

i

Raspberry Pi OS System
Administration

The fourth volume in a new series exploring the basics of Raspberry Pi
Operating System administration, this installment builds on the insights
provided in Volumes 1, 2, and 3 to provide a compendium of easy-​to-​use and
essential Raspberry Pi OS administration for the novice user, with specific
focus on ancillary topics that can be used with the Raspberry Pi OS based
upon upstream Debian Bookworm release, and the Raspberry Pi 5.

The overriding idea behind system administration of a modern, 21st-​
century Linux system such as the Raspberry Pi OS is the use of systemd
to ensure that the Linux kernel works efficiently and effectively to provide
these three foundation stones of computer operation and management: com-
puter system concurrency, virtualization, and secure persistence. This fourth
volume includes full-​chapter explications, with many examples, of the
following:

1)	 the Zettabyte File System (ZFS),
2)	 the X Window System, the Wayland protocol, XWayland, the Wayfire

window manager, XCB, Qt5, and GTK4 graphics,
3)	 the Emacs text editor, and
4)	 a basic introduction to important Raspberry Pi commands for the

novice user.

This book is aimed at students and practitioners looking to maximize their
use of the Raspberry Pi OS. With plenty of practical examples, projects, and
exercises, this volume can also be adopted in a more formal learning envir-
onment to supplement and extend the basic knowledge of a Linux operating
system.

Robert M. Koretsky is a retired lecturer in Mechanical Engineering at the
University of Portland School of Engineering. He previously worked as
an automotive engineering designer at the Freightliner Corp. in Portland,
Oregon. He’s married, and has two kids and two grandkids.

ii

Raspberry Pi OS System Administration with systemd
A Practical Approach
Series Editor: Robert M. Koretsky

Raspberry Pi OS System Administration with systemd: A Practical Approach
Robert M. Koretsky

Raspberry Pi OS System Administration with systemd and Python: A Practical
Approach
Robert M. Koretsky

Raspberry Pi OS Text Editors, git, and LXC: A Practical Approach
Robert M. Koretsky

Raspberry Pi OS System Administration: Ancillary Topics
Robert M. Koretsky

www.routledge.com/Raspberry-Pi-OS-System-Administration-with-
systemd/book-series/123

http://www.routledge.com/Raspberry-Pi-OS-System-Administration-with-systemd/book-series/123

iii

Raspberry Pi OS System
Administration

Ancillary Topics

Robert M. Koretsky

iv

First edition published 2025
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Robert M. Koretsky

Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the consequences
of their use. The authors and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged
please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in
any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyri​ght.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-​750-​8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notices: Product or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe, as follows:
Linux and Raspberry Pi are trademarks, or registered trademarks of their respective owners.
X Window System: "X Window System" is a registered trademark of The Open Group.
QT5: "Qt" is a registered trademark of The Qt Company Ltd.
GTK4: "GTK" is a registered trademark of the GNOME Foundation.
ZFS (Zettabyte File System) was originally developed by Sun Microsystems and is now owned by Oracle
Corporation as part of their acquisition of Sun Microsystems in 2010.

ISBN: 978-​1-​032-​75297-​6 (hbk)
ISBN: 978-​1-​032-​75296-​9 (pbk)
ISBN: 978-​1-​003-​47326-​8 (ebk)

DOI: 10.1201/​9781003473268

Typeset in Palatino
by Newgen Publishing UK

http://www.copyright.com
http://www.copyright.com
http://dx.doi.org/10.1201/9781003473268

v

To my family.

Bob Koretsky

https://taylorandfrancis.com

vii

vii

Contents

Series Preface... xi
Volume 4 Preface...xiii

0	 “Quick Start” into Sysadmin for the Raspberry Pi Operating System...... 1
0.0	 Objectives... 1
0.1	 Introduction... 1
0.2	 File Maintenance Commands and Help On Raspberry Pi OS

Command Usage.. 3
0.2.1	 File and Directory Structure.. 3
0.2.2	 Viewing the Contents of Files... 5
0.2.3	 Creating, Deleting, and Managing Files.................................... 7
0.2.4	 Creating, Deleting, and Managing Directories.......................11
0.2.5	 Obtaining Help with the Man Command............................... 16
0.2.6	 Other Methods of Obtaining Help... 19

0.3	 Utility Commands.. 20
0.3.1	 Examining System Setups... 21

0.4	 Printing Commands... 22

1	 ZFS Administration and Use.. 24
1.0	 Objectives... 24
1.1	 Introduction... 24

1.1.1	 zpool and zfs Command Syntax.. 26
1.1.2	 ZFS Terminology.. 27
1.1.3	 How ZFS Works.. 28
1.1.4	 Important ZFS Concepts... 29

1.2	 Example ZFS Pools and File Systems: Using the zpool and zfs
Commands.. 30
1.2.1	 A Quick and Easy Way to Find the Logical Device

Names of Media Actually Installed on Your System............. 31
1.2.2	 Basic ZFS Examples.. 32

1.3	 ZFS Commands and Operations.. 65
1.3.1	 Command Categories and Basic Definitions.......................... 65
1.3.2	 ZFS Storage Pools and the zpool Command............................ 67
1.3.3	 ZFS File System Commands and the zfs Command............. 74

1.4	 File System Backups Using zfs snapshot... 80
1.4.1	 Examples of snapshot.. 80
1.4.2	 zfs rollback.. 80
1.4.3	 Cloning/​Promoting... 81
1.4.4	 Renaming a Filesystem.. 81
1.4.5	 Compression of Filesystems... 81

1.5	 Incremental ZFS Backups.. 82

Contentsviii

2	 The X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt,
and Gnuplot... 92
2.0	 Objectives... 92
2.1	 Introductory Remarks.. 92

2.1.1	 What Constitutes a Raspberry Pi OS GUI?............................. 94
2.2	 A Bit of Wayland History.. 97

2.2.1	 How Do You Know You’re Running Wayland,
Xwayland, and the Wayfire Compositor, or for
That Matter, How Do You Know If You’re Running
an X11 Backend?... 98

2.2.2	 The Wayland Protocol.. 99
2.2.3	 Wayland Protocol Overview... 100
2.2.4	 Wayland Core Interfaces... 101
2.2.5	 Window System Comparison... 101
2.2.6	 Wayland Rendering.. 104
2.2.7	 Differences between Wayland and X..................................... 105
2.2.8	 Xwayland... 106

2.3	 X Window System GUI Basics.. 109
2.3.1	 Introduction... 109
2.3.2	 User–​Application Software Interaction Model.....................110
2.3.3	 Basics of the X Window System..111
2.3.4	 The Key Components of Interactivity: Events

and Requests..113
2.3.5	 Functions and Appearance of the Window Manager

Interface..115
2.3.6	 Creating X Window System Client Application

Programs...116
2.3.7	 Client Application Program Structure and

Development Model...117
2.3.8	 Xlib versus XCB.. 121
2.3.9	 Xlib.. 123

2.4	 Using XCB... 137
2.4.1	 XCB Top-​Down Considerations... 138
2.4.2	 Installing and Compiling an XCB Program.......................... 143
2.4.3	 Sample XCB Client Application Programs........................... 144

2.5	 Basics of the Qt5 and GTK4 Toolkits... 151
2.5.1	 The Qt5 Framework... 152
2.5.2	 Some Preliminary Qt5 Programming Considerations........ 152
2.5.3	 Installing the Qt5 Framework with Qt Creator, and

Obtaining Help... 153
2.5.4	 Creating an Executable Qt5 Program from the

Command Line... 153
2.6	 The GTK Framework... 161

2.6.1	 Installing GTK4... 162
2.6.2	 GTK4 Basics... 162

Contents ix

2.6.3	 Example GTK4 Programs.. 163
2.6.4	 Using Geany to Build and Execute a GTK4 Program......... 171

2.7	 Gnuplot and the X Window System.. 173
2.7.1	 Installing gnuplot... 173
2.7.2	 What gnuplot Is and Basic Syntax for Interactive

and Batch Modes.. 174
2.7.3	 Batch Mode Examples.. 175
2.7.4	 Batch Mode Plotting to a Terminal with Persistence

of the Plot Window... 176
2.7.5	 Interactive Mode and Terminal Type..................................... 176
2.7.6	 Plotting in Interactive Mode... 178
2.7.7	 Obtaining Help on Important Commands........................... 180
2.7.8	 Qt and X11 Terminals... 181
2.7.9	 Plotting in Multiple Windows or Multiple Graphs

in One Window... 183
2.8	 Summary.. 186

3	 The GNU Emacs Editor.. 189
3.0	 Objectives... 189
3.1	 Introduction... 189
3.2	 Installing Emacs on the Raspberry Pi OS.. 193

3.2.1	 Launching Emacs, Emacs Screen Display,
and General Emacs Concepts and Features.......................... 193

3.3	 Emacs Help.. 196
3.4	 Graphical Features... 198
3.5	 Buffers, File, Windows, and Frames.. 199
3.6	 Point, Mark, and Region.. 199
3.7	 How to Use Emacs to Do Shell Script File Creation,

Editing, and Execution.. 200
3.8	 Visiting Files, Saving Files, and Exiting.. 202
3.9	 Cursor Movement and Editing Commands..................................... 203
3.10	 Keystroke Macros... 207
3.11	 Cut or Copy and Paste and Search and Replace.............................. 209
3.12	 How to Do Purely Graphical Editing with GNU Emacs................ 213

3.12.1	 Editing Data Files... 213
3.12.2	 How to Start, Save a File, and Exit in Graphical Emacs..... 215

3.13	 Emacs Graphical Menus.. 218
3.14	 Creating and Editing C Programs.. 219
3.15	 Working in Multiple Buffers... 222
3.16	 Changing Emacs Behavior.. 226

3.16.1	 Using the Options Menu... 228
3.16.2	 Changing Emacs Variables with Custom and

the <Alt+​X> customize Command.. 230
3.16.3	 Init File elisp Syntax... 235
3.16.4	 Keystroke Abbreviations or Abbrevs..................................... 236

Contentsx

3.16.5	 Defining Abbrevs... 236
3.16.6	 Controlling Abbrev Expansion... 237
3.16.7	 Listing and Editing Abbrevs... 238
3.16.8	 Saving Abbrevs... 238
3.16.9	 Keystroke Macro Commands... 239
3.16.10  Keys, Commands, and Variables.. 243

3.17	 Summary.. 247

Questions, Problems, and Projects.. 251
Chapter 0... 251
Chapter 1... 255
Chapter 2... 258
Chapter 3... 262

Index.. 267

xi

xi

Series Preface

This series of books covers the basics of Raspberry Pi Operating System
administration, and is geared toward a novice user. Each book is a complete,
self-​contained introduction to important system administration tasks, and to
other useful programs. The foundation of all of them is the systemd super-​
kernel. They guide the user along a path that gives the “why” and “how to”
of those important system administration topics, and they also present the
following essential application facilities in four volumes:

1)	 Raspberry Pi OS System Administration with systemd, Volume 1
2)	 Raspberry Pi OS System Administration with systemd and Python,

Volume 2
3)	 Raspberry Pi OS Text Editing, git, Virtualization with LXC/​LXD, Volume 3
4)	 Raspberry Pi OS System Administration with systemd: Ancillary

Topics, Volume 4

They can be used separately, or together, to fit the learning objectives/​pace,
and interests of the individual, independent learner, or can be adopted in
a more formal learning environment, to supplement and extend the basic
knowledge of a Linux operating system in a classroom environment that uses
the Raspberry Pi OS.

In addition, each book has In-​Chapter Exercises throughout, and a Question,
Problems, and Projects addendum to help reinforce the learning goals of the
individual student or reader.

An online Github site, with further materials and updates, program source
code, solutions to In-​Chapter Exercises, plus other supplements, is provided
for each volume. It can be found at:

www.git​hub.com/​bob​k48/​Raspbe​rryP​iOS

The fundamental prerequisites of each volume are:

(1)	 knowledge of how to type a syntactically-​correct Linux command on
the command line,

(2)	 having access to a dedicated Raspberry Pi computer with the latest
Raspberry Pi Operating System already installed and running on it,

(3)	 in some cases, being a privileged user on the system that is able to exe-
cute the sudo command to assume superuser status, and

(4)	 having a basic knowledge of how to edit and save text files in the nano
text editor.

http://www.github.com

Series Prefacexii

All instructions in these volumes were tested on either a Raspberry
Pi 4B, or a Raspberry Pi 400, both with 4GB of memory, and the latest
version of the Raspberry Pi OS at the time, either Debian-​Bullseye or
Debian-​Bookworm.

xiii

xiii

Volume 4 Preface

Continuing the series of books that cover basic Raspberry Pi Operating
System administration, this volume presents important subjects that are now
available in the updated version of the Raspberry Pi OS. This new version is
based upon the upstream Debian Bookworm release, and is meant to run on
the Raspberry Pi 5, as well as on older Raspberry Pi systems, such as the Pi
3, Pi 4b, and Pi 400.

The topics presented in this volume are:

1.	 A basic introduction to important Raspberry Pi commands for the
novice user.

2.	 A full-​chapter explication, with many examples, of the Zettabyte File
System (ZFS).

3.	 A full-​chapter description, with many examples, of the X Window
System, the Wayland protocol, XWayland, Wayfire, XCB, Qt5, and
GTK4 graphics.

4.	 A full-​chapter tutorial on the Emacs text editor, to supplement the text
editors presented in Volume 3.

The subjects are geared toward a beginner and are complete, self-​contained
introductions to these ancillary programs, using the systemd super-​kernel.
They guide the user along a path that gives the “why” and “how to” of
important Raspberry Pi applications. This volume can easily fit the learning
objectives, pace, and interests of the individual, independent learner, or can
be adopted in a more formal environment to supplement and extend the basic
knowledge of a Linux operating system and its applications and programs in
a classroom environment that uses the Raspberry Pi OS.

newgenprepdf

https://taylorandfrancis.com

1DOI: 10.1201/9781003473268-1

0	�
“Quick Start” into Sysadmin for the
Raspberry Pi Operating System

0.0  Objectives

*  To explain how to manage and maintain files and directories
*  To show where to get system-​wide help for Raspberry Pi OS commands
*  To demonstrate the use of a beginner’s set of utility commands
*  To cover the basic commands and operators

cat, cd, cp, exit, hostname, login, lp, lpr, ls, man, mesg, mkdir, more, mv,

passwd, PATH, pwd, rm, rmdir, telnet, unalias, uname, whatis, whereis,

who, whoami

0.1 � Introduction

To start working productively with system administration on the Raspberry
Pi OS, the beginner needs to have some familiarity with these sequential
topics, as follows:

1.	 How to maintain and organize files in the file structure of the oper-
ating system. Creating a tree-​like structure of folders (also called dir-
ectories), and storing files in a logical fashion in these folders, is critical
to working efficiently in the Raspberry Pi OS.

2.	 How to get help on text-​based commands and their usage. With key-
board entry, in a command-​based, Character User Interface (CUI)
environment, being able to find out, in a quick and easy way, how to
use a command, its options, and arguments by typing it on the key-
board correctly, is imperative to working efficiently.

http://dx.doi.org/10.1201/9781003473268-1

Raspberry Pi OS System Administration: Ancillary Topics2

3.	 How to execute a small set of essential utility commands to set up
or customize your working environment. Once a beginner is familiar
with the right way to construct file maintenance commands, adding a
set of utility commands makes each session more productive.

To use this chapter successfully as a springboard into the remainder of the
book, you should carefully read, follow, and execute the instructions and
command line sessions we provide, in the order presented. Each section in this
chapter, and every subsequent chapter as well, builds on the information that
precedes it. They will give you the concepts, command tools, and methods
that will enable you to do system administration using the Raspberry Pi OS.

Throughout this book, we illustrate everything using the following version
of the Raspberry Pi OS, on the hardware listed:

System:  Host: raspberrypi Kernel: 6.1.0-​rpi7-​rpi-​v8 arch: aarch64 bits: 64	
compiler: gcc v: 12.2.0 Desktop: LXDE v: 0.10.1 Distro: Debian GNU/​Linux
12	 (bookworm)

Machine:  Type: ARM System: Raspberry Pi 400 Rev 1.0 details: N/​A
rev: c03130	 serial: 10000000fdd89bf2

In the chapters, the major commands we want to illustrate are first defined
with an abbreviated syntax description, which will clarify general components
of those commands. The syntax description format is as follows:

Syntax:   �The exact syntax of how a command, its options, and its arguments
are correctly typed on the command line

Purpose: � The specific purpose of the command
Output:   A short description of the results of executing the command
Commonly used options/​features: A listing of the most popular and useful

options and option arguments

In addition, the following web link is to a site that allows you to type-​in a
single or multiple Raspberry Pi OS commands, and get a verbose explanation
of the components of that command:

https://​expla​insh​ell.com/​

In-​Chapter Exercises

1.	 Type the following commands on your Raspberry Pi OS command
line, and note the results. Which ones are syntactically incorrect?
Why? (The Bash prompt is shown as the $ character in each, and we
assume that file1 and file2 exist)
$ la -​ls

https://explainshell.com

“Quick Start” into Sysadmin for the Raspberry Pi OS 3

$ cat

$ more -​q file1

$ more file2

$ time

$ lsblk-​a

2.	 How can you differentiate a Raspberry Pi OS command from its
options, option arguments, and command arguments?

3.	 What is the difference between a single Raspberry Pi OS command,
and a multiple Raspberry Pi OS command, as typed on the command
line before pressing <Enter>?

4.	 If you get no error message after you enter a Raspberry Pi OS command,
how do you know that it actually accomplished what you wanted it to?

0.2 � File Maintenance Commands and Help On
Raspberry Pi OS Command Usage

After your first-​time login to a new Raspberry Pi OS, one of your first actions
will be to construct and organize your workspace environment, and the files
that will be contained in it. The operation of organizing your files according
to some logical scheme is known as file maintenance. A logical scheme used to
organize your files might consist of creating bins for storing files according
to the subject matter of the contents of the files, or according to the dates
of their creation. In the following sections, you will type file creation and
maintenance commands that produce a structure similar to what is shown
in Figure 0.1. Complete the operations in the following sections in the order
they are presented, to get a better overview of what file maintenance really is.
Also, it is critical that you review what was presented in the Preface regarding
the structure of a Raspberry Pi OS command, so that when you begin to type
commands for file maintenance, you understand how the syntax of what you
are typing conforms to the general syntax of any Raspberry Pi OS command.

0.2.1 � File and Directory Structure

When you first open a terminal, or console, window, you are working in the
home directory, or folder, of the autonomous user associated with the username
and password you used to log into the system with. Whatever directory you
are presently in is known as the current working directory, and there
is only one current working directory active at any given time. It is helpful to
visualize the structure of your files and directories using a diagram. Figure 0.1

Raspberry Pi OS System Administration: Ancillary Topics4

is an example of a home directory and file structure for a user named bob. In
this figure, directories are represented as parallelograms and plain files (e.g.,
files that contain text or binary instructions) are represented as rectangles.
A pathname, or path, is simply a textual way of designating the location of a
directory or file in the complete file structure of the Raspberry Pi OS system
you are working on. For example, the path to the file myfile2 in Figure 0.1 is
/​home/​bob/​myfile2. The designation of the path begins at the root (/​) of the
entire file system, descends to the folder named home, and then descends
again to the home directory of the user named bob.

FIGURE 0.1
Example directory structure.

“Quick Start” into Sysadmin for the Raspberry Pi OS 5

As shown in Figure 0.1, the files named myfile, myfile2, and renamed_​file
are stored under or in the directory bob. Beneath bob is a subdirectory named
first. In the following sections, you will create these files, and the subdirec-
tory structure, in the home directory of the username that you have logged
into your Raspberry Pi OS system with.

In-​Chapter Exercise

5.	 Type the following two commands on your Raspberry Pi OS system:

$ cd /​

$ ls

Similar to Figure 0.1, sketch a diagram of the directories and files whose
names you see listed as the output of the second command. Save this dia-
gram for use later.

0.2.2 � Viewing the Contents of Files

To begin working with files, you can easily create a new text file by using the
cat command. The syntax of the cat command is as follows:

cat [options] [file-​list]

Purpose: � Join one or more files sequentially or display them in the console
window

Output:   �Contents of the files in file-​list displayed on the screen, one file
at a time

Commonly used options/​features:

+​E 	     Display $ at the end of each line
-​n 	     Put line numbers on the displayed lines
-​-​ help 	    � Display the purpose of the command and a brief explanation of

each option

The cat command, short for concatenate, allows you to join files. In the example
you will join what you type on the keyboard to a new file being created in
the current working directory. This is achieved by the redirect character >,
which takes what you type at the standard input (in this case the keyboard)
and directs it into the file named myfile. You can consider the keyboard, and
the stream of information it provides, as a file. As stated in the Preface, this
usage is an example of a command, cat with no options, option arguments, or
command arguments. It simply uses the command, a redirect character, and a
target, or destination, named myfile, where the redirection will go.

This is the very simplest example of a multiple command typed on the
command line, as opposed to a single command, as shown and briefly

Raspberry Pi OS System Administration: Ancillary Topics6

described in the Preface. In a multiple command, you can string together
single Raspberry Pi OS commands in a chain with connecting operators, such
as the redirect character shown here.

$ cat > myfile

This is an example of how to use the cat command to add plain text to a file
<Ctrl+​D>
$

You can type as many lines of text, pressing <Enter> on the keyboard to dis-
tinguish between lines in the file, as you want. Then, on a new line, when
you hold down <Ctrl+​D>, the file is created in the current working directory,
using the command you typed. You can view the contents of this file, since it
is a plain text file that was created using the keyboard, by doing the following:

$ more myfile

This is an example of how to use the cat command to add plain text to a file
$

This is a simple example of the syntax of a single Raspberry Pi OS command.
The general syntax of the more command is as follows:

more [options] [file-​list]

Purpose: � Concatenate/​display the files in file-​list on the screen, one
screen at a time

Output:    � Contents of the files in file-​list displayed on the screen, one
page at a time

Commonly used options/​features:
+​E/​str 	     Start two lines before the first line containing str
-​nN 	     Display N lines per screen/​page
+​N 	     Start displaying the contents of the file at line number N

The more command shows one screenful of a file at a time by default. If the
file is several pages long, you can proceed to view subsequent pages by
pressing the <Space> key on the keyboard, or by pressing the Q key on the
keyboard to quit viewing the output.

In-​Chapter Exercise

6.	 Use the cat command to produce another text file named testfile. Then
join the contents of myfile and testfile into one text file, named myfile3,
with the cat command.

“Quick Start” into Sysadmin for the Raspberry Pi OS 7

0.2.3 � Creating, Deleting, and Managing Files

To copy the contents of one file into another file, use the cp command. The
general syntax of the cp command is as follows:

cp [options] file1 file2

Purpose: � Copy file1 to file2; if file2 is a directory, make a copy of file1 in
this directory

Output:    � Copied files
Commonly used options/​features:
-​i  If destination exists, prompt before overwriting
-​p  Preserve file access modes and modification times on copied files
-​r  Recursively copy files and subdirectories

For example, to make an exact duplicate of the file named myfile, with the
new name myfile2, type the following:

$ cp myfile myfile2

$

This usage of the cp command has two required command arguments. The
first argument is the source file that already exists and which you want
to copy. The second argument is the destination file or the name of the
file that will be the copy. Be aware that many Raspberry Pi OS commands
can take plain, ordinary, or regular files as arguments, or can take dir-
ectory files as arguments. This can change the basic task accomplished
by the command. It is also worth noting that not only can file names be
arguments, but pathnames as well. A pathname is the route to any par-
ticular place in the file system structure of the operating system. This
changes the site or location, in the path structure of the file system, of
operation of the command.

In order to change the name of a file or directory, you can use the mv
command. The general syntax of the mv command is as follows:

mv [options] file1 file2

mv [options] file-​list directory

Purpose:  First syntax: Rename file1 to file2
Second syntax: Move all the files in file-​list to directory

Output:   Renamed or relocated files
Commonly used options/​features:
-​f  Force the move regardless of the file access modes of the destination file
-​i  Prompt the user before overwriting the destination

In the following usage, the first argument to the mv command is the source
file name, and the second argument is the destination name.

Raspberry Pi OS System Administration: Ancillary Topics8

$ mv myfile2 renamed_​file

$

It is important at this point to notice the use of spaces in Raspberry Pi OS
commands. What if you obtain a file from a Windows system that has one
or more spaces in one of the file names? How can you work with this file in
Raspberry Pi OS? The answer is simple. Whenever you need to use that file
name in a command as an argument, enclose the file name in double quotes
("). For example, you might obtain a file that you have “detached” from an
e-​mail message from someone on a Windows system, such as latest revisions
october.txt.

In order to work with this file on a Raspberry Pi OS system—​that is, to use
the file name as an argument in a Raspberry Pi OS command—​enclose the
whole name in double quotes. The correct command to rename that file to
something shorter would be:

$ mv "latest revisions october.txt" laterevs.txt

$

In order to delete a file, you can use the rm command. The general syntax of
the rm command is as follows:

rm [options] file-​list

Purpose:  Removes files in file-​list from the file structure (and disk)
Output:   Deleted files
Commonly used options/​features:
-​f  Remove regardless of the file access modes of file-​list
-​i  Prompt the user before removing files in file-​list
-​r � Recursively remove the files in file-​list if file-​list is a directory; use with

caution!

To delete the file renamed_​file from the current working directory, type:

$ rm renamed_​file

$

In-​Chapter Exercise

7.	 Use the rm command to delete the files testfile and myfile3.

The most important command you will execute to do file maintenance is the
ls command. The general syntax for the ls command is as follows:

“Quick Start” into Sysadmin for the Raspberry Pi OS 9

ls [options] [pathname-​list]

Purpose: � Sends the names of the files and directories in the directory speci-
fied by pathname-​list to the display screen

Output:   �Names of the files and directories in the directory specified by
pathname-​list, or the names only if pathname-​list contains file
names only

Commonly used options/​features:
-​F � Display a slash character (/​) after directory names, an asterisk (*) after

binary executables, and an “at” character (@) after symbolic links
-​a � Display names of all the files, including hidden files
-​i  Display inode numbers
-​l  �Display long list that includes file access modes, link count, owner, group,

file size (in bytes), and modification time

The ls command will list the names of files or folders in your current working
directory or folder. In addition, as with the other commands we have used so
far, if you include a complete pathname specification for the pathname-​list
argument to the command, then you can list the names of files and folders
along that pathname list. To see the names of the files now in your current
working directory, type the following:

$ ls
Desktop   Documents   Downloads   Dropbox   Music   Pictures	
Public   Templates   Videos
$

Please note that you will probably not get a listing of the same file names
as we showed above here, because your system will have placed some files
automatically in your home directory, as in the example we used, aside from
the ones we created together named myfile and myfile2. Also note that this
file name listing does not include the name renamed_​file, because we deleted
that file.

The next command you will execute is actually just an alternate or modi-
fied way of executing the ls command, one that includes the command name
and options. As shown in the Preface, a Raspberry Pi OS command has
options that can be typed on the command line along with the command to
change the behavior of the basic command. In the case of the ls command, the
options l and a produce a longer listing of all ordinary and system (dot) files,
as well as providing other attendant information about the files.

Don’t forget to put the space character between the s and the -​(dash).
Remember again that spaces delimit, or partition, the components of a
Raspberry Pi OS command as it is typed on the command line!

Raspberry Pi OS System Administration: Ancillary Topics10

Now, type the following command:

$ ls -​la

total 30408
drwxr-​xr-​x	 25	 bob bob	 4096	 May 5 07:53 .
drwxr-​xr-​x	 5	 root root	 4096	 Oct 20 2022 ..
drwxr-​xr-​x	 5	 bob bob	 4096	 Apr 23 16:32� .audacity-​data
-​rw-​-​-​-​-​-​-​		 1	 bob bob	 36197	 May 5 07:51 .bash_​history
-​rw-​r-​-​r-​-​		 1	 bob bob 	 220	 Apr 4 2022 .bash_​logout
-​rw-​r-​-​r-​-​		 1	 bob bob	 3523	 Apr 4 2022 .bashrc
-​rw-​r-​-​r-​-​		 1	 bob bob	 47329	 Sep 19 2022 Blandemic.txt
drwxr-​xr-​x	 2	 bob bob	 4096	 Apr 4 2022 Bookshelf
drwxr-​xr-​x	 15	 bob bob	 4096	 Apr 17 14:05 .cache
drwx-​-​-​-​-​-​	 32	 bob bob	 4096	 Apr 28 07:08 .config
drwx-​-​-​-​-​-​	 3	 root   root	 4096	 Jun 29 2022 .dbus
drwxr-​xr-​x	 7	 bob bob	 4096	 Apr 27 05:21 Desktop
Output truncated...

As you see in this screen display (which shows the listing of files in our home
directory and will not be the same as the listing of files in your home dir-
ectory), the information about each file in the current working directory is
displayed in eight columns. The first column shows the type of file, where
d stands for directory, l stands for symbolic link, and –​ stands for ordinary
or regular file. Also in the first column, the access modes to that file for user,
group, and others is shown as r, w, or x. In the second column, the number of
links to that file is displayed. In the third column, the username of the owner
of that file is displayed. In the fourth column, the name of the group for that
file is displayed. In the fifth column, the number of bytes that the file occu-
pies on disk is displayed. In the sixth column, the date that the file was last
modified is displayed. In the seventh column, the time that the file was last
modified is displayed. In the eighth and final column, the name of the file is
displayed. This way of executing the command is a good way to list more
complete information about the file. Examples of using the more complete
information are (1) so that you can know the byte size and be able to fit the
file on some portable storage medium, or (2) to display the access modes, so
that you can alter the access modes to a particular file or directory.

In-​Chapter Exercise

8.	 Use the ls -​la command to list all of the filenames in your home direc-
tory on your Raspberry Pi OS system. How does the listing you obtain
compare with the listing shown above? Remember that our listing was
done on a Raspberry Pi OS system.

You can also get a file listing for a single file in the current working directory
by using another variation of the ls command, as follows:

“Quick Start” into Sysadmin for the Raspberry Pi OS 11

$ ls -​la myfile

-​rw-​r-​-​r-​-​	 1 bob bob	 797 Jan 16 10:00 myfile
$

This variation shows you a long listing with attendant information for the
specific file named myfile. A breakdown of what you typed on the command
line is 1) ls, the command name, 2) -​la, the options, and 3) myfile, the command
argument.

What if you make a mistake in your typing, and misspell a command
name or one of the other parts of a command? Type the following on the
command line:

$ lx -​la myfile

lx: not found
$

The lx: not found reply from Raspberry Pi OS is an error message. There is no
lx command in the Raspberry Pi OS operating system, so an error message is
displayed. If you had typed an option that did not exist, you would also get an
error message. If you supplied a file name that was not in the current working
directory, you would get an error message, too. This makes an important
point about the execution of Raspberry Pi OS commands. If no error message
is displayed, then the command executed correctly and the results might
or might not appear on screen, depending on what the command actually
does. If you get an error message displayed, you must correct the error before
Raspberry Pi OS will execute the command as you type it.

Note
Typographic mistakes account for a large percentage of the errors that
beginners make!

0.2.4 � Creating, Deleting, and Managing Directories

Another critical aspect of file maintenance is the set of procedures and the
related Raspberry Pi OS commands you use to create, delete, and organize
directories in your Raspberry Pi OS account on a computer. When moving
through the file system, you are either ascending or descending to reach
the directory you want to use. The directory directly above the current
working directory is referred to as the parent of the current working direc-
tory. The directory or directories immediately under the current working dir-
ectory are referred to as the children of the current working directory. The
most common mistake for beginners is misplacing files. They cannot find the
file names listed with the ls command because they have placed or created

Raspberry Pi OS System Administration: Ancillary Topics12

the files in a directory either above or below the current working directory in
the file structure. When you create a file, if you have also created a logically
organized set of directories beneath your own home directory, you will know
where to store the file. In the following set of commands, we create a direc-
tory beneath the home directory and use that new directory to store a file.

To create a new directory beneath the current working directory, you use
the mkdir command. The general syntax for the mkdir command is as follows:

mkdir [options] dirnames

Purpose:  Creates directory or directories specified in dirnames
Output:    New directory or directories
Commonly used options/​features:
-​m MODE  Create a directory with given access modes
-​p	   �Create parent directories that don’t exist in the pathnames

specified in dirnames

To create a child, or subdirectory, named first under the current working dir-
ectory, type the following:

$ mkdir first

$

This command has now created a new subdirectory named first under, or as
a child of, the current working directory. Refer back to Figure 0.1 for a graph-
ical description of the directory location of this new subdirectory.

In order to change the current working directory to this new subdirectory,
you use the cd command. The general syntax for the cd command is as follows:

cd [directory]
Purpose: � Change the current working directory to directory or return to the

home directory when directory is omitted
Output:     New current working directory

To change the current working directory to first by descending down the
path structure to the specified directory named first, type the following:

$ cd first

$

You can always verify what the current working directory is by using the pwd
command. The general syntax of the pwd command is as follows:

pwd

Purpose:  Displays the current working directory on screen

Output:   Pathname of current working directory

“Quick Start” into Sysadmin for the Raspberry Pi OS 13

You can verify that first is now the current working directory by typing the
following:

$ pwd

/​home/​bob/​first
$

The output from the Raspberry Pi OS on the command line shows the path-
name to the current working directory or folder. As previously stated, this
path is a textual route through the complete file structure of the computer
that Raspberry Pi OS is running on, ending in the current working directory.
In this example of the output, the path starts at /​, the root of the file system.
Then it descends to the directory home, a major branch of the file system on
the computer running Raspberry Pi OS. Then it descends to the directory
bob, another branch, which is the home directory name for the user. Finally,
it descends to the branch named first, the current working directory.

On some systems, depending on the default settings, another way of deter-
mining what the current working directory is can be done by simply looking
at the command line prompt. This prompt may be prefaced with the complete
path to the current working directory, ending in the current working directory.

You can ascend back up to the home directory, or the parent of the subdir-
ectory first, by typing the following:

$ cd

$

An alternate way of doing this is to type the following, where the tilde char-
acter (~) resolves to, or is a substitute for, the specification of the complete
path to the home directory:

$ cd ~
$

To verify that you have now ascended up to the home directory, type the
following:

$ pwd

/​home/​bob
$

You can also ascend to a directory above your home directory, sometimes
called the parent of your current working directory, by typing the following:

$ cd ..

$

Raspberry Pi OS System Administration: Ancillary Topics14

In this command, the two periods (..), represent the parent, or branch above
the current working directory. Don’t forget to type a space character between
the d and the first period. To verify that you have ascended to the parent of
your home directory, type the following:

$ pwd

/​home
$

To descend to your home directory, type the following:

$ cd

$

To verify that there are two files in the home directory that begin with the
letters my, type the following command:

$ ls my*

myfile myfile2
$

The asterisk following the y on the command line is known as a metacharacter,
or a character that represents a pattern; in this case, the pattern is any set of
characters. When Raspberry Pi OS interprets the command after you press the
<Enter> key on the keyboard, it searches for all files in the current working
directory that begin with the letters my and end in anything else.

In-​Chapter Exercise

9.	 Use the cd command to ascend to the root (/​) of your Raspberry Pi OS
file system, and then use it to descend down each subdirectory from
the root recursively to a depth of two subdirectories, sketching a dia-
gram of the component files found on your system. Make the named
entries in the diagram as complete as possible, listing as many files as
you think necessary. Retain this diagram as a useful map of your par-
ticular Raspberry Pi OS distribution’s file system.

Another aspect of organizing your directories is movement of files between
directories, or changing the location of files in your directories. For example,
you now have the file myfile2 in your home directory, but you would like
to move it into the subdirectory named first. See Figure 0.1 for a graphic
description to change the organization of your files at this point. To accom-
plish this, you can use the second syntax method illustrated for the mv file-​
list directory command to move the file myfile2 down into the subdirectory
named first. To achieve this, type the following:

“Quick Start” into Sysadmin for the Raspberry Pi OS 15

$ mv myfile2 first

$

To verify that myfile2 is indeed in the subdirectory named first, type the
following:

$ cd first

$ ls
myfile2
$

You will now ascend to the home directory, and attempt to remove or delete
a file with the rm command.

Caution: you should be very careful when using this command, because
once a file has been deleted, the only way to recover it is from archival
backups that you or the system administrator have made of the file system.

$ cd

$ rm myfile2

rm: myfile2: No such file or directory
$

You get the error message because in the home directory, the file named
myfile2 does not exist. It was moved down into the subdirectory named first.

Directory organization also includes the ability to delete empty or non-
empty directories. The command that accomplishes the removal of empty
directories is rmdir. The general syntax of the rmdir command is as follows:

rmdir [options] dirnames

Purpose:  Removes the empty directories specified in dirnames
Output:   Removes directories
Commonly used options/​features:
-​p  Remove empty parent directories as well
-​r   Recursively delete files and subdirectories beneath the current directory

To delete an entire directory below the current working directory, type the
following:

$ rmdir first

rmdir: first: Directory not empty
$

Since the file myfile2 is still in the subdirectory named first, first is not an
empty directory, and you get the error message that the rmdir command
will not delete the directory. If the directory was empty, rmdir would have

Raspberry Pi OS System Administration: Ancillary Topics16

accomplished the deletion. One way to delete a nonempty directory is by
using the rm command with the -​r option. The -​r option recursively descends
down into the subdirectory and deletes any files in it before actually deleting
the directory itself. Be cautious with this command, since you may inadvert-
ently delete directories and files with it. To see how this command deletes a
nonempty directory, type the following:

$ rm -​r first

$

The directory first and the file myfile2 are now removed from the file structure.
$$$$

0.2.5 � Obtaining Help with the Man Command

A very convenient utility available on Raspberry Pi OSs is the online help
feature, achieved via the use of the man command. The general syntax of the
man command is as follows:

man [options][-​s section] command-​list

man -​k keyword-​list

Purpose: � First syntax: Display Raspberry Pi OS Reference Manual pages for
commands in command-​list one screen at a time
Second syntax: �Display summaries of commands related to

keywords in keyword-​list
Output:   Manual pages one screen at a time
Commonly used options/​features:
-​k keyword-​list � Search for summaries of keywords in keyword-​list in a

database and display them
-​s sec-​num	 �Search section number sec-​num for manual pages and dis-

play them

To get help by using the man command, on usage and options of the ls
command, for example, type the following:

$ man ls

LS(1) User Commands     LS(1)

NAME

     ls -​ list directory contents

SYNOPSIS

     ls [OPTION]     [FILE]    

“Quick Start” into Sysadmin for the Raspberry Pi OS 17

DESCRIPTION

     �List information about the FILEs (the current directory
by default).

			  �Sort entries alphabetically if none of -​cftuvSUX nor –​sort
is specified.

     �Mandatory arguments to long options are mandatory for
short options too.

     -​a, -​-​all

        do not ignore entries starting with .

     -​A, -​-​almost-​all

        do not list implied . and ..

     -​-​author

Manual page ls(1) line 1 (press h for help or q to quit)

This output from Raspberry Pi OS is a Raspberry Pi OS manual page, or man
page, which gives a synopsis of the command usage showing the options,
and a brief description that helps you understand how the command should
be used. Typing q after one page has been displayed, as seen in the example,
returns you to the command line prompt. Pressing the space key on the key-
board would have shown you more of the content of the manual pages, one
screen at a time, related to the ls command.

To get help in using all the Raspberry Pi OS commands and their options, use
the man man command to go to the Raspberry Pi OS reference manual pages.

The pages themselves are organized into eight sections, depending on the
topic described, and the topics that are applicable to the particular system.
Table 0.1 lists the sections of the manual and what they contain. Most users

TABLE 0.1

Sections of the Raspberry Pi OS Manual

Section What It Describes

1 Executable programs or shell commands
2 System calls (functions provided by the kernel)
3 Library calls (functions within program libraries)
4 Special files (usually found in /​dev)
5 File formats and conventions, e.g. /​etc/​passwd
6 Games
7 Miscellaneous (including macro packages and conventions), e.g.

man(7), groff(7), man-​pages(7)
8 System administration commands (usually only for root)
9 Kernel routines [Non standard]

Raspberry Pi OS System Administration: Ancillary Topics18

find the pages they need in Section 1. Software developers mostly use
library and system calls and thus find the pages they need in Sections 2 and
3. Users who work on document preparation get the most help from Section
7. Administrators mostly need to refer to pages in Sections 1, 4, 5, and 8.

The manual pages comprise multi-​page, specially formatted, descriptive
documentation for every command, system call, and library call in Raspberry
Pi OS. This format consists of nine general parts:

1	 Executable programs or shell commands
2	 System calls (functions provided by the kernel)
3	 Library calls (functions within program libraries)
4	 Special files (usually found in /​dev)
5	 File formats and conventions, e.g. /​etc/​passwd
6	 Games

7	 Miscellaneous (including macro packages and conventions),
e.g. man(7), groff(7), man-​pages(7)

8	 System administration commands (usually only for root)

9	 Kernel routines [Non standard]

You can use the man command to view the manual page for a command.
Because of the name of this command, the manual pages are normally referred to
as Raspberry Pi OS man pages. When you display a manual page on the screen,
the top-​left corner of the page has the command name with the section it belongs
to in parentheses, as with LS(1), seen at the top of the output manual page.

The command used to display the manual page for the passwd command is:

$ man passwd

The manual page for the passwd command now appears on the screen, but we
do not show its output. Because they are multi-​page text documents, the manual
pages for each topic take up more than one screen of text to display their entire
contents. To see one screen of the manual page at a time, press the space bar on
the keyboard. To quit viewing the manual page, press the Q key on the keyboard.

Now type this command:

$ man pwd

If more than one section of the man pages has information on the same
word and you are interested in the man page for a particular section, you
can use the -​S option. The following command line therefore displays the
man page for the read system call, and not the man page for the shell
command read.

“Quick Start” into Sysadmin for the Raspberry Pi OS 19

$ man -​S2 read

The command man -​S3 fopen fread strcmp sequentially displays man pages
for three C library calls: fopen, fread, and strcmp.

To exit from the display of these system calls, type <Ctrl-​C>.
Using the man command and typing the command with the -​k option,

allows specifying a keyword that limits the search. It is equivalent to using
the apropos command. The search then yields useful man page headers from
all the man pages on the system that contain just the keyword reference.
For example, the following command yields the on-​screen output on our
Raspberry Pi OS system:

$ man -​k passwd

chgpasswd (8)			 -​ update group passwords in batch mode
chpasswd (8)			 -​ update passwords in batch mode
fgetpwent_​r (3)			 -​ get passwd file entry reentrantly
getpwent_​r (3)			 -​ get passwd file entry reentrantly
gpasswd (1)			 -​ administer /​etc/​group and /​etc/​gshadow
openssl-​passwd (1ssl)		 -​ compute password hashes
pam_​localuser (8)		 -​ require users to be listed in /​etc/​passwd
passwd (1) 			 -​ change user password
exim4_​passwd (5)  		 -​ Files in use by the Debian exim4 packages
exim4_​passwd_​client (5) 	 -​ Files in use by the Debian exim4 packages
passwd (1ssl)   		 -​ compute password hashes
passwd (5)    		 -​ the password file
passwd2des (3)    	 -​ RFS password encryption
update-​passwd (8)    	� -​ �safely update /​etc/​passwd, /​etc/​shadow

and /​etc/​group
vncpasswd (1)    		 -​ VNC Server password utility
Output truncated…

0.2.6 � Other Methods of Obtaining Help

To get a short description of what any particular Raspberry Pi OS command
does, you can use the whatis command. This is similar to the command
man -​f. The general syntax of the whatis command is as follows:

$ whatis keywords

Purpose: � Search the whatis database for abbreviated descriptions of each
keyword

Output:    � Prints a one-​line description of each keyword to the screen

The following is an illustration of how to use whatis:

The output of the two commands are truncated.

Raspberry Pi OS System Administration: Ancillary Topics20

$ whatis man

man (7)     -​ macros to format man pages
man (1)    � -​ �an interface to the on-​line

reference manuals
$

You can also obtain short descriptions of more than one command by
entering multiple arguments to the whatis command on the same command
line, with spaces between each argument. The following is an illustration of
this method:

$ whatis login set setenv

login (1)     -​ begin session on the system
login (3)     -​ write utmp and wtmp entries
setenv (3)     -​ change or add an environment variable
set: nothing appropriate.
$

The following in-​chapter exercises ask you to use the man and whatis
commands to find information about the passwd command. After completing
the exercises, you can use what you have learned to change your login pass-
word on the Raspberry Pi OS system that you use.

In-​Chapter Exercises

10.	 Use the man command with the -​k option to display abbreviated help
on the passwd command. Doing so will give you a screen display
similar to that obtained with the whatis command, but it will show all
apropos command names that contain the characters passwd.

11.	 Use the whatis command to get a brief description of the passwd
command shown above, and then note the difference between the
commands whatis passwd and man -​k passwd.

0.3 � Utility Commands

There are several major commands that allow the beginner to be more pro-
ductive when using a Raspberry Pi OS. A sampling of these kinds of utility
commands is given in the following sections, and is organized as system
setups, general utilities, and communications commands.

“Quick Start” into Sysadmin for the Raspberry Pi OS 21

0.3.1 � Examining System Setups

The whereis command allows you to search along certain prescribed paths to
locate utility programs and commands, such as shell programs. The general
syntax of the whereis command is as follows:

whereis [options] filename

Purpose:  Locate the binary, source, and man page files for a command
Output:  �The supplied names are first stripped of leading pathname

components and extensions, then pathnames are displayed on
screen

Commonly used options/​features:
-​b  Search only for binaries
-​s  Search only for source code

For example, if you type the command whereis bash on the command line,
you will see a list of the paths to the Bash shell program files themselves, as
follows:

$ whereis bash

bash: /​bin/​bash /​etc/​bash.bashrc /​usr/​share/​man/​man1/​bash.1.gz

Note that the paths to a “built-​in”, or internal, command cannot be found
with the whereis command.

When you first log on, it is useful to be able to view a display of infor-
mation about your userid, the computer or system you have logged on to,
and the operating system on that computer. These tasks can be accomplished
with the whoami command, which displays your userid on the screen. The
general syntax of the whoami command is as follows:

whoami

Purpose:  Displays the effective user id
Output:   Displays your effective user id as a name on standard

The following shows how our system responded to this command when we
typed it on the command line.

$ whoami

bob
$

Raspberry Pi OS System Administration: Ancillary Topics22

The following in-​chapter exercises give you the chance to use whereis,
whoami, and two other important utility commands, who and hostname to
obtain important information about your system.

In-​Chapter Exercises

12.	 Use the whereis command to locate binary files for the Korn shell, the
Bourne shell, the Bourne Again shell, the C shell, and the Z shell. Are
any of these shell programs not available on your system?

13.	 Use the whoami command to find your username on the system that
you’re using. Then use the who command to see how your username
is listed, along with other users of the same system. What is the on-​
screen format of each user’s listing that you obtained with the who
command? Try to identify the information in each field on the same
line as your username.

14.	 Use the hostname command to find out what host computer you are
logged on to. Can you determine from this list whether you are using a
stand-​alone computer or a networked computer system? Explain how
you can know the difference from the list that the hostname command
gives you.

0.4 � Printing Commands

A very useful and common task performed by every user of a computer
system is the printing of text files at a printer. This is accomplished using the
configured printer(s) on the local, or a remote, system. Printers are controlled
and managed with the Common UNIX Printing System (CUPS). We show
this utility in detail in Chapter 1.

The common commands that perform printing on a Raspberry Pi OS
system are lpr and lp. The general syntax of the lpr command is as follows:

lpr [options] filename

Purpose:  Send files to the printer
Output:   Files sent to the printer queue as print jobs
Commonly used options/​features:
-​P printer  Send output to the named printer
-​# copies  Produce the number of copies indicated for each named file

The following lpr command accomplishes the printing of the file named
order.pdf at the printer designated on our system as spr. Remember that no
space is necessary between the option (in this case -​P) and the option argu-
ment (in this case spr).

“Quick Start” into Sysadmin for the Raspberry Pi OS 23

$ lpr -​Pspr order.pdf

$

The following lpr command accomplishes the printing of the file named
memo1 at the default printer.

$ lpr memo1

$

The following multiple command combines the man command and the lpr
command, and ties them together with the Raspberry Pi OS pipe (|) redir-
ection character, to print the man pages describing the ls command at the
printer named hp1200.

$ man ls | lpr -​Php1200

$

The following shows how to perform printing tasks using the lp command.
The general syntax of the lp command is as follows:

lp [options][option arguments] file(s)

Purpose: � Submit files for printing on a designated system printer, or alter
pending print jobs

Output:    Printed files or altered print queue
Commonly used options/​features:
-​d destination  Print to the specified destination
-​n copies	 Sets the number of copies to print.

In the first command, the file to be printed is named file1. In the second
command, the files to be printed are named sample and phones. Note that
the -​d option is used to specify which printer to use. The option to specify the
number of copies is -​n for the lp command.

$ lp -​d spr file1

request id is spr-​983 (1 file(s))
$ lp -​d spr -​n 3 sample phones

request id is spr-​984 (2 file(s))
$

24 DOI: 10.1201/9781003473268-2

1	�
ZFS Administration and Use

1.0  Objectives

	* To describe and give an overview of the Zettabyte File System (ZFS)
	* To illustrate the use of the zpool and zfs commands in the context of

system administration
	* To give a brief ZFS commands and operations reference encyclopedia
	* To give a complete example of file system backups using the zfs snap-

shot command in a Bash Shell script
	* To cover the commands and primitives

zpool, zfs

1.1 � Introduction

This chapter will detail the hands-​on mechanics of a modern file system
commonly known as the Zettabyte File System (ZFS). ZFS has the following
attributes: it corrects itself at the bit level, it is very secure, it is a volume
manager, and it provides its own real-​time file backup system procedures. It
is sometimes called a “user” file system, because ordinary privileged users
of the system have control over ZFS operations through the use of typed-​
in commands. We show examples of using the two most important ZFS
commands, zpool and zfs.

At the time of the writing of this book, ZFS was easily installed on the
Debian Bookworm-​based Raspberry Pi OS.

http://dx.doi.org/10.1201/9781003473268-2

ZFS Administration and Use 25

Note
ZFS could not easily or reliably be made the root file system at either ini-
tial installation, or using some post-​installation procedure. Additionally, ZFS
installation could not be easily or reliably installed on the previous, Bullseye-​
based Raspberry Pi OS.
To download and install ZFS on the Debian Bookworm-​based Raspberry Pi
OS, we used the following command as root:

sed -​r -​i'.BAK' 's/​̂ deb(.*)$/​deb\1 contrib/​g' /​etc/​apt/​sources.list

apt update

apt install linux-​headers-​arm64 zfsutils-​linux zfs-​dkms zfs-​zed

Output truncated...

In order to do anything in this chapter, you must first use these three
commands to download and install ZFS on your Debian Bookworm-​based
Raspberry Pi system.
To test that the installation worked properly, use the following commands
(we got the output shown):

modprobe zfs

zfs version

zfs-​2.1.11-​1
zfs-​kmod-​2.1.11-​1

Warning
This warning applies at the time of the writing of this book. It is important to
realize that if you want to create and use ZFS on your Raspberry Pi system
other than for practice Examples 1.1 and 1.2 in Section 1.2, you must have an
additional storage device, or devices, attached to your hardware. This means
additional externally mounted media, regardless of which bus that media is
communicating through. We have found that if you attempt to create zpools
on your boot/​system medium, such as an internally mounted microSD card,
this will render that medium unbootable! See the specific advisory we pro-
vide at the beginning of Section 1.2.

A drawback of the following practical worked examples in this chapter
is that ideally, in a commercial production situation where you would use
ZFS to full advantage on Raspberry Pi systems, the hardware would have
Error Correction Code (ECC) system memory only. That type of memory
is available almost exclusively on server-​class machines, but is also avail-
able for some commercial desktop systems. For learning purposes, we do
not assume you are using ECC memory, simply because the Raspberry

Raspberry Pi OS System Administration: Ancillary Topics26

Pi hardware doesn’t have that class of memory available! But if you’re
running your Raspberry Pi system from an externally mounted SSD for
instance, that type of media generally has the equivalent of ECC memory
capability.

We highly recommend a disk storage model that puts the operating
system on a single medium (microSD card or SSD), and user data files on
a second, larger capacity medium. What that storage model allows you to
accomplish is to keep the system operable, maintained, and upgradable
on its own discrete storage medium; user data are securely archived on
another, possibly redundant, device or devices. That model implementa-
tion, and its effectiveness for archiving user data files, is made possible by
what we show in this chapter. We also show techniques for implementing
this storage model when your Raspberry Pi has a single external, non-​boot/​
system medium mounted. This model strictly conforms to the warning we
previously gave you, and must accommodate the ECC memory drawback
also mentioned.

1.1.1 � zpool and zfs Command Syntax

The following are the general syntax forms for the zpool and zfs commands.
For a more complete description of these two important commands, see the
man pages for zfs and zpool on your Raspberry Pi system (after you have
installed ZFS according to the instructions given above!)

**
zpool SYNTAX
zpool sub-​command [options] [option arguments] [command arguments]

Purpose:  To create and manage storage pools of virtual devices such as
disk drives

Commonly used options/​features:
zpool create name vdev		 Creates a new pool with name on the speci-
fied vdev
zpool create –​o copies=​2 name � Creates a new pool name with the property

copies set to 2
zpool destroy name		 Destroys, or removes, a pool name
zpool list name			 Lists storage space and health of pool name
zpool scrub name		� Verifies that the checksums on pool name

are correct
zpool status name		 Displays the status of pool name

**

ZFS Administration and Use 27

zfs SYNTAX
zfs sub-​command [options] [option arguments] [command arguments]

Purpose: To create and manage datasets or file systems mapped to devices
such as disk drives

Commonly used options/​features:
zfs create name			 Creates a dataset with name
zfs create –​o copies=​2 name	� Creates a dataset name with the property

copies set to 2
zfs destroy name		 Destroys, or removes, a dataset name
zfs list				 Lists all datasets
zfs rollback name		� Returns dataset name to a previous snap-

shot state

1.1.2 � ZFS Terminology

The following describes the basic terminology used throughout this chapter,
and as it applies to ZFS practice in general as well:

Boot environment: A boot environment is a bootable environment
consisting of a ZFS root file system and, optionally, other file systems
mounted underneath it. Exactly one boot environment can be active at
a time. Heed the Warning given in Section 1.1!

Checksum: A 256-​bit hash of the data in a file system block. The checksum
capability can range from the simple and fast fletcher4 (the default) to
cryptographically strong hashes such as SHA256.

Clone: A file system whose initial contents are identical to the contents of
a ZFS snapshot.

Dataset: A generic name for the following ZFS components: clones, file
systems, snapshots, and volumes. Each dataset is identified by a
unique name in the ZFS name space. Datasets are identified using the
following format:

pool/​path[@snapshot]
pool    �Identifies the name of the storage pool that contains the

dataset
path    �A slash-​delimited pathname for the dataset component
snapshot � An optional component that identifies a snapshot of a dataset

Raspberry Pi OS System Administration: Ancillary Topics28

Deduplication: Data deduplication is a method of reducing storage cap-
acity needs by eliminating redundant data. Only one unique instance
of the data is actually retained on storage media. Redundant data are
replaced with a pointer to the unique data copy.

Filesystem: A ZFS dataset of type file system that is mounted within the
standard system namespace, and behaves like other file systems.

Mirror: A vdev that stores identical copies of data on two or more media,
in a variety of ways defined by Redundant Array of Independent
Disks (RAID) specifications. If any disk in a mirror fails, any other disk
in that mirror can provide the same data, according to those RAID
specifications.

Pool: A logical group of devices describing the layout and physical
characteristics of the available storage. Disk space for datasets is
allocated from a pool.

RAID-​Z: A virtual device that stores data and parity on multiple disks,
using the RAID specifications.

Resilvering: The process of copying data from one device to another device
is known as resilvering. For example, if a mirror device is replaced or
taken offline, the data from an up-​to-​date mirror device are copied to
the newly restored mirror device. This process is referred to as mirror
resynchronization in traditional volume management.

Slice: A disk partition created with partitioning software.
Snapshot: A read-​only copy of a file system or volume at a given point

in time.
Vdev (virtual device): A whole disk, a disk partition, a file, or a collection

of the previous, usually all of the same type. There is no performance
penalty for using disk partitions rather than entire disks. The write
cache is disabled for partitions, thus incurring a performance pen-
alty. Using files as vdevs is discouraged, except for experimenting and
testing purposes as we do in this chapter for beginners! A collection of
vdevs is a mirror.

Volume: A dataset that represents a block device. For example, you can
create a ZFS volume as a swap device.

1.1.3 � How ZFS Works

Create zpool mapped to vdev >
Create ZFS file system(s) on zpool >
Add files to filesystem(s)>
Manage the files, file systems, zpools, and vdevs.
Simply stated, you create a named zpool first, which at the time it is created
is mapped or associated with a vdev, such as an external medium physically

ZFS Administration and Use 29

attached to your Raspberry Pi. Then you create one or more file systems in
that zpool. Then you add files to the file system(s). Finally, you manage the
files, file systems, zpools, and vdevs using the appropriate ZFS commands.

Working with ZFS on a Raspberry Pi system is a matter of efficiently and
easily managing zpools that have vdevs “mapped” to them, and then man-
aging file systems, and their files, in those zpools.

Figure 1.1 shows this relationship between files, datasets (file systems),
pools, and disks. pool 1 has two disks mapped to it, and a dataset with a
number of files in it. pool 2 has a single disk mapped to it, and has a dataset
in it. This layering of files and datasets, pools, and disks is the basic structure
of ZFS.

1.1.4 � Important ZFS Concepts

Some very important points have to be made here:

1.	 Only one zpool can be mapped or associated with any vdev. So if you
want to create a zpool on a physical medium, like a hard disk, or one
of its slices, no other existing active zpool can be mapped to that vdev!

2.	 There are seven types of vdev in ZFS:
	• Disk (default): The physical hard drives in your system, usually the

whole drive or primary slice

FIGURE 1.1
ZFS components.

Raspberry Pi OS System Administration: Ancillary Topics30

	• File: The absolute path of preallocated files/​images, similar to the
Section 1.2.2, Example 1.1

	• Mirror: Standard software RAID1 mirror
	• RAID-​Z1/​2/​3: Nonstandard distributed parity-​based software

RAID levels
	• Spare: Hard drives marked as a hot spare for ZFS software RAID
	• Cache: Device used for a level-​2 adaptive read cache (L2ARC)
	• Log: A separate log (SLOG) called the ZFS intent log (ZIL)

3.	 Unlike a traditional file system, where the mount point of the file
system begins at a particular logical drive letter, the default mount
point for a zpool is root (/​).

This is how the path to a file named test.txt appears when it is in the zpool
named data1 on the file system bob:

/​data1/​bob/​test.txt

Here’s how the path to a file named test.txt appears on a traditional file system:

C:\Users\Robert\Desktop\test.txt

When you want a ZFS file system to expand onto more than one disk, for
example, you add more disks to the zpool.

4.	 A zpool can be enlarged by adding more devices, but it cannot be
shrunk (at least not at this time)!

1.2 � Example ZFS Pools and File Systems: Using
the zpool and zfs Commands

Advisory

As stated in Section 1.1, it is important to realize that if you want to create
and use ZFS on a system other than for the practice Examples 1.1 and 1.2 we
show in this section, you must have an additional storage media, or devices,
attached to your hardware. On a Raspberry Pi system, this could be an add-
itional, externally mounted USB3 SATA hard drive, PCIe NVMe media on the
USB3 bus, or USB flashdrives.

Per the Warning given in Section 1.1, we have found that if you attempt to
create zpools on your Raspberry Pi system/​boot medium, this will render
that medium unbootable!

ZFS Administration and Use 31

For example, the following command line session illustrates what you
should NOT do:

$ sudo zpool create test /​dev/​mmcblk0p1

invalid vdev specification
use ‘-​f’ to override the following errors:
/​dev/​mmcblk0p1 does not contain an EFI label but it may contain partition
information in the MBR.
$ sudo zpool create test /​dev/​sda1

invalid vdev specification
use ‘-​f’ to override the following errors:
/​dev/​sda1 contains a filesystem of type ‘ext4’
$

If you force the override in either of the above two commands, you will
render your Raspberry Pi OS boot/​system medium unbootable. The second
command assumes that /​dev/​sda is your system boot medium.

In this section, you are allowed to quickly determine the logical device
names of disks attached to your Raspberry Pi system. We then present you
with five examples that will give you some basic experience in using the
zpool and zfs commands.

1.2.1 � A Quick and Easy Way to Find the Logical Device
Names of Media Actually Installed on Your System

It’s important to know how to determine, in a very quick and easy manner,
what the currently installed logical device names of media actually attached
and usable on your system are. What we mean by “attached and usable” is
that the medium is properly connected, is recognized by the Raspberry Pi OS,
and has a device driver that the OS can use to communicate with it.

The simple method that follows shows how to determine what media are
attached and usable on your system, and what the logical device names of
those and any others you might want to add to your system are.

Change your current working directory to /​dev. Type ls. If you’re running
your system from a microSD card, it shows up as something like mmcbblk0,
and partitions on it appear as mmcblk0p1, etc. Externally mounted USB
media, such as USB3-​mounted SSD drives, for example, show up in the ls
listing as sda, sdb, and so on. The full path to the first slice, or partition, on
one of these is specified as /​dev/​sda1.

You can use the Gparted Partition Editor, a GUI app available if you’ve
installed it on your Raspberry Pi system, to view all usable media, and their
logical device names. In the examples in this chapter, we use Gparted to par-
tition, and put file systems on physical media that we are going to use as
vdevs for ZFS.

Raspberry Pi OS System Administration: Ancillary Topics32

1.2.2 � Basic ZFS Examples

In this section we present six instructive, introductory examples of how to
work with ZFS. It is expected that for you to get the full benefit from them,
you do them and their attendant In-​Chapter Exercises in the order presented.

Example 1.1: The zpool Command: Using Files Instead of Disks as Vdevs

Objective: To introduce the zpool command, implemented on files instead of
disks, and to show forms of ZFS pool creation and mirroring.

Introduction: A vdev, as defined previously, can be a physical device such
as a disk drive, a file, a single slice on a hard disk drive, or a collection
of devices. Before beginning to use ZFS on physical devices, and to prac-
tice using ZFS on an existing file system instead of deploying ZFS on
actual SATA hard disk drives, we will create and manipulate files with the
important ZFS commands.

To repeat the warning and advisory given above in Section 1.1, you can
create the zpools here in this, and the following example, on the boot/​system
medium, because you’re using files to simulate vdevs.

Also, if you do not have a second medium attached to your Raspberry Pi,
you can do this example to gain an appreciation of what ZFS is.

In case you want to use four real disks, for example, mounted and
partitioned in this preliminary introductory example, make a note of the full
path to their device names (e.g./​dev/​sdb1). You will be destroying all the
partition information and data on these disks, so be sure they’re not needed
during the time you’re doing the example!

Note
If you make a mistake anywhere along the way, you can always start over by
executing the cleanup steps shown at the end of the example and begin again.

Prerequisites:

1.	 Installation of ZFS on your Raspberry Pi system, as shown in
Section 1.1.

2.	 Having root access, and knowing root’s password on your Raspberry Pi.

Procedures: Follow the steps in the order shown to complete this example.

1.	 Become root, and then create four 128 MB files as follows (the files
must be a minimum of 64 MB in size):

$ sudo su -​

root@raspberrypi:~# truncate -​-​size 128m /​home/​bob/​disk1
root@raspberrypi:~# truncate -​-​size 128m /​home/​bob/​disk2

ZFS Administration and Use 33

root@raspberrypi:~# truncate -​-​size 128m /​home/​bob/​disk3
root@raspberrypi:~# truncate -​-​size 128m /​home/​bob/​disk4
root@raspberrypi:~#

Check the /​home/​bob directory with the following command:

root@raspberrypi:~# ls -​lh /​home/​bob

total 48K
...
-​rw-​r-​-​r-​-​	1 root root 128M Nov 22 12:36 disk1
-​rw-​r-​-​r-​-​	1 root root 128M Nov 22 12:37 disk2
-​rw-​r-​-​r-​-​	1 root root 128M Nov 22 12:37 disk3
-​rw-​r-​-​r-​-​	1 root root 128M Nov 22 12:37 disk4
Output truncated…

In this example, we initially create and use files to simulate disks on an
already existing file system, and we named them disk1, disk2, disk3,
and disk4 to enhance that “illusion”.

2.	 Before creating new pools you should check for existing pools to avoid
confusing them with the example pools we create here. You can check
what pools exist with zpool list:

root@raspberrypi:~# zpool list

no pools available
root@raspberrypi:~#

3.	 Pools are created using the zpool create command. We can create a
single disk pool using a file as follows (you must use the absolute path
to the file), and check the zpools that now exist:

root@raspberrypi:~# zpool create data /​home/​bob/​disk1

root@raspberrypi:~# zpool list

NAME	 SIZE	 ALLO  FREE	 EXPANDSZ	 FRAG  CAP	
DEDUP	 HEALTH	 ALTROOT
data	 112M	 104K	 112M	 -​	 	 2%	 0 % 	
1.00x	 ONLINE	 -​

4.	 Now we will create an actual file in the new pool, check its size, and
get a zpool listing of it:

root@raspberrypi:~# truncate -​-​size 32m /​data/​data20file

root@raspberrypi:~# ls -​lh /​data/​data20file

-​rw-​r-​-​r-​-​ 1 root root 32M Nov 22 12:43 /​data/​data20file

Raspberry Pi OS System Administration: Ancillary Topics34

root@raspberrypi:~# zpool list

NAME  SIZE	 ALLOC  FREE  EXPANDSZ	 FRAG  CAP	
DEDUP  HEALTH	 ALTROOT
data	 112M	 108K	 112M	 -​		 2%	 0 % 	
1.00x	 ONLINE	 -​

5.	 We will now destroy the pool data with zpool destroy, and check on
the zpools now available:

root@raspberrypi:~# zpool destroy data

root@raspberrypi:~# sudo zpool list

No pools available
root@raspberrypi:~#

6.	 Creating a Mirrored Pool with Files

A pool composed of a single medium doesn’t really offer any redun-
dancy, especially if that medium fails! One way of providing protec-
tion against physical media failure is to use a mirrored pair of disks in
a pool, with the following commands:

root@raspberrypi:~# zpool create data2 mirror /​home/​bob/​disk1 /\​

home/​bob/​disk2

root@raspberrypi:~# zpool list

NAME	 SIZE	 ALLOC  FREE  CKPOINT	 EXPANDSZ	
FRAG	 CAP	 DEDUP		 HEALTH	 ALTROOT
data2	 112M	 105K  112M	 -​		 -​			
2%	 0%	 1.00x		 ONLINE	 -​
root@raspberrypi:~#

7.	 To get more information about the pool data2, we use zpool status:

root@raspberrypi:~# zpool status data2

pool: data2
state: ONLINE
config:

NAME         STATE    READ  WRITE  CKSUM
data2        ONLINE   0     0     0

mirror-​0       ONLINE   0     0     0
  /​home/​bob/​disk1  ONLINE   0    0    0
  /​home/​bob/​disk2  ONLINE   0     0    0

errors: No known data errors

ZFS Administration and Use 35

8.	 Now you can create a file in the data2 pool.

root@raspberrypi:~# truncate -​-​size 32m /​data2/​data2file

root@raspberrypi:~#

Note the change in the pool after we have added a file to it, using the
following command:

root@raspberrypi:~# zpool list

NAME	 SIZE	 ALLOC  FREE  CKPOINT  EXPANDSZ	
FRAG	 CAP	 DEDUP  HEALTH	 ALTROOT
data2	 112M	 152K	 112M -​		 -​		
2%	 0%	 1.00x	 ONLINE	 -​
root@raspberrypi:~#

A fraction of the disk has been used, but more importantly the data are
now stored redundantly over two disks.

9.	 Let’s test that redundancy by overwriting the first “disk” label with
random data. If you are using real hard disks, you could physically
remove the disk from the computer.

root@raspberrypi:~# dd if=​/​dev/​random of=​/​home/​bob/​disk1 bs=\​

512 count=​1

1+​0 records in
1+​0 records out
512 bytes copied, 0.000477905 s, 1.1 MB/​s
root@raspberrypi:~#

10.	 ZFS automatically checks for errors when it reads/​writes files, but we
can force a check with the zfs scrub command.

root@raspberrypi:~# zpool scrub data2

root@raspberrypi:~#

11.	 Let’s check the status of the pool:

root@raspberrypi:~# zpool status

pool:	 data2
state:	 DEGRADED
status:	� One or more devices could not be used because the label is

missing or invalid. Sufficient replicas exist for the pool to
continue functioning in a degraded state.

action:	 Replace the device using ‘zpool replace’.

Raspberry Pi OS System Administration: Ancillary Topics36

see:	 https://​open​zfs.git​hub.io/​open​zfs-​docs/​msg/​ZFS-​8000-​4J
scan:	� scrub repaired 0B in 00:00:00 with 0 errors on Sun Nov 19

09:30:34 2023
config:

NAME		 STATE  READ  WRITE  CKSUM
data2		 DEGRADED 0	 0 0

mirror-​0	 DEGRADED 0	 0 0
/​home/​bob/​disk1  UNAVAIL 0	 0	  0 �corrupted

data
/​home/​bob/​disk2 ONLINE  0   0	 0

errors: No known data errors
root@raspberrypi:~#

12.	 The disk we used dd on is showing as UNAVAIL (unavailable) with
corrupted data, but no data errors are reported for the pool as a whole,
and we can still read and write to the pool:

root@raspberrypi:~# truncate -​-​size 32m /​data2/​data2file2

root@raspberrypi:~# ls -​l /​data2/​

total 1
-​rw-​r-​-​r-​-​ 1 root root 33554432 Nov 19 09:25 data2file
-​rw-​r-​-​r-​-​ 1 root root 33554432 Nov 19 09:34 data2file2
root@raspberrypi:~#

13.	 To maintain redundancy we should replace the broken disk with
another. If you are using a physical disk you can use the zpool replace
command (the zpool man page has details). However, in this file-​
based example we will just remove the disk file from the mirror and
recreate it.

Devices are detached with zpool detach:

root@raspberrypi:~# zpool detach data2 /​home/​bob/​disk1

root@raspberrypi:~#

14.	 Let’s check the status of the pool:

root@raspberrypi:~# zpool status data2

pool:	 data2
state:	 ONLINE
scan:	� scrub repaired 0B in 00:00:00 with 0 errors on Sun Nov 19

09:30:34 2023
config:

https://openzfs.github.io

ZFS Administration and Use 37

NAME			 STATE		 READ  WRITE  CKSUM
data2			 ONLINE	 0    0    0

  /​home/​bob/​disk2	 ONLINE	 0    0    0

errors: No known data errors
root@raspberrypi:~#

15.	 Let’s remove the disk, and then try to replace it, to simulate a failure:

root@raspberrypi:~# rm /​home/​bob/​disk1

root@raspberrypi:~# truncate -​-​size 128m /​home/​bob/​disk1

root@raspberrypi:~#

16.	 In order to replace it in the mirror, we need to do the following. To
attach another device we specify an existing device in the mirror to
attach it to with zpool attach:

root@raspberrypi:~# zpool attach data2 /​home/​bob/​disk2 /​home/\​

bob/​disk1

root@raspberrypi:~#

17.	 Check the status of the pool:

root@raspberrypi:~# zpool status data2

pool:	 data2
state:	 ONLINE
scan:	� resilvered 167K in 00:00:00 with 0 errors on Sun Nov 19

11:26:47 2023
config:

NAME			 STATE		 READ  WRITE  CKSUM

data2			 ONLINE	 0	 0	 0

mirror-​0			 ONLINE	 0	 0	 0

/​home/​bob/​disk2	 ONLINE	 0	 0	 0

/​home/​bob/​disk1	 ONLINE	 0	 0	 0

errors: No known data errors
root@raspberrypi:~#

18.	 Adding to a Mirrored Pool

A very critical and extremely useful systems administration procedure
that you can accomplish with ZFS is to add disks to a pool without
taking it offline. Let’s double the size of our data2 pool:

Raspberry Pi OS System Administration: Ancillary Topics38

root@raspberrypi:~# zpool list

NAME	 SIZE	 ALLOC  FREE  CKPOINT	 EXPANDSZ	
FRAG	 CAP	 DEDUP	  HEALTH 	 ALTROOT
data2	 112M	 130K	 112M	 -​		 -​	 	
4%	 0%	 1.00x	 ONLINE	 -​
root@raspberrypi:~#

19.	 We can use the zpool add command to add disks to the existing pool.

root@raspberrypi:~# zpool add data2 mirror /​home/​bob/​disk3 /\​

home/​bob/​disk4

root@raspberrypi:~# zpool list

NAME	 SIZE	 ALLOC	  FREE   CKPOINT   EXPANDSZ	
FRAG	 CAP	 DEDUP	  HEALTH  ALTROOT
data2	 224M	 139K	 224M	 -​		 -​		
2%	 0%	 1.00x	 ONLINE -​
root@raspberrypi:~#

20.	 The file systems within the pool are always available. If we look at the
status now, it shows the pool consists of two mirrors:

root@raspberrypi:~# zpool status data2

pool:	 data2
state:	 ONLINE
scan:	� resilvered 167K in 00:00:00 with 0 errors on Sun Nov 19

11:26:47 2023
config:

NAME			 STATE		 READ  WRITE  CKSUM
data2			 ONLINE	 0	 0	 0

mirror-​0		 ONLINE	 0	 0	 0
/​home/​bob/​disk2	 ONLINE	 0	 0	 0
/​home/​bob/​disk1	 ONLINE	 0	 0	 0

mirror-​1		 ONLINE	 0	 0	 0
/​home/​bob/​disk3	 ONLINE	 0	 0	 0
/​home/​bob/​disk4	 ONLINE	 0	 0	 0

errors: No known data errors
root@raspberrypi:~#

ZFS Administration and Use 39

21.	 We can see where the data is currently written in our pool using zpool
iostat -​v:

root@raspberrypi:~# zpool iostat -​v data2

			 	 capacity   operations   bandwidth
pool			 alloc  free  read  write  read  write
-​​-​-​-​-​-​-​-​-​-​-​-​-​--​
data2		 	 139K 224M 0 0 127 1.74K
mirror-​0		 	 125K 112M 0 1 1.11K 10.9K

/​home/​bob/​disk2	 -​ -​ 0 0 118 749
/​home/​bob/​disk1	 -​ - 0 0 27 4.04K

mirror-​1			 14K 112M 0 0 156 15.4K
/​home/​bob/​disk3	 -​ -​ 0 0 78 7.69K
/​home/​bob/​disk4	 -​ -​ 0 0 78 7.69K

-​​-​-​-​-​-​-​-​-​-​-​-​-​--​

root@raspberrypi:~#

22.	 All the data are currently written on the first mirror pair and none on
the second. This makes sense, as the second pair of disks was added
after the data were written. If we write some new data to the pool, the
new mirror will be used:

root@raspberrypi:~# truncate -​-​size 64m /​data2/​data2file3

root@raspberrypi:~# zpool iostat -​v data2

			 	 capacity   operations   bandwidth
pool			 alloc  free  read  write  read  write
-​​-​-​-​-​-​-​-​-​-​-​-​-​--​

data2		 	 138K 224M 0 0 121 1.68K
mirror-​0		 	 116K 112M 0 1 798 7.73K

/​home/​bob/​disk2	 -​ -​ 0 0 113 723
/​home/​bob/​disk1	 -​ - 0 0 19 2.87K

mirror-​1			 22.5K 112M 0  0 70 7.02K
/​home/​bob/​disk3	 -​ -​ 0 0 35 3.51K
/​home/​bob/​disk4	 -​ -​ 0 0 35 3.51K

-​​-​-​-​-​-​-​-​-​-​-​-​-​--​

23.	 We see how a little more of the data has been written to the new mirror
than to the old: ZFS tries to make the best use of all the resources in
the pool. Now do these in-​chapter exercises, and then continue onto
the next step.

Raspberry Pi OS System Administration: Ancillary Topics40

In-​Chapter Exercises

1.1	 If you have not already done so, execute all of the steps so far of
Example 1.1, using proper commands and pathnames.

1.2	 In Example 1.1, step4, what is the pathname to datafile20?
1.3	 If you were to use a text editor like emacs to create a text file named

text1.txt in the file system named data, how would you designate
the complete pathname to that text file?

1.4	 In Example 1.1, after step 6 was executed correctly, and you
created a text file with emacs in the data2 file system, would
the pathnames to the two mirrored versions of that text file be
different? In other words, could you edit each one of them separ-
ately by designating different pathnames to them?

1.5	 In Example 1.1, step 19, could you add a single disk into the
mirrored data2 zpool, instead of the two disks specified?

1.6	 In Example 1.1, step 20., are the mirrors named mirror-​0 and
mirror-​1 mirrors of each other?

24.	 Cleanup

To clean up after doing our work, let’s delete everything we created
in this example.

From the root directory, destroy the data2 file system and its files.

root@raspberrypi:~# zfs destroy -​r data2

root@raspberrypi:~#

25.	 Next, destroy the data2 zpool.

root@raspberrypi:~# zpool destroy data2

26.	 Finally, destroy the disk simulation files, and leave root.

root@raspberrypi:~# rm /​home/​bob/​disk*

root@raspberrypi:~# exit

logout
bob@raspberrypi:~ $

Conclusion: We can use the zpool command and its create sub-​command to
associate or map file systems to vdevs, whether the vdev is a file itself or an
actual physical medium.

ZFS Administration and Use 41

Example 1.2: The zfs Command, Send and Receive, Snapshot

Objectives:  �The following is a complete example of using the command
zfs, with the sub-​commands send and receive. Its primary
objective is to show how to create a file system with the zfs
command, and work with ZFS file systems.

Introduction: � In this example, we backup a file system with an incremental
update, from one file system to another, on the same zpool
and vdev. As with Example 1.1, this example creates a file
in your home directory that simulates a vdev, so you don’t
have to have a second hard disk available! This is the easiest,
most cost-​effective technique, and the best way to practice
and develop your basic skills with ZFS.

Background:  �Here, you back up a file system named data in the zpool
named sender to another file system named backup in the
same pool, on the same vdev. The data file system contains
a file we create named test.txt. It uses the snapshot sub-​
command of the zfs command to achieve this. ZFS snapshots
are frozen-​in-​time “pictures” of the state of the filesystem
they are taken of.

Two critical operations that involve taking snapshots of a ZFS filesystem
are rolling back a snaphot, and using the zfs promote command. A brief
description of those follows, with more examples provided in Section 1.3.3,
items 8 through 10, and Section 1.4.

Rolling back a ZFS filesystem
This important procedure allow you to revert a ZFS file system to a previous
snapshot. Simply stated, it’s a builtin means for ZFS to backup and restore
files. ZFS snapshots capture the state of the file system at a specific point
in time, allowing you to roll back to that state if needed. Here’s a detailed
example of rolling back a ZFS filesystem:

1.	 List Snapshots

First, list the available snapshots for the ZFS filesystem you want to roll back.
You can use the zfs list command for this:

zfs list -​t snapshot -​r pool/​filesystem

In the above command, replace pool/​filesystem with the actual name of your
ZFS pool and filesystem. This command will display a list of snapshots, along
with their creation times.

Raspberry Pi OS System Administration: Ancillary Topics42

2.	 Choose the Snapshot

Identify the snapshot to which you want to roll back. Note the name and
creation time of the snapshot. For example, let’s say you want to roll back to
a snapshot named @backup_​20230101. Notice the name is descriptive of the
date that the snapshot is taken.

3.	 Perform the Roll Back

To roll back the ZFS filesystem to the chosen snapshot, use the zfs rollback
command:

zfs rollback pool/​filesystem@backup_​20230101

Replace pool/​filesystem with the actual name of your ZFS pool and
filesystem, and backup_​20230101 with the name of the snapshot you want
to roll back to.

4.	 Verify the Rollback

Verify that the rollback was successful by listing the contents of the ZFS filesystem:

ls /​path/​to/​mount/​point

Replace /​path/​to/​mount/​point with the actual mount point of your ZFS
filesystem. Check if the files and directories match the state captured by the
chosen snapshot.

5.	 Set the Mountpoint (if necessary!)

If your ZFS filesystem has a different mount point and you want to persist it
after a reboot, set the mount point:

zfs set mountpoint=​/​new/​mount/​point pool/​filesystem

Replace /​new/​mount/​point with the desired mount point.

Notes

a)	 Rolling back a ZFS filesystem will destroy all changes made since the
chosen snapshot. Be careful and ensure you have a backup or under-
stand the implications.

b)	 The filesystem must be unmounted, or not in use during the rollback.
c)	 It’s a good practice to take a new snapshot before performing a rollback,

to provide a secure and quick way to revert to the original if necessary.

ZFS Administration and Use 43

zfs promote command

The zfs promote command, in the context of ZFS, is used to make a
clone file system the parent of its originating snapshot. This essentially
“promotes” the clone to become the new source file system, and the ori-
ginal file system becomes the clone. This can be useful in scenarios where
you want to roll back to an earlier snapshot, or make changes to a clone,
and then promote it to the main file system. Here is a detailed explanation:

1.	 Creating the Snapshot

First, you need to create a snapshot of the original file system. This
snapshot serves as a point-​in-​time, “immutable picture” reference.

zfs snapshot tank/​source@snapshot1

2.	 Creating a Clone

Next, you create a clone of the snapshot of the original file system,
which initially shares the data with the source file system.

zfs clone tank/​source@snapshot1 tank/​clone

3.	 Make Changes to the Clone

You can make changes to the clone without affecting the original file system.

echo “New data” > /​tank/​clone/​somefile.txt

4.	 Promote the Clone

Now, if you want to make the clone the new source file system, you
use the zfs promote command.

zfs promote tank/​clone

Note
After this command, tank/​clone becomes the new source file system,
and tank/​source becomes the clone.
Again, in the Procedures below, if you make a mistake anywhere
along the way, you can always start over by executing the cleanup
steps shown at the end of the example, and begin again.

Prerequisites: � Installation of ZFS on your Raspberry Pi system, as shown in
Section 1.1, and having completed Example 1.1.

Raspberry Pi OS System Administration: Ancillary Topics44

Procedures:

To accomplish the objectives of this example, do the following steps in the
order presented.

1.	 Become root and then list the zpools that exist currently on the
system. On your Raspberry Pi system, this can be done with the sudo

su -​ command.

bob@raspberrypi:~ $ sudo su -​

root@raspberrypi:~# zpool list

no pools available
root@raspberrypi:~#

2.	 Create the vdev as a file.

root@raspberrypi:~# truncate -​-​size 100m /​home/​bob/​master

root@raspberrypi:~#

3.	 Create a zpool in that vdev named sender.

root@raspberrypi:~# zpool create sender /​home/​bob/​master

root@raspberrypi:~#

4.	 Create a ZFS file system, named data, in the sender zpool.

root@raspberrypi:~# zfs create sender/​data

root@raspberrypi:~#

5.	 Create a test file in the sender/​data ZFS file system.

root@raspberrypi:~# echo "created: 09:58" > /​sender/​data/​test.txt

root@raspberrypi:~#

6.	 Create a snapshot of the ZFS file system named sender/​data.

root@raspberrypi:~# zfs snapshot sender/​data@1

root@raspberrypi:~#

7.	 Examine the location where the snapshot has been saved. First, use
the zfs list command with the snapshot command argument as
follows:

ZFS Administration and Use 45

Note
This is a very common procedure we use throughout the rest of this chapter,
to check on the disposition of ZFS file systems.

root@raspberrypi:~# zfs list -​t snapshot

NAME			 USED	 AVAIL  REFER  MOUNTPOINT
sender/​data@1		 0B	 -​	 24.5K	 -​
root@raspberrypi:~#

8.	 By default the snapshot location is hidden. To unhide it, use the zfs

set command.

root@raspberrypi:~# zfs set snapdir=​visible sender/​data

root@raspberrypi:~#

9.	 See what the contents of the data file system are, using the ls -​la
command as follows:

root@raspberrypi:~# ls -​la /​sender/​data

total 2
drwxr-​xr-​x	 3	 root root	 3 Nov 21 14:49 .
drwxr-​xr-​x	 3	 root root	 3 Nov 21 14:49 ..
-​rw-​r-​-​r-​-​		 1	 root root	 15 Nov 21 14:49 test.txt
drwxrwxrwx	 1	 root root	 0 Nov 21 14:49 .zfs
root@raspberrypi:~#

10.	 The snapshot directory that contains the first snapshot is under .zfs, as
shown. So let’s change to the directory that contains it, and use ls -​la to
see what is in that directory.

root@raspberrypi:~# cd /​sender/​data/​.zfs/​snapshot/​1

root@raspberrypi:/​sender/​data/​.zfs/​snapshot/​1# ls -​la

total 2
drwxr-​xr-​x	 2	 root root	 3 Nov 21 14:49 .
drwxrwxrwx	 2	 root root	 2 Nov 21 14:49 ..
-​rw-​r-​-​r-​-​		 1	 root root	 15 Nov 21 14:49 test.txt
root@raspberrypi:/​sender/​data/​.zfs/​snapshot/​1#

The file test.txt in this directory is a “frozen” picture of what was
contained in the /​sender/​data file system at the time we did step 6.

Raspberry Pi OS System Administration: Ancillary Topics46

11.	 Return to your home directory.

root@raspberrypi:/​sender/​data/​.zfs/​snapshot/​1# cd

root@raspberrypi:~#

12.	 Create a ZFS file system named backup in the sender zpool.

root@raspberrypi:~# zfs create sender/​backup

root@raspberrypi:~#

13.	 Send the snapshot to the backup file system.

root@raspberrypi:~# zfs send sender/​data@1 | zfs receive -​F sender/\​

backup

root@raspberrypi:~#
After the above command executes, the file test.txt is in the backup
file system.

14.	 Set the sender/​backup file system to read only to prevent data
corruption. Make sure to do this before accessing anything in the
sender/​backup file system.

root@raspberrypi:~# zfs set readonly=​on sender/​backup

root@raspberrypi:~#

15.	 Now we will make some changes in the original file. Use the echo
command to update the original test.txt file to simulate changes in the
data file system.

root@raspberrypi:~# echo "`date`" >> /​sender/​data/​test.txt

root@raspberrypi:~#

16.	 Create a second snapshot of sender/​data.

root@raspberrypi:~# zfs snapshot sender/​data@2

root@raspberrypi:~#

17.	 Send the differences. You may get an error message saying that the
destination has been modified if you did not set the sender/​data file
system to read only three commands previously in step 14.

root@raspberrypi:~# zfs send -​i sender/​data@1 sender/​data@2 | zfs\

receive \ sender/​backup

root@raspberrypi:~#

ZFS Administration and Use 47

18.	 Optional Step: At this point you could use ssh to send the file system
to another zpool on another machine, such as backup_​server (where
you need to supply the IP address and have root privileges on that
system), as follows:

root@raspberrypi:~# zfs send sender/​data@1 | ssh backup_​server zfs \

receive backup/​data@1

root@raspberrypi:~#

19.	 Now let’s take a look at what is in the second snapshot directory.

root@raspberrypi:~# cd /​sender/​data/​.zfs/​snapshot/​2

ls -​la

total 2
drwxr-​xr-​x	 2	 root root	 3 Nov 22 10:52 .
dr-​xr-​xr-​x	 2	 root root	 2 Nov 22 11:02 ..
-​rw-​r-​-​r-​-​		 1	 root root	 44 Nov 22 11:01 test.txt
root@raspberrypi:/​sender/​data/​.zfs/​snapshot/​2#

20.	 Let’s look at the contents of the test.txt file.

root@raspberrypi:/​sender/​data/​.zfs/​snapshot/​2# more test.txt

created: 09:58
Tue 21 Nov 2023 03:00:37 PM PST
root@raspberrypi:/​sender/​data/​.zfs/​snapshot/​2#

21.	 Now let’s compare what is in the second snapshot directory to the
sender and backup file systems.

root@raspberrypi:/​sender/​data/​.zfs/​snapshot/​2# cd

root@raspberrypi:~# cd /​sender/​data

root@raspberrypi:/​sender/​data# ls
test.txt
root@raspberrypi:/​sender/​data# more test.txt

created: 09:58
Tue 21 Nov 2023 03:00:37 PM PST
root@raspberrypi:/​sender/​data# cd ..

root@raspberrypi:/​sender# cd backup

root@raspberrypi:/​sender/​backup# ls
test.txt
root@raspberrypi:/​sender/​backup# more test.txt

created: 09:58
Tue 21 Nov 2023 03:00:37 PM PST
root@raspberrypi:/​sender/​backup#

Raspberry Pi OS System Administration: Ancillary Topics48

22.	 Return to your home directory.

root@raspberrypi:/​sender/​backup# cd

root@raspberrypi:~#

Now do these In-​Chapter Exercises, and then continue onto the next step.

In-​Chapter Exercises	 	

1.7  �If you have not already done so, execute all the steps of
Example 1.2 using proper commands and pathnames.

1.8  �What commands would you use to make the current working
directory the one that contains the second snapshot?

1.9  �What are the contents of the first snapshot file, test.txt? Can
you use the nano text editor to edit the contents of test.txt in the
snapshot directory root@raspberrypi:/​sender/​data/​.zfs/​snap-
shot/​1? What results do you get if you do this, and why?

1.10 � Redo Example 1.2 using two different zpools named source and
target. Create a file system on the zpool source named origin,
and create a file system on the zpool target named destination.
Instead of using the echo command to create the file test.txt in
the source/​origin file system, use your favorite text editor, like
nano. Then create a couple of sequential snapshots of origin
and destination, making some changes in test.txt with nano in
between taking the snapshots. Finally, use the techniques shown
in Example 1.2 to verify that the snapshots indeed contain the
changes you made with nano in test.txt.

23.	 To clean up after doing our work, let’s delete everything we created
in this example.

Note
Destroying the datasets destroys the snapshots!
From the root directory, destroy the backup file system and its data.

root@raspberrypi:~# zfs destroy -​r sender/​backup

1.	 Next, destroy the data file system and its data.
root@raspberrypi:~# zfs destroy -​r sender/​data

25.	 Next, destroy the sender zpool.
root@raspberrypi:~# zpool destroy sender

ZFS Administration and Use 49

26.	 Finally, delete the disk simulation file and exit root.

root@raspberrypi:~# rm /​home/​bob/​master

root@raspberrypi:~# exit

logout
bob@raspberrypi:~ $

Conclusion: You can use zfs send/​receive as a backup mechanism, either
locally between two hard disks attached to the system, or between systems
over a network.

Example 1.3: Mirroring of USB3 Flashdrives

Objectives:   �To create a mirror of a pair of USB3 flashdrives that have
been added to the system sometime after the initial build of
the system.

Introduction: � The following example illustrates two of the most important
storage model and disk maintenance procedures a user can
operate under and perform: the maintenance of user files
on media other than the boot/​system medium that the
Raspberry Pi OS is installed on, and the mirroring of a phys-
ical device using the zpool attach command. In the example,
we mirror a ZFS vdev user flashdrive onto another flashdrive
of equal size. This is a very important system administration
maintenance task, because if one of the flashdrives fails, you
have an exact duplicate of it attached to your machine, which
contains and archives the user data redundantly.

The resilvering operation for a 256 GB flashdrive in this example, with very
little data on it, takes about five minutes, depending on the USB ports you
have inserted the flashdrives in.

You can operate in a redundant way with the two mirrored flashdrives.
You will not lose service if only one of them fails. The original flashdrive can
have all of your user datasets on it. If for some reason, you do have a media
failure, you can then replace the failed flashdrive if necessary, and in a few
simple ZFS command steps, restore the integrity and redundancy of the user
data on your system without taking the mirrored zpool offline! This is an
operation that a commercial system administrator would perform, as well as
an ordinary, single-​user of a desktop Raspberry Pi system.

Note
This example does not archive the boot/​system medium, stored perhaps
on a microSD card. The ZFS zpool attach command applied to a mirrored
pair creates a constantly mirrored “clone” of the user data media, and all

Raspberry Pi OS System Administration: Ancillary Topics50

datasets on them. This is critical, because you never know when your user
data medium is going to fail! You can have any number of backup schemes
in place, to save user datasets with full, rolling, or incremental backups using
rsync or zfs snapshot. But this example’s methodology allows you to con-
stantly have an exact clone of your user data medium available as long as it
is running and active.

Of course, a more advanced and necessarily complex technique for doing
what is shown here would involve multiple media, including higher levels of
RAID-​Z datasets on media, and even the medium that holds the ZIL.

If you make a mistake anywhere along the way, you can always start over
by executing the cleanup step shown at the end of the example, and begin
again. Depending on how far you go in the procedure, you can also reformat
the flashdrives with the Gparted program (which is what we recommend
you use to format them in the first place) and restart from the beginning.

Prerequisites:

1.	 Installation of ZFS on your Raspberry Pi system, as shown in
Section 1.1.

2.	 That you have previously completed Examples 1.1, and 1.2.

3.	 That you have previously determined the logical device names, and
the full paths to the flashdrives using the methods “A Quick and Easy
Way to Find Out the Logical Device Names of Disks Actually Installed
on Your System” we’ve shown previously. The complete logical device
names of our flashdrives (not our boot/​system, disk!), that we want to
create a mirrored pair of are /​dev/​sda1 and /​dev/​sdb1. On your system
they may not be exactly the same, but they will be very similar.

4.	 That you have correctly connected, and put a single primary partition
on the flashdrives, using Gparted, or a similar facility such as fdisk.
Additionally, we have found that unmounting these flashdrives, with
the umount command, as follows, is a critical first step to creating the
zpools on them:

root@raspberrypi:~# umount /​dev/​sda1

root@raspberrypi:~# umount /​dev/​sdb1

This is necessary before executing the steps of the procedures below.
The pair will still show up in a listing of /​dev, even though they’re
unmounted!

5.	 The size in bytes of rpool, the name of the original user data flashdrive
zpool, is smaller than or equal to the size of the primary partition on
the second flashdrive you will mirror rpool to.

ZFS Administration and Use 51

Procedures:
Do the following steps in the order shown to meet the objectives.

1.	 List the zpools currently on the system with the zpool list command.

root@raspberrypi:~# zpool list

no pools available
root@raspberrypi:~#

2.	 Create a zpool named rpool with the zpool create command.

root@raspberrypi:~# zpool create -​f rpool /​dev/​sda1

On our 256GB flashdrive, this took a few minutes on our Raspberry Pi
400 running the Debian-​Bookworm based Raspberry Pi OS.

3.	 Use the attach sub-​command of zpool to create a mirror of your ori-
ginal user data disk. Be sure to specify the complete pathname to the
devices, as shown.

root@raspberrypi:~# zpool attach -​f rpool /​dev/​sda1 /​dev/​sdb1

4.	 This initiates and executes a resilvering of the zpool. While the
resilvering is happening (a few minutes on our Raspberry Pi 400),
check the status of the pool.

root@raspberrypi:~# sudo zpool status

pool:  rpool
state:  ONLINE
status: � One or more devices is currently being resilvered.	

The pool will
continue to function, possibly in a degraded state.
action:  Wait for the resilver to complete.
scan: � resilver in progress since Mon Nov 20 14:23:15 2023

112K scanned at 327B/​s, 112K issued at 327B/​s, 112K total
183K resilvered, 100.00% done, no estimated completion time

config:

NAME	 	 STATE		 READ  WRITE  CKSUM
rpool		 ONLINE	 0	 0	 0
mirror-​0	 ONLINE	 0	 0	 0

sda1		 ONLINE	 0	 0	 0
sdb1		 ONLINE	 0	 0	 0  (resilvering)

errors: No known data errors
root@raspberrypi:~#

Raspberry Pi OS System Administration: Ancillary Topics52

The resilver took a while longer on our Raspberry Pi 400.

Check it again.

root@raspberrypi:~# zpool status

pool: rpool
state: ONLINE
scan: resilvered 183K in 00:07:01 with 0 errors on Mon Nov 20
14:30:16 2023
config:

NAME		 STATE		 READ  WRITE  CKSUM
rpool		 ONLINE	 0    0     0
  mirror-​0	 ONLINE	 0    0     0
  sda1		 ONLINE	 0    0     0
  sdb1		 ONLINE	 0    0     0

errors: No known data errors
root@raspberrypi:~#

5.	 It’s interesting to note that the size of the pool rpool is only the size of
one of the flashdrives in the mirror.

root@raspberrypi:~# zpool list

NAME	 SIZE	 ALLOC	  FREE  CKPOINT  EXPANDSZ	
FRAG	 CAP	 DEDUP  HEALTH  ALTROOT
rpool	 230G	 135K   230G	 -​		 -​		
0%	 0%	 1.00x	 ONLINE -​
root@raspberrypi:~#

In-​Chapter Exercise

1.11 � To test the usability of the flashdrives as a ZFS mirrored pair, shut
down your machine gracefully. Then disconnect and remove the
first disk from the machine. Finally, reboot the machine with only
the root, or system disk, and one of the mirrored pair flashdrives on
the system. What is the status of the pool you attached the second
hard disk to as a mirror, after you do a successful reboot? After com-
pletion of this exercise, you may replace the original disks and boot
into it normally. Do the remaining step at your discretion.

6.	 If you want to retain this two-​disk mirror, stop. If you want to detach
the second hard disk from the pool, thus destroying the mirror, do the
following:

root@raspberrypi:~# zpool detach rpool /​dev/​sdb1

$

ZFS Administration and Use 53

Conclusion: You have created a post-​installation two-​flashdrive mirror,
containing user data on them. In addition, you have used the Gparted
program, or a similar program, to prepare those flashdrives for ZFS mirroring.

This example has also shown that to get maximum control over the whole
range of sub-​commands and options of the zpool command, and to be able to
integrate that control with other ZFS commands, the command line is the most
inclusive, efficient, and reliable method of working with ZFS. As far as we
know, there is no reliable graphical interface to ZFS for the Raspberry Pi OS.

Example 1.4: ZFS Filesystems with NFSv4

Objectives:
To illustrate how to set up a Network File System, version 4 (NFSv4) “share”
on a Raspberry Pi system, so that you can attach additional media containing
your ZFS pools and filesystems to access them from remote computers on
your intranet.

Introduction:
To follow up on and extend the objectives and procedures of Example 1.3,
you might want to be able to attach additional, and varied, media to your
Raspberry Pi, via bus architectures other than the available USB-​mounted
variety. This could be your objective, in conformance with our recommended
data storage, to maintain the boot/​system disk for your Raspberry Pi OS on
one discrete medium, and your user data files on other media. Currently,
even with the introduction of a single-​lane PCI Express 2.0 interface on
the Raspberry Pi 5, the attachment of external media that doesn’t have its
own power supply is limited to the four USB connectors mounted on the
Raspberry Pi board. Of course, you could always extend that complement
of connectors with various hubs, powered or not. But instead of relying
on the RPi’s media connectivity complement, in this example we mount
a ZFS filesystem as a “share” from another computer on our intranet that
can accommodate a larger number of additional media, using SATA bus
architecture.

Note
There’s no reason why the NFSv4 share can’t be done using two Raspberry
Pi OS computers. So client and server can both be Raspberry Pi systems. In
our case here, in terms of operating systems, the second computer that is
offering the “share” is running the latest release of Ubuntu software at the
time this book was written, Ubuntu 23.10. That second computer becomes
the “server”, and our Raspberry Pi 400 becomes the “client”. The two reasons
we used a X86 architecture system running Ubuntu 23.10 are 1) that it could
easily have ZFS installed on it, and 2) it had four SATA bus “bays” that could
be loaded with large-​capacity SSD drives.

In NFSv4, a “share” refers to a directory or file system that is made avail-
able to network clients for remote access. It allows multiple clients to access

Raspberry Pi OS System Administration: Ancillary Topics54

and interact with the shared resources residing on a server over the network,
using the NFSv4 protocol. This sharing mechanism is commonly used in
networked environments for efficient file access and management. We accom-
plish that here with the sharing of a ZFS pool and a filesystem on that pool,
where the pool and filesystem are resident on the server which can accom-
modate four SATA bus devices. Some key ideas related to an NFSv4 share:

1.	 Exporting Directory/​File System: The directory or file system that you
want to make accessible to remote clients needs to be “exported”. This
means configuring the NFS server to allow remote clients to access the
specified directory or file system.

2.	 NFS Exports File: In the NFS server configuration, there is often a file
called /​etc/​exports (on Unix/​Linux systems) where administrators
define which directories or file systems are exported, along with the
access permissions and options for each export.

3.	 Mounting on Client: On the client side, the exported directory or file
system can be mounted as if it were a local resource. This allows users
on the client machine to interact with the remote files as if they were
part of their local file system.

4.	 Access Control: NFSv4 introduces improved security features
compared to earlier versions, including better support for access con-
trol lists (ACLs) and stronger authentication mechanisms.

5.	 Locking Mechanisms: NFSv4 supports advanced locking mechanisms
to coordinate access to files between different clients to prevent
conflicts and ensure data consistency.

Note
In fact, in Volume 1 of this series, Chapter 1, Section 1.15.2, we give com-
plete procedures for installation and configuration of sharing files between
an NFSv4 server and client, both of which are Raspberry Pi systems.

Prerequisites:

1.	 Completion of Examples 1.1 through 1.3.

2.	 Having another networked computer attached to your intranet that
can use the appropriate network protocols to communicate with a
Raspberry Pi system.

In this sharing relationship, the Ubuntu 23.10 server’s IP address on our
local intranet is 192.168.1.27, and the Raspberry Pi 400 client’s IP address is
192.168.1.2. Those IP addresses will be different on your network.

Procedures:
A summary of the Procedures is as follows:

ZFS Administration and Use 55

I.	 Installing the NFSv4 Server Package

II.	 Installing the NFSv4 Client Package

III.	 Creating ZFS Pools and Filesystems

IV.	 Sharing ZFS Pools with NFSv4

V.	 Sharing ZFS Filesystems with NFSv4

VI.	 Mounting NFSv4 Shared ZFS Pools and Filesystems

VII.	 Automatically Mounting NFSv4 Shared ZFS Pools and Filesystems

VIII.	 �How to Allow Writing to the NFSv4 Shared ZFS Pools and Filesystems on
both Server and Client

IX.	 Unsharing ZFS Pools and Filesystems

I.	 Installing the NFSv4 Server Package

In order for you to share files between server and client, you must have the
NFSv4 server package installed on the computer from where you want to
share your ZFS pools/​filesystems via NFSv4 (Figure 1.2). This is called the
server.

If you’re using Ubuntu 23.10 as we are on our HP Proliant Microserver, you
can install the NFSv4 server package on your computer as follows:

bob@bob-​ProLiant-​MicroServer:~$ sudo apt install nfs-​kernel-​server -​y

Once the NFSv4 server package is installed, the nfs-​server systemd
service will be active.

bob@bob-​ProLiant-​MicroServer:~$ sudo systemctl status nfs-​server.

service

FIGURE 1.2
NFSv4 server and client connected via NFSv4.

Raspberry Pi OS System Administration: Ancillary Topics56

● nfs-​server.service -​ NFS server and services
 �Loaded: loaded (/​lib/​systemd/​system/​nfs-​server.service; enabled;

preset: enabled)
 �Drop-​In: /​run/​systemd/​generator/​nfs-​server.service.d

 └─order-​with-​mounts.conf
 Active: active (exited) since Wed 2023-​11-​22 18:50:01 PST; 15h ago
 Main PID: 1353 (code=​exited, status=​0/​SUCCESS)
 CPU: 14ms

Nov 22 18:50:01 bob-​ProLiant-​MicroServer systemd[1]‌: Starting nfs-​
server.service -​ NFS server and service>
Nov 22 18:50:01 bob-​ProLiant-​MicroServer systemd[1]‌: Finished nfs-​
server.service -​ NFS server and service>
lines 1-​10/​10 (END)
Output truncated...

II.	 Installing the NFSv4 Client Package

On the client Raspberry Pi system, you need to have the NFSv4 client
package installed.

On a Raspberry Pi system, you can run the following command to
install the NFSv4 client package:

bob@raspberrypi:~ $ sudo apt install nfs-​common -​y

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
nfs-​common is already the newest version (1:1.3.4-​6).
0 upgraded, 0 newly installed, 0 to remove and 5 not upgraded.
bob@raspberrypi:~ $

Notice that on our Raspberry Pi 400 the package was already installed.
If it wasn’t pre-​installed on your Raspberry Pi system, you’d have to
continue with the installation in a normal way with APT, using the
command above.

On the Server

III. Creating ZFS Pools and Filesystems

To create a ZFS pool, named newpool, using a vdev storage device,
check what devices are available with the following command:

ZFS Administration and Use 57

bob@bob-​ProLiant-​MicroServer:~$ sudo lsblk -​e7 -​d

NAME
	   MAJ:MIN	 RM	 SIZE	  RO	 TYPE	 MOUNTPOINTS
sda  8:0		 0	 447.1G	  0	 disk
sdb  8:16	 0	 931.5G	  0	 disk
sr0  11:0		 1	 1024M	  0	 rom

bob@bob-​ProLiant-​MicroServer:~$

In the output, sda is the SATA boot/​system disk we’re running Ubuntu 23.10
on, and sdb is an unused SATA 1 TB disk. Sdb is the vdev we want to use.

To create a new ZFS pool named newpool, using the vdev device device /​
dev/​sdb1, use the following commands:

bob@bob-​ProLiant-​MicroServer:~$ sudo umount /​dev/​sdb1

bob@bob-​ProLiant-​MicroServer:�~$ �sudo zpool create -​f newpool /​dev/\ ​

sdb1

bob@bob-​ProLiant-​MicroServer:~$

A new ZFS pool named newpool is created, and that ZFS pool newpool
will be automatically mounted in the newpool directory. All ZFS pools are
mounted in a similar manner, starting at root (/​). Check the status of the pool
named newpool with the following command:

bob@bob-​ProLiant-​MicroServer:~$ sudo zfs list

NAME	 USED	 AVAIL	 REFER	 MOUNTPOINT
newpool	 360K	 899G	 96K	 /​newpool
bob@bob-​ProLiant-​MicroServer:~$

Create a ZFS filesystem named systema in the ZFS pool newpool as follows:

bob@bob-​ProLiant-​MicroServer:~$ sudo zfs create newpool/​systema

bob@bob-​ProLiant-​MicroServer:~$

A new ZFS filesystem named systema is created, and automatic-
ally mounted in the /​newpool/​systema directory. Use the following
command to check this:

bob@bob-​ProLiant-​MicroServer:~$ sudo zfs list

NAME		  USED   AVAIL  REFER  MOUNTPOINT
newpool		  504K	   899G  96K   /​newpool
newpool/​systema  96K	   899G  96K /​newpool/​systema

bob@bob-​ProLiant-​MicroServer:~$

Raspberry Pi OS System Administration: Ancillary Topics58

IV.	 Sharing ZFS Pools with NFSv4

This is the critical aspect of your operations on the server. To share the ZFS
pool named newpool via NFSv4, you have to set the sharenfs property of
your ZFS pool accordingly.

The sharenfs property in the context of the ZFS command is used to control
the NFSv4 sharing behavior for a ZFS file system. NFSv4 is a distributed file
system protocol that allows remote systems to mount file systems over a net-
work and interact with them as though they are local.

The sharenfs property is specific to ZFS and determines whether a ZFS file
system is shared via NFS and, if so, with what options. It has the following syntax:

zfs set sharenfs=​value filesystem
Common NFS options include:

ro:		 Read-​only access.
rw: 		 Read and write access.
root=​client:	� Allows the specified client to have superuser (root)

access.

To allow everyone on your network read/​write access to the ZFS pool
newpool, you can set the sharenfs property of the ZFS pool newpool as
follows:

bob@bob-​ProLiant-​MicroServer:~$ sudo zfs set sharenfs=​'rw' newpool

bob@bob-​ProLiant-​MicroServer:~$

or-​

bob@bob-​ProLiant-​MicroServer:~$ sudo zfs set sharenfs=​'rw=​*'\
newpool

You can verify whether the sharenfs property is correctly set on the
ZFS pool newpool as follows:

bob@bob-​ProLiant-​MicroServer:~$ sudo zfs get sharenfs newpool

NAME			 PROPERTY	 VALUE		 SOURCE
newpool			 sharenfs	 rw		 local

bob@bob-​ProLiant-​MicroServer:~$

V.	 Sharing ZFS Filesystems with NFSv4

To share the ZFS filesystem named systema via NFSv4, you have to set the
sharenfs property of that ZFS filesystem accordingly. To allow everyone on

ZFS Administration and Use 59

the network read/​write access to the ZFS filesystem systema, you can set the
sharenfs property of that ZFS filesystem as follows:

bob@bob-​ProLiant-​MicroServer:~$ sudo zfs set sharenfs=​'rw'\
newpool/​systema

bob@bob-​ProLiant-​MicroServer:~$

or-​
bob@bob-​ProLiant-​MicroServer:~$ sudo zfs set sharenfs=​'rw=​*'\
newpool/​systema

You can verify whether the sharenfs property is correctly set on the
ZFS filesystem newpool/​systema as follows:

bob@bob-​ProLiant-​MicroServer:~$ sudo zfs get sharenfs newpool/\​

systema

NAME			 PROPERTY	 VALUE		 SOURCE
newpool/​systema	 sharenfs	 rw		 local

bob@bob-​ProLiant-​MicroServer:~$

VI.	 Mounting NFSv4 Shared ZFS Pools and Filesystems

To mount the ZFS pools and filesystems that you want to share via NFSv4
with client Raspberry Pi OS machines, you need to know the IP address of
your NFS server.

You can run the hostname -​I command on your NFSv4 server to find the IP
address of your NFSv4 server.

bob@bob-​ProLiant-​MicroServer:~$ hostname -​I

192.168.1.27
bob@bob-​ProLiant-​MicroServer:~$

Once you know the IP address of the NFSv4 server, you can list all the avail-
able NFSv4 shares on that server as follows:

bob@bob-​ProLiant-​MicroServer:~$ showmount -​e 192.168.1.27

Export list for 192.168.1.27:
/​newpool/​systema *
/​newpool		 *
bob@bob-​ProLiant-​MicroServer:~$

As you can see, the ZFS pool name newpool and the ZFS filesystem systema
are listed as NFSv4 shares /​newpool and /​newpool/​systema.

Raspberry Pi OS System Administration: Ancillary Topics60

On the Raspberry Pi Client
Now you switch your attention to the Raspberry Pi client(s). Create a dir-
ectory /​mnt/​newpool for mounting the server NFSv4 share /​newpool as
follows:

bob@raspberrypi:~ $ sudo mkdir -​v /​mnt/​newpool

mkdir: created directory ‘/​mnt/​newpool’
bob@raspberrypi:~ $

You can mount the NFSv4 share /​newpool from the NFSv4 server
192.168.1.27 on the /​mnt/​newpool directory of your Raspberry Pi client with
this command:

bob@raspberrypi:�~ $ sudo mount -​t nfs 192.168.1.27:/​newpool /​mnt/\​

newpool

bob@raspberrypi:~ $

The NFSv4 share /​newpool is now mounted on the /​mnt/​newpool directory
of your Raspberry Pi client. To check this, type this command on the client
command line:

bob@raspberrypi:~ $ df -​hT /​mnt/​newpool

Filesystem   Type   Size  Used  Avail  Use%  Mounted on
192.168.1.27:
/​newpool nfs4 900G 0 900G 0% /​mnt/​newpool
bob@raspberrypi:~ $

Similarly, create a new directory /​mnt/​systema for mounting the server
NFSv4 share of the ZFS filesystem /​newpool/​systema on your Raspberry Pi
with the following command:

bob@raspberrypi:~ $ sudo mkdir -​v /​mnt/​systema

mkdir: created directory ‘/​mnt/​systema’

bob@raspberrypi:~ $
Then, mount the server NFSv4 share /​newpool/​systema from the NFS
server 192.168.1.27 on the /​mnt/​systema directory of your Raspberry
Pi client as follows:

bob@raspberrypi:~$ sudo mount -​t nfs 192.168.1.27:/​newpool/\​

systema /​mnt/​systema

The server NFS share /​newpool/​systema ZFS filesystem is now mounted on
the /​mnt/​systema directory of your Raspberry Pi client. To check this, type
the following command:

ZFS Administration and Use 61

bob@raspberrypi:~ $ df -​hT /​mnt/​systema

Filesystem  Type  Size  Used Avail Use% Mounted on
192.168.1.27:
/​newpool/​systema nfs4 900G 0 900G 0% /​mnt/​systema

bob@raspberrypi:~ $

VII.	Automatically Mounting NFSv4 Shared ZFS Pools and Filesystems

You can mount the server NFSv4 shares ZFS /​newpool and /​newpool/​
systema ZFS filesystem on your Raspberry Pi client automatically at boot
time. To do that, open the Raspberry Pi client /​etc/​fstab file with the nano
text editor as follows:

bob@raspberrypi:~$ sudo nano /​etc/​fstab

Add the following lines at the end of the /​etc/​fstab file.

Mount NFS shares
192.168.1.27:/​newpool  /​mnt/​newpool  nfsdefaults  0  0
192.168.1.27:/​newpool/​systema  /​mnt/​systema  nfs  defaults  0  0

Once you’re done, in nano press <Ctrl> +​ X followed by Y and <Enter>
to save the /​etc/​fstab file.

For the changes to take effect, restart your computer (NFSv4 client) as
follows:
bob@raspberrypi:~$ sudo reboot

The next time your Raspberry Pi client machine boots, the NFSv4 shares /​
newpool and /​newpool/​systema will be mounted in the /​mnt/​newpool and
/​mnt/​systema directories. To illustrate this, type the following command on
the Raspberry Pi client command line:

bob@raspberrypi:~ $ df -​hT
Filesystem	  Type    Size  Used  Avail  Use% Mounted on
/​dev/​root	  ext4    439G  19G  398G  5%  /​
devtmpfs		  devtmpfs  1.7G  0  1.7G	 0% /​dev
tmpfs		  tmpfs	   1.9G 0 1.9G	 0% /​dev/​shm
tmpfs		  tmpfs	 759M 1.3M	 758M	 1% /​run
tmpfs		  tmpfs	 5.0M 4.0K 5.0M	 1% /​run/​lock
/​dev/​sda1	  vfat	 253M 31M 222M	 13%   /​boot
192.168.1.27:/​newpool  nfs4	 900G 0 900G	 0%   /​mnt/​newpool
192.168.1.27:
/​newpool/​systema  nfs4	 900G 0	 900G	 0%   /​mnt/​systema
tmpfs		  tmpfs	 380M 32K	 380M	 1%   /​run/​user/​1000
bob@raspberrypi:~ $

Raspberry Pi OS System Administration: Ancillary Topics62

Both Server and Raspberry Pi Client

VIII.	 How to Allow Writing to the NFSv4 Shared ZFS Pools and Filesystems on
both Server and Client

At this point, if you attempt to write to the NFS shares /​newpool or /​newpool/​
systema from either your Raspberry Pi client, or the server, you get a permission
denied message! To alleviate this problem, you can do the following:

Set 0777 permission on the /​newpool and /​newpool/​systema directories
of the NFSv4, server so that everyone can write to the ZFS newpool and NFS
filesystem systema. For our purposes here in this example and tutorial for
beginners, this is OK.

bob@bob-​ProLiant-​MicroServer:~$ sudo chmod 0777 /​newpool

bob@bob-​ProLiant-​MicroServer:~$ sudo chmod 0777 /​newpool/​systema

bob@bob-​ProLiant-​MicroServer:~$

There are other more secure techniques, strategies, and tactics you can deploy
to give permissions. Here, we only outline one of them for you:

You can construct special group-​specific permissions that allow only members
belonging to those groups to write or read from the server pools and files.

Note
NFSv4 maps the UID (User ID) and GID (Group ID) of the specified NFSv4
clients with the UID and GID of the NFSv4 server. So, if a user/​group has
permission to write to an NFSv4 share on the NFSv4 server, then the same
user/​group with the same UID/​GID will be able to write to that NFS share
from the NFSv4 client computer.

IX.	 Unsharing ZFS Pools and Filesystems

If you want to stop sharing the ZFS pool named newpool, you have to “reset”
the sharenfs property of the ZFS pool newpool to off on the server as follows:

bob@bob-​ProLiant-​MicroServer:~$ sudo zfs set sharenfs=​off newpool

bob@bob-​ProLiant-​MicroServer:~$

NFS sharing will then be disabled for the ZFS pool newpool. You can check
this with the following command:

bob@bob-​ProLiant-​MicroServer:~$ sudo zfs get sharenfs newpool

NAME    PROPERTY    VALUE   SOURCE
newpool   sharenfs     off     local
bob@bob-​ProLiant-​MicroServer:~$

ZFS Administration and Use 63

In the same way, you can stop sharing the ZFS filesystem systema by setting
the sharenfs property of the ZFS filesystem systema to off as follows:

bob@bob-​ProLiant-​MicroServer:~$ sudo zfs set sharenfs=​off\

newpool/​systema

bob@bob-​ProLiant-​MicroServer:~$

NFSv4 sharing will be disabled for the ZFS filesystem systema. You can check
this with the following command:

bob@bob-​ProLiant-​MicroServer:~$ sudo zfs get sharenfs newpool/\​

systema

NAME			 PROPERTY	 VALUE		 SOURCE
newpool/​systema	 sharenfs	 off		 local
bob@bob-​ProLiant-​MicroServer:~$

Conclusion
This example has illustrated a simple method of sharing ZFS pools and
filesystems, and how to access them remotely using the NFSv4 file-​sharing
protocol. It also gave instructions for automatically mounting remote ZFS
pools and filesystems on a Raspberry Pi system, entities that you’ve shared
with NFSv4 on NFS v4 client computers at boot time from an X86 architec-
ture server on your intranet, and how to manage access permissions for the
NFSv4 shares, to allow write access to the NFSv4 shared files from the NFSv4
client Raspberry Pi system as well.

In-​Chapter Exercises

1.12 � How would you mirror the single ZFS vdev used in the Example
above in any RAID-​1 or RAID-​Z* configuration you desire on what-
ever server you are using to complete the Example? Be sure to
include the exact ZFS command, and its syntax, that you need to
use to accomplish creation of this multi-​disk configuration.

1.13 � You’ve purchased an exterior unpowered mounting enclosure
for a single SATA SSD, that can be attached to your Raspberry Pi
system on one of the USB3 connectors (or if you’re working on a
Raspberry Pi 5, on the PCIe 2.0 port connector using an approved
and	 viable HAT). How would you now transfer the SATA
drive containing the zpool newpool, and the filesystem systema
from the X86 architecture machine used in the Example, in our
case an HP Proliant Microserver, to the Raspberry Pi system? This
transfer would have to be done to maintain the integrity of the zpool
newpool, and the filesystem systema. You would no longer need the

Raspberry Pi OS System Administration: Ancillary Topics64

facilities of NFSv4 to share the zpool or its filesystem. Detail exactly
how you would accomplish this transfer.

Hint: The ZFS commands to achieve this are export and import.

1.14 � If you completed the “unsharing” of the ZFS pool and file system
on the server in sub-​section IX above, how would you complete the
deletion of everything done in this Example, on both server and
client? Be sure to include the removal of the entry in the fstab file
on the Raspberry Pi client, the “destruction” of the zpool and its
filesystem on the server, and the restoration of an ext4 filesystem on
/​dev/​sdb1 in your answer.

*ZFS RAID-​Z is a type of data storage architecture used in the ZFS file
system.

RAID-​Z in ZFS is a form of software RAID (Redundant Array of Independent
Disks) that provides data redundancy and protection against disk failures. It
uses a flexible and scalable approach to distribute parity information across
the disks in the array. This helps in protecting data and ensuring continued
operation in case of disk failures.

There are several levels of RAID-​Z in ZFS:

0. RAID-​1
In ZFS, a two-​disk mirror is referred to as “mirror” or “RAID-​1” (which
is a more common term used in traditional RAID configurations). In a
ZFS mirror, data are duplicated between the two disks, providing redun-
dancy. This means that if one disk fails, the data are still available on the
other disk.

When you create a mirror in ZFS, you are essentially setting up a RAID-​1
configuration. Each block of data is mirrored to both disks in the pair. This
configuration provides fault tolerance, but it comes at the cost of using twice
the amount of storage space compared to a single disk.

1.	 RAID-​Z1 (Single Parity):

a.	 Similar to RAID 5, it uses single parity for data protection.
b.	 Can tolerate the failure of one disk without data loss.
c.	 Requires a minimum of three disks.

2.	 RAID-​Z2 (Double Parity):
a.	 Similar to RAID 6, it uses double parity for data protection.
b.	 Can tolerate the failure of up to two disks without data loss.
c.	 Requires a minimum of four disks.

3.	 RAID-​Z3 (Triple Parity):
a.	 Provides triple parity for enhanced data protection.

ZFS Administration and Use 65

b.	 Can tolerate the failure of up to three disks without data loss.
c.	 Requires a minimum of five disks.

RAID-​Z offers some advantages over traditional hardware RAID solutions. It
provides features like data integrity checking, automatic repair of silent data
corruption (scrubbing), and the ability to dynamically expand storage pools.
Additionally, ZFS has advanced features like snapshots, data deduplication,
and compression.

It’s important to note that while RAID-​Z provides data protection, it is
not a substitute for regular backups. Backups are essential to protect against
other types of data loss, such as accidental deletions, data corruption, or cata-
strophic events affecting the entire storage system.

1.3 � ZFS Commands and Operations

The following section is an abbreviated encyclopedia, or reference manual,
that illustrates many uses of the two important ZFS commands, zfs and zpool.
It shows the kinds of operations you can perform with those two commands,
and with their options and sub-​commands. In order to get a complete listing,
with examples, of the commands, sub-​commands, and options, consult the
man pages for zfs or zpool on your Raspberry Pi system.

We first present a summary of the command categories and basic definitions
for zpool and zfs. We then show several examples of zpool and zfs command,
sub-​command, option, and command argument usage.

This section also assumes that you have done at least one or more of the
previous examples in Section 1.2.2 to get a feel for what ZFS can accomplish,
and how it works on the Raspberry Pi OS.

All sample code you type on the command line is shown in bold text, and
is always followed by pressing <Enter> on the keyboard. Comments specific
to a command, operation, or term, usually appear after the item of interest.

1.3.1 � Command Categories and Basic Definitions

1.	 Directories and Files

Where error messages appear: /​var/​adm/​messages, console

2.	 ZFS States

DEGRADED � One or more top-​level devices is in the degraded state
because they have become offline. Sufficient replicas
exist to keep functioning.

Raspberry Pi OS System Administration: Ancillary Topics66

FAULTED   � One or more top-​level devices is in the faulted state
because they have become offline. Insufficient replicas
exist to keep functioning.

OFFLINE   � The device was explicitly taken offline by the zpool off-

line command.
ONLINE    The device is online and functioning.
REMOVED � The device was physically removed while the system

was running.
UNAVAIL  �The device could not be opened.

3.	 Scrubbing and Resilvering

Scrubbing: Examines all data to discover hardware faults or disk failures.
Only one scrub may be running at one time, and you can manually scrub.

Resilvering: The same concept as rebuilding or resyncing data on to new
disks into an array. The smart thing resilvering does is it does not rebuild
the whole disk, only the data that are required (the data blocks not the free
blocks), thus reducing the time to resync a disk. Resilvering is automatic when
you replace disks and so on. If a scrub is already running, it is suspended
until the resilvering has finished, then the scrubbing will continue.

4.	 ZFS Devices and Device Terminology

Disk: 		 A physical disk drive.
File:		 The absolute path of preallocated files/​images.
Mirror:		 Standard RAID1 mirror.
RAID-​Z1/​2/​3:	� Nonstandard distributed parity-​based software

RAID levels. Basically, if a power failure occurs in
the middle of a write then you have the data plus the
parity, or you don’t. Also, ZFS supports self-​healing,
which means that if it cannot read a bad block it will
reconstruct it using the parity, and repair or indicate
that this block should not be used.

RAID-​Z1:	 3, 5, 9 disks
RAID-​Z2:	 4, 6, 8, 10, 18 disks
RAID-​Z3:	 5, 7, 11, 19 disks

The more parity bits, the longer it takes to resilver an array. Standard
mirroring does not have the problem of creating the parity, so it is quicker in
resilvering. RAID-​Z is more like RAID3 than RAID5 on another file system,
but does use parity to protect from disk failures.

ZFS Administration and Use 67

RAID-​Z/​RAID-​Z1:	� A minimum of three devices (one parity disk); you
can suffer a one-​disk loss.

RAID-​Z2:		� A minimum of four devices (two parity disks); you
can suffer a two-​disk loss.

RAID-​Z3:		� A minimum of five devices (three parity disks); you
can suffer a three-​disk loss.

Spare: Hard drives marked as hot spare for ZFS RAID. By default, hot spares
are not used in a disk failure; you must turn on the autoreplace feature.

5.	 Cache

A zfs cache caches both the least recently used (LRU) and least frequently
used (LFU) block requests; the cache device uses level-​2 adaptive read cache
(L2ARC).

6.	 Log

There are two log types used:

ZFS intent log (ZIL):  A logging mechanism where all the data to be written
are stored, then later flushed, as a transactional write; this is similar to a
journal file system (ext3 or ext4).

Separate intent log (SLOG):  A separate logging device that caches the
synchronous parts of the ZIL before flushing them to the slower disk; it does
not cache asynchronous data (asynchronous data are flushed directly to the
disk). If the SLOG exists, the ZIL will be moved to it rather than residing
on the platter disk; everything in the SLOG will always be in the system
memory. Basically, the SLOG is the device and the ZIL is data on the device.

1.3.2 � ZFS Storage Pools and the zpool Command

The sub-​commands and options shown in this section are presented in this
general way:

x. What the command, sub-​command, and options accomplish.
The command, sub-​command, options, and command arguments

Commentary or explanation.
Further examples:

More variations of the command, sub-​command, options and command
arguments
Additional commentary or explanation.

Raspberry Pi OS System Administration: Ancillary Topics68

1.	 How to display zpools:

zpool list

Further examples:
zpool list -​o poolname, size, altroot

There are a number of properties that you can select, the default is:
name, size, used, available, capacity, health, altroot.

2.	 How to display zpool status:

zpool status

Further examples:
zpool status -​xv

Shows only errored pools with more verbosity.

3.	 How to show zpool statistics:

zpool iostat -​v 5 5

Use this command like you would iostat

4.	 How to show zpool history:

zpool history -​il

Once a pool has been removed, the history is gone!

5.	 a) How to create a zpool:

zpool create -​n data2 /​dev/​sdb1

The -​n option performs a dry run but doesn’t actually perform the
creation.
Further examples:

b) zpool create data2 /​dev/​sdb1 /​dev/​sdc1

You cannot shrink a pool, only grow it! Assumes there are two disks
called /​dev/​sdb1 and /​dev/​sdc1 .

c) zpool create data2a /​dev/​sdb1

Using a standard disk slice on /​dev/​sdb, the first partition, numbered 1.

ZFS Administration and Use 69

d) zpool create -​m /​zfspool data2a /​dev/​sdb1

Using a different mount point than the default /​<pool name>.

e) zpool create data3 mirror /​dev/​sdb1 /​dev/​sdc1 mirror /​dev/​sdd1\

/​dev/​sde1

zpool create data4 mirror /​dev/​sdb1 /​dev/​sdc1 spare /​dev/​sdd1

Mirror and hot spare disk examples. “Hot spares” are not used by
default, so you need to turn on the auto-​replace feature with zpool
setautoreplace=​on for each pool!
f) zpool create data5 mirror /​dev/​sdb1 /​dev/​sdc1 log mirror /​dev/\​

sdd1 /​dev/​sde1

Setting up a log device and mirroring it.
g) zpool create data6 mirror /​dev/​sdb1 /​dev/​sdc1 cache /​dev/​sdd1 /\

​dev/​sde1

Setting up a cache device.
h) zpool create data7 raidz2 /​dev/​sdb1 /​dev/​sdc1 /​dev/​sdd1 /​dev/\​

sde1 /​dev/​sdf1

You can also create RAID pools (RAID-​Z/​RAID-​Z1: mirror; RAID-​Z2:
single parity; RAID-​Z3: double parity).

In-​Chapter Exercise

1.15 � How many discrete disks would you need to be able to actually
implement the three levels of RAID-​Z that you can create?

6.	 How to destroy a zpool:

zpool destroy data2

Further examples:

zpool import -​f -​D -​d /​mypool/​data2

You can re-​import a destroyed pool.

***Note ***
Another very powerful use of zpool importing is to enable you to com-
pletely replace your bootable system disk with the Raspberry Pi OS built
on it (which cannot at the current time be a ZFS vdev!) by keeping your
user data on a second hard disk with a ZFS zpool on it (possibly mirrored
onto other disks in RAID arrays). This is our recommended storage model.
Then, when you are ready to replace the system disk, you export the
user data disk(s) with the zpool export command, and then once you’ve

Raspberry Pi OS System Administration: Ancillary Topics70

replaced the system disk and installed ZFS on it, you can simply import
the user data disk.

7.	 How to add a device to a zpool:

zpool add data01 /​dev/​sdc1

The zpool command only supports the removal of hot spares and cache
disks! Therefore, be sure you want to add the device to the pool, because
you cannot ordinarily remove it with the zpool remove command. For
adding to mirrors, see the attach and detach sub-​commands that follow.

8.	 How to resize a zpool:

zpool set autoreplace=​on pool_​name

zpool set autoexpand=​on pool_​name

This is not about resizing partitions on an existing vdev that is
contained in a zpool. It is about replacing an entire existing vdev, of
smaller capacity, with another piece of hardware that has a larger cap-
acity. When replacing a smaller disk with a larger one you must enable
the autoreplace and autoexpand features to allow you to use the larger
space. You must do this before replacing the first smaller capacity disk
with the larger capacity second disk.

9.	 How to remove a zpool:

zpool remove data01 /​dev/​sdb1

zpool only supports the removal of hot spares and cache disks!
Therefore, be sure you want to add the device to the pool, because
you cannot ordinarily remove it with the zpool remove command. For
adding to mirrors, see the attach and detach sub-​commands that follow.

10.	 How to clear faults:

zpool clear data01

Further examples:
zpool clear data01 /​dev/​sdb1

Clears a specific disk fault.

11.	 Attaching additional drives as a mirror:

zpool attach data01 /​dev/​sdb1 /​dev/​sdc1

ZFS Administration and Use 71

/​dev/​sdb1 is an existing disk that is not mirrored, so by attaching /​dev/​
sdc1 to the pool data01, both disks will become a mirrored pair.

In-​Chapter Exercise

1.16  What level of RAID is this?

12.	 How to detach a mirror disk:

zpool detach data01 /​dev/​sdb1

See the previous note on attaching additional drives as a mirror.

13.	 How to online a zpool (put the pool online):

zpool online data01 /​dev/​sdb1

14.	 How to offline a zpool (take the pool offline):

zpool offline data01 /​dev/​sdb1

Further examples:
zpool offline data01 -​t /​dev/​sdb1

This achieves temporary offlining using -​t (will revert back to online
after a reboot).

15.	 How to replace pools:

zpool replace data03 /​dev/​sdb1

Replaces one disk that uses the same designation in /​dev as another disk.

Further examples:
zpool replace data03 /​dev/​sdb1 /​dev/​sdc1

Replaces one disk with another disk in /​dev that has a different des-
ignation. As mentioned above, make sure to set the autoreplace and
autoexpand features on before doing this operation.

16. How to do scrubbing:

zpool scrub data01

Further examples:
zpool scrub -​s data01

Raspberry Pi OS System Administration: Ancillary Topics72

Stop a scrubbing in progress; check the scrub line using zpool status

data01 to see any errors.

17.	 How to do exporting.

As mentioned above, and detailed in our recommended storage model,
this command, in combination with the zpool import command, enables
you to completely replace your bootable system disk with the Raspberry
Pi OS built on it (which cannot at the current time be a ZFS vdev!) by
keeping your user data on a second hard disk with a ZFS zpool on it
(possibly mirrored onto other disks in RAID arrays). Then, when you
are ready to replace the system disk, you export the user data disk(s)
with the zpool export command. Once you’ve replaced the system disk
and installed ZFS on it, you can simply import the user data disk. This
is a very powerful commercial system administration technique.

zpool export data01

You can list exported pools using the import command zpool import to
find what the names of exported zpools are, if any.

18.	 How to do importing:

zpool import data01

When using standard disk devices—​that is, /​dev/​sdb1.
Further examples:

zpool import -​d /​zfs

If using files in the /​zfs file system

zpool import -​f -​D -​d /​zfs1 data2

Imports a destroyed pool.

19.	 Getting zpool parameters:

zpool get all data01

The source column denotes if the value has been changed from its
default value; a dash in this column means it is a read-​only value.

20.	 Setting zpool parameters:

zpool set autoreplace=​on data01

ZFS Administration and Use 73

Use the command zpool get all <pool> to obtain a list of current
settings.

21.	 How to upgrade pools:

zpool upgrade -​v

Lists upgrade paths.
Further examples:

zpool upgrade -​a

Upgrades all pools.

zpool upgrade data01

Upgrades a specific pool; use zpool get all poolname to obtain the
version number of a pool.

zpool upgrade -​V 10 data01

Upgrades to a specific version.

22. Replace a failed disk:

zpool list

Lists the zpools and identifies the failed disk.
Further examples:

zpool replace data01 /​dev/​sdb1

zpool replace data01 /​dev/​sdb1 /​dev/​sdc1

Replaces the disk. You can use the same capacity disk or a new disk
of equal or larger capacity. As mentioned above, make sure to set the
autoreplace and autoexpand features on before doing this operation.
zpool clear data01

Clears any existing errors.
zpool scrub data01

Scrub the pool to check for any more errors (this depends on the size of
the zpool, as it can take a long time to complete). You can now remove
the failed disk in the normal way, depending on your hardware.

Raspberry Pi OS System Administration: Ancillary Topics74

23. How to expand a pool’s capacity:

zpool set autoexpand=​on data01

zpool set autoreplace=​on data01

zpool replace data01 /​dev/​sdb1 /​dev/​sdc1

You cannot remove a disk from a pool and you cannot shrink the pool,
but you can enlarge it by replacing existing disks with larger disks!

1.3.3  ZFS File System Commands and the zfs Command

The sub-​commands and options shown in this section are presented in the
following general way:

What the command, sub-​command, and options accomplish.
The command, sub-​command, options, and command arguments

Commentary or explanation.
Further examples:

More variations of the command, sub-​command, options and command
arguments
Commentary or explanation.

1.  Displaying ZFS file systems:

zfs list

Lists all ZFS file systems

Further examples:

zfs list -​t filesystem

zfs list -​t snapshot

zfs list -​t volume

zfs list -​t all -​r poolname

Lists different types (file system, snapshot, volume) by poolname.
zfs list -​r data01/​bob

Recursive display.
zfs list -​o poolname,mounted,sharenfs,mountpoint

Complex listing: there are a number of attributes that you can use in a
complex listing; see the man page for zfs.

ZFS Administration and Use 75

2.  How to create a file system:

zfs create data01/​bob

Assumes a pool exists named data01, and creates a /​data01/​bob ZFS
file system on that pool.

Further examples:

zfs create -​o mountpoint=​/​users/​data01/​users

Creates the ZFS filesystem at a different mount point.

3.  How to destroy a file system:

zfs destroy data01/​bob

Further examples:

zfs destroy -​r data01/​bob

zfs destroy -​R data01/​bob

Uses the recursive options -​r (all children), -​R (all dependents).

4.  How to mount a file system:

zfs mount data01

Further examples:

zfs mount -​o mountpoint=​/​tmpmnt data01/​bob

You can create temporary mount that expires after unmounting. You
can apply all the normal mount options, i.e., ro/​rw, setuid, etc..

5.  How to unmount a file system:

zfs umount data01

6.  How to share a file system:

zfs share data01

Further examples:

zfs set sharenfs=​on data01

Raspberry Pi OS System Administration: Ancillary Topics76

This file system persists after reboots!

zfs set sharenfs=​"rw=​@192.168.0.13/​24" data01/​bob

Shares with specific hosts.

7.  How to unshare a file system:

zfs unshare data01

Further examples:

zfs set sharenfs=​off data01

This file system persists after reboot!

8.  How to take snapshots of file systems:

Taking a “snapshot” of a file system is like taking a picture: changes
are recorded to the snapshot when the original file system changes; to
remove a dataset all previous snapshots have to be removed. You can
also rename snapshots. You cannot destroy a snapshot if it has a clone.

zfs snapshot data01@10022010

Creates a snapshot.

Further examples:

zfs snapshot rename data01@10022010 data01@mybackup

Renames a snapshot.

zfs destroy data01@10022010

Destroys a snapshot.

9.  How to roll back a file system:

By default, you can only roll back to the latest snapshot. To roll back to
older ones, you must delete all newer snapshots.

zfs rollback data01@10022010

ZFS Administration and Use 77

10. Cloning/​promoting file systems:

Clones are writable file systems that have been upgraded from a snap-
shot. A dependency will remain on the snapshot as long as the clone
exists. A clone uses the data from the snapshot to exist. As you use
the clone, it uses space separate from the snapshot. Clones cannot be
created across zpools, you need to use the zfs send/​receive commands
to do this, as shown in Example 1.2.

zfs clone data7@10022010 data8/​clone

zfs clone -​o mountpoint=​/​clone data7@10022010 data8/​clone

Clones, changes the mount point of the clone.
Further examples:

zfs promote data8/​clone

Promotes a clone. This allows you to destroy the original file system
that the clone is attached to. The clone must reside in the same pool!

11.  Renaming a file system:

zfs rename data03/​koretsky_​disk01 data03/​koretsky_​d01

The dataset must be kept within the same pool. There are two options
on this command: -​p creates all the nonexistent parent datasets; -​r
recursively renames the snapshots of all descendent datasets (used
with snapshots only).

12.  Compression of file systems:

zfs set compression=​lzjb data03/​bob

You enable compression by setting a feature. Compressions are on, off,
lzjb, gzip, gzip[1–​9], and zle. Compression only starts when you turn
it on; other existing data will not be compressed.
Further examples:

zfs get compressratio data03/​bob

You can get the compression ratio.

13.  Deduplication:

You can save disk space using deduplication.
zdb -​b data01

Raspberry Pi OS System Administration: Ancillary Topics78

Use this command to see the block the dataset consumes.
Further examples:

zfs set dedup=​on data01/​myfiles

To turn on deduplicate.

zfs get dedupratio data01/​myfiles

To see the deduplication ratio.

zdb -​DD poolname

To see a histogram of how many blocks are referenced how many times.

14.  Getting file system parameters:

zfs get all data03/​bob

Lists all the properties.
Further examples:

zfs get setuid data03/​bob

Gets a specific property.

zfs get compression

Gets a list of specific properties for all datasets. The source column
denotes if the value has been changed from its default value; a dash in
this column means it is a read-​only value.

15.  Setting file system parameters:

zfs set copies=​2 data03/​bob

Sets the number of copies of dataset bob in the pool data03 to 2; the
default number of copies is 1. This is probably the most useful and
important way to ensure redundancy on a nonredundant vdev, such as
a single hard disk in a laptop computer. Although it doubles the storage
space required to contain the dataset, error correction with zpool scrub
can be achieved on the nonredundant vdev that contains the pool and
its datasets that have copies set to 2.
Further examples:

zfs set quota=​50M data03/​bob

zfs set quota=​none data03/​bob

ZFS Administration and Use 79

Sets and unsets the disk usage quota. Use the command zfs get all

<dataset> to obtain a list of current settings.

16.  How to have a file system inherit attributes:

zfs inherit compression data03/​bob

Sets back to the default value.

17.  How to upgrade the ZFS version:

zfs upgrade -​v

Lists the upgrade paths.
Further examples:

zfs upgrade

Lists all the datasets that are not at the current level.

upgrade -​V <version> data03/​linuxthetextbook2

Upgrades a specific dataset.

18.  How to use allow/​unallow:

zfs allow master

Displays the permissions set and any user permissions.
Further examples:

zfs allow -​s @permset1 create,mount,snapshot,clone,promote master

Creates a permission set.

zfs unallow -​s @permset1 master

Deletes a permission set.

zfs allow vallep @permset1 master

Grants a user permissions.

zfs unallow vallep @permset1 master

Raspberry Pi OS System Administration: Ancillary Topics80

Revokes a user’s permissions. There are many permissions that you can set.
Refer to the zfs man page, or just use the zfs allow command, to get help.

1.4 � File System Backups Using zfs snapshot

Snapshots are the ZFS way of creating archives and backups automatically, or
with very simple script file operations and embedded commands. As stated
previously, taking a snapshot of a file system is like taking a picture; changes
are recorded to the snapshot when the original file system changes.

Here are some important things to remember about snapshots:

a.	 To remove a dataset, all previous snapshots have to be removed.
b.	 You can rename snapshots.
c.	 You cannot destroy a snapshot if it has a clone.

1.4.1 � Examples of snapshot

An example of creating a snapshot:

zfs snapshot data01@10022010

An example of renaming a snapshot:

zfs snapshot data01@10022010 data01@mybackup

An example of destroying a snapshot:

zfs destroy data01@10022010

1.4.2 � zfs rollback

It is possible to roll back a file system, or return it to a previous state. You
must use the zfs rollback command. By default you can only roll back to
the latest snapshot, to roll back to an older one you must delete all newer
snapshots!

An example of rolling back to a snapshot is:

zfs rollback data01@10022010

ZFS Administration and Use 81

1.4.3 � Cloning/​Promoting

As stated previously, clones are writable file systems that have been upgraded
from a snapshot, and a dependency will remain on the snapshot as long as
the clone exists. A clone uses the data from the snapshot to exist. As you use
the clone it uses space separate from the snapshot. Clones cannot be created
across zpools, you need to use the zfs send/​receive commands to do this.

Two examples of cloning are:

zfs clone data7@10022010 data8/​clone

zfs clone -​o mountpoint=​/​clone data7@10022010 data8/​clone

Promoting a clone allows you to destroy the original file system that the clone
is attached to. An example of this is:

zfs promote data8/​clone

The clone must reside in the same pool.

1.4.4 � Renaming a Filesystem

The dataset must be kept within the same zpool! An example of this is:

zfs rename data03/​koretsky_​disk01 data03/​koretsky_​d01

There are two options on this command: -​p creates all the nonexistent parent
datasets; -​r recursively renames the snapshots of all descendent datasets
(used with snapshots only).

1.4.5 � Compression of Filesystems

You enable compression by setting a feature. Compressions are on, off, lzjb,
gzip, gzip[1–​9], and zle. Compression starts when you turn it on; other
existing data will not be compressed. A description of those forms of com-
pression follows:

lzjb:
lzjb is a compression algorithm used in the ZFS file system, which is developed
by Sun Microsystems (now part of Oracle). It is designed to provide good
compression and decompression speed with relatively low resource usage.

gzip:
gzip is a widely used data compression and decompression tool. It uses the
DEFLATE algorithm, which is a combination of LZ77 (a sliding window

Raspberry Pi OS System Administration: Ancillary Topics82

compression algorithm) and Huffman coding (a variable-​length prefix coding
algorithm). Gzip is commonly used to compress files on Unix and Unix-​like
systems.

gzip[1–​9]:
The numbers 1 through 9 after gzip indicate different compression levels. The
higher the number, the better the compression, but at the cost of increased
processing time. For example, gzip -​9 will use the maximum compression
level, while gzip -​1 will use the fastest (but least efficient) compression.

zle:
zle is not a compression algorithm itself; rather, it is a feature of the Zsh (Z
Shell) command-​line interpreter. Zle stands for “Zsh Line Editor”. It provides
advanced line editing capabilities, including command history, completion,
and other interactive features to enhance the command-​line experience
for users.

In summary, lzjb is a compression algorithm used in the ZFS file system,
gzip is a general-​purpose compression tool using the DEFLATE algorithm,
gzip[1–​9] refers to different compression levels in gzip, and zle is a feature of
the Zsh shell for line editing.

An example of this is:

zfs set compression=​lzjb data03/​bob

You can get the compression ratio by using the following example:

zfs get compressratio data03/​bob

1.5 � Incremental ZFS Backups

In this section we give examples of how to utilize ZFS to accomplish an
important system administration task for the ordinary user: backup of file
systems and the files in them. The first example uses zfs send/​receive to
accomplish this backup. The second example uses a Bourne shell script to
automate that process, in order to make it faster, more efficient, and auto-
matic if desired.

Example 1.5: Sending and Receiving ZFS Snapshots Across a LAN

Objectives:
To create two zpools and their default datasets on two different flashdrives,
mounted on two different systems on a LAN. To then take zfs snapshots

ZFS Administration and Use 83

(backups) of the dataset on one system, and use zfs send/​receive to transmit
the contents of those snapshots to the other system.

Introduction:

ZFS snapshots are a feature of the ZFS file system that allows you to create
read-​only point-​in-​time copies of your file system. These snapshots are effi-
cient, storage space-​saving representations of the state of the file system at
the time the snapshot is taken. Here are some key points about them, and
what you might use them for on your Raspberry Pi systems:

1.	 Storage Space Efficiency: ZFS snapshots are storage space-​efficient
because they initially consume no additional media space. Instead,
they reference the existing data blocks of the file system. As changes
are made to the ZFS file system after the snapshot is taken, only the
modified data blocks are allocated additional space. This makes it
possible to have multiple snapshots, without consuming a lot of extra
storage space.

2.	 Rapid Creation and Deletion: Creating a ZFS snapshot is a quick oper-
ation because it doesn’t involve copying data. Deleting a snapshot
is also fast, as it involves freeing up references, rather than deleting
actual data.

3.	 Data Protection: ZFS snapshots are useful for data protection and
recovery. If you accidentally delete or modify a file, you can roll back
to a previous snapshot to restore the file system to its state at the time
of the snapshot. This can help prevent data loss, and simplify backup
and recovery processes.

4.	 Backup: While ZFS snapshots are not a full replacement for traditional
backups, they can be part of an overall user data backup strategy.
Snapshots provide a point-​in-​time copy of the file system that, can be
used for backup purposes. You can use them in conjunction with tools
like zfs send and zfs receive, to send snapshots to another system or
storage device, creating a backup. And that should have become evi-
dent to you when you did Example 1.2, even though the snapshots
were on files emulating vdevs, and were on the same Raspberry Pi
system.

5.	 Cloning: ZFS snapshots can be used to create clones, which are writ-
able copies of a file system at a specific point in time. Clones share data
with the original snapshot until changes are made, at which point the
data in them diverges.

6.	 Rollback: If you make changes to your file system that you later regret,
you can use ZFS snapshots to roll back the file system to a previous
state, effectively undoing the changes.

Raspberry Pi OS System Administration: Ancillary Topics84

ZFS snapshots contribute to the overall flexibility, efficiency, and data integ-
rity features of the ZFS file system. They are a powerful tool for managing
and protecting data, and they can be particularly useful in environments
where data consistency and reliability are critical.

To transmit ZFS snapshots between two computers on your LAN, you
can use the zfs send and zfs receive commands. These commands are used
to send and receive ZFS snapshots, respectively. Below is a sequentially
organized basic description of how you can use these commands:

1. On the source machine (sending machine):
Identify the dataset and snapshot you want to send. For example, if you
have a dataset named pool1/​mydata and a snapshot named @backup1, you
would use:

zfs send pool1/​mydata@backup1 > /​path/​to/​backup1.zfs

2. Transfer the snapshot to the destination machine:
You can use various methods like scp, rsync, or any other file transfer tool to
move the backup1.zfs file to the destination machine.

3. On the destination machine (receiving machine):
Once the snapshot file is on the destination machine, you can use the zfs

receive command to apply the snapshot:

zfs receive pool2/​newdataset < /​path/​to/​backup1.zfs

This will recreate the dataset pool2/​newdataset on the destination machine
using the data from the snapshot.

Here’s an explanantion of the above commands:
zfs send: This command sends the ZFS dataset or snapshot to standard
output, which can then be redirected to a file or transmitted over the network.

zfs receive: This command reads the stream from standard input and creates
a new dataset, file system, or volume.

Remember to replace pool1/​mydata, @backup1, pool2/​newdataset, /​path/​to/​
backup1.zfs, and other placeholders with your actual dataset, snapshot, and
file paths. Additionally, you may want to consider using tools like ssh along
with zfs send and zfs receive for secure communication over the network.
For example, you can use ssh to execute the zfs receive command on the des-
tination machine, like this:

zfs send pool1/​mydata@backup1 | ssh username@destination-​machine 'zfs\

receive pool2/​newdataset'

ZFS Administration and Use 85

There are a couple of important qualifiers on this general command:

1.	 If you’ve created the zpool on both machines as root, unless you
change the access privileges on the destination machine, the username
at that destination will have to be root. And you will need to modify
the SSH configuration on the destination, so that root can login. We
show this procedure in the two examples that follow.

2.	 Make sure to replace username and destination-​machine with your
actual SSH username and the address of the destination machine!

3.	 Ensure that the destination dataset (pool2/​newdataset in the case of
this example) does not already initially exist when you’re transmitting
the first snapshot.

Note
The two systems (sending and destination) could be Raspberry Pi systems,
or a Raspberry Pi system as the sender, and another type or architecture
machine as the receiver. As long as both of them have ZFS installed.

Prerequisites:

1.	 Completion of Examples 1.1 through 1.4.
2.	 Installation of ZFS on both Raspberry Pi systems, as shown in

Section 1.1.
3.	 Having root access privileges on both systems, i.e. knowing root’s

password, particularly on the destination system.
4.	 You must be able to login as root via ssh on the destination host

receiving the backup. This involves changing your sshd_​config file to
allow root login, and is a security risk if your machine has a public-​
facing IP address! This is achieved on a Raspberry Pi system by editing
the /​etc/​ssh/​sshd_​config file as root, and changing the line

#PermitRootLogin prohibit-​password to PermitRootLogin yes

5.	 Having two spare, and properly formatted flashdrives available for use.
In our case, we used two flashdrives formatted to FAT32 to begin with.

Procedures:

Step 1. Prepare the two flashdrives as shown in Example 1.3.
Step 2. Insert the flashdrives on the two systems, and create one zpool on

each named as follows:
On the source system: sender

On the destination system: receiver

Raspberry Pi OS System Administration: Ancillary Topics86

Step 3. In the ZFS dataset named sender (by default mounted at /​sender),
which ZFS created by default in the source zpool created in Step 2, use a
text editor to create a file named newfile.

Step 4. Take a zfs snapshot of the sender dataset with the following command:

bob@raspberrypi:~ $ sudo zfs snapshot sender@2023-​11-​25

The snapshot’s name in this case includes the date, November 25, 2023.
To list the snapshots now taken, use the following command:

bob@raspberrypi:~ $ sudo zfs list -​t snapshot

NAME			 USED	 AVAIL  REFER  MOUNTPOINT
sender@2023-​11-​25	 0B	 -​ 134K -​

bob@raspberrypi:~ $

Step 5. Send the snapshot stream to the second system, using ssh, as follows:

bob@raspberrypi:~ $ sudo zfs send sender@2023-​11-​25 | ssh\

root@192.168.1.34 zfs \ receive -​F receiver

root@192.168.1.34’s password: Enter root’s password here!
Output truncated...
bob@raspberrypi:~ $

Step 6. On the second system, the file named newfile will be in the directory
/​receiver.

When you send a full stream, the destination dataset must not exist. The
following commands on the second, destination system, shows the results of
sending the snapshot:

$ cd /​receiver

/​receiver$ ls
newfile
/​receiver$

Step 7. On the sender, add another file using your text editor to /​sender,
named newfile2. Take another snapshot of sender with the following
command:

bob@raspberrypi:~ $ sudo zfs snapshot sender@2023-​11-​26

bob@raspberrypi:~ $

ZFS Administration and Use 87

You can check the status of snapshots now with the following command:

bob@raspberrypi:~ $ sudo zfs list -​t snapshot

NAME			 USED  AVAIL  REFER  MOUNTPOINT
sender@2023-​11-​25	 13K	 -​	 134K	 -​
sender@2023-​11-​26	 0B	 -​	 135K	 -​
bob@raspberrypi:~ $

Step 8. You can send incremental data by using the zfs send -​i option. To
send an incremental snapshot to the second machine, use the following
command:

bob@raspberrypi:~ $ sudo zfs send -​i sender@2023-​11-​25 sender@2023-\​

11-​26 | ssh \ root@192.168.1.34 zfs receive -​F receiver

root@192.168.1.34’s password: Enter root’s password here!
Output truncated…
bob@raspberrypi:~ $

Note that the first argument, sender@2023 -​11-​25, is the earlier snapshot and
the second argument, sender@2023-​11-​26, is the second snapshot. In this
case, the dataset receiver must already exist for the incremental receive to be
successful.

Step 9. On the second system, the files named newfile and newfile2 will be in
the directory /​receiver. The following command shows this:

/​receiver$ ls
newfile newfile2
/​receiver$

10. To clean up, use the sudo zfs destroy command to delete the snapshots
on both systems. Then use the sudo zpool destroy command on both systems
to destroy the datasets and pools created on the flashdrives. Finally, use the
gparted program on your Raspberry Pi systems to reinitialize the flashdrives
so that they can be used again, outside of ZFS, if that’s what you desire.

Conclusion
You created two zpools, and their default datasets, on two different
flashdrives, mounted on two different systems on a LAN. You then took zfs
snapshots (backups) of the dataset on one system, and used zfs send/​receive
to transmit the contents of those snapshots to another system.

Raspberry Pi OS System Administration: Ancillary Topics88

Example 1.6: Daily zfs snapshot Command Automation in a Bourne Shell
Script

Objectives:

The following Bourne shell script, which should be run only once daily,
achieves the incremental backing up of a file system on one Raspberry Pi
system to a remote host system on a LAN, using zfs snapshot send/​receive.
It is very similar to, and a further extension of, the zfs send/​receive examples
shown in Examples 1.2 and 1.5.

Prerequisites:

1.	 Installation of ZFS on both Raspberry Pi systems, as shown in Section
1.1, and completion of Examples 1.1 through 1.5.

2.	 The host receiving the snapshot must be running the same or a higher
version of ZFS than the sender, which, if you’ve installed them on two
Raspberry Pi systems with the instructions from Section 1.1, will be
the same.

3.	 You must be able to login as root via ssh on the destination host
receiving the backup. This involves changing your sshd_​config file to
allow root login, and is a security risk if your machine has a public-​
facing IP address! This is achieved on a Raspberry Pi system by editing
the /​etc/​ssh/​sshd_​config file as root, and changing the line

#PermitRootLogin prohibit-​password to PermitRootLogin yes

4.	 You must be sending to an account that has ZFS create/​receive properties.

5.	 The zfs dataset names for source and destination, and the LAN IP
addresses shown, are specific to our system. You need to change these
appropriately for your system.

Procedures:

Note
The script file that achieves the Objectives of this example should only be
run once daily, perhaps automatically via a systemd timer. If you run it more
than that in the same calendar day, you will get an error message, and over-
write yesterday’s snapshot! And then you’ll have to redo all of the steps of
this Procedure.

1.	 Insert USB-​mounted media into source and destination Raspberry Pi
systems, unmount them, and create zpools on them named sender

ZFS Administration and Use 89

and receiver, exactly like was done in Example 1.5. sender would be
the name of the source zpool, and receiver would be the name of the
destination zpool. You can interrogate each system, in particular the /​
dev directory of each, to know the logical names of each of the USB-​
mounted medium you’ve added to them. Or, you can use the df -​hT
command to find out the same thing.

2.	 Create a snapshot of the sender filesystem with the following
command:

bob@raspberrypi:~ $ sudo zfs snapshot sender@2023-​11-​24

where 2023-​11-​24 was yesterday’s date (whatever that date is at the
time you’re doing this Example) on our system. You can check this on
the source system with the following command:

bob@raspberrypi:~ $ sudo zfs list -​t snapshot

NAME			 USED	 AVAIL	 REFER  MOUNTPOINT
sender@2023-​11-​24	 0B	 -​	 135K	 -​

3.	 In order for the Bourne shell script file that copies a snapshot between
systems to work, the archived, or previous snapshot, must exist on
both the source and destination filesystems. Copy the snapshot
sender@2023-​11-​24, as shown in Example 1.5, Step 5. to the destin-
ation host.

4.	 Execute the script file listed below with the following command:

bob@raspberrypi:~ $ sudo ./​Example_​1_​6.sh

taking todays snapshot, sender@2023-​11-​25
yesterday snapshot, sender@2023-​11-​24, exists, send todays backup
root@192.168.1.27’s password: Enter your root password on the des-
tination machine!

backup complete destroying yesterdays snapshot
bob@raspberrypi:~ $

5.	 On the destination Raspberry Pi, check that the snapshot has been
received with the following command:

$ sudo zfs list -​t snapshot

NAME			 USED	 AVAIL	 REFER  MOUNTPOINT
receiver@2023-​11-​24	 0B	 -​	 134K	 -​
receiver@2023-​11-​25	 0B	 -​	 134K	 -​
$

Raspberry Pi OS System Administration: Ancillary Topics90

Optional Step:

6.	 To clean up, use the sudo zfs -​r destroy command to delete the
snapshots on both systems. Then use the sudo zpool destroy command
on both systems to destroy the datasets and pools created on the USB-​
mounted media. Finally, use the Gparted program on your Raspberry
Pi systems to reinitialize that media, so that they can be used again,
with perhaps a FAT32, or ext4 filesystem on them.

Code for Example_​1_​6.sh:

!/​bin/​sh

This assigns a local filesystem as the source to be transmitted

pool=​"sender"

This assigns a remote destination

destination=​"receiver"

This names the IP address of the remote target host

host=​"192.168.1.27"

Sets the date format for today

today=​$(date +​"%Y-​%m-​%d")

This sets the date format for yesterday

yesterday=​$(date +​"%Y-​%m-​%d" -​d"-​1 day")

Create today's snapshot

snapshot_​today=​"$pool@$today"

look for a snapshot with this name, and if none exists, take the snapshot

if zfs list -​H -​o name -​t snapshot | sort | grep "$snapshot_​today$" > /​dev/​null\

then

echo " snapshot, $snapshot_​today, already exists"

exit 1

else

echo " taking todays snapshot, $snapshot_​today"

zfs snapshot -​r $snapshot_​today

fi

look for yesterdays snapshot

snapshot_​yesterday=​"$pool@$yesterday"

If it exists, zfs send todays snapshot

if zfs list -​H -​o name -​t snapshot | sort | grep "$snapshot_​yesterday$" > /​dev/\

​null

then

echo " yesterday snapshot, $snapshot_​yesterday, exists, send todays\

backup"

zfs send -​R -​i $snapshot_​yesterday $snapshot_​today | ssh root@$host \

zfs receive -​F $destination

ZFS Administration and Use 91

echo " backup complete destroying yesterdays snapshot"

zfs destroy -​r $snapshot_​yesterday

exit 0

else

echo " missing yesterday snapshot aborting, $snapshot_​yesterday"

exit 1

fi

In-​Chapter Exercise

1.17 � If you run this Bourne shell script once every day for three days in
a row, how many snapshots will exist on the destination Raspberry
Pi, in the filesystem receiver?

Summary
This chapter provided someone just beginning to use the Raspberry Pi OS
with the basic techniques of working with the Zettabyte File System (ZFS). It
covered the following topics:

1.	 Definition of essential terms used in ZFS and a description of what
ZFS is from the user perspective.

2.	 What differentiates ZFS from other file systems. ZFS file systems are
mapped onto pool storage facilities, known as zpools, rather than onto
physical storage media, like disk drives. The zpools are then mapped
onto the physical media. That means that the file system’s storage
requirements can grow, or can be made redundant using mirroring, as
more physical media devices are added to the zpools.

3.	 Six fundamental and useful worked examples of deploying various
ZFS commands, primarly zpool and zfs. These worked examples illus-
trate for the beginner some of the basic operations that can be used to
create zpools, and file systems on them.

4.	 A command reference section that gives many ZFS command usage
examples.

5.	 File system backup procedures, with a Bourne shell script example,
that uses the zfs snapshot, zfs send, and zfs receive commands.

92 DOI: 10.1201/9781003473268-3

2	�
The X Windows System, Wayland,
Xwayland, Wayfire, GTK, Qt, and Gnuplot

2.0  Objectives

*	 To give a basic overview of how a GUI desktop system on the Raspberry
Pi OS works

*	 To give the basic concepts behind the X Window System, the Wayland
protocol, XWayland, Wayfire, XCB, Qt5, and GTK4 graphics

*	 To present the following model of developing practical GUI client applications:
*	 Data Generation → Window Generation/​Construction → Data

Mapping to the Constructed Window
*	 To provide simple examples of using the Qt5 and GTK4 toolkits to create

widget graphics that comprise the Window Generation/​Construction
phase of the above model

*	 To detail the use of a Data Generation application, gnuplot, and how
gnuplot can be used to map its data to windows created by Qt5

*	 To cover the commands and primitives

gcc, gnuplot, make, raspi-​config, Wayfire, Wayland, qmake, XCB

2.1 � Introductory Remarks

You’ve done the default installation of the Raspberry Pi OS, but are not
happy with Wayland and Wayfire as your backend graphics system and
window manager, which are the default GUI systems used on a Debian
Bookworm-​based Raspberry Pi OS. And the system is unstable, and is giving
you a lot of problems while you’re in the middle of doing important work on
applications-​related material.

http://dx.doi.org/10.1201/9781003473268-3

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 93

So what do you do, if you want to use an X11 backend on your Raspberry
Pi 3, 4b, 400 or 5, and have installed and are running the Debian Bookworm-​
based Raspberry Pi OS? You haven’t completely swallowed the Wayland
fanboy hype coming out of the Raspberry Pi Forums, or on the Internet, your
system is always crashing in bizarre ways, and most importantly, you have
attributed that behavior to the Wayland and Wayfire system and window
manager. I’ve determined that I can eliminate those problems, simply by
switching from Wayland to X11.

The following instructions allow you to simply and easily achieve that
switch to an X11 window manager and backend on your Debian Bookworm-​
based Raspberry Pi OS.

1.	 Use the raspi-​config tool. To launch it, type this command:

$ sudo raspi-​config

A text-​based configuration tool appears on screen.

2.	 Use the arrow keys on your keyboard to scroll down to choice 6
Advanced Options Configure advanced settings, and press <Enter>.

3.	 Your screen looks something like Figure 2.1. Highlight menu choice A6
Wayland Switch between X and Wayland backends, and press <Enter>.

FIGURE 2.1
raspi-config A6 Selection.

Raspberry Pi OS System Administration: Ancillary Topics94

4.	 The final choices are presented on the menu that appears. They are:

W1 X11 Openbox window manager with X11 backend
W2 Wayfire Wayfire window manager with Wayland backend

Choose by highlighting W1 with keyboard arrow keys, then press <Enter>.
You can then have your system reboot into whichever menu choice you’ve
made, W1 for X11.

2.1.1 � What Constitutes a Raspberry Pi OS GUI?

In the spirit of many of the previous chapters and sections found in the volumes
of this series, and as far as the Debian Bookworm-​based Raspberry Pi OS
released for the Raspberry Pi 5 is concerned, you also have to ask yourself these
questions before you begin this chapter on the contemporary Raspberry Pi GUI:

1.	 What is the X Window System?
2.	 What is Wayland?
3.	 What is Xwayland
4.	 What is Wayfire?
5.	 What is GTK?

6.	 What is Qt?

The answers to these questions, which are followed up in more detail by this
chapter’s sections, examples, and problems, are as follows:

1.	 The X Window System, commonly referred to as X11(or simply X,)
is a network-​transparent windowing system used for graphical user
interfaces on Unix and Unix-​like operating systems such as Linux,
which the Raspberyy Pi OS is. It was developed at MIT in the 1980s
and has been a fundamental part of Unix/​Linux-​based desktop com-
puting for many years.

X11 provides the infrastructure for creating graphical environments,
which include windows, icons, mouse pointers, and other graphical
elements. It allows applications to display their graphical output and
manage user input, such as mouse and keyboard interactions. X11 is
designed to work over a network, enabling graphical applications to
run on one machine and display output on another.

Note
As repeated below in Section 2.3.4, a key concept of the X Window System that
sometimes causes confusion is the difference between server and client. One

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 95

possible cause for confusion here is that traditionally, on a computer network,
a server is thought of as a machine that serves files to many other machines
(clients), which is certainly a different function from an X Window System
server, and its client(s). In the X Window System, a server is the hardware
and/​or software that actually takes input from and displays output to the
user. For example, the keyboard, mouse, and OLED display screen in front of
the user are part of the server; they graphically serve information to the user.
The client is an application program that connects to, receives input events
from, and makes output requests to the server to show, or display something.

Some additional key features and concepts of the X Window System include:

a.	 Network Transparency: X11 is known for its network transparency,
which means that applications can be run on one computer and
displayed on another. This is useful for remote desktop applications
and for distributing computational tasks to remote servers while
displaying the results locally.

b.	 Window Management: X11 provides basic window management
features, allowing users to move, resize, and manipulate windows.

c.	 Extension Support: X11 supports extensions that can add extra func-
tionality to the core X protocol, such as the X Render extension for
improved graphics rendering.

d.	 Multiple Window Managers: X11 is window manager-​agnostic,
meaning users can choose from a variety of window managers, each
with its own look, feel, and features. Popular window managers
include GNOME, KDE, Xfce, and many others.

It’s worth noting that while X11 has been the standard for graphical environ-
ments on Unix and Linux systems for many years, Wayland is a newer alterna-
tive that aims to provide a more modern and efficient way of handling graphical
rendering with a focus on security and performance. Many Linux distributions
and desktop environments are gradually transitioning from X11 to Wayland as
the default display protocol, and the Raspberry Pi OS has done that.

2.	 Wayland is a protocol for communication between a display server and
its clients, designed as a replacement for the older X Window System.
In simpler terms, it’s a technology that manages graphical displays on
Linux-​based systems. Wayland aims to provide a more modern and
efficient way of handling graphical rendering, improving performance
and security compared to X. It’s an integral part of many Linux desktop
environments, like GNOME and KDE, and helps manage windows,
input devices, and other graphical elements on your computer.

3.	 Xwayland is a compatibility layer that allows application specifically
built for the X Window System, to run on a Wayland display server.
It bridges the gap between the older X11 protocol and the newer

Raspberry Pi OS System Administration: Ancillary Topics96

Wayland protocol, providing a way for legacy X11 applications to
work seamlessly in a Wayland-​based graphical environment.

The need for Xwayland arises because many existing Linux applications
and window managers were developed for X11, and transitioning everything
to Wayland natively would be a massive undertaking. Xwayland essentially
acts as a translator, enabling X11 applications to draw their graphical elem-
ents and interact with a Wayland compositor, making it possible to run X11
applications alongside native Wayland applications in a Wayland session.

This compatibility layer is an important component of Wayland desktop
environments, ensuring that users can continue to use their favorite X11
applications while benefiting from the improved performance and security
features offered by Wayland.

4.	 Wayfire is a 3-​D Wayland compositor for Linux.

Note
Wayfire is essentially a window manager that works with the Wayland dis-
play protocol, and gives a desktop experience on the Debian Bookworm-​
based Raspberry Pi OS exactly like the Debian Bullseye-​based Raspberry Pi
OS Openbox LXDE desktop .

Wayfire aims to provide a visually appealing and feature-​rich environment
for Linux users who run Wayland-​based desktops. Wayfire allows users to
create visually stunning and highly customizable desktop environments on
Wayland-​based systems.

5.	 GTK4 (the version we show here, and which was formerly known as
the GIMP Toolkit) is an open-​source graphical user interface (GUI)
toolkit for creating graphical user interfaces in applications. It is pri-
marily associated with the GNOME desktop environment, a popular
Linux and Unix-​based desktop environment, but it can also be used on
other platforms, including Windows and macOS.

GTK4 provides a set of libraries and tools for building graphical user
interfaces. It includes a wide range of graphical widgets (such as buttons,
text fields, menus, and more) and facilities for handling events, drawing
graphics, and managing windows. GTK4 is written in the C programming
language, but it has bindings for various other programming languages,
making it accessible to developers with different language preferences.

GTK4 has been widely used in the Linux and Unix software ecosystem and
serves as the foundation for many applications, including text editors, file man-
agers, and desktop environments like GNOME. It is known for its flexibility,
extensibility, and the ability to create attractive and functional user interfaces.

6.	 Qt5 is a cross-​platform application framework and toolkit that is widely
used for developing software with graphical user interfaces (GUIs). It is

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 97

known for its C+​+​ libraries and tools that simplify the process of creating
interactive and visually appealing applications that can run on multiple
operating systems, including Windows, macOS, Linux, Android, and
more. Qt5 is developed and maintained by The Qt Company.

Key features and components of Qt5 include:

a.	 **Qt Widgets**: Qt5 provides a set of GUI widgets that can be used to
create windows, dialogs, buttons, text input fields, and various other
interface elements.

b.	 **Qt Quick**: This is a framework for creating modern, fluid, and
touch-​enabled user interfaces. It uses the QML (Qt Meta-​Object
Language) scripting language and is particularly well-​suited for
applications with dynamic, animated user interfaces.

c.	 **Qt Creator**: Qt Creator is an integrated development environment
(IDE) designed for developing applications with Qt. It provides a
code editor, visual GUI design tools, a debugger, and other features to
streamline the development process.

Note
We really don’t show Qt Creator, it’s a rather complex framework.

d.	 **Cross-​Platform Support**: Qt5 enables developers to write code once
and deploy it on multiple platforms without major modifications. This
is achieved through the use of Qt5’s abstraction of platform-​specific
features.

e.	 **Open Source**: Qt5 is available under both open source and com-
mercial licenses, making it accessible to a wide range of developers.

Qt5 and Qt Creator provide a robust and flexible environment for developing
cross-​platform applications with rich and responsive graphical user interfaces.
It is used in a wide range of applications, from desktop software to mobile
apps and embedded systems.

In the following sections, we describe all of the above topics in more detail,
to allow the beginner to appreciate how sophisticated, complex, and useful,
constructing a Raspberry Pi GUI is.

2.2 � A Bit of Wayland History

Kristian Høgsberg, a Linux graphics and X.Org developer, started working on
Wayland as a spare-​time project in 2008. His goal at that time was to develop
a system in which “every frame is perfect, which means that applications

Raspberry Pi OS System Administration: Ancillary Topics98

are able to control the rendering enough that you will never see tearing, lag,
redrawing or flicker”. The origin story of the title “Wayland” is as follows: he
was driving through the town of Wayland, Massachusetts when the under-
lying concepts for the project “crystallized”, hence the name.

In October 2010, Wayland became a freedesktop.org project. As part of that
move, the prior Google Group was replaced by the Wayland-​devel mailing list
as the project’s central point of discussion and development. Mailing lists are
kind of like forums where developers discuss important project issues, argue
for their points of view, vent, and generally brainstorm for ideas.

The Wayland client and server libraries were initially released under the
MIT License, while the reference compositor Weston and some example
clients used the GNU General Public License version 2. Later all the GPL
code was relicensed under the MIT license “to make it easier to move code
between the reference implementation and the actual libraries”. In 2015 it
was discovered that the license text used by Wayland was a slightly different
and older version of the MIT license, and the license text was updated to the
current version used by the X.Org project (known as MIT Expat License).

Wayland works with all Mesa-​compatible drivers with DRI2 support as
well as Android drivers via the Hybris project.

2.2.1 � How Do You Know You’re Running Wayland, Xwayland,
and the Wayfire Compositor, or for That Matter, How
Do You Know If You’re Running an X11 Backend?

Use the following two commands on your Raspberry Pi system, on a default
install of the Debian Bookworm-​based Raspberry Pi OS. If inxi is already
installed, skip the first command:

$ sudo apt install inxi

Output truncated…

$ sudo inxi -​GSCMm -​t c -​P -​x

Output truncated...

Display: Wayland server: X.org v: 1.21.1.7 with: Xwayland v: 22.1.9 com-
positor: wayfire
v: 0.7.5 driver: N/​A tty: 104x46
API: EGL/​GBM Message: No known Wayland EGL/​GBM data sources.
Output truncated...

On our Raspberry Pi 4b running the Raspberry Pi OS, Debian-​based
Bookworm version, we got the above output.

Using the same inxi command on our Raspberry Pi 400 system, where we’ve
switched to the X11 backend (via Xwayland), we got the following output:

Output truncated...

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 99

Display: x11 server: X.Org v: 1.21.1.7 with: Xwayland v: 22.1.9 driver: X:
loaded: modesetting unloaded: fbdev dri: vc4
gpu: vc4-​drm,vc4_​crtc,vc4_​dpi,vc4_​dsi,vc4_​firmware_​kms,vc4_​hdmi,vc4_​
hvs,vc4_​txp,vc4_​v3d,vc4_​vec
resolution: 1920x1080~60Hz
API: OpenGL v: 3.1 Mesa 23.2.1-​1~bpo12+​rpt2 renderer: V3D 4.2
direct-​render: Yes
Output truncated...

2.2.2 � The Wayland Protocol

Wayland isn’t like a new version of X or even an X server. Instead, it’s more like
a message system that helps your computer’s visual elements work together.
It’s supposed to make your computer screen look better and run smoother.

In the past, older systems had to display disparate elements in an organized
and efficient way, because each app had to handle its own display, which
could lead to operating system crashes. These older systems were called
“stacking window managers”. Wayland is different in that it gives each
app its own protected segment of memory to work with. It then combines
these segments to create what you see on OLED display. This makes things
stable and less prone to operating system crashing, and it also makes visual
presentations like streaming video smoother, eliminating flicker.

The critical aspect of Wayland is that it can work with different parts of
your computer, like your display server, X apps, or even special Wayland-​
compatible programs. It also provides modern visual effects like blur in
animations, realistic coloring, shading, and shadows, and a lot more.

Some popular graphics programs that use Wayland are Xfwm, Cairo,
KWin, Mutter, and Compiz. Some of them are working to fully support, or
become native Wayland programs in the future. Wayland is becoming more
popular in the Linux world, and even big names like the Raspberry Pi OS are
moving towards fully supporting it.

Wayland takes care of many tasks that X did, such as drawing on your
screen, handling multiple monitors, and rendering fonts.

Note
Instead of relying on the X server, Wayland connects the Linux kernel directly to
your graphics card, which is faster and more efficient. This is very critical, espe-
cially in streaming video, because graphics cards can handle video processing
much better than your computer’s CPU, no matter how many cores it has.

Wayland is simpler, has cleaner code, and is more flexible than the X
Window System. It’s impossible to completely get rid of X due to all the
legacy code and apps that are built with it. But Wayland can work alongside
X, for example with the Xwayland system, for compatibility, while providing
a better platform for modern apps.

Raspberry Pi OS System Administration: Ancillary Topics100

The way Wayland handles graphics in Linux has shifted from being
centered around the X server to a different type of system. Wayland’s cre-
ator, Kristian Høgsberg, decided to move away from X because a lot of the
functions that used to be handled by the X server are now handled by the
Linux kernel or libraries. Wayland allows the X server to become an optional
part of the system.

Wayland includes a protocol and a reference system called Weston. It also
provides versions of popular libraries like GTK4 and Qt5 that work with
Wayland instead of X. Most apps will eventually support Wayland without
needing major changes.

Initially, Wayland lacked network transparency, which is the ability to
run apps remotely. Developers are working on solutions for this, such
as VNC-​like pixel-​scraping and sending rendering commands across
networks.

In the Wayland protocol, a client (an app) and a compositor (a service that
controls what you see on your screen) communicate through the Wayland
protocol. This protocol follows the client-​server model, where clients request
the display of visual elements, and the compositor handles how they appear
on the screen.

The Wayland protocol is split into two parts: a low-​level layer for commu-
nication, and a high-​level layer for basic window system features. The low-​
level layer does data exchange between the client and compositor, while the
high-​level layer handles the information both need to create the display. This
high-​level layer is flexible and easy to update, because it uses automatic code
generation via an XML file.

The Wayland protocol includes two libraries: one library for Wayland
clients, and one for Wayland compositors. These libraries expedite develop-
ment of apps and services that work directly with Wayland.

2.2.3 � Wayland Protocol Overview

The Wayland protocol is a language that communicates between different
components of your hardware and software. There are two main types of
items in the language: global items and non-​global items. When your hard-
ware or software wants to provide a service, it’s pretty much immediate.

Your system can send messages back and forth to offer or request ser-
vices. The Wayland protocol has its own special “language” for these
messages. It has different “words” to describe what services are available
and what’s needed to use them. These “words” can have extra details, like
what they’re called, what they do, and how they work. This makes your
system more versatile and flexible. So, think of the Wayland protocol as a
message-​passing machine that your computer uses to communicate intern-
ally and externally.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 101

2.2.4 � Wayland Core Interfaces

The interfaces of the current version of the Wayland protocol are in a file,
which is the Wayland source code. It’s an XML file that lists the existing
interfaces in the current version of Wayland, along with their requests, events,
and attributes. These interfaces are the minimum required to be implemented
by any Wayland compositor, such as Wayfire.

2.2.5 � Window System Comparison

A good way to understand the Wayland architecture, and how it is different
from X, is to follow an event from the input device to the point where the
change it affects appears on screen.

2.2.5.1  Wayland Architecture

Here are the steps through the Event/​Request loop with the X Window
System:

1.	 The kernel gets an event from an input device and sends it to X
through the evdev input driver. The kernel does all the hard work
here by driving the device and translating the different device-​specific
event protocols to the Linux evdev input event standard.

2.	 The X server determines which window the event affects, and sends
it to the clients that have selected for the event in question on that
window. The X server doesn’t actually know how to do this right,
since the window location on screen is controlled by the compositor
and may be transformed in a number of ways that the X server doesn’t
understand (scaled down, rotated, wobbling, etc.).

3.	 The client looks at the event and decides what to do. Often the UI will
have to change in response to the event—​perhaps a check box was
clicked or the pointer entered a button that must be highlighted. Thus
the client sends a rendering request back to the X server.

4.	 When the X server receives the rendering request, it sends it to the
driver to let it program the hardware to do the rendering. The X server
also calculates the bounding region of the rendering, and sends that to
the compositor as a damage event.

5.	 The damage event tells the compositor that something changed in the
window and that it has to recomposite the part of the screen where
that window is visible. The compositor is responsible for rendering
the entire screen contents based on its scenegraph and the contents of
the X windows. Yet, it has to go through the X server to render this.

6.	 The X server receives the rendering requests from the compositor and
either copies the compositor back buffer to the front buffer or does a

Raspberry Pi OS System Administration: Ancillary Topics102

pageflip. In the general case, the X server has to do this step so it can
account for overlapping windows, which may require clipping and
determine whether or not it can page flip. However, for a compositor,
which is always fullscreen, this is another unnecessary context switch.

As seen in Figure 2.2, there are a few performance concerns with this
approach. The X server doesn’t have the information to decide which
window should receive the event, nor can it transform the screen coordinates
to window-​local coordinates. And even though X has handed responsibility
for the final painting of the screen to the compositing manager, X still controls
the front buffer and modesetting. Most of the complexity that the X server
used to handle is now available in the kernel or self-​contained libraries (KMS,
evdev, mesa, fontconfig, freetype, cairo, Qt, etc.). In general, the X server is
now just a middle man that introduces an extra step between applications and
the compositor and an extra step between the compositor and the hardware.

In Wayland, the compositor is the display server. We transfer the control
of KMS and evdev to the compositor. The Wayland protocol lets the com-
positor send the input events directly to the clients and lets the client send the
damage event directly to the compositor. This is seen in Figure 2.3.

FIGURE 2.2
Event/​Request loop in X.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 103

1.	 The kernel gets an event via the evdev facility, and sends it to the com-
positor. This is similar to the X case, because of the continual reuse of
all the input drivers in the kernel.

2.	 The Wayfire compositor looks through its scenegraph to determine
which window should receive the event. The scenegraph corresponds
to what’s on screen and Wayfire understands the transformations
that it may have applied to all the elements. So Wayfire can pick the
right window and transform the screen coordinates to window-​local

FIGURE 2.3
Wayland Event/​Request map.

Raspberry Pi OS System Administration: Ancillary Topics104

coordinates, by applying the inverse transformations. The types of
transformation that can be applied to a window are only restricted to
what Wayfire can do, as long as it can compute the inverse transform-
ation for the input events.

3.	 As in the X case, when the client receives the event, it updates the user
interface in response. But in the Wayland case, the rendering happens
in the client, and the client just sends a request to Wayfire to indicate
the region, or surface that was updated.

4.	 Wayfire also collects damage requests from its clients and then
“recomposites” the screen. Wayfire can then directly issue an ioctl to
schedule a pageflip with KMS in the kernel.

2.2.6 � Wayland Rendering

One of the details omitted from the above overview is how clients actually
render under Wayland. By removing the X server from the picture we also
removed the mechanism by which X clients typically render. But there’s
another mechanism that we’re already using with DRI2 under X: direct
rendering. With direct rendering, the client and the server share a video
memory buffer. The client links to a rendering library such as OpenGL that
knows how to program the hardware and renders directly into the buffer.
The compositor in turn can take the buffer and use it as a texture when it
composites the desktop. After the initial setup, the client only needs to tell
the compositor which buffer to use and when and where it has rendered new
content into it.

This leaves an application with two ways to update its window contents:

1.	 Render the new content into a new buffer and tell the compositor
to use that instead of the old buffer. The application can allocate a
new buffer every time it needs to update the window contents or it
can keep two (or more) buffers around and cycle between them. The
buffer management is entirely under application control.

2.	 Render the new content into the buffer that it previously told the
compositor to use. While it’s possible to just render directly into the
buffer shared with the compositor, this might race with the com-
positor. What can happen is that repainting the window contents
could be interrupted by the compositor repainting the desktop. If the
application gets interrupted just after clearing the window but before
rendering the contents, the compositor will texture from a blank buffer.
The result is that the application window will flicker between a blank
window or half-​rendered content. The traditional way to avoid this is
to render the new content into a back buffer and then copy from there

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 105

into the compositor surface. The back buffer can be allocated on the
fly and just big enough to hold the new content, or the application can
keep a buffer around. Again, this is under application control.

In either case, the application must tell the compositor which area of the sur-
face holds new contents. When the application renders directly to the shared
buffer, the compositor needs to be notified that there is new content. But also
when exchanging buffers, the compositor doesn’t assume anything changed,
and needs a request from the application before it will repaint the desktop.
The idea is that even if an application passes a new buffer to the compositor,
only a small part of the buffer may be different, like a blinking cursor or a
spinner.

2.2.7 � Differences between Wayland and X

There are several differences between Wayland and X in regards to perform-
ance, code maintainability, and security:

Architecture:
The composition manager is a separate component in X, while Wayland merges
display server and compositor as a single function. Also, it incorporates some
of the tasks of the window manager, which in X is a separate client process.

Compositing:
Compositing is optional in X, but mandatory in Wayland. Compositing in X
is “active”; that is, the compositor gets all pixel data, which introduces dis-
play latency, or delay. In Wayland, compositing is “passive”, which means
the compositor receives pixel data directly from client programs.

Rendering:
The X server itself is able to perform rendering, and it can be instructed to
display a rendered window sent by a client program. In contrast, Wayland
does not expose any API for rendering, but delegates to clients those things
(including the rendering of fonts, widgets, etc.).

Note
Window decorations can be rendered by the client (via a graphics toolkit), or
by the server (via the compositor).

Security:
Perhaps more important in server installs of other distros, Wayland isolates
the input and output of every window, so that less code needs to run with root
privileges, improving security. But in modern, and popular Linux distros, a
system without a GUI can be run without root privileges nowadays.

Raspberry Pi OS System Administration: Ancillary Topics106

Inter-​Process Communication (IPC):
Important for the Raspberry Pi OS, the Wayland core protocol does not
support communication between Wayland clients at all, and that function-
ality (if needed) should be implemented by other distro desktop environ-
ments, or by a third party (for example, by using native IPC of the underlying
kernel).

Networking:
The X Window System architecture was designed to run over a network.
Wayland does not offer network transparency, however, a compositor like
Wayfire can implement any remote desktop protocol to achieve remote
displaying. Virtual Network Computing (VNC) is not yet mature in Wayland
(Figure 2.4).

2.2.8 � Xwayland

Xwayland is an X Server running as a Wayland client, and is capable of
displaying native X11 client applications in a Wayland compositor environ-
ment. That’s currently the way that Wayland, using the Wayfire compositor,
works as of the Debian Bookworm-​based release of the Raspberry Pi OS. The
goal of Xwayland is to facilitate the transition from X Window System to
Wayland environments, providing a way to run X applications in the mean-
time. When and how that transition will be completed is a matter that has
severely affected many other releases and distros of Linux. Ubuntu being the
prime example of this.

FIGURE 2.4
Xwayland Wayfire-​based desktop on the Debian Bookworm-​based Raspberry Pi OS.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 107

Widget toolkits such as Qt 5 and GTK4 can switch their graphical back-​end
at run time, allowing users to choose at run time whether they want to exe-
cute the application purely over X, or over Wayland. In fact, both Qt5 and
GTK4 support Wayland directly.

2.2.8.1  Wayland Compositors—​A Historical Perspective

Neither Wayland, nor X11, strictly specifies what software is responsible for
rendering the window decoration. For example, with Wayfire, the client has
the choice to either draw the window decorations, or designates that the
compositor draws them.

Display servers that implement the Wayland display server protocol are
also called Wayland compositors, because they additionally perform the task of
a “compositing” window manager.

A compositing window manager is a type of window manager for graph-
ical user interfaces that provides compositing functionality for windowing
systems. In simple terms, it’s a component of a graphical desktop environ-
ment that manages the placement and appearance of individual application
windows on the screen.

The term “compositing” refers to the ability to combine multiple graphical
elements or layers to create a final image. In the context of window managers,
compositing involves blending and rendering windows with various visual
effects, such as transparency, shadows, and animations. This results in a more
visually appealing and dynamic user interface.

Compositing window managers use hardware acceleration and graphics
processing capabilities to efficiently handle the graphical effects. Some
popular compositing window managers include Wayfire, Compiz, KWin
(used in the KDE Plasma desktop environment), and Mutter (used in the
GNOME desktop environment). These window managers provide a range
of visual effects and customization options to enhance the overall user
experience.

Compositing window managers are commonly associated with modern
desktop environments that aim to provide a visually rich and interactive user
interface. They contribute to the overall aesthetics and usability of the desktop
environment by adding graphical enhancements to window management.

Examples of compositing window managers are Weston, the reference
implementation of a Wayland compositor, and Wayfire, the compositor used
in the Raspberry Pi OS Debian Bookworm-​based operating system version.

2.2.8.2  Xwayland and the Wayfire Compositor

As noted in Section 2.1, Xwayland is a compatibility layer that allows appli-
cation specifically built for the X Window System, to run on a Wayland dis-
play server. It bridges the gap between the older X11 protocol and the newer

Raspberry Pi OS System Administration: Ancillary Topics108

Wayland protocol, providing a way for legacy X11 applications to work
seamlessly in a Wayland-​based graphical environment.

The need for Xwayland arises because many existing Debian Linux, and
Raspberry Pi applications, were developed for X11, and transitioning every-
thing to Wayland natively would be a massive undertaking. And that tran-
sition is nowhere near to being achieved, even as of the time this book was
written. Xwayland essentially acts as a translator, enabling X11 applications
to draw their graphical elements and interact with a Wayland compositor,
making it possible to run X11 applications alongside native Wayland
applications in a Wayland session.

This compatibility layer is an important component of Wayland desktop
environments, ensuring that users can continue to use their favorite X11
applications while benefiting from the improved performance and security
features offered by Wayland.

And also as noted in Section 2.1, Wayfire, the 3-​D Wayland compositor for
the Raspberry Pi OS, is essentially a window manager that works with the
Wayland display protocol, and gives a desktop experience on the Debian

FIGURE 2.5
Wayland compositor general architecture.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 109

Bookworm-​based Raspberry Pi OS exactly like the Debian Bullseye-​based
Raspberry Pi OS Openbox LXDE desktop.

Wayfire aims to provide a visually appealing and feature-​rich environment
for Linux users who run Wayland-​based desktops. Wayfire allows users to
create visually stunning and highly customizable desktop environments on
Wayland-​based systems.

Figure 2.5 depicts how a Wayland compositor is situated between server
and client components, and the kernel, and shows the interactivity between
those components.

2.3 � X Window System GUI Basics

The objectives of this section, and those that follow, are:

	• To explain the relationship of the components of an X Window System-​
based graphical user interface to the Raspberry Pi OS.

	• To describe the basic concepts and implementation of the X Window
System.

	• To give examples of client application program coding for the X Window
System.

2.3.1 � Introduction

This section presents these major topics. To get the most out of it, the beginner
should go through each topic listed in the order shown.

X Window System model: We first define the X Window System, a network
protocol for graphical interaction between a user and one or more computer
systems running the Raspberry Pi OS. This means that it is a software system
specifically designed to work over a network, to pass user-​generated events
to an application program, and then channel graphical responses as graph-
ical output back to the user. The forms of interactivity, via event-​driven input
and multi-​window display output, are detailed from the user’s perspective.
We illustrate and explain the basic X Window System at a high level—​that
is, closer to the user rather than the nearest the hardware, and its operability
and functionality.

X Window System client application program coding: We then go on to describe
how to work with the X Window System at a lower level of operability. We
give a basic description of how to write a client application program for the X
Window System, and then show the use of some programming toolkits that
facilitate this process. We give basic examples of various methodologies: pro-
gramming using Xlib, XCB, Qt5, GTK4, and gnuplot.

Raspberry Pi OS System Administration: Ancillary Topics110

2.3.2 � User–​Application Software Interaction Model

When you sit at a computer monitor, with the keyboard and mouse in front
of you, and work with an application program to accomplish specific tasks,
you are primarily concerned with achieving some results, either textual or
graphical, that the computer provides. You are shielded from the details of
exactly how the computer turns the motions of your hands and fingers into
those results. One way of seeing the process that the computer goes through
is shown in Figure 2.6, where you, the user, harness the intermediary facil-
ities of software components, either locally on the same workstation, or glo-
bally over a network or the Internet, to work with an application program.
The fundamental assumption of this chapter is that a graphical user interface
(GUI) can be used to most efficiently control the dialog between a single user
and an application program running on a stand-​alone or networked com-
puter, using the intermediaries of the X Window System and the Raspberry
Pi OS. The components of a user’s dialog with an application program can be
simplified to the software component blocks shown in Figure 2.6, applied to
the traditional UNIX operating system.

For example, a user presses a mouse button to signify a graphical “pick” in
an application window shown on screen. That choice, or event, is recognized
by and acted upon by the window manager controlling that window. This
event is passed along to the desktop manager, which uses the protocols of the
X Window System to pass the request to the operating system. The operating
system then passes the request to the application software program for further

FIGURE 2.6
General components of a GUI.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 111

disposition. Another example is the reverse of the previous one. An applica-
tion software program generates a request for graphical service, passes this
request to the operating system, which in turn passes the request via the X
Window System protocols to the desktop manager and window manager to
display the graphical request on the screen of the user’s computer.

In-​Chapter Exercise

2.1 � Would you ever want to switch between a GUI and a text-​based inter-
face during the course of one session when working with the Raspberry
Pi OS? Why would you want to do this? And most importantly, how
would you do this, given the facilities of control of systemd?

2.3.3 � Basics of the X Window System

To illustrate the functionality of the X Window System, we detail the following
aspects of it in this section:

* What it is similar to, and what advantages it has.
* The Event/​Request Model.

2.3.3.1 � What Is the X Window System Similar to and
What Advantage(s) Does It Have?

Contemporary user–​computer interactivity falls into two basic categories. In
one category, where a character user interface (CUI) is implemented, the user
types commands on a command line presented in a terminal window using a
keyboard, and components of the operating system handle this input and take
appropriate action. In the other category, the user gives input via a graphical
user interface (GUI), and components of the operating system take appropriate
action. Of course there are also hybrid styles of interactivity which are a mix-
ture of these two categories. Up to this point, you have relied almost entirely
on a CUI to activate the functionality of the Raspberry Pi OS. Here, you will be
introduced to a GUI system, known as the X Window System. The two fore-
most questions for the beginner concerning the X Window System are:

What is it similar to, and what advantage does it give me over, the traditional
Linux CUI?

The answer to the first question is twofold. The X Window System is a net-
work protocol developed to provide a GUI to the Linux operating system; on
the surface it appears to the user like other popular operating system window
managers, such as those found on an Apple or in Microsoft Windows. (The
current version of the X Window System [Release 7.7] is what we used for
our base Raspberry Pi system.) There is an important differentiation to make

Raspberry Pi OS System Administration: Ancillary Topics112

here between window system, window manager, and desktop manager. Briefly
stated, a window system provides the generic functionality of the GUI, a
window manager simply has particular implementations of the functionality
provided by the window system, and a desktop manager provides a graph-
ical method of interacting with the operating system. For example, interactive
resizing of a window by the user is a generic function of a window system,
whereas using icons or slider buttons is how it is accomplished in a particular
window manager. The desktop manager provides the user with the graphic
means to work with operating system functions such as file maintenance.
A desktop manager might present a picture of folders connected in a tree-​like
structure and allow the user to manipulate files in those folders by dragging
and dropping icons. Certainly, a modern window manager can include some
or all of the functional features of a desktop manager.

In-​Chapter Exercises

2.2 � What is the name of the desktop management system on the
Raspberry Pi OS Debian Bookworm-​based release?

2.3 � What is the name of the desktop management system on the
Raspberry Pi OS Debian Bullseye-​based release?

The first question above can also be answered by giving an analogy: what
the X Window System does for a user of networked computers is exactly
like what an operating system, and by extension, systemd, does for the user
of a stand-​alone computer. On a stand-​alone computer, the complex details
of managing the resources of the hardware of the computer to accomplish
tasks is left to the operating system, with a large proportion of that man-
agement done by systemd. The user is shielded by the operating system
from the complex hardware details of actually accomplishing a task, such as
copying a file from one place to another on a USB-​mounted medium, such
as an SSD. On a system of networked computers, the X Window System
manages the resources of the hardware of possibly many computers across
the network to accomplish tasks for an individual user. Also, in a networked,
distributed-​system environment, where many machines are hooked up via
a communications link, the X Window System serves transparently as a man-
ager of the components of your interaction with application programs and
system resources; in other words, you can run an application program on a
machine that you are not sitting in front of, and the mechanics of interaction
with the application work exactly as if the application were executing on a
stand-​alone machine that was right on the desk in front of you.

The most obvious answer to the second question is that you are able
to quickly and easily accomplish predefined tasks by using a GUI on the
Raspberry Pi OS. For example, dragging icons to delete files is faster than

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 113

typing commands to do the same thing, particularly if the file names are long
and complex! Another not so obvious answer is that your style of interaction
with the operating system will be very similar to your style of interaction
with applications. For example, modern computer programming and engin-
eering applications are graphics based, and have a common look and feel;
pull-​down menus almost always include functions such as cut, copy, paste,
and so on. Having a GUI for your Raspberry Pi desktop makes for uniformity
of interaction between operating system and application.

2.3.4 � The Key Components of Interactivity: Events and Requests

When you work with a computer, you provide input in a variety of ways,
and the computer, after doing some processing, gives you feedback in return.
Limiting this feedback to text and graphics, usually the computer responds
by displaying information on the screen, or executing processes in the back-
ground, behind what you can actually see on the display.

On a modern computer workstation, you are able to use several devices,
such as keyboard, mouse buttons, etc., to provide input to an application
program in a style of interaction known as interrupt-​driven interaction. The
application is processing data, or in a wait state until signaled by a particular
input device. Interrupts are known as input events from one or more devices,
which can be ordered in time by forming a list or queue. With applications
written for the X Window System, the client application can then process
this queue of input events, do the work necessary to form responses to the
events, and then output the responses as requests for graphical output to the
server.

A schematic illustration of this is shown in Figure 2.7.
A key concept of the X Window System that sometimes causes confusion

is the difference between server and client. One possible cause of confusion

FIGURE 2.7
Event–​request model.

Raspberry Pi OS System Administration: Ancillary Topics114

here is that traditionally, on a computer network, a server is thought of
as a machine that serves files to many other machines, which is certainly
a different function than an X Window System server. In the X Window
System, a server is the hardware and/​or software that actually takes input
from and displays output to the user. For example, the keyboard, mouse,
and display screen in front of the user are part of the server; they graphic-
ally serve information to the user. The client is an application program
that connects to, receives input events from, and makes output requests to
the server. Be aware that sometimes (confusingly!) in X Window System
jargon, the client is spoken of as a hardware device, like a workstation
or computer. We will always use the term client to refer to application
program code, rather than to a piece of hardware. In the X Window System,
a server and client can exist on the same workstation or computer, and use
InterProcess Communication (IPC) mechanisms, such as Linux sockets, to
transfer information between them. A local client can be simply thought of
as an application that is running on the same machine that you are either
sitting in front of, or have a one-​to-​one relationship with. A remote client is
an application that is running on a machine connected to your server via
a TCP/​IP, or other network connection. Whether a client application is
local or remote, it still looks and feels exactly the same to the user of the X
Window System.

Looking at Figure 2.8, you will see three client applications, X, Y, and
Z, displaying their output on an X Window System server. Each of these
applications is running on a different machine. Client X is running on
a machine linked to the X Window System server via a LAN hookup,

FIGURE 2.8
Client and server topologies.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 115

an Ethernet. Client Y is running on a machine linked to the X Window
System server via a wide area network, the Internet. Client Z is running
directly on the workstation that is the server, and uses Linux sockets to
display output requests on the server screen. Something not illustrated in
Figure 2.8 is that each of the clients X, Y, and Z gets input events via this
server as well.

Another critical aspect of the X Window System is that the GUI for each
client is independent of the GUI of the window manager itself. In other
words, each client application can open a window on the server screen, use
its own style of GUI buttons, icons, pull-​down menus, and so on, and the
window manager, which is simply just another client application, handles
the display of all other client windows. Figure 2.8 illustrates this point.

In-​Chapter Exercises

2.4 � If the client can queue events, do you think it would be advantageous
for the server to queue requests? Why?

2.5 � From what you know of network programming in Linux, is the
meaning of client–​server the same in network programming as it
is in the X Window System? If it is not the same, what is the salient
difference?

The important aspect of the window manager being just another client of the
X Window System server is that you can use any of the available X Window
System window managers to suit your particular needs. You can even use
your own window manager, if you have the time and resources to write the
program code for one! Have a look at the mechanics of writing a Wayland
compositor, for example. It is worth noting that only one window manager
can be active on a given server at one time.

2.3.5 � Functions and Appearance of the Window Manager Interface

Similar to the look and feel and functionality of Microsoft Windows or OS X,
you will recognize many of the general functions that an X Window System
window manager provides, shown in Table 2.1. These functions are par-
ticular implementations of possibly more than one generic window system
service, those provided by the X Window System protocol.

In-​Chapter Exercise

2.6 � With the Wayfire window manager active, test the functions in
Table 2.1. Then, when you are using Wayfire, compare the window
manager functions in terms of style of interaction, ease of use and
availability, and most importantly customization capability.

Raspberry Pi OS System Administration: Ancillary Topics116

2.3.6 � Creating X Window System Client Application Programs

The two guiding principles explained in this section are:

1.	 A client application program is made up of two separate parts: a data
generation part, and a User Interface (UI) part, which must work
together.

2.	 The basic structure of a client application program is: initialization,
start an event–​request loop, cleanup.

In order to adhere to these principles, you can approach creating an X
Windows client application program like this:

Use a GUI-​based Integrated Development Environment (IDE), such as Geany,
to generate the UI and program data generation code. This means coding the
graphical interface by programming directly in Qt5, GTK4, XCB, or the older
Xlib. Then, create the program data generation code in C, C+​+​, or Python,
and finally combine the graphical interface and program data generation
code together.

The first component of this process is ostensibly easier. But to create the UI
component of a client application, and in order to “hook” the data-​generating
or processing component of your program to that UI, you have to be very
familiar with two things:

a.	 How to do advanced data structure programming in C+​+​, or another
available language library interface like Python3.

TABLE 2.1

Window Manager General Functions

Item Function Description

A (De)iconify window Reduce window to a small, representative picture, or enlarge
to a full size window

B Create new
window

Launch or run a new client application

C CUI to operating
system

Allows user to open one or more windows and type
commands into those windows

D Desktop
management

Graphical file maintenance, speed buttons, special clients like
time-​of-​day clock

E Destroy window Close connection between server and client
F Event focus Specifies which client is receiving events from devices like

mouse, keyboard, etc.
G Modify window Resize, move, stack, tile one or more windows
H Virtual screens More than one screen area mapped onto the physical screen of

the server
I Pop-​up/​pull-​down

menus
Utility menus activated by holding down mouse buttons to
run client application

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 117

b.	 Knowing the data structure and operability of programming in Qt5
or GTK4.

The second way requires that you know the structure of an X Window System
client application program, and if you use Xlib, are familiar with C.

The structure of a client application program is: initialize a connection with
the X server, create an event loop, cleanup, and leave. Most of what follows
details this structure more fully, and gives some simple examples.
The short way through the sections below are as follows:

Carefully examine the following examples, and find in them the two
important points to remember in those examples. Then you will have a top-​
down view of how to create client application programs.

2.3.7 � Client Application Program Structure and Development Model

In this section, we show where and how a user-​written client application
program fits into the overall scheme of the components of the X Window
System. We then show the simplified structure of such a program. Following
from these two illustrations, we detail in a simple and direct fashion how to
develop C code for an X Window System client application program.

2.3.7.1  Model Overview

Here are two descriptions of the model:

1.	 First, a picture (Figure 2.9) showing how the components, such as a
client application, Xlib, XCB, Qt5, or GTK4, the X.org server, and the
actual display, are connected via the X Protocol over a network (or
locally).

2.	 Then a verbal description of the coding process that shapes that model.

The X Window System, as seen from a software development model point of
view, is a combination of these components:

1.	 Toolkit IDEs such as Qt Creator, or frameworks such as Qt5 or GTK4
2.	 X libraries such as XCB and Xlib
3.	 The X protocol or display server protocol
4.	 X display server, X.org server
5.	 Window manager

This model is arranged, from top to bottom, in a suitable order for a user
writing an application program. The user generates the code either in

Raspberry Pi OS System Administration: Ancillary Topics118

component 1 or 2; components 3 through 5 are processes that the application
program code interprets and executes.

A more detailed textual description of the components is as follows:
Toolkit IDEs such as Qt Creator are used to arrange/​write and put together

the code itself, and integrate it, either internally in the programming lan-
guage framework of the IDE, or externally by linking the code of the IDE
with data generation code, for a particular application.

X client libraries are graphical routines or C language bindings that the
toolkits generate. The two most important ones are XCB and Xlib. For example,
Xlib is a legacy library of more than 300 utility routines that programmers can
use to activate the X protocol. The Xlib utilities are used to accomplish the
major tasks in an X Window System user-​written application. XCB is the con-
temporary replacement for Xlib.

X clients communicate with X servers (and not necessarily over a network!)
using the X protocol. In the X protocol, data are exchanged in an synchronous
or asynchronous manner over a two-​way communication channel.

The X display server (or X server) is the process executing on a computer
and managing the graphics output and input from the computer display (its
monitor[s]‌, keyboard, and mouse). The window manager, like any of those

FIGURE 2.9
X Window System client/​libraries/​protocol components.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 119

that can be used on a Raspberry Pi system, is a program that handles the
graphic activities sent to the X display server.

X clients are application programs that use the computer display to illus-
trate, or present, their information. The X clients, whether running locally or
on a remote computer, send requests to the X server using a communication
channel. The X client application program and the X server program can run
on the same machine, using Linux sockets as the communication channel. As
long as there is a common networking protocol (e.g., TCP/​IP) to provide the
communication channel, the X server can display output from any X client
regardless of where it is actually running, and the operating system under
which the client runs. With the X protocol running on a particular computer,
the X server is listening to the network connections at a specific port and acting
on the X protocol requests sent by X clients. The X server manages regions of
the screen known as windows, where the output from an X client is displayed.
When X application programs are running, everything on the screen appears
in windows and each window is associated with a specific X client.

Creating a window is one of the basic X protocol requests that an X server
handles. The X server considers anything you do with the keyboard and
mouse as an event, to be reported to the X clients. When you press and release
a mouse button, the X server sends these input events to the X client that
created the window containing the mouse pointer. The X server also sends
other kinds of events to X clients. These events inform an X client if anything
happens to its window.

X client application programs, to a very large extent, have toolkit function
calls, or routines, in them. The client application may be composed purely
in the Qt5 programming language (C+​+​), which in turn calls Xlib and/​or
XCB library functions. An X client application can also make some direct
calls to Xlib and/​or XCB routines for generating text and graphics output in
a window. The client application can be a mixture of data generation code,
toolkit functions, and Xlib and/​or XCB function calls. The complicating
factors here are the complexity of the data structures holding all three possible
sources of information, the means of integrating these data structures, and the
complexity of the modular system of code that the client application becomes.

In-​Chapter Exercise

2.7 � On your Raspberry Pi system, are there any X Windows applications
running? Where are the X Window System clients running? Where
are the X Window System servers running?

2.3.7.2  The Structure of a Typical X Client Application Program

A simple description of an X application program would divide it into three
major sections:

Raspberry Pi OS System Administration: Ancillary Topics120

I.	 Initialization: Open a display that the application can use

II.	 Event loop: Start an event-​driven loop that allows the application to
communicate with the display

III.	 Cleanup: Clean up and gracefully exit

This description can be further expanded as follows:

I.	 Initialization

1.	 Perform initialization routines
2.	 Connect to the X server
3.	 Perform X-​related initialization

II.	 Event loop (while not finished)

1.	 Receive the next event from the X server
2.	 Handle the event, possibly sending various drawing requests to

the X server
3.	 If the event was a quit message, exit the loop

III.	 Cleanup
1.	 Close down the connection to the X server
2.	 Perform cleanup operations

The initialization section sets up the window system for user interaction.
After initialization, the program enters a loop in which it repeatedly tries to
get events from the window system and process them. Finally, before exiting,
the program performs any necessary cleanups. Usually the exit code is in a
program that is called when the user clicks on the Exit button provided by
the application (or on the Close button on the window frame typically on the
top right of the window).

2.3.7.3  Specifying Resources

All X Window client application programs have resource files where options
for colors, fonts, and other displayed attributes and components can be spe-
cified. To take advantage of this capability, programs should be written such
that hard coding of resources doesn’t happen in the client application per se,
so that resources specified in the configuration files are used instead.

Those resources can reside in a file, named .XResources, in your home dir-
ectory, or can be located in the directory where the application is launched.

2.3.7.4  Writing the Code for an X Windows Client Application

Why show four different libraries and methods of writing client application
programs? There are a few good reasons.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 121

Xlib and XCB are basically procedural programming paradigm libraries,
where XCB has a more complex, but smaller module data structuring and
API than Xlib. Qt5 uses an Object-​Oriented client Programming (OOP) para-
digm, with attendant data structures and classes, and is coded in C+​+​. GTK4
is coded in C, with some special extensions. So whichever of the four libraries
and methods appeals most to you, and whichever one is most intuitive and
fits best with what you, or your programming team, already know about pro-
gramming, is the best one for you to use. We try here to expose you to all four
to so that you can get a feel for the varieties available.

Application code for Xlib or XCB can be written in C, C+​+​, or Python, and
compiled using any of the available compilers on the system, with the com-
piler directives we indicate.

When programming in C+​+​ for Qt5, that library has its own facilities to
compile, link, and assemble a client application and place it in the context of
a Qt5 project. We also show that in detail.

In-​Chapter Exercise

2.8 � Before beginning into Xlib, XCB, QT5, or GTK4, you might want to take
stock of your own experiences and familiarity with C, C+​+​, the OOP
methodolgy, and your knowledge of data structures in these areas.

2.3.8 � Xlib versus XCB

The reason we include examples of Xlib and XCB client programs is that they
are the two official C libraries for the X Window protocol. Xlib, the prede-
cessor of XCB, was the original X client library, and was the only official X
client library, until the introduction of XCB. The two libraries are based upon
different approaches to client-​side programs: Xlib is a layer further from the
X protocol that uses a traditional, and programmer-​friendly C API, whereas
XCB is a lower-​level software framework closer to the X protocol, and does
not have as transparent and friendly an API. As you can see from our presen-
tation on both Xlib and XCB, the documentation that exists currently for XCB,
from a top-​down perspective, is far less transparent, complete, and descrip-
tive. These two aspects of XCB, documentation and user-​friendliness, are a
function of its closer relationship with its complex data structure implemen-
tation of the X protocol itself.

In practice, the difference in organizing schemes is most evident in how
the two libraries handle the fundamental asynchronous event–​request model
between server and client of the X protocol itself. Xlib attempts to implement
the asynchronous X protocol behind a mixed synchronous and asynchronous
API, whereas the XCB API is asynchronous.
For example, to look up the attributes (e.g., size and position) of a window,
you would write the following code using Xlib:

Raspberry Pi OS System Administration: Ancillary Topics122

XWindowAttributes attrs;

XGetWindowAttributes(display, window, &attrs);

/​*Execute some code*/​

The Xlib call to XGetWindowAttributes() in the client-​side program sends a
request to the X server and blocks until it receives a reply from the X server.
This is a synchronous request–​event sequence.

The following is the code for the same thing in XCB:

xcb_​get_​window_​attributes_​cookie_​t cookie =​

xcb_​get_​window_​attributes(

connection, window);

/​*Execute other code while waiting for the reply from the server*/​

xcb_​get_​window_​attributes_​reply_​t* reply =​

xcb_​get_​window_​attributes_​reply(

connection, cookie, nullptr);

/​*Execute some code based on the reply*/​

free(reply);

The function xcb_​get_​window_​attributes sends the request to the X server,
and returns immediately without waiting for the reply. This is an asyn-
chronous request–​event sequence. The client program must call xcb_​get_​
window_​attributes_​reply to block on the reply.

The advantage of the asynchronous approach is gained when we need to
retrieve the attributes of multiple windows at the same time. Using XCB, we
can make multiple requests to the X server at once and then wait for multiple
replies. With Xlib, we have to wait for the response to each request before we
can send the next one. XCB only blocks for one round-​trip network latency
period, compared to multiple latency period waits with Xlib.

To be fully asynchronous, the XCB approach leads to a more complex data
structure approach, and a less programmer-​friendly API. The preceding Xlib
code looks like your average C library call; the XCB code has a more complex
data structure implementation.

XCB is fully asynchronous, whereas Xlib is not fully synchronous. Xlib
has a mixture of synchronous and asynchronous APIs. Functions that do not
return values (e.g., XResizeWindow, which changes the size of a window)
are asynchronous, while functions that return values (e.g.,XGetGeometry,
which returns the size and position of a window) are synchronous. Here is
a quote from Volume 1 of the Xlib Programming Manual dealing with Xlib’s
synchronicity:
“Buffering Xlib saves up requests instead of sending them to the server imme-
diately, so that the client program can continue running instead of waiting to
gain access to the network after every Xlib call. This is possible because most

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 123

Xlib calls do not require immediate action by the server. Caching of requests
by the client before sending them over the network increases the perform-
ance speed over most networks, because it makes the network transactions
longer and less numerous, reducing the total time involved in creating an
asynchronous set of transactions”.

2.3.9 � Xlib

In this section, we describe some important considerations when doing Xlib
programming, show how to compile an Xlib client application program on
a Raspberry Pi system, and then give C programming examples for an X
Windows client application program that uses Xlib. It would be useful for
you to compare the complexity of the code given here, with the code given
for XCB programming in the following section. Also at this point, it would be
very helpful to compare the extant documentation for Xlib to the documenta-
tion available for XCB. We provide an exercise that details what you should be
looking for in the documentation sets for each of these official libraries. Xlib
operates on the client–​server model, which can be directly contrasted to the
traditional networking model of those components. Essentially, the client–​
server model used for Xlib reverses the role of client and server assumed in
the networking model.

In-​Chapter Exercise

2.9 � Create your own documentation set for Xlib, and for XCB from the
next section, using online sources and printed documents and books.

Note
The most important component of a documentation comparison is cataloging
and organizing that catalog to effectively serve you personally in showing
how the documents for each system proceed from a top-​down overview to
the lowest level details of using the libraries. This method, which we can
only partly illustrate and prescribe here, would then allow you to take our
examples and expand upon them to enable you to write more complex X
Windows client applications given the use cases you might encounter.

2.3.9.1  Basic Xlib Top-Down Considerations

Every Xlib client application program conforms to the basic structure shown
in Section 2.3.9.2. In this section, we give that basic structure more articula-
tion, and show how that basic structure could be implemented using some
fundamental Xlib function calls.

This is basically how an X Windows Xlib client application operates:

Raspberry Pi OS System Administration: Ancillary Topics124

1.	 Initialization: Establishes a connection to an X server with
XOpenDisplay(), and if the connection can’t be made, gracefully ter-
minates the program.
a)	 Requests server information such as the physical screen, with

XGetGeometry() or XGetWindowAttributes() and uses the infor-
mation obtained to calculate window parameters, like size, pos-
ition, etc.,

b)	 Creates a window on the physical screen with
XCreateSimpleWindow().

c)	 Sets standard properties for the window manager with
XSetWMProperties().

d)	 Selects and specifies the types of events it needs to receive, and
respond to, in order to work, with XSelectInput().

e)	 If text will be output in the window, loads the font to be used for
that text.

f)	 Creates a GC to control the action of drawing request events.
g)	 Displays the window with XMapWindow().

2.	 Begins and continues to indeterminately (or logically) iterate (or
“loop”), to handle events from the server and send callbacks to the
client, using XNextEvent().
a)	 Possibly does the actual drawing operations in the window.

Achieves this by responding to an expose event resulting from
mapping the window, and other subsequent expose events, by
calling routines to draw text and bit mapped graphics.

b)	 Keeps handling events until a KeyPress or ButtonPress event
arrives, which ends the indeterminate iteration.

3.	 Closes the display connection, cleans up, and exits, possibly with
XUnloadFont(), XFreeGC(), and XcloseDisplay() .

One of the key features of a structured computer program, that is not detailed
completely in the above operation presentation, is error handling at key
junctures, other than at step 1. Of course, judicious additions of this would
add to what is commonly referred to as the program’s robustness.

Following we provide a helpful documentation table of the major Xlib
function categories, descriptions of inclusive functions, and representative
examples of these function categories (Table 2.2).

2.3.9.2 � X Window and Xlib Description of Hostname,
Display, Screen, and Window

Even though a multi-​monitor ensemble for a computer workstation is usu-
ally used in only special cases, it is worth knowing the difference between

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 125

TABLE 2.2

Xlib Function Categories, Descriptions, and Examples

Function Category Description of Functions as Programmed

Representative Examples
Display Connection Functions to connect and disconnect an application with a display,

possibly across the network.
XOpenDisplay(), XCloseDisplay()

Window Attributes Functions for setting and getting the current characteristics of a
window.

XChangeWindowAttributes(), XSetWindowBackground(), XSetWindowBorder()

Window Life Functions to create or destroy a window.
XCreateWindow(), XCreateSimpleWindow()

Window Management Functions to allow the manipulation of windows around the
screen, changing their size, their visibility on the screen, and
their apparent position above or below other windows.

XConfigureWindow(), XLowerWindow(), XMoveResizeWindow(), XMoveWindow(),
XRaiseWindow(), XResizeWindow(), XSetWindowBorderWidth(), XMapWindow(),

XMapSubwindows(), XSetWMProperties()

Graphics Context (GC) Functions to set the way drawing requests are interpreted.
XCreateGC(), XChangeGC(), XCopyGC(), XSetLineAttributes(), XSetForeground()

Cursors Functions to change the shape and colors of the image that tracks
the pointer around the screen.

XCreateFontCursor(), XcreateGlyphCursor(), XcreatePixmapCursor()

Drawing Functions to draw dots, lines, rectangles, polygons, and arcs, and
an analogous set to fill the last three.

XDrawArcs(), XDrawLines(), XDrawPoints(), XDrawRectangles(),
XDrawSegments(), XDrawText(), XFillArcs(), and XFillRectangles()

Fonts Functions to list available fonts, load fonts, and find out font
characteristics.

XlistFonts(), XloadFont(), XQueryFont()

Images Functions to get, display, or manipulate screen images.
XGetImage(), XPutImage()

Regions Functions to perform mathematical operations on polygonal
regions.

XCreateRegion(), XpolygonRegion(), XDestroyRegion()

Text Functions for drawing text and for determining the size of a string
to be drawn.

XDrawString(), XdrawImageString(), XDrawText()

Color Functions to change the way colors drawn by a client application
are interpreted on the screen.

XAllocColor(), XAllocNamedColor(), XParseColor(), BlackPixel(), WhitePixel()

(Continued)

Raspberry Pi OS System Administration: Ancillary Topics126

Function Category Description of Functions as Programmed

Events Functions to get input from the user, from other applications, and
from the server.

XSelectInput(), XNextEvent(), XMaskEvent(), XWindowEvent()

Geometry Functions to manipulate and translate geometry specifications.
XWMGeometry(), XParseGeometry(), XSetWMProperties()

Resource Management Functions to make managing user preferences and command line
arguments easier.

XGetDefault(), XrmGetDatabase(), XrmGetDatabase()

Keyboard Functions to get and change keyboard input, and keyboard
mapping.

XLookupString(), XChangeKeyboardMapping(),

XRefreshKeyboardMapping(), XGrabKeyboard()

Pointer Functions to change the pointer and its input.
XQueryPointer(), XGetMotionEvents(), XGetPointerMapping(),

XSetPointerMapping(),XGrabPointer()

Keyboard and Pointer
Preferences

Functions for setting and getting the keyboard and pointer
parameters.

XChangeKeyboardControl(), XChangePointerControl()

Interclient
Communication

Functions enabling any client to make available information for
any other client to read.

XConvertSelection()

Internationalization Functions to handle user input and draw text independent of
language.

setlocale, XSupportsLocale(), XSetLocaleModifiers(), XCreateFontSet()

Extensions Functions to find out what extensions are available on a particular
server and get information about how to use one.

XListExtensions(), XQueryExtension(), XFreeExtensionList()

Data Management Several mechanisms to associate data with windows or numbers.
XUniqueContext(), XSaveContext(), XFindContext(), XDeleteContext()

Host Access Functions to control access to a server from other machines
connected on a network.

XAddHost(), XAddHosts(), XListHosts(), XRemoveHost(), XRemoveHosts()

Screen Saver Functions to set the screensaver program and invoke it.
XGetScreenSaver(), XSetScreenSaver(), XActivateScreenSaver(), XResetScreenSaver()

Errors Functions to set the user-​written functions called when errors
occur.

XErrorHandler, XSetIOErrorHandler(), XSetErrorHandler(), XGetErrorText()

TABLE 2.2  (Continued)

Xlib Function Categories, Descriptions, and Examples

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 127

what the X Window System, and Xlib in particular, considers to be a dis-
play, a screen, and a window. A display can possibly consist of one or more
monitors that have a single shared keyboard and mouse. A screen is a single
physical monitor. A window is a rectangular portion of any screen, sort of
like a mini-​monitor. A vast majority of ordinary users are looking at a single-​
monitor display, with only one screen, and that screen usually has multiple
windows shown on it.

In the context of, and to contrast and compare, graphics systems and display
protocols, a Wayland surface refers to a drawable region within the Wayland
display server protocol. In the Wayland protocol, a surface represents a
drawable area that a client can use to display its content.

In simpler terms, a Wayland surface is an abstraction for a window or a
graphical element that applications can create and use to render their user
interfaces. The Wayfire compositor manages these surfaces, handling their
placement, stacking order, and other aspects of their display on the screen.

Compared to the traditional X Window System, Wayland is designed to
be more lightweight and modern. It aims to provide better performance,
improved security, and a more direct interaction between applications and
the display hardware. Wayland surfaces play a key role in this architecture
by serving as the fundamental building blocks for graphical content within
the Wayland display server environment.

Furthermore, and from the programmers’ perspective, an X Window System
server’s display is designated as hostname:displaynumber.screennumber.

This designation, as an argument in the coding of a client application
program, determines what graphical server to connect to, and which screen
to portray information on. Since the X Windows Protocol is equally applied
via networked connections between various host computers, the hostname
designates the name of the machine to which any display is physically
connected to. The term displaynumber (starting at 0) refers to the particular
collection of monitors, on a possibly multi-​monitor workstation. The term
screennumber (starting at 0) refers to any single particular monitor in the
displays collection.

2.3.9.3  The Xlib Graphics Context (GC)

What exactly is the Graphics Context (GC), as a resource that Xlib uses to
produce the simple types of graphics in X Windows displays? Basically, the
GC defines how graphics primitives are drawn, and what characteristics and
attributes the graphics, such as lines, rectangles, points, text, filled areas, etc.,
will have in any window display. GCs are kept in the server-​side portion of
the client–​server software model, enhancing speed, performance, and storage
requirements. There are basically two “targets” for the drawing of graphics
primitives: windows and pixel maps, or pixmaps. These targets are referred to
as drawables in X Window jargon.

Raspberry Pi OS System Administration: Ancillary Topics128

Note
A given graphics primitive does not contain all the information needed to
draw a particular instance of that primitive.

The appearance of everything that is drawn by a client-​side program is
controlled by the GC that is in effect for each graphics primitive. For example,
when an application has reached a point where graphics primitives are to
be drawn, a GC must be specified or be already in place, and then the GC is
supplied as an argument in the argument list of the particular function that
draws the graphics primitive. This arrangement, of having a single, or pos-
sibly multiple contexts available, retained at the server, for the drawing of
many primitives speeds up the drawing of graphics primitives.

2.3.9.4  Compiling an Xlib Client Application Program

Be aware that, on a Raspberry Pi system, you may have to download and
install the GNU C compiler for the following example programs to run, if that
has not already been done by default at installation, or subsequently by your
system administrator. This compiler was already available after installation
of the Raspberry Pi OS on our systems, and therefore, by default, we did not
have to do this on our Raspberry Pi system.

We used the following compiler command, with the options and option
arguments shown.

gcc input_​file.c –​o output_​file –​lX11

Here, input_​file.c is the name of your C source code file, output_​file is the
name of the executable program, and X11 is the library that already exists on
the system that must be linked to.

In-​Chapter Exercise

2.10 � Is the X11 library you link to in the compiler command for an Xlib
program a statically or dynamically linked library?

2.3.9.5  Sample Xlib Client Application Programs

In this section, we give you a practical introduction to programming using
the Xlib model. The example programs presented in this section fulfill some
or all of the requirements for a basic application shown in Section 2.3.9.2, and
as detailed in Section 2.3.9.1. They illustrate some of the most important X11
concepts and programming issues.

Following are three elementary sample Xlib C programs. Each is preceded
by a statement of what the program does, relevant background information,
and a reference to Table 2.2, listing the X Window functions, along with a

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 129

description of what the functions do. To get more information about the
function calls—​for example, what their specific argument list data structure
and contents are—​consult your own documentation set for Xlib, or the online
documentation.

Note
You can download these three programs from the book website repository
(www.git​hub.com/​bob​k48/​Raspbe​rryP​iOS), and use the Geany IDE to build
and run them on your version of the Raspberry Pi OS.
Xlib Example Program simple1_​white.c

Objective: Draw an empty 500 × 400 pixel window, surrounded by the
window manager decorations for whatever window manager you have
running on your system.

Background: This simple Xlib program, in addition to conforming to the
structure illustrated in Section 2.3.9.1 for an X Window System client appli-
cation, conforms to (and includes requisite code for window creation) our
X Window System model of Data Generation → Window Creation → Data
Mapping into the Created Window. In this particular program, we include
a C printf statement that prints the window ID of the created window
to stdout, so that when mapping gnuplot graphics to the window for
example, you can easily identify the window ID as a hex number.

Functions Called: See Table 2.3

TABLE 2.3

simple1_​white.c Xlib Function Calls

Xlib Function Name Description and Important Arguments

XOpenDisplay Connects a client program to the server, via TCP or Linux IPC.
Requires the display_​name as a character argument.

WhitePixel Returns the white pixel value of the screen default color map, as an
unsigned long integer.

DefaultScreen Returns the default integer screen number, in the last segment of
the string referenced by the XOpenDisplay function.

XCreateSimpleWindow Creates an unmapped Input-​Output sub-​window for a specified
parent window. Arguments include Display, parent, x and y
coordinate location, width, height. Also returns the window ID of
the created window as a long unsigned integer.

DefaultRootWindow Returns the ID of the root window on the default screen.
XMApWindow Maps the window and all its sub-​windows. Its actual display

depends on its stacking order relative to siblings and ancestors.
Arguments are Display and Window.

XFlush Flushes or sends all requests to the server that have been buffered,
but not yet sent. Takes Display as an argument.

http://www.github.com

Raspberry Pi OS System Administration: Ancillary Topics130

Code:

#include <X11/​Xlib.h>

#include <stdio.h>

int main()

{
Display *d =​ XOpenDisplay(NULL);

int white =​ WhitePixel(d, DefaultScreen(d));

Window w =​ XCreateSimpleWindow(

d, DefaultRootWindow(d), 0, 0, 500, 400, 0, white, white);

printf("Window ID 0x%p\n", (void*)w);

XMapWindow(d, w);

XFlush(d);

while (1);

}

In-​Chapter Exercises

2.11 � Identify, by listing them, the basic structural components of this X
Window System client application program, as seen in the listing in
Section 2.3.9.1. What basic structural components from the listing
are included in this program? Which ones are missing?

2.12 � What are the arguments supplied to the XCreateSimpleWindow
function in the preceding program? Consult your Xlib documentation
set to give a complete listing and description of all arguments
that are shown.

TABLE 2.4

test1.c Xlib Function Calls

Xlib Function Name Description and Important Arguments

RootWindow Returns the window ID of the root window.
BlackPixel Returns the black pixel value of the screen default color map, as an

unsigned long integer.
XSelectInput Arbitrates which events a window will respond to.
ExposureMask Selects for any exposure event for a window except GraphicsExpose or

NoExpose.
KeyPressMask Selects for any KeyPress event for a window.
XNextEvent Copies the first event from the event queue into the specified XEvent

structure and then removes it from the queue
Expose A type of event.
XFillRectangle Fills the specified rectangle or rectangles as if a four-​point FillPolygon

protocol request were specified for each.
DefaultGC Returns the default GC of the specified screen.
XCloseDisplay Closes the connection to the X server for the display specified in the

display structure, and destroys all windows and resource IDs
KeyPress A type of event.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 131

Xlib Example Program test1.c

Objective:   �Produce a simple window on the display that draws a small
filled-​in rectangle in black. It may be closed by pressing
<Ctrl>+​C>.

Background: � This is an example of an Xlib client application that actually
does some drawing in a window opened on the display.

New Function Called: See Table 2.4

Code:

/​*

 * Simple Xlib application drawing a box in a window.

 */​

#include <X11/​Xlib.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(void)

{
	 Display *display;

	 Window window;

	 XEvent event;

	 int s;

/​*Initialization*/​

	 /​* open connection with the server */​

	 display =​ XOpenDisplay(NULL);

	 if (display =​=​ NULL)

	 {
	 fprintf(stderr, "Cannot open display\n");

	 exit(1);

	 }

	 s =​ DefaultScreen(display);

	 /​* create window */​

	 window =​ XCreateSimpleWindow(display,RootWindow(display,s),10, 10,\ 200, 200, 1,\

				 BlackPixel(display, s), WhitePixel(display, s));

	 /​* select kind of events we are interested in */​

	 XSelectInput(display, window, ExposureMask | KeyPressMask);

Raspberry Pi OS System Administration: Ancillary Topics132

	 /​* map (show) the window */​

	 XMapWindow(display, window);

	 /​* Start the Event-​Request Loop*/​

	 for (;;)

	 {
		 XNextEvent(display, &event);

		 /​* draw or redraw the window */​

		 if (event.type =​=​ Expose)

		 {
		 XFillRectangle(display, window, DefaultGC(display, s), 20, 20, 10, 10);

		 }
		 /​* exit on key press */​

		 if (event.type =​=​ KeyPress)

		 break;

	 }

	 /​* Cleanup */​

	 XCloseDisplay(display);

	 return 0;

 }

In-​Chapter Exercise

2.13 � What basic structural components from the listing in Section 2.3.9.1
of an X Window System client application program are included in
this program? Which ones are missing?

Xlib Example Program test4.c

Objective:    �Open a window on the display with the title Report, and then
place the text string Linux Rocks at any mouse click-​indicated
position in the window. In addition, you can press keyboard
keys and they will be echoed on the console screen, telling
you what key you pressed.

Background: � This introduces in a straightforward and easy-​to-​understand
manner the program model for X Window System client
applications, and illustrates the concept of a Graphic Context
(GC) that specifies many of the characteristics of windows
and other objects.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 133

New Function Called: See Table 2.5

Code:

/​* Xlib and standard	 C headers */​

#include <X11/​Xlib.h>

#include <X11/​Xutil.h>

#include <X11/​Xos.h>

#include <stdio.h>

#include <stdlib.h>

/​* Declare the X variables and pointers*/​

Display *dis;

int screen;

Window	 win;

GC gc;

/​* X routines */​

void init_​x();

TABLE 2.5

test4.c Xlib Function Calls

Xlib Function Name Description and Important Arguments

XLookupString Translates a key event to a KeySym and a string.
XSetForeground Sets the foreground attributes of a given GC.
XDrawString Draws text characters in a given drawable.
XSetStandardProperties Provides a means by which simple applications set the most

essential properties with a single call.
ButtonPressMask Specifies that button presses are selected as events for the current

window.
XSelectInput Requests that the X server report the events associated with the

specified event mask.
XCreateGC Creates and returns a GC; can be used with any destination

drawable with the same root and depth as the specified
drawable.

XSetBackground Sets the background attributes of a given GC.
XSetForeground Sets the foreground pixel value components in a GC. Arguments

are Display, GC, and foreground as an unsigned long integer
XClearWindow Clears the entire area in the specified window.
XMapRaised Maps the window and all of its sub-​windows that have had map

requests and raises the window to the top of the stack.
XFreeGC Destroys the specified GC as well as all the associated storage.
XDestroyWindow Destroys the specified window as well as all of its subwindows

and causes the X server to generate a DestroyNotify event for
each window.

XClearWindow Clears a window, but does not signal an exposure event.
Arguments are the Display and a designated window.

Raspberry Pi OS System Administration: Ancillary Topics134

void close_​x();

void redraw();

main () {
/​*Initialization*/​

XEvent event;	  /​* declare the XEvent */​

KeySym key; 	  /​* KeyPress Events */​

char text[255];	  /​* char buffer for KeyPress Events */​

init_​x();

/​* Start the Event-​Request Loop*/​

while(1) {
/​* get the next event.

We set the mask for events that we want detected

*/​

XNextEvent(dis, &event);

if (event.type=​=​Expose && event.xexpose.count=​=​0) {
/​* the window was exposed redraw it! */​

redraw();

}
if (event.type=​=​KeyPress&&

 XLookupString(&event.xkey,text,255,&key,0)=​=​1) {
/​* use the XLookupString routine to convert the invent

	 KeyPress data into regular text.

*/​

if (text[0]‌=​=​'q') {
close_​x();

}
printf("You pressed the %c key\n",text[0]‌);

}
if (event.type=​=​ButtonPress) {
/​* report where the mouse Button was Pressed */​

int x=​event.xbutton.x,

 y=​event.xbutton.y;

strcpy(text,"Linux Rocks");

XSetForeground(dis,gc,rand()%event.xbutton.x%255);

XDrawString(dis,win,gc,x,y, text,\ strlen(text));

}
}

}

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 135

void init_​x() {
/​* Set the colors black and white */​

unsigned long black,white;

dis=​XOpenDisplay((char *)0);

screen=​DefaultScreen(dis);

black=​BlackPixel(dis,screen),

white=​WhitePixel(dis, screen);

win=​XCreateSimpleWindow(dis,DefaultRootWindow(dis),0,0,\

300, 300, 5,black, white);

XSetStandardProperties(dis,win,"Report","E",None,NULL,0,NULL);\

XSelectInput(dis, win, ExposureMask|ButtonPressMask|KeyPressMask);\

gc=​XCreateGC(dis, win, 0,0);

XSetBackground(dis,gc,white);

XSetForeground(dis,gc,black);

XClearWindow(dis, win);

XMapRaised(dis, win);

};

void close_​x() {

/​* Cleanup */​

XFreeGC(dis, gc);

XDestroyWindow(dis,win);

XCloseDisplay(dis);

exit(1);

};

void redraw() {
XClearWindow(dis, win);

};

In-​Chapter Exercises

2.14 � What basic structural components from the listing in Section 2.3.9.1
of an X Window System client application program are included in
this program? Which ones are missing?

2.15 � Which function calls create and implement the GC in program
test4.c?

Tables 2.6, 2.7, and 2.8 give additional information about Xlib display,
drawing, and event functions.

Raspberry Pi OS System Administration: Ancillary Topics136

TABLE 2.6

Xlib Display Functions

Xlib Function Name Description and Important Arguments

XOpenDisplay Connects a client program to the server, via TCP or Linux IPC.
Requires the display_​name as a character argument.

WhitePixel Returns the white pixel value of the screen default color map, as an
unsigned long integer.

DefaultScreen Returns the default integer screen number, in the last segment of the
string referenced by the XOpenDisplay function.

XCreateSimpleWindow Creates an unmapped Input-​Output sub-​window for a specified
parent window. Arguments include Display, parent, x and y
coordinate location, width, height. Also returns the window ID of
the created window as a long unsigned integer.

DefaultRootWindow Returns the ID of the root window on the default screen.
XMApWindow Maps the window and all its sub-​windows. Its actual display

depends on its stacking order relative to siblings and ancestors.
Arguments are Display and Window.

XFlush Flushes or sends all requests to the server that have been buffered,
but not yet sent. Takes Display as an argument.

TABLE 2.7

Xlib Drawing Function

Xlib Function Name Description and Important Arguments

RootWindow Returns the window ID of the root window.
BlackPixel Returns the black pixel value of the screen default color map, as an

unsigned long integer.
XSelectInput Arbitrates which events a window will respond to.
ExposureMask Selects for any exposure event for a window except GraphicsExpose

or NoExpose.
KeyPressMask Selects for any KeyPress event for a window.
XNextEvent Copies the first event from the event queue into the specified XEvent

structure, and then removes it from the head of the event queue.
Expose A type of event.
XFillRectangle Fills a rectanglular area in the specified drawable entity using the

supplied arguments of x and y location as integers, width and
height as unsigned integers, and GC.

DefaultGC Returns the default GC of the specified screen.
XCloseDisplay Closes the connection to the X server for the display

specified in the display structure, and destroys all windows and
resource IDs

KeyPress A type of event.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 137

2.4 � Using XCB

In this section, we detail another official client-​side library that can be used to
produce interactive X Window System client applications. We show some of
the basic top-​down considerations you need to make before actually writing
the code for an XCB client application. Then we show how to compile and link
an XCB program. Finally, we give basic examples of programming in XCB.

As in Section 2.3.9.3 on Xlib, it would be helpful for you to assemble your
own documentation set for XCB from on-​line sources, and then make a com-
parison of these two libraries in terms of the documents available for each.
We also encourage you to compare the basic structure and complexity of
the examples in this section to the example programs we provided for Xlib.

In-​Chapter Exercise

2.16 � Create your own documentation set for XCB, and for Xlib from the
previous section, using on-​line sources and printed documents and

TABLE 2.8

Xlib Event Functions

Xlib Function Name Description and Important Arguments

XLookupString Translates a key event to an ASCII string, keysym, and
ComposeStatus.

XSetForeground Sets the foreground attributes of a given GC.
XDrawString Draws text characters in a given drawable entity.
XSetStandardProperties Provides a means by which simple applications set the most

essential properties with a single call.
ButtonPressMask Specifies that button presses are selected as events for the current

window.
XSelectInput Requests that the X server report the events associated with the

specified event mask.
XCreateGC Creates and returns a GC; can be used with any destination

drawable entity with the same root window and depth as the
specified drawable entity.

XSetBackground Sets the background attributes of a given GC.
XSetForeground Sets the foreground pixel value components in a GC. Arguments

are Display, GC, and foreground as an unsigned long integer
XClearWindow Clears the entire area in the specified window.
XMapRaised Maps the window and all of its sub-​windows that have had map

requests and raises the window to the top of the stack.
XFreeGC Destroys the specified GC as well as all the associated storage.
XDestroyWindow Destroys the specified window as well as all of its subwindows

and causes the X server to generate a DestroyNotify event for
each window.

XClearWindow Clears a window, but does not signal an exposure event.
Arguments are the Display and a designated window.

Raspberry Pi OS System Administration: Ancillary Topics138

books. The most important component of a documentation com-
parison is cataloging and organizing that catalog to effectively serve
you personally in showing how the documents for each system
proceed from a top-​down overview to the lowest level details of
using the libraries. This method, which we can only partly illustrate
and prescribe here, would then allow you to take our examples and
expand upon them to enable you to write more complex X Windows
client applications given the use cases you might encounter.

2.4.1 � XCB Top-​Down Considerations

XCB is more efficient, in several dimensions which are highlighted in on-​
line documentation, than its older predecessor, Xlib. And for beginning
programmers, XCB client application programs conform to the basic struc-
ture shown in Section 2.3.7.2. That basic structure, as implemented by calling
XCB functions, and interacting with the XCB data structures, is very similar
to the basic structure of an Xlib program as seen in Section 2.3.9.1. Of course,
instead of Xlib function calls, you must substitute XCB function calls. We
repeat that basic structure here, and make the appropriate substitutions of
function calls where necessary:

A client application program written for XCB generally operates in this way:

1.	 Establishes a connection to an X server with xcb_​connect(), and if the
connection cannot be made, gracefully terminates the program.

2.	 Polls the server for information about the physical screen, and uses
the information obtained to calculate window parameters, like size,
position, etc.

3.	 Creates a window on the physical screen with xcb_​create_​window().

4.	 Sets standard properties for the window manager.

5.	 Selects and specifies the types of events it needs to receive, and respond
to, in order to work.

6.	 If text will be output in the window, loads the font to be used for
that text.

7.	 Creates a GC to control the action of drawing requests.

8.	 Displays the window with xcb_​map_​window().

9.	 Begins and continues to indeterminately (or logically) iterate (loop),
to handle possible events from the server, and send callbacks to the
client.

a.	 Possibly does the actual drawing operations in the window.
Achieves this by responding to an Expose event resulting from

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 139

mapping the window, and other subsequent expose events, by
calling routines to draw text and bit mapped graphics.

b.	 Keeps handling events until a KeyPress or ButtonPress event
arrives (which ends the indeterminate iteration), then closes the
display connection, cleans up, and exits.

2.4.1.1  The XCB API

The Application Programming Interface (API) structure of XCB has two basic
layers, a lower layer, XCB Connection, that supports the establishment of
an X server connnection, and an intermediate XCB protocol layer. The XCB
Protocol layer provides a direct C API for the core X Protocol. There are also
many other APIs available that provide other types of interaction between
client and server. The XCB API uses an Xlib-​style “event loop” method of
interaction. Unlike Xlib, which blocks and caches requests, XCB requests are
converted into “reply cookies”, which use a form of caching that makes the
cache of event replies more efficient.

XCB has an efficient data structure form and interface. As can be seen
in the examples in Section 2.4.1.3, the establishment of the server-​side
connection, using a closed data structure, is the first action a client-​side
application takes.

Contrary to the Xlib partitioning of hostname/​display/​screen, as we
show in Section 2.3.9.1, XCB limits the connection data structure to a single
display. The only idea of “screen” in XCB as defined in the X Window
System Protocol, becomes the root window of that single display. Event
and request queues are established and flushed in a manner that supports,
most importantly, a purely asynchronous form of interaction between client
and server.

The XCB data structure/​function call API can be broken into a variety of
categories, such as functions that create connections and XIDs, non-​blocking
requests such as drawing primitives, blocking requests, retrieval of data, and
event and error handlers.

2.4.1.2  XCB Documentation

In order to supplement your own documentation set for XCB, we present an
on-​line alphabetized listing of a large collection of Core API and main XCB
functions in the following repository of the book’s Github site:

www.git​hub.com/​bob​k48/​unixt​hete​xtbo​ok3

That listing is entitled xcb_​functions.doc. Each entry in this listing takes the
following form:

http://www.github.com

Raspberry Pi OS System Administration: Ancillary Topics140

**
Function Prototype

Data Structure Function Name (Type Def Argument 1
Type Def Argument 2
... ...

)

Short description of what the function does.
Parameters

Argument 1 Description.
Argument 2 Description.
... ...

Returns
Description of what the function returns.

Verbose description of what the function does.

References What other functions this function refers to.

**

An example function taken from that listing of functions is as follows:

xcb_​void_​cookie_​t xcb_​create_​window (xcb_​connection_​t * c,
uint8_​t depth,
xcb_​window_​t wid,
xcb_​window_​t parent,
int16_​t x,
int16_​t y,
uint16_​t width,
uint16_​t height,
uint16_​t border_​

width,
uint16_​t _​class,
xcb_​visualid_​t visual,
uint32_​t value_​mask,
const void * value_​list

)

Creates a window.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 141

Parameters

c The connection
depth Specifies the new window’s depth.

The special value XCB_​COPY_​FROM_​PARENT means
the depth is taken from the parent window.

wid The ID with which you will refer to the new window, created
by xcb_​generate_​id.

parent The parent window of the new window.
x The X coordinate of the new window.
y The Y coordinate of the new window.
width The width of the new window.
height The height of the new window.
border_​width Must be zero if the class is InputOnly or a xcb_​match_​

error_​t occurs.
​class A bitmask of #xcb​window_​class_​t values.
_​class
visual Specifies the id for the new window’s visual.

The special value XCB_​COPY_​FROM_​PARENT means
the visual is taken from the parent window.

value_​mask A bitmask of xcb_​cw_​t values.

Returns

A cookie

Creates an unmapped window as child of the specified parent window.
A CreateNotify event will be generated. The new window is placed on top in
the stacking order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical with
the origin [0, 0] at the upper-​left corner. Coordinates are integral, in terms of
pixels, and coincide with pixel centers. Each window and pixmap has its own
coordinate system. For a window, the origin is inside the border at the inside,
upper-​left corner.

The created window is not yet displayed (mapped), call xcb_​map_​window
to display it.

The created window will initially use the same cursor as its parent.

References XCB_​CREATE_​WINDOW.

**

Raspberry Pi OS System Administration: Ancillary Topics142

In-​Chapter Exercise

2.17 � In the function listing for xcb_​create_​window, what is the argument
xcb_​connection_​t*? What are the elements of xcb_​connection_​t*?
From the documentation of what API did you get this information?

2.4.1.3  The XCB Graphics Context (GC)

Question:
What exactly is the graphics context, as a resource that XCB uses to produce
the simple types of graphics in X Windows displays?

Answer:
In X Window System, the graphics context (often referred to as GC) is a resource
that encapsulates various attributes used for drawing on the screen. XCB (X C
Binding) is a low-​level library for communicating with the X Window System
protocol, and it provides a programming interface to interact with X servers.

The graphics context in XCB is a structure that holds information about how
graphics operations should be performed. It includes attributes such as the fore-
ground and background colors, line width, font, function (specifying how pixel
values should be combined), and more. When you perform graphics operations
in XCB, you use a graphics context to define the properties of the drawing.

Here’s a brief overview of some key attributes commonly found in a graphics
context:

1.	 Foreground and Background Colors: Specifies the colors used for
drawing. The foreground color is typically used for drawing shapes,
while the background color may be used for clearing areas.

2.	 Line Attributes: Includes properties like line width, line style (solid,
dashed, etc.), and cap and join styles for line endings and intersections.

3.	 Font: Specifies the font used for text rendering.

4.	 Function: Defines how pixel values should be combined during
drawing operations. Common functions include COPY (replace
existing pixel values), XOR (bitwise exclusive OR), etc.

5.	 Clip Mask: Specifies a region that limits where drawing can occur.
Anything outside this region is not affected by drawing operations.

When you perform a drawing operation using XCB, you pass the graphics
context along with the drawable (such as a window or a pixmap) to specify
how the drawing should be done.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 143

Here’s a simple example in pseudocode to illustrate the use of a graphics
context:

//​ Assume we have a connection to the X server and a window (drawable)

xcb_​connection_​t* connection;

xcb_​drawable_​t window;

//​ Create a graphics context

xcb_​gcontext_​t gc =​ xcb_​generate_​id(connection);

xcb_​create_​gc(connection, gc, window, XCB_​GC_​FOREGROUND |
XCB_​GC_​GRAPHICS_​EXPOSURES, values);

//​ Set the foreground color to black

uint32_​t values[1]‌ =​ { 0x000000 };

//​ Draw a line using the created graphics context

xcb_​point_​t points[] =​ { {10, 10}, {50, 50} };
xcb_​poly_​line(connection, XCB_​COORD_​MODE_​ORIGIN, window, gc, 2, points);

In this example, we create a graphics context (gc) and set its foreground color
to black. Then, we draw a line using the xcb_​poly_​line function, passing the
graphics context and an array of points defining the line.

2.4.2 � Installing and Compiling an XCB Program

Use the following commands to install XCB on your Raspberry Pi system:

$ sudo apt -​y install xcb

$ sudo apt -​y install libc6

$ sudo apt -​y install libxcb-​util-​dev

Note
At the time we wrote this book, on our Raspberry Pi system, running the
latest Raspberry Pi OS, based on Debian Bookworm, we didn’t need to use
the second command shown above, but you may need to use that command.

On our Raspberry Pi system, we used the following compiler command
with the options and arguments shown, to compile XCB program code:

$ gcc –​Wall input_​file.c –​o output_​file –​lxcb

In-​Chapter Exercise

2.18 � Instead of using the above compile command to produce an exe-
cutable image, how would you use the Geany IDE, or Visual Studio
Code, to compile and execute the XCB programs presented in
Section 2.4.3?

Raspberry Pi OS System Administration: Ancillary Topics144

2.4.3 � Sample XCB Client Application Programs

Following are three elementary sample XCB programs, taken from the
following source:

www.x.org/​relea​ses/​X11R7.6/​doc/​lib​xcb/​tutor​ial/​index.html

Each is preceded by a statement of what the program does, and a short
background description that illustrates important functions or concepts in the
program listing. To gain a full explanation of how an XCB program works, it
would be very helpful to review the documants found at the above web link.
XCB Example Program xcb_​simple2.c

Objective:   Place a simple window on screen.
Background: � This simple XCB program conforms to the structure illustrated

in previous sections for an X Windows System client applica-
tion. Most notably, it calls the xcb_​create_​window function
that we give a complete documentation reference for in
Section 2.4.1.2. It also conforms to (and includes requisite
code for window creation) our X Window System model of
Data Generation → Window Creation → Data Mapping into
the Created Window. In this particular program, we generate
the window ID with the xcb_​generate function, and include a
printf C language statement that prints the window ID of the
created window to stdout. We do this so that when mapping
gnuplot graphics to the window, as shown in Section 2.7.5,
you can easily identify the window ID as a hex number.

Note
Use Geany to build and launch it.

Code:

#include <unistd.h>	 /​* pause() */​

#include <stdio.h>

#include <xcb/​xcb.h>

int

main ()

{
	 xcb_​connection_​t	 *c;

	 xcb_​screen_​t		 *screen;

	 xcb_​window_​t		 win;

/​* Initialization */​

http://www.x.org

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 145

 /​* Open the connection to the X server */​

	 c =​ xcb_​connect (NULL, NULL);

	 /​* Get the first screen */​

	 screen =​ xcb_​setup_​roots_​iterator (xcb_​get_​setup (c)).data;

	 /​* Ask for our window's Id and print it in hex to stdout */​

	 win =​ xcb_​generate_​id(c);

	 printf ("Window ID, 0x%x\n", win);

	 /​* Create the window */​

	 xcb_​create_​window (c,				 /​* Connection	 	 */​

			 XCB_​COPY_​FROM_​PARENT,	 /​* depth (same as root)	 */​

			 win,				 /​* window Id	 	 */​

			 screen-​>root,			 /​* parent window		 */​

			 0, 0,			 /​* x, y		 	 */​

			 250, 250,			 /​* width, height		 */​

			 10,				 /​* border_​width		 */​

			 XCB_​WINDOW_​CLASS_​INPUT_​OUTPUT, /​* class	 	 */​

			 screen-​>root_​visual,		 /​* visual			 */​

			 0, NULL);			 /​* masks, not used yet 	 */​

	 /​* Map the window on the screen */​

	 xcb_​map_​window (c, win);

	 /​* Make sure commands are sent before we pause, so window is shown */​

	 xcb_​flush (c);

	 pause ();	 /​* hold client */​

/​* Cleanup */​

	 xcb_​disconnect(c);

	 return 0;

}

In-​Chapter Exercises

2.19 � What basic component of an X Windows client application is missing
from the preceding program, and particularly what aspect or part of
that component? How do you close the window without using the
window kill button?

2.20 � What is contained in the background of the window drawn by xcb_​
simple.c? Why does this background appear as it does?

XCB Example Program 2ndxcbdraw.c

Raspberry Pi OS System Administration: Ancillary Topics146

Objective:  Draw two rectangles in a window.
Background: � The important new function and its associated XCB data struc-

ture introduced in this example, xcb_​create_​gc, creates a GC.
That GC is used to assign attributes to the rectangle drawing
primitives placed in the window, which is subsequently
mapped to a screen. Also notice that the member assignment
statement for elements of a C struct is used in several places in
this program to assign values to elements of a data structure. For
example, in the creation of the GC, the statements win =​ screen-​

>root; and values[0]‌ =​ screen→white_​pixel;. As noted, this data
structure technique is used very frequently in XCB to supply
values to parameters of XCB functions. Additionally, the other
new function call in this example is to a drawing function, xcb_​

poly_​rectangle. This drawing function creates the two rectangles,
using the GC defined, within the programs event/​request loop.

Note
Use Geany to build and launch the program.

Code:

#include <stdlib.h>

#include <stdio.h>

#include <xcb/​xcb.h>

int

main ()

{
	 xcb_​connection_​t		 *c;
	 xcb_​screen_​t			 *screen;

	 xcb_​drawable_​t		 win;

	 xcb_​gcontext_​t			 foreground;

	 xcb_​generic_​event_​t		 *e;

	 uint32_​t			 mask =​ 0;

	 uint32_​t	 		 values[2]‌;

/​* geometric objects */​

	 xcb_​rectangle_​t		 rectangles[] =​ {
	 { 10, 50, 40, 20},
	 { 80, 50, 10, 40}};

/​* Initialization */​

	 /​* Open the connection to the X server */​

	 c =​ xcb_​connect (NULL, NULL);

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 147

	 /​* Get the first screen */​

	 screen =​ xcb_​setup_​roots_​iterator (xcb_​get_​setup (c)).data;

	 /​* Create black (foreground) graphic context */​

	 win =​ screen-​>root;

	 foreground =​ xcb_​generate_​id (c);

	 mask =​ XCB_​GC_​FOREGROUND | XCB_​GC_​GRAPHICS_​EXPOSURES;

	 values[0]‌ =​ screen-​>black_​pixel;

	 values[1]‌ =​ 0;

	 xcb_​create_​gc (c, foreground, win, mask, values);

	 /​* Ask for our window's Id */​

	 win =​ xcb_​generate_​id(c);

	 /​* Create the window */​

	 mask =​ XCB_​CW_​BACK_​PIXEL | XCB_​CW_​EVENT_​MASK;

	 values[0]‌ =​ screen-​>white_​pixel;

	 values[1]‌ =​ XCB_​EVENT_​MASK_​EXPOSURE;

	 xcb_​create_​window (c,				 /​* Connection		 */​

		 XCB_​COPY_​FROM_​PARENT,			 /​* depth			 */​

		 win,					 /​* window Id		 */​

		 screen-​>root,				 /​* parent window	 	 */​

		 0, 0,					 /​* x, y			 */​

		 150, 150,				 /​* width, height		 */​

		 10,					 /​* border_​width		 */​

		 XCB_​WINDOW_​CLASS_​INPUT_​OUTPUT,		 /​* class			 */​

		 screen-​>root_​visual,			 /​* visual			 */​

		 mask, values);

	 /​* Map the window on the screen */​

	 xcb_​map_​window (c, win);

	 /​* Flush the request */​

	 xcb_​flush (c);

/​* Start the Event-​Request loop */​

	 while ((e =​ xcb_​wait_​for_​event (c))) {

		 switch (e-​>response_​type & ~0x80) {

		 case XCB_​EXPOSE: {

			 /​* Draw the rectangles */​

			 xcb_​poly_​rectangle (c, win, foreground, 2, rectangles);

Raspberry Pi OS System Administration: Ancillary Topics148

			 /​* Flush the request */​

			 xcb_​flush (c);

			 break;

		 }

		 default: {
	 /​* Unknown event type, ignore it */​

	 break;

		 }
		 }
		 /​* Free the Generic Event */​

		 free (e);

	 }
/​* Cleanup */​

	 xcb_​disconnect(c);

	 return 0;

}

In-​Chapter Exercises

2.21 � Make a list of the lines in the code of 2ndxcbdraw.c that establish
the GC for the graphics primitives that are drawn by that program.

2.22 � Which segment of the program 2ndxcbdraw.c generates the data for
the graphics primitives that are drawn by it?

XCB Example Program xcb_​events.c

Objective:  �Report screen coordinates of three-​button mouse presses,
and movement of the current position in the window created.
Both mouse press/​release events and positional movement
are reported on stdout.

Background: � This program is a simple example of how to monitor XCB
events of the types shown in the code.

Code:

#include <stdlib.h>

#include <stdio.h>

#include <xcb/​xcb.h>

void

print_​modifiers (uint32_​t mask)

{

	 const char **mod, *mods[] =​ {

		 "Shift", "Lock", "Ctrl", "Alt",

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 149

		 "Mod2", "Mod3", "Mod4", "Mod5",

		 "Button1", "Button2", "Button3", "Button4", "Button5"

	 };

	 printf ("Modifier mask: ");

	 for (mod =​ mods; mask; mask >>=​ 1, mod+​+​)

		 if (mask & 1)

		 printf(*mod);

	 putchar ('\n');

}

int

main ()

{
	 xcb_​connection_​t	 *c;

	 xcb_​screen_​t		 *screen;

	 xcb_​window_​t	 	 win;

	 xcb_​generic_​event_​t 	 *e;

	 uint32_​t		 mask =​ 0;

	 uint32_​t		 values[2]‌;

	 /​* Open the connection to the X server */​

	 c =​ xcb_​connect (NULL, NULL);

	 /​* Get the first screen */​

	 screen =​ xcb_​setup_​roots_​iterator (xcb_​get_​setup (c)).data;

	 /​* Ask for our window's Id */​

	 win =​ xcb_​generate_​id (c);

	 /​* Create the window */​

	 mask =​ XCB_​CW_​BACK_​PIXEL | XCB_​CW_​EVENT_​MASK;

	 values[0]‌ =​ screen-​>white_​pixel;

	 values[1]‌ =​ XCB_​EVENT_​MASK_​EXPOSURE	 |

XCB_​EVENT_​MASK_​BUTTON_​PRESS	 |

		 XCB_​EVENT_​MASK_​BUTTON_​RELEASE |

XCB_​EVENT_​MASK_​POINTER_​MOTION |

		 XCB_​EVENT_​MASK_​ENTER_​WINDOW	 |

XCB_​EVENT_​MASK_​LEAVE_​WINDOW	 |

		 XCB_​EVENT_​MASK_​KEY_​PRESS	 |

XCB_​EVENT_​MASK_​KEY_​RELEASE;

	 xcb_​create_​window (c,			 /​* Connection	 	 */​

			 0,			 /​* depth		 	 */​

			 win,		 /​* window Id	 	 */​

			 screen-​>root,	 /​* parent window		 */​

			 0, 0,		 /​* x, y		 	 */​

Raspberry Pi OS System Administration: Ancillary Topics150

			 150, 150,		 /​* width, height		 */​

			 10,			 /​* border_​width		 */​

			 XCB_​WINDOW_​CLASS_​INPUT_​OUTPUT, /​* class	 */​

			 screen-​>root_​visual,/​* visual			 */​

			 mask, values);	 /​* masks 		 */​

	 /​* Map the window on the screen */​

	 xcb_​map_​window (c, win);

	 xcb_​flush (c);

	 while ((e =​ xcb_​wait_​for_​event (c))) {
	 switch (e-​>response_​type & ~0x80) {
	 case XCB_​EXPOSE: {
	 xcb_​expose_​event_​t *ev =​ (xcb_​expose_​event_​t *)e;

	 printf("Window %u exposed.Region to be redrawn at location(%d,%d), with\

dimension (%d,%d)\n",\

		 ev-​>window, ev-​>x, ev-​>y, ev-​>width, ev-​>height);

	 break;

	 }
	 case XCB_​BUTTON_​PRESS: {
	 xcb_​button_​press_​event_​t *ev =​ (xcb_​button_​press_​event_​t *)e;

	 print_​modifiers(ev-​>state);

	 switch (ev-​>detail) {
	 case 4:

	 printf("Wheel Button up in window %u, at coordinates(%d,%d)\n",\

	 ev-​>event, ev-​>event_​x, ev-​>event_​y);

	 break;

	 case 5:

	 printf ("Wheel Button down in window %u, at coordinates (%d,%d)\n",\

	 ev-​>event, ev-​>event_​x, ev-​>event_​y);

	 break;

	 default:

	 printf("Button %d pressed in window %u, at coordinates(%d,%d)\n",\

			 ev-​>detail, ev-​>event, ev-​>event_​x, ev-​>event_​y);

	 }
	 break;

	 }
	 case XCB_​BUTTON_​RELEASE: {
		 xcb_​button_​release_​event_​t *ev =​ (xcb_​button_​release_​event_​t *)e;

		 print_​modifiers(ev-​>state);

		 printf("Button %d released in window %u, at coordinates(%d,%d)\n",

		 ev-​>detail, ev-​>event, ev-​>event_​x, ev-​>event_​y);

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 151

		 break;

	 }

	 default:

		 /​* Unknown event type, ignore it */​

		 printf("Unknown event: %d\n", e-​>response_​type);

		 break;

	 }
	 /​* Free the Generic Event */​

	 free (e);

	 }
	 return 0;

}

2.5 � Basics of the Qt5 and GTK4 Toolkits

The objective of the next two sections is to give a very concise overview of
the Qt5 and GTK4 software frameworks. This will be based on a very simple
model. The model can be summerized as:

Data Generation → Window Generation/​Construction → Data Mapping to
the Constructed Window.

The primary purpose of conforming to this model is that it portrays a
very practical and useful method for using the X Window System program-
ming to the beginner. As in the previous sections of this chapter, it does not
require that you have any more than just a basic computer programming
knowledge of the C (or in the case of this section, the C+​+​) programming
language.

Our aim is not to give you a reference tutorial on Qt5 or GTK4. There are
numerous documentation sources online, and built into those frameworks
that accomplish this. But that doesn’t mean that we don’t give the beginner
at least a glimpse into the inner workings of these software frameworks. We
encourage further exploration and experimentation, via the built-​in help
systems available for each system, and the extensive online documentation
available. This is particularly true of the Qt5 framework.

It is important to realize that both Qt5 and GTK4, as we use them here, can
create very basic GUI elements, such as a single window that is empty. And
in advanced design and implementation, even entire window management
systems.

There are basically two ways an X Window System client application
program can use its program code to work in conjunction with the X

Raspberry Pi OS System Administration: Ancillary Topics152

protocol running on an X server. This can be done directly by using XCB or
Xlib library calls in a C program, or by using a toolkit specifically designed
to act as a simple-​to-​use intermediary that minimizes the coding com-
plexity of dealing with X protocol structure and Xlib or XCB functions. Qt5
(pronounced “cute five”) and GTK4 are this kind of intermediary toolkit.
They are a “framework”, or programming environment, that allows an
ordinary user to modify the pre-​built Qt5 or GTK4 system with user-​written
C+​+​ (for Qt5) or C (for GTK4) code, to create a customized X Window
System client application program. This framework as an abstraction frees
the user from dealing with the lower level details of XCB and Xlib library
calls, or the X protocol itself.
In the following sub-​sections and exercises, we show the following:

* Installing the Qt5 Framework and Qt5.
* Creating an Executable Qt5 Program from the Command Line.
* GTK4 Basics and Creating a Simple Widget.

Note
It is not necessary to have complete and developed knowledge of C+​+​ Object
Oriented Programming (OOP) concepts and its syntax to complete the QT5
material in this section.

2.5.1 � The Qt5 Framework

For our purposes in this chapter, Qt5 is used for developing X Window
System client applications with a GUI. These applications range from the
most basic GUI app, up to entire windowing systems. To work with Qt5,
a user combines standard C+​+​ with the built-​in QT5 framework code.
Among the most important C+​+​ extensions of this framework are “signals”
and “slots”, the equivalent of event handling constructs in Xlib and XCB
programming. Qt5 supports a variety of compilers, including the gcc C+​+​
compiler we used in Volume 3 of this series. Qt5 can be also be interfaced,
via other programming languages, using a highly developed system of
language bindings. Most prominent among these bindings is the one for
Python3.

2.5.2 � Some Preliminary Qt5 Programming Considerations

It is essential that you have the GNU C+​+​ Compiler (gcc), and a text editor
such as nano installed on your system. Even though the Qt5 framework is
based upon the OOP model of C+​+​, and uses the syntax of that language,
it also extends the syntax to include some Qt5-​specific constructs and

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 153

functionality. For example, the signals and slots features of Qt5 differ from
and extend the C+​+​ class model in significant ways.

2.5.3 � Installing the Qt5 Framework with Qt Creator, and Obtaining Help

To begin to work with Qt5, you must first download and install it. This is
done most effectively from the command line with the following commands:

$ sudo apt-​get install qtbase5-​dev qtchooser

$ sudo apt-​get install qt5-​qmake qtbase5-​dev-​tools

$ sudo apt-​get install qtcreator

$ sudo apt-​get install qtdeclarative5-​dev

After the installation, Qt Creator is added as a menu choice on the Raspberry
Pi Programming menu. If you launch Qt Creator, there is an extensive help
system available when you make the Qt Creator Help menu choice. We do
not offer any QT Creator examples in our presentation here.

2.5.4 � Creating an Executable Qt5 Program from the Command Line

Qt5 has its own compiling, linking, and assembling procedure, as shown.
The following steps illustrate how to use the Qt5 procedure to compile a Qt5
program, create a Qt5 project, and execute a client application program on
your Raspberry Pi system.

Note
You do not use the GNU C+​+​ compiler directly to do any of these operations!

2.5.4.1 � The Eight Steps to Creating a Qt5 Project and Program
on the Command Line

Qt5 Example 1 The Eight Steps

Step 0: Create an empty directory under your home directory, with a name
like qtprogs1. Make that directory the present working directory. Use a
text editor of your choice to enter and save the Qt5 code of any of the
example exercises in this section into files with the file extension .cpp—​
for example, hello.cpp, as follows, which contains Qt5 client applica-
tion program code.
This is one of the simplest Qt5 client application programs you can enter,

which we entered into the file hello.cpp.
Notice how much shorter it is than the XCB or Xlib code shown in the pre-

ceding sections.!

Raspberry Pi OS System Administration: Ancillary Topics154

#include <QtGui>

#include <QApplication>

#include <QLabel>

int main(int argc, char **argv) {
 QApplication app(argc, argv);

 QLabel label("Hello, world!");
 label.show();

 return app.exec();

}

Step 1: While the directory qtprogs1 is the current working directory, at the
shell prompt, type:

qmake -​project

This executed quickly on our Debian Bookworm-​based Raspberry Pi OS.

Step 2: At the shell prompt, type qmake

Step 3. Now in the qtprogs1 directory, you will have three files: hello.cpp,
Makefile, and hello.pro

Edit hello.pro with nano, and add these lines to it:

INCLUDEPATH +​=​ .

QT +​=​ gui

QT +​=​ widgets

Note
On our Raspberry Pi system, the line INCLUDEPATH +​=​. was already in our
hello.pro file.

Step 4. At the shell prompt, type the following command:

$ make

/​usr/​lib/​qt5/​bin/​qmake -​o Makefile hello.pro
g+​+​ -​c -​pipe -​O2 -​Wall -​Wextra -​D_​REENTRANT -​fPIC -​DQT_​NO_​DEBUG -​
DQT_​WIDGETS_​LIB -​DQT_​GUI_​LIB -​DQT_​CORE_​ LIB -​I. -​I. -​I/​usr/​
include/​aarch64-​linux-​gnu/​qt5 -​I/​usr/​include/​aarch64-​linux-​gnu/​qt5/​
QtWidgets -​I/​usr/​include/​aarch64-​linux-​gnu/​qt5/​QtGui -​I/ ​
usr/​include/​aarch64-​linux-​gnu/​qt5/​QtCore -​I. -​I/​usr/​lib/​aarch64-​linux-​
gnu/​qt5/​mkspecs/​linux-​g+​+​ -​o hello.o hello.cpp

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 155

g+​+​ -​Wl,-​O1 -​o hello hello.o	 /​usr/​lib/​aarch64-​linux-​gnu/​
libQt5Widgets.so /​usr/​lib/​aarch64-​linux-​gnu/​libQt5Gui.so /​usr/​lib/​
aarch64-​linux-​gnu/​libQt5Core.so -​lGL -​lpthread
$

Step 5. In the qtprogs1 directory, you will now have five files:
hello, hello.cpp, Makefile, hello.o, and hello.pro.

Step 6: At the shell prompt, type ./​hello

Step 7: The graphics contained in the Qt5 program you entered into hello.
cpp are now shown on the screen. These graphics should produce a
Qt5 “widget” (short for window gadget) that displays the text string
“Hello, World!”, and you can enlarge the window by dragging the lower-​
right corner of the widget down and to the right. Use the kill window
button (the X) in the window frame to close this Qt5 widget.

In-​Chapter Exercise

2.23 � Enter and save the above program using a text editor of your choice
into a file, with the file name exercise1.cpp. Then, following the
eight steps shown, execute the program on your system.

Qt5 Example 2 Text Edit

In this next example, we create and show a built-​in Qt5 text edit capability,
created in a newly opened window. This represents another simple Qt
program entered and executed on the command line, rather than using a
GUI-​based toolkit. We also give a line-​by-​line basic description of the func-
tional parts of the program. The line numbers shown to the left of the code
should be omitted, they are only there for reference in the dialog of explan-
ation that follows.
Here is the code:

1	 #include <QApplication>

2	 #include <QTextEdit>

3

4	 int main(int argv, char **args)

5	 {
6	 QApplication app(argv, args);

7

8	 QTextEdit textEdit;

9	 textEdit.show();

10

Raspberry Pi OS System Administration: Ancillary Topics156

11	 return app.exec();

12	 }

Dialog of explanation and description:
Lines 1 and 2 include the header files for QApplication and QTextEdit,

which are the two classes that Qt5 uses. Qt5 is an object-​oriented program-
ming language that uses C+​+​ class and object descriptions and functionality.
All Qt5 classes have a header file named after them.

Lines 4 and 5 declare the variables and open the main program.
Line 6 creates a QApplication object. This object manages application-​wide

resources and is necessary to run any Qt5 program that has a GUI. It needs argv
and args because Qt accepts a few command line arguments for this object.

Line 8 creates a QTextEdit object. A text edit is a visual element in the GUI.
In Qt5, we call such elements widgets, short for window gadgets. Examples
of other Qt5 widgets are scroll bars, labels, spin boxes, sliders, and radio
buttons. A widget can also be a container for other widgets, a dialog area, or
a main application window.

Line 9 invokes the text edit widget on the screen in its own window frame.
Since widgets also function as containers. A container such as QMainWindow
has toolbars, menus, a status bar, and a few other widgets. It is possible to
show a single widget in its own window. Widgets are not visible by default;
the method show() makes the widget visible.

Line 11 makes the QApplication object enter its event loop, similar to
XCB and Xlib client application programs. When a Qt5 client application
is running, events are generated and sent to the widgets of the application.
Examples of events, as seen in XCB and Xlib, are mouse button presses,
mouse cursor movements, and key strokes pressed on the keyboard. When
you type text in the text edit widget, it receives key press events and responds
by drawing the text that was typed.

In-​Chapter Exercise

2.24 � Enter and save the above example program using a text editor of
your choice into a file, with the file name of your choice. Then,
following the Eight Steps from Qt5 Example Qt5 1, execute the
program on your system.

Qt5 Example 3 Adding a Quit Button

In a real application, you would usually create more than one widget to have a
rich and varied dialog established between client application data-​generating
code and display system code. We will now show a simple example of a
QPushButton beneath the text edit window created in Qt5 Example 2. The
button will exit the QTextEdit application when pushed (i.e., clicked on with

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 157

the mouse). Again, disregard the line numbers shown, since they are only
used to reference the code in the dialog that follows the code.

Here’s the code:

1 #include <QtGui>

2 #include <QApplication>

3 #include <QTextEdit>

4 #include <QPushButton>

5 #include <QObject>

6 #include <QVBoxLayout>

7 #include <QWidget>

8 int main(int argc, char **argv)

9 {
10	 QApplication app(argc, argv);

11	 QTextEdit *textEdit =​ new QTextEdit;

12	 QPushButton *quitButton =​ new QPushButton("&Quit");

13	 QObject::connect(quitButton, SIGNAL(clicked()), qApp, SLOT(quit()));

14	 QVBoxLayout *layout =​ new QVBoxLayout;

15	 layout-​>addWidget(textEdit);

16	 layout-​>addWidget(quitButton);

17	 QWidget window;

18	 window.setLayout(layout);

19	 window.show();

20	 return app.exec();

21 }

We provide the following dialog of explanations and descriptions of the line
numbers as follows:

Lines 1 through 7 The includes, which contains all of Qt5 GUI classes used
in this program.

Lines 8 creates two pointer objects to be used to reference the classes of
objects below.

The next line illustrates probably the most important Qt call.
Line 10 uses Qt’s signals and slots mechanism to make the application exit

when the Quit button is pushed. A slot is a function that can be invoked at
run time using its name (as a literal string). A signal is a function that when
called will invoke slots registered with it; we call that to connect the slot
to the signal and to emit the signal. So, quit() is a slot of QApplication that
exits the application; clicked() is a signal that QPushButton emits when it is
pushed.

Raspberry Pi OS System Administration: Ancillary Topics158

Note
As a programming reminder for C+​+​, :: is called the (binary) scope resolution
operator. By using the scope resolution operator, you can address member
functions outside of a class. Also remember that the scope resolution oper-
ator specifies that the identifier which is on the right belongs to the data type
or class on the left.

The static QObject::connect() function takes care of connecting the slot
to the signal. SIGNAL() and SLOT() are two macros that take the function
signatures of the signal and slot to connect. We also need to give pointers to
the objects that should send and receive the signal.

Lines 14 through 17 create a QVBoxLayout. As mentioned, widgets can
contain other widgets. It is possible to set the bounds (the location and size)
of child widgets directly, but it is usually easier to use a layout. A layout
manages the bounds of a widget’s children. QVBoxLayout places the chil-
dren in a vertical row.

Line 19 uncovers the window.
Line 20 starts the event loop.

Qt5 Example 4 Connecting Signals and Slots

Qt5, as a C+​+​-​based framework, essentially is OOP. In Qt5, signals and slots
are a mechanism used for communication between objects. This is similar to
C/​C+​+​ function pointers, but the signal/​slot system makes sure that the call-
back arguments are type-​correct.

Here’s a simple C program that uses a callback function as an argument.
In this example, the program defines a function called performOperation
that takes two integers, and a callback function as arguments. The callback
function is then invoked within performOperation to perform some oper-
ation on the two integers.

#include <stdio.h>

//​ Callback function type definition

typedef void (*OperationCallback)(int, int);

//​ Function that takes two integers and a callback function as arguments

void performOperation(int a, int b, OperationCallback callback) {
	 printf("Performing operation on %d and %d:\n", a, b);

	 callback(a, b);

}

//​ Callback function implementations

void addCallback(int a, int b) {
	 printf("Sum: %d\n", a +​ b);

}

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 159

void multiplyCallback(int a, int b) {
	 printf("Product: %d\n", a * b);

}
int main() {
	 int num1 =​ 10, num2 =​ 5;

	 //​ Using the performOperation function with addCallback

	 performOperation(num1, num2, addCallback);

	 //​ Using the performOperation function with multiplyCallback

	 performOperation(num1, num2, multiplyCallback);

	 return 0;

}

In this example, the performOperation function takes two integers (a and
b) and a callback function (OperationCallback callback). It prints a message
indicating that it is performing an operation on the two integers and then
invokes the callback function with the provided integers.

The addCallback and multiplyCallback functions are examples of call-
back functions that can be passed to performOperation. They perform
addition and multiplication operations, respectively. In the main function,
performOperation is called twice with different callback functions to demon-
strate the use of callback arguments.
When you compile and run this program, the results are as shown here:

$./​whoscalling

Performing operation on 10 and 5:
Sum: 15
Performing operation on 10 and 5:
Product: 50
bob@raspberrypi:~ $

The signal/​slot system can also be used in other non-​GUI programming, for
example in asynchronous I/​O (Linux sockets, pipes, etc.) event notification,
or to associate timeout events with appropriate object instances and methods
or functions. It’s also very similar to topics we cover in Volume 2 of this
series, in Python3 Sections 2.4.4 Multi-​threaded Concurrency, and Section
2.4.5 Talking Threads. In that latter section we show that there are a variety of
approaches to the solution of concurrent, multicore computation in Python3,
which is similar to, for example, using locks, semaphores, event synchroniza-
tion, condition objects or variables, barriers, and the Python3 queue module.

Signals and slots are a fundamental part of the Qt5 framework, and are used
extensively in Qt-​based applications to handle events, and implement what’s

Raspberry Pi OS System Administration: Ancillary Topics160

known as the observer pattern. The observer pattern is a behavioral program-
ming design pattern where an entity, known as the Subject, maintains a list
of its dependents, known as Observers, that are notified of any state changes,
typically by calling one of their methods.

Here’s the scheme of how you can implement the observer pattern in Qt5
using signals and slots:

Subject (Observable):
The Subject is the entity that contains the information of interest to possibly
multiple Observers. That entity emits signals when its state changes.

Observer:
The Observer is an entity that needs to be notified of changes in the subject.
It connects to the subject’s signals using slots.

This scheme outlines a simple implementation of the observer pattern in
Qt5 using signals and slots, allowing objects to communicate changes in their
state to interested observers.

Here’s a further, brief explanation of the processes of signals and slots:

Signal:
A signal is emitted when a particular event occurs in an object. It represents a
specific change or action. For example, a button press, a value changing, or a
timer timing out can be events that emit signals.

Slot:
A slot is a function that can be connected to a signal. It is called in response
to a particular signal being emitted. Slots are the functions that handle the
events or changes represented by signals.

Connection:
Connecting a signal to a slot establishes a communication link between them.
When the signal is emitted, the connected slot is called. Connections are typ-
ically established using the QObject::connect() function.

The following Qt5 code places three widgets in a window, and defines
interconnections between the signal elements and slot elements of those
widgets.

Here’s the code:

#include <QtGui>

#include <QApplication>

#include <QVBoxLayout>

#include <QLabel>

#include <QSpinBox>

#include <QSlider>

#include <QWidget>

#include <QObject>

int main(int argc, char **argv)

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 161

{
	 QApplication a(argc, argv);

	 QWidget window;

	 QVBoxLayout* mainLayout =​ new QVBoxLayout(&window);

	 QLabel* label =​ new QLabel("0");

	 QSpinBox* spinBox =​ new QSpinBox;

	 QSlider* slider =​ new QSlider(Qt::Horizontal);

	 mainLayout-​>addWidget(label);

	 mainLayout-​>addWidget(spinBox);

	 mainLayout-​>addWidget(slider);

	 QObject::connect(spinBox, SIGNAL(valueChanged(int)),

	 label, SLOT(setNum(int)));

	 QObject::connect(spinBox, SIGNAL(valueChanged(int)),

	 slider, SLOT(setValue(int)));

	 QObject::connect(slider, SIGNAL(valueChanged(int)),

	 label, SLOT(setNum(int)));

	 QObject::connect(slider, SIGNAL(valueChanged(int)),

	 spinBox, SLOT(setValue(int)));

	 window.show();

	 return a.exec();

}

When you execute this program using the eight-​step method, can you tell
which are the interconnected Subject and Observer? What are the widgets,
and how are they interconnected?

2.6 � The GTK Framework

For our purposes in this chapter, GTK4 (formerly the GIMP Toolkit) is used
for developing X Window System client applications with a GUI. Very similar
to the Qt5 framework shown in Section 2.5, these applications range from
the most basic up to entire windowing systems. GTK4 is a “cross-​platform”
widget toolkit for creating graphical user interfaces. Cross-​platform means
that a GTK4 program can be transposed from the X Window System envir-
onment to another operating system’s environment easily, so that the GUI
developed for the X Window System can have the look and feel of some other
operating system’s graphical environment.

GDK (GIMP Drawing Kit) is a higher-​level suite of tools that provides func-
tionality to underlying windowing and graphics system. Each user interface
created by GTK4 consists of widgets. These are implemented in C using the
Glib Object System (GObject), that provides an object-​oriented “framework”

Raspberry Pi OS System Administration: Ancillary Topics162

for the C language. A framework basically allows an ordinary user to cus-
tomize the GUIs that are created using their own code on top of the code
already provided by the GObject framework.

GTK4 is one of the most popular toolkits for the Wayland and X11 Window
System, along with the Qt5 framework.

The GTK4 library contains a set of graphical control elements. GTK4 is
an object-​oriented widget toolkit written in the C programming language;
it uses GObject, that is the GLib object system, for the object orientation.
While GTK4 is primarily targeted at windowing systems based upon X11
and Wayland, it works on other platforms. There is also an HTML5 back-​end
called Broadway.

GTK4 can be configured to change the look of the widgets drawn; this is
done using different display engines. Several display engines exist which try
to emulate the look of the native widgets on the platform in use.

The following sections on GTK4 are taken from the tutorial for API Version
4.0, available online at:

https://​docs.gtk.org/​gtk4/​gett​ing_​star​ted.html

2.6.1 � Installing GTK4

We installed the latest release of this framework, at the time this book was
written, by using the the following command:

$ sudo apt install libgtk-​4-​dev

2.6.2 � GTK4 Basics

Widgets are organized in a hierarchy. The window widget is the main con-
tainer. The user interface is then built by adding buttons, drop-​down menus,
input fields, and other widgets to the window. If you are creating complex
user interfaces it is recommended to use GtkBuilder and its GTK4-​specific
markup description language, instead of assembling the interface manu-
ally. You can also use a visual user interface editor, like Glade. GTK4 is very
similar to the X11 protocol structure, in that it is event-​driven. The toolkit
listens for events on the X server, such as a mouse click, and passes the event
notification to your client application. You can compile a GTK program on a
Raspberry Pi system, using gcc, with the following command:

gcc $(pkg-​config -​-​cflags gtk4) -​o example-​0 example-​0.c $(pkg-​config -​-​libs

gtk4)

As noted in the GTK4 tutorial listed in Section 2.6, if that compilation
doesn’t work, there are some options that are spelled out in detail. This gen-
eral form compilation command worked on our Raspberry Pi OS, Debian
Bookworm-​based installation.

https://docs.gtk.org

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 163

But before we actually executed the code we needed to use the following
export command:

$ export GTK_​A11Y=​none

This avoided the following error:
Gtk-​WARNING **: 09:52:39.702: Unable to acquire the address

of the accessibility bus: GDBus.Error:org.freedesktop.DBus.Error.
ServiceUnknown: The name org.a11y.Bus was not provided by any .ser-
vice files. If you are attempting to run GTK without a11y support, GTK_​
A11Y should be set to “none”.

However, please note that this will disable accessibility features for the
application.

If you need accessibility support and it’s not working due to a missing ser-
vice, you can try to install or enable the accessibility service. In many Linux
distributions, the accessibility service is provided by at-​spi2-​core. You can
check if it’s installed and enable it as follows:

$ sudo apt-​get install at-​spi2-​core # For Debian/​Ubuntu

You may have to restart your system for the command to take effect. Plus,
there are other options, such as checking for other missing D-​Bus services.

2.6.3 � Example GTK4 Programs

GTK Example 0
In the context of the GTK4 framework, a signal-​based application refers to
an application that utilizes signals and callbacks to respond to events and
user interactions. GTK4 is the latest version of the library that this framework
relies upon.

Signals in GTK4 are a mechanism for handling events, such as button clicks,
mouse movements, and widget changes. In a signal-​based application, you
define event handlers (callbacks) that are executed when specific signals are
emitted by widgets or other components of your GUI.

Here’s how it works in practice:

1.	 Widgets, like buttons, sliders, or text entry fields, emit signals when
users interact with them. For example, a button widget may emit a
“clicked” signal when it’s clicked by the user.

2.	 You can connect callback functions to these signals. These callback
functions are essentially event handlers that get executed when the
associated signal is emitted. You define these functions to specify what
should happen in response to the signal.

Raspberry Pi OS System Administration: Ancillary Topics164

3.	 When the associated signal is emitted, GTK4 calls the connected call-
back function, which allows you to respond to the event. For example,
you might use a callback to update the content of a label when a button
is clicked.

To give a simple example of a GTK4 program, we’ll illustrate with a simple,
signal-​based application. This program will create an empty 200 × 200 pixel
window.

Create a new file with the content below, named example-​0.c.

#include <gtk/​gtk.h>

static void

activate (GtkApplication* app,

 gpointer	 user_​data)

{
GtkWidget *window;

window =​ gtk_​application_​window_​new (app);

gtk_​window_​set_​title (GTK_​WINDOW (window), "Raspberry Pi OS");

gtk_​window_​set_​default_​size (GTK_​WINDOW (window), 200, 200);

gtk_​widget_​show (window);

}

int

main (int	 argc,

 char **argv)

{
GtkApplication *app;

int status;

app =​ gtk_​application_​new ("org.gtk.example", G_​APPLICATION_​DEFAULT_​FLAGS);

g_​signal_​connect (app, "activate", G_​CALLBACK (activate), NULL);

status =​ g_​application_​run (G_​APPLICATION (app), argc, argv);

g_​object_​unref (app);

return status;

}

You can compile the program above with GCC using:

gcc $(pkg-​config -​-​cflags gtk4) -​o example-​0 example-​0.c $(pkg-​config -​-​libs gtk4)

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 165

where:
example-​0.c is the name of the C source code file containing valid GTK4
commands,
example-​0 is the name of the output executable image.

To execute the program, type the following:

$./​example-​0

A few takeaways from this Example are as follows:
This is a C program, and as such, doesn’t use the Object Oriented

Programming (OOP) paradigm. While GTK4 is primarily OOP, you can still
use it in a procedural or imperative manner if you prefer, which is what is
done in the Examples presented here. You can write GTK4 applications in
languages like C, which are procedural in nature. However, even in a proced-
ural language, you can still be working with GTK4’s OOP architecture. That’s
because GTK4 itself is designed around OOP principles.

Note
A C cast, or C-​style cast, is a way to convert or reinterpret the type of a variable
or pointer. It allows you to change the data type of an expression to another
data type.

In a GTK4 C program, the main() function creates a GtkApplication
object.

GtkApplication selects an application identifier (some name), and passes it
to gtk_​application_​new() as an argument. org.gtk.example is the name here.
Finally, gtk_​application_​new() takes GApplicationFlags as input for your
application.

The “activate signal” is connected to the activate() function above the
main() function. The activate signal is given when your application is run
with g_​application_​run() on the line below.

Within g_​application_​run(), the activate signal is forwarded, and activate()
function is invoked. This is where the GTK4 window is constructed, so that
a window appears on screen when the program is run. The call to gtk_​appli-
cation_​window_​new() creates a new GtkApplicationWindow, and stores it
inside the window pointer. The window will have a frame, a title bar, and
window controls dependent upon the Window Manager backend.

A window title is established using gtk_​window_​set_​title(). This function
takes a GtkWindow pointer and a string as input. As our window pointer
is a GtkWidget pointer, we need to cast it to GtkWindow; instead of casting
window via a typical C cast, like (GtkWindow*), window can be cast using
the macro GTK_​WINDOW(). GTK_​WINDOW() will check if the pointer is
an instance of the GtkWindow class, before casting, and give a warning if the
check fails.

Raspberry Pi OS System Administration: Ancillary Topics166

The window size is set using gtk_​window_​set_​default_​size(,) and the
window is then shown by GTK4 via gtk_​widget_​show().

When you close the window, by (for example) pressing the X button, the
g_​application_​run() call returns with a number which is saved inside an
integer variable named status. Then the GtkApplication object is released
from memory with g_​object_​unref(). Then the status integer is returned, and
the application exits.

While the program is running, GTK4 is getting and perhaps processing
events. These are typically input events caused by the user interaction, via
mouse and keyboard, with the program, but also things like messages from
the Wayfire window manager, or even from other applications running on
your Raspberry Pi. GTK4 processes these, and then signals are displayed in
the widgets. Interconnecting handlers for these signals is how you make your
program do something in response to user input.

GTK Example 1
Interactivity with windows is an essential feature of a GUI. This example
extends what was presented in example-​0.c, by adding a button to the
window, with the label "Raspberry Pi Rocks" in it. Type in the following code,
using nano, with the name example-​1.c

#include <gtk/​gtk.h>

static void

print_​rocks (GtkWidget *widget,

	 gpointer	 data)

{
 g_​print ("Raspberry Pi Rocks\n");

}

static void

activate (GtkApplication *app,

 gpointer	 user_​data)

{
	 GtkWidget *window;

	 GtkWidget *button;

	 GtkWidget *box;

	 window =​ gtk_​application_​window_​new (app);

	 gtk_​window_​set_​title (GTK_​WINDOW (window), "Window");

	 gtk_​window_​set_​default_​size (GTK_​WINDOW (window), 200, 200);

	 box =​ gtk_​box_​new (GTK_​ORIENTATION_​VERTICAL, 0);

	 gtk_​widget_​set_​halign (box, GTK_​ALIGN_​CENTER);

	 gtk_​widget_​set_​valign (box, GTK_​ALIGN_​CENTER);

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 167

	 gtk_​window_​set_​child (GTK_​WINDOW (window), box);

	 button =​ gtk_​button_​new_​with_​label ("Raspberry Pi Rocks");

	 g_​signal_​connect (button, "clicked", G_​CALLBACK (print_​rocks), NULL);

	 g_​signal_​connect_​swapped (button, "clicked", G_​CALLBACK (gtk_​window_​destroy),\

window);

	 gtk_​box_​append (GTK_​BOX (box), button);

	 gtk_​widget_​show (window);

}

int

main (int	 argc,

	 char **argv)

{
	 GtkApplication *app;

	 int status;

	 app =​ gtk_​application_​new ("org.gtk.example", G_​APPLICATION_​DEFAULT_​FLAGS);

	 g_​signal_​connect (app, "activate", G_​CALLBACK (activate), NULL);

	 status =​ g_​application_​run (G_​APPLICATION (app), argc, argv);

	 g_​object_​unref (app);

	 return status;

}

A few takeaways from this Example are as follows:
Two new GtkWidget pointers are established to achieve this, button and

box pointers. The box variable stores a GtkBox, which is GTK’s method of
controlling the size and layout of buttons.

The GtkBox widget is created with gtk_​box_​new(), which takes a
GtkOrientation enum value as a placeholder, or parameter. The button
orientation in this box will be either horizontal or vertical. It doesn’t matter
in this particular example, since we’re only defining one button. After initial-
izing box with the newly created GtkBox, our code adds the box widget to
the window widget, using gtk_​window_​set_​child().

Next, the button variable is initialized, pretty much the same way. gtk_​
button_​new_​with_​label() is called, which returns a GtkButton to be stored
in button. Then button is added to our box.

Using g_​signal_​connect(), the button is connected to a function in our app
called print_​rocks(), so that when the button is clicked, GTK will call this
function. As the print_​rocks() function does not use any data as input, NULL
is passed to it. print_​rocks() calls g_​print() with the string "Raspberry Pi

Raspberry Pi OS System Administration: Ancillary Topics168

Rocks", which will print Raspberry Pi Rocks in a terminal, if the GTK appli-
cation was started from one.

After connecting print_​rocks(), another signal is connected to the
“clicked” state of the button, using g_​signal_​connect_​swapped(). This
function is similar to a g_​signal_​connect(), with the big difference being
how the callback function is treated. g_​signal_​connect_​swapped() allows
you to specify what the callback function should take as parameter by
letting you pass it as data. In this case the function being called back is
gtk_​window_​destroy(), and the window pointer is passed to it. This
has the effect that when the button is clicked, the whole GTK window is
destroyed. If a normal g_​signal_​connect() were used here to connect the
“clicked” signal with gtk_​window_​destroy(), then the function would be
called on the button (which wouldn’t work, since the function expects a
GtkWindow as argument).

The rest of the code in example-​1.c is identical to example-​0.c.
Compile the above program with the following command:

gcc $(pkg-​config -​-​cflags gtk4) -​o example-​1 example-​1.c $(pkg-​config -​-​libs

gtk4)

and execute it in the same manner that you executed example-​0.

GTK Example 2
The next example will show how to add several GtkWidgets to your GTK4
application.

When creating an application, you’ll want to put more than one widget
inside a window. When you do so, it becomes important to control how each
widget is positioned and sized. This is where packing comes in.

GTK4 comes with a large variety of layout containers whose purpose it is
to control the layout of the child widgets that are added to them. Here are
some descriptions of these containers, taken from the GTK4 documentation:

GtkBox
The GtkBox widget arranges child widgets into a single row or column. Whether
it is a row or column depends on the value of its GtkOrientable:orientation
property. Within the other dimension, all children are allocated the same size.
Of course, the GtkWidget:valign and GtkWidget:valign properties can be
used on the children to influence their allocation.

GtkGrid
GtkGrid is a container which arranges its child widgets in rows and columns.
It supports arbitrary positions and horizontal/​vertical spans. Children are
added using gtk_​grid_​attach(). They can span multiple rows or columns.
It is also possible to add a child next to an existing child, using gtk_​grid_​
attach_​next_​to(). To remove a child from the grid, use gtk_​grid_​remove().
The behavior of GtkGrid when several children occupy the same grid cell is
undefined.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 169

GtkRevealer
A GtkRevealer animates the transition of its child from invisible to visible. The
style of transition can be controlled with gtk_​revealer_​set_​transition_​type().
These animations respect the GtkSettings:gtk-​enable-​animations setting.

GtkStack
GtkStack is a container which only shows one of its children at a time. In
contrast to GtkNotebook, GtkStack does not provide a means for users to
change the visible child. Instead, a separate widget such as GtkStackSwitcher
or GtkStackSidebar can be used with GtkStack to provide this functionality.

GtkOverlay
GtkOverlay is a container which contains a single main child, on top of
which it can place “overlay” widgets. The position of each overlay widget is
determined by its GtkWidget:halign and GtkWidget:valign properties. E.g.
a widget with both alignments set to GTK_​ALIGN_​START will be placed
at the top left corner of the GtkOverlay container, whereas an overlay with
halign set to GTK_​ALIGN_​CENTER and valign set to GTK_​ALIGN_​END
will be placed a the bottom edge of the GtkOverlay, horizontally centered.
The position can be adjusted by setting the margin properties of the child to
non-​zero values.

GtkPaned
A widget with two panes, arranged either horizontally or vertically. The div-
ision between the two panes is adjustable by the user by dragging a handle.
Child widgets are added to the panes of the widget with gtk_​paned_​set_​
start_​child() and gtk_​paned_​set_​end_​child(). The division between the two
children is set by default from the size requests of the children, but it can be
adjusted by the user. A paned widget draws a separator between the two
child widgets and a small handle that the user can drag to adjust the division.
It does not draw any relief around the children or around the separator. (The
space in which the separator is is called the gutter.) Often, it is useful to put
each child inside a GtkFrame so that the gutter appears as a ridge. No separ-
ator is drawn if one of the children is missing.

GtkExpander
GtkExpander allows the user to reveal its child by clicking on an expander
triangle. This is similar to the triangles used in a GtkTreeView. Normally you
use an expander as you would use a frame; you create the child widget and
use gtk_​expander_​set_​child() to add it to the expander. When the expander
is toggled, it will take care of showing and hiding the child automatically.

The following example shows how the GtkGrid container lets you arrange
several buttons. Type it into a file named example-​2.c using your favorite text
editor:

Raspberry Pi OS System Administration: Ancillary Topics170

#include <gtk/​gtk.h>

static void

print_​rocks (GtkWidget *widget,

	 gpointer	 data)

{
 g_​print ("Raspberry Pi Rocks\n");
}

static void

activate (GtkApplication *app,

 gpointer	 user_​data)

{
 GtkWidget *window;

 GtkWidget *grid;

 GtkWidget *button;

 /​* create a new window, and set its title */​

 window =​ gtk_​application_​window_​new (app);

 gtk_​window_​set_​title (GTK_​WINDOW (window), "Window Rocks");

 /​* Here we construct the container that is going pack our buttons */​

 grid =​ gtk_​grid_​new ();

 /​* Pack the container in the window */​

 gtk_​window_​set_​child (GTK_​WINDOW (window), grid);

 button =​ gtk_​button_​new_​with_​label ("Button A");
 g_​signal_​connect (button, "clicked", G_​CALLBACK (print_​rocks), NULL);

 /​* Place the first button in the grid cell (0, 0), and make it fill

 * just 1 cell horizontally and vertically (ie no spanning)

 */​

 gtk_​grid_​attach (GTK_​GRID (grid), button, 0, 0, 1, 1);

 button =​ gtk_​button_​new_​with_​label ("Button B");
 g_​signal_​connect (button, "clicked", G_​CALLBACK (print_​rocks), NULL);

 /​* Place the second button in the grid cell (1, 0), and make it fill

 * just 1 cell horizontally and vertically (ie no spanning)

 */​

 gtk_​grid_​attach (GTK_​GRID (grid), button, 1, 0, 1, 1);

 button =​ gtk_​button_​new_​with_​label ("Quit");
 g_​signal_​connect_​swapped (button, "clicked", G_​CALLBACK (gtk_​window_​destroy),\

window);

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 171

 /​* Place the Quit button in the grid cell (0, 1), and make it

 * span 2 columns.

 */​

 gtk_​grid_​attach (GTK_​GRID (grid), button, 0, 1, 2, 1);

 gtk_​widget_​show (window);

}

int

main (int	 argc,

 char **argv)

{
 GtkApplication *app;

 int status;

 app =​ gtk_​application_​new ("org.gtk.example",
G_​APPLICATION_​DEFAULT_​FLAGS);

 g_​signal_​connect (app, "activate", G_​CALLBACK (activate), NULL);

 status =​ g_​application_​run (G_​APPLICATION (app), argc, argv);

 g_​object_​unref (app);

 return status;

}

Compile the program with the following command:

gcc $(pkg-​config -​-​cflags gtk4) -​o example-​2 example-​2.c $(pkg-​config -​-​libs gtk4)

and execute it in the same manner as you did with example-​0 and example-​1.

2.6.4 � Using Geany to Build and Execute a GTK4 Program

In the last section, you installed GTK4, used a text editor to create the source
code for a GTK4 program, and then compiled it with the given command
shown there. But what if you wanted to use an Integrated Development
Environment (IDE) such as Geany, to do the same thing? Geany comes pre-​
installed on the latest Debian Bookworm-​based Raspberry Pi OS. IDE creation
and building is more efficient, and easier to do than the legacy text-​editing
methods of code creation. In Volume 3, we illustrated the use of Geany in a
number of examples.

To use Geany for building and executing a GTK4 program, follow these
general steps:

Raspberry Pi OS System Administration: Ancillary Topics172

1.	 Install GTK4 Required Software:

Make sure you have Geany and the necessary development tools installed.
Additionally, ensure that you have the GTK4 library and its development
files installed. The command to install GTK4 is sudo apt install libgtk-​4-​dev

Also, export GTK_​A11Y=​none should be done on the command line before
compilation is done.

2.	 Create a GTK4 Project:

Open Geany and create a new project for your GTK4 application. Set up your
source code files and any other project-​specific files.

3.	 Configure Build Settings:

In Geany, go to the “Build” menu and select “Set Build Commands”. Configure
the build commands for compiling and linking your GTK4 program. Use
pkg-​config to get the necessary compilation flags for GTK4. For example:

Compile: gcc -​Wall -​c "%f" 'pkg-​config -​-​cflags gtk4'
Build: gcc -​o "%e" "%f" 'pkg-​config -​-​libs gtk4'

4.	 Write GTK4 Code:

Write your GTK4 application code in the source files. Ensure that you include
the necessary GTK4 headers and follow the GTK4 programming conventions.

5.	 Save and Build:

Save your files and then build your project using Geany’s build commands.
Check the build output for any errors.

6.	 Execute the Program:

Once the build is successful, you can execute your GTK4 program directly
from Geany. Use the “Execute” button or press F5.

7.	 Debugging:

If you encounter issues, use Geany’s debugging features. Set breakpoints,
inspect variables, and step through your code to identify and fix problems.

Remember that these are general steps, and the specifics may vary based on
your project structure and specific development environment.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 173

2.7 � Gnuplot and the X Window System

To complete our study of Wayland, and the X Window System on a
Raspberry Pi, we turn in this section to a plotting package named gnuplot.
For our purposes, there is a very important reason for using gnuplot: it
makes it possible to conform to a modularized idea of using the X Window
System. You can have a discreet module create data, another discreet
module create and orchestrate the window display you want to present
the data in, and then finally have a discreet module map the data into the
window display.

We encourage you to compare the particular use case we show in this
section, and this modularized approach, to the specific design and pro-
gramming details and methodologies that would accomplish the same end
result in:

* a purely-​Xlib or XCB C program,
* an “augmented” C program for the GTK framework, or
* a C+​+​ Qt framework program.

This model’s particular modularized use case does not replace using Xlib/​
XCB, GTK, or Qt as we have shown them in the previous sections of this
chapter. In addition, the window(s) you create are framed and constrained to
a large extent by the particular window management system you are using.
For example, by default we are using Wayfire, which has its own look and
feel, window dressing, etc.

2.7.1 � Installing gnuplot

There are two ways you can install gnuplot on your Raspberry Pi system.
The first way is the simplest: from the Raspberry Pi Menu, make the

choice Preferences > Add/​Remove Software. Then enter gnuplot, and
press <Enter>. Put a check mark next to Command-​line driven interactive
plotting program, and click on the Apply button. The appropriate packages
will be installed, along with the gnuplot-​X11 package so you can get X
Window System terminal output. At the time of the writing of this book, the
latest gnuplot version and patches available was gnuplot5, which gave us
gnuplot 5.4.1.

Or you can go the gnuplot homepage at www.gnup​lot.info and follow the
download and installation instructions found there.

http://www.gnuplot.info

Raspberry Pi OS System Administration: Ancillary Topics174

Type the following to launch, and then exit from gnuplot:

$ gnuplot

	 G N U P L O T
	 Version 5.4 patchlevel 1	 last modified 2020-​12-​01

	 Copyright (C) 1986-​1993, 1998, 2004, 2007-​2020
	 Thomas Williams, Colin Kelley and many others

	 gnuplot home:	 www.gnup​lot.info
	 faq, bugs, etc:	 type "help FAQ"
	 immediate help:	 type "help"	 (plot window: hit 'h')

Terminal type is now 'qt'
gnuplot> exit
$

2.7.2 � What gnuplot Is and Basic Syntax for Interactive and Batch Modes

Gnuplot is an X Window System command-​line data and scientific graphing
package for Linux and UNIX. Gnuplot supports many types of plots in either
2D and 3D. It can draw using lines, points, boxes, contours, vector fields,
surfaces, and various associated text. It also supports various specialized plot
types. Gnuplot also supports many different types of output formats: interactive
screen terminals (with mouse and keyboard input), printers, and to a variety file
formats (eps, emf, fig, jpeg, LaTeX, pdf, png, postscript, etc.). Recent additions in
Release 5 include wxWidgets terminals, and Qt-​based graphics terminals.

The “interactive” command language is case sensitive. All command names
have standardized abbreviations. Any number of interactive commands may
appear on a line, separated by semicolons (;). String arguments to interactive
commands may be delimited by either single or double quotes, although
there are some differences in the interpretation of quoting.

Example:

gnuplot> set title "My First Plot"; plot 'data'; print "all done!"

Commands may extend over several input lines by ending each line (except
the last one!) with a backslash (\). The backslash must be the last character
on each line. In gnuplot documentation, curly braces ({}) denote optional
arguments, and a vertical bar (|) separates mutually exclusive choices.
Gnuplot keywords or help topics are indicated by backquotes, or are in bold-
face type. Angle brackets (<>) are used to mark replaceable tokens. In many
cases, a default value of the token will be taken for optional arguments if the
token is omitted, but these cases are not always denoted with braces around

http://www.gnuplot.info

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 175

the angle brackets. For built-​in help on any topic, type help, followed by the
name of the topic, or help? to get a menu of available topics.

When run from the Raspberry Pi command line in what is known as “Batch
Mode”, gnuplot is launched by using the syntax:

$ gnuplot {OPTIONS} file1 file2 ...

where:
file1, file2,... are validly formatted input files for the load command. The

load command executes gnuplot commands contained in file1, file2… as if
each line of the specified input file(s) had been typed in interactively. Files
created by the save command can later be reloaded. Any text file containing
valid gnuplot commands can be created, and then executed by the load
command. Files being loaded may themselves contain load or call commands.

On X Window System-​based systems, you can use:

$ gnuplot {X11OPTIONS} {OPTIONS} file1 file2 …

2.7.3 � Batch Mode Examples

Gnuplot may be executed in either Batch or Interactive modes, and the two
may even be mixed together in valid ways. Any Batch mode arguments are
assumed to be either program options (where the first character is -​) or names
of files containing gnuplot commands. The option -​e "command" may be
used to force execution of a gnuplot command. Each file or command string
will be executed in the order specified. The special filename “-​”indicates
that commands are to be read from stdin. Gnuplot exits after the last file is
processed. If no load files and no command strings are specified, gnuplot
accepts interactive input from stdin.

Both the exit and quit commands terminate the current command file and
load the next one, until all have been processed.

Examples:

To launch an interactive session:

$ gnuplot

To launch a Batch session using two gnuplot command files “input1” and
“input2”:

$ gnuplot input1 input2

To launch an interactive session after an initialization file “header” and
followed by another command file “trailer”:

Raspberry Pi OS System Administration: Ancillary Topics176

$ gnuplot header -​ trailer

To give gnuplot commands directly on the Raspberry Pi command line, using
the “-​persist” option so that the plot remains on the screen afterwards:

$ gnuplot -​persist -​e "set title 'Sine curve'; plot sin(x)"

To set user-​defined variables a and s prior to executing commands from a file:

$ gnuplot -​e "a=​2; s=​'file.png'" input.gpl

2.7.4 � Batch Mode Plotting to a Terminal with Persistence
of the Plot Window

Gnuplot terminals open separate display windows on the screen into which
plots are drawn. One of the most important plot command options is the
persist option. It tells gnuplot to leave these windows open when the main
program exits. It has no effect on subsequent interactive terminal output. For
example if you issue the following two batch mode commands:

$ gnuplot -​persist -​e 'plot [-​5:5] sinh(x)'

$ gnuplot -​persist -​e 'plot [-​5:5] tanh(x)'

After the first command, gnuplot will open a display window using the
default terminal type, draw the sinh plot into it, and then exit, leaving the
display window containing the sinh plot on the screen. After the second
command, a new display window will open, using the default terminal type,
and the tanh plot will be drawn into it.

2.7.5 � Interactive Mode and Terminal Type

If you type gnuplot on the Bash command line, you enter what’s known as
gnuplot’s “Interactive Mode”. We gave a simple illustration of this mode in
Section 2.7.1. Another simple example of this is as follows:

gnuplot> plot [-​5:5] tanh(x)

Once this interactive command is given, a window opens on-​screen that
shows you a plot of tanh(x), with the x range varying from –​5 to +​5.

Without changing the default terminal type on our Raspberry Pi system
when we installed gnuplot, as shown in Section 2.7.1, the terminal type was
set to qt 0, or a Qt terminal. To find out what the current terminal is set
to, type:

gnuplot> show terminal

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 177

In a Qt terminal, there are some menu choices seen at the top of the window,
which we list here from left to right:

File Output—​copy to clipboard, print, export to pdf, etc.
Replot (a green circular arrow)—​replots the window
Grid—​places a grid on the window
Previous Zoom (a minus signed magnifier)—​goes to the previous zoom
Next Zoom (a plus sign magnifier)—​goes to the next zoom
Settings—​Allows changes of terminal configuration settings like background

color, replot on resize, etc.

To zoom in a Qt terminal window, click the right-​most mouse button once to
designate a corner of the plot you want to zoom to, and then click the right-​
most button again to designate the opposite corner of the zoom.

In addition to persistence in both Batch and Interactive modes, there are
various settings of a plot window that are interesting in this section. The
following interactive commands lets you:

a)	 set the terminal type to x11,

b)	 designate a specific X Window System display ID (0x3200006) within
which to plot,

c)	 have that window persist after the program exits,

d)	 set its size to 700 x 500,

e)	 plot sin(x) in that display, and

f)	 reset gnuplot to its defaults.

These settings and operations in gnuplot Interactive Mode are achieved as
follows:

gnuplot> set term x11 window "0x3200006" persist size 700,500

Terminal type set to 'x11'
Options are “XID 0x3200006 persist enhanced size 700,500”
gnuplot> plot sin(x)

gnuplot> reset

gnuplot> exit

The important characteristic of using gnuplot that the first two commands illus-
trate is that if you have previously created an X Window System display using
Xlib or XCB programming commands, and it has the display ID of 0x3200006,
your plot of sin(x) will be drawn in that display. This now makes it possible
to conform to our modularized idea of using the X Window System. You can
have a discreet module create the data using your favorite programming

Raspberry Pi OS System Administration: Ancillary Topics178

language (C, Python, C+​+​, bash, etc.), design the window display you want to
present the data in with an Xlib or XCB module, and then map the data into
the window with either a gnuplot batch or interactive module. We encourage
you to compare, in this particular use case, this modularized approach to the
specific details and methodologies of accomplishing the same end result in
either a purely Xlib or XCB C program, in an “augmented” C program for the
GTK framework, or in a C+​+​ Qt framework program. Certainly this particular
modularized use case does not replace using Xlib/​XCB, GTK, or Qt in the
situations where they excel, or are more germane to the task(s) at hand.

In-​Chapter Exercise

2.25  In gnuplot, type set terminal

You’ll get a listing of the terminal types available for you to set for your
installation of gnuplot.

The terminal types actually available to you are dependent upon what driver
library packages you have installed previous to installing gnuplot!

Experiment with setting the terminal to some of the different types shown by
the set terminal command in gnuplot.

2.7.6 � Plotting in Interactive Mode

There are four basic gnuplot commands that create plots: plot, splot, replot,
and refresh. plot generates 2D plots, splot generates 3D plots (2D projections
onto a picture plane). replot appends its arguments to the previous plot or
splot and executes the modified command. refresh re-​executes the previous
plot or splot command using previously stored data rather than rereading
data from a file.

2.7.6.1  Plotting Data Contained in a File

Data contained in a file can be plotted with plot or splot by specifying the
name of the properly formatted data file (enclosed in single or double quotes)
on the `plot` command line.

Syntax:
	 plot '<file_​name>' {binary <binary list>}
	 {{nonuniform} matrix}
	 {index <index list> | index "<name>"}
	 {every <every list>}
	 {skip <number-​of-​lines>}
	 {using <using list>}
	 {smooth <option>}
	 {volatile} {noautoscale}

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 179

A short explanation of the arguments is: binary allows data entry from
a binary file, index selects which data sets in a multi-​data-​set file are to be
plotted, every specifies which points within a single data set are to be plotted,
using determines how the columns within a single line are to be interpreted,
and smooth allows for simple interpolation and approximation. splot has a
similar syntax, but does not support the smooth option.

Data files should contain at least one data point per line (using can select
one data point from the line). Lines beginning with # will be treated as
comments and ignored.

Each data point represents an (x,y) pair. For plots with error bars or error
bars with lines, each data point is (x,y,ydelta), (x,y,ylow,yhigh), (x,y,xdelta),
(x,y,xlow,xhigh), or (x,y,xlow,xhigh,ylow,yhigh).

If line numbering is present at the beginning of each line of a data file,
that numbering must be separated by white space (one or more blanks or
tabs) from the remainder of the data on that line, unless a format specifier
is provided by the using option. This white space divides each line into
columns. However, white space inside a pair of double quotes is ignored
when counting columns, so the following datafile line has three columns: 1.0
“second column” 3.0

A data file can contain only one column (the y value). If x is omitted, gnuplot
provides integer values for x, starting at 0.

In-​Chapter Exercises

2.26 � Create a data file of interest to you with your favorite text editor,
containing at least 20 paired x-​y data points. Then use gnuplot to
read that data in from the file, and plot it in an XCB-​created window.

2.27 � Plot the following functions in a single, persistent Xlib-​created
window: 2tan(x), sin(x), cos (x), tanh(x).

2.7.6.2  Plotting Styles

There are many 2-​D and 3-​D plotting styles available in gnuplot, which
have evolved over the long history of gnuplot use on both UNIX and Linux
systems. We give a listing of them as they pertain to a particular kind of graph-
ical presentation method (if applicable), and then give a few descriptions of
the most important ones. For example, the commands set style data and set

style function change the default plotting style for subsequent plot and splot
commands. You can also specify the plot style explicitly as part of the plot or
splot command. If you want to mix plot styles within a single plot, you must
specify the plot style for each component.

Raspberry Pi OS System Administration: Ancillary Topics180

An example of this would be as follows:

gnuplot> plot 'statistics' with boxes, sin(x) with lines

Each plot style has its own expected set of data entries in a data file. For
example, by default the lines style expects either a single column of y values
(with implicit x ordering) or a pair of columns with x in the first and y in the
second.

Descriptive Statistics: Boxerrorbars, Boxes, Boxplot, Boxxyerrorbars,
Candlesticks, Circles, Ellipses, Dots, Histograms, Newhistogram, Xerrorbars,
Xyerrorbars, Yerrorbars, Xerrorlines, Xyerrorlines, Yerrorlines.

General Graphics: Filledcurves, Fillsteps, Histeps, Image, Impulses, Labels,
Lines, Linespoints, Parallelaxes, Points, Polar, Steps, Vectors, 3D (surface)
plots, 2D projection.

2.7.7 � Obtaining Help on Important Commands

In Interactive mode, if you type help topic, where topic is any of the major
or sub-​topics listed in Table 2.9, you will get verbose help on that topic. We
list all major topics in gnuplot help, and their major sub-​topics for your con-
venience here.

TABLE 2.9

gnuplot Command Help Matrix

bind call cd clear do
evaluate exit fit help history
if import load lower pause
plot

acsplines axes bezier binary
cnormal csplines cumulative data
datafile errorbars errorlines every
example for frequency functions
index kdensity mcsplines parametri
ranges sampling sbezier smooth
special-​filnames style thru title
uniques unwrap using volatile
with

print printerr pwd quit raise
refresh replot reread reset save
set-​show

angles arrow autoscale bars
bmargin border boxwidth cbdata
cbdtics cblabel cbmtics cbrange
cbtics clabel clip cntrlabel
cntrparam color colorbox colorsequence
contour dashtype decimalsign dgrid3d

(continued)

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 181

dummy encoding fit fontpath
format grid hidden3d history
historysize isosamples key
linetype link lmargin loadpath
locale logscale macros mapping
margins monochrome mouse multiplot
mx2tics mxtics my2tics mytics
mztics object offsets origin
output palette parametric paxis
pm3d pointintervalbox pointsize polar
print psdir raxis rmargin
rrange rtics samples size
style surface table terminal
termoption tics ticscale ticslevel
timefmt timestamp title tmargin
trange urange view vrange
x2data x2dtics x2label x2mtics
x2range x2tics x2zeroaxis xdata
xdtics xlabel xmtics xrange
xtics xyplane xzeroaxis y2data
y2dtics y2label y2mtics y2range
y2tics y2zeroaxis ydata ydtics
ylabel ymtics yrange ytics
yzeroaxis zdata zdtics zero
zeroaxis zlabel zmtics zrange
ztics zzeroaxis

shell
splot

binary datafile errorbars errorlines
example for grid_​data parametric
ranges style surfaces title
with

stats system test undefine unset
update while

TABLE 2.9  (Continued)

gnuplot Command Help Matrix

2.7.8 � Qt and X11 Terminals

In this sub-​section, we describe the parameters of setting the two most
important terminal types that are useful in gnuplot for the Raspberry Pi, and
also for our modularized X Window System model. They are the Qt and X11
terminals.

2.7.8.1  Qt Terminal Type Parameters

The mainstay qt terminal device generates output in a separate window,
using the Qt library.

Raspberry Pi OS System Administration: Ancillary Topics182

a. � enhanced (or noenhanced): This parameter determines whether
enhanced text mode is enabled or disabled. Enhanced text mode
allows you to use special formatting and symbols in labels and titles.
For example:

set terminal qt enhanced (enables enhanced text mode)
set terminal qt noenhanced (disables enhanced text mode)

b. � persist (or nopersist): This parameter specifies whether the Qt
window should remain open after plotting. Enabling persist allows
you to interact with the plot and keep it open, while nopersist closes
the window when the script execution finishes. For example:

set terminal qt persist (keeps the window open)
set terminal qt nopersist (closes the window)

2.7.8.2  X11 Terminal Type Parameters

The terminal type useful for our modularized X Window System model is x11.

a. � enhanced (or noenhanced): Similar to the Qt terminal, this parameter
controls enhanced text mode for the X11 terminal. It allows you to use
special formatting and symbols in labels and titles. For example:

set terminal x11 enhanced (enables enhanced text mode)
set terminal x11 noenhanced (disables enhanced text mode)

b. � persist (or nopersist): This parameter specifies whether the X11 window
should remain open after plotting. Enabling persist allows you to interact
with the plot and keep it open, while nopersist closes the window when
the script execution finishes. For example:

set terminal x11 persist (keeps the window open)
set terminal x11 nopersist (closes the window)

c. � title "Your Window Title": You can set a custom title for the X11 window.
For example:

set terminal x11 title "My Plot"

Here’s an example of how you can use these parameters when setting the
terminal type:

Set the terminal type to Qt with enhanced text and a persisting window
set terminal qt enhanced persist

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 183

Set the terminal type to X11 with a custom window title and enhanced text
set terminal x11 title "Custom Title" enhanced

Plot your data or functions
plot sin(x)

2.7.9 � Plotting in Multiple Windows or Multiple Graphs in One Window

As seen in Section 2.7.5, you can plot graphs in multiple discreet windows by
setting the current terminal to x11 window <n>, which outputs the graph to
window number n.

Most importantly, as shown in that section, the gnuplot specification of
an x11 terminal can connect to X windows previously created by an outside
application via the window option.

The window option requires a string containing the X ID for the window in
hexadecimal format as an option argument. Gnuplot uses that external X window
as a container. In this way, gnuplot’s mouse features work within the contained
plot window. To repeat the example of setting the terminal type interactively:

gnuplot> set term x11 window "0x360001"

A plot window created in this way can be closed by pressing the letter q
while that window is the active window (mouse cursor rolled into it), or by
closing it from the desktop manager window border, and clicking the (X) in
the upper right corner of the window.

Additionally, consider the following gnuplot Batch mode program:

set multiplot layout 2,2 rowsfirst

-​-​-​ GRAPH sin

set label 1 'x' at graph 0.92,0.9 font ',8'

plot sin(x) with lines ls 1 dt 2

-​-​-​ GRAPH cos

set label 1 'y' at graph 0.92,0.9 font ',8'

plot cos(x) with lines ls 1 dt 3

-​-​-​ GRAPH tan

set label 1 'z' at graph 0.92,0.9 font ',8'

plot tan(x) with lines ls 1 dt 4

-​-​-​ GRAPH hyperbolic tan

set label 1 't' at graph 0.92,0.9 font ',8'

plot tanh(x) with lines ls 1 dt 5

unset multiplot

It uses the multiplot option of the set command to “tile” the single current
window into a 2 by 2 matrix, and then proceeds to plot graphs of sin, cos,
tan, and tanh in each of the tiles of that single window. Also, it uses the

Raspberry Pi OS System Administration: Ancillary Topics184

set command to place labels on each graph, and the with option of the plot
command to customize the line type and color of each graphed function.

You can test these commands, one at a time, in gnuplot, to see the results
they yield. To do this, on the gnuplot command line:

Terminal type is now ‘qt’
gnuplot> set multiplot layout 2,2 rowsfirst

multiplot> set label 1 'x' at graph 0.92,0.9 font ',8'

multiplot> plot sin(x) with lines ls 1 dt 2

multiplot> set label 1 'y' at graph 0.92,0.9 font ',8'

multiplot> plot cos(x) with lines ls 1 dt 3

multiplot> set label 1 'z' at graph 0.92,0.9 font ',8'

multiplot> plot tan(x) with lines ls 1 dt 4

multiplot> set label 1 't' at graph 0.92,0.9 font ',8'

multiplot> plot tanh(x) with lines ls 1 dt 5

multiplot> unset multiplot

The resulting multiplot command is shown in Figure 2.10.

FIGURE 2.10
Gnuplot multiplot display.

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 185

The syntax, and other information concerning the multiplot option is as
follows, as obtained from the gnuplot help command:

The command `set multiplot` places `gnuplot` in the multiplot mode, in
which several plots are placed next to each other on the same page or screen
window.

set multiplot

	 { title <page title> {font <fontspec>} {enhanced|noenhanced} }
	 { layout <rows>,<cols>

	 {rowsfirst|columnsfirst} {downwards|upwards}
	 {scale <xscale>{,<yscale>}} {offset <xoff>{,<yoff>}}
	 {margins <left>,<right>,<bottom>,<top>}
	 {spacing <xspacing>{,<yspacing>}}

set multiplot {next|previous}
	 unset multiplot

For some terminals, no plot is displayed until the command ̀ unset multiplot`
is given, which causes the entire page to be drawn and then returns gnuplot

to its normal single-​plot mode.	 For other terminals, each separate `plot`
command produces an updated display.

The 'clear' command is used to erase the rectangular area of the page that will
be used for the next plot. This is typically needed to inset a small plot inside
a larger plot.

Any labels or arrows that have been defined will be drawn for each plot
according to the current size and origin (unless their coordinates are defined
in the 'screen' system). Just about everything else that can be 'set' is applied
to each plot, too. If you want something to appear only once on the page,
for instance a single time stamp, you’ll need to put a 'set time'/​'unset time'
pair around one of the 'plot', 'splot', or 'replot' commands within the 'set
multiplot'/​'unset multiplot' block.

The multiplot title is separate from the individual plot titles, if any. Space
is reserved for it at the top of the page, spanning the full width of the canvas.

The commands 'set origin' and 'set size' must be used to correctly position
each plot if no layout is specified or if fine tuning is desired. See 'set origin'
and 'set size' for details of their usage.

Example:
	 set multiplot

	 set size 0.4,0.4

	 set origin 0.1,0.1

	 plot cos(x)

	 unset multiplot

Raspberry Pi OS System Administration: Ancillary Topics186

This displays a plot of cos(x) stacked above a plot of sin(x).

'set size' and 'set origin' refer to the entire plotting area used for each plot.
Please also see 'set term size'. If you want to have the axes themselves line
up, you can guarantee that the margins are the same size with the 'set margin'
commands. See 'set margin' for their use. Note that the margin settings are
absolute, in character units, so the appearance of the graph in the remaining
space will depend on the screen size of the display device, e.g., perhaps quite
different on a video display and a printer.

With the 'layout' option you can generate simple multiplots without having
to give the 'set size' and 'set origin' commands before each plot: Those are
generated automatically, but can be overridden at any time. With 'layout' the
display will be divided by a grid with <rows> rows and <cols> columns.
This grid is filled rows first or columns first depending on whether the
corresponding option is given in the multiplot command.

In-​Chapter Exercise

2.28 � Execute the Examples from gnuplot’s multiplot help in windows
created by the compiled Xlib program simple1_​white.c, found
above in Section 2.3.9.5.

2.8 � Summary

The operation of the Raspberry Pi OS is greatly improved, from the ordinary
user perspective, through the modern use of a graphical user interface (GUI).
A traditional and common GUI for Linux is built upon a display and net-
work protocol called the X Window System. The protocol used by the Debian
Bookworm-​based Raspberry Pi OS is Wayland. A GUI system can be classified
as either integrated or nonintegrated. A nonintegrated system generally utilizes
only the functionality of a window manager. An integrated system generally
couples the window manager with other higher-​level programs that achieve
desktop management and session management. Examples of	 integrated systems
are Gnome, KDE, Plasma, and Xfce.

The X Window System, as a display and network protocol, contains device-​
specific drivers for Intel-​based and ARM-​based hardware. The X Window
System is used for networked graphical interaction between a user and one
or more computer systems. The chief arbiter of the interactive dialog between
user and computer system is the window manager. The Wayfire compositor,
and window manager, offers all of the amenities of other popular window
systems, and additionally allows you to manage the graphical output from

X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, Gnuplot 187

the entire contingent of application programs available. The user interface
has two basic parts: the application user interface (AUI), which is how each
client application presents itself in one or more windows on the server screen
display, and the window manager or management interface, which controls the
display of and organizes all client windows.

The basic model of interactivity in the X Window System is an event–​request
loop between the application client and the graphical server. With applications
written for the X Window System, the client application can process input
events, do the work necessary to form a response to the events, and then
output the responses as requests for graphical output to the server.

The X Window System is highly customizable to suit the interactive needs
of a wide range of users. In this chapter we covered two approaches to chan-
ging the appearance and functionality of a nonintegrated window system,
and the window manager as well. Our approach involved changing the
characteristics of applications that run under the X Window System by speci-
fying command line options.

We covered the functionality of one of the predominant open-​source
integrated desktop management systems. We showed how this system can
be used to expedite your work within the Raspberry Pi environment, particu-
larly with regard to personal productivity and file management operations.
We specifically showed the customization possible within this system to
allow a user to work more efficiently.

We showed several elementary sample client application programs for
the X Window System, coded to call upon four standard and very common
toolkit libraries, Xlib, XCB, Qt, and GTK. We stressed the two most important
aspects of client application program creation for the beginner:

	• A client application program has two parts: a data generation part that
uses code in C, C+​+​, or another high-​level programming language to
produce the numbers, text, files, and data structures; and a user inter-
face (UI) part which produces the actual graphics that display the data
generation part.

	• A client application program is made up of initialization, event–​request
loop, and cleanup sections.

We also showed many detailed examples of the toolkit code itself and what
the code accomplished in the context of the sample programs.

Xlib and XCB programs, and a vast collection of legacy X Window System
applications, are primarily designed to work with the X Window System,
and they may not run natively on Wayland without a compatibility layer like
XWayland. Wayland is a different display protocol and has a different archi-
tecture compared to X.

If you have Xlib and XCB programs that you want to run on a Wayland-​
based desktop environment without XWayland, you need to adapt or

Raspberry Pi OS System Administration: Ancillary Topics188

rewrite those programs to use Wayland’s native protocol. Wayland offers a
more modern and secure display and networking protocol, but it requires
applications to be compatible with it. This typically involves using libraries
like wlroots and implementing the Wayland protocol in your applications.

In summary, running Xlib and XCB programs directly on Wayland without
XWayland may not be straightforward and could require significant changes
to the applications. Most Linux distributions use Xwayland, including the
latest version of the Raspberry Pi OS, to provide compatibility for running X
applications on Wayland-​based desktops.

189DOI: 10.1201/9781003473268-4

3	�
The GNU Emacs Editor

3.0  Objectives

*	 To explain the general utility of editing text files on a Raspberry Pi system
*	 To show the basic capabilities of GNU Emacs
*	 To illustrate some of the important ways of customizing this editor
*	 To cover the commands and primitives:

cp, Emacs, ls, pwd, sh, who

3.1 � Introduction

Question: Why use Emacs, rather than Geany, Thonny, or Visual Studio Code?
Answer: The basic process of typing text into Emacs is very similar to those

Integral Development Environment (IDE) systems. But IDEs allow you to use
that text in a more sophisticated, and necessarily complex way. Perhaps you
just want to create the body of an email message as plain text, and then email
a friend that message from within your text creation tool. The choice between
using Emacs and an IDE like Geany, Thonny, or Visual Studio Code really
comes down to personal preferences, and the specific needs of the devel-
oper in perhaps a team-​oriented coding environment. Each tool has its own
strengths and weaknesses, and the best choice depends on the individual’s
chosen workflow, programming languages, and requirements. Here are some
reasons why a beginner might choose Emacs over other IDEs:

I.	 Extensibility and Customization:
1.	 Emacs: Emacs is known for its powerful and extensible nature.

It’s highly customizable, and users can write custom scripts in

http://dx.doi.org/10.1201/9781003473268-4

Raspberry Pi OS System Administration: Ancillary Topics190

Emacs Lisp to extend the functionality of the editor itself. This
makes it suitable for a wide range of tasks beyond coding, such
as text editing that approaches the boundary of word processing,
task management, and more.

2.	 IDEs: While modern IDEs offer customization to some extent,
they may not be as flexible as Emacs in terms of deeper forms of
personalized customization and extension.

II.	 Lightweight and Speed:
1.	 Emacs: Emacs is lightweight (consumes less system resources,

such as main memory) compared to some IDEs, making it fast and
efficient, especially on older hardware.

2.	 IDEs: Some IDEs, like Visual Studio Code, might be more resource-​
intensive due to their feature-​rich nature.

III.	 Text Editing Features:
1.	 Emacs: Emacs is renowned for its powerful text editing capabil-

ities. It has a wide range of keyboard shortcuts and commands for
manipulating text efficiently.

2.	 IDEs: While IDEs also provide robust text editing features, Emacs
enthusiasts often appreciate the depth and efficiency of Emacs for
text-​related tasks.

IV.	 Learning Curve:
1.	 Emacs: Emacs has a steeper learning curve, but users who invest

time in learning it can become highly productive.
2.	 IDEs: Some IDEs are designed to be more user-​friendly and may

have a gentler learning curve, making them more approachable
for beginners.

V.	 Coding Language Support:
1.	 Emacs: Emacs supports a wide variety of programming languages

and file types.
2.	 IDEs: Depending on the IDE, language support might be optimized

for specific ecosystems. For example, Visual Studio Code has a
rich ecosystem and excellent support for languages like JavaScript
and Python, and integration with GitHub for pull requests, and
branch maintenance there.

VI.	 Community and Documentation:
1.	 Emacs: Emacs is the traditional UNIX/​Linux text editor, and has

a long history and a dedicated community. There are extensive
documentation and a wealth of user-​contributed packages.

2.	 IDEs: Popular IDEs also have active communities and documen-
tation, but the depth and breadth might vary.

The GNU Emacs Editor 191

VII.	Cross-​Platform Compatibility:

1.	 Emacs: Emacs is highly portable and can run on various operating
systems, Raspberry Pi OS being one of them.

2.	 IDEs: Most modern IDEs are also cross-​platform, providing con-
sistent experiences on different operating systems.

The choice between Emacs and an IDE really comes down to personal pref-
erence and workflow. Some developers prefer the lightweight and highly
customizable nature of Emacs, while others may appreciate the integrated
features and user-​friendly interfaces of modern IDEs. It’s worth trying out
different tools to find the one that best fits your needs and preferences.

As noted in the answer to our primary question, the Emacs editor is the
most complex and customizable of the Raspberry Pi keystroke-​command text
editors, and it gives you the most freedom, flexibility, and control over the way
you edit text files. It can format text for very specific technical applications,
such as program source code development, more effectively than a word
processor. Its use in that application makes the process of program develop-
ment more efficient. In addition, from within the Emacs program (deploying
multiple windows) you can accomplish a wide variety of personal product-
ivity and operating system tasks, such as sending e-​mail and executing shell
commands and scripts.

But along with more control, specificity, and capabilities comes a much
steeper learning curve, which brings with it a more complex keystroke
command structure. This complexity can be offset in part for some users, and
totally for others, by using the graphical forms of input and command execu-
tion, that we will emphasize in some of the sections that follow.

As mentioned above, if you cannot run a “graphical” Emacs (as we do
exclusively by running it in an interactive shell, GUI window in this section)
because you are working in a login shell, text-​only console or terminal.

No worries.
You can still gain access to the Menu Bar at the top of the Emacs screen

by pressing <Esc> on the keyboard and then pressing the single back quote
(`) key. You can then descend through the menu bar choices by pressing the
letter key of the menu choice you want to make. For example, pressing the f
key on your keyboard gives you access to the File pull-​down menu choices,
and then pressing the s key allows you to save the current buffer. The ways of
descending and ascending these menus, and making menu choices, is rather
intuitive, and we suggest you experiment as much as is reasonably possible
with the non-​graphical form of Emacs. We present a Problem at the end of
this chapter that asks you to do this.

Unfortunately, you cannot access the speed button bar menu choices from
within a text-​only display of Emacs.
To stress how the keyboard keys are used in graphical GNU Emacs, we pre-
sent the following notes:

Raspberry Pi OS System Administration: Ancillary Topics192

1.	 Pressing the Escape key is signified as <Esc>.
2.	 Pressing the Enter key is signified as <Enter>.
3.	 Pressing the <Ctrl> key in combination with another single key is sig-

nified as <Ctrl+​X>, where you hold down the <Ctrl> key and press
the X key (or any valid key for that combination) at the same time.

4.	 Pressing the <Alt> key in combination with another single key is sig-
nified as <Alt+​X>, where you hold down the <Alt> key and press the
X key (or any valid key for that combination) at the same time.

5.	 A variant of 4 is shown as <Ctrl+​X> a [b]‌, where you first press and
release <Ctrl> and X simultaneously, and then press the a key, and
optionally press the b key (or any valid combination of single keys or
strings of characters).

6.	 In GNU Emacs for our Raspberry Pi OS, which is based upon Debian
Bookworm, the Meta key that is referred to in much of the literature on
GNU Emacs is the <Alt> key.

It is important to realize before you begin that there are some common terms
used in nano, vi, vim, and gvim (the editors covered in Volume 3 of this
series) and Emacs, that describe the facilities of each editor. But the terms do
not necessarily have the same meaning between the major families of editor.

As in vi, vim, and gvim, you can’t immediately begin to enter text into
any file you’re editing. You have to be in Insert mode to do that, that’s what
typing A as the second step is doing. Vi, vim, and gvim have modes. In nano
and GNU Emacs, you can start typing text into the file immediately.

Nano and Emacs are modeless editors.
Vi, vim, and gvim operate in three distinct modes: Command mode, Insert

mode, and Last Line mode. Emacs is a modeless editor in the sense that, when
you launch Emacs, you do not have to switch modes to immediately type
characters on the keyboard and enter text into a buffer, or change modes to
save the buffer to a file.

But Emacs does have major modes of operation, such as Lisp mode,
Python mode, and C mode; they are for the special formatting of text, and for
specialized operations when editing files for use in coding for those language
applications. This is different from allowing you to switch between signifi-
cant forms of action in the editor, as the vi, vim, and gvim Command, Insert,
and Last Line modes do. The keystroke command syntax itself in Emacs is
different and more complex than in vi, involving use of the <Ctrl> and <Alt>
prefix characters, as previously noted. The Emacs concepts of point and the
cursor location are also more refined and specific than in vi. In Emacs, the
point is the location in the buffer where you are currently doing your editing;
the point is assumed to be at the left edge of the cursor, or always between
characters or white space (what you enter into a text file when you press
the space bar). This difference becomes an important issue when you want

The GNU Emacs Editor 193

to use the cut/​copy/​paste operations. In vi, yanking removes text from the
main buffer, much like cutting/​copying, whereas in Emacs yanking is more
like pasting into the main buffer. The concept of a buffer is very important in
Emacs, and is very much the same in Emacs as it is in vi.

Currently, there is one major “brand” of Emacs for the Raspberry Pi: GNU
Emacs. We use the graphical form of GNU Emacs, version 28.2 on our
Raspberry Pi OS, running in its own frame, and launched by typing emacs on
a terminal command line. An example of how emacs appears when you launch
it in this way is shown later in Figure 3.1. We also add options and command
arguments to the basic Emacs command, while working with Emacs in the
following illustrations, In-​Chapter Exercises, Practice Sessions, and Problems.

A complete summary of Emacs commands is given later in Table 3.7, which
we conveniently place at the end of this chapter, so that you can bookmark
and use it as a handy reference when you are editing with Emacs.

3.2 � Installing Emacs on the Raspberry Pi OS

The easiest and quickest way to install Emacs on a Raspberry Pi is to use the
Raspberry Pi menu choice Preferences> Add/​Remove Software. In the Add/​
Remove Software window that opens on-​screen, type emacs in the search bar,
and press <Enter>. A number of packages are shown, none of which come
pre-​installed on our Raspberry Pi OS. Put a check mark next to GNU Emacs
editor (metapackage), and then press the Apply button in the lower-​right
corner of the Add/​Remove Software window. In a short time, you’ll have the
necessary packages installed on your system.

3.2.1 � Launching Emacs, Emacs Screen Display, and General
Emacs Concepts and Features

There are three graphical ways to launch Emacs on the Debian-​bookworm
version of the Raspberry Pi OS, all of which are presented to you after you’ve
installed Emacs as we’ve shown in Section 3.2. These three ways are found
on the Raspberry Pi menu > Programming. They are the Emacs GUI, Client,
and Terminal icons. Basically they give you a more graphical presentation in
the GUI version, less of a graphical front end in the Client version, and the
least graphical presentation in the Terminal version. Again, it’s a matter of
personal preferences as to which one of these you want to use. You can also
launch Emacs from a terminal window, simply by typing emacs, plus any
options and command arguments on the command line.

The general syntax for launching the Emacs program from the command
line in a terminal window is as follows (anything enclosed in square brackets
[] is optional):

Raspberry Pi OS System Administration: Ancillary Topics194

emacs [options][file(s)]

Purpose: � Allows you to edit a new or existing file(s)
Output:  �With no options or file(s) specified, Emacs runs and begins or

opens on the Welcome Screen buffer
Commonly used options/​features:
+​n	 Begin to edit file(s) starting at line number n
-​nw	� Run Emacs without opening a window, useful in an elementary GUI

environment
emacs file1 file2 file3	� Open three buffers in Emacs on three different files

at the same time

For example, if you run the Emacs program the first time by typing emacs
alien in a terminal window on a Raspberry Pi, Emacs launches and shows
you a split-​screen display, with a buffer open into the file alien, and the
Welcome Screen buffer down below. This is seen in Figure 3.1.

Note
At this point, you could click in the Welcome Screen buffer, and make the
choice to Dismiss this startup screen—​Never show it again.

A brief description of the major components of the Emacs Graphical screen
display labeled in Figure 3.1 is as follows (note: items J, A, B, D, and C are
found on what is called the mode line):

A.	 Name of the current buffer: This is the name of the entity or “file”
you are editing in this window. In Figure 3.1, the name of the buffer
is alien.

B.	 Major and minor mode: Different major modes are used to edit
different kinds of files, like C programs, Lisp, or HTML, and spe-
cial configurations of the major modes define the minor modes. In
Figure 3.1, only the major mode Fundamental is shown, with no minor
mode set.

C.	 Percentage of the text shown on screen: This shows how much of the
text in the buffer is seen on screen. In Figure 3.1, all of the text in the
current buffer is shown on-​screen.

D.	 Current line number: The line location of the cursor in the current
buffer is displayed here.

E.	 Minibuffer: Information and questions/​prompts from Emacs
appear here.

F.	 Speed button bar: This allows you to do quick, common operations
graphically.

G.	 Menu bar: This gives you pull-​down menus that contain all of the
important Emacs operations.

H.	 Text: The actual text you are editing appears here.

The GNU Emacs Editor 195

I.	 Scroll bar: The scroll bar allows you to graphically scroll or move
through the text.

J.	 Status indicator: Two-​character codes are used to tell you about your
file. In Figure 3.1, a 1: and three hyphens (-​-​-​) is shown.

In-​Chapter Exercises

3.1	 Launch Emacs on your Raspberry Pi system, and identify components
A through J of the Emacs screen display.

3.2	 If you launch Emacs on your Linux system by typing only the word
emacs in a terminal or console window (without changing any of the
defaults!), how does your screen display differ from what is shown in

FIGURE 3.1
First GNU Emacs Graphical screen display.

Raspberry Pi OS System Administration: Ancillary Topics196

Figure 3.1? What Emacs commands or menu choices can you make
to close the Emacs Welcome Screen buffer, and begin to edit in a new,
completely blank buffer?

To close the Welcome Screen buffer display that opens in the bottom window
of the Emacs frame, while the cursor is flashing on the Emacs Tutorial choice,
type q on your keyboard. Once you do this, you will only have one buffer
shown in the screen display.

3.3 � Emacs Help

Emacs provides a wide variety of help commands, all accessible through the
key sequence <Ctrl+​H> or graphically with the function key <F1>. You can
also type <Ctrl+​H> <Ctrl+​H> to view a list of help commands. You can scroll
the list with <Space> and , then type the help command you want. To
cancel, type <Ctrl+​G>. Many help commands display their information in a
special help buffer. In this buffer, you can type <Space> and to scroll
and press <Enter> to follow hyperlinks.

The following are the most general ways of obtaining help on a topic or
command:

<Ctrl+​H> a topic(s) <Enter>
This searches for commands whose names match the argument topic(s). The
argument can be a keyword, a list of keywords, or a regular expression.

<Ctrl+​H> i d m Emacs <Enter> i topic <Enter>
This searches for topic in the indices of the Emacs Info manual, displaying
the first match found. Press , (comma) to see subsequent matches. You can
use a regular expression as a topic.

<Ctrl+​H> i d m Emacs <Enter> s topic <Enter>
Similar to <Ctrl+​H> … I topic, but searches the text of the Emacs manual
rather than the indices.

<Ctrl+​H> <Ctrl+​F>
This displays the Emacs FAQ, using Info.

<Ctrl+​H> p
This displays the available Emacs packages based on keywords.
A summary of help command syntax is found in Table 3.1.

The GNU Emacs Editor 197

TABLE 3.1

Summary of Emacs Help Command Syntax

<Ctrl+​H> a topics <Enter> Display a list of commands whose names match topics
(apropos-​command).

<Ctrl+​H> b Display all active key bindings—​minor mode bindings
first, then those of the major mode, then global
bindings (describe-​bindings).

<Ctrl+​H> c key Show the name of the command that the key sequence
key is bound to (describe-​key-​briefly). Here c stands
for “character”. For more extensive information on key,
use <Ctrl+​H> k.

<Ctrl+​H> d topics <Enter> Display the commands and variables
whose documentation matches topics
(apropos-​documentation).

<Ctrl+​H> e Display the *Messages* buffer
(view-​echo-​area-​messages).

<Ctrl+​H> f function press
<Enter>

Display documentation on the Lisp function named
function (describe-​function). Since commands are Lisp
functions, this works for commands too.

<Ctrl+​H> h Display the HELLO file, which shows examples of
various character sets.

<Ctrl+​H> i Run Info, the GNU documentation browser (info). The
Emacs manual is available in Info.

<Ctrl+​H> k key Display the name and documentation of the command
that key runs (describe-​key).

<Ctrl+​H> l Display a description of your last 300 keystrokes
(view-​lossage).

<Ctrl+​H> m Display documentation of the current major mode
(describe-​mode).

<Ctrl+​H> n Display news of recent Emacs changes
(view-​Emacs-​news).

<Ctrl+​H> p Find packages by topic keyword (finder-​by-​keyword).
This lists packages using a package menu buffer.

<Ctrl+​H> P package <Enter> Display documentation about the package named
package (describe-​package).

<Ctrl+​H> r Display the Emacs manual in Info (info-​Emacs-​manual).
<Ctrl+​H> s Display the contents of the current syntax table

(describe-​syntax). The syntax table says which
characters are opening delimiters, which are parts of
words, and so on.

<Ctrl+​H> t Enter the Emacs interactive tutorial (help-​with-​tutorial).
<Ctrl+​H> v var <Enter> Display the documentation of the Lisp variable var

(describe-​variable).
<Ctrl+​H> w command <Enter> Show which keys run the command named command

(where-​is).
<Ctrl+​H> C coding <Enter> Describe the coding system coding

(describe-​coding-​system).
<Ctrl+​H> C <Enter> Describe the coding systems currently in use.
<Ctrl+​H> F command <Enter> Enter Info and go to the node that

documents the Emacs command command
(Info-​goto-​Emacs-​command-​node).

(Continued)

Raspberry Pi OS System Administration: Ancillary Topics198

In-​Chapter Exercise

3.3	 Use the Emacs command <Ctrl+​H> i d m Emacs <Enter> s topic <Enter>
to search for the following terms: point, minibuffer, modes, keys.
Then write a brief description, in your own words, of each of these
terms, based upon what the help provided by Emacs yields.

3.4 � Graphical Features

From a beginner’s perspective, the most useful graphical features of Emacs
are the menu bar and speed button bar, seen in Figure 3.1 as F and G. These
features utilize all of Emacs’s functionality with a graphical style of inter-
action that is most agreeable to a novice, and also to the experienced user.

Note
When a menu choice is grayed out, that means it is not available at the current
level you are operating at in Emacs. Depending on your display, this may be
somewhat difficult to determine.

Following is a brief description of what tasks each menu bar item accomplishes:

File: � Facilities for opening, saving, and closing buffers, files, windows,
and frames

Edit: � Means to modify text in buffers

<Ctrl+​H> I method <Enter> Describe the input method method
(describe-​input-​method).

<Ctrl+​H> K key Enter Info and go to the node that documents the key
sequence key (Info-​goto-​Emacs-​key-​command-​node).

<Ctrl+​H> L language-​env
<Enter>

Display information on the character sets,
coding systems, and input methods used
in language environment language-​env
(describe-​language-​environment).

<Ctrl+​H> S symbol <Enter> Display the Info documentation on symbol symbol
according to the programming language you are
editing (info-​lookup-​symbol).

<Ctrl+​H> Display the help message for a special text area, if the
point is in one (displaylocal-​help). (These include, for
example, links in *Help* buffers.)

TABLE 3.1  (Continued)

Summary of Emacs Help Command Syntax

The GNU Emacs Editor 199

Options:  Facilities to make configuration changes
Buffers:	 A pull-​down menu listing of the currently open buffers
Tools:	 File and application functions
Help:	 Extensive documentation and on-​line manual for Emacs

The speed button bar contains single-​button presses for (1) file and buffer
operations; (2) common text-​editing operations, such as cut and paste; and
(3) printing, searching, and changing preferences.

3.5 � Buffers, File, Windows, and Frames

The most important concept in Emacs is that of a buffer, or text object that is
currently being edited by Emacs. This is different from a file, which is a text
object stored on disk. The differentiation is made, in simple terms, because
(1) the object currently being modified and viewed in Emacs is not the same
object stored on disk, if you have not yet saved your edits; and (2) Emacs can
work on text objects that are not files and never will be, such as the output
from commands typed on the command line. When you first launch Emacs on
the command line, and use the option to specify a file to edit, you are looking
into the buffer created by Emacs for that file, in what is generally known as
an Emacs frame. That frame may contain only a single window open, that
allows you to see the buffer contents. A frame consists of one window, or pos-
sibly many windows, with the pull-​down and speed button bar menus, the
mode line, and a minibuffer.

In-​Chapter Exercise

3.4  When you launch Emacs in a terminal, specifying a filename on the
command line, and close the Welcome screen, how many buffers are
open? What are their names? How did you find this out? How do you
shift between working in different open buffers? How do you open a
new frame on screen? How do you close a frame?

3.6 � Point, Mark, and Region

The second most important concept in Emacs is that of the point and mark,
and the region of text they demarcate. The point is located in the white space
before the character the cursor is highlighting. The mark, set by placing the

Raspberry Pi OS System Administration: Ancillary Topics200

cursor over a character and then holding down <Ctrl+​Space> or <Ctrl+​@>,
is also in the white space before the character the cursor is highlighting. The
region or area of text you want to manipulate in operations, such as cutting
and copying, is all text between the point and the mark. For example, in the
line of text Now is the time for all good men, if the cursor is on or highlighting
the N in the word Now (the point is in the white space before the N), and
the mark has been set before the character i in the word time by placing the
cursor on the letter i and holding down <Ctrl+​Space>, then the region is
defined as Now is the t.

To exit from Emacs without saving any of the buffers, make the pull-​down
menu choice File > Quit or type <Ctrl+​X> then <Ctrl+​C> on the keyboard.

In-​Chapter Exercises

3.5  In a new Emacs file, type in the following text:

Now is the time for all good men

and then place the flashing cursor on the letter N. Define the region
by holding down <Ctrl+​Space> and then set the mark by using the
arrow keys on the keyboard to place the cursor on the n in the word
men. What is the region defined as? If you make the speed button bar
choice “Copy”, what is copied to the paste buffer? How did you find
this out?

3.6  �What signifies the region graphically on a Raspberry Pi system
running with a GUI desktop?

3.7 � How to Use Emacs to Do Shell Script File
Creation, Editing, and Execution

The following practice session shows how to create a file to define aliases, or
command name substitutes, that allow you to type DOS command names
in a terminal at the command prompt, to execute some of the common file
maintenance operations. DOS commands are similar to Linux commands,
but are used in the Windows operating system environment. As you will
see in the practice session, you can use an efficient combination of keyboard
typing and graphical interaction to work with Emacs.

In this section, we assume that you are running the default shell on your
Raspberry Pi system, the Bourne Again shell (Bash). Also, it is assumed in these
practice sessions, exercises, and problems that you are creating and editing
files in your home directory, where you have unaliased all of the aliases.

The GNU Emacs Editor 201

Practice Session 3.1

Step 1:	 At the shell prompt, type emacs alien and then press <Enter>.
The Emacs screen appears in your display, similar to Figure 3.1. Close

the Welcome Screen.
Step 2:	 Type # DOS aliases and then press <Enter>.
Step 3:	 Type alias del=​rm and then press <Enter>.
Step 4:	 Type alias dir=​‘ls -​la’ and then press <Enter>.
Step 5:	 Type alias type=​more and then press <Enter>.
Step 6:	 Hold down the <Ctrl+​X>, and then hold down <Ctrl+​S> to save

your file with the name alien. The display of your text should appear
similar to Figure 3.2.

FIGURE 3.2
File alien after step 6.

Raspberry Pi OS System Administration: Ancillary Topics202

Step 7:	 Hold down <Ctrl+​X>, and then hold down <Ctrl+​C> to gracefully
exit from Emacs and return to the Bash shell prompt.

In-​Chapter Exercises

3.7	 How did you get the Bash aliases created in the file alien in Practice
Session 3.1 to work? List the specific steps you used to do this. The
assumption here is that you are working in a GUI desktop system, and
you are not in a login shell when you test the aliases.

3.8	 As shown in Practice Session 3.1, use Emacs to create a text file that
contains the following Bash aliases:

dir=​‘ls -​l’
rename=​‘mv’
spr=​‘lpr -​Pspr’
lt=​‘ls -​ltr’
page=​‘more’

Test the aliases on your system. Note that if your default printer has a des-
ignation other than spr, substitute the printer designation on your system.
Then unalias all of the aliases created in this Exercise.

3.8 � Visiting Files, Saving Files, and Exiting

Your Raspberry Pi OS stores data permanently in files, so a vast majority of
the text a novice user, or even an advanced user, will edit with Emacs, comes
from a file and is saved in a file. To edit a file while running Emacs, you need
to read the file into a buffer and prepare that buffer containing a copy of the
file’s text. This is called visiting the file.

Note
The Emacs editing commands work on the text in the buffer inside Emacs.
Your changes are written to the file itself, by default only when you save the
buffer to the file!

In addition to visiting and saving files, Emacs can delete, copy, rename,
and append to files, keep multiple versions of them, and operate on file
directories.

The following are some of the basic operations you can do to visit files, save
them, and then exit gracefully from Emacs:

The GNU Emacs Editor 203

* Visiting a New File

To visit a new file from within Emacs, make the pull-​down menu choice
File>Visit New File. In the Name bar that appears in the Find File window
on screen, type in a new file name and then make the choice OK. If the only
buffer open is the welcome window, it will close, and you will be editing a
buffer named with the new file name. You can do the same thing by typing
<Ctrl+​X> <Ctrl+​F>. Then in the minibuffer, type in the file name.

* Saving to a File without Quitting Emacs

After you have entered some text into the current buffer, make the pull-​down
menu choice File> Save.

You can do the same thing by typing <Ctrl+​X> <Ctrl+​S>.

* Saving to a File with Unsaved Changes and Quitting Emacs

If you make unsaved changes to a buffer, and make the pull-​down menu choice
File>Quit, Emacs puts a Question dialog box on screen asking you the following:

Save file? Yes No
View This Buffer
View Changes in This Buffer
Save This but No More
Save All Buffers
No for All

If you make the last menu choice, you are presented with one additional
Question Dialog box informing you that “Modified buffers exist; exit anyway?”

You can do any of these things, depending on what you want to accom-
plish. You get the same choices, although they are less descriptive, when you
type <Ctrl+​X> <Ctrl+​C> for the unsaved buffer.

Experiment with all of the above editing and saving files and buffers
methods, to establish a preferred personal operating procedure for yourself
when using Emacs.

3.9 � Cursor Movement and Editing Commands

In addition to general purpose commands, Emacs has some important cursor
movement and editing commands that allow you to move quickly and easily
around the text and make changes. Some of the most important of these
commands are listed in Tables 3.2 and 3.3.

Raspberry Pi OS System Administration: Ancillary Topics204

Practice Session 3.2 illustrates the use of a mixture of keystroke commands
and graphical methods in Emacs, and lets you edit the file alien that you
created in Practice Session 3.1. In particular, Practice Session 3.2 instructs you
to insert the file you created in Practice Session 3.1 into a special file you will
create in your home directory, named .bash_​aliases, so that, upon subsequent
logins, these DOS-​aliased commands will be permanently available. This

TABLE 3.3

Entities to Kill

Entity to Kill Backward Forward

Character (delete, not kill) <Ctrl+​D>
Word <Alt+​Del> <Alt+​D>
Line (to end of) <Alt+​0><Ctrl+​K> <Ctrl+​K>
Sentence <Ctrl+​X> DEL <Alt+​K>
Sexp <Alt+​-​> <Ctrl+​Alt+​K> <Ctrl+​Alt+​K>
Kill region <Ctrl+​W>
Copy region to kill ring <Alt+​W>
Kill through next
occurrence of char

<Alt+​Z> char

Yank back last thing killed <Ctrl+​Y>
Replace last yank with
previous kill

<Alt+​Y>

TABLE 3.2

Entities to Move Over

Entity to Move Over Backward Forward

Character <Ctrl+​B> <Ctrl+​F>
Word <Alt+​B> <Alt+​F>
Line <Ctrl+​P> <Ctrl+​N>
Go to line beginning (or end) <Ctrl+​A> <Ctrl+​E>
Sentence <Alt+​A> <Alt+​E>
Paragraph <Alt+​{> <Alt+​}>
Page <Ctrl+​X> [<Ctrl+​X>]
Sexp <Ctrl+​Alt+​B> <Ctrl+​Alt+​F>
Function <Ctrl+​Alt+​A> <Ctrl+​Alt+​E>
Go to buffer start (or end) <Alt+​<> <Alt+​>>
Scroll to next screen <Ctrl+​V>
Scroll to previous screen <Alt+​V>
Scroll left <Ctrl+​X> <
Scroll right <Ctrl+​X> >
Scroll current line to center, top,
bottom

<Ctrl+​L>

Go to line <Alt+​G> g
Back to indentation <Alt+​M>

The GNU Emacs Editor 205

insertion is achieved with an Emacs feature known as the mini-​buffer. Before
you begin Practice Session 3.2, do the following:

Preparatory Step 1. By default on a Raspberry Pi system, there is a .bashrc
file in your home directory. In it, you will find the following lines of code that
allow you to use a secondary aliases file to contain user-​defined aliases. At
the end of it, it has lines in it as follows:

#Alias definitions.

You may want to put all your additions into a separate file like

~/​.bash_​aliases, instead of adding them here directly.

See /​usr/​share/​doc/​bash-​doc/​examples in the bash-​doc package.

if [-​f ~/​.bash_​aliases]; then

 . ~/​.bash_​aliases

fi

Preparatory Step 2. In your home directory, create an empty file named .bash_​
aliases using the touch command:

bob@raspberrypi:~ $ touch .bash_​aliases

If you make a mistake anywhere in the following exercise, you can revert
to using the graphical form of editing for expediency (using the mouse and
pull-​down menus, including undo, inside the Emacs window).

Practice Session 3.2

Step 1: At the shell prompt, type emacs alien and then press <Enter>. Close
the Emacs Welcome Screen. The file you created in Practice Session 3.1 is
loaded into the buffer, and your screen display should look similar to the
one shown in Figure 3.1.

Step 2:	 Using the arrow keys, position the cursor to the right of the ‘ char-
acter at the end of the third line.

Step 3:	 Press <Enter>

Step 4:	 Type alice dirw=​ls

Step 5:	 Hold down <Ctrl+​A> The cursor moves to the beginning of the line.
Step 6:	 Hold down <Alt+​D> The word alice has been cut from the buffer.
Step 7:	 Type alias.
Step 8:	 Hold down <Alt+​B> The cursor moves to the beginning of the

word alias.
Step 9:	 Position the cursor with the arrow keys on the keyboard at the begin-

ning of the first blank line, below the line that reads alias type=​more.

Raspberry Pi OS System Administration: Ancillary Topics206

Step 10: Hold down <Ctrl+​Y> The cut word alice has been put back into the
buffer at the start of the line.

Step 11: Use the arrow keys to position the cursor in the space to the right of
the word alice if it is not there already.

Step 12: Use the <Delete> or <Backspace> keys to delete the letters c and e
from the word alice.

Step 13: Type as copy=​cp.
Step 14: Hold down <Ctrl+​X> <Ctrl+​W>.
Step 15: At the Write file: prompt, type alien2 and then press <Enter>. Your

screen display should now look similar to the one shown in Figure 3.3.

FIGURE 3.3
Display after step 15.

The GNU Emacs Editor 207

Step 16: Hold down <Ctrl+​H> and then press the a key. The minibuffer area
shows a prompt for you to obtain help. Hold down <Ctrl+​G>. Doing so
cancels your help request.

Step 17: Hold down <Ctrl+​X> <Ctrl+​C> to quit Emacs and return to the shell
prompt.

Step 18: From the shell prompt, type emacs .bash_​aliases and then press
<Enter>. Dismiss the startup screen. The blank contents of your .bash_​
aliases file now appear in the editing buffer.

Step 19: Position the cursor with the arrow keys on the keyboard on the first
blank line in the file, if it isn’t already there. Hold down <Ctrl+​X> and
then press the i key on the keyboard. This will allow you to insert the
contents of a file into the current buffer at the position of the cursor.

Step 20: In the minibuffer, type alien2. The lines of text from alien2’s DOS
aliases should now be inserted into the file .bash_​aliases after and below
where you positioned the cursor in Step 19.

Step 21: From the pull-​down menu File, make the choice File>Save (current
buffer), or use <Ctrl+​X> <Ctrl+​S>.

Step 22: Hold down <Ctrl+​X> <Ctrl+​C> to quit Emacs and return to the shell
prompt.

In-​Chapter Exercises

3.9  �Test the new .bash_​aliases file created in Practice Session 3.2 . How
did you do this?
The assumption here is that you arenot working in a login shell!
In a terminal window, at the shell prompt, type one of the aliased
commands, with its appropriate arguments if necessary, and note
the results. Which aliases work, and which ones don’t? Why?

3.10  �Use Emacs to correct the Bash aliases that do not work in the .bash_​
aliases file. Then test them. Finally, unalias them.

3.10 � Keystroke Macros

The Emacs text editor contains a simple-​to-​use facility that allows you to define
keystroke macros, or collections of keystrokes that can be recorded and then
played back at any time. This capability allows you to define repetitive multiple
keystroke operations as a single command and then execute that command—​
as many times as you want. The keystrokes can include Emacs commands and

Raspberry Pi OS System Administration: Ancillary Topics208

a series of keystrokes. A macro can also be saved with a name, or even be saved
to a file, for use during subsequent Emacs editing sessions. Table 3.4 shows a
list of some of the most important keyboard macro commands.

For a more complete description and detailed explanation of how to record,
edit, list, and delete keystroke macros, see Section 3.16.9.

Practice Session 3.3 lets you create a new text file using some of the
commands presented in Table 3.4.

Practice Session 3.3

Step 1:	 At the shell prompt, type emacs datafile and then press <Enter>.
The Emacs screen appears on your display. Dismiss the startup

screen.
Step 2:	 Hold down <Ctrl+​X> <Shift+​9>. These actions begin your keyboard

macro definition. If you make a mistake anywhere in subsequent steps,
simply hold down <Ctrl+​G> to cancel the current macro definition.

Step 3:	 Type 1 2 3 4 5 6 7 8 9 10 and then press <Enter>.
Step 4:	 Hold down <Ctrl+​X> <Shift+​0>. These actions end your macro

definition.
Step 5:	 Hold down <Ctrl+​X> E. Doing so replays the macro that you just

defined, placing another line of the numbers 1 through 10 in the buffer.
Step 6:	 Press E eight more times so that your display looks similar to that

shown in Figure 3.4.

TABLE 3.4

Interactive Search and Replace

Search and Replace Action Keystrokes

Search forward <Ctrl+​S>
Search backward <Ctrl+​R>
Regular expression search <Ctrl+​Alt+​S>
Reverse regular expression search <Ctrl+​Alt+​R>
Select previous search string <Alt+​P>
Select next later search string <Alt+​N>
Exit incremental search <Enter>
Undo effect of last character
Abort current search <Ctrl+​G>
Interactively replace a text string <Alt+​%>
Using regular expressions <Alt+​X> query-​replace-​regexp
Replace this one, go on to next <Space> or y
Replace this one, don’t move ,
Skip to next without replacing or n
Replace all remaining matches !
Back up to the previous match ^
Exit query-​replace <Enter>
Enter recursive edit (<Ctrl+​Alt+​C> to exit) <Ctrl+​R>

The GNU Emacs Editor 209

Step 7:	 Hold down <Ctrl+​X> <Ctrl+​S>. These actions save the buffer to the
file datafile.

Step 8:	 Hold down <Ctrl+​X> <Ctrl+​C> to exit from Emacs.

3.11 � Cut or Copy and Paste and Search and Replace

Every word processor has the capability to cut or copy text and then paste
that text back into the document bring worked on, and to search for old text
and replace it with new text. Because Emacs operations can be totally text
activated, whereby you use sequences of keystrokes to execute commands,
cutting or copying and pasting are fairly complex operations. They are
accomplished with the Kill Ring, whereby text is held in a buffer by killing
it and is then restored to the document at the desired position by yanking it.
Global search and replace are somewhat less complex and are accomplished
by either an unconditional replacement, or an interactive replacement.

The mark is simply a place holder in the buffer. For example, to cut three
words from a document and then paste them back at another position, move
the point before the first word you want to cut and press <Esc+​D> three
times. The three words are then cut to the Kill Ring. Because the Kill Ring is
a First In First Out (FIFO) buffer, you can now move the point to where you
want to restore the three words and press <Ctrl+​Y>. The three words are
yanked into the document in the same order, left to right, that they were cut
from the document.

FIGURE 3.4
Display after step 6.

Raspberry Pi OS System Administration: Ancillary Topics210

To copy three words of text and then paste them back at another position,
set the mark by positioning the point after the three words, and then press
<Ctrl+​@> at that position. Then reposition the point before the three words;
you have now defined a region between the point and the mark. There is only
one mark in the document. Press <Esc+​W> to send the text between the point
and the mark to the Kill Ring; the text is sent, but it is not blanked from the
screen display. To restore the three words at another position, move the point
there and press <Ctrl+​Y>. The three words are restored at the new position.
Table 3.4 gives the important kill and yank commands for Emacs.

Global search and replace can be either unconditional, where every
occurrence of old text you want to replace with new text is replaced without
prompting, or it can be interactive, where you are prompted by Emacs before
each occurrence of old text is replaced with new text. Also, the grammar of
replacement can include regular expressions, which we do not cover here.

Note
On our Raspberry Pi system, the <Alt> key on the keyboard is the
Metacharacter, signified in Emacs as M.

For example, to replace the word men unconditionally with the word
women from the current position of the point to the end of the document,
press <Esc+​%>, type replace-​string, and then press <Enter>. You are then
prompted for the old string. Type men and then press <Enter>. You are
then prompted for the new string. Type women and then press <Enter>. All
occurrences are replaced with no further prompts.

To accomplish an interactive replacement, simply press <Esc+​X>, type
query-​replace, and then press <Enter>. You can then input old and new
strings, but you are given an opportunity at each occurrence of the old string
to replace it or not to replace it with the new string. Table 3.4 shows the actions
that you can take while doing an interactive search and replace.

Practice Session 3.4 contains further examples of copying and pasting and
global search and replace, both unconditional and interactive. Your objective
will be to type in one line of text, copy it into the Kill Ring, and then paste it
into the document seven times. Then modify the contents of the original line
and each pasted line by using both interactive search and replace and uncon-
ditional search and replace. Upon completion of Practice Session 3.4, your
screen display should look similar to Figure 3.5.

Practice Session 3.4

Step 1:	 At the shell prompt, type emacs osfile and then press <Enter>. The
Emacs screen appears on your display. Dismiss the startup screen.

Step 2:	 Type Windows is the operating system of choice for everyone.

Step 3:	 Position the cursor at the W in the word Windows. Press <Ctrl+​@>.
The mark is now set at the start of the line you typed in Step 2. Highlight

The GNU Emacs Editor 211

the whole first line with the graphics cursor and left mouse button, going
from left to right, and including the period at the end of the line. This will
define the region that will be put in the Kill Ring.

Step 4:	 Press <Esc+​W>. This action copies the region to the Kill Ring.
Step 5:	 Press <Enter> to start a new line in the buffer, which should be blank.

The cursor should be positioned at the start of this new line.
Step 6:	 Press <Ctrl+​Y>. The first line of text is now pasted into the next blank

line from the Kill Ring.
Step 7:	 Repeat Steps 5 and 6 six more times so that you now have eight

lines of text in the buffer, all containing the text Windows is the operating
system of choice for everyone.

Step 8:	 Position the cursor on the letter W in the word Windows on the first
line of the buffer.

Step 9:	 Save the buffer at this point with <Ctrl+​X> <Ctrl+​S>.
Step 10: Press <Alt+​%>. These actions begin an interactive search and replace.

The prompt Query replace appears.
Step 11: Type everyone and then press <Enter>. All of the words everyone

from the second line on down, are highlighted. The prompt Replace string
everyone with: appears.

Step 12: Type students and then press <Enter>.
Step 13: Pressing <Space> on the keyboard replaces the word everyone on

the first line with the word students, and the prompt Query replacing
everyone with students: (? for help) appears again.

FIGURE 3.5
Display after step 21.

Raspberry Pi OS System Administration: Ancillary Topics212

Step 14: Press <Enter>. The prompt Replaced 1 occurrence appears.
Step 15: Position the cursor over the e in the word everyone on the second

line of the buffer.
Step 16: Repeat Steps 10–​14, interactively replacing the word everyone each

time it appears with the words computer scientists, engineers, system
administrators, web servers, scientists, networking, and mathematicians
on lines 2–​8 of the buffer.

Note
On the second through last press of <Alt+​%>, the previous replacement
sequence will be presented. Override this by typing the word everyone
at the prompt, pressing <Enter>, and the next replacement. And, be sure
that the second through eighth times you do Step 16, you always position
the cursor on the previous line to the current line you want to replace text
on!

Step 17: Position the cursor on the W in Windows on the first line of the
buffer.

Step 18: Press <Alt+​X>. Then type replace-​string and press <Enter>. These
actions begin an unconditional search and replace. The prompt replace
string: appears.

Step 19: Type Windows and then press <Enter>. The prompt Replace string
Windows with: appears.

Step 20: Type Raspberry Pi OS and then press <Enter>. The prompt Replaced
8 occurrences appears. Correct?

Step 21: Save the buffer with <Ctrl+​X><Ctrl+​S>, print it using the facil-
ities available on your computer system, and exit Emacs with <Ctrl+​X>
<Ctrl+​C>. Your screen display should appear like Figure 3.5.

The following in-​chapter exercises ask you to apply some of the operations
you learned about in the previous practice sessions:

In-​Chapter Exercises

3.11  �Run Emacs and define keyboard macro commands that automatic-
ally delete
a.	 every other word in a line of unspecified length,
b.	 every other line in a file of unspecified length,
c.	 every other word and every other line in a file of unspecified

length with lines of unspecified length.

The GNU Emacs Editor 213

3.12  �Write a keyboard macro, as shown in Section 3.16.9, to do every-
thing shown in Steps 10–​14 of Practice Session 3.4.

3.12 � How to Do Purely Graphical Editing with GNU Emacs

Up to this point in our work, it was possible to use Emacs in a single, text-​
based terminal window, and obtain the results shown. As a beginner, you are
likely interfacing with the operating system via a GUI desktop system. This
would allow you to do all of your Emacs work in a graphical environment.
For the purposes of learning Emacs, you may exclusively want to run Emacs
in its own frame on your screen display, or even possibly in several frames on
your screen display simultaneously.

3.12.1 � Editing Data Files

The following practice session demonstrates the use of graphical GNU
Emacs to do some further editing of the datafile created in Practice Session
3.4. The look and feel of GNU Emacs, running under a GUI desktop default
windowing environment on a Raspberry Pi system, is very similar to a word
processor or desktop publishing application running under any other oper-
ating system that has a GUI, such as Windows 11 or Mac OS X. In the practice
sessions that follow, we are using GNU Emacs 28.2.

Practice Session 3.5

Step 1: In a terminal or console window, at the shell prompt, type emacs
datafile and then press <Enter>. Your screen display should look similar
to the one shown in Figure 3.4.

Step 2:	 Use the mouse to position the cursor over the character 1 at the begin-
ning of the tenth line in the buffer, and then click the left mouse button.
The cursor is now positioned over the character 1.

Step 3:	 Click and hold down the left mouse button over the character 1, and
then drag the mouse so that the entire tenth line is highlighted, including
one character to the right of the 0 in the number 10 at the end of the line.
Release the left mouse button.

The whole first line should be highlighted.
Step 4:	 Position the cursor with the mouse so that the arrow points to the

menu choice Edit at the top of the Emacs screen. Click the left mouse
button. A set of pull-​down menu choices appears, similar to that shown in
Figure 3.6.

Raspberry Pi OS System Administration: Ancillary Topics214

Step 5: Make the Copy menu choice. The text that you highlighted (selected)
in Step 3 is now held in a temporary buffer.

Step 6: Press <Enter>. This opens an eleventh line at the bottom of the buffer.
Step 7: Move the mouse so that the cursor is over the first character position

on the eleventh line, and click the left mouse button. The cursor is now in
that position in the buffer.

Step 8: Make the pull-​down menu choice Edit>Paste. You have now pasted
the 10 characters from the tenth line in the buffer into the eleventh line in
the buffer. Your screen display should now look similar to Figure 3.7.

Step 9:	 Make the pull-​down menu choice File>Save (current buffer).
In the Write file: dialog box that appears, save the file in your home
directory as datafile11, and then make the pull-​down menu choice
File>Exit Emacs.

FIGURE 3.6
Edit pull-​down menu.

The GNU Emacs Editor 215

3.12.2 � How to Start, Save a File, and Exit in Graphical Emacs

As illustrated in Practice Session 3.5, GNU Emacs can give you a high degree
of mouse/​GUI command expediency. This method of working on a text file
is most efficient for beginners, as well as experienced users. Note that, on the
pull-​down menu shown in Figure 3.6, keystroke commands also are shown
for some of the menu choices. Clicking the menu choice button, or pressing
the keyboard key combinations accomplish the same thing. This flexibility
adds to the ease of your use of Emacs.

Of course, you still have to use the keyboard to enter text!
Practice Session 3.6 lets you edit the file alien that you created in Practice

Session 3.2. That practice session allowed you to use Emacs to create a
simple Bash shell script file of shell command aliases. You will now modify
it so that it can be used to create aliases for the C shell. You will also modify
the existing file .cshrc in your home directory so that when you are using
the C shell, you have the aliased shell commands for the C shell in the
file alien3 available to you. Before you begin Practice Session 3.6, take the
following preparatory steps to modify the .cshrc file in your home direc-
tory, and proceed through this practice session for the C shell rather than
the Bash shell):

As with all of the previous Practice Sessions, we assume that you are
working in an interactive shell terminal or console window. Also, the C shell
is installed by default on your Raspberry Pi system.

Preparatory Step 1: Use the ls -​la command to find out if you have a .cshrc file
in your home directory. If you have no .cshrc file in your home directory,

FIGURE 3.7
Datafile after editing and adding an 11th line.

Raspberry Pi OS System Administration: Ancillary Topics216

then use Emacs to create a new file named .cshrc with no text in it. Then
exit Emacs, and type chmod u+​x .cshrc and press <Enter>.

Preparatory Step 2: We assume by default that, on your Raspberry Pi system,
Bash is your default shell. To find out which shell you are currently using,
type echo $SHELL and pressing <Enter>. If you are using the C shell, the
system will respond with /​bin/​csh. If you are using the Bash shell, the
system will respond /​bin/​bash. To find out what shells are installed on
your Raspberry Pi OS, and install the C shell if it’s not installed, use the
following commands:

bob@raspberrypi:~ $ cat /​etc/​shells

/​etc/​shells: valid login shells
/​bin/​sh
/​usr/​bin/​sh
/​bin/​bash
/​usr/​bin/​bash
/​bin/​rbash
/​usr/​bin/​rbash
/​bin/​dash
/​usr/​bin/​dash
bob@raspberrypi:~ $ sudo apt install csh

Output truncated...

Practice Session 3.6

Step 1: At the C shell prompt %, type emacs alien and then press <Enter>.
The file that you created in Practice Exercise 3.2 is loaded into the buffer,
and the contents of the Emacs buffer looks like the one shown in Figure 3.2.
Use the cursor and mouse for cursor positioning, and the keyboard keys
for text entry and deleting, to modify the file so that it looks like this (the
proper format of aliases for the C shell):

#DOS aliases for the C shell

alias del rm

alias dir=​'ls –​la'

alias type more

Step 2:	 Position the cursor, using the mouse and left mouse button, to the
right of the single-​quote character (‘) at the end of the third line.

Step 3:	 Press <Enter> to open a blank line. The cursor will be at the begin-
ning of the line.

Step 4:	 Type alice dirw ls.
Step 5:	 Position the cursor, using the mouse and left mouse button, at char-

acter a in alice.

The GNU Emacs Editor 217

Step 6:	 Hold down the left mouse button and move the mouse so that the
word alice and the following space are highlighted. At the top of the
screen, make the Edit pull-​down menu choice Cut to cut the word alice
from the buffer.

Step 7:	 Type alias . (with a space character after the s).
Step 8:	 Move the mouse so that the cursor is over the second a character in

the word alias on that same line. Click the left mouse button.
Step 9:	 Press the <Down> arrow key on the keyboard twice. The cursor

should now be at the beginning of the blank line below the line that reads
alias type more.

Step 10: From the Edit pull-​down menu, choose Paste. The cut word alice has
been put back into the buffer at the start of the line.

Step 11: Use the mouse and left mouse button to position the cursor at the
end of the word alice on that same line, in the space after the character e.

Step 12: Use the <Delete> or <Backspace> keys to delete the letters c and e
from the word alice.

Step 13: Type as copy cp.
Step 14: Continue moving the cursor to the proper positions and add the

necessary characters. Remember to remove the equal sign (=​) in between
the command dir and the string ‘ls -​la’.

Step 15: From the pull down menu File, choose Save As…

Step 16: In the Write file: dialog box that opens on screen, save the file as
alien3 with the OK choice.

Step 17: From the File pull-​down menu, make the choice File>Open File. In
the Find file: dialog box that opens, put a check mark in the box that is for
Show Hidden Files.
  Locate and select the .cshrc file you created as an empty (no text in it)
file in Preparatory Step 1 (which should be in your home directory), and
make the Open choice. A new buffer opens on-​screen containing the blank
contents of the .cshrc file. Position the cursor anywhere on a blank line in
the buffer for the file .cshrc.

Step 18: From the File pull-​down menu, make the choice File>Insert file…
In the dialog box that opens, choose alien3 and insert it. The lines of text
from alien3’s C shell aliases should now be inserted into the file .cshrc at
the location you designated in Step 17.

Step 19: From the pull-​down menu File, make the choice File>Save (current
buffer).

Step 20: Make the pull-​down menu choice File>Quit to quit Emacs and
return to the shell prompt.

Step 21: To test your new .cshrc file, do the following. Close and then reopen
the terminal window to re-​initiate the interactive Bash shell, run the C

Raspberry Pi OS System Administration: Ancillary Topics218

shell, and test the new aliases and note the results. For example, if you
type dir, you should get the results of the ls -​la command that is executed
in the current working directory.

Step 22: Finally, to exit to Bash from the C shell, type exit.

3.13 � Emacs Graphical Menus

Figures 3.8 and 3.9 show the contents of another two of the most important
pull-​down menus in a graphical Emacs: Files and Tools. To the right of each
pull-​down choice is the keystroke command equivalent, if there is one.

FIGURE 3.8
Files pull-​down menu.

The GNU Emacs Editor 219

3.14 � Creating and Editing C Programs

Besides being a powerful text editor/​word processor, Emacs can achieve
many operations that are useful to a beginner, from within the Emacs program
itself. Things such as composing e-​mail, executing shell scripts, Internet work,
and program development in C, C+​+​, Python, HTML, and Java. Since the text
for anything more than a trivial program must be generated in a text editor
of some sort, it makes a lot of practical sense to use this editor to compile,
link, debug, and keep a record of source code revisions, as well as execute the
program code itself. This is easily done in Emacs using some of its built-​in
capabilities. These kinds of all-​in-​one capabilities are present, because in the
days of character-​only terminals and consoles, instead of leaving the editor to

FIGURE 3.9
Tools pull-​down menu.

Raspberry Pi OS System Administration: Ancillary Topics220

accomplish a chore outside of it, you could accomplish common tasks from
within the editor. In a GUI-​based Raspberry Pi system, we can now simply
switch between windows and never leave the editor. But it is still very useful
to be able to harness some of the multiple capabilities of the program, mainly
for the sake of efficiency.

Practice Session 3.7 allows you to type in the source code of a C program,
and use the special facilities of the editor to properly indent the text, compile
and link the source code, and implement revisions according to compile-​time
errors. You can then execute the program in a terminal window to test it. The
purpose of executing the program in Practice Session 3.7 is to allow the user
to type in an integer, and then another integer, and the first integer will be
raised to the power indicated by the second integer.
The source code for the program is as follows:

#include <stdio.h>

#include <math.h>

int main() {
	 float x, y;

	 printf("This program takes x and y values from stdin and displays x^y.\n");

	 printf("Enter x: ");

	 scanf("%f", &x);

	 printf("Enter y: ");

	 scanf("%f", &y);

	 printf("x^y is: %6.3f\n", pow(x, y));

	 return 0;

}

Practice Session 3.7

Step 1:	 At the shell prompt, type emacs power.c. Dismiss the startup screen.
Above the minibuffer display, on the mode line, notice that the major
mode for this new buffer is set to C/​*l mode.

Step 2: Type in the program source code exactly as shown. Use the <Tab> key
to produce the indentation shown in the C source code. Your Emacs screen
display should look similar to Figure 3.10.

Step 3:	 From the pull-​down menus, make the choice File>Save.
Step 4: From the pull-​down menus, make the choice Tools>Compile… In

the minibuffer, the prompt Compile command: make -​k appears. Use the

The GNU Emacs Editor 221

backspace key to erase make -​k, and then, to replace it, type gcc power.c -​
lm -​o power. A new buffer window appears in the Emacs frame, showing
the progress of the compilation/​linking process.

Step 5:	 From the pull-​down menus, make the choice Tools>Compile… In
the minibuffer, the prompt Compile command: gcc power.c -​lm -​o power
should appear. Press <Enter> to accept this compile/​link command.
  If you made mistakes in typing the C code, repeat Steps 2 through
5 until you get no error messages that prevent compilation and
linkage! The bottom buffer window showed warning messages, but not
exceptions, that prevented compilation and linkage for us. How do you
eliminate these?

Step 6:	 If all fatal syntax errors have been removed from the power.c source
code, you get the message Compilation finished, and the date and time
it did so, which indicates in the bottom buffer window that you have suc-
cessfully compiled and linked power.c.

Step 7:	 You can now exit Emacs by making the File>Quit menu choice, and
in a terminal window test the program by typing ./​power on the command
line. Remember that the path must be set for the current shell so that exe-
cutable programs in the directory the file power is in will run. On our
Raspberry Pi system, the program power was in our home directory, and

FIGURE 3.10
Display after step 2.

Raspberry Pi OS System Administration: Ancillary Topics222

we had rwxr privilege on it, and the $PATH variable showed we could
execute it.

The execution on our Raspberry Pi system command line was as follows:
bob@raspberrypi:~ $./​power

This program takes x and y values from stdin and displaysx^y.
Enter integer x: 3
Enter integer y: 2
x^y is: 9.000
bob@raspberrypi:~ $

3.15 � Working in Multiple Buffers

As you saw in previous Practice Sessions, it is possible to insert one buffer
into another and to open windows into different buffers, some of which may
not even contain text you want to edit, at the same time. This capability is
important when you want to compose the contents of one buffer or file with
the contents of many other buffers or files that you have previously created.
The following Practice Session shows you how to create, move between, and
copy and paste between several buffers open within one Emacs frame.

Practice Session 3.8

Step 1:	 Create a subdirectory under your home directory named multi, and
make that subdirectory the current working directory.

Step 2:	 At the shell prompt, type emacs newfile. You should now be editing
the buffer newfile with a single window.

Step 3:	 In Emacs, make the pull-​down menu choice File>New Window
Below. The frame should now be split horizontally, so that you have two
windows, one above the other, both showing the contents of newfile.

Step 4:	 Click with the mouse in the upper window, and then press <Ctrl+​X>
3. The upper window from Step 3 should now be split vertically into two
windows, showing you a total of three windows into the buffer newfile.

Step 5:	 Repeat Step 4 in the lower window of the frame. You should now
have four windows showing the contents of the buffer newfile. Your screen
display should look similar to Figure 3.11. If you did Steps 1–​4 incorrectly,
you can always use the File>Remove Other Windows pull-​down menu
choice to return you to a single window display, and then try again.

Step 6:	 Click the mouse in the upper-​left window and type 1 2 3 4 5. Then
make the pull-​down menu choice File>Save As. In the Write file: dialog

The GNU Emacs Editor 223

box that appears on screen, type firstrow in the Name: box, and then use
the Name dialog pane and double left click on the folder multi. Then,
make the choice OK. A new file named firstrow is created on disk in the
directory named multi, and you are still seeing four windows into that
buffer.

Step 7:	 Click the mouse in the upper-​right window, position the cursor at the
right after the 5, and use the <Backspace> or <Delete> keys to erase the
numbers 1, 2, 3, 4, and 5. Then type 6 7 8 9 10. Then make the pull-​down
menu choice File>Save As. In the Write file: dialog box that appears on
screen, type secondrow in the Name: box. The file will be saved in the
folder multi. Then make the choice OK.

FIGURE 3.11
Display after step 5.

Raspberry Pi OS System Administration: Ancillary Topics224

Step 8: Click the mouse in the upper-​left window. Make the pull-​down menu
choice File>Open File. In the Find file: dialog box that appears on screen,
highlight the file firstrow in the Name dialog pane. Then make the choice
Open. You now should have a screen display similar to Figure 3.12, with
the upper-​left window showing the contents of firstrow, and the remaining
three windows showing the contents of secondrow.

Step 9:	 Click the mouse in the lower-​left window, position the cursor to the
right of the 0, erase 6, 7, 8, 9, and 10, and type 11 12 13 14 15. Then make
the pull-​down menu choice File>Save As. In the Write file: dialog box
that appears on screen, type thirdrow in the Name: box. Then make the
choice OK.

FIGURE 3.12
Display after step 8.

The GNU Emacs Editor 225

Step 10: Click in the upper-​right window and make the pull-​down menu
choice File>Open File. In the Find file: dialog box that appears on-​screen,
highlight the file secondrow in the Name dialog pane. Then, make the
choice Open.

Step 11: Click in the lower-​left window, and make the pull-​down menu choice
File>Open File. In the minibuffer, type thirdrow.

Step 12: Click the mouse in the lower-​right window, and make the pull-​down
menu choice File>Save As. In the Write file: dialog box, type fourthrow in
the Name: box. Make the choice OK. Click in the lower-​left window, and
make the pull-​down menu choice File>Open File. In the Find file: dialog
box that opens, highlight thirdrow, and open it.

Step 13: Continue the above procedures until your screen display should look
similar to Figure 3.13.

FIGURE 3.13
Display after step 13.

Raspberry Pi OS System Administration: Ancillary Topics226

Step 14: Finally, with the lower-​right window the current window, make the
pull-​down menu choice File>Save As. In the Write file: dialog box, in the
Name box, type fourthrow. Overwrite the old buffer fourthrow. Then quit
Emacs without saving any of the buffers.

3.16 � Changing Emacs Behavior

This section describes the basic methods of customizing and modifying the
behavior of GNU Emacs. This includes the following operations:

1.	 Using the Options menu to modify options.
2.	 Using Custom (a GUI-​based interface) to change preferences and

options, and in conjunction with that interface, also using the trad-
itional typed <Alt+​X> customize command set.

3.	 Writing keystroke abbreviations with abbrev.
4.	 Writing keystroke macro commands.
5.	 Redefining keyboard keys.
6.	 Writing Emacs Lisp (elisp) code to customize the behavior of Emacs,

and entering that code directly into your ~/​.emacs startup configur-
ation file.

All of these operations can make changes to your ~/​.emacs startup config-
uration file to give you a more customized and personalized Emacs session,
one customized to your particular needs and methods of entering text for a
particular application.

Be aware that by default, an ~/​.emacs configuration file on the Raspberry
Pi OS does not initially exist. But once you begin the procedures for
customizing Emacs in the sections that follow, that file will be created
by Emacs.

Also, as will be seen, elisp code is generated by what operations you do.
But you don’t really need to know any of the details of how to program in
elisp to actually achieve all of these operations!

The following subsections describe and give examples of all of the given
operations. In addition, Tables 3.5 and 3.6 give a summary of the important
keystrokes that implement <Alt+​X> customization, keystroke abbreviations
with abbrev, and writing keystroke macros.

The GNU Emacs Editor 227

TABLE 3.5

Ways to Change Emacs Behavior

Customization Action Keystrokes

Abbrevs

Add global abbrev <Ctrl+​X> a g
Add mode-​local abbrev <Ctrl+​X> a l
Add global expansion for this abbrev <Ctrl+​X> a i g
Add mode-​local expansion for this abbrev <Ctrl+​X> a i l
Explicitly expand abbrev <Ctrl+​X> a e
Expand previous word dynamically <Alt+​/​>
Macros
Start defining a keyboard macro <Ctrl+​X> (or <F3>
End keyboard macro definition <Ctrl+​X>) or <F4>
Execute last-​defined keyboard macro <Ctrl+​X> e or <F4>
Append to last keyboard macro <Ctrl+​U> <Ctrl+​X> (
Name last keyboard macro <Alt+​X> name-​last-​kbd-​macro
Insert Lisp definition in buffer <Alt+​X> insert-​kbd-​macro
Customize variables and faces <Alt+​X> customize
Simple customization with <Alt+​X> customize
(global-​set-​key (kbd “<Ctrl+​C> g”) ‘search-​forward)
(global-​set-​key (kbd “<Alt+​#>”) ‘query-​replace-​regexp)

TABLE 3.6

Keystroke Macros

Keystrokes Command Name Action

<Ctrl+​X> (kmacro-​startmacro Start macro definition.
<F3> kmacro-​startmacro-​or-​

insertcounter
Start macro definition. If pressed
while defining a macro, insert
a counter.

<Ctrl+​X>) kmacro-​end-​macro End macro definition.
<F4> kmacro-​end-​orcall-​macro End macro definition (if

definition is in progress) or
invoke last keyboard macro.

<Ctrl+​X> e kmacro-​end-​andcall-​macro Execute last keyboard macro
defined. Can type e to repeat
macro.

<Ctrl+​X> <Ctrl+​K> n name-​last-​kbdmacro Name the last macro you created
(before saving it).

(none) insert-​kbd-​macro Insert the macro you named into
a file.

(none) macroname Execute a named keyboard
macro.

<Ctrl+​X> q kbd-​macro-​query Insert a query in a macro
definition.

(continued)

Raspberry Pi OS System Administration: Ancillary Topics228

Keystrokes Command Name Action

<Ctrl+​u> <Ctrl+​X> q (none) Insert a recursive edit in a macro
definition.

<Ctrl+​Alt+​C> exit-​recursive-​edit Exit a recursive edit.
<Ctrl+​X> <Ctrl+​K> b kmacro-​bind-​tokey Bind a macro to a key (<Ctrl+​

X> <Ctrl+​K> 0-​9 and A-​Z are
reserved for macro bindings).
Lasts for current session only.

<Ctrl+​X> <Ctrl+​K> Space kmacro-​step-​editmacro Edit a macro while stepping
through it.

<Ctrl+​X> <Ctrl+​K> l kmacro-​editlossage Turn the last 100 keystrokes into
a keyboard macro.

<Ctrl+​X> <Ctrl+​K> e edit-​kbd-​macro Edit a keyboard macro by
typing <Ctrl+​X> e for the last
keyboard macro defined, <Alt+​
X> for a named macro, <Ctrl+​
H> l for lossage, or keystrokes
for a macro bound to a key.

<Ctrl+​X> <Ctrl+​K> Enter kmacro-​editmacro Edit the last keyboard macro.
<Ctrl+​X> <Ctrl+​K> <Ctrl+​E> kmacro-​editmacro-​repeat Edit the last keyboard macro

again.
<Ctrl+​X> <Ctrl+​K> <Ctrl+​T> kmacro-​swap-​ring Transpose last keyboard macro

with previous keyboard macro.
<Ctrl+​X> <Ctrl+​K> <Ctrl+​D> kmacro-​deletering-​head Delete last keyboard macro from

the macro ring.
<Ctrl+​X> <Ctrl+​K> <Ctrl+​P> kmacro-​cycle-​ringprevious Move to the previous macro in

the macro ring.
<Ctrl+​X> <Ctrl+​K> <Ctrl+​N> kmacro-​cycle-​ringnext Move to the next macro in the

macro ring.
<Ctrl+​X> <Ctrl+​K> <Ctrl+​R> apply-​macro-​toregion-​lines Apply this macro to each line in

a region.

3.16.1 � Using the Options Menu

The easiest and quickest way to customize the behavior of Emacs is by using
the GNU Emacs pull-​down menu choices under Options, which is shown
in Figure 3.14. For example, with a check mark placed next to Highlight
Matching Parentheses (a default choice), all matching left and right paren-
theses in the buffer will be highlighted as you type them.

The additional checkmarks you place will only be true for the current
session of Emacs. For example, if you add a checkmark next to the option
Enter Debugger on Error, and you want to retain that option for all future
sessions of Emacs, make the Options menu choice Save Options. The first
time you make this Options menu choice, the following valid line of elisp
will automatically be written to your ~/​.emacs file, under the custom-​set-​
variables group, as seen in the following .emacs file created:

TABLE 3.6  (Continued)

Keystroke Macros

The GNU Emacs Editor 229

(custom-​set-​variables

 ;; custom-​set-​variables was added by Custom.

 ;; If you edit it by hand, you could mess it up, so be careful.

 ;; Your init file should contain only one such instance.

 ;; If there is more than one, they won't work right.

'(debug-​on-​error t))

(custom-​set-​faces

 ;; custom-​set-​faces was added by Custom.

 ;; If you edit it by hand, you could mess it up, so be careful.

 ;; Your init file should contain only one such instance.

 ;; If there is more than one, they won't work right.

)

FIGURE 3.14
Options menu choices.

Raspberry Pi OS System Administration: Ancillary Topics230

In-​Chapter Exercise

3.13  �Show the Emacs Help facility keystroke sequence you would use to
find out what the option show-​paren-​mode is. Then, list the first few
lines of how the Help facility describes the show-​paren-​mode option.

You can also customize by group from the Options menu, if you make
the Customize Emacs choice, and then make any of the sub-​choices below
that. For example, if you make the Options>Customize Emacs>Top-​Level
Customization Group choice, a new buffer opens on screen, and allows you
to select from all of the subgroups of custom variables.

The next section shows how to achieve this kind of customization as a
typed command.

3.16.2 � Changing Emacs Variables with Custom and
the <Alt+​X> customize Command

Emacs has many settings that you can change. Most settings are customizable
via affecting the settings of variables, which are also called user options. There
are a huge number of user options, controlling numerous aspects of Emacs
behavior. A separate class of settings, which we do not cover here, are the
faces, which determine the fonts, colors, and other attributes of text.

To browse and alter settings (both variables and faces), at the Emacs
command prompt type <Alt+​Shift+​X> customize. This creates a custom-
ization buffer, which lets you navigate through a logically organized list of
settings, edit and set their values, and save them permanently.

Customization settings are organized into customization groups. These
groups are collected into bigger groups, all the way up to a master group
called Emacs, shown near the top of the buffer in Figure 3.15.

<Alt+​Shift+​X> customize creates a customization buffer that looks similar
to Figure 3.15.

If you are interested in customizing a particular setting, or customization
group that you already know the name of, you can go straight there with
the commands <Alt+​X> customize-​option, <Alt+​X> customize-​face, or <Alt+​X>

customize-​group.
The main part of the buffer in Figure 3.15 shows the “Emacs” customization

group, which contains several other subgroups (“Editing”, “Convenience”,
etc.). The contents of those subgroups are shown in the single line of descrip-
tion for each group.

The state of the group indicates whether the settings in that group have
been edited, set, or saved.

Most of the customization buffer cannot be changed, but it includes many
editable fields. For example, at the top of the customization buffer is an

The GNU Emacs Editor 231

editable field for searching for settings, with a Search button next to it. There
are also buttons and links that you can activate by either clicking with the
mouse, or moving the point there and then pressing <Enter>. For example,
group names like “[Editing]” are links; activating one of these links brings up
another customization buffer for that group.

In any particular customization buffer, you can type <Tab> (widget-​
forward) to move forward to the next button or editable field. <Shift+​Tab>
(widget-​backward) moves back to the previous button or editable field-​

3.16.2.1  Browsing and Searching for Settings

From the top-​level customization buffer created by <Alt+​X> customize, you
can follow the links to the subgroups of the “Emacs” customization group.

FIGURE 3.15
Emacs customization groups.

Raspberry Pi OS System Administration: Ancillary Topics232

These subgroups may contain settings for you to customize; they may also
contain further subgroups, dealing with yet more specialized subsystems of
Emacs. As you graphically navigate the hierarchy of customization groups,
you will find some settings that you want to customize according to your
own personal preferences, and according to the nature of the text documents
that you are efficiently trying to edit.

3.16.2.2  Changing a Variable

Here is an example of what a variable, or user option, looks like in a specific
customization buffer. This variable is accessed by descending down from the
top Emacs group through the groups Editing>Killing, and then left-​clicking
on the small diamond shape pointing towards the text Kill Ring Max:

Kill Ring Max: 60
[State]: STANDARD.

Maximum length of kill ring before oldest elements are thrown away.
The first line shows that the variable is named kill-​ring-​max, formatted as

Kill Ring Max for easier viewing. Its value is 60. On our graphical display,
the line after the variable name indicates the customization state of the vari-
able: in this example, STANDARD means you have not changed the variable,
so its value is the default one. The [State] button gives a menu of operations
for customizing the variable.

Below the customization state is the documentation for the variable. To
enter a new value for Kill Ring Max, just click to the right of the value and
edit it. As you begin to alter the text, the [State] line will change to:

[State]: EDITED, shown value does not take effect until you set or save it.
Editing the value does not make it take effect right away. To do that, you

must set the variable by left-​clicking on the [State] button and choosing Set
for Current Session. Then the variable’s state becomes:

[State]: SET for current session only.
At this point, you could have made the menu choice Save for Future

Sessions.
Also, you don’t have to worry about specifying a value that is not valid; the

Set for Current Session operation checks for validity and will not install an
unacceptable value.

When you set a variable, the new value takes effect only in the current
Emacs session. To save the value for future sessions, use the [State] button
and select the Save for Future Sessions operation. Saving custom settings
works by writing elisp code to a file, in this case your ~/​.emacs file. Future
Emacs sessions automatically read this file at startup, which invokes and
establishes the customizations again.

The GNU Emacs Editor 233

You can also restore the variable to its standard value by using the [State]
button and selecting the Erase Customization menu choice. There are four
reset operations as follows:

	• Undo edits: If you have modified but not yet set the variable, this
restores the text in the customization buffer to match the actual value.

	• Reset to saved: This restores the value of the variable to the last saved
value, and updates the text accordingly.

	• Erase customization: This sets the variable to its standard value. Any
saved value that you have is also erased.

	• Set to backup value: This sets the variable to a previous value that was
set in the customization buffer in this session. If you customize a vari-
able and then reset it, which discards the customized value, you can get
the discarded value back again with this operation.

Sometimes it is useful to record a comment about a specific customiza-
tion. Use the Add Comment item from the [State] menu to create a field for
entering the comment.

3.16.2.3  Globally Saving Customizations for a Group

Near the top of any group’s customization buffer, you can save all custom-
ization settings shown in that group buffer by choosing either the [Apply]
or [Apply and Save] buttons. [Apply] only saves for the current session, and
[Apply and Save] saves for future sessions by modifying the ~/​.Emacs file
accordingly by putting elisp code in the ~/​.Emacs file.

3.16.2.4  More about Emacs Variables

A variable is an elisp symbol that has a value. The symbol’s name is the vari-
able name. A variable name can contain any characters that can appear in a file,
but most variable names consist of ordinary words separated by hyphens.

The name of the variable is descriptive of its role in the Emacs environment. Most
variables also have a documentation string, which describes what the variable’s
purpose is, what kind of value it should have, and how the value will be used.

You can view the documentation for a variable, such as somevariablename,
using the help command <Ctrl+​H> v Describe variable: somevariablename
in the minibuffer. To use this facility, type in the command <Ctrl+​H> v; the
system prompts you in the minibuffer with Describe variable:; then type in the
variable name, such as somevariablename, and press <Enter>.

Elisp uses variables for internal record keeping, but as noted earlier, the
most interesting variables for a user who will not be writing elisp programs
per se are those meant for users to change—​these are called customizable
variables or user options.

Raspberry Pi OS System Administration: Ancillary Topics234

Elisp allows any variable (with a few exceptions) to have any kind of value.
However, many variables are meaningful only if assigned values of a certain
type. Only numbers are meaningful values for kill-​ring-​max, which speci-
fies the maximum length of the kill ring; if you assign kill-​ring-​max a text
string as a value, commands such as <Ctrl+​Y> (yank) will signal an error. On
the other hand, some variables don’t care about what kind or type of value
you assign them; for instance, if a variable has one effect for nil values and
another effect for non-​nil values, then any value that is not the symbol nil
induces the second effect, regardless of its type (by convention, we usually
use the value t—​a symbol that stands for “true”—​to specify a non-​nil value).
If you set a variable using the customization buffer, you need not worry about
giving it an invalid type: the customization buffer usually only allows you to
enter meaningful values. When in doubt, use <Ctrl+​H> v Describe variable:
somevariablename to check the variable’s documentation string to see the
kind of value it expects.

3.16.2.5  Examining and Setting Variables

The following are some examples of how to examine and set the values of
user options. The first general form of this syntax is:

<Ctrl+​H> v variablename <Enter>

This general form uses Emacs help function with the v option and displays
the value and documentation for variable variablename.
The second general form achieves the change in the variables value:

<Alt+​X> set-​variable <ENTER> var <ENTER> value <ENTER>

This changes the value of variable var to value.
It reads a variable name that you supply by typing in the minibuffer, with

completion, and displays both the value and the documentation of the vari-
able. For example:

<Ctrl+​H> v fill-​column <ENTER>

A new buffer opens and displays the following:

fill-​column is a variable defined in 'C source code'.

Its value is 70

Automatically becomes buffer-​local when set.

This variable is safe as a file local variable if its value

satisfies the predicate 'integerp'.

The GNU Emacs Editor 235

Documentation:

Column beyond which automatic line-​wrapping should happen.

Interactively, you can set the local value with <Ctrl+​X> f

You can customize this variable.

Click on the underlined text customize and you can use a buffer to change the
value of this variable.

The most convenient keystroke method to set a specific customizable vari-
able is by typing <Alt+​X> set-​variable. This reads the variable name with the
minibuffer (with completion), and then reads an elisp expression for the new
value that you type in the minibuffer a second time (you can insert the old
value into the minibuffer for editing via <Alt+​N>). For example:

<Alt+​X> set-​variable <ENTER> fill-​column <ENTER> 75 <ENTER>

sets fill-​column to 75.

<Alt+​X> set-​variable is limited to user options, customizable variables, but
you can set any variable with an elisp expression like this:

(setq fill-​column 75)

To execute such an expression, type <Alt+​:> (eval-​expression) and enter the
expression in the minibuffer. Alternatively, go to the *scratch* buffer, type in
the expression, and then type <Ctrl+​J>.

Setting variables this way affects only the current Emacs session. The only
way to alter the variable for future sessions is to put the alteration as a Lisp
statement in your initialization file.

3.16.3 � Init File elisp Syntax

Your GNU Emacs system’s init file, ~/​.emacs, contains elisp expressions.
Each elisp expression consists of a function name followed by arguments, all
surrounded by parentheses. For example:

(setq fill-​column 60)

calls the function setq to set the variable fill-​column to 60.
You can set any Lisp variable with setq, but with certain variables setq

won’t work.
The second argument to setq is an expression for the new value of the vari-

able. This can be a constant, a variable, or a function call expression. In your

Raspberry Pi OS System Administration: Ancillary Topics236

~/​.emacs file, constants are used most of the time. They can be one any of the
following:

*  Numbers: Numbers are written in decimal, with an optional initial
minus sign.

*  Strings: Lisp string syntax is the same as C string syntax with a few extra
features. Use a double-​quote character (“) to begin and end a string
constant.

*  Characters: Lisp character constant syntax consists of a? followed by
either a character or an escape sequence starting with\.

*  True: t stands for “true”.
*  False: nil stands for “false”.
*  Other Lisp objects: Write a single quote (‘) followed by the Lisp object

you want.

3.16.4 � Keystroke Abbreviations or Abbrevs

Similar to ordinary language abbreviation, an abbrev is a word which expands
when you insert it, into a pre-​formatted expanded or enlarged string of text.
Abbrevs are defined by the user to expand in specific ways. For example, you
might define Bob as an abbrev expanding to Better off built. Then you could
insert Better off built into the buffer by typing Bob <Space>.

A second kind of abbreviation facility, which we do not show examples of
here, is called dynamic abbrev expansion. You use dynamic abbrev expansion
with an explicit command to expand the letters in the buffer before the point
by looking for other words in the buffer that start with those same letters.

Abbrevs expand only when Abbrev mode, a buffer-​local minor mode, is enabled.
Disabling Abbrev mode does not cause abbrev definitions to be forgotten,
but they do not expand until Abbrev mode is enabled again. The command
<Alt+​X> abbrev-​mode toggles Abbrev mode; using a numeric argument, it
turns Abbrev mode on if the argument is positive, or turns it off otherwise.

You can define abbrevs interactively during the editing session, irre-
spective of whether Abbrev mode is enabled. You can also save lists of abbrev
definitions in files, which you can then reload for use in later sessions.

3.16.5 � Defining Abbrevs

The following are ways of defining and managing abbrevs:

<Ctrl+​X> a g

Define an abbrev, using one or more words before point as its expansion
(add-​global-​abbrev).

The GNU Emacs Editor 237

<Ctrl+​X> a l

Similar, but define an abbrev specific to the current major mode
(add-​mode-​abbrev).

<Ctrl+​X> a i g

Define a word in the buffer as an abbrev (inverse-​add-​global-​abbrev).

<Ctrl+​X> a i l

Define a word in the buffer as a mode-​specific abbrev (inverse-​add-​mode-​abbrev).

<Alt+​X> define-​global-​abbrev <Enter> abbrev <Enter> expression <Enter>

Define abbrev as an abbrev expanding into an expression.

<Alt+​X> define-​mode-​abbrev <Enter> abbrev <Enter> expression <Enter>

Define abbrev as a mode-​specific abbrev expanding into an expression.

<Alt+​X> kill-​all-​abbrevs

Discard all abbrev definitions, leaving a blank slate.

The usual way to define an abbrev is to enter the text you want the abbrev to
expand to, position the point after it, and type <Ctrl+​X> a g. This reads the
abbrev itself using the minibuffer, and then defines it as an abbrev for one or
more words before the point. As with many other Emacs commands, you can
use a numeric digit argument to specify how many words before the point
should be taken as the expansion. For example, to define the abbrev Bob,
insert the text Better off built and then type <Ctrl+​U> 3 <Ctrl+​X> a g Bob
<Enter>.

An argument of zero to <Ctrl+​X> a g means to use the contents of the
region as the expansion of the abbrev being defined.

To remove an abbrev definition, give a negative argument to the abbrev
definition command, as in one of the following ways:

<Ctrl+​U> -​ <Ctrl+​X> a g

<Ctrl+​U> -​ <Ctrl+​X> a l

The first way removes a global definition, while the second way removes a
mode-​specific definition.

<Alt+​X> kill-​all-​abbrevs removes all abbrev definitions, both global
and local.

3.16.6 � Controlling Abbrev Expansion

When Abbrev mode is enabled, an abbrev expands whenever it is present in
the buffer just before the point and when you type a self-​inserting whitespace

Raspberry Pi OS System Administration: Ancillary Topics238

or punctuation character like <Space> or a comma, etc. More precisely, any
character that is not a word constituent expands an abbrev, and any word
constituent character can be part of an abbrev. The most common way to use
an abbrev is to insert it and then insert a punctuation or whitespace character
to expand it.

These commands are used to control abbrev expansion:
<Alt+​'>

Separate a prefix from a following abbrev to be expanded (abbrev-​prefixmark).
<Ctrl+​X> a e

Expand the abbrev before the point (expand-​abbrev). This is effective even
when Abbrev mode is not enabled.
<Alt+​X> expand-​region-​abbrevs

Expand some or all abbrevs found in the region.
If you expand an abbrev by mistake, you can undo the expansion by typing
C-​/​ (undo). This undoes the insertion of the abbrev expansion and brings back
the abbrev text. You can also use the command <Alt+​X> unexpand-​abbrev to
cancel the last expansion without deleting the terminating character.

3.16.7 � Listing and Editing Abbrevs

<Alt+​X> list-​abbrevs

Display a list of all abbrev definitions. With a numeric argument, list only
local abbrevs.
<Alt+​X> edit-​abbrevs allows you to add, change, or kill abbrev definitions
by editing a list of them in an Emacs buffer. The buffer of abbrevs is called
Abbrevs, and is in Edit>Abbrevs mode. Type <Ctrl+​C> <Ctrl+​C> in this
buffer to install the abbrev definitions as specified in the buffer, and delete
any abbrev definitions not listed.

The commands edit-​abbrevs and list-​abbrevs are the same except they dis-
play the listing in a window and a buffer, respectively.

3.16.8 � Saving Abbrevs

These commands allow you to keep abbrev definitions between editing
sessions:

<Alt+​X> write-​abbrev-​file <Enter> filename <Enter>

Save to filename describing all defined abbrevs.

The GNU Emacs Editor 239

<Alt+​X> read-​abbrev-​file <Enter> filename <Enter>

Read from filename and define abbrevs as specified in that file.

<Alt+​X> define-​abbrevs

Define abbrevs from definitions in current buffer.

<Alt+​X> insert-​abbrevs

Insert all abbrevs and their expansions into current buffer.

<Alt+​X> write-​abbrev-​file reads a file name using the minibuffer and then
writes a description of all current abbrev definitions into that file. This is used
to save abbrev definitions for use in a later session. The text stored in the file
is a series of Lisp expressions that, when executed, define the same abbrevs
that you currently have.

<Alt+​X> read-​abbrev-​file reads a file name using the minibuffer and then reads
the file, defining abbrevs according to the contents of the file. The function
quietly-​read-​abbrev-​file is similar except that it does not display a message
in the echo area; you cannot invoke it interactively, and it is used primarily
in your init file. If either of these functions is called with nil as the argument,
it uses the file given by the variable abbrev-​file-​name, which is ~/​.Emacs.d/​
abbrev_​defs by default. This is your standard abbrev definition file, and
Emacs loads abbrevs from it automatically when it starts up.

Emacs will offer to save abbrevs automatically if you have changed any of
them, whenever it offers to save all files (for <Ctrl+​X> s or <Ctrl+​X> <Ctrl+​
C >). It saves them in the file specified by abbrev-​file-​name. This feature can
be inhibited by setting the variable save-​abbrevs to nil.

The commands <Alt+​X> insert-​abbrevs and <Alt+​X> define-​abbrevs are
similar to the previous commands but work on text in an Emacs buffer.
<Alt+​X> insert-​abbrevs inserts text into the current buffer after the point,
describing all current abbrev definitions; <Alt+​X> define-​abbrevs interprets
the entire current buffer, and defines abbrevs accordingly.

3.16.9 � Keystroke Macro Commands

In this section we more fully describe how to record, save, edit, and list a
sequence of commands in a macro, so you can repeat it conveniently later.
A keyboard macro is a command defined by an Emacs user that represents,
in a shortened form, a sequence of keys. For example, if you discover that
you are about to type three different keystroke combinations 400 times,
you can speed your work by defining a much shorter keyboard macro to
do those three different keystroke combinations, and then execute it 399
more times.

Raspberry Pi OS System Administration: Ancillary Topics240

You define a keyboard macro by executing and recording the commands
which are its definition. As you define a keyboard macro, the definition is
being executed for the first time. When you close the definition, the keyboard
macro is defined and also has been executed once. You can then repeat the
commands by invoking the macro as many times as you like.

3.16.9.1  Keystroke Macros: Basic Use

These are the basic operations in defining and using keystroke macros:

<F3>

Start defining a keyboard macro (kmacro-​start-​macro-​or-​insert-​counter).

<F4>

Dual-​purpose function key. If a keyboard macro is being defined, end
the definition; otherwise, execute the most recent keyboard macro
(kmacro-​end-​or-​call-​macro).

<Ctrl+​U> <F3>

Re-​execute last keyboard macro, then append keys to its definition.

<Ctrl+​U> <Ctrl+​U> <F3>

Append keys to the last keyboard macro without re-​executing it.

<Ctrl+​X> <Ctrl+​K> r

Run the last keyboard macro on each line that begins in the region
(apply-​macro-​to-​region-​lines).

To start defining a keyboard macro, type <F3>. From then on, your keys con-
tinue to be executed, but also become part of the definition of the macro. Def
appears in the mode line. When you are finished, type <F4> (kmacro-​end-​or-​
call-​macro) to terminate the definition. For example:

<F3> <Alt+​F> Bob <F4>

defines a macro to move forward a word and then insert Bob at the point.
<F3> and <F4> do not become part of the macro.

After defining the macro, it is the most recently defined keyboard macro,
and you can call it with <F4>. In the example, this has the same effect as
typing <Alt+​F> Bob again.

The two roles of the <F4> command: it ends the macro if you are in the pro-
cess of defining one, or calls the last macro otherwise.

You can also supply <F4> with a numeric prefix argument n, which means
to invoke the macro n times. An argument of zero repeats the macro indefin-
itely, until it gets an error or you type <Ctrl+​G> to terminate it.

The GNU Emacs Editor 241

After ending the definition of a keyboard macro, you can append more
keystrokes to its definition by typing <Ctrl+​U> <F3>. This is equivalent to
plain <F3> followed by retyping the whole definition so far. As a conse-
quence, it re-​executes the macro as previously defined. If you change the
variable kmacro-​execute-​before-​append to nil, the existing macro will not be
re-​executed before appending to it (the default is t). You can also add to the
end of the definition of the last keyboard macro without re-​executing it by
typing <Ctrl+​U> <Ctrl+​U> <F3>.

When a command reads an argument with the minibuffer, your minibuffer
input becomes part of the macro along with the command. So when you
replay the macro, the command gets the same argument as when you entered
the macro. For example:

<F3> <Ctrl+​A> <Ctrl+​K> <Ctrl+​X> b Bob <Enter> <Ctrl+​Y> <Ctrl+​X> b

<Enter> <F4>

defines a macro that kills the current line, yanks it into the buffer Bob,
then returns to the original buffer. The command <Ctrl+​X> <Ctrl+​K> r (apply-​
macro-​to-​region-​lines) repeats the last defined keyboard macro on each line
that begins in the region. It does this line by line, by moving the point to the
beginning of the line and then executing the macro.

All defined keyboard macros are recorded in the keyboard macro ring. There
is only one keyboard macro ring, shared by all buffers. The basic keyboard
macro ring operations are:

<Ctrl+​X> <Ctrl+​K> <Ctrl+​K>

Execute the keyboard macro at the head of the ring
(kmacro-​end-​or-​callmacro-​repeat).
<Ctrl+​X> <Ctrl+​K> <Ctrl+​N>

Rotate the keyboard macro ring to the next macro (defined earlier)
(kmacrocycle-​ring-​next).
<Ctrl+​X> <Ctrl+​K> <Ctrl+​P>

Rotate the keyboard macro ring to the previous macro (defined later)
(kmacrocycle-​ring-​previous).

Note
The maximum number of macros stored in the keyboard macro ring is
determined by the customizable variable kmacro-​ring-​max.

3.16.9.2  Naming, Saving, and Invoking or Using Keyboard Macros

The following are the ways to name, save, and invoke or use keyboard macros,
particularly with regard to retaining them in your ~/​.emacs so that they will

Raspberry Pi OS System Administration: Ancillary Topics242

be available in all future sessions of Emacs (anything below enclosed in [] is
optional).

1. <Ctrl+​X> <Ctrl+​K> n <Enter> macroname <Enter>

Gives a command name (for the duration of the current Emacs session only)
to the most recently defined keyboard macro (kmacro-​name-​last-​macro). If
you wish to save a keyboard macro for later use, you can give it a name using
this syntax. This sequence reads a name as an argument, by prompting for the
name in the minibuffer, and uses the minibuffer-​supplied name and defines
that name so that you can execute the last keyboard macro, in its current
form, using that name. The macro name is an elisp symbol, and defining it in
this way makes it a valid command name for invoking or using it with <Alt+​
X>, or for binding a key to it with global-​set-​key. If you specify a name that
has a prior definition other than a keyboard macro, you get an error.

2. <Ctrl+​X> <Ctrl+​K> b <Enter> key <Enter>

Binds the most recently defined keyboard macro to a key sequence (for the
duration of the current Emacs session only) (kmacro-​bind-​to-​key).

3. <Alt+​X> insert-​kbd-​macro <Enter> [macroname <Enter>]

Inserts in the current buffer a keyboard macro’s definition as elisp code. If
you do not supply an already-​defined macroname, the last keyboard macro
defined is inserted as elisp code.

4. <Alt+​X> macroname <Enter>

Invokes macroname in the current buffer.

5. Pressing the function key <F4> invokes the last defined keyboard macro.

3.16.9.3  Saving Keyboard Macros for Future Sessions

Once a keyboard macro has a name, you can save its definition in a file, and
particularly in the ~/​.emacs file or other initialization file that you may use to
initialize Emacs at startup. By taking the following steps, it can be used in all
future editing sessions.

The steps to accomplish this are as follows:

1.	 Visit the file you want to save the definition in, which becomes the
current buffer. This is usually ~/​.emacs.

2.	 Use the command <Alt+​X> insert-​kbd-​macro <Enter> macroname

<Enter>

		 This uses the macroname you already have previously defined, and
inserts equivalent elisp code that the keyboard macro represents, into
the current buffer.

The GNU Emacs Editor 243

3.	 Save the current buffer. If the file you save in is your initialization
file ~/​.emacs, then the macro will be defined for all future sessions
of Emacs.

The sections below describe key bindings, which map keys to commands,
and keymaps, which record key bindings. They also explain how to cus-
tomize key bindings, which is done by editing your Emacs init file.

3.16.10 � Keys, Commands, and Variables

Emacs does not assign meanings to keys directly. Instead, Emacs assigns
meanings to labeled commands, and then gives keys their meanings by
binding them to commands. As you have seen in the previous sections, every
command has a name, which is usually made up of a few words separated by
hyphens—​for example, insert-​kbd-​macro or abbrev-​file-​name. Internally, each
command is an Emacs form of a Lisp function, and the actions associated
with the command are performed by running the function.

The bindings, or mappings, between keys and commands are recorded in
tables called keymaps.

The effect of “<Ctrl+​N> moves point down vertically one line” is that the
vertical movement of the command next-​line is bound to the key sequence
<Ctrl+​N>. If you rebind <Ctrl+​N> to the command forward-​word, <Ctrl+​
N> will move forward one word instead. The key is bound to a command.

A variable is a name used to store a value. The variables we described in
Section 3.16.2 are intended to be customized: some commands or mechanisms
in Emacs examine the variable and behave according to the value that you
assign to the variable when and if you customize it.

3.16.10.1  Keymaps

Emacs commands are elisp functions whose definition instances interactive
use. Like every elisp function, a command has a function name, which usu-
ally consists of lowercase letters and hyphens. A keystroke (key for short)
sequence is a sequence of input events that have a meaning as a unit. Input
events include characters, function keys, and mouse buttons—​all the inputs
that you can send to the computer. A key sequence gets its meaning from its
binding, which dictates what command it runs.

The bindings between key sequences and command functions are recorded
in data structures called keymaps. Emacs has many of these, each used on par-
ticular occasions.

The global keymap is the most important keymap because it is always in
effect. The global keymap defines keys for Fundamental mode; most of these
definitions are common to most or all major modes. Each major or minor

Raspberry Pi OS System Administration: Ancillary Topics244

mode can have its own keymap which overrides the global definitions of
some keys.

For example, a self-​inserting character such as g is self-​inserting because
the global keymap binds it to the command self-​insert-​command. The
standard Emacs editing characters such as <Ctrl+​A> also get their standard
meanings from the global keymap. Commands to rebind keys, such as <Alt+​

X> global-​set-​key, work by storing the new binding in the proper place in the
global map.

Most modern keyboards have function keys as well as character keys.
Function keys send input events just as character keys do, and keymaps can
have bindings for them. Key sequences can mix function keys and characters.
For example, if your keyboard has a <Home> function key, Emacs can recog-
nize key sequences like <Ctrl+​X> <Home>. You can even mix mouse events
with keyboard events, such as S-​down-​mouse-​1.

On text terminals, typing a function key actually sends the computer a
sequence of characters; the precise details of the sequence depends on the
function key and on the terminal type. (Often the sequence starts with ESC [.)
If Emacs understands your terminal type properly, it automatically handles
such sequences as single input events.

3.16.10.2  Prefix Keymaps

Emacs stores only single events in each keymap. Interpreting a key sequence
of multiple events involves a chain of keymaps: the first keymap gives a def-
inition for the first event, which is another keymap that is used to look up
the second event in the sequence, and so on. A prefix key such as <Ctrl+​X>
or <Esc> has its own keymap, which holds the definition for the event that
immediately follows that prefix.

A prefix key is usually the keymap to use for looking up the following
event. The definition can also be an elisp symbol whose function definition is
the following keymap; the effect is the same, but it provides a command name
for the prefix key that can be used as a description of what the prefix key is
for. Thus, the binding of <Ctrl+​X> is the symbol Control-​X-​prefix, whose
function definition is the keymap for <Ctrl+​X> commands. The definitions
of <Ctrl+​C>, <Ctrl+​X>, <Ctrl+​H>, and <Esc> as prefix keys appear in the
global map, so these prefix keys are always available.
Some prefix keymaps are stored in variables with names:

_​ ctl-​x-​map is the variable name for the map used for characters that follow
<Ctrl+​X>.
_​ help-​map is for characters that follow <Ctrl+​H>.
_​ esc-​map is for characters that follow <Esc>. Thus, all metacharacters are
actually defined by this map.
_​ ctl-​x-​4-​map is for characters that follow <Ctrl+​X> 4.
_​ mode-​specific-​map is for characters that follow <Ctrl+​C>.

The GNU Emacs Editor 245

3.16.10.3  Local Keymaps

So far, we have explained the details of the global map. Major modes cus-
tomize Emacs by providing their own key bindings in local keymaps. For
example, C mode overrides <Tab> to make it indent the current line for C
code. Minor modes can also have local keymaps; whenever a minor mode is
in effect, the definitions in its keymap override both the major mode’s local
keymap and the global keymap. In addition, portions of text in the buffer can
specify their own keymaps, which override all other keymaps.

A local keymap can redefine a key as a prefix key by defining it as a prefix
keymap. If the key is also defined globally as a prefix, its local and global
definitions (both keymaps) effectively are combined: both definitions are used
to look up the event that follows the prefix key. For example, if a local keymap
defines <Ctrl+​C> as a prefix keymap, and that keymap defines <Ctrl+​Z> as
a command, this provides a local meaning for <Ctrl+​C> <Ctrl+​Z>. This does
not affect other sequences that start with <Ctrl+​C>; if those sequences don’t
have their own local bindings, their global bindings remain in effect.

Another way to think of this is that Emacs handles a multievent key
sequence by looking in several keymaps, one by one, for a binding of the
whole key sequence. First it checks the minor mode keymaps for minor
modes that are enabled, then it checks the major mode’s keymap, and then it
checks the global keymap.

3.16.10.4  Changing Key Bindings Interactively

The way to redefine an Emacs key is to change its entry in a keymap. You can
change the global keymap, in which case the change is effective in all major
modes (except those that have their own overriding local bindings for the
same key), or you can change a local keymap, which affects all buffers using
the same major mode.

The following describes how to rebind keys for the current Emacs session
(see Section 3.16.10.5 for a description of how to make key rebindings affect
future Emacs sessions by putting them in your ~/​.emacs file):

1. <Alt+​X> global-​set-​key <Enter> key command <Enter>

Defines key globally to run command.

2. <Alt+​X> local-​set-​key <Enter> key command <Enter>

Defines key locally (in the major mode now in effect) to run command.

3. <Alt+​X> global-​unset-​key <Enter> key

Makes key undefined in the global map.

4. <Alt+​X> local-​unset-​key <Enter> key

Makes key undefined locally (in the major mode now in effect).

Raspberry Pi OS System Administration: Ancillary Topics246

For example, the following binds <Ctrl+​Z> to the shell command, replacing
the normal global definition of <Ctrl+​Z>:

<Alt+​X> global-​set-​key <Enter> <Ctrl+​Z> shell <Enter>

The global-​set-​key command reads the command name after the key. After
you press the key, a message like this appears so that you can confirm that
you are binding the key you want:
Set key <Ctrl+​Z> to command:

You can redefine function keys and mouse events in the same way; just
type the function key or click the mouse when it’s time to specify the key to
rebind. You can rebind a key that contains more than one event in the same
way. Emacs keeps reading the key to rebind until it is a complete key (that
is, not a prefix key). Thus, if you type <Ctrl+​F> for the key, that’s the end;
it enters the minibuffer immediately to read the command. But if you type
<Ctrl+​X>, since that’s a prefix, it reads another character; if that is 4, another
prefix character, it reads one more character, and so on. For example:

<Alt+​X> global-​set-​key <Enter> <Ctrl+​X> 4 $ spell-​other-​window <Enter>

redefines <Ctrl+​X> 4 $ to run the (fictitious) command spell-​other-​window.
You can remove the global definition of a key with global-​unset-​key. This

makes the key undefined; if you type it, Emacs will just beep. Similarly, local-​
unset-​key makes a key undefined in the current major mode keymap, which
makes the global definition (or lack of one) come back into effect in that
major mode.

If you have redefined (or undefined) a key and you subsequently wish
to retract the change, undefining the key will not do the job; you need to
redefine the key with its standard definition.

To find the name of the standard definition of a key, go to a Fundamental
mode buffer in an Emacs session that you have not done any key remappings
in, and type <Ctrl+​H> c. So, if you want to prevent yourself from invoking
a command by mistake, it is better to disable the command than to undefine
the key!

3.16.10.5  Rebinding Keys in Your Init File

If you have a set of key bindings that you like to use all the time, you can
specify them in your initialization file by writing elisp code. There are sev-
eral ways to write a key binding using elisp. The simplest is to use the kbd
function, which converts a text representation of a key sequence, similar to
how we have written key sequences up to this point, into a form that can be
passed as an argument to global-​set-​key. For example, here’s how to bind
<Ctrl+​Z> to the shell command.

The GNU Emacs Editor 247

(global-​set-​key (kbd "C-​z") 'shell)

The single-​quote (‘) before the shell command name designates it as a con-
stant symbol rather than a variable. If you omit the quote, Emacs tries to
evaluate shell as a variable.

3.16.10.6  Examples

Here are some additional examples, including binding function keys and
mouse events:

(global-​set-​key (kbd "<Ctrl+​C> y") 'clipboard-​yank)

(global-​set-​key (kbd "<Ctrl ><Alt+​Q>") 'query-​replace)

(global-​set-​key (kbd "<f5>") 'flyspell-​mode)

(global-​set-​key (kbd "<Ctrl ><f5>") 'linum-​mode)

(global-​set-​key (kbd "<Ctrl ><right>") 'forward-​sentence)

(global-​set-​key (kbd "<mouse-​2>") 'mouse-​save-​then-​kill)

In-​Chapter Exercises

3.14 � (a) � Use the Emacs Help function, via keyboard keystrokes only,
to find out what the commands that are being bound to each
of the keys sequences in the six examples in Section 3.16.10.6
accomplish. So, for forward-​sentence, what explanation does
Help supply? Make a list of the answers that the Help function
supplies.

(b)  What are the default key sequence bindings, if any, for the
commands in the six examples? Make a list of the default key
sequence bindings for commands that have them.

3.15 � �Place all six examples of key sequences bound to commands in your
~/​.emacs file, and test them according to your findings in In-​Chapter
Exercise 3.14.

3.17 � Summary

This chapter explained the general, and detailed utility, of editing text files
on a Raspberry Pi system. It showed the basic capabilities of the GNU Emacs
editor, illustrated some of the important ways of customizing this editor, and
covered the commands and primitives cp, emacs, ls, pwd, sh, and who. A
complete summary of Emacs commands is given in Table 3.7.

Raspberry Pi OS System Administration: Ancillary Topics248

TABLE 3.7

Command Summary

Emacs Commands

Command Action

<Ctrl+​X> <Ctrl+​F> Visit a file (find-​file).
<Ctrl+​X> <Ctrl+​R> Visit a file for viewing, without allowing changes to it

(find-​file-​read-​only).
<Ctrl+​X> <Ctrl+​V> Visit a different file instead of the one visited last

(find-​alternate-​file).
<Ctrl+​X> <Ctrl+​S> Save the current buffer to its file (save-​buffer).
<Ctrl+​X> s Save any or all buffers to their files (save-​some-​buffers).
<Alt+​~> Forget that the current buffer has been changed (not-​modified).
<Ctrl+​X> <Ctrl+​W> Save the current buffer with a specified file name (write-​file).
<Ctrl+​H> Display a help message about these options.
<Ctrl+​X> <Ctrl+​C> Exits Emacs.
<Ctrl+​X> <Ctrl+​Z> Suspends Emacs and exits to the shell.

Emacs Help Command
<Ctrl+​H> a topics <Enter> Display a list of commands whose names match topics

(apropos-​command).
<Ctrl+​H> b Display all active key bindings—​minor mode bindings

first, then those of the major mode, then global bindings
(describe-​bindings).

<Ctrl+​H> c key Show the name of the command that the key sequence key is
bound to (describe-​key-​briefly). Here c stands for “character”.
For more extensive information on key, use <Ctrl+​H> k.

<Ctrl+​H> d topics <Enter> Display the commands and variables whose documentation
matches topics (apropos-​documentation).

<Ctrl+​H> e Display the *Messages* buffer (view-​echo-​area-​messages).
<Ctrl+​H> f function
<Enter>

Display documentation on the Lisp function named function
(describe-​function). Since commands are Lisp functions, this
works for commands too.

<Ctrl+​H> r Display the Emacs manual in Info (info-​Emacs-​manual).
<Ctrl+​H> s Display the contents of the current syntax table (describe-​syntax).

The syntax table says which characters are opening delimiters,
which are parts of words, and so on.

<Ctrl+​H> t Enter the Emacs interactive tutorial (help-​with-​tutorial).
<Ctrl+​H> K key Enter Info and go to the node that documents the key sequence

key (Info-​goto-​Emacs-​key-​command-​node).
<Ctrl+​H> Display the help message for a special text area, if the point is in

one (display-​local-​help). (These include, for example, links in
Help buffers.)

Emacs Cursor Movement
Entity to Move Over Backward Forward
Character <Ctrl+​B> <Ctrl+​F>
Word <Alt+​B> <Alt+​F>
Line <Ctrl+​P> <Ctrl+​N>
Go to line beginning
(or end)

<Ctrl+​A> <Ctrl+​E>

Sentence <Alt+​A> <Alt+​E>
Paragraph <Alt+​{> <Alt+​}>
Page <Ctrl+​X> [<Ctrl+​X>]

The GNU Emacs Editor 249

Emacs Commands

Entity to Kill Backward Forward
Character (delete, not
kill)

 <Ctrl+​D>

Word <Alt+​Del> <Alt+​D>
Line (to end of) <Alt+​0> <Ctrl+​K> <Ctrl+​K>
Sentence <Ctrl+​X> DEL <Alt+​K>
Kill region <Ctrl+​W>
Copy region to kill
ring

<Alt+​W>

Yank back last thing
killed

<Ctrl+​Y>

Emacs Interactive Search and Replace
Search and Replace Action Keystrokes
Search forward <Ctrl+​S>
Search backward <Ctrl+​R>
Regular expression search <Ctrl+​Alt+​S>
Reverse regular expression search <Ctrl+​Alt+​R>
Select previous search string <Alt+​P>
Select next later search string <Alt+​N>
Exit incremental search <Enter>
Undo effect of last character
Abort current search <Ctrl+​G>
Interactively replace a text string <Alt+​%>
Using regular expressions <Alt+​X> query-​replace-​regexp
Replace this one, go on to next <Space> or y
Replace this one, don’t move ,
Skip to next without replacing or n
Replace all remaining matches !
Back up to the previous match ^
Exit query-​replace <Enter>
Enter recursive edit (<Ctrl+​Alt+​C> to exit) <Ctrl+​R>
Changing Emacs Behavior
Customization Action Keystrokes
Abbrevs
add global abbrev <Ctrl+​X> a g
add mode-​local abbrev <Ctrl+​X> a l
add global expansion for this abbrev <Ctrl+​X> a i g
add mode-​local expansion for this abbrev <Ctrl+​X> a i l
explicitly expand abbrev <Ctrl+​X> a e
expand previous word dynamically <Alt+​/​>
Macros
Start defining a keyboard macro <Ctrl+​X> (or <F3>
End keyboard macro definition <Ctrl+​X>) or <F4>
Execute last-​defined keyboard macro <Ctrl+​X> e or <F4>
Append to last keyboard macro <Ctrl+​U> <Ctrl+​X> (
Name last keyboard macro <Alt+​X> name-​last-​kbd-​macro
Insert Lisp definition in buffer <Alt+​X> insert-​kbd-​macro
Customize variables and faces <Alt+​X> customize

TABLE 3.7  (Continued)

Command Summary

https://taylorandfrancis.com

251

	�
Questions, Problems, and Projects

Chapter 0

0.1	 Create a directory called Raspberry in your home directory. What
command line did you use to do this?

0.2	 Give a command line for displaying the files lab1, lab2, lab3, and lab4.
Can you give two more command lines that do the same thing? What
is the command line for displaying the files lab1.c, lab2.c, lab3.c, and
lab4.c? (Hint: use shell metacharacters.)

0.3	 Give a command line for printing all the files in your home directory
that start with the string memo and end with .ps on a printer called
upmpr. What command line did you use to do this?

0.4	 Give the command line for nicknaming the command who -​H as W.
Give both Bash and C shell versions. Where would you put it if you
want it to execute every time you start a new shell?

0.5	 Type the command man ls > ~/​Raspberry/​ls.man on your system.
This command will put the man page for the ls command in the ls.
man file in your Raspberry directory (the one you created in Problem
1). Give the command for printing two copies of this file on a printer in
your lab. What command line would you use to achieve this printing?

0.6	 What is the mesg value set to for your environment? If it is on, how
would you turn it off for your current session? How would you set it
off for every login?

0.7	 What does the command lpr -​Pqpr [0–​9]*.jpg do? Explain your answer.
0.8	 Use the passwd command to change your password. If you are on a

network, be aware that you might have to use the yppasswd command
to modify your network login password. Also, make sure you abide
by the rules set up by your system administrator for coming up with
good passwords!

0.9	 Using the correct terminology (e.g., command, option, option argu-
ment, and command argument), identify the constituent parts of the
following Raspberry Pi OS single commands.

Raspberry Pi OS System Administration: Ancillary Topics252

ls -​la *.exe

lpr –​Pwpr file27

chmod g+​rwx *.*

0.10	 View the man pages for each of the useful commands listed in
Table A.1. Which part of the man pages is most descriptive for you?
Which of the options shown on each of the man pages is the most
useful for beginners? Explain.

0.11	 How many users are logged on to your system at this time? What
command did you use to discover this?

0.12	 Determine the name of the operating system that your computer runs.
What command did you use to discover this?

0.13	 Give the command line for displaying manual pages for the socket,
read, and connect system calls on your system.

TABLE A.1

Useful Commands for the Beginner

Command What It Does

<Ctrl+​D> Terminates a process or command
alias Allows you to create pseudonyms for commands
biff Notifies you of new e-​mail
cal Displays a calendar on screen
cat Allows joining of files
cd Allows you to change the current working directory
cp Allows you to copy files
exit Ends a shell that you have started
hostname Displays the name of the host computer that you are logged on to
login Allows you to log on to the computer with a valid username/​password pair
lpr or lp Allows printing of text files
ls Allows you to display names of files and directories in the current working directory
man Allows you to view a manual page for a command or topic
mesg Allows or disallows writing messages to the screen
mkdir Allows you to create a new directory
more Allows viewing of the contents of a file one screen at a time
mv Allows you to move the path location of, or rename, files
passwd Allows you to change your password on the computer
pg Solaris command that displays one screen of a file at a time
pwd Allows you to see the name of the current working directory
rm Allows you to delete a file from the file structure
rmdir Allows deletion of directories
talk Allows you to send real-​time messages to other users
telnet Allows you to log on to a computer on a network or the Internet
unalias Allows you to undefine pseudonyms for commands
uname Displays information about the operating system running the computer
whatis Allows you to view a brief description of a command
whereis Displays the path(s) to commands and utilities in certain key directories
who Allows you to find out login names of users currently on the system
whoami Displays your username
write Allows real-​time messaging between users on the system

Questions, Problems, and Projects 253

Advanced Questions and Problems

0.14	 Following is a typical /​etc/​profile configuration file, this particular
one is from a default installation on our Raspberry Pi OS system:

/​etc/​profile: system-​wide .profile file for the Bourne shell (sh(1))

and Bourne compatible shells (bash(1), ksh(1), ash(1), ...).

if ["$(id -​u)" -​eq 0]; then

  PATH=​"/​usr/​local/​sbin:/​usr/​local/​bin:/​usr/​sbin:/​usr/​bin:/​sbin:/​bin"

else

 � PATH=​"/​usr/​local/​sbin:/​usr/​local/​bin:/​usr/​sbin:/​usr/​bin:/​sbin:/​bin:/​usr/\

​local/​games:/​usr/​games"

fi

export PATH

if ["${PS1-​}"]; then

 if ["${BASH-​}"] && ["$BASH" !=​ "/​bin/​sh"]; then

 # The file bash.bashrc already sets the default PS1.

 # PS1=​'\h:\w\$ '

 if [-​f /​etc/​bash.bashrc]; then

 . /​etc/​bash.bashrc

 fi
 else

 if ["$(id -​u)" -​eq 0]; then

 PS1=​'# '

 else

 PS1=​'$ '

 fi
 fi
fi

if [-​d /​etc/​profile.d]; then

 for i in /​etc/​profile.d/​*.sh; do

 if [-​r $i]; then

 .$i

 fi
 done

 unset i

fi

Write an explanatory sentence in your own words describing exactly
what you consider important lines in the file accomplish, including
the comments (the lines that begin with the pound sign #). Examine
this file on your Raspberry Pi OS. How does it compare, line-​for-​line,
with the one above? We assume here that, by default, Bash is both the
interactive and login shell on your system.

Raspberry Pi OS System Administration: Ancillary Topics254

0.15	 What is the default umask setting in an ordinary, non-​privileged
account on your Raspberry Pi OS, from both a login and non-​login
shell? Describe in your own words what the umask setting is, and how
it is applied to newly created directories and files. Is the umask set in
/​etc/​profile on your Raspberry Pi OS system? If not, where can the
umask be set most effectively on a persistent basis, for a particular
single user, both in a login and non-​login shell?

0.16	 Assume that all users, when they log into your Raspberry Pi OS, have
Bash as their default shell. What file sets the shell prompt for them on
your Raspberry Pi OS? Is it the file illustrated in Problem 14? Describe
the lines in the file that actually specify the shell prompt, and give
a short description of the components of those lines. Experiment to
find out which file accomplishes the actual shell prompt setting for
ordinary users (for both interactive or login shells), and write an
explicit description of what you have discovered.

Additionally, set the shell prompt for yourself in the current inter-
active shell, so that it contains the following:

A display of just the date/​time.
A display of the date and time, hostname, and current directory.
�A display where the entire prompt is in red text, along with hostname
and current directory.

Then make those changes persistent for yourself in both login and
interactive shells. Finally, undo the persistent changes.

As a follow-​up, design your own shell prompt so that it contains
the information you want in a useful display given your use case(s),
and make that designed prompt persistent for yourself on your
Raspberry Pi OS.

0.17	 Give a sequential list of the exact commands you would use to make
the TC shell the default login shell for your user account on your
Raspberry Pi OS. Is the TC shell installed by default on your Raspberry
Pi OS? If not, how would you install it on a Debian-​family or CentOS?
Give the exact commands for installation of not only the TC shell, but
any of the other four major Raspberry Pi OS shells available.

0.18	 Execute all of the compound command Examples provided at the web
link https://​expla​insh​ell.com/​, and then use the output shown to
explain all of them in your own words. Try executing the Examples
with meaningful arguments on your Raspberry Pi OS, if possible.

https://explainshell.com

Questions, Problems, and Projects 255

Project 1

After completing Problems 14 through 16, gather your findings together in
a summary report that details the default settings (within the scope of the
files you have examined, and in the context of those problems) of the Bash
environment on your Raspberry Pi OS. For example, which actual file takes
precedence by default, and what components of the Bash environment are
set in that file? What are the critical default settings in the Bash environment,
and what actual files on your Raspberry Pi OS effect them?

Chapter 1

1.1	 Is it possible to create a zpool using only a single slice (commonly
referred to as a partition) on a vdev, and if so, what would the
advantages and disadvantages of doing this be? Does your answer
reflect the fact that only one file system can exist on that slice?

To follow up on this question, is it possible to create a volume with a ZFS file
system on it? What would be the advantage of doing this?

1.2	 List the advantages and disadvantages that ZFS has for your use case
on your Raspberry Pi system.

1.3	 Give a brief description of the zdb command.
1.4	 Similar to Example 1.3, create a mirrored zpool using two files that

simulate disk drives, and are 256 MB in size each. Name the files disk1
and disk2. Then answer the following questions:

a.	 What is the pathname to the default filesystem that’s created when
you create the zpool?

b.	 If you create a 32 MB file in your zpool, but put nothing in it, what
size increase do you see in the files disk1 and disk2? How did you
find this out?

c.	 How much free space is now in the zpool?

1.5	 Define the following terms in ZFS, in your own words:

Scrubbing, resilvering, slicing, mirroring, zpool, vdev.

1.6	 If you create a zpool named pool1, and a file system on that zpool
named bobsfiles with the zfs command, what is the entire and full

Raspberry Pi OS System Administration: Ancillary Topics256

pathname to a file named data27 in that file system? What is the exact
syntax of the command you used to create the file system?

1.7	 List eight of the basic zfs sub-​commands that allow you to do file and
file system backups and archiving.

1.8	 Do the following:

a.	 Use the zfs command to create a dataset named usbdrive on a
zpool named test3 which is on a USB flashdrive. The name of the
dataset would be test3/​usbdrive.

b.	 Type the command zfs set copies=​2 test3/​usbdrive

c.	 What you have achieved with this command is a signature val-
idation of using ZFS and creating a zpool on the USB flashdrive.
The USB flashdrive is a redundant device to the extent shown.
But more importantly, by setting the property of copies=​2 on this
dataset, you have made the USB flashdrive redundant to itself,
because ZFS now keeps two copies of everything. And you can
use ZFS facilities to ensure integrity of the data to the bit level on
the USB flashdrive. Given how inexpensive USB flashdrives are,
even in larger capacities, having two automatically created copies
of your files on this flashdrive is not prohibitive.

d.	 Copy a number of important user files into this new dataset from
your Raspberry Pi system’s boot/​system medium, using either
the cp or rsync commands.

e.	 Retain the zpool and dataset you have created on the flashdrive,
and use it as a backup drive for your important files. You can
periodically use rsync to keep the backup files synchronized to
the important files on your hard drive. You may even decide that
the important files you want to back up to the flashdrive are in a
single directory or multiple directories. You can then use rsync to
copy directories over to the flashdrive.

f.	 To remove the USB flashdrive temporarily at any time, use the
zfs unmount command. Then you can remove it from the com-
puter. Remember to use the zfs mount command when you want
to reinsert the USB flashdrive and archive or backup files to it.

1.9	 Repeat Example 1.4, using two Raspberry Pi systems on your intranet,
or LAN, using directories of your choice.

1.10	 How would you create a script file, like the Example_​1_​6.sh Bourne
shell script file, that takes snapshots that are retained any number of
times between two systems? In other words, each time that you run it,
the previous time’s snapshot is retained on the destination Raspberry
Pi, and the one from the time before, and the time before that, etc. The
interval does not have to be one calendar day. Provide the code for the
complete Bourne shell script as your answer.

Questions, Problems, and Projects 257

Projects

1.	 Using the techniques shown in the six examples of Section 1.2.2, create
a mirrored pair of USB flashdrives on your single Raspberry Pi system.
A single dataset on the mirrored pair is automatically created, and
named with the same name as the zpool name. We used the following
command to give the user bob permissions on the zpool, named dest,
thus created:

sudo chown bob:bob -​R /​dest

Do the same thing, so that an ordinary user other than root can place
files in the filesystem on the zpool. Finally, using the following Bash
shell script, backup an important data file directory in your home
directory, in tar format, to the dataset on the mirrored-​pair of USB
flashdrives. Substitute your pathnames, on your Raspberry Pi system,
for source and destination directories shown for our system.

Code proj1.bash, Bash Backup to a Mirrored Pair

!/​bin/​bash

A time stamp variable for logging

TIMESTAMP=​$(date +​"%Y%m%d.%H%M")

Destination directory location on the mirrored pair as a variable

DEST_​DIR=​"/​dest"

Source directory as a variable

SRC_​DIR=​"/​home/​bob/​Desktop/​raspberry_​linux"

Variable for the backup file name file

FNAME=​"MyBackup"

Variable for a log file, in an already created sub-​directory in your home

directory, and name the log file with the file name and time stamp

LOG=​"/​home/​bob/​log/​$FNAME-​$TIMESTAMP.log"

Message that the backup is started

echo -​e "Starting backup of $SRC_​DIR directory" >> ${LOG}
Compress the source directory and files, copy the tar.gz file to

your destination directory

tar -​vczf ${DEST_​DIR}/​${FNAME}-​${TIMESTAMP}.tar.gz ${SRC_​DIR} >>\

${LOG}

Message that the backup has ended, and append to log file

echo -​e "Ending backup of $SRC_​DIR" >> ${LOG}

2.	 Exchange a pair of ZFS mirrored USB flashdrives, that have some
useful data on them, with a friend that has a Raspberry Pi, and have

Raspberry Pi OS System Administration: Ancillary Topics258

them utilize the flashdrives on their system. How would you do this?
Use the hint we provided In-​Chapter Exercise 1.13.

3.	 Use the procedures and Bourne shell script of Example 1.6 to send
incremental backup snapshots of an important user dataset, over
a LAN to another system that can accommodate mirrored vdevs in
higher RAID-​Z configurations of your choice.

4.	 Create a zpool on a file as was done in Example 1.2, include some nano-​
edited text files in it, and then take a snapshot of it. What procedures
would you have to execute to then reedit the snapshot, and the nano-​
created text files in the snapshot? Explain in detail. Then rollback the
snapshot onto the original file system and zpool.

Chapter 2

2.1	 Give definitions, in your own words, for the following terms as they
relate to the X Window System: window system, window manager,
desktop manager, client, server, focus, iconify, maximize, minimize,
xterm, application user interface, management interface.

2.2	 Which Window System window manager is used on your computer
system? How can you identify and recognize which window manager
you are using by default?

2.3	 Which command allows another user to have their windows displayed
on your screen under the X Window System? What would be the
advantages of doing this? What would be the disadvantages of doing
this? Explain why this is even possible at all under the X Window
System.

2.4	 Identify the xterm options that are set on your computer system. What
is the default size of an xterm window? What is the default back-
ground color for an xterm window? What do you think are the most
useful xterm options for you? How did you find all of the previous
things out?

2.5	 a. � When you hold down the left-​most mouse button when the screen
cursor is in the root window of your Window System display,
what appears on your screen? What appears when you hold down
the middle mouse button? What appears when you hold down the
right-​most mouse button?

b.	 What controls the appearance and content of the menus that are
presented to you when you take these actions?

Questions, Problems, and Projects 259

2.6	 Do all windows launched on your Window System display have
the same components—​that is, scroll bars, iconify button, title bar,
and resize handles? What facility controls the look and feel of these
components? How do these components compare in function and
operation to what you might be familiar with from another GUI—​for
example, when using OS X or Windows?

2.7	 Use your favorite Web browser to explore the site www.X.org. What
are the objectives of this organization? What is another good source of
information on the X Window System?

2.8	 Use your favorite Web browser to explore the site https://​wayf​ire.org.
What are the objectives of this organization? What is another good
source of information on the Wayfire compositor?

2.9	 Use your favorite Web browser to explore the site https://​wayl​and.
free​desk​top.org/​docs/​html/​ . What are the objectives of this organ-
ization? What is another good source of information on Wayland?

2.10	 Install and use Gimp on your Raspberry Pi system to design a bit-
mapped image for use as an icon in a pull-​down menu. For example,
if you were going to design a menu choice for reading from a file, your
bitmapped image might look like a book that is open for reading.

2.11	 After completing Problem 10, find an X-​based application on your
network that allows you to customize menu items. Then, design icon
images for use with the application using Gimp and install them for
use with the application.

2.12	 What is a session manager, and how is it different from a desktop
management system, or a window manager?

2.13	 Why would someone want to do a nonintegrated installation of the
Raspberry Pi OS, such as the “lite” version—​that is, without a GUI
(with only a text-​based interface to the system)?

2.14	 Why are server-​class installations of Linux done without a GUI? What’s
the advantage of that, in terms of utilization of system resources? How
is that achieved with systemd, for example, when you’re running in a
graphical.target state?

2.15	 The primary task, and biggest challenge, of programming a client
application in the X Window System is connecting the output of code
that generates or actually is data—​such as numbers, text strings, files,
file structures, and so on—​to a user UI implemented by one of the
toolkits we show in this chapter. Of course, if the only objective of the
UI of a client application program is to produce output graphics, then
it is advisable to partition the client application into a data generation
part (if there is one) and a graphics production part. Separating these
two parts out is helpful and useful when the code for each needs to be
modified, maintained in the future, or documented and understood

http://www.X.org
https://wayfire.org
https://wayland.freedesktop.org
https://wayland.freedesktop.org

Raspberry Pi OS System Administration: Ancillary Topics260

by other developers or team programming members, and the connect-
ivity between the two discrete parts must remain the same.

Examine all of the program examples we provide for Xlib, XCB,
and Qt, and make a brief list of where the data in each program are
generated, so that each of the toolkits can make graphics out of it. Also
describe how those data are passed to the toolkit that uses the data,
either as literal arguments, or as data structure mechanisms.

For example, since Xlib uses mostly a procedural paradigm to pass
the data-​generating components to the UI components, an entry in
your answer tableau for the program example Xlib test1.c should
appear like this:

Xlib test1.c XFillRectangle(…,20, 20, 10, 10),
XDrawString(…, msg, …)

Integers, string

2.16	 Modify client application program test1.c so that it draws three
other types of graphics primitives in a single window opened on
screen. Make sure the window is appropriately enlarged so that the
primitives, whose geometry you customize by selecting coordinates
of your choice, will be adequately framed.

2.17	 Combine programs test1.c and test4.c so that you draw an unfilled
rectangle and text strings into the same window opened on screen.
Additionally, modify the GC of the window so that it provides different
attributes for both the rectangle graphics primitive and the text drawn
at each mouse click location.

2.18	 Write a description of the Xlib API as you formulate it from the docu-
mentation available, both on-​line and in printed media. Be sure to
include details of how Xlib uses the C language data structure capabil-
ities to accomplish its interactions between a) the client application
code, b) the Xlib API, c) the X Window System Protocol, and d) lower-​
level graphics systems such as OpenGL and Mesa.

2.19	 Modify the client application program 2ndxcbdraw.c so that the
resulting program draws at least three of the primitives (with numer-
ical parameters of your choice) found in the following table. You may
also change the attributes of the primitives drawn by varying the GC.

Function Description

xcb_​poly_​point
(xcb_​connection_​t *conn,
uint8_​t coord_​mode,
xcb_​drawable_​t window,
xcb_​gcontext_​t context_​id,
uint32_​t num_​points,
const xcb_​point_​t *points)

Draws points

Questions, Problems, and Projects 261

Function Description

xcb_​poly_​line
(xcb_​connection_​t *conn,
uint8_​t coord_​mode,
xcb_​drawable_​t window,
xcb_​gcontext_​t context_​id,
uint32_​t num_​points,
const xcb_​point_​t *points)

Draws lines between points

xcb_​poly_​segment
(xcb_​connection_​t *conn,
xcb_​drawable_​t window,
xcb_​gcontext_​t context_​id,
uint32_​t num_​segments,
const xcb_​segment_​t *segments)

Draws separate line segments

xcb_​poly_​arc
(xcb_​connection_​t *conn,
xcb_​drawable_​t window,
xcb_​gcontext_​t context_​id,
uint32_​t num_​arcs,
const xcb_​segment_​t *arcs)

Draws elliptical arcs

xcb_​fill_​poly
(xcb_​connection_​t *conn,
xcb_​drawable_​t window,
xcb_​gcontext_​t context_​id,
uint8_​t shape,
uint8_​t coord_​mode,
uint32_​t num_​points
const xcb_​point_​t *points)

Draws a filled polygon polygon

xcb_​poly_​fill_​rectangle
(xcb_​connection_​t *conn,
xcb_​drawable_​t window,
xcb_​gcontext_​t context_​id,
uint32_​t num_​rects,
const xcb_​rectangle_​t *rects)

Draws filled rectangles

xcb_​poly_​fill_​arc
(xcb_​connection_​t *conn,
xcb_​drawable_​t window,
xcb_​gcontext_​t context_​id,
uint32_​t num_​arcs,
const xcb_​arc_​t *arcs)

Draws filled elliptical arcs

2.20	 Modify client application program simple_​xcb.c so that it draws at
least one of the primitives shown in the table for Problem 1.

2.21	 Modify program xcb_​events.c so that it only reports mouse button
presses and releases, and the coordinates at those points.

2.22	 Use the Xlib program simple1.c to create a window display. Then,
using the hex display ID number for that window, in gnuplot inter-
active mode, plot sin(x) in that Xlib-​created window.

2.23	 Use the XCB program xcb_​simple.c, to create a window display.

Raspberry Pi OS System Administration: Ancillary Topics262

		 Then, using the hex display ID number for that window, in gnuplot
interactive mode, create plots of sin(x), cos(x), and tan(x) simultan-
eously in that XCB-​created window.

2.24	 A large set of demo plots is available on the web page www.gnup​lot.
info/​demo/​.

		 Be sure to go to a demo page that has demos for your version of the
software, and supports the type(s) of terminals that you actually
have available! Use the code shown in the demos to plot a variety of
examples that interest you, in either the specified terminal type, or in
an X11 window created by Xlib or XCB.

2.25	 Find a simple example of a C program online that implements a
window, and drawing, in Wayfire. How does it compare, in terms of
complexity and ease of use, to Xlib, XCB, GTK4, or QT5 programs that
do a similar thing? How do you compile it?

Chapter 3

3.1	 This problem assumes that:
You can interactively start up a new non-​login shell, the Bourne

Again shell, or bash, which is already installed by default on that
system. To do this, at the Bash shell prompt just type bash and press
<Enter>. If a ~/​.bashrc exists, before you begin, be sure to back up
your existing ~/​.bashrc file by using the cp command. To do so, type-​
cp .bashrc .bashrc_​bak and then press <Enter>. If for any reason you
destroy the contents of the ~/​.bashrc file while doing this problem, you
can restore the original by typing cp .bashrc_​bak .bashrc and then
pressing <Enter>.

If there is no .bashrc file in your home directory, use Emacs to create
one and save it in your home directory as an empty file (with nothing
in it). Also, in order for you to have permissions on that file, type:

chmod u+​x .bashrc and press <Enter>.

Use Emacs to edit the ~/​.bashrc file in your home directory, and
then use the <Ctrl-​X>I command to insert the file alien3 that you
created in Practice Session 3.6 into the buffer. Save the buffer, exit
Emacs, and log off your computer system. Log on to your computer
system again, start up a new bash shell interactively by typing bash
at the command line (so that the new ~/​.bashrc is in effect), and test

http://www.gnuplot.info
http://www.gnuplot.info

Questions, Problems, and Projects 263

each of the DOS aliases that are in alien3 by typing them at the shell
prompt, with their proper arguments (if necessary). They should give
you the same results as when you ran the Bourne shell aliases in Step
21 of Practice Session 3.6.

What other way can you invoke the ~/​.bashrc file immediately in
this interactive session without logging off the system?

3.2	 As you saw in the Practice Sessions, you can be editing more than one
file at a time in Emacs, where each of the files’ contents are being held
in different buffers. Experiment by first using the cp command at the
shell prompt to make a copy of the file datafile that you created in
Practice Session 3.5. Name this copy datafile2. Use Emacs to open both
files, datafile and datafile2, with the command <Ctrl-​X><Ctrl-​F>. You
can switch between buffers with <Ctrl-​X B>. Then edit both of them
at the same time and cut and paste three or four lines of each between
the two, using <Ctrl-​@>, <Ctrl-​W>, and <Ctrl-​Y>.

Don’t save your changes to the file named datafile!
3.3	 Write a keyboard macro, as described in Section 3.16.4, to do every-

thing shown in Steps 10–​16 of Practice Session 3.4.
3.4	 Try working with Emacs in a text-​only window, and use only key-

stroke commands.
To do this, you will have to launch Emacs from a console or terminal

window by typing Emacs -​nw newfile The -​nw option specifies that
Emacs will run in a nongraphical mode. Then, in the console or ter-
minal window, a non-​graphical Emacs will open on the buffer newfile.
Remember that you can still gain access to the Menu Bar menus at the
top of the Emacs screen by pressing the escape <Esc> key on the key-
board and then pressing the single backquote (`) key. You can then des-
cend through the menu bar choices by pressing the letter key of the
menu choice you want to make. For example, pressing the F key on the
keyboard gives you access to the File pull-​down menu choices, and then
pressing the S key on the keyboard allows you to save the current buffer.

3.5	 To compare keystroke to graphical Emacs, repeat Problem 4, using
purely graphical Emacs—​that is, with no keystroke commands
allowed. This time, make two copies of datafile named datafilex and
datafilexx at the UNIX shell prompt with the cp command. Open all
three files and, using the multiple-​buffer and multiple window cap-
ability of the graphical form of Emacs, cut and paste among the files
using only the mouse. Again, as in Problem 4, don’t save your changes
to the file datafile.

3.6	 Use Emacs’ capability of sending e-​mail while you’re in Emacs. Send
an e-​mail message to one of your friends, composing the message
body and sending from within Emacs.

Raspberry Pi OS System Administration: Ancillary Topics264

3.7	 Use the <Alt-​x> customize facility in Emacs to find the values of
the following: Global Mark Ring Max, Tab Width, Fill Column,
Standard Indent, Undo Limit, and provide a list of the values you
find for each.

3.8	 What Emacs command toggles Abbrev mode? What Emacs command
removes all abbrev definitions, including global ones?

3.9	 Define the following abbreviation as global abbreviations in Emacs
with Abbrev using the word on the left of the equal sign (=​) as the
abbreviation, and list the command and keystrokes you used to create
the abbreviations, and invoke them:

now =​ �Now is the time for all good women to come to the aid of
their country.

3.10	 Define a GNU Emacs keyboard macro that, when invoked, automatic-
ally enters all 26 lower-​case letters of the alphabet, with a single space
between each letter, at point. Name the macro le and bind it to the key
1 (the numeric number 1) for use only during this session of Emacs.
Give the exact steps, commands, and typed-​input you use to accom-
plish defining this macro and invoking it.

3.11	 Define a GNU Emacs keyboard macro that, when invoked, automat-
ically enters the integers 1 through 10, with a single space in between
each number, at point. Name that macro row and bind it to the key r
so that both the name and the key binding can be used in every sub-
sequent Emacs session. Give the exact steps, commands, and typed-​
input you use to accomplish defining this macro and invoking it.

3.12	 Define a line of elisp code and place it in your ~/​.emacs file, that will
designate the second mouse button on your mouse to issue a command
to split the current buffer window horizontally.

Advanced GNU Emacs

3.13	 Using Emacs, type in a paragraph of text from one of your favorite
books, but without altering the size or shape of the Emacs frame or
using the Enter key, use the word wrap feature of Emacs to format
it exactly the way that it is printed in the book. Print the file at your
Linux system line printer.

3.14	 Define an Emacs keyboard macro that accomplishes a common editing
task for you.

3.15	 Create, edit, compile, link and execute a short C program of your
choice in Emacs.

3.16	 zenity is a graphical GTK+​ dialog box program that allows you to
create interactive dialog boxes using Bash script files. It is installed
by default on our Raspberry Pi system. In this problem, you will use
Emacs to create a zenity Bash script file.

Questions, Problems, and Projects 265

a.	 Use Emacs to create and save the following bash script file, named
zen1, in your home directory:

#!/​bin/​bash

zenity -​-​forms -​-​title=​"newusers Command" -​-​text=​"Add batch new

user" \

 -​-​add-​entry=​"Username" \

 -​-​add-​password=​"Password" \

 -​-​add-​entry=​"User Number UID" \

 -​-​add-​entry=​"Group Number GID" \

 -​-​add-​entry=​"GECOS Entry" \

 -​-​add-​entry=​"Default Home Directory" \

 -​-​add-​entry=​"Default Shell" \

>> zen_​out

sed -​i -​e 's/​|/​:/​g' /​home/​bob/​zen_​out	 	

b.	 On the command line, use the command chmod u+​x zen1, then
type ./​zen1

A zenity dialog box will open on-​screen, as seen in Figure A.1.
In the GUI dialog box you will create the seven fields needed to be supplied
to the newusers command, to create new users from a “batch file” on your
Raspberry Pi system. The seven inputs you supply to the dialog box will be
written to a file named zen_​out.

The seven fields, separated by the colon character (:), are the new user
accounts name, password, UID, GID, GECOS commentary, default home dir-
ectory, and default shell.

FIGURE A.1
Zenity dialog box.

Raspberry Pi OS System Administration: Ancillary Topics266

For example:

bob:QQQ:2001:2001:CFO of Accounting:/​home/​bob:/​bin/​bash	 	

c.	 Use zen1 to create a file of several new users you want to put on
your system.

267

Index

A

abbrev-​file-​name, 239, 243
Access control lists (ACLs), 54
<Alt+​N> command, 235
<Alt+​Shift+​X> customize command,

230–​235
<Alt+​X> command, 235, 242

customize-​face, 230
customize-​group, 230
customize-​option, 230
define-​abbrevs, 239
define-​global-​abbrev, 237
define-​mode-​abbrev, 237
edit-​abbrevs, 238
expand-​region-​abbrevs, 238
global-​set-​key, 244, 245, 246
global-​unset-​key, 245
insert-​abbrevs, 239
kill-​all-​abbrevs, 237
local-​set-​key, 245
local-​unset-​key, 245
read-​abbrev-​file, 239
unexpand-​abbrev, 238
write-​abbrev-​file, 238, 239

Animated user interfaces, 97
Application Programming Interface

(API), 121, 139
Application software program,

110–​111
Application user interface (AUI), 187
apropos command, 19–​20
Automatic repair, of silent data

corruption (scrubbing), 65

B

Bash shell program files, command for
displaying, 21

Bash Shell script, 24
zfs snapshot command automation

in, 88–​91
Bins, for storing files, 3
Boot environment, 27
Bourne Again shell (Bash), 22, 200, 262

Buffer
concept of, 193
management of, 104

ButtonPress event, 124, 139

C

Cache, 67
Cairo (graphic program), 99
cat command, 3, 5–​6
cd command, 5, 12–​15
Character User Interface (CUI), 1, 111
Checksum, 27
chmod g+​rwx *.* command, 252
chmod u+​x command

.cshrc, 216
zen1, 265

Client application program, 113
cleanup, 116, 117
coding of, 109
compiling of, 128
creation of, 116–​117
data generation, 116
initialization of, 116
parts of, 116
sample programs, 128–​137
start an event–​request loop, 116, 117
structure and development model of

overview of, 117–​119
specifying resources of, 120
structure of, 119–​120
writing the code for, 120–​121

structure of, 116
User Interface (UI), 116
writing the code for an X Windows

client application, 120–​121
XCB programs, 144–​151
Xlib, 123–​137

Client-​side programs, 121
Clone, 27, 81

creation of, 43
of user data media, 49
as writable file systems, 77
of ZFS snapshots, 83

Index268

Close button, 120
Code editor, 97
Commands, for the beginner, 252
Common file maintenance

operations, 200
Common UNIX Printing System

(CUPS), 22
Communication channel, 118–​119
Compiz (graphic program), 99, 107
Compositing, concept of, 107
Contents of files, command for

viewing, 5–​6
Control-​X-​prefix command, 244
cp command, 7, 247, 256, 262, 263
C programming language, 96, 118

callback function, 158
addCallback, 158
multiplyCallback, 158

creating and editing of, 219–​222
GTK4 (GIMP Toolkit), 162
performOperation function, 158–​159
printf statement, 129, 144
source code of, 220
Xlib, 128

C+​+​ programming language, 116, 119,
121, 151, 187

class model, 153
compiler, 152
Object Oriented Programming

(OOP), 152
CreateNotify event, 141
create sub-​command, 40
.cshrc file, 215, 217
ctl-​x-​4-​map, 244
ctl-​x-​map, 244
<Ctrl+​A> command, 244
<Ctrl+​C> command, 131, 244, 245
<Ctrl+​C><Ctrl+​Z> command, 245
<Ctrl+​C><Ctrl+​C> command, 238
<Ctrl-​@> command, 263
<Ctrl+​F> command, 246
<Ctrl+​G> command, 240
<Ctrl+​H> c command, 246
<Ctrl+​H> command, 244
<Ctrl+​H> v command, 234
<Ctrl+​N> command, 243
<Ctrl+​U><Ctrl+​U> F3 command, 240
<Ctrl+​U><F3> command, 240, 241
<Ctrl-​W> command, 263

<Ctrl-​X B> command, 263
<Ctrl-​X><Ctrl-​F> command, 263
<Ctrl+​X> command, 244

<Ctrl+​K><Ctrl+​P> command, 241
<Ctrl+​X> a e command, 238
<Ctrl+​X> a g, 236
<Ctrl+​X> a i g, 237
<Ctrl+​X> a i l, 237
<Ctrl+​X> a l, 237

<Ctrl+​X><Ctrl+​K><Ctrl+​N>
command, 241

<Ctrl+​X><Ctrl+​K><Ctrl+​K>
command, 241

<Ctrl+​X><Home> command, 244
<Ctrl-​X>I command, 262
<Ctrl+​X><Ctrl+​K> r command, 240, 241
<Ctrl+​Y> (yank) command, 234, 263
<Ctrl+​Z> command, 245, 246
Current working directory, 3
Customization buffer, 230–​234
Customization groups, 230–​232

D

Damage event, 101–​102
Data blocks, of the file system, 83
Data deduplication, 28, 65, 77
Data generation, 92, 116, 118–​119, 129,

151, 187, 259
Data integrity checking, 65
Data protection, 64–​65, 83
Dataset, 27, 83–​85, 87, 90, 256
Debian Linux, 108
Debugger, 97, 228
DEFLATE algorithm, 81–​82
Desktop management systems, 186, 187
Desktop manager, 110–​112, 183
Directories, command for creating,

deleting, and managing, 11–​16
Disk maintenance procedures, 49
Disk partition, 28
Displaynumber, 127
DOS commands, 200
Dynamic abbrev expansion, 236
Dynamic user interfaces, 97, 107

E

echo command, 46, 48
echo $SHELL, 216

Index 269

edit-​abbrevs command, 238
Emacs, 244

access to the Menu Bar, 191
advantages over other IDEs in

terms of
coding language support, 190
community and documentation, 190
cross-​ platform compatibility, 191
extensibility and customization,

189–​190
learning curve, 190
lightweight and speed, 190
text editing features, 190

<Alt-​x> customize facility in, 264
browsing and searching for settings,

231–​232
buffers, 238

concept of, 193, 199
main buffer, 193, 205
scratch, 235
Welcome Screen buffer, 194, 196
working in multiple buffers, 222–​226

changing behavior of, 226–​247
controlling abbrev expansion,

237–​238
with custom and the <Alt+​X>

customize command, 230–​235
defining abbrevs, 236–​237
by init file elisp syntax, 235–​236
keys, commands, and variables,

243–​247
keystroke abbreviations or

abbrevs, 236
keystroke macro commands,

239–​243
listing and editing abbrevs, 238
saving abbrevs, 238–​239
by using the options menu, 228–​230

for changing key bindings
interactively, 245–​246

commands
emacs, 193, 195, 247
emacs alien, 194, 201, 205, 216
emacs datafile, 208
emacs osfile, 210
to exit from Emacs, 200
help commands, 196–​198
-​nw option, 263
q command, 196

components of Graphical screen
display, 194

concepts of point and the cursor
location, 192

for creating and editing C Programs,
219–​222

cursor movement and editing
commands, 203–​207

customizable variables, 233
customization groups, 231
cut/​copy/​paste operations, 193
cut or copy and paste and search and

replace, 209–​213
emacs power.c., 220
Erase Customization menu, 233
examining and setting variables,

234–​235
files pull-​down menu, 219
file, windows, and frames, 199
gcc power.c -​lm -​o power, 221
globally saving customizations for a

group, 233
GNU Emacs, 193, 226

editing data files, 213–​215
graphical screen display, 195
procedure to start, save a file, and

exit in graphical Emacs, 215–​218
graphical form of, 191

Command mode, 192
features of, 198–​199
Insert mode, 192
Last Line mode, 192
use of keyboard keys in, 191–​192

graphical menus, 218–​219
highlight matching parentheses, 228
interactive search and replace, 210
keymaps, 243–​245
keystroke macros, 207–​208, 227–​228
kill and yank commands for, 209
launching of, 193–​196

general syntax for, 193–​194
as modeless editors, 192
mode line, 194
non-​graphical form of, 191
options menu choices, 229
point, mark, and region, 199–​200
procedure for installation of, 193–​196
rebinding keys in Init file, 246–​247
Save for Future Sessions menu, 232

Index270

screen display, 193–​196
Set for Current Session menu, 232
for Shell Script file creation, editing,

and execution, 200–​202
somevariablename variable, 233–​234
text editor, 207
text-​only display of, 191
tools pull-​down menu, 219
user-​defined aliases, 205
variables, 233–​234
visiting files, saving files, and exiting,

202–​203
Error Correction Code (ECC) system

memory, 25
<Esc> key, 244, 263
esc-​map, 244
Exit button, 120
Expose event, 124, 138–​139
Extension support, 95

F

<F3> command, 240
<F4> command, 240, 242
fdisk command, 50
File maintenance commands, 3–​20

for creating, deleting, and managing
directories, 11–​16
files, 7–​11

file and directory structure, 3–​5
for obtaining help with the man

command, 16–​19
other methods of obtaining help, 19–​20
for viewing the contents of files, 5–​6

Filesystem, 28
compression of, 77, 81–​82
renaming of, 81

File system backups, using zfs snapshot
command, 80–​82

cloning and promoting, 81
compression of filesystems, 81–​82
examples of, 80
renaming a filesystem, 81
zfs rollback command, 80

First In First Out (FIFO) buffer, 209
fopen command, 19
fread command, 19
Freedesktop.org project, 98
Functional user interfaces, 96

G

gcc input_​file.c –​o output_​file –​lX11
command, 128

gcc power.c -​lm -​o power, 221
Geany, 116, 129, 143, 171–​172, 189
GitHub, 139, 190
Glib Object System (GObject), 161–​162
Global keymap, 243–​244
Global search and replace, 209
global-​unset-​key, 246
GNOME desktop environment, 96, 107
GNU C compiler, 128
GNU C+​+​ Compiler (gcc), 152
GNU Emacs, 193, 226, 264–​266

command summary, 264–​266
graphical editing with

editing data files, 213–​215
graphical screen display, 195
procedure to start, save a file, and exit

in graphical Emacs, 215–​218
GNU General Public License

version 2, 98
Gnuplot

basic syntax for interactive and batch
modes, 174–​175

batch mode plotting, 176
Command Help Matrix, 180–​181
Command-​line driven interactive

plotting program, 173
-​e “command,” 175
exit and quit commands, 175
gnuplot command, 175
gnuplot header -​trailer command, 176
gnuplot input1 input2 command, 175
gnuplot -​persist -​e ‘plot [-​5:5] sinh(x)’

command, 176
gnuplot -​persist -​e ‘plot [-​5:5] tanh(x)’

command, 176
gnuplot -​persist -​e “set title ‘Sine

curve’; plot sin(x)” command, 176
gnuplot plot [-​5:5] tanh(x)

command, 176
installation of, 173–​174
interactive mode and terminal type,

176–​178
multiplot display, 184
obtaining help on important

commands, 180

Index 271

plotting in interactive mode, 178–​180
plotting data contained in a file,

178–​179
styles of, 179–​180

plotting in multiple windows, or
multiple graphs in one window,
183–​186

show terminal command, 176
terminal type parameters

Qt, 181–​182
X11, 182–​183

and X Window System, 173–​186
gnuplot command, 175
gnuplot header -​trailer command, 176
gnuplot input1 input2 command, 175
gnuplot -​persist -​e “set title ‘Sine

curve’; plot sin(x)” command, 176
Google Group, 98
Gparted Partition Editor, 31
Gparted program, 50, 53
Graphical desktop environment,

component of, 107
Graphical rendering, 95
Graphical user interfaces (GUI), 94, 96,

105, 115, 152, 186, 226, 259
general components of, 110

Graphics cursor, 210–​211
g_​signal_​connect() command, 167, 168
g_​signal_​connect_​swapped()

command, 168
GTK4 (GIMP Toolkit), 96, 100, 107,

116–​117, 121, 187
basics of, 151–​161, 162–​163
child widgets, 168
configuration of build settings, 172
creation of, 172
debugging features, 172
for developing X Window System

client applications, 161
documentation of, 168
execution of, 172
framework of, 161–​162
Glib Object System (GObject), 161
installation of, 162

software required for, 172
OOP architecture, 165
print_​rocks() function, 167–​168
save and build commands, 172
signal-​based application, 163

writing the code for, 172
written in the C programming

language, 162
gtk_​box_​new() command, 167
GtkBox widget, 167, 168
GtkBuilder, 162
GtkExpander widget, 169–​171
GtkGrid widget, 168
GtkNotebook widget, 169
GtkOrientation enum value, 167
GtkOverlay widget, 169
GtkPaned widget, 169
GtkRevealer widget, 169
GtkStackSidebar widget, 169
GtkStackSwitcher widget, 169
GtkStack widget, 169
GtkTreeView widget, 169
GtkWidget pointers, 167
gtk_​window_​destroy() command, 168
Gutter, 169
gzip (data compression and

decompression tool), 81
gzip[1–​ 9], 82

H

help-​map, 244
Høgsberg, Kristian, 97, 100
Home directory, 3
Home function key, 244
Hostname, 127
hostname command, 22
hostname -​I command, 59
HP Proliant Microserver, 55, 63
Huffman coding, 82

I

“Immutable picture” reference, 43
init file elisp syntax, 235–​236
Input events, 113
input_​file.c (C source code file), 128
insert-​kbd-​macro, 243
Integral Development Environment

(IDE) systems, 97, 116, 171, 189
Toolkit IDEs, 118

Interactive replacement, 209–​210
Interactive user interface, 107
InterProcess Communication (IPC)

mechanisms, 106, 114

Index272

Interrupt-​driven interaction, 113
inxi command, 98
IP address, of the NFSv4 server, 59

J

JavaScript, 190
Journal file system, 67

K

KDE Plasma desktop environment, 107
Keyboard macro ring, 241
Keymaps, 243–​244

local, 245
prefix, 244

KeyPress event, 124, 139
Keystroke

abbreviations (abbrevs), 236–​237
controlling of abbrev expansion,

237–​238
defined, 236–​237
listing and editing, 238
saving of, 238–​239

macro commands, 207–​208,
239–​243

basic use, 240–​241
defined, 240
naming, saving, and invoking,

241–​242
saving for future sessions,

242–​243
Kill Ring, 209–​211, 232
kmacro-​ring-​max, 241
KWin (graphic program), 99, 107

L

la -​ls command, 2
Least frequently used (LFU) block

request, 67
Least recently used (LRU) block

request, 67
Level-​ 2 adaptive read cache

(L2ARC), 30
Library call, 18

C library calls, 19
Linux, 94–​96
Linux sockets, 114, 119
list-​abbrevs command, 238

<Alt+​X> list-​abbrevs command, 238
Local client, 114
Logging mechanism, 67
lp command, 22
lpr command, 22–​23
lpr -​Pqpr [0–​9]*.jpg command, 251
lpr –​Pwpr file27 command, 252
lsblk-​a command, 3
ls command, 5, 8–​9, 11, 16–​17, 23, 31,

247, 251
ls -​la command, 10, 45, 215, 217–​218
ls -​la *.exe command, 252
ls -​la myfile command, 11
ls my command, 14
lx command, 11
lx -​la myfile command, 11
LZ77 (a sliding window compression

algorithm), 81–​82
lzjb (compression algorithm tool), 81

M

Management interface, 187
man command, 16, 18, 20, 23

-​k option, 19–​20
man -​f command, 19
man -​k passwd command, 19–​20
man ls command, 16
man man command, 17
man passwd command, 18
man pwd command, 18

-​S option, 18
man -​S2 read command, 19
man -​S3 fopen fread strcmp

command, 19
Metacharacter, 14
MicroSD card, 26, 31
Microsoft Windows, 112, 115
Mirror, 28
mkdir command, 12
mode-​specific-​map, 244
more command, 6
more file2 command, 3
more -​q file1 command, 3
Multiple command, 5
Multiple window managers, 95
multiplot command, 183
Mutter (graphic program), 99, 107
mv command, 7

Index 273

N

Network File System, version 4 (NFSv4)
hostname -​I command, 59
installation of

client package, 56
server package, 55–​56

IP address of the NFSv4 server, 59
mounting of NFSv4 shared ZFS pools

and filesystems, 59–​61
automatic, 61

server and client connected via
NFSv4, 55

ZFS pools and filesystems, 53–​55
creating of, 56–​57
how to allow writing to, 62
mounting of, 59–​61
unsharing of, 62–​63

Network transparency, 95
newusers command, 265

O

Object Oriented Programming (OOP),
121, 152, 158, 165

OpenGL, 104
output_​file, 128

P

passwd command, 18, 20, 251
Pathname, 4, 7, 21
pathname-​list command, 9
Pixel maps (pixmaps), 127
plot command, 178
Pool, 28
Printing commands, 22–​23
procedural programming paradigm

libraries, 121
pwd command, 12–​14, 247
Python, 190
Python3, 116, 159

queue module, 159

Q

QApplication, 156
qmake command, 154
QML (Qt Meta-​Object Language)

scripting language, 97

QPushButton, 156, 157
Qt5 program, 100, 107, 116–​117, 119

adding a quit button, 156–​158
basics of, 151–​161
C+​+​ libraries and tools, 97
for connecting signals and slots,

158–​161
creating an executable program from

the command line, 153–​161
cross-​platform application framework

and toolkit, 96
data-​generating code, 156
for development of

cross-​platform applications, 97
X Window System client

applications with a GUI, 152
display system code, 156
framework code, 152
GUI-​based toolkit, 155
key features and components of, 97
observer pattern, 160
programming considerations, 152–​153
and Qt Creator, 153
software frameworks, 151
text edit capability, 155–​156

Qt Company, The, 97
Qt Creator, 97, 118, 153
QTextEdit, 156
Qt Quick, 97
Qt Widgets, 97
Queue, 113
QVBoxLayout, 158

R

RAID-​Z (virtual device), 28, 30, 50, 64–​65
Rapid creation and deletion, of ZFS

snapshot, 83
Raspberry Pi OS commands, 2–​3

execution of, 11
general syntax of, 3, 16
Reference Manual pages, 16

Raspberry Pi OS GUI, 97
components of, 94–​97

Raspberry Pi OS system, 119, 128, 253
applications, 108
Debian Bookworm-​based, 92, 94, 107,

143, 171, 186, 193
Debian Bullseye-​ based, 96

Index274

GUI-​based, 110, 220
keystroke-​command text editors, 191
machines, 59
manual page, 17

parts of, 18
Openbox LXDE desktop, 96

receive sub-​command, 41
Redundant Array of Independent Disks

(RAID), 28, 64
refresh command, 178
Remote client, 54, 114
replace-​string command, 209, 212
replot command, 178, 185
Resilvering, process of, 28, 49, 51, 66
rm command, 8, 15, 16
rmdir command, 15
rpool command, 50–​52
rsync command, 50, 256

S

SATA bus “bays,” 53
Scenegraph, 101, 103
Screennumber, 127
sda command, 31
sdb command, 31
S-​down-​mouse-​1 (keyboard event), 244
sec-​num command, 16
self-​insert-​command, 244
send sub-​command, 41
Separate intent log (SLOG), 67
Separate log (SLOG), 30, 67
Server, 95, 113–​114, 122

X.org server, 117
Server-​class machines, 25
Session management, 186
Set Build Commands, 172
set command, 45, 183–​184
set margin command, 186
set origin command, 185–​186
set size command, 185–​186
set style data command, 179
set style function command, 179
set terminal qt enhanced persist

command, 182
set terminal x11 enhanced

command, 182
set terminal x11 noenhanced

command, 182

set terminal x11 nopersist command, 182
set terminal x11 persist command, 182
set terminal x11 title “My Plot”

command, 182
sh command, 247
<Shift+​Tab> (widget-​ backward)

command, 231
show terminal command, 176
Slice, 28
Snapshot, 28, 43
snapshot sub-​command, 41, 44
splot command, 178, 185
Stacking window managers, 99
Standard input, 5
Storage space efficiency, 83
strcmp command, 19
Subdirectory, 5
sudo apt install libgtk-​4-​dev

command, 172
sudo su -​command, 44
sudo zfs destroy command, 87
sudo zfs -​r destroy command, 90
sudo zpool destroy command, 87, 90
Sun Microsystems, 81
System calls, 17–​19, 252

T

Tab key, 245
Task management, 190
Thonny, 189
time command, 3
Toolkit IDEs, 117–​118
Touch-​enabled user interfaces, 97

U

Ubuntu, 106
umount command, 50
UNIX operating system, 110

protocols of, 110
shell prompt, 263
software ecosystem, 96
text editor, 190

“User” file system, 24
userid, command for displaying, 21
User Interface (UI), 116, 187
Utility commands, 20–​22

for system setups, 21

Index 275

V

Vdev (virtual device), 28, 29–​30
Virtual Network Computing (VNC), 106
Visual GUI design tools, 97
Visual Studio Code, 143, 189–​190
Volume, 28

W

Wayfire, 96, 101, 106–​107
compositor, 103
window manager, 115

Wayfire compositor, 103
Xwayland and, 107–​109

Wayland (protocol for communication),
95, 188

architecture, 101–​104
client and server libraries, 98
client-​server model, 100
command to know running of, 98–​99
compatibility layer, 108
core interfaces, 101
event/​request map, 103
freedesktop.org project, 98
history of, 97–​109
MIT License, 98
network transparency, 100
protocol, 99–​100, 108

display, 96, 108
overview, 100

rendering, 104–​105
Window system comparison, 101–​104
and X server, 100, 105–​106

Wayland compositor, 107
general architecture, 108

Wayland display server protocol,
107, 127

Wayland surface, 127
Weston, 100
whatis command, 19–​20

login set setenv, 20
man, 20

whereis bash command, 21
whereis command, 21, 22
whoami command, 21–​22
who command, 22, 247
Widget toolkits, 107
Window gadgets, 156

Window management, 95
Window manager, 112, 117–​118, 186

functions and appearance of, 115–​116
general functions, 116

Windows operating system, 200
Word processing, 190

X

X11, see X Window System
X86 architecture system, 53
XCB client program, 116, 118–​119, 121,

123, 156, 178, 187
application code for, 121
Application Programming Interface

(API), 139
client application programs, 144–​151
documentation of, 139–​142
“event loop” method of

interaction, 139
Graphics Context (GC), 142–​143
idea of “screen,” 139
installing and compiling, 143
protocol layer, 139
top-​down considerations, 138–​143
use of, 137–​151
xcb_​connect(), 138
XCB Connection, 139
xcb_​create_​window(), 138
xcb_​map_​window(), 138
versus Xlib, 121–​123

X client libraries, 118, 121
X clients (application programs), 119
XcloseDisplay(), 124
XCreateSimpleWindow(), 124
XFreeGC(), 124
Xfwm (graphic program), 99
XGetGeometry(), 122, 124
XGetWindowAttributes(), 122, 124
Xlib client program, 116, 118–​119, 121,

123–​137, 138, 152, 156, 178, 187
application code for, 121
client application program

compiling of, 128
client–​server model, 123
C programs, 128–​129

codes, 130, 133–​135
description of hostname, display,

screen, and window, 124–​127

Index276

display functions, 136
drawing function, 136
event functions, 137
function calls, 138

simple1_​white.c, 129
test1.c, 130
test4.c, 133

function categories, 124
Graphics Context (GC), 127, 132
partitioning of hostname/​display/​

screen, 139
synchronicity of, 122
top-​down considerations, 123–​124
versus XCB, 121–​123
XGetWindowAttributes(), 122

Xlib Programming Manual, 122
XMapWindow(), 124
XNextEvent(), 124
XOpenDisplay(), 124
X.Org project (MIT Expat License), 98
X.org server, 117
X Protocol, 117–​118
X Render extension, for graphics

rendering, 95
XResizeWindow, 122
XSelectInput(), 124
X Server program, 101–​102, 104, 106, 119,

120, 122, 142, 152
establishment of, 139

XSetWMProperties(), 124
XUnloadFont(), 124
Xwayland, 95–​96, 106–​109

need for, 96
and Wayfire compositor, 107–​109

X Windows Protocol, 127
X Window System, 94, 99, 106–​107, 142,

186, 259
advantage(s) of, 111–​113
application programs, 119

structure of, 119–​120
basics of, 111–​113
client and server topologies of, 114
client application program, 137

coding of, 109
creation of, 116–​117
parts of, 116
structure and development model,

117–​119

client/​libraries/​protocol
components, 118

concept of, 113
defined, 109
description of hostname, display,

screen, and window, 124–​127
event–​request loop, 187
event–​request model, 113
Gnuplot and, 173–​186
graphical user interface (GUI),

109–​137
network protocol for, 109

implementation of, 109
key components of interactivity,

113–​115
protocol, 115
Raspberry Pi applications for, 108
replacement for, 95
server, 114
user–​application software interaction

model, 110–​111
versus Wayland, 105–​106
window manager, 93

functions and appearance of the
interface of, 115–​116

X Window System Protocol, 139

Y

yppasswd command, 251

Z

zdb -​DD poolname command, 78
Zettabyte File System (ZFS), 24–​25

backups
incremental, 82–​87
using zfs snapshot command, 80–​82

basic examples, 32–​39
commands and operations, 65–​80

cache, 67
categories and basic

definitions, 65–​67
devices and device

terminology, 66–​67
directories and files, 65
log, 67
scrubbing and resilvering, 66
storage pools, 67–​74

Index 277

ZFS states, 65–​66
zpool command, 67–​74

components of, 29
creation of pools and

filesystems, 56–​57
data integrity features, 84
disposition of, 45
finding logical device names of

media, 31
graphical interface, 53
important concepts, 29–​30
installation of, 32
listing the contents of, 42
Network File System, version 4

(NFSv4), 53–​65
pools and file systems, 30–​31
resilvering operation, 49
rolling back, 41–​42
root file system, 27
sending and receiving snapshots

across a LAN, 82–​87
terminology, 27–​28
types of vdev in, 29–​30
working of, 28–​29

zfs command, 24, 26, 30–​31, 41, 65,
255–​256

add command, 38
resilvering of, 51

allow, 79, 80
allow master, 79
clone, 77
create, 75
destroy, 75, 76, 80
get all, 78–​79
get compression, 78
get compressratio, 77
get dedupratio, 78
get setuid, 78
inherit compression, 79
list, 41, 44, 74
mount, 75, 256
promote, 41, 43, 77
receive, 49, 77, 81–​84, 91
rename, 77

rollback, 42, 77, 80
scrub, 35
send, 49, 77, 81–​84, 91
set, 45
set compression, 77, 82
set copies, 78
set dedup, 78
set quota, 78
share, 75
snapshot command, 24, 44, 50, 76,

91
file system backups using, 80–​82

snapshot rename, 76
umount, 75
unallow, 79
unmount, 256
unshare, 76
upgrade, 79

ZFS intent log (ZIL), 30, 67
zle (Zsh Line Editor), 82
zpool command, 24, 26, 30–​32, 40, 53,

65, 67–​74
attach, 37, 49, 51
clear data01, 73
create, 33, 51
create -​n data2 /​ dev/​ sdb1, 68
destroy, 34
export, 69, 72
get all poolname, 73
history -​il, 68
import, 72
iostat -​v, 39
iostat -​v 5 5 command, 68
list, 33, 35, 51, 73
offline, 66
remove command, 70

attach and detach sub-​
commands, 70

replace, 36
scrub, 78
scrub data01, 73
status, 34–​35, 52, 68
status -​xv, 68
upgrade, 73

https://taylorandfrancis.com

	Cover
	Half Title
	Series Information
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Series Preface
	Volume 4 Preface
	0 “Quick Start” Into Sysadmin for the Raspberry Pi Operating System
	0.0 Objectives
	0.1 Introduction
	0.2 File Maintenance Commands and Help On Raspberry Pi OS Command Usage
	0.2.1 File and Directory Structure
	0.2.2 Viewing the Contents of Files
	0.2.3 Creating, Deleting, and Managing Files
	0.2.4 Creating, Deleting, and Managing Directories
	0.2.5 Obtaining Help With the Man Command
	0.2.6 Other Methods of Obtaining Help

	0.3 Utility Commands
	0.3.1 Examining System Setups

	0.4 Printing Commands

	1 ZFS Administration and Use
	1.0 Objectives
	1.1 Introduction
	1.1.1 Zpool and Zfs Command Syntax
	1.1.2 ZFS Terminology
	1.1.3 How ZFS Works
	1.1.4 Important ZFS Concepts

	1.2 Example ZFS Pools and File Systems: Using the Zpool and Zfs Commands
	1.2.1 A Quick and Easy Way to Find the Logical Device Names of Media Actually Installed On Your System
	1.2.2 Basic ZFS Examples

	1.3 ZFS Commands and Operations
	1.3.1 Command Categories and Basic Definitions
	1.3.2 ZFS Storage Pools and the Zpool Command
	1.3.3 ZFS File System Commands and the zfs Command

	1.4 File System Backups Using Zfs Snapshot
	1.4.1 Examples of Snapshot
	1.4.2 Zfs Rollback
	1.4.3 Cloning/Promoting
	1.4.4 Renaming a Filesystem
	1.4.5 Compression of Filesystems

	1.5 Incremental ZFS Backups

	2 The X Windows System, Wayland, Xwayland, Wayfire, GTK, Qt, and Gnuplot
	2.0 Objectives
	2.1 Introductory Remarks
	2.1.1 What Constitutes a Raspberry Pi OS GUI?

	2.2 A Bit of Wayland History
	2.2.1 How Do You Know You’re Running Wayland, Xwayland, and the Wayfire Compositor, Or for That Matter, How Do You Know If You’re Running an X11 Backend?
	2.2.2 The Wayland Protocol
	2.2.3 Wayland Protocol Overview
	2.2.4 Wayland Core Interfaces
	2.2.5 Window System Comparison
	2.2.5.1 Wayland Architecture

	2.2.6 Wayland Rendering
	2.2.7 Differences Between Wayland and X
	2.2.8 Xwayland
	2.2.8.1 Wayland Compositors—A Historical Perspective
	2.2.8.2 Xwayland and the Wayfire Compositor

	2.3 X Window System GUI Basics
	2.3.1 Introduction
	2.3.2 User–Application Software Interaction Model
	2.3.3 Basics of the X Window System
	2.3.3.1 What Is the X Window System Similar to and What Advantage(s) Does It Have?

	2.3.4 The Key Components of Interactivity: Events and Requests
	2.3.5 Functions and Appearance of the Window Manager Interface
	2.3.6 Creating X Window System Client Application Programs
	2.3.7 Client Application Program Structure and Development Model
	2.3.7.1 Model Overview
	2.3.7.2 The Structure of a Typical X Client Application Program
	2.3.7.3 Specifying Resources
	2.3.7.4 Writing the Code for an X Windows Client Application

	2.3.8 Xlib Versus XCB
	2.3.9 Xlib
	2.3.9.1 Basic Xlib Top-Down Considerations
	2.3.9.2 X Window and Xlib Description of Hostname, Display, Screen, and Window
	2.3.9.3 The Xlib Graphics Context (GC)
	2.3.9.4 Compiling an Xlib Client Application Program
	2.3.9.5 Sample Xlib Client Application Programs

	2.4 Using XCB
	2.4.1 XCB Top-Down Considerations
	2.4.1.1 The XCB API
	2.4.1.2 XCB Documentation
	2.4.1.3 The XCB Graphics Context (GC)

	2.4.2 Installing and Compiling an XCB Program
	2.4.3 Sample XCB Client Application Programs

	2.5 Basics of the Qt5 and GTK4 Toolkits
	2.5.1 The Qt5 Framework
	2.5.2 Some Preliminary Qt5 Programming Considerations
	2.5.3 Installing the Qt5 Framework With Qt Creator, and Obtaining Help
	2.5.4 Creating an Executable Qt5 Program From the Command Line
	2.5.4.1 The Eight Steps to Creating a Qt5 Project and Program On the Command Line

	2.6 The GTK Framework
	2.6.1 Installing GTK4
	2.6.2 GTK4 Basics
	2.6.3 Example GTK4 Programs
	2.6.4 Using Geany to Build and Execute a GTK4 Program

	2.7 Gnuplot and the X Window System
	2.7.1 Installing Gnuplot
	2.7.2 What Gnuplot Is and Basic Syntax for Interactive and Batch Modes
	2.7.3 Batch Mode Examples
	2.7.4 Batch Mode Plotting to a Terminal With Persistence of the Plot Window
	2.7.5 Interactive Mode and Terminal Type
	2.7.6 Plotting in Interactive Mode
	2.7.6.1 Plotting Data Contained in a File
	2.7.6.2 Plotting Styles

	2.7.7 Obtaining Help On Important Commands
	2.7.8 Qt and X11 Terminals
	2.7.8.1 Qt Terminal Type Parameters
	2.7.8.2 X11 Terminal Type Parameters

	2.7.9 Plotting in Multiple Windows Or Multiple Graphs in One Window

	2.8 Summary

	3 The GNU Emacs Editor
	3.0 Objectives
	3.1 Introduction
	3.2 Installing Emacs On the Raspberry Pi OS
	3.2.1 Launching Emacs, Emacs Screen Display, and General Emacs Concepts and Features

	3.3 Emacs Help
	3.4 Graphical Features
	3.5 Buffers, File, Windows, and Frames
	3.6 Point, Mark, and Region
	3.7 How to Use Emacs to Do Shell Script File Creation, Editing, and Execution
	3.8 Visiting Files, Saving Files, and Exiting
	3.9 Cursor Movement and Editing Commands
	3.10 Keystroke Macros
	3.11 Cut Or Copy and Paste and Search and Replace
	3.12 How to Do Purely Graphical Editing With GNU Emacs
	3.12.1 Editing Data Files
	3.12.2 How to Start, Save a File, and Exit in Graphical Emacs

	3.13 Emacs Graphical Menus
	3.14 Creating and Editing C Programs
	3.15 Working in Multiple Buffers
	3.16 Changing Emacs Behavior
	3.16.1 Using the Options Menu
	3.16.2 Changing Emacs Variables With Custom and the <Alt+X> Customize Command
	3.16.2.1 Browsing and Searching for Settings
	3.16.2.2 Changing a Variable
	3.16.2.3 Globally Saving Customizations for a Group
	3.16.2.4 More About Emacs Variables
	3.16.2.5 Examining and Setting Variables

	3.16.3 Init File Elisp Syntax
	3.16.4 Keystroke Abbreviations Or Abbrevs
	3.16.5 Defining Abbrevs
	3.16.6 Controlling Abbrev Expansion
	3.16.7 Listing and Editing Abbrevs
	3.16.8 Saving Abbrevs
	3.16.9 Keystroke Macro Commands
	3.16.9.1 Keystroke Macros: Basic Use
	3.16.9.2 Naming, Saving, and Invoking Or Using Keyboard Macros
	3.16.9.3 Saving Keyboard Macros for Future Sessions

	3.16.10 Keys, Commands, and Variables
	3.16.10.1 Keymaps
	3.16.10.2 Prefix Keymaps
	3.16.10.3 Local Keymaps
	3.16.10.4 Changing Key Bindings Interactively
	3.16.10.5 Rebinding Keys in Your Init File
	3.16.10.6 Examples

	3.17 Summary

	Questions, Problems, and Projects
	Chapter 0
	Chapter 1
	Chapter 2
	Chapter 3

	Index

