

i

Raspberry Pi OS Text Editors,
Git, and LXC

The third volume in a new series exploring the basics of Raspberry Pi
Operating System administration, this installment builds on the insights
from Volumes 1 and 2 to provide a compendium of easy-​to-​use and essential
guidance for Raspberry Pi system administration for novice users, with spe-
cific focus on Text Editors, Git/GitHub, and LXC/​LXD.

The overriding idea behind system administration of a modern, 21st-​
century Linux system, such as the Raspberry Pi OS, is the use of systemd to
ensure that the Linux kernel works efficiently and effectively to provide these
three foundation stones of computer operation and management: computer
system concurrency, virtualization, and secure persistence. This third volume
includes a beginner’s compendium of essential text-​based Linux commands,
a complete tutorial on the most important Raspberry Pi OS Text Editors, a
description of uses of the git command, and a thorough explication of con-
tainer virtualization with LXC/​LXD and Docker.

This book is aimed at students and practitioners looking to maximize their
use of the Raspberry Pi OS. With plenty of practical examples, projects, and
exercises, this volume can also be adopted in a more formal learning envir-
onment to supplement and extend the basic knowledge of a Linux operating
system.

Robert M. Koretsky is a retired lecturer in Mechanical Engineering at the
University of Portland School of Engineering. He previously worked as
an automotive engineering designer at the Freightliner Corp. in Portland,
Oregon. He is married and has two kids and two grandkids.

ii

Raspberry Pi OS System Administration with systemd
A Practical Approach
Series Editor: Robert M. Koretsky

Raspberry Pi OS System Administration with systemd: A Practical Approach
Robert M. Koretsky

Raspberry Pi OS System Administration with systemd and Python: A Practical
Approach
Robert M. Koretsky

Raspberry Pi OS Text Editors, Git, and LXC: A Practical Approach
Robert M. Koretsky

For more information about this series, please visit: www.routledge.com/
Raspberry-Pi-OS-System-Administration-with-systemd/book-series/123

http://www.routledge.com/Raspberry-Pi-OS-System-Administration-with-systemd/book-series/123
http://www.routledge.com/Raspberry-Pi-OS-System-Administration-with-systemd/book-series/123

iii

Raspberry Pi OS Text
Editors, Git, and LXC

A Practical Approach

Robert M. Koretsky

iv

First edition published 2024
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Robert Koretsky

Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the consequences
of their use. The authors and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged
please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in
any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyri​ght.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-​750-​8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe.

ISBN: 978-​1-​032-​59690-​7 (hbk)
ISBN: 978-​1-​032-​59691-​4 (pbk)
ISBN: 978-​1-​003-​45581-​3 (ebk)

DOI: 10.1201/​9781003455813

Typeset in Palatino
by Newgen Publishing UK

http://www.copyright.com
http://www.copyright.com
http://dx.doi.org/10.1201/9781003455813

v

To my family.

Bob Koretsky

vi

https://taylorandfrancis.com

vii

vii

Contents

Series Preface��� xi
Volume 3 Preface���xiii

0	 “Quick Start” into Sysadmin for the Raspberry Pi
Operating System.. 1
0.1	 Introduction... 1
0.2	 File Maintenance Commands and Help on Raspberry Pi OS

Command Usage.. 3
0.2.1	 File and Directory Structure.. 4
0.2.2	 Viewing the Contents of Files... 5
0.2.3	 Creating, Deleting, and Managing Files.................................... 7
0.2.4	 Creating, Deleting, and Managing Directories.......................11
0.2.5	 Obtaining Help with the man Command............................... 16
0.2.6	 Other Methods of Obtaining Help... 19

0.3	 Utility Commands.. 20
0.3.1	 Examining System Setups... 20

0.4	 Printing Commands... 23
0.5	 Chapter Summary.. 24

1	 Editing Text Files... 26
1.0	 Objectives... 26
1.1	 Introduction and Quickstart... 26
1.2	 Quick Start: The Simplest Path through These Editors.................... 28
1.3	 First Comments on Raspberry Pi Text Editors................................... 29
1.4	 Using Text Editors.. 31
1.5	 Nano... 32

1.5.1	 Introduction to Nano and Typographic Conventions........... 33
1.5.2	 A Nano Quickstart.. 33
1.5.3	 A Brief Nano Tutorial... 35

1.6	 Vi, Vim, and Gvim.. 42
1.6.1	 Basic Shell Script File Creation, Editing, and Execution....... 42
1.6.2	 How to Start, Save a File, and Exit... 44
1.6.3	 The Format of a Vi Command and the Modes of

Operation... 46
1.6.4	 Cursor Movement and Editing Commands........................... 50
1.6.5	 Yank and Put (Copy and Paste) and Substitute

(Search and Replace).. 51
1.6.6	 Vim and Gvim... 55
1.6.7	 Changing Vi, Vim, and Gvim Behavior................................... 64
1.6.8	 Vi, Vim, and Gvim Keyboard Macros...................................... 66

Contentsviii

1.7	 Geany Introduction.. 72
1.7.1	 Geany Usage... 75
1.7.2	 The Geany Workspace... 75
1.7.3	 Five Easy Geanys and Some Geany Py................................... 77
1.7.4	 Geany Abbreviated Reference Encyclopedia....................... 109

1.8	 Summary.. 126

2	 Version Control for Software Code Using Git and GitHub................. 131
2.0	 Objectives .. 131
2.1	 Introduction to Version Control... 131
2.2	 What Is Git Used for and How Does It Work?................................. 134
2.3	 Basic Git Terminology.. 135

2.3.1	 Top-​Level Terminology.. 135
2.3.2	 The Git Staging Model... 138
2.3.3	 Directed Acyclic Graphs.. 139
2.3.4	 Contents of the Object Store.. 140

2.4	 Examples of Using Git and GitHub... 143
2.5	 GitHub as a Remote Repository... 171

2.5.1	 Git URLs.. 172
2.5.2	 Understanding Remote Pull and Push Operations............. 173

2.6	 GitHub Examples... 175

3	 Virtualization Methodologies.. 194
3.0	 Objectives... 194
3.1	 Introduction to Virtualization Methodologies and

Background... 195
3.2	 Raspberry Pi OS Containers with LXC/​LXD................................... 198

3.2.1	 Introduction to LXC/​LXD... 200
3.2.2	 LXD and LXC Installation and Basic Commands for

the Raspberry Pi OS... 201
3.2.3	 Container Management Commands......................................211
3.2.4	 Internal Container Management Commands Executed

from the Host.. 212
3.2.5	 Container Backups, Snapshots, and Cloning....................... 213
3.2.6	 Extended LXD Installation and Container Management

Examples.. 214
3.3	 Docker.. 229

3.3.1	 Docker Installation on the Raspberry Pi OS......................... 230
3.3.2	 Adding a Non-​Root User on the Docker Group and

Checking the Docker Version... 231
3.3.3	 Run the Sample “Hello World” Containers.......................... 232

3.4	 Docker Optional Configurations.. 233
3.4.1	 Running Docker without Root Privileges............................. 233
3.4.2	 Configuring UFW and Making Other Configuration

Changes.. 233

Contents ix

3.5	 Uninstallation of Docker... 235
3.6	 Running a Docker Container and Useful Docker

Commands.. 236
3.6.1	 Downloading a Pre-​Built Docker Image............................... 237
3.6.2	 Running an Interactive Shell... 238
3.6.3	 Starting Continually Running Processes in a Container.... 238
3.6.4	 Various Docker Utility Commands.. 239
3.6.5	 Committing (Saving) a Container State, Listing and

Deleting Images.. 240
3.7	 Running an Important Web Application in a Docker Container... 241
3.8	 Nginx and the Necessity of Exposing Ports..................................... 242

3.8.1	 Exposing a Container’s IP Address on the Public
Network Connected to the Host Using iptables.................. 245

3.9	 Docker Nginx Review and Further Docker Examples.................... 248
3.9.1	 Reviewing Container Basics: Run, List, Remove................. 248
3.9.2	 Building a Web Page for Nginx to Use as Content in a

Container... 249
3.9.3	 Working with the Nginx Docker Container in

More Detail.. 252
3.9.4	 Using ZFS as the Backing Store for Docker Containers...... 253

3.10	 A Docker Reference.. 257
3.10.1	 Container Management Commands..................................... 260
3.10.2	 Running a Container.. 267
3.10.3	 Docker Images.. 271
3.10.4	 General Management Commands... 275

3.11	 Summary.. 281

Questions, Problems, and Projects�� 283	
Chapter 0��� 283	
Chapter 1��� 286	
Chapter 2��� 298	
Chapter 3��� 300

Index.. 305

https://taylorandfrancis.com

xi

xi

Series Preface

This series of books covers the basics of Raspberry Pi Operating System
administration, and is geared towards a novice user. Each book is a complete,
self-​contained introduction to important system administration tasks, and to
other useful programs. The foundation of all of them is the systemd super-​
kernel. They guide the user along a path that gives the ‘why’ and ‘how to’
of those important system administration topics, and they also present the
following essential application facilities:

1)	 Raspberry Pi OS System administration with systemd, Volume 1
2)	 Raspberry Pi OS System administration with systemd and Python,

Volume 2
3)	 Raspberry Pi OS Text Editing, Git, Virtualization with LXC/​LXD,

Volume 3

They can be used separately, or together, to fit the learning objectives/​pace,
and interests of the individual, independent learner, or can be adopted in
a more formal learning environment to supplement and extend the basic
knowledge of a Linux operating system in a classroom environment that uses
the Raspberry Pi OS.

In addition, each book has In-​Chapter Exercises throughout, and a Question,
Problems, and Projects addendum to help reinforce the learning goals of the
individual student, or reader.

An online GitHub site, with further materials and updates, program
code, solutions to both In-​Chapter Exercises and End-​of-​Chapter Problems,
Questions, and Projects, plus other supplements, is provided for each volume.
It can be found at:​

www.git​hub.com/​bob​k48/​Raspbe​rryP​iOS

The fundamental prerequisites of each volume are (1) knowledge of how to
type a syntactically-​correct Linux command on the command line, (2) having
access to a dedicated Raspberry Pi computer with the latest Raspberry Pi
Operating System already installed and running on it, (3) being a privileged
user on the system that is able to execute the sudo command to assume
superuser status, and (4) having a basic knowledge of how to edit and save
text files in the nano text editor.

All instructions in these volumes were tested on either a Raspberry Pi 4B,
or a Raspberry Pi 400, both with 4GB of memory, and the latest version of the
Raspberry Pi OS at the time.

http://www.github.com

https://taylorandfrancis.com

xiii

xiii

Volume 3 Preface

Background

This book is a compendium of easy-​to-​use and essential Raspberry Pi OS
supplements to system administration tasks for the beginner. The Raspberry
Pi OS is derived from the Debian branch of Linux, and as of this writing,
Debian Bullseye was the most current version of that operating system. To
present the supplements to system administration topics and commands
here, centered around Text Editing, Git/​GitHub, and Virtualization with
LXC/​LXD and Docker, I have selected some very basic stuff, and a few more
advanced concepts, topics, commands, and details that might not appear in
a more complete system administration book, or a book on the auxiliary sub-
ject matter that might be found in another Raspberry Pi OS book.

The overriding idea behind system administration of a modern, 21st-​
century Linux system, such as the Raspberry Pi OS, is the use of systemd to
ensure that the Linux kernel works efficiently and effectively to provide these
three foundation stones of computer operation and management: computer
system concurrency, virtualization, and secure persistence.

And this control of the kernel by a “super-​kernel,” which is what systemd
essentially is, must also promote the highest level of system performance and
speed, given the use cases the computer might be put to, and the perceived
needs of the target user base that the computer serves. Unless that novice
user, or even a more seasoned system professional, has not only a basic, but
also a more complete knowledge of how systemd controls and oversees
every process and operation of a modern Linux system, they will never be
able to master administrating and implementing the kind of functionality
that their use case(s) might ultimately require. Particularly for the user base
on the system, and the demands that the user base makes.

Certainly out of the multitude of possible topics we could have presented,
the ones you find detailed here have basically been selected in somewhat of
a subjective way. That selective way was mainly guided by these concerns:

a.	 The secure maintenance, in terms of concurrency, virtualization, and
persistence, of a single Raspberry Pi system that an ordinary novice
user can install on her own dedicated hardware.

b.	 How important the topics are in a perceived ranking of essential
system administration tasks.

Volume 3 Prefacexiv

c.	 How systemd plays into the maintenance regimen of the Raspberry Pi
OS, and the hardware it’s installed on, as chosen by that ordinary user.

d.	 The overall pedagogic integration of the selected topics presented on
system administration with each other.

e.	 How well these topics serve to prepare a student for entry into any
chosen Information Technology or Computer Science profession, or
how someone already in those professions can use this book to better
conform to the best practices of that profession. In other words, for
educational and continuing education audiences.

f.	 To some degree, make it possible to extrapolate these topics (for
audiences in e.) from a single Raspberry Pi system environment
to a broader and larger-​scaled computing environment, such as is
found on small-​to-​medium-​sized servers, or to cloud-​based, virtual
computing.

The topics presented in this volume are fundamental and supplementary to
everything presented in the previous volumes, and can be summarized as
follows:

1.	 Text-​based and graphics-​based editing of files, such as Python and C+​
+​ program code, using the Nano and Vi/​Vim/​Gvim text editors, and
the Geany Integreated Development Environment (IDE).

2.	 File and code project control using the git command, and its deploy-
ment and integration with GitHub, via a text-​based and web browser
interfaces.

3.	 Virtualization techniques on the Raspberry Pi OS, using LXC/​LXD
containers, and Docker.

4.	 We also repeat for review Chapter Zero (0) from the previous volumes,
which provides basic and essential file maintenance and system
polling and inquiry commands for the beginner.

How to Read and Use This Book

Note
The premise and prerequisite of this book is that you understand what the
correct form, or structure, of a Linux command is, and how to type one in on
the console or terminal command line of a Raspberry Pi!

Just to review that here, the general syntax, or structure of a single Linux
command (often referred to as a simple command) as it is typed on the
command line, is as follows:

Volume 3 Preface xv

$ command [[-​]‌option(s)] [option argument(s)] [command argument(s)]

where:

$ is the command line or shell prompt from the Raspberry Pi OS;
anything enclosed in [] is not always needed;
command is the name of the valid Linux command for that shell in lowercase
letters;
[-​option(s)] is one or more modifiers that change the behavior of command;
[option argument(s)] is one or more modifiers that change the behavior of

[-​option(s)]; and
[command argument(s)] is one or more objects that are affected by command.

Note the following seven essentials:

1.	 A space separates command, options, option arguments, and
command arguments, but no space is necessary between multiple
option(s) or multiple option arguments.

2.	 The order of multiple options or option arguments is irrelevant.
3.	 A space character is optional between the option and the option

argument.
4.	 Always press the <Enter> key to submit the command for interpret-

ation and execution.
5.	 Options may be preceded by a single hyphen -​ or two hyphens, -​-​,

depending on the form of the option. The short form of the option
is preceded by a single hyphen, and the long form of the option is
preceded by two hyphens. No space character should be placed
between hyphen(s) and option(s).

6.	 A small percentage of commands (like whoami) take no options,
option arguments, or command arguments.

7.	 Everything on the command line is case sensitive!

Also, it is possible, and very common to type multiple Linux commands
(sometimes called compound commands, to differentiate them from simple
commands) on the same command line, before pressing the <Enter> key.
The components of a multiple Linux command are separated with input and
output redirection characters, to channel the output of one into the input of
another.

As stated in the Series Preface, the fundamental prerequisites of this
volume are:

1.	 Knowledge of how to type a syntactically correct Linux command on
the command line (as detailed above)

Volume 3 Prefacexvi

2.	 Having access to a dedicated Raspberry Pi computer with the latest
Raspberry Pi Operating System already installed and running on it

3.	 Being a privileged user on the system, and as such are able to execute
the sudo command to assume superuser status, and

4.	 Having a basic knowledge of how to edit and save text files in the
Nano text editor. We give introductory instruction on how to use the
Nano text editor in this volume.

An online GitHub site, with further materials and updates, program code,
solutions to both In-​Chapter Exercises and End-​of-​Chapter Problems,
Questions, and Projects, plus other supplements, is provided for this book. It
can be found at:

www.git​hub.com/​bob​k48/​Raspbe​rryP​iOS

All command line instructions in this volume were tested on either
a Raspberry Pi 4B, or a Raspberry Pi 400, both with 4GB of memory, and
the latest version of the Raspberry Pi OS at the time, which was Debian
Bookworm.

Routes through the Book

Browse the Contents.
Select a topic that interests you.
Do the Examples, or all the command line materials presented for that topic.
Maybe pick another topic that interests you, and do the Examples and all

the command line materials there.
Finally, go back to the beginning of the book. Do everything, from start to

finish.
Rinse and repeat the above as necessary.

Have fun!

newgenprepdf

http://www.github.com

1DOI: 10.1201/9781003455813-1

0	�
“Quick Start” into Sysadmin for the
Raspberry Pi Operating System

In this introductory chapter, duplicated in the first two volumes of this
series, we cover the essential Raspberry Pi OS commands that allow a
system administrator to do file maintenance and perform other useful
operations. This is a mandatory set of essentials that even an ordinary,
non-administrative user would need to know to work efficiently in a char-
acter or text-based interface to the operating system. It should be evi-
dent to the reader, after completing this chapter, that correctly deployed,
text-based commands are the predominant means that a system adminis-
trator has at her disposal to maintain the integrity of the system. We give a
set of core examples, and show the basic format of essential commands and
primitives here.

Objectives

To explain how to manage and maintain files and directories
To show where to get system-wide help for Raspberry Pi OS commands
To demonstrate the use of a beginner’s set of utility commands
To cover the basic commands and operators

cat cd cp exit hostname -I ip login lp lpr ls man mesg mkdir more mv passwd,
PATH pwd rm rmdir telnet unalias uname whatis whereis who whoami

0.1 � Introduction

To start working productively with system administration on the Raspberry
Pi OS, the beginner needs to have some familiarity with these sequential
topics, as follows:

http://dx.doi.org/10.1201/9781003455813-1

Raspberry Pi OS Text Editors, Git, and LXC2

1.	 How to maintain and organize files in the file structure of the oper-
ating system. Creating a tree-like structure of folders (also called
directories), and storing files in a logical fashion in these folders, is
critical to working efficiently in the Raspberry Pi OS.

2.	 How to get help on text-based commands and their usage. With key-
board entry, in a command-based, Character User Interface (CUI)
environment, being able to find out, in a quick and easy way, how to
use a command, its options, and arguments by typing it on the key-
board correctly, is imperative to working efficiently.

3.	 How to execute a small set of essential utility commands to set
up or customize your working environment. Once a beginner
is familiar with the right way to construct file maintenance
commands, adding a set of utility commands makes each session
more productive.

To use this chapter successfully as a springboard into the remainder of the
book, you should carefully read, follow, and execute the instructions and
command line sessions we provide, in the order presented. Each section in
this chapter, and the two subsequent chapters as well, builds on the infor-
mation that precedes it. They will give you the concepts, command tools,
and methods that will enable you to do system administration using the
Raspberry Pi OS.

Throughout this book, we illustrate everything using the following version
of the Raspberry Pi OS, on the hardware listed:

System:
Host: raspberrypi Kernel: 6.1.0-rpi6-rpi-v8 arch: aarch64 bits: 64
compiler: gcc v: 12.2.0 Desktop: LXDE v: 0.10.1 Distro: Debian GNU/Linux 12 (book-

worm)
Machine:
Type: ARM System: Raspberry Pi 400 Rev 1.0 details: BCM2835 rev: c03130

In this chapter, the major commands we want to illustrate are first
defined with an abbreviated syntax description, which will clarify gen-
eral components of those commands. The syntax description format is as
follows:

Syntax: The exact syntax of how a command, its options, and its arguments
are correctly typed on the command line

Purpose: The specific purpose of the command

Output: A short description of the results of executing the command

Commonly used options/features: A listing of the most popular and useful
options and option arguments

“Quick Start” into Sysadmin 3

In addition, the following web link is to a site that allows you to type-in a
single or multiple Raspberry Pi OS command, and get a verbose explanation
of the components of that command:

https://explainshell.com/

In-Chapter Exercises

1. 	 Type the following commands on your Raspberry Pi OS system’s
command line, and note the results. Which ones are syntactically
incorrect? Why? (The Bash prompt is shown as the $ character in
each, and we assume that file1 and file2 exist)

$ la -ls
$ cat
$ more -q file1
$ more file2
$ time
$ lsblk-a

2.	 How can you differentiate a Raspberry Pi OS command from its
options, option arguments, and command arguments?

3.	 What is the difference between a single Raspberry Pi OS command
and a multiple Raspberry Pi OS command, as typed on the command
line before pressing <Enter>?

4.	 If you get no error message after you enter a Raspberry Pi OS
command, how do you know that it actually accomplished what you
wanted it to?

0.2 � File Maintenance Commands and Help on
Raspberry Pi OS Command Usage

After your first-time login to a new Raspberry Pi OS system, one of your
first actions will be to construct and organize your workspace environment,
and the files that will be contained in it. The operation of organizing your
files according to some logical scheme is known as file maintenance. A logical
scheme used to organize your files might consist of creating bins for storing
files according to the subject matter of the contents of the files, or according
to the dates of their creation. In the following sections, you will type file cre-
ation and maintenance commands that produce a structure similar to what

https://explainshell.com

Raspberry Pi OS Text Editors, Git, and LXC4

is shown in Figure 0.1. Complete the operations in the following sections
in the order they are presented to get a better overview of what file mainten-
ance really is. Also, it is critical that you review what was presented in
the Preface regarding the structure of a Raspberry Pi OS command so that
when you begin to type commands for file maintenance, you understand
how the syntax of what you are typing conforms to the general syntax of any
Raspberry Pi OS command.

0.2.1 � File and Directory Structure

When you first open a terminal, or console, window, you are working in the
home directory, or folder, of the autonomous user associated with the user-
name and password you used to log into the system with. Whatever direc-
tory you are presently in is known as the current working directory, and there
is only one current working directory active at any given time. It is helpful to
visualize the structure of your files and directories using a diagram. Figure 0.1
is an example of a home directory and file structure for a user named bob. In

FIGURE 0.1
Example directory structure.

“Quick Start” into Sysadmin 5

this figure, directories are represented as parallelograms and plain files (e.g.,
files that contain text or binary instructions) are represented as rectangles.
A pathname, or path, is simply a textual way of designating the location of a
directory or file in the complete file structure of the Raspberry Pi OS system
you are working on.

For example, the path to the file myfile2 in Figure 0.1 is /home/bob/myfile2.
The designation of the path begins at the root (/) of the entire file system,
descends to the folder named home, and then descends again to the home
directory of the user named bob.

As shown in Figure 0.1, the files named myfile, myfile2, and renamed_file
are stored under or in the directory bob. Beneath bob is a subdirectory named
first. In the following sections, you will create these files, and the subdirec-
tory structure, in the home directory of the username that you have logged
into your Raspberry Pi OS system with.

In-Chapter Exercise

5.	 Type the following two commands on your Raspberry Pi OS system:
$ cd /
$ ls

Similar to Figure 0.1, sketch a diagram of the directories and files whose
names you see listed as the output of the second command. Save this dia-
gram for use later.

0.2.2 � Viewing the Contents of Files

To begin working with files, you can easily create a new text file by using the
cat command. The syntax of the cat command is as follows:

cat [options] [file-list]
Purpose: �Join one or more files sequentially or display them in the console

window
Output:	 � Contents of the files in file-list displayed on the screen, one file at

a time
Commonly used options/features:
+E	 Display $ at the end of each line
-n	 Put line numbers on the displayed lines
-- 	 help Display the purpose of the command and a brief explanation

of each option

The cat command, short for concatenate, allows you to join files. In the
example you will join what you type on the keyboard to a new file being
created in the current working directory. This is achieved by the redirect
character >, which takes what you type at the standard input (in this case the

Raspberry Pi OS Text Editors, Git, and LXC6

keyboard) and directs it into the file named myfile. You can consider the key-
board, and the stream of information it provides, as a file. As stated in the
Preface, this usage is an example of a command, cat with no options, option
arguments, or command arguments. It simply uses the command, a redirect
character, and a target, or destination, named myfile, where the redirection
will go.

This is the very simplest example of a multiple command typed on the
command line, as opposed to a single command. In a multiple command,
you can string together single Raspberry Pi OS commands in a chain with
connecting operators, such as the redirect character shown here.

$ cat > myfile
This is an example of how to use the cat command to add plain text to a file
<Ctrl+D>
$

You can type as many lines of text, pressing <Enter> on the keyboard to dis-
tinguish between lines in the file, as you want. Then, on a new line, when
you hold down <Ctrl+D>, the file is created in the current working direc-
tory, using the command you typed. You can view the contents of this file,
since it is a plain text file that was created using the keyboard, by doing the
following:

$ more myfile
This is an example of how to use the cat command to add plain text to a file
$

This is a simple example of the syntax of a single Raspberry Pi OS command.
The general syntax of the more command is as follows:

more [options] [file-list]
Purpose: � Concatenate/display the files in file-list on the screen, one screen

at a time
Output:   � Contents of the files in file-list displayed on the screen, one page

at a time
Commonly used options/features:
+E/str	 Start two lines before the first line containing str
-nN	 Display N lines per screen/page
+N	 Start displaying the contents of the file at line number N

The more command shows one screen full of a file at a time by default. If
the file is several pages long, you can proceed to view subsequent pages by
pressing the <Space> key on the keyboard, or by pressing the Q key on the
keyboard to quit viewing the output.

“Quick Start” into Sysadmin 7

In-Chapter Exercise

6.	 Use the cat command to produce another text file named testfile.
Then join the contents of myfile and testfile into one text file, named
myfile3, with the cat command.

0.2.3 � Creating, Deleting, and Managing Files

To copy the contents of one file into another file, use the cp command. The
general syntax of the cp command is as follows:

cp [options] file1 file2
Purpose: � Copy file1 to file2; if file2 is a directory, make a copy of file1 in

this directory
Output:   Copied files
Commonly used options/features:
-i	 If destination exists, prompt before overwriting
-p	 Preserve file access modes and modification times on copied files
-r	 Recursively copy files and subdirectories

For example, to make an exact duplicate of the file named myfile, with the
new name myfile2, type the following:

$ cp myfile myfile2
$

This usage of the cp command has two required command arguments. The
first argument is the source file that already exists and which you want to
copy. The second argument is the destination file or the name of the file that
will be the copy. Be aware that many Raspberry Pi OS commands can take
plain, ordinary, or regular files as arguments, or can take directory files as
arguments. This can change the basic task accomplished by the command. It
is also worth noting that not only can file names be arguments, but pathnames
as well. A pathname is the route to any particular place in the file system
structure of the operating system. This changes the site or location, in the
path structure of the file system, of operation of the command.

In order to change the name of a file or directory, you can use the mv
command. The general syntax of the mv command is as follows:

mv [options] file1 file2
mv [options] file-list directory
Purpose:	 First syntax: Rename file1 to file2
	 Second syntax: Move all the files in file-list to directory
Output:	 Renamed or relocated files

Raspberry Pi OS Text Editors, Git, and LXC8

Commonly used options/features:
-f	 Force the move regardless of the file access modes of the destination file
-i	 Prompt the user before overwriting the destination

In the following usage, the first argument to the mv command is the source
file name, and the second argument is the destination name.

$ mv myfile2 renamed_file
$

It is important at this point to notice the use of spaces in Raspberry Pi OS
commands. What if you obtain a file from a Windows system that has one
or more spaces in one of the file names? How can you work with this file in
Raspberry Pi OS? The answer is simple. Whenever you need to use that file
name in a command as an argument, enclose the file name in double quotes
("). For example, you might obtain a file that you have “detached” from an
e-mail message from someone on a Windows system, such as latest revisions
october.txt.

In order to work with this file on a Raspberry Pi OS system – that is, to use
the file name as an argument in a Raspberry Pi OS command – enclose the
whole name in double quotes. The correct command to rename that file to
something shorter would be:

$ mv "latest revisions october.txt" laterevs.txt
$

In order to delete a file, you can use the rm command. The general syntax of
the rm command is as follows:

rm [options] file-list
Purpose:	 Removes files in file-list from the file structure (and disk)
Output:	 Deleted files
Commonly used options/features:
-f	 Remove regardless of the file access modes of file-list
-i	 Prompt the user before removing files in file-list
-r	 Recursively remove the files in file-list if file-list is a directory; use with

caution!

To delete the file renamed_file from the current working directory, type:

$ rm renamed_file
$

In-Chapter Exercise

7. Use the rm command to delete the files testfile and myfile3.

“Quick Start” into Sysadmin 9

The most important command you will execute to do file maintenance is
the ls command. The general syntax for the ls command is as follows:

ls [options] [pathname-list]
Purpose:	� Sends the names of the files and directories in the directory speci-

fied by pathname-list to the display screen
Output:	� Names of the files and directories in the directory specified by

pathname-list, or the names only if pathname-list contains file
names only

Commonly used options/features:
-F	 Display a slash character (/) after directory names, an asterisk (*) after

binary executables, and an “at” character (@) after symbolic links
-a	 Display names of all the files, including hidden files
-i	 Display inode numbers
-l	 Display long list that includes file access modes, link count, owner,

group, file size (in bytes), and modification time

The ls command will list the names of files or folders in your current working
directory or folder. In addition, as with the other commands we have used so
far, if you include a complete pathname specification for the pathname-list
argument to the command, then you can list the names of files and folders
along that pathname list. To see the names of the files now in your current
working directory, type the following:

$ ls
Desktop Documents Downloads Dropbox Music Pictures Public Templates Videos
$

Note that you will probably not get a listing of the same file names as we
showed above here, because your system will have placed some files auto-
matically in your home directory, as in the example we used, aside from the
ones we created together named myfile and myfile2. Also note that this file
name listing does not include the name renamed_file because we deleted
that file.

The next command you will execute is actually just an alternate or modi-
fied way of executing the ls command, one that includes the command name
and options. As shown in the Preface, a Raspberry Pi OS command has
options that can be typed on the command line along with the command to
change the behavior of the basic command. In the case of the ls command, the
options l and a produce a longer listing of all ordinary and system (dot) files,
as well as providing other attendant information about the files.

Don’t forget to put the space character between the s and the - (dash).
Remember again that spaces delimit, or partition, the components of a
Raspberry Pi OS command as it is typed on the command line!

Raspberry Pi OS Text Editors, Git, and LXC10

Now, type the following command:

$ ls -la
total 30408
drwxr-xr-x	 25	 bob	 bob	 4096	 May 5 07:53	 .
drwxr-xr-x	 5	 root	 root	 4096	 Oct 20 2022	 ..
drwxr-xr-x	 5	 bob	 bob	 4096	 Apr 23 16:32	 .audacity-data
-rw-------	 1	 bob	 bob	 36197	 May 5 07:51	 .bash_history
-rw-r--r--	 1	 bob	 bob	 220	 Apr 4 2022	 .bash_logout
-rw-r--r--	 1	 bob	 bob	 3523	 Apr 4 2022	 .bashrc
-rw-r--r--	 1	 bob	 bob	 47329	 Sep 19 2022	 Blandemic.txt
drwxr-xr-x	 2	 bob	 bob	 4096	 Apr 4 2022	 Bookshelf
drwxr-xr-x	 15	 bob	 bob	 4096	 Apr 17 14:05	 .cache
drwx------	 32	 bob	 bob	 4096	 Apr 28 07:08	 .config
drwx------	 3	 root	 root	 4096	 Jun 29 2022	 .dbus
drwxr-xr-x	 7	 bob	 bob	 4096	 Apr 27 05:21	 Desktop
Output truncated…

As you see in this screen display (which shows the listing of files in our
home directory and will not be the same as the listing of files in your home
directory), the information about each file in the current working direc-
tory is displayed in eight columns. The first column shows the type of
file, where d stands for directory, l stands for symbolic link, and – stands
for ordinary or regular file. Also in the first column, the access modes to
that file for user, group, and others is shown as r, w, or x. In the second
column, the number of links to that file is displayed. In the third column,
the username of the owner of that file is displayed. In the fourth column,
the name of the group for that file is displayed. In the fifth column, the
number of bytes that the file occupies on disk is displayed. In the sixth
column, the date that the file was last modified is displayed. In the sev-
enth column, the time that the file was last modified is displayed. In the
eighth and final column, the name of the file is displayed. This way of
executing the command is a good way to list more complete information
about the file. Examples of using the more complete information are (1) so
that you can know the byte size and be able to fit the file on some portable
storage medium, or (2) to display the access modes, so that you can alter
the access modes to a particular file or directory.

In-Chapter Exercise

8.	 Use the ls -la command to list all of the filenames in your home direc-
tory on your Raspberry Pi OS system. How does the listing you obtain
compare with the listing shown above? Remember that our listing was
done on a Raspberry Pi OS system.

You can also get a file listing for a single file in the current working direc-
tory by using another variation of the ls command, as follows:

“Quick Start” into Sysadmin 11

$ ls -la myfile
-rw-r--r-- 1 bob bob 797 Jan 16 10:00 myfile
$

This variation shows you a long listing with attendant information for the
specific file named myfile. A breakdown of what you typed on the command
line is (1) ls, the command name, (2) -la, the options, and (3) myfile, the
command argument.

What if you make a mistake in your typing, and misspell a command name or
one of the other parts of a command? Type the following on the command line:

$ lx -la myfile
lx: not found
$

The lx: not found reply from Raspberry Pi OS is an error message. There is no
lx command in the Raspberry Pi OS operating system, so an error message is
displayed. If you had typed an option that did not exist, you would also get an
error message. If you supplied a file name that was not in the current working
directory, you would get an error message, too. This makes an important
point about the execution of Raspberry Pi OS commands. If no error message
is displayed, then the command executed correctly and the results might
or might not appear on screen, depending on what the command actually
does. If you get an error message displayed, you must correct the error before
Raspberry Pi OS will execute the command as you type it.

Note
Typographic mistakes in commands account for a large percentage of the
errors that beginners make!

0.2.4 � Creating, Deleting, and Managing Directories

Another critical aspect of file maintenance is the set of procedures and the
related Raspberry Pi OS commands you use to create, delete, and organize
directories in your Raspberry Pi OS account on a computer. When moving
through the file system, you are either ascending or descending to reach
the directory you want to use. The directory directly above the current
working directory is referred to as the parent of the current working direc-
tory. The directory or directories immediately under the current working dir-
ectory are referred to as the children of the current working directory. The
most common mistake for beginners is misplacing files. They cannot find the
file names listed with the ls command because they have placed or created
the files in a directory either above or below the current working directory in
the file structure. When you create a file, if you have also created a logically
organized set of directories beneath your own home directory, you will know

Raspberry Pi OS Text Editors, Git, and LXC12

where to store the file. In the following set of commands, we create a direc-
tory beneath the home directory and use that new directory to store a file.

To create a new directory beneath the current working directory, you
use the mkdir command. The general syntax for the mkdir command is
as follows:

mkdir [options] dirnames
Purpose:	 Creates directory or directories specified in dirnames
Output:	 New directory or directories
Commonly used options/features:
-m MODE	 Create a directory with given access modes
-p		� Create parent directories that don’t exist in the pathnames spe-

cified in dirnames

To create a child, or subdirectory, named first under the current working dir-
ectory, type the following:

$ mkdir first
$

This command has now created a new subdirectory named first under, or as
a child of, the current working directory. Refer back to Figure 0.1 for a graph-
ical description of the directory location of this new subdirectory.

In order to change the current working directory to this new subdirec-
tory, you use the cd command. The general syntax for the cd command is as
follows:

cd [directory]
Purpose:	� Change the current working directory to directory or return to

the home directory when directory is omitted
Output:	 New current working directory

To change the current working directory to first by descending down the
path structure to the specified directory named first, type the following:

$ cd first
$

You can always verify what the current working directory is by using the
pwd command. The general syntax of the pwd command is as follows:

pwd
Purpose:	 Displays the current working directory on screen
Output:	 Pathname of current working directory

“Quick Start” into Sysadmin 13

You can verify that first is now the current working directory by typing the
following:

$ pwd
/home/bob/first
$

The output from the Raspberry Pi OS on the command line shows the
pathname to the current working directory or folder. As previously stated,
this path is a textual route through the complete file structure of the com-
puter that Raspberry Pi OS is running on, ending in the current working
directory. In this example of the output, the path starts at /, the root of the
file system. Then it descends to the directory home, a major branch of the
file system on the computer running Raspberry Pi OS. Then it descends
to the directory bob, another branch, which is the home directory name
for the user. Finally, it descends to the branch named first, the current
working directory.

On some systems, depending on the default settings, another way of deter-
mining what the current working directory is can be done by simply looking
at the command line prompt. This prompt may be prefaced with the com-
plete path to the current working directory, ending in the current working
directory.

You can ascend back up to the home directory, or the parent of the subdir-
ectory first, by typing the following:

$ cd
$

An alternate way of doing this is to type the following, where the tilde char-
acter (~) resolves to, or is a substitute for, the specification of the complete
path to the home directory:

$ cd ~
$

To verify that you have now ascended up to the home directory, type the
following:

$ pwd
/home/bob
$

You can also ascend to a directory above your home directory, some-
times called the parent of your current working directory, by typing the
following:

Raspberry Pi OS Text Editors, Git, and LXC14

$ cd ..
$

In this command, the two periods (..) represent the parent, or branch above
the current working directory. Don’t forget to type a space character between
the d and the first period. To verify that you have ascended to the parent of
your home directory, type the following:

$ pwd
/home
$

To descend to your home directory, type the following:

$ cd
$

To verify that there are two files in the home directory that begins with the
letters my, type the following command:

$ ls my*
myfile myfile2
$

The asterisk following the y on the command line is known as a metacharacter,
or a character that represents a pattern; in this case, the pattern is any set of
characters. When Raspberry Pi OS interprets the command after you press the
<Enter> key on the keyboard, it searches for all files in the current working
directory that begin with the letters my and end in anything else.

In-Chapter Exercise

9.	 Use the cd command to ascend to the root (/) of your Raspberry Pi OS
file system, and then use it to descend down each subdirectory from
the root recursively to a depth of two subdirectories, sketching a dia-
gram of the component files found on your system. Make the named
entries in the diagram as complete as possible, listing as many files as
you think necessary. Retain this diagram as a useful map of your par-
ticular Raspberry Pi OS distribution’s file system.

Another aspect of organizing your directories is movement of files between
directories, or changing the location of files in your directories. For example,
you now have the file myfile2 in your home directory, but you would like

“Quick Start” into Sysadmin 15

to move it into the subdirectory named first. See Figure 0.1 for a graphic
description to change the organization of your files at this point. To accom-
plish this, you can use the second syntax method illustrated for the mv file-
list directory command to move the file myfile2 down into the subdirectory
named first. To achieve this, type the following:

$ mv myfile2 first
$

To verify that myfile2 is indeed in the subdirectory named first, type the
following:

$ cd first
$ ls
myfile2
$

You will now ascend to the home directory, and attempt to remove or delete
a file with the rm command.

Caution: you should be very careful when using this command because
once a file has been deleted, the only way to recover it is from archival
backups that you or the system administrator have made of the file system.

$ cd
$ rm myfile2
rm: myfile2: No such file or directory
$

You get the error message because in the home directory the file named
myfile2 does not exist. It was moved down into the subdirectory named
first.

Directory organization also includes the ability to delete empty or
nonempty directories. The command that accomplishes the removal of
empty directories is rmdir. The general syntax of the rmdir command is
as follows:

rmdir [options] dirnames
Purpose:	 Removes the empty directories specified in dirnames
Output:	 Removes directories
Commonly used options/features:
-p	 Remove empty parent directories as well
-r	 Recursively delete files and subdirectories beneath the current directory

Raspberry Pi OS Text Editors, Git, and LXC16

To delete an entire directory below the current working directory, type the
following:

$ rmdir first
rmdir: first: Directory not empty
$

Since the file myfile2 is still in the subdirectory named first, first is not an
empty directory, and you get the error message that the rmdir command
will not delete the directory. If the directory was empty, rmdir would have
accomplished the deletion. One way to delete a nonempty directory is by
using the rm command with the -r option. The -r option recursively descends
down into the subdirectory and deletes any files in it before actually deleting
the directory itself. Be cautious with this command, since you may inadvert-
ently delete directories and files with it. To see how this command deletes a
nonempty directory, type the following:

$ rm -r first
$

The directory first and the file myfile2 are now removed from the file structure.

0.2.5 � Obtaining Help with the man Command

A very convenient utility available on Raspberry Pi OS systems is the online
help feature, achieved via the use of the man command. The general syntax
of the man command is as follows:

man [options][-s section] command-list
man -k keyword-list
Purpose:	� First syntax: Display Raspberry Pi OS Reference Manual

pages for commands in command-list one screen at a time
		� Second syntax: Display summaries of commands related to

keywords in keyword-list
Output:		 Manual pages one screen at a time
Commonly used options/features:
-k keyword-list	� Search for summaries of keywords in keyword-list in a

database and display them
-s sec-num	� Search section number sec-num for manual pages and

display them

To get help by using the man command, on usage and options of the ls
command, for example, type the following:

“Quick Start” into Sysadmin 17

$ man ls

LS(1) User Commands LS(1)

NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

DESCRIPTION
 List information about the FILEs (the current directory
 by default).
 Sort entries alphabetically if none of -cftuvSUX nor –sort
 is specified.

 Mandatory arguments to long options are mandatory for
 short options too.

 -a, --all
 do not ignore entries starting with .

 -A, --almost-all
 do not list implied . and ..

 --author
Manual page ls(1) line 1 (press h for help or q to quit)

This output from Raspberry Pi OS is a Raspberry Pi OS manual page, or
manpage, which gives a synopsis of the command usage showing the options,
and a brief description that helps you understand how the command should
be used. Typing q after one page has been displayed, as seen in the example,
returns you to the command line prompt. Pressing the space key on the key-
board would have shown you more of the content of the manual pages, one
screen at a time, related to the ls command.

To get help in using all the Raspberry Pi OS commands and their options, use
the man man command to go to the Raspberry Pi OS reference manual pages.

The pages themselves are organized into eight sections, depending on the
topic described, and the topics that are applicable to the particular system.
Table 0.1 lists the sections of the manual and what they contain. Most users
find the pages they need in Section 2.1. Software developers mostly use
library and system calls and thus find the pages they need in Sections 2.2
and 2.3. Users who work on document preparation get the most help from
Section 2.7. Administrators mostly need to refer to pages in Sections 2.1, 2.4,
2.5, and 2.8.

The manual pages comprise multi-page, specially formatted, descriptive
documentation for every command, system call, and library call in Raspberry
Pi OS. This format consists of eight general parts: name, synopsis, descrip-
tion, list of files, related information, errors, warnings, and known bugs. You

Raspberry Pi OS Text Editors, Git, and LXC18

can use the man command to view the manual page for a command. Because
of the name of this command, the manual pages are normally referred to as
Raspberry Pi OS man pages. When you display a manual page on the screen,
the top-left corner of the page has the command name with the section it
belongs to in parentheses, as with LS(1), seen at the top of the output
manual page.

The command used to display the manual page for the passwd command is:

$ man passwd

The manual page for the passwd command now appears on the screen, but
we do not show its output. Because they are multi-page text documents, the
manual pages for each topic take up more than one screen of text to display
their entire contents. To see one screen of the manual page at a time, press the
space bar on the keyboard. To quit viewing the manual page, press the Q key
on the keyboard.

Now type this command:

$ man pwd

If more than one section of the man pages has information on the same word
and you are interested in the man page for a particular section, you can use
the -S option. The following command line therefore displays the man page
for the read system call, and not the man page for the shell command read.

$ man -S2 read

The command man -S3 fopen fread strcmp sequentially displays man pages
for three C library calls: fopen, fread, and strcmp.

To exit from the display of these system calls, type <Ctrl-C>.
Using the man command, and typing the command with the -k option,
allows specifying a keyword that limits the search. It is equivalent to using

TABLE 0.1

Sections of the Manual

Section What It Describes

1 User commands
2 System calls
3 Language library calls (C, FORTRAN, etc.)
4 Devices and network interfaces
5 File formats
6 Games and demonstrations
7 Environments, tables, and macros for troff
8 System maintenance-related commands

“Quick Start” into Sysadmin 19

the apropos command. The search then yields useful man page headers
from all the man pages on the system that contain just the keyword refer-
ence. For example, the following command yields the on-screen output on
our Raspberry Pi OS system:

$ man -k passwd
chgpasswd (8)	 - update group passwords in batch mode
chpasswd (8)	 - update passwords in batch mode
exim4_passwd (5)	 - Files in use by the Debian exim4 packages
exim4_passwd_client (5)	 - Files in use by the Debian exim4 packages
fgetpwent_r (3)	 - get passwd file entry reentrantly
getpwent_r (3)	 - get passwd file entry reentrantly
gpasswd (1)	 - administer /etc/group and /etc/gshadow
openssl-passwd (1ssl)	 - compute password hashes
pam_localuser (8)	 - require users to be listed in /etc/passwd
passwd (1)	 - change user password
passwd (1ssl)	 - compute password hashes
passwd (5)	 - the password file
passwd2des (3)	 - RFS password encryption
update-passwd (8)	� - safely update /etc/passwd, /etc/shadow and /etc/group
vncpasswd (1)	 - VNC Server password utility
Output truncated…

0.2.6 � Other Methods of Obtaining Help

To get a short description of what any particular Raspberry Pi OS command
does, you can use the whatis command. This is similar to the command
man -f. The general syntax of the whatis command is as follows:

whatis keywords
Purpose:	� Search the whatis database for abbreviated descriptions of each

keyword
Output:	 Prints a one-line description of each keyword to the screen

The following is an illustration of how to use whatis:
The outputs of the two commands are truncated.

$ whatis man
man (7) - macros to format man pages
man (1) - an interface to the online

reference manuals
$

You can also obtain short descriptions of more than one command by
entering multiple arguments to the whatis command on the same command
line, with spaces between each argument. The following is an illustration of
this method:

Raspberry Pi OS Text Editors, Git, and LXC20

$ whatis login set setenv
login (1) - begin session on the system
login (3) - write utmp and wtmp entries
setenv (3) - change or add an environment variable
set: nothing appropriate.
$

The following in-chapter exercises ask you to use the man and whatis
commands to find information about the passwd command. After com-
pleting the exercises, you can use what you have learned to change your
login password on the Raspberry Pi OS system that you use.

In-Chapter Exercises

10.	 Use the man command with the -k option to display abbreviated help
on the passwd command. Doing so will give you a screen display
similar to that obtained with the whatis command, but it will show
all apropos command names that contain the characters passwd.

11.	 Use the whatis command to get a brief description of the passwd
command shown above, and then note the difference between the
commands whatis passwd and man -k passwd.

0.3 � Utility Commands

There are several important commands that allow the beginner to be more
productive when using a Raspberry Pi OS system. A sampling of these kinds
of utility commands is given in the following sections, and is organized as
system setups, general utilities, and communications commands.

0.3.1 � Examining System Setups

The whereis command allows you to search along certain prescribed paths to
locate utility programs and commands, such as shell programs. The general
syntax of the whereis command is as follows:

whereis [options] filename
Purpose:	 Locate the binary, source, and man page files for a command
Output:	� The supplied names are first stripped of leading pathname

components and extensions, then pathnames are displayed
on screen

Commonly used options/features:
-b	 Search only for binaries
-s	 Search only for source code

“Quick Start” into Sysadmin 21

For example, if you type the command whereis bash on the command line,
you will see a list of the paths to the Bash shell program files themselves, as
follows:

$ whereis bash
bash: /bin/bash /etc/bash.bashrc /usr/share/man/man1/bash.1.gz

Note that the paths to a “built-in,” or internal, command cannot be found
with the whereis command.

When you first log on, it is useful to be able to view a display of infor-
mation about your userid, the computer or system you have logged on to,
and the operating system on that computer. These tasks can be accomplished
with the whoami command, which displays your userid on the screen. The
general syntax of the whoami command is as follows:

whoami
Purpose:	 Displays the effective user id
Output:	 Displays your effective user id as a name on standard

The following shows how our system responded to this command when we
typed it on the command line.

$ whoami
bob
$

To find out the IP address of the Raspberry Pi you are working on, you can
use the ip command. The general syntax of the ip command is as follows:

ip [OPTIONS] OBJECT {COMMAND | help}
Purpose:	� Show / manipulate routing, network devices, interfaces and

tunnels.
Output:	 Information about your LAN.

To find out the IP address of the computer you are working on, type the
following command in a terminal, or console window:

Raspberry Pi OS Text Editors, Git, and LXC22

$ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group
default qlen 1000

link/ether dc:a6:32:ee:c6:6b brd ff:ff:ff:ff:ff:ff
inet 192.168.1.2/24 brd 192.168.1.255 scope global dynamic noprefixroute eth0
 valid_lft 65558sec preferred_lft 54758sec
inet6 fe80::78d9:c72e:75e2:82c/64 scope link
 valid_lft forever preferred_lft forever

3: wlan0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group
default qlen 1000

link/ether dc:a6:32:ee:c6:6c brd ff:ff:ff:ff:ff:ff
$

In the above output, the IP address 192.168.1.2 is the address on the LAN of
this computer.

The following In-Chapter Exercises give you the chance to use whereis,
whoami, and two other important utility commands, who and hostname, to
obtain important information about your system.

In-Chapter Exercises

12.	 Use the whereis command to locate binary files for the Korn shell,
the Bourne shell, the Bourne Again shell, the C shell, and the Z shell.
Are any of these shell programs not available on your system?

13.	 Use the whoami command to find your username on the system
that you’re using. Then use the who command to see how your user-
name is listed, along with other users of the same system. What is
the on-screen format of each user’s listing that you obtained with the
who command? Try to identify the information in each field on the
same line as your username.

14.	 Use the hostname -I command to find out the IP address of the host
computer you are logged on to, on your LAN. Compares this to the
output of the ip addr command on that same system.

“Quick Start” into Sysadmin 23

0.4 � Printing Commands

A very useful and common task performed by every user of a computer
system is the printing of text files at a printer. This is accomplished using the
configured printer(s) on the local, or a remote, system. Printers are controlled
and managed with the Common UNIX Printing System (CUPS). We show
this utility in detail in Chapter 1.

The common commands that perform printing on a Raspberry Pi OS
system are lpr and lp. The general syntax of the lpr command is as follows:

lpr [options] filename
Purpose:	 Send files to the printer
Output:	 Files sent to the printer queue as print jobs
Commonly used options/features:
-P printer	 Send output to the named printer
-# copies	 Produce the number of copies indicated for each named file

The following lpr command accomplishes the printing of the file named
order.pdf at the printer designated on our system as spr. Remember that no
space is necessary between the option (in this case -P) and the option argu-
ment (in this case spr).

$ lpr -Pspr order.pdf
$

The following lpr command accomplishes the printing of the file named
memo1 at the default printer.

$ lpr memo1
$

The following multiple command combines the man command and the lpr
command, and ties them together with the Raspberry Pi OS pipe (|) redir-
ection character, to print the man pages describing the ls command at the
printer named hp1200.

$ man ls | lpr -Php1200
$

The following shows how to perform printing tasks using the lp command.

Raspberry Pi OS Text Editors, Git, and LXC24

The general syntax of the lp command is as follows:

lp [options][option arguments] file(s)
Purpose:	� Submit files for printing on a designated system printer, or alter

pending print jobs
Output:	 Printed files or altered print queue
Commonly used options/features:
-d destination	 Print to the specified destination
-n copies	 Sets the number of copies to print.

In the first command, the file to be printed is named file1. In the second
command, the files to be printed are named sample and phones. Note that
the -d option is used to specify which printer to use. The option to specify the
number of copies is -n for the lp command.

$ lp -d spr file1
request id is spr-983 (1 file(s))
$ lp -d spr -n 3 sample phones
request id is spr-984 (2 file(s))
$

0.5 � Chapter Summary

In this introductory chapter, we covered essential Raspberry Pi OS commands
that allow a system administrator to do file maintenance, and perform other
useful operations. This is a mandatory set of essentials that even an ordinary,
non-adminstrative user would need to know to work efficiently in a char-
acter, or text-based interface to the operating system. Text-based commands
are the predominant means that a system administrator uses to maintain the
integrity of the system. We gave examples and showed the basic format of the
following commands and primitives:

cat cd cp exit hostname -I ip login lp lpr ls man mesg mkdir more mv passwd,
PATH pwd rm rmdir telnet unalias uname whatis whereis who whoami

Table 0.2 summarizes a basic set of useful commands necessary for the
beginner.

“Quick Start” into Sysadmin 25

TABLE 0.2

Useful Commands for the Beginner

Command What It Does

<Ctrl+D> Terminates a process or command
alias Allows you to create pseudonyms for commands
biff Notifies you of new email
cal Displays a calendar on screen
cat Allows joining of files
cd Allows you to change the current working directory
cp Allows you to copy files
exit Ends a shell that you have started
hostname Displays the name of the host computer that you are logged on to
ip Displays IP information of the current host
login Allows you to log on to the computer with a valid username/password

pair
lpr or lp Allows printing of text files
ls Allows you to display names of files and directories in the current

working directory
man Allows you to view a manual page for a command or topic
mesg Allows or disallows writing messages to the screen
mkdir Allows you to create a new directory
more Allows viewing of the contents of a file one screen at a time
mv Allows you to move the path location of, or rename, files
passwd Allows you to change your password on the computer
pg Solaris command that displays one screen of a file at a time
pwd Allows you to see the name of the current working directory
rm Allows you to delete a file from the file structure
rmdir Allows deletion of directories
talk Allows you to send real-time messages to other users
telnet Allows you to log on to a computer on a network or the Internet
unalias Allows you to undefine pseudonyms for commands
uname Displays information about the operating system running the computer
whatis Allows you to view a brief description of a command
whereis Displays the path(s) to commands and utilities in certain key

directories
who Allows you to find out login names of users currently on the system
whoami Displays your username
write Allows real-time messaging between users on the system

26 DOI: 10.1201/9781003455813-2

1	�
Editing Text Files

1.0  Objectives

	* To explain the general utility of editing text files on a Raspberry
Pi system

	* To show the basic capabilities of Nano
	* To show the basic capabilities of Vi, Vim, and Gvim
	* To present examples of C++ programs created, built, and run with Geany
	* To provide a Geany an abbreviated reference source
	* To illustrate some of the important ways of customizing these editors
	* To cover the commands and primitives

cp, geany, gvim, ls, nano, pwd, sh, vi, vim, who

1.1 � Introduction and Quickstart

Questions: What is the salient difference, for a novice Raspberry Pi user,
between a “text editor”, an Integrated Development Environment (IDE), and
a “word processor”? And why would that user want to deploy a text editor,
when text files can be created using the Raspberry Pi IDE tools and facilities
of Geany and Thonny?

Answers: Simply put, text editing is Character User Interface (CUI)-
oriented, and IDEs and word processing are Graphical User Interface (GUI)-
oriented. And there might be a circumstance where a purely-text based file is
needed, that’s not going to be executed as part of a C++ program or project,
or a Python3 script file. For example, a simple Bash script, or an amendment
to some system setup, or application resource file that’s stored as text some-
where in the filesystem structure of your Raspberry Pi OS.

http://dx.doi.org/10.1201/9781003455813-2

Editing Text Files 27

Even though Vi, Vim, and Gvim are highly customizable text editors, they
don’t have built-in project management features like Geany, or Visual Studio
Code, for example. But you can use various plugins and techniques in those
older editors to organize C++ source code files into projects. Here are some
approaches you can consider when using those editors:

1.	 File System Organization: You can organize your C++ files in a dir-
ectory structure that mimics your project’s organization. Use subdir-
ectories for different parts of your project (e.g., src, include, tests)
and name files logically. Then, you can use Vim’s file navigation
commands to open files and navigate the project.

2.	 Use a Project Drawer Plugin: There are Vim plugins like NERDTree
and Vim-vinegar that provide a file explorer or project drawer within
Vim, making it easier to navigate and manage your project files.

3.	 Fuzzy File Finders: Plugins like fzf or CtrlP can help you quickly
find and open files within your project by fuzzy searching filenames
or paths.

4.	 Project-Specific Settings: You can create project-specific settings
in your .vimrc or use a plugin like vim-projectionist to define
project-specific configurations, file patterns, and settings.

5.	 Build Tools Integration: If you use a build system like CMake or
Makefiles, you can integrate them into Vim to build and manage
your project from within the editor.

6.	 Tag-Based Navigation: Vim has built-in support for ctags, which
generates an index of symbols in your code. You can use plugins like
CtrlP or fzf with ctags to navigate your codebase efficiently.

7.	 Session Management: Vim’s built-in session management allows you
to save and load workspace sessions. You can create a session for
each project to save window layouts, opened files, and other settings.

8.	 Plugin Suites: Consider using plugin suites like SpaceVim or Janus,
which come with various plugins and configurations tailored for
specific programming languages, including C++.

9.	 Version Control Integration: If you use version control systems like
Git, you can integrate Git with Vim to help you manage project files,
branches, and commits.

10.	 Custom Scripts: You can create custom scripts or functions in
Vimscript or other scripting languages (e.g., Python) to automate
project-specific tasks.

While Vim itself doesn’t provide a project management framework like
Geany or Visual Studio Code, it offers a powerful and flexible environment
where you can combine various plugins and custom configurations to suit

Raspberry Pi OS Text Editors, Git, and LXC28

your project organization needs. You can tailor your Vim setup to match your
workflow and project structure effectively.

In this chapter we expose the ordinary novice Raspberry Pi user to basic-
ally three families of text editor: Nano, Vi/Vim/Gvim, and Geany. They are
historically grounded in UNIX, when that operating system (OS) was purely
text-based (similar to its extremely developed command line interface.)
And with the advent of more sophisticated word processors in GUI envir-
onments, UNIX (and then Linux) text editors took on equivalent trappings
in the mid-1980s. But Linux text editors never dispensed with a purely
text-based mode of operation, as can be seen in the sections of this chapter.
We use the following editors that are commonly available on our Raspberry
Pi system: Nano, Vi, Vim, Gvim, and Geany.

1.2 � Quick Start: The Simplest Path through These Editors

To stress how the keyboard keys are used in these editors, we provide the
following reference to the keys used to execute commands or change modes:

1.	 Pressing the Escape key is signified as <Esc>

2.	 Pressing the Enter key is signified as <Enter>

3.	 Pressing the <Ctrl> key in combination with another single key is sig-
nified as <Ctrl+X>, where you hold down the <Ctrl> key and press
the X key (or any valid key for that combination) at the same time.

4.	 Pressing the Alt key in combination with another single key is signi-
fied as <Alt+X>,
where you hold down the <Alt> key and press the X key (or any
valid key for that combination) at the same time.

5.	 A variant of points 3 and 4 is shown as <Ctrl>+X a [b]‌, where you
first press and release <Ctrl> and X simultaneously, then press the
a key, and optionally press the b key (or any valid combination of
single keys or strings of characters).

What you type, or hold down on the keyboard, is shown in bold text. As a
preliminary first example, the following sequence of key presses and typing
makes use of the above references:

For Vi, Vim, and Gvim

	• At the shell prompt, run the program by typing vi file1 then press
<Enter>.

	• Type A

Editing Text Files 29

	• Type some text.
	• Press <Esc>

	• Type : (colon)
	• Type wq then press <Enter>.

You now have a file in your default directory named file1 with the text you
typed in it.

1.3 � First Comments on Raspberry Pi Text Editors

The Raspberry Pi OS uses both a GUI, with powerful window management
systems, and a CUI. Therefore, to do useful things such as execute multiple
commands from within a script file, write email messages, or create C, or C++
language programs, you must be familiar with one or perhaps multiple ways
of entering text into a file. In addition, you must also be familiar with how
to edit existing files efficiently –that is, to change their contents or otherwise
modify them in some way. Text editors allow you to view a file’s contents,
similar to the more command, so that you can identify the key features of the
file, and then read and utilize the information contained in it. For example,
a file without any extension, such as foo (rather than foo.txt) might be a text
file that you can view with a text editor.

The editors that we consider here are all considered full-screen display
editors. That is, on the display screen or monitor that you are using to view or
edit a file, you are able to see a portion of the file, which fills most or all of the
window allocated to the text editor screen display. You are also able to move
the cursor, or point, to any of the text you see in this full-screen display, with
either the arrow keys on the keyboard or with a mouse. That text material
is usually held in a temporary storage area in computer memory called the
editor buffer. If your file is larger than one screen, the buffer contents change
as you move the cursor through the file. The difference between a file, which
you edit, and a buffer is crucial. For text-editing purposes, a file is stored on
disk as a sequence of data. When you edit that file, you edit a copy that the
editor creates, which is in the editor buffer. You make changes to the contents
of the buffer – and can even manipulate several buffers at once – but when
you save the buffer, you write a new sequence of data to the disk, thereby
saving the file.

Another important operational feature of all Raspberry Pi editors is that,
traditionally, their actions are based on keystroke commands, whether
they are a single keystroke or combinations of keys pressed simultan-
eously or sequentially. Because one of the primary input devices in UNIX
and Linux has been the keyboard, using the correct syntax of keystroke

Raspberry Pi OS Text Editors, Git, and LXC30

commands is absolutely mandatory. But the keyboard method of input,
once you have become accustomed to it, is as efficient or, for some users,
even more efficient than mouse/GUI input. Keystrokes also are more flex-
ible, giving you more complete and customizable control over editing
actions. Generally, you should choose the editor you are most comfort-
able with, in terms of the way you prefer to work with the computer. Of
course, for most beginners, that will be Nano. However, your choice of
editor also depends on the complexity and quantity of text creation and
manipulation that you want to do. Practically speaking, editors such as
Vi, Vim, and Gvim are capable of handling complex editing tasks in mul-
tiple windows on multiple files, and provide you with a visual software
development environment, as well as document production and manage-
ment capability. But to take advantage of that power, you have to learn
the mechanics of the commands that are needed to perform those tasks
and how they are implemented either graphically or by typing them – and
retain that knowledge. The basic functions common to the text editors are
listed in Table 1.1, along with a short description of each function.

For the text editors Vi, Vim, and Gvim, you can’t immediately begin to
enter text into the file you are editing. You have to be in Insert mode to do that.
Vi, Vim, and Gvim have modes.

In Nano you can start typing text into the file immediately.
Nano is a modeless editor, and that’s why it is easy to use. This basically

means that you can immediately begin entering and editing text using the
keyboard and some particular pointing device, such as a mouse or keyboard
arrow keys.

We present the tutorial information on Nano in this chapter using typed
commands.

It is very important to realize that Vi, Vim, and Gvim all generally use the
same commands and have basically the same functionality. But Vim and
Gvim are not only more graphical –allowing you to work more efficiently in

TABLE 1.1

General Text Editing Functions

Function Description

Cursor movement Moving the location of the insertion point or current position in the
buffer

Cut or copy, paste “Ripping out” text blocks or duplicating text blocks, reinserting ripped
or duplicated blocks

Deleting text Deleting text at a specified location or in a specified range
Inserting text Placing text at a specified location
Opening, starting Opening an existing file for modification, beginning a new file
Quitting Leaving the text editor, with or without saving the work done
Saving Retaining the buffer as a disk file
Search, replace Finding instances of text strings, replacing them with new strings

Editing Text Files 31

GUI environments such as those on your Raspberry Pi system – but also have
an improved and expanded command structure.

Note
Gvim was not pre-installed on our Raspberry Pi systems. But we used the
APT package manager on the Raspberry Pi command line to install Gvim, as
shown in the section on Gvim below.

The easiest and best way to install these editors on your system is by using
the Add/Remove Software menu choice from the Raspberry Pi Preferences
menu. The most expedient way of doing an installation of these editors, if
they are not already installed on your Raspberry Pi system, is to use a graph-
ical form of package management. This assumes that you are interacting
with your Raspberry Pi using a desktop management system GUI. The most
recent versions of the text editors we illustrate in this chapter at the time this
book was written are as follows:

For Vim: Vim Version 8.2.2434
For Gvim: Vim-gtk 2:8.2.2434

In addition, be aware that if you are logging into a Raspberry Pi system
via a terminal window, such as with ssh or PuTTY from another machine,
many of the graphical modes and techniques of using these text editors
will not be available to you. But that doesn’t prevent you from using the
traditional typed commands and keyboard edits that we show for Nano,
for example!

1.4 � Using Text Editors

Modern Linux uses both a GUI, with powerful window management
systems, and CUI. Therefore, to do useful things such as execute multiple
commands from within a script file, write email messages, or create C lan-
guage programs, you must be familiar with one or perhaps multiple ways of
entering text into a file. In addition, you must also be familiar with how to
edit existing text files efficiently, that is, to change their contents or otherwise
modify them in some way. Text editors allow you to view a file’s contents,
similar to the more command, so that you can identify the key features of the
file, and then read and utilize the information contained in it. For example, a
file without any extension, such as foo (rather than foo.txt), might be a text
file that you can view with a text editor.

The editors that we consider here are all considered full-screen display
editors. That is, on the display screen or monitor that you are using to view or

Raspberry Pi OS Text Editors, Git, and LXC32

edit a file, you are able to see a portion of the file, which fills most or all of the
window allocated to the text editor screen display. You are also able to move
the cursor, or point, to any of the text you see in this full-screen display, with
either the arrow keys on the keyboard or with a mouse. That text material
is usually held in a temporary storage area in computer memory called the
editor buffer. If your file is larger than one screen, the buffer contents change
as you move the cursor through the file. The difference between a file, which
you edit, and a buffer is crucial. For text-editing purposes, a file is stored on
disk as a sequence of data. When you edit that file, you edit a copy that the
editor creates, which is in the editor buffer. You make changes to the contents
of the buffer – and can even manipulate several buffers at once – but when
you save the buffer, you write a new sequence of data to the disk, thereby
saving the file.

Another important operational feature of all the editors discussed in
this chapter is that, traditionally, their actions are based on keystroke
commands, whether they are a single keystroke or combinations of keys
pressed simultaneously or sequentially. Because one of the primary input
devices in the Raspberry Pi OS is the keyboard, using the correct syntax
of keystroke commands is mandatory. But the keyboard method of input,
once you have become accustomed to it, is as efficient or, for some users,
even more efficient than mouse/GUI input. Keystrokes also are more flex-
ible, giving you more complete and customizable control over editing
actions. Generally, you should choose the editor you are most comfort-
able with, in terms of the way you prefer to work with the computer.
However, your choice of editor also depends on the complexity and quan-
tity of text creation and manipulation that you want to do. Practically
speaking, editors such as Vi, Vim, Gvim are capable of handling complex
editing tasks in multiple windows on multiple files, and provide you with
a visual software development environment, as well as document produc-
tion and management capability. But to take advantage of that power, you
have to learn the mechanics of the commands that are needed to perform
those tasks and how they are implemented either graphically or by typing
them – and retain that knowledge. The basic functions common to the
text editors that we cover here are listed in Table 1.1, along with a short
description of each function.

1.5 � Nano

Our objectives in this section are to give a basic introduction to the Nano text
editor, which is the simplest, and best for beginners What You See Is What
You Get (WYSIWYG) editor in this chapter.

Editing Text Files 33

1.5.1 � Introduction to Nano and Typographic Conventions

In this section, we introduce the simple text editor Nano, which comes
pre-installed on our Raspberry Pi OS. To stress how the keyboard keys are
used in the Nano editor, we repeat the following typographic convention ref-
erence for the keys used to execute commands in Nano:

1.	 Pressing the Escape key is signified as <Esc>

2.	 Pressing the Enter key is signified as <Enter>
3.	 Pressing the <Ctrl> key in combination with another single key is sig-

nified as <Ctrl+X>, where you hold down the <Ctrl> key and press
the X key (or any valid key for that combination) at the same time.

4.	 Pressing the Alt key in combination with another single key is signi-
fied as <Alt+X>,
where you hold down the <Alt> key and press the X key (or any
valid key for that combination) at the same time.

5.	 A variant of points 3 and 4 is shown as <Ctrl>+X a [b]‌, where you
first press and release <Ctrl> and X simultaneously, then press the
a key, and optionally press the b key (or any valid combination of
single keys or strings of characters).

1.5.2 � A Nano Quickstart

For many users, Nano would be the most efficient and adequate editor to
deploy whenever a text editor is needed. Many of the tasks shown in the
other standard text editors can be done quickly and easily by a novice user of
a Raspberry Pi system using Nano.

To get started in Nano, either when you only have a CUI available, or
when you are interacting with a Raspberry Pi via some desktop GUI, on the
command line in a terminal window, type the following:

$ nano

You are immediately able to enter text into the editor, and move the cursor
around with the arrow keys available on either a physical, or a “virtual”
keyboard (e.g., such as is available on an iPad running the Termius ter-
minal application). The first screen display presented by Nano is shown in
Figure 1.1. You can also use the Delete key to delete text on the current line,
at the first character before the current position of the cursor in the on-screen
display of the text.

If you typed nano file2, where file2 is the name of an already-existing text
file, that text file is displayed on-screen, allowing you to make changes or
additions to it.

Raspberry Pi OS Text Editors, Git, and LXC34

There are four main sections of the editor. The top line shows the program
version, the current filename being edited, and whether or not the file has
been modified. Next is the main editor window showing the file being
edited. The status line is the third line from the bottom and shows important
messages. The bottom two lines show the most commonly used commands
executed via keyboard “shortcuts” in the editor.

Referring to Figure 1.1, at the bottom of the Nano screen display, there are
several keyboard shortcut choices that you can make by holding down the
Control (<Ctrl>, displayed as ^ on the Nano menu) key on your keyboard, in
combination with a letter key.

Note
The two most important Nano shortcut choices presented are:

1.	 The command <Ctrl+O>, which allows you to write (in other words,
save) the contents of what is shown on-screen to a file in the current
working directory, without leaving the Nano editor.

2.	 The command <Ctrl+X> which allows you to exit from the editor,
and return to the Raspberry Pi command prompt. If you’ve made
changes to the current buffer, Nano will prompt you to save those
changes (Yes/No), and then specify a file name to save the buffer to,
with the default name presented for you to accept.

FIGURE 1.1
General appearance of the nano screen.

Editing Text Files 35

To get a more in-depth explanation of the other menu choices at the bottom
of the Nano screen display, and of the capabilities of Nano itself, see the
following sections. We also refer you to the various online help pages. A good
place to start is “The Beginner’s Guide to Nano, the Linux Command-Line
Text Editor”, currently found at the following website:

www.howtogeek.com/42980/the-beginners-guide-to-nano-the-linux-
command-line-text-editor/

1.5.3 � A Brief Nano Tutorial

The following subsections illustrate and explain some of the basic operations,
as well as some of the features, of Nano.

1.5.3.1  Creating and Opening a New File

If you want to create a new file and open it using Nano, use the following
command(s) from a terminal window:

$ nano
or
$ nano [filename]

The second command is also used to open an existing file, where filename is
the name of the existing file. If you want to open a file which is not located in
your current directory, then you have to use the absolute or relative path to
that file. For example /home/bob/filename.

Figure 1.2 shows a file that has been opened with the second command
shown above.

At the bottom of the editor window, keyboard shortcuts are displayed
(they are not GUI menu choices!) that let you perform some basic operations.
Examples of these are Cut, Paste, Write Out, Exit, etc.

1.5.3.2  How to Save a File

To save a file, use the keyboard shortcut <Ctrl+O>. When you use this key
combination, the editor will prompt you for a filename (or confirm the name
if it was already provided when the editor was started). Enter your filename,
and press <Enter> to save the file with that name.

This is illustrated in Figure 1.3.

1.5.3.3  How to Cut and Paste Text

To cut and paste a particular line of existing text that has already been entered
into the buffer, first bring the cursor to any character on that line by using the

http://www.howtogeek.com
http://www.howtogeek.com

Raspberry Pi OS Text Editors, Git, and LXC36

FIGURE 1.2
First opened file in nano.

FIGURE 1.3
Writing out a file with a specific file name.

Editing Text Files 37

arrow keys on the keyboard. Press <Ctrl+K> to cut that whole line out of the
buffer, then position the cursor with the arrow keys to the place where you
want to paste the “cut” line back into the buffer. Since in our example, there’s
only one line, now blank, in the buffer, the cursor is on line 1. Finally use
<Ctrl+U> to paste the cut line back in.

For example, in Figure 1.4, if you want to cut the first line and paste it
multiply to two lines below the first, go to the beginning of line 1 using the
arrow keys on the keyboard, and then press <Ctrl+U>. Then, the position the
cursor below the first line and press <Ctrl+U>. Repeat to do this multiply. In
Figure 1.4, this paste was done nine times.

1.5.3.4  How to Search and Replace a Word

This feature allows you to search for a particular word in the buffer, as well
as replace it with another word.

To search for a word in Nano, press <Ctrl+W>. Then, you will be asked
to enter the word which you want to search for. After typing-in the word
(we typed-in “opened”), press <Enter>, and Nano will take you to the first
matched entry below or on the same line the cursor is positioned that matches
that entry. In Figure 1.5, the cursor was on line 2, so Nano found the first
instance of the word “opened,” which was on the second line.

FIGURE 1.4
Cut and pasted text from one line to other lines.

Raspberry Pi OS Text Editors, Git, and LXC38

You can also replace a word (or phrase) with another by pressing
<Ctrl+\>. When you press this key combination, Nano prompts you for
the word (or phrase) which you want to replace. After typing-in the word
(or phrase), press <Enter>. You will be prompted for the replacement word
(or phrase). After this, you will be prompted for various ways of doing the
replacement, and then are asked to confirm the changes. Once confirmed, the
replacement is done.

1.5.3.5  How to Insert Another File into Current One in the Buffer

To insert text from another, already-saved file into the buffer you are cur-
rently editing, do the following. Press <Ctrl+R>, and then give the com-
plete pathname to the file which you want to insert into the current buffer,
at the current position of the cursor in that buffer. Figure 1.6 illustrates this
procedure.

As you can see in Figure 1.7, the text of a file “/home/bob/second_
nano” was inserted at the cursor position (which in the file “text” from
Figure 1.5 was placed on a blank line created after the last line of text
already in that file).

FIGURE 1.5
Searching for text.

Editing Text Files 39

FIGURE 1.6
Inserting text from a file.

FIGURE 1.7
Cursor position report.

Raspberry Pi OS Text Editors, Git, and LXC40

1.5.3.6  How to Show the Cursor Position

It is possible to get information about the position of your cursor in the
current buffer. This can be done by pressing the <Ctrl+C> keyboard shortcut.

Figure 1.7 shows that after <Ctrl+C> was pressed in the file “text,” the
cursor position got highlighted in the editor area, and detailed information
about it showed up in the status line (the one that’s highlighted, or darkened
in the figure – third line from the bottom of the window). It reports the cursor
is at line 10 of 14, which is 78% through the file, at column 1 of 51 columns,
and character 459 of 582 characters total in the buffer.

1.5.3.7  Displaying Line Numbers in the Current Buffer, or Permanently

You can show line numbers in the current buffer by pressing <Alt+#>. On
most keyboards, the pound sign(#) is obtained using Shift and 3. After you’ve
done this, the display looks as follows in the file “text” that we’ve created
previously, with the line numbers in the buffer displayed along the left side
of the window (Figure 1.8).

You can permanently display line numbers by creating or editing the Nano
configuration file, found in your home directory. Here’s how you can do it:

1.	 Open a terminal window.

FIGURE 1.8
Display of line numbers in a buffer.

Editing Text Files 41

2.	 Type the following command to edit or create the Nano configur-
ation file:

$ nano ~/.nanorc

3.	 In the Nano configuration file, add the following line to enable line
numbers:
set linenumbers

4.	 Save the file by pressing <Ctrl+O>, then press Enter. To exit Nano,
press <Ctrl+X>.

5.	 Use the chmod command to make sure the access privileges to the
~/.nanorc file are set to u+x.

6.	 The line numbers should now be permanently displayed whenever
you open Nano to edit a file.

Note that if the ~/.nanorc file doesn’t exist, you can create it by following
the steps above. If it already exists, simply add the set linenumbers
line to it.

In-Chapter Exercises

1.1	 Launch Nano without specifying a file name on the command line,
and then enter some text into the New Buffer. Save that text into a file
in your current working directory.

1.2	 Cut some text out of a displayed file in Nano, using Nano keyboard
commands, and then paste it at another point in the display. What
commands did you use to do this?

1.3	 Replace a string of text in a displayed file in Nano with another
string of text. What command(s) did you use to do this? Can this be
done at multiple sites repetitively in the file, and simultaneously all
at once?

1.4	 Describe, in your own words, the concept of a buffer in Nano.
1.5	 How did you select multiple characters in Nano for the commands

executed in the exercises above? If you use a single-console, text-only
method of logging into and interacting with the Raspberry Pi, how
can you select multiple characters for the operations you are asked to
do in the exercises above?

1.6	 a. In only a single terminal display, how can you open mul-
tiple buffers in previously created text files in Nano, and switch
between editing in them? b. What would be the major advantage
of doing this?

Raspberry Pi OS Text Editors, Git, and LXC42

1.6 � Vi, Vim, and Gvim

The Vi, Vim, and Gvim text editors for the Raspberry Pi OS have almost all
the features of a word processor, and have tremendous flexibility in creating
text files. Initially, they are as easy to use as Nano, and can create simple text
files for a novice user. Once you begin to exploit their more complex capabil-
ities, their advantages allow you to create, manipulate, and use the kinds of
text files that the full range of Raspberry Pi users, from absolute novice to
seasoned veteran, commonly work with. We will proceed in the following
sections and subsections to demonstrate Vi as a text-only interface editor,
then move to a more graphical interface approach with Vim and Gvim.

As mentioned in Section 1.1, the notion of a buffer as a temporary storage
facility for the text that you are editing is very useful and important in Vi,
Vim, and Gvim.

Some examples of buffers in these three editors are as follows:

a.	 The main buffer, sometimes referred to as the editing buffer, or the
work buffer, is the main repository for the body of text that you
are trying to create, or to modify from some previous permanently
archived file on disk.

b.	 The general purpose buffer is where your most recent “ripped-out”
(cut/copied) text is retained.

c.	 Indexed buffers allow you to store more than one temporary string
of text.

1.6.1 � Basic Shell Script File Creation, Editing, and Execution

Shell Script File: Practice Session 1.1 shows how to create a script file, or
collection of Linux commands that are executed in sequence, and then exe-
cute the script. For this example, we assume that you are running the Bourne
Again (bash) shell.

On your Raspberry Pi system, do Practice Session 1.1 for the bash shell,
which is the default shell in that system, and don’t change shells.

And don’t worry too much if you make an error in Steps 2, 3, and 4; you can
go through the rest of the script file discussion, and then come back to this
example after you have learned some of the Vi text editing commands, and
become more familiar with them.

Practice Session 1.1

Step 1:	 At the shell prompt, start vi by typing vi firscrip and then pressing
<Enter>. The vi screen appears on your display.

Step 2:	 Type A. Then type ls -la and then press <Enter>.

Editing Text Files 43

Step 3:	 Type who and then press <Enter>.
Step 4:	 Type pwd and then press the <Esc> key. At this point, your screen

should look like that shown in Figure 1.9.
Step 5:	 Type :wq and then press <Enter>. You exit from Vi.
Step 6:	 At the shell prompt, type chmod u+x firscrip and then press <Enter>.

Then type ./firscrip and press <Enter>.
Step 7:	 Note the results. How many files do you have in your present

working directory? What are their names and sizes? Who else is using
your computer system? What is your present working directory?

In Practice Session 1.1, you accomplished these things:

	* At Step 2, typing A took Vi out of Command mode (which is what Vi
starts in by default) and placed it in one of the forms of Insert mode. In
other words, anything that you typed at the keyboard was appended as
text on the first line in the text area of the editor.

	* When you pressed the <Esc> key in Step 4, Vi was taken out of Insert
mode and put back into Command mode.

	* When you typed: in Step 5, that was a valid Command mode prefix
character for the two commands that followed, and put Vi in Last
Line mode.

FIGURE 1.9
File firscrip after Step 4.

Raspberry Pi OS Text Editors, Git, and LXC44

	* When you typed wq after the :, Vi interpreted those commands in Last
Line mode as write out or save the file, and quit the editor.

	* The two commands in Step 6 allow you to execute the contents of the
Bash shell script file.

In-Chapter Exercises

1.7	 Launch Vi in a terminal, or console, window on your Raspberry Pi
system by just typing vi on the command line. Then create a simple
text file and save it as firstext.txt in your current working directory.
Finally, gracefully exit the Vi editor. What commands did you use to
accomplish everything you did for this exercise?

1.8	 Launch Vi in a terminal, or console, window on your Raspberry Pi
system by just typing vi on the command line. Then create another
bash script file, similar to the one shown in Practice Session 1.1,
but placing other common single Linux commands in it. Save it as
2ndscrip in your current working directory. Finally, gracefully exit
the Vi editor, and test this script file on the bash command line. What
commands did you use to accomplish everything you did for this
exercise?

1.6.2 � How to Start, Save a File, and Exit

When you need to do Raspberry Pi text editing that gives you as much func-
tionality as a typical word processor, you can use the Vi text editor. To start Vi
from the command line, use the following general syntax (anything enclosed
in square brackets [] is optional):

vi [options] [file(s)]
Purpose:	 Allows you to edit a new or existing text file(s)
Output:	� With no options or file(s) specified, you are placed in the Vi

program and can begin to edit a new buffer
Commonly used options/features:
+n	 Begin to edit file(s) starting at line number n
+/exp	 Begin to edit at the first line in the file matching string exp

The operations that you perform in Vi fall into two general categories:
Command mode operations, which consist of key sequences that are commands
to the editor to take certain actions, and Insert mode operations, which allow
you to input text.

The general organization of the Vi text editor, and how to start, exit, and
switch modes, are illustrated in Figure 1.10. The general organization of Vim
and Gvim, and how to start, exit, and switch modes in those editors, is the
same as shown for Vi in Figure 1.10.

Editing Text Files 45

For example, to change from Command mode, which you are in when
you first enter the editor, to Insert mode, type a valid command, such as
A to append text at the end of the current line. Certain commands that are
prefixed with the:, /,?, or:! characters are echoed or shown to you on the
last line on the screen and must be terminated by pressing <Enter>. Last
Line mode, sometimes called ex mode because it is derived from an older,
UNIX editor, the ex editor, allows you to execute certain commands and
leave the editor. To change from Insert mode to Command mode, press
the <Esc> key.

The keystroke commands that you execute in Vi are case sensitive; for
example, uppercase A appends new text after the last character at the end
of the current line, whereas lowercase a appends new text after the character
the cursor is on.

To start Vi, at the shell prompt, type vi (and optionally designate some
option[s]‌ and file name[s]) and then press <Enter>. You are now in Command
mode. To enter Insert mode, type A and you are now able to insert text on the
first line of the file.

After entering text, you can press the <Esc> key to enter Command
mode.

FIGURE 1.10
General organization of Vi, Vim, and Gvim.

Raspberry Pi OS Text Editors, Git, and LXC46

At any point in your creation or manipulation of text, when you’re in
Command mode, you can press the u key on the keyboard to undo the last
operation.

From Command mode, you can save the text that you just inserted into the
buffer to a file on disk by typing :w filename and pressing <Enter>, where
filename is the name of the file you want to save the text to. To quit the editor,
type :q. To quit without saving, type :q!

1.6.3 � The Format of a Vi Command and the Modes of Operation

In Command mode, the generic syntax of keystrokes is:

[#1] operation [#2] target
where:
anything enclosed in []‌ is optional;
#1 is an optional number, such as 5, specifying how many operations are to be done;
operation is what you want to accomplish, such as deleting lines of text;
#2 is an optional number, such as 5, specifying how many targets are affected by the
operation; and
target is the text that you want to do the operation on, such as an entire line of text.

Note
If the current line is the target of the operation, the syntax for specifying the
target is the same as the syntax of the operation; for example, dd deletes the
current line. Also, a variation on this generic syntax is the cursor movement
command, whereby you can omit the numbers and operation and simply
move the cursor by word, sentence, paragraph, or section.

Table 1.2 lists some specific examples of this generic syntax and variations
used in Command mode.

As previously stated, when you start Vi, it is in Command mode. When
you want to be in Insert mode instead of Command mode, press a valid key
to accomplish the change. Some of these keys are shown in Table 1.3.

After inserting text, you can edit the text, move the cursor to a new pos-
ition in the buffer, and save the buffer and exit the editor – all from within
Command mode. When you want to change from Insert mode to Command
mode, press the <Esc> key.

To save the buffer and exit the editor, press the: key (colon) to enter Last
Line mode. The general commands that are useful in Last Line mode are
shown in Table 1.4.

For now, we recommend that you use the arrow keys on the keyboard to
move the cursor around in the buffer. It is possible to also use the h, j, k, and
l keys on the keyboard to move the cursor. In Gvim, you can use the mouse
and its buttons!

The following Practice Session introduces you to some of the commands
presented in Tables 1.2 through 1.4. Feel free to use either Vi or Vim to do the
steps of the following on your Raspberry Pi system:

Editing Text Files 47

TABLE 1.2

Examples of Vi Command Syntax

Command Action

cw Changees word.
cc Changes line.
c$ Changes text from current position to the end of line.
C Same as c$.
dd Deletes the current line.
7 dd Deletes 7 lines.
d$ Deletes text from current position to the end of line.
D Same as d$.
5dw Deletes 5 words.
d7,14 Deletes lines 7 through 14 in the buffer.
d} Deletes up to next paragraph.
d^ Deletes back to beginning of line.
d/ pat Deletes up to first occurrence of pattern.
dn Delete up to next occurrence of pattern.
df x Deletes up to and including x on current line.
dt x Deletes up to (but not including) x on current line.
dL Deletes up to last line on screen.
dG Deletes to end of file.
Gqap Reformats current paragraph to text width (Vim and Gvim).
g~w Switch case of word (Vim and Gvim).
Guw Change word to lowercase (Vim and Gvim).
gUw Changes word to uppercase (Vim and Gvim).
p Inserts the last deleted or yanked text after cursor.
Gp Same as p, but leave cursor at the end of inserted text (Vim and Gvim).
gP Same as P, but leave cursor at the end of inserted text (Vim and Gvim).
]p Same as p, but match current indention (Vim and Gvim).
[p Same as P, but match current indention (Vim and Gvim).
P Inserts the last deleted or yanked text before cursor.
r x Replaces character with x. Does not require the use of <Esc>!
R text Replaces with new text (overwrite), beginning at cursor. <Esc> ends replace

mode.
S Substitutes character. <Esc> ends substitute mode.
4s Substitute four characters. <Esc> ends substitute mode.
S Substitutes the entire line. <Esc> ends substitute mode.
U Undoesthe last change.
<Ctrl+R> Redoes the last change (Vim and Gvim).
U Restores the current line, if you have not moved off of it.
X Deletes current cursor position.
X Deletes back one character.
5X Deletes previous 5 characters
. Repeats last change.
~ Changes case and moves cursor right.
<Ctrl+A> Increments number at the cursor (Vim and Gvim).
<Ctrl+X> Decrements number at the cursor (Vim and Gvim).

Raspberry Pi OS Text Editors, Git, and LXC48

Practice Session 1.2

Step 1: At the shell prompt, type vi firstvi and then press <Enter>.
Step 2: Type A, then type This is the first line of a vi file. and then press

<Enter>.
Step 3: Type This is the line of a vi file. and then press <Enter>.
Step 4: Type is the 3r line of a vi

TABLE 1.4

Important Commands in Command Mode

Command Action

: n, m w file Write lines n to m to new file.
: n, m w >> file Append lines n to m to existing file.
:r filename Reads and inserts the contents of the file filename at the current cursor

position.
:wq Saves the buffer and quits.
:w Saves the current buffer and remains in the editor.
:w filename Saves the current buffer to filename.
:w! filename Overwrites filename with the current text.
:w! Writes file (overriding protection).
:w! file Overwrites file with current text.
:w %.new Writes current buffer named file as file.new.
:q Quits Vi (fails if changes were made).
:q! Quits Vi without saving the buffer.
:Q Quits Vi and invokes ex.
:vi Returns to Vi after Q command.
ZZ Quits Vi, saving the file only if changes were made since the last save.
% Replaced with current filename in editing commands.
Replaced with alternate filename in editing commands.

TABLE 1.3

Important Keys Used to Switch from Command to Insert Mode

Key Action

A Appends text after the character the cursor is on.
A Appends text after the last character of the current line.
C Begins a change operation, allowing you to modify text.
C Changes from the cursor position to the end of the current line.
i Inserts text before the character the cursor is on.
I Inserts text at the beginning of the current line.
o Opens a blank line below the current line and puts the cursor on that line.
O Opens a blank line above the current line and puts the cursor on that line.
R Begins overwriting text.
s Substitutes single characters.
S Substitutes whole lines.

Editing Text Files 49

Step 5: Press the <Esc> key.
Step 6: Type :w and then press <Enter>.
Step 7: Use the arrow keys on the keyboard to position the cursor on the char-

acter l in the word line on the second line of the file.
Step 8: Type i and then 2nd_, where the _ is a space character
Step 9: Press the <Esc> key.
Step 10: Use the arrow keys to position the cursor anywhere on the third line

of the file.
Step 11: Type I and then This_, where the _ is a space character.
Step 12: Press the <Esc> key.
Step 13: Use the arrow keys on the keyboard to position the cursor on the

character r in 3r on this line.
Step 14: Type a and then d.
Step 15: Press the <Esc> key.
Step 16: Type A and then _file., where the _ is a space character.
Step 17: Press the <Esc> key on the keyboard. Your screen display should

look similar to Figure 1.11.
Step 18: Type :wq. You will be back at the shell prompt.

FIGURE 1.11
File firstvi.

Raspberry Pi OS Text Editors, Git, and LXC50

The following In-Chapter Exercises ask you to apply some of the operations
you learned about in the previous practice session.

In-Chapter Exercises

1.9	 With Vi you begin editing a file that you created yesterday. You want
to save a copy of it with a different filename while still in Vi, but you
don’t want to quit this editing session. How do you accomplish this
result in Vi?

1.10	 What happens if you accomplish five operations in Vi and then type
5u when in Command mode?

1.11	 In your own words, give a brief description of what the following Vi
commands accomplish (use Tables 1.2 through 1.4 to guide you in
your answers):

dd, d1,12, x, a, 5b, 3w,:q!, G, 1G

1.6.4 � Cursor Movement and Editing Commands

In Command mode, several commands accomplish cursor movement and
text editing tasks. Table 1.5 lists important cursor movement and key-
board editing commands. As we have already noted, character-at-a-time or
line-at-a-time moves of the cursor can be accomplished easily with the arrow
keys, or alternatively with the h, j, k, and l keys on the keyboard.

The following practice session lets you continue editing the file you created
in Practice Session 1.2 by using commands presented in Table 1.5.

TABLE 1.5

Cursor Movement and Keyboard Editing

Command Action

1G Moves the cursor to the first line of the file.
G Moves the cursor to the last line of the file.
0 (zero) Moves the cursor to the first character of the current line.
<Ctrl+G> Reports the position of the cursor in terms of line # and column #.
$ Moves the cursor to the last character of the current line.
w Moves the cursor forward one word at a time.
b Moves the cursor backward one word at a time.
x Deletes the character at the cursor position.
dd Deletes the line at the current cursor position.
u Undoes the most recent change.
r Replaces the character at the current cursor location with what is typed next.

Editing Text Files 51

Practice Session 1.3

Step 1:	 At the shell prompt, type vi firstvi and then press <Enter>.
Step 2:	 Type G. The cursor moves to the first character on last line of the file.
Step 3:	 Hold down the <Ctrl> and g keys at the same time. On the last line

of the screen display, Vi reports the following:

"firstvi" 3 lines --100%-- 3,1 All

This is a report of the buffer that you are editing, the total number of lines in
the buffer, the percentage of the buffer that this line represents, the current
column position of the cursor, and other editor settings that are the default.

Step 4:	 Type o. A new line opens below the third line of the file, and you’re
in Insert mode.

Step 5:	 Type This is the 5th line of a vi file. Type <Esc>.
Step 6:	 Type 0 (zero). The cursor moves to the first character of the line you

just typed in.
Step 7:	 Type $. The cursor moves to the last character of the current line.
Step 8:	 Type O. A new line opens above the current fourth line.
Step 9:	 Type This is the 44th line of a va file. Type <Esc>.
Step 10: Use the arrow keys to position the cursor over the first 4 in 44 on

this line.
Step 11: Type x.
Step 12: Use the arrow keys to position the cursor over the a in va on this line.
Step 13: Type r and then type i.
Step 14: Type dd.
Step 15: Type :wq to go back to the shell prompt.
Step 16: At the shell prompt, type more firstvi and then press <Enter>. How

many lines with text on them does more show in this file?

1.6.5 � Yank and Put (Copy and Paste) and Substitute (Search and Replace)

Every word processor is capable of copying and pasting text, and also of
searching for old text and replacing it with new text. Copying and pasting are
accomplished with the Vi commands yank and put. In general, you use yank
and put in sequence, and move the cursor (with any of the cursor movement
commands or methods) only between yanking and putting. Some examples
of the syntax for yank and put are given in Table 1.6.

Raspberry Pi OS Text Editors, Git, and LXC52

The simple Vi forms of search and replace are accomplished using the sub-
stitute command. This command is executed when Vi is in Last Line mode,
where you preface the command with the: character, and terminate the
command by pressing <Enter>. The format of the substitute command as it
is typed on the status line is:

:[range]s/pattern/string[/option(s)][count]

where:
anything enclosed in [] is not mandatory;
: is the colon prefix for the Last Line mode command;
range is a valid specification of lines in the buffer (or the current line is the

range);
s or substitute is the syntax of the substitute command;
/ is a delimiter for searching;
pattern is the text or objects you want to replace;
/ is a delimiter for replacement;
string is the new text or objects;

TABLE 1.6

Example Yank and Put Command Syntax

Command Syntax What It Accomplishes

y2W Yanks two words, starting at the current cursor position, going to the
right.

4yb Yanks four words, starting at the current cursor position, going to the
left.

yy or Y Yanks the current line.
P Puts the yanked text after the current cursor position.
P Puts the yanked text before the current cursor position.
5p Puts the yanked text in the buffer five times after the current cursor

position.
Y Copies the current line.
Yy Copies current line.
" x yy Copies the current line to register x.
Ye Copies text to the end of word.
Yw Like ye, but includes the whitespace after the word.
y$ Copies rest of line.
" x dd Deletes current line into register x.
" x d Deletes into register x.
" x p Puts contents of register x.
y]] Copies up to next section heading.
J Join current line to the next line.
gJ Same as J, but without inserting a space (Vim and Gvim).
:j Same as J.
:j! Same as gJ.

Editing Text Files 53

/option(s) is a modifier, usually g for global, to the command; and
count is the number of lines to execute the command on from the current

position.

The grammatic constructions of pattern and string can be extremely explicit
and complex, and may take the form of a regular expression. A regular
expression in UNIX and Linux is a string that is used to describe sequences
of characters. Some examples of the syntax for the substitute command,
including Vim/Gvim-only constructions, are given in Table 1.7.

Practice Session 1.4 shows you how to use the Vi commands yank and put
to copy and paste. It also allows you to do individual, and multiple searches,
and replace text with the Vi substitute command.

Practice Session 1.4

Step 1:	 At the shell prompt, type vi multiline and then press <Enter>.
Step 2:	 Type A and then type Windows is the operating system of choice

for everyone.

Step 3:	 Press the <Esc> key. You have left Insert mode and are now in
Command mode.

Step 4:	 Press the 0 (zero) key. The cursor moves to the first character of the
first line.

Step 5:	 Type yy. This action yanks, or copies, the first line to a special buffer.
Step 6:	 Type 7p. This action puts, or pastes, the first line seven times, cre-

ating seven new lines of text containing the same text as the first line. The

TABLE 1.7

Example Syntax for the Substitute Command

Command Syntax What It Accomplishes

:s/john/jane/ Substitutes the word jane for the word john on the current line,
only once.

:s/john/jane/g Substitutes the word jane for every word john on the current line.
:1,10s/big/small/g Substitutes the word small for every word big on lines 1–10.
:1,$s/men/women/g Substitutes the word women for every word men in the entire

file.
:'<,'>s/this/that/g Selects the range in Command mode first by typing <Ctrl+V>

and using the arrow keys. Then type :. The word that will be
substituted for the word this (Vim, Gvim only).

:s/ \<tim\>/tom/ Substitutes only the whole word tim with the word tom, not
the partial match of tim in any string.

:%s/terrible/wonderful/gc Interactive substitution using c option of the word terrible with
the word wonderful (Vim, Gvim only).

:%s/^/ \=line(".") . ". "/g Makes the line numbers of all lines in the buffer permanently
part of each line (Vim, Gvim only).

Raspberry Pi OS Text Editors, Git, and LXC54

cursor should now be on the first character of the eighth line. If it’s not, use
the arrow keys to put the cursor there.

Step 7:	 Type 1G. This action puts the cursor on the first character of the first
line in the buffer.

Step 8: Hold down the <Shift> and ; keys at the same time. Doing so places
a: in the status line at the bottom of the Vi screen display, allowing you to
type a command.

Step 9:	 Type s/everyone/students/ and then press <Enter>. The word
everyone at the end of the first line is replaced with the word students.

Step 10: Use the arrow keys to position the cursor on the first character of the
second line.

Step 11: Type :s/everyone/computer scientists/ and then press <Enter>.
Step 12: Repeat Steps 8–10 on the third through eighth lines of the buffer,

substituting the words engineers, system administrators, web servers,
scientists, networking nerds, and mathematicians for the word everyone
on each of those seven lines. Type 1G.

Step 13: Type :1,$s/Windows/Linux/g and then press <Enter>. You have glo-
bally replaced the word Windows on all eight lines of the file with the
word Linux. Correct?

Step 14: Your Vi screen display should now look like Figure 1.12. Type :wq.
You have now saved the changes and exited from Vi.

FIGURE 1.12
Multiline Vi file.

Editing Text Files 55

1.6.6 � Vim and Gvim

Vim and Gvim are two examples among many of enhanced, “improved”
versions of Vi. The following subsections illustrate some of the advantages of
using Vim and Gvim over the traditional Vi editor.

1.6.6.1  Vim Enhancements

The following capabilities of Vim, which enhance Vi functionality, particu-
larly the first one shown, are suggestions that you can use to expedite your
editing tasks with Vim and Gvim over and above the capabilities of Vi:

* vimrc
If you want to enable any of the improved facilities of Vim and Gvim, you
should create a ~/.vimrc file. Even if this file is empty, it will enable the facil-
ities that we illustrate in this section!

* Help
In Vim Last Line mode, type help or press the <F1> function key.
Vim opens a help buffer that gives you extensive help on its facilities. In Last
Line mode, when in the help buffer, type q to exit help.

* Multiple Windows
The Last Line mode command split splits the current window into two. You
can then move the cursor up to a window with <Ctrl+W> j and down a
window with <Ctrl+W> k. For example, the Last Line mode command split
new.c splits the window and begins editing the file named new.c. To close a
window, use the normal Vim exit commands ZZ or :q!.

* Multiple Levels of Undo
Unlike Vi, you can use the undo command to undo several steps back in
the command history. For example, typing u in Command mode undoes the
last action in Vim, and typing 3u in Command mode undoes the last three
actions you did in Vim. The undo level is set by default to 1000. You can redo
multiply as well, using <Ctrl+R>. For example, 3 <Ctrl+R> redoes the last
three actions that were undone with u.

* Visual Mode
Typing v causes Vim to enter Visual mode. You can then highlight a block of
text and execute a Vim Command mode operation on it. The v command
selects text by character. The <Ctrl+V> command selects text as a block. The
V command selects the current line. See Section 1.5.6.2 for more details on
this facility in Vim.

Raspberry Pi OS Text Editors, Git, and LXC56

* The incsearch and hlsearch Environmental Options (Incremental Search
and Highlight Search)
For the incremental search, by default, searching starts after you enter the
string. With the option:

:set incsearch
incremental searches will be done. The Vim editor will start searching
when you type the first character of the search string. As you type in more
characters, the search is refined.

For the highlight search option, setting the option turns on search highlighting.
This option is enabled by the command-

:set hlsearch
After the option is enabled, any search highlights the string matched by the
search.

* The cindent Environmental Option and the = Command Option
Like Vi autoindent, the Vim editor does a more specific form of indentation.
The cindent option is set with the command:

:set cindent
This turns on C programming language-style indentation. Each new line will
be automatically indented the correct amount according to the C indentation
standard.

* The :make Command
To compile a C program with an accompanying make file, and correct the
errors, you can type this command in Last Line mode:

make
This runs the make command and captures the output. When the command
finishes the editor starts editing the first file. The next step is to fix the error.
After that you need to go to the line causing the next error. This is done using
the command cn . This command will go to the location of the next error even
if it is in another file. You can continue fixing problems and using cn until all
your problems are resolved, or you want to do a recompile. If you want to see
the current error message again, use the command cc

* Last Line Mode Command History
When you are in Last Line mode, you can use the <Up> arrow key to recall
an older command line entry, and then can use the <Down> arrow key to go
forward to newer commands. Then, when you press <Enter> after you have
indexed to that previous command in the history, that previous command is
executed again.

Editing Text Files 57

There are four histories you can utilize in Vim, but the two most important
ones are for:

	• Last Line mode command history

	• / and? search command history

Your search history is most useful to you, particularly because if you type
complex search criteria, you do not want to have to retype them every time
you want to repeat that search!

The two other histories are for expressions and input lines for the input()
function.

As an example, you have done a Last Line mode command, typed five
more Last Line mode commands, and then want to repeat the first command
again. To do this, in Last Line mode press the <Up> arrow key five times.
Another way of doing this is to type the first few letters of the Last Line mode
command you want to return to.

The <Up> arrow key will use the text typed so far and compare it with the
lines in the history. Only matching lines will be used.

If you do not find the line you were looking for, use the <Down> arrow key
to go back to what you typed and correct that. You can also type <Ctrl+U> to
start all over again.

To see all the lines in your Last Line mode command history, while in Last
Line mode, type: history

You will then see a complete history of the Last Line mode commands for
this session at the bottom of the screen display.

Your entire search history for this session is displayed by typing history/
in Last Line mode.

<Ctrl+P> will work like the <Up> arrow key, except that it doesn’t matter
what you already typed. <Ctrl+N> works like the <Down> arrow key.

* The Last Line Mode Command Line Window
Typing any text in the Last Line mode command history to modify a previous
command and then execute it is possible, but difficult for beginners.

A better way to use a modified form of a Last Line mode command from
the history is to open the command line window while in Command mode by
typing-

q:
Vim now opens a small utility window at the bottom of the screen. It contains
the command line history and an empty line at the end.

Raspberry Pi OS Text Editors, Git, and LXC58

In the buffer in this small utility window, you are in Insert mode, and can
use Insert mode commands to modify text and also move commands. You
can use the arrow keys to move around.

For example, move up the history tree with the <Up> arrow key to the
:1,$s/Windows/Linux/g line, a command in the history of the creation of
the file multiline.

Change the word Linux to Raspberry Pi OS in the Command Line Window.
Now press <Enter> when on that line, and this command will be executed.
The command line window will then close. The <Enter> command will
execute the line under the cursor. This works if Vim is in Insert mode or in
Command mode.

Unfortunately, changes you make in the command line window are lost!
They do not result in any changes in the command history itself, but the
command you execute when you are in the command line window will be
added at the end of the history, similar to all other executed commands. Also,
only one command line window can be open at a time.

The command line window is very useful when you want to see your old
command history, index to a particular command, edit it, and execute it.

A search command in your history can be used to find something new if
you index to it and modify it. For example, if in the command line window
one of the lines contained :s/everyone/computer scientists/, you could index
to it in the command line window and modify and execute it.

To exit from the command line window, type :q!

* Word Completion
When you are typing and you enter a partial word, you can cause Vim to
search for a completion by using <Ctrl+P> (search for previous matching
word) and <Ctrl+N> (search for next match).

* Record and Playback
The . (period) command repeats the previous change in Command mode.
To accomplish multiple, complex changes in Vim Command mode, you
can use the record and playback facility. There are three steps in record and
playback:

1.	 The q(register) command starts recording keystrokes into the key
named register. The register name must be a letter of the alphabet.

2.	 Type the commands you want to record in the register.
3.	 To end recording, press q.

You can now execute the macro by typing the command @register. For
example, you have a list of filenames in a buffer that looks like this:

Editing Text Files 59

stdio.h
fcntl.h
unistd.h
stdlib.h

And what you want is the following:

#include "stdio.h"
#include "fcntl.h"
#include "unistd.h"
#include "stdlib.h"

You start by moving to the first character of the first line. Next, in Command
mode, you execute the following commands:

qa
^
i#include "<Esc>
$
a"<Esc>
j
q

These commands do the following:

1.	 Start recording a macro in register a.
2.	 Move to the beginning of the line.
3.	 Insert the string #include " at the beginning of the line.
4.	 Move to the end of the line.
5.	 Append the double quotation mark (") character to the end of the line.
6.	 Go to the next line.
7.	 Stop recording the macro.

Now that you have done the work once, you can repeat the change by typing
the command "@a" three times.

The "@a" command can be preceded by a count, which will cause the macro
to be executed that number of times. In this case you would type: "3@a".

In-Chapter Exercises

1.12	 How would you open a unique history window for the / and?
commands?

1.13	 Where does the cursor have to be positioned in the buffer if you
want to execute a modified version of the substitute command :s/
everyone/computer scientists/ correctly?

Raspberry Pi OS Text Editors, Git, and LXC60

1.14	 Can you include Last Line mode commands, such as substitute, or
write to a file, in a record and playback session?

1.6.6.2  Vim Visual Mode

Because Vi does not have a graphical, or “visual,” method of selecting and
operating on blocks of text, we use Vim Visual mode. In Vim, Visual mode is
the graphical and easy way to select a block of text in order to use a prescribed
operator on it. The following will briefly describe Visual mode’s features and
give a simple example. Vim Visual mode allows you to apply commands to
blocks of text that can be selected graphically, even though you may not be in
a GUI environment. In general, all of the Vi commands and operating modes
shown previously work in both Vim and Gvim.

Using Visual mode is done in three steps:

Step 1: Move the cursor to the start of the text block, mark the start of the
block with "v" (character mode), "V" (line mode), or <Ctrl+V> (blockwise
mode). The character under the cursor will be used as the start of the block.

Step 2: Depending on what kind of functionality is provided in the terminal
or console window you are working in, move to the end of the text block,
either with the arrow keys on the keyboard, with the h, j, k, or l keys on
the keyboard, or with the mouse and mouse button(s). The text from the
character where you start Visual mode, up to and including the character
under the cursor, is highlighted. Generally v and V modes allow defin-
ition of non-rectangular blocks, whereas <Ctrl+V> allows definition of
only rectangular blocks.

Step 3: Type a prescribed operator command. The highlighted characters from
Step 2 will be operated upon depending on the nature of the prescribed
operator listed.

You can use <Esc> to stop the definition of a block any time before you use a
prescribed operator.

A simple example that illustrates how you can copy and paste using Visual
mode follows in Practice Session 1.5.

Practice Session 1.5

Step 1: At the shell prompt type vim visualtest1, then press <Enter> on the
keyboard.

Step 2: Type three or four arbitrary lines of text of uneven length (five to ten
words each) into the buffer that opens on screen. Put some spaces at the
beginning of some of the lines.

Step 3: Position the cursor on the first character of the first line of the buffer.

Editing Text Files 61

Step 4: Type v. On the last line display you will be notified that you have
entered Visual mode! Now you can define the block that will be all or pos-
sibly only a portion of Step 2 text.

Step 5: Expand the highlighted area by using the input device of your choice
until all the text you typed in Step 2 is highlighted. On our display, we
used the arrow keys, and the highlighted area shows greyed-out (in fact,
that’s how we knew we were defining the area to be yanked.)

If you make a mistake in defining the block, use <Esc> to stop the block def-
inition and begin highlighting again at the first character in the buffer until
you get the block definition you desire.

Step 6: Type y.
Step 7: On the last line display you will see a report of how many lines you

just yanked.
Step 8: Position the cursor anywhere on the last line of the buffer.
Step 9. Type o. A new line opens below the last line in the buffer. Press <Esc>.
Step 10: Type p. The yanked block from Step 6 is put back in the buffer,

starting on the new line you opened in Step 9 and proceeding downward.
Repeat if you so desire, to get a better feel for opening a blank line and
pasting the yanked text. Save the file if you want to.

1.6.6.3  Using Gvim to Cut and Paste between Multiple Open Buffers

To illustrate the speed and efficiency of using Gvim as a modern graph-
ical Raspberry Pi text editor, and to describe some of Gvim’s functions, the
following practice session allows you use Gvim to create text in two different
files, open buffers into those files in two different windows, and copy and
paste between those buffers.

To install Gvim on our Raspberry Pi systems, we used the following
command:

bob@raspberrypi:~ $ sudo apt-get install vim-gtk
Output truncated...

Note
All of the typed-in Vim commands and operating modes shown previously
work in both Vim and Gvim.

Practice Session 1.6

Step 1: At the shell prompt in a terminal window, type gvim gvim1 and then
press the <Enter> key.

Step 2: A new Gvim window opens on screen. In that window, type A and
then type This is the first line of text. Then press the <Enter> key twice.

Raspberry Pi OS Text Editors, Git, and LXC62

Step 3: Type This is the third line of text. Then press the <Enter> key.
Step 4: From the Gvim pull-down menu, make the choice Window>Split.

You now are looking into two windows on the same buffer.
Step 5: From the Gvim pull-down menu, make the choice File>Save. Click

the OK button in the Save window, if one appears. The buffer is saved to
the file gvim1.

Step 6: Use the mouse and click anywhere in the lower window with the left
mouse button. You are now working in the lower buffer.

Step 7: From the Gvim pull-down menu, make the choice File>Save As. In
the Name: box at the top of the window that opens, change the name of the
file to gvim2, and then make the Save button choice. The buffer is saved as
gvim2, and you are looking into the buffer through two windows.

Step 8: The active buffer is still seen in the lower window. Use the mouse
and <Delete> key on the keyboard to change the word first to the word
second, and the word third to the word fourth in the lower window.

Step 9: Click anywhere in the top window.
Step 10: Make the Gvim pull-down menu choice File>Open. Scroll down and

open gvim1 in the current directory by selecting it and making the OK
button choice. You should now be seeing gvim1 in the upper window, and
gvim2 in the lower window.

Step 11: Click anywhere in the bottom window.
Step 12: Use the mouse and left mouse button to highlight the text This is

the second line of text. Make sure the cursor is on the period as you finish
selecting that line.

Step 13: Make the Gvim pull-down menu choice Edit>Copy. You have
“yanked” a line of text in the lower buffer graphically.

Step 14: Click on the second blank line in the upper window buffer.
Step 15: Make the Gvim pull-down menu choice Edit>Paste. The line This

is the second line of text. is now on the second line of the upper window
buffer. You can use the Gvim pull-down menu choice Edit>Undo to correct
mistakes in copying and pasting.

Step 16: Repeat Steps 11 through 15 to copy and paste the line This is the
fourth line of text. from the lower window buffer to the upper window
buffer, where it should be the fourth line of text. When you are done, your
screen display should look similar to Figure 1.13.

Step 17: While the active window buffer is the upper window, make the Gvim
pull-down menu choice File>Save-Exit.

Step 18: At the shell prompt in a terminal window, type more gvim1.
What appears on screen? Do the same for the file gvim2. What appears
on screen?

Editing Text Files 63

A complete summary of Vi, Vim, and Gvim commands is given in later
Table 1.10, which we conveniently append to the end of this chapter so that
you may print it for use as a handy paper reference when doing text editing
with these editors.

In-Chapter Exercises

1.15	 Repeat Practice Session 1.6 for Gvim using another text file with con-
tent of your own choosing, and then cut and paste from it into three
other files that you open simultaneously in the same Gvim terminal
window. Save all four files when finished.

1.16	 Similar to Practice Session 1.6, use non-graphical Vi in a terminal
window on a non-GUI-based Raspberry Pi system, such as a
server install, to achieve the same results. What commands did
you use to do this? Which editor was easier to use to achieve the
same results?

1.17	 On a GUI-based Raspberry Pi, how could you achieve the same
results as using Gvim in Practice Session 1.6 by using two, or more,
sessions in separate terminal windows running Nano, or Vi in them?

FIGURE 1.13
File gvim1 after Step 16.

Raspberry Pi OS Text Editors, Git, and LXC64

1.6.7 � Changing Vi, Vim, and Gvim Behavior

In general, all of the environment options commands shown in this section
work in Vi, Vim, and Gvim. Note that, because Vim stands for VI Mproved, Vim
and Gvim have many more environmental options. As previously suggested,
you can create an empty version of the ~/.vimrc file to enable many of the
behavioral changes we show here. We also suggest you modify both your
~/.exrc and ~/vimrc files to accomplish the behavioral changes illustrated,
depending on which editor you want the changes to be implemented in.
If you put a Vim-specific behavior-changing option in the .exrc file, when you
run Vi, you will probably get a warning message in Vi, but not a fatal error
message.

You can modify any of several environment options to customize the
behavior of the Vi, Vim, and Gvim editors, either when you are in the editor
at a given time or for every editor session. These options include, for example,
specifying maximum line length and automatically wrapping the cursor to
the next line, displaying line numbers as you edit a file, and displaying the
mode that the editor is in. You can use full or abbreviated names for most
of the options. Some of the most important and useful options and their
abbreviations are summarized in Table 1.8. Also see Table 1.9 for a summary
of the use of the set command.

The set command in Last Line mode changes environmental options. There
are two types of environmental options that can be modified with the set
command: toggle options, which are either “on” or “off,” and options that
require the use of an argument.

For example, after typing :set showmode, you have toggled the mode
display “on,” and the editor displays the current mode at the bottom
of the screen. If you then type :set noshowmode, you have toggled the
mode display “off.” Similarly, after typing :set nu, Vi displays the line
numbers for all the lines in the file. To turn “off” the line number dis-
play, type :set nonu. When the :set ai command has been executed, the
next line is aligned with the beginning of the previous line. This useful
feature allows you to easily indent source codes that you compose with
Vi. Pressing <Ctrl+D> on a new line moves the cursor to the previous
indentation level.

To see a listing of what all environment options in the editor are (the ones
you have modified and the defaults) at any time, type :set all

There are a lot of them!
To see a listing of what environment options you have modified, either for

this session only, or for all sessions, type :set When you use set to modify
the environment options within an editor session, the options are set for that
session only!

If you want to customize your environmental options for all Vi, Vim, and
Gvim sessions, you need to put your options in the .exrc file in your home
directory. You can use the set command to modify one or more options in the

Editing Text Files 65

.exrc file as follows (typing the two keyboard keys <Ctrl+C> terminates the
creation of the cat command):

$ cat > .exrc
set wm=5 showmode nu ic
<Ctrl+C>
$

The wm=5 option sets the wrap margin to 5, and is an example of a set
command that requires an argument. That is, each line will be up to 75
characters long. The ic option allows you to search for strings without regard
to the case of a character. Thus, after this option has been set, the /Hello/
command searches for strings hello and Hello.

In-Chapter Exercises

1.18	 After examining Tables 1.8 a and b, select a few of the environment
options that most appeal to you and then place them in your ~/.exrc
file, whether it exists or not. Test them by running Vi.

1.19	 If you haven’t already done so, place the set showmode environment
setting in your ~/.exrc and in your ~/.vimrc file, whether they exist
or not. Run Vim and then Gvim. Do various operations in both those
editors. Does the mode you are in appear in the mode line in both
editors?

TABLE 1.8

Important Environmental Options for Vi, Vim, and Gvim

Option Abbreviation Purpose

autoindent ai Aligns the new line with the beginning of the previous line.
ignorecase ic Ignores the case of a letter during the search process (with a

/ or the? command).
list list Displays invisible characters, such as ^I for <Tab> and a $

for end-of-line characters.
nolist nolist Turns off the display of invisible characters.
noignorecase noic Instructs cases to be case sensitive.
number nu Displays line numbers when a file is being edited; line

numbers are not saved as part of the file.
nonumber nonu Hides line numbers.
scroll Sets the number of lines to scroll when the <Ctrl+D>

command is used to scroll the Vi screen up.
set Displays all the Vi variables that are set.
all Displays all set Vi variables and their current values.
showmode smd Displays the current Vi mode in the bottom right corner of

the screen.
noshowmode nosmd Turns off the mode of operation display.
wrapmargin wm Sets the wrap margin in terms of the number of characters from

the end of the line, assuming a line length of 80 characters.

Raspberry Pi OS Text Editors, Git, and LXC66

1.6.7.1  Executing Shell Commands from within Vi, Vim, and Gvim

At times you will want to execute a shell command without quitting Vi,
and then restarting it. You can do so in Command mode by preceding the
command with:!. Thus, for example, typing :! pwd would display the path-
name of your current directory, and typing :! ls would display the names of
all the files in your current directory. After executing a shell command, the
editor asks you to Press ENTER or type command to continue, and then you
are returned to Command mode.

1.6.8 � Vi, Vim, and Gvim Keyboard Macros

Vi, Vim, and Gvim offer a variety of macro facilities; a macro is a keystroke
construction that uses one or more compact set keystrokes to represent
another larger number of keystrokes that are substituted for the single
or compact set. Macros are used in Vi, Vim, and Gvim for the following
reasons:

TABLE 1.9

Last Line Mode Syntax

Last Line Mode Syntax What It Does

Abbr command
:ab in out Uses in as abbreviation for out in Insert mode.
:unab in Removes abbreviation for in.
:ab Lists abbreviations.

map!, map commands
:map string sequence Maps characters string as sequence of commands. Use #1, #2,

etc., for the function keys.
:unmap string Removes map for characters string.
:map Lists character strings that are mapped.
:map! string sequence Maps characters string to input mode sequence.
:unmap! string Removes input mode map (you may need to quote the

characters with <Ctrl+V>).
:map! Lists character strings that are mapped for input mode.
Qx Records typed characters into register specified by letter x

(Vim and Gvim).
Q Stops recording (Vim and Gvim).
@x Executes the register specified by letter x. Use @@ to repeat

the last @ command.

set command
:set x Enables boolean option x, show value of other options.
:set nox Disables option x.
:set x=value Gives value to option x.
:set Shows changed options.
:set all Shows all options.
:set x? Shows value of option x.

Editing Text Files 67

1.	 During Insert mode, to construct an abbreviation. For example, in a
text file where you use often-repeated blocks of the same text.

2.	 In Command mode, Vi, Vim, and Gvim commands can be associated
with or mapped to other keys, such as the function keys at the top of
the keyboard.

3.	 Complex commands and their arguments can be triggered by a
single keystroke or a shorter sequence of keystrokes.

Here is a brief summary description of the various Vi, Vim, and Gvim macro
operations, which are covered in the subsections below.

Text abbreviation (Section 1.5.8.1), which operates in Insert mode. An abbre-
viation works only in Vi, Vim, and Gvim Insert mode.

Keystroke mapping (Sections 1.5.8.2 and 1.5.8.3), which operates in Insert
mode, and uses the map! and map Last Line mode commands. Once defined,
a map! sequence is triggered only in Insert mode, and a map sequence is
triggered only in Vi, Vim, and Gvim Command mode.

Macro Record (Section 1.5.8.4), which shows the definition and use of a
recorded macro.

In those sections, we will describe and give examples of some of the Vi,
Vim, and Gvim macro facilities, and also give an additional example of a
specialized Vim macro feature that can be used in Gvim.

1.6.8.1  Text Abbreviation Macros Used in Insert Mode

To save keystrokes while entering text, in Last Line mode, use the abbr(eviate),
or just ab command.

It has the following general syntactic form:

:ab[br] [abbreviation abbreviated]
where:
: gets you into Last Line mode;
[]‌ designates optional components;
ab or abbr is the command for creating an abbreviation;
abbreviation is a valid string of contiguous (no spaces allowed) characters; and
abbreviated is the substitute text you want to be placed in the buffer.

Text abbreviations can be canceled with the Last Line mode unabbr command,
followed by typing the abbreviation you want to cancel. Also, if you just type
abbr in Last Line mode, you get a listing of all the abbreviations that are
active.

Raspberry Pi OS Text Editors, Git, and LXC68

To use the abbreviation, when you are in Insert mode, whenever you type
the string that represents abbreviation, and follow it by a non-alphanumeric
character, the substitution will take place. The editor will examine the next
character after you type the abbreviation to see if it’s non-alphanumeric
or underscore, and if so, abbreviation will be erased, and the string that
represents abbreviated will be substituted for it. Also, you are no longer in
Insert mode.

For example, in Last Line mode, if you type ab kts Know this stuff! and
then press <Enter>, kts is the abbreviation. Then anywhere in Insert mode,
when you type kts and follow it by pressing the space key, the left or right
arrow keys (all of which yield non-alphanumeric characters and are not the
underscore keys on the keyboard for our Raspberry Pi system), the string
Know this stuff! will be substituted on that line, and you will no longer be
in Insert mode.

Note
As shown in the next section, this is different from keystroke mapping using
the map! or map commands.

The following are some useful abbreviations for Python3 program file
creation:

:ab 1 #!/usr/local/bin/python
:ab 2 from Tkinter import *
:ab 3 import os
:ab 4 import sys

1.6.8.2  Keystroke-Mapping Macros Used in Insert Mode

map! works on characters that are typed in Insert mode. As shown in
the previous section, abbr won’t substitute text until you type a non-
alphanumeric after the abbreviation string. Notice the editor echoes each
character of the abbreviation as you type it, just in case you really want
the string of characters that represents abbreviation to be an actual string
of characters that you want in your text. Keystroke mapping works in a
more keystroke, time-dependent way. Keystroke mapping used in Insert
mode is handled by the Last Line mode map! command, which takes the
following general form:

:map! [substitution substituted]
where:
: gets you into Last Line mode;
[]‌ designates optional components;
map is the command for creating a keyboard mapping;
substitution is a valid string of contiguous (no spaces allowed) characters; and
substituted is the substitute text you want to be placed in the buffer.

Editing Text Files 69

For example, in Last Line mode, if you type map! ts This will save you
time! and then press <Enter>, ts is the substitution. Then, anywhere in Insert
mode, when you type ts in a short amount of time (under approximately half
a second), the string This will save you time! will be substituted on that line,
and you will still be in Insert mode. If you type more slowly, the literal string
ts will be inserted.

The keystroke sequence <Ctrl+V> will let you escape the mapping, as long
as you precede the macro with it. So no matter how fast you type in <Ctrl+V>
ts, you get the literal string ts inserted.

Remapping abbreviations can be canceled with the Last Line mode unmap
command, followed by typing the substitution you want to cancel. Also, if
you just type map! in Last Line mode, you get a listing of all the mappings
that are active.

1.6.8.3  Keystroke-Remapping Macros Used in Command Mode

Command-mode remapping is accomplished with the map Last Line mode
command.

The general form of the map command is as follows:

:map [substitution substituted]
where:
: gets you into Last Line mode;
[]‌ designates optional components;
map is the command for creating a keyboard mapping;
substitution is a valid string of contiguous(no spaces allowed) characters; and
substituted is the substitute text you want to be placed in the buffer.

Some editor command keys cannot be remapped in Command mode. Two
examples of these keys are : (colon) and u.

Remapping substitutions can be canceled with the Last Line mode unmap
command, followed by typing the remapping you want to cancel. Also, if you
just type map in Last Line mode, you get a listing of all the mappings that
are active. You will see that the editor already has several mappings defined
by default.

As an example, in Last Line mode, if you type :map <F8>:wq<CR> and
then press <Enter>, the function key <F8> at the top of your keyboard
is the substitution. The substituted is the command to write the buffer
to a file and quit the editor. <CR> represents the <Enter> key. After this
mapping is done, anytime you are in Command mode, when you press
the function key <F8>, the buffer will be written to the default file and you
will exit the editor.

Another interesting and useful example is the following Last line mode
map command, which can be used so that when you press the function key

Raspberry Pi OS Text Editors, Git, and LXC70

<F3> during editor sessions, a skeleton C program construct is entered into a
blank buffer, as shown in Figure 1.14:

:map <F3> <Esc>i#include <stdio.h><CR>main(argc, argv)<CR> int argc;<CR>
char *argv[];<CR>{<CR>}<Esc>

where:

<Esc> is used to represent the Escape key.
<CR> is used to represent the <Enter> key.

When you press the function key <F3>, Vim will insert the desired skeleton
C program construct into the buffer.

1.6.8.4  Vim/Gvim Macro Example

Here is a repeat of Practice Session 1.5, slightly enlarged, that uses a
Vim-specific macro command sequence to accomplish kind of the same thing
that Practice Session 1.5 did, but in another way.
Practice Session 1.7

Step 1: From the shell prompt, type vim PiOS2 and then press <Enter> on
the keyboard.

Step 2: In Vim, type A and then type the following ten lines of text, each on
its own line:

FIGURE 1.14
C Program skeleton done with the map Command.

Editing Text Files 71

computer scientists
students
hackers
systems analysts
newbies
Raspberry Pi gurus
computer programmers
systems administrators
network administrators
Raspberry Pi users

Step 3: Press <Esc>, then place the cursor anywhere on the first line of text.
Step 4: Type q a. This puts you in record mode, and associates the macro you

are about to record with the a key.
Step 5: Type I. The cursor is now at the start of the first line in Insert mode.
Step 6: Type Raspberry Pi OS is the operating system of choice for with a

single space after the r in the word for. Press <Esc>.
Step 7: Place the cursor anywhere on the second line of text.
Step 8: Type q. This ends record mode.
Step 9: Type 9@a. This “plays back” the macro defined with the a key nine

times, once on each of the lines below the first line, inserting the text string
“Raspberry Pi OS is the operating system of choice for.” Your screen dis-
play should now look like Figure 1.15.

Step 10: Save the file, print it out, and memorize its contents.

FIGURE 1.15
Practice Session 1.7 after Step 9.

Raspberry Pi OS Text Editors, Git, and LXC72

1.7 � Geany Introduction

To provide you with a useful comparison to the Raspberry Pi text editors, this
section covers Geany, the freely available IDE that comes pre-loaded with the
Raspberry Pi OS. We illustrate essential Geany operations in the context of
the creation, and building, of C++ and Python programs and script files.

Note
This section is not a tutorial on C++, or Python! In fact, you don’t even have
to know about the syntax of those languages to be able to appreciate how
Geany facilitates the development process of C++ and Python code. The fact
that those languages are structured, with distinct syntactic forms whose pro-
duction and creation are made easier and simpler to input by Geany, is the
real lesson here.

To begin our discussion of Geany, it’s worth noting the key differences
between a Raspberry Pi OS text editor, like Nano or Vim, and a Raspberry Pi
OS IDE like Geany.

It’s also worth noting at this point that none of these apps are, strictly
speaking, word processors, like LibreOffice Writer.

The five key differences between text editors and IDEs are as follows:

1. 	 Scope and Complexity: Text editors like Vim, Emacs, or Nano are
simpler and focused on text editing with minimal additional features.
IDEs like Geany, Visual Studio Code, IntelliJ IDEA, or Eclipse are
comprehensive development environments offering extensive
features for coding, debugging, testing, and project management.

2. 	 Functionality: Text editors mainly provide basic text editing cap-
abilities, syntax highlighting, and search/replace functions. IDEs,
like Geany, offer advanced features like compilation and linking,
integrated debugging, version control, intelligent code completion,
and project navigation.

3. 	 Integration and Workflow: IDEs, like Geany, integrate various tools
and services seamlessly within the development environment,
streamlining the development workflow. Text editors usually rely on
external tools for tasks like compilation and linking, debugging, or
version control.

4. 	 Learning Curve: Text editors generally have a steeper learning curve,
especially for powerful but complex ones like Vim or Emacs. IDEs
typically have a more intuitive and user-friendly GUI interface,
making it easier for beginners to start coding.

5. 	 Resource Usage: Text editors are usually lightweight and consume
fewer system resources compared to full-fledged IDEs. IDEs tend to

Editing Text Files 73

be more resource-intensive, due to their comprehensive features and
capabilities.

In general, IDEs on Linux provide a comprehensive set of tools and features
to facilitate software development. Here are some key aspects:

1. 	 Feature-Rich Environment: IDEs offer a wide array of features
like code completion, syntax highlighting, integrated debugging,
refactoring tools, version control integration, and project manage-
ment capabilities.

2. 	 Code Assistance and Productivity Tools: IDEs provide intelligent
code completion, suggesting code snippets, variable names, and
method signatures as you type. This enhances productivity and
reduces errors.

3. 	 Debugging and Testing: Debugging is seamlessly integrated within
the IDE, allowing developers to set breakpoints, inspect variables,
and step through code. Testing frameworks can be integrated for
automated testing.

4. 	 Project Management: IDEs often have built-in project management
tools, making it easier to organize and navigate through complex
codebases. This includes features like project-wide search, file hier-
archy views, and class/module navigation. Some even offer integra-
tion of local projects with GitHub.

5.	 Integration with Build Systems: IDEs integrate with various build
systems and tools, enabling developers to compile, link, build, and
package their applications from within the IDE. This streamlines the
development workflow.

6.	 Plugin Ecosystem: Most IDEs support an extensive ecosystem of
plugins or extensions. Developers can customize their IDE by adding
plugins for specific languages, frameworks, or tools, tailoring it to
their needs.

7. 	 Cross-Language Support: Many IDEs support multiple program-
ming languages, allowing developers to work on projects with
diverse technology stacks seamlessly.

Popular Linux IDEs include:

1.	 Geany: As stated in the Geany Manual, “Geany is a small and light-
weight Integrated Development Environment. It was developed to
provide a small and fast IDE, which has only a few dependencies on
other packages. Another goal was to be as independent as possible
from a particular Desktop Environment like KDE or GNOME. Geany
only requires the GTK+ runtime libraries.”

Raspberry Pi OS Text Editors, Git, and LXC74

2.	 Visual Studio Code (VSCode): A versatile and highly customizable
IDE developed by Microsoft.

3.	 IntelliJ IDEA: Known for its powerful features and support for Java
and related technologies.

4.	 Eclipse: An open-source IDE with a broad ecosystem and support for
multiple languages.

5.	 PyCharm: A specialized IDE for Python development.

To prepare you for working with Geany, we provide you with a listing of
some typical IDE features as presented in the seven points above, such as

1.	 User Interface: Geany has a clean and straightforward user inter-
face, resembling a text editor but with additional IDE features. It’s
designed to be intuitive and easy to navigate.

2.	 Code Editing Features:
Syntax highlighting for a wide range of programming languages.
Code folding to collapse and expand sections of code for better

readability.
Autocomplete functionality to suggest and complete code snippets.

3.	 Build and Compile:
Geany allows you to build and compile your projects directly within

the IDE.
It supports various build systems and compilers.

4.	 Integrated Development Tools:
Basic integrated tools include a terminal emulator and a file browser

for easier
navigation within the project.

5.	 Plugin Support:
Geany supports a range of plugins to enhance its functionality.
These plugins can provide additional features like version control

integration,
project management, and more.

6.	 Project Management:
Geany offers project management features, enabling you to organize

your files
and resources effectively.

7.	 Cross-Platform Support:
Geany is available for Linux, Windows, and macOS, making it ver-

satile and

Editing Text Files 75

adaptable to different operating systems.
8.	 Extensible and Customizable:

Users can customize Geany to their preferences, adjusting settings,
color schemes,

and installing plugins to tailor the IDE to their needs.
9.	 Documentation and Community:

Geany has good documentation and an active community, providing
support and

assistance to users.

Geany is favored by developers looking for a lightweight and fast IDE
without compromising essential features necessary for efficient coding. It’s
suitable for a variety of programming languages and project types.

1.7.1 � Geany Usage

You can start Geany in the following ways:
*	 From the Desktop Environment menu:
	 On your Desktop, using the Raspberry Menu, make the Programming >

Geany choice.
*	 From the Raspberry Pi command line, type geany and press <Enter>.

1.7.2 � The Geany Workspace

A picture is worth a million words. The Geany window, or workspace, is
shown in Figure 1.16:

The workspace has the following parts, labeled as such in Figure 1.16:

1.	 The menu of pull-down text choices, File, Edit, Search, View,
Document, Project, Build, Tools, Help.

2.	 A toolbar with several icons on it.
3.	 A sidebar that can show the following tabs:

a. 	Documents – A document list, and
b. 	Symbols – A list of symbols in your code. This is what is shown in

Figure 1.16.
c. 	Files – If you make the Geany menu choice Tools > Plugin

Manager, you can put a check
mark next to the File Browser plugin, and then Geany will include

a file browser in this sidebar.
See Section 1.6.4.10 for more information about obtaining and

loading useful plugins.

Raspberry Pi OS Text Editors, Git, and LXC76

4.	 The main editor window.
5.	 A message window, which can show the following tabs:

a. Status – A list of status messages. This is what is shown in
Figure 1.16.

b. Compiler – The output of compiling or building programs.
c. Messages –Results of 'Find Usage', ‘'Find in Files' and other actions.
d. Scribble – A text scratchpad for any use.
e. Terminal – A terminal window.

6.	 A status bar

Note
By default, when you launch Geany, it loads all files from the last time Geany
was launched. And, you can start several “instances” of Geany, but only the
first instance will load files from the last session.

FIGURE 1.16
The Geany workspace.

Editing Text Files 77

To run a second instance of Geany from the command-line, don’t include
any filenames as arguments, or disable opening files in a running instance
using the appropriate command line option.

1.7.3 � Five Easy Geanys and Some Geany Py

To begin this section, we present five Practice Sessions that allow you to
get your feet wet with Geany as an IDE on the Raspberry Pi OS, in the con-
text of C++ program development and execution. C++ as the illustrative
language in this section was chosen because it’s a modern Object-Oriented
Programming (OOP) language. Of course, everything shown in this section
can be applied, with the modification of different arguments and targets,
to working with other compiled High Level Languages (HLLs,) such as C,
C#, or intermediate languages like Python3 (which is both interpreted and
compiled), Java, etc.

We then present a block of Python3 programs that you can use Geany to
create, edit, and execute. These programs are taken directly from Volume 2,
Chapter 2, where they were executed in various fashions, partly via the use
of the Raspberry Pi IDE named Thonny.

1.7.3.1  Compiling and Executing C++ Programs

We provide some background material in this section on the development pro-
cess of a C++ program, particularly the compilation and execution processes.
Several C compilers are available on the Raspberry Pi OS, including gcc and
g++. The most commonly used C++ compiler for the Raspberry Pi OS is the
GNU C++ compiler, g++. All C++ compilers, such as the GNU compiler for
C++ can also be used to compile C programs. The g++ compiler invokes
gcc with options necessary to make it recognize C++ source code. We solely
utilize the g++ compiler in Geany in this chapter. It’s instructive at this point
to see a synopsis of the man page for g++, as follows:

**

g++(1)

NAME
 gcc - GNU project C and C++ compiler
SYNOPSIS top
 gcc [-c|-S|-E] [-std=standard]
 [-g] [-pg] [-Olevel]
 [-Wwarn...] [-Wpedantic]
 [-Idir...] [-Ldir...]
 [-Dmacro[=defn]...] [-Umacro]
 [-foption...] [-mmachine-option...]
 [-o outfile] [@file] infile...

Raspberry Pi OS Text Editors, Git, and LXC78

Only the most useful options are listed here.

DESCRIPTION

When you invoke GCC, it normally does pre-processing, compilation, assembly and
linking. The "overall options" allow you to stop this process at an intermediate stage.
For example, the -c option says not to run the linker. Then the output consists of object
files output by the assembler.

Other options are passed on to one or more stages of processing. Some options
control the preprocessor and others the compiler itself. Yet other options control the
assembler and linker; most of these are not documented here, since you rarely need to
use any of them.

Most of the command-line options that you can use with GCC are useful for C
programs; when an option is only useful with another language (usually C++), the
explanation says so explicitly. If the description for a particular option does not mention
a source language, you can use that option with all supported languages.

**
The Build command in Geany does all that, and can be combined with the
make command, a Linux utility that allows a combining of source files together
to form a single executable image. A synopsis of the man page for the make
command is as follows:

**
make

SYNOPSIS
 make [-einpqrst] [-f makefile]... [-k|-S] [macro=value...]
 [target_name...]

DESCRIPTION

The make utility shall update files that are derived from other files. A typical case is
one where object files are derived from the corresponding source files. The make utility
examines time relationships and shall update those derived files (called targets) that
have modified times earlier than the modified times of the files (called prerequisites)
from which they are derived. A description file (makefile) contains a description of the
relationships between files, and the commands that need to be executed to update the
targets to reflect changes in their prerequisites. Each specification, or rule, shall consist
of a target, optional prerequisites, and optional commands to be executed when a pre-
requisite is newer than the target. There are two types of rule:

1. Inference rules, which have one target name with at least one
 <period> ('.') and no <slash> ('/')
2. Target rules, which can have more than one target name

Editing Text Files 79

OPTIONS

 The following options, and option arguments, are supported:

 -e Cause environment variables, including those with null
 values, to override macro assignments within makefiles.

 -f makefile
 Specify a different makefile. The argument makefile is
 a pathname of a description file, which is also
 referred to as the makefile.

 -i Ignore error codes returned by invoked commands. This
 mode is the same as if the special target .IGNORE were
 specified without prerequisites.

 -k Continue to update other targets that do not depend on
 the current target if a non-ignored error occurs while
 executing the commands to bring a target up-to-date.
 -n Write commands that would be executed on standard
 output, but do not execute them. However, lines with a
 <plus-sign> '+' prefix shall be executed. In this
 mode, lines with an at-sign ('@') character prefix
 shall be written to standard output.

 -p Write to standard output the complete set of macro
 definitions and target descriptions. The output format
 is unspecified.

 -q Return a zero exit value if the target file is up-to-
 date; otherwise, return an exit value of 1. Targets
 shall not be updated if this option is specified.
 However, a makefile command line (associated with the
 targets) with a <plus-sign> ('+') prefix shall be
 executed.

 -r Clear the suffix list and do not use the built-in
 rules.

 -S Terminate make if an error occurs while executing the
 commands to bring a target up-to-date. This shall be
 the default and the opposite of -k.

 -s Do not write makefile command lines or touch messages
 (see -t) to standard output before executing. This mode
 shall be the same as if the special target .SILENT were
 specified without prerequisites.

 -t Update the modification time of each target as though a
 touch target had been executed.

Raspberry Pi OS Text Editors, Git, and LXC80

COMMAND ARGUMENTS

The following arguments are supported:

 target_name
 Target names, as defined in the EXTENDED DESCRIPTION
 section. If no target is specified, while make is
 processing the makefiles, the first target that make
 encounters that is not a special target or an inference
 rule shall be used.

 macro=value
 Macro definitions, as defined in Macros.

 If the target_name and macro=value operands are intermixed on the
 make utility command line, the results are unspecified.

**

1.7.3.2  C++ and Geany Practice Sessions

Practice Session 1.8 Creating a C++ Program from Scratch

Objectives: To launch Geany on your Raspberry Pi system, and use it basic-
ally as a text editor to produce a simple C++ program. To then compile and
execute that program using the graphical menu facilities of the Geany IDE.

Prerequisites: Having Geany on your Raspberry Pi system, which it is by
default in the Raspberry Pi OS.

Background: As indicated in Section 1.6.1, the most useful aspects of Geany
as purely a replacement, or substitute for a text editor, are its capabilities
to expedite code creation, particularly for the HLLs like C++. Capabilities
like the coding assistance and productivity enhancement tools – intelligent
code completion, suggesting code snippets, variable names, and method
signatures as you type. This enhances productivity and reduces errors. And
of course, autoindentation, triggered by key block programming tokens such
as curly braces ({}) in C++. In this Practice Session, you’ll get exposure to this
productivity enhancement, as well as Geany’s capability to compile, link, and
execute structured programming code.

Procedure: The following steps allow you to easily create, build, and execute
a simple C++ program in Geany.

1.	 From the Raspberry Pi Menu, make the choice Programming > Geany
to launch one instance of the Geany IDE. A file named “untitled” opens
in the main editor window. Make the Geany menu choice File > Save

Editing Text Files 81

as…, and save the file in a convenient location on your Raspberry Pi,
with the name count1.cpp. This convenient location now becomes
Geany’s current working directory. You can see that in the sidebar if
the Documents heading is selected.

2.	 Make the Geany menu choice Edit > Preferences > Editor >
Completions. Make sure a check mark is in the box next to Curly
brackets {} under Auto-close quotes and brackets, and then click on
the OK button in the lower right of the Preferences window.

This check mark signifies that auto-indentation is enabled, which will
be triggered by the key C++ structured block programming token
curly brace ({). Now, every time you type a left curly brace while
entering text in the editor window, a matching right one will appear.
And the subsequent new line of code will be indented by the specified
default indentation.

3.	 In the main editor window of Geany, as shown in Figure 1.16, type in
the following C++ program.

#include <iostream>
#include <string>

int main() {
 std::string inputString;
 char targetLetter;

 // Prompt the user for input string
 std::cout << "Enter a string: ";
 std::cin >> inputString;

 // Prompt the user for the target letter
 std::cout << "Enter the letter you want to count: ";
 std::cin >> targetLetter;

 int count = 0;

 // Loop through the characters in the input string
 for (char ch : inputString) {
 // Check if the current character matches the target letter
 if (ch == targetLetter) {
 count++;
 }
 }

 // Display the count
 std::cout << "The letter '" << targetLetter << "' appears " << count <<\
" times in the string." << std::endl;

 return 0;
}

Raspberry Pi OS Text Editors, Git, and LXC82

Notice a few important things here.

a.	 Once you type the first {(curly brace), Geany automatically indents
the second line of the C++ code. The same thing is true after you
type in the second and third curly braces, automatically indenting
those following lines of code after the curly braces.

b.	 By default, Geany applies a color coding scheme to the first line in
the file as you type it in. Why is this true?

c.	 Fold regions appear at the left margin of the code. If you click
on the – minus signs inside the fold boxes, the blocks of code
incorporated automatically in those fold regions disappear tempor-
arily. This is very useful for large, multi-line programs, where you
can hide parts of the code, and only work on blocks of it.

4.	 After you’re sure you’ve typed in everything shown above in step 3.
correctly, make the Geany menu choice File > Save.

5.	 Make the Geany menu choice Build > Build, or press the Function
key <F9>.

If you typed in everything from step 3 correctly, the following
message appears in the Geany message window:

g++ -Wall -o "count1" "count1.cpp" (in directory: /home/bob/Desktop/cpp)

Compilation completed successfully

6.	 Click on the paper airplane icon in the menu bar. This runs the program
in a separate terminal window outside of the Geany window. For our
example run here, we reproduce the output in that terminal window
in the way we entered it as follows:

Enter a string: laksdjlkjffffkajlskdjlka
Enter the letter you want to count: f
The letter 'f' appears four times in the string.

(program exited with code: 0)
Press return to continue

7.	 Press <Enter> in the terminal window to continue. Run the program
with several input string values to further test it.

Note
If you enter a space character anywhere in the input string, you won’t
get the proper output! Why is that?

8.	 Make the Geany menu choice File > Close All.
9.	 Quit Geany by making the Geany menu choice File > Quit.

Editing Text Files 83

Conclusion:
You launched Geany on your Raspberry Pi system, and used Geany as a text
editor to produce a simple C++ program. Then you used the Build Menu
choice to compile the code, and the Run icon to execute that program, using
the graphical menu facilities of Geany.

Practice Session 1.9 Opening, Building, and Running a Previously Saved
C++ Programming

Objectives: To open an existing file with C++ code in it, build an image from
that source, and execute the built image using Geany graphical menu choices.

Prerequisites:

1.	 Having Geany available on your Raspberry Pi system,
2.	 Having completed Practice Session 1.8,
3.	 Downloading the appropriate source code files for this chapter from

www.github.com/bobk48/RaspberryPiOS

Background:
It’s often necessary to load a file into Geany that you’ve previously worked
on, or that someone in your DevOps team has given you. In this exercise,
you will download and open a C++ file that calculates the Greatest Common
Factor (GCF) of four interactively entered integers, using the Euclidean algo-
rithm. Once you build and run the file, you’re prompted for the four integers,
and it displays the GCF in a terminal window external to the Geany window.

Note
Once you exit Geany, without closing anything, upon the next launch of a
single instance of Geany, that file is automatically loaded again, facilitating
further work you might want to do on or with it. That’s a convenient feature
of the IDE. Since at the end of Practice Session 1.8, you closed everything
before exiting Geany, on a subsequent launch of a single instance of the app,
the file named “untitled” is opened again.

Procedures:

1.	 In your web browser, navigate to the www.github.com/bobk48/
RaspberryPiOS, and download the file GCF4.cpp to a convenient dir-
ectory on your Raspberry Pi system..

2.	 Launch Geany, either from the Raspberry Pi Programming > Geany
menu, or from the command line.

3.	 From the Toolbar at the top of the Geany window, make the File >
Open an existing file menu choice, and use the Raspberry Pi navi-
gator screen to choose the file GCF4.cpp from Step 1. It loads into the
main editor window.

http://www.github.com
http://www.github.com
http://www.github.com

Raspberry Pi OS Text Editors, Git, and LXC84

4.	 From the Toolbar at the top of the Geany window, make the Build the
current file menu choice (It looks like a brown brick.) In the message
window at the bottom of the screen two messages appears, similar to
the following:

g++ -Wall -o "2nd" "GCF4.cpp" (in directory: /home/bob/Desktop/cpp)
Compilation finished successfully.

		 The directory shown will be the directory you downloaded the
source code files to, not the pathname of that we illustrate here!

5.	 From the Toolbar at the top of the Geany window, click on the Run
or view the current file icon. (It looks like a paper airplane.)

6.	 A terminal window appears on screen, showing the output results of
our test running the GCF4 code, as follows.

Enter the first number: 3
Enter the second number: 27
Enter the third number: 9
Enter the fourth number: 81
The Greatest Common Factor of 3, 27, 9, and 81 is 3

(program exited with code: 0)
Press return to continue

Press <Enter> to close the terminal window.
7.	 Run the program again to test other sets of integers.
8.	 Make the Geany menu choice File > Close and then the choice File >

Quit .

Conclusion:
You downloaded and opened a file with C++ code in it, built an image from
that C++ source, and executed the built image using Geany graphical menu
choices, to find the Greatest Common Factor of four integers.

Practice Session 1.10 Geany Project Basics in C++

Objectives: To create a C++ program that finds the Least Common
Denominator (LCD) of three entered fractions, and to place that program in a
new project, and its attendant folder(s) in Geany.

Prerequisites
Completion of Practice sessions 1.8 and 1.9.

Background:
As mentioned in the section on vi, vim, and gvim, even though those editors
are highly customizable text editors, they don’t have built-in project manage-
ment features like Geany.

Editing Text Files 85

Files are managed individually in Geany, even though you can view files
and folders in the Documents sidebar display, there is no usable folder
context, so you can’t add folders through Geany unless you do it via the
command line. Geany has a built-in terminal that can be accessed from the
Messages area at the bottom of the Geany window (Item 5 in Figure 1.16).
Because Geany does not allow you to add folders from the File browser if
you’ve enabled that plugin, you can use this terminal for folder management.
Scroll the menu on the left of the messages window, using the arrows, to the
Terminal item to open a view into that terminal. Then use Linux file main-
tenance commands to do folder management, or other operations you might
want to accomplish.

Note
See Section 1.6.4.10 to enable the File browser sidebar, which allows you to
navigate to files and directories where you can view the contents of Geany’s
current working directory, or the directory of the current project.

A project is a Geany convenience feature that allows you to save your file
state, and IDE settings that may be specific to your project.

Procedures:

1.	 Launch Geany. As described in the Background to this Practice
Session, Geany has a built-in terminal that can be accessed from the
Messages area at the bottom. Because Geany does not allow you to
add folders from the file browser if you’ve loaded that plugin, you
can use this terminal for folder management. Scroll the menu on the
left of the messages window, using the arrows, to the Terminal item
to open a view into that terminal.

2.	 From the terminal in the Messages area of Geany, create a project
directory.

bob@raspberrypi:~ $ mkdir project2

Change to the folder second.

bob@raspberrypi:~ $ cd project2

3.	 So we can see the files we’re working with if we switch to the Files
sidebar display, and navigate to the new projects2 folder.
Create a new file called third.cpp. There are two steps to accom-
plish this:
a.	 Make the Geany menu choice File > New This creates a new tab

with the name 'untitled'
b.	 Make the Geany menu choice File > Save As... In the Raspberry

Pi file window that opens on screen, in the Name area, type

Raspberry Pi OS Text Editors, Git, and LXC86

third.cpp. Navigate to the project2 directory. It’s empty! Then
click on the Save button in the Save File window. This will allow
you to save your file third.cpp into the new project2 folder.

4.	 Add the following C++ code into the editor area, save your new file
as third.cpp into your project2 folder:

#include <iostream>

// Function to find the greatest common divisor (GCD) of two numbers
int findGCD(int a, int b) {
 if (b == 0) {
 return a;
 }
 return findGCD(b, a % b);
}

// Function to find the least common multiple (LCM) of two numbers
int findLCM(int a, int b) {
 return (a * b) / findGCD(a, b);
}

int main() {
 int num1, den1, num2, den2, num3, den3;

 // Input three fractions
 std::cout << "Enter the first fraction (numerator denominator): ";
 std::cin >> num1 >> den1;
 std::cout << "Enter the second fraction (numerator denominator): ";
 std::cin >> num2 >> den2;
 std::cout << "Enter the third fraction (numerator denominator): ";
 std::cin >> num3 >> den3;

 // Find the LCD of the denominators
 int lcm12 = findLCM(den1, den2);
 int lcd = findLCM(lcm12, den3);

 // Output the LCD
 std::cout << "The LCD of the three fractions is: " << lcd << std::endl;

 return 0;
}

5.	 Projects
a.	 For this example, with the third.cpp file still open, from the Geany

menu, choose Project >New...
In the New Project window that opens, type third into the Name:
bar. Change the Filename: entry to /home/bob/project2/third.
geany, and the Base path: entry to /home/bob/project2/third/

Editing Text Files 87

b.	 Then click on the Create button in the New Project window.
c.	 A Question box will open, asking you if you want to “Move the

current documents into the new project’s session?”. Select 'Yes' to
add third.cpp to the new project.

d.	Another Question box opens, saying that The path “home/bob/
project2/third/” does not exist. Create the project’s base path dir-
ectory? Click the OK button.

Note
Of course, your pathnames will be slightly different, depending on the names
of your home directory.

An explanation of the contents of the New Project window is as follows:

Name - this is the project name
FileName - The name and location of the project file.
BasePath - This is the folder where your project files belong. The third.cpp file is in
the home/bob/project2 folder.
Now you have a project file that will load your source files and set your project direc-
tory when you load it.

So at this point, in the /home/bob/project2 directory, as viewed int the Geany
terminal window, you have the following files:

third third.cpp third.geany
You must delete the directory named third with the following command in

a terminal window:

$ rmdir third

Note
This ordinarily would be the project directory that would hold all of your
code, but for the sake of this Practice Session, and the next, where we
clone project directories, we take the liberty of deleting that created dir-
ectory because we created a project directory by hand, and didn’t use the
default projects folder to contain our new project, and its attendant files and
subfolders.

6.	 Build

The Geany menu choice Build > Build will create an executable image. You
can make the Geany menu choice Build > Build, or press the function key
on the keyboard <F9>, to accomplish this. First click on the arrow buttons
again to scroll up in the sidebar until “Messages” is displayed. Then, make
the Geany menu choice Build > Build.

Raspberry Pi OS Text Editors, Git, and LXC88

The following message appears in the Messages area at the bottom of the
Geany window, IF you have faithfully and correctly typed in the code from
Step 4:

g++ -Wall -o "third" "third.cpp" (in directory: /home/bob/project2)
Compilation finished successfully.

7.	 Executing

So now that you have an executable image of this C++ program, you can exe-
cute it simply by clicking on the paper airplane icon (Run or view the current
file) in the Geany Toolbar area. When we did that on our Raspberry Pi system,
we got the following output in a separate terminal that opened off the Geany
window:

Enter the first fraction (numerator denominator): 2 3
Enter the second fraction (numerator denominator): 3 4
Enter the third fraction (numerator denominator): 15 16
The LCD of the three fractions is: 48

(program exited with code: 0)
Press return to continue

8.	 Press the <Enter> key to close the terminal window.
9.	 Make the Geany menu choice File > Close All, then quit Geany.

It’s interesting to notice at this point that even though you ostensibly closed
everything before quitting, on the next launch of Geany, you are placed back
in the Project named third.

Conclusion: You created a C++ program that finds the LCD of three entered
fractions, and placed that program in a newly created project, with its
attendant directory in Geany. This technique is admittedly a hybrid version
of the way it is ordinarily done.

Practice Session 1.11 Cloning Geany Projects

Objectives: To clone, or copy, an already-created Geany project that contains
C++ program files, into another folder so that you can modify the copied C++
programs in this new project folder for an alternative use case.

Editing Text Files 89

Prerequisites:

1.	 Completion of Practice Sessions 1.8 through 1.10.

Background: To clone an entire project directory in this Practice Session, we
use the cp -r Linux command, so that all the files created in the previous
Practice Exercise in the project directory from there are duplicated into a new
cloned project directory. The purpose of doing this is so that you can reuse the
same code in a new project, and modify it, while retaining the original code
in the original project directory. In this Practice Session, we also switch to the
terminal display in the Message area at the bottom of the Geany window to
execute Raspberry Pi OS commands. If you want to, you can open a separate
terminal outside of Geany to accomplish this. We also utilize the Files sidebar
of the Geany window to navigate to directories, and display their contents.

Note
See Section 1.6.4.10 to enable the File browser sidebar, which allows you to
navigate to files and directories where you can view the contents of Geany’s
current working directory, or the directory of the current project.

Procedures:

1.	 At the Raspberry Pi command line in a terminal display in the
Message area, change the current working directory to the projects
folder you created in Practice Session 1.10. This Practice Session
assumes that your projects folder, when you change to the one
created in Practice Session 1.10, is at /home/bob/project2/, but on
your Raspberry Pi system, it will be slightly different, depending on
where you created it in Practice Session 1.10.

2.	 Create a new subdirectory of your home directory, named project3,
with the following command:

$ cp -r project2 project3

project3 will be where your cloned project files will exist, after you
execute this command.

3.	 Change the current working directory to project3 in the sidebar Files
sidebar display. The following files should now be shown in that new
directory:

third third.cpp third.geany

Raspberry Pi OS Text Editors, Git, and LXC90

The file third is the executable image of the compiled program third.cpp, and
the file third.geany is a Geany project file that holds information about the
project.

4.	 Launch Geany, and in the Files sidebar display, navigate to /home/bob/
project3, and double click on the project3 icon. You should now see
the listing of files there as third, third.cpp, and third.geany in the
Files sidebar display.

5.	 Select the file third.cpp, and double click on it to open it. The C++
code should appear in the Geany main editor pane.

6.	 Make the Geany menu choice Build > Build, or press the Function
key <F9>.

You should get the following messages in the terminal area

g++ -Wall -o "third" "third.cpp" (in directory: /home/bob/project3)
Compilation finished successfully.

6.	 Execute the program named third by clicking on the paper air-
plane icon.

7.	 The output we got, displayed in a separate terminal window, is
exactly the same as we got in Practice Session 1.3 when we input the
three fractions values, and should be as follows:

Enter the first fraction (numerator denominator): 2 3

Enter the second fraction (numerator denominator): 3 4

Enter the third fraction (numerator denominator): 15 16

The LCD of the three fractions is: 48

(program exited with code: 0)
Press return to continue

8.	 Press the <Enter> key to close the terminal window.
9.	 You are now free to modify the code of this file, save it with a different

name, recompile and relink the newly modified file, and execute it
with the Geany’s Build facility. You have two versions of the C++
program in this cloned project directory, the original copied over
from the project2 directory, and perhaps a modified one.

10.	 Make the Geany menu choice File > Close All, then Project > Close.
Finally, quit Geany.

Editing Text Files 91

Conclusion: In a hybridized way, you cloned, or copied, an already-created
Geany project directory that contained a C++ program file, into another dir-
ectory so that you can then modify the original C++ program in that new
directory.

Practice Session 1.12 Building Multiple C++ Modules into One Executable
Image in a Project

Objectives: To use Geany and a makefile to write and execute a C++ program
with two separate modules, which can be compiled with make into one exe-
cutable program, where integers are input into the first module, and printed
out by the second module.

Prerequisites: Completion of Practice Sessions 1.8 through 1.11.

Background:
There is an automated Geany menu choice that accomplishes the process of
building multiple modules into a single executable image. That is done in
Geany via the use of a makefile. A makefile is traditionally a UNIX or Linux
script used in software development to automate the build process of a
program or project. It contains a set of rules and dependencies that define
how to compile and link the source code files to produce the final executable
image, or library.

In the context of C++ compilation and linking, a makefile typically includes
the following components:

Targets: These are the desired end products of the build process, such as exe-
cutable images or libraries.

Dependencies: These are the files that the target depends on, including source
code files, header files, and other dependencies.

Rules: These define how to build the target based on its dependencies.
Each rule typically specifies the compiler flags, source files, and other build
instructions necessary to generate the target.

The makefile’s primary purpose is to streamline and automate the
compilation and linking process. When a developer invokes the Linux
make command in a terminal, for example, make reads the makefile,
determines which targets need to be rebuilt based on their dependen-
cies and modification times, and executes the necessary build commands
accordingly.

This ensures that only the modified or affected files are compiled and
linked, saving time and resources during the development process.

Raspberry Pi OS Text Editors, Git, and LXC92

For example, a simple makefile for a C++ program might look like as
follows:

CC = g++ # C++ compiler
CFLAGS = -Wall -O2 # Compiler flags

TARGET = my_program # Name of the target executable
SOURCES = main.cpp helper.cpp # Source files

all: $(TARGET)

$(TARGET): $(SOURCES)
 $(CC) $(CFLAGS) -o $(TARGET) $(SOURCES)

clean:
 rm -f $(TARGET)

In this example:

CC is the compiler being used (here, g++).
CFLAGS are the compiler flags for optimization and warnings.
all is a target that depends on $(TARGET) (the executable).
$(TARGET) depends on $(SOURCES) (the source files). The rule specifies how to com-
pile and link the sources into the target executable.
clean is a target that can be used to remove the target executable.

By using this makefile, invoking make in the terminal would compile and
link the C++ source files (main.cpp and helper.cpp) into the my_program
executable using the specified compiler and flags. Invoking make clean
would remove the executable.

See Section 1.6.3.1 for more information on the make command.

Procedures:

1.	 Launch Geany, type in the following three C++ source code files, and
using the Geany menu File > Save, save them separately as input_
module.cpp, output_module.cpp, and main.cpp, respectively:

input_module.cpp:

// input_module.cpp
#include <iostream>

int getInput() {

 int num;
 std::cout << "Enter an integer: ";
 std::cin >> num;
 return num;
}

Editing Text Files 93

__

output_module.cpp:

// output_module.cpp
#include <iostream>

void printOutput(int num) {
 std::cout << "The entered integer is: " << num << std::endl;
}

__

main.cpp:

// main.cpp
#include <iostream>

// Declare the functions from the modules
extern int getInput();
extern void printOutput(int num);

int main() {
 int num = getInput(); // Get input from the first module
 printOutput(num); // Print the input using the second module

 return 0;
}

4.	 Create a file in Geany, named makefile, that contains the following:

my_program: main.cpp input_module.cpp output_module.cpp
g++ -o my_program main.cpp input_module.cpp output_module.cpp

This makefile will compile main.cpp, input_module.cpp, and output_
module.cpp into one executable called my_program. There should
now be four tabs above the main Geany editor window.

5.	 Make the Geany menu choice Build > Set Build Commands.
The Project Properties window opens on screen. Edit the Execute
commands line 1. to read “./my_program”

Then, make the OK button choice in the Project Properties window.

6.	 Make the Geany menu choice Build > Make

7.	 Click on the Run or view the current file icon in the toolbar to run the
program. A separate terminal opens on screen, and a prompt appears
as shown below, asking you to enter an integer. We entered the integer
42. The program will print the entered integer as follows:

Raspberry Pi OS Text Editors, Git, and LXC94

Enter an integer: 42

The entered integer is: 42
8.	 Press <Enter> on the keyboard to close the open terminal the program

has generated.
9.	 Make the Geany menu choice File > Close All, then quit Geany.

Conclusion: This Practice Session demonstrates how to use Geany and a
makefile to create a C++ program with two separate modules, one for input
and one for output, and how to pass an integer from one module to another
for processing and display.

1.7.3.3  A Geany Py

In this section, we use the Geany IDE to create and execute a number of Python
programs and script files. Python is an interpreted language that’s basically an
OOP language, which can also very easily incorporate the procedural (impera-
tive) model. The latter is much easier to understand for beginners.

Disclaimer:
Again, the objective here in this section, as it was for C++, is not to teach
the basics of the Python language. Our goal is to illustrate how Geany can
be used as a graphical code editor to expedite the creation and execution of
Python programs, and script file code.

1.7.3.3.1  Geany Py Preliminary Considerations

In order to prepare Geany for use with Python, you need to set up some
preliminary things first. These preliminaries allow you to use Geany for the
creation and execution of Python code in a manner very similar to the use
of Thonny, the other IDE already available by default in the Raspberry Pi
OS. You must install Python2 using APT, because Python2 is not installed by
default on the Debian-Bookworm based Raspberry Pi OS.

There are basically five ways to execute Python code from within an IDE
such as Geany. They are as follows, as delineated in detail in Chapter 2,
Section 2.2.6 of Volume 2 of this series:

Way 1 (Interactive Mode)
In the Geany terminal, you launch either Python2 or Python3, and type a
single line of Python code on the Python command line (>>>) in the Geany
terminal. Or maybe multiple lines of Python code, to see the results immedi-
ately. A good reason to use this mode is that you can test small fragments of
Python code, one line, or a couple of lines, at a time, directly in the current
Python interpreter which is either the default Python interpreter, or another
one that you’ve installed and selected. This is equivalent to executing Python
in a Raspberry Pi terminal.

Editing Text Files 95

Remember, to submit a line of Python code to its interpreter, at the end of
the line, press <Enter> on the keyboard.

Way 2 (Script Mode)
This mode uses the Run or view file... icon on the Geany toolbar to execute
the multiple line Python code found in this section.

Note
Before you begin to type any code into the Geany editor window, you should
make the Geany menu choice File > Save As … first, and make sure you save
the at-this-point blank untitled file with the .py extension, and a meaningful
name in a predetermined, and easily accessible directory. That way, Geany
knows to deploy the appropriate build and execute parameters for the lines
of Python code you’re going to type into the Geany editor window.

Then, you can perform a check. Make the Geany menu choice Build > Set
Build Commands, and in the Set Build Commands window, the following
should appear:

On lines 1. Compile and 3. Lint of the Python commands area for Python3,
for example:

python3 -m py_compile "%f"
pep8 --max-line-length=80 "%f"

In the Error regular expression area-

(.+):([0-9]+):([0-9]+)

On the line number 1. of the Execute commands area for Python3, for example-

python3 "%f"

You can also modify those commands to have either Python3 (and perhaps
its latest version) or Python2 build and execute your code.

So, in the above entries, change the python3 entries to python if you want
Python2 to build and execute your code. You must install Python2 using APT,
because Python2 is not installed by default on the Debian-Bookworm based
Raspberry Pi OS. After making changes in the Set Build Command window,
click on the OK button at the bottom of the window to close it.

You type multiple, properly formatted and syntactically correct Python
commands into the Geany editor window. This is traditionally called a script
file (and is saved with a file name ending in .py). Then you click on the Geany
Run Toolbar icon, and the results of the execution of the Python commands
are seen in a separate window that opens on screen.

A good reason to use this mode is if you have programs or scripts with
more than a few lines of code in them, and you do not want to type that code
in every time you want to run it.

Raspberry Pi OS Text Editors, Git, and LXC96

Of course, when you use the Geany Toolbar Save icon, you can resave the
multiple line Python code into a meaningfully named file in Geany’s current
working directory, and then at some later time, use Geany’s Open an existing
file Toolbar icon to bring that file back into the editor window, if you want to
modify it.

Way 3 (Import Script Mode)
Similarly to Way2 (Script Mode), you use Geany as a code, or text editor,
to create and save multiple Python commands in a script file, in the Geany
current working directory.

Then in the Geany terminal, you execute Python2 or Python3, and at the
Python3 command prompt there, you bring the script file into Python with
the Python3 import command. A good reason to use this mode is if your
script files contain function definitions. A simple example of this is as follows:

A function with two arguments
def mult_numbers(num1, num2):
 product = num1 * num2
 print('Product: ',product)

A good reason to use this mode is to bring those structures and functions into
the current interactive Geany Python session environment, or namespace.

How do you know what the Geany current working directory is?
It’s set to a default, and can be changed to any directory you want in

the filesystem of your Raspberry Pi OS, to retrieve, or save, Python3 script
files from or to. To find out, and be able to reset the current working dir-
ectory in Geany, in the Geany terminal at the prompt, type the following
commands:

>>> import os
>>> os.getcwd()
'/home/bob/Public'
>>>

We see from the above output that the current working directory, where
Geany retrieves and saves script files to from the Script Area, is /home/bob/
Public.

To change that current working directory to /home/bob/Documents, for
example, type the following command on the command line in the Geany
terminal, after you’ve typed in the previous two commands:

>>>os.chdir("/home/bob/Documents")

Way 4 (Bash Mode)
We use this Mode a few times in this section. This is an alternative way of exe-
cuting Python scripts, which depends upon the working environment within
which you are executing Python. That alternative, very similar to the way of

Editing Text Files 97

executing a Bash, or other script file, is to include this line as the first line in
the Python script file (if you want to use Python3 to execute your code):

#! /usr/bin/env python3

You must also be sure that you have execute privilege on the file with the .py
extension, such as first.py, using the chmod u+x first.py command. Then, to
execute that script file, on the Bash command line in the Geany terminal, type
the following:

$./first.py

This method uses Bash to execute the script file.

The main advantage of this method is that, depending
on which version of Python you want to run, you
can place the command name for that version in the
first line of the script file. For example, if you want
to use Python Version 3.11.3 (if you’ve installed that
version!) to run the script file, you could modify the
first line in the script file to read-

#! /usr/bin/env python3.11

There are portability issues with this method, for
example when the working environment is in conflict
with what version of Python you want to execute the
script file code with. But for beginners, you can ignore
those issues for now.

This method of executing the Python code is sometimes called running it as
a user-written library module.

Way 5 (Compiling a Script File into Bytecode for Bash Execution)
It is possible to run a Python script file in Geany that you have used the inter-
preter to compile into a portable form of executable code, to execute from the
Bash command line. It’s called the bytecode form. We don’t use it here in this
section. But we offer help on how to use this mode in Chapter 2, Section 2.2.6
of Volume 2 of this series.

1.7.3.3.2  Other Preliminary Considerations

To autoindent lines of Python code in the Geany editor window, do the following:

1.	 Launch Geany and open a new file you want to enter Python code into.
2.	 To ensure that Geany will recognize the code in the files you create

and execute in this section as Python language code, make the Geany
menu Document > Set Filetype > Scripting Languages > Python

Raspberry Pi OS Text Editors, Git, and LXC98

source file choice. Also, make sure there’s a check mark on the
Document menu next to Auto-indentation.

3.	 To check the auto-indentation, when you type Python code and press
<Enter>, Geany should automatically indent the next line based on
the structured programming context.

1.7.3.3.3  Python Code Examples

In this section, we offer a range of Python script files, and program code,
most of which uses the procedural (imperative) model, and some of which
uses the OOP paradigm, that can be created and executed in Geany with the
modes we specified in Section 1.6.3.3.1.

The following code for the first example is a more involved use of OOP: cre-
ating a class, and then using some methods to manipulate the objects in that
class. After setting up the preliminaries as shown in Section 1.6.3.3.1, type in
the following code, using the Geany editor window, into a file that you use
Geany to name firstclass.py.

Practice Session 1.13

#!/usr/bin/python3
class Structure:
 'Common base class for all Python Structures'
 StrucCount = 0

 def __init__(s, name, number):
 s.name = name
 s.number= number
 Structure.StrucCount += 1

 def displayCount(s):
 print ("Total Structures %d" % Structure.StrucCount)

 def displayStructure(s):
 print ("Name : ", s.name, ", Number : ", s.number)

Then, in the Geany terminal, execute Python3, and run the code with the
following instructions:

(You can leave out the comments):

>>> import firstclass
>>> Stru1 = firstclass.Structure("Arithmetic Operators", 17) �#creates the

first object
>>> Stru2 = firstclass.Structure("Logical Operators", 10) �#creates the

second object
>>> Stru1.displayStructure()
Name : Arithmetic Operators , Number : 17 #displays the first object
>>> Stru2.displayStructure() #displays the second object

Editing Text Files 99

Name : Logical Operators, Number : 10
>>> print ("Total Structures %d" % firstclass.Structure.StrucCount) #prints
total structures
Total Structures 2
>>> Stru1.inst = 7 #creates a new attribute of Stru1
>>> hasattr(Stru1, 'inst') #checks object for attribute
True
>>> getattr(Stru1, 'inst') #gets the value of the attribute
7
>>> getattr(Stru1, 'name') #gets the value of the attribute
'Arithmetic Operators'
>>>

The following is an example of function definitions in Python2, which must
be installed with APT if you are using a Debian-Bookworm based Raspberry
Pi OS.

Practice Session 1.14
In the Geany editor window, type in the following code:

def add(a, b):
 c = a + b
 return(c)
def subtract(a, b):
 c = b - a
 return(c)
def multiply(a, b):
 c = a * b
 return(c)
def divide(a, b):
 c = a / b
 return(c)

Name this file math1.py. Then, run Python2 in the Geany terminal with the
command python, and type the following three lines of Python code:

>>> import math1
>>> z = math1.add(3, 4)
>>> z
7
>>>

The following is an example of conditional execution in Python.

Practice Session 1.15
Type in the following code in the Geany editor window.

Raspberry Pi OS Text Editors, Git, and LXC100

x = 1
if x == 0: # the == is a logical, or Boolean operator
 print ("x equal 0")
elif x == 1: #one or more of these optional blocks are allowed
 print ("x equal 1")
else: #the optional block
 print ("x is something else")

When you’re finished correctly typing the above in, click on the Run or view
the current file icon in the Geany Toolbar.

x equal 1

It is also possible to nest Python conditional execution blocks inside of one
another.

For example, for the code execution below, enter the following correctly
into a file named two7.py in Geany. Geany indents according to the Rule
of Four!

Then, in Geany click on the Run Toolbar icon:

Practice Session 1.16

w = 36
y = 13
z = 20
if w < 37:
 print ("w is less than 37")
 if y > 13:
 print ("y is greater than 13")
 elif y == 13:
 print ("y is equal to 13")
 else:
 print ("y is less than 13")
 if z > 21:
 print ("z is greater than 21")
 elif z == 21:
 print ("z is equal to 21")
 else:
 print ("z is less than 21")
else:
 print ("w is greater than or equal to 37")

The following is what should appear on your display in the Geany terminal:

w is less than 37
y is equal to 13
z is less than 21
>>>

Editing Text Files 101

Here’s a Python3 program that uses the sys module to allow you to enter
some text, and have it echoed on the command line:

Practice Session 1.17

#!/usr/bin/python3
import sys
s = input("Enter input:")
print ("You entered:", s)
r = input("Enter another line:")
words = r.split(' ')
print ("The first word is:", words[0]‌)
print ("The second word is:", words[1]‌)
rest = (' '.join(words[2:]))
print ("The rest of the line is:", rest)
sys.exit() #normal exit status

On our Raspberry Pi system, using Python 3.9.2, we ran the Python3 code in
Geany. We named the file ex27.py. We obtained the following output, with
the supplied text shown in bold:

$./ex27.py
Enter input: Linux rules!
You entered: Linux rules!
Enter another line: Raspberry Pi rules!
The first word is: Raspberry
The second word is: Pi
The rest of the line is: rules!
Process ended with exit code 0.
$

Here’s another Python3 program that uses the sys module, and some
of its methods to allow you to enter some text, and have it echoed on the
command line:

Practice Session 1.18

#!/usr/bin/python3
import sys
x = (sys.argv)
print ("The command name is: ", sys.argv[0]‌)
print ("The value of the command line arguments are: ", x[1:10])
print ("Another way to display values of all the arguments: ", sys.argv[1:])
print ("Yet another way is: ", sys.argv[slice(1,15)])
sys.exit ()

On our Raspberry Pi system and Geany, using Python 3.9.2, we ran the
Python3 code in the Geany terminal, after we named it ex28.py. Remember to
give yourself access privileges on the file ex28.py with the command chmod

Raspberry Pi OS Text Editors, Git, and LXC102

u+x ex28.py if necessary! We obtained the following output, with the argu-
ment list to the ./ex28.py command as shown:

$./ex28.py a b c d e f g h i j k l m n
The command name is: ./ex28.py
The value of the command line arguments are: ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']
Another way to display values of all the arguments: ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n']
Yet another way is: ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n']
$

The following is a neat-looking graphics plot done by Python. You first need
to install the following necessary libraries, using pip, on the Raspberry Pi
command line:

$ pip install matplotlib numpy
Output truncated …
$

Practice Session 1.19

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Generate x values
x = np.linspace(-2*np.pi, 2*np.pi, 100)
Compute sine and tangent for each x
sin_x = np.sin(x)
tan_x = np.tan(x)

Create a 3D plot
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

Plot the sine and tangent functions
ax.plot(x, sin_x, tan_x)

Set labels for axes
ax.set_xlabel('X')
ax.set_ylabel('Sine(X)')
ax.set_zlabel('Tangent(X)')

Show the plot
plt.show()

After you enter the above code into the Geany editor window, click on the
Run Toolbar icon. The output we got is shown in Figure 1.17.

Here is an example (the code of which we named ex35.py) of carrying out
simple system administration, in this case using Python 2.7.12. In order for
you to execute this program on a Debian-Bookworm based Raspberry Pi OS,

Editing Text Files 103

you need to use APT to install Python 2. It customizes a shell command to
show permissions set on files in the current working directory that match a
certain pattern:

Practice Session 1.20

#!/usr/bin/python
import stat, sys, os, glob
try:
 #Getting search pattern from user and assigning it to a list
 pattern = input("Enter the file pattern to search for:\n")
 matching_Files = glob.glob(pattern)
 print ("Files:")
 print (matching_Files)
 print ("*******************************")
 for file in matching_Files:
 mode=stat.S_IMODE(os.lstat(file)[stat.ST_MODE])
 print ("\nPermissions for file ", file, ":")
 for level in "USR", "GRP", "OTH":

FIGURE 1.17
3D matplotlib.pyplot of Sine and Tangent functions.

Raspberry Pi OS Text Editors, Git, and LXC104

 for perm in "R", "W", "X":
 if mode & getattr(stat,"S_I"+perm+level):
 print (level, " has ", perm, " permission")
 else:
 print (level, " does NOT have ", perm, "permission")
except:
 print ("Error - check your input of file matching pattern")

Once we saved and ran the code with the Geany Run or view the current
file … toolbar icon (the paper airplane button) using Python 2.7.12, and the
input shown, we got the following results in a separate terminal window that
opened on screen:

Enter the file pattern to search for:
*.py
Files:
2_1.py
2_16.py
2_17.py

Permissions for file 2_1.py :
USR has R permission
USR has W permission
USR does NOT have X permission
GRP has R permission
GRP does NOT have W permission
GRP does NOT have X permission
OTH has R permission
OTH does NOT have W permission
OTH does NOT have X permission

Output truncated…

For the Python3 code in Practice Sessions 1.21 through 1.23, you don’t have
to install the Python3 Tkinter libraries, as shown on the following Raspberry
Pi command line:

bob@raspberrypi:~ $ sudo apt-get install python3-tk
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
python3-tk is already the newest version (3.11.2-3).
The following packages were automatically installed and are no longer required:

linux-headers-6.1.0-13-arm64 linux-headers-6.1.0-13-common
linux-headers-6.1.0-14-arm64 linux-headers-6.1.0-14-common
linux-headers-6.1.0-15-arm64 linux-headers-6.1.0-15-common

Use 'sudo apt autoremove' to remove them.
0 upgraded, 0 newly installed, 0 to remove and 1 not upgraded.
bob@raspberrypi:~ $

Editing Text Files 105

The following APT command must be done-
bob@raspberrypi:~ $ sudo apt-get install tk-dev
Output truncated…
bob@raspberrypi:~ $

The following simple example shows a complete tkinter Python script,
and the widget it creates. You should create, and then execute these six
lines of code in the Geany editor window (after saving the untitled file
with a .py extension), and run it with the Toolbar Run or view the current
file ... icon.

Practice Session 1.21

import tkinter
from tkinter import ttk
w = tkinter.Tk()
w.title("Python GUI")
ttk.Label(w,text="My first tkinter gui window").grid(column=0, row=0)
w.mainloop()

When this widget was generated on our Raspberry Pi 400, it appeared in
the upper-left corner of the display screen, just below the raspberry in the
Raspberry Pi menu, but we could manually move it wherever we wanted on
the screen display.

To close the widget, just click on the “destroy window” button in your style
of GUI window in which the widget was created. You may have to expand
the window to see all of the window manipulation buttons, but we didn’t
need to do that on our Raspberry Pi 400.

The next simple example allows a user to add two real numbers as text, that
has been entered interactively, on lines inside the tkinter widget. And, as in
Example 1.21, you can enter the code in Geany’s editor window, and use the
Run or view the current file ... icon to launch it.

Practice Session 1.22

import tkinter as tk
from tkinter import ttk
from functools import partial

This is the data generating module, which computes the sum.
def add_it(label_result, n1, n2):
 num1 = (n1.get())
 num2 = (n2.get())
 result = float(num1)+float(num2)
 label_result.config(text="Sum = %f" % result)
 return

Raspberry Pi OS Text Editors, Git, and LXC106

This grids the widget object where indicated, then returns it.
def mkgrid(r, c, w):
 w.grid(row=r, column=c, sticky='news')
 return w

root = tk.Tk()
root.title('Real Number Adder')
The rest hooks the adder into the grid manager widgets.
add1_lab = mkgrid(0, 0, ttk.Label(root, text="addend 1",
 anchor='e'))
add2_lab = mkgrid(1, 0, ttk.Label(root, text="addend 2",
 anchor='e'))
add1= mkgrid(0, 1, ttk.Entry(root))
add2= mkgrid(1, 1, ttk.Entry(root))
spacer = mkgrid(0, 2, ttk.Label(root, text=''))
labelResult = ttk.Label(root)
labelResult.grid(row=7, column=2)
add_it = partial(add_it, labelResult, add1, add2)
add_but = mkgrid(1, 2, ttk.Button(root, text="Add them",
 command=add_it))
Starts the root main event loop
root.mainloop()

The results of running this tkinter script file are shown in Figure 1.18.
Even though Practice Session 1.22 ostensibly uses the procedural (impera-

tive) programming model, syntax, and data abstraction, you should begin
to see that tkinter GUI scripts are basically composed of OOP class instance
objects. All of the methods that are applied to those instances come from the
methods applied to the core widgets in tkinter.

The following example will construct a Fahrenheit-to-Celsius temperature
conversion GUI with tkinter. And, as in Practice Sessions 1.21 and 1.22, you
can enter the code in Geany’s editor window, and use the Run or view the
current file ... Toolbar icon to launch it.

FIGURE 1.18
tkinter adder script output results.

Editing Text Files 107

Practice Session 1.23

import tkinter as tk
from tkinter import ttk
This computes the Celsius temperature from the Fahrenheit.
def findcel():
 famt = ftmp.get()
 if famt == '': #not double quote, 2 single quotes
 cent.configure(text='')
 else:
 famt = float(famt)
 camt = (famt - 32) / 1.8
A method(configure) applied to an object (cent) that is converted to a string
tr(camt).
 cent.configure(text=str(camt))
This grids the widget object where indicated, then returns it.
def mkgrid(r, c, w):
 w.grid(row=r, column=c, sticky='news')
 return w
root = tk.Tk()
root.title('Temp Conversion')
The rest hooks the temps into the grid graphics manager widgets.
flab = mkgrid(0, 0, ttk.Label(root, text="Fahrenheit Temperature",anchor='e'))
clab = mkgrid(1, 0, ttk.Label(root, text="Celsius Temperature",anchor='e'))
ftmp = mkgrid(0, 1, ttk.Entry(root))
cent = mkgrid(1, 1, ttk.Label(root, text= "", relief='sunken',anchor='w'))
elab = mkgrid(0, 2, ttk.Label(root, text=''))
fbut = mkgrid(1, 2, ttk.Button(root, text="Compute Celsius",command=\
findcel))
Starts the root main event loop
root.mainloop()

The results of running this tkinter script file are shown in Figure 1.19.
Again, even though the previous example is ostensibly a procedural

(imperative) model program design, you should be able to recognize from
this line-by-line description and explanation that the underlying core widgets
from tkinter are OOP classes that we have instanced as objects.

The example used methods applied to those classes, but the structure of
our script file was still functional and declarative in nature.

FIGURE 1.19
tkinter temperature conversion output results.

Raspberry Pi OS Text Editors, Git, and LXC108

The following Python3 code brings together much of the syntax and struc-
ture from this section. It illustrates a Python3 solution to the producer-consumer
problem, using an FIFO queue with the queue.Queue class, in a multi-threaded
program. It uses OOP, and the threading module and its methods, to start
two threads: Producer and Consumer.

An overview of how Python3 uses the Queue class to obtain a solution
to the producer-consumer problem, taken from the reference material, is as
follows:

The Producer places a piece of data on the queue using the .put method.
The utility and advantage the queue module is most visible here- .put
locks the queue, checks to see if the queue is full, and calls an internal
.wait() to pause the producer if the queue is full. The Consumer then uses
the .get method to acquire the lock before removing data from the queue,
and .get checks for an empty queue. If the queue is empty, the consumer
is put in a wait state.

.get() and .put() also implement the notification logic to allow “talking”
between Producer and Consumer threads.

In this final Geany-run Python3 example, create the code in a file named ex45.
py in the Geany editor, and run it (and also terminate it, and the Python3 pro-
cess it spawns using <Ctrl>+C) using the Run or view the current file ... icon:

Practice Session 1.24

from threading import Thread
import time
import random
import queue

q_buffer = queue.Queue()

class Producer(Thread):
 def run(self):
 numbers = range(5)
 global q_buffer
 while True:
 actual_number = random.choice(numbers)
 q_buffer.put(actual_number)
 print ("Produced thread", actual_number)
 time.sleep(random.random())

class Consumer(Thread):
 def run(self):
 global q_buffer
 while True:
 actual_number_gotten = q_buffer.get()
 q_buffer.task_done()

Editing Text Files 109

 print ("Consumed thread", actual_number_gotten)
 time.sleep(random.random())

Producer().start()
Consumer().start()

Output from the above example is as follows:

Produced thread 1
Consumed thread 1
Produced thread 0
Produced thread 4
Consumed thread 0
Consumed thread 4
Produced thread 3
Consumed thread 3
Produced thread 0
Consumed thread 0
Produced thread 4
Consumed thread 4
Produced thread 4
Consumed thread 4
Produced thread 2
Produced thread 1
Consumed thread 2
Produced thread 1
<Ctrl>+C

1.7.4 � Geany Abbreviated Reference Encyclopedia

The following sections are abstracts and condensed versions of portions of
the Geany documentation, found at the following website:

www.geany.org/manual/current/index.html

We’ve selected those portions rather subjectively, and not necessarily
alphabetically, based upon what we’ve presented previously in Geany.

1.7.4.1  Indentation

Geany allows each document to indent either with a tab character, multiple
spaces or a combination of both. This is critical when you’re coding in a
structured language, such as C++ or Python.

1.	 The Tabs setting indents with one tab character per indent level, and
displays tabs as the indent width.

2.	 The Spaces setting indents with the number of spaces set in the
indent width for each level.

http://www.geany.org

Raspberry Pi OS Text Editors, Git, and LXC110

3.	 The Tabs and Spaces setting indents with spaces as above, then
converts as many spaces as it can to tab characters at the rate of one
tab for each multiple of the `Various preference` setting.

indent_hard_tab_width (default 8) and displays tabs as the *indent_
hard_tab_width* value.

The default settings can be overridden per-document using the Geany
Document menu. They can also be overridden by on a per project basis.

The indent mode for the current document is shown on the status bar,
when a file is being edited in the editor window, as follows:

TAB
Indent with Tab characters.

SP
Indent with spaces.

T/S
Indent with tabs and spaces, depending on how much indentation is on a line.

Applying new indentation settings
After changing the default settings you may wish to apply the new settings
to every document in the current session. To do this, use the Geany Project >
Apply Default Indentation menu item.

Detecting indent type
The Detect from file indentation preference can be used to scan each file as
it’s opened and set the indent type based on how many lines start with a tab
vs. 2 or more spaces.

Auto-indentation
When enabled, auto-indentation happens when pressing <Enter> on the
keyboard when in the editor window. It adds a predetermined amount of
indentation to the next line, so the user doesn’t always have to indent each
line manually. Of course, if you initially save the file with a .cpp or .py exten-
sion, then Geany recognizes the file to be C++ or Python code, and indents
according to the structured programing rules of those languages.

Geany has four types of auto-indentation:

1.	 None

Disables auto-indentation completely.

2.	 Basic

Adds the same amount of whitespace on a new line as on the previous line.
For the Tabs and the Spaces indent types the indentation will use the same

Editing Text Files 111

combination of characters as the previous line. The Tabs and Spaces indenta-
tion type converts as explained above.

3.	 Current chars

Does the same as *Basic* but also indents a new line after an opening brace
'{', and de-indents when typing a closing brace '}'. For Python, a new line will
be indented after typing ':' at the end of the previous line.

4.	 Match braces

Similar to *Current chars* but the closing brace will be aligned to match the
indentation of the line with the opening brace. This requires the filetype to be
one where Geany knows that the Scintillalexer understands matching braces
(C, C++, D, HTML, Pascal, Bash, Perl, TCL).

1.7.4.2  Search, Replace, and Go to

This section describes search-related commands from the Search menu and
the main editor window’s pop-up menus:

Find, Find selection, Find usage, Find in files, Replace, Go to symbol defin-
ition, Go to symbol declaration, and Go to line

There are also two toolbar entries:
Search bar and Go to line entry

Using the Search bar is the quickest way to find some text. You can perform
a case-insensitive search in the current document during text entry. Pressing
<Enter> will search again, and pressing

<Shift>-<Enter> will perform searching backward.
The Find dialog window is used for finding text in one or more open

documents, and is shown in Figure 1.20.

FIGURE 1.20
Find dialog window.

Raspberry Pi OS Text Editors, Git, and LXC112

1.7.4.3  Preferences

You adjust Geany’s settings using the Geany pull-down menu choice Edit
> Preferences. Any changes you make there can be applied by clicking on
either the Apply or the OK button. These settings will be persistent between
Geany editing sessions. Most settings here have a help “pop-up” message.
Just hover with your mouse over the item in the window to get help on it. The
general startup preferences are shown in Figure 1.21.

You may also adjust some View settings (under the View menu) that persist
between Geany sessions. The settings under the Document menu are only for
the current document, and revert to defaults when you restart Geany.

Here are some brief descriptions of some of the Preferences Startup choices
as shown in Figure 1.21.

Load files from the last session
On startup, load the same files you had opened the last time you used Geany.

Load virtual terminal support
Load the library for running a terminal in the message window area.

FIGURE 1.21
General startup preferences.

Editing Text Files 113

Enable plugin support
Allow plugins to be used in Geany.

Shutdown
Save window position and geometry

Save the current position and size of the main window so next time you open
Geany it’s in the same location.

Confirm Exit
Have a dialog pop-up to confirm that you really want to quit Geany.

Paths
Startup path

Path to start in when opening or saving files. It must be an absolute path.

Project files
Path to start in when opening project files.

1.7.4.4  Interface preferences

The following Edit > Preferences menu is for the Interface tab, as shown in
Figure 1.22.

FIGURE 1.22
Interface preferences.

Raspberry Pi OS Text Editors, Git, and LXC114

Abbreviated descriptions of the settings are as follows:

Sidebar
Show sidebar

Whether to show the sidebar at all.

Show symbol list
Show the list of functions, variables, and other information in the current
document you are editing.

Show documents list
Show all the documents you open currently. This can be used to change
between documents, and to perform some common operations such as
saving, closing, and reloading.

Position
Whether to place the sidebar on the left or right of the editor window.

Message window
Position

Whether to place the message window on the bottom or right of the editor
window.

Fonts
Editor

Change the font used to display documents.

Symbol list
Change the font used for the Symbols sidebar tab.

Message window
Change the font used for the message window area.

Miscellaneous
Show status bar

Show the status bar at the bottom of the main window. It gives informa-
tion about the file you are editing like the line and column you are on,
whether any modifications were done, the file encoding, the filetype, and
other information.

1.7.4.5  Editor Indentation Preferences

Abbreviated descriptions of the indentation preferences settings, as shown in
Figure 1.23, are as follows:

Editing Text Files 115

Indentation group

Width
The width of a single indent size in spaces. By default the indent size is
equivalent to spaces.

Detect width from file
Try to detect and set the indent width based on file content, when a file is
opened.

Type
When Geany inserts indentation, whether to use:

	* Just Tabs
	* Just Spaces
	* Tabs and Spaces, depending on how much indentation is on a line

FIGURE 1.23
Indentation preferences.

Raspberry Pi OS Text Editors, Git, and LXC116

The *Tabs and Spaces* indent type is also known as *Soft tab support* in
some other editors.

Detect type from file
 Try to detect and set the indent type based on file content, when
 a file is opened.

Auto-indent mode
 The type of auto-indentation you wish to use after pressing <Enter>, if any.

 Basic
 Just add the indentation of the previous line.
 Current chars
 Add indentation based on the current filetype and any characters at
 the end of the line such as ``{``, ``}`` for C, ``:`` for Python.
 Match braces
 Like *Current chars* but for C-like languages, make a closing
 ``}`` brace line up with the matching opening brace.

Tab key indents
 �If set, pressing tab will indent the current line or selection, and unindent

when pressing Shift-tab. Otherwise, the tab key will insert a tab character
into the document (which can be different from indentation, depending
on the indent type).

1.7.4.6  Editor Completions Preferences

Abbreviated description of the Editor Completions settings, as shown in
Figure 1.24, are as follows:

Auto-close quotes and brackets
Geany can automatically insert a closing bracket and quote characters when
you open them. For instance, you type a curly brace “{,” Geany will auto-
matically insert a closing curly brace “}.” This allows you to conform to the
syntax of a C++ program. With the following options, you can define for
which characters this should work, depending on the coding requirements of
the document or program you’re working on.

Parenthesis ()
 Auto-close parenthesis when typing an opening one
Curly brackets { }
 Auto-close curly brackets (braces) when typing an opening one
Square brackets []‌
 Auto-close square brackets when typing an opening one
Single quotes ' '
 Auto-close single quotes when typing an opening one
Double quotes " "
 Auto-close double quotes when typing an opening one

Editing Text Files 117

1.7.4.7  Project Management

Project management in Geany involves the following:

1.	 Storing and opening session files on a project basis.
2.	 Overriding default settings with individual project settings.
3.	 Configuring the Geany Build menu, so that software suites can be

configured and individually applied on a per-project basis.

As long as a project is “open,” the Build menu will use the items defined in
that project’s settings, instead of the defaults. See Section 1.6.4.9, Set Build
menu, for information on configuring the Set Build menu.

Note
The current project’s settings are saved when it is closed, or when Geany is
shutdown. When restarting Geany, the previously opened project file that
was in use at the end of the last session will be reopened.

FIGURE 1.24
Editor completions.

Raspberry Pi OS Text Editors, Git, and LXC118

The Project menu choices are as follows.

New project
To create a new project, fill in the *Name* field. By default this sets up a new
project file, in ~/projects/name.geany, where name is the project name you
assign to it.

The Base path text field is set up to use ``~/projects/name``. This can be set
to any existing path. It will not change the file structure contained in it.

Project properties
You can set an optional description for the project.

The *Base path* field is used as the directory to run the Build menu
commands. That pathname can be an absolute pathname, or it is considered
to be relative to the project’s file name.

The *File patterns* field allows to specify a list of file patterns for the project.
The *Indentation* tab allows you to override the default indentation

settings.

Open project
The Open command displays a standard file chooser, starting in ̀ `~/projects``.
Choose a project file named with the .geany extension.

When project session support is enabled, Geany will close the currently
opened files and open the session files associated with the project.

Close project
Project file settings are saved when the project is closed. When project session
support is enabled, Geany will close the project session files and open any
previously closed default session files.

1.7.4.8  Build Menu

After creating and editing code with Geany, the next step is to compile, link,
build, interpret, and run it.

This is the most important aspect of using an IDE like Geany, above and
beyond the traditional UNIX and Linux text editors. Even more critical and
useful than the same capabilities in an extremely developed text editor like
Gnu emacs.

As Geany supports many languages, each with a different approach to
such operations, and as there are also many language-independent software
building systems, Geany does not have a built-in build system, nor does it
limit which system you can use. Instead the build menu provides a configur-
able and flexible means of running any external commands to execute your
preferred build system.

Editing Text Files 119

This section provides a description of the default configuration of the Build
Menu and then covers how to configure it, and where the defaults fit in.

Running the commands from within Geany has two benefits:

	* The current file is automatically saved before the command is run.
	* The output is captured in the Compiler notebook tab and parsed for

warnings or errors.

Indicators
Indicators are red squiggly underlines which are used to highlight errors
which occurred while compiling the current file. So you can easily see where
your code failed to compile. You can remove them by selecting *Remove
Error Indicators* in the Document menu.

1.7.4.8.1  Default Build Menu Items

Depending on the current file’s filetype, the default Build menu will contain
the following items:

*  Compile
*   Build
*   Lint
*   Make All
*   Make Custom Target
*   Make Object
*   Next Error
*   Previous Error
*   Execute
*   Set Build Menu Commands

Compile
The Compile command has different uses for different kinds of files. For
compilable languages such as C and C++, the Compile command is set up to
compile the current source file into a binary object file.

Java source files will be compiled to class file bytecode.
Interpreted, or intermediate languages such as Perl, Python, and Ruby will

compile to bytecode if the language supports it, or will run a syntax check, or
if that is not available will run the file in its language interpreter.

Build
For compilable languages such as C and C++, the Build command will link
the current source file’s equivalent object file into an executable image. If the
object file doesn’t exist, the source will be compiled and linked in one step,
producing just the executable binary.

Raspberry Pi OS Text Editors, Git, and LXC120

Note
Purely interpreted languages do not use the Build command. If you need
complex settings for your build system, or several different Build settings
applicable to multiple source code files, then create a makefile and use the
make command; this technique will also be useful for users to build your
software.

Lint
Source code lint programs are basically used to find code that doesn’t corres-
pond to certain style guidelines: non-portable code, common or hard to find
errors, variables used before being set, unused functions, division by zero,
constant conditions, etc. Lint programs inspect the code and issue warnings
much like the compilers do. This is formally referred to as static code analysis.

Some common lint programs are preconfigured in the Build menu (``pep8``
for Python, ``cppcheck`` for C/C++, JSHint for JavaScript, ``xmllint`` for
XML, ``hlint`` for Haskell, ``shellcheck`` for shell code, ...), but all these are
standalone tools you need to obtain before using.

Make
This runs the make command in the same directory as the current file.

Make Custom Target ...
This is similar to running 'Make' but you will be prompted for the make
target name to be passed to the Make tool. For example, typing 'clean' in the
dialog prompt will run "make clean".

Make Object
Make Object will run "make current_file.o" in the same directory as the
current file, using the filename for 'current_file'. It is useful for building just
the current file without building the whole project.

Next Error
The next error item will move to the next detected error in the file.

Previous Error
The previous error item will move to the previous detected error in the file.

Execute
Execute will run the corresponding executable file, shell script or interpreted
script in a terminal window.

After your program or script has finished executing, the run script will
prompt you to press the return key. This allows you to review any text output
from the program before the terminal window is closed.

Editing Text Files 121

Note
The execute command output is not parsed for errors.

1.7.4.9  Set Build Commands

Most of the configuration of the Build menu is done through the Set Build
Commands menu choice. When no project is open, you can edit the configur-
ation via that menu. You can edit the configuration of an open project in the
Build tab of the Project Properties dialog box. That menu item also shows the
project dialog when a project is open. Both use the same dialog box shown
in Figure 1.25.

FIGURE 1.25
Set build commands dialog box.

Raspberry Pi OS Text Editors, Git, and LXC122

The dialog box is divided into three sections:

Filetype build commands (selected based on the current document’s filetype).
In Figure 1.25:

g++ -Wall -c "%f"
g++ -Wall -o "%e" "%f"
cppcheck --language=c++

Independent build commands (available regardless of filetype).

In Figure 1.25-

make

Filetype execute commands.

In Figure 1.25-
."/%e"

The filetype and independent build sections also each contain a field for the
regular expression used for parsing command output for error and warning
messages.

The columns in the first three sections allow setting of the label, command,
and working directory to run the command in. An item with an empty label
will not be shown in the menu. An empty working directory will default to
the directory of the current document.

If there is no current document, then the command will not run.
The dialog box will always show the command selected by priority, not just

the commands configured in this configuration source. This ensures that you
always see what the menu item is going to do if activated.

If the current source of the menu item is higher priority than the configur-
ation source you are editing, then the command will be shown in the dialog
but will be insensitive (greyed out). This can’t happen with the project source
but can with the preferences source dialog.

The clear buttons remove the definition from the configuration source you
are editing. When you do this, the command from the next lower priority
source will be shown. To hide lower priority menu items without having any-
thing shown in the menu, configure with nothing in the label but at least one
character in the command.

Substitutions in commands and working directories
Before the command is run, the first occurrence of each of the following two
character sequences in each of the command and working directory fields is
substituted by the items specified below:

* %d – the absolute path to the directory of the current file.

Editing Text Files 123

* %e – the name of the current file without the extension or path.
* %f – the name of the current file without the path.
* %p – if a project is open, the base path from the project.
* %l – the line number at the current cursor position.

Note
If the base path that is set is not an absolute path, then it is taken as rela-
tive to the directory of the project file. This allows a project file stored in the
source tree to specify all commands and working directories relative to the
tree itself, so that the whole tree including the project file, can be moved and
even checked into and out of version control without having to re-configure
the build menu.

1.7.4.10  Plugins

To install all plugins, or a specific one, on your Raspberry Pi system, first you
have to know which one you want. You can type in the following command
in a terminal window to get a listing:

$ apt-cache search geany

or you can go to the following web page to get a listing:

https://plugins.geany.org/install.html

To install a wide variety of all the plugins available, use the following command:

$ sudo apt-get install geany-plugins

To install a specific plugin, after you’ve chosen one of them, such as the
autoclose plugin, use the following command:

$ sudo apt install geany-plugin-autoclose

Plugins are loaded at startup. Some plugins add menu items to the Geany
Tools menu when they are loaded.

The Plugin Manager, shown in Figure 1.26, is launched by making the
Geany Tools > Plugin Manager choice, lets you choose which plugins
should be loaded at startup. You can also load and unload plugins on a per
use basis using this manager window. Once you click the checkbox for a
specific plugin in the manager window, it’s loaded or unloaded according to
its previous state. An interesting and useful feature of the Plugin Manager
window is that if you hover your mouse near one of the plugins listed, a
brief description of it, along with pertinent information about the plugin,
appears on screen.

https://plugins.geany.org

Raspberry Pi OS Text Editors, Git, and LXC124

1.7.4.11  Customizing the Toolbar

You can add, remove, and reorder the elements in the toolbar using the
following graphical way:

Make the Geany menu choice Edit > Preferences, and click on the Interface
sidebar menu in the Preferences window that opens. When you choose the
Toolbar heading, a window opens, and Customize Toolbar button on it to the
right. Click on that button, and the Customize Toolbar sub-window opens, as
shown in Figure 1.27.

In Figure 1.27, in the column to the left, all Available Items for inclusion
on the Toolbar are shown, and in the right column, all Displayed Items are
shown. Between the two columns, left- and right-facing arrows allow you to
interchange items between Available and Displayed Items. Once you use the
arrows to interchange Toolbar items, the new Toolbar item appears on the
extreme left of the Toolbar items that are already displayed at the top of
the Geany window. Make the Close button choice to confirm your addition(s)
or subtraction(s).

FIGURE 1.26
Plugin manager window.

Editing Text Files 125

Here’s a listing of Available Toolbar Elements, as of version 1.37.1 of Geany:

Element name	 Description

New	 Create a new file
Open	 Open an existing file
Save	 Save the current file
SaveAll	 Save all open files
Reload	 Reload the current file from disk
Close	 Close the current file
CloseAll	 Close all open files
Print	 Print the current file
Cut	 Cut the current selection
Copy	 Copy the current selection
Paste	 Paste the contents of the clipboard
Delete	 Delete the current selection
Undo	 Undo the last modification
Redo	 Redo the last modification

FIGURE 1.27
Customize toolbar sub-window.

Raspberry Pi OS Text Editors, Git, and LXC126

Element name	 Description

NavBack	 Navigate back a location
NavFor	 Navigate forward a location
Compile	 Compile the current file
Build	 Build the current file, includes a submenu for Make

commands. Geany remembers the last chosen action from
the submenu and uses this as default action when the
button itself is clicked.

Run	 Run or view the current file
Color	 Open a color chooser dialog, to interactively pick colors

from a palette
ZoomIn	 Zoom in the text
ZoomOut	 Zoom out the text
UnIndent	 Decrease indentation
Indent	 Increase indentation
Replace	 Replace text in the current document
SearchEntry	 The search field belonging to the ‘Search’ element (can be

used alone)
Search	 Find the entered text in the current file (only useful if

you also use ‘SearchEntry’)
GotoEntry	 The goto field belonging to the ‘Goto’ element (can be

used alone)
Goto	 Jump to the entered line number (only useful if you also

use ‘GotoEntry’)
Preferences	 Show the preferences dialog
Quit	 Quit Geany

1.8 � Summary

In this chapter, we covered Nano, Vi/Vim/Gvim, and Geany, the most
useful group of text editors, and an IDE that the Raspberry Pi OS offers. We
achieved this in both a command line, text-based way and a graphical way,
for these editors and the IDE. They are useful because Raspberry Pi systems
use both a text-driven and GUI-based OS. Common operations done by an
ordinary user, such as editing script files, writing email messages, or creating
and compiling C++ or Python language programs, are done with text editors
and an IDE.

Editing Text Files 127

In text editors, a full-screen display editor shows a portion of a file that
fills most or all of the screen display. The cursor, or point, can be moved to
any of the text shown in the screen display. Editing a file involves editing a
copy that the editor creates, called a buffer. Keystroke commands are one of
the primary ways of interacting with these editors. Using a GUI to interact
with these editors is time efficient and easy to learn. The editor(s) used
should fit the user’s personal criteria, particularly if the user is new to the
Raspberry Pi OS.

The most important functions that are common to the Raspberry Pi text
editors are:

Cursor movement, cut/copy and paste, deleting text, inserting text,
opening an existing file, starting a new file, quitting, saving, and search
and replace.

The most important functions common to Raspberry Pi IDEs are:

1.	 Feature-Rich Environment: IDEs offer a wide array of features
like code completion, syntax highlighting, integrated debugging,
refactoring tools, version control integration, and project manage-
ment capabilities.

2.	 Code Assistance and Productivity Tools: IDEs provide intelligent
code completion, suggesting code snippets, variable names, and
method signatures as you type. This enhances productivity and
reduces errors.

3.	 Debugging and Testing: Debugging is seamlessly integrated within
the IDE, allowing developers to set breakpoints, inspect variables,
and step through code. Testing frameworks can be integrated for
automated testing.

4.	 Project Management: IDEs often have built-in project management
tools, making it easier to organize and navigate through complex
codebases. This includes features like project-wide search, file hier-
archy views, and class/module navigation.

5.	 Integration with Build Systems: IDEs integrate with various build
systems and tools, enabling developers to compile, build, and
package their applications from within the IDE. This streamlines the
development workflow.

6.	 Plugin Ecosystem: Most IDEs support an extensive ecosystem of
plugins or extensions. Developers can customize their IDE by adding
plugins for specific languages, frameworks, or tools, tailoring it to
their needs.

Raspberry Pi OS Text Editors, Git, and LXC128

TABLE 1.10

Vi, Vim, and Gvim Command Summary

Vi Syntax

Command Action

cw Changes word.
cc Changes line.
c$ Changes text from current position to end of line.
C Same as c$.
dd Deletes current line.
7 dd Deletes seven lines.
d$ Deletes text from current position to the end of line.
D Same as d$.
5dw Deletes five words.
d7,14 Deletes lines 7 through 14 in the buffer.
s Substitutes character. <Esc> ends substitute mode.
4s Substitutes four characters. <Esc> ends substitute mode.
S Substitutes entire line. <Esc> ends substitute mode.
u Undoes the last change.
<Ctrl+R> Redoes the last change (Vim and Gvim).
U Restores the current line, if you have not moved off of it.
x Deletes current cursor position.
X Deletes back one character.
5X Deletes previous five characters
. Repeats last change.
~ Changes case and move cursor right.
<Ctrl+A> Increments number at the cursor (Vim and Gvim).
<Ctrl+X> Decrements number at the cursor (Vim and Gvim).

Vi Mode Keys

Key Action

a Appends text after the character the cursor is on.
A Appends text after the last character of the current line.
c Begins a change operation, allowing you to modify text.
C Changes from the cursor position to the end of the current line.
i Inserts text before the character the cursor is on.
I Inserts text at the beginning of the current line.
o Opens a blank line below the current line and puts the cursor on

that line.
O Opens a blank line above the current line and puts the cursor on

that line.

7.	 Cross-Language Support: Many IDEs support multiple program-
ming languages, allowing developers to work on projects with
diverse technology stacks seamlessly.

We provide summary tables of commands and operations for Vi/Vim/Gvim
as Table 1.10.

Editing Text Files 129

Vi Command Mode

Command Action

:wq Saves the buffer and quits.
:w Saves the current buffer and remains in the editor.
:w filename Saves the current buffer to filename
:q Quits Vi (fails if changes were made).
:q! Quits Vi without saving the buffer.
:Q Quits Vi and invoke ex.
:vi Returns to Vi after Q command.
ZZ Quits Vi, saves the file only if changes were made since the last

save.

Vi Cursor Movement

Command Action

1G Moves the cursor to the first line of the file.
G Moves the cursor to the last line of the file.
0 (zero) Moves the cursor to the first character of the current line.
<Ctrl+G> Reports the position of the cursor in terms of line # and

column #.
$ Moves the cursor to the last character of the current line.
w Moves the cursor forward one word at a time.
b Moves the cursor backward one word at a time.
x Deletes the character at the cursor position.
dd Deletes the line at the current cursor position.
u Undoes the most recent change.
r Replaces the character at the current cursor location with what is

typed next.

Vi Yank and Put

Command Syntax What It Accomplishes

y2W Yanks two words, starting at the current cursor position, going to
the right.

4yb Yanks four words, starting at the current cursor position, going to
the left.

yy or Y Yanks the current line.
p Puts the yanked text after the current cursor position.
P Puts the yanked text before the current cursor position.

Vi Substitute

Command Syntax What It Accomplishes

:s/john/jane/ Substitutes the word jane for the word john on the current line,
only once.

:s/john/jane/g Substitutes the word jane for every word john on the current
line.

TABLE 1.10  (Continued)

Vi, Vim, and Gvim Command Summary

Raspberry Pi OS Text Editors, Git, and LXC130

Vi Environment Options

Last Line Mode Syntax What It does

Abbr command
:ab in out Uses in as abbreviation for out in Insert mode.
:unab in Removes abbreviation for in.
:ab Lists abbreviations.
map!, map commands
:map Lists character strings that are mapped.
:map! string sequence Maps characters string to input mode sequence.
:unmap! string Removes input mode map (you may need to quote the characters

with <Ctrl+V>).
:map! Lists character strings that are mapped for input mode.
Set Command
:set x Enables boolean option x, shows value of other options.
:set Shows changed options.
:set all Shows all options.
:set x? Shows value of option x.

TABLE 1.10  (Continued)

Vi, Vim, and Gvim Command Summary

131DOI: 10.1201/9781003455813-3

2	�
Version Control for Software
Code Using Git and GitHub

2.0  Objectives

*	 To introduce forms of source code version control for the Raspberry Pi OS,
particularly the git command, and GitHub

*	 To detail the basic concepts and structure of a Git repository
*	 To illustrate the Git staging model
*	 To define a Directed Acyclic Graph (DAG)
*	 To provide numerous practical examples of using the git command
*	 To show strategies of managing a Git repository with branches via example
*	 To give a tutorial on GitHub use
*	 To allow you to use GitHub to obtain the supplementary materials for

this book

Commands and primitives covered:
git

Anything that you are required to type on the command line is shown in
bold type.

2.1 � Introduction to Version Control

Studies have shown that about two-thirds of the cost of a software product
is spent on maintenance. The maintenance of a software product comprises
corrective maintenance and enhancement. In corrective maintenance, the
errors and bugs found after the deployment of a software product are fixed.
In enhancement, the product is enhanced to include more features, such as
an improved user interface. Regardless of its type, maintenance means chan-
ging and/or revising the source code for the product and generating new

http://dx.doi.org/10.1201/9781003455813-3

Raspberry Pi OS Text Editors, Git, and LXC132

executables. This means using a version control system (VCS). As you revise
source code, you may need to undo changes made to it and go back to an
earlier version of the software. If an individual or team of programmers is
working on a piece of software, they should be able to locally and autono-
mously maintain editable (modifiable) versions that can be joined together at
a convenient time.

Git and GitHub are atomic-level, distributed, content-oriented VCSs.
Atomic-level means that when you take a snapshot of the software package,
everything in it is captured in the snapshot at a single instance in time.
Distributed means that the entire software package you are working with is
available to all collaborators locally at all times. Content-oriented means that
when you join different branches of work on the software, only the content
of lines in the files along the branches you are merging are considered. Here,
content means “with form,” and context means “with meaning.” Git only
considers content when it operates on your software files and directories;
the individual(s), collaborator(s), or integrator(s) of the software project are
responsible for the merged context of the files in the software package. The
combining of different lines of development of a project that causes content
conflicts are indicated by Git with several useful strategies and mechanisms,
and their resolution is aided by many tools that are available as add-ons to
Git. But only the people writing and testing how the software works, the
content creators, and those people managing that process are responsible for
resolving merged-context conflicts.

In-Chapter Exercise

2.1.	Give a detailed example of what you think is content tracking in a
revision control system. Then contrast that example with what you
think is context tracking.

Git, as a source code maintenance tool, is a software database for tracking
changes made to a set of source code files over time. Although programmers
most often use it to coordinate changes to software source code, you can use
Git to track any kind of content.

Git can

1.	 Examine the state of your source code project at earlier points in time.
2.	 Show the differences among various states of the project, and the

files present at those states.
3.	 Split the project development into multiple independent lines, called

branches, which can evolve separately.
4.	 Regularly recombine branches by merging, or reconciling, the

changes made in two or more branches.

Version Control for Software Code Using Git and GitHub 133

5.	 Allow many people to work on a project simultaneously, sharing and
combining their work as needed.

Git is a member of the newer generation of distributed VCSs. Older systems
such as SCCS, RCS, CVS, and Subversion are centralized, meaning that there
is a single, central copy of the project content and history to which all users
must refer. If the central copy is unavailable, all users must wait until the
central copy is online again. Distributed systems such as Git have no central
copy. Each user has a complete, independent copy of the entire project history,
called a repository, and full access to all version control facilities. Network
access is only needed to share changes among members of the same develop-
ment team or group.

Git’s distributed nature accommodates many different styles of interaction,
or workflows. Individuals can share work directly between their personal
repositories. Git is the technology behind the social coding website GitHub,
which includes many well-known open-source projects, most notably for the
Linux kernel.

We discuss Git and GitHub in an example-based tutorial presentation.

For Git and GitHub, the following subsections will include:

1.	 How Git is used, and how it works on a Raspberry Pi system.

2.	 A high-level overview of the Git terminology, data structures, objects,
and actions.

3.	 Illustrations, both graphical and textual, of the Git staging model,
what a directed acyclic graph (DAG) is, and a finer-grained view of
the object store contents.

4.	 A short and a long example of how to create, edit, branch, and merge
branches of a Git repository.

5.	 An exploration of GitHub as a remote repository.

6.	 Three basic examples of how to use the git clone, git push, and git
pull commands and options to transfer repository contents between
a local repository and GitHub online.

To get the most useful information out of this chapter, you are encouraged
to first read through the high-level background materials in first three
subsections. Then do the examples in the subsequent three sections, as many
times as necessary to become comfortable using Git and GitHub. Finally, be
sure to do all In-Chapter Exercises and the problem set on Git and GitHub at
the end of this chapter.

Raspberry Pi OS Text Editors, Git, and LXC134

2.2 � What Is Git Used for and How Does It Work?

Git is used to manage one or more source code project repositories, each
packaged into its own directory that you create for the source code files in
that project.

The concept of a project contained in its entirety in a Raspberry Pi OS single
directory on the file system is very critical and important.

A repository is a database containing all the information needed to archive
and manage the revisions and history of a project. In Git, as with most VCSs,
a repository archives a complete copy of the entire project, with all of the
revisions to it.

Git maintains a set of configuration settings and files within each reposi-
tory. Unlike file data and other repository metadata, configuration settings
are not transferred from one repository to another during a cloning, or dupli-
cating, operation. Instead, Git manages and inspects the configuration and
setup information on a per-site, per-user, and per-repository basis. Within a
repository, Git maintains two primary data structures, the object store and the
index. The object store is designed to be efficiently copied during a clone oper-
ation as part of the mechanism that supports a fully distributed VCS. The
index is transitory information, is private to a repository, and can be created
or modified on demand as needed. All of this repository data is stored at
the root of the working directory of the repository, in a hidden subdirectory
named .git.

Simply put, with Git and GitHub, you can manage your source code
repositories and work in an independent, collaborative, or integrated and
efficiently managed way. A majority of the introductory material we present
here is aimed at the independent developer. From a learning point of view,
you need to first know how to use Git in an independent way. Then we also
show some collaborative workflows, particularly with GitHub.

Note
We do not touch on the integrative management techniques and commands
of Git or GitHub, nor do we explain the details of what an integrator of a
software system does. Those kinds of tasks and activities, pertinent to the
particular coding language and systems that comprise them, are well beyond
a basic knowledge of commands and techniques that a beginner would need
to know about to work effectively with Git and GitHub.

In-Chapter Exercise

2.2	 What do you think the role of an integrator of a project would be, in
terms of what a revision control system accomplishes for a software
code development and maintenance program, and the project that

Version Control for Software Code Using Git and GitHub 135

envelops it? Generically, and not bound by a language like C, C++,
Python, or to any kind of project, such as a web-based application, or
for the operating system itself.

2.3 � Basic Git Terminology

Following are the definitions of essential, and very basic Git terms used
throughout our examples. These terms are further partitioned into categories
that reflect the basic structure of the Git repository itself.

2.3.1 � Top-Level Terminology

Repository: The repository is encapsulated, and wholly contained in a single
working directory, and has inside of itself the source code files you want to
maintain and control, the object store, and the index, as shown in Figure 2.1.
The advantage of having the repository self-sufficient inside of its own con-
tainer is that the container can be shared locally and globally.

A repository can also be thought of as a collection of commits, each of which
is an archive of what the project’s working tree looked like at a past date,
whether on your Raspberry Pi, or another one. It also defines HEAD, which
identifies the branch or commit the current working tree stemmed from. It
contains a set of branches and tags to identify certain commits by name.

FIGURE 2.1
The structure of the repository.

Raspberry Pi OS Text Editors, Git, and LXC136

Working Directory: The working directory is any directory on your file
system that has a repository associated with it, typically indicated by the
presence of a subdirectory within it named .git. It includes all the files and
subdirectories in that directory.

Object Store: Holds the changes in your source code over time, as you per-
form more commit operations. It is found in the .git subdirectory of your
working directory. Its primary components or data structures are blobs, trees,
commits, and tags.

The Index (Staging Area): This is a cache, or intermediate area, between
your working tree and your repository. You can add changes to the index and
build your next commit step by step. When your index content is complete,
you then commit from the index. It is also used to keep information during
failed merges (your side, their side, and current state). Unlike other, similar
tools you may have used, Git does not commit changes directly from the
working tree into the repository. Instead, changes are first made in the index.
Think of it as a way of double-checking your additions or modifications, one
by one, before doing a commit. You can also call it the staging area.

Blobs: Each version of a file is represented as a blob. Blob, a contraction of
“binary large object,” is a term that’s commonly used in computing to refer to
some variable or file that can contain any data and whose internal structure
is ignored by the program. A blob is treated as being opaque. A blob holds a
file’s data but does not contain any metadata about the file or even its name.

Trees: A tree object represents one level of directory information. It records
blob identifiers, path names, and a bit of metadata for all the files in one dir-
ectory. It can also reference other subtree objects recursively and thus build a
complete hierarchy of files and subdirectories.

Commits: A commit object holds metadata for each change introduced
into the repository, including the author, committer, commit date, and log
message. Each commit points to a tree object that captures, in one complete
snapshot, the state of the repository at the time the commit was performed.
The initial commit, or root commit, has no parent. Most commits have one
commit parent. However, as we explain later, a commit, called a merge
commit, can reference more than one parent. A commit is the state of your
project, or of your working tree at some point in time. The state of HEAD at
the time your commit is made becomes that commit’s parent. This is what
creates the revision history.

Tags: A tag is also a name for a commit, similar to a branch, except that it
always names the same commit, and can have its own shorthand descriptive

Version Control for Software Code Using Git and GitHub 137

text name. A tag object assigns an arbitrary, human-readable name to a
specific object, usually a commit. Although the 40-digit-long hexadecimal
number is an exact reference to a commit, a more tractable, understandable,
and familiar tag name like Ver-1.0-Beta is more useful for humans.

Working Tree: A working tree is a data structure component that represents
the state of your source code files and directories at any given point in the
history of the repository. Sometimes referenced as the contents of the index, it
can be best thought of for beginners in Git as the data structure tree that loads
or fills the working directory with its files and directories when you either
create or checkout a commit.

Adding: Putting files from the working directory into the index for staging.

Branch: A branch is just a name for a line of commits, also called a refer-
ence. It is the parentage of a commit that defines its history – hence, the typ-
ical notion of a “branch of project development.” It can be simply thought
of as a different line of development in the project. A branch in Git is just
a “label” that points to a commit. You can get the full history through the
parent pointers. A branch by default is only local to your repository.

Checking Out: Bringing a branch of the repository into the working direc-
tory is called checking out.

Directed Acyclic Graph: A DAG is a graph of the state of a repository,
showing all commits and the parent–child relationships of the commits. It
is also a good graphic representation of the branches, tags, and location of
HEAD, if those are included in the graph. See Section 2.3.3 for more complete
and descriptive information.

Master: The main line of development in most repositories is done on
a branch called the master. It is the default name for the main branch of
development.

HEAD: Your repository uses HEAD to define what is currently checked out.
If you check out a branch, HEAD symbolically refers to that branch, indi-
cating that the branch name should be updated after the next commit oper-
ation. If you checkout a specific commit, HEAD refers to that commit only.
This is referred to as a detached HEAD, and occurs, for example, if you check
out a tag name.

Clone: A clone is a replicated copy of the entire repository, with all of its data
structures, files, configurations, and so on.

Raspberry Pi OS Text Editors, Git, and LXC138

Merge: The opposite of branch – that is, the fusion of branches and their
commits.

In-Chapter Exercise

2.3	 What do you think would be the quickest and easiest way to delete an
entire a local repository on your Raspberry Pi system? What command
would you use to accomplish this?

2.3.2 � The Git Staging Model

Git has three main states that your files can be in: modified, staged, and
committed. Modified means that you have changed the file but have not
committed it to your database yet. Staged means that you have designated
a modified file in its current version to go into your next commit snapshot.
Committed means that the data is safely stored in your Git repository data-
base. It is held as a data structure consisting of the four types of objects in
your object store.

The three main sections of a Git project are seen in Figure 2.2. They are the
working directory (where you initially add, create, or modify files), the index
or staging area (where you prepare files to be put into the repository), and
the repository (i.e, in a database held in the .git subdirectory of your working
directory).

The object store, in your .git subdirectory of your working directory, is where
Git stores the metadata and object database for your project. This is the most
important part of Git, and it is what is copied when you clone a repository to
collaborate with other members of a software development team or group.
The working directory contains a single checked-out copy of one version

FIGURE 2.2
Working directory, index (staging area), and repository.

Version Control for Software Code Using Git and GitHub 139

of the project. These files are pulled out of the compressed database in the
repository directory and placed on disk for you to use or modify, using the
git checkout command. The index is a file contained in the .git subdirectory
of your working directory that stores information about what will go into
your next commit.

The basic Git workflow is as follows:

1.	 You place new files into, delete files from, or modify files in your
working directory.

2.	 You stage the files, adding snapshots of them to your index.
3.	 You do a commit, which takes the files as they are in the staging area

and stores that snapshot permanently to your object store.

If a particular version of a file is in the object store, it is considered committed.
If it is modified, but has been added to the index, it is staged. And if it was
changed since it was checked out but has not been staged, it is modified.

2.3.3 � Directed Acyclic Graphs

In order to plan, or visualize the history of a repository structure, a Directed
Acyclic Graph (DAG), or commit graph, can be used. The name of the graph
is derived from the fact that the flow of commits happens along the arrows
of the graph (directed), and there is no way you can form a closed circle
of commits by following the arrows (it is acyclic). We show an example in
Figure 2.3, and will employ this graphic aid to help you visualize the state
and the history of the kinds of commits we show.

FIGURE 2.3
Example of DAG.

Raspberry Pi OS Text Editors, Git, and LXC140

In Figure 2.3, the circles represent commits, and arrows point from a
commit to its parent(s). Time does flow from left to right in a DAG, although
there is no precise correlation in terms of a time or date stamp on any of the
commits. There is just the implication that commits to the left happened
earlier than commits to the right in the graph. But the arrows point from
right to left! For most people, this is counterintuitive; usually we see the
arrow pointing from something that happened first to its successor. In the
DAG, arrows point backward toward a parent from a child. The first commit
has no parents and is called a root commit; it was the initial commit in this
repository’s history. Most commits have a single parent, indicating that they
evolved in a linear way from a single previous state of the project, usually
incorporating a set of related changes or edits. A commit that has multiple
parents is called a merge commit. This indicates that the commit incorporates
the changes made on one branch of the commit graph into a commit on
another branch of the graph.

There are two other important features of a DAG shown in Figure 2.3. The
last commit on the “release” branch has a tag at the top of it, which could con-
tain a descriptive abbreviation of the name of that commit – perhaps “Version
1.0,” or something like that, denoting that this is the first release of the soft-
ware project. Also, the letter “H” represents the position of HEAD, or the
currently checked-out commit on the master branch.

Note
We will omit the arrowheads in such diagrams from now on.

The labels on the right side of this picture – release, master, and dev – are
the named branches. The branch name refers to the latest commit on that
branch. Such a commit is called the tip of the branch. The branch itself is
defined as the collection of all commits in the graph that are reachable from
the tip by following the parent arrows backward along the history to the ini-
tial commit.

2.3.4 � Contents of the Object Store

Now that we’ve illustrated how the working directory is structured, how
commits are staged, and the general layout of a repository as shown in a
DAG, we can take a finer-grained look at the objects contained in the object
store. Figure 2.4 shows the four object types that are found in the object store,
and the relationships between those objects.

Remember from the DAG shown in Figure 2.3 that time flows from left
to right, and an arrow points backward, from a child to a parent. Starting at
the top, we see a rectangle to the right representing the branch name, and
another smaller square representing a tag object. The name by default is
“master,” but can be assigned text that is more meaningful to you. The tag is
a shorthand label that might represent the initial release number, or version

Version Control for Software Code Using Git and GitHub 141

of the software code. The circles represent commits. So this diagram shows
two commits. The triangles represent tree objects, which can be thought of as
directory, or linking information, between commits and blobs. Finally, at the
bottom are a number of blobs, shown linked to the trees that point to them.

In the next section, we discuss a few examples involving Git and GitHub.
Before discussing these examples, we give a brief description of the git
command, taken from the man page on our Raspberry Pi system.

NAME
 git - the stupid content tracker

SYNOPSIS
 git [--version] [--help] [-C <path>] [-c <name>=<value>]
 [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
 [-p|--paginate|-P|--no-pager] [--no-replace-objects] [--bare]
 [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
 [--super-prefix=<path>]
 <command> [<args>]

DESCRIPTION
Git is a fast, scalable, distributed revision control system with an unusually
rich command set that provides both high-level operations and full access to
internals.

FIGURE 2.4
Contents of the object store.

Raspberry Pi OS Text Editors, Git, and LXC142

See man gittutorial to get started, then see man giteveryday, for a useful
minimum set of commands.

You can learn more about individual Git commands with "git help
command". The gitcli man page gives you an overview of the command-line
command syntax.

GIT COMMANDS
We divide Git into high level ("porcelain") commands and low level
("plumbing") commands.

HIGH-LEVEL COMMANDS (PORCELAIN)
We separate the porcelain commands into the main commands and some
ancillary user utilities.You can get man pages for each of these as well.

 Main porcelain commands
 git-add(1)
 Add file contents to the index.
 git-am(1)
 Apply a series of patches from a mailbox.
 git-archive(1)
 Create an archive of files from a named tree.
 git-bisect(1)
 Use binary search to find the commit that introduced a bug.
 git-branch(1)
 List, create, or delete branches.
 git-bundle(1)
 Move objects and refs by archive.
 git-checkout(1)
 Switch branches or restore working tree files.
 git-cherry-pick(1)
 Apply the changes introduced by some existing commits.
 git-citool(1)
 Graphical alternative to git-commit.
 git-clean(1)
 Remove untracked files from the working tree.
 git-clone(1)
 Clone a repository into a new directory.
 git-commit(1)
 Record changes to the repository.
 git-describe(1)
 Give an object a human readable name based on an available ref.
 git-diff(1)
 Show changes between commits, commit and working tree, etc.
 git-fetch(1)
 Download objects and refs from another repository.
 git-format-patch(1)
 Prepare patches for e-mail submission.
 git-gc(1)
 Cleanup unnecessary files and optimize the local repository.

Version Control for Software Code Using Git and GitHub 143

 git-grep(1)
 Print lines matching a pattern.
 git-gui(1)
 A portable graphical interface to Git.
 git-init(1)
 Create an empty Git repository or reinitialize an existing one.
 git-log(1)
 Show commit logs.
 git-maintenance(1)
 Run tasks to optimize Git repository data.
 git-merge(1)
 Join two or more development histories together.
 git-rerere(1)
 Reuse recorded resolution of conflicted merges.
 git-show-branch(1)
 Show branches and their commits.
 git-verify-commit(1)
 Check the GPG signature of commits.
 git-verify-tag(1)
 Check the GPG signature of tags.
 git-whatchanged(1)
 Show logs with difference each commit introduces.
 gitweb(1)
 Git web interface (web frontend to Git repositories).

2.4 � Examples of Using Git and GitHub

We show a few examples in this section describing how to make use of Git
and GitHub.

Each example consists of the following:

1.	 Topic covered
2.	 Objectives
3.	 Introductory material for understanding the contents
4.	 Git commands referenced and used
5.	 Prerequisites
6.	 Detailed procedures
7.	 Conclusions.

Example 2.1: A Short Introduction to Git

Objectives: To briefly illustrate the Git staging model, and how to see
differences between the various states of the parts of the repository.

Raspberry Pi OS Text Editors, Git, and LXC144

Introduction: As shown previously, the workflow in Git basically follows a
pattern of:

Add--> Edit--> Modify--> Stage--> Commit

This is the staging model. In this example, we show the essential Git commands
that allow you to do that, repetitively if necessary. As you do more commits,
you add, in a linear fashion, more nodes on the branch named master down-
stream, after you create the first node in this example. Earlier commits are
called upstream commits. The history of the repository flows downstream
from the initial commit to the latest commit. Similar to the diff command,
the four basic forms of the git diff command allow you to examine and com-
pare the files and directories present during different states the repository has
gone through.

Git Commands Referenced
Table 2.1 shows the Git commands, and a brief description of each, that are
used in this example. It is arranged in the order presented. Any argument
enclosed in < > is a string of text. In order to get a more complete description

TABLE 2.1

Git Commands Referenced

Command Description

git config --global user.name "<name>" Sets the author of commits in this repository
git config --global user. Email
<email_address>

Sets the email address of the author of commits in
this repository

git init Creates the .git directory in the working directory,
initializing the data structures and objects
necessary for a repository to exist

git status Reports the on the differences between files in the
working directory and the index, and what files
are untracked.

git add <file> Stages a file to the index
git commit Takes a snapshot of the index, both files and

directories
git diff Shows the difference between two project states,

in this form meaning your working directory and
the index

git diff <commit_identifier> Shows the differences between your working tree
and a specifically identified commit

git diff –cached <commit_identfier> Shows the differences between staged files in the
index and a specifically identified commit

git diff <commit_id_1> <commit_id_2> Shows the difference between two project states,
in this form between commits commit_id_1 and
commit_id_2

git log –oneline Shows history of commits in an abbreviated
format

Version Control for Software Code Using Git and GitHub 145

of all the commands in the table, you can look at the man page for a particular
command. For example, man git-status gives you a complete man page for
the git status command.

Prerequisites
The following are the prerequisites for carrying out this example:

1.	 Having Git installed on your Raspberry Pi system.
2.	 Reading through and doing the In-Chapter Exercises shown in the

previous subsections.
3.	 Anything you type on the command line is shown in bold type, and

is always followed by pressing the <Enter> key.

Procedures
Do the following steps, in order, to meet the objectives of this example:

1.	 Create a working directory within which your Git repository will
exist, and make that the current working directory.

% mkdir short-git
% cd short-git
%

2.	 Do an initial configuration of Git, in our case for the user “bob.”

% git config --global user.name bob
% git config --global bob.email “bob’s_email_address”
%

The last two lines above assume that you want to have a user name of “bob”
(as shown in the first line), and will use the actual email address of bob in the
second line.

If you give the git config –global --edit command to check this, you will see
the following as output:

% git config --global --edit
[user]

name = bob
[bob]

email = bob’s_email_address

Make sure you quit the default editor without changing anything!

3.	 Initialize a repository in the current working directory.

Raspberry Pi OS Text Editors, Git, and LXC146

% git init
hint: Using 'master' as the name for the initial branch. This default branch name
hint: is subject to change. To configure the initial branch name to use in all
hint: of your new repositories, which will suppress this warning, call:
hint:
hint: git config --global init.defaultBranch <name>
hint:
hint: Names commonly chosen instead of 'master' are 'main', 'trunk' and
hint: 'development'. The just-created branch can be renamed via this command:
hint:
hint: git branch -m <name>
Initialized empty Git repository in /home/bob/short-git/.git/
%

The above command initializes an empty Git repository in /usr/home/bob/
short-git/.git/.

4.	 Create and save a short C program, named hello.c, in the current
working directory, as shown:

% cat > hello.c
#include <stdio.h>
int main() {
 // printf() displays the string inside quotation
 printf("Hello, World!");
 return 0;
}
<Ctrl> C
%

5.	 Use Geany from the Raspberry Pi menu > Programming, to compile
hello.c, and build it, then list the files in the current working direc-
tory. You should have hello.c, hello.o, and hello in the directory.

6.	 Use the git status command to examine the status of the repository at
this point. It will show you that you are on the branch named master,
you can do your initial commit, the untracked files are hello.o and
hello.c, and you can stage those files by using git add.

% git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

hello
hello.c
hello.o

nothing added to commit but untracked files present (use "git add" to track)
%

Version Control for Software Code Using Git and GitHub 147

7.	 Stage only the source code file hello.c with the git add command.

% git add hello.c
%

8.	 Now do your initial commit, and in the editor (nano for us) that opens,
add a message to go along with this commit.

% git commit
[master (root-commit) 0a93b9e] Hello, World!
1 file changed, 6 insertions(+)
create mode 100644 hello.c

9.	 Look at the status of the repository.

% git status
On branch master
Untracked files:

(use "git add <file>..." to include in what will be committed)
hello
hello.o

nothing added to commit but untracked files present (use "git add" to track)
%

10.	 Now let’s make a change in the file hello.c, and track the changes with
some of the forms of the git diff command. First, edit the file with your
favorite text editor, and on the fourth line, change the text as shown in
the following command output:

% nano hello.c
#include <stdio.h>
int main() {

// printf() displays the string inside quotation
printf("Hello, Raspberry Pi Administrator!");
return 0;

}
%

11.	 Examine the status of the repository. The output shows that the file
has been changed since the last commit, but has not been staged for a
new commit yet!

% git status
On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: hello.c

Raspberry Pi OS Text Editors, Git, and LXC148

Untracked files:
(use "git add <file>..." to include in what will be committed)

hello
hello.o

no changes added to commit (use "git add" and/or "git commit -a")
%

12.	 Now we use the git diff command to see the difference between what
is in the working directory and the index.

% git diff
diff --git a/hello.c b/hello.c
index 34d86c4..cf6bae2 100644
--- a/hello.c
+++ b/hello.c
@@ -1,6 +1,6 @@
#include <stdio.h>
int main() {
 // printf() displays the string inside quotation
- printf("Hello, World!");
+ printf("Hello, Raspberry Pi Administrator!");
return 0;
}
%

13.	 Now stage the file hello.c in preparation for a new commit.

% git add hello.c
%

14.	 If you execute git diff, since there are no differences between what is
in the working directory and the index, you get no output!

% git diff
%

15.	 Now use another form of the command: git diff –cached commit,
to see the differences between the files staged in the index and any
given commit. If you omit the commit argument, HEAD is used as
the default commit. Remember from the glossary that HEAD is a ref-
erence to the current commit. The output should be exactly the same
as from step 12. That’s because what is in the working directory is
the current commit as seen in the object store: HEAD, the current last
commit.

Version Control for Software Code Using Git and GitHub 149

% git diff --cached
diff --git a/hello.c b/hello.c
index 34d86c4..cf6bae2 100644
--- a/hello.c
+++ b/hello.c
@@ -1,6 +1,6 @@
#include <stdio.h>
int main() {

// printf() displays the string inside quotation
- printf("Hello, World!");
+ printf("Hello, Raspberry Pi Administrator!");
return 0;
}
%

16.	 Now commit the changes, in the editor, add a message line to describe
the new commit.

% git commit
[master 6112bd0] Added Raspberry Pi Administrator to the message.
1 file changed, 1 insertion(+), 1 deletion(-)
%

17.	 Examine the history of commits with the git log command in an
abbreviated format with the --oneline option.

% git log --oneline
6112bd0 (HEAD -> master) Added Raspberry Pi Administrator to the message.
0a93b9e Hello, World!
%

18.	 See the differences between the two commits we have done so far by
using git diff commit1 commit2, where commit1 can be referred to as
0a93b9e, and commit2 can be referred to as 6112bd0. These references
are seen in the git log –oneline command output in step 17.

% git diff 0a93b9e 6112bd0
diff --git a/hello.c b/hello.c
index 34d86c4..cf6bae2 100644
--- a/hello.c
+++ b/hello.c
@@ -1,6 +1,6 @@
#include <stdio.h>
int main() {
 // printf() displays the string inside quotation
- printf("Hello, World!");
+ printf("Hello, Raspberry Pi Administrator!");
return 0;
}
%

Raspberry Pi OS Text Editors, Git, and LXC150

Notice the changes are compared one after the other, and in different colors
as well.

19.	 Examine with git diff the differences in only commit 0a93b9e.

% git diff 0a93b9e
diff --git a/hello.c b/hello.c
index 34d86c4..cf6bae2 100644
--- a/hello.c
+++ b/hello.c
@@ -1,6 +1,6 @@
#include <stdio.h>
int main() {
 // printf() displays the string inside quotation
- printf("Hello, World!");
+ printf("Hello, Raspberry Pi Administrator!");
return 0;
}
%

20.	 Repeat steps 4–19 as many times as you want to, each time creating
or modifying new or existing files in the working directory. Also, it
would be helpful to repeat this entire example several times, in several
new directories with newly created repositories to gain practice. Each
time, you stage the files with git add and then commit the additions
or modifications with git commit. Then examine the differences as
shown with git diff and the variations we’ve shown above. As you
do more commits, you are adding, in a linear fashion, more and more
nodes downstream on the branch named master.

Conclusions: This short example illustrated the staging model in Git. It
introduced a small set of Git commands that allowed you to implement the
model, once or repetitively, and see the differences between commits.

In-Chapter Exercise

2.4	 The git diff command is similar to what other Linux command?

Example 2.2: Creating, Editing, and Branching a Git Repository

Objectives: To introduce the Git commands that create, edit, and allow you
to develop a C source code project along different branches in a Git reposi-
tory. To show how different branches may be merged.

Introduction: In order to appreciate, and effectively utilize the Git concepts
shown in the previous example, we present another complete Git example

Version Control for Software Code Using Git and GitHub 151

showing repository creation, editing, branching, and merging. Maintaining
source code files and their history was, and primarily still is, the objective of
deploying Git. In the following steps, we create C source code files as needed,
with a text editor in the directory that has a Git repository in it. This method
of introducing the files into the working directory does not preclude pla-
cing those files in that directory by any other viable means, for example by
copying them from another directory, or even another file system. We then
edit those files to change their content and commit those changes. Finally, we
show how to create branches along which different lines of development of
the source code can proceed, and how to merge different branches. We try to
emphasize the staging model, or the edit-stage-commit workflow model, as
detailed in the previous example, throughout the current example.

Note
We have purposefully not done commits and merges of branches that would
produce merge conflicts. The mechanisms and strategies for resolving con-
tent conflicts are more usefully covered in other Git reference sources beyond
the scope of this example, just as the mechanisms and strategies for resolving
context conflicts are.

Git Commands Referenced: Table 2.2 shows the Git commands, and a brief
description of each, that are used in this example. It is arranged in the order
presented. Any argument enclosed in < > is a string of text. In order to get a
more complete description of all the commands in the table, you can look at
the man page for a particular command. For example, man git-status gives
you a complete man page for the git-status command.

Prerequisites: The following are the prerequisites for carrying out this
example:

1.	 A recent version of Git available on your system, executable by an
ordinary user from the command line. On our Raspberry Pi 4B and
400, Git was preinstalled.

2.	 Being able to use a text editor, such as nano, vi, vim, or emacs, to
create C program source code files.

3.	 Having reviewed and done the In-Chapter Exercises above on Git
concepts. This not only gives you a conceptual, top-down view of
Git, but also shows you how to obtain Git help and use the man
pages on the system for Git commands.

4.	 Completion of Example 2.1.

Procedures: Do the steps shown, in the order presented, to meet the objectives
of this example. This is a long and detailed example. If you make mistakes,

Raspberry Pi OS Text Editors, Git, and LXC152

which for a beginner not familiar with the commands is understandable (they
are irrevocable,) simply start over again in a new directory that has another
name than the one shown in step 1!

1.	 The first step in creating a repository to retain a history of your source
code project files is to create a directory within which the repository
can exist. We name this directory first-git. Then you can do a very
elementary configuration of Git to identify yourself to the system. In
our case, we do this for the user “bob”.

If you have indeed done Example 2.1, you don’t have to type in the third
and fourth commands!

TABLE 2.2

Git Commands Referenced

Command Description

git init Creates a Git repository in the current directory
git status Views the status of each file in a repository
git add <file> Stages a file for the next commit
git commit Commits the staged files with a descriptive

message
git log Views a repository’s commit history
git config --global user.name "<name>" Defines the author name to be used in all

repositories
git config --global user. Email <email> Defines the author email to be used in all

repositories
git checkout <commit-id> Moves a previous commit into the working

directory
git tag -a <tag-name> -m
"<description>"

Creates an annotated tag pointing to the most
recent commit

git revert <commit-id> Undoes the specified commit by applying a new
commit

git reset –hard Resets tracked files to match the most recent
commit

git clean –f Removes untracked files
git reset --hard / git clean –f Permanently undoes uncommitted changes
git branch List all branches
git branch <branch-name> Create a new branch using the working directory

as its base
git checkout <branch-name> Makes the working directory and HEAD match the

specified branch
git merge <branch-name> Merges a branch into the checked-out branch
git branch -d <branch-name> Deletes a branch
git rm <file> Removes a file from the working directory (if

applicable) and stop tracking that file

Version Control for Software Code Using Git and GitHub 153

% mkdir first-git
% cd first-git
% git config --global user.name bob
% git config --global bob.email “bob’s_email_address”
%

The last two lines above assume that you want to have a user named “bob”
(as shown in the first line), and will use bob’s email address in the second
line. Of course, you can substitute your name and email address in place of
those shown.

If you give the git config –global --edit command to check this, you will see
the following as output:

% git config --global --edit
[user]
 name = bob
[bob]
 email = bob’s_email_address

Make sure you quit the default editor without changing anything!

2.	 Create a C source code file named first.c with the text editor of your
choice. Save it in the current working directory, which should be
first-git.

3.	 The next command initializes the repository, which enables the Git
program in the current working directory. There is now a .git subdir-
ectory in first-git that stores all the tracking data for our repository.
The .git folder is the only difference between a Git repository and
an ordinary folder, so deleting it will turn your project back into a
collection of files that are not version-controlled.

% git init
hint: Using 'master' as the name for the initial branch. This default branch name
hint: is subject to change. To configure the initial branch name to use in all
hint: of your new repositories, which will suppress this warning, call:
hint:
hint: git config --global init.defaultBranch <name>
hint:
hint: Names commonly chosen instead of 'master' are 'main', 'trunk' and
hint: 'development'. The just-created branch can be renamed via this command:
hint:
hint: git branch -m <name>
Initialized empty Git repository in /home/bob/first-git/.git/
%

4.	 Before we try to start creating revisions, view the status of our new
repository. Execute the following command:

Raspberry Pi OS Text Editors, Git, and LXC154

% git status
On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

first.c

nothing added to commit but untracked files present (use "git add" to track)
%

This status message tells you that we are about to make our initial commit,
and that we have nothing to commit but untracked files. An untracked file
is one that is not under version control. Git doesn’t automatically track files,
because there are often project files that we don’t want to keep under version,
revision control. These might be binaries created by a C program, compiled
Python modules (.pyc files), or any other unnecessary files. To keep a project
small and efficient, you should only track source files, and omit anything that
can be generated from those files. This latter content is part of the build pro-
cess (compilation), not revision control.

5.	 The next step stages the file first.c in preparation for doing the first
commit.

% git add first.c
%

We added first.c to the snapshot of the index for the next commit. Git’s term
for creating a snapshot is called staging because we can add or remove mul-
tiple files before actually committing it to the project history. The index holds
a snapshot of the content of the working tree, and it is this snapshot that is
taken as the contents of the next commit. Thus, after making any changes to
the working directory and before running the commit command, you must
use the add command to add any new or modified files to the index.

6.	 Now we examine the repository status with the git status command.

% git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)
 new file: first.c
%

Version Control for Software Code Using Git and GitHub 155

Now, instead of first.c being an untracked file, it is shown as being staged to
be committed.

7.	 We are ready to commit.

% git commit
%

The first part of committing is to use the default text editor you are put into
by Git to add the text on the first line as “The initial commit.” Then save and
quit the editor.

[master (root-commit) ddd2dff] The initial commit
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 first.c
%

8.	 We need a new command, git log, to view the project revision history.
When you execute this command, Git will output information about
our first commit:

% git log
commit ddd2dff8ae8aeb6ebb3715d57ad2fea96d0334c8 (HEAD -> master)
Author: bob <bobk48@gmail.com>
Date: Sun Jul 9 19:10:46 2023 -0700

The initial commit
%

9.	 We continue to add new C source code files to our working directory.
Create two C source code files named second.c and third.c with the
text editor of your choice. Save them in the current working directory,
which should be first-git.

10.	 We now need to stage those two new files, in preparation for
committing them to our repository.

% git add second.c third.c
%

11.	 Take a look at the status of the repository.

% git status
On branch master
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
new file: second.c
new file: third.c

%

Raspberry Pi OS Text Editors, Git, and LXC156

12.	 Take a look at the history of the repository.

% git log
commit 74088f645993f3df16f27565628ea38c271357e0
Author: bob <your_email_address>
Date: Mon Nov 10 18:59:44 2014 -0800

The initial commit
%

13.	 Commit the two new files.

% git commit

Use the text editor that automatically launches to add second.c and third.c
added as the first line in the file. Then save the file and quit the text editor.

[master 138b11c] second.c and third.c added
2 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 second.c
create mode 100644 third.c
%

14.	 The git add command is used to stage new files. It can also be used
to stage modified files. So, use a text editor to modify the previously
created C source code files first.c, second.c, and third.c.

15.	 Then take a look at the status of the repository. Git lists the tracked
files as being modified.

% git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: first.c
modified: second.c
modified: third.c

no changes added to commit (use "git add" and/or "git commit -a")
%

16.	 Stage those modified files.

% git add first.c second.c third.c
%

17.	 Now commit the modified, staged files. In the text editor, add a
description that you feel is appropriate for this commit.

Version Control for Software Code Using Git and GitHub 157

% git commit
[master dd57a94] Modified all three C files.
3 files changed, 3 insertions(+)
%

18.	 Our history can now be shown as follows:

% git log --oneline
dd57a94 (HEAD -> master) Modified all three C files.
138b11c second.c and third.c added
ddd2dff The initial commit
%

The git log command comes with formatting options. We use the --oneline
flag, git log --oneline.

19.	 Condensing output to a single line is one way to get an overview of a
repository. Another way is to pass a filename to git log:

% git log --oneline second.c
dd57a94 (HEAD -> master) Modified all three C files.
138b11c second.c and third.c added
%

20.	 Let’s take a little break here to see what we’ve accomplished in this
example so far. We’ve recorded different versions of a project into a Git
repository. Maintaining these copies has provided us with backups.
Critically, we can have independent versions of the state of the project
that can be used for the purposes of creating multiple lines, tracks, or
“branches” of code development. Our next objective will be to view
the previous states of a project, revert back to them, and reset uncom-
mitted changes if necessary. First, let’s return to the state of the reposi-
tory at the commit “138b11c second.c and third.c added”(step 18). The
HEAD is now at dd57a94.

The git checkout command will position HEAD at any commit we desire,
going all the way back to the initial commit!

% git checkout dd57a94
Note: switching to 'dd57a94'.

You are in 'detached HEAD' state. You can look around, make experi-
mental changes and commit them, and you can discard any commits you
make in this state without impacting any branches by switching back to a
branch.

Raspberry Pi OS Text Editors, Git, and LXC158

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command. Example:

git switch -c <new-branch-name>

Or undo this operation with:

git switch -

Turn off this advice by setting config variable advice.detachedHead to false

HEAD is now at dd57a94 Modified all three C files.
%

As the Git messaging has told you, you are in the detached HEAD state. You
can look around, make experimental changes and commit them, and you can
discard any commits you make in this state without impacting any branches
by performing another checkout.

Optional: If you want to create a new branch to retain new commits you want
to create, you can (now or later) by using -b with the checkout command
again. For example:

% git checkout -b new_branch_name

21.	 Let’s go back to the initial commit.

% git checkout ddd2dff
Previous HEAD position was dd57a94 Modified all three C files.
HEAD is now at ddd2dff The initial commit
%

22.	 We can check the status of the repository at this point.

% git status
HEAD detached at ddd2dff
nothing to commit, working tree clean
%

23.	 In all previous steps, we worked on the master branch, where our
second and third commits reside. To retrieve our complete history, we
just have to check out this entire branch. This is a very brief introduction
to branches, but it’s all we need to know to navigate between commits.
The following command makes Git update our working directory to
reflect the state of the master branch’s snapshot. It recreates the second.c
and third.c files for us, and the content of first.c is updated as well. We’re
now back to the current state of the entire commits history of the project.

% git checkout master
Previous HEAD position was ddd2dff The initial commit
Switched to branch 'master'
%

Version Control for Software Code Using Git and GitHub 159

24.	 Tags are references to milestones, or releases in a software project.
They let developers easily browse and check out important revisions.
For example, we can now use a tag named “v1.0” as a label referring
to the third commit instead of its random number ID. To view a list of
existing tags, execute the git tag command without any arguments.
We can label this a stable version of the C program modules, if indeed
it is one!. The -a option tells Git to create an annotated tag, which lets
us record our name, the date, and a descriptive message, specified via
the -m option. We can finalize it by tagging the most recent commit
with a version number as follows:

% git tag -a v1.0 -m "Stable version of the software"
%

25.	 Now we can add C modules to the working directory that allow us to
experiment, without committing those modules. Use the text editor
of your choice to create an experimental C source code file named
experiment.c, and save it in the current working directory.

26.	 Then stage that file.

% git add experiment.c
%

27.	 Now, let’s check on the status of the repository.

% git status
On branch master
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
new file: experiment.c

%

28.	 Commit that file, and in the editor, add the label “Add an experi-
mental C program.”

% git commit
[master 0301d6a] Add an experimental C program
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 experiment.c
%

29.	 Now let’s look at a history of commits to this repository.

% git log
commit 0301d6a443bb08a44621093fd443bb8e027ef1d9 (HEAD -> master)
Author: bob <bobk48@gmail.com>
Date: Mon Jul 10 09:32:30 2023 -0700

Raspberry Pi OS Text Editors, Git, and LXC160

Add an experimental C program
commit dd57a94ebf3514bb4cbcb8fcb307f1fe92ba8ce9 (tag: v1.0)
Author: bob <bobk48@gmail.com>
Date: Mon Jul 10 06:37:40 2023 -0700

Modified all three C files.

commit 138b11c389046249ef16e7176ee68c1dc7d70995
Author: bob <bobk48@gmail.com>
Date: Mon Jul 10 06:27:44 2023 -0700

second.c and third.c added

commit ddd2dff8ae8aeb6ebb3715d57ad2fea96d0334c8
Author: bob <bobk48@gmail.com>
Date: Sun Jul 9 19:10:46 2023 -0700

The initial commit

%

30.	 Let’s go back to our stable revision. Remember that the v1.0 tag is now
a shortcut to the third commit’s ID.

% git checkout v1.0
Note: switching to 'v1.0'.

You are in 'detached HEAD' state. You can look around, make experimental
changes, and commit them, and you can discard any commits you make
in this state without impacting any branches by switching back to a branch.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command. Example:

git switch -c <new-branch-name>

Or undo this operation with:

git switch -

Turn off this advice by setting config variable advice.detachedHead to false

HEAD is now at dd57a94 Modified all three C files.
%

As the Git message states:“You are in detached HEAD state. You can look
around, make experimental changes and commit them, and you can dis-
card any commits you make in this state without impacting any branches by
performing another checkout,”

and,

Version Control for Software Code Using Git and GitHub 161

Optional: If you want to create a new branch to retain commits you create,
you may do so (now or later) by using -b with the checkout command again.
For example:

% git checkout -b new_branch_name

31.	 After seeing the stable version of the repository, you decide to scrap
the C code experiment you started in step 25. But, before you undo the
changes to the repository, you need to return to the master branch. If
you didn’t, all of your updates would be on some nonexistent branch.
You should never make changes directly to a previous revision!

% git checkout master
Previous HEAD position was dd57a94 Modified all three C files.
Switched to branch 'master'
%

32.	 Now you can again examine the history of your repository with the git
log command. This yields the shorthand name of the last commit we
executed entitled, “Add an experimental C program.”

% git log --oneline
0301d6a (HEAD -> master) Add an experimental C program
dd57a94 (tag: v1.0) Modified all three C files.
138b11c second.c and third.c added
ddd2dff The initial commit
%

33.	 Now you want to restore your stable release by removing the most
recent commit.

Note
Make sure to change 0301d6a to the ID supplied by your system’s Git for the
experimental C code commit before running the next command. Also, the
command we use, git revert, undoes the commit we specify as its argument.

% git revert 0301d6a

You are put into the default text editor, which allows you to change the title
of the reverted commit. Leave the commit title the same, save the file and quit
the editor.

Removing experiment.c
[master 290ec3e] Revert "Add an experimental C program"
1 file changed, 0 insertions(+), 0 deletions(-)
delete mode 100644 experiment.c

%

Raspberry Pi OS Text Editors, Git, and LXC162

34.	 Look at what files are in the working directory, and also see a history
of your commits.

% ls
first.c second.c third.c

% git log --oneline
290ec3e (HEAD -> master) Revert "Add an experimental C program"
0301d6a Add an experimental C program
dd57a94 (tag: v1.0) Modified all three C files.
138b11c second.c and third.c added
ddd2dff The initial commit
%

Instead of deleting the “Add an experimental C program commit,” Git
undoes the changes it contains, then adds an additional commit showing the
reversion. So, your fifth and fourth commits represent the exact same snap-
shot! Git is designed to never lose history: the fourth snapshot is still accessible,
just in case you want to continue developing it.

35.	 Now you can try to add a file that we definitely will want to get rid of
completely. Use your text editor to create a file named dumbc.c, and
then edit first.c to make a small change in it. Now look at the status of
the repository.

% git status
On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: first.c

Untracked files:
(use "git add <file>..." to include in what will be committed)

dumb.c

no changes added to commit (use "git add" and/or "git commit -a")
%

36.	 You now have a tracked file, and an untracked file, that need to be
changed. First, you’ll take care of the tracked first.c.

% git reset --hard
HEAD is now at 290ec3e Revert "Add an experimental C program"
%

This changed all tracked files to match the most recent commit. You can
also pass a filename to this command to reset only that file. For example, git
reset --hard first.c. The --hard flag is what actually updates the file. Running

Version Control for Software Code Using Git and GitHub 163

git reset first.c without any flags will simply destage the file, leaving its
contents as is. In either case, git reset only operates on the working directory
and the staging area, so our git log history remains unchanged.

37.	 Now remove the dumb.c file. Of course, we could manually delete it,
but using Git to reset changes eliminates human errors when working
with several files in large teams. Run the following command:

% git clean -f
Removing dumbc.c
%

This will remove all untracked files. With dumb.c gone, git status should
now tell you that you have a “clean” working directory, meaning our project
repository matches the most recent commit.

Note
Be careful with git reset and git clean. Both operate on the working directory,
not on the committed snapshots. Unlike git revert, they permanently undo
changes, so make sure you really want to delete what you’re working on
before you use them!

38.	 To begin creating and using branches, list what branches exist at
this point.

% git branch
* master
%

This command displays the only current branch, named * master. The master
branch is Git’s default branch, and the asterisk next to it means that it is cur-
rently checked out. This means that the most recent snapshot in the master
branch resides in the working directory. There is only one working directory
for each project, and additionally, only one branch can be checked out at a
time.

39.	 Look at some previous commits before you begin creating a new
branch. First get a shorthand list of the repository commit history.

% git log --oneline
290ec3e (HEAD -> master) Revert "Add an experimental C program"
0301d6a Add an experimental C program
dd57a94 (tag: v1.0) Modified all three C files.
138b11c second.c and third.c added
ddd2dff The initial commit
%

Raspberry Pi OS Text Editors, Git, and LXC164

40.	 Then checkout the “Add an experimental C program” commit.

% git checkout 0301d6a
Note: switching to '0301d6a'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make
in this state without impacting any branches by switching back to a branch.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command. Example:

git switch -c <new-branch-name>

Or undo this operation with:

git switch -

Turn off this advice by setting config variable advice.detachedHead to false

HEAD is now at 0301d6a Add an experimental C program
%

The HEAD normally is on the tip of a development branch, meaning you are
on that branch. But when we checked out the previous commit, the HEAD
moved to the middle of the branch. We are no longer on the master branch,
since it contains more recent snapshots than the HEAD. This is reflected in
the Git branch output from the previous command, which tells us that we’re
currently not on a branch.

41.	 You can now create a branch from this commit. Name it “test.”

% git branch test
%

42.	 To be able to add commits to the new branch, move onto that branch
by checking it out.

% git checkout test
Switched to branch 'test'
%

43.	 Use your favorite text editor to make minor changes to the file
experiment.c, so that we can begin development along this branch. Be
sure to save the modified experiment.c!

44.	 Now stage the modified experiment.c.

Version Control for Software Code Using Git and GitHub 165

% git add experiment.c
% git status
On branch test
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
 modified: experiment.c

%

45.	 The following commit will create a fork in our project repository,
as shown in Figure 2.5. Label the commit in the editor “Modified
experiment.c.”

% git commit
[test ef75671] Modified experiment.c
1 file changed, 1 insertion(+)
%

46.	 Now take a look at the history of your commits, in abbreviated form,
with the following command:

% git log --oneline
ef75671 (HEAD -> test) Modified experiment.c
0301d6a Add an experimental C program
dd57a94 (tag: v1.0) Modified all three C files.
138b11c second.c and third.c added
ddd2dff The initial commit
%

The history before the fork is shown as part of the new branch. Since we are
on the branch test, the test history spans all the way back to the first commit.
The project repository has a complex history, but each individual branch
still has a linear history. Snapshots and commits occur one after another in a

FIGURE 2.5
Forked project repository.

Raspberry Pi OS Text Editors, Git, and LXC166

linearly evolving fashion. This means that we can work within branches in
the same way we did in steps 1–37.

47.	 Add one more snapshot to the test branch. Use the mv command to
rename experiment.c to experiment2.c, then use the following Git
commands to update the repository.

% mv experiment.c experiment2.c
% git status
On branch test
Changes not staged for commit:

(use "git add/rm <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
 deleted: experiment.c

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 experiment2.c

no changes added to commit (use "git add" and/or "git commit -a")

% git rm experiment.c
rm 'experiment.c'
% git status
On branch test
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 deleted: experiment.c

Untracked files:
(use "git add <file>..." to include in what will be committed)

 experiment2.c
% git add experiment2.c
% git status
On branch test
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
 renamed: experiment.c -> experiment2.c

%

The git rm command tells Git to stop tracking experiment.c (and delete it
if necessary), and git add starts tracking experiment2.c. The “renamed:
experiment.c -> experiment2.c” message in the final status output shows
us that Git knows when we are just renaming a file. You could have made
editing changes to experiment.c to justify moving the branch forward with
another commit. Your snapshot is staged and ready to be committed.

48.	 We now do a new commit along the new branch. In the editor, provide
the label “Renamed experiment.c to experiment2.c.”

Version Control for Software Code Using Git and GitHub 167

% git commit
[test 326fed6] Renamed experiment.c to experiment2.c
1 file changed, 0 insertions(+), 0 deletions(-)
rename experiment.c => experiment2.c (100%)
%

49.	 Look at the history of commits along this branch. Your project reposi-
tory should now now look as shown in Figure 2.6.

% git log --oneline
326fed6 (HEAD -> test) Renamed experiment.c to experiment2.c
ef75671 Modified experiment.c
0301d6a Add an experimental C program
dd57a94 (tag: v1.0) Modified all three C files.
138b11c second.c and third.c added
ddd2dff The initial commit
%

50.	 Now fork another branch off the master branch. In preparation for
doing this, return the HEAD to the master branch by using the git
checkout command.

% git checkout master
Switched to branch 'master'
%

51.	 Now that you are back on the master branch, list the branches in this
repository.

% git branch
* master
test

% git log --oneline
290ec3e (HEAD -> master) Revert "Add an experimental C program"
0301d6a Add an experimental C program

FIGURE 2.6
DAG of project repository.

Raspberry Pi OS Text Editors, Git, and LXC168

dd57a94 (tag: v1.0) Modified all three C files.
138b11c second.c and third.c added
ddd2dff The initial commit
%

52.	 You will now create a new branch, forked off the master branch, and
named “modules.”

% git branch modules
%

53.	 Make the modules branch the current branch.

% git checkout modules
Switched to branch 'modules'
%

54.	 In your favorite text editor, create a C program file named “module1.c.”
Then stage module1.c.

% git add module1.c
%

55.	 Check the status of the repository.

% git status
On branch modules
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
 new file: module1.c

%

56.	 Now commit module1.c, and in the editor, label the commit “Added
module1.c.”

% git commit
[modules 0aec443] Added module1.c
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 module1.c
%

57.	 In your favorite text editor, add a reference to the C code in module1.c
into the files first.c, second.c, and third.c.

58.	 Stage the changes you made in first.c, second.c, and third.c.

% git add first.c second.c third.c
%

Version Control for Software Code Using Git and GitHub 169

59.	 Check the status of the project repository.

% git status
On branch modules
Changes to be committed:
(use "git restore --staged <file>..." to unstage)

modified: first.c
modified: second.c
modified: third.c

%

60.	 Commit the changes to the files first.c, second.c, and third.c, and in the
editor, label this commit “Add references to module1.c.”

% git commit
[modules 4321414] Added references to module1.c
3 files changed, 3 insertions(+)
%

61.	 Now examine the history of commits along this branch.

% git log --oneline
4321414 (HEAD -> modules) Added references to module1.c
0aec443 Added module1.c
290ec3e (master) Revert "Add an experimental C program"
0301d6a Add an experimental C program
dd57a94 (tag: v1.0) Modified all three C files.
138b11c second.c and third.c added
ddd2dff The initial commit
%

A DAG of your project repository at this point is shown in Figure 2.7.

FIGURE 2.7
DAG of repository with three branches.

Raspberry Pi OS Text Editors, Git, and LXC170

62.	 In preparation for merging the modules branch with the master
branch, do the following. First, switch to the master branch, then
check the files in the working directory, and finally look at the commit
history of the repository as seen along the master branch.

% git checkout master
Switched to branch 'master'

% ls
first.c second.c third.c

% git log --oneline
290ec3e (HEAD -> master) Revert "Add an experimental C program"
0301d6a Add an experimental C program
dd57a94 (tag: v1.0) Modified all three C files.
138b11c second.c and third.c added
ddd2dff The initial commit
%

63.	 You will now merge the modules branch with the master branch. This
command always merges into the current branch. The modules branch is
unchanged. Check the history of commits with git log --oneline to make
sure that modules’ history of commits has been added to master’s his-
tory of commits. The DAG representing the final state of the repository
is shown in Figure 2.8.

% git merge modules
Updating 290ec3e..4321414
Fast-forward
first.c | 1 +
module1.c | 0
second.c | 1 +

FIGURE 2.8
DAG of final state of project repository.

Version Control for Software Code Using Git and GitHub 171

third.c | 1 +
4 files changed, 3 insertions(+)
create mode 100644 module1.c

% git log --oneline
4321414 (HEAD -> master, modules) Added references to module1.c
0aec443 Added module1.c
290ec3e Revert "Add an experimental C program"
0301d6a Add an experimental C program
dd57a94 (tag: v1.0) Modified all three C files.
138b11c second.c and third.c added
ddd2dff The initial commit
%

Conclusions: In this example, we created C source code files as needed with
a text editor in the directory that has the Git repository in it. We then edited
those files to change their content and committed those changes. Finally, we
showed how to create branches along which different lines of development
of the source code can proceed, and how to merge different branches. We
emphasized the staging model, or edit-stage-commit workflow model, as
detailed in the previous example, throughout this example.

In-Chapter Exercises

2.5	 Under what circumstances would you want to track, or stage, other
kinds of files in a Git repository related to the C program develop-
ment and build process?

2.6	 If, after step 63, you were to create a new text file in the working
directory, but not stage and commit, would that file still be in the
working directory after you do a checkout of the initial commit?
Why/why not?

2.5 � GitHub as a Remote Repository

GitHub is a popular remote repository where you can easily and securely
work together with a team to do the development and maintenance of a soft-
ware project. We first provide some background information on Git URLs
and refspecs. Then, in this section’s examples, we show the basics of how to
take files from a local repository and put them on a GitHub repository using
the command line in a terminal window. We also show how to take files from
GitHub and retrieve them back onto a local repository. The basis and ground-
work for these operations are expedited on the command line with the Git
commands we have illustrated thus far.

Raspberry Pi OS Text Editors, Git, and LXC172

Therefore, having completed the previous subsections on Git is neces-
sary to your understanding of the GitHub interactions shown here. We also
introduce new Git commands to allow you to work with a GitHub remote
repository.

We do not show how to get an account on GitHub, or how to create a new
repository using the web-based GUI interface of GitHub. It is assumed in all
of the examples that you can do those two basic steps via a Web browser at
www.github.com, and can navigate to the URL we show. The repository on
your system is called the local, or current repository, and a repository created
and stored at GitHub is called the remote repository.

You can easily and expediently use the git remote command and its options
and arguments to create, remove, manipulate, and view a remote repository
at GitHub. For example, to add a remote reference specification, or refspec,
to the current local repository, you can use the git remote add command
with the proper options and arguments. You can also look at what has been
defined as a remote repository in the .git/config file. All the remote reposi-
tories you added are recorded in the .git/config file, and can be manipulated
using the git config command, and its options and arguments.

The basic Git commands that refer to remote repositories are the following:

git clone Transfers a remote repository into the local repository
git fetch Retrieves objects and their related data structures from a remote

repository
git pull Merges changes from a remote repository into a corresponding local

branch
git push Copies objects and their related data structures to a remote

repository
git ls-remote Lists references in a given remote repository

2.5.1 � Git URLs

With the git remote command, Git names the argument forms of reference to
the remote repository as Uniform Resource Locators (URLs). A Git URL that
refers to a repository on a local file system can be:

/pathname/repo.git
file:///pathname/repo.git

The first reference form uses hard links within the Raspberry Pi file system
to directly share exactly the same objects between the current and remote
repository. The second, and preferred form, copies the data instead of sharing
it via links.

A Git URL that refers to a repository on a remote system can take several
forms. These forms include http, https, ssh, scp, rsync, and ftp. The primary
and preferred ways of designating a remote repository using http or https,
and which we use in the examples, are as follows:

http://www.github.com

Version Control for Software Code Using Git and GitHub 173

http://github.com/pathname/repository_name
https://github.com/pathname/repository_name

where pathname is a username on GitHub, and repository_name is a specific
named repository for that user. The named repository does not have to end in
with a .git suffix. These two URL forms are most favored by GitHub.

Server firewalls usually allow the http port 80 and https port 443 to remain
open, and by default on the Raspberry Pi, port 22 is for ssh.

For a remote repository whose data must be retrieved across a wide area
network, such as the Internet, you can also use the Git native protocol, which
refers to the custom protocol used internally by Git to transfer data. Examples
of a native protocol URL include:

git://example.com/pathname/repo.git
git://example.com/~user/pathname/repo.git

These forms are used by Git to publish repositories for anonymous read. You
can both clone and fetch using these URL forms.

The Git native protocol can be tunneled over an ssh connection using the
following URL specification:

ssh://[user@]github.com[:port]/pathname/repo.git

where user@ is the client-side ssh username on the local system, port is the
optional designation of a port on the client other than the default port 22,
pathname is the username on GitHub, and repo.git is the name of the specific
repository on GitHub.

Git also supports a URL form with scp-like syntax. It is identical to the ssh
forms, but there is no way to specify a port parameter:

[user@]example.com:/pathname/repo.git

For a more complete list and explanation of the remote URL specifications,
use the command man git-clone. Then, you should page down to the URL
specifications section of that man page.

2.5.2 � Understanding Remote Pull and Push Operations

Git and GitHub workflow techniques, branching tactics and strategies, and
particularly the resolution of merge conflicts when working with those
techniques and strategies, can be very complicated. Those things are also
as varied as the different kinds of software development and maintenance
people work on, the size of the development teams, and their experience
and goals. For the basic Git commands that allow you to work with remote
repositories, it is helpful for a beginner to know some background material
for those commands discussed in the previous sections. Since most of your

http://github.com
https://github.com

Raspberry Pi OS Text Editors, Git, and LXC174

workflow as a beginner involves using the git push and git pull commands,
it is very helpful to know what the underlying assumptions and bases for
those commands are.

After you have cloned a remote repository to a local one, the commands git
pull and git push keep the two repositories synchronized as far as their local
content is concerned. The most important thing to remember about keeping
repositories synchronized is that, with regard to content, a repository consists
of two things: an object store and a set of references, or refs – in other words,
a commit graph and a set of branch names and tags that designate commits.
When you clone a repository, such as with the command git clone URL/
repository, Git does the following things in the order shown:

1.	 Creates a new local repository that is essentially a replica of the remote
repository

2.	 Adds a remote named origin to refer to the repository being cloned in
.git/config:

[remote "origin"]
fetch = +refs/heads/*:refs/remotes/origin/*
url = URL/repository

The line in the config file with fetch in it is the refspec, an assignment statement
that specifies a correspondence between sets of refs in the two repositories:
the pattern on the left side of the colon names refs in the remote, associated
with the pattern on the right side of the colon, which are the corresponding
refs in the local repository.

3.	 Runs the command git fetch origin, which updates our local refs for
the remote’s branches (creating them in this case), and asks the remote
to send any objects we need to complete the history for those refs (in
the case of this new repository, all of them).

4.	 Checks out the remote repository’s current branch (its HEAD ref),
giving you a working directory, and .git directory in it –that is, a
replicated local repository cloned from the remote repository.

So now you can execute the git show-ref command as follows and view the
local repository refs:

% git show-ref --abbrev master
b5216a81 refs/heads/master
%

When you use the git pull command, Git first executes a fetch on the remote
for the current branch, updating the remote’s local tracking refs and obtaining
any new objects needed to complete the history of those refs – that is, all

Version Control for Software Code Using Git and GitHub 175

commits, tags, trees, and blobs reachable from the new branch tips. Then it
tries to update the current local branch to match the corresponding branch
in the remote. If only one side has added content to the branch, then this will
succeed, and is called a fast-forward update since one ref is simply moved
forward along the branch to catch up with the other.

If both sides have committed to the branch, however, then Git has to do
something to incorporate both versions of the branch history into one shared
version. By default, this is a merge: Git merges the remote branch into the
local one, producing a new commit that refers to both sides of the history via
its parent pointers. And this would most likely lead to merge conflicts.

When you use the git push command, Git updates the corresponding branch
in the remote with your local repository branch contents, sending any objects
the remote needs to complete the new state of the remote repository. This will
fail if the update is non-fast-forward, and Git will suggest that you first git
pull in order to resolve the differences between repositories.

Nothing in remote-tracking branches ties the things you do to your reposi-
tory to the remote; the relationship is one way. Each remote-tracking branch
is just a branch in your repository like any other branch, a ref pointing to a
particular commit. They are only “remote” in the sense that they point to
a remote repository. They track the state of corresponding branches in the
remote, and you can update them using the command git pull.

A repository can have many remotes, set up at any time; see the git remote
add command in Example 2.3. If the original repository you cloned from is
no longer available, you can fix its URL by editing the .git/config file for a
particular local repository. You can remove a remote reference entirely with
git remote rm. This command will remove the remote-tracking branches for
that remote repository too.

2.6 � GitHub Examples

The following section illustrates your basic interaction with GitHub as a
remote repository, using Git commands typed at the Raspberry Pi command
line, and the web interface to GitHUb accessed through your Raspberry Pi
web browser.

A brief description of each of the six examples in this section is as follows:

Example 2.3 illustrates how to set up a personal access token (PAT) at GitHub
so that you can log into your account there with it. In the illustrative command
line interactions we show, we create a local repository, named RpiVols, so
that we can push content to it.

Raspberry Pi OS Text Editors, Git, and LXC176

Example 2.4 illustrates how to create a new local repository, named githubtest,
and push its initial content to GitHub. Then you modify the local content of
that repository, and update it at GitHub.

Example 2.5 illustrates how to “clone” the GitHub repository githubtest you
created in the previous example, into a new local repository named github_
clone, into a subdirectory of the local repository githubtest.

Example 2.6 illustrates how to “pull” the contents of the GitHub repository
for this book into a local repository named RPibook, similar to using the git
clone command from the previous example.

Example 2.7 illustrates how to use the GitHUb web interface, via your
Raspberry Pi web browser, to create and manipulate a new repository at
GitHUb that has no local equivalent Git repository.

Note
In all of the examples in this section, we use local pathnames and repository
names at GitHub that are pertinent to our Raspberry Pi filesystem, and the
repositories we maintain at GitHub. You will use different paths and reposi-
tories, with different names, pertinent to your system, and your account at
GitHub. Of course, with the exception of the URL to this book’s repository at
GitHub, used in Example 2.6.

Example 2.3 Setting Up a Personal Access Token at GitHub

Objectives: To obtain a Personal Access Token, or code, for your GitHub
account, and use it to authenticate yourself to GitHub, log in, and do some
basic operations there.

Prerequites

1.	 Having an account at Gihub that you can log into from a web browser.
2.	 Having gone through the above section to familiarize yourself with

Git commands and operations.
3.	 Having a local repository that you’ve constructed with Git commands.

Procedures: Do the following steps, in the order presented, to complete the
objectives of this example.

Note
Starting from August 13, 2021, GitHub no longer supports the use of
passwords when authenticating Git operations, originating on the Raspberry

Version Control for Software Code Using Git and GitHub 177

Pi command line, over HTTPS, which is basically what you do when you use
the command line to access GitHub in the following examples of this section.
Instead, you need to use PATs for authentication. Here’s how you can use the
git push command on the command line to push code to GitHub, using a PAT:

1.	 Generate a PAT on GitHub, and Enabling Public Access to Repositories:
a.	 Go to your GitHub account settings.
b.	 Navigate to the "<> Developer settings" section.
c.	 Select "Personal access tokens." (The choice has a picture of a key

to it).
d.	Make the pull down menu choice Tokens (classic).
e.	 Click on the button labeled "Generate new token> Generate new

token (classic)"
f.	 Provide a meaningful name for the token.
g.	 Put a check mark in the box labeled public_repo, under “Scopes

define the access for personal tokens.” This gives you permissions
to push or pull from the repositories.

h.	Set a useful longevity for the token, such as 30 days, or no expir-
ation date (our preference.)

i.	 Click "Generate token."

GitHub will display the generated personal access token. Make sure to copy
it down somewhere, electronically on your Raspberry Pi, on paper, etc.,
because you won’t be able to see it again.

2.	 Configure Git to use the personal access token:
a.	 Open your terminal, and navigate to the local repository directory

which you want to push, or pull, files to or from GitHub.
b.	 Run the following command, replacing Your Personal Access

Token with the token you generated in the previous step:

git config --global credential.helper store
git config --global user.name "Your GitHub username"
git config --global user.email "Your GitHub email"
git config --global user.password "Your Personal Access Token"

3.	 “Pushing” code to GitHub:

Commit your changes using the git commit command. Then use the
git push command to push your code to GitHub, as follows:

git push origin <branch-name>

Replace <branch-name> with the name of the branch you want to push.

Raspberry Pi OS Text Editors, Git, and LXC178

4.	 Enter your personal access token when prompted.
Git will prompt you to enter your username and password. Instead of
your GitHub password, enter the personal access token you generated
in step 1.
That’s it! Your code should now be pushed to GitHub using the git
push command with a personal access token for authentication.
Remember to keep your personal access token secure, and avoid
sharing it with others, as it provides access to your GitHub account.

5.	 Following is the actual code (executed on the Raspberry Pi command
line) we used, which accomplishes the above steps. In our code,
the name of the local repository is RpiVols, which has not yet been
initialized with the git init command:

~ $ mkdir RPiVols
~ $ cd RPiVols
~/RPiVols $ git config --global credential.helper store
~/RPiVols $ git config --global user.name "bobk48"
~/RPiVols $ git config --global user.email "bobk48@gmail.com"
~/RPiVols $ git config --global user.password "Your Personal
Access Token"
~/RPiVols $ git init
hint: Using 'master' as the name for the initial branch. This default branch name
hint: is subject to change. To configure the initial branch name to use in all
hint: of your new repositories, which will suppress this warning, call:
hint:
hint: git config --global init.defaultBranch <name>
hint:
hint: Names commonly chosen instead of 'master' are 'main', 'trunk' and
hint: 'development'. The just-created branch can be renamed via this command:
hint:
hint: git branch -m <name>
Initialized empty Git repository in /home/bob/RPiVols/.git/
~/RPiVols $ nano README.md
~/RPiVols $ chmod u+x README.md
~/RPiVols $ git add README.md
~/RPiVols $ git commit -m "First commit."
[master (root-commit) 512c895] First commit.
1 file changed, 1 insertion(+)
create mode 100755 README.md
~/RPiVols $ git remote add origin https://github.com/bobk48/Raspberry
PiOS
~/RPiVols $ git push -u origin master
Username for 'https://github.com': bobk48
Password for 'https://bobk48@github.com': "Your Personal Access Token"
Enumerating objects: 3, done.
Counting objects: 100% (3/3), done.
Writing objects: 100% (3/3), 226 bytes | 226.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To https://github.com/bobk48/RaspberryPiOS
* [new branch] master -> master
Branch 'master' set up to track remote branch 'master' from 'origin'.
~/RpiVols $

https://github.com
https://github.com
https://github.com
https://github.com

Version Control for Software Code Using Git and GitHub 179

Note
Our repository at GitHub, named RaspberryPiOS in Step 5., had no branch
named master at this point. In Git’s feedback to the git push -u origin master
command on the Raspberry Pi command line, that branch was listed as “*
[new branch] master -> master.”

In the command line entries, wherever "Your Personal Access Token" is
shown, type in your personal access token.

Example 2.4 Basic GitHub Operations

Objectives: To create a new repository in your existing account at GitHub, and
transmit, or push, files to the new GitHub repository from a local repository.

Prerequisites: The following are the prerequisites for carrying out this
example:

1.	 Having an account at www.github.com.

Note
Skip ahead to the steps of the Procedures in Example 2.7 for a more
complete description of how to log on to your account at GitHub.

Also, our authentication procedure at GitHub, from the command
line, involved having an access code sent to our cell phone via SMS
messaging, and we’ve found that method of authentication to be the
quickest, and easiest means of credentialing and verifying ourselves
to GitHub.

2.	 Having completed the previous subsections that familiarize you with
Git commands executed on the command line.

3.	 Having an Internet connection and a suitable Web browser installed
and operating on your Raspberry Pi system.

4.	 Local and remote GitHub repositories with only one branch each
on them.

5.	 Having completed Example 2.3.

In this example, we first create a working directory with a new Git reposi-
tory in it. Then we add a file to this new local repository, and use the git push
command to move that file up to a repository at GitHub.

Git Commands Referenced: Table 2.3 shows the Git commands, and a
brief description of each, that are used in this example. It is arranged in
the order that the commands are presented. Any argument enclosed in
< > is a string of text. In order to get a more complete description of all
the commands in the table, you can look at the man page for a particular
command. For example, man git-push gives you a complete man page for
the git push command.

http://www.github.com

Raspberry Pi OS Text Editors, Git, and LXC180

Procedures: Do the following steps, in the order presented, to meet the object-
ives of this example.

1.	 Create the working directory and make it the current directory.

% mkdir githubtest
% cd githubtest
%

2.	 Add a new file to the directory.

% touch README.md
%

3.	 Initialize Git in this new directory.

% git init
hint: Using 'master' as the name for the initial branch. This default branch name
hint: is subject to change. To configure the initial branch name to use in all
hint: of your new repositories, which will suppress this warning, call:
hint:
hint: git config --global init.defaultBranch <name>
hint:
hint: Names commonly chosen instead of 'master' are 'main', 'trunk' and
hint: 'development'. The just-created branch can be renamed via this command:
hint:
hint: git branch -m <name>
Initialized empty Git repository in /home/bob/githubtest/.git/
%

4.	 Stage the file README.md, and do an initial commit to the repository.

% git add README.md
% git commit -m "First Commit"
[master (root-commit) 60fa518] First Commit

TABLE 2.3

Git Commands Referenced

Command Description

git init Adds a Git repository in the current directory
git add <file> Stages <file> for the next commit
git commit -m "Message" Executes a commit with Message automatically added using

the –m option.
git remote add origin <path> Identifies the valid <path> as a Git remote repository reference
git push -u origin master Transmits the branch named master to the current remote

repository and add upstream tracking information
git remote –v Lists the remotes defined for this repository

Version Control for Software Code Using Git and GitHub 181

1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 README.md
%

5.	 In your Web browser, navigate to GitHub at www.github.com, log
into your account there, and create a new repository in your GitHub
account. Name that repository githubtest.
Note
Skip ahead to the steps of the Procedures in Example 2.7 for a
more complete description of how to do this, if you don’t already
know how.

6.	 Use the git remote command to designate your GitHub repository
githubtest as a remote repository for the local repository we created in
steps 1–4. To find the URL to designate as the GitHub repository, look
in the URL bar of your browser when you are in the GitHub repository
named githubtest that you created in step 5.
On our system, in our browser, the URL to this new repository on
GitHub is https://github.com/bobk48/githubtest

This will be different for you on your system, into your account at
GitHub!

% git remote add origin https://github.com/bobk48/githubtest.git
%

7.	 Use the git push command to take the local repository and move it up
to GitHub. Supply the username and password for the GitHub reposi-
tory as needed.

Note
You may need to supply your username and Personal Access Token in
the next command.

% git push -u origin master
Enumerating objects: 3, done.
Counting objects: 100% (3/3), done.
Writing objects: 100% (3/3), 207 bytes | 207.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To https://github.com/bobk48/githubtest.git
* [new branch] master -> master
Branch 'master' set up to track remote branch 'master' from 'origin'.

%

http://www.github.com
https://github.com
https://github.com
https://github.com

Raspberry Pi OS Text Editors, Git, and LXC182

8.	 Check the names of the files in the local repository.

% ls
README.md
%

In your browser, check the content of the repository test. The only file in your
GitHub repository should be README.md and it should be labeled as a First
Commit.

9.	 Use the git remote command to list the remote repositories for this
local repository.

% git remote -v
origin https://github.com/bobk48/githubtest.git (fetch)
origin https://github.com/bobk48/githubtest.git (push)
%

What this output shows you is that you can transfer (using the git push
command) new content to the remote repository, and get content from it
(using the git fetch command).

10.	 To add a new file to the GitHub repository from the local repository,
first create the file with your favorite text editor, and put some text in it.

% nano newfile.txt
... Create and save a new textfile named newfile.txt ...
newfile.txt: new file: 1 lines, 47 characters.
%

11.	 List the files in your working directory.

% ls
README.md newfile.txt
%

12.	 Stage newfile.txt, and commit it.

% git add newfile.txt
% git commit -m "second new file added"
[master 51b1949] second new file added
1 file changed, 1 insertion(+)
create mode 100644 newfile.txt
%

13.	 Now use git push again to push the contents of the repository to your
GitHub repository.

https://github.com
https://github.com

Version Control for Software Code Using Git and GitHub 183

Note
You may need to supply your username and PAT in the next command.

% git push origin master
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 4 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 293 bytes | 293.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To https://github.com/bobk48/githubtest.git

60fa518..51b1949 master -> master
%

In your browser, after refreshing your view of the repository githubtest,
check its content. You should see the same files there that are in your local
repository along the branch master. And if you examine the file newfile.txt,
the text you created in it locally should now be in that file at GitHub as well.

Conclusions: By designating a GitHub repository as a remote repository
reference using an HTTP URL, we accomplished moving files up from a local
repository to a GitHub repository.

In-Chapter Exercises

2.7	 What refspec URL and fetch assignments are listed for the repository
test? What branch refspecs are listed? How did you find this out?

2.8	 What Git command do you use locally to put an earlier, or upstream,
commit into the working directory?

Example 2.5 Cloning a GitHub Repository

Objectives: To clone an existing remote GitHub repository into a new local
repository.

In order to share the contents of an existing GitHub repository between
members of a software development and maintenance team, it is a usual
practice to clone, or copy, a complete repository from GitHub into a new local
repository. In the previous example (Example 2.4), we first created a working
directory and a new Git repository in it. Then we added a file to this new local
repository and used the git push command to move that file up to an existing
repository at GitHub. In this example, we will use the git clone command to
create an entirely new local Git repository from an existing remote GitHub
repository. Then we will add a new file to the local repository and use git
push to transfer that file to the GitHub repository. To simplify things for the
beginner, there is only one branch on the remote GitHub repository.

Table 2.4 shows the Git commands, and a brief description of each, that are
used in this example. It is arranged in the order presented. Any argument

https://github.com

Raspberry Pi OS Text Editors, Git, and LXC184

enclosed in < > is a string of text. In order to get a more complete description
of all the commands in the table, you can look at the man page for a particular
command. For example, man git-clone gives you a complete descriptive man
page for the git clone command.

Prerequisites: The following are the prerequisites for carrying out this
example:

1.	 Having completed the previous subsections that familiarize you
with Git commands executed on the Raspberry Pi command line

2.	 Having an Internet connection, and a suitable Web browser installed
and operating on your Raspberry system

3.	 Having completed Example 2.4, and having your Web browser
pointed at the githubtest repository created in that example so you
can check on its contents using the web browser interface to GitHub.

4.	 Having access to an account on GitHub that has in it the existing
repository githubtest created in Example 2.4.

Procedures: Perform the following steps, in the order presented, to meet the
objectives of this example:

1.	 Create a new empty directory beneath your home directory on your
Raspberry Pi system named github_clone, and make that directory
the current working directory.

% mkdir github_clone
% cd github_clone
%

This new directory will serve as the file system landing zone, within which
the git clone command shown in the next step will replicate the entire remote
GitHub repository.

TABLE 2.4

Git Commands Referenced

Command Description

git clone <remote_designation> Transfers a complete repository from the remote
designated into a local repository, maintaining the
branch and file structure

git status Shows the current state of the repository
git add <object(s)> Stages the named object(s) to the index
git commit –m "Message" Commits the contents of the staged files in the

index
git push <remote_designation> master Transfers the working directory to the remote

designated on the branch master

Version Control for Software Code Using Git and GitHub 185

2.	 Use the git clone command to transfer the contents of the remote
GitHub repository into the current working directory. Remember
that the URL we show in the command is different from the one that
you will be seeing on your system, so make the appropriate changes.
Remember that the URL for this repository is valid for our system and
account at GitHub. Your URL and account will be different from the
one shown here!

% git clone https://github.com/bobk48/githubtest
Cloning into 'githubtest'...
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 6 (delta 0), reused 6 (delta 0), pack-reused 0
Receiving objects: 100% (6/6), done.
%

3.	 List the contents of the working directory. It should contain, in a sub-
directory of github_clone named githubtest, the complete repository
from your GitHub repository in Example 2.4. The directory listed is
the working directory for the cloned repository. If you descend into
that subdirectory, everything that is in your GitHub repository is in
the directory githubtest.

% cd githubtest
% ls
newfile.txt README.md
%

The githubtest directory is now your working directory, in Git terminology.

4.	 With your favorite text editor, create a new file, with any contents you
want in it, in the directory githubtest. Save the file, and exit the text
editor.

% nano newfile2.txt

newfile2.txt: new file: 1 lines, 58 characters.
%

5.	 List the contents of directory githubtest.

% ls
README.md newfile.txt newfile2.txt
%

https://github.com

Raspberry Pi OS Text Editors, Git, and LXC186

6.	 Check the status of the local repository with the git status command.

% git status
On branch master
Your branch is up to date with 'origin/master'.

Untracked files:
(use "git add <file>..." to include in what will be committed)

newfile2.txt

nothing added to commit but untracked files present (use "git add" to track)
%

7.	 Stage and commit the new file to the local repository, in preparation
for transferring it up to GitHub.

% git add newfile2.txt
% git commit –m “Added newfile2.txt to test”
[master e14e502] Added newfile2.txt to test
1 file changed, 1 insertion(+)
create mode 100644 newfile2.txt
%

8.	 Use git push to thransfer the new file up to the GitHub repository
named githubtest on the branch master. Remember that the URL for
this repository is valid for our system and account at GitHub. Your
URL and account will be different from the one shown here!

% git push https://github.com/bobk48/githubtest master

Note
You may have to supple your login name and PAT at this point!

Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 4 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 329 bytes | 329.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To https://github.com/bobk48/githubtest

51b1949..e14e502 master -> master

%

9.	 From your Web browser, examine the GitHub repository named
githubtest. It should now contain the file you pushed to it in step 8.

Conclusions: The easiest way to create a local repository that is an exact copy
of a GitHub repository is to use the git clone command.

https://github.com
https://github.com

Version Control for Software Code Using Git and GitHub 187

You can also fork a repository.
From the GitHub docs:

A fork is a new repository that shares code and visibility settings with the
original “upstream” repository. Forks are often used to iterate on ideas or
changes before they are proposed back to the upstream repository, such
as in open source projects or when a user does not have write access to
the upstream repository.

In fact, some users of this book will prefer to fork the book’s repository
so that changes made to that GitHub repository are always updated on the
user’s local repository.

We pose a project at the end of this chapter that asks you to fork this book’s
repository at GitHub.

In-Chapter Exercises

2.9	 What refspec URL and fetch assignments are listed for the repository
test? What branch refspecs are listed? How did you find this out?

2.10	 After having completed both Examples 2.4 and 2.5, what command(s)
would enable you to update the repository githubtest from
Example 2.4 with what is in your online GitHub repository named
githubtest?

2.11	 What Git command can you use to see the abbreviated list of commits
in the current branch of a repository, and their commit comments?

Example 2.6 Pulling from a GitHub Repository

Objectives: To show the mechanics of taking content from a GitHub reposi-
tory branch, and adding it to a local repository by merging it with a local
repository branch.

The easiest way to share content from a GitHub repository is to use the
git pull command. This command combines git fetch and git merge, so that
the content of a GitHub repository branch can be duplicated on a branch of
one of your local repositories. We create a new local working directory, and
repository in it, to receive the content from a remote source on GitHub. We
then use the GitHub repository:

https://github.com/bobk48/RaspberryPiOS,

which contains all of the source code examples for the book you are now
reading, and other pertinent materials, as the remote source. This is the URL
specified in the Preface.

Table 2.5 shows the Git commands, and a brief description of each, that are
used in this example. It is arranged in the order presented. Any argument

https://github.com

Raspberry Pi OS Text Editors, Git, and LXC188

enclosed in < > is a string of text. In order to get a more complete description
of all the commands in the table, you can look at the man page for a particular
command. For example, man git-pull gives you a complete man page for the
git pull command.

Prerequisites: The following are the prerequisites for carrying out this
example:

1.	 Knowing how to navigate to www.github.com using a Web browser
GUI interface

2.	 Having completed the previous subsections that familiarize you
with Git commands executed on the Raspberry Pi command line

3.	 Having an Internet connection and a suitable Web browser installed
and operating on your Raspberry Pi system

4.	 Having completed Examples 2.4 and 2.5.

Procedures: Carry out the following steps, in the order presented, to meet the
objectives of this example:

1.	 Begin by setting up a new local repository working directory and ini-
tializing it as a Git repository.

% mkdir RPibook
% cd RPibook
% git init
Initialized empty Git repository in /usr/home/bob/RPibook/.git/
%

TABLE 2.5

Git Commands Referenced

Command Description

git init Creates the .git directory in the working directory, initializing
the data structures and objects necessary for a repository to
exist

git status Reports on the differences between files in the working
directory and the index, and what files are untracked

git add <file> Stages a file to the index
git commit -m "<Message>" Takes a snapshot of the index, both files and directories, with

<Message> automatically added
git pull <ref> master Retrieves the branch named master from the remote <ref>

designated into the current branch

http://www.github.com

Version Control for Software Code Using Git and GitHub 189

2.	 Put a file in the new repository.

% touch Readme.txt
%

3.	 Examine the status of the new repository.

% git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

Readme.txt

nothing added to commit but untracked files present (use "git add" to track)
%

4.	 Stage the Readme.txt file, and make your initial commit into the new
repository.

% git add Readme.txt
% git commit -m "first commit"
[master (root-commit) 57e0400] first commit
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 Readme.txt
%

5.	 Use the git pull command to fetch and merge the entire RaspberryPiOS
repository from the branch named master.

% git pull https://github.com/bobk48/RaspberryPiOS master
From https://github.com/bobk48/RaspberryPiOS
%

You are placed in the default editor. Leave the first line, numbered 1, as is,
and save and quit the file.

* branch master -> FETCH_HEAD
 1 Merge branch 'master' of https://github.com/bobk48/RaspberrPiOS
 2
 3 # Please enter a commit message to explain why this merge is necessary,
 4 # especially if it merges an updated upstream into a topic branch.
 5 #
 6 # Lines starting with '#' will be ignored, and an empty message aborts
 7 # the commit.
/usr/home/bob/RPibook/.git/MERGE_MSG: 7 lines, 295 characters.

https://github.com
https://github.com
https://github.com

Raspberry Pi OS Text Editors, Git, and LXC190

Merge made by the 'recursive' strategy.
 .gitattributes | 22 ++++++
 .gitignore | 43 ++++++++++++
 README.md | 4 ++
…

Output Truncated

6.	 Examine the contents of the working directory.

% ls
The current contents of the RaspberryPIOS repository will appear here.
%

Conclusion: Using the git pull command, you can take content from a GitHub
repository branch and put it on a local repository branch.

In-Chapter Exercise

2.12	 What refspec URL and fetch assignments are listed for the repository
RaspberryPiOS? How did you find this out?

Example 2.7 Web Interface to GitHub

Objectives
To illustrate some of the important actions that you can take to create and
manage a new repository in your personal account at GitHub, using a web
browser interface, and not using any git commands in a local folder on your
Raspberry Pi system.

In this example, you will use graphical techniques to accomplish some of
the actions that you performed in a text-based interface to GitHub in the pre-
vious examples, without having a local repository constructed and managed
with any git commands.

Prerequisites

1.	 Completion of Examples 2.1 through 2.6.
2.	 Having a valid account at www.github.com, with a username and

password.
3.	 That you have repositories already created at GitHub from the pre-

vious examples.
4.	 It’s assumed here that you do not have two-factor authentication

(2FA) enabled in your account at GitHub.

Procedures: Do the following steps, in the order presented, to complete the
requirements of this example.

http://www.github.com

Version Control for Software Code Using Git and GitHub 191

Signing On
To access your GitHub account through a web browser, follow these steps:

1.	 Open a Web Browser

Launch your preferred web browser (e.g., Chrome, Firefox, Safari, etc.) on
your Raspberry Pi.

2.	 Visit GitHub Website

Type the GitHub website URL in the address bar and press <Enter>
The GitHub website is https://github.com

3.	 Login to GitHub

On the GitHub home page, you will find a "Sign in" button in the top-right
corner. Click on it.

4.	 Enter Your Credentials:

Enter your GitHub username (or email address associated with your account)
and your password. If you’ve enabled 2FA, you’ll need to complete that step
as well.

5.	 Authenticate

After entering your credentials, click on the "Sign in" button to authenticate
and access your GitHub account.

6.	 Access Your Account

Once authenticated, you’ll be directed to your GitHub account dashboard,
where you can access your repositories, explore projects, manage settings,
and perform other actions related to your account.

Make sure you’re using the correct username, email, and password
associated with your GitHub account to successfully log in. If you forgot your
password or are having trouble accessing your account, GitHub provides
options to reset your password or recover your account.

Creating a New Repository

7.	 The most important icon in the toolbar at the top of the dashboard
for this example is the Create new… icon (a plus sign (+) with a
downward facing arrow to the right of it). If you click on that icon,
you can make further choices that create a New repository, Import

https://github.com

Raspberry Pi OS Text Editors, Git, and LXC192

repository, New Codespace, New <gist>, and New organization.
Click on New repository. A Create a new repository window appears,
as shown in Figure 2.9.

8.	 a.  Add a Repository name
b.	 Type in an optional description
c.	 Keep the default setting of Public
d.	Add a README file
e.	 Then scroll down to the bottom of the window, and click on the

Create repository button.

You now have a new repository in your GitHub account.

FIGURE 2.9
Create a new repository window.

Version Control for Software Code Using Git and GitHub 193

Adding a New File by Dragging and Dropping

9.	 Select the new repository. In the dashboard, click on the Add file
button, and make the Upload files choice. An Upload files window
appears. Drag and drop any local files you want into the “Drag files
here to add them to your repository” pane of that window.

10.	 Make the Commit changes button choice at the bottom of this
window when you’ve added the files you want to the repository.

In-Chapter Exercises

2.13
a.	 Can you drag and drop a whole directory from the local filesystem

on your Raspberry Pi to your new repository on GitHub, as is
done in Step 9 of Example 2.7?

b.	 If you’ve created a new repository at GitHub named interactive,
and add files to it by dragging and dropping ordinary files into
it from your local Raspberry Pi, how can you use git commands
from the Raspberry Pi command line to manipulate the contents
of that repository as it exists online? Why would you want to be
able to do this, rather than use the facilities of the web browser
interface to GitHub?

2.14	 How do you delete files from a repository at GitHub, using the facil-
ities of the web browser interface, if you’ve used the methods of
Example 2.7 to create the repository?

2.15	 How do you delete an entire repository from GitHub?

194 DOI: 10.1201/9781003455813-4

3�
Virtualization Methodologies

3.0  Objectives

*	 To give background information on operating system virtualization
*	 To provide a description of the LXC/LXD virtualization methodology
*	 To explicitly detail LXC/LXD installation on the Raspberry Pi OS
*	 To illustrate LXC/LXD basic usage
*	 To give command references for LXC/LXD
*	 To give a set of complete worked examples of LXC/LXD usage
*	 To list LXC/LXD best practices and provide examples of advanced LXC/

LXD usage
*	 To illustrate Docker installation on the Raspberry Pi OS
*	 To show how to run a Docker container and provide some useful Docker

commands
*	 To give various Docker utility commands
*	 To illustrate how to run Nginx in a Docker container
*	 To show how to expose Nginx ports on Docker containers
*	 To detail how a Docker container’s IP address is placed on the public net-

work using iptables
*	 To show how to build a web page for Nginx to use as content in a Docker

container
*	 To provide beginner help on managing content and Docker configur-

ation files
*		 To illustrate how to have ZFS as the backing store for Docker containers
*	 To provide an abbreviated Docker command reference
*	 To cover the commands and primitives:

lxc, lxd, docker, iptables, zpool create

http://dx.doi.org/10.1201/9781003455813-4

Virtualization Methodologies 195

3.1 � Introduction to Virtualization
Methodologies and Background

Question: What does the word “virtual” mean?
Answer: As if

The three governing functions that the Linux kernel performs in order to
maintain the system in a steady state are Virtualization, Concurrency, and
Persistence. At a certain level of abstraction, the kernel itself, and its global
resources, are virtualized by systemd, as shown in Volume 1, Chapter 2. In
this chapter, namespaces, LXD, and Docker also do forms of “virtualizing.”

Historically speaking, to perform the kernel functions of Virtualization
and Concurrency, the multiprogramming paradigm was established.
Multiprogramming is a computer system model where the computer hard-
ware and software would be shared by several programs (and users) running
and working on the system simultaneously. This led to the need for autonomy
and sharing among programs. The needs of multiprogramming are closely
tied to the concept of “virtual memory” in computers as well. In turn, this
virtualization of memory is directly related to the virtualization of the entire
operating system (OS) itself, as we describe it in this chapter.

Computer hardware virtualization is the simulation, to various degrees,
of hardware platforms, parts of them, or only the functionality required
to run one or more OSs. It abstracts and effectively “hides” the physical
characteristics of the hardware from the users. Traditionally, the software that
controlled virtualized machines was known as the “hypervisor.” Currently,
the hypervisor is often called a “virtual machine monitor” (VMM).

Platform virtualization is accomplished on any given hardware by host
software (the hypervisor), which creates a simulated computer environment,
a VM, for its guest software. The guest software can be as small as a single
user application, or as large as a complete OS. The guest software executes as
if it were running directly on the physical hardware.

Virtualization comes with some performance disadvantages, both in
resources required to run the hypervisor and in reduced performance on the
VM guest, compared with running applications on a non-virtualized host
physical machine. A VM can be more easily controlled and inspected from
outside than a physical one, and its configuration is more flexible. This is very
useful in kernel development and for teaching OS courses. A new VM can be
implemented as needed without the need for an up-front hardware purchase.
A VM can easily be moved from one physical machine to another as needed.
An unrecoverable fault inside a VM guest does not harm the host system, so
there is no risk of crashing the host OS.

Raspberry Pi OS Text Editors, Git, and LXC196

Examples of virtualization implementations are as follows:

*	 Running one or more applications that are not supported by the host OS: A
VM running the required guest OS could allow the desired applications to
be run, without altering the host OS.

*	 Evaluating an alternate OS: The new OS could be run within a VM, without
altering the host OS.

*	 Server virtualization: Multiple virtual servers in containers could be run
on a single physical server, to utilize more fully the hardware resources of
the physical server. A cloud computing example of this is Amazon Web
Services Elastic Cloud Computing (AWS EC2) virtual servers.

*	 Duplicating specific environments: A VM could, depending on the virtual-
ization software used, be duplicated and installed on multiple hosts, or
restored to a previously backed-up system state.

*	 Creating a protected environment: If a guest OS running on a VM becomes
damaged in a way that is difficult to repair, such as may occur when
testing, the VM can be discarded without harm to the host system, and a
clean copy used next time.

Primary actual contemporary virtualization techniques are as follows:

*	 Full virtualization: In full virtualization, the VM simulates enough hard-
ware to allow a complete “guest” OS, one designed for the same pro-
cessor instruction set architecture (ISA) to be run in isolation. Examples
for Linux systems running on X86 ISAs include VirtualBox, Parallels
Workstation, Oracle VM, Virtual Server, Hyper-V, VMware Workstation,
and VMware.

*	 Hardware-assisted virtualization: In hardware-assisted virtualization, the
hardware provides architectural support that facilitates building a VMM
and allows guest OSs to be run in isolation. Examples of virtualization
platforms adapted to such hardware include KVM, VMware Workstation,
VMware Fusion, Hyper-V, Xen, Oracle VM server for SPARC, and
VirtualBox.

*	 Partial virtualization: In partial virtualization, including address space
virtualization, the VM simulates multiple instances of much of an under-
lying hardware environment, particularly address spaces.

*	 Paravirtualization: In paravirtualization, the VM does not necessarily
simulate hardware, but instead (or in addition) offers a special Application
Programmer’s Interface (API) that can only be used by modifying the
“guest” OS. For this to be possible, the “guest” OS’s source code must be
available.

Virtualization Methodologies 197

*	 OS-level virtualization: In OS-level virtualization, a physical server
is virtualized at the OS level, enabling multiple isolated and secure
virtualized servers to run on a single physical server. The “guest” OS envir-
onments share the same running instance of the OS as the host system.
Thus, the same OS kernel is also used to implement the “guest” environ-
ments, and applications running in a given “guest” environment view it
as a stand-alone system. In Linux, examples include LXC/LXD and their
derivative management system, Docker. This chapter is based upon those
systems. Similar proprietary derived techniques are used by AWS EC2,
Google Cloud, and iCloud.

In this chapter, we provide examples of virtualization methodologies using
the Raspberry Pi OS. Additionally, here in this chapter, we provide fully
worked practical examples of LXC/LXD and Docker containerization using
the Raspberry Pi OS.

We also provide OS-level/hardware-assisted virtualization examples with
LXC/LXD and Docker. These techniques are very contemporary, popular,
and important facilities for creating a virtual environment within which a
Linux OS can work. What differentiates these facilities is that, in LXC/LXD,
all virtual environments are running under the same kernel (implementing
OS-level virtualization).

Practically speaking, an important application of these implementations,
as already stated, is to provide a measure of system security, in addition to
what we have already described. But that is not the only reason an ordinary
user or system administrator would deploy the virtualization methods we
demonstrate.

A user might want to take advantage of some of the facilities that an add-
itional OS offers, above and beyond what is available via the Raspberry Pi
OS into which the computer boots. Instead of shutting down the main OS
and then booting into the additional OS, both can be run simultaneously
using the virtualization method shown here. So if you run both OSs simul-
taneously, you can use both OS applications and facilities on the same phys-
ical machine. Of course, there are trade-offs in doing this, mainly in terms of
performance speed and disk usage.

Also advantageous is the deployment of VMs to allow you to “test drive”
a particular OS without devoting an entire hardware platform to it. This
can also be achieved by running a “live” version of it from a DVD or a USB
thumb drive, but the performance speed and persistence of data using
these techniques is somewhat limited. In this chapter, we show examples of
installing guest VMs on Linux, to allow you to “test drive” systems in a more
fully functional way.

Raspberry Pi OS Text Editors, Git, and LXC198

3.2 � Raspberry Pi OS Containers with LXC/LXD

Question: Why would an ordinary Raspberry Pi user, who has the Raspberry
Pi OS installed on her home desktop computer, need or want to use Linux
containers?

Answer: Perhaps she wants to safely test one or many software applications
(or even entire OSs!), and doesn’t want them, through misbehavior, or for
other reasons, destroying or significantly changing in any way her installed
host system. Or perhaps she wants to securely run a web server on her
machine, and via port forwarding on both the host system, and on her
modem/router, publish pages and a website, on the Internet.

Both of these answers are very easily accommodated through the use of
LXC/LXD containers.

In-Chapter Exercise

3.1	 Why would you personally want to add a container system, and one
or more containers, to your computer system? What “flavor” of con-
tainer would you want to add, and why? What advantages would that
give even an ordinary user on a single desktop or laptop computer? As
you proceed through this chapter, compare adding a container system
that we have shown in the following sections to VirtualBox and AWS
EC2 (if you are familiar with those systems of virtualization). Relative
to those types of virtualization, how do LXC/LXD containers com-
pare, across all of the installation, maintenance, disk storage footprint,
etc. profiles for your particular use case(s)?

The LXC/LXD container model uses a system programming feature,
known as “namespaces,” to implement isolated process environments within
which LXD containers operate. We briefly mentioned namespaces in Volume
1 of this series, when we dealt with the forms and sites of Linux security. This
programming feature and the namespaces API modules clone(), unshare(),
and setns() provide another distinct form of virtualization in terms of the vir-
tualization/concurrency of the Linux kernel.

The term “namespace,” sometimes called a “name scope,” is popularly
defined as

“an abstract container or environment created to hold a logical grouping of
unique identifiers or symbols (i.e. names). An identifier defined in a name-
space is associated only with that namespace.*”

The concept and use of the term “namespace,” as it is used in relation to
the system programming API for Linux container virtualization, is analo-
gous to several other applications of the same term in computer science and

Virtualization Methodologies 199

programming. We give these analogies here to help make the higher-level
abstraction more clear to the ordinary user.

One obvious similarity of the application of this term is to locally scoped
versus globally scoped variables. We show a brief example of this in
Chapter 2 on GitHub, with Python variables. A namespace is like a locally
scoped Python variable. In non-OOP Python programming, an identifier,
or “name” is equated to some expression, or object, that gives that name a
value. So the “namespace” of a locally scoped variable is the module that
fully contains, limits, or encapsulates this equation of identifier to object.

Another analogy can be drawn to the use of the term in Python OOP
program constructs. For example, OOP itself has the fundamental features
of multiple representation, encapsulation, subtyping, inheritance, and open
recursion, which hide the objects, their classes, and methods in namespace
environments. The representation of an object is hidden from view outside of
the object’s definition: only the object’s own methods can directly inspect or
manipulate its fields. **

* Wikipedia, namespaces.
** Pierce, Types and Programming Languages, 2002.
Other OOP-capable languages, such as XML (Extensible Markup

Language), also use the term to describe isolated environments. XML collects
elements and attributes in a definition, in a style sheet for example, to limit
the scope of an identifier.

There are currently six types of Linux namespace: mount, UTS, IPC, PID,
network, and user, each of which provides a context within which a process
can “virtualize” the global system resources, such as filesystem mounting,
Interprocess Communication, Process Identification, networking, and
isolated user spaces. A particular user namespace can, for example, also
overlap with any of the other contexts as well.

Relative to namespaces, it is “as if” a user’s process or processes were
the only program(s) running on the hardware. We encourage you to read
the man pages for namespaces and user_namespaces on your system,
not only to gain some insight into the namespaces higher-level abstrac-
tion, but also to appreciate the complexity of its lower-level details. In our
exposition of LXC/LXD, we do not make any references to the internals of
namespaces, or to how LXC/LXD works in conjunction with these details.
In this chapter, we have smaller fish to fry and take a bottoms-up approach
to virtualization.

The current premier OS-level virtualization software in Linux is LXD
(pronounced “lex-dee”). It is a combination of an older command line
“client” utility named LXC (pronounced “lex-cee”), and a newer controlling
container management daemon named LXD. Working with LXD involves
using a combination of LXC and LXD commands, as we show throughout
this section.

Raspberry Pi OS Text Editors, Git, and LXC200

We first cover the installation and basic usage of LXC/LXD, and then give
some extended examples of creating, running, and managing LXC/LXD
containers.

In particular, we do some of these tasks by creating our containers with a
ZFS filesystem on the Raspberry Pi OS, which is a downstream Debian-family
release. The details of working with ZFS are detailed in Volume 1 of this
series.

In-Chapter Exercise

3.2	 What advantages do you see in using ZFS as the storage filesystem for
LXD containers?

3.2.1 � Introduction to LXC/LXD

LXD (pronounced lex-dee) is the lightervisor, or lightweight container
hypervisor. While this claim has been controversial, it has been quite well
justified based on the original academic paper. It also nicely distinguishes
LXD from LXC.

LXC is a program that creates and administers “containers” on a local
system. It also provides an API to allow higher-level managers, such as LXD,
to administer containers. In a sense, one could compare LXC to QEMU, while
comparing LXD to libvirt.

The LXC API deals with a 'container'. The LXD API deals with 'remotes',
which serve images and containers. This extends the LXC functionality over
the network and allows concise management of tasks like container migra-
tion and container image publishing.

LXD uses LXC under the covers for some container management tasks.
However, it keeps its own container configuration information and has its
own conventions, so that it is best not to use classic LXC commands by hand
with LXD containers. This document will focus on how to configure and
administer LXD on Ubuntu systems.

Note
At the time of the writing of this book, the Debian-family of Linux systems
(including the Raspberry Pi OS) were the only Linux systems that we could
reliably and easily install LXC and LXD on. Many of the examples below
reflect this, particularly the LXD/ZFS-based ones.

LXD is the latest version of LXC, a Linux container system that uses
OS-level virtualization. It incorporates newer and more useful features for
the creation, provisioning, management, and deployment of containers on
host systems.

For our purposes, “provisioning” means configuring a container to have
a set of features, which may be easily duplicated, or cloned, into as many

Virtualization Methodologies 201

containers as necessary. An example of that, which we show below, would be
downloading and installing an Ubuntu OS image in the container. The con-
tainer and the image it is built from by LXC/LXD are synonymous.

It is important to differentiate the host system from the container(s)
running on the host. Different OS images can be downloaded and installed in
containers, even though the host is running a particular OS.

3.2.1.1  Getting Help on LXC and LXD

The best documentation you can get for LXC and LXD on your installation on
the Raspberry Pi OS is at the following URLs:

https://linuxcontainers.org/lxc/manpages/

Or, as an alternative, the following URL:

https://man7.org/linux/man-pages/man7/lxc.7.html

We encourage you to refer to these man pages for further explanations, and
a summary overview of the options and the sub-commands that can be used
with each.

There are man pages at the above URL as well for the sub-commands. For
example, to see a man page for the execute sub-command of the lxc command
view the execute entry. Table 3.1 lists those sub-commands, which gives a
brief description of what each of them do.

In-Chapter Exercise

3.3	 Use the above two URLs to review all of the man pages for lxc and
lxd that contain the sub-commands listed in Table 3.1. Then, make
a preliminary list of which sub-commands you think are the most
important and critical to the operation of LXC/LXD for your par-
ticular use case(s).

3.2.2 � LXD and LXC Installation and Basic Commands for
the Raspberry Pi OS

This section details some basic commands, such as how to download and
install LXD and LXC, how to create and start a new container, and how
to get information about images at your default repository, and on your
machine.

https://linuxcontainers.org
https://man7.org

Raspberry Pi OS Text Editors, Git, and LXC202

Example 3.1 Using a Raspberry PI as a Virtualization Server

Objectives:

To install LXC/LXD on a Raspberry Pi system, and to customize its profile to
achieve container launching and networking amenable to beginners.

TABLE 3.1

LXC/LXD “Sub-Commands” Listing and What They Do

Sub-Command Description

attach Starts a process inside a running container
autostart Starts/stops/kills auto-started containers
checkconfig Checks the current kernel for lxc support
checkpoint Checkpoints a container
config Manages configuration
console Launches a console in the specified container
copy Copies containers within or in between lxd instances
create Creates a new container
delete Deletes containers or container snapshots
destroy Destroys a container
device Manages devices of running containers
execute Executes the specified command in a container
file Manages files on a container
freeze Freezes the containers processes
help Presents details on how to use LXD
image Manipulates container images
info Lists information on LXD servers and containers
launch Launches a container from a particular image
list Lists the available resources
ls Lists the containers that exist on the system
monitor Monitors container state
move Moves containers within or in between lxd instances
profile Manages configuration profiles
publish Publishes containers as images
remote Manages remote LXD servers.
restart Changes state of one or more containers to restart
restore Sets the current state of a resource back to a snapshot
snapshot Creates a read-only snapshot of a container
start Changes state of one or more containers to start
stop Changes state of one or more containers to stop
top Monitors container statistics
unfreeze Thaws all container’s processes
unshare Runs a task in a new set of namespaces
user-nic Creates and attach a nic to another network namespace
usernet Unpriveleged user network administration file
usernsexec Runs a task as root in a new user namespace
version Prints the version number of this client tool
wait Waits for a specific container state

Virtualization Methodologies 203

Prerequisites:

1.	 Doing the following on a Raspberry Pi 4, or 400, with 4 GB minimum
of RAM, but it can work on older models. This example was done on
a Raspberry Pi model 4b with 4 GB of main memory.

2.	 The system/boot medium is an SD card. We recommend one of at
least 64 GB of capacity or bigger. But an external hard drive/thumb
drive/network drive may also be used, and it will have to be per-
manently connected.

3.	 A wired ethernet connection. It is not possible at this time to use the
Wi-Fi interface of the Raspberry Pi to create a network bridge, as we
do below, to expose the containers via public-facing IP addresses. We
disabled or turned off Wi-Fi with the command sudo rfkill block
Wi-Fi. We want to create a network bridge so that the LXC/LXD
containers can have public-facing IP addresses.

4.	 A DHCP server on your network which assigns IP addresses when
new devices request them. Any common home network has a DHCP
server activated by default.

5.	 ZFS is installed on your version of the Raspberry Pi OS. We predict
that installation of ZFS will be a standard operation at the time this
book is published.

Note
If you are limited to use only your Wi-Fi connection, OS containers can connect
to the network via Network Address Translation (NAT), and can be accessed
from the network using a proxy device. In such a case, forget about point
number 4 above, and skip all the bridge-related materials presented below.

Note
All the commands below need to be executed as root, so execute the following
command first!

sudo su -
Wi-Fi is currently blocked by rfkill.
Use raspi-config to set the country before use.

root@raspberrypi:~#

Procedures:

1.	 You first create the network bridge. In order to do that, you must
install the bridge-utils package:

root@raspberrypi:~# apt-get -y update
Output truncated ...
root@raspberrypi:~# apt-get -y install bridge-utils
Output truncated …

Raspberry Pi OS Text Editors, Git, and LXC204

2.	 Next, you need to actually create the network bridge, and you’ll attach
your wired network interface to it. You will achieve this by creating
a dedicated network interface file, using nano, with the following
command:

root@raspberrypi:~# nano /etc/network/interfaces.d/br0

That file has to have with the following contents:

iface eth0 inet manual
auto br0
iface br0 inet dhcp
bridge_ports eth0

Save and exit nano after you’ve added the above lines to the file.

3.	 The Raspberry Pi OS uses the dhcpcd daemon to get IP addresses from
the DHCP server on the network. You must exclude eth0 from getting
any IP address from now on (since it will receive that address via the
bridge). For that, we must edit the dhcpcd configuration file with the
following command:

root@raspberrypi:~# nano /etc/dhcpcd.conf
And then, you can add the following line at the end of the file:

denyinterfaces eth0

Note
Since we did not configure the Wi-Fi interface, there’s no need to explicitly
disable the wlan0 interface neither in /etc/network/interfaces.d/br0 nor in
/etc/dhcpcd.conf.

At this point, you should reboot your system in order to all changes take
effect.

Once the system has restarted, you should see something like this when exe-
cuting the ip a command. Notice in the output for the following command that
eth0 no longer has an IP address, but it is the bridge interface br0 that does. When
we executed this command on our Raspberry Pi 400, we got the following result:

root@raspberrypi:~# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

Virtualization Methodologies 205

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master br0 state
UP group default qlen 1000
 link/ether dc:a6:32:18:3f:bf brd ff:ff:ff:ff:ff:ff
3: wlan0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default
qlen 1000
 link/ether dc:a6:32:18:3f:c0 brd ff:ff:ff:ff:ff:ff
4: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
group default qlen 1000
 link/ether dc:a6:32:18:3f:bf brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.15/24 brd 192.168.1.255 scope global dynamic br0
 valid_lft 86166sec preferred_lft 86166sec
 inet6 fe80::dea6:32ff:fe18:3fbf/64 scope link
 valid_lft forever preferred_lft forever

root@raspberrypi:~#

4.	 You can now Install LXD using snap.

“snap” refers to Snappy, a package management system and application
deployment system developed by Canonical for Linux distributions. Snaps
are a form of software package designed to work across a range of Linux
distributions, allowing software developers to distribute their applications
to a broader audience with fewer compatibility concerns. It is very similar to
the APT package manager.

The main features of snaps include:

Cross-Distribution Support: Snaps are designed to work on various Linux
distributions, so developers can create a single snap package that runs on
multiple platforms.

Sandboxing: Snaps are isolated from the rest of the system, which enhances
security by reducing the potential impact of software vulnerabilities.

Atomic Updates: Snaps are installed in a way that ensures atomic updates,
meaning the package is either fully updated or remains unchanged.

Auto-Updates: By default, snaps are set to update automatically, ensuring
users have the latest version of the software.

Dependency Management: Snaps include their dependencies, reducing
potential conflicts with other software on the system.

Version Rollback: Snaps support version rollback, allowing users to revert to
a previous version if needed.

To use snaps on a Linux distribution that supports them, like the Rasppberry
Pi OS, you’ll need to install the snapd package, which provides the snap run-
time and tools for managing snaps. Once installed, you can use the command
line interface to search for, install, and manage snap packages.

LXD is a system container manager used to manage LXC, an operating-
system-level virtualization technique. LXD provides higher-level

Raspberry Pi OS Text Editors, Git, and LXC206

administration methods than LXC. LXD was not available as a Debian
package for the Raspberry Pi OS at the time this book was written, but it
could be installed with the snap facility.

You can install snap by executing the following commands:

Note
Currently, snap developers recommend a system restart of the root session,
so that the new files placed by snapd (the daemon controlling snap module
installations) in the directory /etc/profile.d/ are correctly reloaded, and the
LXD binary is available along that path.

You can safely execute snap commands to install LXD, as follows:

root@raspberrypi:~# apt-get -y install snapd
Output truncated ...
root@raspberrypi:~# reboot

Wait until the system reboots.

root@raspberrypi:~# snap install core
2023-07-30T10:48:19-07:00 INFO Waiting for automatic snapd restart…
Output truncated ...
core 16-2.59.5 from Canonical✓ installed
root@raspberrypi:~# snap install lxd

Output truncated ...

lxd 5.15-002fa0f from Canonical✓ installed
root@raspberrypi:~#

5.	 Once LXD has been installed, it must be initialized. LXD is initialized
via an interactive set of questions. We recommend you just select the
default answers (press <Enter> on the keyboard), with the exception
of the size in GB of the new loop device: that will be the maximum
size you’ll be able to use for your containers in total. The default size
below varies depending on the size of the system/boot media used
(in the example below, we ran the Raspberry Pi OS from a nominally
500 GB solid-state drive [SSD] on the USB3 bus). LXD is initialized by
executing the following command:

Note
With the settings achieved in the following command, you’ll give access to
LXD containers to the “public” network via a specific profile. This allows
you to have both “private” and “public” facing containers. If you want to
create only “public” containers by default by directly attaching them to the
br0 bridge, answer the following questions in the lxd init dialog below as
follows:

Would you like to create a new local network bridge? (yes/no) [default=
yes]: no

Virtualization Methodologies 207

What should the new bridge be called? [default=lxdbr0]: br0

root@raspberrypi:~# lxd init
Would you like to use LXD clustering? (yes/no) [default=no]:
Do you want to configure a new storage pool? (yes/no) [default=yes]:
Name of the new storage pool [default=default]:
Name of the storage backend to use (dir, lvm, zfs, btrfs, ceph) [default=zfs]:
Create a new ZFS pool? (yes/no) [default=yes]:
Would you like to use an existing empty block device (e.g. a disk or partition)? (yes/no)
[default=no]:
Size in GiB of the new loop device (1GiB minimum) [default=30GiB]: 8GiB
Would you like to connect to a MAAS server? (yes/no) [default=no]:
Would you like to create a new local network bridge? (yes/no) [default=yes]:
What should the new bridge be called? [default=lxdbr0]:
What IPv4 address should be used? (CIDR subnet notation, “auto” or “none”) [default=
auto]:
What IPv6 address should be used? (CIDR subnet notation, “auto” or “none”) [default=
auto]:
Would you like the LXD server to be available over the network? (yes/no) [default=no]:
Would you like stale cached images to be updated automatically? (yes/no) [default=yes]:
Would you like a YAML "lxd init" preseed to be printed? (yes/no) [default=no]:
root@raspberrypi:~#

Note
LXD uses a loop-based ZFS pool as the default storage backend when you
initialize containers with a ZFS backing store. This loop-based pool is created
on your host system, and uses a loop device (sometimes referred to as a vir-
tual block device) to store the ZFS datasets on. This setup allows LXD to work
with ZFS even if you don’t have direct access to dedicated physical block
devices or partitions that are separate from the boot/system medium. This is
exactly the same as the files we created as VDEVs in Volume 2, Section 1.9, to
illustrate many of our ZFS examples in that section.

LXD is running. We now want to create a network bridge so that OS-level
containers will act as virtual computers, with their own IP addresses, directly
connected to your home network. That’s the easiest way for a beginner to
utilize those virtual machines, in terms of communicating with them, as you
shall see in subsequent sections and examples.

6.	 In this step, you will create an LXC profile to connect any containers
you create later to the public network via the bridge. When we
initialized LXD, we created a default profile with an “internal” net-
work not visible from outside our LXD installation. From a beginner
system administrator’s perspective, that doesn’t seem very useful to
us, although for security purposes in commercial system administra-
tion, that is perhaps very critical and important.

Raspberry Pi OS Text Editors, Git, and LXC208

To see what containers are running, use the following LXC command:

root@raspberrypi:~# lxc list
To start your first container, try: lxc launch ubuntu:22.04
Or for a virtual machine: lxc launch ubuntu:22.04 --vm

+------+-------+------+------+------+-----------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+------+-------+------+------+------+-----------+
root@raspberrypi:~#

At this point, no containers are running, as seen in the output of the above
command.

The following commands that create a new container are only presented
here to illustrate what this “internal” network looks like. At the time of the
writing of this book, Ubuntu 22.04 was a readily available and stable con-
tainer image to initially start up.

root@raspberrypi:~# lxc launch ubuntu:22.04 test
Creating test
Retrieving image: rootfs: 84% (8.92MB/s) …
Starting Test
root@raspberrypi:~#

After creating the container image, you can see that the image has been
assigned a private IP address in a network different from our public network
(10.24.214.79):

root@raspberrypi:~# lxc list
+------+---------+---------------------+---+-----------+-------------------------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+------+---------+---------------------+--+-----------+-------------------------+
| test | RUNNING | 10.24.214.79 (eth0) | fd42:... (eth0) | CONTAINER
| 0   |
+------+---------+---------------------+--+-----------+-------------------------+

Optionally at this point, we could delete this test container with the following
commands, but we chose not to

root@raspberrypi:~#
root@raspberrypi:~# lxc stop test
root@raspberrypi:~# lxc delete test
root@raspberrypi:~# lxc list
+------+-------+------+------+------+-----------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+------+-------+------+------+------+-----------+
root@raspberrypi:~#

From the output of the last command, we can see that there are no containers
defined.

Virtualization Methodologies 209

As a beginner, you want containers to be attached to your public-facing
network, so we need a specific kind of LXC profile to achieve this. You will
create a profile named bridged with the following commands:

root@raspberrypi:~# lxc profile create bridged
Profile bridged created
root@raspberrypi:~#

7.	 You have to edit the LXC bridged profile. On our Raspberry Pi system,
the default editor was set to nano.

You can configure the bridged profile to deploy your newly created
br0 bridge with whatever your preferred editor is, with the following
command:

root@raspberrypi:~# lxc profile edit bridged

On our system, nano opened the Yet Another Markup Language (YAML) file,
and we created the following contents:

Note
There are a few important things to notice about this file. First, the lines with
the ### are comment lines, and in the file already present, they suggest a
sample profile you could construct. Second, the character spacing on a YAML
line is very important. So, in the file we have constructed below, there is a
space character between each colon (:) on a line, and the next character pre-
sent, such as between the colon after the word name, and the character e in
eth0, and so forth.

This is a YAML representation of the profile.
Any line starting with a '# will be ignored.
###
A profile consists of a set of configuration items followed by a set of
devices.
###
An example would look like:
name: onenic
config:
raw.lxc: lxc.aa_profile=unconfined
devices:
eth0:
nictype: bridged
parent: lxdbr0
type: nic
###
Note that the name is shown but cannot be changed

Raspberry Pi OS Text Editors, Git, and LXC210

config: {}
description: bridged connection
devices:

eth0:
name: eth0
nictype: bridged
parent: br0
type: nic

name: bridged
used_by: []

Save the file after adding the changes we show above in the editor, and close
the file. If you make syntax errors in the YAML, you will be given a chance to
correct them. Containers with both the default and bridged profiles will be
available on the network as independent computers with their own public-facing
IP addresses.

8.	 You will now create a container, another Ubuntu 22.04 virtual machine,
that will use the bridged profile.

root@raspberrypi:~# lxc -p default -p bridged launch ubuntu:22.04 permanent
Output truncated...
Creating permanent
Starting permanent
root@raspberrypi :~# lxc list
+-----------+---------+---------------------+---+-----------+-----------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+-----------+---------+---------------------+--+-----------+-----------+
| permanent | RUNNING | 192.168.1.43 (eth0) | | CONTAINER | 0 |
+-----------+---------+---------------------+---+-----------+-----------+
| test | RUNNING | 10.24.214.79 (eth0) | fd42:a712:aa5a:14d2:216:3eff:fe7b:975d
(eth0) | CONTAINER | 0 |
+-----------+---------+---------------------+---+-----------+-----------+
root@raspberrypi:~#

In the above lxc launch command, it is important to specify first the default
profile, and second the bridged profile. This is because the bridged profile
overwrites the network settings of the default profile.

Notice that in the output of the lxc list command above, you see that the
new container is directly attached to our public-facing network.

Now, both of these demo containers should be stopped and deleted with
the following commands, to prepare for subsequent examples below:

root@raspberrypi:~# lxc stop test permanent
root@raspberrypi:~# lxc delete test permanent

Virtualization Methodologies 211

9.	 Verify the deletion of the two containers with the following command:

root@raspberrypi:~# lxc list
+------+-------+------+------+------+-----------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+------+-------+------+------+------+-----------+
root@raspberrypi:~#

Conclusion:
You installed LXC/LXD on a Raspberry Pi system, and customized its profile
to achieve container launching and networking amenable to beginners.

3.2.3 � Container Management Commands

Now that you have LXC/LXD installed, and know how to launch a con-
tainer with some specific characteristics, the following are the most
important commands that a beginner needs to know to actually manage
that container.

On the host system, you should first execute the following command to
become root:

bob@raspberrypi:~ $ sudo su -
root@raspberrypi:~#

To start a container, named “containerx,” use the following command:

root@raspberrypi:~# lxc start containerx

To stop a container named “containery,” or to force it to stop, use the following
commands:

root@raspberrypi:~# lxc stop containery
root@raspberrypi:~# lxc stop containery --force

To restart a container named “containerz,” and force it to restart, use the
following commands:

root@raspberrypi:~# lxc restart containerz
root@raspberrypi:~# lxc restart containerz --force

To delete a container named “containerq,” and force it to be deleted if it is still
running, use the following commands:

root@raspberrypi:~# lxc delete containerq
root@raspberrypi:~# lxc delete container --force

Raspberry Pi OS Text Editors, Git, and LXC212

3.2.4 � Internal Container Management Commands
Executed from the Host

The most useful and practical thing that you can do to manage containers is
to be able to work inside of the container OS environment itself. This allows
you to do tasks such as user file and container OS maintenance, install soft-
ware in the container, create users and groups, monitor container perform-
ance, etc.

There are a few equivalent ways to do this. One of them is to start a shell,
such as bash, inside the container and operate in that shell. Another is to ssh
into the container, as we show in Section 3.2.6. There are also LXC commands
available on the host to execute Linux commands in a container, and put
or get files into/from a running container. As we show in Section 3.2.6, the
container’s filesystem is mounted on the host, and is accessible from the host
OS as well. We show some of these techniques in this section.

On the host system, you should first execute the following command to
become root:

bob@raspberrypi:~ $ sudo su -
root@raspberrypi:~#

To start a bash shell inside a container name “ztest2,” use the following
command:

root@raspberrypi:~# lxc exec ztest2 bash
root@ztest2:~#

To terminate the bash shell in container ztest2, type exit.
To execute a Linux command inside the running ztest2 container from the

host, you can use the following syntax:

root@raspberrypi:~# lxc exec ztest2 -- ls -la /

Notice the syntax that partitions the command sent to ztest2, the two hypens(- -)
and the /, with a space character before and after the command and its options.

To put a file into ztest2 from the host directory /home/bob, use the
following command:

root@raspberrypi:/home/bob# lxc file push /home/bob/.ssh/id_rsa.pub \
ztest2/home/bob/.ssh/authorized_keys/

Notice that the above command assumes there is a directory in container
ztest2 /home/bob

To get filexyz from ztest2, that is in the directory /home/bob on that container,
and “pull” it to the host into a specific destination, use the following command:

root@raspberrypi:/home/bob# sudo lxc file pull \
ztest2/home/bob/filexyz /home/bob/

Virtualization Methodologies 213

3.2.5 � Container Backups, Snapshots, and Cloning

Certainly one of the most important tasks for the system administrator, or
for that matter, the individual user that may be working and managing
her own home computer, is filesystem backup. For LXD, backup strategies
follow two distinct paths. You must not only backup the containers, and their
filesystems, but also the “machinery” of LXD itself on the host computer you
are running it on.

The backup of containers, and the data that supports each individually, is
done with the lxc snapshot command. Restoring a container from it’s backup
snapshots is done with the lxc restore command. It is important to note here
that LXD snapshots are more inclusive, and particularly in the examples we
show in Section 3.2.6, are not the same thing as using zfs snapshot and zfs
rollback on a container filesystems that is using ZFS.

The backup and restoration of LXD “machinery” is something we address
in a problem at the end of this chapter.

To take a snapshot of a container, named “containera”, use the following
command:

root@raspberrypi:~# lxc snapshot containera

The name of the snapshot will be snap_number, where snap_number is an
incrementing integer number, starting at zero(0).

To create a snapshot of containera with a distinct name that you choose, use
the following command:

root@raspberrypi:~# lxc snapshot containera containera_snapshot_2

The number of snapshots that have been taken on a container is shown in the
lxc list command, for example:

root@raspberrypi:~# lxc list containera
| NAME   | STATE | IPV4   | IPV6 | TYPE | SNAPSHOTS |
| containera |RUNNING | 192.168.1.22 (eth0) |   | CONTAINER | 0 |

To rename a snapshot, use the lxc move command as follows:

root@raspberrypi:~# lxc move containera/containera_snapshot_2 \
containera/containera_snapshot_3

The lxc move command can also be used to rename a stopped container,
retaining its IP address according to our methodology of bridged adapter
network address assignment, using the following syntax:

root@raspberrypi:~# lxc move <old name> <new name>

Raspberry Pi OS Text Editors, Git, and LXC214

To restore a snapshot, use the following command, and be aware that the
snapshot, in this case named containera_snapshot_2, is restored into the con-
tainer that it is a snapshot of: in this case, containera.

That brings up an interesting similarity between LXD snapshots, and ZFS
dataset snapshot and rollback: Once you restore, or rollback, you have lost
the version of the container (or in the case of ZFS, the dataset) as it perhaps
evolved since the snapshot was taken. Contrast and compare this to using the
git command, where you can “rollback” to a previous commit, and then roll
forward again to the latest commit along any branch.

root@raspberrypi:~# lxc restore containera containera_snapshot_3

To escape the snapshot/rollback dilemma presented by the previous
command, you can create a new container which is identical to another
container’s snapshot.

root@raspberrypi:~# lxc copy containera/containera_snapshot_ 3 containerb

So following from all the commands presented in this section, a list of the
containers and snapshots you have is as follows:

1.	 snap0 (the first automatically named snapshot),
2.	 containera (not the originary container, but the one overwritten by

containera_snapshot_3),
3.	 containera_snapshot_3 (the renamed snapshot, which was

containera_snapshot_2), and
4.	 containerb.

To delete a snapshot, do the following:

root@raspberrypi:~# lxc delete containera/containera_snapshot_3

In container management, it is often necessary to use one container as a
master “template” for provisioning and creating several other containers. To
make a copy of a container and then effectively “clone” it into a new con-
tainer, use the following command:

root@raspberrypi:~# lxc copy <source container> <destination container>

3.2.6 � Extended LXD Installation and Container Management Examples

In this section, we show specific extended examples of the installation, exe-
cution and creation of LXD containers, ZFS, and bridge-utils on a Raspberry
Pi host system. These examples should be done consecutively, as they build
upon each other to achieve the goals of this section. A very useful technique

Virtualization Methodologies 215

we employ here is using ZFS as the backing store for LXD containers, to con-
figure a ZFS zpool on a vdev that is a physical block device. Furthermore, in
the primary example, we implement a bridged networking setup, so indi-
vidual LXD containers provisioned by LXD can be automatically assigned an
IP address via the DHCP server on your network.

These examples execute tasks that achieve a few system management
objectives for us, as follows:

1.	 Integrates our ZFS system management paradigm and knowledge
with a contemporary OS-level virtualization model.

2.	 Uses a realistic way of working with ZFS, deploying a physical block
device to build a zpool on. We also pose a problem at the end of the
chapter that allows you to use a physical block device as a vdev for
ZFS/LXD installation.

3.	 Expose the LXD containers with their own “public-facing” network
addresses, rather than on a private subnet such as 10.0.0X. This
method uses the iptables command to expose containers as ports
on the host computer. We find that this “public-facing” IP address
method is simpler and more useful for a novice user trying to learn
about LXD containers and the networking of these containers on
their own home network, than the traditional way of networking the
containers.

4.	 Gets your hands dirty with LXD.

The examples in this section make these assumptions:

*	 You are working on a Raspberry Pi host that has at least 4 GB of memory,
is a 64-bit machine, with the latest Raspberry Pi OS and Linux kernel
installed on it.

*	 You have enough space on the medium you’re running your system from
to accommodate not only the installation of ZFS, LXD, and bridge-utils
packages, but also that you can add an adequately sized USB-mounted
external medium to the system.

*	 You have superuser privileges on your computer system.

*	 In the primary example we download and install an Ubuntu 22.04
image, and create our first container with it. The fundamental reason
for doing this is you can work with either that LTS version, or the latest
available stable release of Ubuntu in the container without having to
relearn any new commands or facilities, such as working with another
package management system to download and install software in the
container.

Example 3.2 Running Containers with a ZFS Filesystem Backing Store

Raspberry Pi OS Text Editors, Git, and LXC216

Objective:
Exploring LXD containers, and their utilization of ZFS.

Prerequisites:

1.	 Completion of Example 3.1.

2.	 Knowledge of basic Linux commands.

3.	 Optional completion of Volume 4, Chapter 1 on ZFS.

Background:
This primary example follows up on the installation, initialization, creation,
and deletion of the two LXD containers as described in Example 3.1. It also
allows you to further experiment with ZFS and bridged network adapters.
It also assumes that you will be working in your home account on your
Raspberry Pi computer system.

Procedures:

1.	 Launch a new container, named ztest, with the following command:

root@raspberrypi:~# lxc -p default -p bridged launch ubuntu:22.04 ztest

This will allow you to experiment with, and view, some of the ZFS
backing store characteristics of an LXD container.

2.	 Once the container is created and started, use the following command
to view the zpools on the system:

root@raspberrypi:~# zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH
ALTROOT
default 7.50G 743M 6.77G - - 0% 9% 1.00x ONLINE -
root@raspberrypi:~#

3.	 Use the following command to list the ZFS filesystems that exist on
your system:

root@raspberrypi:~# zfs list
NAME USED AVAIL REFER  MOUNTPOINT
default 743M 6.54G 24K   legacy
default/buckets 24K 6.54G 24K   legacy
default/containers   126M 6.54G 24K   legacy
default/containers/ztest 126M 6.54G 726M legacy
default/custom 24K 6.54G   24K legacy
default/deleted 144K 6.54G   24K legacy

Virtualization Methodologies 217

default/deleted/buckets 24K   6.54G    24K legacy
default/deleted/containers 24K 6.54G 24K legacy
default/deleted/custom   24K 6.54G   24K legacy
default/deleted/images 24K 6.54G      24K legacy
default/deleted/virtual-machines 24K   6.54G   24K legacy
default/images 616M 6.54G   24K legacy
default/images/e59722a2... 616M 6.54G 616M legacy
default/virtual-machines   24K 6.54G 24K legacy
root@raspberrypi:~#

We see that the default zpool takes up 7.50 G bytes of storage.

4.	 Now we can get LXD configuration information using the command
line interface known as lxc. Type the following command:

root@raspberrypi:~# lxc info
config: {}
api_extensions:
- storage_zfs_remove_snapshots
- container_host_shutdown_timeout
- container_stop_priority
- container_syscall_filtering
- auth_pki
- container_last_used_at
Output truncated...
server_version: "5.15"

storage: zfs
storage_version: 2.1.11-1~bpo11+1~rpt1

Output truncated…

What we can see in the output of the above command is that LXD is using
ZFS for storage of container information, and the name of the zpool for that
storage is default.

5.	 At this point, it would also be prudent to examine the LXD bridged
profile, using the following command:

root@raspberrypi:~# lxc profile show bridged
config: {}
description: bridged connection
devices:
 eth0:
 name: eth0
 nictype: bridged
 parent: br0
 type: nic
name: bridged
used_by:
- /1.0/instances/ztest
root@raspberrypi:~#

Raspberry Pi OS Text Editors, Git, and LXC218

From this command output, you can see that the bridged adapter br0 is being
used by containers that you have created so far.

6.	 We can now open a bash shell into the container ztest, do some
file explorations, and then exit the container, with the following
commands:

root@raspberrypi:~# lxc shell ztest
root@ztest:~# ls -la
total 10
drwx------	 5 root root	 8	 Aug 1	 20:31	 .
drwxr-xr-x	 18 root root	 21	 Jul 29	 07:35	 ..
-rw-------	 1 root root	 754	 Aug 2	 02:01	 .bash_history
-rw-r--r--	 1 root root	 3106	 Oct 15	 2021	 .bashrc
drwxr-xr-x	 3 root root	 3	 Aug 1	 20:31	 .local
-rw-r--r--	 1 root root	 161	 Jul 9	 2019	 .profile
drwx------	 2 root root	 5	 Aug 1	 20:35	 .ssh
drwx------	 3 root root	 3	 Aug 1	 19:36	 snap
root@ztest:~# pwd
/root
root@ztest:~# exit
logout
root@raspberrypi:~#

Example 3.3 Creating an LXC Container on a Physical Block Device vdev

Objectives:
To create a new container, with a ZFS backing store, on a physical device.

Prerequisties:

1.	 Completion of Examples 3.1 and 3.2.

2.	 Optional completion of Volume 2, Chapter 1, Section 1.9 on ZFS.

3.	 Having a usable, sacrificial USB thumbdrive, or other medium that
can mount, and be recognized on your Raspberry Pi system.

Background:
The previous examples mapped containers onto loop devices, which
were essentially files constructed by LXC in lieu of using physical, block
devices.

Note
A zpool cannot be created on a block device that has another filesystem
mounted on it, such as the boot/root filesystem of the Raspberry Pi OS. LXC
creates loop device zpools, essentially on files, because of this fact.

Virtualization Methodologies 219

Here, we use a physical device, a USB-mounted thumbdrive, to construct
our LXC container on. The essential command presented here is

lxc storage create name zfs source=zpoolname

where name is the name of the pool which will hold any container(s) you
want to map to it, and source=zpoolname designates, for our purposes here,
the name of the zpool you’ve created with the zpool create command on a
physical block device. When you launch a container onto that device, the
--storage name option of the lxc launch command specifies that named zpool.

Procedures:

1.	 Insert the USB medium in one of your Raspberry Pi system’s available
connectors. Use one of the USB3 connectors if available. It’s device
name will appear in /dev, such as /dev/sdb, with perhaps a single par-
tition on it named /dev/sdb1. If it doesn’t appear there after insertion,
select another sacrificial USB thumbdrive that properly mounts in /
dev. We used a Kingston 8 GB device, pre-formatted to FAT32 in this
example. But in later examples, we used a SATA SSD mounted in an
external USB3 enclosure.

2.	 Unmount the thumbdrive from Step 1 with the following command:

root@raspberrypi:~# umount /dev/sdb1
root@raspberrypi:~#

3.	 Create a zpool on the thumbdrive with the following command:

root@raspberrypi:~# zpool create -f test27 /dev/sdb1
root@raspberrypi:~#

4.	 List the zpools on your system with the following command:

root@raspberrypi:~# zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP
HEALTH ALTROOT
default 7.50G 743M 6.77G - - 0% 9% 1.00x
ONLINE -
test27 7G 104K 7.00G - - 0% 0% 1.00x
ONLINE -
root@raspberrypi:~#

5.	 Create a new storage backend on this block device, named prod, with
the following command. This will take some time, depending upon
the capacity of your block device.

Raspberry Pi OS Text Editors, Git, and LXC220

root@raspberrypi:~# lxc storage create prod zfs source=test27
storage pool prod created
root@raspberrypi:~#

6.	 List the LXC storage pools now on the system with the following
command:

root@raspberrypi:~# lxc storage ls
+---------+--------------+---+------------------------+---------+-----------------+
| NAME | DRIVER | SOURCE | DESCRIPTION | USED BY | STATE |
+---------+--------------+--+-----------------------+---------+-----------------+
| default | zfs | /var/snap/lxd/common/lxd/disks/default.img | | 3 | CREATED |
+---------+--------------+--+-----------------------+---------+-----------------+
| prod | zfs | test27 | | 0 | CREATED |
+---------+--------------+---+------------------------+----------------------------+

7.	 Create a new container in that storage pool with the following
command. This will take a while, depending on the size of your block
device.

root@raspberrypi:~# lxc -p default -p bridged launch --storage prod
ubuntu:22.04 ztest2
Creating ztest2
Remapping container filesystem
Starting ztest2
root@raspberrypi:~#

Conclusion:
We launched a container on a physical device, separate from the Raspberry Pi
OS boot/root medium, and specified a ZFS filesystem on the host to hold that
container’s data and files. Note carefully here, the zpool, and ZFS exists as a
filesystem on the host, not as an installed filesystem in the container. This is
a more realistic and useful methodology for system administration, particu-
larly since you can deploy the advantages that ZFS gives you in terms of file
integrity, and backup strategies via mirroring, with physical block devices.
In server-class ZFS systems, Error Correction Code (ECC) memory is used
to ensure data integrity. If instead of using a USB thumbdrive as we do in
this example, you used an externally mounted SSD, or USB3 PCIe M2 card
to create the zpool on, those devices have ECC capability built into them for
data integrity.

In-Chapter Exercise

3.4	 What does the zfs list command show now?

Virtualization Methodologies 221

Example 3.4 Viewing the Contents of a Container from the Host

Objectives:
To enter the filesystem of a running LXC container from the host Raspberry
Pi system, and to do file maintenance and exploration in the container.

Prerequisites:

1.	 Completion of Examples 3.1 through 3.3.

Background:
After you’ve launched an LXD container, such as the ones we started above in
Examples 3.1 through 3.3, you are able to enter a container via the commands
lxc shell, lxc exec, or lxc console to do file creation, maintenance, or simply
to view or modify the files in that container. This example shows you how to
access the filesystem of the container from the host Raspberry Pi.

As you did in Example 3.1, the snap package installed LXD and created a
default location for containers you would subsequently launch.

But remember we created a location named prod for our containers. LXD
mounts the filesystems for those containers in a subdirectory under /var/
snap/lxd/common/lxd/storage-pools/prod/containers/. If you use the
following commands on the host to examine the files in the container ztest2
you created in Example 3.2, you’ll enter that container. Each container is
found in a subdirectory of the previous pathname, and that subdirectory is
named after each container name.

$ sudo su -

root@raspberrypi:~# ls -l /var/snap/lxd/common/lxd/storage-pools/prod\
containers/ztest2
total 0
root@raspberrypi:~#

The question is “Why is the container directory empty?”
Assuming the container is running, the contents show as empty, and for a

good reason.
LXD uses a facility we covered in the previous volumes of this book –

Linux namespaces. You need to enter the namespace of the LXD service for
you to view the container files from the host. The critical command here is the
nsenter command. With the -t option, you can specify the target namespace,
and the process ID of the LXD service. With the -m option, you can specify
that you want to enter the mount namespace of this process. You can view more
detailed information about the nsenter command in its manpage on your
host Raspberry Pi system.

Raspberry Pi OS Text Editors, Git, and LXC222

Procedures:

1.	 Enter the namespace of the LXD service.

root@raspberrypi:~# nsenter -t $(cat /var/snap/lxd/common/lxd.pid) -m

-bash-5.1#

2.	 You’ll be looking at the container you created in Example 3.3, named
ztest2.

-bash-5.1# cd /var/snap/lxd/common/lxd/storage-pools/prod\
containers
-bash-5.1# ls -l ztest2
total 8
-r--------	 1	 root root	 3851	 Aug 2 13:49 backup.yaml
-rw-r--r--	 1	 root root	 297	 Jul 29 01:10 metadata.yaml
drwxr-xr-x	 18	 1000000 1000000	 21	 Jul 29 00:35 rootfs
drwxr-xr-x	 2	 root root	 3 	 Jul 29 01:10 templates
-bash-5.1#

3.	 You can now look at the files of this container in detail.

These files are important if you lose your LXD database somehow.
The metadata.yaml file, along with the templates directory, is the descrip-

tion of how the container was parametarized. In an Ubuntu 22.04 container,
the defaults are used, except for networking. And last in the listing is rootfs,
which is where the filesystem of the container resides.

The rootfs directory has UID/GID of 100000/100000. The files inside the
root filesystem of container ztest2 have IDs that are shifted by 100000 from
the typical range 0–65534. The files inside the container will have IDs that
range from 100000 to 165534. The root account in the container will have real
UID 100000, but will appear as 0 in the container. Here is the list of the root
directory of the container, as viewed from the host.

-bash-5.1# cd ztest2/rootfs
-bash-5.1# ls -la
total 34
drwxr-xr-x	 18 1000000 1000000	 21	 Jul 29 00:35	 .
d--x------	 4 1000000 root	 6	 Aug 2 13:47	 ..
lrwxrwxrwx	 1 1000000 1000000	 7	 Jul 29 00:22	 bin -> usr/bin
drwxr-xr-x	 2 1000000 1000000	 2	 Jul 29 00:35	 boot
drwxr-xr-x	 4 1000000 1000000	 16	 Jul 29 00:30	 dev
drwxr-xr-x	 90 1000000 1000000	 178	 Aug 2 13:51	 etc
drwxr-xr-x	 3 1000000 1000000	 3	 Aug 2 13:50	 home
lrwxrwxrwx	 1 1000000 1000000	 7	 Jul 29 00:22	 lib -> usr/lib
drwxr-xr-x	 2 1000000 1000000	 2	 Jul 29 00:23	 media
drwxr-xr-x	 2 1000000 1000000	 2	 Jul 29 00:23	 mnt
drwxr-xr-x	 2 1000000 1000000	 2	 Jul 29 00:23	 opt

Virtualization Methodologies 223

drwxr-xr-x	 2 1000000 1000000	 2	 Apr 18 2022	 proc
drwx------	 4 1000000 1000000	 7	 Aug 3 05:51	 root
drwxr-xr-x	 4 1000000 1000000	 4	 Jul 29 00:31	 run
lrwxrwxrwx	 1 1000000 1000000	 8	 Jul 29 00:22	 sbin -> usr/sbin
drwxr-xr-x	 6 1000000 1000000	 7	 Jul 29 00:31	 snap
drwxr-xr-x	 2 1000000 1000000	 2	 Jul 29 00:23	 srv
drwxr-xr-x	 2 1000000 1000000	 2	 Apr 18 2022	 sys
drwxrwxrwt	 10 1000000 1000000	 10	 Aug 3 08:54	 tmp
drwxr-xr-x	 11 1000000 1000000	 11	 Jul 29 00:23	 usr
drwxr-xr-x	 13 1000000 1000000	 15	 Jul 29 00:30	 var
-bash-5.1#

4.	 At this point, we have not added any users to the system. But, you can
now create a file in the container’s rootfs from the host, in the default
ubuntu user in that container’s home subdirectory, and see what it
will look like from within the container. To achieve this, open a Bash
shell into the container.

-bash-5.1# cd home/ubuntu
-bash-5.1# touch test_file
-bash-5.1#

5.	 From another terminal on the host, run the following commands:

root@raspberrypi:~# lxc shell ztest2
root@ztest2:~# cd /home/ubuntu
root@ztest2:/home/ubuntu# ls -la
total 10
drwxr-x---	 3	 ubuntu ubuntu	 7	 Aug 5 13:07	 .
drwxr-xr-x	 3	 root root	 3	 Aug 5 13:06	 ..
-rw-r--r--	 1	 ubuntu ubuntu	 220	 Jan 6 2022	 .bash_logout
-rw-r--r--	 1	 ubuntu ubuntu	 3771	 Jan 6 2022	 .bashrc
-rw-r--r--	 1	 ubuntu ubuntu 	 807	 Jan 6 2022	 .profile
drwx------	 2	 ubuntu ubuntu	 3	 Aug 5 13:06	 .ssh
-rw-r--r--	 1	 nobody nogroup	 0	 Aug 5 13:07	 test_file
root@ztest2:/home/ubuntu#

Conclusion:
We have seen how to enter the mount namespace of the LXD service from the
host Raspberry Pi system, and create and have a look at a file in the default
home directory on the Ubuntu 22.04 container. We also opened a Bash shell in
the container and examined that file from within the container.

Example 3.5 Using ssh to Log into an LXD Container

Objective:
Allow ssh login from another Raspberry Pi on the network, into an LXD
container.

Raspberry Pi OS Text Editors, Git, and LXC224

Prerequisites:

1.	 Completion of Example 3.1 through 3.4.

Background:
This example is a follow-up to Example 3.4, and allows you ssh into an LXD
container from another Raspberry Pi on your local intranet, or from the host
running the container itself.

Note
On our Ubuntu 22.04 container, sshd was already installed, as it was on
our host.

Procedures:

1.	 For the purposes of this example, you will add a new user with the
same name as the user on the host, to the container named ztest2, and
then exit to the host using the following commands:

bob@raspberrypi:~ $ sudo su -

root@raspberrypi:~#
root@raspberrypi:~# lxc shell ztest2
root@ztest2:~#
root@ztest2:~# adduser bob
Adding user `bob' ...
Adding new group `bob' (1001) ...
Adding new user `bob' (1001) with group `bob' ...
Creating home directory `/home/bob' ...
Copying files from `/etc/skel' ...
New password:
Retype new password:
passwd: password updated successfully
Changing the user information for bob
Enter the new value, or press ENTER for the default

Full Name []: bob
Room Number []:
Work Phone []:
Home Phone []:
Other []:

Is the information correct? [Y/n] Y
root@ztest2:~# exit
logout
root@raspberrypi:~#

2.	 Now back on the host, check the automatically generated IP address of
the container named container1:

Virtualization Methodologies 225

root@raspberrypi:~# lxc list
+-----------+---------+---------------------+------+-----------+--+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+-----------+---------+---------------------+------+-----------+----------------------------+
| ztest | RUNNING | 192.168.1.37 (eth0) | | CONTAINER | 0 |
+----------+---------+---------------------+------+-----------+----------------------------+
| ztest2 | RUNNING | 192.168.1.45 (eth0) | | CONTAINER | 0 |
+----------+---------+---------------------+------+-----------+---+
root@raspberrypi:~#

3.	 By default, all Ubuntu LXD images for containers are set up with
PasswordAuthentication no in their SSH configuration.

Therefore, in the container ztest2, you must edit the config file for sshd as
root, and do the following:

root@raspberrypi:~# lxc shell ztest2
root@ztest2:~# nano /etc/ssh/sshd_config

Scroll down in nano to the line PasswordAuthentication no and change the
no to yes, if necessary. If that line has a pound sign (#) in front of it, indicating
it’s commented out, delete the pound sign.

Save and exit the file /etc/ssh/sshd_config

4.	 Restart the SSH service with the following command:

root@ztest2:~# systemctl restart ssh
root@ztest2:~#

5.	 You should now be able to ssh into the container from the host system.
If you get the following message on the host

@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the ECDSA key sent by the remote host is
SHA256:ff8e+evJbf4aCtfYbfMFxOwjZZ+NnkOFCy6QDmT84KQ.
Please contact your system administrator.
Add correct host key in /home/bob/.ssh/known_hosts to get rid of this
message.
Offending ECDSA key in /home/bob/.ssh/known_hosts:35
 remove with:
 ssh-keygen -f "/home/bob/.ssh/known_hosts" -R "192.168.1.45"
ECDSA host key for 192.168.1.45 has changed and you have requested strict
checking.
Host key verification failed.

Raspberry Pi OS Text Editors, Git, and LXC226

Remove the offending key as indicated, and reattempt the following ssh
command.

bob@raspberrypi:~ $ ssh bob@192.168.1.45
The authenticity of host '192.168.1.45 (192.168.1.45)' can’t be established.
ECDSA key fingerprint is SHA256:ff8e+evJbf4aCtfYbfMFxOwjZZ+NnkOFCy6QDmT84KQ.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.1.45' (ECDSA) to the list of known hosts.
bob@192.168.1.45's password: <The password you established in Step 1.>
Welcome to Ubuntu 22.04.2 LTS (GNU/Linux 6.1.21-v8+ aarch64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

System information as of Fri Aug 4 17:05:46 UTC 2023

System load:	 1.02734375	 Temperature:	 34.1 C
Usage of /home:	 unknown	 Processes:	 30
Memory usage:	 71%	 Users logged in:	 0
Swap usage:	 98%	 IPv4 address for eth0: 192.168.1.45

* � Strictly confined Kubernetes makes edge and IoT secure. Learn how
MicroK8s just raised the bar for easy, resilient, and secure K8s cluster
deployment.

https://ubuntu.com/engage/secure-kubernetes-at-the-edge
Output truncated...

bob@ztest2:~$

In-Chapter Exercise

3.5	 Execute all of the steps of Example 3.5 on your own system, to pro-
vision and start a new LXD container so that you can ssh to it from
another machine on your LAN, or from the Internet.

Example 3.6 Enabling the Nginx Web Server in an LXD Container

Objective:
Installation of the web server Nginx in an LXD container

Prerequisites:

1.	 Completion of Examples 3.1 through 3.5.

https://help.ubuntu.com
https://landscape.canonical.com
https://ubuntu.com
https://ubuntu.com

Virtualization Methodologies 227

Background:
This example allows you to install a web server named Nginx in the con-
tainer named “ztest,” which you can then use to display web pages stored in
the container, by using a web browser.

Procedures:

1.	 Open a bash shell on the container named ztest and check the status
of the nginx service:

bob@raspberrypi:~ $ sudo su -
root@ztest:~# systemctl status nginx
Unit nginx.service could not be found.
root@ztest:~#

From the above output, you can see that Nginx is not installed.

2.	 To get the latest Nginx package, first update the Ubuntu package reposi-
tory, and then install the Nginx service, using the following commands:

root@ztest:~# apt-get update

Output truncated…
Fetched 10.7 MB in 39s (272 kB/s)
Reading package lists... Done

root@ztest:~# apt-get install nginx

Output truncated…
Scanning processes...

No services need to be restarted.
No containers need to be restarted.
No user sessions are running outdated binaries.
No VM guests are running outdated hypervisor (qemu) binaries on
this host.
root@ztest:~#

3.	 A firewall application name Uncomplicated Firewall (ufw) exists in
the container. Check which applications are available to ufw and check
the status of ufw to see if it is protecting those applications:

root@ztest:~# ufw app list
Available applications:

Nginx Full
Nginx HTTP
Nginx HTTPS
OpenSSH

Raspberry Pi OS Text Editors, Git, and LXC228

root@ztest:~# ufw status
Status: inactive
root@ztest:~#

The above output shows that ufw is not active. If on your system, it is active,
and firewall rules are in effect, you’re going to have to disable ufw, and/or
modifying its rules.

4.	 Check the status of the Nginx service:

root@ztest:~# systemctl status nginx
● nginx.service - A high performance web server and a reverse proxy server
 Loaded: loaded (/lib/systemd/system/nginx.service; enabled; vendor preset:>
 Active: active (running) since Sat 2023-08-05 16:24:40 UTC; 7min ago
 Docs: man:nginx(8)
Output truncated...
root@ztest:~#

What we see from the output of this command is that the installation of the
Nginx service using apt-get not only installed it, but started it as well, and
that the service is active and running.

5.	 You can now test the Nginx web server by pointing your web browser
to the URL of the container ztest, which in our case is 192.168.1.37. You
will see the Nginx Welcome page displayed, with the following content:

Welcome to nginx!
If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.
Thank you for using nginx.

6.	 Managing the Nginx process

Now that you have your web server up and running in the container, let’s
review some basic management commands you can use at the container
command line.

To stop your web server, type:
sudo systemctl stop nginx

To start the web server when it is stopped, type:
sudo systemctl start nginx

To stop and then start the service again, type:
sudo systemctl restart nginx

Virtualization Methodologies 229

If you are only making configuration changes, Nginx can often reload without dropping
connections. To do this, type:
sudo systemctl reload nginx

By default, Nginx is configured to start automatically when the server boots. If this is
not what you want, you can disable this behavior by typing:
sudo systemctl disable nginx

To re-enable the service to start up at boot, you can type:
sudo systemctl enable nginx

You have now learned a few basic management commands, and should be
ready to configure the site to host more than one domain.

Conclusion:
You installed the Nginx web server in an LXC/LXD container.

In-Chapter Exercise

3.6	 Execute all of the steps of Example 3.6 on your own computer system
to provision and start a new LXD container, so that the web server
Nginx is installed in it. Then do an initial test of the default Nginx
web page, either from a browser on another machine on your LAN,
or from the Internet.

3.3 � Docker

Similar to, but more commercially utilized than LXC/LXD, Docker is a robust
and widely used container management system that has revolutionized the
world of software development and deployment.

Most notably, Docker provides a virtualization platform for developers to
create, package, and distribute applications and their dependencies in light-
weight, portable containers.

These containers encapsulate everything needed for an application to
run, from the code and runtime environment to libraries and system tools,
ensuring consistency and reliability across different environments. Docker’s
strength lies in its ability to simplify the software development lifecycle by
allowing developers to build and test applications in isolated containers,
making it easy and efficient to move these containers between the stages
of development, testing, and production environments, ready for shipment
to customers. Its efficiency, scalability, and compatibility have made it an
essential tool in modern DevOps and cloud-native workflows, empowering

Raspberry Pi OS Text Editors, Git, and LXC230

organizations to develop, deploy, and scale applications faster and more
efficiently.

In the following sections, we provide you with installation instructions
for Docker on the Raspberry Pi OS, show its basic usage, the deployment of
an Nginx Docker container with a public-facing IP address, and give a brief
command reference for its essential commands. This presentation can be the
fundamental basis for you to proceed with further Docker DevOps.

3.3.1 � Docker Installation on the Raspberry Pi OS

As of the time this book was written, the easiest and simplest way of installing
Docker on the Raspberry Pi OS is to use the following commands:

bob@raspberrypi:~ $ curl -fsSL https://get.docker.com -o get-docker.sh
bob@raspberrypi:~ $ sudo sh get-docker.sh
Executing docker install script, commit: c2de0811708b6d9015ed1a2c80f02c9b70c
8ce7b
+ sh -c apt-get update -qq >/dev/null
+ sh -c DEBIAN_FRONTEND=noninteractive apt-get install -y -qq apt-transport-https
ca-certificates curl >/dev/null
+ sh -c install -m 0755 -d /etc/apt/keyrings
+ sh -c curl -fsSL "https://download.docker.com/linux/debian/gpg" | gpg --dearmor
--yes -o /etc/apt/keyrings/docker.gpg
+ sh -c chmod a+r /etc/apt/keyrings/docker.gpg
+ sh -c echo "deb [arch=arm64 signed-by=/etc/apt/keyrings/docker.gpg] https://down-
load.docker.com/linux/debian bullseye stable" > /etc/apt/sources.list.d/docker.list
+ sh -c apt-get update -qq >/dev/null
+ sh -c DEBIAN_FRONTEND=noninteractive apt-get install -y -qq docker-ce docker-ce-cli
containerd.io docker-compose-plugin docker-ce-rootless-extras docker-buildx-plugin >/
dev/null
+ sh -c docker version
Client: Docker Engine - Community
Version:	 24.0.5
API version:	 1.43
Go version:	 go1.20.6
Git commit:	 ced0996
Built	 Fri Jul 21 20:35:38 2023
OS/Arch:	 linux/arm64
Context:	 default

Server: Docker Engine - Community
Engine:
Version:	 24.0.5
API version:	 1.43 (minimum version 1.12)
Go version:	 go1.20.6
Git commit:	 a61e2b4
Built:	 Fri Jul 21 20:35:38 2023
OS/Arch:	 linux/arm64
Experimental:	 false
containerd:
Version:	 1.6.22

https://get.docker.com
https://download.docker.com
https://download.docker.com
https://download.docker.com

Virtualization Methodologies 231

GitCommit:	 8165feabfdfe38c65b599c4993d227328c231fca
runc:
Version:	 1.1.8
GitCommit:	 v1.1.8-0-g82f18fe
docker-init:
Version:	 0.19.0
GitCommit:	 de40ad0
==

To run Docker as a non-privileged user, consider setting up the
Docker daemon in rootless mode for your user:

 dockerd-rootless-setuptool.sh install

Visit https://docs.docker.com/go/rootless/ to learn about rootless mode.

To run the Docker daemon as a fully privileged service, but granting non-root
users access, refer to https://docs.docker.com/go/daemon-access/

WARNING: Access to the remote API on a privileged Docker daemon is equivalent
 to root access on the host. Refer to the 'Docker daemon attack surface'
 documentation for details: https://docs.docker.com/go/attack-surface/

==

bob@raspberrypi:~ $

3.3.2 � Adding a Non-Root User on the Docker Group
and Checking the Docker Version

An essential operation for beginners is to add a non-root user to the Docker
group, as follows:

bob@raspberrypi:~ $ sudo usermod -aG docker bob
bob@raspberrypi:~ $ sudo docker version
Client: Docker Engine - Community
Version:	 4.0.5
API version:	 1.43
Go version:	 go1.20.6
Git commit: 	 ced0996
Built:	 Fri Jul 21 20:35:38 2023
OS/Arch:	 linux/arm64
Context:	 default

Server: Docker Engine - Community
Engine:
Version:	 24.0.5
API version:	 1.43 (minimum version 1.12)
Go version:	 go1.20.6
Git commit:	 a61e2b4
Built:	 Fri Jul 21 20:35:38 2023
OS/Arch:	 linux/arm64

https://docs.docker.com
https://docs.docker.com
https://docs.docker.com

Raspberry Pi OS Text Editors, Git, and LXC232

Experimental:	 false
containerd:
Version:	 1.6.22
GitCommit:	 8165feabfdfe38c65b599c4993d227328c231fca
runc:
Version:	 1.1.8
GitCommit:	 v1.1.8-0-g82f18fe
docker-init:
Version:	 0.19.0
GitCommit:	 de40ad0

3.3.3 � Run the Sample “Hello World” Containers

The first test of Docker for a beginner is to “pull” and run the following con-
tainer on your host system:

bob@raspberrypi:~ $ sudo docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
70f5ac315c5a: Pull complete
Digest: sha256:926fac19d22aa2d60f1a276b66a20eb765fbeea2db5dbdaafeb456ad
8ce81598
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

1.	 The Docker client contacted the Docker daemon.

2.	 The Docker daemon pulled the “hello-world” image from the
Docker Hub.

(arm64v8)
3.	 The Docker daemon created a new container from that image

which runs the executable that produces the output you are cur-
rently reading.

4.	 The Docker daemon streamed that output to the Docker client, which
sent it to your terminal.

To try something more ambitious, you can run an Ubuntu container with

bob@raspberrypi:~ $ docker run -it ubuntu bash
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
5af00eab9784: Pull complete
Digest: sha256:0bced47fffa3361afa981854fcabcd4577cd43cebbb808cea2b1f33a3d
d7f508

Virtualization Methodologies 233

Status: Downloaded newer image for ubuntu:latest
root@2b96338f770f:/# exit
exit
bob@raspberrypi:~ $

3.4 � Docker Optional Configurations

This section contains optional procedures for configuring your Raspberry Pi
system, so that your work with Docker is more effective.

3.4.1 � Running Docker without Root Privileges

The docker daemon binds to a Unix socket instead of a TCP port. By default
that Unix socket is owned by the root user, and other users can access it with
the sudo command. For this reason, the “docker daemon” always runs as the
root user.

To avoid having to use sudo every time you use the docker command, create
a group called docker, and add users to it. When the docker daemon starts, it
makes the ownership of the socket read/writable by the docker group.

Note
Being in the docker group is equivalent to being the root user.

To verify that docker is running the container built above, use the following
command:

bob@raspberrypi:~ $ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
2b96338f770f ubuntu "bash" 11 hours ago Exited (0) trusting_shirley
bob@raspberrypi:~ $

3.4.2 � Configuring UFW and Making Other Configuration Changes

If you use UFW on the same host as you run Docker, you may need to do add-
itional configuration. Docker uses a bridge to manage container networking.
By default, UFW drops all forwarding traffic. As a result, for Docker to run
when UFW is enabled, you must set UFW’s forwarding policy appropriately.

Also, UFW’s default set of rules denies all incoming traffic. If you want to
reach your containers from another host, allow incoming connections on the
Docker port. The Docker port defaults to 2376 if TLS is enabled or 2375 when
it is not. If TLS is not enabled, communication is unencrypted. By default,
Docker runs without TLS enabled.

To view, and perhaps configure UFW to allow incoming connections on the
Docker port, IF UFW IS ACTIVE, first use the following commands:

Raspberry Pi OS Text Editors, Git, and LXC234

bob@raspberrypi:~ $ sudo ufw status
Status: inactive
bob@raspberrypi:~ $ cat /etc/default/ufw
/etc/default/ufw
#

Set to yes to apply rules to support IPv6 (no means only IPv6 on loopback
accepted). You will need to 'disable' and then 'enable' the firewall for
the changes to take affect.
IPV6=yes

Set the default input policy to ACCEPT, DROP, or REJECT. Please note that if
you change this you will most likely want to adjust your rules.
DEFAULT_INPUT_POLICY="DROP"

Set the default output policy to ACCEPT, DROP, or REJECT. Please note that if
you change this you will most likely want to adjust your rules.
DEFAULT_OUTPUT_POLICY="ACCEPT"

Set the default forward policy to ACCEPT, DROP or REJECT. Please note that
if you change this you will most likely want to adjust your rules
DEFAULT_FORWARD_POLICY="DROP"

Set the default application policy to ACCEPT, DROP, REJECT or SKIP. Please
note that setting this to ACCEPT may be a security risk. See 'man ufw' for
details
DEFAULT_APPLICATION_POLICY="SKIP"

By default, ufw only touches its own chains. Set this to 'yes' to have ufw
manage the built-in chains too. Warning: setting this to 'yes' will break
non-ufw managed firewall rules
MANAGE_BUILTINS=no

#
IPT backend
#
only enable if using iptables backend
IPT_SYSCTL=/etc/ufw/sysctl.conf

Extra connection tracking modules to load. IPT_MODULES should typically be
empty for new installations and modules added only as needed. See
'CONNECTION HELPERS' from 'man ufw-framework' for details. Complete list can
be found in net/netfilter/Kconfig of your kernel source. Some common modules:
nf_conntrack_irc, nf_nat_irc: DCC (Direct Client to Client) support
nf_conntrack_netbios_ns: NetBIOS (samba) client support
nf_conntrack_pptp, nf_nat_pptp: PPTP over stateful firewall/NAT
nf_conntrack_ftp, nf_nat_ftp: active FTP support
nf_conntrack_tftp, nf_nat_tftp: TFTP support (server side)
nf_conntrack_sane: sane support
IPT_MODULES=""
bob@raspberrypi:~ $

If UFW is active, use nano to edit the /etc/default/ufw file.

bob@raspberrypi:~$ sudo nano /etc/default/ufw

Virtualization Methodologies 235

Set the DEFAULT_FORWARD_POLICY policy ="ACCEPT"
Save and close the file.

Then, reload UFW to invoke the new setting.

bob@raspberrypi:~$ sudo ufw reload
bob@raspberrypi:~$

Finally, allow incoming tcp connections on the default Docker port.

bob@raspberrypi:~$ sudo ufw allow 2375/tcp
bob@raspberrypi:~$

To configure Docker to start on boot, you need to use systemd to modify the
dockerd service. The Raspberry Pi OS uses systemd as its boot and service
manager. To configure the docker daemon to start on boot, use the following
command:

bob@raspberrypi:~ $ sudo systemctl enable docker
Synchronizing state of docker.service with SysV service script with /lib/systemd/
systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install enable docker
bob@raspberrypi:~ $

3.5 � Uninstallation of Docker

Sometimes, in the system administration of the Raspberry Pi OS, it becomes
necessary to uninstall a service, for whatever reason. We only show the
commands that achieve this below, but do not execute them on our Raspberry
Pi Os.

To uninstall the Docker package:
$ sudo apt-get purge docker-engine

To uninstall the Docker package and dependencies that are no longer needed:
$ sudo apt-get autoremove --purge docker-engine

The above commands will not remove images, containers, volumes, or user-
created configuration files on your host. If you wish to delete all images,
containers, and volumes, use the following command:

$ rm -rf /var/lib/docker

You have to then delete your user created configuration files, if there are any,
manually.

Raspberry Pi OS Text Editors, Git, and LXC236

3.6 � Running a Docker Container and Useful Docker
Commands

This section assumes you have a working installation of Docker, as specified
in Section 3.3.1. To verify Docker is installed, use the following command:

bob@raspberrypi:~ $ docker info
Client: Docker Engine - Community
 Version: 24.0.5
 Context: default
 Debug Mode: false
 Plugins:
 buildx: Docker Buildx (Docker Inc.)
 Version: v0.11.2
 Path: /usr/libexec/docker/cli-plugins/docker-buildx
 compose: Docker Compose (Docker Inc.)
 Version: v2.20.2
 Path: /usr/libexec/docker/cli-plugins/docker-compose

Server:
 Containers: 2
 Running: 0
 Paused: 0
 Stopped: 2
 Images: 2
 Server Version: 24.0.5
 Storage Driver: overlay2
 Backing Filesystem: extfs
 Supports d_type: true
 Using metacopy: false
 Native Overlay Diff: true
 userxattr: false
 Logging Driver: json-file
 Cgroup Driver: systemd
 Cgroup Version: 2
 Plugins:
 Volume: local
 Network: bridge host ipvlan macvlan null overlay
 Log: awslogs fluentd gcplogs gelf journald json-file local logentries splunk syslog
 Swarm: inactive
 Runtimes: io.containerd.runc.v2 runc
 Default Runtime: runc
 Init Binary: docker-init
 containerd version: 8165feabfdfe38c65b599c4993d227328c231fca
 runc version: v1.1.8-0-g82f18fe
 init version: de40ad0
 Security Options:
 seccomp
 Profile: builtin
 cgroupns
 Kernel Version: 6.1.21-v8+

Virtualization Methodologies 237

 Operating System: Debian GNU/Linux 11 (bullseye)
 OSType: linux
 Architecture: aarch64
 CPUs: 4
 Total Memory: 3.704GiB
 Name: raspberrypi
 ID: d5f88ac0-1495-426f-b448-a44bd20089b2
 Docker Root Dir: /var/lib/docker
 Debug Mode: false
 Experimental: false
 Insecure Registries:
 127.0.0.0/8
 Live Restore Enabled: false

WARNING: No memory limit support
WARNING: No swap limit support
bob@raspberrypi:~ $

If the system responds- docker: command not found, or something like
/var/lib/docker/repositories: permission denied, or you may have an incom-
plete Docker installation, or insufficient privileges to access Docker on
your Raspberry Pi system. With the default installation of Docker, docker
commands need to be run by a user that is in the docker group, or by a user
with root privileges.

Depending on your Docker system configuration, you may be required to
preface each docker command with sudo. One way to avoid having to use
sudo with the docker commands is to create a group called “docker,” and
add users that will be entering docker commands to the “docker” group. We
illustrated this procedure in Section 3.4.1.

3.6.1 � Downloading a Pre-Built Docker Image

How do you find out what Docker images are available for download to
your local machine? You can use your host’s web browser, and at www.hub.
docker.com, follow the link to

https://hub.docker.com/search?image%20filter=official&type=image
There you’ll find a large collection of descriptive links to Docker images, a

vast majority of which are “Docker Official Images.”
On your Raspbeery Pi host, use the following commands to download a

pre-built image of Oraclelinux:

bob@raspberrypi:~ $ docker pull oraclelinux:9
9: Pulling from library/oraclelinux
3a618052811d: Pull complete
Digest: sha256:103fdd36d9ff59713274481c980f72738198cf2bb87c50744632dd2c9
ec07dd6
Status: Downloaded newer image for oraclelinux:9
docker.io/library/oraclelinux:9
bob@raspberrypi:~ $

http://www.hub.dockere.com
http://www.hub.dockere.com
https://hub.docker.com

Raspberry Pi OS Text Editors, Git, and LXC238

This will find the Oraclelinux:9 image by name on Docker Hub, and down-
load it from Docker Hub to a local image cache. By default, it will be the latest
image for Oraclelinux.

Note
When the image is successfully downloaded, you see a 12 character hash,
3a618052811d: Pull complete which is the short form of the image ID. These short
image IDs are the first 12 characters of the full image ID – which can be found
using the docker commands docker inspect or docker images --no-trunc=true.

3.6.2 � Running an Interactive Shell

To run a short-lived container using an interactive shell in the Ubuntu image
we pulled in the previous section, use the following command:

bob@raspberrypi:~ $ docker run -i -t oraclelinux:9 /bin/bash
[root@d13ccf512452 /]#

The -i option to the command starts an “interactive container.” The -t option
to the command creates a pseudo-TTY that attaches to stdin and stdout.

To list the files in the current working directory while in this Oraclelinux
container, use the following command:

[root@d13ccf512452 /]# ls -la

To return to the host’s command line, type exit.
To detach the tty without exiting the shell, use the escape sequence <Ctrl-p>

+ <Ctrl-q>. The container will continue to exist in a stopped state once exited.
To list all containers on the host, stopped and running, use the docker ps -a
command.

3.6.3 � Starting Continually Running Processes in a Container

We now present commands that allow you to start a continually running
process in a container. You start by running a container based on the Oracle
Linux image, open a shell in that container, and then execute a command that
will continue to run and give output.

bob@raspberrypi:~ $ JOB=$(docker run -d oraclelinux:9 /bin/sh -c \ "while true;
do echo Keep Going; sleep 1; done")
bob@raspberrypi:~ $

To view the output of the job at any point in time, use the following command:

bob@raspberrypi:~ $ docker logs $JOB
Keep Going
Keep Going

Virtualization Methodologies 239

Keep Going
Keep Going
Keep Going
Keep Going
Output truncated...

To stop the process, type the following-
bob@raspberrypi:~ $ docker kill $JOB
d76c6d4b9b38396500a2e8d5a035179297a620fb3aa25a411bb1a7ea93a4d54f
bob@raspberrypi:~ $

Let’s step through what the docker run command did.

1.	 First we specified the docker program code and the command
we wanted to execute, run. The docker run combination runs
containers.

2.	 We specified an image: ubuntu. This is the source of the container
we ran. Docker calls this an image. In this case we used an Ubuntu
OS image.

When you specify an image, Docker looks first for the image on your Docker
host. If it can’t find it then it downloads the image from the Docker Hub
public image registry.

Next we told Docker what command to run inside our new container:

/bin/echo 'Hello world'

When our container was launched Docker created a new Oracle Linux
environment and then executed the /bin/echo command inside it. We saw
the result on the command line:

Hello world

So what happened to our container after that? Well Docker containers only
run as long as the command you specify is active. Here, as soon as Hello
world was echoed, the container stopped.

3.6.4 � Various Docker Utility Commands

The following commands give you a list all running containers, all containers,
and only the last container:

bob@raspberrypi:~ $ docker ps
bob@raspberrypi:~ $ docker ps -a
bob@raspberrypi:~ $ docker ps -l

Raspberry Pi OS Text Editors, Git, and LXC240

The following commands show various ways of controlling containers:

To start a new container-

bob@raspberrypi:~ $ JOB=$(docker run -d ubuntu /bin/sh -c "while true; do
echo Keep Going; sleep 1; done")

To stop that container-

bob@raspberrypi:~ $ docker stop $JOB

To again start that container-

bob@raspberrypi:~ $ docker start $JOB

To restart that container-

bob@raspberrypi:~ $ docker restart $JOB

To kill that container-

bob@raspberrypi:~ $ docker kill $JOB

To remove, or delete that container, after stopping it-

bob@raspberrypi:~ $ docker stop $JOB
bob@raspberrypi:~ $ docker rm $JOB

3.6.5 � Committing (Saving) a Container State, Listing and
Deleting Images

To save your container’s state to an image, so that the state can be re-used
later, you can use the docker commit command. When you “commit” your
container, Docker only stores the diff (difference) between the original source
image and the current state of the container’s image. To list images you
already have, use the docker images command.

The following command commits your container to a new named image:

bob@raspberrypi:~$ docker commit <container> <some_name>

The following command lists your Docker images:

bob@raspberrypi:~$ docker images

You now have an image state from which you can create new instances.
The following command removes an image named ubuntu:

bob@raspberrypi:~$ docker rmi ubuntu

Virtualization Methodologies 241

3.7 � Running an Important Web Application in a
Docker Container

In the sections above, you achieved some primary objectives in Docker. You
launched your first containers using the docker run command, you started
an interactive container that ran in the foreground, and you also started a
detached container that ran in the background. Particularly, you learned
about several Docker commands, most importantly:

docker ps - Lists containers.
docker logs - Shows you the standard output of a running container.
docker stop - Stops running a container.

In the examples that follow, we will be running an important and ubiqui-
tous web application program: Nginx. This will give you a very illustrious
and informative view of what Docker containers can really, and practically,
accomplish.

By containerizing Nginx, we cut down on our sysadmin overhead. We will
no longer need to manage Nginx through a package manager or build it from
source. The Docker container allows us to simply replace the whole container
when a new version of Nginx is released. We only need to maintain the Nginx
configuration file and our content.

Nginx describes itself as:

“nginx [engine x] is an HTTP and reverse proxy server, a mail proxy server,
and a generic TCP proxy server – originally written by Igor Sysoev.”

In practice many sysadmins use Nginx to serve web content, from flat-file
websites to upstream APIs in NodeJS. In this tutorial we will serve a basic
web page, so we can focus on configuring Nginx with a Docker container.

Docker containers are a popular form of a relatively old operations
practice: containerization. Containerization differs from virtualization
in that virtualization abstracts away the hardware, while containeriza-
tion abstracts away the base OS, too. In practical terms this means we can
take an application (or group of applications) and wrap them in a con-
tainer (or containers) to make them modular, portable, composable, and
lightweight.

This portability means you can install the Docker Engine (also referred to
as Docker Core, and even just Docker) on a wide variety of OSs, and any
functional container written by anyone will run on it.

If you want to learn more about Docker you can check out an introductory
Docker tutorial.

Raspberry Pi OS Text Editors, Git, and LXC242

3.8 � Nginx and the Necessity of Exposing Ports

When a container is created using the commands docker create or docker
run, by default it does not publish any of its ports to the outside world. In
fact, it protects those ports heavily for security purposes.

In order to make a port available to services outside of Docker, or to Docker
containers which are not connected to the container’s network, we can use
the -P or -p options and their arguments. These options create a protective
rule, which associates, or maps a container port to a port on the Docker host,
and therefore to the outside world.

The purposes of these options are as follows:

-p or --publish list : Publishes a container’s port(s) to the host.
-P or --publish-all : Publishes all exposed ports to random ports.

We use the curl command in the sessions below to examine web output. The
curl command in Linux is a powerful utility that allows you to interact with
various types of servers and resources, using a wide range of protocols. The
name "curl" stands for "Client URL."

The primary purpose of the curl command is to transfer data to or from
a server using various protocols, including HTTP, HTTPS, FTP, FTPS, SCP,
SFTP, LDAP, and more. It supports a wide range of options and features,
making it a versatile tool for tasks such as downloading files, uploading files,
making HTTP requests, testing APIs, and more.

Let’s create a nginx container using Docker without any port mapping.

bob@raspberrypi:~ $ docker container run -d nginx
Unable to find image 'nginx:latest' locally
latest: Pulling from library/nginx
90524f7dc01b: Pull complete
14cea127239b: Pull complete
8a2be7a4590d: Pull complete
9dc7844e6774: Pull complete
a274c3e9974e: Pull complete
b24de7c2768b: Pull complete
49c25f2442ea: Pull complete
Digest: sha256:67f9a4f10d147a6e04629340e6493c9703300ca23a2f7f3aa56fe615d7
5d31ca
Status: Downloaded newer image for nginx:latest
2ca1c237c0a82f866f939f0879edbe81bcda014bb55e148e81608762a2efff2b
bob@raspberrypi:~ $

The above command will pull the nginx image from the Docker Hub and
create a container for us.

Virtualization Methodologies 243

Check the port for nginx container

bob@raspberrypi:~ $ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
2ca1c237c0a8 nginx "/docker-entrypoint. …" 53 seconds ago Up 51 seconds 80/tcp
exciting_zhukovsky
bob@raspberrypi:~ $

The above command describes the nginx container. We have assigned it by
default a tcp port 80. However it is not yet “mapped,” which is DockerSpeak
for the establishment of an association between what’s inside the container,
and the outside host, particularly in terms of network connections.

Check if we get any response from localhost.

bob@raspberrypi:~ $ curl localhost
curl: (7) Failed to connect to localhost port 80: Connection refused

Connection refused because we don’t have port mapping set for port 80.
Get the private IP of the container

bob@raspberrypi:~ $ docker container inspect 2ca1c237c0a8 | grep 'IPAddress'
 "SecondaryIPAddresses": null,
 "IPAddress": "172.17.0.2",
 "IPAddress": "172.17.0.2",
bob@raspberrypi:~ $ curl 172.17.0.2
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

http://nginx.org
http://nginx.com

Raspberry Pi OS Text Editors, Git, and LXC244

This is an HTML text representation of the content of Nginx home page.
Expose port 3000 on container. Once we expose the port, it means now this

port is available to be mapped. We can re-map them using -p or -P flag.

bob@raspberrypi:~ $ docker container run -d --expose 3000 nginx
ac475e92dca831eeb3f52a667b574bbfb6de6bc2ff6af0ba64aa50a658369a9c
bob@raspberrypi:~ $

Verify if port 3000 is open

bob@raspberrypi:~ $ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS   NAMES
ac475e92dca8 nginx "/docker-entrypoint. …" 35 seconds ago Up 34 seconds
80/tcp, 3000/tcp angry_proskuriakova
2ca1c237c0a8 nginx "/docker-entrypoint. …" 17 minutes ago Up 17 minutes
80/tcp exciting_zhukovsky
bob@raspberrypi:~ $

Alternatively we can expose and map the port at the same time:

bob@raspberrypi:~ $ docker container run -d --expose 3000 -p 80:8080 nginx
b99fd96ecd37781a123e04cad8151f962aa4f9ff5a5e84ab7f712a23d203c591
bob@raspberrypi:~ $

80: port that will be running on host machine.

8080: container is now port mapped with port 80.
bob@raspberrypi:~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
b99fd96ecd37 nginx "/docker-entrypoint. …" A minute Up About a minute
PORTS NAMES
nervous_euclid 80/tcp, 3000/tcp, 0.0.0.0:80->8080/tcp, :::80->8080/tcp
ac475e92dca8 nginx "/docker-entrypoint. …" 7 minutes Up 7 minutes
80/tcp, 3000/tcp angry_proskuriakova
2ca1c237c0a8 nginx "/docker-entrypoint. …" 25 minutes Up 24 minutes
80/tcp exciting_zhukovsky

bob@raspberrypi:~ $
bob@raspberrypi:~ $ docker container inspect b99fd96ecd37 | grep 'IPAddress'

"SecondaryIPAddresses": null,
"IPAddress": "172.17.0.4",

"IPAddress": "172.17.0.4",
bob@raspberrypi:~ $

bob@raspberrypi:~ $ curl 172.17.0.4:80
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;

Virtualization Methodologies 245

font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>
bob@raspberrypi:~ $

Again, we see the HTML representation of the Nginx Welcome page.
We can see all the port mappings for specified container by using the

following command on the host:

bob@raspberrypi:~ $ docker container port b99fd96ecd37
8080/tcp -> 0.0.0.0:80
8080/tcp -> [::]:80
bob@raspberrypi:~ $

In-Chapter Exercise

3.7	 Is the IP address and port 172.17.0.4:80 of the above Nginx container
a “public-facing” IP address and port number? For example, if you
entered that URL and port number into a web browser on another
Raspberry Pi on your LAN, would you see the Nginx Welcome page?
Why, or why not?

3.8.1 � Exposing a Container’s IP Address on the Public
Network Connected to the Host Using iptables

In order to circumvent the Docker strategy of isolating containers inside of
private networks, as we illustrated and discovered above in Section 3.8, you
need to map a Docker container’s IP address to the host’s IP address using
the iptables command. That strategy originates in very important security
concerns.

Note
You typically perform a NAT using port forwarding to achieve this.

http://nginx.org
http://nginx.com

Raspberry Pi OS Text Editors, Git, and LXC246

This allows incoming, and by extension, outgoing traffic to a specific port
on the host to be redirected to and from a specific port on the Docker container
of interest. After all, it can be argued that the utility of having containers in
the first place is to deploy them to communicate via a network with a LAN,
or to other containers on the host, or to the Internet.

Here’s the general process we illustrate to achieve this:

1.	 Find the Container’s IP Address: Identify the IP address of the Docker
container you want to map to the host.

2.	 Choose a Host Port: Decide on a port on the host that you want to use
for accessing the container. For example, you might want to map host
port 8080 to the container’s port 80.

3.	 Use iptables command: Run the iptables command, with the proper
options, option arguments, and command arguments, to set up the
port forwarding, as follows generally:

sudo iptables -t nat -A PREROUTING -p tcp --dport HOST_PORT -j
DNAT --to-destination
CONTAINER_IP:CONTAINER_PORT
You replace HOST_PORT with the host port number you chose and CON-
TAINER_IP and CONTAINER_PORT with the IP address and port number of the
Docker container.

4.	 You enable IP forwarding (if necessary), and depending on your
system’s configuration, to enable IP forwarding and allow the redir-
ection to work.

Here’s how we achieved this on our Raspberry Pi system:

0.	 We run a Docker Nginx container mapped to a specific port on the
host – port 80.

bob@raspberrypi:~ $ docker run -p 80:80 -d nginx
700146e28444b23b0bd6ebfd0986400a3d406d4daeeaf970d43486f6a6
ced340

1.	 We examine the characteristics of that container.

bob@raspberrypi:~ $ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
700146e28444 nginx "/docker-entrypoint. …" 54 seconds
ago Up 53 seconds 0.0.0.0:80->80/tcp, :::80->80/tcp
beautiful_visvesvaraya

Virtualization Methodologies 247

2.	 We find out what the container’s internal IP address is with the
following command:

bob@raspberrypi:~ $ docker container inspect 700146e28444 | grep
'IPAddress'
 "SecondaryIPAddresses": null,
 "IPAddress": "172.17.0.2",
 "IPAddress": "172.17.0.2",
bob@raspberrypi:~ $

As in Section 3.8, now port 80 is exposed on the private network, at IP address
172.17.0.2. That is not a public-facing IP address! To prove that, try setting a
URL in a web browser to that address. It’s unreachable as a public-facing IP
address on your LAN.

3.	 Now comes the critical command in our exposition! The iptables
command we now deploy forwards the host’s public-facing IP address
and port 80 to the private network address, and port 80 of the Nginx
container.

bob@raspberrypi:~ $ sudo iptables -t nat -A PREROUTING -p tcp -- \dport
80 -j DNAT --to-destination 172.17.0.2:80

4.	 Additionally, we make sure that on the host, port forwarding is
allowed, using the following command:

bob@raspberrypi:~ $ sudo sysctl net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1
bob@raspberrypi:~ $

To make this change permanent, you can edit the /etc/sysctl.conf file and set
net.ipv4.ip_forward = 1.

Please note that using iptables directly can be a bit complex and may
have limitations, especially when dealing with Docker containers that are
frequently started, stopped, or have dynamically changing IP addresses.
An alternative approach is to use Docker’s built-in networking features to
achieve similar results in a more manageable way.

5.	 So how do you test that our exposure of the container port 80 on your
LAN actually works? Open a web browser, either on the host or on
another Raspberry Pi on your LAN, and enter the URL 192.168.1.15:80.
The Nginx Welcome screen appears, as follows:

Welcome to nginx!

If you see this page, the nginx web server is successfully installed
and working. Further configuration is required.

For online documentation and support please refer to nginx.org.

Raspberry Pi OS Text Editors, Git, and LXC248

Commercial support is available at nginx.com.
Thank you for using nginx.
In six easy steps, we exposed a port on a container we launched to a port

on the host, using essentially a public IP address, rather than a private one.

3.9 � Docker Nginx Review and Further Docker Examples

For the purposes of expanding our coverage of a useful container applica-
tion, we will present more Nginx installations and provisioning in Docker
containers. We also show how to use ZFS as the backing store for Docker.

3.9.1 � Reviewing Container Basics: Run, List, Remove

As a useful review, this section shows how to run a basic container, and then
remove it.

We’ve installed the Docker client as part of our Docker installation, so
we have access to the command line tool that allows us to interact with our
containers.

Run the following command to see the status of exiting containers:

bob@raspberrypi:~ $ sudo docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
700146e28444 nginx "/docker-entrypoint. …" 24 hours ago Up 24 hours
0.0.0.0:80->80/tcp, :::80->80/tcp beautiful_visvesvaraya
01aa8c259b21 nginx "/docker-entrypoint. …" 27 hours ago Created
vigilant_sinoussi
d76c6d4b9b38 oraclelinux:9 "/bin/sh -c 'while t…" 2 days ago Exited (137)
2 days ago confident_gauss
d13ccf512452 oraclelinux:9 "/bin/bash" 2 days ago Exited
(0) 2 days ago vigorous_feistel
ea4e2a9baa72 2358e484cec7 "/bin/bash" 3 days ago Exited (127)
3 days ago eloquent_aryabhata
2b96338f770f ubuntu "bash" 5 days ago Exited
(0) 5 days ago trusting_shirley
57cc2ed20567 hello-world "/hello" 6 days ago Exited
(0) 6 days ago
relaxed_ardinghelli
bob@raspberrypi:~ $

We can see some basic information about the containers we’ve launched so
far.

You see that they have nonsensical names, like vigilant_sinoussi; these
names are generated automatically if you don’t specify one when creating
the container.

Virtualization Methodologies 249

You can also see in that the hello-world example container was run 6 days
ago, and exited 6 days ago.

If we run this container again with this command (replacing relaxed_
ardinghelli with your own container name):

bob@raspberrypi:~ $ docker start relaxed_ardinghelli
relaxed_ardinghelli
bob@raspberrypi:~ $

And then run the command to list containers once more:

bob@raspberrypi:~ $ docker ps -a

You should now see that the container has run recently:

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
Output truncated...
57cc2ed20567 hello-world "/hello" 6 days ago Exited (0)
2 minutes ago relaxed_ardinghelli

By default, Docker containers run their assigned commands and then exit.
Some containers will be set up to run through a list of tasks and finish,

while others will run indefinitely.
You’ve reviewed some Docker basics, so let’s remove the hello-world

image, because you won’t be needing it again (remember to replace relaxed_
ardinghelli with your container’s name, or use your container ID, which in
our case is 57cc2ed20567).

bob@raspberrypi:~ $ docker rm relaxed_ardinghelli
relaxed_ardinghelli
bob@raspberrypi:~ $

3.9.2 � Building a Web Page for Nginx to Use as Content in a Container

It would be very useful at this point to be able to create a custom index page
for a website in a container, since Nginx is running in one of our containers,
and could be used to serve that page up for content-viewing on either a
LAN or even the Internet. The procedures in this section allow you to have
a persistent website content that’s hosted by the container. Follow these
basic steps:

0.	 stop, and then remove the Docker container we created above in
Section 3.8.1 with the following commands:

bob@raspberrypi:~ $ docker stop beautiful_visvesvaraya
beautiful_visvesvaraya

Raspberry Pi OS Text Editors, Git, and LXC250

bob@raspberrypi:~ $ docker rm beautiful_visvesvaraya
beautiful_visvesvaraya
bob@raspberrypi:~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
bob@raspberrypi:~ $

1.	 You’ll create a custom page for your website. This setup allows you
to have persistent website content that’s hosted outside the container.

Create a new directory for your website content below your home
directory and make that sub-directory the current working directory
with the following commands:

bob@raspberrypi:~ $ mkdir -p ~/docker-nginx/html
bob@raspberrypi:~ $ cd ~/docker-nginx/html

2.	 Create an HTML file to serve content. The following example uses
nano, but you can use your preferred text editor:

bob@raspberrypi:~ $ nano index.html

<html>
<head>

<title>Docker nginx Tutorial</title>
</head>

<body>
<div class="container">

<h1>Hello From My Website</h1>
<p>This Nginx page is brought to you by Docker and Nginx</p>

</div>
</body>

</html>

If you’re using the nano text editor, exit and save this file by pressing
<CTRL+X>, then Y, then <ENTER>.

You now have an index page that replaces the default Nginx Welcome page.
Use the chmod command to give group and others rwx access privileges on
the file index.html.

3.	 Linking the container to the local filesystem

You’ll link Nginx to your container so that it is publicly accessible over port
80, and connect it to your website content on the host.

Docker allows you to link directories from your virtual machine’s local
filesystem to your container. Since you want to serve the new web page, you
will need to give your container the files to render. By using Docker’s data
volumes feature, you can create a symbolic link between your host’s filesystem

Virtualization Methodologies 251

and the container’s filesystem. This allows you to edit your existing Index
file, web page files, and maybe even add new ones into the host sub-directory
you created above in Step 1. With a symbolic link, your container will have
access to these files. If you want to read more about Docker and volumes
check out the data volumes documentation.

Inside the Nginx container, it is set up by default to look for an index page
at /usr/share/nginx/html. In a new Docker Nginx container, you will need
to give that location access to the host directory ~/docker-nginx/html.

To achieve this, you use the -v option of the docker run command, to link
the ~/docker-nginx/html folder on your host to a relative path in the con-
tainer /usr/share/nginx/html, with the following command:

bob@raspberrypi:~ $ docker run --name docker-nginx -p 80:80 -d -v \
~/docker-nginx/html:/usr/share/nginx/html nginx

A brief explanation of this command is as follows:

-v option specifies that you’re linking a volume.
To the left of the : is the location of your directory on your server, ~/docker-nginx/
html.
To the right of the : is the location that you are symbolically linking to your container /
usr/share/nginx/nginx/html.

4.	 Repeat Steps 1 through 4 in Section 3.8.1, even if you’ve already done
them in that section, where you exposed port 80 on the host to port
80 on this new container that’s using Nginx to serve your own index.
html page. Remember to use the proper container IP address in the
iptables command.

5.	 Enter your host’s IP address, and port 80, into a browser running on
another Raspberry Pi on your LAN to view your new index.html
page. Your new default page would now be displayed, instead of the
Nginx Welcome page.

Alternatively, you could use curl to view the HTML of that index.html page
on the Docker host itself, with the following command:

bob@raspberrypi:~/docker-nginx/html $ curl 172.17.0.2:80

<html>
<head>

<title>Docker nginx Tutorial</title>
</head>

<body>
<div class="container">

<h1>Hello From My Website</h1>
<p>This Nginx page is brought to you by Docker and Nginx</p>

</div>

Raspberry Pi OS Text Editors, Git, and LXC252

</body>
</html>
bob@raspberrypi:~/docker-nginx/html $

6.	 You can upload more content to the ~/docker-nginx/html/ directory,
and it will be added to your website.

For example, if you modify your HTML file, and refresh your browser, it will
be updated accordingly. You could also build a whole site out of HTML files
this way. For instance, if you added a file named another_page.html, you
could access it at http://your_server_ip/another_page.html without needing
to interact with the container.

3.9.3 � Working with the Nginx Docker Container in More Detail

You have a working Nginx Docker container that’s displaying your own web
page and has a public-facing IP address, (a) but how do you manage the web
page content (such as adding links, or more pages), and (b) take more control
of the Nginx configuration, and logging? The following section shows how
to do that.

3.9.3.1  Managing Content and Configuration Files

You can create the content served by Nginx, as you saw in Section 3.9.2. And
Nginx configuration files inside the container can also be edited. One way
to achieve this in Nginx is to create your own Nginx configuration file. The
following Docker commands and options achieve content and configur-
ation editing for you – docker run -v and docker cp. We give a brief over-
view of them, taken from the Docker documentation, and online sources, in
Section 3.10.

1.	 You’re already in the directory where you’re keeping your web page
materials. Now you have to copy the Nginx configuration directory
from the container that’s running from Section 3.9.2 into the host web
page directory with the following command:

bob@raspberrypi:~/docker-nginx/html $ docker cp \
docker-nginx:/etc/nginx/conf.d/default.conf default.conf
Successfully copied 3.07kB to /home/bob/docker-nginx/html/default.conf
bob@raspberrypi:~/docker-nginx/html $

2.	 Stop and remove the container from Section 3.9.2, so you can reuse the
port forwarding from the host, with the following commands:

Virtualization Methodologies 253

bob@raspberrypi:~/docker-nginx/html $ docker stop docker-nginx
docker-nginx
bob@raspberrypi:~/docker-nginx/html $ docker rm docker-nginx
docker-nginx
bob@raspberrypi:~/docker-nginx/html $

3.	 Maintaining content and configuration from the Docker host

As shown in Section 3.9.2, when you created an Nginx container, you
associated, or mounted, a local directory on the Docker host to a directory
in the container with the volume -v option of the docker run command.
Additionally, the Nginx Docker image uses the default Nginx configur-
ation, which deploys /usr/share/nginx/html inside the container as the
container’s root directory, and puts configuration files in /etc/nginx. For a
Docker host with content in the local host directory ~/docker-nginx/html,
and configuration files on the host in ~/docker-nginx/default.conf, run this
command:

bob@raspberrypi:~/docker-nginx/html $ docker run --name docker-nginx -p 80:80\
-v ~/docker-nginx/html:/usr/share/nginx/html \
-v ~/docker-nginx/default.conf:/etc/nginx/conf.d/default.conf -d nginx
bob@raspberrypi:~/docker-nginx/html $

Any change you make to the files in the local directories ~/docker-nginx/
html and ~/docker-nginx/default.conf on the Docker host are reflected in
the directories /usr/share/nginx/html and /etc/nginx/conf.d/default.conf
in the container. The :ro option means these directors are read only inside the
container.

3.9.4 � Using ZFS as the Backing Store for Docker Containers

Similar to your using ZFS as the storage backend for LXC/LXD containers,
shown as part of the initialization routine for LXC/LXD in Step 5 of
Example 3.1, Docker can also assign ZFS as a backing store for containers.
This section shows how to do that and also additionally allows you to create
containers on an external medium, which must necessarily be different from
the system/boot medium.

Note
Changing the storage driver makes any containers you have already created
inaccessible on the local system. But you can use the docker save command
to save already-pulled/run containers, and push existing images to Docker
Hub, or a private repository, so that you do not need to re-create them later.
You also must have ZFS installed on your Raspberry Pi system.

Raspberry Pi OS Text Editors, Git, and LXC254

Prerequisites:

1.	 ZFS requires its datasets to be on one or more dedicated block devices,
preferably SSDs, which incidentally incorporates a feature which
is like ECC memory, and as noted, the block device cannot be the
system/boot medium. There are two main types of devices in Linux
systems, character and block devices. Character devices are those that
don’t use buffering, and block devices are those which use a cache to
access them. Block devices are also random access devices, and most
character devices are not. ZFS filesystems can be mounted on block
devices, but also on files, which is what LXC/LXD does by default
in its initialization process if you specify ZFS as the backing store for
containers. An example of a block device is a USB-mounted SSD.

2.	 The /var/lib/docker/ directory in this section is mounted on a
ZFS-formatted filesystem, which as we illustrate with the zpool
create command in Step 5 of the following Procedures is achieved
by ZFS, no matter what the previous filesystem format of the block
device used here was at the start.

Procedures:

1.	 Insert a useable USB medium into one of the ports on your Raspberry
Pi. In this example, we added a 1 TB SSD. Then use the lsblk command
to find out its name. In our case, the 1 TB drive (listed with a cap-
acity of 953.9 G) was /dev/sda, with a single partition on it named
/dev/sda1.

$ sudo su -
root@raspberrypi:~# lsblk

NAME	 MAJ:MIN	 RM	 SIZE	 RO	 TYPE	 MOUNTPOINT
loop0	 7:0	 0	 104.3M	 1	 loop	 /snap/core/15515
loop1	 7:1	 0	 93.3M	 1	 loop	 /snap/core/15930
loop2	 7:2	 0	 68.5M	 1	 loop	 /snap/core22/861
loop3	 7:3	 0	 68.5M	 1	 loo	 /snap/core22/867
loop4	 7:4	 0	 161.3M	 1	 loop	 /snap/lxd/25116
sda	 8:0	 0	 953.9G	 0	 disk
└─sda1	 8:1	 0	 953.9G	 0	 part	 /media/bob/E45F-158E
sdb	 8:16	 0	 476.9G	 0	 disk
├─sdb1	 8:17	 0	 256M	 0	 part	 /boot
└─sdb2	 8:18	 0	 476.7G	 0	 part	 /

2.	 The critical step! Unmount the USB medium, using the following
umount command:

root@raspberrypi:~# umount /dev/sda1
root@raspberrypi:~#

Virtualization Methodologies 255

3.	 First stop Docker with the following command:

root@raspberrypi:~# systemctl stop docker

4.	 Delete everything in /var/lib/docker on the host.

root@raspberrypi:~# rm -rf /var/lib/docker/*

5.	 Create the zpool with an appropriate name (we named ours
zpool-docker4).

root@raspberrypi:~# zpool create -f zpool-docker4 -m /var/lib/docker /
dev/sdb

6.	 List your ZFS filesystems.

root@raspberrypi:~# zfs list
NAME	 USED	 AVAIL	 REFER	 MOUNTPOINT
Default	 1.65M	 7.26G	 24K	 legacy
default/buckets	 24K	 7.26G	 24K	 legacy
default/containers	 24K	 7.26G	 24K	 legacy
default/custom	 24K	 7.26G	 24K	 legacy
default/deleted	 144K	 7.26G	 24K	 legacy
default/deleted/buckets	 24K	 7.26G	 24K	 legacy
default/deleted/containers	 24K	 7.26G	 24K	 legacy
default/deleted/custom	 24K	 7.26G	 24K	 legacy
default/deleted/images	 24K	 7.26G	 24K	 legacy
default/deleted/virtual-machines	 24K	 7.26G	 24K	 legacy
default/images	 24K	 7.26G	 24K	 legacy
default/virtual-machines	 24K	 7.26G	 24K	 legacy
zpool-docker4	 444K	 922G	 96K	 /var/lib/docker

7.	 Edit the daemon.json file that holds configuration data for Docker and
add the text shown.

root@raspberrypi:~# nano /etc/docker/daemon.json

{
"storage-driver": "zfs"

}

Save and exit the .json file.

8.	 Start up Docker with the new ZFS storage driver for the storage backend.

root@raspberrypi:~# systemctl start docker

9.	 Use the docker info command to get a view of Docker configuration
settings.

Raspberry Pi OS Text Editors, Git, and LXC256

root@raspberrypi:~# docker info
Client: Docker Engine - Community
 Version: 24.0.5
 Context: default
 Debug Mode: false
 Plugins:
 buildx: Docker Buildx (Docker Inc.)
 Version: v0.11.2
 Path: /usr/libexec/docker/cli-plugins/docker-buildx
 compose: Docker Compose (Docker Inc.)
 Version: v2.20.2
 Path: /usr/libexec/docker/cli-plugins/docker-compose

Server:
Containers: 0
Running: 0
Paused: 0
Stopped: 0
Images: 0
Server Version: 24.0.5
Storage Driver: zfs
Zpool: zpool-docker4
Zpool Health: ONLINE
Parent Dataset: zpool-docker4
Space Used By Parent: 524288
Space Available: 990526308352

Output truncated...

10.	 Take a look at where Docker keeps its machinery.

root@raspberrypi:~# cd /var/lib/docker
root@raspberrypi:/var/lib/docker# ls
buildkit containers engine-id image network plugins runtimes swarm tmp
volumes zfs
root@raspberrypi:/var/lib/docker#

Any container you build now will be stored on the USB-mounted medium
that is constructed on zpool-docker4 and will use ZFS as its backing store.

11.	 Let’s build a container from an image and look into it.

root@raspberrypi:~# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

root@raspberrypi:~# docker pull oraclelinux:9
9: Pulling from library/oraclelinux
55f10f17cb98: Pull complete
Digest: sha256:a704f734a5745776d570fffe223013e1e3f626aa0e650352bfd2
e84ff307405b
Status: Downloaded newer image for oraclelinux:9

Virtualization Methodologies 257

docker.io/library/oraclelinux:9
root@raspberrypi:~# docker run -i -t oraclelinux:9 /bin/bash
[root@129404adf287 /]# ls
afs bin boot dev etc home lib lib64 media mnt opt proc root run sbin
srv sys tmp usr var

At this point, you could do accountant creation, file maintenance, install soft-
ware, etc., but you’ll just exit at this point.

[root@129404adf287 /]# exit
exit
root@raspberrypi:~# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
129404adf287 oraclelinux:9 "/bin/bash" 3 minutes ago Exited (0) 6 seconds ago
lucid_hamilton
root@raspberrypi:~#
root@raspberrypi:~#

In-Chapter Exercises

3.8	 How do you know that the oraclelinux9 container is built on a ZFS
filesystem?

3.9	 How would you create a mirror of the Docker oraclelinux9 container?
3.10	 What command in oraclelinux installs software into the container?

3.10 � A Docker Reference

In this section, we first give you a listing of what can be obtained via help
on the Raspberry Pi command line. Then we delve a little more deeply
into specific commands, as they are organized in logical groupings, in an
encyclopedia-like presentation.

If you type just plain docker on the command line, you get the following
display:

$ docker

Usage: docker [OPTIONS] COMMAND

A self-sufficient runtime for containers

Common Commands:
run	 Create and run a new container from an image
exec	 Execute a command in a running container
ps	 List containers
build	 Build an image from a Dockerfile

Raspberry Pi OS Text Editors, Git, and LXC258

pull	 Download an image from a registry
push	 Upload an image to a registry
images	 List images
login	 Log in to a registry
logout	 Log out from a registry
search	 Search Docker Hub for images
version	 Show the Docker version information
info	 Display system-wide information

Management Commands:
builder	 Manage builds
buildx*	 Docker Buildx (Docker Inc., v0.11.2)
compose*	 Docker Compose (Docker Inc., v2.20.2)
container	 Manage containers
context	 Manage contexts
image	 Manage images
manifest	 Manage Docker image manifests and manifest lists
network	 Manage networks
plugin	 Manage plugins
system	 Manage Docker
trust	 Manage trust on Docker images
volume	 Manage volumes

Swarm Commands:
swarm	 Manage Swarm

Commands:
attach	� Attach local standard input, output, and error streams to a

running container
commit	 Create a new image from a container’s changes
cp	 Copy files/folders between a container and the local filesystem
create	 Create a new container
diff	 Inspect changes to files or directories on a container’s filesystem
events	 Get real time events from the server
export	 Export a container’s filesystem as a tar archive
history	 Show the history of an image
import	 Import the contents from a tarball to create a filesystem image
inspect	 Return low-level information on Docker objects
kill	 Kill one or more running containers
load	 Load an image from a tar archive or STDIN
logs	 Fetch the logs of a container
pause	 Pause all processes within one or more containers
port	 List port mappings or a specific mapping for the container
rename	 Rename a container

Virtualization Methodologies 259

restart	 Restart one or more containers
rm	 Remove one or more containers
rmi	 Remove one or more images
save	� Save one or more images to a tar archive (streamed to STDOUT

by default)
start	 Start one or more stopped containers
stats	 Display a live stream of container(s) resource usage statistics
stop	 Stop one or more running containers
tag	 Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE
top	 Display the running processes of a container
unpause	 Unpause all processes within one or more containers
update	 Update configuration of one or more containers
wait	� Block until one or more containers stop, then print their

exit codes

Global Options:

	 --config string	� Location of client config files (default "/home/bob/.docker")
-c,	 --context string	� Name of the context to use to connect to the daemon

(overrides DOCKER_HOST env
		 var and default context set with "docker context use")
-D,	 --debug	 Enable debug mode
-H,	 --host list	 Daemon socket to connect to
-l,	 --log-level string	� Set the logging level ("debug", "info", "warn", "error", "fatal")

(default "info")
	 --tls	 Use TLS; implied by --tlsverify
	 --tlscacert string	� Trust certs signed only by this CA (default "/home/bob/.

docker/ca.pem")
	 --tlscert string	� Path to TLS certificate file (default "/home/bob/.docker/cert.

pem")
	 --tlskey string	� Path to TLS key file (default "/home/bob/.docker/key.pem")
	 --tlsverify	 Use TLS and verify the remote
-v,	 --version	 Print version information and quit

Run 'docker COMMAND --help' for more information on a command.

For more help on how to use Docker, head to https://docs.docker.com/go/guides/
$

If you want specific help on a command, for example, the stop command, type the
following-

$ docker stop --help

Usage: docker stop [OPTIONS] CONTAINER [CONTAINER...]

Stop one or more running containers

Aliases:
docker container stop, docker stop

https://docs.docker.com

Raspberry Pi OS Text Editors, Git, and LXC260

Options:
-s, --signal string Signal to send to the container
-t, --time int Seconds to wait before killing the container
$

Following is a listing, organized by major usage divisions, of many of the
commands found in Section 3.9. The primary online source for complete
descriptions of these commands is https://docs.docker.com/engine/
reference/commandline/cli/

3.10.1 � Container Management Commands

docker ps

Usage :
docker ps [OPTIONS]

Description:
List containers
Options:
Option Short Default Description
--all	 -a	 false Show all containers (default shows just running)
--filter	 -f	 Filter output based on conditions provided
--format		� Format output using a custom template: 'table': Print output in

table format with column headers (default) 'table TEMPLATE': Print
output in table format using the given Go template 'json': Print in
JSON format 'TEMPLATE': Print output using the given Go template.
Refer to https://docs.docker.com/go/formatting/open_in_new for
more information about formatting output with templates

--last	 -n	 -1	 Show n last created containers (includes all states)
--latest	 -l	 false	 Show the latest created container (includes all states)
--no-trunc		 false	 Don’t truncate output
--quiet	 -q	 false	 Only display container IDs
--size	 -s	 false	 Display total file sizes
Examples:
Do not truncate output (--no-trunc)
Running docker ps --no-trunc showing 2 linked containers.

content_copy
$ docker ps –no-trunc

Show both running and stopped containers (-a, --all)
The docker ps command only shows running containers by default. To see all containers,
use the --all (or -a) flag:

$ docker ps -a
docker ps groups exposed ports into a single range if possible. E.g., a container that
exposes TCP ports 100, 101, 102 displays 100-102/tcp in the PORTS column.

https://docs.docker.com
https://docs.docker.com
https://docs.docker.com

Virtualization Methodologies 261

docker create

Usage:

docker create [OPTIONS] IMAGE [COMMAND] [ARG...]

Description:
The docker container create (or shorthand: docker create) command creates a
new container from the specified image, without starting it.

When creating a container, the docker daemon creates a writeable con-
tainer layer over the specified image and prepares it for running the speci-
fied command. The container ID is then printed to STDOUT. This is similar
to docker run -d except the container is never started. You can then use the
docker container start (or shorthand: docker start) command to start the con-
tainer at any point.

Options:

Option	 Short	 Default Description
--add-host		 Add a custom host-to-IP mapping (host:ip)
--annotation	 map[]	� API 1.43+ Add an annotation to the container (passed through

to the OCI runtime)
--attach	 -a	 Attach to STDIN, STDOUT or STDERR
--mount		 Attach a filesystem mount to the container
--name		 Assign a name to the container
--net		 Connect a container to a network
--rm	 false	 Automatically remove the container when it exits

Examples:
Create and start a container

The following example creates an interactive container with a pseudo-tty
attached, then starts the container and attaches to it:

$ docker container create -i -t --name mycontainer alpine
6d8af538ec541dd581ebc2a24153a28329acb5268abe5ef868c1f1a261221752

$ docker container start --attach -i mycontainer
/ # echo hello world
hello world
The above is the equivalent of a docker run:

$ docker run -it --name mycontainer2 alpine
/ # echo hello world
hello world

Raspberry Pi OS Text Editors, Git, and LXC262

docker rename
Usage:

docker rename CONTAINER NEW_NAME

Description:

The docker rename command renames a container.
Example:
$ docker rename my_container my_new_container

docker rm

Usage:

docker rm [OPTIONS] CONTAINER [CONTAINER...]

Description:
Remove one or more containers

Options:
Option	 Short	 Default	 Description
--force	 -f	 false	� Force the removal of a running container (uses

SIGKILL)
--link	 -l	 false	 Remove the specified link
--volumes	 -v	 false	� Remove anonymous volumes associated with

the container

Examples:
Remove a container
This removes the container referenced under the link /redis.

$ docker rm /redis

/redis

Remove a link specified with --link on the default bridge network (--link)
This removes the underlying link between /webapp and the /redis

containers on the default bridge network, removing all network communi-
cation between the two containers. This does not apply when --link is used
with user-specified networks.

Virtualization Methodologies 263

$ docker rm --link /webapp/redis

/webapp/redis

Force-remove a running container (--force)
This command force-removes a running container.

$ docker rm --force redis

redis

The main process inside the container referenced under the link redis will
receive SIGKILL, then the container will be removed.

docker logs

Usage:

docker logs [OPTIONS] CONTAINER

Description:
The docker logs command batch-retrieves logs present at the time of

execution.
The docker logs --follow command will continue streaming the new output

from the container’s STDOUT and STDERR.
Passing a negative number or a non-integer to --tail is invalid and the value

is set to all in that case.
The docker logs --timestamps command will add an RFC3339Nano

timestampopen_in_new, for example 2014-09-16T06:17:46.000000000Z, to
each log entry. To ensure that the timestamps are aligned the nano-second
part of the timestamp will be padded with zero when necessary.

The docker logs --details command will add on extra attributes, such as
environment variables and labels, provided to --log-opt when creating the
container.

Options:
Option	 Short	 Default	 Description
--details		 false	 Show extra details provided to logs
--follow	 -f	 false	 Follow log output
--since			� Show logs since timestamp (e.g.

2013-01-02T13:23:37Z) or relative (e.g. 42m
for 42 minutes)

--tail	 -n	 all	� Number of lines to show from the end of
the logs

Raspberry Pi OS Text Editors, Git, and LXC264

--timestamps	 -t	 false	 Show timestamps
--until				� API 1.35+ Show logs before a timestamp

(e.g. 2013-01-02T13:23:37Z) or relative (e.g.
42m for 42 minutes)

Examples:
Retrieve logs until a specific point in time (--until)
In order to retrieve logs before a specific point in time, run:

$ docker run --name test -d busybox sh -c "while true; do $(echo date); sleep\
1; done"
$ date
Tue 14 Nov 2017 16:40:00 CET
$ docker logs -f --until=2s test
Tue 14 Nov 2017 16:40:00 CET
Tue 14 Nov 2017 16:40:01 CET
Tue 14 Nov 2017 16:40:02 CET

docker events

Usage:

docker events [OPTIONS]

Description:
Use docker events to get real-time events from the server. These events
differ per Docker object type. Different event types have different scopes.
Local scoped events are only seen on the node they take place on, and swarm
scoped events are seen on all managers.

Only the last 1000 log events are returned. You can use filters to further
limit the number of events returned.

Options:
Option	 Short	 Default	 Description
--filter	 -f		 Filter output based on conditions provided
--format			 Format the output using the given Go template
--since			 Show all events created since timestamp
--until			 Stream events until this timestamp

Examples:
Basic example
You’ll need two shells for this example.

Virtualization Methodologies 265

Shell 1: Listening for events:

$ docker events

Shell 2: Start and stop containers:

$ docker create --name test alpine:latest top
$ docker start test
$ docker stop test

Shell 1: (Again .. now showing events):

2017-01-05T00:35:58.859401177+08:00 container create 0fdb48addc82871eb34eb
23a847cfd033dedd1a0a37bef2e6d9eb3870fc7ff37 (image=alpine:latest, name=test)
Output truncated...
To exit the docker events command, use CTRL+C

docker update

Usage:
docker update [OPTIONS] CONTAINER [CONTAINER...]

Description:
The docker update command dynamically updates container configuration.
You can use this command to prevent containers from consuming too many
resources from their Docker host. With a single command, you can place
limits on a single container or on many. To specify more than one container,
provide space-separated list of container names or IDs.

Options:
Option	 Short	 Default	 Description
--blkio-weight		 0	� Block IO (relative weight),

between 10 and 1000, or 0 to dis-
able (default 0)

--cpu-period		 0	� Limit CPU CFS (Completely Fair
Scheduler) period

--cpu-quota		 0	� Limit CPU CFS (Completely Fair
Scheduler) quota

--cpu-rt-period		 0	� API 1.25+ Limit the CPU real-time
period in microseconds

--cpu-rt-runtime		 0	� API 1.25+ Limit the CPU real-time
runtime in microseconds

--cpu-shares	 -c	 0	 CPU shares (relative weight)
--cpus			 API 1.29+ Number of CPUs
--cpuset-cpus			� CPUs in which to allow execution

(0-3, 0,1)

Raspberry Pi OS Text Editors, Git, and LXC266

--cpuset-mems			� MEMs in which to allow execution
(0-3, 0,1)

--memory	 -m	 0	 Memory limit
--memory-reservation		 0	 Memory soft limit
--memory-swap		 0	� Swap limit equal to memory plus

swap: -1 to enable unlimited swap
--pids-limit		 0	� API 1.40+ Tune container pids

limit (set -1 for unlimited)
--restart			� Restart policy to apply when a

container exits

Examples:

Update a container’s cpu-shares (--cpu-shares)
To limit a container’s cpu-shares to 512, first identify the container name
or ID. You can use docker ps to find these values. You can also use the ID
returned from the docker run command. Then, do the following:

$ docker update --cpu-shares 512 abebf7571666

docker port

Usage:
docker port CONTAINER [PRIVATE_PORT[/PROTO]]

Description:
List port mappings or a specific mapping for the container

Examples:
Show all mapped ports

You can find out all the ports mapped by not specifying a PRIVATE_PORT,
or just a specific mapping:

content_copy
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
b650456536c7 busybox:latest t op 54 minutes ago Up 54 minutes
0.0.0.0:1234->9876/tcp, 0.0.0.0:4321->7890/tcp test

$ docker port test

7890/tcp -> 0.0.0.0:4321
9876/tcp -> 0.0.0.0:1234

Virtualization Methodologies 267

3.10.2 � Running a Container

docker run

Usage:
docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

Description:
The docker run command runs a command in a new container, pulling the
image if needed and starting the container.

You can restart a stopped container with all its previous changes intact
using docker start. Use docker ps -a to view a list of all containers, including
those that are stopped.

Options:
Option	 Short	 Default	 Description
--add-host				� Add a custom host-to-IP mapping (host:ip)
--annotation		 map[]		� API 1.43+ Add an annotation to the con-

tainer (passed through to the OCI runtime)
--attach	 -a			 Attach to STDIN, STDOUT or STDERR

Examples:
Create, start, and provide a custom name for the container:

$ docker run --name [container-name] [image]

Establish a connection with a container by mapping a host port to a container
port:

$ docker run -p [host-port]:[container-port] [image]

Run a container and remove it after it stops:

$ docker run --rm [image]

Run a detached (background) container:

$ docker run -d [image]

Start an interactive process, such as a shell, in a container:

$ docker run -it [image]

**

Raspberry Pi OS Text Editors, Git, and LXC268

docker start

Usage:
docker start [OPTIONS] CONTAINER [CONTAINER...]

Description:
Start one or more stopped containers

Options:
Option	 Short	 Default	 Description
--attach	 -a	 false	� Attach STDOUT/STDERR and forward

signals
--checkpoint			� experimental (daemon) Restore from this

checkpoint
--checkpoint-dir		� experimental (daemon) Use a custom

checkpoint storage directory
--detach-keys			� Override the key sequence for detaching a

container
--interactive	 -i	 False	 Attach container’s STDIN

Examples:

$ docker start my_container

docker stop

Usage:
docker stop [OPTIONS] CONTAINER [CONTAINER...]

Description:
The main process inside the container will receive SIGTERM, and after a grace
period, SIGKILL. The first signal can be changed with the STOPSIGNAL
instruction in the container’s Dockerfile, or the --stop-signal option to
docker run.

Options:
Option	 Short	 Default	 Description
--signal	 -s		 Signal to send to the container
--time	 -t	 0	 Seconds to wait before killing the container

Examples:

$ docker stop my_container

Virtualization Methodologies 269

docker kill

Usage:
docker kill [OPTIONS] CONTAINER [CONTAINER...]

Description:
The docker kill subcommand kills one or more containers. The main pro-
cess inside the container is sent SIGKILL signal (default), or the signal that
is specified with the --signal option. You can reference a container by its ID,
ID-prefix, or name.

The --signal flag sets the system call signal that is sent to the container. This
signal can be a signal name in the format SIG<NAME>, for instance SIGINT,
or an unsigned number that matches a position in the kernel’s syscall table,
for instance 2.

While the default (SIGKILL) signal will terminate the container, the signal
set through --signal may be non-terminal, depending on the container’s main
process. For example, the SIGHUP signal in most cases will be non-terminal,
and the container will continue running after receiving the signal.

Options:
Option	 Short	 Default	 Description
--signal	 -s		 Signal to send to the container

Examples:
Send a KILL signal to a container

The following example sends the default SIGKILL signal to the container
named my_container:

$ docker kill my_container

Send a custom signal to a container (--signal)
The following example sends a SIGHUP signal to the container named
my_container:

$ docker kill --signal=SIGHUP my_container

You can specify a custom signal either by name or number. The SIG prefix is
optional, so the following examples are equivalent:

$ docker kill --signal=SIGHUP my_container
$ docker kill --signal=HUP my_container
$ docker kill --signal=1 my_container

**

Raspberry Pi OS Text Editors, Git, and LXC270

docker exec

Usage:
docker exec [OPTIONS] CONTAINER COMMAND [ARG...]

Description:
The docker exec command runs a new command in a running container.

The command started using docker exec only runs while the container’s
primary process (PID 1) is running, and it is not restarted if the container is
restarted.

COMMAND runs in the default directory of the container. If the under-
lying image has a custom directory specified with the WORKDIR directive in
its Dockerfile, this directory is used instead.

COMMAND must be an executable. A chained or a quoted command
does not work. For example, docker exec -it my_container sh -c "echo a &&
echo b" does work, but docker exec -it my_container "echo a && echo b"
does not.

Options:
Option	 Short	 Default	 Description
--detach	 -d	 false	� Detached mode: run command in the

background
--detach-keys			� Override the key sequence for detaching a

container
--env	 -e		 API 1.25+ Set environment variables
--env-file			� API 1.25+ Read in a file of environment

variables
--interactive	 -i	 False	 Keep STDIN open even if not attached
--privileged		 False	 Give extended privileges to the command
--tty	 -t	 False	 Allocate a pseudo-TTY
--user	 -u		� Username or UID

(format: <name|uid>[:<group|gid>])
--workdir	 -w		� API 1.35+ Working directory inside the

container

Examples:
Run docker exec on a running container
First, start a container.

$ docker run --name mycontainer -d -i -t alpine /bin/sh

This creates and starts a container named mycontainer from an alpine
image with an sh shell as its main process. The -d option (shorthand for
--detach) sets the container to run in the background, in detached mode, with
a pseudo-TTY attached (-t). The -i option is set to keep STDIN attached (-i),
which prevents the sh process from exiting immediately.

Virtualization Methodologies 271

Next, execute a command on the container.

$ docker exec -d mycontainer touch /tmp/execWorks
This creates a new file /tmp/execWorks inside the running container mycontainer, in
the background.

Next, execute an interactive sh shell on the container.

$ docker exec -it mycontainer sh
This starts a new shell session in the container mycontainer

**

3.10.3 � Docker Images

**

docker pull

Usage:
docker pull [OPTIONS] NAME[:TAG|@DIGEST]

Description:
Most of your images will be created on top of a base image from the Docker

Hub registry.
Docker Hub contains many pre-built images that you can pull and try without

needing to define and configure your own.
To download a particular image, or set of images (i.e., a repository), use

docker pull.

Options:
Option	 Short	 Default	 Description
--all-tags	 -a	 false	� Download all tagged images in

the repository
--disable-content-trust	 true		 Skip image verification
--platform			� API 1.32+ Set platform if server is

multi-platform capable
--quiet	 -q	 false	 Suppress verbose output

Examples:

Pull an image from Docker Hub
To download a particular image, or set of images (i.e., a repository), use
docker image pull (or the docker pull shorthand). If no tag is provided, Docker
Engine uses the:latest tag as a default. This example pulls the debian:latest
image:

Raspberry Pi OS Text Editors, Git, and LXC272

$ docker image pull debian
Using default tag: latest
latest: Pulling from library/debian
e756f3fdd6a3: Pull complete
Digest: sha256:3f1d6c17773a45c97bd8f158d665c9709d7b29ed7917ac934086ad96
f92e4510
Status: Downloaded newer image for debian:latest
docker.io/library/debian:latest

Docker images can consist of multiple layers. In the example above, the image
consists of a single layer: e756f3fdd6a3. Layers can be reused by images. For
example, the debian:bullseye image shares its layer with the debian:latest.
Pulling the debian:bullseye image therefore only pulls its metadata, but not
its layers, because the layer is already present locally:

$ docker image pull debian:bullseye

docker commit

Usage:
docker commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]

Description:
It can be useful to commit a container’s file changes or settings into a new
image. This allows you to debug a container by running an interactive shell,
or to export a working dataset to another server. Generally, it is better to use
Dockerfiles to manage your images in a documented and maintainable way.
Read more about valid image names and tags.

The commit operation will not include any data contained in volumes
mounted inside the container.

Options:
Option	 Short	 Default	 Description
--author	 -a			� Author (e.g., John Hannibal Smith

<hannibal@a-team.com>)
--change	 -c			� Apply Dockerfile instruction to the

created image
--message	 -m			 Commit message
--pause	 -p	 true		 Pause container during commit

Virtualization Methodologies 273

Examples:
Commit a container

$ docker commit c3f279d17e0a svendowideit/testimage:version3

f5283438590d

$ docker images

REPOSITORY TAG ID   CREATED SIZE
svendowideit/testimage version3 f5283438590d 16 seconds ago 335.7

docker images

Usage:
docker images [OPTIONS] [REPOSITORY[:TAG]]

Description:
The default docker images will show all top level images, their repository
and tags, and their size.

Docker images have intermediate layers that increase reusability, decrease
disk usage, and speed up docker build by allowing each step to be cached.
These intermediate layers are not shown by default.

The SIZE is the cumulative space taken up by the image and all its parent
images. This is also the disk space used by the contents of the Tar file created
when your docker save an image.

An image will be listed more than once if it has multiple repository names
or tags. This single image (identifiable by its matching IMAGE ID) uses up
the SIZE listed only once.

Options:
Option	 Short	 Default	 Description
--all	 -a	 false	� Show all images (default hides intermediate

images)
--digests		 false	 Show digests
--filter	 -f		 Filter output based on conditions provided
--format			 Format output using a custom template: 'table'
--no-trunc	 false		 Don’t truncate output
--quiet	 -q	 false	 Only show image IDs

Raspberry Pi OS Text Editors, Git, and LXC274

Examples:
List the most recently created images

$ docker images

REPOSITORY	 TAG		 IMAGE ID	 CREATED	 SIZE
<none>	 <none>		 77af4d6b9913	 19 hours ago	 1.089 GB	
committ	 latest		 b6fa739cedf5	 19 hours ago	 1.089 GB
<none>	 <none>		 78a85c484f71	 19 hours ago	 1.089 GB
Docker	 latest		 30557a29d5ab	 20 hours ago	 1.089 GB
<none>	 <none>		 5ed6274db6ce	 24 hours ago	 1.089 GB
postgres		 9 	 746b819f315e	 4 days ago	 213.4 MB
postgres		 9.3 	 746b819f315e	 4 days ago	 213.4 MB
postgres		 9.3.5 	 746b8 19f315e	 4 days ago	 213.4 MB
postgres		 latest	 746b819f315e	 4 days ago	 213.4 MB

docker rmi

Usage:
docker rmi [OPTIONS] IMAGE [IMAGE...]

Description:
Removes (and un-tags) one or more images from the host node. If an image
has multiple tags, using this command with the tag as a parameter only
removes the tag. If the tag is the only one for the image, both the image and
the tag are removed.

This does not remove images from a registry. You cannot remove an image
of a running container unless you use the -f option. To see all images on a host
use the docker image ls command.

Options:
Option	 Short	 Default	 Description
--force	 -f	 false	 Force removal of the image
--no-prune		 false	 Do not delete untagged parents

Examples:
You can remove an image using its short or long ID, its tag, or its digest. If
an image has one or more tags referencing it, you must remove all of them
before the image is removed. Digest references are removed automatically
when an image is removed by tag.

$ docker images

REPOSITORY	 TAG	 IMAGE ID	 CREATED	 SIZE
test1	 latest	 fd484f19954f	 23 seconds ago	 7 B (virtual 4.964 MB)
Test	 latest	 fd484f19954f	 23 seconds ago	 7 B (virtual 4.964 MB)
test2	 latest	 fd484f19954f	 23 seconds ago	 7 B (virtual 4.964 MB)

Virtualization Methodologies 275

$ docker rmi fd484f19954f

Error: Conflict, cannot delete image fd484f19954f because it is tagged in multiple
repositories, use -f to force

2013/12/11 05:47:16 Error: failed to remove one or more images

$ docker rmi test1:latest

Untagged: test1:latest

$ docker rmi test2:latest

Untagged: test2:latest

3.10.4 � General Management Commands

docker inspect

Usage:
docker inspect [OPTIONS] NAME|ID [NAME|ID...]

Description:

Docker inspect provides detailed information on constructs controlled by
Docker.

By default, docker inspect will render results in a JSON array.
Format the output (--format)
If a format is specified, the given template will be executed for each result.
Go’s text/templateopen_in_new package describes all the details of the

format.
Specify target type (--type)
--type container|image|node|network|secret|service|volume|task|plu

gin

The docker inspect command matches any type of object by either ID or
name. In some cases multiple type of objects (for example, a container and a
volume) exist with the same name, making the result ambiguous.

To restrict docker inspect to a specific type of object, use the --type option.

Options:

Option 	 Short	 Default	 Description
--format	 -f		 Format output using a custom template: 'json'.
--size	 -s	 false	 Display total file sizes if the type is container
--type			 Return JSON for specified type

Raspberry Pi OS Text Editors, Git, and LXC276

Examples:
Get an instance’s IP address

For the most part, you can pick out any field from the JSON in a fairly
straightforward manner.

$ docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}
{{end}}' $INSTANCE_ID

Get an instance's MAC address
$ docker inspect --format='{{range .NetworkSettings.Networks}}{{.MacAddress}}
{{end}}' $INSTANCE_ID

Get an instance's log path
$ docker inspect --format='{{.LogPath}}' $INSTANCE_ID

docker version

Usage:
docker version [OPTIONS]

Description:
The version command prints the current version number for all independ-
ently versioned Docker components. Use the --format option to customize
the output.

The version command (docker version) outputs the version numbers of
Docker components, while the --version flag (docker --version) outputs the
version number of the Docker CLI you are using.

Default output
The default output renders all version information divided into two
sections: the "Client" section contains information about the Docker CLI and
client components and the "Server" section contains information about the
Docker Engine and components used by the Engine, such as the "Containerd"
and "Runc" OCI Runtimes.

The information shown may differ depending on how you installed Docker
and what components are in use. The following example shows the output
on a macOS machine running Docker Desktop:

Options:
Option	 Short	 Default	 Description
--format	 -f		� Format output using a custom tem-

plate: 'json': Print in JSON format
			� 'TEMPLATE': Print output using the given

Go template.

Virtualization Methodologies 277

Examples:

$ docker version

Client: Docker Engine - Community
 Version:	 24.0.5
 API version:	 1.43
 Go version:	 go1.20.6
 Git commit:	 ced0996
 Built:	 Fri Jul 21 20:35:38 2023
 OS/Arch:	 linux/arm64
 Context:	 default

Server: Docker Engine - Community
 Engine:
 Version:	 24.0.5
 API version:	 1.43 (minimum version 1.12)
 Go version:	 go1.20.6
 Git commit:	 a61e2b4
 Built:	 Fri Jul 21 20:35:38 2023
 OS/Arch:	 linux/arm64
 Experimental:	 false
 containerd:
 Version:	 1.6.22
 GitCommit:	 8165feabfdfe38c65b599c4993d227328c231fca
 runc:
 Version:	 1.1.8
 GitCommit:	 v1.1.8-0-g82f18fe
 docker-init:
 Version: 	 0.19.0
 GitCommit:	 de40ad0

Format the output (--format)
The formatting option (--format) pretty-prints the output using a Go tem-
plate, which allows you to customize the output format, or to obtain specific
information from the output. Refer to the format command and log output
page for details of the format.

Get the server version
$ docker version --format '{{.Server.Version}}'

24.0.5
Get the client API version
The following example prints the API version that is used by the client:

$ docker version --format '{{.Client.APIVersion}}'
1.43

Raspberry Pi OS Text Editors, Git, and LXC278

docker info

Usage:
docker info [OPTIONS]

Description:
This command displays system wide information regarding the Docker
installation. Information displayed includes the kernel version and number of
containers and images. The number of images shown is the number of unique
images. The same image tagged under different names is counted only once.

If a format is specified, the given template will be executed instead of the
default format. Go’s text/templateopen_in_new package describes all the
details of the format.

Depending on the storage driver in use, additional information can be
shown, such as pool name, data file, metadata file, data space used, total data
space, metadata space used, and total metadata space.

The data file is where the images are stored and the metadata file is where
the meta data regarding those images are stored. When run for the first time
Docker allocates a certain amount of data space and meta data space from the
space available on the volume where /var/lib/docker is mounted.

Options:

Option	 Short	 Default	 Description
--format	 -f		� Format output using a custom template: 'json': Print in

JSON format
			� 'TEMPLATE': Print output using the given Go template.

Examples:

Client: Docker Engine - Community
 Version: 24.0.5
 Context: default
 Debug Mode: false
 Plugins:
 buildx: Docker Buildx (Docker Inc.)
 Version: v0.11.2
 Path: /usr/libexec/docker/cli-plugins/docker-buildx
 compose: Docker Compose (Docker Inc.)
 Version: v2.20.2
 Path: /usr/libexec/docker/cli-plugins/docker-compose

Server:
 Containers: 9
 Running: 1
 Paused: 0
 Stopped: 8
 Images: 5

Virtualization Methodologies 279

 Server Version: 24.0.5
 Storage Driver: overlay2
 Backing Filesystem: extfs
 Supports d_type: true
 Using metacopy: false
 Native Overlay Diff: true
 userxattr: false
 Logging Driver: json-file
 Cgroup Driver: systemd
 Cgroup Version: 2
 Plugins:
 Volume: local
 Network: bridge host ipvlan macvlan null overlay
 Log: awslogs fluentd gcplogs gelf journald json-file local logentries splunk syslog
Swarm: inactive
Runtimes: io.containerd.runc.v2 runc
Default Runtime: runc
Init Binary: docker-init
containerd version: 8165feabfdfe38c65b599c4993d227328c231fca
runc version: v1.1.8-0-g82f18fe
init version: de40ad0
Security Options:
 seccomp
 Profile: builtin
cgroupns
Kernel Version: 6.1.21-v8+
Operating System: Debian GNU/Linux 11 (bullseye)
OSType: linux
Architecture: aarch64
CPUs: 4
Total Memory: 3.704GiB
Name: raspberrypi
ID: d5f88ac0-1495-426f-b448-a44bd20089b2
Docker Root Dir: /var/lib/docker
Debug Mode: false
 Experimental: false
 Insecure Registries:
 127.0.0.0/8
 Live Restore Enabled: false

WARNING: No memory limit support
WARNING: No swap limit support

**

docker cp

Usage:
docker cp [OPTIONS] CONTAINER:SRC_PATH DEST_PATH|-
docker cp [OPTIONS] SRC_PATH|- CONTAINER:DEST_PATH

Raspberry Pi OS Text Editors, Git, and LXC280

Description:
The docker cp utility copies files/folders between a container and the local,
or host filesystem. It copies the contents of SRC_PATH to the DEST_PATH.
You can copy from the container’s filesystem to the local machine or the
reverse, from the local filesystem to the container. If - is specified for either the
SRC_PATH or DEST_PATH, you can also stream a tar archive from STDIN
or to STDOUT. The CONTAINER can be a running or stopped container. The
SRC_PATH or DEST_PATH can be a file or directory.

The docker cp command assumes container paths are relative to the
container’s / (root) directory. This means supplying the initial forward slash
is optional; The command sees compassionate_darwin:/tmp/foo/myfile.txt
and compassionate_darwin:tmp/foo/myfile.txt as identical. Local machine
paths can be an absolute or relative value. The command interprets a local
machine’s relative paths as relative to the current working directory where
docker cp is run.

The cp command behaves like the Unix cp -a command in that directories
are copied recursively with permissions preserved if possible. Ownership is
set to the user and primary group at the destination. For example, files copied
to a container are created with UID:GID of the root user. Files copied to the
local machine are created with the UID:GID of the user which invoked the
docker cp command. However, if you specify the -a option, docker cp sets
the ownership to the user and primary group at the source. If you specify the
-L option, docker cp follows any symbolic link in the SRC_PATH. Docker cp
does not create parent directories for DEST_PATH if they do not exist.

Assuming a path separator of /, a first argument of SRC_PATH and second
argument of DEST_PATH, the behavior is as follows:

SRC_PATH specifies a file
DEST_PATH does not exist
the file is saved to a file created at DEST_PATH
DEST_PATH does not exist and ends with /
Error condition: the destination directory must exist.
DEST_PATH exists and is a file
the destination is overwritten with the source file's contents
DEST_PATH exists and is a directory
the file is copied into this directory using the basename from SRC_PATH
SRC_PATH specifies a directory
DEST_PATH does not exist
DEST_PATH is created as a directory and the contents of the source directory are copied
into this directory
DEST_PATH exists and is a file
Error condition: cannot copy a directory to a file
DEST_PATH exists and is a directory
SRC_PATH does not end with /. (that is: slash followed by dot)
the source directory is copied into this directory
SRC_PATH does end with /. (that is: slash followed by dot)
the content of the source directory is copied into this directory

Virtualization Methodologies 281

The command requires SRC_PATH and DEST_PATH to exist according to the above
rules. If SRC_PATH is local and is a symbolic link, the symbolic link, not the target, is
copied by default. To copy the link target and not the link, specify the -L option.

A colon (:) is used as a delimiter between CONTAINER and its path. You can
also use: when specifying paths to a SRC_PATH or DEST_PATH on a local
machine, for example file:name.txt. If you use a: in a local machine path, you
must be explicit with a relative or absolute path, for example:

`/path/to/file:name.txt` or `./file:name.txt`

Options:
Option	 Short	 Default	 Description
--archive	 -a	 false	� Archive mode (copy all uid/gid

information)
--follow-link	 -L	 false	 Always follow symbol link in SRC_PATH
--quiet	 -q	 false	� Suppress progress output during copy.

Progress output is automatically
			 suppressed if no terminal is attached

Examples:
Copy a local file into container
$ docker cp ./some_file CONTAINER:/work

Copy files from container to local path
$ docker cp CONTAINER:/var/logs/ /tmp/app_logs

Copy a file from container to stdout. Please note cp command produces a tar stream
$ docker cp CONTAINER:/var/logs/app.log - | tar x -O | grep "ERROR"

3.11 � Summary

In this chapter, we gave background information on OS virtualization, and
some of its characteristics and examples. The two systems we used for our
illustrations were LXC/LXD and Docker.

We provided a description of the LXC/LXD virtualization method and
explicitly detailed LXC/LXD installation on the Raspberry Pi OS. We then
illustrated LXC/LXD basic usage and gave command references for LXC/
LXD. We listed LXC/LXD best practices and provided complete worked
examples of advanced usage of LXC/LXD, most notably how to install a
container with a ZFS backing store, how to make an LXC/LXD container

Raspberry Pi OS Text Editors, Git, and LXC282

“web-facing,” with a public-facing IP address, and how to install a web
server named Nginx in an LXD container.

We also presented container virtualization with Docker on the Raspberry
Pi OS. We went through examples, primarily about how to install Nginx,
a web server program, in a Docker container as a pre-built image. One of
the primary examples here showed how to give an Docker Nginx container
a public-facing IP address on your LAN, similar to what was done in the
sections on LXC/LXD. Finally, we gave an encyclopedia-like reference to a
select set of Docker commands.

283

283

Questions, Problems, and Projects

Chapter 0

0.1.	 Create a directory called Raspberry in your home directory. What
command line did you use to do this?

0.2.	 Give a command line for displaying the files lab1, lab2, lab3, and
lab4. Can you give two more command lines that do the same thing?
What is the command line for displaying the files lab1.c, lab2.c,
lab3.c, and lab4.c? (Hint: use shell metacharacters.)

0.3.	 Give a command line for printing all the files in your home directory
that start with the string memo and end with .ps on a printer called
upmpr. What command line did you use to do this?

0.4.	 Give the command line for nicknaming the command who -H as W.
Give both Bash and C shell versions. Where would you put it if you
want it to execute every time you start a new shell?

0.5.	 Type the command man ls > ~/Raspberry/ls.man on your system.
This command will put the man page for the ls command in the ls.
man file in your Raspberry directory (the one you created in Problem
0.1). Give the command for printing two copies of this file on a
printer in your lab. What command line would you use to achieve
this printing?

0.6.	 What is the mesg value set to for your environment? If it is on, how
would you turn it off for your current session? How would you set
it off for every login?

0.7.	 What does the command lpr -Pqpr [0-9]*.jpg do? Explain your
answer.

0.8.	 Use the passwd command to change your password. If you are
on a network, be aware that you might have to use the yppasswd
command to modify your network login password. Also, make
sure you abide by the rules set up by your system administrator for
coming up with good passwords!

0.9.	 Using the correct terminology (e.g., command, option, option argu-
ment, and command argument), identify the constituent parts of the
following Raspberry Pi OS single commands.

Raspberry Pi OS Text Editors, Git, and LXC284

ls -la *.exe

lpr –Pwpr file27

chmod g+rwx *.*

0.10.	� View the man pages for each of the useful commands listed in
Table 0.2. Which part of the man pages is most descriptive for you?
Which of the options shown on each of the man pages is the most
useful for beginners? Explain.

0.11.	� How many users are logged on to your system at this time? What
command did you use to discover this?

0.12.	� Determine the name of the operating system that your computer
runs. What command did you use to discover this?

0.13.	� Give the command line for displaying manual pages for the socket,
read, and connect system calls on your system.

Advanced Questions and Problems

0.14.	� Following is a typical /etc/profile configuration file, this particular
one is from a default installation on our Raspberry Pi system:

/etc/profile: system-wide .profile file for the Bourne shell (sh(1))
and Bourne compatible shells (bash(1), ksh(1), ash(1), ...).

if ["$(id -u)" -eq 0]; then
 PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
else
 �PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/
local/games:/usr/games"

fi
export PATH

if ["${PS1-}"]; then
 if ["${BASH-}"] && ["$BASH" != "/bin/sh"]; then
 # The file bash.bashrc already sets the default PS1.
 # PS1='\h:\w\$ '
 if [-f /etc/bash.bashrc]; then
 . /etc/bash.bashrc
 fi
 else
 if ["$(id -u)" -eq 0]; then
 PS1='# '
 else
 PS1='$ '
 fi
 fi
fi

Questions, Problems, and Projects 285

if [-d /etc/profile.d]; then
 for i in /etc/profile.d/*.sh; do
 if [-r $i]; then
 . $i
 fi
 done
 unset i
fi

Write an explanatory sentence in your own words describing exactly
what you consider important lines in the file accomplish, including
the comments (the lines that begin with the pound sign #). Examine
this file on your Raspberry Pi system. How does it compare, line-for-
line, with the one above? We assume here that, by default, Bash is
both the interactive and login shell on your system.

0.15.	 What is the default umask setting in an ordinary, non-privileged
account on your Raspberry Pi system, from both a login and
non-login shell? Describe in your own words what the umask setting
is, and how it is applied to newly created directories and files. Is the
umask set in /etc/profile on your Raspberry Pi system? If not, where
can the umask be set most effectively on a persistent basis, for a par-
ticular single user, both in a login and non-login shell?

0.16.	Assume that all users, when they log into your Raspberry Pi system,
have Bash as their default shell. What file sets the shell prompt
for them on your Raspberry Pi system? Is it the file illustrated in
Problem 0.14? Describe the lines in the file that actually specify
the shell prompt and give a short description of the components
of those lines. Experiment to find out which file accomplishes the
actual shell prompt setting for ordinary users (for both interactive
or login shells) and write an explicit description of what you have
discovered.

Additionally, set the shell prompt for yourself in the current interactive
shell, so that it contains the following:

A display of just the date/time.
A display of the date and time, hostname, and current directory.
A display where the entire prompt is in red text, along with hostname and
current directory.

Then make those changes persistent for yourself in both login and interactive
shells. Finally, undo the persistent changes.

As a follow-up, design your own shell prompt so that it contains the infor-
mation you want in a useful display given your use case(s) and make that
designed prompt persistent for yourself on your Raspberry Pi system.

Raspberry Pi OS Text Editors, Git, and LXC286

0.17.	� Give a sequential list of the exact commands you would use to
make the TC shell the default login shell for your user account on
your Raspberry Pi system. Is the TC shell installed by default on
your Raspberry Pi system? If not, how would you install it on a
Debian-family system, such as the Raspberry Pi OS? Give the exact
commands for installation of not only the TC shell, but any of the
other four major Raspberry Pi OS shells available.

0.18.	� Execute all of the compound command examples provided at the
web link https://explainshell.com/ and then use the output shown
to explain all of them in your own words. Try executing the examples
with meaningful arguments on your Raspberry Pi system, if possible.

Project 1
After completing Problems 0.14 through 0.16, gather your findings together
in a summary report that details the default settings (within the scope of the
files you have examined, and in the context of those problems) of the Bash
environment on your Raspberry Pi system. For example, which actual file
takes precedence by default, and what components of the Bash environment
are set in that file? What are the critical default settings in the Bash environ-
ment, and what actual files on your Raspberry Pi system effect them?

Chapter 1

Nano

1.1.	 List ten commonly used text-editing operations you can do in Nano.
1.2.	 Run Nano on your Raspberry Pi system. Create and edit a block of

text that you want to be the body of an email message explaining the
basic capabilities of the Nano editor. This file should be at least one
page (45 to 50 lines of text) long. Then save the file as nano_doc.txt.
Insert the body of text you created in an email message and send it
to yourself.

1.3.	 Log on to your Linux system and execute the Nano program on a
new, blank file.
On the first line of the file, type your first and last name.
On the second line of the file, type "The Nano text editor allows
you to do simple editing on small text files efficiently" .
Use a Nano command to write the file to the default directory with
the name lab51.

https://explainshell.com

Questions, Problems, and Projects 287

Print the file lab51 at your Raspberry Pi system line printer.
1.4.	 Do the following steps to create a file in Nano:

Step 1: At the shell prompt, type nano and then press <Enter>.
Step 2: In the text area of the Nano screen, place the cursor on the first
line and type

This is text that I have entered on a line in the Nano editor.

Use the <Delete> and <arrow> keys to correct any typing errors
you make.
Step 3: Press <Enter > three times.
Step 4: Type This is a line of text three lines down from the first line.
Step 5: Hold down the <Ctrl> and <O> keys at the same time
(<Ctrl-O> or <^O>).
Step 6: At the prompt File Name to Write: type linespaced and then
press <Enter>.
Step 7: Hold down the <Ctrl> and <X> keys at the same time
(<Ctrl-X> or <X>) to return to the shell prompt.
Step 8: At the shell prompt, type more linespaced and then press
<Enter>.

1.5.	 Do the following steps in Nano:
Step 1: At the shell prompt, type nano linespaced and then press
<Enter>. The linespaced file you created in Problem 1.4 appears in
the Nano screen.
Step 2: Position the cursor at the beginning of the fourth line, at
the character T in the word This, using the <arrow> keys on the
keyboard.
Step 3: Hold down the <Ctrl> and both the <Shift> and <6> keys at
the same time.
Step 4: Move the cursor with the <right arrow> key on the key-
board until you have highlighted the entire fourth line, including the
period. The cursor should be one character to the right of the period
at the end of the line.
Step 5: Hold down the <Ctrl> and <K> keys at the same time.
This action cuts the line of text out of the current “buffer,” or file that
you are working on.
Step 6: Position the cursor with the <arrow> keys at the beginning of
the second line of the file, directly under the line that reads This is
text that I have entered on a line in the Nano editor.

Raspberry Pi OS Text Editors, Git, and LXC288

Step 7: Hold down the <Ctrl> and <U> keys at the same time. This
action pastes the former fourth line into the second line of the file.
Step 8: Use the <arrow> keys on the keyboard to position the cursor
at the third line of the file.
Step 9: Hold down the <Ctrl> and <U> keys on the keyboard at the
same time. This action pastes the former fourth line into the third line
of the file.
Step 10: Now change the wording of lines 2 and 3 so that they read:

This is a line of text 1 line down from the first line.

This is a line of text 2 lines down from the first line.

How many lines are there in this file now, as far as Nano is concerned?
Step 11: Hold down the <Ctrl> and <O> keys at the same time.
Step 12: At the prompt File Name to Write: type linespaced2 and then
press <Enter>.
Step 13: Hold down the <Ctrl> and <X> keys at the same time to
return to the shell prompt.
Step 14: At the shell prompt, type more linespaced2 and then press
<Enter>.
What do you see on screen? How many lines does the more command
show in this file?

1.6.	 Complete Problem 1.5, use Nano to add two(2) more lines of text to
the file named linespaced2 below lines 2 and 3, with similar content
to lines 2 and 3. Then add a line at the top of the file with your first
and last name on it. Save this new file with the name linespaced3 and
print it at your Linux system line printer.

1.7.	 What version of Nano did you use in the above work, and how did
you find this out?

1.8.	 Use the cat command to create a short text file named shorty on
your Raspberry Pi system, and then read that file into Nano, and
add text to it. What command did you use to read the cat-created
file into Nano?

1.9.	 Execute Nano on your Raspberry Pi system using the –m command
option. What functionality did the –m option give you in Nano?

1.10.	 Repeat Problems 1.4, 1.5, and 1.6 by launching Nano using the -m
option on the command line. When would it not be possible to use
Nano with the -m option?

Questions, Problems, and Projects 289

Vi, Vim, Gvim

1.11.	 Despite the availability of fancy and powerful word processors, why
is text editing still important?

1.12.	 List ten commonly used text-editing operations.

1.13.	 What are the four most popular text editors available for the
Raspberry Pi OS? Which one is your favorite? Why?

1.14.	 What is an editor buffer in Vi, Vim, and Gvim?

1.15.	 This problem assumes you are using the Bash shell in the Raspberry
Pi OS (the default shell), and will execute the file you will create in
your home directory on the system.
a.	 Make sure that your search path includes the directory you are

saving the following script file to, and that you have execute
privileges on the file. Then, use Vi or Vim on your system and
create a bash shell script file that contains the lines:

#!/bin/bash
echo $SHELL
cat /etc/shells

Save the file as sheller and quit Vi. At the Bash shell prompt, type
./sheller and then press <Enter>. You may have to use the chmod
command, chomd u+x sheller before executing it in Bash.

b.	 What appears on your screen? In particular, what shells are
available?

1.16.	 Run Vi on your Raspberry Pi system. Create and edit a block of text
that you want to be the body of an email message explaining the
basic capabilities of the Vi editor. For example, part of your message
might describe the difference between the Insert and Command
modes. This file should be at least one page (45 to 50 lines of text)
long. Then save the file as vi_doc.txt. Insert the body of text in an
email message and send it to yourself.

1.17.	 Run Vi on your system and create a file of definitions in your own
words, without looking at the textbook, for:
a.	 full-screen display editor
b.	 modeless editor
c.	 file versus buffer
d.	keystroke commands
e.	 substitute versus search
f.	 text file versus binary file

Then refer back to the relevant sections of this chapter to check your
definitions. Make any necessary corrections or additions. Re-edit the

Raspberry Pi OS Text Editors, Git, and LXC290

file in Vim to incorporate any corrections or additions that you made
and then print out the file using the print commands available on
your system.

1.18.	 Edit the file you created in Problem 1.17 and change the order of the
text of your definitions to (d), (a), (c), and (b), using the yank, put,
and D or dd commands. Print out the file using the print commands
available on your Raspberry Pi system.

1.19.	 Execute the Vi program on a new, blank file.
On the first line of the file, type your first and last name.
On the second line of the file, type The vi text editor has almost all
the features of a word processor and tremendous flexibility in cre-
ating text files.
Print the file to your Raspberry Pi system line printer while
you are still in Vi. How do you accomplish this, in a non-GUI
environment?

1.20.	 What Vi command allows you to move to the first line in the current
buffer? What command allows you to move to the last line in the
buffer?

1.21.	 Use the set command to force Vi into a 30-column by 15-line display
of characters so that one screen of the display shows only 15 lines,
and text is automatically wrapped onto the next line after the 30th
character. How did you do this? (Hint: The set all command shows
the current status of all Vi environment variables.)

Advanced Vi, Vim, Gvim

1.22.	 You changed the behavior of Vi, Vim, and Gvim by adding or modi-
fying entries in your ~/.exrc or ~/.vimrc files, so that the changes
were persistent across all sessions of the editors. You can also cus-
tomize Vi, Vim, and Gvim by changing the shell environment vari-
able named EXINIT. This can be achieved in the C shell by giving
value(s) to the SETENV variable. Do the following:

a.	 Find the exact syntax and use of the SETENV command in the C
shell. Then, add or modify the shell environment variable setting
for the shell variable EXINIT so that the showmode user option
is turned on. What is the syntax of the command you used to
do this?

b.	 How would you test that this environment variable is actually
implementing the user option change, and not what is in the
~/.exrc or ~/.vimrc files?

c.	 What syntax would you use for the setenv command to change
more than one user option in the editors?

Questions, Problems, and Projects 291

d.	Are these changes in the EXINIT variable persistent through all
Vi, Vim, and Gvim sessions? If you log out and log back into the
system, does EXINIT still contain the changes and additions you
make to it? Why, or why not?

1.23.	 Give the exact syntax of a Vi substitute command line that only replaces
every instance of the discrete word ate on all the lines of a file, with the
word ion, where the file has some words that end in the string ate.

1.24.	 Give the exact syntax of a Vim substitute command line that inter-
actively searches and substitutes the word cool for the word cold
on all the lines of a file, where there are several widely separated
instances of the word cold in the file.

1.25.	 Take the following map command for creating a skeleton C program
template and place it in your ~/.exrc file:

:map #3 <Esc>i#include <stdio.h><CR>main(argc, argv)<CR> int
argc;<CR> char *argv[];<CR>{<CR>}<Esc>

where

<Esc> is used to represent the escape key, which is entered by
pressing <Ctrl>+V followed by <Esc>.

<CR> is used to represent the <Enter> key, which is entered by
pressing <Ctrl>+V followed by <Enter>.

When you enter last line mode and type map, and then press <F3>,
Vim will insert the desired text into your document.

The relative number of spaces in the above map command defin-
ition controls the indentation of the skeleton construct.

a.	 Make sure that the relative indentation of the header components
and other parts of the skeleton is correct.

b.	 Add an #include <stderr.h>, #include <stdlib.h>, and #include
<string.h> as header information to the skeleton.

c.	 Run the map command in a blank Vi buffer and test it.
1.26.	 Run Gvim on your Raspberry Pi system. Create and edit a block of

text that you want to be the body of an email message explaining
the basic capabilities of the Gvim editor. For example, part of your
message might describe the graphical capabilities of Gvim that make
it more useful than Vim, or Vi. This file should be at least one page
(45 to 50 lines of text) long. Then save the file as Gvim_doc.txt. Insert
the body of text in an email message and send it to yourself.

1.27.	 Log on to your Raspberry Pi system and execute the Vi program on
a new, blank file.

Raspberry Pi OS Text Editors, Git, and LXC292

On the first line of the file, type your first and last name.
On the second line of the file, type The vi text editor

has almost all the features of a word processor and tremendous

flexibility in creating text files.

Print the file to your Raspberry Pi system line printer, from within
Vi, using a single Vi command. How do you accomplish this, in a
non-GUI, text-only environment?

1.28.	 What Vi command allows you to move to the first line in the current
buffer? What command allows you to move to the last line in the
buffer?

1.29.	 What file in your home directory allows you to customize your Vi
environment variables permanently?

1.30.	 What do the following eight Vi commands do?

12dw, 5dd, 12o, 5O, c5b, d5,12, 12G, 5yy
1.31.	 While editing a file, how do you “escape” to the default Linux shell

(on your Raspberry Pi systems, Bash) while in Vi, and then how do
you return to the editor?

Geany
1.32.	 Which of the typical IDE basic features presented at the beginning

of Section 1.6 are most important to you, given the programming
language(s) you intend to deploy Geany with on the Raspberry Pi
OS? Discuss them in detail, and how you would take advantage of
an IDE instead of a text editor like Nano, or Vi/Vim.

1.33.	 What’s the difference between a Geany document, and an ordinary
code file, if any?

1.34.	 What are the important Geany command line options for your par-
ticular use case? See the online Geany manual at www.geany.org/
manual/current/index.html for a listing of them, and what they
accomplish.

1.35.	 What is shown in the status bar at the bottom of the Geany window,
when you create a C++ program in the editor window?

1.36.	 How and why would you launch multiple instances of Geany, either
from the command line or from the Raspberry Pi menu Programming
> Geany?

The following five questions require that you have completed
Practice Sessions 1.8 through 1.12. Note that the default projects folder
is what Geany names the folder in /home/your_username/projects
that are presented in the New Project window, where your_user-
name is your login name on your Raspberry Pi system. Problems
1.37 through 1.41 provide essentially Geany project creation and
cloning practice.

http://www.geany.org
http://www.geany.org

Questions, Problems, and Projects 293

1.37.	 Take the C++ program named count1.cpp, created in Practice Session
1.8, and place it in a project in the default projects folder in your home
directory. Write down the explicit steps you used to accomplish this.

1.38.	 Take the C++ program named GCF4.cpp, created in Practice Session
1.9, and place it in a project in the default projects folder in your home
directory. Write down the explicit steps you used to accomplish this.

1.39.	 Take the C++ program named third.cpp, created in Practice Session
1.10, and place it in a project in the default projects folder in your home
directory. Write down the explicit steps you used to accomplish this.

1.40.	Take the C++ program named third.cpp, created in Practice Session
1.10, and place it in a project in the default projects folder in your
home directory. Then create a clone of that project with the cp -r
command. This new project folder, and its source project, should
not be named project2 or project3, as is seen in Practice Session
1.11, and should comprise files inside of /home/your_username/
projects. This is essentially the same operation that you did in
Practice Session 1.11, but with a completely different source for the
clone, and a different target. Write down the explicit steps you used
to accomplish this.

1.41.	 Take the C++ programs created in Practice Session 1.12, named
input_module.cpp, output_module.cpp, and main.cpp and place
them in a new project in the default projects folder in your home direc-
tory. In this new project, create a new makefile that will compile these
three modules into one executable image, as was done in Practice
Session 1.12. Finally, run this new image from within the new project.
Write down the explicit steps you used to accomplish this.

1.42.	 What are the characters that trigger autoindentation on the next line
of code in the following languages?
C++, Python, Javascript, HTML, XML

1.43.	 In the program count1.cpp shown in Practice Session 1.8, what is the
logic behind Geany’s deployment of the fold regions?

1.44.	 What would be the advantages of opening multiple instances of
Geany? Your answer should reflect what you’ve learned from listing
the specific steps you used to most efficiently solve Problems 1.37
through 1.41.

1.45.	 When you only want to be running a single instance of Geany, what’s
the easiest and quickest way to “clear the deck” of files and projects
from the last session, and start a fresh instance in the new session?
This question assumes that you want to launch the fresh instance by
making the Raspberry Pi menu choice Programming > Geany.

1.46.	 What is the quickest and easiest way to create a new C++ or Python
program and project, after you’ve previously worked on different
older projects and documents in Geany, and subsequently launch

Raspberry Pi OS Text Editors, Git, and LXC294

Geany? Assume you have not taken the “clear the deck” steps from
your answer to question 1.45.

1.47.	 Which Geany menu choice do you make in order to examine, or
change, a majority of the settings that are presented in Section 1.6.4
Geany Abbreviated Reference Encyclopedia?

1.48.	 What does the Geany menu choice Document > Clone achieve, and
how could it have been deployed in your answers to question 1.37
through 1.41?

1.49.	 Name the six component parts of the Geany window and write a short
description of what each accomplishes, along with their contents.

1.50.	 What exact command in the Geany Build > Set Build Commands
window executes C++ code? Give an example of that command, and
its options and option arguments. Describe in your own words what
the %d, %e, %f, and %f substitutions in the Command field of the Set
Build Command window are, and what they accomplish.

1.51.	 Why would you want to use the Geany Toolbar icon Compile, rather
than the Build Icon? Give examples of this for C or C++ program code.

Projects

1.
From within non-GUI, text-only Vi and Vim sessions, create a text file that you
want to print at one of the available printers on your Raspberry Pi system.
Then, while still in the editor, give a series of CUPS commands to manage the
CUPS service, either locally or on your network, that will enable you to print
the text file you created in the editor. This would involve things like starting
the CUPS service if it is not running by default, checking the status of the ser-
vice and attached printers with systemd commands, or changing the name
of a particular attached printer, etc. What specific commands do you use to
accomplish these things, in all three editors? Create a short report organizing
both general and specific methodologies that someone could use to manage a
CUPS service and print documents from within these editors.

2.
Repeat Project 1 using Geany.

3.
zenity is a graphical, GTK+ dialog box program that allows you to create
interactive dialog boxes using Bash script files. It is installed by default on
our GUI-based Debian-family Raspberry Pi OS. In this project, the zenity
dialog box you will deploy will allow you to easily create new users on your
Raspberry Pi system. Of course, it is assumed you have the privilege to do
this account creation on your system! Use Geany to create and execute a
zenity-based Bash script file, following these steps:

Questions, Problems, and Projects 295

a.	 In Geany, create and save the following Bash script file, named zen1.
bash, in your home directory:

#!/bin/bash
zenity --forms --title="newusers Command" --text="Add batch new
user" \
 --add-entry="Username" \
 --add-password="Password" \
 --add-entry="User Number UID" \
 --add-entry="Group Number GID" \
 --add-entry="GECOS Entry" \
 --add-entry="Default Home Directory" \
 --add-entry="Default Shell" \
>> zen_out
sed -i -e 's/|/:/g' /home/bob/zen_out

b.	 On the command line, type ./zen1.bash

A zenity dialog box will open on-screen. In the GUI dialog box you will create
the seven fields needed to be supplied to the newusers command, to create
new users from a “batch file” on your Raspberry Pi system. The seven inputs
you supply to the dialog box will be written to a file named zen_out.

The seven fields, separated by the colon character (:), are:
the new user accounts name, password, UID, GID, GECOS commentary,

default home directory, and default shell.
For example:

garvey:QQQ:2001:2001:CFO of Accounting:/home/garvey:/bin/bash

c.	 Use zen1 to create a file of several new users you want to put on your
Raspberry Pi system. Then put those users on your system!

4.
The following project can be done using this outline, which is one of several
ways it can be accomplished:

a.	 Launch Geany on your Raspberry Pi system.

b.	 Create a New Project: Go to the “Project” menu and select “New.”

c.	 Set Project Name and Location: Choose a name for your project and
select the folder where you want to save your project files.

d.	 Add a New File: Right-click on the project in the left sidebar, select
“New” and choose “Empty File.” Name it with a .py extension, for
example, main.py.

e.	 Write or copy and paste the Python code into the editor window.

f.	 Save the File: Save the Python file by pressing <Ctrl> + <S>.

Raspberry Pi OS Text Editors, Git, and LXC296

g.	 Compile or Run: You can compile and run the Python program from
within Geany. Use the Geany menu Build > Execute to run it.

Take any of the tkinter Python script files from Section 1.6.3.3 and place it into
a project in the default projects folder. Then run the program from within that
project.

5.
For any two of the Practice Sessions 1.9 through 1.12, substitute the using dir-
ective, that allows all functions in the specified namespace to be used without
their namespace prefix. For example, if in the C++ header, the following line
of code is included:

using namespace std;

then lines such as

std::cout << "Enter a string: ";

in the body of the program can have the std:: omitted before the call to
function cout.

Once you do this substitution, rebuild and execute the selected code in
those Practice Sessions.

For Practice Session 1.8’s C++ program, this would yield:

#include <iostream>
#include <string>
using namespace std ;

int main() {
string inputString;
char targetLetter;

// Prompt the user for input string
cout << "Enter a string: ";
cin >> inputString;

// Prompt the user for the target letter
cout << "Enter the letter you want to count: ";
cin >> targetLetter;

int count = 0;

// Loop through the characters in the input string
for (char ch : inputString) {

// Check if the current character matches the target letter
if (ch == targetLetter) {

count++;
}

Questions, Problems, and Projects 297

}

// Display the count
cout << "The letter "' << targetLetter << "' appears " << count << " times in the string."
<< endl;

return 0;
}

6.
Customize the Geany Toolbar, according to the material presented in Section
1.6.4.11, to take advantage of the additional icons available, for your own par-
ticular use case, and the language(s) you deploy Geany for.

7.
Install Visual Studio Code (VSC) on your Raspberry Pi OS, and then do a
comparison of the features of Geany and VSC in terms of your use case of
an IDE. The installation of VSC can easily be done from the Raspberry Pi
command line as follows:

$ sudo apt install code -y

Once the installation is complete, to launch this IDE, from the Raspberry Pi
menu, make the choice Programming > Visual Studio Code.

Follow this video tutorial to set up VSC, and get an overview of its basic
features:

https://code.visualstudio.com/docs/introvideos/basics
VSC offers GitHub integration.

To integrate GitHub with VSC, you can use the GitHub Pull Requests and
Issues extension1 of VSC. This extension allows you to share your source
code and collaborate with others right within your editor. Here are the steps
to get started:

1.	 Install Git on your machine.
2.	 Create a GitHub account if you don’t have one already.
3.	 Install the GitHub Pull Requests and Issues extension for VSC.
4.	 Once you have installed the extension, you can authenticate with

GitHub and start using some of your favorite parts of GitHub without
leaving Visual Studio Code1. You can clone repositories, search for
repos, and even publish repos directly from Visual Studio Code2.

For more detailed instructions on how to connect GitHub to VSC, you can
refer to the official documentation provided by VSC. It provides step-by-step

https://code.visualstudio.com

Raspberry Pi OS Text Editors, Git, and LXC298

guidance on how to authenticate with GitHub, clone repositories, and work
with source control in VSC.

8.
Deploy Geany for your use with another HLL, such as JavaScript or C, or
whatever language you work with regularly. What advantage(s) does Geany
confer, over and above using a text editor, for the language you choose to
code in? Particularly with respect to the five key differences between text
editors and IDEs that we mention at the beginning of Section 1.6. For example,
would the kinds of DevOps coding projects you work on, and the teams you
work with on those projects, benefit, and in what ways, from using Geany?
Would integration of Geany with GitHub, or GitLab, as offered by VSC, be
an advantage in the development processes your teams use? And how would
this integration work? Write a short paper to explicitly answer the questions
we pose in this project statement.

Chapter 2

2.1	 What do you think the role of an integrator of a project would be, in
terms of what a revision control system, such as git, accomplishes for
a software development and maintenance program?

2.2	 What do you think would be the quickest and easiest way to com-
pletely delete a local git repository on your Raspberry Pi system?

2.3	 Why do you think Git would not be effective, or even work at all, in
tracking content changes in C program executable image files, or in
files like Word .docx files?

2.4	 What git command can you use to see the abbreviated list of commits
in the current branch of a repository, and their commit comments? Is
this possible in GitHub, and how?

2.5	 As an alternative to using git pull in Example 2.6 to obtain the source
code for this book from the listed GitHub repository (https://github.
com/bobk48/RaspberryPiOS), use the git clone command, as
shown in Example 2.5, from your home directory on your Raspberry
Pi system. What will be the name of the repository directory created
by git on your local machine that contains the source code files?

Project 1
Create a three-branch repository of commits exactly like Project 2.1. Use any
number of text files that you modify between commits on the three branches.
Keep the default name for the branch master, but name the other two branches
test and dev, as seen in Figure A.1

https://github.com
https://github.com

Questions, Problems, and Projects 299

Project 2
Create a three-branch repository of commits exactly like Project 2.2. Use any
number of text files that you modify between commits on the three branches.
Keep the default name for the branch master, but name the other two branches
test and dev, as seen in Figure A.2.

Project 3
As an alternative to using git pull in Example 2.6 to obtain the source code for
this book from the listed GitHub repository (https://github.com/bobk48/
RaspberryPiOS), fork that repository to one below your home directory on
your Raspberry Pi. What will be the name of the repository directory created
by git on your local machine that contains the source code files?

FIGURE A.1
Three-branch repository #1.

FIGURE A.2
Three-branch repository #2.

https://github.com
https://github.com

Raspberry Pi OS Text Editors, Git, and LXC300

Extra for Experts

Project 4
In your own words, describe the differences and similarities between Git,
GitHub, and ZFS. For example, the commands zfs snapshot and git commit
are very similar. In what way do they differ? In your opinion, is it possible
to use the commands zpool and zfs to achieve the same or similar results
as using git and GitHub? What other Raspberry Pi OS commands would be
needed to augment the ZFS file system commands to attain results that are
similar to Git and GitHub functions, commands, and capabilities?

Chapter 3

LXD/ LXC

3.1	 Following the exact sequence of commands shown in Section 3.2.5,
and the man page references given in Section 3.2.1.1, create the snap-
shot structure of a running LXD container of your choice. Assign a
name for your choice to the snapshot and the container created. Then
answer the following questions:
a.	 What is the IP address of one of the newly created “snapshotted”

container, in relation to the container that it was created from?
b.	 How do the commands in this section affect the IP address of

newly created containers, and why?
3.2	 As an alternative method of initializing LXD, with the objective of

using the ZFS storage file system for containers on a whole external
medium used as a vdev (rather than on a file, as shown in Example 3.1),
do the following:
a.	 Install an available and expendable second properly formatted

medium, of sufficient capacity, on your Raspberry Pi system. How
do you recognize this type of disk when it first appears mounted
in /dev? If it doesn’t mount, chances are it’s unusable!

b.	 Use Examples 3.1 through Example 3.3 (particularly Example 3.3!),
so that a zpool named lxd_pool is created on the external medium,
rather than on a file on the Raspberry Pi system/boot medium.
Pay particular attention to the ***Note*** in the Background
material of Example 3.3. On our system, the primary objective of
this problem was done with the command zpool create lxd_pool
/dev/sdb1

Questions, Problems, and Projects 301

3.3	 You first initialize LXD as in Example 3.1, Step 5, but now you want
to change some of its configuration parameters. Outline the steps
you would need to take to reconfigure the LXD initial installation on
your machine. Give detailed instructions for a particular configur-
ation change, with specific command examples, that show how you
would change the LXD configuration parameter.

3.4	 Complete all of the steps of Examples 3.4 and Example 3.5 on your
own host and LXD/LXC containers, and then use various secure
methods of copying files between the host computer and the con-
tainer that you enabled the sshd in. For example, use scp to copy files
from host to container and vice versa. Also use the rsync command
to copy files back and forth between host and container.

3.5	 When you have completed all of the steps in Example 3.6 on your
own system, modify the appropriate nginx files so that you can dis-
play a custom web page using the nginx server in the container.
Consult nginx documentation to find the default location of .html
files you would use for the custom web page displayed inside the
Nginx LXD/LXC container.

3.6	 Install Webmin in an Ubuntu LXD/LXC container, and then use the
various system administration menu choice presented by Webmin to
do some of the common system maintenance tasks we have shown
inside the container. These might include creation of new users and
groups, execution of operating system commands such as manipula-
tion of systemd-controlled services, etc.

3.7	 Choose an available image to install in an LXD container, such as
Oracle Linux. Choose this image based upon your familiarity with
that “flavor” of Linux. Then go through the steps necessary to install
that system into a container. Try doing any, or all, of the LXD/LXC
examples from this chapter in this image’s container.

Docker

3.8	 If you haven’t already done so, install Docker on your Raspberry Pi
system, using the instructions in Section 3.3.1. Then download an
image of your choice, using the available images you see at
https://hub.docker.com/search?image_filter=official&type=image

3.9	 Use the instructions in Section 3.8 to install a Docker Nginx con-
tainer on your Raspberry Pi system. What IP address is assigned to
your Nginx container, as shown in Section 3.8? What assigns that IP
address on your LAN? Is it private, or public facing? How can you
determine that?

https://hub.docker.com

Raspberry Pi OS Text Editors, Git, and LXC302

3.10	 Use the instructions in Section 3.8.1 to assign a public-facing IP
address to the Nginx container you created in Problem 3.9, so that
you can access an index.html file you designed yourself which
is served up by Nginx to the Internet, outside your LAN. Use the
instructions found in Section 3.9.2 to expose this web page on the
Internet, without it being blocked by ufw on your host, or the fire-
wall at the router or modem on your LAN.

3.11	 Install a container, using the latest stable Ubuntu image available
for Docker Ubuntu containers, with a ZFS backing store. How do
you install ZFS on the host? Can ZFS be installed in the container
as a file system used exclusively there, and not on the host? And if
that’s possible, are the vdevs used in the container Docker files, loop
devices, or physical block devices? Explain your answers in detail.
See Section 3.9.4.

Projects

Project 1

Note
This project assumes you have an account at GitHub, and can access it from
the Raspberry Pi command line.

Use the methods of this chapter, Chapter 2 on git and GitHub, and Volume
2, to do the following:

a.	 Create a new LXD/LXC container on your Raspberry Pi host system
that has access via ssh to and from your LAN via a public-facing IP
address.

b.	 In that container, create a project directory for a git repository that a
user base of remote users can push to and pull from.

c.	 Use the appropriate ACL commands to set the ACLs on that project
directory so that local and remote users can access it and can interact
with the git repository in that project directory.

d.	 Design the directory structure of the repository for the intended local
and remote user base.

e.	 Create the git repository in the project directory according to your
design.

f.	 Test the git repository, both locally, and from the Internet, to confirm
that local allowed users and the remote user base can work with the
repository to push to and pull from it.

g.	 Test that unallowed local users or LAN traffic cannot interact with
the repository.

Questions, Problems, and Projects 303

Project 2
On a Raspberry Pi host system, install and use ZFS as described in
Example 3.1, Step 5, as the backing storage system in an Ubuntu LXD/
LXC container. Then, devise a complete strategy for backing up that con-
tainer on the host. Be specific about commands and operations that you
would employ to accomplish this objective, and provide, in report form, a
fully developed scenario with examples. Be explicit in answering these two
questions in your report:

1.	 In what directories are the container files, and their controlling
LXD/LXC data structures and databases kept?

2.	 How would you use real-time “on the fly” backups to ensure that the
container state is backed up?

Devise a strategy for backing up the LXD/LXC “machinery”, and the
Ubuntu container ZFS files, on your host system. Whether or not you have
initialized and configured LXD to use a second storage medium for ZFS
storage, detail the steps you would take to back up the relevant files for your
container.

Project 3
Prefaced by completion of Examples 3.1 and 3.2, and following the
procedures of Example 3.3, pull and run the latest available stable release
of a Docker Ubuntu container, with a ZFS backing store on the host, and
using an externally mounted USB3 medium. The container should have
its own public-facing IP address. Then, use ZFS to mirror that medium
onto another externally mounted usable medium of equivalent size and
capacity. The result should be a mirrored media pair, with the container
backed up on each.

Note
ZFS must be installed on the host system, not in the container.

Project 4
Install multiple Docker Nginx containers (at least three) on a host Raspberry
Pi system, each with its own public-facing IP address. Then give each con-
tainer its own index.html homepage, and use your web browser on your
LAN to view these container’s individual homepages.

Project 5
In your own words, describe the differences, in light of what you would
use them for, between the functionality of default LXD/LXC containers and

Raspberry Pi OS Text Editors, Git, and LXC304

default Docker containers. For example, which system provides a method
of lighter-weight provisioning of a container? Which system provides
more complete and operable default Linux operating system functioning
containers? What would be the rationale for that, from the perspective of the
maintainers of either system?

305

305

Index

"3@a" command, 59

A

abbr command, 66, 67–​68
ab command, 67
ACL commands, 302
"@a" command, 59
add file button, 193
<Alt+​#> command, 40
Amazon Web Services Elastic Cloud

Computing (AWS EC2) virtual
servers, 196

Application Programmer’s Interface
(API), 196, 198, 241–​242

apropos command, 19–​20
apt-​get command, 228
APT package manager, 31, 205
Atomic updates, 205
Auto-​updates, 205

B

Bash script, 26, 44, 294–​295
Bash shell program files, 21
Blobs, 136, 141, 175
Bourne Again (bash) shell, 22, 42
Branch, 137
Buffer, notion of, 42
Build tools integration, 27
Bytecode form, 97

C

cat command, 5–​7, 65, 288
cc command, 47, 56, 128
cd command, 12–​15, 25
Character User Interface (CUI), 2, 26, 29
Checking out, 137
checkout command, 158
chmod command, 250, 289

u+​x ex28.py command, 102
u+​x first.py command, 97
u+​x sheller command, 289

Clone, 137
repositories, 297–​298

Cloud computing, 196
cn command, 56
Code development, 134, 157
<Ctrl+​C> command, 40, 65
<Ctrl+​D> command, 64
<Ctrl+​K> command, 36
<Ctrl+​N> command, 58
<Ctrl+​O> command, 34, 41
<Ctrl+​P> command, 58
<Ctrl+​R> command, 38, 55
<Ctrl+​U> command, 36
<Ctrl+​V> command, 55, 60, 69, 291
<Ctrl+​W> command, 36
<Ctrl+​X> command, 34, 41
Command line window, 57–​58
Command-​mode remapping, 69–​70
commit changes button, 136, 193
Commits, 136

graph, 139–​140, 174
parent–​child relationships of, 137

Common UNIX Printing System
(CUPS), 23

Computer hardware virtualization, 195
Computer science, 198
Containerization, process of, 241
Controlled virtualized machines, 195
cp command, 7, 280–​281
cp -​a command, 280
cp -​r Linux command, 89, 293
C+​+​ program, 26, 83, 91, 109, 119, 293

compiling and executing, 77–​80
development and execution, 77
GNU compiler for, 77
practice sessions, 80–​94
syntax of, 116

C programming language, 56, 119, 154,
159, 161, 298

skeleton done with the map
Command, 70

Creating files, command for, 7–​11
Cross-​distribution support, 205

Index306

curl command, 242, 251
Custom scripts, 27

D

Data integrity, 220
dd command, 46, 47, 51, 290
Debugging, 72–​73, 127
Deleting files, command for, 7–​11
Dependency management, 205
diff command, 144, 148
Directed acyclic graph (DAG), 133, 137,

139–​140
Directories (tree-​like structure of

folders), 2
creating, deleting, and managing,

11–​16
current working directory, 4
home directory, 4
pathname, 5
representation of, 5
structure of, 4–​5
subdirectory, 5

Docker (container management system),
195, 197, 229–​230

adding a non-​root user on, 231–​232
checking the version of, 231–​232
committing (saving) a container state,

listing and deleting images, 240
containerization, process of, 241
data volumes feature, 250
DevOps, 230
docker commit command, 240
docker cp command, 252
docker create command, 242
docker events, 264–​265
Docker Hub, 238, 271
docker image ls command, 274
docker images command, 240
docker logs, 263–​264
docker ps -​a command, 238
docker run command, 239, 241–​242,

251, 253
docker run -​v command, 252
docker save command, 253
downloading a pre-​built docker

image, 237–​238
“hello world” containers, 232–​233
installation of, 248

instructions for, 230
on the Raspberry Pi OS, 230–​231
useful commands for verification of,

236–​237
Nginx Docker container, 230

building a web page, 249–​252
review of, 248–​257
run, list, and remove, 248–​249
using ZFS as the backing store,

253–​257
working with, 252–​253

optional configurations, 233–​235
configuring UFW, 233–​235
running without root privileges,

233
Raspberry Pi command line, 257–​281

container management commands,
260–​267

Docker images, 271–​275
general management commands,

275–​281
for running a container, 267–​271

running an important web application
in, 241

running an interactive shell, 238
starting continually running processes

in a container, 238–​239
strategy of isolating containers, 245
sudo command, 237
uninstallation of, 235
utility commands, 239–​240
virtualization platform, 229

Docker Engine (Docker Core). see
Docker (container management
system)

Document production, 30, 32

E

Eclipse, 72, 74
Editor buffer, 29, 32, 289
Edit-​stage-​commit workflow model, 151,

171
Emacs text editor, 72
Error Correction Code (ECC), 220
Euclidean algorithm, 83
EXINIT command, 290–​291
Extensible Markup Language (XML),

199

Index 307

F

File maintenance commands, 3–​20
for creating, deleting, and managing

directories, 11–​16
files, 7–​11

file and directory structure, 4–​5
for obtaining help with the man

command, 16–​19
and other methods of obtaining help,

19–​20
for viewing the contents of files, 5–​7

Filesystem mounting, 199
File system organization, 27
fopen command, 18
fread command, 18
Full-​screen display editors, 29, 32, 127
Full virtualization, 196
Fuzzy file finders, 27

G

gcc command, 77
G+​+​ compiler, 77
Geany, 27, 72–​75

color coding scheme, 82
difference with Raspberry Pi OS text

editor, 72
features of, 74–​75
GTK+​ runtime libraries, 73
learning curve, 72
practice sessions, 77–​109

compiling and executing C+​+​
programs, 77–​80

creation of C+​+​ programs, 80–​94
Geany Py, 94–​109

Run Toolbar icon, 95
Toolbar Save icon, 96
usage of, 75
working directory, 89
working with, 74
workspace, 75–​77

Geany Python, 94–​109
other preliminary considerations, 97–​98
preliminary considerations, 94–​97
Python code examples, 98–​109

Git, 132–​133, 300
add command, 147, 150, 156, 166
checkout command, 157, 167
clean command, 163

clone command, 133, 176, 183–​185,
186, 298

commands, 142, 193, 214
commit command, 150, 300
config command, 172
config –​ global -​ -​ edit command, 145,

153
contents of the object store, 140–​143
diff command, 144, 147–​148, 150
directed acyclic graphs (DAG),

139–​140
examples of using, 143–​171
fetch command, 182, 187
fetch origin command, 174
high-​level commands (porcelain),

142–​143
init command, 178
log command, 149, 155, 157, 161, 163
log -​ -​ oneline command, 170
merge command, 187
pull command, 133, 174, 187–​190
push command, 133, 174–​175,

177–​179, 182–​183
push -​u origin master command, 179
remote add command, 172, 175
remote command, 172, 181
remote rm command, 175
repository, 135
reset command, 163
revert command, 161, 163
rm command, 166
show-​ref command, 174
staging model, 138–​139
tag command, 159
terminology of, 135–​138
Uniform Resource Locators (URLs),

172–​173
working of, 134–​135

GitHub, 132–​133, 199, 300
examples of using, 175–​193
remote pull and push operations,

173–​175
as a remote repository, 171–​172
remote-​tracking branches, 175
web-​based GUI interface of, 172, 176

git-​status command, 151, 163
Global system resources, 199
Graphical User Interface (GUI), 26, 29,

31, 72, 106

Index308

dialog box, 295
Greatest Common Factor (GCF), 83–​84
“Guest” environments, 197
Gvim text editor, 30–​31, 42–​71, 290–​291

abbreviated reference encyclopedia
build menu, 118–​121
customizing the toolbar, 124–​126
editor completions preferences,

116–​117
editor indentation preferences,

114–​116
indentation, 109–​111
interface preferences, 113–​114
plugins, 123–​124
preferences, 112–​113
project management, 117–​118
search, replace, and Go to, 111–​112
set build commands, 121–​123

advantages over Vi editor, 55
auto-​close quotes and brackets, 116
behavior-​changing option, 64–​66
to cut and paste between multiple

open buffers, 61–​63
Document menu, 110
environmental options for, 65
executing shell commands from

within, 66
general organization of, 45
general startup preferences, 112
keyboard macros, 66–​71

H

Hardware-​assisted virtualization,
196–​197

HEAD, 137, 140, 148, 157, 174
detached HEAD state, 157–​158, 160,

164
High Level Languages (HLLs), 77, 80,

298
hostname command, 22
hostname -​I command, 22
HTML, 111, 244–​245, 250–​252, 293
Hypervisor, 195, 200, 227

I

import command, 96
Index (staging area), 136

Instruction set architecture (ISA), 196
Integrated Development Environment

(IDE), 26, 72–​73, 292
features of, 74–​75
key aspects of, 73
Linux IDEs, 73–​74
user-​friendly GUI interface, 72

Integrated development tools, 74
IntelliJ IDEA, 72, 74
Interactive container, 238, 241, 261
Interprocess Communication, 199
ip command, 21, 23
ip a command, 204
ip addr command, 22
iptables command, 215, 245–​247, 251

J

Janus (plugin suite), 27
JavaScript, 120, 293, 298

K

Kernel development, 195
Keystroke commands, 29, 32, 45, 127,

289
Keystroke mapping, 67

macros used in insert mode, 68–​69
Keystroke-​remapping, macros used in

Command mode, 69–​70
kts command, 68

L

LibreOffice Writer, 72
Lint programs, 120
Linux container system, 200
Linux operating system, 304
lp command, 23–​24
lpr command, 23
lsblk command, 254
ls command, 9, 11, 16–​17, 23, 283
ls -​la command, 10–​11, 42
lx command, 11
lxc command, 201
lxc console command, 221
lxc exec command, 221
lxc launch command, 210, 219
lxc list command, 210
LXC/​LXD containers, 195, 198–​200

Index 309

API, 200
backups, snapshots, and cloning,

213–​214
container management commands,

211
executed from the host, 212

extended LXD installation and
container management,
214–​229

getting help on, 201
installation on Raspberry Pi system,

211
basic commands, 201–​211
usage, 200

introduction to, 200–​201
Linux container system, 200
loop-​based ZFS pool, 207
snap commands, 205
storage pools, 220
“sub-​commands” listing, 202
system programming, 198

lxc restore command, 213–​214
lxc shell command, 221
lxc snapshot command, 213
lxd init dialog, 206

M

Macro record, 67
make command, 56, 78, 92, 120
Managing files, command for, 7–​11
man command, 16, 18, 20, 23
man -​f command, 19
man git-​clone command, 184
man giteveryday command, 142
man git-​pull command, 188
man git-​push command, 179
man git-​status command, 151
man gittutorial command, 142
man -​k passwd command, 19–​20
man man command, 17, 19, 21
map command, 68–​69, 291
Master, 137
Merge, 138
Merge commit, 136, 140
Metacharacter, 14
mkdir command, 12
more command, 6, 29, 31
mv command, 7–​8, 166

N

Name scope, 198
Namespaces, 96, 195, 198–​199, 221–​223,

296
Nano text editor, 30, 32–​41, 42, 72

keys used to execute commands in, 33
quickstart, 33–​34
text-​editing operations, 286
tutorial for

creating and opening a new file,
34–​35

cutting and pasting text, 35–​36
displaying line numbers in the

current buffer, 40–​41
inserting another file into current

one in the buffer, 38–​40
saving file, 35
searching and replacing a word,

36–​38
showing the cursor position, 40

typographic conventions, 33
Navigation, tag-​based, 27
NERDTree, 27
Network Address Translation (NAT),

203
newusers command, 295
Nginx (web application program), 241,

302
Docker container, 252–​253
exposing of container’s IP address on

the public network, 245–​248
HTML representation of, 245
installations and provisioning in

Docker containers, 248
management of content and

configuration files, 252–​253
and necessity of exposing ports,

242–​245
port mappings, 245

Non-​OOP Python programming, 199
nsenter command, 221

O

Object-​Oriented Programming (OOP)
language, 77, 94, 98, 106

Object store, 136
contents of, 140–​143

Index310

Open-​source projects, 133
Operating system (OS), 1–​2, 7, 11, 21, 24,

28, 71, 75, 135, 195, 284, 301, 304
Oraclelinux, 238
OS-​level virtualization, 197, 199, 215

P

Paravirtualization, 196
Partial virtualization, 196
passwd command, 18, 20, 283
Pathname, 5, 7, 9, 13, 20, 38, 66, 84, 87,

118, 173, 221
Perl language, 119
Platform virtualization, 195
Plugin suites, 27
Port mapping, 242–​243, 245, 266
Printing commands, 23–​24
Process Identification, 199
prod command, 219
Producer-​consumer problem, 108
Project Drawer Plugin, 27
Project management, 27, 73, 74

in Geany, 117–​118
Public-​facing network, 209–​210, 215
“Public” network, 206
pwd command, 12, 66
PyCharm, 74
Python3 script file, 26, 68, 77, 119

autoindent lines of, 97
import command, 96

Python interpreter, 94

Q

Quick start, 28–​29

R

Raspberry Pi OS commands, 1, 3
Command Line Window, 58
execution of, 11
file structure of, 5
host system, 214
organization of workspace

environment, 3
snapd package, 205

Raspberry Pi text editors, 29–​31
basic shell script file creation, editing,

and execution, 42–​44

cursor movement and editing
commands, 50–​51

full-​screen display editors, 29
general text editing functions, 30
operational feature of, 29
substitute (search and replace), 51–​54
syntax to start, save a file, and exit,

44–​46
use of, 31–​32
using Gvim to cut and paste between

multiple open buffers, 61–​63
yank and put (copy and paste)

command, 51–​54
Reference, 137
Repository, 133, 135

clone, 298
DAG of, 167

final state, 170
with three branches, 169

forked project, 165
GitHub, 171–​172
structure of, 135
Ubuntu package, 227

rm command, 8, 15
rmdir command, 15–​16
rsync command, 301
Ruby language, 119
rwx command, 250

S

Sandboxing, 205
Server virtualization, 196
Session management, 27
set command, 64, 66, 290
set ai command, 64
set all command, 64, 290
Set Build Commands, 121–​123
SETENV command, 290
set nonu command, 64
set noshowmode command, 64
set nu command, 64
set showmode command, 64–​65
Shell script file, 42
Snap (package management system),

205
Software development, 73, 173
Software product, maintenance of, 131
Solid-​state drive (SSD), 206

Index 311

SpaceVim (plugin suite), 27
stop command, 259
strcmp command, 18
sudo command, 233, 237
Sysoev, Igor, 241

T

Tags, 27, 136–​137
TCP proxy server, 241
“Test drive” systems, 197
Text abbreviation, 67

macros used in insert mode, 67–​68
Text-​based interface, 1, 24, 190
Text editor, 26
Thonny (Raspberry Pi IDE), 77, 94
Trees, 136
ts command, 69

U

Ubuntu systems, 200
unabbr command, 67
Uncomplicated Firewall (ufw), 227
undo command, 55
Uniform Resource Locators (URLs),

172–​173, 185, 201
Client URL, 242

UNIX, 23, 28–​29, 45, 53, 91, 118, 233, 280
unmap command, 69
Useful commands, for the beginner, 25
userid command, 21
User-​written library module, 97
Utility commands, for examining system

setups, 20–​22

V

Version control integration, 27, 73–​74,
127

Version control system (VCS), 27, 132,
134

Version rollback, 205
Viewing the contents of files, commands

for, 5–​7
vi firscrip command, 42
Vim text editor, 30, 42–​71, 290

advantages over Vi editor, 55
behavior-​changing option, 64–​66
Command mode, 58

enhancements, 55–​60
environmental options for, 65
executing shell commands from

within, 66
general organization of, 45
incsearch and hlsearch

Environmental Options, 56
keyboard macros, 66–​71
Last Line mode, 55, 57, 60

command line window, 57–​58
record and playback facility, 58–​60
substitute command, 291
undo command, 55
Visual Mode operations, 55, 60–​61
word completion, 58

Vim-​vinegar, 27
Virtual block device, 207
VirtualBox, 196, 198
Virtual computers, 207
Virtualization methodologies

background of, 195–​197
contemporary techniques, 196–​197
implementations of, 196
kernel functions of, 195
system-​level, 206

Virtual machines, 207, 210
local filesystem, 250
virtual machine monitor (VMM),

195
Virtual memory, concept of, 195
Visual Studio Code (VSCode), 27, 72, 74,

297–​298
Vi text editor, 30, 42–​71, 289–​290

advantages of using Vim and Gvim
over, 55

basic shell script file creation, editing,
and execution, 42–​44

changing behavior of, 64–​66
Command mode operations, 43–​44,

46
cursor movement and editing

commands, 50–​51
important Commands in, 48

environmental options for, 65
examples of command syntax, 47
executing shell commands from

within, 66
ex mode operations, 45
format of, 46–​50

Index312

general organization of, 44, 45
Insert mode operations, 44
keyboard macros, 66–​71
keys used to switch from Command

to Insert mode, 48
Last Line mode operations, 43, 45
modes of operation, 46–​50
more firstvi command, 51
substitute command, 53
syntax to start, save a file, and exit,

44–​46
vi firstvi command, 51
wq command, 44
yank and put command, 51–​54

W

w command, 283
whatis command, 19–​20
whatis passwd command, 20
What You See Is What You Get

(WYSIWYG) editor, 32
whereis bash command, 21
whereis command, 20–​22
whoami command, 21–​22
who command, 22
who -​H command, 283
Word processors, 26, 28, 42, 44, 51, 72,

289, 290, 292

Workflows, 28, 72, 73, 127, 133–​134, 139,
144, 171, 174, 229

Working directory, 136, 137
Working tree, 135–​137, 154, 158
wq command, 44

Y

Yet Another Markup Language (YAML)
file, 209–​210

yppasswd command, 283

Z

ZFS file system, 200, 215, 220, 248, 254,
300

as backing store for
Docker containers, 253–​257
LXC/​LXD containers, 215, 253

datasets, 207, 214
installation of, 215
list command, 220
snapshot command, 300
utilization of, 216

zpool command, 300
zpool create command, 219, 254
zpool create lxd_​pool/​dev/​sdb1

command, 300
ztest command, 216

	Cover
	Half Title
	Series Information
	Title Page
	Copyright Page
	Table of Contents
	Series Preface
	Volume 3 Preface
	Background
	How to Read and Use This Book
	Routes Through the Book

	0 “Quick Start” Into Sysadmin for the Raspberry Pi Operating System
	0.1 Introduction
	0.2 File Maintenance Commands and Help On Raspberry Pi OS Command Usage
	0.2.1 File and Directory Structure
	0.2.2 Viewing the Contents of Files
	0.2.3 Creating, Deleting, and Managing Files
	0.2.4 Creating, Deleting, and Managing Directories
	0.2.5 Obtaining Help With the Man Command
	0.2.6 Other Methods of Obtaining Help

	0.3 Utility Commands
	0.3.1 Examining System Setups

	0.4 Printing Commands
	0.5 Chapter Summary

	1 Editing Text Files
	1.1 Introduction and Quickstart
	1.2 Quick Start: The Simplest Path Through These Editors
	1.3 First Comments On Raspberry Pi Text Editors
	1.4 Using Text Editors
	1.5 Nano
	1.5.1 Introduction to Nano and Typographic Conventions
	1.5.2 A Nano Quickstart
	1.5.3 A Brief Nano Tutorial
	1.5.3.1 Creating and Opening a New File
	1.5.3.2 How to Save a File
	1.5.3.3 How to Cut and Paste Text
	1.5.3.4 How to Search and Replace a Word
	1.5.3.5 How to Insert Another File Into Current One in the Buffer
	1.5.3.6 How to Show the Cursor Position
	1.5.3.7 Displaying Line Numbers in the Current Buffer, Or Permanently

	1.6 Vi, Vim, and Gvim
	1.6.1 Basic Shell Script File Creation, Editing, and Execution
	1.6.2 How to Start, Save a File, and Exit
	1.6.3 The Format of a Vi Command and the Modes of Operation
	1.6.4 Cursor Movement and Editing Commands
	1.6.5 Yank and Put (Copy and Paste) and Substitute (Search and Replace)
	1.6.6 Vim and Gvim
	1.6.6.1 Vim Enhancements
	1.6.6.2 Vim Visual Mode
	1.6.6.3 Using Gvim to Cut and Paste Between Multiple Open Buffers

	1.6.7 Changing Vi, Vim, and Gvim Behavior
	1.6.7.1 Executing Shell Commands From Within Vi, Vim, and Gvim

	1.6.8 Vi, Vim, and Gvim Keyboard Macros
	1.6.8.1 Text Abbreviation Macros Used in Insert Mode
	1.6.8.2 Keystroke-Mapping Macros Used in Insert Mode
	1.6.8.3 Keystroke-Remapping Macros Used in Command Mode
	1.6.8.4 Vim/Gvim Macro Example

	1.7 Geany Introduction
	1.7.1 Geany Usage
	1.7.2 The Geany Workspace
	1.7.3 Five Easy Geanys and Some Geany Py
	1.7.3.1 Compiling and Executing C++ Programs
	1.7.3.2 C++ and Geany Practice Sessions
	1.7.3.3 A Geany Py

	1.7.4 Geany Abbreviated Reference Encyclopedia
	1.7.4.2 Search, Replace, and Go to
	1.7.4.3 Preferences
	1.7.4.4 Interface Preferences
	1.7.4.5 Editor Indentation Preferences
	1.7.4.6 Editor Completions Preferences
	1.7.4.7 Project Management
	1.7.4.8 Build Menu
	1.7.4.9 Set Build Commands
	1.7.4.10 Plugins
	1.7.4.11 Customizing the Toolbar

	1.8 Summary

	2 Version Control for Software Code Using Git and GitHub
	2.1 Introduction to Version Control
	2.2 What Is Git Used for and How Does It Work?
	2.3 Basic Git Terminology
	2.3.1 Top-Level Terminology
	2.3.2 The Git Staging Model
	2.3.3 Directed Acyclic Graphs
	2.3.4 Contents of the Object Store

	2.4 Examples of Using Git and GitHub
	2.5 GitHub as a Remote Repository
	2.5.1 Git URLs
	2.5.2 Understanding Remote Pull and Push Operations

	2.6 GitHub Examples

	3 Virtualization Methodologies
	3.1 Introduction to Virtualization Methodologies and Background
	3.2 Raspberry Pi OS Containers With LXC/LXD
	3.2.1 Introduction to LXC/LXD
	3.2.1.1 Getting Help On LXC and LXD

	3.2.2 LXD and LXC Installation and Basic Commands for the Raspberry Pi OS
	3.2.3 Container Management Commands
	3.2.4 Internal Container Management Commands Executed From the Host
	3.2.5 Container Backups, Snapshots, and Cloning
	3.2.6 Extended LXD Installation and Container Management Examples

	3.3 Docker
	3.3.1 Docker Installation On the Raspberry Pi OS
	3.3.2 Adding a Non-Root User On the Docker Group and Checking the Docker Version
	3.3.3 Run the Sample “Hello World” Containers

	3.4 Docker Optional Configurations
	3.4.1 Running Docker Without Root Privileges
	3.4.2 Configuring UFW and Making Other Configuration Changes

	3.5 Uninstallation of Docker
	3.6 Running a Docker Container and Useful Docker Commands
	3.6.1 Downloading a Pre-Built Docker Image
	3.6.2 Running an Interactive Shell
	3.6.3 Starting Continually Running Processes in a Container
	3.6.4 Various Docker Utility Commands
	3.6.5 Committing (Saving) a Container State, Listing and Deleting Images

	3.7 Running an Important Web Application in a Docker Container
	3.8 Nginx and the Necessity of Exposing Ports
	3.8.1 Exposing a Container’s IP Address On the Public Network Connected to the Host Using Iptables

	3.9 Docker Nginx Review and Further Docker Examples
	3.9.1 Reviewing Container Basics: Run, List, Remove
	3.9.2 Building a Web Page for Nginx to Use as Content in a Container
	3.9.3 Working With the Nginx Docker Container in More Detail
	3.9.3.1 Managing Content and Configuration Files

	3.9.4 Using ZFS as the Backing Store for Docker Containers

	3.10 A Docker Reference
	3.10.1 Container Management Commands
	3.10.2 Running a Container
	3.10.3 Docker Images
	3.10.4 General Management Commands

	3.11 Summary

	Questions, Problems, and Projects
	Chapter 0
	Advanced Questions and Problems

	Chapter 1
	Chapter 2
	Chapter 3

	Index

