx), GROUND+1, realz(cellz)+1)==MAZE_MATERIAL ↩
 and mc.getBlock(realx(cellx), GROUND+1, realz(cellz)-1)==MAZE_MATERIAL:
 return True

 else:

 return False

mc.setting("world_immutable", True)

Configure your maze here

SIZE = 10

HEIGHT = 2

MAZE_X = 0

GROUND = 0

MAZE_Z = 0

MAZE_MATERIAL = 1 # 1=stone

GROUND_MATERIAL = 2 # 2=grass

CEILING = False

#clear area

mc.setBlocks(MAZE_X-10, GROUND, MAZE_Z-10, MAZE_X+ (SIZE*2)+10, GROUND+150, ↩
 MAZE_Z+(SIZE*2)+10, 0) # air

LISTING 13-1:	 (continued)

CHAPTER 13 Programming Minecraft with Python 271

#lay the ground

mc.setBlocks(MAZE_X-10, GROUND, MAZE_Z-10, MAZE_X+ (SIZE*2)+10, GROUND, ↩
 MAZE_Z+(SIZE*2)+10, GROUND_MATERIAL)

origin marker

mc.setBlock(MAZE_X, GROUND+HEIGHT+1, MAZE_Z, MAZE_MATERIAL)

move player above middle of maze

mc.player.setTilePos(MAZE_X+SIZE, GROUND+25, MAZE_Z+SIZE)

mc.postToChat("Now building your maze...")

build grid of walls

for line in range(0, (SIZE+1)*2, 2):
 mc.setBlocks(MAZE_X+line, GROUND+1, MAZE_Z, MAZE_X+line, GROUND+HEIGHT, ↩
 MAZE_Z+(SIZE*2), MAZE_MATERIAL)
 mc.setBlocks(MAZE_X, GROUND+1, MAZE_Z+line, MAZE_X+ (SIZE*2), ↩
 GROUND+HEIGHT, MAZE_Z+line, MAZE_MATERIAL)

mc.postToChat("TIP: Fly above it and look down.")

set up variables for creating maze

numberOfCells = SIZE * SIZE

numberOfvisitedCells = 1 # 1 for the one we start in

cellsVisitedList = []

xposition = random.randint(1, SIZE)

zposition = random.randint(1, SIZE)

playerx = xposition

playerz = zposition

showMaker(xposition, zposition)

cellsVisitedList.append((xposition, zposition))

main loop

while numberOfvisitedCells < numberOfCells:

 possibleDirections = []

 if testAllWalls(xposition - 1, zposition):

 possibleDirections.append("left")

 if testAllWalls(xposition + 1, zposition):
 possibleDirections.append("right")

 if testAllWalls(xposition, zposition - 1):

 possibleDirections.append("up")

 (continued)

272 PART 4 Programming the Raspberry Pi

 if testAllWalls(xposition, zposition + 1):
 possibleDirections.append("down")

 hideMaker(xposition, zposition)

 if len(possibleDirections) != 0:

 directionChosen=random.choice(possibleDirections)

 #knock down wall between cell in direction chosen

 if directionChosen == "left":

 demolish(realx(xposition) - 1, realz(zposition))

 xposition -= 1

 if directionChosen == "right":

 demolish(realx(xposition) + 1, realz(zposition))
 xposition += 1

 if directionChosen == "up":

 demolish(realx(xposition), realz(zposition) - 1)

 zposition -= 1

 if directionChosen == "down":

 demolish(realx(xposition), realz(zposition) + 1)
 zposition += 1

after the move, increase number of visited cells

 numberOfvisitedCells += 1

 cellsVisitedList.append((xposition, zposition))

 showMaker(xposition, zposition)

 else: # do this when there are no unvisited neighbors

 retrace = cellsVisitedList.pop()

 xposition = retrace[0]

 zposition = retrace[1]

 showMaker(xposition, zposition)

if CEILING == True:

 mc.setBlocks(MAZE_X, GROUND+HEIGHT+1, MAZE_Z, MAZE_X+(SIZE*2), ↩
 GROUND+HEIGHT+1, MAZE_Z+(SIZE*2), 20)

mc.postToChat("Your maze is ready!")

mc.postToChat("Happy exploring!")

mc.player.setTilePos(realx(playerx), GROUND+1, realz(playerz))

LISTING 13-1:	 (continued)

CHAPTER 13 Programming Minecraft with Python 273

Adapting the Program
After the maze has been built, the gold brick remains visible, so you could try to
solve the maze to find the brick. You could also plant other objectives in the maze
and time how long it takes the player to find them. The mc.player.getTilePos()
command checks where the player is in the Minecraft world and gives you a result
in the form x,y,z.

You could add an entrance and exit in random positions in the border of the maze
so that the goal is to travel from one side to the other. You could make huge mazes
more playable by adding landmarks. (Try using different wall materials or putting
blocks on top of some walls.) After the maze has been generated, you could knock
out random walls so that there are some shortcuts through the maze. Or maybe
just replace them with glass blocks, to provide a tantalizing glimpse into another
corridor. What about a multistory maze, with stairs between the levels? The pos-
sibilities are — ahem! — amazing.

CHAPTER 14 Making Music with Sonic Pi 275

Chapter 14
Making Music
with Sonic Pi

For much of the music we hear today, computers are at least as important in
the studio as microphones are, and they have been for many years. Using
Sonic Pi, you can start composing your own computer music by program-

ming your Raspberry Pi. It enables you to put together simple programs that play
synthesizer melodies and sampled sounds, generating your own distinctive
instrumental music.

Sam Aaron, who created Sonic Pi, says: “Sonic Pi has two concurrent goals: to be
simple to learn and yet also powerful enough for professional musicians. You
might think that sounds a bit ambitious, but it exactly describes a piano.”

Sam has performed concerts using Sonic Pi at international festivals including
Moogfest, a celebration of electronic music. While people listen to Sam’s music at
a performance, they can see how he is creating and editing his code on the screen
on the stage. Music magazine Rolling Stone described Sam’s music as sounding like
“Electric Café-era Kraftwerk, a little bit of Aphex Twin skitter and some Eighties
electro.”

Sonic Pi runs from the desktop environment (see Chapter 4) and is one of the
recommended applications in Raspberry Pi OS. If it isn’t installed, you can add it

IN THIS CHAPTER

»» Playing notes and melodies using
Sonic Pi

»» Creating random computer-
generated music

»» Adding samples to your compositions

»» Synchronizing your tunes with
drumbeats and samples

276 PART 4 Programming the Raspberry Pi

using the Recommended Software program in the Preferences part of the Applica-
tions menu.

You run Sonic Pi by clicking the Applications Menu button in the top-left of the
screen, clicking Programming, and then clicking the entry for Sonic Pi.

As of this writing, Sonic Pi can only send its sound through the HDMI cable. If
you’re using a monitor with built-in speakers, you’re all set. If you’re using head-
phones or external speakers connected to the Raspberry Pi’s audio socket, it won’t
work. In that case, you could try Sonic Pi using your TV if it has an HDMI socket.

Understanding the Sonic Pi Screen Layout
Figure 14-1 shows the screen layout for Sonic Pi. You might see some differences
between your screen layout and ours, but the fundamentals should be the same.
Click to enlarge the window if necessary. (See the section on resizing and closing
your program windows in Chapter 4.) On the left is the Editor, where you type in
your code. On the right is the Log, where Sonic Pi tells you what it’s doing as it
plays your music. At the bottom is the Help pane.

FIGURE 14-1:
The Sonic Pi

screen layout.
Sean McManus

CHAPTER 14 Making Music with Sonic Pi 277

Sonic Pi uses ten buffers, which you access by clicking the buttons at the bottom
of the Editor. You can think of each buffer as like having a different file open for
editing, but you can play music from different buffers at the same time. This can
be particularly useful for live performance: You might set up a loop in one buffer
and then experiment with code to add notes on top in another buffer. When you
exit Sonic Pi, the content of your buffers is saved for you, and it’s loaded when you
come back again. You can also save the content of a buffer to a text file using the
Save button in the menu bar at the top of the screen.

At the top of the screen are buttons to run your program (play your music) and
stop it. They use symbols similar to any audio player: a triangle to play and a
square to stop. There are also buttons to adjust the text size, show or hide the
oscilloscope (which displays waveforms as your music plays), show or hide the
info window, and show or hide the Help pane at the bottom of the screen.

There is also a Preferences button to the right of the Help button. Clicking this
button shows and hides the Preferences pane. The Preferences pane provides a
volume control and has options for adjusting the Editor display and checking for
any updates. If you use other electronic instruments or music software, you can
connect to Sonic Pi using the MIDI or OSC protocols, which are configured in the
IO preferences.

You can adjust the size allocated to the panes by clicking and dragging the divid-
ing lines between them.

If you are performing with Sonic Pi, you can use the dark mode for a color scheme
based on a black background, which will be more comfortable to use in a club or
concert venue with low lights. There’s also a Pro icons setting, which replaces the
buttons with stripped-back icons for a more streamlined interface. You’ll find
both of these settings in the Editor preferences.

Playing Your First Notes
Click in the Editor and type the following:

play 60

Nothing happens because you’ve entered your program but haven’t run it yet.
Click the Run button and you will hear a middle C note sound. At the same time,
you’ll see the Log update.

278 PART 4 Programming the Raspberry Pi

The note numbers used are standard MIDI note numbers, widely used in elec-
tronic instruments. You’ve already seen them in Scratch. Higher-sounding notes
use higher numbers, and lower-sounding notes use lower numbers.

Try adding some more notes to your program:

play 60

play 64

play 67

When you click the Run button, you still hear just one sound, but three different
notes are playing at the same time. It’s actually a C chord you hear, which uses the
notes C (60), E (64), and G (67). If you want to play the notes separately, you can
add a pause of half a beat between them using the sleep command:

play 60

sleep 0.5

play 64

sleep 0.5

play 67

sleep 0.5

play 72

There is an extra higher C note on the end of that sequence to make it sound like
a fanfare. You can experiment with writing your own tunes. Just put together a
sequence of notes.

Table 14-1 shows the standard MIDI notes, which run from 0 to 127. In practice,
they sound extremely tinkly at the high end and descend into indistinct soft thuds
at the low end. For best results, we recommend you keep your numbers between
48 and 96, but feel free to experiment to find out what sounds good to you.

As you can see, the numbers in the table count from top to bottom, and from left
to right. Notes get higher as you go down the table and as you move from left to
right across the columns. The next highest note after B (at the bottom of the table)
is the C at the top of the next column to the right. It’s like a piano, where the same
key layout (running from C to G, then A to B, and then starting from C again)
repeats all the way along it.

If you don’t know much about music, stick to the notes that don’t have a sharp
symbol (#) on them and avoid too many huge leaps. Try moving a few notes up or
down a column and dip into a neighboring column when you’re near the top or
bottom of your column. By following those simple guidelines, you should end up
with a jolly little ditty.

CHAPTER 14 Making Music with Sonic Pi 279

Using Note and Chord Names
Sonic Pi enables you to use proper note names instead of MIDI numbers by using
the name of the note (a letter from A to G), plus the number of the octave it’s in.
You can see those numbers labeling the columns in Table 14-1.

For example, to play a middle C, you can use

play :c4

To play the B one note before it, which is in the next lowest octave, you would use

play :b3

The Log shows that Sonic Pi plays notes 60 and 59 respectively. You can check the
note names and numbers in Table 14-1 to confirm that this is what you expected.

Here’s how you could code a fanfare using note names instead of numbers:

play :c4

sleep 0.5

TABLE 14-1	 MIDI Notes
Note 0 1 2 3 4 5 6 7 8 9

C 0 12 24 36 48 60 72 84 96 108 120

C# 1 13 25 37 49 61 73 85 97 109 121

D 2 14 26 38 50 62 74 86 98 110 122

D# 3 15 27 39 51 63 75 87 99 111 123

E 4 16 28 40 52 64 76 88 100 112 124

F 5 17 29 41 53 65 77 89 101 113 125

F# 6 18 30 42 54 66 78 90 102 114 126

G 7 19 31 43 55 67 79 91 103 115 127

G# 8 20 32 44 56 68 80 92 104 116

A 9 21 33 45 57 69 81 93 105 117

A# 10 22 34 46 58 70 82 94 106 118

B 11 23 35 47 59 71 83 95 107 119

280 PART 4 Programming the Raspberry Pi

play :e4

sleep 0.5

play :g4

sleep 0.5

play :c5

If you want to use a sharp note, insert the letter s in the note name (for example,
play :cs4) and use b for a flat note (play :cb4).

You can also use names to play chords. You tell Sonic Pi the lowest note in the
chord and add which type of chord you want (try :major, :minor, or :dimin-
ished). There are also options for :major7, :minor7, :diminished7, and :dom7,
among others. For a complete list, click Lang in the Help pane, and then select
Chord. Try this:

play chord(:a3, :major)

sleep 1

play chord(:a3, :minor)

In each case, it plays three notes at the same time. If you look at the note numbers
in the Log, you can see that the middle note was one pitch lower in the second
chord because it’s a minor chord. Again, you can use Table 14-1 to check the note
numbers Sonic Pi displays against the musical note names.

The chord is returned as a list, and you can use play_pattern to hear the notes of
the chord in a sequence, like this:

play_pattern chord(:a3, :major)

play_pattern chord(:a3, :minor)

Playing Timed Patterns
There is a more efficient way you can play a sequence of notes and specify the
time, in beats, between each one: Use the play_pattern_timed command. Click a
button to go to a new buffer and try this:

play_pattern_timed [:c4, :e4, :g4, :c5], [0.5, 0.5, 1]

Pay careful attention to the brackets and commas here. This command takes two
different sets of information, and each set is between square brackets. The first
set is the notes you want to play, and they are the same notes as we used in our

CHAPTER 14 Making Music with Sonic Pi 281

fanfare earlier. The second set of information is separated from the first set by a
comma, and it is the length of the pause between the notes. There are four notes,
but just three gaps between them, so the second set of brackets has fewer items in
it. The numbers we’ve used here put a half-beat pause between the first and sec-
ond notes, and the second and third notes, but double that to build up the sus-
pense (such as it is) before the final note sounds.

Composing Random Tunes Using Shuffle
The bracketed sections are lists, similar to lists in Python. You can add different
instructions (or methods) to the lists to change the order of the items in them. For
example, try this, using the reverse method:

play_pattern_timed [:c4, :e4, :g4, :c5], [0.5, 0.5, 1]

play_pattern_timed [:c4, :e4, :g4, :c5].reverse, [0.5, 0.5, 1]

You’ll hear the notes of the fanfare played forward and then backward, but with
the same timing each time. You can use the shuffle method, which changes the
order of the items in a list, to hear a random tune. Try this:

play_pattern_timed [:c4, :d4, :e4, :f4, :g4, :a4, :c5].shuffle, [0.5, 0.5, 1, ↩

0.5, 0.5, 1]

We’ve used a simple rhythm there: two short notes and then a long note. It’s a
cheery melody, but it’s a bit short, so get Sonic Pi to repeat it. Here’s how:

4.times do

play_pattern_timed [:c4, :d4, :e4, :f4, :g4, :a4, :c5].shuffle, [0.5, 0.5, 1, ↩
0.5, 0.5, 1, 2]

end

play :c4

This example wraps the tune playing code in a loop that repeats it four times. The
start of the loop is 4.times do, and the end of the repeating section is marked,
appropriately enough, with the word end. Sonic Pi automatically indents your
musical code by two spaces to show it’s the part that is to be repeated. If you want
to repeat more or less than four times, change the number 4 at the start.

There are some other changes here, too: First, we added a timing value for the last
note in the sequence. It’s the 2 that has sneaked inside the last square bracket.
We’ve also added a final note, :c4. Whatever randomness happens in the rest of
the tune, this sequence of notes always sounds good when it ends on a C, because
all the notes in the sequence are from the C major scale.

282 PART 4 Programming the Raspberry Pi

Changing the Random Number Seed
Each time you run the program, it uses the same sequence of notes, even though
that sequence was generated randomly. Sonic Pi ensures that your music sounds
the same each time you run it, and wherever it runs, even if it incorporates ran-
dom elements. That ensures that you remain in control as a composer and know
what the music will sound like for your listeners, even with an element of chance
in the composition.

If you want to change the sequence to a different one, you can change the seed,
which is the starting point for generating random numbers. By default it’s set to
0. Add the line below at the start of your program for generating random tunes
using shuffle, and then run your program:

use_random_seed 10

Try changing the seed to different numbers, and run the program again to see how
the sequence changes.

Using List Names in Your Programs
The lists of notes and values can make your program look cluttered, but you can
tidy your program up by giving the lists names and using those names in place of
the lists. You can streamline your previous program like this:

use_random_seed 10

note_pitches = [:c4, :d4, :e4, :f4, :g4, :a4, :c5]

note_timings = [0.5, 0.5, 1, 0.5, 0.5, 1, 2]

4.times do

 play_pattern_timed note_pitches.shuffle, note_timings

end

play 60

Playing Random Notes
You can play random note numbers, like this:

lowest_note = 60

highest_note = 84

6.times do

CHAPTER 14 Making Music with Sonic Pi 283

 play rrand_i(lowest_note, highest_note)

 sleep 0.5

end

Try this program in a new buffer. In this program, lowest_note and highest_
note are variables. The rrand_i() function gives you a random whole number (or
integer). You give the function the lowest and highest possible number you want
the computer to pick from. As with the shuffle method, each time you run the
program, it generates the same random numbers, so the music sounds the same.
You can change the random seed to get a new melody. (See the section in this
chapter on creating random tunes with shuffle.)

The problem with generating random note numbers is that not all notes sound
good together. Before this example, we’ve been using the notes from the white
keys on the piano (the scale of C major) and none of the sharp notes. When you
start throwing in sharp notes, as the random music can do, it starts to sound too
chaotic. An alternative way to pick a random note is to create a list of the notes you
like (the scale of C major we’ve been using) and then use the choose() method to
pick a random note from it. Here’s an example:

note_pitches = [:c4, :d4, :e4, :f4, :g4, :a4, :c5]

loop do

 play note_pitches.choose()

 sleep 0.5

end

That program uses a loop that repeats forever, so it’ll keep improvising until you
click the Stop button.

The Log shows you the note numbers that are played, so you can use this to see
which notes are being chosen and confirm that your program is behaving as you
expect.

Experimenting with Live Loops
One of the best features of Sonic Pi is the live loop, which enables you to change
your music while it repeats.

The following program modifies the previous example by turning it into a live
loop and adding tempo (BPM is short for beats per minute), synth, and option
choices. Changing the synth is like changing the instrument the notes are played
on. Options (or opts) can be added after the instruction to play a note and affect

284 PART 4 Programming the Raspberry Pi

how the note is played on that instrument. The attack option changes how long a
note takes to reach its full volume, for example.

The new lines are in bold in the following code:

note_pitches = [:c4, :d4, :e4, :f4, :g4, :a4, :c5]

live_loop :endless_notes do

 use_bpm 120

 use_synth :dull_bell

 play note_pitches.choose(), attack: 0.01

 sleep 0.5

end

Take care with where you put spaces around colons. In Sonic Pi, colons are used
immediately before the name of something (such as a live loop, sample, synth, or
chord). The program won’t work if you put a space between the colon and the
synth name. Colons are also used to separate a parameter (or something you can
change) from its value. In this example, attack is a parameter. The colon must go
immediately after the parameter name.

Note that you need to give a live loop a name. This program uses :endless_notes,
but you could choose something else if you prefer.

When you run the program, you’ll hear the new synth sound (:dull_bell), and
notice the new tempo.

The clever bit is that you can make changes to the program and have them incor-
porated seamlessly into the music. For example, try changing the synth to :chip-
bass and clicking the Run button. The tune changes instrument, but everything
remains in time. Try changing the BPM to 60 and clicking the Run button to hear
the music slow down. Change the attack value to 1, and you’ll hear the sharp per-
cussive sound of the instrument change to a slow drone, almost like a church
organ. You can add more options to the same play instruction, as long as you sep-
arate them with a comma.

To tell Sonic Pi that you’ve finished making changes and to hear them in your
music, you must click Run again.

The Help pane includes a list of synths you can choose from. Show the Help pane
and then click Synths at the bottom. For each synth, there is information about
the available options, and useful number values to try.

For more fluid experimentation, the autocomplete feature can be used while
you’re writing your code. When you want to change synth, for example, delete the

CHAPTER 14 Making Music with Sonic Pi 285

name of the current synth, including the space before it, and then tap space after
use_synth to see the list of available synths in the autocomplete menu (see
Figure 14-2). Click one in the menu, or highlight it using the cursor keys and
select it by pressing Tab or Enter. This is a quick way to enter your code, but also
a great way to explore the synths and options available.

If you press Run multiple times in a program that doesn’t use a live loop, you will
hear multiple instances of the music at the same time, with no synchronization
between them.

Using Samples
The programs you’ve made so far are an interesting way to explore computer
music, especially when the computer starts surprising you with its random
compositions.

Sonic Pi can also use samples, which are snippets of music that you can manipu-
late, such as by changing their speed or adding effects to them. Sonic Pi includes
a wide range of samples, and you can see a list of them by showing the Help pane
and then using the Samples button in the bottom left. They’re especially useful for
adding drum loops to your music.

Here’s one of our favorites:

sample :loop_industrial

Put that into a new buffer and click Run to hear it. You can speed it up or slow it
down by changing its rate. Here’s how you make it play at half its normal speed:

sample :loop_industrial, rate: 0.5

FIGURE 14-2:
Choosing a synth

using the
autocomplete

feature.
Sean McManus

286 PART 4 Programming the Raspberry Pi

We can repeat that sample to make a continuous rhythm. Like we did when we
were playing notes, we use the sleep command to put a pause between each rep-
etition. Samples can be different lengths, however, which can make it difficult to
work out how long to sleep. Luckily, Sonic Pi provides a feature in the language to
stretch a sample over a certain number of beats, which solves this problem. You
can use it like this:

loop do

 sample :loop_industrial, beat_stretch: 2

 sleep 2

end

Now the sample is stretched over 2 beats, and there is a 2-beat pause between
each repetition. As a result, you can hear a continuous rhythm. As you saw when
experimenting with live loops, you can change the tempo with the use_bpm
command.

Adding Special Effects
You can play a sample and add effects to it, including distortion, echo, and reverb.
There is a full list of effects (also known as Fx) in the Help pane, and you can also
find them using the autocomplete feature. This is how you add distortion to one of
the guitar samples:

with_fx :distortion do

 sample :guit_e_fifths

end

You can adjust how the effect is applied to the sound using options. There are sev-
eral options for distortion, including distort, which controls how much the
sound is distorted, and mix, which controls the balance between the original sound
and the distorted version. In both cases, the value should be between 0 and 1.
Here’s how you use them:

with_fx :distortion, distort: 0.9, mix: 0.5 do

 sample :guit_e_fifths

end

Try using different values for those options and running the code to see how the
sound changes. Experiment with other effects too.

CHAPTER 14 Making Music with Sonic Pi 287

To see the full options for this or any other effect, click Fx in the Help pane, or
click the effect name in your code and then use Ctrl+I to jump to its entry (if avail-
able) in the Help. You can also use Ctrl+I to get help on commands in your code.

Synchronizing with Your Drumbeat
You now know how to play a repeating rhythm, and how to play other samples and
synth melodies. You can play multiple live loops at the same time. One of the chal-
lenges is to synchronize all the different parts of the music so they play in time.
To do that, you can provide an option to synchronize the start of a live loop with
the name of another live_loop. Here’s an example that synchronizes a cymbal
beat with the main drum loop:

live_loop :drums do

 sample :loop_industrial, beat_stretch: 2

 sleep 2

end

live_loop :cymbals, sync: :drums do

 4.times do

 sample :elec_cymbal

 sleep 1

 end

 sleep 8

end

When you play that example, you’ll hear that the cymbal plays four times, in per-
fect sync with the main drumbeat. It then rests for 8 beats before playing again.

Take care with the colons when setting the sync option for your live loop; other-
wise, the program won’t work. The first colon (after sync) goes between the
option and its parameter and touches the option name, and the second colon
(before drums) marks the start of the loop name you want to synchronize with.

Bringing It All Together
Listing 14-1 brings together the ideas in this chapter. It uses the loop_industrial
sample as the backbone, with the other live loops synchronized to start in time
with it. There is a melody live loop, which plays random notes from the list

288 PART 4 Programming the Raspberry Pi

provided. The list includes the same note several times, so the song tends toward
using the C note more often. There is a loop that plays higher notes more quickly
over the top, and a bass part that is played using the play_pattern_timed instruc-
tion you saw earlier in this chapter. Finally, there is another live loop that adds the
amen drumbeat on top, in bursts. It plays 8 times, but the sleep command is used
to stop the beat from starting immediately, and to put a gap between each burst.

LISTING 14-1:	 Bringing it all together

Robot jam by Sean McManus

Music example from Raspberry Pi For Dummies, 4th Edition

live_loop :drums do

 with_fx :krush do

 sample :loop_industrial, beat_stretch: 2

 end

 sleep 2

end

live_loop :melody, sync: :drums do

 note_pitches = [:c3, :c3, :c3, :d3, :g3, :g3, :a3, :c4, :c4]

 use_synth :saw

 with_fx :wobble do

 play note_pitches.choose()

 sleep 2

 end

end

live_loop :plinks, sync: :drums do

 plink_pitches = [:c4, :d4, :e4, :g4, :a4]

 use_synth :chiplead

 play plink_pitches.choose()

 sleep 0.25

end

live_loop :bass, sync: :drums do

 use_synth :piano

 play_pattern_timed [:c2, :c2, :c2, :c2, :c2, :c2, :g2, :a2], [0.5, 0.5, 0.5, ↩
0.5, 0.5, 0.5, 0.5, 0.5]

end

live_loop :amen, sync: :drums do

 sleep 16

 8.times do

 sample :loop_amen, beat_stretch: 2

 sleep 2

 end

end

CHAPTER 14 Making Music with Sonic Pi 289

You can use this piece as the basis for your own experiments. Because the sections
use live loops, you can modify the effects, options, synths, and notes and then
click the Run button to hear your changes.

Next Steps with Sonic Pi
We hope that this chapter has inspired you to experiment with making music on
the Raspberry Pi. You’ve learned how to play melodies using different synths.
You’ve also discovered several different ways to create improvised music, using
random note numbers, and random notes picked from a list. We’ve shown you
how to bring it all together, too, combining and synchronizing samples and synth
melodies. Using the code in this chapter, and the rich range of samples and tools
that Sonic Pi provides, you can compose your own music.

There’s much more you can do with Sonic Pi, including using it with Minecraft
and using MIDI signals to connect to other electronic instruments and music soft-
ware. The Help pane includes a tutorial and a series of articles that were previ-
ously published in The MagPi magazine, so there’s plenty of support when you’re
ready to take Sonic Pi further.

Whether you like dance, prog, pop, or rock, Sonic Pi deserves to be in your band.

5Exploring
Electronics
with the
Raspberry Pi

IN THIS PART . . .

Discover the fundamentals of electricity, how to calculate
current, and how to solder.

Find out how the Raspberry Pi can reach out through its
GPIO pins.

Learn how to control LEDs and read push buttons.

Create an electronic dice and make a pedestrian
crossing simulator.

Explore the thousands of colors you can make from
LEDs.

Make a Rainbow Invaders game.

Use radio frequency identification (RFID) cards to make a
jukebox and dress up a doll.

Make your Raspberry Pi sing a world-record-length
version of “Old McDonald Had a Farm.”

CHAPTER 15 Understanding Circuits 293

Chapter 15
Understanding Circuits

Part 5 of this book deals with what is known as physical computing, or making
your program reach out beyond the confines of keyboard and screen
and into the physical world. You discover how you can use your Scratch and

Python programming skills to sense what is happening in the outside world and
to control lights, motors, and, in fact, anything else that uses electricity. However,
before you can do this safely, without risking damage to you or your Pi, you need
to look at a little bit of background electrical theory so that you have a foundation
to build on.

In this chapter, we show you the relevant concepts that allow you to understand
why the projects look like they do and what you should avoid doing. Next, we
introduce you to the concept of GPIO connections, explain what they are, and look
at why they are included in the Raspberry Pi computer. We also discuss in general
how you can use them.

Although you can make the projects in Chapter 16 without soldering, in order to
make most things in electronics, you have to be able to use a soldering iron. We
show you how to go about this and discuss safety concerns. Finally, we introduce
you to the concept of ready-made add-on boards because they can make building
stuff a lot simpler (albeit at the cost of a bit more money).

IN THIS CHAPTER

»» Discovering what a circuit is

»» Getting familiar with GPIO

»» Coming to grips with a soldering iron

»» Looking at ready-made add-on
boards

294 PART 5 Exploring Electronics with the Raspberry Pi

Discovering What a Circuit Is
The first thing you have to understand is that a circuit is something where elec-
tricity can flow; it is a path, or a conduit. It is continuous; that is, it’s a loop with
no dead ends. If you have a dead end, you don’t have a circuit. Electricity has to be
able to flow. So let’s be more specific in what we mean by electricity. It can be
complex stuff and because it’s invisible, you have to do a bit of imagining to
appreciate what is going on.

There are two aspects of electricity: current and voltage:

»» Current is what actually flows.

»» Voltage is what forces the current round a circuit.

Voltage can’t flow and current doesn’t exist in the absence of a voltage. However,
voltage can exist in the absence of current. You’ve no doubt felt the effects of
static electricity, which is the build-up of voltage that occurs when insulators
(materials that don’t normally conduct electricity) are rubbed together.

It’s kind of like how rubbing a balloon on wool can make the hairs on the back of
your hand stand up. You can feel it, but only because you feel your hairs being
lifted. You aren’t feeling the electricity itself. You only feel static electricity when
it stops being static and a current flows. At a very high voltage, a little current can
hurt a lot. You’ve probably felt the static-discharge shock of touching a metal
object after walking on a nylon carpet.

Understanding the nature of electricity
So, what is electric current? It is a flow of electrons past a point, just like a flow of
cars past a highway sign. With electric circuits, you measure current in amps. One
amp of current is about 6.24 × 1018 electrons per second passing a point, or 624
followed by 16 zeros. That’s a big number, and, fortunately, we don’t have to
count all those electrons individually. The bigger the voltage, the more current is
forced through a circuit, but circuits have a property that resists the flow of cur-
rent. We call this the resistance of a circuit. This resistance depends on the materi-
als the circuit is made from and is measured in a unit called ohms. So, because we
know how to define an amp in terms of electron flow, we can define these other
two properties in terms of an amp:

CHAPTER 15 Understanding Circuits 295

One volt is the voltage you need to drive one amp through a circuit with a resistance of
one ohm.

You can advance a long way in electronics by knowing just that single fact. In fact,
that definition is contained in what is known as Ohm’s law:

Volts = Amps × Ohms

However, it would be too easy to just use that as a formula. People would under-
stand it straight off, and that would never do! You have to build up a mystique.
Imagine how you would feel about a doctor if they actually told you in plain Eng-
lish what was wrong with you. No, it needs to be dressed up so that not everyone
can understand it. Mike once went to a doctor when he lost his sight in one eye for
a few seconds; the doctor told him he had amaurosis fugax, which is simply the
Latin for “fleeting blindness,” nothing more. So, to dress it up, Ohm’s law
becomes

E = I × R

where E is the electromotive force measured in volts, I is the current measured in
amps, and R is the resistance measured in ohms.

This is the formula you see in books and all over the Internet, but remember —
it’s just

Voltage = Current × Resistance

Connecting things to the Raspberry Pi involves juggling voltage and current, and
often you need to use a resistor to limit the current a voltage pushes through a
device in a circuit. Using Ohm’s law is the simple way to work out what you need.
Later on in this chapter, we show you how to use this to make sure you drive
light-emitting diodes (LEDs) correctly.

Resistance is not the only thing we can calculate. If we know two of the quantities
in a circuit, we can calculate the other one. We do this by rearranging this simple
formula to find any one of the quantities if we know the other two. We like the
Ohm’s law triangle, which gives the three formulas in one go:

296 PART 5 Exploring Electronics with the Raspberry Pi

When scientists were first discovering electricity, they knew that it flowed from
one terminal to the other. They said the flow was from the positive to the nega-
tive, but which was which? Experiments with making a current flow through a
solution of water and copper sulphate showed that copper was dissolved from one
wire and deposited on the other. So they quite reasonably assumed that the metal
was flowing with the flow of electricity and named the dissolving wire an anode or
positive and the wire receiving the metal the cathode or negative. They were wrong:
The electrons that constitute the current actually flow the other way. However,
this notion became so entrenched that today we still use it. We call it conventional
current, and it flows from the positive to the negative.

In a way, it doesn’t matter which direction we think of it as flowing. It’s the fact
that it is flowing that is important, and we use the terms positive and negative so
we know what way round it is flowing. A common mistake beginners make in
thinking about electricity is to think that the direction of flow matters because “it
first flows through one component and then through another.” This leads to the
erroneous thought that the first component it meets will “use up” some or all of
the electricity and then pass on what is left to the next one. This is simply wrong,
because current flows through all components equally in any one path. All the
electrons are actually waiting in the components of the circuit before any voltage
is applied, and when one is, they all shuffle round together, just like train car-
riages totally filling a circular track. You might also hear the phrase “electricity
finds the path of least resistance and flows through that.” Again this is nonsense.
Electricity always flows through all available paths at the same time — it is just
that the resistance of a path determines how much current flows through that
path so a lot of current flows down the path of least resistance but also flows
through all other paths with a current proportional to their resistance.

CHAPTER 15 Understanding Circuits 297

Power sources, like batteries and power supplies, are all marked with positive and
negative symbols so that you can connect it the correct way. This is known as
direct current (DC) because the current flows in only one direction.

The other sort of power supply you can get drives the current round in one direc-
tion for a short length of time and then reverses the direction for a short time.
This is known as alternating current (AC). A favorite trick that electricians play on
their apprentices is to send them to the store to fetch the nonexistent AC battery.

Switches are used to make (complete) or break circuits, so an early name for a
switch was a breaker.

WATTS THE MATTER?
While voltage and current are all you need to know about, sometimes the word power is
used to describe the amount of electricity that is used, and it is expressed in units of
watts. This is mainly used for incandescent light bulbs and power supplies. This is not a
new unit — it’s simply the joining up of voltage and current by multiplying them
together. So this “new” unit can be packed and unpacked in a similar way to Ohm’s law.
If you know any two, you can find the third.

The following figure shows a triangle for remembering conversions involving watts.

298 PART 5 Exploring Electronics with the Raspberry Pi

Putting theory into practice
To see how this works, consider a simple circuit. To make things a bit clearer and
easy to draw, we use symbols to represent components and use lines to represent
wires that connect the components together, as shown in Figure 15-1.

Take a switch. Its symbol (refer to Figure 15-1) is simple. There are two types of
switches: single throw and double throw. In the single throw, a connection is made
or not made through the switch, depending on the switch position. In the double-
throw switch, a common connector is connected to one or the other switch con-
tact, depending on the switch’s position. That is, when the switch is one way,
there is a connection through the switch from one connection to the common
connection. When the switch is the other way, the connection is between the other
connection and the common connection. There are also switches that activate as
long as you hold them down and deactivate when you release them; these are
called momentary push switches.

It’s called a double-throw switch, or sometimes a changeover switch, because the
switch changes over which terminal is connected to the common one. The figures
in this section help explain this concept. However, the important thing to note is
that we use the same symbol for a switch, no matter what the physical switch
looks like. Figure 15-2 shows just some of the many physical forms a switch can
take.

Figure 15-3 shows the symbols for a battery, a small flashlight or torch bulb, and
a resistor. Note that there are two symbols for a resistor: one for the U.S. and one
for Europe. In the U.K., we used to use the U.S. symbol until the late 1960s. Today,
both are understood.

The world’s simplest circuit is shown in Figure 15-4. While the switch is open,
there is no complete circuit, so there is no current flow and no lighting of the bulb.

However, when the switch is closed as shown in Figure 15-5, a path for the current
to flow along is created and the bulb lights up. Note that this diagram has a differ-
ent symbol for a closed switch than the one used in Figure 15-4. This is so that you
can more easily see what is going on. Normally, you have to imagine the switch in
the open and closed positions and visualize the resulting circuit or break in the
circuit. We call this a series circuit because all the circuit elements are in a line, one
after the other, and the same current flows through all elements of the circuit.

FIGURE 15-1:
Two circuit

symbols
representing a

switch.
Sean McManus

CHAPTER 15 Understanding Circuits 299

So, for a circuit like this, there is only one value of current. When the switch is
closed, current flows from the positive end of the battery through the switch,
through the bulb lighting it up, and, finally, back into the battery’s negative ter-
minal. Note here that the actual electrons are returned to the battery. The battery
loses energy because it has to push them round the circuit. The positive and nega-
tive terminals of a battery show the direction it will push the current, from the
positive to the negative. In this circuit with an incandescent light bulb, the direc-
tion of the current doesn’t matter; however, this is rare in electronics. In most
circuits, the current must be sent round the circuit in the correct direction.

FIGURE 15-3:
Schematic

symbols for some
components.

FIGURE 15-2:
Just a few of the

many different
physical forms a
switch can take.

Sean McManus

300 PART 5 Exploring Electronics with the Raspberry Pi

Communicating a circuit to others
You should use circuit symbols in schematics because they constitute a universal
language and make it easy to see what is going on. Many people waste their time
using diagrams that show the physical appearance of components and wires and
their interconnection. Although this might appear at first to be attractive, espe-
cially to a beginner, physical layout diagrams like this are almost impossible to
follow in all but the most trivial circuits. Despite the initial small hurdle of learn-
ing to read the symbols, a schematic is a much simpler way of defining a circuit.
Physical layout diagrams are a dead-end for anything more than a trivial circuit
and should be avoided.

Some time ago, Mike was visiting Russia and bought his son an electronic con-
struction set. Even though the words were in Russian and incomprehensible to
them both, the diagrams were in the language of schematic and perfectly
understandable.

To show the units of resistance, we can use various symbols. We can say 18 ohms,
18 Ω, or, as we shall use in this book, 18 R.

FIGURE 15-5:
A schematic of a

circuit with switch
closed.

FIGURE 15-4:
A schematic of a

simple circuit.

CHAPTER 15 Understanding Circuits 301

Although the units for calculation are volts, amps, and ohms, 1 amp (A) is in prac-
tice a lot of current, and it’s more common to talk of milliamps, or mA. There are
1,000 mA in 1A. Similarly, 1000 R is one kilohm, or 1K.

Calculating circuit values
Although the circuit shown in Figure 15-5 is all very well because it describes
what’s actually wired up, it’s not useful for calculating anything using Ohm’s law
because it shows no resistances. However, each real component has associated
with it a resistance. We say it has an equivalent circuit. These are shown in
Figure 15-6. All components, even the wires, have some series resistance. In other
words, they behave like they have a resistor in line with the component. Some-
times this is important, and sometimes it is not. The trick is in knowing when to
ignore them. Also, don’t go overboard on the calculations, just two places of deci-
mals are fine for most things.

When resistors are placed in series, or in line with each other, you can find the
resistance by simply adding up all the individual resistance values. Figure 15-6
shows our circuit with the series resistance values shown. If we add up all the
values around the circuit, we get 18R105. (That’s 18.105 ohms.) Note that virtually
all of the resistance in the circuit comes from the bulb. The series resistance of the
switch is negligible, as is the series resistance of the battery. This is not always the
case with all circuits; if the current is large, even small resistances become sig-
nificant and produced voltage drops across these parts or wires. So, with 18R
resistance and 6V, we can calculate that the current through the circuit should be

I = E ÷ R

Current = 6 ÷ 18 = 0.333 Amps or 333mA

FIGURE 15-6:
A circuit with the

effective series
resistance values

shown.

302 PART 5 Exploring Electronics with the Raspberry Pi

TWO TYPES OF CIRCUITS
We mention earlier that Figure 15-5 was a series circuit, but there is another type of cir-
cuit called a parallel circuit. In this type of circuit, all elements are connected together, as
shown in the following figure. Here, you see three light bulbs, but this time they’re dif-
ferent wattage bulbs. This means not only will they be different brightnesses, but each
will also take a different amount of current. The total current is simply the sum of all the
currents for each part, and the current for each part is determined by its resistance,
which we can work out from the wattage and voltage rating of the bulb. The important
thing to remember is that each part of a parallel circuit is connected to the same power
supply. This is the way the lights in your house are wired.

The following figure is an example of a series circuit. This is typical of how incandescent
Christmas tree lights are wired (although, normally, the lights are all the same power).
Here you see three different bulb wattages all in series. The current flowing round the
circuit is the same for each bulb, so to calculate it, you must look at the resistance of
each bulb and add them up to find the total resistance of the circuit; then, using Ohm’s
law, you can calculate the current through all bulbs. Because each bulb will have a dif-
ferent resistance, there will be a different voltage drop across each bulb. When you sum
all the voltage drops, it will equal the voltage across the series circuit. Just like Christmas
tree lights, if one bulb fails, they all go out. (Modern LED Christmas tree lights are wired
in parallel, so this doesn’t happen.) Note that if you tried to make this circuit, the voltage
drops wouldn’t work out quite as you calculated because the resistance of the filament
of a bulb changes with its temperature.

CHAPTER 15 Understanding Circuits 303

Determining how a component
needs to be treated
How do we know the series resistance of a component? Well, it is normally in that
component’s data sheet, the document that the manufacturers of all components
produce to exactly define the component and its properties. However, it’s not
always given as a straightforward value. Take an incandecient light bulb, as men-
tioned before. They’re normally “rated” as a voltage and a current; that is, we
would say that the bulb is 6V at 0.33 amps.

The other point is that a bulb doesn’t have a constant resistance. We say it’s a
nonlinear device; that is, the resistance changes depending on what current is going
through it. This is because a bulb is just a coil of wire. As current passes through
it, the wire heats up. This causes the resistance to increase, thus limiting the cur-
rent. An equilibrium point is reached where the temperature reaches a point where
the resistance is such that the current is limited to the rated value at the rated
voltage. This increase in current, with increasing temperature, is known as a posi-
tive temperature coefficient. Other materials, like the silicon used to make transis-
tors, processors, and memory, have a negative temperature coefficient, which means
the hotter it gets, the lower the resistance becomes. If not kept in check, this can

304 PART 5 Exploring Electronics with the Raspberry Pi

lead to thermal runaway and can destroy components. We use this concept of a
nonlinear resistance later in this chapter when we calculate what resistor we need
to use with an LED.

When dealing with units like volts and ohms that include a decimal point, often
the point is missed out and the letter of the unit is substituted, so 3.3 volts becomes
3V3, or 4.7K becomes 4K7. This is done to make it clear that there is a decimal
point that otherwise might be lost in small print. While this is not an officially
approved standard, it is widely used in the electronics industry.

The series resistance of a battery — or any power supply, for that matter — is an
important concept in that it limits the current the battery can deliver. This is all
wrapped up in the chemistry of the battery, but its effects can be summed up by a
theoretical series resistance. A battery that can deliver a lot of current has a low
series resistance. This is sometimes known as the output impedance of the battery.

These concepts may seem like they have nothing to do with the Raspberry Pi, but
as you shall see in later chapters, these concepts are the ones you need in order to
get the Pi to interact with the world outside the keyboard and screen.

Getting Familiar with the GPIO
The original Raspberry Pi Model 1, and the Pi Zero are made using a BCM2835, a
single-core system on a chip. The Pi Model 2 uses the BCM2836, and the Model 3
uses the BCM2837 — both are quad core. Finally, the Model 4 and Pi 400 uses a
BCM 2711, again a quad-core chip. Basically, a core is a processor, so the later
models have four processors that, in theory, can work on four different processes
at the same time, although this capability is not presently fully exploited by the
operating system. The cores in the Pi Model 4 are more powerful than the cores
Pi3, which, in turn, were better than those in the Pi 2, but again the full power of
these processors has yet to be exploited by the operating system. This is because
it will mean having a version of the operating system for each type of core, and at
the moment there is just the one version of the operating system for all four pro-
cessor chips. However, when the Pi 4 was launched, an optional beta of a new
Raspberry Pi operating system was launched that allows you to use all 8M of
memory and compiles to 64-bit-wide instructions instead of the previous 32-bit
compilation for faster running.

Unlike traditional microprocessors, these chips are designed to be used in an
embedded system. An embedded system is a device that has a computer inside it,
but you don’t use it as a computer — things like mobile phones, GPS displays,
digital cameras, and TV set-top boxes. These chips have a number of connections

CHAPTER 15 Understanding Circuits 305

to them in order for the software in them to read or control things like push but-
tons and displays and getting sound in and out. All the processors used for the Pi
have 54 such signals. They are called General Purpose Input/Output pins (GPIO),
and they can be controlled by software. (Whenever a GPIO is mentioned, Mike
thinks of that old cowboy song “GPIA, GPIO, Ghost Riders in the Sky.”) Some of
these signals are used to build and control the peripheral devices that turn the
chip into a computer, like the SD card reader, the USB, and the Ethernet. The rest
are free — that is, not needed to make the Pi — so they are surplus to
requirements.

Rather than just ignore these surplus GPIO lines, the designers of the Raspberry Pi
have routed some of them out of the chip and to the connector called P1 on the
board for you to play with. It’s a bonus. This sets the Pi apart from mainstream
computers and laptops in this respect. However, they have not routed all the spare
pins out to this connector. Some go to other connectors — the camera socket, for
example, or the display socket — and some are not even connected to anything.
This is because the family of chips used to make the Raspberry Pi are housed in a
package called a BGA, or Ball Grid Array, with connections less than a millimeter
apart. So close are they that you can only have enough room for one trace (PCB
wire) between the connectors.

This means that, to get some of the inner connections out to other components,
you need to use a printed circuit board (PCB) that has a number of extra layers of
wiring inside the board. You might think the Pi’s board has just a top side and an
underside, but in fact it is made from several boards sandwiched together to give
six layers of wiring.

Even with this many layers, there is not enough room to route out all 54 GPIO
signals. Adding more layers would significantly increase the price of the PCB and
make the bonus cost something instead of being free. (You are no doubt aware
that the price point of the Pi is one of its major features.) However, over successive
hardware revisions, an increasing number of these pins have been brought out to
use. There were 17 on the original board, but Revision 2 saw some rearrangement
and another socket bring the total to 21; and, finally, the Model B+, and Revision
3, saw this increase to 28, all on one 40-pin header. This still leaves 8 GPIO pins
not routed out or used internally on the board. This has remained the same for the
Model 2, 3 and 4 of the Raspberry Pi as well as for the Zero models. While 28 GPIO
pins on a 40-pin header might sound a little odd, the extra pins carry ground con-
nections (8 pins), 5V (2 pins), and 3V3 (2 pins), which are very useful when it
comes to connecting external circuits. The Model 4 also breaks out an extra I2C
interface for general use. It was always there, but the software prevented you from
using it for anything other than the HAT extension boards (see the section “Look-
ing at Ready-Made Add-On Boards,” later in this chapter).

306 PART 5 Exploring Electronics with the Raspberry Pi

Putting the general purpose in GPIO
GPIO pins are called general purpose because you can use them for anything you
want under the control of a program. They’re called input/output pins because the
software can configure them to be either an input or an output. When a pin is an
input, the program can read whether a high voltage or a low voltage is being put
on the pin. When the pin is an output, the program can control whether a high
voltage or low voltage appears on that pin. In addition, many pins have one or
more superpowers — alternative functions as a secret identity, like so many comic
book heroes. These powers are not shared by all pins, but are specialist functions
able to do things without software intervention. They act as ways to tap directly,
deep into the computer’s inner workings. When you switch to these functions,
they stop being general-purpose pins and do a specific job. For example, one pin
can be used to output a continuous stream of high and low voltage levels in alter-
nation, that, after they get going, continue without any further intervention from
the program. So, if you connect that pin to an amplifier, or amplified speaker, you
can generate a tone that keeps on sounding until you command it to stop.

Understanding what GPIOs do
GPIOs are the gateway to interaction with the outside world and are, in essence,
quite simple.

Figure 15-7 shows the equivalent circuit of a Raspberry Pi GPIO pin when it is
configured as an output. You can see it is simply a double-throw switch that can
be connected between the computer’s power supply of 3V3 or ground (that’s 0V).
This is sometimes called the common ground or reference, and it is the basis of all
measurements in a circuit. Basically, it’s the other end of the battery — the nega-
tive terminal, if you will. Between this switch and the output is in effect a series
resistor, one that is in line with the voltage coming from the Pi. It limits the cur-
rent you can get through the output pin.

FIGURE 15-7:
A GPIO when

used as an
output.

CHAPTER 15 Understanding Circuits 307

On the Pi, the value of this resistor can be changed over a limited range. The
default value is 31R, but note that this resistor, by itself, is insufficient to protect
the Pi from giving too much current if you connect it to too low a resistance load.
If you did this, then your Pi would be permanently damaged; at best, this damage
might be limited to just that pin. So an output pin can switch between only two
voltages — 0V and 3V3. These are known as logic levels, and they have a number
of names: high and low, true and false, zero and one, and even up and down.

Although the logic voltage levels on the Pi are simple, the current that these out-
puts can supply is more complex, with a current limit of about 16mA. This limit is
how much current the Pi should supply into a load, not how much it can supply or
will supply. That depends on the resistance of the load connected to the pin. We
say that the limit is about 16mA, but this is a bit of a gray area. This value is con-
sidered safe for the Pi to supply, but that is not to say a value of 17mA would be
considered dangerous or excessive.

Putting an output pin to practical use
What can you do with a switched output? Well, you can drive a small current
through a load, or you can control another device that can control a bigger current
through a load. Put like that, it doesn’t sound exciting, but it’s what physical
computing is all about — it is the gateway to all control. The load can be a light, a
motor, a solenoid (an electromagnetic plunger used to prod or strike things), or
anything that uses electricity. Because that includes most everything in the mod-
ern world, it is safe to say that if it uses electricity, it can be controlled and, more
importantly for our purposes, controlled by a Pi.

FINDING A SAFE VALUE OF CURRENT
There is a value of current that would instantly destroy at least the output circuitry of
the pin, if not the whole Pi itself. But, there is also a value of current that would not
instantly kill the Pi but would damage the circuitry and lead it to fail prematurely. Lower
that current, and the damage is lowered, until you get to a point where no damage
occurs. However, these values are not known for the chips used on the Pi. In fact, they
are not known for the vast majority of chips. It’s best to stick to the “safe” value or lower.

Beware of people who say that they have a circuit that takes 30mA or more from a
pin and it’s still working. They tend to be idiots who confuse whether a pin is dead yet
with whether a pin is safe. It’s just like smoking: You can do it and it doesn’t kill you
immediately, but it does do harm and eventually it can kill, if nothing else gets you first.
No one would pretend that it’s safe.

308 PART 5 Exploring Electronics with the Raspberry Pi

Take a look at controlling a light — not the current-heavy flashlight bulb we
looked at earlier, but rather a component known as a light-emitting diode (LED).
These can light up from just a tiny bit of current, and the 16mA we have available
is more than enough for that task. In fact, you’re going to limit the current to less
than 10mA by adding a 330R-series resistor.

For the moment, just look at the circuit in Figure 15-8. This shows two ways to
wire up an LED — or any other load — directly to a GPIO pin. Here we just show
the GPIO pin and not the equivalent series resistance of the power source as dis-
cussed earlier — in the context of a 330R resistor, 31R is negligible.

The first way to wire it, called current sourcing, is perhaps the way a beginner might
think of as natural. When the GPIO pin is set by the program to produce a high
voltage (that is, when the switch is set to connect the 3V3 line to the output pin),
current flows from the pin through the LED, through the resistor and to ground,
thus completing the circuit, causing current to flow and so lighting up the
LED. When the GPIO pin is set by the program to produce a low voltage (that is,
when the switch is set to connect the 0V or ground line to the output pin), no cur-
rent flows and the LED is not lit. This method is known as current sourcing because
the source of the current — the positive connection of the power — is the GPIO pin.

The second way of wiring (refer to Figure 15-8) is known as current sinking.
When the GPIO pin is set by the program to produce a low voltage, the current
flows through the LED, through the resistor, and to ground, through the GPIO pin.
To turn off the LED, set the output to a high voltage. There’s no way current can

FIGURE 15-8:
Two ways of

driving an LED.

CHAPTER 15 Understanding Circuits 309

flow round the circuit, because both ends of the load (LED and resistor) are con-
nected to 3V3 — so there is no voltage difference to push the current through the
components.

Note in both circuits that the position of the resistor and LED can be interchanged —
it makes no difference. You might like to think of these two approaches as switch-
ing the plus, sometimes called top switching, and switching the ground.

Now an LED is a non-linear device in a similar way to the filament of a flashlight
bulb, but in the case of an LED we need a resistor to limit the current to a safe
value; it will not self-limit, like the bulb. The important thing to know is the
LED’s voltage drop — the voltage that will appear across it when the LED is on.
This drop changes with different colours of LED, so to get the same current down
two LEDs of different colours, you need different resistors.

Getting the same brightness is not the same thing as setting the same current,
because different LEDs have different current-to-light efficiencies. Modern LEDs
are a lot more efficient that they used to be, so you need less current.

With a red LED, there is about a 2V2 voltage drop across it. This leaves the remain-
ing voltage from the GPIO pin (3.3 – 2.2 = 1.1V) to be dropped across the resistor.
With a 330R resistor, Ohm’s law tells you the current will be: 1.1 ÷ 330 = 3.3mA,
which is plenty bright to see.

Don’t try to run the LEDs at too much current. Although most will be able to take
20mA, if you did this then your GPIO pin would be supplying too much current and
your Pi could be damaged. There should be no need to run an LED any harder than
10mA.

Using GPIOs as inputs
The other basic mode of operation for a GPIO pin is as an input. In this case, you
don’t have to worry about the current, because when the pin is an input, it has a
very high input impedance, or put another way, a high value of series resistance,
and therefore little or no current can flow with normal logic level voltages. A resis-
tance is a special form of impedance, which, as its name implies, impedes the flow
of electricity. There is a bit more to impedance than simple resistance, but at this
stage, you can think of them as the same sort of thing. They are both measured in
ohms.

Resistance is the property of a material, whereas impedance is the property of a
circuit and includes how it behaves with AC as well as DC. So an input pin has a
very high impedance. It allows hardly any current to flow through it. The result is
that we can connect it directly to either 0V or 3V3 with no extra resistors. In fact,

310 PART 5 Exploring Electronics with the Raspberry Pi

an input is so high-impedance that if you leave it unconnected, it picks up very
tiny radio waves and other forms of interference and gives random values when
you try to read it.

In fact, the human body can act as an antenna when close to or touching a high-
impedance input, causing any readings to go wild. This often amazes beginners,
who think that they have discovered something mysterious. They haven’t. In fact,
the tiny amounts of energy in the radio waves that are all around us are not
absorbed by the high-impedance circuits as they would be by low-impedance cir-
cuits. A low impedance would cause current to flow, but it would easily absorb all
the power, leaving minuscule amounts of voltage. Just the fact that you have a
wire carrying AC power (mains) close by is enough for that wire to radiate radio-
wave interference.

To explain why this is so, consider that interference of, say, 2V is enough to over-
ride the signal from a chip and cause it to malfunction. With a low resistance —
say, 1K — in order to develop 2V across, it needs to have a current of 2mA (Ohm’s
law) flowing through it. This represents a power (volts × current) of I × V = 4mW
of interference. However, with a resistance of 1M, you can get 2V across it by only
having 2μA (micro Amps) flowing through it. (μ is the Greek letter mu, which is
scientific shorthand for “micro,” which is 10–6, a very small amount.) This repre-
sents a power of 4μW (micro Watts). So, a high resistance is much more sensitive
to interference because it requires less power from the interfering source to
develop the same voltage. Therefore, weaker fields produce enough interfering
voltage to disrupt a circuit.

This underlines an important fact about inputs: They can’t simply be left alone.
They must be driven to one voltage state or the other; that is, either 3V3 (known
as high) or 0V (known as low). If you connect an input to the output from some
other chip, that’s fine, but if you want to detect whether a switch is made or bro-
ken, you have to give the input pin some help. This is normally done with a resis-
tor connected from the input to either the 3V3 or the ground.

When a resistor is used in this way, it’s called a pull-up or pull-down resistor, as
shown in Figure 15-9. Of the two arrangements, a pull-up is preferable, mainly
because switches are normally on the end of long runs of wire and it is safer to
have a ground than a 3V3 voltage on a wire. This is because it tends to cause less
damage if you accidentally connected a ground wire to the wrong place than a
power wire. This arrangement of pull-up or pull-down resistors is so common
that the computer processor in the Pi has them built-in, and there is a software
method for connecting or enabling internal pull-up or pull-down resistors. We
show you in Chapter 16 how to control this from software.

CHAPTER 15 Understanding Circuits 311

Learning which end is hot: Getting
to grips with a soldering iron
Although you can do some interfacing without resorting to the soldering iron to
join components together, to get serious, you’ll have to do some soldering at some
stage or the other. This often induces fear and panic in the newcomer, but even a
child can solder successfully. In fact, Mike had his first soldering iron at the age
of nine and by and large taught himself. Soldering involves two parts, the solder,
which is an alloy of two or more metals, and the flux, a chemical cleaning agent. If
you are soldering something like a gas pipe, you would apply the flux round the
joint, heat the joint up with a blow torch, and apply the rod of solder to the hot
joint. The job of the flux when it is heated is to clean the surface and make the
solder flow. It does this by breaking down the surface tension on the molten sol-
der. Without it, the solder would clump together in round globs held by the tight
surface tension.

Water has surface tension as well, and to reduce that we use soap, which allows
the water to wet things. You can’t use soap with solder because it wouldn’t stand
the heat, so you need something else. Most fluxes for heavy jobs are made from
nasty chemicals like hydrochloric acid or phosphoric acid. These are too corrosive
to be used with electronics, so what is normally used is some sort of rosin flux.
Although you can get this in a pot, by far the best thing is to use Multicore solder,
where the flux is built into the solder wire as five very thin strands. That way, the
right amount of flux is always delivered with whatever amount of solder you use.

FIGURE 15-9:
Two ways of
using a GPIO

as in input.

312 PART 5 Exploring Electronics with the Raspberry Pi

COMPLYING WITH ENVIRONMENTAL
REGULATIONS
There is a further complication nowadays with the advent of the Reduction of Hazardous
Substances (RoHS) Act, which bans the use of certain metals and plasticizers in certain
classes of electrical equipment in the European Union, the most prominent of which is
lead. Lead causes RoHS compliance problems at levels above 0.1 percent of a substance.
In fact, some people think RoHS is entirely about being lead-free, but it’s not. You can get
lead-free solders, but they are expensive because they have a large amount of silver in
them and they are difficult to work with; they also tend to produce a product with a
shorter lifetime. They require a hotter iron and so are potentially more harmful to the
components.

Lead-free solders also don’t “wet” as well, which means it’s harder to get the right
molten state you need in order to achieve the flow around the joint. Tin whiskers often
grow out of the joints, causing shorts years later. Home-built electronics are not
required to be lead free in the United States or Europe, and there is no measurable
health effect in using solder that contains lead. RoHS was mainly brought in to stop lead
from accumulating in landfill sites from mass consumer electronics and potentially pol-
luting the water supply. Although there is no evidence that this can happen, it is banned
under the “precautionary principle.” In the European Union (EU) or the UK, you are
under no legal or health requirements to use lead free solder. However, if you start
making stuff to sell in the EU or UK, you’re legally required to make sure it’s RoHS-
compliant. This is like brewing beer at home: You can brew as much as you like, but you
can’t sell any. However, in 2018, a new set of regulations known as REACH (short for
Registration, Evaluation, Authorisation, and Restriction of Chemicals) were enacted.
REACH covers a wide range of substances and says that the supply of solder containing
lead at a concentration above the relevant limit is restricted to professional use only. In
other words you can use solder with lead, but in theory, as an individual, you shouldn’t
be able to buy it. When the UK left the EU, all existing regulations were still part of UK
law, but this is constantly being updated (though nothing relevant to a home user
has changed). Go to www.gov.uk/search/all?keywords=Rohs&order=relevance&
page=1 for the latest information.

It’s always sensible to wash your hands after soldering and avoid putting solder in your
mouth. The same goes for the soldering iron when it is on. Mike was once responsible
for this sort of compliance in one job he had, so he had to know the legislation and stan-
dards on these matters.

https://www.gov.uk/search/all?keywords=Rohs&order=relevance&page=1
https://www.gov.uk/search/all?keywords=Rohs&order=relevance&page=1

CHAPTER 15 Understanding Circuits 313

We recommend using a good quality 60/40 tin/lead solder alloy, with a diameter
of 0.7mm and a built-in rosin-based flux core. Anything else is making life diffi-
cult for yourself. We’ve found that solder with self-cleaning fluxes or non-fuming
fluxes are harder to work with, as well as being more expensive. Couple the right
kind of solder with a good soldering iron, preferably a temperature-controlled one
with a fine tip.

It is often said that you can use any old tool to learn on, and then get a good tool
when you get good at using it. This is rubbish. As a beginner, you are fighting how
to do the job, so you don’t want to be fighting your tools as well. A good iron
includes a stand and a place for a sponge for removing flux that has accumulated
during the soldering process. If it were not removed, then it would form a glassy
layer that would prevent the iron from making good thermal contact with the sol-
der of joint. Use a proper soldering iron sponge — a natural one that won’t melt
on contact with the iron. Do not use a plastic foam sponge because your iron will
go straight through it.

Making a soldered joint
The first thing you should do when making a soldered joint is to make a mechani-
cal joint. For example, if you’re joining two wires, bend each end into a hook and
squeeze them together lightly with pliers.

Wipe the tip of the iron on a damp sponge, and melt just a spot of solder on the
tip. This “wets” the tip and allows good thermal contact to take place between the
tip and the work. Then apply the iron, solder, and wires all together. The secret is
then to look at the joint and the solder closely, to see how it sits. Remove the sol-
der, but keep the iron on the joint until you see the solder flow around the joint
and seep into the cracks. Only then is the joint hot enough for you to withdraw
your iron. It is a quick process and needs a bit of practice.

Many beginners make the mistake of putting too much solder on a joint. Try to use
as little solder as possible. A joint is rarely bad because of too little solder, but it’s
often bad because of too much. When you are done, you see a small amount of
black flux residue around the iron tip. Wipe that away on a damp sponge before
returning the iron to its stand. Do not move the joint as the solder sets. It should
take about 3 seconds but could be longer if a large area of metal has to be heated
up. When set, the solder should be shiny. If it goes frosty, that’s an indication of a
bad joint due to not heating the joint to a high enough temperature, so try again
and keep the iron on slightly longer.

314 PART 5 Exploring Electronics with the Raspberry Pi

A good-quality iron is ready immediately for the next joint. A poor iron needs a
few seconds to come up to temperature again after making a joint.

Use some sort of fume extractor when soldering. A simple fan works to guide the
curl of smoke from the iron away from your face. Air currents from the warmth of
your body tend to attract the flux. Try not to breathe it in. This is more important
as you spend a long time (hours at a time) with a soldering iron in your hand. The
fumes are from the flux in the solder; they are not lead fumes.

Although Chapter 16 contains projects that can be made without the use of a sol-
dering iron by using solder-less bread boards, we recommend that you never take
that approach for a permanent project. When a project is meant to last more than
a day or two, you should always solder it up.

Looking at Ready-Made Add-On Boards
There are basically two types of ready-made boards: those designed for making it
easy to get access to the GPIO pins and those with components that have already
been soldered up. We will look at some of the latter type here and leave the former
types to the start of Chapter 16.

Since the introduction of the Raspberry Pi in 2012, many companies have produced
ready-made boards with all sorts of components already built on. They normally
come with sample code to show you how to use them, and many users just stick to
that. However, this can be a wasted opportunity because you can always do more
with a board than is shown in these examples. (Chapter 17 shows you some exam-
ples of this.) Many of these boards contain sensors that allow your Pi programs to
measure things. New boards are constantly being developed and produced.

Boards come in three styles:

»» Separate boards that connect to the GPIO pins via a ribbon cable or your
own wires.

»» Boards that plug into all the GPIO pins and cover most of the area of the
Raspberry Pi board. These are sometimes called shields or plates.

»» Boards similar to the shield/plate variety just mentioned but that contain in
addition an identification and sometimes software so that the Pi can read
what they are on start-up and install some software and prepare the GPIO
pins automatically. These are called HATs — short for Hardware Attached on
Top. Read more about HATs at www.raspberrypi.org/blog/
introducing-raspberry-pi-hats/.

https://www.raspberrypi.org/blog/introducing-raspberry-pi-hats/
https://www.raspberrypi.org/blog/introducing-raspberry-pi-hats/

CHAPTER 15 Understanding Circuits 315

The Sense HAT
The Sense HAT was specifically designed for the Astro-Pi mission and two rug-
gedized versions were flown on the International Space Station from December
2015 running code written by school children. It has an 8-x-8 RGB LED matrix, a
five-button joystick, and sensors to measure acceleration, magnetism, tempera-
ture, pressure, and humidity — as well as a gyroscope (see Figure 15-10). The
Sense HAT also has an extensive Python library associated with it, which allows
for easy access to this board. You can find comprehensive coverage of how to use
the Sense HAT on the Raspberry Pi Foundation’s website at www.raspberrypi.
org/learning/getting-started-with-the-sense-hat/.

The Trill sensors
Trill sensors (see Figure 15-11) are a series of differently shaped multitouch sen-
sors designed primarily for user interaction for controlling musical instruments,
but they can be used in any situation where you need to use a proportional touch
control. They have a complete microprocessor built into each sensor to handle the
complex task of detecting touch proximity and are far and away the best such
technology on the market. The shapes are a bar, a ring, a square, and a hexagon,
along with a craft option where you can make your own shaped sensor from any
conducting material, including metal foils or even fruit. Normally, these sensors
are programmed in C, but Mike has written a Python library for them: https://
magpi.raspberrypi.org/issues/102.

FIGURE 15-10:
The Sense HAT.

https://www.raspberrypi.org/learning/getting-started-with-the-sense-hat/
https://www.raspberrypi.org/learning/getting-started-with-the-sense-hat/
https://magpi.raspberrypi.org/issues/102
https://magpi.raspberrypi.org/issues/102

316 PART 5 Exploring Electronics with the Raspberry Pi

The LED SHIM
The LED SHIM consists of 28 RGB LEDs in a row (see Figure 15-12). It’s a halfway
house between a HAT and a breakout board and is designed to slip over the
Raspberry Pi’s GPIO pins and use a friction contact, so that no soldering is
required. This is great if you aren’t ready to take up a soldering iron yet. You can
plug another board over the top of the LED SHIM as well. Of course, you can also
solder directly to the board and run wires to it because it only actually uses two
GPIO pins, plus a power and ground.

FIGURE 15-12:
The LED SHIM

shown with wires
soldered on.

FIGURE 15-11:
Trill sensors

have two bars,
a square,

and a ring.

CHAPTER 15 Understanding Circuits 317

Other boards
The class of boards you can get that do require soldering are often grouped with
the name breakout boards. These boards have a tiny chip that is too small for nor-
mal mortals to solder, surrounded by a few external components to make them
work. These include such diverse sensors as air quality, pressure, temperature,
and humidity, as well as GPS location and distance sensing. A good but not com-
prehensive selection can be found at https://shop.pimoroni.com/collections/
electronics.

There are many other boards available from small start-up manufacturers as well
as web-based projects for you to build. You can find a good starting point for
information on many of these at https://elinux.org/RPi_Expansion_Boards.

https://shop.pimoroni.com/collections/electronics
https://shop.pimoroni.com/collections/electronics
https://elinux.org/RPi_Expansion_Boards

CHAPTER 16 Taking Control of Your Pi’s Circuitry 319

Chapter 16
Taking Control of
Your Pi’s Circuitry

Chapter 15 tells you all about what general purpose input/output (GPIO) pins
are, but in this chapter we want to describe how to access them physically
and how to control them with software. We use both Scratch and Python to

do this, but ultimately Python is the much more capable language for input/
output control.

Accessing Raspberry Pi’s GPIO Pins
The GPIO pins are the key to enabling the Raspberry Pi to take control of any
external circuit. They can be used as an output to switch on an LED or as an input
to sense the state of an external push button. These connections into the com-
puter, along with the fixed voltage power pins, are on a dual-row, 40-pin header
plug. There are many ways to physically access these pins, and often the least
expensive way isn’t always the easiest or the most convenient way. But what you
need to know first is which signals are on which pins. A top-down view of the pins
and their signals is shown in Figure 16-1.

IN THIS CHAPTER

»» Learning what GPIO pins you can use

»» Seeing how you can control GPIO pins
in Scratch and Python

»» Making a GPIO pin flash an LED and
read a push button

»» Building a working electronic dice
display

»» Building a working model of a
pedestrian crossing

320 PART 5 Exploring Electronics with the Raspberry Pi

There are two ways to label the pins. Figure 16-1 shows what is known as BCM
mode, which corresponds to the numbers used in the Broadcom data sheet that
defines the hardware. Another system was used in the early days — the BOARD
system — but it is falling out of favor now. BOARD referred to pins mainly by a
mixture of special function names and arbitrarily assigned “free” GPIO pin names.
The idea was that, as the pinout (what connections are on what pins) on the header
changed, the names could remain constant.

As it was, only the first issue of the Pi had a different pinout to all the rest, and
those were only for three pins. These are shown in Figure 16-1, on the left side.
Model 1 before the B+ had only 26 pins, whereas all subsequent models have
40 pins. You cannot buy the earlier models nowadays, so you have no need to
worry; the extra information is only given in case you come across an older Pi.

FIGURE 16-1:
GPIO header pins

and their
function.

Sean McManus

CHAPTER 16 Taking Control of Your Pi’s Circuitry 321

Now, it can be quite daunting to have to identify a single pin on a 40-pin header
to connect to it, so you can get or make a template to place over the pins that
labels them with their names. Figure 16-2 shows one of these templates in action.

This particular template is made of a thin, printed circuit board material that can
sit over the pins as you connect to them. We highly recommend this type if you’re
going for the option of individual wires to the GPIO pins. You can also find full-
scale drawings online, so you can print one out on paper and just push the pins
through. Or stick the paper on thick cardboard, and drill holes through for the
pins.

When making your own template, do not use any conducting material, like
aluminum.

Soldering the GPIO pins onto
Pi Zero or Pi ZeroW
The Pi Zero has exactly the same GPIO pins as all the other models of the
Raspberry Pi, but the challenge is that the 40-way pin header doesn’t come
prefitted. To use the GPIO pins, therefore, you need to buy and fit the header pins.
This presents an opportunity for you because it allows you to have a header socket
here instead of pins, if you want — or, in fact, any other style of connector. You
could even solder wires directly into these pins, if you want to build the Pi Zero
permanently into a system.

FIGURE 16-2:
GPIO template
identifying the

pins.

322 PART 5 Exploring Electronics with the Raspberry Pi

What you should not do is attempt to use these holes by simply pushing wires into
them. This is an unreliable way of getting a connection that inevitably leads to
damaging your Pi.

Normally, this process would involve soldering, which some people might find
off-putting, so the people at Pimoroni have come up with a solution involving a
compression eyelet header and a hammer. See https://shop.pimoroni.com/
products/gpio-hammer-header.

However, a header isn’t too difficult to solder up yourself with a fine-tipped hot
iron. Though we cover soldering in general in Chapter 15, here are some extra tips
about soldering on a header strip. Push the header sockets into the holes and turn
the board upside down so that it rests on the pins. Use a large lump of adhesive
putty, not to be confused with epoxy putty, to make everything level and stable.
Place an iron so that its tip touches both the pin and the printed circuit board hole,
and then apply a little solder. You should see the solder flow round the hole. Keep
the iron in place and after a half a second or so, you’ll see the solder sucked into
the hole by the capillary action of the hole and molten solder. When you see that
happen, remove the iron. Don’t move the joint until it cools. If the solder isn’t
pulled in, you either have too much solder, your soldering iron isn’t hot enough.

Now, before you solder another pin, ensure that the whole header strip is lying flat
on the board. If it isn’t, melt the joint again, and push the header strip flat.
(Remember: You can’t correct a crooked connector after more than one pin has
been soldered.) Then proceed and solder the other joints.

If you have trouble with later joints, it’s probably because your soldering iron has
cooled a bit after making a joint. If so, allow a few seconds between joints for it to
warm up again. Wipe the iron on a damp sponge after each joint, to remove any
flux.

Though this all sounds complex when written down this way, in practice it’s much
easier and quicker. Figure 16-3 shows a close-up of a header in the process of
being soldered.

Getting at all the pins with one connector
Though a template is useful for identifying individual pins, you might want to
transfer all the pins to a solderless breadboard, which consists of rows of sockets
you can plug wires and other components into. This is a popular way of making a
temporary circuit that is quick to change. One way of doing this is with a device
called a cobbler, which consists of a ribbon cable and a printed circuit board.
Figure 16-4 shows one of the various types you can buy — a T-Cobbler Plus, from
Adafruit (www.adafruit.com). Many others are available, too — just search
the web.

https://shop.pimoroni.com/products/gpio-hammer-header
https://shop.pimoroni.com/products/gpio-hammer-header
http://www.adafruit.com/

CHAPTER 16 Taking Control of Your Pi’s Circuitry 323

With the Pi 400, the GPIO socket is at the rear of the keyboard and mounted at a
right angle compaired to the traditional board. This arrangement will still work
with a cobbler-type ribbon cable, but perhaps a better arrangement is the Flat HAT
hacker (https://shop.pimoroni.com/products/flat-hat-hacker), which allows
you the same horizontal mounting as you get on a bare PCB Pi. Figure 16-5 shows
it attached to the Raspberry Pi 400. Note that you’ll need to buy a couple of stand-
off pillars so that the board is stable and not putting any strain on the GPIO pins.
These use M2.5-size screws.

FIGURE 16-3:
Soldering a
header pin

to a Pi Zero.

FIGURE 16-4:
A typical cobbler

connector, for
bringing out all

the pins to a
breadboard.

https://shop.pimoroni.com/products/flat-hat-hacker

324 PART 5 Exploring Electronics with the Raspberry Pi

Connecting things together
Once you know which pins are what, you have to connect them to other compo-
nents to make a circuit. The best way to do this is to use jumper wires with pre-
crimped connectors. Flexible wires often have their connectors crimped on, so the
joint between them is made by squashing together the wire and connector. This
method is more reliable than a soldered joint because no point of stress is created
at the point in the wire where the solder ends. The point of stress is where the
flexing wire breaks from metal fatigue. To be able to crimp successfully, the con-
nector has a specially designed end to allow the wire and connector to join securely
when squashed together with a special tool.

The proper name for the pin header on a Raspberry Pi is a Dupont connector; the
part that slips on the pins is known as a female connector, and the part that plugs
into a breadboard is a male connector. So, for connecting the header on the Pi into
a breadboard, you need a female-to-male jumper wire. These often come as rain-
bow ribbon wires, which separate easily by simply pulling them apart. You can
crimp the connectors yourself with the help of a crimping tool, but we recommend
that you get them already crimped. For interconnections between points on a
breadboard, you can use some male-to-male jumper wires, but most people use
solid-strand wire with the insulation cut back a little. Do not put too fat a wire
into a breadboard — you don’t want to stretch the connectors and make it too
loose to fit components later. To this end, we recommend using wire with a 0.5mm
diameter — otherwise known as 24 SWG (Standard Wire Gauge, used in the UK)
or 24 AWG (American Wire Gauge, used in the U.S. and Canada). It just so happens

FIGURE 16-5:
The Flat HAT

hacker attached
to the rear of the
Raspberry Pi 400.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 325

that, at this size, the two standards use the same numbers for the same size wires.
Or, in the international IEC 60228 standard, which specifies a wire’s cross-
sectional area, it’s 1.5mm2.

Though electricity doesn’t care about the color of the wire it’s flowing through, by
convention red or orange is used for a positive wire, and black, green, or blue is
used for a negative or ground wire. Some Far East suppliers use white for negitave.

Your First Circuit
The first thing anyone should do with a Pi system is to make an LED flash —
because it’s the hardware equivalent of the “hello world” program. To light an
LED, you need two components: the LED itself and a resistor to keep the current
down to a safe level for the Pi’s GPIO pins. The circuit diagram is shown in
Figure 16-6, along with a diagram of the physical layout.

Note: We have also added a push button input switch to this diagram, which we
will use later for controlling the behavior of the LED.

Notice two points here: the orientation of the LED and the orientation of the
switch.

LEDs are sensitive to the polarity of the current you put through them. The posi-
tive connects to the anode (the top flat bit of the triangle in the symbol), and the
cathode (the bar in the symbol) goes to the negative. That way, the LED lights up;

FIGURE 16-6:
An LED and

switch, wired to
the GPIO pins.

326 PART 5 Exploring Electronics with the Raspberry Pi

wire it the other way round, and it won’t. So, faced with an LED, how do you know
which wire is which? Well, on a new LED, the anode normally has the longest lead,
but what happens if the leads have been snipped? Well, examine closely the rim of
the LED and you will see a portion of the round housing that is not curved but flat
next to one lead. That lead is the cathode, or the negative end of the component.
You can see the flat on the layout diagram.

With the push button input switch, you must get it the right way round, but for a
different reason. Basically, there are only two contacts on a switch, and it doesn’t
matter which way the current flows through it. However, many popular, small
push buttons, known as tack (short for tactile) switches, have four leads for
mechanical stability, and each pair is connected together. In the layout and on the
switch, you can see that the leads are on opposite sides of the rectangular base,
with the other two sides not having a lead protracting from them. It’s the two
leads on the protracting side that make contact when the button is pressed. So you
need to orient the switch correctly — otherwise, it will act as if it were perma-
nently pressed. If you ever get confused, resort to wiring the switch up to opposite
corners, and that will ensure you wire it correctly.

As a general rule, you should never wire any circuit to the Pi when it’s powered-
up. Also, you should never plug something into the Pi when it’s powered-up. This
is because a circuit with incomplete wiring can present conditions that could
damage the Pi or its components. Plugging something into an already-powered
connector is known as hot-plugging, and special precautions must be taken to
ensure the order in which connections are made. A device designed for hot-
plugging, like a USB connector, will have the power and ground connectors longer
than the signal connectors, to ensure these are connected first.

Bringing your LED to life
Once you have your circuit wired and connected, it’s time to bring it to life with
software. Go ahead and boot up your Pi. (If you find that your Pi won’t boot up,
you have probably wired things up incorrectly, so immediately remove the power
and check the circuit.) We show you how to use Scratch and Python 3 to make your
LED blink.

Using Scratch 3.0
Scratch is a computer language we cover in more detail in Chapter 9 and 10, but
the basic idea is that it uses graphic function blocks that the user drags and joins
together to construct a program. It is very popular with children under 10 because
it involves little in the way of typing.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 327

Scratch 3 doesn’t come with the blocks to control the GPIO pins installed, so before
you can use them you have to load the Raspberry Pi Simple Electronics extensions.
You do this by clicking the blue button in the lower-left corner of the screen with
the plus (+) sign and the icon of a short and a long block. Then scroll down in the
window that pops up and click the Raspberry Pi Simple Electronics box. This will
return you to the Scratch Desktop window and you’ll have four new blocks in
green to use:

»» When Button Is: This is a conditional statement that controls what to do
depending on the state of a button or, in other words, a GPIO pin. The
condition in which the button has to be in order to run the blocks following it
depends on the button number (selected by the first drop-down menu) and
the state of this button, pressed or released (selected by the second drop-
down menu).

»» Button Is: A logic statement that gives a True or False depending on the state
of the button. This is a lot like the When Button Is block, but it’s designed to be
incorporated into your own If conditional blocks.

»» Turn LED: An action command that sets an LED or, in other words, a specified
GPIO pin set as an output (defined by the first drop-down menu) to a state of
on or logic HIGH or off or logic low (as defined by the second drop-down
menu).

»» Toggle LED: Very much the same as the Turn LED block, but the state the LED
is set to is the opposite of the state it currently is.

To build the Scratch code to blink an LED, shown in Figure 16-7, follow these
steps:

1.	 Open Scratch, go to Events, and drag out the When Green Flag Clicked
block from the control panel.

This gives a place for the code to start from.

2.	 Add the Forever Loop from Controls and attach it to the When Green Flag
Clicked block.

To do this, drag the block up to the underside of the Green Flag block until
it snaps onto it. The two blocks will move as one.

3.	 Scroll down to the Raspberry Pi Simple Electronics tab, drag in a Turn LED
block, and then use the drop-down menu to select the LED number 4, and
using the drop-down menu, select the State to On.

We want to make pin 4 change between high and low or on and off. Because
of the way the LED is wired, when the pin is high (in other words, the voltage
on that pin is +3V3), the current will flow through the LED and resistor to make
the LED light up. When the pin is low (the voltage is 0 volts), the LED is off.

328 PART 5 Exploring Electronics with the Raspberry Pi

4.	 Add a Wait 1 Seconds block from the Control section, and change the
time from 1 to 0.3 seconds by clicking the 1 and typing 0.3.

Add it to the last block by dragging it underneath until it snaps into position.

5.	 Duplicate these last two blocks, or drag some more in, and change them
like the first two, except set the second Turn LED block to off; attach
these two blocks to the previous two.

6.	 Drag all these boxes into the Forever loop.

The Scratch program should look like Figure 16-7. To try it out, click the green
flag and watch the LED blink.

You can change the numbers in the wait blocks to change the blink speed. Note
that the two wait block delays do not have to be the same; you can have a quick
0.3-second flash every second, if you want.

Control the flashing speed with an input
Connecting a GPIO pin to use as an input is simple: Just wire a push switch between
the input GPIO pin and ground. Then you can use the When Button block or the
Button Is block. Follow these steps:

1.	 Start like the previous example and drag out a When Green Flag Clicked
and a Forever loop.

This time, we’re going to add a delay before changing the LED, and that delay
will depend on whether the push button is pressed.

FIGURE 16-7:
Scratch program
to blink the LED.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 329

2.	 So, drag out an If . . . Else block and drag a Wait Seconds into both the if
and else arms of this block.

3.	 Next to the If, add a Button Is block and set the pin to 24 and the State to
Pressed.

4.	 Also change the time in the Wait block of the else condition to 0.3 by
clicking and typing on the 1.

5.	 Follow this with a Turn LED block and set the pin to 4 and the State to Off.

6.	 Duplicate these blocks and change the Turn LED to Off.

After you have done this, you should see the program shown in Figure 16-8.

Click the green flag, and you should see the LED blink rapidly. When you press and
hold the button, the blinking slows down. Now, here’s a test: Change the bottom
if so that it tests for being released not pressed. Before you try it, see if you can
predict what will happen. Then make the change and see if you were right. Finally,
see if you can you use the toggle LED block to eliminate nearly half of those blocks.
In electronics, toggle means “change the state of,” so becuase this is binary and
there can be only two states, it’s easy to see what it will do.

FIGURE 16-8:
Scratch program

to control the LED
blink rate with a

push button.

330 PART 5 Exploring Electronics with the Raspberry Pi

There is an other set of extensions called Raspberry Pi GPIO extensions, which
basically give you the same operations as the Raspberry Pi Simple Electronics
extensions, but with logic levels High and Low instead of Pressed or Released, and
Set GPIO to Output instead of Turn LED. In addition, there is a Set GPIO to Input
Pulled to give you a choice of pulling up, down. or not pulling at all, as opposed to
the automatic assumption of pulling up. There isn’t much difference here because,
in practice, the Raspberry Pi Simple Electronics extensions can do all you would
normally want.

Using Python
The Python language was introduced in Chapter 11 and, unlike Scratch’s graphic-
based program blocks, it uses entirely text-based instructions. Its great power is
that the basic Python language can be extended to do more things by the use of
libraries. These are prewritten functions, or code modules, that can be written in
Python or any other language to extend what Python can do.

When using Python to access the GPIO pins, you have a number of different librar-
ies you could choose that can give you access to them. They can provide not only
normal input/output access but also access to some of the special functions or
capabilities of certain pins. We have deliberately written the next two examples in
in a style to match, as closely as possible, the two Scratch examples we have just
presented, so that you can see how similar they are.

In the early days of the Raspberry Pi, the only access to the GPIO pins was if you
were running in Supervisor, or Root, mode. Fortunately, this has now been
changed so that you can run in normal User mode with most libraries.

Although there are many integrated development environments (IDEs) in which
to develop and run programs in Python, Thonny Python is popular with beginners
and favored by the Raspberry Pi Foundation, so we’ll use it here. Load it from the
Programming menu by clicking the Raspberry icon at the top left of the screen,
moving the mouse pointer to the Programming option, and then moving across
and down to the Thonny Python IDE item and clicking on it. The Thonny editor
window opens. To create a file to put your code into, click the new file icon in the
top-left corner, and type in Listing 16-1. Remember that, in Python, the case of a
word matters, as do the spaces at the start of a line, so be sure to get them right;
otherwise, you’ll get errors when trying to run your code.

LISTING 16-1:	 LED Blink

#!/usr/bin/python3

import time

import RPi.GPIO as io # using RPi.GPIO

CHAPTER 16 Taking Control of Your Pi’s Circuitry 331

io.setmode(io.BCM)

io.setwarnings(False)

io.setup(4,io.OUT) # make pin into an output

print("LED blinker - By Mike Cook")

print("Click the Stop/Restart back end icon quit")

while True:

 io.output(4,1)

 time.sleep(0.3)

 io.output(4,0)

 time.sleep(0.3)

Save the file and run it. Your LED blinks just like the Scratch example.

Take a look at Listing 16-1 line by line. The program starts by importing the sup-
port packages you need. In this case, it’s the time package we use to achieve a
delay, or Wait, function, and the RPi.GPIO package to access the GPIO pins. Note
here that a lot of examples you see in other places use as GPIO in the import
statement — but we prefer the simpler and shorter as io because it reduces the
amount of typing and we don’t have to keep switching to uppercase. Then you
have to tell the GPIO library what sort of numbering system you want to use.
We’re using the now-standard BCM system. Then we turn off the warnings —
these are annoying and don’t give much useful information. The next line tells the
GPIO pins that you want to use Pin 4 as an output. The setup method takes two
values: the pin number and a number that tells the library to make that pin an
output. This is conveniently hidden by the library, by using a predefined constant
that’s defined in the library — that’s why it’s prefixed with io. Next, the loop for-
ever of Scratch is carried out in Python with the use of the while True statement,
with all statements in this loop indented. The actual number of spaces used for
indents can be anything, but it must remain constant for any section (4 is a stan-
dard value often used).

This loop then commands the GPIO Pin 4 to be a 1, turning the LED on. Then
there’s a delay (or sleep) for 300mS, followed by turning the LED off by making
Pin 4 go low. Finally, there’s another delay, so you can see the LED in the off state.
A common mistake is to leave out this last delay; as a result, the LED looks to be
on all the time. So, controlling a GPIO output is very simple.

Now, on to the second example of a switch-controlled blink speed. This is shown
in Listing 16-2, so open a new file and type it in, or choose File ➪   Save As and
modify the original Listing 16-1 to match Listing 16-2.

332 PART 5 Exploring Electronics with the Raspberry Pi

LISTING 16-2:	 An LED Blink Rate Controlled by a Push Button

#!/usr/bin/python3

import time

import RPi.GPIO as io

io.setmode(io.BCM)

io.setwarnings(False)

io.setup(4,io.OUT) # make pin into an output

io.setup(24,io.IN, pull_up_down=io.PUD_UP) # make pin into an input

print("LED blinker - By Mike Cook")

print("Click the Stop/Restart back end icon quit")

while True:

 if io.input(24) == 0:

 time.sleep(1.0)

 else :

 time.sleep(0.3)

 io.output(4,1) # LED on

 if io.input(24) == 0:

 time.sleep(1.0)

 else :

 time.sleep(0.3)

 io.output(4,0) # LED off

Listing 16-2 has the same commands for the output pin, but the input pin setup
is new. This command has three parameters: the number of the pin to use, a num-
ber in the form of a constant defined by the library, specifying that this pin should
function as an input, and, finally, an optional command telling the computer to
activate the internal pull-up resistor (although, to our ears, PUD_UP sounds more
like a mother calling children to tell them their pudding is being served). The
input from the push button is read by the input(24) method, which returns a
value of 0 or 1, depending on whether the pin is connected to the ground. This
returned value is then compared to 1, and if it’s equal, a 300mS delay is made;
otherwise, it produces a 1-second delay. The LED is then turned on, and the con-
ditional delay code is repeated before the LED is turned off.

Using GPIO ZERO
When it comes to accessing the GPIO pins in Python, the GPIO Zero library is
sometimes used by beginners, especially if they want just simple operations
(although it is capable of more sophisticated operatons). Don’t confuse GPIO Zero
with the Pi Zero — the two are not related. The GPIO Zero library takes the class
method approach to control, as opposed to the function method approach of RPi.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 333

GPIO and other, similar libraries. Pins become Python objects, which must be set
up before use. Despite this complication, this system is easy to use for simple
work. For example, for our LED blink example, we can use the code in
Listing 16-3.

LISTING 16-3:	 Python LED Blink

#!/usr/bin/python3

import time, os

import gpiozero as io # using LED zero

led = io.LED(4) # make pin 4 into an output

print("LED blinker using gpiozero - By Mike Cook")

print("Click the Stop/Restart back end icon quit")

while True:

 led.on()

 time.sleep(0.30)

 led.off()

 time.sleep(0.30)

Listing 16-3 at first looks very similar to the code in Listing 16-1 but only because
we have written it to be like this. The GPIO Zero library uses only the BCM method
of pin numbering, so there’s no need to tell the library what system to use. Just
like in Scratch, an output pin is known as an LED, irrespective of whether that pin
controls an LED, a motor, or a chip. So, the line that makes the pin an output is
io.LED(4). This code segment returns a reference to the class object. Classes and
objects are topics we cover in Chapter 17, where we describe how to write one, but
basically, it’s a way to get the same piece of code to handle different specific
objects — in this particular case, different GPIO pins. In order to know what it has
to do, each thing/pin must be declared separately, and when it is, the program
gets a code number to use to identify which specific thing it has to handle. That
code number is placed into a variable called led in the Listing 16-3 example, but
could be called anything. (This variable is known as the instance reference.) The
class has methods associated with it — things it can do, in other words — and
these are called up by writing the instance reference variable name, followed by a
period or dot, followed by the method name. So, turning an LED on or off is a
simple process — you just write led.on() or led.off(). However, in a way, this
is a bit limiting. For example, you cannot send a number in a variable that’s used
to turn the LED on or off — it has to be specifically spelt out as a method name.
This is a limitation of how GPIO Zero is written, not a limitation of using classes.
There are ways round this, but at this point, the simple system gets rather
complex.

334 PART 5 Exploring Electronics with the Raspberry Pi

In fact, Listing 16-3 is written in a way that it looks a lot like the earlier listings.
The same thing could simply be written as shown in Listing 16-4.

LISTING 16-4:	 A Simple LED Blink

import gpiozero

led = gpiozero.LED(4)

led.blink()

And that’s all you need. We aren’t sure what you can learn from this, apart from
the wiring skills needed to attach the hardware, but it’s helpful for beginners.
That last statement can have some parameters in it to control the blink rate — so,
for example, to exactly match our other examples that last line could be:

led.blink(on_time = 0.3, off_time = 0.3)

This library has even more tricks up its sleeve. If you want to fade that LED up and
down instead of just blinking, that last line could say

led.blink(on_time = 2.0, off_time = 2.0, fade_in_time = 1.0, fade_out_time = 1.0)

This is great if you only want to do that, and for a very young beginner, that’s
exactly what you want to do.

The blinking speed controlled by a push button can be written as shown in
Listing 16-5.

LISTING 16-5:	 A GPIO zero example of an LED Blink Controlled by Push Button

#!/usr/bin/python3

import time, os

import gpiozero as io # using LED zero

led = io.LED(4) # make pin 4 into an output

push = io.Button(24) # make pin 24 into an input

print("LED blinker switch using gpiozero - By Mike Cook")

print("Click the Stop/Restart back end icon quit")

while True:

 if push.is_pressed:

 time.sleep(1.0)

 else :

CHAPTER 16 Taking Control of Your Pi’s Circuitry 335

 time.sleep(0.3)

 led.on()

 if push.is_pressed:

 time.sleep(1.0)

 else :

 time.sleep(0.3)

 led.off()

The input works in a similar way to the output. In this case, you make an instance
of the Button class and put its reference in the variable push. Then you use the
is_pressed method of this class to determine the time delay in the blinking. By
default, the input pull-up resistor is enabled when you create the class reference.

There are other options contained in this input class. It can specify whether a
press is to be auto-repeated or specify a debounce time — the time after a change
to ignore further changes. (We take another look at debouncing later in this chap-
ter.) As well as the is.pressed method, other class methods include is_held,
wait_for_press, wait_for_release, is_held, when_held, when_pressed, and
when_released. Rather than return any information about the input, the when_
pressed, and when_released methods cause a function to run when the button is
pressed or released. This other function runs in a separate thread — in effect,
another separate program — with this thread and the main code being swapped
in and out alternately until the function is complete. This gives a beginner access
to complex concepts that they need to understand only when something goes
wrong. So, our controlled blink-rate program could be written as shown in
Listing 16-6.

LISTING 16-6:	 GPIO Zero-Specific LED Blink Controlled by Push Button

#!/usr/bin/python3

import gpiozero as io # using LED zero

from signal import pause

led = io.LED(4) # make pin 4 into an output

push = io.Button(24) # make pin 24 into an input

def blinkFast():

 led.blink(on_time = 0.3, off_time = 0.3)

def blinkSlow():

 led.blink(on_time = 1.0, off_time = 1.0)

push.when_pressed = blinkFast

push.when_released = blinkSlow

pause()

336 PART 5 Exploring Electronics with the Raspberry Pi

The pause function, in effect, ends the program, and the only thing that happens
is when the callback functions, as they are called, are invoked or triggered on the
push or release of the button.

A lot of the programming work involved in using GPIO Zero involves leafing
through the documentation to see what simple functions the authors have imple-
mented for you. GPIO Zero enables you to get results quickly, and without needing
to understand much of what is going on — which is helpful if a function does what
you need. However, we can’t help but feel that although some things can be done
simply, the skills learned are not exactly transferable. As you develop more com-
plex electronic projects, you might find GPIO Zero to be too limited for your needs
or require more advanced concepts than you know about.

Starting Out with a Dice Display
After you have the basic toolkit of dealing with the GPIO pins under your belt, it’s
time for a bit of fun with some projects. First off, let’s look at making a computer-
controlled dice.

A dice display
Now, before you get pedantic about our closing statement in the previous section
and state that there’s only one dice, so it should be called a die, let us point out that
in modern standard English, dice is both the singular and the plural. To throw the
dice could mean one, or more than one, dice. If you disagree an online search will
verify this definition.

A dice display is a good project to start with because it not only makes a useful and
interesting replacement when you want to use one in playing a game but also
serves to introduce some important programming concepts. Basically, it’s simply
seven LEDs and a push button, so it isn’t much different from the circuit we
describe earlier in this chapter. However, the arrangements of the LEDs is vital to
the final effect, and it’s important to get the correct LEDs in the correct spatial
position. Figure 16-9 shows the basic schematic.

The actual GPIO pins you use for the LEDs doesn’t matter because the relationship
between the LEDs and the pins is defined in software — if you get it wrong, you
can correct it in the pattern lookup table. However, for a trouble-free experience,
follow our GPIO usage. Note that the schematic is quite clean and straightforward.
It follows the rules of positive signals at the top and ground signals at the bottom,

CHAPTER 16 Taking Control of Your Pi’s Circuitry 337

with a minimum number of wires (in this case, none) crossing. Also, the signal
flow is from left to right. This is a good example of a schematic. When it comes to
the physical layout, Figure 16-10 shows one way of wiring this up on a
breadboard.

FIGURE 16-9:
LED dice

schematic.

FIGURE 16-10:
LED dice physical

layout.

338 PART 5 Exploring Electronics with the Raspberry Pi

You will instantly see that this layout is altogether more cluttered, which makes it
difficult to see what is happening, although it does show you where to place all the
parts and wires. Note that LED 2 and LED 4 have their legs bent slightly to allow
them to physically line up with LED 3 and get a good match to the die pattern.
Though it’s easy to go from the schematic to the layout in your head, it’s almost
impossible to go in the other direction if the circuit is anything other than trivial.
We did cheat a bit here and pick the GPIO pins so that we could draw the physical
layout without having any wires cross, which would have made it even more clut-
tered. You can’t always do that.

We strongly recommend that you don’t rely on physical layout diagrams, but
instead learn the simple process of converting the schematic into a layout. There’s
no need to plan it all out beforehand — just take it one wire at a time and build it
up. It’s a skill that’s easy to learn and that will pay you back handsomely as you
progress through your learning of this subject.

Figure 16-11 shows a photograph of the hardware for our project. We ended up
using 3mm diameter LEDs for it. Note how it’s even more messy than the layout
diagram. There are two causes for such messiness: First of all, you can’t easily
bend the wires out of the way so that they don’t obscure anything. Second,
the whole point of using breadboard is so that you can reuse its components. This
means you generally don’t snip the component leads to be short and close to the
board — you leave them sticking out high above the board.

FIGURE 16-11:
Photo of the LED

dice project.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 339

The project
When doing any project, no matter how small, it always pays to take it one step at
a time and test as you go. So, the first thing to do is to test your hardware before
you get into anything fancy. You can simply extend the LED blink program to
blink all the LEDs or, if you aren’t up to that, simply take the LED blink program
and change the GPIO number to one number you’re using here. Run that and see
the correct LED flashes, and then stop the program and change to another num-
ber. Repeat until all the LEDs (as well as the push button) have been tested.

The project splits up into two main parts: Generate the random number between
1 and 6 and then display it.

The numbers
There are two ways to generate the random numbers: Use the computer’s
random-number generator or use some random event. The problem with the
random-number generator is that it’s not really a random-number generator. It’s
a pseudo random-number generator — the sequence of numbers is fixed and will
repeat every time you run the program, unless you seed it by picking a random
starting point in this sequence. Because the sequence is very long, this approach
will appear to be a random number. (The Python random-number generator uses
as the seed the length of time the system has been powered on in the absence of a
seed instruction.)

However, a better way is to use something that is by its nature truly random: In
this case, we use the length of time the user has pressed the button, indicating a
new throw. You might not think this is random, because the user could just make
a long press or a short press and that would influence the number that’s produced.
However, this doesn’t take into account that the timing of a press can be very
accurate and that all six numbers are cycled through many thousands of times a
second. Controlling a button press with microsecond accuracy is simply not pos-
sible for us slow humans, so it’s a good source of random numbers. Therefore, in
our project, the number is generated by counting from 1 to 6 while a push button
is held down.

When a push button is first pushed, the contacts come together and then bounce
apart and then come together in a rapid sequence of contact make-and-break,
rather like a ping-pong ball falling onto a table. This happens on all mechanical
switches, but some designs are worse than others. A lot of the time in program-
ming, this isn’t important because other stuff happens after a contact is first
made. Other times, it could be a problem, but the solution can be quite simple —
just delay for a few milliseconds after the first contact before looking at the input
again. This strategy — known as debouncing an input — is what we show you how
to do in this project.

340 PART 5 Exploring Electronics with the Raspberry Pi

The display
Once you have generated a number, it must be displayed in the pattern of a con-
ventional dice. This involves turning on a specially selected pattern of LEDs. This
pattern is, of course, different for each number. Now, you could use a series of if
statements to test for each possible number, and when you find a match, write a
series of statements to turn on and off the appropriate LEDs. An example of this
for one number using the GPIO Zero library would look like the code in
Listing 16-7.

LISTING 16-7:	 Fragment of Code to Set a Pattern

the variable dice_number contains the number to display

if dice_number == 3: # make the three pattern

 led0.off()

 led1.on()

 led2.off()

 led3.on()

 led4.off()

 led5.on()

 led6.off()

if dice_number == 4: #if the number is four then

 led0.on()

 #......... and so on

You can see that this listing is easy to read, but it contains the most awful, exces-
sively ornate style, that is repetitive and is much longer than necessary. (This is
typical of what a beginner might produce.)

This bad style is not confined to the GPIO Zero library — you can write bad code
like this with any library.

You might wonder why it matters, as long as the code works. Well, if you can
understand the concepts of doing it properly, you can apply them in situations
where code like this will not work or is far too long. Even so, before you can begin
to write any code, you need to know what LEDs to turn on and off to display each
number. Figure 16-12 shows the patterns we have decided to use to represent the
dice pattern. Note that the main choice is which diagonal to use for representing
3 and 2. We think it’s best using different diagonals for the two numbers, but we
have no preference for which diagonal to use.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 341

Given the physical arrangement of LEDs shown, each number needs to be dis-
played by having certain LEDs on and off. This pattern can be summarized as a
sequence of 0s and 1s and is shown in the Binary Pattern column in Figure 16-12.
Binary is a way of writing numbers that exactly matches how those numbers are
stored in the computer as a sequence of 1s and 0s. A single digit is called a bit.
Everywhere the LED is on, there’s a 1 in the binary pattern, and there’s a 0 when
it’s off. This pattern can define the LED pattern, functioning as a concise store of
the pattern you need. In a program, it’s way easier to express this pattern as a
hexadecimal number, because with a little practice, you can convert from a pat-
tern to a number in your head — and it’s then easy to read the code. Hexadecimal
is a number system that groups a byte, or 8 bits, into two 4-bit groups. Each of the
two groups is then expressed as a single character — from 0 to 9 and then the
letters A to F. This gives 16 different characters that represent the 16 different
patterns of 1s and 0s you can get with four bits. This is shown in the Hex Pattern
column of Figure 16-12, as far as the computer is concerned, if you start a number
with 0x, it treats what follows as a hexadecimal number, and if you start it with
0b, it treates it as a binary number.

In Figure 16-12, we show — for the sake of completeness — the equivalent num-
ber in decimal notation, which is the counting system we humans use. No one in
their right mind would dream of using it in a program — although it would work
because it follows the correct pattern, it’s almost impossible to know what the
pattern is by just looking at the number. In other words, it makes for bad code.

Keep in mind that the actual numeric value of this pattern number has no mean-
ing at all — the meaning is in the binary bit pattern. Variables don’t always have
to contain a number; what a variable stands for is determined by the context in
which you use it. For example, you can add one to a bit pattern, but the result,
while still being a valid number, is meaninglessas as bit pattern. Often, beginners
ask how to convert a number into binary, but there’s no need because any number
stored in the computer is already in binary format. Only when you need to do a
task like printing it out do you need to convert a number from binary into some-
thing else, and the print statement does that for you. All you need now is some
way to read that “bit pattern number” and turn it into the action of switching the
LEDs on and off. In effect, you have to unpack that information and turn it into a
pattern — and do it efficiently without turgid code.

FIGURE 16-12:
LED dice display

patterns.

342 PART 5 Exploring Electronics with the Raspberry Pi

So let’s break this down and see if you can do this for only one bit of the pattern —
let’s say the least significant, or right-hand, bit. If it is 1, turn on the LED, and if
it’s 0, turn it off. You can handle that task with this line:

io.output(LEDnumber,pattern & 1)

The variable LEDnumber has, as you might suspect, the LED number you want to
control, and the variable called pattern has the bit pattern you’re trying to pro-
duce. The & symbol means the arithmetic AND operation. The AND operator takes
two numbers and considers the contents of each bit position individually. If both
numbers contain a 1 in the same position, the result is a 1. Otherwise, the result
for that position is 0. So, when you’re ANDing the number 1 with the pattern
number, the result is to zero, or remove, all bits except the least significant one,
which is left alone. In other words, it isolates a single bit in the pattern variable.
So if the least significant bit in the pattern variable was a 0, that operation returns
a 0. If it was a 1, that statement returns a 1 — which is just the number you need
to put in the output command to turn that LED on or off. (We say that the number
1 here is a mask because it masks out bits you don’t want.)

Now, what about the LEDnumber that changes every time we want to look at a dif-
ferent bit in the pattern? Instead of a single number here, we actually need a list.
The list is made up of the GPIO numbers that control each LED. So the first ele-
ment in the list is the GPIO number that controls LED 0, which, according to the
schematic, is GPIO 23. Finally, you need a way to move the bit pattern in the pat-
tern variable one place to the right so that the same instruction will do the same
thing for the next bit. You can do this with a shift-to-the-right operator (>>), so
you can have a little loop that generates the pattern:

LEDnumber = [23,4,25,10,17,8,22]

for i in range(0,len(LEDnumber)):

 io.output(LEDnumber[i],pattern & 1)

 pattern = pattern >> 1

And that’s all there is to it — no bad code at all. It’s short, concise, and easy to
write.

Finally, we have added the small, fun feature of a dice roll display. This shows
several random dice patterns in quick succession, to give the impression that the
dice is being rolled.

We’re all ready to show you how to write the full code. This is shown in
Listing 16-8.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 343

LISTING 16-8:	 LED Dice

#!/usr/bin/python3

Electronic dice. By Mike Cook

import time, random

import RPi.GPIO as io

LEDnumber = [23,4,25,10,17,8,22]

dicePattern = [0,0x08,0x41,0x2A,0x63,0x6B,0x77]

pushButton = 7

def main():

 print("Electronic Dice Click the Stop/Restart back end icon quit")

 initGPIO()

 number = 1

 while 1:

 displayRoll()

 displayNumber(number)

 number = generateNumber()

def displayRoll(): # pattern to show when rolling

 for i in range(0,20):

 displayNumber(random.randint(1,6))

 time.sleep(0.1)

def displayNumber(number):

 pattern = dicePattern[number]

 for i in range(0,len(LEDnumber)):

 io.output(LEDnumber[i],pattern & 1)

 pattern = pattern >> 1

def generateNumber(): # wait for a push

 throw = random.randint(1,6)

 while io.input(pushButton) == 1:

 pass

 time.sleep(0.030) # debounce delay

 while io.input(pushButton) == 0:

 throw += 1
 if throw >6: # wrap round the number

 throw = 1

 return throw

def initGPIO():

 io.setmode(io.BCM)

 io.setwarnings(False)

 for pin in range (0,len(LEDnumber)):

 io.setup(LEDnumber[pin],io.OUT) # make pin into an output

 io.setup(pushButton,io.IN,pull_up_down=io.PUD_UP) # make pin into an input

(continued)

344 PART 5 Exploring Electronics with the Raspberry Pi

Main program logic:

if __name__ == "__main__":

 main()

When this code runs, it loads the libraries, sets the global variables, defines all the
functions, and then, finally, starts running the main function. This is where the
action is coordinated, and it’s a good idea to make it as short as you can. The main
function prints out a message, initializes the GPIO pins and number to display,
and then starts an infinite loop, displaying the roll pattern and the dice number
and then generating the next number when the button is pressed again.

Beginners often try to cram everything into the main function, but using some
well-named functions makes it much easier to see what’s going on. These func-
tions could, of course, be called anything, but for readability, make them as
descriptive as you can. This benefits not only others reading your code but also,
more importantly, you in six months’ time, when you have forgotten what is
going on.

One thing that might puzzle you is that the dice pattern list starts off with a 0.
This was not shown in Figure 16-12, so why is it there? Well, all lists are numbered
starting at 0, and the first pattern you’re interested in is the pattern for a throw of
1. So, in order to align the position of the pattern information with the position in
the list, you must start out with a blank entry — so that, for example, the infor-
mation for the number 4 is in the fourth position on the list. The rest of the code
ensures that 0 will never be required to be displayed.

Looking more closely at Listing 16-8, the displayRoll function is simply a loop
that calls the displayNumber function 20 times, giving it a random number
between 1 and 6. It shows each number for one-tenth of a second. The dis-
playNumber function should be familiar to you from earlier mentions in this
chapter. The one function that may need close examination is generateNumber. It
starts out generating a random number called throw, and then it waits in a while
loop until the push button is pressed. When this is detected, a 30ms delay ensures
that any contact bounce is finished before another while loop looks to see if the
button has been released. Though the program is in this loop, it increments the
throw variable, and when the maximum value of 6 is exceeded, the throw variable
is reset to one. The last line returns this throw value to the calling line. The line in
the main function

number = generateNumber()

ensures that this function’s returned value is placed in the variable called number.

LISTING 16-8:	 (continued)

CHAPTER 16 Taking Control of Your Pi’s Circuitry 345

Taking it further
We encourage you to play around with all the code you find in this book, by
making your own changes and extensions. One area that’s fun to play with is the
roll animation. Instead of showing random numbers, you can make any sort of
display you like in the same way as you defined the patterns for the dice display.
As a start, we have written an alternative function for the display roll, as shown in
Listing 16-9. You should use this code to replace the function of the same name
in Listing 16-8. You should save any changes you make using a different filename
if you want to keep them.

LISTING 16-9:	 An Alternate displayRoll Function

def displayRoll(): # pattern to show when rolling

 rollPattern = [0x01,0x03,0x07,0x0F,0x1F,0x3F,0x7F,0,0]

 for roll in range(0, len(rollPattern)):

 pattern = rollPattern[roll]

 for i in range(0, len(LEDnumber)):

 io.output(LEDnumber[i], pattern & 1)

 pattern = pattern >> 1

 time.sleep(0.2)

This has a new list of patterns to be used in the roll — called, appropriately
enough, rollPattern. You can write your own numbers in here and use as many
of them as you want. The code ensures that all pattern numbers you write in here
are displayed. Can you change the numbers in the rollPattern list so that a single
lit LED goes round the dice display? You could also change the speed of the dice
roll display, making it longer between display changes as it comes to an end. If
you want to use binary numbers to define the pattern, you can use

rollPattern = [0b1,0b11,0b111,0b1111,0b11111,0b111111,0b1111111,0,0]

Note that there’s no need to specify the leading 0s, personally, we find binary
much harder to read in a line of code than hex because it’s easy to lose your place
amongst all those 1s. If you like this project, we encourage you to put all the elec-
tronics in a box and connect it up to the Pi with a multiway header and ribbon
cable, or use the much cheaper Pico processor in the box.

346 PART 5 Exploring Electronics with the Raspberry Pi

Pedestrian Crossing
The dice project covered in the preceding section is all about displaying patterns.
The Pedestrian Crossing project is about time and sequences. It simulates a UK
pedestrian crossing — basically, a traffic-light–controlled crossing initiated by
the pedestrian’s pressing a button. These crossings are also common in the United
States, but a little of the detail may be different from state to state, so let’s first go
through the sequence we’re trying to simulate.

The crossing has a three-light traffic control — red, amber, and green — and the
pedestrian has a two-light system — Cross (or Walk), which is green, and Don’t
Cross (or Don’t Walk), which is red. The normal state of the crossing is that the
green light is on for the traffic and all the other lights are off. There’s a button at
the crossing for the pedestrian to request a stop, and a traffic sensor is buried
in the road. This sensor controls how quickly the crossing sequence will start after
the pedestrian presses the button. If no traffic has been detected recently, the
crossing sequence starts immediately; otherwise, there’s a delay. This ensures
that a busy road isn’t stopped too many times by pedestrians or jokers, whereas a
quiet road will not make pedestrians wait long before they can cross. Once the
Cross Request button is pressed, the Don’t Cross light immediately comes on.

When the crossing sequence begins, the green traffic light turns to amber and
then to red. Then the green crossing light comes on and, at many crossings, a
sounder “bleeps” to help blind people cross. After a period of time, it may be safe
to continue crossing but not be safe to start a crossing, so the green cross light and
the amber traffic light flashes, and the sounder no longer bleeps. Then the Don’t
Cross light comes on, with the traffic light remaining amber, and, finally, the
traffic light goes to green and all pedestrian lights go out.

This sounds straightforward on the face of it, but the traffic sensor needs to be
monitored through this sequence, to ensure that you don’t miss any traffic that
may drive up and stop during the crossing sequence and allow the next crossing
to occur too quickly. This means you can’t just use a simple time.sleep delay to
control the sequence; you need what is known as a state machine — this is a way
of juggling two or more processes while making it look like they’re happening at
the same time.

A state machine is an important technique — and one that you’ll need over and
over as you take on more projects.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 347

The idea of a state machine is that most things do not need the processor’s full
attention. The LED blink program, for example, spends virtually all of the time in
the sleep function, just waiting for time to pass. Instead of burning that time, the
idea of a state machine is to spend it looking after other tasks. In order to do this,
you have to have some idea of when your tasks need attention, so you incorporate
a variable that specifies the time each task needs to be looked at next. This is made
possible by the time.time() method of the time library, which returns a
floating-point number (one with decimal places) of the time (in seconds) that the
Pi has been switched on. The thing is that you don’t actually care what this num-
ber is, because you use it as a relative measure to find out when to do the task.

Let’s look at a simple example first — blinking two LEDs independently.

First of all, go ahead and wire up two LEDs and resistors, connecting them to GPIO
23 and 24, as shown in Figure 16-13.

Now we’ll describe how to blink these two LEDs at totally independent rates. The
state of each task is given by a state variable, with the two values 0 or 1. The
state variable shows if the light is on or off so that you know what you need to do
for the next stage of the blinking task. The time between each change of state of
the LEDs is controlled by a variable that gives the time the change must occur.
This time is calculated by adding the current time to the length of time you want
to elapse before the next LED state change. This can be the same for all states or
different for each state. The example in Listing 16-10 has the same time for the
on/off times of LED1, but a separate on/off time for LED2.

FIGURE 16-13:
LED wiring for

independent
blinking.

348 PART 5 Exploring Electronics with the Raspberry Pi

LISTING 16-10:	 Blinking Two LEDs at Different Rates

#!/usr/bin/python3

Two blinks By Mike Cook

import time

import RPi.GPIO as io

led1pin = 23

led2pin = 24

led1BlinkRate = 0.5 # the speed of blinking

led2onTime = 0.5 ; led2offTime = 0.51

led1State = 0

led2State = 0

blink1Time = time.time()

blink2Time = time.time()

def main():

 print("Two blinks Click the Stop/Restart back end icon quit")

 initGPIO()

 while 1:

 if time.time() > blink1Time:

 blink1()

 if time.time() > blink2Time:

 blink2()

def blink1():

 global blink1Time, led1State

 if led1State == 0:

 io.output(led1pin,1)

 led1State = 1

 else:

 io.output(led1pin,0)

 led1State = 0

 blink1Time = time.time() + led1BlinkRate

def blink2():

 global blink2Time, led2State

 if led2State == 0:

 io.output(led2pin,1)

 led2State = 1

 blink2Time = time.time() + led2onTime

 else:

 io.output(led2pin,0)

 led2State = 0

 blink2Time = time.time() + led2offTime

CHAPTER 16 Taking Control of Your Pi’s Circuitry 349

def initGPIO():

 io.setmode(io.BCM)

 io.setwarnings(False)

 io.setup(led1pin,io.OUT) # make pins into outputs

 io.setup(led2pin,io.OUT)

Main program logic:

if __name__ == "__main__":

 main()

The program spends most of its time in the while loop in the main function,
checking to see if it’s time to call either of the two functions, blink1 or blink2.
(Note: You can, of course, have as many functions here as you want.) When the
functions are run, they do what they need to do given that task’s current state,
which, in our simple case, involves turning the LED on or off. Then you advance
the state counter and, finally, set the time when this function/task needs to be
done again. If the task is being advanced at a constant rate (like the blinking
LED1), then this is done at the end of the function. If each state needs to last a
specific length of time, that is set when the state count is advanced.

When you run the program, you see both LEDs blinking in unison; but, as time
goes by, the two become increasingly out of sync until they are seen to be blinking
alternately, and, in another minute, they will drift back in sync. This is because
the full cycle of LED2 is 0.01 seconds longer than LED1.

Play with these times to see how it changes things. Can you change the code and
hardware to add two more LEDs into the mix?

The Pedestrian Crossing hardware
After you have all the background information you need to make the Pedestrian
Crossing project, let’s start, as always, with the hardware. Figure 16-14 shows
how it should be wired up.

The diagram is quite similar to what we have shown you in this chapter, except
that it’s arranged differently. First, there are two push buttons for the traffic sen-
sor and cross request. Next are five LEDs connected to resistors and GPIO pins.
Note here, though, that you need different colours of LED — two red, two green,
and a yellow. Finally, there’s the sounder. We’re using a piezo electric sounder,
but a word of warning is in order here: There are two types of piezo electric sound-
ers, and there seems to be no universally accepted word to differentiate between
the two. The sort you want is one that generates sound when you apply a voltage
to it. These could be called self-drive sounders, but sometimes they are not. Other

350 PART 5 Exploring Electronics with the Raspberry Pi

times, they can be referred to as buzzers, but don’t confuse them with electrome-
chanical buzzers, which take a lot of current — too much current for the Pi.
A suitable one would work from 3V and take less than 10mA. The type you don’t
want is the one where you have to supply an electrical pulse train to it before it
makes a noise. This type is sometimes called a speaker-type sounder. A simple
test is to wire the sounder to the 3V3 output and ground of the Pi and then make
and break the contact. If it only clicks, it’s a speaker type. If it makes a sound, it’s
the type you want to use. (To be honest, in development, we replaced the sounder
with an LED and a resistor, to reduce the annoying bleeps.)

The layout of this circuit on a breadboard is shown in Figure 16-15. We have
arranged the traffic-control LEDs like traffic lights, and the cross indicators above
each other like you would find on a real-life crossing.

The Pedestrian Crossing software
Now let’s apply the multi task/state machine principle to our crossing project. We
need one task to look at the traffic sensor — if we see traffic activity, we want to
note the time it took place. Then we need one task to look at the cross request
button — if that button is pressed and the crossing sequence isn’t under way, we
need to start that sequence. Finally, if the crossing sequence has reached the
“cross phase,” we need a task to turn the sounder on and off, to make the bleeping
noise. (Note that we have reduced the times in the crossing sequence to be easy to
look at and see what is going on. In real life, some of the times would be much
longer.) The software for this project is shown in Listing 16-11.

FIGURE 16-14:
Pedestrian

Crossing
schematic.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 351

LISTING 16-11:	 Pedestrian Crossing Project

#!/usr/bin/python3

Pedestrian crossing By Mike Cook

import time, random

import RPi.GPIO as io

LEDcontrol = [23,24,25,4,17,9]

GPIO for Traffic Red, amber, Green & noCross, cross sounder

crossRequest = 7

trafficSensor = 18

nextSequenceTime = time.time()

def main():

 global lastTraffic, state, bleep

 print("Pedestrian crossing simulator Click the Stop/Restart back end icon quit")

 initGPIO()

 io.output(green,1) # Green light on to start

 state = 0

 bleepTime = time.time()

 bleep = False

 lastTraffic = time.time()

 while 1:

 checkTraffic()

 if checkRequest() and state == 0 :

 io.output(noCross, 1) # turn on the no cross light

 if time.time() - lastTraffic > 10.0: #cross immediately

FIGURE 16-15:
Layout of the

Traffic Crossing
circuit.

(continued)

352 PART 5 Exploring Electronics with the Raspberry Pi

 state = 1

 else:

 time.sleep(10.0) # let traffic flow for a bit

 state = 1

 crossSequenceFunction()

 if bleep and time.time() > bleepTime:

 bleepTime = time.time() +0.3
 io.output(sounder, not(io.input(sounder)))

def checkTraffic():

 global lastTraffic

 if io.input(trafficSensor) == 0:

 lastTraffic = time.time()

def checkRequest():

 request = False

 if io.input(crossRequest) == 0:

 request = True

 return request

def crossSequenceFunction():

 global nextSequenceTime, countFlash, state, bleep

 if state == 0:

 nextSequenceTime = time.time() + 2.0
 return

 if time.time() > nextSequenceTime :

 if state == 1: # show amber

 #print("doing state", state)

 io.output(green, 0)

 io.output(amber, 1)

 state = 2

 nextSequenceTime = time.time() + 2.0 #show amber time
 elif state == 2: # show red

 #print("doing state", state)

 io.output(amber,0)

 io.output(red,1)

 state = 3

 nextSequenceTime = time.time() + 2.0 # show red time
 elif state == 3: # show cross light

 #print("doing state", state)

 io.output(noCross, 0)

 io.output(cross, 1)

 bleep = True

 state = 4

 nextSequenceTime = time.time() + 5.0 #crossing time
 elif state == 4: # change to amber clear crossing

 #print("doing state", state)

 io.output(amber, 1)

LISTING 16-11:	 (continued)

CHAPTER 16 Taking Control of Your Pi’s Circuitry 353

 io.output(red, 0)

 bleep = False

 io.output(sounder, 0) # turn off sounder

 state = 5

 nextSequenceTime = time.time() + 1.0
 elif state == 5: # flash amber and cross

 #print("doing state", state)

 io.output(amber, not(io.input(amber)))

 io.output(cross, not(io.input(cross)))

 nextSequenceTime = time.time() + 0.2 #flashing speed
 countFlash +=1
 if countFlash > 20 : #clear crossing time 20 * flash speed

 countFlash = 0

 state = 6

 elif state == 6: # hold amber

 io.output(cross, 0)

 io.output(noCross, 1)

 io.output(amber, 1)

 state = 7

 nextSequenceTime = time.time() + 2.0 # hold amber time
 elif state == 7: # put on red light

 #print("doing state", state)

 io.output(amber, 0)

 io.output(green, 1)

 io.output(noCross, 0)

 state = 0

 nextSequenceTime = time.time() + 1.0

def initGPIO():

 global red, amber, green, noCross, cross, countFlash, sounder

 io.setmode(io.BCM)

 io.setwarnings(False)

 for pin in range (0,len(LEDcontrol)):

 io.setup(LEDcontrol[pin],io.OUT) # make pin into an output

 io.output(LEDcontrol[pin],0) # set to zero

 io.setup(crossRequest,io.IN, pull_up_down=io.PUD_UP) # make input

 io.setup(trafficSensor,io.IN, pull_up_down=io.PUD_UP)

 red = LEDcontrol[0]

 amber = LEDcontrol[1]

 green = LEDcontrol[2]

 noCross = LEDcontrol[3]

 cross = LEDcontrol[4]

 sounder = LEDcontrol[5]

 countFlash = 0

Main program logic:

if __name__ == "__main__":

 main()

354 PART 5 Exploring Electronics with the Raspberry Pi

Stepping through this program, first note that the GPIO pins are initialized and
that each pin in the list is given its own name. This makes the program easy to
read, although we could have used a “magic number” — a number that appears
for no immediately apparent reason — as an index in the GPIO list. In the infinite
while loop in the main function, traffic activity is first measured and then the
Cross Request button is looked at. The function checkRequest returns a value of
True if the button is being pressed. That means the function can be called directly
inside an if statement — there’s no need for any intermediate variables. Also, the
if statement looks to see if a cross sequence is in operation by looking at the
state variable. (It’s 0 if nothing is running.) If a cross request has been made, a
delay occurs if there has been some traffic activity in the last ten seconds, and
then the state variable is changed to a value of 1.

Next in the main loop, the crossSequenceFunction is called, which only returns
if the state variable is 0; otherwise, the function looks to see if it’s time to change
the state, and returns if it isn’t. Finally, in the main loop, the bleep variable is
looked at because it controls when the sounder should make a noise. This variable
is set at State 3 of the crossSequenceFunction and cleared at State 4. The
crossSequenceFunction, for most steps, simply turns on or off the various lights
according to the required sequence. The exception to this is in State 5, where both
the cross light and the amber light need to flash. We do this by toggling the two
lights. (Toggling means turning off a light that is on, and turning on a light that is
off.) Rather than use a variable to tell you if you set the light on or off last, you can
use a little trick: Read the state of a GPIO output pin. This then gives you the value
you last set it to, and you know you want to use the inverse of this state. There-
fore, the line

io.output(amber, not(io.input(amber)))

sets the amber light to the opposite state to its current state. Before you can get
out of State 5 and advance it to State 6, you must have ten flashes of the lights.
Finally, in State 7, you set the traffic lights to green for go and return the state
machine variable back to State 0, which indicates that the cross sequence is no
longer in progress.

Taking it further
There are a number of print statements we have commented out, to show the
state of the Cross sequence; you might like to uncomment them to see what is
going on, although the LEDs should tell you. You can go and measure the times on
an actual crossing and replace the times used in the program with realistic times.
You can extend the program so that there’s a more intelligent traffic-control sys-
tem, by counting the cars over a set interval — say, the last 20 seconds — and
graduating the Wait Before Crossing sequence delay is lengthened accordingly.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 355

Figure 16-16 shows three LEDs mounted as a miniature traffic light. Using this
sort of thing adds a bit more realism to the project. Simply search the web for
“5mm LED traffic light,” although the one in the picture actually has 8mm
LEDs — but that’s search engines when they try to sell you things.

FIGURE 16-16:
A better traffic

light display.

CHAPTER 17 Lots of Multicolored LEDs 357

Chapter 17
Lots of Multicolored LEDs

Chapter 16 shows you how to control LEDs in terms of both patterns and
sequences. Now we’re going to get colorful and look at multicolored LEDs.
We use different colors of LED in Chapter 16’s Pedestrian Crossing project,

where each LED has its own color. Another type of LED contains three different
colored LEDs in the same package. This type is known as an RGB LED because the
three colors are red, green, and blue.

RGB LEDs come in three basic forms: common anode, common cathode, and sep-
arate connections. This last type, the least common, only comes in a small, 6-pin,
surface-mount package. (This type is used in the Pimoroni Sense HAT, mentioned
in Chapter 15.) The internal configuration of the three types is shown in
Figure 17-1.

The dotted box around each LED is the way a schematic shows that they’re all in
one package. Note that the common anode and common cathode types have four
wires going into them instead of the normal two wires for a single-color LED. Each
LED can be treated by the software as a separate LED. To use common anode LEDs,
you have to wire them up so that the GPIO pins act as current sinks, that is making
the connection to ground. The wiring for the two common “something” LED types
is shown in Figure 17-2.

IN THIS CHAPTER

»» Finding out how to use an RGB LED

»» Discovering the APA102C integrated
LED and driver

»» Writing a class driver for the APA102C

»» Making a Rainbow Invaders game

»» Designing a Keepy Uppy
football game

»» Discovering more LED strip shapes

»» Creating a wearable colorful broach

358 PART 5 Exploring Electronics with the Raspberry Pi

With a common cathode, the GPIO pins should be set to a logic high to turn the
LED on, and to a zero to turn it off. (For more on logic highs and zeros, see
Chapter 16.) However, with a common anode LED, this situation is reversed, with
a logic low turning on the LED by sinking current and making a complete circuit
that way. When confronted by Figure 17-2, a beginner typically has this question:
“Do I need to have three resistors? Why can’t I just have one in the common
line?” — to which the answer is, “Yes, you need all three resistors.”

Here’s why. If you only have one resistor, then the voltage level that the resistor
will drop depends on the current running through it. That means the brightness
will change depending on which LEDs are turned on. Even worse, if the red LED is
on, there’s not enough voltage across the other two LEDs to turn them on. This is
because each color of LED drops a different voltage when it is on, and red drops
the lowest voltage. It will appear that the other colors are not working — not
good.

FIGURE 17-2:
Wiring common

anode and
common cathode

LEDs.

FIGURE 17-1:
Three types of

basic RGB LEDs.
Sean McManus

CHAPTER 17 Lots of Multicolored LEDs 359

Making Colors
With the wiring schematics out of the way, it’s time to turn to the fun stuff: mix-
ing colors. Yes, you can turn on just one LED at a time, and that will give you one
of the three colors — red, blue, or green. However, turn two on and the colors will
mix in a way known as additive mixing. The primary colors are red, green, and blue.
Mixing them together gives you other colors, the so-called secondary colors. So a
red-and-green light together make a yellow one. A green-and-blue light make a
cyan color, and a red-and-blue light make magenta. Turn on all three LEDs
together and you make white — or, more precisely, they make a white tint.

In theory, all three LEDs on together will make white, but in practice this depends
on the exact brightness of the three separate lights. They have to be identical to
make a pure white; otherwise, the white looks tinted, which is not altogether a bad
thing. It’s not an easy task to do this, because each color has a different forward
voltage drop — you need different resistors to ensure the same current through
each LED. Not only that, each color of LED converts current to brightness with a
different efficiency, which complicates things tremendously.

There are new types of LED that include a white LED alongside the normal red,
green, and blue LEDs. These can be used to produce a better range of pastel colors
and more subtly tinted white lights.

You might be used to mixing colored paint, but keep in mind you get different
results doing this than mixing light. Paint mixing is known as subtractive mixing
because each paint color you put into the mix takes out (or subtracts) some other
color. This is how your color printer works. For subtractive mixing, the primary
colors are cyan, magenta, and yellow; red, green, and blue being the secondary
colors.

Using diffusers
The light from three LEDs in the same package will still be seen as three separate
points of light, unless there is some sort of diffuser, which allows the light to mix
evenly. For individual RGB LEDs, this is sometimes provided by the package or
body of the LED itself. Viewing distance alone can provide enough diffusion to mix
the colors, but often a diffuser of some sort will help. Diffusers also reduce the
brightness per unit area of the LED, making it much easer to take a good color
picture.

You can use anything that is translucent as a diffuser. Our favorite is a very thin
styrene sheet — about 0.5mm thickness is fine and is easy to work with, because
it can be cut with scissors. (A good alternative is a simple sheet of paper.) If you

360 PART 5 Exploring Electronics with the Raspberry Pi

have several LEDs and want to see the light from each distinctly, then you have to
have each one surrounded by a light baffle — sometimes known loosely as an egg
box, or waffle box. Without the baffle, the light from each LED mixes with those
adjacent to it and gives a soft focus effect that is not at all unpleasant. The degree
of diffusion you get is proportional to not only the diffusing material but also the
distance of that material from the LED. In most cases, a few millimeters is fine.

You can turn the clear-plastic housing LED into a diffuser by rubbing it gently
with very fine sandpaper or wire wool. Even better is to use a foam-backed sand-
ing block, because it gets round the curves much better than paper. These LED
housings are made of resin, so solvents like acetone do not affect the surface.

Making more colors
The trick to making more colors than the simple primary and secondary colors is
to have different brightness of each of the three colors. In that way, many more
subtle colors can be made. So how can you control the brightness of an LED? Well,
the answer might not be immediately apparent, but what you need to do is to turn
the LED on and off very rapidly. If you do this fast enough — that is, faster than
about 30 times a second — then the eye/brain sees this as a light that is constantly
on and not flickering. Furthermore, you perceive the brightness of the LED accord-
ing to the relative length of the On and Off times. That is, if the LED is on and off
for equal times, the LED appears to be only half as bright. This rapid switching
technique is known as PWM — short for Pulse-Width Modulation — and is the
way you control the LED’s brightness. The waveforms are shown in Figure 17-3.

FIGURE 17-3:
A PWM signal

controlling the
LED’s brightness.

CHAPTER 17 Lots of Multicolored LEDs 361

You can see that the three PWM signals go on and off at the same speed; however,
the one that spends more time being on is brighter than the one that spends only
half the time being on. Finally, the last waveform has a little time on but a long
time off and produces a dim LED. The ratio of the On time to the Off time is known
as the duty cycle of the waveform. Note that the frequency of this PWM signal does
not matter once it is above the rate where you see it flicker.

The RPi.GPIO library has the ability to make the GPIO pins output a PWM signal,
and the library can set both the frequency and duty cycle. If you wire up an RGB
LED according to Figure 17-3, you can test out the colors an RGB LED can produce
with the code in Listing 17-1.

LISTING 17-1:	 RGB Color Test

#!/usr/bin/python3

import time

import RPi.GPIO as io

io.setmode(io.BCM)

io.setup(17,io.OUT) # make pins into an output

io.setup(27,io.OUT)

io.setup(22,io.OUT)

ledR = io.PWM(17,60) # Set up outputs as PWM @ 60Hz

ledG = io.PWM(27,60)

ledB = io.PWM(22,60)

ledR.start(0) # start off the PWM

ledG.start(0)

ledB.start(0)

print("RGB color cycle an LED using RPi.GPIO - By Mike Cook")

print("Press Ctrl+C to quit ")
try:

 while(1):

 print("Start cycle")

 time.sleep(2.0)

 for stepR in range(0,100,5):

 for stepG in range(0,100,5):

 for stepB in range(0,100,5):

 ledR.ChangeDutyCycle(stepR)

 ledG.ChangeDutyCycle(stepG)

 ledB.ChangeDutyCycle(stepB)

 time.sleep(0.1) # Whole cycle 8000 times this

 ledR.ChangeDutyCycle(0)

(continued)

362 PART 5 Exploring Electronics with the Raspberry Pi

 ledG.ChangeDutyCycle(0)

 ledB.ChangeDutyCycle(0)

except KeyboardInterrupt:

 pass

ledR.stop(0) #stop the PWM

ledG.stop(0)

ledB.stop(0)

io.cleanup() # Restore default GPIO state

When you walk through this listing, you see that the first thing the code does is
set three GPIO pins to be outputs and then set them up to produce a PWM signal.
The value 60 in these opening lines of code is the frequency 60 Hz, which is the
frequency the PWM signal will go at. The duty cycle goes from 0, which is off all
the time, to 100, which is on all the time. The main part of the program consists
of three nested for loops, which ensure that all combinations of red, green, and
blue are produced in duty cycle steps of five. It takes 800 seconds — just over
13 minutes — to do a complete cycle where 8,000 colors are produced. It might not
look like that many colors when you test your LED output running this code, but
they are all there. It’s just that many of them from this demonstration might look
the same. This has to do with the way people perceive colors — they’re much
more sensitive to the difference between two colors than to the colors
themselves.

The Way Forward
The problem with individual LEDs used to be that they took up a lot of the
Raspberry Pi’s resources, both in terms of GPIO pins — three per LED — and
the software needed to generate the PWM cycles. This problem has been solved
in the last few years with the advent of LEDs that contain their own PWM
generators that you can control from the computer. You only need to tell these
sorts of LEDs once what color to produce and they will carry on producing it until
you tell them to stop. Even better, these LEDs can be chained: Once the LED has
its instructions from the computer, it passes any further instructions to the next
LED down the line.

The two major types of LED with these capabilities are the WS2812b and the
APA102C. The Adafruit company brands these as NeoPixels and DotStar, respec-
tively. (They are known generically as addressable LEDs.) Note that the SK9822
LED is identical to the APA102C.

LISTING 17-1:	 (continued)

CHAPTER 17 Lots of Multicolored LEDs 363

Admittedly, these LEDs aren’t much to look at. They’re most commonly packaged
in 5mm-square surface-mount packages, as shown in Figure 17-4. The tiny black
squares are the actual chips containing the PWM generator and the memory to
hold the RGB values. The blank-looking areas are the parts where the light is
generated.

You can get NeoPixels in conventional leaded LED packages — not the surface
mount type, in other words — as well as the DotStar’s 5mm-square packages.
Both are available as individual parts as well as long strips of LEDs. But the major
difference between the two lies in how they take their commands from the com-
puter. The NeoPixel requires one signal wire, and the DotStar requires two. Given
that fact, you might be forgiven for thinking that the NeoPixels are easier to use.
The problem is twofold:

»» This one signal wire needs to be controlled to give a precisely timed pulse.

»» The Raspberry Pi, with its Linux operating system, is not good at precise
timing.

There are ways around this with the help of various libraries, but each worka-
round comes at a price. The original library from Adafruit only works with the
original Model 1 Raspberry Pi as well as the Pi Zero. The new method Adafruit uses
to drive its Neopixels uses its Circuit Python framework, an attempt to unify all its
many drivers. This works well on all models, but it requires the Pi to be in super-
visor mode before it will work.

FIGURE 17-4:
DotStar

(APA102C) and
NeoPixel

(WS2812b) LEDs.

364 PART 5 Exploring Electronics with the Raspberry Pi

The DotStar LEDs requires two signals and uses the sequence of transitions that
these signals make to drive the data transfer process. This is ideal for a system
like the Raspberry Pi, where, because of Linux, there might be a longer-than-
expected delay before the next line of your code is executed. The APA102C LEDs are
wired together in a chain, as shown in Figure 17-5, with the signals regenerated
by each LED. Therefore, the signals never “get tired,” or, as we say in electronics,
degrade. The DotStar LEDs also generate a faster PWM signal than the Neopixel
ones, making them better for persistence of vision projects where the LEDs are
moved rapidly or provide illumination for videos.

Each LED has a Data In and a Data Out line as well as a Clock In and Clock Out. So
the inputs of the first chip are all that is connected to the GPIO pins of the Rasp-
berry Pi. Both types of LED (Neopixel and Dot Star) work on the principle that once
an LED has received and stored its own data, any further data it receives is passed
on to the next LED. So, after the first set of data is sent to the first LED, there has
to be some sort of reset condition in place in order to recognize situations where
new data is meant for the first LED and is not just data for LEDs further down the
chain. This reset is done by pausing the data stream for greater than 50uS (micro
seconds) on the WS2812b LEDs and by sending a stream of start and end pulses in
the case of the APA102C LEDs. (The wiring of the WS2812b is very similar to the
wiring of the APA102C except that there’s only one data wire in and out.)

Figure 17-6 shows the timing diagram for each type of LED — a picture of how a
logic signal will change in order to indicate logic one, logic zero or the end of a
data set.

For the WS2812b, in order for the single wire to write a Logic One to the LED, the
signal wire makes a jump to a Logic One and stops there for 3.5uS before jumping
down to a Logic Zero for 0.9uS. For a Logic Zero, the signal jumps to a one for
0.9uS and then drops to low for 3.5uS. This repeats until all the data has been
transferred to the LEDs. The end of the data transmission is signaled by a zero
being held for at least 50uS. These times have to be +/– 0.15uS to ensure correct
operation.

FIGURE 17-5:
Wiring of an

APA102C LED
chain.

CHAPTER 17 Lots of Multicolored LEDs 365

The APA102C, on the other hand, has two signals, called clock and data, which can
go at any speed. But the important point is that when the clock signal rises —
transitions from a zero to a one — whatever logic level is on the data input, at that
moment, is treated as the logic input to the LED. Doing this requires nothing spe-
cial about the timing; you just have to put the GPIO pins at the correct logic levels
in the right order.

Programmers have a special name they use to describe implementing a protocol in
this way — it’s known as bit-banging. (The technical term for this protocol is SPI,
or Serial Peripheral Interface.) There’s some hardware on the processor chip to do
this, but it requires a specific set of pins running in one of the alternative modes.
The great thing about bit-banging is that you can use any pins. Let’s see how we
can bit-bang this protocol on the GPIO bus.

Bit-banging the APA102C protocol
The LEDs used in our example are connected together in a string, where one LED
takes its input from the output of the previous one. The first LED in the string
takes its data from the Pi. Each LED along the string can be thought of as having
a number or an address. When we send out data, we have to send it to all the LEDs,
but we need to change the data only for those LEDs that we want to change. If the
data for an individual LED is the same as last time, it will not change. That way,
we can change individual LEDs by only changing data for those LEDs we want to
change and leaving the data for the others, the same as last time.

The APA102C — in addition to the normal red, green, and blue PWM values, which
control the brightness — has another brightness-controlling number, which con-
trols the current down the LED. This is the equivalent of changing the resistor
value. Valid brightness-control numbers here range from 0 to 31. Each LED needs
data consisting of four numbers: brightness plus red, green, and blue values. This
data needs to be stored in the computer in what is known as a buffer. In Python,
we can implement this buffer as a list. We can then manipulate this list — change

FIGURE 17-6:
Timing diagrams
for the WS2812b

and APA102C
LEDs.

366 PART 5 Exploring Electronics with the Raspberry Pi

the numbers in it, in other words — to reflect what we want to see on each
LED. When we’re good and ready, we fire out the whole buffer to the string
of LEDs.

Let’s look at what to put in this buffer, A complete data message has a header, used
to warn the LEDs that data is coming. That header consists of 32 bits of zero,
which means the data GPIO pin needs to be set at zero and the clock GPIO pin
needs to be pulsed up and down 32 times. Then the message data is pulled out of
the list, one number at a time. This is a 32-bit number — each bit in turn is placed
on the data output pin and the clock signal is set to High. When all the LEDs have
been fed, another series of zeros, known as the footer, are sent. This needs to con-
sist of a number of pulses — at least 32 plus half the number of LEDs, to be pre-
cise. The code in Listing 17-2 is a fragment of code that would do this.

LISTING 17-2:	 Bit-Banging the Data to the LED

io.output(da,io.LOW) # set data pin low

for i in range(0,32): # send header

 io.output(ck, io.LOW) # pulse the clock pin

 io.output(ck, io.HIGH)

for i in range(0,numLeds): # send data

 d = ledArray[i] # get a single LED's worth of data

 for j in range(0,32):

 io.output(ck, io.LOW)

 if d & 0x80000000 :

 io.output(da, io.HIGH)

 else:

 io.output(da, io.LOW)

 d = d << 1

 io.output(ck, io.HIGH)

io.output(da, io.LOW)

for i in range(0,33+(numLeds/2)): # send footer
 io.output(ck, io.LOW)

 io.output(ck, io.HIGH)

Note that this is a fragment only and not a complete program. Note also that this
code uses the shift operator (<<), which moves the data word, or pattern, one place
to the left so that the next byte to send is in the most significant bit of the word.
This is the same technique we show you how to use in forming the dice pattern in
Chapter 16.

CHAPTER 17 Lots of Multicolored LEDs 367

Creating a class
The bit-banging code is so useful that it could be included in all programs where
you want to use these LEDs. However, in order to make it convenient to use, we
can make this code into a class so that you don’t have to keep including these lines
in your own programs. This is just like the RPi.GPIO library, which is written as a
class and installed in Python. You can write your own classes and have them
included in the language or, as we do here, just have the class file in the same
folder as the program that uses it and then call it up at the start of the program.
As well as outputting the data to the GPIO pins, we can bundle other useful stuff
in the class, like ways to set the brightness, set an LED’s color, and set up the data
buffer. These functions of a class are known as methods and can be simply invoked.
Listing 17-3 shows the implementation of a bit-banging class for the APA102
LED. Save it in a file called apa102bang.py in the same folder as the other code
from the rest of this chapter.

LISTING 17-3:	 Bit-Banging the APA102 Class

#!/usr/bin/env python3

Class for driving APA102 LEDs

#By Mike Cook

import RPi.GPIO as io

io.setwarnings(False)

class Apa102bang(): # Define our class

 def __init__(self,numberLeds,data,clock,bright):

 self.setBrightness(bright)

 self.da = data

 self.ck = clock

 self.numLeds = numberLeds

 io.setmode(io.BCM)

 io.setup(self.ck,io.OUT)

 io.setup(self.da,io.OUT)

 io.output(self.ck, io.HIGH)

 io.output(self.da, io.HIGH)

 self.ledArray = [self.br<<24 for i in range(0,self.numLeds)]

 def setBrightness(self,brightness):

 if brightness > 31:

 brightness = 31

 if brightness < 0:

 brightness = 0

 self.br = brightness | 0xE0

(continued)

368 PART 5 Exploring Electronics with the Raspberry Pi

 def setLed(self,pos,col):

 if pos < self.numLeds and pos >= 0:

 self.ledArray[pos] = (self.br<<24)|(col[2]<<16)|(col[1] <<8)|col[0]

 def setAll(self,col):

 for i in range(0,self.numLeds):

 self.ledArray[i] = (self.br<<24)|(col[2]<<16)|(col[1] <<8)|col[0]

 def show(self):

 io.output(self.da,io.LOW)

 for i in range(0,32): # send header

 io.output(self.ck, io.LOW)

 io.output(self.ck, io.HIGH)

 for i in range(0,self.numLeds):

 d = self.ledArray[i] # send data

 for j in range(0,32):

 io.output(self.ck, io.LOW)

 if d & 0x80000000 :

 io.output(self.da, io.HIGH)

 else:

 io.output(self.da, io.LOW)

 d = d << 1

 io.output(self.ck, io.HIGH)

 io.output(self.da, io.LOW)

 for i in range(0,33+(self.numLeds>>1)): # send footer
 io.output(self.ck, io.LOW)

 io.output(self.ck, io.HIGH)

Notice how the class name is nearly the same as the filename? The only difference
is that the filename is in all lowercase letters. Keeping this distinction is impor-
tant because it allows classes to be recognized correctly. Each method is defined
just like a function with a def statement, and the whole class is initialized with a
def __init__ function. The other thing you will notice is that a lot of the vari-
ables start with self. This is to tell the compiler that this variable is one that
belongs to the class itself and that these can actually have different values, if the
class has more than one instance.

You can usually tell what each method will do just by looking at the function
names. For example, when you use the setBrightness method, all that happens
is a variable is set that you can then use to set the brightness for future LED set-
tings. (Note that it will not affect the current brightness of all the LEDs.) You could
write a method that does set the current brightness, if you want — that would
involve adding the new brightness level to all LEDs in the list and calling the show
method.

LISTING 17-3:	 (continued)

CHAPTER 17 Lots of Multicolored LEDs 369

To see this in action, we use the Pimoroni Blinkt! LED strip, a low-cost strip of
eight APA102C LEDs that fits over all 40 GPIO header pins (even though it only
uses two GPIO pins in addition to power [5V] and ground). Listing 17-4 shows a
program designed to use the class. (Be sure to save this to the same folder as the
class file.)

LISTING 17-4:	 Using the APA102 Class

#!/usr/bin/env python3

#demo1 using Apa102bang class driver

import time

from apa102bang import Apa102bang

length = 8 ; brightness = 4

dataPin = 23 ; clockPin = 24 # Blinkt! wiring

leds = Apa102bang(length,dataPin,clockPin,brightness)

def main():

 print("APA102 demo - Click the Stop/Restart back end icon quit")

 while True:

 for i in range(0,8):

 leds.setLed(i,(120,0,0)) # red

 leds.show()

 time.sleep(0.06)

 time.sleep(0.6)

 for i in range(0,4):

 leds.setLed(i,(0,120,0)) # green

 leds.show()

 time.sleep(0.06)

 time.sleep(0.6)

 for i in range(4,8):

 leds.setLed(i,(0,0,120)) # blue

 leds.show()

 time.sleep(0.06)

 time.sleep(0.6)

for i in range(0,8):

 leds.setLed(i,(0,0,0)) # black

 leds.show()

 time.sleep(0.06)

 time.sleep(0.6)

Main program logic:

if __name__ == "__main__":

 main()

370 PART 5 Exploring Electronics with the Raspberry Pi

The code starts off by defining the number of LEDs you have, the brightness you
want to run them at, and the pins used for the data and clock lines. These lines are
determined by the way the Blinkt! is made, but these could be any two GPIO pins,
if you want to experiment with more LED strips connected to the Pi. The leds
variable is set to be the class reference — use this reference followed by a dot and
the method’s name to call up any method. The program simply sets each LED in
turn to the three primary colors and back again to black. Note how in the setLED
method the colors are given as three values in a tuple. It is the show method that

SOURCING SOUNDS
A good source of sounds used to be those sounds used by the Scratch language, which
were kept in the directory /usr/share/scratch/Media/Sounds. Unfortunately, this is
no longer the case with the newer releases of the language. However, with a small bit of
work, you can get access to them again. Follow these steps:

1.	 Use the File Manager to create a folder at /home/pi called SoundResources.

This is where you’ll put the sounds.

2.	 Open the Chrome web browser, and in the address bar, type https://
download-ib01.fedoraproject.org/pub/fedora/linux/releases/33/
Everything/source/tree/Packages/s/scratch-1.4.0.7-21.fc33.
src.rpm.

3.	 After the file is finished loading, using the File Manager go to the Downloads
folder, right-click the newly downloaded file, and choose the Extract Here
option.

4.	 Right-click the scratch-1.4.0.7.src.tar.gz file and again choose the
Extract Here option.

5.	 Double-click the scratch-1.4.0.7.src folder, and then double-click the
Media folder.

6.	 Right-click the Sounds folder and choose Copy.

7.	 Navigate to the SoundResources folder you just created, right-click, and
choose Paste.

You’ve now copied all the sounds from Scratch into your folder.

8.	 Select all the newly created files in your Downloads folder, right-click, and
choose Move to Trash.

9.	 If you don’t like having things in your Trash, right-click the Trash and choose
Empty Trash.

https://download-ib01.fedoraproject.org/pub/fedora/linux/releases/33/Everything/source/tree/Packages/s/scratch-1.4.0.7-21.fc33.src.rpm
https://download-ib01.fedoraproject.org/pub/fedora/linux/releases/33/Everything/source/tree/Packages/s/scratch-1.4.0.7-21.fc33.src.rpm
https://download-ib01.fedoraproject.org/pub/fedora/linux/releases/33/Everything/source/tree/Packages/s/scratch-1.4.0.7-21.fc33.src.rpm
https://download-ib01.fedoraproject.org/pub/fedora/linux/releases/33/Everything/source/tree/Packages/s/scratch-1.4.0.7-21.fc33.src.rpm

CHAPTER 17 Lots of Multicolored LEDs 371

actually displays the contents of the data buffer on the LEDs. If you don’t call this
method, the LEDs do not change.

Though this is all very interesting, the results of running this program are not
very spectacular — so let’s make a game with this small LED strip.

Rainbow Invaders
Rainbow Invaders plays a bit like the old Space Invaders game, only in one dimen-
sion. The alien invaders drop bombs of various colors onto your base in an attempt
to destroy you, but you can neutralize these bombs by sending up a beam of the
same color. You have three buttons to choose from — red, green, and blue — and
pushing a button launches a beam of that color. Sounds easy, right? Not so fast.
The invaders can also drop bombs of the secondary colors as well as white, so you
have to press the right combination of your three buttons to generate the right
color beam. If three bombs get through, then your base is destroyed. As your base
gets more hits, its color changes. The higher up a bomb is when your beam hits it,
the higher you score. Add a few sound effects and this is the game.

To get this game off the ground, the first thing you have to do is to build the hard-
ware. In this case, this means adding three push buttons to the Blinkt! LED strip.
Unfortunately, this is a bit trickier that it could be. This is because the LED strip
takes up all the GPIO pins — even the ones it doesn’t use. There are two ways
round this problem: You could solder wires on the back of the Blinkt! and bring
these out to your push buttons, or you could use an extender board, like the Black
HAT Hack 3R or the Mini Black HAT Hack 3R. Figure 17-7 shows where to solder
the wires to the back of the Blinkt!, and Figure 17-8 shows the Black HAT Hack 3R
extender board.

Your base in the game is the righthand LED, but with the Black HAT board, you
can position this LED so that your base is at the bottom of a vertical line.

We wrote the software using the Pygame framework that comes preloaded with
the Pi’s operating system, because it’s a great framework for handling sound
effects. You should store your sound samples in a directory you create and then
name sounds, in the same directory as this game file. Go to your SoundResources
directory, then into the Sounds one. Copy the sounds ComputerBeeps2, Laser1,
and Screech one at a time from the Electronic directory; and then put them in the
sounds directory you just created. Do the same for the Pop sound from the Effects
folder of your sound resources. The code for the game is in Listing 17-5.

372 PART 5 Exploring Electronics with the Raspberry Pi

LISTING 17-5:	 Rainbow Invaders Game

#!/usr/bin/env python3

Rainbow Invaders by Mike Cook

import RPi.GPIO as io

import pygame

FIGURE 17-7:
Soldering wires to

the back of the
Blinkt! strip.

FIGURE 17-8:
Black HAT

Hack3R, giving
two sets of GPIO

pins.

CHAPTER 17 Lots of Multicolored LEDs 373

import time, random

from apa102bang import Apa102bang

def main():

 global beam,gameOn,bombHeight,bombCol

 print("Rainbow Invaders Press Ctrl+C to quit")
 init()

 gameOn = True ; yourScore = 0

 bombHit = False ; bombHeight = 8

 hits = 3 ; sky.setLed(0,base[hits])

 sky.show() ; time.sleep(gameSpeed)

 nextBombMove = time.time()+gameSpeed
 bombCol = (0,0,0) ; setBombCol()

 while 1:

 while gameOn:

 if time.time()>nextBombMove:

 bombHeight -=1

 showBomb(bombHeight)

 nextBombMove = time.time()+gameSpeed
 yourScore = fireBeam(bombHeight,yourScore)

 if bombHeight == 0 :

 sky.setAll((0,0,0))

 sky.setLed(0,(255,0,0))

 sky.show() # explosion

 gameSound[3].play() # base hit

 time.sleep(2.5) # time to play

 hits -= 1

 if hits == 0:

 gameOn = False

 else:

 print("Base hit:-",hits,"from destruction")

 sky.setLed(0,base[hits])

 setBombCol()

 bombHeight = 8

 sky.show()

 print("Base destroyed:- your score",yourScore)

 time.sleep(gameSpeed * 10)

 print("Push any button for a new game")

 while io.input(fireR) and io.input(fireG) and io.input(fireB):

 pass

 print("New game starting")

 hits = 3

 gameOn = True

 bombHeight = 8

 sky.setLed(0,base[hits])

 sky.show()

 setBombCol()

 while (not io.input(fireR)) | (not io.input(fireG)) | (not io.input(fireB)):

 pass

(continued)

374 PART 5 Exploring Electronics with the Raspberry Pi

def getBeam():

 m = 128

 b = ((not io.input(fireR))*m,(not io.input(fireG))*m,(not io.input(fireB))*m)

 return b

def showBeam(col,limit):

 for i in range(1,limit):

 sky.setLed(i,col)

 sky.show()

 time.sleep(0.05)

def showBomb(pos):

 global bombCol

 showBeam((0,0,0),8)

 sky.setLed(pos,bombCol)

 sky.show()

def fireBeam(far,score):

 global beam,bombCol,bombHeight

 if getBeam() != beam: # laser fire

 beam = getBeam()

 if beam != (0,0,0):

 gameSound[1].play()

 showBeam(beam,far)

 if beam == bombCol : #hit OK

 time.sleep(0.2)

 gameSound[2].play() #hit sound

 score += far
 time.sleep(1.5) # allow hit to finish

 bombHeight = 8

 setBombCol()

 return score

def setBombCol():

 global bombCol

 gameSound[0].play() # bomb incoming

 while 1 :

 r = random.randint(0,1) * 128

 g = random.randint(0,1) * 128

 b = random.randint(0,1) * 128

 if not(r==0 and g==0 and b==0) and bombCol != (r,g,b) : break

 bombCol = (r,g,b)

def init():

 global fireR,fireG,fireB,beam,sky,gameSpeed,base,gameSound

 random.seed()

 io.setmode(io.BCM)

LISTING 17-5:	 (continued)

CHAPTER 17 Lots of Multicolored LEDs 375

 fireR = 4 ; fireG = 3 ; fireB = 2

 io.setup([fireR,fireG,fireB],io.IN, pull_up_down=io.PUD_UP)

 beam = getBeam()

 length = 8 ; brightness = 4

 sky = Apa102bang(length,23,24,brightness)

 gameSpeed = 0.3 # the step speed of game in seconds

 pygame.mixer.quit()

 pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512)

 base = [(0,0,0),(32,0,32),(0,64,0),(0,128,128)] # base colors

 soundEffects = ["ComputerBeeps2","Laser1","Pop","Screech"]

 gameSound = [pygame.mixer.Sound("sounds/"+ soundEffects[sound] + ".wav") ↩
 for sound in range(0,4)]

Main program logic:

if __name__ == "__main__":

 try:

 main()

 except KeyboardInterrupt:

 pass

turn off all LEDs

sky.setAll((0,0,0))

sky.show()

The main function, consisting of two large loops, is where most of the action hap-
pens. The inner loop while gameOn runs a round of the game, where bombs are
sent down until there have been three hits to the base — in other words, when a
bomb reaches a height of zero. The first if statement checks to see whether
enough time has passed to move the bomb another step closer to the base. The call
to the fireBeam function checks to see whether buttons are being pressed to gen-
erate a beam, and if they are, the beam is fired off and a laser sound is triggered.
If the beam color matches the bomb color, then the hit sound is triggered and the
current bomb height is added to your score. The round is then restarted by setting
the bomb height back to 8 and a new bomb color is generated. Then the program
returns to the main loop.

If a bomb is found to have reached the base, then the base is turned red and the
explosion sound is triggered. The hits variable is decremented, and if it has
reached zero, the round is over and the gameOn variable is set to false, thus end-
ing the current loop. Then the final lines of the while 1 loop displays the score
and waits until you have pressed a button before starting the game over again.

The array of LEDs here is called sky, which is descriptive enough, and the overall
speed of the game is controlled by the gameSpeed variable in the init function. So
far, we’ve been advising you to stop Thonny by clicking the stop icon, which is the
best way to stop. However, there are other ways to quit a running program. When

376 PART 5 Exploring Electronics with the Raspberry Pi

you quit the game by pressing Ctrl+C. This a Keyboard Interrupt occurs, this allows
us to do some tidying up after we’ve finished. In this case, all LEDs are turned off
to clean up the display. However, this method of stopping sometimes leaves
Thonny hanging (unresponsive); when this happens, click the stop icon as well.

You can tinker with the game speed and the number of hits your base can stand,
but you can also make the game a lot harder. If you add a fourth push button, you
can make this a half-brightness button. That means to match the bomb color, you
have to press the right combination of red, green, and blue and also the bright-
ness. You also need to feed this variation in brightness into the generation of the
bomb color. It isn’t hard, but it does require a bit of thinking.

Keepy Uppy
Another game you can play on exactly the same hardware is Keepy Uppy, the well-
known football pastime and skill demonstration where you have to keep a football
in the air all the time, just by kicking it up. The ball is a moving LED, but unlike
the game in the previous section, it’s a fixed color and you have to press a single
button during the time when the ball is on your “foot” — the bottom LED, in
other words. If you time it right, the ball moves up again until it reaches the top
and then descends. A further challenge in playing is that if the player’s actual but-
ton press is in the second half of the time allotted (that is, just in time), then the
game speed increases, making it harder to kick the ball as soon as it can be kicked.
Kick it in the first half of the allotted time and the game speed reverts to the origi-
nal speed. This makes it more interesting and difficult to play. The code for the
game is in Listing 17-6.

LISTING 17-6:	 Keepy Uppy Game

#!/usr/bin/env python3

KeepyUppy by Mike Cook

import RPi.GPIO as io

import time, random

from apa102bang import Apa102bang

stripLength = 8

def main():

 global beam,gameOn,ballHeight,ballCol

 print("Keepy Uppy")

 init()

 gameOn = True

CHAPTER 17 Lots of Multicolored LEDs 377

 ballDirection = -1; ballHeight = stripLength

 foot = 0 ; kicks = 0

 currentGameSpeed = gameSpeed

 leds.setLed(0,footCol[foot]) # foot color

 leds.show()

 time.sleep(gameSpeed)

 nextBallMove = time.time()+gameSpeed
 lastKickMade = not(io.input(kick))

 while 1:

 while gameOn:

 kickMade = not(io.input(kick))

 if kickMade and not(lastKickMade) :

 if ballHeight == 0: # kick

 ballDirection = ballDirection * -1

 #speed up if you are late pressing

 if nextBallMove - time.time() < currentGameSpeed/2 :

 currentGameSpeed = currentGameSpeed / 2

 else:

 currentGameSpeed = gameSpeed

 nextBallMove = time.time()-1.0

 foot = 1

 kicks += 1 # add to your score
 else:

 foot = 2

 if time.time()>nextBallMove:

 leds.setLed(ballHeight,(0,0,0))

 ballHeight +=ballDirection
 leds.setLed(0,footCol[foot])

 leds.setLed(ballHeight,ballCol)

 foot = 0

 nextBallMove = time.time()+currentGameSpeed
 if ballHeight >= stripLength-1 :

 ballDirection = -1

 if ballHeight < 0: #missed the ball

 gameOn = False

 lastKickMade = kickMade

 leds.show()

 print("Ball missed your score",kicks)

 while not(io.input(kick)):

 pass

 time.sleep(gameSpeed* 5)

 print("Press kick for a new game")

 while not(io.input(kick)):

 pass

 kicks = 0

 gameOn = True

 ballHeight = stripLength

(continued)

378 PART 5 Exploring Electronics with the Raspberry Pi

 ballDirection = -1

 leds.show()

 currentGameSpeed = gameSpeed

 while io.input(kick):

 pass

def init():

 global kick,ball,leds,gameSpeed,footCol,ballCol

 random.seed()

 io.setmode(io.BCM)

 kick = 4

 io.setup(kick,io.IN, pull_up_down=io.PUD_UP)

 brightness = 4

 dataPin = 23 ; clockPin = 24 # Blinkt! wiring

 leds = Apa102bang(stripLength,dataPin,clockPin,brightness)

 gameSpeed = 0.3 # step speed of game

 ballCol = (128,128,0)

 footCol = [(32,32,32),(128,0,0),(0,0,128)] # foot colors

Main program logic:

if __name__ == "__main__":

 try:

 main()

 except KeyboardInterrupt:

 pass

turn off all LEDs

leds.setAll((0,0,0))

leds.show()

Here, again like the previous program, the main structure of the code can be found
in the two while loops in the main function. One issue that needs to be addressed
is that the push button could just be held down so that it would register as being
pressed all the time — and so always kick the ball at the right time. To prevent
this from happening, you have to implement a state-change detector on the but-
ton. This involves looking at the current state of the push button and comparing
it with the previously read value. Only if the previous value indicated Unpushed
and the current value equals Pushed does the program recognize that the button
has just become pushed. We say this is an edge detection because, rather than look
at the simple state of the push button, we can detect when the state changes. (If
this is drawn on a diagram, this transition looks like an edge.)

For each successful kick, you get one point added to your score, just like in the real
game. The nextBallMove variable is the time the ball moves next. By subtracting
the current time from this, you can tell how quickly the kick has been detected in

LISTING 17-6:	 (continued)

CHAPTER 17 Lots of Multicolored LEDs 379

the time period allotted to make a successful kick. This is used to speed up or
restore the original speed of the ball movement.

If you want to take things further, one thing you can do is make the strip longer.
The game was designed for an 8-LED strip, but simply by changing the strip-
Length variable at the start of the code and adding a longer strip, you can make
the ball go higher. You can get much longer strips than the simple Blinkt! 8-LED
strips, as you shall soon see. You can also try using some sounds with the game.

LEDs Galore
The great thing about LEDs like the APA102C is that you can control lots of LEDs
with just the two connections, “almost” without limit. So, before you consider
projects that involve hundreds of LEDs, let’s look at some of those limits, and
some ways round them.

Current limits
Current is the first and biggest limitation when trying to drive lots of LEDs. Sure,
one LED only draws a small amount of current, but any small number when mul-
tiplied by a big number starts to be important. Suppose that you’re running your
Raspberry Pi off a 2A power supply —roughly twice the peak current that the Pi
needs. You should never take the maximum rated current out of a power supply.
Instead, always keep the maximum current at about 80 percent of rated current.
With a 2A power supply, that ends up being 1.6A. It is therefore reasonable to say
that you have 0.6A, or 600mA (milliamps), of current capacity in a typical setup.
If each LED takes 60mA, that is 20mA for each color. With that setup, you can
drive a maximum of 10 LEDs with a white color at full power.

Now, APA102C LEDs are very bright and would be overpowering at close range.
Luckily, there are two ways to control the brightness, and if it’s controlled, you
use less current and so can drive more LEDs. The first way is to scale down the
PWM values, so instead of using a value of 255 for a red, you’d simply use 128 and
that will use half the current.

Easy enough to say, but programming mistakes can easily happen and put unin-
tended values into the PWM control. It’s also the case that using PWM doesn’t
limit the peak current the LED takes — only the average current. Nevertheless, the
PWM control is capable of splitting the 20mA current per LED into 78uA (micro-
amp) steps.

380 PART 5 Exploring Electronics with the Raspberry Pi

A better way of controlling the brightness of the APA102C is by using the bright-
ness control. This applies to each LED individually along with the PWM values. So
far, we have just showed you how to set the brightness at a fixed level and then
ignored it — this is a good strategy because it means you have a great deal of pro-
tection from programming errors. The brightness control actually limits the cur-
rent through the LEDs and is controllable in 31 steps. Full current is given by a
brightness value of 31, and other values of brightness give the number of 31ths of
full current. So, if a single LED takes a maximum of 60mA, then with a brightness
of 8, it will only take a maximum 15.48mA. So, the spare 600mA can drive
38 LEDs. Even so, a brightness of 8 is very bright when looking directly at an LED.
A brightness of 2 pushes up that number to 155 LEDs and still looks good.

Anything over 155 LEDs and you will have to resort to an external power supply.
It’s quite easy to use: You just supply the 5V and ground to the LEDs and make
sure the ground of the power supply is connected to the ground of the Raspberry Pi.

Signals and memory
The two other limitations you have to deal with concern signals and memory.
Fortunately for you, there’s no shortage of memory on the Raspberry Pi, unlike
other embedded controller boards, like the Arduino. There is cause for concern,
however, when it comes to signals. The Blinkt! board used earlier in this chapter
connected the GPIO signals directly into the chain of LEDs. The problem is that the
LEDs, because they’re powered with 5V, need a 5V logic-level signal to drive them.
It just so happens that the LED’s specifications state that the minimum level suf-
ficient to be seen as a Logic One is 0.7 times the supply voltage. For a 5V supply
voltage, this means a logic high of 3.5V, which is just over the 3.3 volts you get
from a GPIO pin. It turns out that it does seem to work anyway, but it isn’t guar-
anteed to work in all conditions and temperatures. That means a driver circuit is
often included to boost the clock and data signals to 5V. This becomes more
important the further away the first LED is from the Pi — and the more interfer-
ence there is in the local environment from things like motors or fluorescent light
fittings. Figure 17-9 shows a signal driver you can make yourself with a 74LS14 or
a 74AHCT14 chip.

Basically, this chip acts as an inverting buffer, but we don’t need to invert the
signals, so we just pass each signal through two buffers to keep it the right way
up. As we now have a 5V signal, there’s a chance that, if the supply voltage on the
LEDs drops, then a series resistor will keep the signals from damaging the first
LED. There are ready-built drivers around, with most based on the 74HTC125 chip.
Note the large capacitor across the external power supply. The value is not too
critical, and you can make it much bigger than shown here.

CHAPTER 17 Lots of Multicolored LEDs 381

Display update
Finally, you have to deal with the update question, or how fast the patterns shown
by the LEDs can be changed. Using the bit-banging technique we described in the
“Bit-banging the APA102C protocol” section, earlier in this chapter, it can take
between 0.45 and 0.23mS to send out the data to a single LED. This time difference
occurs because Linux steals time from any running program, and so the time for
a refresh depends on what the operating system is doing at that moment. If this
interruption occurs in that crucial time when the program is bit-banging the data
out to the LEDs, then the bit banging data refresh takes longer. This means that
for 144 LEDs, you can update the pattern they show about 15 times per second, at
the slowest. Once updated, they require no further intervention from the Rasp-
berry Pi until you need to update them again.

Getting more LEDs
There are various ways you can get more LEDs to play with, and perhaps the most
exciting is the series of shapes you can get from the RasPiO Inspiring program-
mable LED boards. Shapes range from straight strips, circles, semicircles to tri-
angles and squares. There’s also a driver board for producing the correct voltage
signals and, as a bonus, a socket on this driver board allows you to plug in an
analogue-to-digital converter chip. That means you can measure analogue volt-
ages for items like control knobs and sensors. Figure 17-10 shows the triangle and
straight strip.

FIGURE 17-9:
APA102C driver

circuit.

382 PART 5 Exploring Electronics with the Raspberry Pi

The great thing about these shapes is that they’re easy to set up. Each strip has a
plug and socket on it, for input and output, thus enabling you to easily chain
together as many strips as you want. The triangle is our favorite — use two or
three to make a 3D LED pyramid. In addition to working great with your Raspberry
Pi, they can be used on a number of other controllers.

LED strips
Another popular way of getting lots of these LEDs already wired together is to get
them on a flexible, printed circuit strip. These come in various lengths, from half
a meter to 4 meters. Be sure to get the APA102 type and not the cheaper WS2812b
type, to ensure that they work with all the code in this book. You can get 30, 60,
or 144 LEDs per meter — as you’d expect, the cost is related to the number of
LEDs. These circuit strips also come in a variety of options — black or white back-
ing PCB, bare, coated in silicon, or in a waterproof silicon tube. You can easily cut
these strips into lengths, if need be, with a sharp blade.

In addition to the RGB LED format, the APA102 comes in a white-only LED variant.
These are good for domestic lighting and can be dimmed very easily.

LED matrix
One more form you can get these LEDs in is an LED matrix. Adafruit sells a num-
ber of different configurations — the biggest (and most expensive) model is a

FIGURE 17-10:
Some shapes

from the RasPio
Inspiring LED

strip range.

CHAPTER 17 Lots of Multicolored LEDs 383

240mm ridged disk. If that’s not what you need, you can get an 8 x 32 grid,
16 x 16 grid, or 8 x 8 grid, all on a flexible backing board. However, our favorite is
a high-density 8 x 8 grid, on a ridged board. Its main feature is that, instead of
using the 5 x 5mm standard LED, it uses a tiny 1.8 x 1.8mm package. That means
the whole grid can be fitted into a display an inch square. These tiny LEDs only
take 40mA when fully on, so they take less current than the normal-size LEDs.
However, this does add up to a maximum of 2.5A. At that amount of current, the
board will get quite warm as well. Nevertheless, they can be very bright, so keep
the brightness down. You need to do a bit of soldering to connect the wires and the
supplied capacitor to the back of the board, but these are all marked. We also wired
the 5V and ground output to the 5V and ground input, to get a better power distri-
bution on the board. This is shown in Figure 17-11.

Such a small matrix has many applications, one of which is to make a smart
decorative brooch. We thought we would like to have a go at this, and so we came
up with some colorful moving-display patterns.

We’re all spoiled these days when it comes to graphics, because all their primitive
functions — things like drawing lines and squares — are built into most lan-
guages. However, when faced with a display like this matrix, it is necessary to
write your own.

When we address the LEDs in a strip, they’re numbered from zero to the length of
the strip, and physically placing these LEDs so it looks like a matrix is just the
same. However, when thinking about a matrix, it’s much more convenient to con-
sider the x and y address of an LED; so one of the fundamental routines when
driving a matrix is to convert an x / y coordinate pair into an LED number. The
actual conversion involved depends on how the LED chain is bent into a matrix.
The Adafruit matrix uses what is called a row bottom-up raster arrangement,
which is a zigzag arrangement where the next LED of a line is followed by the first
LED on the next line up. The LEDs start off at zero in the lower-left of the matrix
(known as the origin) and increase along the x-axis as the LED number increases.
When the end of the x LEDs is reached, the next LED number is directly above the

FIGURE 17-11:
Adafruit’s

high-density
matrix display.

384 PART 5 Exploring Electronics with the Raspberry Pi

original origin. This repeats along the second row, and the third, and so on until
the end of the strip. (The other fundamental way of wiring a matrix is known as a
serpentine raster, where the strip zigzags up the display like a snake. Here the last
LED in a line is followed by the last LED of the next line, with this next line going
in the opposite direction to the first one. You can see these two different schemes
in Figure 17-12.)

Converting to LED numbers for the simple raster is quite easy and is given by

LedNumber = X + (Xmax * Y)

given that X and Y are the coordinates you want to get the LED number for and that
Xmax is the number of LEDs in a row. Of course, this assumes that both coordinates
are within the confines of the matrix. In practice, it is necessary to check the coor-
dinates before calculating the LED number.

The serpentine raster is physically easier to wire up, but a little more complicated
to work out an LED number for. This is because the preceding conversion only
works on odd-numbered rows. For even-numbered rows, you need to use this:

LEDNumber = (Xmax - X - 1) + (Y * Xmax)

That means any conversion routine must first test to see if the y-coordinate is
indicating an odd or even row before choosing the formula to use. This is simply
done by looking at the least significant bit — the rightmost bit in the number — of
the y-coordinate.

FIGURE 17-12:
Making a matrix

with raster wiring
and serpentine

raster wiring.

CHAPTER 17 Lots of Multicolored LEDs 385

Other graphics primitives can help you draw things on a matrix. Perhaps the most
fundamental is line drawing, where, given a start and an end coordinate pair, you
can draw a line of lit LEDs between them. Of course, on such a small matrix, only
horizontal, vertical, and 45-degree diagonal lines will look good; all other lines
will be stepped, or jagged. The trick here is to work out the difference between the
start and end points; the axis with the biggest difference is given an increment
value of 1, with the smaller axis change given an increment value of the smaller
length over the larger length. Then the x-y coordinate to plot starts off at the ini-
tial point of the line, and subsequent points are found by repeatedly adding the
increments to the respective coordinates. One of the increments will be 1, and the
other a fractional value. It is only when the size of this fractional coordinate
exceeds a whole number that the coordinate is changed.

We implemented two other graphics primitives: the square and the filled square.
In fact, the code for only an outline of a square is longer than a filled square. We
could have used the line primitive to implement these two functions, but drawing
horizontal and vertical lines is much quicker with a simple loop because no divi-
sion operation is needed.

We made three different pattern displays that change automatically after a fixed
amount of time. The program is shown in Listing 17-7.

LISTING 17-7:	 Matrix Broach

#!/usr/bin/env python3

Adafruit 8X8 matrix broach

import time, random

from apa102bang import Apa102bang

dataPin = 23 ; clockPin = 24

lenX = 8 ; lenY = 8

length = lenX * lenY ; brightness = 1

half = int(length / 2)

patternDuration = 8.0

leds = Apa102bang(length, dataPin, clockPin, brightness)

def main():

 print("APA102 8 by 8 matrix broach - Press Ctrl+C to quit")
 nextChange = time.time() + patternDuration
 pattern = 1

 while True:

 if pattern == 1:

 pattern1()

(continued)

386 PART 5 Exploring Electronics with the Raspberry Pi

 if pattern == 2:

 pattern2()

 if pattern == 3:

 pattern3()

 if time.time() > nextChange:

 nextChange = time.time() + patternDuration
 pattern +=1
 if pattern > 3:

 pattern = 1

def pattern1():

 for side in range(1,lenX):

 for i in range(0,lenX):

 square(i,i,side,randCol())

 leds.show()

 time.sleep(0.1)

 time.sleep(0.6)

 leds.setAll((0,0,0))

 leds.setAll((0,0,0))

 time.sleep(0.6)

def pattern2():

 start = 0

 for side in range(lenX-1,0,-2):

 square(start,start,side,randCol())

 leds.show()

 time.sleep(0.08)

 start += 1
 #time.sleep(0.6)

 #leds.setAll((0,0,0))

def pattern3():

 col = randCol()

 for t in range(1,8):

 line(0,0,t,0,col)

 hold()

 for t in range (1,8):

 line(0,0,8,t,col)

 hold()

 for t in range (8,0,-1):

 line(0,0,t,8,col)

 hold()

LISTING 17-7:	 (continued)

CHAPTER 17 Lots of Multicolored LEDs 387

 for t in range(7,0,-1):

 line(0,0,0,t,col)

 hold()

def hold():

 leds.show()

 time.sleep(0.08)

 leds.setAll((0,0,0))

def matrix(x,y,col):

 pixel = x + y*8
 if pixel < length and x < lenX:

 leds.setLed(pixel,col)

def squareFill(x,y,side,col):

 for xp in range(x,x+side):
 for yp in range(y,y+side):
 matrix(xp,yp,col)

def square(x,y,side,col):

 for xp in range(x,x+side):
 matrix(xp,y,col)

 for xp in range(x,x+side+1):
 matrix(xp,y+side,col)
 for yp in range(y,y+side):
 matrix(x,yp,col)

 for yp in range(y,y+side):
 matrix(x+side,yp,col)

def line(xs,ys,xe,ye,col):

 xl = xe - xs

 yl = ye - ys

 if xl > yl:

 xinc = 1.0

 yinc = yl/xl

 else:

 yinc = 1.0

 xinc = xl/yl

 x= float(xs) ; y = float(ys)

 while x != xe or y != ye:

 matrix(int(x),int(y),col)

 x += xinc
 y += yinc

(continued)

388 PART 5 Exploring Electronics with the Raspberry Pi

def randCol():

 r = 0; g =0; b=0

 while r+g+b == 0:
 r = random.randint(0,2) * 64

 g = random.randint(0,2) * 64

 b = random.randint(0,2) * 64

 return (r,g,b)

Main program logic:

if __name__ == "__main__":

 try:

 main()

 except KeyboardInterrupt:

 pass

turn off all LEDs

leds.setAll((0,0,0))

leds.show()

The program uses a variable called pattern to determine what to display. When it
has been displayed for the time given by the patternDuration variable, the pat-
tern value is changed. This patternDuration variable is only looked at when the
pattern function returns, so long patterns like pattern1 will always complete at
least one cycle of the pattern.

The three patterns use the different pattern primitives to display a sequence of
patterns in random colors given by the randCol function. This function generates
a mix of two levels of color for each of the three components but excludes black.
The first pattern generates a sequence of squares whose lower corners are on the
diagonal of the display. These squares start off small and then increase each time
the diagonal is filled, until it uses an 8 x 8 square.

The next pattern displays a series of nested squares in changing colors. And the
final display shows a “straight” line sweep, from the bottom corner round the
display counterclockwise.

Given the fact that you’ve created a broach, it can be made into a wearable device
by running it off a battery-powered Raspberry Pi Pico controller. You can custom-
ize the timing of the display by adjusting the sleep times. Note that the solid
square function is not used; you can add that to one of the patterns to make them

LISTING 17-7:	 (continued)

CHAPTER 17 Lots of Multicolored LEDs 389

more complex. However, our main hope is that you will write your own patterns
and have even more of them added to the sequence.

The Raspberry Pi Pico controller uses microPython, so it won’t run with the list-
ings shown here. If it’s teamed up with a Pimoroni Pico Unicorn backpack, it also
has a different aspect ratio consisting of 16 by 7 LEDs. In addition, it has four push
buttons, which allows us to use them to change the patterns. You’ll find some
extra code to do this on this book’s website.

Figure 17-13 shows the schematic for powering a Pico controller using two AA bat-
teries and a switch. We used a two-cell case with switch that we cut off the end of
a string of battery-powered Christmas tree lights that we bought from a thrift
shop for about $1.50. (This requires soldering the positive to pin 39 and the nega-
tive to pin 38.) We also added a blob of hot glue on the wires after the soldered
connection to act as strain relief to prevent the wires from snapping as a result of
repeated flexing. This circuit would work with three cells, but don’t use four.
Figure 17-14 shows a photograph of our wiring.

FIGURE 17-13:
Wiring up a

battery-powered
Pi Pico controller.

390 PART 5 Exploring Electronics with the Raspberry Pi

FIGURE 17-14:
Our battery-

powered Pi Pico
controller.

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 391

Chapter 18
Old McDonald’s Farm
and Other RFID
Adventures

The radio frequency identification (RFID) card is becoming ubiquitous. It’s
being used these days for not only building-access control but also travel
cards, prepayments at cafeterias, and even antiforgery protection on event

tickets. RFID cards can also be used in amusement park wristbands, ski lift passes,
and even blood donor cards. When your pet is chipped, a small glass-encapsulated
RFID tag is injected just under the skin at the neck of the animal.

Given all the things that can be done using RFID, you might think RFID cards are
complex devices, and you would be right. However, if you pack away the complex-
ity in a very smart chip and hide the interaction with that chip in a good class
driver, actually using them in a project is remarkably easy. There are lots of fun
things you can do with RFID cards, and we’re going to show you a few of them in
this chapter.

IN THIS CHAPTER

»» Finding out what makes an RFID
card work

»» Discovering how to read data from
a card

»» Making an RFID-powered jukebox

»» Creating onscreen dress-up doll and
choosing the outfits with RFID cards

»» Getting your Raspberry Pi to sing the
world’s longest version of “Old
McDonald’s Farm”

392 PART 5 Exploring Electronics with the Raspberry Pi

How RFID Work
There are basically three different types of RFID systems available on the market,
mainly distinguished by which frequency range they use. All systems consist
of two parts: a tag or card and a reader. The reader extracts binary bits from a tag
or card using radio waves, so no wires are needed between the reader and the
tag or card. These tags normally known as passive tags — tags that apparently
require no source of power — although a small number are active tags that require
fitting with a small watch battery. These active tags are used when you need a
much longer read range.

The reader sends out a radio signal, and the tag picks it up and uses the power in
that radio signal to activate a microchip. That microchip then sends back a
sequence of pulses, which the reader interprets as a number. The way the tag
sends the data back is different on different types of tag, but the main way is
transmitting the data back to the reader on a different frequency.

Here’s a list of available tags, with their frequency ranges:

»» 125–135 KHz tags: These tags are the ones used in chipping pets and also in
a lot of access control systems. They have a limited storage capacity and are
normally restricted to holding a serial number of only 64 or 128 bits. The tags
and cards used most widely today conform to the EM4100 / EM4200 stan-
dard. Most of the tags are read-only, but a few (the Hitag tags, for example)
allow you to store data using a special peripheral to change the data on
the chip.

»» 13.56 MHz tags: These are the so-called smart cards, capable of storing not
only a serial number but also some data that can be read or written. There is a
measure of security built into the cards so that the data is accessible only to
those who can provide the encryption key. There are many different types of
cards, but by far the most common is the one known as a MIFARE classic card.

»» UHF (860–960MHz): Unlike the other two RFID types, UHF readers are capable
of reading more than one tag at the same time. They are also quite long-
range, typically 10 to 30 feet. They’re designed for bulk inventory taking. Each
item on a palette can be recorded and counted at the same time. The readers
have very high-power transmitters in them, so much so that they’re a health
hazard, requiring strict time limits for workers operating them in order to
avoid long-term radiation exposure. There are other, higher-frequency
systems in this class as well.

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 393

We use the MIFARE classic card in the projects in this chapter — to give it its
Sunday name, the ISO/IEC 14443 A/MIFARE mode protocol. The readers are cheap,
and the tags come in various shapes ranging from key fobs to cards. It’s the cards
that are most convenient for these projects, but it’s not essential to use these.
Figure 18-1 shows the block diagram of what an RFID system looks like
electronically.

You might have come across the acronym NFC, which stands for near field com-
munication. NFC is increasingly used in smartphones to pay for things by waving
your phone close to a reader. The phone is essentially a programmable RFID tag,
but using a protocol that’s different from normal tags. Your phone effectively
becoming a virtual RFID tag. Because it isn’t easy to program your phone to be a
virtual tag, we don’t cover phones in this book, but be aware they are the same
sort of thing as conventional tags.

The antennas used are formed from coils of very thin wire or even metal foil.
Readers for these cards come in all price ranges and interfaces. We use one of the
cheapest — the RFID-RC522 — which can be had for less than $13 for three on
popular electronics and auction sites. They’re based on the MFRC522 chip from
NXP Semiconductors (formerly Phillips), and though this chip is capable of being
connected to a computer in a number of different ways, the way these low-cost
boards are designed, they’re restricted to an SPI interface only. In Chapter 17, we
explain how we could “bit-bang” the SPI protocol, but in this chapter we use the
Raspberry Pi’s built-in hardware SPI interface, which can use only specific pins
on the GPIO connector.

When you get these RFID readers, they come with a choice of two types of header
pins. You need to solder on the right-angled pins. Then you can either make up a
lead or mount the reader vertically on a breadboard, as shown in Figure 18-2.

We feel it’s much better to mount it vertically because it’s away from the metal
forming the internal clips of the breadboard, and metal affects the resonant fre-
quency of the antenna coil — and thus the tag read range. Figure 18-3 shows both
the schematic and layout diagram of how to wire up the reader to the Raspberry Pi.

FIGURE 18-1:
Block diagram

of an RFID
system.

Sean McManus

394 PART 5 Exploring Electronics with the Raspberry Pi

FIGURE 18-2:
Mounting a
reader on a

breadboard.

FIGURE 18-3:
Schematic
and layout

for attaching
to a Pi.

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 395

For a really neat job, mount the reader in a wooden or plastic box, preferably using
nylon screws because close metal reduces the reading range.

After you attach the reader to the Pi, it’s time to get the software you need to read
it. First off, you have to install the python-dev system by typing sudo apt-get
install python-dev into a terminal window of a Raspberry Pi connected to the
Internet.

There is a fair chance that you have the latest version already installed, but it’s
best to check. Next, you need to install the SPI-Py library, which allows you to use
the hardware SPI as a C extension for Python. First, go to https://github.com/
lthiery/SPI-Py. Then click the green Code button and select Download ZIP from
the popup menu.

When the file has finished downloading, open File Manager and click the
Downloads folder. Right-click the SPI-Py-master.zip file, and select Extract
Here. You’ll now see a new directory called SPI-Py-master.

Open up a command window and type in:

cd Downloads/SPI-Py-master

and finally type in

sudo python3 setup.py install

This installs the code that allows you to use the SPI hardware from Python 3.
Finally, go to the Desktop Raspberry icon menu and choose Preferences, then
select the Raspberry Pi Configuration application. When the application opens,
click on the Interfaces tab and make sure that the SPI interface is enabled. If it
isn’t, click to enable it and reboot your Pi.

A MIFARE card’s structure
A MIFARE card consists of 64 blocks of data, with each block 16 bytes long. Some
blocks are for user data, and others hold authentication keys, UID numbers, and
manufacturers’ ID numbers. (A unique identification [UID] number, is 4 bytes
long. In fact, despite its name, a UID might not actually be unique, but chances of
finding a duplicate are many thousands of times less likely than your winning a
big lottery. So, for all practical considerations, it can be considered unique.)

https://github.com/lthiery/SPI-Py
https://github.com/lthiery/SPI-Py

396 PART 5 Exploring Electronics with the Raspberry Pi

Here’s a short list of the first 12 sectors of a card:

Sector 0 [203, 58, 164, 213, 128, 8, 4, 0, 98, 99, 100, 101, 102, 103, 104, 105]

Sector 1 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Sector 2 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Sector 3 [0, 0, 0, 0, 0, 0, 255, 7, 128, 105, 255, 255, 255, 255, 255, 255]

Sector 4 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Sector 5 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Sector 6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Sector 7 [0, 0, 0, 0, 0, 0, 255, 7, 128, 105, 255, 255, 255, 255, 255, 255]

Sector 8 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Sector 9 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Sector 10 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Sector 11 [0, 0, 0, 0, 0, 0, 255, 7, 128, 105, 255, 255, 255, 255, 255, 255]

The first sector’s first four bytes contain the UID that, along with the other bytes
in that sector, cannot be changed. Attempts to write to it will fail. The sectors
containing all zeros are the sectors you can write data to. Each group of four sec-
tors is preceded by a sector that contains two keys that allow read and write access
to the following sectors. You don’t write directly into these, but writing to the
sectors can change these values. They’re initially set up, as shown here, with the
default key values. When you plan a project, be aware that you can only write data
to those sectors that are not key sectors.

Key sectors not to write to are

0, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63

All you need to do to get started using RFID is to include the Rc522rfid class file in
the folder you’re using for your RFID projects. This can be downloaded from the
book’s website. (See the Introduction for more on how to access the site.) We have
not printed it here because it’s long, and you won’t get much from reading it. It
also automatically blocks you from trying to write to key sectors.

Talking to the reader chip over the SPI interface is somewhat complex, and not
really necessary to understand in order to use an RFID reader in a system. It
involves mainly putting numbers into internal chip registers or memory locations
in the correct sequence, as laid out in the chip’s data sheet. However, we have
added five methods at the end of the class in order for you to be able to easily tap
in and communicate with the reader. The methods you need to know about are
described in this list:

»» RC522_WaitForCardRemoved: Ensures that the code pauses until a card has
been removed from the reader — reading of a card can be quick. This is

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 397

complicated by the fact that, with a card held permanently on a reader, every
other call to the detect a card function returns incorrect information, saying
that there is no card on the reader. This is a side effect of how the chip works,
and so to work around it, this method waits until two successive attempts at
reading a card both return no card present. (Note that this is known as blocking
code in that, once it’s called, nothing else can happen until the card is removed.)

»» RC522_ReadCard: Reads and returns the UID number of the card at the
reader. If there’s no card or there’s a reading error, this method returns a
value of –1.

»» RC522_GetCard: Waits until there is no card at the reader and then waits
again until a card is presented and read, and then it returns the card’s UID
number. This is blocking code in that nothing else can happen until a valid
card is read.

»» RC522_GetSector: Reads a 16-byte sector block of data from a card and returns
it. You supply the sector number, the authorization key, and the sector number
you want to read. This is blocking code in that nothing else can happen until a
valid card is read.

»» RC522_WriteSector: Writes a 16-byte block of data to a sector number. You
supply the sector number, the authorization key, and the sector number you
want to write to. This is blocking code in that nothing else can happen until a
valid card is presented. It will not, however, allow you to write directly to key
sectors.

So, let’s see how this works in practice. Listing 18-1 shows some code to simply
read out the UID of a card.

LISTING 18-1:	 Reading the Card’s UID

#!/usr/bin/python3

Token reader by Mike Cook

from rc522rfid import Rc522rfid

rfidReader = Rc522rfid()

print ("Card token reader")

print ("Click stop when done.")

while 1: # repeat forever

 cardNumber = rfidReader.RC522_GetCard()

 print(hex(cardNumber))

398 PART 5 Exploring Electronics with the Raspberry Pi

The UID, as a 16-bit number, is printed out in hexadecimal format. (Printing it in
decimal format doesn’t make sense, because there will be a mixture of positive
and negative numbers, depending on the state of the most significant bit.) So you
can now look at the card’s number, which is not so exciting, but what if you could
get that card number to make something happen — like play a sound file?

A simple RFID jukebox
We can simply use the RFID cards to trigger playing music from the default Music
folder, or from anywhere else, if you like. Copy any MP3 files you may have lying
around into the Music folder on the Raspberry Pi. Next, get as many RFID cards as
you have files, and, using the code in Listing 18-1, write down the card number of
each one on a sheet of paper and put the cards next to their numbers. Then load
up the program in Listing 18-2. Note you will have to change the entries in the
files list, to the names of the MP3 files you actually have here.

LISTING 18-2:	 Simple RFID Jukebox

#!/usr/bin/python3

Simple RFID Jukebox by Mike Cook

from rc522rfid import Rc522rfid

import pygame

pygame.mixer.quit()

pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512)

rfidReader = Rc522rfid()

tokens = [0xf6690ebb, 0xcb3aa4d5, 0x9c35fddd, 0x8cd32dde, 0xc682ade, 0x1cb413de]

files = ["File1", "File2", "File3", "File4", "File5", "File6"]

def main():

 print ("Simple RFID Jukebox reader")

 print ("Click stop when done.")

 while 1: # repeat forever

 cardNumber = rfidReader.RC522_GetCard()

 pygame.mixer.music.stop()

 for i in range(0,len(tokens)):

if cardNumber == tokens[i]:

 try :

 pygame.mixer.music.load("/home/pi/Music/"+str(files[i])+".mp3")
 pygame.mixer.music.play()

 print("Playing:- "+str(files[i])+".mp3")
 except :

 print("No file:-/home/pi/Music/" + str(files[i]) + ".mp3")

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 399

Main program logic:

if __name__ == '__main__':

 try:

 main()

 except KeyboardInterrupt:

 pass

You have to change the tokens list to the token numbers of the cards you have,
and the files list to match the sound files you have. The program automatically
appends the .mp3 prefix. So, when you present a card, the file plays through
the Pygame sound system. What is going on here is that the connection between a
file and an RFID card’s number is fixed in the code by the position of the filename
and the card’s number in a list. That means the first number in the list will trigger
the first file in the list.

This is all well and good, but it means that every time you want to change things,
you have to edit the code. It would work much better if the card itself carried the
filename.

A better RFID jukebox
You can make the card carry the filename, but you need a program to handle this
task. In other words, you need some way of enrolling the cards. In the example in
the previous section, this enrolling was done by reading the card’s number and
putting it in a list. It also involved copying down the filenames in the target folder
and adding them to a list. In a much better system, all that could be done by an
enrolling program.

The idea here is that there are two programs: one to play files in response to a card
and the other to save the filename into the data segments of the card. The enroll
program we came up with reads all the files in your Music folder and then offers
them for selection one by one, giving you the choice of whether to enroll them. If
you choose to enroll a card, the filename, including any extension, is stored in
segments 4 and 5 of the card. (This means the filenames must be no longer than
32 bytes.) The enrolling program is shown in Listing 18-3.

LISTING 18-3:	 RFID Jukebox Enrolling Program

#!/usr/bin/python3

#RFID Jukebox Enroll -

puts music files names on sectors 4a & symbol 5

by Mike Cook

 (continued)

400 PART 5 Exploring Electronics with the Raspberry Pi

from rc522rfid import Rc522rfid

import os

rfidReader = Rc522rfid()

def main():

 print ("RFID Jukebox card enroller")

print ("Click the Stop/Restart back end icon quit when done.")

getFiles()

for file in range(0,len(soundList)):

 action = ""

 print(soundList[file])

 print("Enroll (e) or just Return to Skip")

 action =input()

 if action == "e" :

 enroll(soundList[file])

def enroll(name):

 print("Enrolling", name, "place a card on the reader")

 data1 = []

 data2 = []

 for i in range(0,16): # fill with all zeros

 data1.append(0)

 data2.append(0)

 for i in range(0,len(name)):

 if i < 16:

 data1[i] = ord(name[i])

 else:

 data2[i-16] = ord(name[i])

This is the (default) key for authentication

key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]

rfidReader.RC522_WriteSector(key,4,data1)

rfidReader.RC522_WriteSector(key,5,data2)

print("finished enrolling\n")

def getFiles():

 global soundList

 path = os.path.abspath("/home/pi/Music/")

 #get a list of files

 soundList = [fn for fn in next(os.walk(path))[2]]

 list.sort(soundList) # put in alphabetical order

 print (len(soundList),"files found")

Main program logic:

if __name__ == "__main__":

 main()

LISTING 18-3:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 401

The getFiles function targets a specific folder in the path variable and then
searches that folder, making a list of all the files it finds using the os.walk method.
The list is then sorted into alphabetical order to get an ordered list to use for enroll
selection. Then the main function displays these filenames one at a time, and you
can press e (and then Enter) to enroll the card or just press the Enter key to skip
to the next file. The enroll function takes the filename and splits it into two
16-byte blocks before writing them to the card.

Having enrolled a card like this, it’s best if you mark the card in some way to show
which file you have enrolled. You can do this in many ways, from a simple hand-
written stick-on label to a complex design with the artist’s name — and maybe
even artwork from the album. Print this out on a color printer and stick it to the
card with spray glue. Finish off the card by covering it with the sort of transparent
plastic film that is used to cover and protect books, much used in libraries.

After you have your cards, you need a new program to play them back. This is
shown in Listing 18-4.

LISTING 18-4:	 RFID Jukebox Enrolled Card Playback

#!/usr/bin/python3

RFID Jukebox2 with track names on the card by Mike Cook

from rc522rfid import Rc522rfid

import pygame

pygame.mixer.quit()

pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512)

rfidReader = Rc522rfid()

def main():

 print ("RFID Jukebox using enrolled cards")

 print ("Press Ctrl+C to quit when done.")
 while 1: # repeat forever

 toPlay = readFileName()

 pygame.mixer.music.stop()

 try :

 pygame.mixer.music.load("/home/pi/Music/"+toPlay)
 pygame.mixer.music.play()

 print("Playing:- "+toPlay)
 except :

 print("No file:-/home/pi/Music/"+toPlay)
 rfidReader.RC522_WaitForCardRemoved()

 (continued)

402 PART 5 Exploring Electronics with the Raspberry Pi

def readFileName():

 # This is the (default) key for authentication

 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]

 block1 = rfidReader.RC522_GetSector(key,4)

 block2 = rfidReader.RC522_GetSector(key,5)

 if block1 != -1 and block2 != -1:

 fileToPlay = getString(block1,block2)

 return fileToPlay

 else:

 return("Error in reading card")

def getString(s1,s2): # make string from two sectors

 name = ""

 i = 0

 notDone = True

 while notDone and i < 32:

 if i<16:

 c = s1[i]

 else:

 c = s2[i-16]

 i+=1
 if c !=0:

 name = name + chr(c)
 else:

 notDone = False

 return name

Main program logic:

if __name__ == "__main__":

 try:

 main()

 except KeyboardInterrupt:

 pygame.mixer.quit()

The main function waits until a card is presented and then stores the filename
on that card, into the variable toPlay. It then stops any sound already being
played and attempts to play the new file. If the file doesn’t exist, a simple mes-
sage is displayed and the program waits until the card has been removed. The
readFileName function uses the default key to get sectors 4 and 5 from the card
and the getString function assembles these into a filename variable.

LISTING 18-4:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 403

Taking it further
You can change the folder that the files are in quite easily. However, a project you
might consider is a story time bear: a teddy bear or another cuddly toy with the
RFID reader embedded into it — in its paw or chest, for example. Then your child
has a set of bedtime story cards and can choose which one is read to them. For
added realism, you can also embed a speaker into the toy.

Dressing Up a Paper Doll
Paper dolls have been around for a long time, but they’re still popular with chil-
dren of all ages. With the help of RFID technology, you can make an up-to-date
version of this toy that outperforms the original. The idea is that you have a basic
doll and a number of different outfits and accessories. These are normally pasted
onto thin cardboard and cut out. Then, by use of tabs on the clothes, you can dress
your doll in a mix-and-match style. With RFID, you can have a card specify each
item of clothing and construct your dressed doll on the screen with a degree of
seamless integration you just can’t get with the paper version.

There are many clothing sheets to cut out online that are free for personal use, as
well as patterns you can buy. You can also draw them yourself — if you’re better
at drawing dolls than we are. Given the fact that we’re not too hot at this drawing
business, we teamed up with Imani Osmon, a young artist, to provide the artwork
we use as an example here. (We still think it may be just as exciting finding or
drawing your own.)

You start off with the basic sheet, and you’ll need a drawing package in order to
prepare your artwork. Your package should be able to scale images and also add a
transparent background. Being able to touch up and change colors could also be
useful, though it’s not essential. This prep work can be done on a laptop using
established packages like Photoshop, or on the Pi itself using Inkscape or Gimp.
(For more on using GIMP, see Chapter 7.)

If you decide to go with GIMP, here’s what you need to do:

1.	 Start off with the full sheet, and scale it so that the doll will fit into a
Pygame window on your monitor.

The sheet should be about 600 pixels high.

404 PART 5 Exploring Electronics with the Raspberry Pi

2.	 Start chopping out the clothes.

Use GIMP’s Select rectangle to pick out each piece, and then choose Edit ➪ Copy
from the main menu. Don’t worry if adjacent bits of graphics are also included at
this stage. Then choose File ➪ Create ➪ From Clipboard to get that piece on its own.
Then work on the image with a square paintbrush, to remove any tabs and other
bits of image until it sits in a white background. Next, use the Fuzzy Selection tool
to select this white background. Choose Layer Transparency ➪ Add Alpha Channel
from the main menu, and then choose Edit ➪ Clear. Finally, choose File ➪ Export
As to save this as a .png file, using the default checked options. Finally, close the
image window and click the Discard Changes option.

3.	 Repeat this process until the doll and all the accessories have been saved
in separate .png files in a folder called doll, which you have created
inside your working RFID folder.

4.	 Rename the doll file to start with an ampersand.

This is important because the ampersand ensures that this file appears first in
an alphabetically ordered list. We use this so that the program knows it’s the
doll file.

Now it’s time to enroll the RFID cards. We use two blocks here — one to hold the
filename and the other to hold the position for drawing the file on screen. Now
type in and run the code in Listing 18-5.

If the graphics files are put on through a network or downloaded, then some com-
puters can place invisible files into folders that the program here might mistake
for a graphics file and try to load. Apple’s macOS puts a file called. DS_Store and
a folder called .AppleDouble in every folder it sees. On an enroll program, this file
will produce an error message saying unsupported image format. If this hap-
pens, use the File Manager to navigate to the folder, then go to the View menu and
turn on the Show Hidden option. You can then delete this normally hidden file —
the hidden folder does no harm.

When you run this program, you might get a “libpng warning” — this is nothing
to worry about and can be safely ignored. It comes about from the image editing
software sometimes adding extra chunks (called metadata) to the images.

LISTING 18-5:	 Dress Up Doll Enroll

#!/usr/bin/python3

Dress Up Enroll by Mike Cook

from rc522rfid import Rc522rfid

import pygame

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 405

import os

pygame.init() # initialise graphics interface

os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'

pygame.display.set_caption("Dress Up")

pygame.event.set_allowed(None)

pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])

pygame.key.set_repeat(500, 80)

screenWidth = 240

screenHeight = 550

screen = pygame.display.set_mode ([screenWidth,screenHeight], 0, 32)

needsRedraw = True

enrol = False

rfidReader = Rc522rfid()

def main():

 global xPlot,yPlot,done,enrol,needsRedraw

 print ("Dress up doll - Enrolling Cards")

 print ("Use the cursor keys to get the garment into position")

 print ("Space - next one, e - Enroll card")

 init()

 xPlot = int(screenWidth / 4)

 yPlot = int(screenHeight / 4)

 while 1:

 checkForEvent()

 for i in range(1,len(clothes)):

 done = False

 needsRedraw = True

 while not done:

 checkForEvent()

 if needsRedraw:

 drawScreen(i)

 if enrol :

 enrol = False

 print("enrolling")

 enrolCard(cList[i])

def drawScreen(i):

 global needsRedraw

 pygame.draw.rect(screen, (210,210,210),(0,0,screenWidth, screenHeight), 0)

 screen.blit(clothes[0],(0,0))

 screen.blit(clothes[i],(xPlot,yPlot))

 pygame.display.update()

 needsRedraw = False

(continued)

406 PART 5 Exploring Electronics with the Raspberry Pi

def init():

 global clothes,cList

 path = os.path.realpath(__file__)

 path = os.path.dirname(path) + "/doll/"
 #get a list of files

 cList = [fn for fn in next(os.walk(path))[2]]

 list.sort(cList) # put in alphabetical order

 print("files found",cList)

 clothes = [pygame.image.load("doll/"+cList[i]).convert_alpha()
 for i in range(0,len(cList))]

def enrolCard(name):

 print("Enrolling", name, "place a card on the reader")

 data1 = [] ; data2 = []

 for i in range(0,16): # fill with a sectors worth of zeros

 data1.append(0) ; data2.append(0)

 for i in range(0,len(name)):

 data1[i] = ord(name[i])

 #save position of this item

 data2[0] = xPlot >> 8

 data2[1] = xPlot & 0xFF

 data2[2] = yPlot >> 8

 data2[3] = yPlot & 0xFF

 # This is the (default) key for authentication

 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]

 rfidReader.RC522_WriteSector(key,8,data1)

 rfidReader.RC522_WriteSector(key,9,data2)

 print("finished enrolling\n")

def terminate(): # close down the program

 print ("Closing down")

 pygame.quit() # close pygame

 os._exit(1)

def checkForEvent(): # see if we need to quit

 global xPlot,yPlot,needsRedraw,done,enrol

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 if event.type == pygame.KEYDOWN :

 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == pygame.K_SPACE :

 done = True

 enroll = False

LISTING 18-5:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 407

 if event.key == pygame.K_e :

 done = True

 enrol = True

 if event.key == pygame.K_UP :

 yPlot -= 1

 needsRedraw = True

 if event.key == pygame.K_DOWN :

 yPlot += 1
 needsRedraw = True

 if event.key == pygame.K_RIGHT :

 xPlot += 1
 needsRedraw = True

 if event.key == pygame.K_LEFT :

 xPlot -= 1

 needsRedraw = True

Main program logic:

if __name__ == '__main__':

 main()

You need to make only one change: Set the dimensions of the window to the
dimensions of your doll image. Double-click on the doll file to bring up a viewing
window that specifies the image size in pixels in the top window bar. Make sure
those numbers are used to set the values of the screenWidth and screenHeight
variables in the code.

When you run the code, you will see your doll and the first piece of clothing. Use
the cursor keys to maneuver this piece into the exact spot where you want it to
appear on the doll. Then place a card on the reader and press the E key, to store
the filename in Sector 8 and the position in Sector 9. Remove the card and press
the spacebar for the next piece of clothing.

Keep pressing the spacebar to cycle through the clothes until you find the one you
want to enroll. This way, if you find a piece that isn’t quite right, you can go and
enroll just that piece again. Also, if you add to the files in the doll folder, you can
just enroll the new piece on a new card.

Finally, print out each piece of clothing onto paper and use spray glue to mount it
onto each card. Cover the card with a transparent plastic film and trim off any
surplus with a sharp blade, holding the card face down on a cutting mat. Some of
our cards are shown in Figure 18-4.

408 PART 5 Exploring Electronics with the Raspberry Pi

Runway time
Now it’s time to actually dress up the doll. The program for doing this is in
Listing 18-6.

LISTING 18-6:	 Dress Up Doll

#!/usr/bin/python3

Dress Up by Mike Cook

from rc522rfid import Rc522rfid

import pygame

import os

pygame.init() # initialise graphics interface

os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'

pygame.display.set_caption("Dress Up")

pygame.event.set_allowed(None)

pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])

pygame.key.set_repeat(500, 80)

screenWidth = 240

screenHeight = 550

screen = pygame.display.set_mode([screenWidth, screenHeight], 0,32)

xPlot=[0] ; yPlot=[0] ; garment=[0] # list of what to display

rfidReader = Rc522rfid()

FIGURE 18-4:
Doll clothes
RFID cards.

Reproduced by permission of Imani Osmon

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 409

def main():

 global xPlot,yPlot,done,enroll

 print ("Dress up doll")

 print ("Space bar to start over")

 init()

 drawScreen()

 while 1:

 checkForEvent()

 readCard()

 if needsRedraw:

 drawScreen()

 rfidReader.RC522_WaitForCardRemoved()

def readCard():

 global needsRedraw

 status = -1

 while status == -1:

 checkForEvent() # allow pygame a look in while waiting

 status = rfidReader.RC522_ReadCard()

 # This is the (default) key for authentication

 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]

 block1 = rfidReader.RC522_GetSector(key,8)

 block2 = rfidReader.RC522_GetSector(key,9)

 if block1 != -1 and block2 != -1: # if data OK

 x = block2[0] << 8 | block2[1]

 y = block2[2] << 8 | block2[3]

 lookAtNew(block1,x,y)

 needsRedraw = True

 return -1

 else:

 return("Error in reading card")

def lookAtNew(s1,x,y): # look at the new element

 global garment, xPlot, yPlot

 name = ""

 i = 0

 notDone = True

 while notDone and i < 16:

 c = s1[i]

 i+=1
 if c !=0:

 name = name + chr(c)
 else:

 notDone = False

 #Look up name in list of files

 for i in range(1,len(cList)):

 if cList[i] == name: # find the name on the card

 # remove if already in the list

 if i in garment:

(continued)

410 PART 5 Exploring Electronics with the Raspberry Pi

 place = garment.index(i)

 del garment[place]

 del xPlot[place]

 del yPlot[place]

 else: # otherwise add it

 garment.append(i)

 xPlot.append(x)

 yPlot.append(y)

def drawScreen():

 global needsRedraw

 pygame.draw.rect(screen, (210,210,210), (0,0, screenWidth, screenHeight), 0)

 for g in range(0,len(garment)):

 screen.blit(clothes[garment[g]], (xPlot[g],yPlot[g]))

 pygame.display.update()

 needsRedraw = False

def init():

 global clothes,cList

 path = os.path.realpath(__file__) # path of this program

 path = os.path.dirname(path) + "/doll/" # path of images
 #get a list of files

 cList = [fn for fn in next(os.walk(path))[2]]

 list.sort(cList) # put in alphabetical order

 clothes =

 [pygame.image.load("doll/"+cList[i]).convert_alpha()
 for i in range(0,len(cList))]

def terminate(): # close down the program

 print ("Closing down")

 pygame.quit() # close pygame

 os._exit(1)

def checkForEvent(): # see if we need to quit

 global xPlot,yPlot,garment

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 if event.type == pygame.KEYDOWN :

 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == pygame.K_SPACE :

 xPlot = [0] ; yPlot = [0]

 garment = [0] # clear lists

 drawScreen()

Main program logic:

if __name__ == "__main__":

 main()

LISTING 18-6:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 411

Again, make sure that the values of the screenWidth and screenHeight variables
are set to the same values as in the enroll code. Presenting an enrolled card places
that piece of clothing on the doll; presenting it again removes it. Pressing the
spacebar starts again from scratch. Note that the clothes are drawn in the order
that the clothes are presented. This might look odd if one item is meant to partially
cover another. The doll should be dressed as in real life, with garments that are
worn under other items first. It’s fun to build up your own collection of dolls and
accessories. Figure 18-5 shows some of the dressed-up dolls we created.

FIGURE 18-5:
Dolls we created.

Reproduced by permission of Imani Osmon

412 PART 5 Exploring Electronics with the Raspberry Pi

Old McDonald’s Farm
So far in this chapter, we have shown you how to associate information on an
RFID tag to a sound with the jukebox, and how to associate an image with a dress-
up paper doll. Now we combine the two techniques to create the ultimate in
children’s songs: “Old McDonald Had a Farm.” The unique algorithm used to
generate the chorus of this song ensures that the length of the song grows
exponentially with every animal added. Also the point of this song is to include not
only well-known farmyard animals but also unusual ones. (Truth be told, Mike’s
wife said that is only a boy thing.)

As with the other projects in this chapter, we present just a start that can easily be
extended, almost without limit, simply by placing more files in folders. Just like
the Dress Up Doll project, there are two programs: an enroll program and a play
program. The idea is that fragments of the song are recorded, and the program
puts together these fragments into the ever-lengthening song. What’s more, the
computer never forgets what is on the farm, and each verse is sung with the same
enthusiasm of the first. (You can’t always say that about singing “Old McDonald’s
Farm” in real life.) The child, or the parent themselves, should record at least
some of the sound samples.

Making sound samples
The sound samples can be recorded on a laptop and moved over to the Pi by using
a USB memory stick. However, with a bit of work, it’s possible to do the whole
thing on the Pi itself. The Raspberry Pi can record sound, but it has no built-in
microphone interface, so you have to provide one in the form of a USB sound
card or USB microphone. You can purchase one for less than $10 (about £8)
and you can find suitable ones listed at https://elinux.org/RPi_Verified
Peripherals#Class_compliant_USB_sound_cards.

It’s best to look at the installation details for the specific card you have. After it’s
plugged in and connected to a microphone, go to the Desktop menu and choose
the Preferences submenu, and then select Audio Device Settings. From the drop-
down menu that appears, choose your USB sound card.

Next, you need some software to record the sound. By far, the best free software
to do this is Audacity. To install it on your Pi, go to a terminal window and enter
the following:

sudo apt-get update

sudo apt-get install audacity

https://elinux.org/RPi_VerifiedPeripherals#Class_compliant_USB_sound_cards
https://elinux.org/RPi_VerifiedPeripherals#Class_compliant_USB_sound_cards

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 413

After Audacity installs, it’s available from the Desktop menu, under the Sound &
Video entry. The screen is shown in Figure 18-6.

You can find versions of Audacity for the Macintosh and Windows operating sys-
tems as well.

Audacity can not only record sound but also edit it — and even add effects. The
controls are just like a tape recorder, with a round, red Record button and a square
Stop button. If you’ve never used it, have a play with it first: Just click the Record
button and say something (you’ll see the waveform plotted), and then press the
Stop button, press Rewind, and press the triangular Play button.

Whenever you make a recording, you need to “top and tail it” — that is to say,
remove the silences at the start and end. In Audacity, use the Magnifying Glass
icon to enlarge the waveform, and then click and drag over the opening silence to
highlight it. Then you remove it by simply pressing the Delete key on the key-
board. Do the same for the end silence. With that out of the way, you then need to
make sure that a sample begins and ends on the zero line, running through the
middle of the displayed waveform. If it does not, you will hear clicks when you
play it back. To ensure that it does begin and end on the zero line, highlight a
small section at the start of the sample, and select Fade In from the Effects menu.
Do the same for the end of the sample, but this time select Fade Out. Finally, select

FIGURE 18-6:
Audacity.

414 PART 5 Exploring Electronics with the Raspberry Pi

the whole sample and select Normalize from the Effects menu. With the top two
options checked, select O. This last step ensures that all samples have the same
overall sound level.

To save your sample, start by choosing File ➪   Export Audio from the main menu,
and then choose Ogg Vorbis File from the drop-down menu in the lower right.
Type in your chosen filename with a .ogg extension and select Save. The .ogg
format is Python’s native sound format and is the best supported. Close the
Audacity window and do not bother with the Save Changes option.

So, after seeing how to make a sample, you need to know what samples to record.
Make a folder called farmSounds in your working RFID folder, and inside that,
make another one called fixed. You will store the skeleton of the song there.

Table 18-1 shows the sound samples you need to make.

Back in the farmSounds folder, you need two samples for each animal you use. For
example, if you have a chicken, you need a sample of you singing the word chickens,
called chicken, and then another sample of the noise that animal makes, having the
name chickenSound. So in general that is two files: “name” and “nameSound.”

TABLE 18-1	 Old McDonald’s Farm Sound Samples
Sample Name Sung Words

start “Old McDonald had a farm ee eye ee eye oh”

and “and on this farm he had some”

ee_eye_oh “ee eye ee eye oh”

witha “with a”

here “here”

anda “and a”

there “there”

herea “here a”

therea “there a”

everywherea “everywhere a”

well “well”

end “Old McDonald had a farm ee eye-e-e, ee eye-e-e, o-o-o-h” (and feel free to extend those
last few notes)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 415

It’s important that you use this exact naming scheme or the program will
not work.

Making the graphics
You have lots of choices when it comes to how you want your farm to look. You can
buy a packet of farm animal stickers and scan them in or photograph them and
use the stickers for the RFID cards. You can draw your own animals or get some
clip art from the Internet. However, we chose to go with photographs we had
taken of the various farm inhabitants. For this demonstration, we chose a chicken,
a cow, a sheep, a pig, and a dalek. (Yes, we know — it’s a boy thing.)

Each animal is isolated on a transparent background, just like we did for the
clothes in the Dress Up Doll project. This time, we kept a full-resolution version
for printing on the cards, and a scaled version for the screen. The scaled versions
should be between 30 to 100 pixels high, depending on the relative size of the
animal. These pictures should be stored in a folder called farmPictures and have
exactly the same name as the sung word in the farmSounds folder. So the chicken
picture is called chicken.png, and the corresponding sound files are chicken.ogg
and chickenSound.ogg.

Remember that fixed folder you created inside the farmPictures folder? That’s
where you’ll want to add two files — one called farm.png for the backdrop of the
farm and the other called fence.png on a transparent background, to act as the
fence at the front of the screen.

Each animal appears five times on the screen on each chorus of the song, so you
must enroll not only the basic animal name on the card but also the position of
each of its appearances. The program to do this is in Listing 18-7.

The potential hidden file problem with the Dress Up Doll enroll program can also
apply here, as can the “libpng warning.”

LISTING 18-7:	 Old McDonald’s Farm Enroll

#!/usr/bin/python3

Old McDonald's Farm card enrolling - by Mike Cook

from rc522rfid import Rc522rfid

import pygame, time, os

pygame.init() # initialise graphics interface

os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'

(continued)

416 PART 5 Exploring Electronics with the Raspberry Pi

pygame.display.set_caption("Old McDonald's Farm Enroll")

pygame.event.set_allowed(None)

pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])

screenWidth = 723 ; screenHeight = 369

screen = pygame.display.set_mode([screenWidth,screenHeight], 0,32)

pygame.key.set_repeat(500, 20)

rfidReader = Rc522rfid()

needsRedraw = True

enroll = False

seeAll = False

def main():

 global xPlot, yPlot, done, enroll, needsRedraw, currentA, currentType

 print ("Old McDonald's Farm - Enrolling Cards")

 print ("Return to move the next animal in the group - position using cursor ↩

 keys")

 print ("a - toggle seeAll animals together, e - Enrol card when all five are ↩
 in position")

 init()

 drawScreen(0,0)

 while 1:

 checkForEvent()

 for i in range(0,len(animalNames)):

 currentType = i

 done = False

 needsRedraw = True

 while not done:

 checkForEvent()

 if needsRedraw:

 drawScreen(i,currentA)

 if enroll :

 enroll = False

 print("enrolling")

 enrollCard(animalNames[i])

def drawScreen(cType,Cindex):

 global needsRedraw

 pygame.draw.rect(screen,(255,255,255), (0,0,screenWidth, screenHeight),0)

 screen.blit(farmBuilding,(0,0))

 if seeAll:

 for j in range(0,len(animalNames)):

 for i in range(0,5):

 screen.blit(animalPictures[j],(xPlot[j][i], yPlot[j][i]))

 else:

 for i in range(0,5):

 screen.blit(animalPictures[cType],(xPlot[cType][i], yPlot[cType][i]))

LISTING 18-7:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 417

 screen.blit(farmFence,(0,270))

 pygame.display.update()

 needsRedraw = False

def init():

 global animalNames, animalPictures, farmBuilding, farmFence

 global xPlot,yPlot,currentType,currentA, animalTypesNumber

 path = os.path.realpath(__file__)

 path = os.path.dirname(path) + "/farmPictures/"
 #get a list of files

 animalNames = [fn for fn in next(os.walk(path))[2]]

 list.sort(animalNames) # put in alphabetical order

 animalTypesNumber = len(animalNames)

 print("you have these animals\n",animalNames)

 animalPictures= [pygame.image.load("farmPictures/" + animalNames[i]). ↩
 convert_alpha()

 for i in range(0,len(animalNames))]

 farmBuilding = pygame.image.load("farmPictures/fixed/farm.png").

convert_alpha()

 farmFence = pygame.image.load("farmPictures/fixed/fence.png" ↩
).convert_alpha()

 xPlot = [[144,144,144,144,144] for i in range(0,len(animalNames))]

 yPlot = [[200,200,200,200,200] for i in range(0,len(animalNames))]

 currentType = 0 ; currentA = 0

def enrollCard(name):

 print("Enroling", name, "place a card on the reader")

 data1 = [] ; data2 = [] ; data3 = []

 for i in range(0,16): # fill with a sectors worth of zeros

 data1.append(0) ; data2.append(0) ; data3.append(0)

 for i in range(0,len(name)):

 data1[i] = ord(name[i])

 #save position of these animals

 k = 0

 for i in range(0,4):

 data2[k] = xPlot[currentType][i] >> 8

 data2[k+1] = xPlot[currentType][i] & 0xFF
 data2[k+2] = yPlot[currentType][i] >> 8
 data2[k+3] = yPlot [currentType][i] & 0xFF
 k+=4
 data3[0] = xPlot[currentType][4] >> 8

 data3[1] = xPlot[currentType][4] & 0xFF

 data3[2] = yPlot[currentType][4] >> 8

 data3[3] = yPlot [currentType][4] & 0xFF

 # This is the (default) key for authentication

 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]

(continued)

418 PART 5 Exploring Electronics with the Raspberry Pi

 rfidReader.RC522_WriteSector(key,12,data1)

 rfidReader.RC522_WriteSector(key,13,data2)

 rfidReader.RC522_WriteSector(key,14,data3)

 print("finished enrolling\n")

def terminate(): # close down the program

 print ("Closing down please wait")

 pygame.mixer.quit()

 pygame.quit() # close pygame

 os._exit(1)

def checkForEvent(): # see if we need to quit

 global xPlot, yPlot, needsRedraw,done, enroll, currentA

 global currentType, seeAll

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 if event.type == pygame.KEYDOWN :

 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == pygame.K_RETURN :

 currentA += 1
 if currentA >= 5:

 currentA = 0

 enroll = False

 if event.key == pygame.K_SPACE :

 done = True

 enroll = False

 if event.key == pygame.K_e :

 done = True

 enroll = True

 if event.key == pygame.K_a :

 seeAll = not seeAll

 needsRedraw = True

 if event.key == pygame.K_UP :

 yPlot[currentType][currentA] -= 1

 needsRedraw = True

 if event.key == pygame.K_DOWN :

 yPlot[currentType][currentA] += 1
 needsRedraw = True

 if event.key == pygame.K_RIGHT :

 xPlot[currentType][currentA] += 1
 needsRedraw = True

 if event.key == pygame.K_LEFT :

 xPlot[currentType][currentA] -= 1

 needsRedraw = True

LISTING 18-7:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 419

 if event.key == pygame.K_s :

 print (xPlot[currentType][currentA], yPlot[currentType][currentA])

Main program logic:

if __name__ == "__main__":

 main()

The screenWidth and screenHeight variables must be set to the size of the farm.
png image.

To start enrolling, use the cursor keys to position the first occurrence of an ani-
mal. When it’s in the right position, press Return and position the next one. After
all five animals of the one type have been positioned, press the spacebar to move
on to the next animal. At any time, you can see all the animals on screen at the
same time by pressing the A key. After you have defined the position of all your
animals, you can use the spacebar to step through them, pressing the E key to
enroll each one. After you have enrolled all the cards, it’s ready for your sing-
song. The final program is shown in Listing 18-8.

If you end the program by pressing the X in the corner of the window, Thonny will
give you a Backend terminated message. Simply click the red stop icon to restart
things, or use this icon to end the program in the first place.

LISTING 18-8:	 Old McDonald’s Farm Sing-Song

#!/usr/bin/python3

Old McDonald's Farm -- a song by Mike Cook

from rc522rfid import Rc522rfid

import pygame, time, os

pygame.init() # initialise graphics interface

pygame.mixer.quit()

pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512)

os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'

pygame.display.set_caption("Old McDonald's Farm")

pygame.event.set_allowed(None)

pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])

screenWidth = 723 ; screenHeight = 369

screen = pygame.display.set_mode([screenWidth,screenHeight],0,32)

rfidReader = Rc522rfid()

(continued)

420 PART 5 Exploring Electronics with the Raspberry Pi

farm = [] # what animals are on the farm today

play = False

cardsRead = -1

verse = 0

def main():

 global play,xPlot,yPlot,cardsRead,farm

 print ("Old McDonald's Farm")

 print ("Present cards then Press - p = Play - n = New")

 init()

 while 1:

 drawScreen(-1,0,0)

 while not play:

 checkForEvent()

 if readCard() == 0:

 print("Farm now contains ",end="")

 for i in range(0,len(farm)):

 print(rawNames[farm[i]]," ",end="")

 print()

 rfidReader.RC522_WaitForCardRemoved()

 singSong()

 play = False

 farm = [] ; xPlot = [] ; yPlot = []

 cardsRead = -1

 print("Place cards to populate farm")

def drawScreen(n,level,ind):

 screen.blit(farmBuilding,(0,0))

 if cardsRead != -1 and n != -1:

 if verse > 0 and level >0: # draw previous animals

 i = verse

 while i > ind:

 k = farm[i]

 for j in range(0,5):

 screen.blit(animalPictures[k],(xPlot[i][j], yPlot[i][j]))

 i -=1

 k = farm[ind]

 for j in range(0,n): # draw latest animal

 screen.blit(animalPictures[k],(xPlot[ind][j],yPlot[ind][j]))

 screen.blit(farmFence,(0,270))

 pygame.display.update()

def readCard():

 status = rfidReader.RC522_ReadCard()

 if status == -1:

 return -1

LISTING 18-8:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 421

 # This is the (default) key for authentication

 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]

 block1 = rfidReader.RC522_GetSector(key,12)

 block2 = rfidReader.RC522_GetSector(key,13)

 block3 = rfidReader.RC522_GetSector(key,14)

 if block1 != -1 and block2 != -1 and block3 != -1: # if data OK

 lookAtNew(block1,block2,block3)

 return 0

 else:

 print("Error in reading card")

 rfidReader.RC522_WaitForCardRemoved()

def lookAtNew(s1,s2,s3): # look at the new element

 global xPlot,yPlot, cardsRead

 name = ""

 i = 0

 notDone = True

 while notDone and i < 16: # generate name

 c = s1[i]

 i+=1
 if c !=0:

 name = name + chr(c)
 else:

 notDone = False

 for i in range(0,len(animalNames)):

 if animalNames[i] == name: # find the name on the card

 farm.append(i)

 xPlot.append([0,0,0,0,0])

 yPlot.append([0,0,0,0,0])

 cardsRead += 1
 k = 0

 for j in range(0,4):

 xPlot[cardsRead][j] = s2[k]<< 8 | s2[k+1]
 yPlot[cardsRead][j] = s2[k+2]<< 8 | s2[k+3]
 k += 4
 xPlot[cardsRead][4] = s3[0]<< 8 | s3[1]

 yPlot[cardsRead][4] = s3[2]<< 8 | s3[3]

def init():

 global animalNames, animalPictures, farmBuilding, farmFence, animals

 global xPlot,yPlot, noises, rawNames, fixed

 path = os.path.realpath(__file__)

 path = os.path.dirname(path) + "/farmPictures/"
 #get a list of files

 animalNames = [fn for fn in next(os.walk(path))[2]]

 list.sort(animalNames) # put in alphabetical order

 rawNames = []

(continued)

422 PART 5 Exploring Electronics with the Raspberry Pi

 for i in range (0,len(animalNames)): # remove file extension

 rawNames.append(animalNames[i][0:len(animalNames[i])-4])

 #load in the sounds

 animals = [pygame.mixer.Sound("farmSounds/" +rawNames[sound]+".ogg")
 for sound in range(0,len(rawNames))]

 noises = [pygame.mixer.Sound("farmSounds/"+ rawNames[sound]+"Sound.ogg")
 for sound in range(0,len(rawNames))]

 files = ["start","and","ee_eye_oh","witha","here","anda", "there","herea","th ↩
 erea","everywherea","end", "well"]

 fixed = [pygame.mixer.Sound("farmSounds/fixed/" +files[sound]+".ogg")
 for sound in range(0,len(files))]

 #load in the pictures

 animalPictures= [pygame.image.load("farmPictures/" +animalNames[i]). ↩
 convert_alpha()

 for i in range(0,len(animalNames))]

 farmBuilding = pygame.image.load("farmPictures/fixed/farm.png" ↩
).convert_alpha()

 farmFence = pygame.image.load("farmPictures/fixed/fence.png" ↩
).convert_alpha()

 xPlot = [] ; yPlot = []

def singSong():

 global verse

 verse = 0

 while verse < len(farm): # repeat for each verse

 for i in range(0,3): # start part

 fixed[i].play()

 waitFinish()

 if i == 1:

 animals[farm[verse]].play()

 waitFinish()

 if i == 2:

 farmYard(verse,verse)

 verse += 1

def farmYard(index,verse): # sing verse

 numDisplayed = 0

 level = 0

 while index != -1:

 for i in range(3,10):

 fixed[i].play()

 waitFinish()

 if i == 3 or i==5 or i==9:

 noises[farm[index]].play()

 numDisplayed +=1
 drawScreen(numDisplayed,level,index)

 waitFinish()

LISTING 18-8:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 423

 noises[farm[index]].play()

 waitFinish()

 if i == 7 or i == 8:

 noises[farm[index]].play()

 numDisplayed +=1
 drawScreen(numDisplayed,level,index)

 waitFinish()

 index -=1

 level +=1
 numDisplayed = 0

 if verse < len(farm)-1: # more verses

 fixed[0].play()

 waitFinish()

 time.sleep(0.2)

 fixed[11].play() # well

 drawScreen(-1,0,0) # clear the farm

 else: # end of song

 fixed[10].play()

 waitFinish()

 time.sleep(0.3)

def waitFinish():

 while pygame.mixer.get_busy():

 checkForEvent()

def terminate(): # close down the program

 print ("Closing down please wait")

 pygame.mixer.quit()

 pygame.quit() # close pygame

 os._exit(1)

def checkForEvent(): # see if we need to quit

 global play, farm, cardsRead

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 if event.type == pygame.KEYDOWN :

 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == pygame.K_p :

 play = True

 if event.key == pygame.K_n :

 farm = []

 cardsRead = -1

Main program logic:

if __name__ == "__main__":

 main()

424 PART 5 Exploring Electronics with the Raspberry Pi

To play, first present — one at a time — all the cards for animals you want on the
farm. Then press the P key to play the song. Repeat this action to play the song
again, maybe with different animals or in a different order. Figure 18-7 shows
some of the occupants of our farm.

FIGURE 18-7:
Old McDonald’s

farm.

6The Part of Tens

IN THIS PART . . .

Download and install ten great software packages for
your Raspberry Pi.

Be inspired by ten innovative projects for the
Raspberry Pi.

Find ten great add-ons for the Raspberry Pi.

CHAPTER 19 Ten Great Software Packages for the Raspberry Pi 427

Chapter 19
Ten Great Software
Packages for the
Raspberry Pi

One of the best things about the Raspberry Pi is that you can easily down-
load so many software packages over the Internet and install them. In this
chapter, we give you some pointers to ten software packages to get you

started.

Before you start, issue the following command in the shell to make sure your soft-
ware cache is up to date:

sudo apt update

The software you run on your computer is as much a matter of taste as the music
you listen to, so we hope you use this list as a starting point and then make your
own software discoveries. For a full explanation of finding and installing software
on your Raspberry Pi, see Chapters 4 and 5.

IN THIS CHAPTER

»» Downloading and playing games

»» Discovering educational software

»» Creating art and music

428 PART 6 The Part of Tens

Penguins Puzzle
Penguins Puzzle, shown in Figure 19-1, is a 3D puzzle game in which you’re tasked
with safely escorting a penguin to the exit without letting it fall off the iceberg and
into the freezing water. You use the cursor keys to move around, press Z to zoom
out for a wider-angle view, and press R to reset the level. The game has 50 levels
to test your mettle.

To install the game, search for “penguinspuzzle” in the Add/Remove Software
tool, located in the Preferences section of the Applications menu, or, in the shell,
use the following command:

sudo apt install penguinspuzzle

Penguins Puzzle doesn’t work in the desktop environment, including the
Terminal window. Press Ctrl+Alt+F1 to go to a Linux virtual console. Then type
penguinspuzzle to run the game. Press Esc to end the game and then Ctrl+Alt+F7
to return to the desktop.

FIGURE 19-1:
Penguins

Puzzle is a cute
3D puzzle game.

Peter de Rivaz

CHAPTER 19 Ten Great Software Packages for the Raspberry Pi 429

The software is charityware, which means you’re invited to make a donation to
charity if you enjoy playing it.

For more information on Penguins Puzzle, go to http://penguinspuzzle.
appspot.com/.

FocusWriter
Whether you’re writing the next blockbuster from your bedroom or you just need
to get your work done without distraction, FocusWriter may be the application for
you. It’s a word processor that’s designed to be distraction-free. Most of the time
when you’re using it, the only thing onscreen is your writing.

When you move the mouse to the top of the screen, the menus for changing the
settings and saving your files appear. To keep your motivation up, you can set a
daily goal in the Preferences settings for time spent writing or (better still) words
written per day. When you move the mouse to the bottom of the screen, you can
see the word count and your progress toward your daily goal.

To install FocusWriter, search for “focuswriter” in the Add/Remove Software tool
or, in the shell, use the following command:

sudo apt install focuswriter

To start FocusWriter, go into your desktop environment and click the program’s
entry in the Office category of your Applications menu.

You can find out more about the application at https://gottcode.org/
focuswriter.

Mathematica
Mathematica is what’s known as a symbolic package, or a computer algebra sys-
tem (CAS), and it’s one of the recommended applications in Raspberry Pi
OS. Mathematica is one of the best systems for exploring anything to do with
numbers, from mathematics to complex multidimensional graphics and music.

To get started, click the Applications menu, choose the Programming category,
and click the Mathematica icon. You see a splash screen, and then two windows
open: a blank notebook and, in front of it, an invitation to visit three websites.

http://penguinspuzzle.appspot.com/
http://penguinspuzzle.appspot.com/
https://gottcode.org/focuswriter
https://gottcode.org/focuswriter

430 PART 6 The Part of Tens

Click the notebook to bring it to the front. Type 2^8 and press Return. This expres-
sion says “two to the power of eight,” but you don’t see an answer. You’ve entered
the expression into Mathematica, but in order to tell the program to evaluate it
(and give you the answer), you have to press Shift+Return.

Mathematica can expand equations for you:

Expand[(1+x)^6]

1 + 6x + 15x2 + 20x3 + 15x4 + 6x5 + x6

It can plot graphs, such as these parametric plots:

For[n=1, n<4, n++,

ParametricPlot[{Sin[n t], Sin[(n+1) t]}, {t, 0, 2Pi}] //↩

 Print]

Graphical output might take a moment to render, so be patient, if necessary.
Mathematica even plots 3D graphics:

SphericalPlot3D[Sin[t] Cos[t] Sin[f], {t, 0, Pi}, {f, 0, 2 Pi}]

The bottom of Figure 19-2 shows what Mathematica comes up with given this
input.

FIGURE 19-2:
Two plot

examples from
Mathematica.

©1988–2014 Wolfram Research Inc.

CHAPTER 19 Ten Great Software Packages for the Raspberry Pi 431

One of Mike’s favorite shapes is generated by the following code:

Plot3D[Sin[Sqrt[x^2 + y^2]]/Sqrt[x^2 + y^2],

{x, -6 Pi, 6 Pi}, {y, -6 Pi, 6 Pi},

Boxed -> False, Mesh -> False, PlotPoints -> 60,

PlotRange -> All, Axes -> False]

Try it out to see what it looks like!

Fraqtive
Fractals are patterns generated using mathematical formulas that are self-similar.
That means if you zoom in on the Mandlebrot set (shown on the left in Figure 19-3),
for example, you’ll find that the same shape repeats in its nooks and crannies, and
you can zoom in again and again and again. Fraqtive is a program for exploring
fractals and generating images. You can save the images and use them as wall-
paper on your Raspberry Pi (see Chapter 4). The software has a tutorial to get you
started.

FIGURE 19-3:
Generate colorful

fractal images
easily using

Fraqtive.
Michał Męciński

432 PART 6 The Part of Tens

To install Fraqtive, search for “fraqtive” in the Add/Remove Software tool or, in
the shell, use the following command:

sudo apt install fraqtive

After installation, you can find Fraqtive in the Education category of your Applica-
tions menu.

For more information on Fraqtive, visit the creator’s website at https://
fraqtive.mimec.org.

Tux Paint
Tux Paint, shown in Figure 19-4, is a simple drawing program for children, with
tools that help them to quickly create art on the Raspberry Pi. In addition to
enabling freehand drawing and the placement of shapes and lines in common
with most art packages, Tux Paint has a Magic tool. This tool can be used to create
effects such as brick walls, flowers, snowballs, rainbows, waves, and various cre-
ative image distortions. The Stamp tool is used to stamp clip art onto the screen,
including animals, penguins, hats, food, and musical instruments.

FIGURE 19-4:
Tux Paint

turns every child
into an artist.

And us, too.
The Tuxpaint Project (www.tuxpaint.org)

https://fraqtive.mimec.org/
https://fraqtive.mimec.org/
http://www.tuxpaint.org/

CHAPTER 19 Ten Great Software Packages for the Raspberry Pi 433

Tux Paint is named in tribute to Tux, the penguin who is the official mascot of the
Linux kernel. The application has been created with the help of more than 300
contributors worldwide and has been downloaded tens of millions of times.

To install Tux Paint, search for “tuxpaint” in the Add/Remove Software tool or, in
the shell, use the following command:

sudo apt install tuxpaint

After you’ve installed Tux Paint, you can start it from the Education category of
your Applications menu.

The official website for Tux Paint can be found at www.tuxpaint.org.

Grisbi
If you want to manage your financial accounts on your Raspberry Pi, Grisbi is a
free application you can use to keep track of your regular and one-off payments.
Although other programs are also available, Grisbi is the easiest one we’ve tried,
both to set up and keep updated. Many banks enable you to download your bank
statements in a format that can be used in Grisbi, so you may be able to analyze
your financial situation without too much rekeying.

To install Grisbi, search for “grisbi” in the Add/Remove Software tool or, in the
shell, use the following command:

sudo apt install grisbi

You can find it in the Office category of your Applications menu.

Beneath a Steel Sky
The Beneath a Steel Sky game, shown in Figure 19-5, tells a science-fiction story
about Robert Foster, a boy who survived a helicopter crash and was raised by
indigenous Australians in a wasteland called The Gap. Many years later, after
Robert has grown up, armed forces arrive in another helicopter, kidnap him, and
fly him back to the city. He escapes, and you pick up the controls to guide him on
his journey of discovery. Why is he here? Who is in charge?

http://www.tuxpaint.org/

434 PART 6 The Part of Tens

It’s a point-and-click adventure game, which means you solve puzzles and inter-
act with the environment using the mouse cursor and clicking objects and people.
You use the left mouse button to examine things and the right mouse button to
take an action (such as opening or closing a door, picking up an object, or looking
through a window). You can talk to characters in the game by clicking them and
choosing from the provided phrases. When you move the cursor to the top of the
screen, the inventory of items you’re carrying appears so that you can use items
you’re carrying. To walk through an exit, click it.

The game’s fantastic opening sequence and witty dialog draw you in, and the
solution is available online if you’d like to experience the full story but you’ve
gotten stuck on one of the puzzles.

This hit game from 1994 was officially released as freeware in 2003 and is now
available for you to install on your Raspberry Pi. Search for “steel-sky” in the
Add/Remove Software tool or, in the shell, enter the following command:

sudo apt install beneath-a-steel-sky

The game is installed into the Games category of your Applications menu.

Brain Party
If you fancy a few minutes of gaming to tune up your brain between programming
sessions, Brain Party is here for you. It’s a series of fun minigames, designed to
stretch the gray matter. You complete five randomly selected tests to get your

FIGURE 19-5:
Beneath a Steel

Sky, an interactive
science-fiction

story.
Revolution Software Ltd.

CHAPTER 19 Ten Great Software Packages for the Raspberry Pi 435

“brain weight” score, and you can practice each minigame when you’ve unlocked
it in a test. Puzzles will challenge your memory, observation skills, logic skills,
and reactions. It’s family friendly, too.

You can install it by searching for “brainparty” in the Add/Remove Software tool
(the game is listed as “36 puzzle games for all the family”) or, in the shell, enter
the following command:

sudo apt install brainparty

You can run Brain Party from the Applications menu (find it under Games) or from
the command line by entering brainparty.

Pure Data
Pure Data (Pd) is a programming language that allows you to create and manipu-
late sound using a visual interface. You create programs, or patches as they’re
known, by creating boxes that “do something” and connecting them together
with “signal” wires.

Pure Data was created in the ’90s by Miller Puckette but is now an open-source
project. A similar commercial product also created by Miller Puckette is called
Max/MSP. Although the interface and graphics look a lot prettier in Max/MSP, Pd
is essentially the same thing.

You can use Pd to create sound synthesizers of many types (for example, FM, wave
table, sample players, or granular synths). You can make sequencers for drums or
notes and connect them to the sound generators. You can input sounds from a
microphone or MP3 player and manipulate the sound, adding distortion, echo,
reverberation, and pitch shifting, to name just a few effects.

You can take digital inputs from a MIDI keyboard or even from the Raspberry Pi’s
general-purpose input/output (GPIO) pins. Pd can output MIDI signals for both
control and notes. All that is just scratching the surface of what Pd can do!

You can install it by searching for “puredata” in the Add/Remove Software tool or,
in the shell, enter the following command:

sudo apt install puredata

After it’s installed, you’ll find it in the Applications menu under Sound & Video.
When it asks whether you want Pd to create a documents directory, select Yes.

436 PART 6 The Part of Tens

From the menu (shown in Figure 19-6), choose Media and then Test Audio and
MIDI. Click the Test Tones 60 box, and you should hear a pure sine wave tone.
Click and drag on the pitch box, and you’ll change the frequency of the tone.

To test the audio input, you need a USB sound card. Select it by choosing
Media ➪   Audio Settings. You see changing numbers, indicating the volume, in the
first two boxes of the audio input row. When you plug in a MIDI keyboard, it
should be recognized. In the Media menu, make sure that OSS-MIDI is selected.
Go to the MIDI Settings in the Media menu to select your MIDI device — it’ll look
something like /dev/midi3.

For a keyboard, pressing a note key will show the note number and velocity, and
turning a control knob will show the value and control number.

We made a simple theremin with Pd, shown in Figure 19-7. You just drag the bars
for changing the volume and frequency with the mouse. We then extended this to
use sensors connected to the Raspberry Pi’s GPIO pins.

For more information on Pd, go to https://puredata.info. There’s a tutorial at
www.pdpatchrepo.info/puredata. For advice on adding GPIO access, go to
http://nyu-waverlylabs.org/rpi-gpio.

Although we’ve only used it for sound, you can also use Pd to manipulate video.
Go to https://youtu.be/XyS2M0mM5iA for a demonstration.

FIGURE 19-6:
Testing Pure

Data (Pd).
Sean McManus

https://puredata.info
http://www.pdpatchrepo.info/puredata
http://nyu-waverlylabs.org/rpi-gpio
https://youtu.be/XyS2M0mM5iA

CHAPTER 19 Ten Great Software Packages for the Raspberry Pi 437

Inkscape
Inkscape is a vector drawing package like Adobe Illustrator. Unlike Illustrator, it’s
open-source and free to download and use. In contrast to photo-editing packages
like Gimp, Inkscape doesn’t manipulate the actual pixels of a drawing. Those sorts
of systems are known as bitmapped systems. With a vector system, what’s stored
and manipulated are instructions for creating a drawing. At its simplest level, you
have objects like squares, circles, and lines, and these combine to form a drawing
when you play the drawing through a rendering engine.

This sounds complex — why bother? Well, when dealing with a bitmap, there is
only so much you can enlarge a picture without people being able to see the pixels.
With a vector image, you can scale it to however big or small you want and you’ll
never see any jagged lines (known as pixelation). This is just what you need when
it comes to rendering an image on a device with a much greater resolution than
your computer screen (for example, a printer).

But more than this, a vector image is what you need if you’re going to pass a
computer drawing onto some computer numerical controlled (CNC) device like
a milling machine, laser cutter/engraver, vinyl cutter, or 3D printer. Using those
machines, the individual lines and curves can be made into a real object.
Figure 19-8 shows the design for beer mat for a singer/songwriter Mike knows.
This mat was cut out of 1⁄8-inch plywood and engraved on a laser cutter; then it
was coated in matte-finish varnish and sold at her gigs.

You can install it by searching for “inkscape” in the Add/Remove Software tool or,
in the shell, enter the following command:

sudo apt install inkscape

FIGURE 19-7:
Making a

theremin using
Pure Data (Pd).

Sean McManus

438 PART 6 The Part of Tens

FIGURE 19-8:
A beer mat

design created
using Inkscape.

Sean McManus

CHAPTER 20 Ten Inspiring Projects for the Raspberry Pi 439

Chapter 20
Ten Inspiring Projects
for the Raspberry Pi

If you’ve read the rest of this book and worked through the projects, you now
know how to program and how to create your own electronics projects on the
Raspberry Pi. What you learn next, and what you create with that knowledge, is

up to you.

It’s amazing to see what people of all ages are doing with their Raspberry Pis. In
this chapter, we’ve collected some of the most interesting and inspiring projects
we’ve come across. Each one has a link so that you can find out more and perhaps
follow instructions to replicate the project — or get some advice for similar
projects of your own.

One-Button Audiobook Player
https://github.com/exitnode/theonebuttonaudiobookplayer

Michael Clemens has used the Raspberry Pi to create an audiobook player for his
wife’s grandmother, who is visually impaired and finds digital audio players
difficult to use.

IN THIS CHAPTER

»» Finding the inspiration to get started

»» Understanding what the Pi can do

»» Discovering sources of more project
information

https://github.com/exitnode/theonebuttonaudiobookplayer

440 PART 6 The Part of Tens

This project requires some electronics work — you add transistors, an LED, a pair
of speakers, and a large button to a plastic case and link the button and LED to the
Raspberry Pi’s GPIO pins.

A Python script enables the button to control the media player software: Pressing
the button pauses or plays the audiobook, and holding it down for 4 seconds sends
it back one track.

To change the audiobook, you just plug in a USB drive with the new audiobook
on it. It’s automatically copied across to the Raspberry Pi, replacing the old
audiobook.

Heartbeat Monitor
https://magpi.raspberrypi.org/articles/heartbeat-monitor

Daniel Fernandez connected a heart monitor to a Raspberry Pi so that he could
have more flexibility in capturing and using its data. The aim was to be able to see
a graph showing the results while he ran on the treadmill, and to be able to export
the results in a standard format for in-depth analysis, such as CSV, which can be
read by Excel or LibreOffice.

He used a Polar H7 heartbeat sensor and a Raspberry Pi 3 with a 3½-inch screen,
which displays an easy-to-read graph as he runs. Everything was packaged in a
protective case.

Smart Fridge
https://github.com/InitialState/smartbeerfridge/wiki

Jamie Bailey created a beer fridge that keeps count of how many bottles there are
and sends a text message to raise the alarm if houseguests try to pilfer your beer.
It uses a Wii Balance Board underneath the fridge to weigh its contents and work
out how many bottles are left.

The Raspberry Pi talks to the Wii Balance Board using Bluetooth, and an online
dashboard shows how many beers have been taken and how many remain.

https://magpi.raspberrypi.org/articles/heartbeat-monitor
https://github.com/InitialState/smartbeerfridge/wiki

CHAPTER 20 Ten Inspiring Projects for the Raspberry Pi 441

The dashboard uses the Initial State platform for visualizing Internet of Things
(IoT) projects. Initial State has published detailed instructions for making your
own smart beer fridge at the link earlier.

The Next Verse
www.stewarteaston.net/archive-1#/the-next-verse

Stewart Easton and Gawain Hewitt created The Next Verse, an interactive embroi-
dered artwork that depicts the cycle of life. Each family scene includes a triangle
of conductive thread that can be touched to play relevant sound effects. The child-
hood scene, for example, includes sounds recorded in a school playground.

The project uses the Touch Board, made by Bare Conductive. It enables sounds to
be triggered when the board (or conductive material connected to it) is touched.
By adding a Raspberry Pi, it was possible to use higher-quality sounds and to have
more than one sound playing at the same time. The piece includes a 23-minute
piece of music by Michael Tanner, which plays in the background.

The software to trigger the sound effects and play the music was written using
Pure Data (Pd), a visual programming language for multimedia (see Chapter 19).

The Next Verse has been exhibited at London’s Victoria and Albert (V&A) Museum.

For more information, see the article in Issue 67 of The MagPi. It’s available online
as a free PDF at https://magpi.raspberrypi.org/issues/67.

Electric Skateboard
https://youtu.be/2WLEur3M8Yk

You can use a Raspberry Pi as the guidance system on a motorized skateboard, as
TheRaspberryPiGuy demonstrated on YouTube. He attached an Alien Power Sys-
tems motor to the skateboard and used a Pi Zero to control it.

Acceleration is controlled using a remote control from Nintendo’s Wii console,
sending signals to the Pi over Bluetooth. In his video, you can see him speeding

http://www.stewarteaston.net/archive-1#/the-next-verse
https://magpi.raspberrypi.org/issues/67
https://youtu.be/2WLEur3M8Yk

442 PART 6 The Part of Tens

through the streets of Cambridge, UK hometown of the Raspberry Pi Foundation.
His top speed is 30 kilometers an hour, and he estimates that the battery power is
enough for at least 10 kilometers.

As an upgrade, you could add a Pi-powered speedometer, as shown in this tuto-
rial, which also shows you how to build the board itself: www.instructables.
com/The-Longboard-Speedometer.

T-Shirt Cannon
http://drstrangelove.net/2014/01/raspberry-pi-powered-t-shirt-cannon

David Bryan and Lucas Saugen turned to the Raspberry Pi when they were asked
to repair the T-shirt cannon used at the Minnesota RollerGirls’ roller derby
matches. The cannon is used to fire T-shirts into the audience during the time-
outs, which last for up to about a minute-and-a-half. They wanted a design that
would enable more than one T-shirt to be fired in that period, and that would also
enable the cannon to tweet a photo when a T-shirt was fired.

The resulting design uses four clear PVC tubes for the barrels, and compressed air
to fire the T-shirts. The cannon has three buttons: one to choose which barrel to
fire from, and the other two that are pressed together to fire a shirt. As an addi-
tional safety measure, a key is required to arm the cannon. The Raspberry Pi is
used to control the device, with software written in Python that uses the GPIO
Python libraries.

To find out more about how the cannon was built, watch videos, and download the
code, visit David’s website.

Magic Mirror
www.raspberrypi.org/blog/twitter-triggered-photobooth

For London Fashion Week, Photobot.Co created a photo booth for The Body Shop
that’s guaranteed to capture your best side. They built three vertical panels, each
of which has five Raspberry Pis and Raspberry Pi cameras in it. Together, they
make a Magic Mirror (see Figure 20-1) that compiles full-body portraits of sub-
jects, angled from the left, the right, and face-on.

https://www.instructables.com/The-Longboard-Speedometer
https://www.instructables.com/The-Longboard-Speedometer
http://drstrangelove.net/2014/01/raspberry-pi-powered-t-shirt-cannon
https://www.raspberrypi.org/blog/twitter-triggered-photobooth

CHAPTER 20 Ten Inspiring Projects for the Raspberry Pi 443

The photo booth was triggered when somebody tweeted the booth to say what
color she was wearing. The composite photo, a single image that showed all three
angles, was tweeted back to her. The tweet also included a response that was
appropriate for the color she said she was wearing if it was one of the hundred
recognized color names. The system used a Mac Mini as the central controller
(although the developers say they later found that a Raspberry Pi could have done
this job, too). The controller ran software in Python that listened for tweets, told
the Raspberry Pis to capture images and send them to it, and then created the
composite image. The controller connected to the Raspberry Pis using Secure Shell
(SSH), so it could control them remotely and access their image data.

Pi in the Sky
www.pi-in-the-sky.com

Dave Akerman uses the Raspberry Pi for high-altitude ballooning, using
hydrogen-filled balloons. The balloons go high enough to photograph a slight
curvature in the earth, with the darkness of space visible above the atmosphere.
After two or three hours of ascent, the balloons burst and release their payload to
fall to Earth on a parachute.

FIGURE 20-1:
The design for

the Magic Mirror,
showing where

the Raspberry Pi
cameras (the

small circles) are
mounted in the
mirror surfaces.

Sean McManus

http://www.pi-in-the-sky.com/

444 PART 6 The Part of Tens

Dave’s favorite experience was sending Babbage, the teddy bear mascot of the
Raspberry Pi, up to 39 kilometers and releasing it for freefall. “The first attempt
failed due to a combination of factors — a windy launch meant Babbage’s support
line wasn’t in the right place around the heated resistor that was to cut him free,
and for weight reasons I’d been overcautious in using a smaller and less powerful
battery pack than was ideal,” says Dave. “Success is always sweeter after an initial
failure, and it was a lovely moment when I knew for sure that he’d been released
properly on the second flight.”

Dave’s early projects involved hand-building systems for tracking flights using
GPS and for transmitting positioning signals, photos, and other data to the
ground. The Pi in the Sky kit is now available to provide these features off the
shelf. You can also use the kit in combination with the Sense HAT (see Chapter 15)
to send sensor data back to the ground. Among other things, Dave’s used the Pi
to predict the landing position on the way down. Part of the challenge of high-
altitude ballooning is recovering the payload, given that predictions can be off by
5 miles or more.

High-altitude ballooning can be a satisfying hobby, but it’s one that requires
planning and commitment. You will most likely need permission for each flight so
that you don’t endanger aircraft, and you’ll need to budget several hundred dollars
or pounds for the equipment, and a couple of hundred for the balloon, gas, and
fuel for the chase vehicle on each flight. Plenty of help is available, though, to help
you make a success of it: Start by reading Dave’s tutorial at www.daveakerman.
com/?p=1732, join the #highaltitude channel at https://webchat.freenode.net,
and visit the UK High Altitude Society website (https://ukhas.org.uk).

Raspberry Turk
www.raspberryturk.com

You might have heard of the Mechanical Turk, an elaborate illusion that was
claimed to be a chess-playing robot from 1770 until 1854. In fact, a chess master
was hidden inside the table, making the moves and controlling the dummy of a
man in Turkish dress who appeared to be playing the game. The Mechanical Turk
went on to give its name to a service from Amazon where people complete tasks
over the Internet, and now to Raspberry Turk, a genuine chess-playing robot.

Raspberry Turk is built around the open source Stockfish chess engine, which
plays the games. A Raspberry Pi is used to control a robot arm that moves the
chess pieces. A Raspberry Pi Camera Module is used with computer vision soft-
ware to see when it’s the computer’s turn to play, by checking for the player’s

http://www.daveakerman.com/?p=1732
http://www.daveakerman.com/?p=1732
https://webchat.freenode.net/
https://ukhas.org.uk/
http://www.raspberryturk.com/

CHAPTER 20 Ten Inspiring Projects for the Raspberry Pi 445

move on the board. The whole thing is built into a table, which has the chess board
painted onto its surface.

You can find out more about this project, which combines elements of artificial
intelligence, robotics and computer vision, at the project’s website.

Sound Fighter
www.foobarflies.io/pianette

To mark the reopening of the Maison de la Radio in Paris as a cultural center, Jean
Weessa and Mélanie Pennec had the idea of creating an installation that uses two
upright pianos as game controllers for Street Fighter on the PlayStation.

Eric Redon and Cyril Chapellier brought the idea to life using a Raspberry Pi Model
B+ as the brains of the operation, receiving all the piano keypresses, and piezo
sensors attached to the piano hammers that detect when a key is struck. The
project also required them to create custom-printed circuit boards, and use an
Arduino Uno to feed the keypresses into the PlayStation. Their code was written in
Python 3.

To create a gameplay experience that made good pianists good gamers, and also
made it sound as musical as possible, player movements were assigned to the left-
hand keys, actions were assigned to the right-hand keys and both pianos played
in the same musical scale. Later modifications of the project include using the foot
pedals for long button presses and expansion to the additional games Tekken5
(another beat-’em-up) and Crash NitroKart (a racing game).

You can read about the challenges involved in building this project, and how they
were overcome, at the website. You can also find the code and designs if you want
to replicate the project.

https://www.foobarflies.io/pianette

CHAPTER 21 Ten Great Add-Ons for the Raspberry Pi 447

Chapter 21
Ten Great Add-Ons for
the Raspberry Pi

In addition to being able to connect your own electronics projects to the
Raspberry Pi’s general-purpose input/output (GPIO) pins, you can use the pins
to mount add-on boards. Extension boards that sit on top of the Pi boards are

often called HATs (HAT is short for “hardware attached on top”). HATs comply
with a standard and are sized to sit on a full-size Raspberry Pi without overhang-
ing it. Add-ons that are the same size as the Pi Zero are often called pHATs, short
for partial HATs. You can use HATs or pHATs with any Raspberry Pi computer.

If you’re using a Raspberry Pi 400, the GPIO pins are parallel to the desk, pointing
away from you. On other devices, they point up to the ceiling. To use HATs as
designed with the Raspberry Pi 400, you’ll need an adapter to point the pins in the
right direction. You can use a simple extension cable, but there are plug-in
converters that turn the GPIO pins the right way up for you, too. Pimoroni
(www.pimoroni.com) makes the Flat Hat Hacker, and SB Components (https://
shop.sb-components.co.uk/) makes the Raspberry Pi 400 GPIO Adapter (see
Figure 21-1).

IN THIS CHAPTER

»» Building an arcade machine

»» Making a robot

»» Setting your Raspberry Pi to turn on
or off on schedule

»» Adding new inputs: a piano keyboard,
temperature sensor, and gesture
sensor

»» Adding new outputs: LEDs, LCDs,
electronic paper, and a speaker

http://www.pimoroni.com
https://shop.sb-components.co.uk/
https://shop.sb-components.co.uk/

448 PART 6 The Part of Tens

Although HATs cover all the GPIO pins, they often only use a couple of them. The
Mini Black Hat Hack3r by Pimoroni enables you to use a HAT and access an addi-
tional set of GPIO pins at the same time. The company’s pHAT Stack enables you
to connect three HATs or five pHATs at the same time. At https://pinout.xyz,
you can look up HATs and pHATs to see which GPIO pins they use, so you can work
out which add-ons would clash and which would work well together.

Picade
If you’ve ever wanted to have your own arcade cabinet, Pimoroni’s Picade is here.
At its simplest, it’s a HAT that you can use to connect a joystick and arcade but-
tons to your Raspberry Pi. Then you can attach a screen and build your own cabi-
net to house it all. There’s also the Picade Console, which includes the buttons,
joystick, and speaker. Everything is housed in a unit you can connect to your TV.

For the ultimate Raspberry Pi–based games machine, Pimoroni make a complete
kit with either a 10-inch or an 8-inch display. It takes about half a day to build
it using the online instructions. Because it uses the Retropie software (see
Chapter 2), you can play a wide range of games on it from classic computers and

FIGURE 21-1:
The Flat Hat

Hacker (left) and
Raspberry Pi 400

GPIO Adapter
(right) can be

used to point the
pins up on a

Raspberry Pi 400.
Sean McManus

https://pinout.xyz/

CHAPTER 21 Ten Great Add-Ons for the Raspberry Pi 449

consoles. We found that classic arcade games offered the best experience, because
they were designed to work with a joystick and a few buttons. Old computer games
run, but they often require a keyboard. You can plug one in, no problem, but it
feels more like a real arcade machine when you don’t need a keyboard. The sound
quality through the built-in speaker is excellent. You’ll need to provide your own
Raspberry Pi, power supply, and microSD card.

The 10-inch Picade (shown in Figure 21-2) also includes a license for PICO-8, a
so-called “fantasy console.” PICO-8 is a programming environment that has
similar limitations to the computers of the ’80s, but it isn’t based on any real
machine. You can use it to develop your own arcade games, based on the Lua
programming language.

CamJam EduKit 3
Let’s build a robot! The CamJam EduKit 3 contains all the components you need.
It has two chunky wheels with motors, a board to connect them to your Raspberry
Pi, a distance sensor, and a line-following sensor. You can use the box it comes in
as a chassis or create your own case out of LEGO blocks or anything else you have

FIGURE 21-2:
The Picade

console with
10-inch screen.

450 PART 6 The Part of Tens

lying around. The instructions show you how to control the motors and sensors in
Python. This kit is a solid, affordable introduction to robotics. Find the documen-
tation at https://camjam.me/?page_id=1035 and order at www.thepihut.com.

Piano HAT
This is one of Sean’s favorite add-ons for the Raspberry Pi: a tiny touch-sensitive
piano, with lights in the keys (see Figure 21-3). It covers an octave (from C to C,
including the black keys in between). You can program it using Python to create
musical instruments. Sean wrote a simple game that teaches you how to read
sheet music using the Piano HAT. You can download it at https://news.sean.
co.uk/2016/03/learn-to-read-sheet-music-on-raspberry.html.

Pimoroni also makes a Drum HAT, which gives you eight touch pads with LEDs
that you can tap to beat out a rhythm. Drum HAT and Piano HAT can be used
together using a device such as the pHAT Stack.

FIGURE 21-3:
The HATs in this

chapter, left to
right from the

upper left: Piano
HAT, Rainbow

HAT, Display-O-
Tron HAT, Flick

HAT, Unicorn HAT
HD, Inky pHAT,

Pirate Audio,
Flick pHAT,

Witty Pi Mini.

https://camjam.me/?page_id=1035
http://www.thepihut.com
https://news.sean.co.uk/2016/03/learn-to-read-sheet-music-on-raspberry.html
https://news.sean.co.uk/2016/03/learn-to-read-sheet-music-on-raspberry.html

CHAPTER 21 Ten Great Add-Ons for the Raspberry Pi 451

Rainbow HAT
The Rainbow HAT from Pimoroni (refer to Figure 21-3) packs a lot of inputs and
outputs into a regular, HAT-size board:

»» An arc of seven multicolored LEDs and four green alphanumeric displays.
These displays have more segments than a digital clock, to help you represent
letters as well as numbers.

»» A red, a green, and a blue LED above three buttons marked A, B, and C.

»» A buzzer that you can use to make beepy music.

»» A temperature and pressure sensor, making it a great base for a weather
station.

»» Pins you can connect to if you want to experiment with the I2C, SPI, or UART
interfaces.

Finally, using the Python library, you can program your own projects based on
the HAT.

Display-O-Tron HAT
If you want to display a bit more information within a compact HAT, the
Display-O-Tron (refer to Figure 21-3) is a good choice. It gives you an LCD screen
that can show three rows of 16 characters. The screen has multicolored back-
lighting, split into six areas from left to right. Up the side of the screen, there are
six white LEDs. Around the left and bottom edges are six buttons (labeled as left,
right, up, down, confirm, and back — although you can program them to do
anything). If you want to add simple circuits on top, you can solder breakout pins
onto the board for access to five GPIO pins and several other interfaces.

Flick
The Flick HAT from Pi Supply (https://uk.pi-supply.com/) is a flat board that
not only detects swipes and taps, but also can detect hand movements above the
board. It’s available as a pHAT, too (refer to Figure 21-3), as well as in a large
version that measures 5¾ inches by 4 inches. The software can detect taps on
the edge and in the center of the board, a hand’s height above the board, and a

https://uk.pi-supply.com/

452 PART 6 The Part of Tens

spinning finger gesture above the board. One of the best features is that the non-
contact gestures can be detected through some surfaces. You may be able to
mount a Flick Large under your desk to turn it into a sci-fi-style control panel.
For more information, see Sean’s article at https://news.sean.co.uk/2017/11/
adding-gesture-control-to-raspberry-pi.html.

Pimoroni makes a similar gesture detection board called Skywriter, in the standard
HAT size.

Unicorn HAT HD
Everything looks better with twinkly LEDs on it. Pimoroni’s Unicorn HAT provides
an 8 x 8 grid of multicolored LEDs that you can program from Python. The Unicorn
HAT HD (refer to Figure 21-3) increases the resolution to 16 x 16 lights, so you can
create more sophisticated displays. The Unicorn HATs can be used to display
scrolling text, make simple games, or create dazzling light shows.

Use a diffuser layer to soften the light. They make the light look nicer and help to
shield your eyes from the bright LEDs. You can buy diffuser layers for Raspberry
Pi cases from Pimoroni, too.

Inky pHAT
The Inky family of add-ons from Pimoroni adds electronic paper displays to your
Raspberry Pi. When you power off, the image remains. The pHAT is available in
black and white with red or yellow as a third color (refer to Figure 21-3). The
screen takes 15 seconds to refresh and flashes during the refresh, so the Inky
pHAT is best used for information that doesn’t change frequently. Pimoroni also
makes the Inky Impression (a large display at 5¾ inches and with seven colors)
and Inky wHAT (with a 4¼-inch display).

Pirate Audio
Pirate Audio, also by Pimoroni, is a range of pHATs you can use to add audio capa-
bilities to your Raspberry Pi. The Pirate Audio Speaker (refer to Figure 21-3)
includes a small, high-res display for artwork and a built-in 1W speaker. Four

https://news.sean.co.uk/2017/11/adding-gesture-control-to-raspberry-pi.html
https://news.sean.co.uk/2017/11/adding-gesture-control-to-raspberry-pi.html

CHAPTER 21 Ten Great Add-Ons for the Raspberry Pi 453

buttons are mounted around the display, too, so you can use the pHAT to create
your own audio player. It can also be used to play sound effects when making
games in Scratch or Python or music played from VLC.

Witty Pi
The Witty Pi and Witty Pi Mini (refer to Figure 21-3) add real-time clocks to your
Raspberry Pi. They can be used to wake up and switch off your Raspberry Pi at set
times, so you can run a program on a regular schedule and power down when the
Pi isn’t needed. The devices are made by UUGear (www.uugear.com).

http://www.uugear.com

APPENDIX Troubleshooting and Configuring the Raspberry Pi 455

Troubleshooting and
Configuring the
Raspberry Pi

Many people find that they can just connect up their Raspberry Pi, and
everything works fine the first time. Fingers crossed that this will apply
to you!

Sometimes people experience problems, however, or want to make more advanced
changes to their computer’s settings (also known as configuring it).

In this appendix, we show you how to resolve some common complaints and how
to change some of the settings. Hopefully, you won’t need to consult this appen-
dix much, but it might prove valuable if you experience undesirable behavior
when you first set up the Pi or if you have an unusual setup.

IN THIS CHAPTER

»» Troubleshooting and fixing common
problems

»» Adjusting the settings on your
Raspberry Pi

»» Fixing audio problems

»» Mounting external storage devices in
the Linux shell

»» Fixing software installation issues

»» Troubleshooting your network
connection

»» Connecting using SSH

Appendix

456 Raspberry Pi For Dummies

Whatever you’re doing on the Raspberry Pi (or any computer, come to that), save
your work regularly. If it crashes, you’ll be able to pick things up from your last
saved version, which will hopefully prevent you from losing too much work.

Troubleshooting the Raspberry Pi
The Raspberry Pi is reliable and has a strong ecosystem of compatible products
you can depend on. If you do have a problem, we recommend you work through
this checklist to try to identify the cause.

These steps are listed in a rough order of priority, with the quickest tests and
simplest solutions first. You can try any of these solutions at any time, but if you
respect this order (more or less), you can minimize any expense and hassle.

1.	 Be patient.

With the huge increase in performance over the years, this is less of an issue
than it was when the Pi first came out, but it’s worth saying nonetheless: When
your Raspberry Pi is busy, it can appear to be unresponsive, so you might think
it’s crashed. Often, if you wait, it recovers when it finishes its tasks. If it’s not
doing anything you particularly care about, you can always just restart the
machine, but that loses any data in memory, and it’s not a good idea to reset
during operations like software installations (if you can avoid it), because it
leaves them half-finished. There is also a risk of corrupting the microSD card if
you don’t shut down properly. Note that the Raspberry Pi has a screensaver
built in, so you can recover the Pi from a blank screen by wiggling the mouse
(when in the desktop environment) or pressing any key (in the command line).
You can use the Shift key so that nothing appears onscreen.

2.	 Restart your Raspberry Pi.

Very occasionally, the machine has crashed in a way that we haven’t been
able to replicate, so a simple reset can sometimes do the trick. If you’re using
a Raspberry Pi 400, try using the Fn+F10 key combination to shut down, pause
a moment and then restart. On other models, remove the power, pause a
moment, and then reconnect it. If you can, it’s better to shut down safely
(see Chapters 4 and 5).

3.	 Check your connections.

Switch off your Raspberry Pi and make sure that all its cables are firmly fixed
in the right sockets. Start with the source of the problem: For example, if the
screen is blank, check the video cable; if the keyboard is unresponsive, check
its connection. Connect everything before turning on your Raspberry Pi.

APPENDIX Troubleshooting and Configuring the Raspberry Pi 457

Chapter 3 is a guide to setting up your Raspberry Pi, including connecting its
peripherals and cables.

4.	 Ensure that your microSD card is inserted correctly.

If your Raspberry Pi’s red PWR light comes on but the green OK light does
not flicker or light, the Raspberry Pi is having difficulty using the microSD
card. In the first instance, check to see that the card is correctly inserted
(see Chapter 3).

5.	 Try a new SD or microSD card.

If the red light comes on but the green one still won’t, try a new card. We’ve
occasionally had problems with SD cards or microSD cards, and with adapters
that convert a microSD card to fit an SD card slot. You can find a list of SD cards
that have been reported as compatible with the Raspberry Pi at https://
elinux.org/RPi_SD_cards. Compatible microSD cards are also available
from Raspberry Pi resellers, often with Raspberry Pi OS preinstalled.

6.	 Disconnect peripherals.

Try disconnecting the keyboard and mouse and then restart. Obviously, this
won’t help much if the problem you’re experiencing requires input devices
for you to replicate it, but it can help to identify any device incompatibilities
that might stop the Pi from starting up correctly. If the Pi works fine without
anything connected, use the process of elimination (connecting devices one at
a time and restarting) to identify which one is causing problems. Try connect-
ing the device directly, instead of using a USB hub if you have one.

7.	 Try different peripherals.

If possible, try a different keyboard and mouse. Official Raspberry Pi products
are available and there is a list of devices at https://elinux.org/
RPi_VerifiedPeripherals that are known to work. Many of the problems
people experience are the result of using incompatible devices with the
Raspberry Pi, so replacing the keyboard, mouse, and USB hub can resolve a
wide range of apparently different problems (including a strange experience
Sean had with his Internet connection not working in the desktop environ-
ment, even though it worked in the command line — the problem was an
incompatible keyboard). The previous step can help you to identify which
peripherals might be causing problems.

8.	 Try different cables.

Especially if you’re having problems with the network connection and audio or
visual output, try using different cables to rule out faulty cables as the cause of
the problem.

https://elinux.org/RPi_SD_cards
https://elinux.org/RPi_SD_cards
https://elinux.org/RPi_VerifiedPeripherals
https://elinux.org/RPi_VerifiedPeripherals

458 Raspberry Pi For Dummies

9.	Try a different screen.

If you can’t see anything on the screen but the Raspberry Pi appears to be
powering up (the red light comes on and the green light flickers), try connect-
ing to a different monitor or TV. (See Chapter 3 for advice on this.)

10.	Update your software.

Assuming your Internet connection is working, you can update the operating
system and other software on your Raspberry Pi (without overwriting any of
your work files) using this Linux command (see Chapter 5):

sudo apt-get update && sudo apt-get upgrade

When new Raspberry Pi models launch, a new version of Raspberry Pi OS is
often required to work with them. If you’re using an old microSD card with a
new device, it may be incompatible. (See Chapter 2 for advice on creating a
new microSD card.)

11.	Try a different power supply.

We’ve put this near the end of our steps list because it’s probably hardest
to do, although dodgy power has been reported to cause a wide range of
different problems. If you have a friend with a Raspberry Pi and theirs works
fine, try using their power supply to see whether it fixes the issues you’re
seeing on yours. Alternatively, you might need to buy a new power supply.
Note that the Raspberry Pi 3 needs more power than earlier models even
though it has a compatible power socket, so if you’ve upgraded your Pi but not
your power supply, you might experience problems. For best results, use an
official Raspberry Pi power supply, or buy one from a Raspberry Pi reseller.

12.	Check online for a solution.

It’s not possible to cover every eventuality here, so if you’re still experiencing
difficulties, check the rest of this appendix and then see the troubleshooting
guide at https://elinux.org/R-Pi_Troubleshooting, search the forums
at www.raspberrypi.org/forums, or search the web for a solution. You’re
highly likely to find that someone else has already overcome any difficulties
you encounter.

Troubleshooting Your Network Connection
In the desktop environment, you can easily test whether your network is working
by using the web browser. In the Linux shell, you can test whether it’s working
with the ping command:

ping -c 5 www.google.com

https://elinux.org/R-Pi_Troubleshooting
http://www.raspberrypi.org/forums/

APPENDIX Troubleshooting and Configuring the Raspberry Pi 459

This command makes five attempts to connect with Google and reports on its
success. If the network is working perfectly, you should see that five packets
were transmitted and five were received. Firewalls can sometimes interfere with
the ping command, but this is rare. If the command works, it’s a guarantee that
the Pi is connected to the Internet.

You can query the network devices on your Raspberry Pi using ifconfig. This
command shows you the information for eth0 (your Ethernet connection), wlan0
(your Wi-Fi connection, if available), and the local loopback, which is how the
Raspberry Pi refers to itself and which you can safely ignore. If there is an inet
entry (this is not the same as the inet6 entry) for eth0 or wlan0, it means your
Raspberry Pi has connected to the router and been assigned an IP address
successfully.

The Ethernet connection should be automatically activated, but if it isn’t, you can
manually activate it with this command:

sudo ifup eth0

You can deactivate the Ethernet connection using this command:

sudo ifdown eth0

Your Raspberry Pi should automatically connect to home routers using Dynamic
Host Configuration Protocol (DHCP), but these tips can help you to identify where
the problem lies if you experience difficulties.

If you experience network problems, try a different cable to rule out problems
with the physical connection, and make sure your power supply is strong enough
for the Raspberry Pi. (See Chapter 1 for more on power supplies.)

See Chapter 3 for advice on configuring your Wi-Fi connection.

Adjusting the Settings on Your
Raspberry Pi

The best way to change the settings on your Raspberry Pi is using the configura-
tion programs in the desktop or the shell. If that doesn’t work. Try editing the
settings file directly. In this section, we talk you through those options.

460 Raspberry Pi For Dummies

Changing the screen resolution in the settings file does not override the settings
in the desktop, so try using the desktop first.

Changing settings in the desktop
and Raspi-config
Try using the menus on the desktop (see Chapter 3) or running the Raspi-config
program, which gives you a menu for changing some of the most frequently used
options, including some that are not included in the desktop tool. You can run the
program at any time using the following command in the shell:

sudo raspi-config

Raspi-config can help with

»» Keyboard configuration: Under Localization Options, you can select your
keyboard type. You can also use the Localization options in the Raspberry Pi
Configuration tool, as described in Chapter 3.

»» Camera problems: Ensure the camera is enabled in Raspi-config. You’ll
find the camera settings in the Interface Options. You can also enable the
camera from the Interfaces section of the Raspberry Pi Configuration tool
(see Chapter 3).

»» Audio problems: In System Options, you can force the audio to use the
headphone jack or HDMI output.

»» Missing space on the card: You might need to expand the file system to use
all the space available. Under Advanced Options, choose Expand Filesystem.

»» Boot options: Under System Options, you can choose whether to boot into
the shell or the desktop and whether to require a password. You can use the
System tab in the Raspberry Pi Configuration tool to manage this, too. Booting
to the command line interface (CLI) goes straight to the shell.

The shell is covered in Chapter 5, but, in brief, it is the way of giving text instruc-
tions to your Raspberry Pi. You can open the shell by clicking the Terminal icon
at the top of the screen in the desktop environment.

Raspi-config and the Raspberry Pi Configuration tool can make changes for you
without your having to edit any configuration files, so it’s more convenient than
editing config.txt yourself, and there is less risk of error too. If the option you
need isn’t covered on the Raspi-config menu, you need to edit the configuration
file manually.

APPENDIX Troubleshooting and Configuring the Raspberry Pi 461

Using Nano to edit config.txt
The settings that your Raspberry Pi uses are stored in files on the microSD card,
and many of them are in a file called config.txt that’s in the /boot directory.
You can edit this file directly to change your computer’s settings using a simple
text editor called Nano that is preinstalled on your Raspberry Pi.

Before you start tampering with the config.txt file, make sure you’ve backed up
any important data on your Raspberry Pi. (See “Mounting External Storage
Devices” later in this appendix and the section about backing up your data in
Chapter 4.) There is a risk that you could, for example, render the screen display
unreadable, which would make it difficult to use the Raspberry Pi to access
your files.

To open the config.txt file in the Nano editor, enter the following command in
the shell, all in lowercase:

sudo nano /boot/config.txt

The Nano text editor, with config.txt open, looks like Figure A-1.

FIGURE A-1:
The Nano text

editor with
the config.txt

file open.

Sean McManus

462 Raspberry Pi For Dummies

Use the cursor keys to move around the document. At the bottom of the window is
a menu explaining Nano’s controls, where the upward arrow represents the Con-
trol key. The shortcuts here are different to what you might be used to, but the
main ones you should know about are

»» Ctrl+W: Search for a word or phrase. This option (short for Where Is?) enables
you to jump straight to the configuration option you want to edit.

»» Ctrl+V: Next page.

»» Ctrl+Y: Previous page.

»» Ctrl+K: Cut the current row of text.

»» Ctrl+U: Uncut text, which means paste the text you previously cut at the
cursor’s location.

»» Ctrl+G: Get help, which provides more detailed instructions.

»» Ctrl+O: Write out, or save, the current file.

»» Ctrl+X: Exit Nano and return to the shell.

The first thing you’ll notice about config.txt is that the # (hash mark) symbol is
used at the start of most lines. This symbol has a special meaning to the computer,
which is “ignore the rest of this line.” You might wonder why anyone would enter
information into a computer that they want it to ignore, but this concept is often
used (not often enough, some would say) to help the human users of a particular
program or file. Any line with a # symbol at the start of it isn’t actually doing any-
thing, but it’s there to guide you as you edit config.txt. Lines like this are called
comments. (They are also used in Python, as you see in Chapter 11.)

The first two lines of settings in config.txt say

uncomment if you get no picture on HDMI for a default "safe" mode

#hdmi_safe=1

The first line is obviously intended for you to read, but the second line shows the
settings you need to use to turn the HDMI Safe mode on. This takes the form that
all settings in config.txt do — namely:

setting_name=value

Each setting needs a line of its own. If you wanted to turn the HDMI Safe mode on,
you would remove the comment symbol (the hash mark) before the second line,
or “uncomment” that line, so that the first two lines now read

APPENDIX Troubleshooting and Configuring the Raspberry Pi 463

uncomment if you get no picture on HDMI for a default "safe" mode

hdmi_safe=1

Don’t remove the # symbol from the line of instructions. It remains a comment
that’s intelligible only to human readers. You should remove the # symbol only
from lines you want the computer to do something with.

Just taking out that single hash mark makes all the difference! Save the file
(Ctrl+O) and reboot the computer, and Safe mode is activated. You can reboot the
Raspberry Pi with the following command:

sudo reboot

If you need to disable a setting, you can just put a # symbol in front of it again to
turn its line into a comment that the computer will ignore.

You can add your own comments too. It’s a good idea to add a line starting with a
symbol to remind yourself what you changed and when, in case you need to
change the settings back later.

You can change multiple settings at the same time, but each setting must be on its
own line.

The config.txt file has lots of comments to tell you what to change for various
settings. We don’t have space to document them all here. You can find a detailed
list at https://elinux.org/RPiconfig.

Fixing Audio Problems
In the desktop environment, you can use the Speaker icon in the top right to adjust
the volume of sound and mute or unmute it. In the command line, you can call up
a utility to adjust the sound using this instruction:

sudo alsamixer

Use the cursor keys or the mouse scroll wheel to adjust the volume level.

The sound output device is automatically detected. Note that if you’re using HDMI
to connect to a screen, the audio might be directed there by default, even if the
monitor does not have speakers. You can use the audio options in Raspi-config
(found under System Options) to direct the audio to the headphone jack or the

https://elinux.org/RPiconfig

464 Raspberry Pi For Dummies

HDMI cable. In LibreELEC (see Chapter 8), you can click the cogwheel at the top of
the menu to go into Settings, choose System Settings, and click Audio to find the
option to change the output device.

Fixing Software Installation Issues
The apt package manager should enable you to cleanly install and remove soft-
ware. If software isn’t working, try removing it and then reinstalling it as described
in Chapter 5.

Packages often require other packages (called dependencies) to work. The package
manager looks after these dependencies for you, but if they get broken, you can fix
dependencies using the following command:

sudo apt -f install

Mounting External Storage Devices
When you plug in an external storage device such as a USB key or flash drive, the
desktop environment recognizes it automatically and opens it in File Manager for
you. Not so when using the shell. You need to mount the device yourself, which
means you need to connect the device to a folder in the directory tree where you
want to browse its contents.

If your only goal is to back up your data to an external storage device, it’s probably
easier to use File Manager or the SD Card Copier application in the desktop envi-
ronment (see Chapter 4).

To use external storage in the shell, you first need to create a directory that will be
the mount point for the USB key, which means when you look in that directory,
you are actually looking at the contents of the external storage device. You can
reuse this directory, but the first time you mount a device, you need to create the
directory. You can create this directory anywhere (including inside your home
directory), but it’s conventional to mount temporary devices in the /mnt directory:

sudo mkdir /mnt/usbdrive

APPENDIX Troubleshooting and Configuring the Raspberry Pi 465

Next, you need to investigate the device you’re connecting. To do that, connect
your storage device and then enter this command:

sudo fdisk -l

The last character of this command is a letter l (lowercase L), and not a number 1.
At the end, after a number of entries for RAM devices, the output should look
something like this:

Disk /dev/mmcblk0: 14.9 GiB, 15931539456 bytes, 31116288 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xcbd582ec

Device Boot Start End Sectors Size Id Type

/dev/mmcblk0p1 8192 532479 524288 256M c W95 FAT32 (LBA)

/dev/mmcblk0p2 532480 31116287 30583808 14.6G 83 Linux

Disk /dev/sda: 59 GiB, 63333990400 bytes, 123699200 sectors

Disk model: Rainbow Line

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x59e52127

Device Boot Start End Sectors Size Id Type

/dev/sda1 * 64 123699199 123699136 59G 7 HPFS/NTFS/exFAT

This lists the different storage devices that are connected to the Pi. In the preced-
ing example, you can see the first disk (Disk /dev/mmcblk0) is 14.9GiB MB, which
is a 16GB SD card, and the second one (Disk /dev/sda) is 59GiB, which is a 60GB
USB key we’ve connected. The important information we need from this is the
device name and the partition number, which is shown at the bottom of the output
and is sda1.

To mount the drive for the user pi (uid=pi) and the group pi (gid=pi), we then use

sudo mount -o uid=pi,gid=pi /dev/sda1 /mnt/usbdrive

466 Raspberry Pi For Dummies

To view the contents of the USB key, you can then use

ls /mnt/usbdrive

To back up your home directory to the USB key, use

cp -R ~/* /mnt/usbdrive

Index 467

& (ampersand), 342
’ (apostrophe), 98
* (asterisk) operator, 91, 98, 127
\ (backslash), 98
. (current directory), 104
{} (curved braces), 98
$ (dollar sign), 80
= (equal sign), 127, 222
(hash mark), 80, 462–463
- (hyphen) operator, 98
!= (not equal to operator), 221
.. (parent directory), 86–87, 104
() (parentheses), 239
| (pipe) character, 95, 114
/ (slash) operator, 86, 91, 98, 127
[] (square brackets), 98, 239
~ (tilde) symbol, 80, 82, 86
125–135 KHz tags, 392
13.56 MHz tags:, 392
3.5 mm headphone jack, 21

A
absolute paths, 85–88
accessories

compatible, 18
incompatible, 18
optional, 22–23

Acorn Computers, 30
active tags, 392
actors

about, 237
animating, 239–240
creating, 237

Adafruit, 18, 264, 322, 362–363, 382–383
ad-blockers, 64–65
adding

bookmarks, 66
ceilings in Minecraft, 268–269
media to media center, 145–149

music to media center, 146–147
special effects in Sonic Pi, 286–287
sprites to games, 179–180
videos to media center, 147–148

additive mixing, 359
add-on boards

about, 314
breakout boards, 317
CamJam EduKit 3, 449–450
Flick HAT, 451–452
Inky pHAT, 452
LED SHIM, 316
partial HATs, 317
Piano HAT, 450
Picade, 448–449
Pirate Audio, 452–453
Rainbow HAT, 451
recommended, 447–453
Sense HAT, 315
styles, 314
Trill sensors, 315–316
Unicorn HAT HD, 452
Witty Pi, 453
Witty Pi Mini, 453

Add/Remove Software menu, 75–76
addressable LEDs

about, 362–365
APA102C protocol, 365–369
bit-banging, 365–366
creating class, 367–371

Akerman, Dave (developer), 7, 443–444
alternating current, 297
amp, 204
ampersand (&), 342
animate() function, 239, 247
animating actors, 239–240
animation frame, 166
anode, 296
APA102C protocol, 365–369
apostrophe (’), 98

Index

468 Raspberry Pi For Dummies

applications
closing, 55–56
finding and installing, 75–76
running, 55

Applications menu, 52–53
apt cache, 107
arcade game, programming

about, 177–178
adding scripts to Stage, 198
adding sprites, 179–180
adjusting difficulty, 199
changing backdrop, 178–179
controlling scripts, 184–190
detecting when sprites hit, 191–192
drawing sprites, 180–184
duplicating sprites, 198
fixing bugs, 195–197
making sprites move automatically, 194–195
naming sprites, 184
playing game, 198
starting new project, 178
using random numbers, 190–191
variables, 192–194
website, 200

Arduino, 16
Arduino Uno, 445
arguments, 89, 220, 225
asterisk (*), 91, 98, 127
Audacity, 412–413
audio. See also media center

about, 143
changing settings, 460
fixing problems, 463–464

audiobook player, 439–440

B
backdrop, changing in Scratch, 178–179
backing up data, 76–77
backslash (\), 98
Bailey, Jamie (developer), 440
ball grid array (BGA), 305
Bare Conductive, 441
Bash, 79
batteries

about, 20
chargers, 36

for Pico controller, 389–390
positive/negative terminals, 299, 306
series resistance, 301, 304
symbols, 297
warning, 36

BBC Microcomputer, 10
BCM28365 chip, 304
BCM2836 chip, 304
Beech, Paul (developer), 23
Beneath a Steel Sky, 433–434
binaries, 83
binary number, 341
bin directory, 83
bit-banging, 365
bitmap, 437
bits, 341
bleep variable, 354
blocking, 397
blocks

adding in Minecraft, 257–259
controlling graphic effects with, 169
playing sound with, 171
resizing sprites with, 170
in Scratch, 159

Blocks Palette (Scratch), 159, 193
Bluetooth devices

configuring, 34, 41
pairing, 41

BOARD system, 320
Boing! (game), 73
bookmarks, 60, 66–67
Bookshelf, 53, 59
boot directory, 83, 87
boot options, 460
Bourne, Stephen (developer), 79
Bourne shell, 79
Brain Party, 434–435
breaker, 297
breakout boards, 317
Brightness effect (Scratch), 169
Broadcast block, 188
Brush tool (Scratch), 182
Bryan, David (developer), 442
budget, managing in LibreOffice Calc, 125–126
buffer, 365–366
bugs, fixing, 195–197

Index 469

Bunner (game), 73
Button Is block (Scratch), 327

C
cables

about, 21
HDMI, 21, 34
RCA, 21, 35
troubleshooting, 457

cache, updating, 107
cal command, 97
Cambridge University, 8
camera

changing settings, 460
connecting, 41–46
testing, 44–46

CamJam EduKit 3, 449–450
Canvas (Scratch), 180
case, 22–23
case fan

about, 23–24
enabling, 39

cathode, 296
Cavern (game), 73, 74
cd command, 82
ceilings, adding in Minecraft, 268–269
cells (spreadsheet), 126–128
cellsVisitedList[] variable, 264
central processing unit (CPU), 38–39
changeover switch, 298
Chapellier, Cyril (developer), 445
charityware, 429
chatbot program

about, 215
adding while loop, 221–222
creating dictionary look-up function, 227–229
creating main conversation loop, 229–230
dictionaries, 223–225
final listing, 231–232
forcing reply from user, 222–223
functions, 225–227
lists, 216–221

Cheat Sheet (website), 3–4
chord names (Sonic Pi), 279–280
Chromium

about, 64–65
bookmarks, 66–67
privacy, 67
searching within web pages, 65
tabbed browsing, 66

circuits
about, 293–294
calculating values, 301
communicating to others, 300
components illustration, 303–304
connecting together, 324–325
creating dice display, 319–325
creating LED flash, 325–336
electricity, 294–301
equivalent, 301
GPIO, 304–314
parallel, 302
Pedestrian Crossing project, 350–355
series, 302
your first, 325–336

classes, creating, 367–371
Claws Mall, 53, 68
Clemens, Michael (developer), 439
clock, 365
closing

application windows, 55–56
files and folders, 56

Cloudbusting game
adding more clouds, 242–244
adding timer, 246–247
adjusting difficulty, 247
animating actors, 239–240
collecting sounds and images, 233–234
creating program, 235–249
detecting mouse clicks, 238–239
enabling multiple clouds to be clicked, 244–245
final listing, 247–249
regenerating clouds, 244–245
running program, 235–249
setting up folders, 235
using random numbers, 241–242

clouds
adding, 242–244
enabling multiples to be clicked, 244–245
regenerating, 244–245

470 Raspberry Pi For Dummies

Cluster HAT, 8
CNC (computer numerical controlled) devices, 437
cobbler, 322
Code Area (Scratch), 159, 165
codes

alternate displayroll function, 345
bit-banging APA102 class, 367–368
bit-banging data to LED, 366
blinking two LEDs at different rates, 348
Dress Up Doll enroll, 404–407
fragment of code to set a pattern, 335
GPIO zero-specific LED blink controlled by push

button, 335
Keepy Uppy game, 376–378
LED blink, 330–331
LED blink controlled by push button, 332
matrix broach, 385–388
Minecraft Maze Maker, 269–272
Python LED blink, 333
reading card’s UID, 397
RFID jukebox enrolling program, 399–400
RGB color test, 361–362
simple RFID jukebox, 398–399

Code the Classics, Volume 1, 73
collidepoint() function, 239
collision detection, 192, 239
Color effect (Scratch), 168–169
Color Palette (Scratch), 168–169
commands, 221
cal, 97
cd, 82
date, 97
dpkg, 111
echo, 97
else, 229
file, 88–89
help, 114
ifconfig, 458
less, 94–95
license, 203
ls, 89–91
mkdir, 99, 114
passwd, 113
ping, 458–459
print, 203
pwd, 85

Python, 202–204
rm, 100
useradd, 113
while, 221

comments, 462
common ground, 306
Common Unix Printing System software, 72
compatible devices, 18, 457
composite video screen, connecting, 35
Compute Module, 15
computer algebra system (CAS), 429
computer numerical controlled (CNC) devices, 437
conditional statement, 228
config.text file, editing with Nano, 461–463
Configuration tool, 460
configuring

audio, 460
Bluetooth devices, 41
camera, 460
keyboard, 460
printers, 72
Raspberry Pi in Raspberry Pi OS, 37–39
screens, 39
settings on Raspberry Pi, 459–463
Wi-Fi, 40

connecting
audio, 35–36
composite video screen, 35
keyboard, 34
monitor, 34
mouse, 34
to network, 35, 40
to power supply, 35
Raspberry Pi, 33–36
Raspberry Pi Camera Module, 41–46
using SSH, 45–47
using VNC, 47–48

connections, checking, 456–457
connectors, 324–325
Control blocks, 186
conventional current, 296
Cool Scratch projects in Easy Steps (McManus), 200
copying

files/folders, 61, 98
files in Linux Shell, 104–106
folders to external storage, 62

Index 471

in LibreOffice, 127
operating system onto SD card, 27
text, 71

core, 304
costumes, in Scratch, 166–167
countdown() function, 246–247
Cox, Simon (professor), 7
Crash NitroKart, 445
creating

classes, 367–371
directories in Linux Shell, 98–99
files/folders, 62–63
files using redirecting in Linux Shell, 96–98
functions, 225–227
graphics, 415–423
LED flash, 325–336
look-up function, 227–229
main conversation loop, 229–230
party invitations with LibreOffice Draw, 130–132
presentations in LibreOffice Impress, 128–130
RGB LED colors, 359–362
sound samples, 412–414
times table program in Python, 206–214
variables, 192–194

current
about, 294
limits, 379–380
safe value, 307
sinking, 308

current sourcing, sourcing, 308
curved braces ({}), 98

D
data

backing up, 76–77
LED, 365–366

data sheet, 303
data word, 366
date command, 97
Debian package, 111
Debian Reference, 53
debounce time, 332–335
debouncing, 339

decimal notation, 341
Delete button (Image Viewer), 70
deleting

directories in Linux shell, 103–104
files/folders, 63
files in Linux Shell, 99–100
software, 110–111
sprites in Scratch, 178
text, 71

demolish(realx, realz) function, 265
depth-first maze generation algorithm, 264
desktop environment

about, 47
backing up data, 76–77
Chromium, 64–67
configuring printers, 72
customizing, 72
email, 68
File Manager, 57–61
finding and installing new applications, 75–76
games, 72–74
Image Viewer, 68–71
logging out, 77
navigating, 52–56
playing music, 152–153
shutting down, 77
Task Manager, 56–57
Text Editor, 71
web browsing, 64–67

Desktop folder, 59
dev directory, 84
DHCP (Dynamic Host Configuration Protocol), 459
dice display

about, 337–339
display, 339–344
numbers, 339
physical layout, 337
schematic, 337

dictionaries, 223–225
dictionary_check() function, 226, 230
diffusers, 359–360
direct current, 297
directions, moving sprites in Scratch with,

161–162

472 Raspberry Pi For Dummies

directories
changing in Linux Shell, 81
creating in Linux Shell, 98–99
home, 82
home directory, 80
listing, 81
parent directory, 82
removing in Linux shell, 103–104
root directory, 82

directory tree, 82–84
displayNumber function, 344
Display-OTron HAT, 450, 451
displayRoll function, 344
Display tab (Raspberry Pi OS), 38
distributions, 26
Documents folder, 59
dollar sign ($), 80
DotStar, 362–369
double-throw switch, 298
downloading

operating system, 25–31
software packages, 106, 427–437

Downloads folder, 59
dpkg command, 111
draw() function, 237–238, 243
drawing sprites, 180–184
drumbeat, synchronizing with in Sonic Pi, 287
Drum HAT, 450
duplicating, sprites, 198
Dupont connector, 324
duty cycle, 361
DVI monitor, 34
Dynamic Host Configuration Protocol (DHCP), 36, 459

E
each_word variable, 229
earphones, 35–36
Easton, Steward (developer), 441
echo command, 97
editing photos. See GIMP (GNU Image Manipulation

Program)
Effects menu (Audacity), 413–414
egg box, 359
electricity, nature of, 294–301
Electric Skateboard project, 441
electromotive force, 295

electronic extensions, 174
Ellipse tool (Scratch), 183
else command, 229
email, sending and receiving with Claws Mail, 68
embedded system, 304
emulators, 30
entering

Linux commands, 95–96
Python commands, 202–204

equal sign (=), 127, 222
equivalent circuits, 301
etc directory, 84
Ethernet

activating connection, 459
deactivating connection, 459

Ethernet socket, 35
Events block, 188
execute permission, 93
Exit Image Viewer button (Image Viewer), 71
Expert user interface (Thonny), 207–208
extensions (Scratch)

adding, 173
electronic, 174
music, 173
pen, 173
Sense HAT, 174

external hard drives, 22
external storage devices

adding media from, 145
backing up data to, 76–77
mounting, 464–466
using in desktop environment,

76–77

F
Fade In (Audacity), 413
Fade Out (Audacity), 413
female connector, 324–325
Fernandez, Daniel (developer), 440
file command, 88–89
File Manager

about, 57–58
icon bar, 60–61
menu bar, 60
navigating, 57–60
refreshing, 58

Index 473

File Manager (media center), 151
File menu (LibreOffice Writer), 125
files and folders

checking file types in Linux Shell, 86–87
closing, 56
copying, 61, 98
creating, 62–63
creating using redirection in Linux Shell, 96–98
defined, 58
deleting, 63
deleting in Linux Shell, 99–100
finding, 106
home directory, 80
home folder, 58–59
listing, 81
moving, 61
naming, 98
reloading, 58
selecting, 61–62
setting up for Cloudbusting game, 235
sorting, 63
subfolders, 58

Fill tool (Scratch), 182
finding

files on Raspberry, 106
installed software, 111
new applications, 75–76
package name, 107–108

Fisheye effect (Scratch), 169
Fit Image to Window button (Image Viewer), 69–70
fixing, bugs, 195–197
flash drives, 59, 76–77, 464–466
flashing, 27–28
flashing speed, controlling, 328–329
Flat HAT Hacker, 317, 323
Flick HAT, 450, 451–452
Flick pHAT, 450
Flip Horizontally button (Image Viewer), 70
Flippy (game), 73
Flip Vertically button (Image Viewer), 70
flux, 311
FocusWriter, 429
folders and files

checking file types in Linux Shell, 86–87
closing, 56
copying, 61, 98

creating, 62–63
creating using redirection in Linux Shell, 96–98
defined, 58
deleting, 63
deleting in Linux Shell, 99–100
finding, 106
home directory, 80
home folder, 58–59
listing, 81
moving, 61
naming, 98
reloading, 58
selecting, 61–62
setting up for Cloudbusting game, 235
sorting, 63
subfolders, 58

footer, 366
Forever Control block, 186
for loops, 211–214
Format menu (LibreOffice Writer), 125
formatting

LibreOffice documents, 124–125
microSD cards, 31
presentations in LibreOffice Impress, 129
SD cards, 31

foundations,. laying in Minecraft, 261–262
Four in a Row (game), 73
fractals, 431
Fraqtive, 431–432
Freenode.net, 444
free software, 26
FTP, 85
Full Screen button (Image Viewer), 70
functions
animate(), 240, 247
collidepoint(), 239
countdown(), 246–247
creating, 225–227
creating in Minecraft, 265–266
demolish(realx, realz), 265
dictionary_check(), 226, 230
draw(), 237–238, 243
getFiles, 401
hideMaker(x, z), 265
input(), 220
interval(), 246

474 Raspberry Pi For Dummies

functions (continued)

len(), 220
main, 401–402
realx(x), 265
realz(z), 265
reasons for using, 233
showMaker(x, z), 265
str(), 243
testAllWalls(cellx, cellz), 265
update(), 244

G
game consoles, 30
games, 72–74
Gemgem (game), 75
General Purpose Input/Output (GPIO) pins

about, 304–305
accessing, 319–325
connectors, 324–325
getting at all pins with one connector, 322–323
on Raspberry Pi, 319–325
soldering, 311–313
soldering onto Pi Zero, 321–322
uses for, 306
using as inputs, 309–311
using output pins, 307–309
what they do, 306–307

getFiles function, 401
Ghost effect (Scratch), 169
GIMP (GNU Image Manipulation Program)

about, 133–134
adjusting colors, 139
converting images between formats, 141
cropping photos, 137–138
installing, 134
repairing photos, 139–141
resizing images, 136–137
rotating photos, 138–139
screen layout, 134–135
starting, 134
website, 141

Glide block, 163, 190
global variables, 246

GNU Image Manipulation Program (GIMP)
about, 133–134
adjusting colors, 139
converting images between formats, 141
cropping photos, 137–138
installing, 134
repairing photos, 139–141
resizing images, 136–137
rotating photos, 138–139
screen layout, 134–135
starting, 134
website, 141

GNU/Linux. See Linux
GNU Project, 26
Go to Original Size button (Image Viewer), 70
GPIO (General Purpose Input/Output) pins

about, 304–305
accessing, 319–325
connectors, 324–325
getting at all pins with one connector, 322–323
on Raspberry Pi, 319–325
soldering, 311–313
soldering onto Pi Zero, 321–322
uses for, 306
using as inputs, 309–311
using output pins, 307–309
what they do, 306–307

GPIO Zero, creating LED flash using, 332–335
GPU memory, 38–39
graphic effects, in Scratch, 168–169
graphics processing unit (GPU)., 38–39
green flag, starting scripts using, 185
grid coordinates, moving sprites in Scratch with, 162–164
Grisbi, 433
group owners, 92

H
H264 video stream, 45
hash mark (#), 80, 462–463
HAT boards

about, 314
breakout boards, 317
CamJam EduKit 3, 449–450

Index 475

Flick HAT, 451–452
Inky pHAT, 452
LED SHIM, 316
partial HATs, 317
Piano HAT, 450
Picade, 448–449
Pirate Audio, 452–453
Rainbow HAT, 451
recommended, 447–453
Sense HAT, 315
styles, 314
Trill sensors, 315–316
Unicorn HAT HD, 452
Witty Pi, 453
Witty Pi Mini, 453

HDMI cable, 21, 34
HDMI monitor, 34
HDMI Safe mode, 462
HDMI-to-DVI adapter, 21
header, 366
headphones, 22, 35–36, 276
headphone socket, 9, 12, 19, 21, 460, 463
Heartbeat Monitor project, 440
help command, 114
Hewitt, Gawain (developer), 441
hexadecimal number, 341
hideMaker(x, z) function, 265
high and low, 307, 310
Home button (File Manager), 60
home directory, 80, 82, 84
home folder, 58–59
hostname, 37, 80
hot-plugging, 326
hyphen (-) operator, 98

I
icons, explained, 3
ifconfig command, 458
images, collecting for Cloudbusting game, 233–234
Image Viewer, 68–71
incompatible devices, 18
index number, 223–225

Initial State platform, 441
Inkscape, 437–438
Inkspill (game), 75
Inky pHAT, 450, 452
input() function, 220
input/output pins, 306
Insert menu (LibreOffice Writer), 125
inspections, 27–28
installing

Audacity., 412
Beneath a Steel Sky, 434
Brain Party, 434–435
finding what software is installed, 111
fixing software installation issues, 464
FocusWriter, 429
Fraqtive, 432
GIMP, 134
Grisbi, 433
Inkscape, 437
LibreOffice, 122
Penguins Puzzle, 429
Pure Data, 435
software, 106–111
Tux Paint, 433
updating cache, 107
VLC Media Player, 152

interfaces, 38
interface settings (media center), 151
Interfaces tab (Raspberry Pi OS), 38
Internet of Things (IoT), 441
Internet resources

Adafruit, 322
add-on boards, 450
Akerman, Dave (developer), 444
Cheat Sheet, 3
compatible devices, 18
Dummies, 3–4
Electric Skateboard project, 442
Flick HAT, 452
FocusWriter, 429
Fraqtive, 432
Freenode.net, 444
GIMP, 141

476 Raspberry Pi For Dummies

Internet resources (continued)

Kodi, 144
LibreOffice, 121
Magic Mirror project, 442
MAME, 30
The Next Verse project, 441
One-Button Audiobook Player project, 439
Penguins Puzzle, 429
Piano HAT, 450
Pibow, 22
Pi in the Sky project, 443
Pimoroni, 22, 317, 322
Pure Data, 436
Pygame Zero, 250
Raspberry Pi Camera Module documentation, 46
Raspberry Pi Imager, 27
Raspberry Pi OS, 30
ready-made add-on boards, 317
RealVNC, 47
RetroPie, 30
SB Components, 447
Scratch, 200
Sense HAT, 315
Smart Fridge project, 440
SSH documentation, 47
troubleshooting, 458
T-Shirt Cannon project, 442
Tux Paint, 433
UK High Altitude Society, 444
UUGear, 453
VNC Viewer, 47

interval() function, 246
IP address, 46

J
jukebox project, 398–402

K
Keepy Uppy, 376–378
kernel, 26
keyboard

about, 19–20
adjusting sensitivity, 39
configuration, 460
enabling control of sprites, 186–188

keyboard shortcuts, 462
Kodi media center, 30, 144

L
LED flash

about, 325–326
controlling flashing speed, 328–329
using GPIO Zero, 332–335
using Python, 330–332
using Scratch 3.0, 326–328

LED matrix, 382–390
LEDs (light-emitting diodes)

addressable, 362–371
chained, 362
current limits, 379–380
display update, 381
getting more, 381–390
Keepy Uppy, 376–378
lighting, 325–336
memory, 380
Rainbow Invaders, 371–376
RGB, 357–362
signals, 380

LED SHIM, 316
LED strips, 382
len() function, 220
less command, 94–95
lib directory, 84
libpng warning, 404
libraries, 84
LibreELEC, 30, 143, 151, 464
LibreOffice

about, 53, 121
installing, 122
LibreOffice Calc, 125–128
LibreOffice Draw, 130–132
LibreOffice Impress, 128–129
LibreOffice Math, 123
LibreOffice Writer, 123–125
saving work in, 123
starting, 122

LibreOffice Draw, 130–132
license command, 203
light-emitting diode (LED), 308
line drawing, 385

Index 477

Line tool (Scratch), 183
Linux

about, 26
distributions, 26

Linux commands
about, 114–116
customizing with, 116–117
entering, 95–96

Linux Foundation, 26
Linux Shell

about, 79–80
absolute paths, 85–88
advanced listing options, 89–91
calculating sums with, 204–205
changing directories, 81
changing to parent directory, 82
checking file types, 88–89
copying files, 104–106
creating directories, 98–99
customizing with Linux commands, 116–117
deleting files, 99–100
less command, 94–95
listing files/directories, 80
long listing format and permissions, 91–94
managing user accounts, 111–113
prompt, 79
rebooting, 117–118
relative paths, 85–88
removing directories, 103–104
renaming files, 104–106
selecting multiple files using wildcards, 100–103
shutting down, 117–118

list names, using in programs, 282
lists

about, 216–218
creating random chat program using, 218–221
operations, 218
setting up in Minecraft, 264

live loops (Sonic Pi), 283–285
Localisation tab (Raspberry Pi OS), 39
local variables, 226, 246
logging out, 77
logic levels, 307
long listing format and permissions, 91–94
Looks blocks, 168–169

loops
about, 186
for, 211–214
forcing reply from user with, 222–223
main, 266–268
nesting, 222
while, 221–222

lost+found directory, 84
lower() method, 228
ls command, 89–91
Lua programming language, 449

M
Magic Mirror project, 442–443
Magic tool (Tux Paint), 432
Magnifying Glass icon (Audacity), 413
main conversation loop, 229–230
main function, 342, 401–402
main loop

creating in Minecraft, 266–268
in Pedestrian Crossing project, 354

Maison de la Radio, 445
making

classes, 367–371
directories in Linux Shell, 98–99
files/folders, 62–63
files using redirecting in Linux Shell, 96–98
functions, 225–227
graphics, 415–423
LED flash, 325–336
look-up function, 227–229
main conversation loop, 229–230
party invitations with LibreOffice Draw, 130–132
presentations in LibreOffice Impress, 128–130
RGB LED colors, 359–362
sound samples, 412–414
times table program in Python, 206–214
variables, 192–194

male connector, 324–325
Mandlebrot set, 431
Manjaro ARM Linux, 30
Mathematica, 54, 429–431
mathematical operators, 204
Maximize button, 55

478 Raspberry Pi For Dummies

Max/MSP, 435
maze algorithm (Minecraft), 263
maze parameters, setting in Minecraft, 259–261
maze walls, placing in Minecraft, 262–263
Mechanical Turk, 444–445
media center

about, 143
adding media, 145–149
adding pictures, 149
adding videos, 146–147
changing settings, 151
navigating, 143–144
playing music, 149–150
playing videos, 150
remote control, 151–152
setting up, 143–144
streaming media, 148–149
turning off, 152
viewing photos in, 150–151

media directory, 84
media settings (media center), 151
memory, 38–39, 380
Memory Puzzle (game), 75
menu bar, File Manager, 60
metadata, 404
methods

about, 367
lower(), 228
pop(), 267
RC522_GetCard, 397
RC522_GetSector, 397
RC522_ReadCard, 397
RC522_WaitForCardRemoved, 396–397
RC522_WriteSector, 397
shuffle, 281
split(), 228
string, 228

MFRC522 chip, 393
microprocessors, 304
microSD cards

about, 20, 26
backing up data, 76–77
compatibility, 457
flashing, 27–28
formatting, 31

imaging, 26–27
inserting, 33–34
troubleshooting, 457

microSD card writer, 20
Microsoft Word files, 124
micro USB socket, 13, 21, 34
micro USB–to–USB converter, 21
MIDI keyboard, 435–436
MIDI note numbers, 278
MIDI settings, 436
MIFARE card, 395–398
MIFARE classic card, 393
milliamps, 301
Minecraft

about, 251–252
breaking blocks, 253–254
joining game, 252
making and braking things, 253–254
moving around in, 253
playing, 252–254
preparing for Python, 254–255
starting game, 252

Minecraft Maze Maker code, 269–272
minecraft module

about, 255–256
adding blocks, 257–259
adding ceilings, 268–269
coordinates, 256
creating functions, 265–266
creating main loop, 266–268
laying foundations, 261–262
maze algorithm, 263
placing maze walls, 262–263
positioning players, 269
repositioning players, 256–257
setting maze parameters, 259–261
setting up variables and lists, 264
stopping players from changing world, 259

Minecraft Pi, 54, 73
Minecraft: Pi Edition, 251–252
Mini Black Hat Hack3r, 448
mini HDMI–to–HDMI converter for, 21
Minimize button, 55
Mission Python (McManus), 250
mkdir command, 99, 114

Index 479

mnt directory, 84
modules, 219
momentary push switches, 298
monitor

about, 19
connecting, 34
DVI, 34
HDMI, 34

Mosaic effect (Scratch), 169
Motion Blocks, 159, 165
mouse

about, 19
adjusting sensitivity, 39

mouse clicks, detecting, 237
moving

files/folders, 61
sprites automatically, 194–195
sprites in Scratch, 160–164

Multi Arcade Machine Emulator (MAME), 30
multicolored LEDs

about, 357–358
additive mixing, 359
color test, 361–362
diffusers, 359–360
making colors, 359–362
pulse-width modulation, 361–362
secondary colors, 359
types, 357

multicore solder, 311
music

adding to media center, 146–147
adding to sprites in Scratch, 170–172
composing using shuffle method, 281
playing in desktop environment,

152–153
playing in media center, 149–150
playlists, 150

music extension, 173
Music folder, 59
Myriapod (game), 73

N
naming

files, 98
sprites, 184

Nano text editor, 461–463
navigating

desktop environment, 52–56
File Manager, 57–61
media center, 143–144

near field communication (NFC), 393
negative temperature coefficient, 303
Neopixels, 362–363
nesting loops, 222
network

connecting to, 35, 40
troubleshooting connections, 458–459

networked media, 145
New Folder (File Manager), 60
New Window (File Manager), 60
Next button (Image Viewer), 69
Next Folder (File Manager), 60
The Next Verse project, 441
NFC (near field communication), 393
nonlinear device, 303
Normalize (Audacity), 414
note names (Sonic Pi), 279–280
note numbers, 278
not equal to (!=) operator, 221
notes, playing in Sonic Pi, 277–278, 282–283
numberOfCells variable, 264
numberOfVisitedCells variable, 264
numbers, printing, 210–211
NXP Semiconductors, 393

O
OctoPi, 31
Ogg Vorbis file, 414
ohms, 204
Ohm’s law, 295
Old McDonald’s Farm

about, 412
making sound samples, 412–414
making the graphics, 415–423

One-Button Audiobook Player project, 439–440
OpenDocument Text (ODT) file, 124
Open File button (Image Viewer), 70
opening

shell window, 79
web browser, 40

480 Raspberry Pi For Dummies

operating system
choosing, 29–31
custom, 31
downloading, 25–31
LibreELEC, 30
Linux, 26
Manjaro ARM Linux, 30
OctoPi, 31
Raspberry Pi OS, 29
Recalbox, 30
RetroPie, 30
RISC OS Pi, 30
TLXOS, 31
Ubuntu, 30
updating, 458
website, 25

opt directory, 84
origin, 383
Osmon, Imani (artist), 403
output impedance, 304
output pins, 307–309
overclocking, 38
owner, 92

P
P1 connector, 305
package manager, 106
package name, finding, 107–108
pairing, 41
paper dolls, 403–411
parallel circuits, 302
parent directory, 82, 86–87
parentheses (()), 239
partial HATs, 447
party invitations, creating with LibreOffice Draw, 130–132
passive tags, 392
passwd command, 113
password

changing, 37
default, 37, 77
setting, 112
SSH, 46
Wi-Fi, 40

pasting
in LibreOffice, 127
text, 71

Path (File Manager), 61
pattern variable, 342
PDF file, 125
pen extension, 173
Penguins Puzzle, 428–429
Pennec, Mélanie (developer), 445
Pentomino (game), 75
Performance tab (Raspberry Pi OS), 38–39
peripherals

compatibility, 457
disconnecting, 457

permissions, long listing, 91–94
Phillips, 393
Photobot.Co, 442
photo editing. See GIMP (GNU Image Manipulation

Program)
photos

adding to media center, 148
adjusting colors in GIMP, 139
converting between formats in GIMP, 141
cropping in GIMP, 137–138
repairing in GIMP, 139–141
resizing in GIMP, 136–137
rotating in GIMP, 138–139
viewing in media center, 150–151

physical computing, 293
pi, 80, 82
Pi 400

about, 11–12
Bluetooth, 41
built-in WiFi, 35
GPIO Adapter, 447–448
inserting SD cards in, 33–34
power supply, 20
restarting, 456
soldering GPIO pins onto, 323

Pi 4 Model B
about, 9–10
case fan, 23–24
connecting camera on, 43–44
enabling composite output, 35
headphone socket, 23
micro HDMI ports, 21, 34
power supply, 20

Piano HAT, 450
Pibow Coupe case, 22–23
Picade, 448–449

Index 481

Picade Console, 448
picamera, 45
Pico, 16
PICO-8, 449
Pico controller, 388–390
Pictures folder, 59
Pi in the Sky project, 443–444
Pi Model A

about, 14
Compute Module, 15
headphone socket, 35
network connections, 35
video socket, 19, 35

Pi Model A+
about, 12–13
network connections, 35
power supply, 20

Pi Model B
with 256 memory, 14
with 512 memory, 14
about, 9–10, 15
headphone socket, 35
Pi 2, 14
Pi 3, 15
video socket, 19, 35

Pi Model B+
about, 14, 15
GPIO pins, 305
Pi 3, 15

Pimoroni, 22, 317–318, 322, 363, 450, 451, 452
ping command, 458–459
pinout, 320
pipe character (|), 95, 114
Pirate Audio, 450, 452–453
Pixelate effect (Scratch), 169
pixelation, 437
pixels, 183, 437
Pi Zero

about, 13
cables, 21
case, 21
composite video output in, 35
connecting camera on, 42
connecting keyboard and mouse, 34
connecting monitors to, 34

connecting monitor to, 34
connecting power, 35
connecting to network, 13
connecting USB hubs to, 34
converter cables, 21
inserting SD cards in, 33
network connections, 35
processor, 304
soldering GPIO pins onto, 321–322

Pi Zero W
about, 13
Bluetooth, 41
built-in WiFi, 35
soldering GPIO pins onto, 321–322

Pi Zero WH
about, 13
built-in WiFi, 35

players
positioning in Minecraft, 269
stopping form changing world in Minecraft, 259

players, repositioning in Minecraft, 256–257
player settings (media center), 151
playerx variable, 264
playerz variable, 264
playing

Minecraft, 252–254
music in media center, 149–150
notes in Sonic Pi, 277–278
timed patterns in Sonic Pi, 280–281
videos in media center, 150

playlists, 150
Play Sound block, 171
Polar H7 heartbeat sensor, 440
Pope, Daniel (developer), 233, 250
pop() method, 267
positive temperature coefficient, 303
power supply

about, 20–21
connecting, 36
troubleshooting, 458

Preferences button (Image Viewer), 70–71
presentations, creating, 128–130
Previous button (Image Viewer), 69
Previous Folder (File Manager), 60
print command, 203

482 Raspberry Pi For Dummies

printed circuit board (PCB), 305
printers, configuring, 72
printing

numbers, 210–211
variables, 210–211
words, 210–211

privacy, protecting, 67
proc directory, 84
programming. See also Scratch

arcade game. See arcade game,
programming

defined, 158
in Python. See Python

programming languages, 158
programs

chatbot, 215–230
defined, 158, 165, 206

projects
Electric Skateboard, 441–442
Heartbeat Monitor, 440
Jukebox, 398–402
Keepy Uppy, 376–378
Magic Mirror, 442–443
The Next Verse, 441
One-Button Audiobook Player, 439–440
Pi in the Sky, 443–444
Rainbow Invaders, 371–376
Raspberry Turk, 444–445
Smart Fridge, 440–441
Sound Fighter, 445
Sound Fighter project, 445
T-Shirt Cannon, 442

prompt (Linux Shell), 79, 202
pseudo random-number generator, 339
Public folder, 59
Puckette, Miller (developer), 435
pull-down resistor, 310
pull-up resistor, 310
pulse-width modulation (PWM), 360–362
Pure Data, 435–436
pwd command, 85
Pygame, 233
Pygame Zero, 233, 249
Python

calculating sums with shell, 204–205
creating chatbot program, 215–232

creating LED flash, 330–332
creating times table program, 206–214
entering commands, 202–204
overview, 201–202
preparing Minecraft for, 254–255

Python games, 54, 73

R
radio frequency identification (RFID)

about, 391
active tags, 392
antennas, 393
how it works, 391
jukebox project, 398–402
MIFARE card, 395–398
Old McDonald’s Farm, 412–424
paper dolls, 403–411
passive tags, 392
readers, 393–395

Rainbow HAT, 451
Rainbow Invaders, 371–376
random module, 254–255
random-number generator, 339
random numbers

using in arcade game programming, 190–191
using in Cloudbuster game, 241–242

random number seed, changing, 282
raspberrypi, 80
Raspberry Pi

about, 7–9
accessories for, 18–24
adjusting settings on, 459–463
configuring in Raspberry Pi OS, 37–39
connecting, 33–36
exploring, 64
finding files, 106
getting, 18
rebooting, 117–118
setting up, 36
shutting down, 117–118
software packages for, 427–438
troubleshooting, 456–458
updating software, 458
uses for, 16
versions, 9–15

Index 483

Raspberry Pi Camera Module
about, 22
connecting, 41–46
documentation website, 46
in Raspberry Turk project, 444
testing, 44–46

Raspberry Pi Desktop Kit, 10
Raspberry Pi Imager, 27–28
Raspberry Pi OS

about, 29
configuring Raspberry Pi in, 37–39
downloading, 30

Raspberry Turk project, 444–445
Raspi-config, 406
raspistill, 44–45
raspivid, 45
RC522_GetCard method, 397
RC522_GetSector method, 397
RC522_ReadCard method, 397
RC522_WaitForCardRemoved method, 396–397
RC522_WriteSector method, 397
RCA cable, 21, 35
readers, RFID, 393–395
read permission, 93
ready-made add-on boards

about, 314
breakout boards, 317
LED SHIM, 316
Sense HAT, 315
styles, 314
Trill sensors, 315–316
websites, 317

RealVNC, 47–48
realx(x) function, 265
realz(z) function, 265
rebooting, 117–118
Recalbox, 30
Rectangle tool (Scratch), 183
redirection, 96–98
Redon, Eric (developer), 445
Reduction of Hazardous Substances (RoHS) Act, 312
reference, 306
Registration, Evaluation, Authorisation, and Restriction of

Chemicals (REACH), 312
Regular user interface (Thonny), 207–208
relative paths, 85–88

remote control, 151–152
renaming, files in Linux Shell, 103–104
Reshape tool (Scratch), 181–182
resistance, 204, 295
resizing

application windows, 55–56
sprites in Scratch, 170

restarting, 36, 456
RetroPie, 30
RFID (radio frequency identification)

about, 391
active tags, 392
antennas, 393
how it works, 391
jukebox project, 398–402
MIFARE card, 395–398
Old McDonald’s Farm, 412–424
paper dolls, 403–411
passive tags, 392
readers, 393–395

RFID-RC522, 393
RGB LEDs

about, 357–358
additive mixing, 359
color test, 361–362
diffusers, 359–360
making colors, 359–362
pulse-width modulation, 361–362
secondary colors, 359
types, 357

RISC OS Pi, 30
rm command, 100
root directory, 82, 84
Rotate Right button (Image Viewer), 70
row bottom-up raster arrangement, 383
run directory, 85
running

applications, 55
Penguins Puzzle, 429
software, 108

Run option, 55

S
samples (Sonic Pi), 285–286
Saugen, Lucas (developer), 442

484 Raspberry Pi For Dummies

Save File As button (Image Viewer), 70
Save File button (Image Viewer), 70
saving

sound sample in Audacity, 414
videos, 34
work in LibreOffice, 123
work in Scratch, 175

Say blocks, 168
SB Components, 447
sbin directory, 85
Scratch. See also arcade game, programming

about, 54, 158
adding sounds and music, 170–172
changing appearance of sprites, 165–170
changing visibility of sprites, 170
creating scripts, 165
extensions, 173–175
making screen characters react to movement, 46
moving sprites, 160–164
resizing sprites, 170
saving work in, 175
screen layout, 159–160
showing sprite information on Stage, 164
starting new project, 178
using in LED flash, 326–328
using wait block to slow down sprites, 172
versions, 158–159
website, 200

Scratch 3, 159, 326–328
Scratch Programming in Easy Steps (McManus), 200
screen, troubleshooting, 458
screen configuration tool, 39
screen layout

GIMP, 134–135
Scratch, 159–160
Sonic Pi, 276–277

scripts
adding to Stage, 198
controlling, 184–190
creating in Scratch, 165
defined, 165
enabling keyboard control of sprites, 186–188
enabling sprites to control sprites, 188–190
Forever Control block, 186
using green flag to start, 185

SD Card Copier, 76–77, 464
SD cards

about, 20, 26
backing up data, 76–77
compatibility, 457
flashing, 27–28
formatting, 31
imaging, 26–27
inserting, 33–34
troubleshooting, 457

SD card writer, 20
secondary colors, 359
Secure Shell (SSH), 38

connecting with, 45–47
documentation website, 47
password, 46

selecting, files/folders, 61–62
Select tool (Scratch), 181
Sense HAT, 315
Sense HAT emulator, 54
Sense HAT extension, 174
series circuits, 302
series resistance, 301, 304
serpentine raster, 384
settings

adjusting, 459–463
basic, 36
changing in desktop, 460
changing in Raspi-config, 460

setting up
basic settings, 36
media center, 143–144
wireless network, 36

setup, 79
Shell. See Linux Shell
showMaker(x, z) function, 265
shuffle method, 281
Shutdown icon, 54
shutting down, 77, 117–118
signals, 380
Simple user interface (Thonny), 207
Simulate (game), 75
single-throw switch, 298
slash (/) operator, 86, 91, 98, 127
Slide Puzzle (game), 75

Index 485

Smart Fridge project, 440
smart playlists, 150
software

installing, 106–111
recommended, 427–438
removing, 110–111
running, 108
upgrading, 109–110

software packages
Beneath a Steel Sky, 433–434
downloading, 106
FocusWriter, 429
Fraqtive, 431–432
Grisbi, 433
Inkscape, 437–438
Mathematica, 429–431
Penguins Puzzle, 428–429
Pure Data, 435–436
Tux Paint, 432–433

solder, 311
soldering

about, 311–313
environmental regulations, 312
GPIO pins onto Pi Zero or Pi Zero W, 322–323
making soldered joints, 313–314

solenoid, 307
Sonic Pi

about, 54, 275–276
adding special effects, 286–287
changing random number seed, 282
composing random tunes using shuffle, 281
live loops, 283–285
playing notes, 277–278
playing random notes, 282–283
playing timed patterns, 280–281
screen layout, 276–277
synchronizing with drumbeat, 287
using chord names, 279–280
using list names in programs, 282
using samples, 285–286

Sound blocks, 171
sound card, 412
Sound Fighter project, 445

sounds
adding to sprites in Scratch, 170–172
collecting for Cloudbusting game, 233–234
creating samples, 412–414
sourcing, 370
synthesizers, 435

speakers, 22
special effects, adding in Sonic Pi, 286–287
speech bubbles, in Scratch, 168
SPI hardware, 395
SPI-Py-master, 395
split() method, 228
spreadsheet, 125–128
sprites

about, 159
adding sounds and music to, 170–172
adding to games, 179–180
changing appearance in Scratch, 165–170
deleting, 178
detecting when hit, 191–192
drawing in Scratch, 180–184
duplicating, 198
enabling sprites to control sprites,

188–190
hiding in Scratch, 178
keyboard control of, 186–188
moving automatically, 194–195
moving in Scratch, 160–164
moving with grid coordinates, 162–164
naming, 184
positioning with grid coordinates, 162–164
resizing in Scratch, 170
showing information on Stage, 164
slowing down with wait block, 172

square brackets ([]), 98, 239
Squirrel (game), 75
srv directory, 85
Stage (Scratch)

about, 159
adding scripts, 198

Stallman, Richard (developer), 26
Stamp tool (Tux Paint), 432
Starpusher (game), 75–76

486 Raspberry Pi For Dummies

starting
FocusWriter, 429
GIMP, 134
LibreOffice, 122
Minecraft, 252
Thonny Python IDE, 202

Start Slide show button (Image Viewer), 69
streaming media, 148–149
Street Fighter, 445
str() function, 243
string methods, 228
Substitute Soccer (game), 73
subtractive mixing, 359
sudo group, 112
sudo raspi-config, 39
supercomputers, 7–8
superpowers, 306
superuser, 80, 84
Sweigart, Al (developer), 54, 73
switches, 298–300
symbolic package, 429
synchronizing, with drumbeat in Sonic Pi, 287
synthesizers, 435
sys directory, 85
sys module, 254–255
system settings (media center), 151
System tab (Raspberry Pi OS), 37

T
tabbed browsing, 66
tack (tactile) switches, 326
tags, 392
Task Manager, 56–57
T-Cobbler Plus, 322
Tekken5, 445
Templates folder, 59
Terminal, 54
testAllWalls(cellx, cellz) function, 265
Tetromino (game), 76
Text Editor, 71
Text tool (Scratch), 183
The Document Foundation, 122
TheRaspberryPiGuy (YouTube channel), 441

theremin, 437
Think blocks, 168
ThinLinX Management Software, 31
Thonny Python IDE

about, 54
starting, 202
user interfaces, 207–208

thought bubbles, in Scratch, 168
throw variable, 344
tilde (~), 80, 82, 86
timed patterns, playing in Sonic Pi, 280–281
timer, adding, 246–247
Times Table program

about, 206
accepting user input, 209–210
printing words, variables, and numbers, 210–211
using for loops, 211–214
using variables, 207–208

timing diagram, 364
TLXOS, 31
tmp directory, 85
Toggle LED (Scratch), 327
toggling, 354
top switching, 309
Torvalds, Linus (developer), 26
Touch Board, 441
Touching block, 195
Trill sensors, 315–316
troubleshooting

audio, 463–464
being patient, 456
cables, 457
checking connections, 456–457
checking online for solution, 458
disconnecting peripherals, 457
ensuring microSD card correctly inserted, 457
network connection, 458–459
power supply, 458
restarting Raspberry Pi, 456
screen, 458
SD card or microSD card compatibility, 457
software installation issues, 464
updating software, 458
websites, 458

Index 487

true and false, 307
T-Shirt Cannon project, 442
tuner device, 145
tuple, 267
Turn LED (Scratch), 327
Tux Paint, 432–433
TV, 19
TV HAT, 145

U
Ubuntu, 30
UHF (860–960MHz), 392
Unicorn HAT HD, 450, 452
University of Southampton, 7
Up a Level (File Manager), 60–61
up and down, 307
update() function, 244
updating

cache, 107
operating system, 458
software, 458

upgrading, software on Raspberry Pi, 109–110
Upton, Eben (designer), 8, 73
USB hubs, 18, 22, 34
USB key, 30, 34, 76–77, 84, 145, 464–466
USB socket, 34, 35, 36, 464–466
USB sound card, 412
user accounts, managing, 111–113
useradd command, 113
user input, accepting, 209–210
username

case sensitive, 113
default, 77, 80

usr directory, 85
UUGear, 453

V
var directory, 85
variables

arcade game programming, 192–194
bleep, 354
cellsVisitedList[], 264
creating, 192–194

each_word, 229
global, 246
local, 226, 246
numberOfCells, 264
numberOfVisitedCells, 264
pattern, 342
playerx, 264
playerz, 264
printing, 210–211
setting up in Minecraft, 264
throw, 344
Times Table program, 207–208
xposition, 264
zposition, 264

vector, 437
videos

adding to media center, 146–147
saving, 45
shooting, 45

Videos folder, 59
View as Detailed List (File Manager), 60
View as Icons (File Manager), 60
View as Small Icons (File Manager), 60
View as Thumbnails (File Manager), 60
vintage home computers, 30
virtual network computing (VNC), 47–48
VLC Media Player, 152–153
VNC Viewer, 47–48
voltage, 294, 295
voltage drop, 309
volts, 295

W
waffle box, 359
Wait block, 172
waveforms, 413
web browsing

about, 64–65
bookmarks, 66–67
with Chromium, 64–67
history, 64
privacy, 67
searching within web pages, 65
tabbed browsing, 66

488 Raspberry Pi For Dummies

web pages, searching within, 65
websites

Adafruit, 322
add-on boards, 450
Akerman, Dave (developer), 444
Cheat Sheet, 3
compatible devices, 18
Dummies, 3–4
Electric Skateboard project, 442
Flick HAT, 452
FocusWriter, 429
Fraqtive, 432
Freenode.net, 444
GIMP, 141
Kodi, 144
LibreOffice, 121
Magic Mirror project, 442
MAME, 30
The Next Verse project, 441
One-Button Audiobook Player project, 439
operating system, 25
Penguins Puzzle, 429
Piano HAT, 450
Pibow, 22
Pi in the Sky project, 443
Pimoroni, 22, 317, 322
Pure Data, 436
Pygame Zero, 250
Raspberry Pi Camera Module documentation, 46
Raspberry Pi Imager, 27
Raspberry Pi OS, 30
ready-made add-on boards, 317
RealVNC, 47
RetroPie, 30
SB Components, 447
Scratch, 200
Sense HAT, 315
Smart Fridge project, 440
SSH documentation, 47
troubleshooting, 458
T-Shirt Cannon project, 442
Tux Paint, 433
UK High Altitude Society, 444

UUGear, 453
VNC Viewer, 47

Weessa, Jean (developer), 445
When Button Is block (Scratch), 327
while command, 221
while loop, 221–222
Wi-Fi

configuring, 40
password, 40

Wi-Fi adapter, 35
Wii Balance Board, 440
wildcards, selecting multiple files using,

100–103
windows

closing, 55–56
resizing, 55–56

wireless network, setting up, 36
Witty Pi, 453
Witty Pi Mini, 450, 453
Wolfram, 54
words, printing, 210–211
world permissions, 92
Wormy (game), 76
write permission, 93
writing, letters in LibreOffice Writer, 123–124

X
x axis, in Minecraft, 256
X button, 55
X Position block, 190
xposition variable, 264

Y
y axis, in Minecraft, 256

Z
z axis, in Minecraft, 256
zero and one, 307
Zoom in button (Image Viewer), 69
Zoom out button (Image Viewer), 69
zposition variable, 264

About the Authors
Sean McManus: Sean is an expert technology and business author. His other books
include Mission Python (No Starch Press), Coder Academy (Kane Miller Books), Cool
Scratch Projects in Easy Steps (In Easy Steps Limited), Scratch Programming in Easy
Steps (In Easy Steps Limited), and Web Design in Easy Steps (In Easy Steps Limited).
His novel for adults, Earworm, goes undercover in the music industry, exposing a
conspiracy to replace bands with computer-generated music. His tutorials and
articles have appeared in magazines including The MagPi, Internet Magazine, Internet
Works, Business 2.0, Making Music, and Personal Computer World. He has been a Code
Club volunteer, helping children at a local school to learn computer programming.
Visit his website at www.sean.co.uk for bonus content from his books.

Mike Cook: Mike has been making electronic things since he was in school.
A former senior lecturer in physics at Manchester Metropolitan University, he
wrote more than 300 computing and electronics articles in the pages of com-
puter magazines for 20 years starting in the 1980s. After leaving the university
after 21 years when the physics department closed down, he got a series of
proper jobs where he designed digital TV set-top boxes and access control
systems. In 2015, he started writing a monthly column in MagPi magazine; he
has covered 73 projects to date. His other books include Raspberry Pi Projects
(Wiley), Raspberry Pi Projects For Dummies (Wiley), and Arduino Music and Audio
Projects (Apress). He also works with Drake Music Labs North, a charity for
disabled musicians, developing accessible music equipment. Now retired and
freelancing, he spends his days surrounded by wires, patrolling the forums as
Grumpy Mike.

Dedication
To my wife, Karen, with thanks for all her support throughout this project and
always. And to Leo, our wonderful son.

—Sean

To my wife, Wendy, who always acts delighted whenever I show her yet another
blinking LED. And also to the late Leicester Taylor, World War II radar researcher
and inspirational supervisor of my post-graduate research at the University of
Salford.

—Mike

http://www.sean.co.uk/

Authors’ Acknowledgments
Sean McManus: Thank you to my coauthor, Mike, for bringing his electronics
expertise and fantastic project ideas. Thank you to Kelsey Baird, our acquisitions
editor on this edition, and previous acquisitions editors Craig Smith and Katie
Mohr. Thanks to Elizabeth Kuball, our editor on this edition, and previous editors
Linda Morris, Paul Levesque, and Becky Whitney.

Our technical editors, Guy Hart-Davis (this edition), Jason E Geistweidt
(3rd edition), Ryan Walmsley (2nd edition), and Paul Hallett (1st edition) cast a
careful eye over the text and code and made much appreciated suggestions. Olivier
Engler, who translated the first edition into French, provided helpful feedback,
too. Thanks also to Lorna Mein and Natasha Lee in marketing, and to the
For Dummies team for making it all happen.

Many people helped with research or permissions requests, including Karen
McManus, Sam Aaron, Eben Upton, Liz Upton, Leo McHugh, Mark Turner, Peter
Sayer, John Hartnup, Bill Kendrick, Simon Cox, Jon Williamson, Paul Beech, Peter
de Rivaz, Michał Męciński, Ruairi Glynn, Stephen Revill, Lawrence James, Bram
Stolk, Adam Kemeny, Will Jessop, David Bryan, Pimoroni, and Pi Supply.
We wouldn’t have a book to write if it weren’t for the wonderful work of the
Raspberry Pi Foundation, the manufacturers who took a gamble on it, and the
many thousands of people who have contributed to the Raspberry Pi’s software.

Mike Cook: I would like to thank Sean McManus for inviting me to contribute to
this book and the staff at Wiley for making the process of producing this book as
painless as possible.

Publisher’s Acknowledgments

Acquisitions Editor: Kelsey Baird

Project Editor: Elizabeth Kuball

Copy Editor: Elizabeth Kuball

Technical Editor: Guy Hart-Davis

Production Editor: Vivek Lakshmikanth

Cover Image: Courtesy of Mike Cook;
Raspberry Pi logo courtesy of
Raspberry Pi Foundation

Take dummies with you
everywhere you go!
Whether you are excited about e-books, want more

from the web, must have your mobile apps, or are swept
up in social media, dummies makes everything easier.

dummies.com

Find us online!

http://Dummies.com

Leverage the power
Dummies is the global leader in the reference category and one
of the most trusted and highly regarded brands in the world. No
longer just focused on books, customers now have access to the
dummies content they need in the format they want. Together
we’ll craft a solution that engages your customers, stands out
from the competition, and helps you meet your goals.

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.
Dummies.com is a one-stop shop for free, online information
and know-how curated by a team of experts.

• Targeted ads
• Video
• Email Marketing

• Microsites
• Sweepstakes

sponsorship

Advertising & Sponsorships

MILLION
PAGE VIEWS

M IL L I O N

NEWSLETTER

300,000 UNIQUE INDIVIDUALS
EVERY WEEK

UNIQUE

SUBSCRIPTIONS

EVERY SINGLE MONTH

15

700,000

20

43%
OF ALL VISITORS
ACCESS THE SITE
VIA THEIR MOBILE DEVICES

VISITORS PER MONTH

TO THE INBOXES OF

of dummies

you from competitors, amplify your message, and encourage customers to make a
buying decision.

Leverage the strength of the world’s most popular reference brand to reach new
audiences and channels of distribution.

For more information, visit dummies.com/biz

• Apps
• Books

• eBooks
• Video

• Audio
• Webinars

Custom Publishing

Brand Licensing & Content

http://Dummies.com/biz

9781119187790
USA $26.00
CAN $31.99
UK £19.99

9781119179030
USA $21.99
CAN $25.99
UK £16.99

9781119293354
USA $24.99
CAN $29.99
UK £17.99

9781119293347
USA $22.99
CAN $27.99
UK £16.99

9781119310068
USA $22.99
CAN $27.99
UK £16.99

9781119235606
USA $24.99
CAN $29.99
UK £17.99

9781119251163
USA $24.99
CAN $29.99
UK £17.99

9781119235491
USA $26.99
CAN $31.99
UK £19.99

9781119279952
USA $24.99
CAN $29.99
UK £17.99

9781119283133
USA $24.99
CAN $29.99
UK £17.99

9781119287117
USA $24.99
CAN $29.99
UK £16.99

9781119130246
USA $22.99
CAN $27.99
UK £16.99

PERSONAL ENRICHMENT

9781119311041
USA $24.99
CAN $29.99
UK £17.99

9781119255796
USA $39.99
CAN $47.99
UK £27.99

9781119293439
USA $26.99
CAN $31.99
UK £19.99

9781119281467
USA $26.99
CAN $31.99
UK £19.99

9781119280651
USA $29.99
CAN $35.99
UK £21.99

9781119251132
USA $24.99
CAN $29.99
UK £17.99

9781119310563
USA $34.00
CAN $41.99
UK £24.99

9781119181705
USA $29.99
CAN $35.99
UK £21.99

9781119263593
USA $26.99
CAN $31.99
UK £19.99

9781119257769
USA $29.99
CAN $35.99
UK £21.99

9781119293477
USA $26.99
CAN $31.99
UK £19.99

9781119265313
USA $24.99
CAN $29.99
UK £17.99

9781119239314
USA $29.99
CAN $35.99
UK £21.99

9781119293323
USA $29.99
CAN $35.99
UK £21.99

PROFESSIONAL DEVELOPMENT

dummies.com

http://Dummies.com

Available Everywhere Books Are Sold

Learning Made Easy

9781119293576
USA $19.99
CAN $23.99
UK £15.99

9781119293637
USA $19.99
CAN $23.99
UK £15.99

9781119293491
USA $19.99
CAN $23.99
UK £15.99

9781119293460
USA $19.99
CAN $23.99
UK £15.99

9781119293590
USA $19.99
CAN $23.99
UK £15.99

ACADEMIC

9781119215844
USA $26.99
CAN $31.99
UK £19.99

 9781119293378
USA $22.99
CAN $27.99
UK £16.99

9781119293521
USA $19.99
CAN $23.99
UK £15.99

9781119239178
USA $18.99
CAN $22.99
UK £14.99

9781119263883
USA $26.99
CAN $31.99
UK £19.99

dummies.com

http://Dummies.com

Unleash Their Creativity

Small books for big
imaginations

9781119177173
USA $9.99
CAN $9.99
UK £8.99

9781119177272
USA $9.99
CAN $9.99
UK £8.99

9781119177241
USA $9.99
CAN $9.99
UK £8.99

9781119177210
USA $9.99
CAN $9.99
UK £8.99

9781119262657
USA $9.99
CAN $9.99
UK £6.99

9781119291336
USA $9.99
CAN $9.99
UK £6.99

9781119233527
USA $9.99
CAN $9.99
UK £6.99

9781119291220
USA $9.99
CAN $9.99
UK £6.99

9781119177302
USA $9.99
CAN $9.99
UK £8.99

dummies.com

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Setting Up Your Raspberry Pi
	Chapter 1 Introducing the Raspberry Pi
	Introducing the Raspberry Pi Range
	Raspberry Pi 4 Model B
	Raspberry Pi 400
	Raspberry Pi 3 Model A+
	Raspberry Pi Zero
	Older models

	Figuring Out What You Can Do with a Raspberry Pi
	Getting Your Hands on a Raspberry Pi
	Determining What Else You Need
	Essentials
	Optional extras

	Chapter 2 Downloading the Operating System
	Introducing Linux
	Imaging a microSD Card for Your Raspberry Pi
	Choosing the Right Operating System for Your Raspberry Pi

	Chapter 3 Connecting Your Raspberry Pi
	Connecting Your Raspberry Pi
	Setting Up Your Raspberry Pi
	Configuring Your Raspberry Pi in Raspberry Pi OS
	Changing Your Wi-Fi Settings
	Configuring Bluetooth Devices
	Connecting the Raspberry Pi Camera Module
	Connecting the camera on a Pi Zero
	Connecting the camera on other Raspberry Pi models
	Testing the Camera Module

	Connecting Using SSH
	Connecting Using VNC

	Part 2 Getting Started with Linux
	Chapter 4 Using the Desktop Environment
	Navigating the Raspberry Pi Desktop
	Using the Applications menu
	Running applications that are not on the menu
	Resizing and closing application windows

	Using the Task Manager
	Using File Manager
	Navigating File Manager
	Copying and moving files and folders
	Selecting multiple files and folders
	Creating new folders and blank files
	Deleting files and folders
	Sorting files
	Exploring your Raspberry Pi

	Browsing the Web with Chromium
	Searching within web pages
	Using tabbed browsing
	Adding and using bookmarks
	Protecting your privacy

	Sending and Receiving Email with Claws Mail
	Using the Image Viewer
	Using the Text Editor
	Configuring Printers
	Customizing the Desktop
	Playing the Games
	Finding and Installing New Applications
	Backing Up Your Data
	Logging Out and Shutting Down

	Chapter 5 Using the Linux Shell
	Understanding the Prompt
	Exploring Your Linux System
	Listing files and directories
	Changing directories
	Changing to the parent directory
	Understanding the directory tree
	Using relative and absolute paths
	Checking file types
	Investigating more advanced listing options

	Understanding the Long Listing Format and Permissions
	Slowing Down the Listing and Reading Files with the Less Command
	Speeding Up Entering Commands
	Using Redirection to Create Files
	Creating Directories
	Deleting Files
	Using Wildcards to Select Multiple Files
	Removing Directories
	Copying and Renaming Files
	Finding Files on Your Raspberry Pi
	Installing and Managing Software on Your Raspberry Pi
	Updating the cache
	Finding the package name
	Installing software
	Running software
	Upgrading the software
	Removing software and freeing up space
	Finding out what’s installed

	Managing User Accounts on Your Raspberry Pi
	Learning More about Linux Commands
	Customizing the Shell with Your Own Linux Commands
	Shutting Down and Rebooting Your Raspberry Pi

	Part 3 Using the Raspberry Pi for Both Work and Play
	Chapter 6 Being Productive with the Raspberry Pi
	Installing LibreOffice on Your Raspberry Pi
	Working with LibreOffice on the Raspberry Pi
	Saving your work
	Writing letters in LibreOffice Writer
	Managing your budget in LibreOffice Calc
	Creating presentations in LibreOffice Impress
	Creating a party invitation with LibreOffice Draw

	Chapter 7 Editing Photos on the Raspberry Pi with GIMP
	Working with GIMP
	Understanding the GIMP screen layout
	Resizing an image in GIMP
	Cropping your photo
	Rotating and flipping your photo
	Adjusting the colors
	Fixing imperfections
	Converting images between different formats

	Finding Out More about GIMP

	Chapter 8 Playing Audio and Video on the Raspberry Pi
	Setting Up Your Media Center
	Navigating the Media Center
	Adding Media
	Adding music
	Adding videos
	Adding pictures
	Streaming media

	Enjoying Your Media
	Playing music
	Playing videos
	Viewing photos

	Changing the Settings
	Using a Remote Control
	Turning Off Your Media Center
	Playing Music in the Desktop Environment

	Part 4 Programming the Raspberry Pi
	Chapter 9 Introducing Programming with Scratch
	Understanding What Programming Is
	Working with Scratch
	Understanding the Scratch screen layout
	Making your sprite move
	Creating scripts
	Changing your sprite’s appearance
	Adding sounds and music
	Using the Wait block to slow down your sprite
	Using extensions in Scratch
	Saving your work

	Chapter 10 Programming an Arcade Game Using Scratch
	Starting a New Scratch Project and Deleting Sprites
	Changing the Backdrop
	Adding Sprites to Your Game
	Drawing Sprites in Scratch
	Naming Your Sprites
	Controlling When Scripts Run
	Using the green flag to start scripts
	Using the Forever Control block
	Enabling keyboard control of a sprite
	Enabling a sprite to control another sprite

	Using Random Numbers
	Detecting When a Sprite Hits Another Sprite
	Introducing Variables
	Making Sprites Move Automatically
	Fixing the Final Bug
	Adding Scripts to the Stage
	Duplicating Sprites
	Playing Your Game
	Adapting the Game’s Difficulty
	Taking It Further with Scratch

	Chapter 11 Writing Programs in Python
	Working with Python
	Entering your first Python commands
	Using the shell to calculate sums

	Creating the Times Tables Program
	Creating and running your first Python program
	Using variables
	Accepting user input
	Printing words, variables, and numbers together
	Using for loops to repeat

	Creating the Chatbot Program
	Introducing lists
	Using lists to make a random chat program
	Adding a while loop
	Using a loop to force a reply from the user
	Using dictionaries
	Creating your own functions
	Creating the dictionary look-up function
	Creating the main conversation loop
	Final thoughts on Chatbot
	The final Chatbot program

	Chapter 12 Creating a Game with Python and Pygame Zero
	Collecting Your Sounds and Images
	Setting Up Your Folders
	Creating and Running Your First Program
	Detecting mouse clicks
	Animating your actors
	Using random numbers
	Adding more clouds
	Making the clouds regenerate
	Enabling multiple clouds to be clicked
	Adding the timer
	Adjusting the game difficulty
	The final game listing

	Exploring Pygame Zero Further

	Chapter 13 Programming Minecraft with Python
	Playing Minecraft
	Moving around
	Making and breaking things

	Preparing for Python
	Using the Minecraft Module
	Understanding coordinates in Minecraft
	Repositioning the player
	Adding blocks
	Stopping the player from changing the world
	Setting the maze parameters
	Laying the foundations
	Placing the maze walls
	Understanding the maze algorithm
	Setting up the variables and lists
	Creating the functions
	Creating the main loop
	Adding a ceiling
	Positioning the player
	The final code

	Adapting the Program

	Chapter 14 Making Music with Sonic Pi
	Understanding the Sonic Pi Screen Layout
	Playing Your First Notes
	Using Note and Chord Names
	Playing Timed Patterns
	Composing Random Tunes Using Shuffle
	Changing the Random Number Seed
	Using List Names in Your Programs
	Playing Random Notes
	Experimenting with Live Loops
	Using Samples
	Adding Special Effects
	Synchronizing with Your Drumbeat
	Bringing It All Together
	Next Steps with Sonic Pi

	Part 5 Exploring Electronics with the Raspberry Pi
	Chapter 15 Understanding Circuits
	Discovering What a Circuit Is
	Understanding the nature of electricity
	Determining how a component needs to be treated

	Getting Familiar with the GPIO
	Putting the general purpose in GPIO
	Understanding what GPIOs do
	Putting an output pin to practical use
	Using GPIOs as inputs
	Learning which end is hot: Getting to grips with a soldering iron
	Making a soldered joint

	Looking at Ready-Made Add-On Boards
	The Sense HAT
	The Trill sensors
	The LED SHIM
	Other boards

	Chapter 16 Taking Control of Your Pi’s Circuitry
	Accessing Raspberry Pi’s GPIO Pins
	Soldering the GPIO pins onto Pi Zero or Pi ZeroW
	Getting at all the pins with one connector
	Connecting things together

	Your First Circuit
	Bringing your LED to life
	Using Scratch 3.0
	Control the flashing speed with an input
	Using Python
	Using GPIO ZERO

	Starting Out with a Dice Display
	A dice display
	The project
	The numbers
	The display
	Taking it further

	Pedestrian Crossing
	The Pedestrian Crossing hardware
	The Pedestrian Crossing software
	Taking it further

	Chapter 17 Lots of Multicolored LEDs
	Making Colors
	Using diffusers
	Making more colors

	The Way Forward
	Bit-banging the APA102C protocol
	Creating a class

	Rainbow Invaders
	Keepy Uppy
	LEDs Galore
	Current limits
	Signals and memory
	Display update
	Getting more LEDs

	Chapter 18 Old McDonald’s Farm and Other RFID Adventures
	How RFID Work
	A MIFARE card’s structure
	A simple RFID jukebox
	A better RFID jukebox
	Taking it further

	Dressing Up a Paper Doll
	Runway time

	Old McDonald’s Farm
	Making sound samples
	Making the graphics

	Part 6 The Part of Tens
	Chapter 19 Ten Great Software Packages for the Raspberry Pi
	Penguins Puzzle
	FocusWriter
	Mathematica
	Fraqtive
	Tux Paint
	Grisbi
	Beneath a Steel Sky
	Brain Party
	Pure Data
	Inkscape

	Chapter 20 Ten Inspiring Projects for the Raspberry Pi
	One-Button Audiobook Player
	Heartbeat Monitor
	Smart Fridge
	The Next Verse
	Electric Skateboard
	T-Shirt Cannon
	Magic Mirror
	Pi in the Sky
	Raspberry Turk
	Sound Fighter

	Chapter 21 Ten Great Add-Ons for the Raspberry Pi
	Picade
	CamJam EduKit 3
	Piano HAT
	Rainbow HAT
	Display-O-Tron HAT
	Flick
	Unicorn HAT HD
	Inky pHAT
	Pirate Audio
	Witty Pi

	Appendix Troubleshooting and Configuring the Raspberry Pi
	Index
	EULA

