
spi.open(0, 0) 
    # Bus=0, device=0

spi.max_speed_hz 
= 3900000

CS = LED(26)     # GPIO26 is CS ou
tput

CS = LED(26)     # GPIO26 is CS ou
tput

CS.on()      # Disable CS

# This function i
mplements the DAC

. The data in „da
ta“ is sent

# to the DAC

def DAC(data):

   CS.off()     # Enable CS

#
# Send HIGH byte

#
   temp = (data >

> 8) & 0x0F   # Get upper byte

   temp = temp + 
0x30    # OR with 0x30

   spi.xfer2([tem
p])    # Send to DAC

#

CS = LED(26)     # GPIO26 is CS ou
tput

CS.on()      # Disable CS

# This function i
mplements the DAC

. The data in „da
ta“ is sent

# to the DAC

def DAC(data):

   CS.off()     # Enable CS

# Send HIGH byte

   temp = (data >
> 8) & 0x0F   # Get upper byte

   temp = temp + 
0x30    # OR with 0x30

   spi.xfer2([tem
p])    # Send to DAC

#
Dogan Ibrahim

Raspberry Pi 5 
Essentials 

Program, build, and master over 60 projects 
with Python

Raspberry Pi 5 
Essentials
Program, build, and master over 60 projects 
with Python

Prof Dogan Ibrahim has a BSc 
(Hons) degree in Electronic 
Engineering, an MSc degree in 
Automatic Control Engineering, 
and a PhD degree in Digital Signal 
Processing and Microprocessors.

Dogan has worked in many 
organizations and is a Fellow of 
the Institution of Engineering 
and Technology (IET) in UK as 
well as a Chartered Electrical 
Engineer. He has authored over 
100 technical books and over 
200 technical articles on electronics, 
microprocessors, microcontrollers, 
and related fields. Dogan is a 
certified Arduino professional and 
has many years of experience with 
numerous types of microprocessors 
and microcontrollers.

The Raspberry Pi 5 is the latest single-board computer from the Raspberry Pi 
Foundation. It can be used in many applications, such as in audio and 
video media centers, as a desktop computer, in industrial controllers, 
robotics, and in many domestic and commercial applications. In addition 
to the well-established features found in other Raspberry Pi computers, 
the Raspberry Pi 5 o� ers Wi-Fi and Bluetooth (classic and BLE), which 
makes it a perfect match for IoT as well as in remote and Internet-based 
control and monitoring applications. It is now possible to develop many 
real-time projects such as audio digital signal processing, real-time digital 
filtering, real-time digital control and monitoring, and many other real-time 
operations using this tiny powerhouse.

The book starts with an introduction to the Raspberry Pi 5 computer 
and covers the important topics of accessing the computer locally and 
remotely. Use of the console language commands as well as accessing 
and using the desktop GUI are described with working examples. The 
remaining parts of the book cover many Raspberry Pi 5-based hardware 
projects using components and devices such as 

> LEDs and buzzers 
> LCDs
> Ultrasonic sensors
> Temperature and atmospheric pressure sensors
> The Sense HAT
> Camera modules

Example projects are given using Wi-Fi and Bluetooth modules to send 
and receive data from smartphones and PCs, and sending real-time 
temperature and atmospheric pressure data to the cloud.

All projects given in the book have been fully tested for correct operation. 
Only basic programming and electronics experience are required to follow 
the projects. Brief descriptions, block diagrams, detailed circuit diagrams, 
and full Python program listings are given for all projects described. 
Readers can find the program listings on the Elektor Store website, 
www.elektor.com (search for: book title).

TR
IED

•
T

E S T E
D
•

Raspberry Pi 5 Essentials  •  D
ogan Ibrahim

Elektor International Media
www.elektor.com

books booksbooks books

SKU20703_COV_Raspberry Pi 5 Essentials_v02.indd   Alle pagina'sSKU20703_COV_Raspberry Pi 5 Essentials_v02.indd   Alle pagina's 09-11-2023   14:2309-11-2023   14:23





Raspberry Pi 5 Essentials
Program, build, and master over 

60 projects with Python

●

Dogan Ibrahim

Raspberry 5 Projects.indd   3Raspberry 5 Projects.indd   3 09-11-2023   15:4409-11-2023   15:44



● 4

● This is an Elektor Publication. Elektor is the media brand of  
Elektor International Media B.V. 
PO Box 11, NL-6114-ZG  Susteren, The Netherlands 
Phone: +31 46 4389444

● All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or 
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this 
publication, without the written permission of the copyright holder except in accordance with the provisions of the 
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency 
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to 
reproduce any part of the publication should be addressed to the publishers.

● Declaration

The author, editor, and publisher have used their best efforts in ensuring the correctness of the information contained 
in this book. They do not assume, and hereby disclaim, any liability to any party for any loss or damage caused by 
errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other cause.
All the programs given in the book are Copyright of the Author and Elektor International Media. These programs 
may only be used for educational purposes. Written permission from the Author or Elektor must be obtained before 
any of these programs can be used for commercial purposes.

● British Library Cataloguing in Publication Data 
A catalogue record for this book is available from the British Library

● �ISBN 978-3-89576-586-5	 Print 
ISBN 978-3-89576-587-2	 eBook

● �© Copyright 2023: Elektor International Media B.V. 
Editor: Clemens Valens 
Prepress Production: D-Vision, Julian van den Berg 
Print:	 Ipskamp Printing, Enschede (NL)

 

Elektor is the world's leading source of essential technical information and electronics products for pro engineers, 

electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers 

high-quality content - via a variety of media channels (including magazines, video, digital media, and social media) in 

several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

Raspberry 5 Projects.indd   4Raspberry 5 Projects.indd   4 09-11-2023   15:4409-11-2023   15:44



Contents

● 5

Contents

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                          11

Chapter 1 • The Raspberry Pi 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        13

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     13

1.2 The Raspberry Pi 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              13

Chapter 2 • �Installing the Raspberry Pi 5 Operating System . . . . . . . . . . . . . . . . .                 17

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     17

2.2 Using a pre-installed SD card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       17

2.3 Larger font in Console mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       18

2.4 Accessing your Raspberry Pi 5 Console from your PC – the Putty program . . . . . . .        20

2.4.1 Configuring Putty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              22

2.5 Accessing the Desktop GUI from your PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               23

2.6 Assigning a static IP address to your Raspberry Pi 5 . . . . . . . . . . . . . . . . . . . . . .                       24

2.7 Enabling Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              26

2.8 Connecting the Raspberry Pi 5 to a wired network  . . . . . . . . . . . . . . . . . . . . . . .                        26

2.8.1 Unable to connect to a wired network  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               27

2.9 Installing the Raspberry Pi 5 Bookworm operating system  
on a blank microSD card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             28

Chapter 3 • Using The Console Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               31

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     31

3.2 The Command Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Useful Console commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         31

3.3.1 System and user information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     31

3.3.2 The Raspberry Pi 5 directory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               33

3.3.3 Resource monitoring on the Raspberry Pi 5 . . . . . . . . . . . . . . . . . . . . . . . . . . .                            44

3.3.4 Shutting Down  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               46

3.3.5 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  47

3.3.6 System information and other useful commands . . . . . . . . . . . . . . . . . . . . . . .                        48

Chapter 4 • Desktop GUI – Desktop Applications  . . . . . . . . . . . . . . . . . . . . . . . . . .                          50

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     50

4.2 Desktop GUI Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         50

4.2.1 Applications Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             51

Contents

Raspberry 5 Projects.indd   5Raspberry 5 Projects.indd   5 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 6

4.2.2 Web browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 53

4.2.3 File manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 53

4.2.4 Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    54

4.2.5 Manage Bluetooth devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        54

4.2.6 Wi-Fi  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                      54

4.2.7 Volume control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               55

4.2.8 Date and time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                55

Chapter 5 • Using a Text Editor in Console Mode . . . . . . . . . . . . . . . . . . . . . . . . . .                          56

5.1 nano text editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                56

5.2 vi text editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  61

Chapter 6 • Creating and Running a Python Program  . . . . . . . . . . . . . . . . . . . . . .                      65

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     65

6.2 Method 1 – Interactively from command prompt in console mode  . . . . . . . . . . . .             65

6.3 Method 2 – Create a Python file in console mode . . . . . . . . . . . . . . . . . . . . . . . .                         65

6.4 Method 3 – Create a Python file in Desktop GUI mode  . . . . . . . . . . . . . . . . . . . .                     66

6.5 Which method?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                68

Chapter 7 • Python Programming and Simple Programs . . . . . . . . . . . . . . . . . . . .                    69

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     69

7.2 Variable names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                69

7.3 Reserved words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                70

7.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    70

7.5 Line continuation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               70

7.6 Blank lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    70

7.7 More than one statement on a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   71

7.8 Indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   71

7.9 Python data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               71

7.10 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    72

7.11 Strings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     75

7.11.1 String functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              76

7.11.2 Escape sequences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            77

7.12 Print statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               77

7.13 List variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 78

Raspberry 5 Projects.indd   6Raspberry 5 Projects.indd   6 09-11-2023   15:4409-11-2023   15:44



Contents

● 7

7.13.1 List functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                79

7.14 Tuple variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                80

7.15 Dictionary variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            80

7.15.1 Dictionary functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           81

7.16 Keyboard input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                81

7.17 Comparison operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           82

7.18 Logical operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              82

7.19 Assignment operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           82

7.20 Control of flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                82

7.20.1 if, if…else, and elif  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            82

7.20.2 for statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               84

7.20.3 while statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              85

7.20.4 continue statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           85

7.20.5 break statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             86

7.20.6 pass statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              86

7.21 Example 1 – 4-Band resistor colour code identifier . . . . . . . . . . . . . . . . . . . . . .                       87

7.22 Example 2 – Series or parallel resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               89

7.23 Example 3  –  Resistive potential divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               91

7.24 Trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          93

7.25 User-defined functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           93

7.26 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    96

7.27 Recursive functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            106

7.28 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  106

7.29 try/final exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            109

7.31 Creating your own modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      111

Chapter 8 • Raspberry Pi 5 LED Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               114

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    114

8.2 Raspberry Pi 5 GPIO pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  114

8.3 Project 1 – Flashing an LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       115

8.4 Project 2 – Alternately flashing LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 118

8.5 Project 3 – Binary counting with 8 LEDs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              119

8.6 Project 4 – Christmas lights (random flashing 8 LEDs)  . . . . . . . . . . . . . . . . . . .                    124

Raspberry 5 Projects.indd   7Raspberry 5 Projects.indd   7 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 8

8.7 Project 5 – Chasing LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         126

8.8 Project 6 – Rotating LEDs with push-button switch . . . . . . . . . . . . . . . . . . . . . .                       128

8.9 Project 7 – Morse Code exerciser with LED or buzzer  . . . . . . . . . . . . . . . . . . . .                     132

8.10 Project 8 – Electronic dice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       136

Chapter 9 • Using an I²C LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        141

9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    141

9.2 The I²C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  141

9.3 I²C pins of Raspberry Pi 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        142

9.4 Project 1 – Using an I²C LCD – Seconds counter  . . . . . . . . . . . . . . . . . . . . . . .                        142

9.5 Project 2 – Using an I²C LCD – Display time  . . . . . . . . . . . . . . . . . . . . . . . . . .                           147

9.6 Project 3 – �Using an I²C LCD – Display IP address of Raspberry Pi 5 . . . . . . . . . .           148

9.7 Project 4 – Voltmeter – Output to the screen . . . . . . . . . . . . . . . . . . . . . . . . . .                           149

9.8 Project 5 – Voltmeter – Output to LCD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               154

9.9 Project 6 – Analog temperature sensor thermometer – output to the screen . . . .     156

9.10 Project 7 – �Analog temperature sensor thermometer – output on LCD  . . . . . . .        159

9.11 Project 8 – Reaction timer – output to screen . . . . . . . . . . . . . . . . . . . . . . . . .                          161

9.12 Project 9 – Reaction timer – output to LCD  . . . . . . . . . . . . . . . . . . . . . . . . . .                           163

9.13 Project 10 – Automatic dusk lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 165

9.14 Project 11 – Ultrasonic distance measurement . . . . . . . . . . . . . . . . . . . . . . . .                         167

9.15 Project 12 – Car parking sensors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  170

9.16 Project 13 – Fading LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.17 Project 14 – Melody maker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Chapter 10 • �Plotting Graphs with Python and Raspberry Pi 5  . . . . . . . . . . . . . .              176

10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   176

10.2 The Matplotlib graph plotting library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                176

10.3 Project 1 – RC transient circuit analysis - Charging . . . . . . . . . . . . . . . . . . . . .                      189

10.4 Project 2 – RC transient circuit analysis - Discharging . . . . . . . . . . . . . . . . . . .                    191

10.5 Transient RL circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           194

10.6 Project 3 – RCL transient circuit analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             194

10.7 Project 4 – Temperature, pressure and humidity measurement –  
Display on the screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              198

Raspberry 5 Projects.indd   8Raspberry 5 Projects.indd   8 09-11-2023   15:4409-11-2023   15:44



Contents

● 9

10.8 Project 5 – Temperature, pressure and humidity measurement –  
Plotting the data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 202

Chapter 11 • �Waveform Generation – Using the Digital-to-Analog  
Converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        204

11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   204

11.2 The MCP4921 DAC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            204

11.3 Project 1 – Generating a square wave signal with any peak voltage up to +3.3 V .  205

11.4 Project 2 – Generating a sawtooth wave signal . . . . . . . . . . . . . . . . . . . . . . . .                         209

11.5 Project 3 – Generating a triangle wave signal . . . . . . . . . . . . . . . . . . . . . . . . .                          211

11.6 Project 4 – Generating an arbitrary wave signal . . . . . . . . . . . . . . . . . . . . . . .                        213

11.7 Project 5 – Generating a sine wave signal . . . . . . . . . . . . . . . . . . . . . . . . . . .                            215

Chapter 12 • Using the Sense HAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    219

12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   219

12.2 The Sense HAT interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        219

12.3 Programming the Sense HAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     221

12.4 Project 1 – Displaying text on Sense HAT . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             221

12.5 Project 2 – Test your math skills - multiplication . . . . . . . . . . . . . . . . . . . . . . .                        224

12.6 Project 3 – Learning the times tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               225

12.7 Project 4 – Display the temperature, humidity, and pressure . . . . . . . . . . . . . .               226

12.8 Project 5 – ON-OFF temperature controller  . . . . . . . . . . . . . . . . . . . . . . . . . .                           228

12.9 Project 6 – Generate two dice numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              233

12.10 Project 7 – Display the current time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               235

12.11 Project 8 – Displaying two-digit integer numbers  . . . . . . . . . . . . . . . . . . . . .                      236

12.12 Project 9 – Up counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         240

12.13 The inertial measurement sensor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 241

12.13.1 Project 10 – Reading the acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             241

12.13.2 Project 11 – Accelerometer-based dice . . . . . . . . . . . . . . . . . . . . . . . . . . .                            241

12.13.3 Project 12 – Accelerometer-based LED shapes . . . . . . . . . . . . . . . . . . . . . .                       243

Chapter 13 • Using a 4×4 Keypad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     245

13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   245

13.2 Project 1 – Using a 4×4 keypad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   245

Chapter 14 • Communication over Wi-Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                256

Raspberry 5 Projects.indd   9Raspberry 5 Projects.indd   9 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 10

14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   256

14.2 UDP and TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                256

14.2.1 UDP communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          257

14.2.2 TCP communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          257

14.3 Project 1 – Sending a text message to a smartphone using TCP/IP . . . . . . . . . .           258

14.4 Project 2 – �Two-way communication with the smartphone using TCP/IP  . . . . . .       262

14.5 Project 3 – Communicating with a PC using TCP/IP . . . . . . . . . . . . . . . . . . . . .                      263

14.6 Project 4 – Controlling an LED connected to Raspberry Pi 5 from a  
smartphone using TCP/IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           266

14.7 Project 5 – Sending a text message to a smartphone using UDP . . . . . . . . . . . . 268

14.8 Project 6 – Controlling an LED connected to Raspberry Pi 5 from a  
smartphone using UDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             271

14.9 Communicating with the Raspberry Pi Pico W over Wi-Fi . . . . . . . . . . . . . . . . .                  273

14.9.1 Project 7 – Raspberry Pi 5 and Raspberry Pi Pico W communication –  
controlling a relay over Wi-Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         276

14.10 Project 8 – Storing ambient temperature and atmospheric pressure data  
in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     280

Chapter 15 • Communication over Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            288

15.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   288

15.2 Project 1 – Exchanging text with a smartphone  . . . . . . . . . . . . . . . . . . . . . . .                        288

15.3 Project 2 – Bluetooth control of LED from a smartphone . . . . . . . . . . . . . . . . .                  295

15.4 Arduino UNO – Raspberry Pi 5 Bluetooth communication . . . . . . . . . . . . . . . . .                  297

15.4.1 Project 3 – Communicating with an Arduino UNO over Bluetooth . . . . . . . . . .           298

15.4.2 Project 4 – Play audio (e.g. music) on Bluetooth speaker via Raspberry Pi 5 . .   303

Chapter 16 • Raspberry Pi 5 Camera Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . .                           305

16.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   305

16.2 Installing the Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          305

16.3 Project 1 – Still camera commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 306

16.3.1	libcamera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 306

16.4 Project 2 – �Building a time-lapse camera – Who is in my parking place? . . . . . .       309

16.5 Project 3 – Video camera commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                315

16.6 Project 4 – Who is ringing my doorbell? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              315

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                           320

Raspberry 5 Projects.indd   10Raspberry 5 Projects.indd   10 09-11-2023   15:4409-11-2023   15:44



● 11

Preface

The Raspberry Pi 5 is a credit-card-sized computer from Raspberry Pi that can be used in 
many applications, such as in audio and video media centers, as a desktop computer, in 
industrial controllers, robotics, and in many domestic and commercial applications. In addi-
tion to the many features found in other Raspberry Pi computers, the Raspberry Pi 5 offers 
Wi-Fi and Bluetooth 5.0 (with BLE support), which makes it highly desirable in remote and 
Internet-based control and monitoring applications.

The Raspberry Pi 5 is based on a 64-bit quad-core ARM Cortex-A76 processor running at 
2.4 GHz. This implies a performance boost of two to three times compared to the Raspberry 
Pi 4. Raspberry Pi 5 comes with an enhanced graphic performance, using an 800 MHz Vide-
oCore VII graphics chip. Additionally, the Raspberry Pi 5 features the RP1 southbridge chip 
made by Raspberry Pi. With the help of this RP1 southbridge, Raspberry Pi 5 delivers higher 
performance and more functionality for peripheral devices. It should now be possible to 
carry out many real-time operations such as audio digital signal processing, real-time digital 
control and monitoring, and many other real-time operations using this tiny powerhouse.

This book is about the Raspberry Pi 5 computer and its use in various control and moni-
toring applications. The book explains in simple terms and with many tested and working 
example projects how to configure the Raspberry Pi 5 computer, how to use the latest 
operating system (Bookworm), and how to write application programs using the popular 
Python programming language.

The book starts with an introduction to the Raspberry Pi 5 computer and covers the impor-
tant topics of accessing the computer locally and remotely. Use of the console command 
language as well as accessing and using the desktop GUI have been described with working 
examples.

The remaining parts of the book cover many Raspberry-Pi-5-based hardware projects us-
ing components and devices such as LEDs, buzzers, LCDs, ultrasonic sensors, temperature 
sensors, Sense HAT, camera modules, etc. Example projects are given using Wi-Fi and 
Bluetooth modules to send and receive data from smartphones, from the PC, and sending 
real-time temperature and atmospheric pressure data to the cloud.

All the projects presented in the book have been tested and are working. Complete circuit 
diagrams and full program listings are given for each project, with detailed descriptions of 
the operation of each project. The following subheadings are used in every project wher-
ever necessary:

•	Project title
•	Project description
•	Block diagram
•	Circuit diagram
•	Program listing
•	Suggestions for future work

Raspberry 5 Projects.indd   11Raspberry 5 Projects.indd   11 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 12

I hope the readers find the book helpful and enjoy reading it, and use a Raspberry Pi 5 in 
their next new projects.

Prof Dr. Dogan Ibrahim
London

Raspberry 5 Projects.indd   12Raspberry 5 Projects.indd   12 09-11-2023   15:4409-11-2023   15:44



Chapter 1 • The Raspberry Pi 5

● 13

Chapter 1 • The Raspberry Pi 5

1.1 Overview
The Raspberry Pi 5 is the latest credit card size computer from Raspberry Pi. In this chapter, 
we will look at the specifications of this new computer and compare it with the Raspberry 
Pi 4.

1.2 The Raspberry Pi 5
Raspberry Pi 4 was released in June 2019. There has been a long wait for a newer model 
and finally the Raspberry Pi 5 was launched in October 2023.

The Raspberry Pi 5 is claimed to have two or three times the processing power of The 
Raspberry Pi 4, which is already a very popular single board computer. The Raspberry Pi 5 
is currently available in 4 GB and 8 GB memory capacities, but smaller memory devices 
may appear later. Although the Raspberry Pi 5 is the same size and shape as the Model 4B, 
it has a number of interesting new features such as PCIe connector, power button, built-in 
real-time clock and some others that we will investigate in this chapter.

The Raspberry Pi 5 is based on a 2.4 GHz Cortex-A76 ARM processor with a new south-
bridge for handling the peripheral interface. A new VideoCore VII GPU is provided with 
800 MHz speed. The dual camera interface is another nice feature of the Raspberry Pi 5. 
The microSD card interface now supports cards that work at much higher speeds.

Table 1.1 shows a comparison of the Raspberry Pi 4 and 5. Notice that both devices have 
dual 2 × 4kp60 HDMI display interfaces, although Pi 5 supports HDR output. The 2 × 20 pin 
GPIO interface is the same in both devices. The Raspberry Pi 5 additionally has two camera 
interfaces, a PCIe bus connector, a UART interface, an RTC clock power connector, and a fan 
power connector. Wi-Fi and Bluetooth are supported by both devices. The on-board power 
switch on Pi 5 is a useful addition and was requested by many users. Pi 5 is powered from 
5 V/4 A USB-C type power supply, where Pi 4 is powered from a 3 A power supply. Pi 5 is 
slightly more expensive than Pi 4.

Raspberry Pi 4 Raspberry Pi 5

SoC BCM2711 SoC
Cortex-A72 CPU at 1.8 GHz

BCM2712 SoC
Cortex-A76 CPU at 2.4 GHz

CPU 4 core 4 core

Instruction set ARMv8-A ARMv8-2

Display 500 MHz VideoCore Vi GPU 800 MHz VideoCore VII GPU

L2 Cache 1 MB (shared) 2 MB

L3 Cache None 2 MB (shared)

RAM 1, 2, 4, 8 GB LPDDR4 4, 8 GB LPDDR4X

SD Card microSD microSD (high speed SDR104 
compatible)

GPIO 2 × 20 pin 2 × 20 pin

Raspberry 5 Projects.indd   13Raspberry 5 Projects.indd   13 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 14

USB ports 2× USB2
2× USB3

2× USB2
2× USB3

Networking Gigabit Ethernet port Gigabit Ethernet port

Connectors 2-lane MIPI display port
2-lane MIPI CSI camera port
4-pole stereo audio and com-
posite video port

2× MIPI camera
2× 4-lane MIPI camera/
display
PCIe 2.0 interface
UART port
RTC clock power port
Fan power port

Wi-Fi/Bluetooth 802.11ac, Bluetooth 5/BLE 802.11ac, Bluetooth 5/BLE

Power button None Yes

Power 5 V, 3 A USB-C 5 V, 4 A USB-C

Size 85 × 56 mm 85 × 56 mm

Table 1.1 Comparison of Raspberry Pi 5 and Raspberry Pi 4

There are two micro-HDMI based monitor ports on both devices, with both having the same 
specifications.

The Ethernet port and USB ports are swapped. As a result of this, the Raspberry Pi 4 case 
is incompatible with the Pi 5 and a new case is required.

The camera and display connectors on the Raspberry Pi 5 are 15-pin and smaller, instead 
of the original 22-pin connector used on Pi 4. A ribbon cable with 22-pin on one side and 
15-pin on the other side is required to connect an existing Raspberry Pi 4 camera to the 
Raspberry Pi 5. The Raspberry Pi 5 has two connectors, allowing two cameras or DSI dis-
plays (or a mix of either) to be connected. The PCIe connector is for fast external PCIe 
compatible peripherals, such as SSDs.

The new power button on the Raspberry Pi 5 could be very useful. When the device is On, 
pressing the button brings the shutdown (logout) menu. A safe shutdown will occur with 
another press of the power button.

Figure 1.1 shows the front view of the Raspberry Pi 5 with the components labelled for 
reference.

Raspberry 5 Projects.indd   14Raspberry 5 Projects.indd   14 09-11-2023   15:4409-11-2023   15:44



Chapter 1 • The Raspberry Pi 5

● 15

Figure 1.1 Raspberry Pi 5

The Raspberry Pi 5 gets rather hot, and it is recommended to use a cooler to lower the 
CPU temperature. Although the idle CPU temperature is around 50°C, it can go higher than 
85°C under a stress test. An active cooler is available for the Raspberry Pi 5. Holes and 
power points are provided on the board to install and power the active cooler. Figure 1.2 
shows the Raspberry Pi 5 with the active cooler installed. The active cooler cools down the 
SoC, RAM, and the southbridge chip. When the CPU is idle, the active cooler keeps the CPU 
temperature at around 40°C. The fan of the cooler operates automatically when the CPU 
temperature goes just above 50°C.

Figure 1.2 The Raspberry Pi 5 with active cooler

The Raspberry Pi 5 operating system (OS) is based upon Debian 12 with the code name 
Bookworm. This OS, released in July 2023, comes with a new Python interpreter (Py-
thon 3.11). This means that a Python package cannot be installed using the pip commands.

Raspberry 5 Projects.indd   15Raspberry 5 Projects.indd   15 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 16

Another major software change is that the RPi.GPIO library (created by Ben Croston) was 
not available at the time of writing this book. As a result of this, all the GPIO-based Python 
programs in the book have been developed using the gpiozero library. Most third party 
HATs are based on RPi.GPIO and these will not work until their software is changed by their 
manufacturers. It is hoped that the manufacturers will change their software by the time 
Raspberry Pi 5 becomes officially widely available.

Raspberry 5 Projects.indd   16Raspberry 5 Projects.indd   16 09-11-2023   15:4409-11-2023   15:44



Chapter 2 • Installing the Raspberry Pi 5 Operating System

● 17

Chapter 2 • �Installing the Raspberry Pi 5 Operating 
System

2.1 Overview
The Raspberry Pi 5 operating system Bookworm is available either on a pre-installed mi-
croSD card, or you can download the operating system image on a blank microSD card. In 
this chapter, you will learn to install the operating system using both methods.

2.2 Using a pre-installed SD card
The pre-installed Raspberry Pi operating system is available on various sized microSD 
cards. In this section, the author used the pre-installed 32 GB microSD card supplied by 
Elektor. Additionally, the author used a 7-inch HDMI compatible monitor, a Raspberry Pi 
official keyboard, and a mouse. The author's hardware setup between the Raspberry Pi 5 
and various devices is shown in Figure 2.1.

Figure 2.1 The author's hardware setup

The steps are as follows:

•	Insert the pre-installed microSD card into your Raspberry Pi 5

•	Connect all the devices as in Figure 2.1

•	Connect the Raspberry Pi power adapter to the mains supply

•	You should see the Raspberry Pi booting the first time and asking you various 
questions to set up the device, such as the username, password, Wi-Fi network 
name and password, any updates if necessary, etc. (see Figure 2.2 for some 
displays on the monitor). In this book, the username is set to pi.

•	The Raspberry Pi will boot in Desktop mode and will display the default screen. 
You can press Ctrl+Alt+F1 at any time to change to the Console mode

Raspberry 5 Projects.indd   17Raspberry 5 Projects.indd   17 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 18

Figure 2.2 Raspberry Pi 5 booting for the first time.

2.3 Larger font in Console mode
It is probably hard to see the characters on a 7-inch monitor in console mode. You can 
follow the steps below to increase the font size:

•	Make sure you are in the Console mode

•	Enter the following command:

pi@raspberrypi: ~ $ sudo dpkg-reconfigure console-setup

•	Select UTF-8 in the Package Configuration screen (Figure 2.3)

Raspberry 5 Projects.indd   18Raspberry 5 Projects.indd   18 09-11-2023   15:4409-11-2023   15:44



Chapter 2 • Installing the Raspberry Pi 5 Operating System

● 19

Figure 2.3 Select UTF-8

•	Select Guess optimal character set (Figure 2.4)

Figure 2.4 Select Guess optimal character set

•	Select Terminus (Figure 2.5)

Figure 2.5 Select Terminus

•	Select font 16x32 (Figure 2.6)

Raspberry 5 Projects.indd   19Raspberry 5 Projects.indd   19 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 20

Figure 2.6 Select font 16x32

2.4 Accessing your Raspberry Pi 5 Console from your PC – the Putty 
program
In many applications, you may want to access your Raspberry Pi 5 from your PC. This re-
quires enabling the SSH on your Raspberry Pi and then using a terminal emulation software 
on your PC. The steps to enable the SSH are as follows:

•	Make sure you are in Console mode

•	Type: sudo raspi-config

•	Move down to Interface Options

•	Highlight SSH and press Enter (Figure 2.7)

Figure 2.7 Highlight SSH

•	Click Yes to enable SSH

•	Click OK

•	Move down and click Finish

You will now have to install a terminal emulation software on your PC. The one used by the 
author is the popular Putty. Download Putty from the following website:

Raspberry 5 Projects.indd   20Raspberry 5 Projects.indd   20 09-11-2023   15:4409-11-2023   15:44



Chapter 2 • Installing the Raspberry Pi 5 Operating System

● 21

		  https://www.putty.org

•	Putty is a standalone program and there is no need to install it. Simply double 
click to run it. You should see the Putty startup screen as in Figure 2.8.

Figure 2.8 Putty startup screen

•	Make sure that the Connection type is SSH and enter the IP address of your 
Raspberry Pi 5. You can obtain the IP address by entering the command 
ifconfig in console mode (Figure 2.9). In this example, the IP address was: 
192.168.1.251 (see under wlan0:)

Figure 2.9 Command ifconfig

•	Click Open in Putty after entering the IP address and selecting SSH

•	The first time you run Putty, you may get a security message. Click Yes to 
accept this security alert.

•	You will then be prompted to enter the Raspberry Pi 5 username and password. 
You can now enter all Console-based commands through your PC.

Raspberry 5 Projects.indd   21Raspberry 5 Projects.indd   21 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 22

•	To change your password, enter the following command:

pi@raspberrypi: ~ $ passwd

•	To restart the Raspberry Pi, enter the following command:

pi@raspberrypi: ~ $ sudo reboot

•	To shut down the Raspberry Pi, enter the following command. Never shutdown 
by pulling the power cable, as this may result in the corruption or loss of files:

pi@raspberrypi: ~ $ sudo shutdown –h now

2.4.1 Configuring Putty
By default, the Putty screen background is black with white characters. The author prefers 
a white background with black characters, with the character size set to 12 points bold. You 
should save your settings so that they are available next time you want to use Putty. The 
steps to configure Putty with these settings are given below:

•	Restart Putty

•	Select SSH and enter the Raspberry Pi IP address

•	Click Colours under Window

•	Set the Default Foreground and Default Bold Foreground colours to black 
(Red:0, Green:0, Blue:0)

•	Set the Default Background and Default Bold Background to white 
(Red:255, Green:255, Blue:255)

•	Set the Cursor Text and Cursor Colour to black (Red:0, Green:0, Blue:0)

•	Select Appearance under Window and click Change in Font settings. Set 
the font to Bold 12.

•	Select Session and give a name to the session (e.g. MyZero) and click Save.

•	Click Open to open Putty session with the saved configuration

•	Next time you restart Putty, select the saved session and click Load followed 
by Open to start a session with the saved configuration

Raspberry 5 Projects.indd   22Raspberry 5 Projects.indd   22 09-11-2023   15:4409-11-2023   15:44



Chapter 2 • Installing the Raspberry Pi 5 Operating System

● 23

2.5 Accessing the Desktop GUI from your PC
If you are using your Raspberry Pi 5 with local keyboard, mouse, and display, you can 
skip this section. If, on the other hand, you want to access your Desktop remotely over 
the network, you will find that SSH services cannot be used. The easiest and simplest way 
to access your Desktop remotely from a computer is by using the VNC (Virtual Network 
Connection) client and server. The VNC server runs on your Pi and the VNC client runs on 
your computer. It is recommended to use the tightvncserver on your Raspberry Pi 5. The 
steps are:

•	Enter the following command:

pi$raspberrypi:~ $ sudo apt-get install tightvncserver

•	Run the tightvncserver:

pi$raspberrypi:~ $ tightvncserver

You will be prompted to create a password for remotely accessing the Raspberry 
Pi desktop. You can also set up an optional read-only password. The password 
should be entered every time you want to access the Desktop. Enter a password 
and remember your password.

•	Start the VNC server after reboot by the following command:

pi$raspberrypi:~ $ vncserver :1

You can optionally specify screen pixel size and colour depth in bits as follows:

pi$raspberrypi:~ $ vncserver :1 –geometry 1920x1080 –depth 24

•	We must now set up a VNC viewer on our laptop (or desktop) PC. There are 
many VNC clients available, but the recommended one which is compatible with 
TightVNC is TightVNC for the PC, which can be downloaded from the following 
link:

https://www.tightvnc.com/download.php

•	Download and install the TightVNC software for your PC. You will have to 
choose a password during the installation.

•	Start the TightVNC Viewer on your PC and enter the Raspberry Pi IP address 
followed by ':1'. Click Connect to connect to your Raspberry Pi (Figure 2.10)

Raspberry 5 Projects.indd   23Raspberry 5 Projects.indd   23 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 24

Figure 2.10 Connect to TightVNC Viewer

•	Enter the password you have chosen earlier. You should now see the Raspberry 
Pi 5 Desktop displayed on your PC screen (Figure 2.11)

Figure 2.11 Raspberry Pi 5 Desktop

•	The VNC server is now running on your Raspberry Pi 5 and you have access to 
the Desktop GUI.

2.6 Assigning a static IP address to your Raspberry Pi 5
When you try to access your Raspberry Pi 5 remotely over your local network, it is possible 
that the IP address given by your Wi-Fi router can change from time to time. This is an-
noying as you have to find out the new IP address allocated to your Raspberry Pi. Without 
knowledge of the IP address, you cannot log in using SSH or VNC.

In this section, you will learn how to fix your IP address so that it does not change between 
reboots. The steps are as follows:

•	Log in to your Raspberry Pi 5 via Putty 

Raspberry 5 Projects.indd   24Raspberry 5 Projects.indd   24 09-11-2023   15:4409-11-2023   15:44



Chapter 2 • Installing the Raspberry Pi 5 Operating System

● 25

•	Check whether DHCP is active on your Raspberry Pi (it should normally be 
active):

pi@raspberrypi:~ $ sudo service dhcpcd status

If DHCP is not active, activate it by entering the following commands:

pi@raspberrypi:~ $  sudo service dhcpcd start
pi@raspberrypi:~ $  sudo systemctl enable dhcpcd

•	Find the IP address currently allocated to you by entering the command 
ifconfig or hostname – I (Figure 2.12). In this example, the IP address was: 
192.168.1.251. We can use this IP address as our fixed address, since no other 
device on the network is currently using it.

Figure 2.12 Find the IP address using the command hostname -I

•	Find the IP address of your router by entering the command ip r (Figure 2.13). 
In this example, the IP address was: 192.168.1.254

Figure 2.13 Find the IP address of your router.

•	Find the IP address of your DNS by entering the following command 
(Figure 2.14). This is usually the same as your router address:

pi@raspberrypi:~ $  grep "nameserver" /etc/resolv.conf

Figure 2.14 Find the DNS address.

•	Edit file /etc/dhcpcd.conf by entering the command:

pi@raspberrypi:~ $   nano /etc/dhcpcd.conf

•	Add the following lines to the bottom of the file (these will be different for your 
router). If these lines already exist, remove the comment character '#' at the 
beginning of the lines and change the lines as follows (you may notice that 
eth0 for Ethernet is listed):

Raspberry 5 Projects.indd   25Raspberry 5 Projects.indd   25 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 26

	 interface wlan0
	 static_routers=192.168.1.254
	 static domain_name_servers=192.168.1.254
		  static ip_address=192.168.1.251/24

•	Save the file by entering CTRL + X followed by Y and reboot your Raspberry Pi

•	In this example, the Raspberry Pi should reboot with the static IP address: 
192.168.1.251

2.7 Enabling Bluetooth
In this section, you will see how to enable the Bluetooth on your Raspberry Pi 5 so that it 
can communicate with other Bluetooth devices. The steps are given below:

•	Enable the Bluetooth on your other device

•	Click on the Bluetooth icon on your Raspberry Pi 5 at the top right-hand side, 
and select Make Discoverable. You should see the Bluetooth icon flashing

•	Select 'raspberrypi' in the Bluetooth menu on your other device

•	Accept the pairing request on your Raspberry Pi 5

•	You should now see the message Connected Successfully on your Raspberry 
Pi 5 and you can exchange files between your other device and the Raspberry 
Pi computer.

2.8 Connecting the Raspberry Pi 5 to a wired network
You may want to connect your Raspberry Pi 5 to a network through an Ethernet cable. The 
steps are as follows:

Step 1: Connect a network cable between your Raspberry Pi 5 and your Wi-Fi router.

Step 2: Connect the keyboard, mouse and monitor to your Raspberry Pi and power up as 
normal

Step 3: Log in to the system by entering your username and password

Step 4: Providing your network hub supports DHCP (nearly all network routers support 
DHCP), you will be connected automatically to the network and will be assigned a unique 
IP address within your network. Note that DHCP assigns IP addresses to newly connected 
devices.

Step 5: Check to find out the IP address assigned to your Raspberry Pi 5 by the network 
router. Enter the command ifconfig as described earlier

Raspberry 5 Projects.indd   26Raspberry 5 Projects.indd   26 09-11-2023   15:4409-11-2023   15:44



Chapter 2 • Installing the Raspberry Pi 5 Operating System

● 27

2.8.1 Unable to connect to a wired network
If you find out that you are not assigned an IP address by the DHCP server, possible causes 
are:

•	Your network cable is faulty
•	The network hub does not support DHCP
•	DHCP is not enabled on your Raspberry Pi, i.e. it may have been configured for 

a fixed IP address

In most cases, it is very unlikely that the network cable is faulty. Also, most network hubs 
support the DHCP protocol. If you are having problems with the network, it is possible that 
your Raspberry Pi is not configured to accept DHCP issued addresses. The Raspberry Pi is 
normally configured to accept DHCP addresses, but it is possible that you have changed the 
configuration somehow.

To resolve the wired network connectivity problem, follow the steps given below:

Step 1: find out whether your Raspberry Pi is configured for DHCP or fixed IP addresses. 
Enter the following command:

	 pi@raspberrypi ~$ cat /etc/network/interfaces

If your Raspberry Pi is configured to use the DHCP protocol (which is normally the default 
configuration), the word dhcp should appear at the end of the following line:

	 iface eth0 inet dhcp

If, on the other hand, your Raspberry Pi is configured to use static addresses, then you 
should see the word static at the end of the following line:

	 iface eth0 inet static

Step 2: To use the DHCP protocol, edit file interfaces (e.g. using the nano text editor) 
and change the word static to dhcp. It is recommended to make a backup copy of the file 
interfaces before you change it:

	 pi@raspberrypi ~$ sudo cp /etc/network/interfaces /etc/network/int.bac

You should now restart your Raspberry Pi and an IP address will probably be assigned to 
your device.

Step 3: To use static addressing, make sure that the word static appears as shown above. 
If not, edit file interfaces and change dhcp to static

Step 4: You need to edit and add the required unique IP address, subnet mask and gate-
way addresses to file interfaces as in the following example (this example assumes that 

Raspberry 5 Projects.indd   27Raspberry 5 Projects.indd   27 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 28

the required fixed IP address is 192.168.1.251, the subnet mask used in the network is 
255.255.255.0, and the gateway address is 192.168.1.1):

	 iface eth0 inet static
	 address 192.168.1.251
	 netmask 255.255.255.0
	 gateway 192.168.1.1

Save the changes and exit the editor. If you are using the nano editor, exit by pressing 
Ctrl+X, then enter Y to save the changes, and enter the filename to write to as /etc/net-
work/interfaces.

Restart your Raspberry Pi 5.

2.9 Installing the Raspberry Pi 5 Bookworm operating system on a 
blank microSD card
If you have a pre-installed Raspberry Pi operating system Bookworm on a microSD card, 
then you can start using it as described earlier in this chapter. In this section, you will learn 
how to install the latest Bookworm operating system on a microSD card if you do not have 
a pre-installed card.

The steps are as follows:

•	Insert a microSD card into your PC. You may need to use an SD card adapter

•	Go to the website: https://www.raspberrypi.com/software/

•	Click to download the Raspberry Pi Imager. At the time of writing this book, 
this file was called: imager_1.7.5.exe

•	Double click to start the imager program and click to install it

•	Click Finish to run the imager

•	Click Operating System and select the operating system at the top of the list 
as: Raspberry Pi OS (64-bit). See Figure 2.15

Raspberry 5 Projects.indd   28Raspberry 5 Projects.indd   28 09-11-2023   15:4409-11-2023   15:44



Chapter 2 • Installing the Raspberry Pi 5 Operating System

● 29

Figure 2.15 Select the operating system

•	Click Storage and select the SD card storage

•	Click to open the settings (gear shape)

•	Click to enable SSH

•	Click to enable password authentication

•	Set username and password

•	Click to Configure wireless LAN

•	Click Save

•	Click Write to write the operating system to the microSD card

•	Wait until writing and verifying are finished (Figure 2.16)

•	Remove the microSD card and insert into your Raspberry Pi 5

Raspberry 5 Projects.indd   29Raspberry 5 Projects.indd   29 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 30

If you have a monitor and keyboard, you can log in to your Raspberry Pi 5 directly and 
start using it. Otherwise, find the IP address of your Raspberry Pi 5 (e.g. from your router, 
or there are many apps for smartphones, such as who's on my wifi that shows all the 
devices connected to your router with their IP addresses). Then log in to your Raspberry 
Pi 5 and start using it.

Raspberry 5 Projects.indd   30Raspberry 5 Projects.indd   30 09-11-2023   15:4409-11-2023   15:44



Chapter 3 • Using The Console Commands

● 31

Chapter 3 • Using The Console Commands

3.1 Overview
Raspberry Pi is based on a version of the Linux operating system. Linux is one of the most 
popular operating systems in use today. Linux is very similar to other operating systems, 
such as Windows and UNIX. Linux is an open operating system based on UNIX and has 
been developed collaboratively by many companies since 1991. In general, Linux is harder 
to manage than some other operating systems like Windows, but offers more flexibility and 
configuration options. There are several popular versions of the Linux operating system, 
such as Debian, Ubuntu, Red Hat, Fedora and so on.

Linux commands are text-based. In this chapter, you will be looking at some of the useful 
Linux commands and see how you can manage your Raspberry Pi using these commands.

When you apply power to your Raspberry Pi 5, the Linux command line (or the Linux shell, 
or Console commands) is the first thing you see, and it is where you can enter operating 
system commands.

3.2 The Command Prompt
Assuming your username is pi, after you log in to Raspberry Pi 5, you will see the following 
prompt displayed where the system waits for you to enter a command:

	 pi@raspberrypi: ~$

Here, pi is the name of the user who is logged in.
raspberrypi is the name of the computer, used to identify it when connecting over the 
network.

	 ~ character indicates that you are currently in your default directory.

3.3 Useful Console commands
In this section, you will be learning some of the useful Console commands, where examples 
will be given for each command. In this chapter, commands entered by the user are 
shown in bold for clarity. Also, it is important to remind you that all the commands must 
be terminated by the Enter key.

3.3.1 System and user information
These commands are useful as they tell you information about the system. Command 
cat /proc/cpuinfo displays information about the processor (command cat displays the 
contents of a file. In this example, the contents of file /proc/cpuinfo is displayed). Since 
there are four cores in the Raspberry Pi 5, the display is in four sections. Figure 3.1 shows 
an example display, where only part of the display is shown here.

Raspberry 5 Projects.indd   31Raspberry 5 Projects.indd   31 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 32

Figure 3.1 Command: cat /proc/cpuinfo

Command uname –s displays the operating system kernel name, which is Linux. Com-
mand uname –a displays complete detailed information about the kernel and the operat-
ing system. An example is shown in Figure 3.2.

Figure 3.2 Command:  uname – a

Command cat /proc/meminfo displays information about the memory on your Raspber-
ry Pi. Information such as the total memory and free memory at the time of issuing the 
command are displayed. Figure 3.3 shows an example, where only part of the display is 
shown here.

Figure 3.3 Command: cat /proc/meminfo

Command whoami displays the name of the current user. In this case, pi is displayed as 
the current user.

Raspberry 5 Projects.indd   32Raspberry 5 Projects.indd   32 09-11-2023   15:4409-11-2023   15:44



Chapter 3 • Using The Console Commands

● 33

A new user can be added to your Raspberry Pi 5 using the command useradd. In the ex-
ample in Figure 3.5, a user called John is added. A password for the new user can be added 
using the passwd command followed by the username. In Figure 3.4, the password for 
user John is set to mypassword (not displayed for security reasons). Notice that both the 
useradd and passwd are privileged commands, and the keyword sudo must be entered 
before these commands. Notice that the –m option creates a home directory for the new 
user.

Figure 3.4 Commands: useradd and passwd

You can log in to the new user account by specifying the username and the password as 
shown in Figure 3.5. You can type command exit to log out from the new account.

Figure 3.5 Logging into a new account

Command sudo apt-get upgrade is used to upgrade all the software packages on the 
system.

3.3.2 The Raspberry Pi 5 directory structure
The Raspberry Pi 5 directory structure consists of a single root directory, with directories 
and subdirectories under the root. Different types of operating system programs and appli-
cation programs are stored in different directories and subdirectories.

Figure 3.6 shows part of the Raspberry Pi 5 directory structure. Notice that the root direc-
tory is identified by the '/' symbol. Under the root we have directories named such as bin, 
boot, dev, etc, home, lib, lost+found, media, mnt, opt, proc, and many more. The impor-
tant directory as far as the users are concerned is the home directory. The home directory 
contains subdirectories for each user of the system. In the example in Figure 3.7, pi is the 
subdirectory for user pi. In a new system, this subdirectory contains two subdirectories 
called Desktop and python_games.

Raspberry 5 Projects.indd   33Raspberry 5 Projects.indd   33 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 34

Figure 3.6 Raspberry Pi 5 directory structure (only part of it is shown)

Some useful directory commands are given below. Command pwd displays the user home 
directory:

	 pi@raspberrypi: ~$ pwd
	 /home/pi
	 pi@raspberry: ~$

To show the directory structure, enter the command ls / (Figure 3.7):

Figure 3.7 Directory structure

To show the subdirectories and files in your working directory, enter ls:

	 pi@raspberrypi: ~$ ls
	 Bookshelf Documents Music Public Videos
	 Desktop Downloads Pictures Templates
	 pi@raspberrypi: ~$

Notice that the subdirectories are displayed in blue colour and files in black colour.

The ls command can take a number of arguments. Some examples are given below.
To display the subdirectories and files in a single row:

	 pi@raspberrypi: ~$ ls -1
	 Bookshelf
	 Desktop
	 Documents
	 Downloads
	 Music

Raspberry 5 Projects.indd   34Raspberry 5 Projects.indd   34 09-11-2023   15:4409-11-2023   15:44



Chapter 3 • Using The Console Commands

● 35

	 Pictures
	 Public
	 Templates
	 Videos
	 pi@raspberrypi: ~$

To display the file types, enter the following command. Note that directories have a '/' after 
their names, and executable files have a '*' character after their names:

	 pi@raspberrypi: ~$ ls –F
	 Bookshelf/ Documents/ Music/ Public/ Videos/
	 Desktop/ Downloads/ Pictures/ Templates/
	 pi@raspberrypi: ~$

To list the results, separated by commas:

	 pi@raspberrypi: ~$ ls –m

Bookshelf, Desktop, Documents, Downloads, Music, Pictures, Public, Templates, Videos

	 pi@raspberrypi: ~$

You can mix the arguments as shown in Figure 3.8.

Figure 3.8 Mixing the arguments

Subdirectories are created using the command mkdir followed by the name of the subdi-
rectory (Figure 3.9)

Figure 3.9 Creating a subdirectory

Command find is used to search the whole system for a file and outputs a list of all direc-
tories that contain the file. For example, the command find / -name myfile.txt searches 
the whole system for the file myfile.txt.

File Permissions
One of the important arguments used with the ls command is -l (lower case letter l) which 
displays the file permissions, file sizes, and when they were last modified. In the example 
below, each line relates to one directory or file. Reading from right to left, the name of the 

Raspberry 5 Projects.indd   35Raspberry 5 Projects.indd   35 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 36

directory or the file is on the right-hand side. The date the directory or file was created is 
on the left-hand side of its name. Next comes the size, given in bytes. The characters at 
the beginning of each line are about permissions, i.e. who is allowed to use or modify the 
file or the directory.

The permissions are divided into 3 categories:

•	What the user (or owner, or creator) can do – called USER
•	What the group owner (people in the same group) can do - GROUP
•	What everyone else can do – called WORLD

The first word pi in the example in Figure 3.10 shows who the user of the file (or directory) 
is, and the second word pi shows the group name that owns the file. In this example, both 
the user and the group names are pi.

Figure 3.10 File permissions example

The permissions can be analysed by breaking down the characters into four chunks for: 
File type, User, Group, World. The first character for a file is '-' and for a directory, it is 'd'. 
Next come the permissions for the User, Group and World. The permissions are as follows:

•	Read permission (r): the permission to open and read a file or to list a directory
•	Write permission (w): the permission to modify a file, or to delete or create a 

file in a directory
•	Execute permission (x): the permission to execute the file (applies to 

executable files), or to enter a directory

The three letters rwx are used as a group and if there is no permission assigned then a '-' 
character is used.

As an example, considering the Music directory, we have the following permission codes:

drwxr-xr-x which translates to:
d: 	 it is a directory
rwx: 	 user (owner) can read, write, and execute
r-x: 	 group can read and execute, but cannot write (e.g. create or delete)
r-x: 	 world (everyone else) can read and execute, but cannot write

Raspberry 5 Projects.indd   36Raspberry 5 Projects.indd   36 09-11-2023   15:4409-11-2023   15:44



Chapter 3 • Using The Console Commands

● 37

The chmod command is used to change the file permissions. Before going into details of 
how to change the permissions, let us look and see what arguments are available in chmod 
for changing the file permissions.

The available arguments for changing file permissions are given below. We can use these 
arguments to add/remove permissions or to explicitly set permissions. It is important to 
realize that if we explicitly set permissions, then any unspecified permissions in the com-
mand will be revoked:

u:	 user (or owner)
g:	 group
o:	 other (world)
a:	 all

+:	 add
-:	 remove
=:	 set

r:	 read
w:	 write
x:	 execute

To change the permissions of a file we type the chmod command, followed by one of the 
letters 'u', 'g', 'o', or 'a' to select the people, followed by the '+', '-' or '=' to select the 
type of change, and finally followed by the filename. In this example, a file with the name 
mytestfile.txt was created in the home directory for demonstration purposes (See Figure 
3.11). In this example, the file mytestfile.txt has the user read and write permissions. 

Figure 3.11 File permissions

We will be changing the permissions so that the user does not have read permission on 
this file:

	 pi@raspberrypi: ~$ chmod u-r mytestfile.txt
	 pi@raspberrypi: ~$ ls –lh

The result is shown in Figure 3.12.

Raspberry 5 Projects.indd   37Raspberry 5 Projects.indd   37 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 38

Figure 3.12 File permissions of mytestfile.txt

Notice that if you now try to display the contents of the file mytestfile.txt using the cat 
command, you will get an error message:

	 pi@raspberrypi: ~$ cat mytestfile.txt
	 cat: mytestfile.txt: Permission denied
	 pi@raspberrypi: ~$

All the permissions can be removed from a file by the following command:

	 pi@raspberrypi: ~$ chmod a=  mytestfile.txt
In the following example, rwx user permissions are given to file mytestfile.txt:

	 pi@raspberrypi: ~$ chmod u+rwx mytestfile.txt

Figure 3.13 shows the new permissions of file mytestfile.txt.

Figure 3.13 New permissions of file mytestfile.txt

To change our working directory, the command cd is used. In the following example, we 
change our working directory to Music:

	 pi@raspberrypi: ~$ cd /home/pi/Music
	 pi@raspberrypi: ~/Music $

Raspberry 5 Projects.indd   38Raspberry 5 Projects.indd   38 09-11-2023   15:4409-11-2023   15:44



Chapter 3 • Using The Console Commands

● 39

To go up one directory level, i.e. to our default working directory:

	 pi@raspberrypi: ~/Music $ cd..
	 pi@raspberrypi: ~$

To change your working directory to Music, you can also enter the command:

	 pi@raspberrypi: ~$ cd ~/Music
	 pi@raspberrypi: ~/myfiles $

To go back to the default working directory, you can enter:

	 pi@raspberrypi: ~/Music $ cd ~
	 pi@raspberrypi: ~$

To find out more information about a file, you can use the file command. For example:

	 pi@raspberrypi: ~$ file mytestfiile.txt
	 mytestfile.txt: ASCII text
	 pi@raspberrypi: ~$

The –R argument of the command ls lists all the files in all the subdirectories of the current 
working directory. An example is given below (only part of the display is shown). Notice here 
in Figure 3.14 that subdirectory Bookshelf contains file BeginnersGuide-4thEd-Eng_
v2.pdf

Figure 3.14 Command: ls –R

To display information on how to use a command, you can use the man command. As an 
example, to get help on using the mkdir command:

	 pi@raspberrypi: ~$ man mkdir
	 MKDIR(1)
	
	 NAME
		  Mkdir – make directories

	 SYNOPSIS

Raspberry 5 Projects.indd   39Raspberry 5 Projects.indd   39 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 40

		  Mkdir [OPTION]…DIRECTORY…
	
	 DESCRIPTION
		  Create the DIRECTORY(ies), if they do not already exist.

		  Mandatory arguments for long options are mandatory for short 
options

		  -m, --mode=MODE
				    Set file mode (as in chmod), not a=rwx – umask
	 ---------------------------------------------------------------------------
	 ---------------------------------------------------------------------------

Enter q to exit the man display.

Help
The man command usually gives several pages of information on how to use a command. 
You can type q to exit the man command and return to the operating system prompt.

The less command can be used to display a long listing one page at a time. Using the up 
and down arrow keys, we can move between pages. An example is given below. Type q to 
exit:

	 pi@raspberrypi: ~$ man ls | less
	 <display of help on using the ls command>
	 pi@raspberrypi: ~$

Date and Time
To display the current date and time, the date command is used.

Copying a File
To make a copy of a file, use the command cp. In the following example, a copy of the file 
mytestfile.txt is made, and the new file is given the name test.txt:

	 pi@raspberrypi: ~$ cp mytestfile.txt test.txt
	 pi@raspberrypi: ~$

Wildcards
You can use wildcard characters to select multiple files with similar characteristics. e.g. files 
having the same file-extension names. The * character is used to match any number of 
characters. Similarly, the ? character is used to match any single character. In the example 
below, all the files with extensions .txt are listed:

	 pi@raspberrypi: ~$ ls *.txt
	 mytestfile.txt   test.txt
	 pi@raspberrypi: ~$

Raspberry 5 Projects.indd   40Raspberry 5 Projects.indd   40 09-11-2023   15:4409-11-2023   15:44



Chapter 3 • Using The Console Commands

● 41

The wildcard characters [a-z] can be used to match any single character in the specified 
character range. An example is given below which matches any files that start with the 
letters 'o', 'p', 'q', 'r', 's', and 't', and with the .txt extension:

	 pi@raspberrypi: ~$ ls [o-t]*.txt
	 test.txt
	 pi@raspberrypi: ~$

Renaming a File
You can rename a file using the mv command. In the example below, the name of file test.
txt is changed to test2.txt:

	 pi@raspberrypi: ~$ mv test.txt test2.txt
	 pi@raspberrypi: ~$

Deleting a File
The command rm can be used to remove (delete) a file. In the example below, the file 
test2.txt is deleted:

	 pi@raspberrypi: ~$ rm test2.txt
	 pi@raspberrypi: ~$

The argument –v can be used to display a message when a file is removed. Also, the –i 
argument asks for confirmation before a file is removed. In general, the two arguments are 
used together as –vi. An example is given below:

pi@raspberrypi: ~$ rm –vi test2.txt
rm: remove regular file 'test2.txt'? y	
removed 'test2.txt'
pi@raspberrypi: ~$

Sorting a file
The command sort displays the contents of a file in ascending order. The general format of 
this command is:

	 sort <options> <filename>

Valid options are:

-u    removes duplicates from the output

-r    sorts the output in descending order

-o    writes the sorted output to a file

Word count
Command wc <filename> displays the word count in a file

Raspberry 5 Projects.indd   41Raspberry 5 Projects.indd   41 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 42

File differences
Command diff <file1> <file2) displays the differences between two files line by line

Removing a Directory
A directory can be removed using the rmdir command:

	 pi@raspberrypi: ~$ rmdir Music
	 pi@raspberrypi: ~$

Re-directing the Output
The greater sign > can be used to redirect the output of a command to a file. For example, 
we can redirect the output of the ls command to a file called lstest.txt:

	 pi@raspberrypi: ~$ ls > lstest.txt
	 pi@raspberrypi: ~$

The cat command can be used to display the contents of a file:

	 pi@raspberrypi: ~$ cat mytestfile.txt
	 This is a file
	 This is line 2
	 pi@raspberrypi: ~$

Using two greater signs '>>' adds to the end of a file.

Writing to the Screen or to a File
The echo command can be used to write to the screen. It can be used to perform simple 
mathematical operations if the numbers and the operation are enclosed in two brackets, 
preceded by a $ character:

	 pi@raspberrypi: ~$ echo $((5*6))
	 30
	 pi@raspberrypi: ~$

The echo command can also be used to write a line of text to a file. An example is shown 
below:

	 pi@raspberrypi: ~$ echo a line of text > lin.dat
	 pi@raspberrypi: ~$ cat lin.dat
	 a line of text
	 pi@raspberrypi: ~$

Matching a String
The grep command can be used to match a string in a file. An example is given below, 
assuming that the file lin.dat contains sting a line of text. Notice that the matched word is 
shown in bold:

Raspberry 5 Projects.indd   42Raspberry 5 Projects.indd   42 09-11-2023   15:4409-11-2023   15:44



Chapter 3 • Using The Console Commands

● 43

	 pi@raspberrypi: ~$ grep line lin.dat
	 a line of text
	 pi@raspberrypi: ~$

Head and Tail Commands
The head command can be used to display the first 10 lines of a file. The format of this 
command is as follows:

	 pi@raspberrypi: ~$ head mytestfile.txt
	 …………………………………..
	 …………………………………..
	 pi@raspberrypi: ~$

Similarly, the tail command is used to display the last 10 lines of a file. The format of this 
command is as follows:

	 pi@raspberrypi: ~$ tail mytestfile.txt
	 ………………………………….
	 ………………………………….
	 pi@raspberrypi: ~$

The which command displays the location of an executable program. For example, the 
location of the python program can be found as follows:

	 pi@raspberrypi: ~$ which python
	 /usr/bin/python
	 pi@raspberrypi: ~$

Super User Commands
Some of the commands are privileged and only the authorized persons can use them. 
Inserting the word sudo at the beginning of a command gives us the authority to use the 
command without having to log in as an authorized user.

What software is installed on my Raspberry Pi 5
To find out what software is installed on your Raspberry Pi 5, enter the following command. 
You should get several pages of display:

	 pi@raspberrypi: ~$ dpkg –l
	 …………………………….
	 …………………………….
	 pi@raspberrypi: ~$

You can also find out if a certain software package is already installed on our computer. 
An example is given below which checks whether software called xpdf (PDF reader) is 
installed. In this example, xpdf is installed and the details of this software are displayed:

Raspberry 5 Projects.indd   43Raspberry 5 Projects.indd   43 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 44

	 pi@raspberrypi: ~$ dpkg --s xpdf
	 Package: xpdf
	 Status: install ok installed
	 Priority: optional
	 Section: text
	 Installed-Size: 395
	 ………………………….
	 ………………………….
	 pi@raspberrypi: ~$

If the software is not installed, you get a message similar to the following (assuming we are 
checking to see if a software package called bbgd is installed):

	 pi@raspberrypi: ~$ dpkg –s bbgd
	 dpkg-query: package 'bbgd' is not installed and no information is available
	 ……………………………………………………………………………..
	 …………………………………………………………………………….
	 pi@raspberrypi: ~$

3.3.3 Resource monitoring on the Raspberry Pi 5
System monitoring is an important topic for managing usage of your Raspberry Pi. One of 
the most useful system monitoring commands is the top, which displays the current usage 
of system resources and displays which processes are running and how much memory and 
CPU time they are consuming.
Figure 3.15 shows a typical system resource display obtained by entering the following 
command (only part of the display is shown, Enter q to exit):

	 pi@raspberrypi: ~$ top
	 pi@raspberrypi: ~$

Figure 3.15 Typical system resource display

Raspberry 5 Projects.indd   44Raspberry 5 Projects.indd   44 09-11-2023   15:4409-11-2023   15:44



Chapter 3 • Using The Console Commands

● 45

Some of the important points in Figure 3.15 are summarized below (for lines 1 to 5 of the 
display):

•	There are a total of 138 processes in the system
•	Currently, only one process is running, 1 process is sleeping, and 0 processes 

are stopped 
•	The percentage of CPU utilization is 0.0 'us' for user applications (us)
•	The percentage of CPU utilization for system applications is 0.0 (sy)
•	There are no processes requiring more or less priority (ni)
•	100% of the time the CPU is idle (id)
•	There are no processes waiting for I/O completion (wa)
•	There are no processes waiting for hardware interrupts (hi)
•	There are no processes waiting for software interrupts (si)
•	There is no time reserved for a hypervisor (st)
•	The total usable memory is 8053 bytes, of which 247 bytes are in use, 7589 

bytes are free, and 303 bytes are used by buffers/cache
•	Line 5 displays the swap space usage

The process table gives the following information for all the processes loaded to the system:

•	PID: the process ID number
•	USER: owner of the process
•	PR: priority of the process
•	NI: the nice value of the process
•	VIRT: the amount of virtual memory used by the process
•	RES: size of the resident memory
•	SHR: shared memory the process is using
•	S: process status (sleeping, running, zombie)
•	%CPU: the percentage of CPU consumed
•	%MEM: percentage of RAM used
•	TIME+: total CPU time the task used
•	COMMAND: The actual name of the command

The command htop is similar to the top command, except it has more features and is more 
user-friendly.

The ps command can be used to list all the processes used by the current user. An example 
is shown in Figure 3.16.

Figure 3.16 Command: ps

Command ps –ef gives a lot more information about the processes running in the system.

Raspberry 5 Projects.indd   45Raspberry 5 Projects.indd   45 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 46

Killing a process
There are many options for killing (or stopping) a process. A process can be killed by spec-
ifying its PID and using the following command:

	 pi@raspberrypi: ~$ kill -9 <PID>

Disk (microSD card) usage
The disk free command df can be used to display the disk usage statistics. An example is 
shown in Figure 3.17. option –h displays in human-readable form.

Figure 3.17 Command: df -h

Command free shows how much memory is used and the amount of free memory.

3.3.4 Shutting Down
Although you can disconnect the power supply from your Raspberry Pi 5 when you finish 
working with it, it is not recommended since there are many processes running on the sys-
tem, and it is possible to corrupt the file system. It is much better to shut down the system 
in an orderly manner. 

The following command will stop all the processes and make the file system safe, and then 
turn off the system safely:

	 pi@raspberrypi: ~$ sudo halt

The following command stops and then restarts the system:

	 pi@raspberrypi: ~$ sudo reboot

The system can also be shut down and then restarted after a time by entering the following 
command. Optionally, a shutdown message can be displayed if desired:
	 pi@raspberrypi: ~$ shutdown –r <time> <message>

To shutdown at 1:55 AM:

	 pi@raspberrypi: ~$ sudo shutdown -h 01:55: 

Raspberry 5 Projects.indd   46Raspberry 5 Projects.indd   46 09-11-2023   15:4409-11-2023   15:44



Chapter 3 • Using The Console Commands

● 47

Enter the following command to shut down now:

	 pi@raspberrypi: ~$ sudo shutdown now

Broadcast message from root @raspberrypi on pts/1 (Tue 2023-10-03 12:03:00 BST)

The system will power off now!

Note: Raspberry Pi 5 includes a power switch at its side. When the Raspberry Pi is ON, a 
single press brings the shutdown/logout menu. Another press triggers a safe shutdown, 
which is a standby with the Raspberry Pi consuming about 1.4 W. A press of the button 
will start up the Raspberry Pi 5.

3.3.5 Networking
Some useful networking commands are:

ifconfig: check the IP address of your Raspberry Pi

iwconfig: check which network the Raspberry Pi is using. An example is shown in Figure 
3.18. Here, the SSID of the Wi-Fi adapter used is BTHub5-6SPN

Figure 3.18 Command iwconfig

ping: used to test the availability of a network device. An example is shown in Figure 3.19

Figure 3.19 Command ping

wget: this command is used to download a file from the web and saves the file in the 
current directory.

hostname – I: shows the IP address of the Raspberry Pi

The command vcgencmd measure_temp displays the CPU temperature as shown in 
Figure 3.20.

Raspberry 5 Projects.indd   47Raspberry 5 Projects.indd   47 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 48

Figure 3.20 Displaying the CPU temperature

3.3.6 System information and other useful commands
The uname command is used to display system information. This command has the fol-
lowing options:

-a    Show all system information

-s    display the kernel name

-n    print the network node hostname

-r    print the kernel release

-v    print the kernel version number

-m    print the system hardware name

-p    print the processor type

-i    print the hardware platform type

-o    print the operating system type

Some examples are shown in Figure 3.21

Figure 3.21 The uname command

If you have executed many commands and want to use some of them again, but you 
cannot remember the command name, you can use the history command. An example 
is shown in Figure 3.22. To execute a command from the history, enter ! followed by the 
command number. For example, to execute the ls command again, you can enter !6 fol-
lowed by the Enter key.

Figure 3.22 The history command

Raspberry 5 Projects.indd   48Raspberry 5 Projects.indd   48 09-11-2023   15:4409-11-2023   15:44



Chapter 3 • Using The Console Commands

● 49

The clear command is also useful, and it is used to clear the screen.
		
To install a package, use the command: sudo apt install <package_name>

The & operator allows you to run any command in the background so that you can use the 
terminal for other tasks. This operator must be added to the end of a command.

The && operator allows you to run two or more commands at the same time. For example, 
command1 && command2

                   
     

Raspberry 5 Projects.indd   49Raspberry 5 Projects.indd   49 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 50

Chapter 4 • Desktop GUI – Desktop Applications

4.1 Overview
In this chapter, you will learn how to access and use the desktop applications of your Rasp-
berry Pi 5.

4.2 Desktop GUI Applications
If you have connected a monitor, a mouse, and a keyboard to your Raspberry Pi 5 com-
puter, then you can access the desktop GUI by entering command startx in the command 
mode.

If you wish to access the Desktop GUI applications from a desktop or a laptop computer, 
then the required steps are as follows:

Step 1: Connect to your Raspberry Pi 5 using the Putty terminal emulator with the SSH 
services as explained in earlier chapters.

Step 2: Run the VNC server by entering the following command into your SSH window:

	 pi@raspberrypi ~ $ vncserver :1

Step 3: Run the VNC Viewer program on your computer. Enter the IP address of your 
Raspberry Pi 5 computer, followed by characters :1 to indicate that we are using port 1 (see 
Figure 4.1). Click the Connect button.

Figure 4.1 Enter the IP address of your Pi 5

You will be asked for your password that you created earlier. Enter the password, and you 
will see the Raspberry Pi 5 Desktop displayed (Figure 4.2, only the upper part of the screen 
is shown)

Raspberry 5 Projects.indd   50Raspberry 5 Projects.indd   50 09-11-2023   15:4409-11-2023   15:44



Chapter 4 • Desktop GUI – Desktop Applications

● 51

Figure 4.2 Raspberry Pi 5 Desktop

Assuming you are using a pre-installed micro SD card, at the top of the screen you have a 
number of shortcut icons. Below that, you will see four menu icons with the names:

Applications menu
Web Browser
File Manager
Terminal

On the top right-hand side of the screen, starting from the left, you have the following 
menus:

Updates
Bluetooth
Wi-Fi
Volume Control
Time

4.2.1 Applications Menu
Figure 4.3 shows the items under the Applications Menu.

Figure 4.3 Items under the Applications Menu

Programming: This menu item includes a number of programming languages that you 
can use to program our Raspberry Pi 5. Figure 4.4 shows a list of the items in the Program-
ming menu.

Raspberry 5 Projects.indd   51Raspberry 5 Projects.indd   51 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 52

Figure 4.4 Items under the Programming menu

In this book, you will be using the Thonny IDE in most of your Python programs. Details 
about the Thonny IDE are given in a later chapter.

Web Browser: This menu item includes the Chromium and the Firefox web browsers.

Sound & Video: This menu item includes the video program VLC Media Player

Graphics: This menu item includes the Image Viewer program

Accessories: This menu item includes a number of useful programs, as shown in Fig-
ure 4.5. For example, the Calculator program can be used to perform simple and scientific 
calculations (Figure 4.6) 

Figure 4.5 The Accessories menu

Raspberry 5 Projects.indd   52Raspberry 5 Projects.indd   52 09-11-2023   15:4409-11-2023   15:44



Chapter 4 • Desktop GUI – Desktop Applications

● 53

Figure 4.6 The Calculator program

Help: This menu provides help on various Raspberry Pi tools

Preferences: This menu is used for system and software settings, such as adding/remov-
ing software, print services, screen configuration, etc. (Figure 4.7)

Figure 4.7 The Preferences menu

Run: This menu is used to run a program

Shutdown: Use this menu option to shut down your Raspberry Pi 5

4.2.2 Web browser
Click this menu option to start a web browser

4.2.3 File manager
This menu item is used for file handling and is similar to the File Explorer on Windows sys-
tems. Figure 4.8 shows the options under this menu item. With the File manager, you can 
create a file, copy/paste text, view the contents of a file, sort a file, find files, and several 
other file processing options.

Raspberry 5 Projects.indd   53Raspberry 5 Projects.indd   53 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 54

Figure 4.8 The File manager menu

4.2.4 Terminal
This menu item enables the command mode so that you can enter commands in this mode 
(Figure 4.9, only part of the screen is shown)

Figure 4.9 The Terminal menu

4.2.5 Manage Bluetooth devices
This menu item at the right-hand side of the screen enables you to enable the Bluetooth on 
your Raspberry Pi 5 and to pair with other Bluetooth devices

4.2.6 Wi-Fi
The next menu item to the Bluetooth is the Wi-Fi menu, which can be used to turn the Wi-
Fi on and off, and to connect to a Wi-Fi router. When clicked, a list of the available Wi-Fi 
devices is given (see Figure 4.10).

Figure 4.10 Wi-Fi menu

Raspberry 5 Projects.indd   54Raspberry 5 Projects.indd   54 09-11-2023   15:4409-11-2023   15:44



Chapter 4 • Desktop GUI – Desktop Applications

● 55

4.2.7 Volume control
This menu item is used to control the audio volume through a sliding bar.

4.2.8 Date and time
Next to the Volume control is the date and time menu, which shows the current system 
date and time.

Raspberry 5 Projects.indd   55Raspberry 5 Projects.indd   55 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 56

Chapter 5 • Using a Text Editor in Console Mode

A text editor is used to create or modify the contents of a text file. There are many text 
editors available for the Linux operating system. Some popular ones are nano, vim, vi, and 
many more. In this chapter, we shall be looking at some of these text editors and see how 
to use them.

5.1 nano text editor
Start the nano text editor by entering the word nano, followed by the filename you wish 
to create or modify. An example is given below where a new file called first.txt is created:

	 pi@raspberrypi: ~ $ nano first.txt

You should see the editor screen as in Figure 5.1. The name of the file to be edited is written 
at the top middle part of the screen. The message 'New File' at the bottom of the screen 
shows that this is a newly created file. The shortcuts at the bottom of the screen are there 
to perform various editing functions. These shortcuts are accessed by pressing the Ctrl key 
together with another key. Some of the useful shortcuts are given below:

Ctrl+W: Search for a word
Ctrl+V: Move to the next page
Ctrl+Y: Move to the previous page
Ctrl+K: Cut the current row of txt
Ctrl+R: Read file
Ctrl+U: Paste the text you previously cut
Ctrl+J: Justify
Ctrl+\: Search and replace text
Ctrl+C: Display current column and row position
Ctrl+G: Get detailed help on using the nano
Ctrl+-:   Go to the specified line and column position
Ctrl+O: Save (write out) the file currently open
Ctrl+X: Exit nano

Raspberry 5 Projects.indd   56Raspberry 5 Projects.indd   56 09-11-2023   15:4409-11-2023   15:44



Chapter 5 • Using a Text Editor in Console Mode

● 57

Figure 5.1 nano text editor screen

Now, type the following text as shown in Figure 5.2:

	 nano is a simple and yet powerful text editor.
	 This simple text example demonstrates how to use nano.
	 This is the last line of the example.

Figure 5.2 Sample text

The use of nano is now demonstrated with the following steps:

Step 1: Go to the beginning of the file by moving the cursor.

Step 2: Look for the word simple by pressing Ctrl+W and then typing simple in the win-
dow opened at the bottom left-hand corner of the screen. Press the Enter key. The cursor 
will be positioned on the word simple (see Figure 5.3).

Raspberry 5 Projects.indd   57Raspberry 5 Projects.indd   57 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 58

Figure 5.3 Searching the word simple

Step 3: Cut the first line by placing the cursor anywhere on the line and then pressing 
Ctrl+K. The first line will disappear, as in Figure 5.4.

Figure 5.4 Cutting the first line

Step 4: Paste the line cut after the first line. Place the cursor on the second line and press 
Ctrl+U (see Figure 5.5).

Figure 5.5 Paste the line cut previously

Step 5: Place cursor at the beginning of the word simple on the first row. Enter Ctrl+C. 
The row and column positions of this word will be displayed at the bottom of the screen 
(Figure 5.6).

Raspberry 5 Projects.indd   58Raspberry 5 Projects.indd   58 09-11-2023   15:4409-11-2023   15:44



Chapter 5 • Using a Text Editor in Console Mode

● 59

Figure 5.6 Displaying row and column position of a word

Step 6: Press Ctrl+G to display the help page as in Figure 5.7. Notice that the display is 
many pages long, and you can jump to the next pages by pressing Ctrl+Y or to the previ-
ous pages by pressing Ctrl+V. Press Ctrl+X to exit the help page.

Figure 5.7 Displaying the help page

Step 7: Press Ctrl+- and enter line and column numbers as 2 and 5, followed by the Enter 
key, to move the cursor to line 2, column 5 (see Figure 5.8).

Raspberry 5 Projects.indd   59Raspberry 5 Projects.indd   59 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 60

Figure 5.8 Moving to line 2, column 5

Step 8: Replace word example with word file. Press Ctrl+\ and type the first word as 
example (see Figure 5.9). Press Enter and then type the replacement word as file. Press 
Enter and accept the change by typing y.

Figure 5.9 Replacing text

Step 9: Save the changes. Press Ctrl+X to exit the file. Type Y to accept the saving, then 
enter the filename to be written to, or simply press Enter to write to the existing file (first.
txt in this example). The file will be saved in your current working directory.

Step 10: Display the contents of the file:

	 pi@raspberrypi: ~ $ cat firs.txt
	 This simple text file demonstrates how to use nano.
	 Nano is a simple and yet powerful text editor
	 This is the last line of the example.

	 pi@raspberrypi: ~ $

Raspberry 5 Projects.indd   60Raspberry 5 Projects.indd   60 09-11-2023   15:4409-11-2023   15:44



Chapter 5 • Using a Text Editor in Console Mode

● 61

In summary, nano is a simple and yet powerful text editor, allowing us to create new text 
files or to edit existing files.

5.2 vi text editor
The vi text editor has been around for many years when it has been the standard Unix op-
erating system default text editor. The vi editor is a fully featured, powerful text editor for 
doing many different tasks. The only problem with using vi is that it is not very user-friend-
ly and learning may take some time. In this section, we shall be looking at the basic fea-
tures of this editor and see how we can use it in simple editing applications.

Notice that you cannot use the keyboard arrow keys with the vi editor. Some of the useful 
vi editor commands are listed below:

ZZ	 save changes and exit vi
:wq	save changes and exit vi
:q!	 exit without saving changes

h	 move cursor left (backwards)
j	 move cursor down
k	 move cursor up
l	 move cursor right (space bar)

$	 move to the last column on the current line
o	 move cursor to the first column on current line
w	 move cursor to the beginning of the next word
b	 move cursor to the beginning of the previous word
H	 move cursor to the top of the screen
M	 move cursor to the middle of the screen
L	 move cursor to the bottom of the screen

G	 move to the last line in the file
nG	 move to line n

r	 replace character under cursor with next character typed
i	 insert before cursor
a	 append after cursor
A	 append at end of line

x	 delete	 character under cursor
dd	 delete line under cursor
dw	 delete word under cursor

/	 search for a word (forwards)
?	 search a word (backwards)
:s	 search and replace a word in current line

Raspberry 5 Projects.indd   61Raspberry 5 Projects.indd   61 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 62

Start the vi text editor by typing vi followed by the name of the file to be created or modi-
fied. In this example, it is assumed that a new file called myfile.txt is to be created:

	 pi@raspberrypi: ~ $ vi myfile.txt

You should see the vi text editor screen displayed as in Figure 5.10. The name of the file 
being edited is displayed at the bottom of the screen.

Figure 5.10 vi text editor screen

The vi editor is different from most other text editors in that it is not possible to start typing 
inside the editor window. The steps for editing this file are given below:

Step 1: The vi editor has different modes, and you must be in insert mode to be able to 
write to the window. Press i to enter insert mode. Then type in the following text (see Fig-
ure 5.11):

		  The vi text editor is a powerful text editor.
		  But it is not easy to use this editor.
		  This exercise should help you understand the basic commands.

Raspberry 5 Projects.indd   62Raspberry 5 Projects.indd   62 09-11-2023   15:4409-11-2023   15:44



Chapter 5 • Using a Text Editor in Console Mode

● 63

Figure 5.11 Entering the text

Step 2: To come out of the insert mode, press the ESC key. To save the file, type the 
characters :w. You can exit the editor after saving the changes by typing :q. Alternatively, 
you can type ZZ (note upper case) to save and exit. If you modified the file and attempt to 
quit without saving, you will get an error message. If you want to exit without saving the 
changes, simply type :q!

Step 3: Make sure you are in the command mode and type the character / followed by a 
word to search for this word in the text. For example, type /editor to search for the word 
editor (see Figure 5.12) in the text.

Figure 5.12 Searching for text

Step 4: Insert word is before word editor. Type i followed by is and space, and terminate 
insert mode by pressing the ESC key.
 
Step 5: Move cursor right by pressing the l key. Similarly, move the cursor left by pressing 
the h key. Move the cursor down (to the second line) by pressing the j key.

Raspberry 5 Projects.indd   63Raspberry 5 Projects.indd   63 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 64

Step 6: Search for the word this and delete it. Type /this followed by the Enter key. Type 
dw to delete the word.

Step 7: Delete the second line where the cursor is on by typing dd

Step 8: Search for the word help and replace it with the word guide. Go to the line where 
the word help is. Type /help, then type :s/help/guide/

Step 9: You can search and replace a word in any other line than the current line. For this 
example, position the cursor on the first line. Change the word basic in the second line to 
BASIC. Type:

	 :1,2s/basic/BASIC/

Notice that you can specify the range of lines by separating them with a comma. In this 
example, the search starts from line 1 and terminates at line 2.

Raspberry 5 Projects.indd   64Raspberry 5 Projects.indd   64 09-11-2023   15:4409-11-2023   15:44



Chapter 6 • Creating and Running a Python Program

● 65

Chapter 6 • Creating and Running a Python Program

6.1 Overview
You will be programming your Raspberry Pi 5 using the Python programming language. 
It is worthwhile to look at the creation and running of a simple Python program on your 
Raspberry Pi 5 computer. In this chapter, the message Hello From Raspberry Pi 5 will be 
displayed on your PC screen.

As described below, there are three methods that you can create and run Python programs 
on your Raspberry Pi 5.

6.2 Method 1 – Interactively from command prompt in console mode
In this method, you will log in to your Raspberry Pi 5 using the SSH and then create and 
run the Python program interactively. This method is excellent for small programs. The 
steps are as follows:

•	Login to the Raspberry Pi 5 using SSH

•	At the command prompt, enter python. You should see the Python command 
mode, which is identified by three characters ">>>"

•	Type the program:

print ("Hello From Raspberry Pi 5")

•	The text will be displayed interactively on the screen as shown in Figure 6.1. 
Note that at the time of writing this book, the Python version was: 3.11.2. 

Figure 6.1 Running a program interactively

•	Type Ctrl+z to exit the program

6.3 Method 2 – Create a Python file in console mode
In this method, you will log in to your Raspberry Pi 5 using the SSH as before and then 
create a Python file. A Python file is simply a text file with the extension .py. You can use a 
text editor, e.g. the nano text editor, to create your file. In this example, a file called hello.
py is created using the nano text editor. Figure 6.2 shows the contents of file hello.py. 
This figure also shows how to run the file under Python. Notice that the program is run by 
entering the command:

	 >>> python hello.py

Raspberry 5 Projects.indd   65Raspberry 5 Projects.indd   65 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 66

Figure 6.2 Creating and running a Python file

6.4 Method 3 – Create a Python file in Desktop GUI mode
In this method, you can log in to your Raspberry Pi 5 using either a directly connected 
terminal through the mini HDMI port, or if you don't have a monitor, you can log in to the 
Desktop using the VNC as described earlier, and then create and run your Python programs 
in GUI mode using the Thonny IDE. It is worthwhile at this stage to learn the basics of using 
the Thonny IDE.

The Thonny IDE
Start the Thonny IDE from the Desktop under the Programming menu. Figure 6.3 shows 
the Thonny startup menu.

Figure 6.3 Thonny IDE startup menu

The screen consists of two parts: the upper part is where you write your programs. The 
lower part is the shell, where small interactive programs can be written. This part is mainly 
used for testing code snippets.

In the upper part contains the following menu items:

New: click to create a new program
Load: load an existing program from a folder on Raspberry Pi
Save: save an existing program on the screen to a file
Run: run the program on the screen
Debug: debug the program on the screen

Raspberry 5 Projects.indd   66Raspberry 5 Projects.indd   66 09-11-2023   15:4409-11-2023   15:44



Chapter 6 • Creating and Running a Python Program

● 67

Over: used by the debugger
Into: used by the debugger
Out: used by the debugger
Stop: stop a running program
Zoom: zoom the screen
Quit: Exit the Thonny IDE

The Thonny IDE must be configured before it is used to write and upload programs to your 
Raspberry Pi. Click the bottom-right corner of the screen to select your processor type and 
select Local Python 3. You are now ready to write your program. The steps are:

•	Type the following code in the upper part of the screen:

print("Hello from Raspberry Pi 5")

•	Click File → Save and save with the name hello.py (Figure 6.4)

Figure 6.4 Type your program and save it

•	Click the Run icon (green menu button at the top) to run the program. The 
output of the program will be displayed at the bottom of the screen as shown in 
Figure 6.5.

Figure 6.5 Run the program

You can run small programs in interactive mode by entering them at the lower part of the 
screen under shell. The results will be displayed under shell immediately.

Raspberry 5 Projects.indd   67Raspberry 5 Projects.indd   67 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 68

6.5 Which method?
The choice of a method depends upon the size and complexity of a program. Small pro-
grams can be run interactively without creating a program file. Larger programs can be 
created as Python files, and then they can run either in the console mode or in Desktop 
GUI mode under the Thonny IDE. Running under the Thonny IDE has the advantage that 
justification of the code is corrected automatically as you write the code. In this book, the 
Thonny IDE is used for small programs and the nano editor is used for larger programs to 
create the program files.

Raspberry 5 Projects.indd   68Raspberry 5 Projects.indd   68 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 69

Chapter 7 • Python Programming and Simple Programs

7.1 Overview
Python is an interpreted, interactive and object-oriented programming language. It was 
developed by Guido van Rossum in the 1980s at the National Institute for Mathematics and 
Computer Science in the Netherlands. It is derived from many other languages, including 
C, C++, Modula-3, SmallTalk, and Unix shells. The language is now maintained by a team 
of people at the Institute.

Python is interactive, which means that you can issue a command and see the result im-
mediately without having to compile the command. It is interpreted, thus requiring no 
pre-compilation before it is run.

Python supports object-oriented techniques of programming. It is a beginners' language 
which is easy to learn and easy to maintain. Beginners can easily learn programming in a 
relatively short period of time. Python supports a large library of functions, which makes 
it powerful. The language is portable, meaning that it can run on several different popular 
platforms.

In this and next chapters, you will be learning the details of the Python programming lan-
guage on the Raspberry Pi 5 computer, and see how you can write programs using this 
language. Many example programs are given to show how electronic engineers can use the 
Python language to help them in their calculations.

7.2 Variable names
Python variable names are case-sensitive and can start with a letter A to Z or a to z or 
an underscore character '_', followed by more letters or numbers 0 to 9. Some valid and 
invalid example variable names are given below:

	 SUM		  -	 valid
	 Sum		  -	 valid
	 SUm		  -	 valid
	 _total		  -	 valid
	 Cnt5		  -	 valid
	 8tot		  -	 invalid
	 %int		  -	 invalid
	 &xyz		  -	 invalid
	 My_Number	 -	 valid
	 @loop		  -	 invalid
	 _Account	 -	 valid

Note that variables total, Total, TOTAL, ToTaL, or toTAL are all different.

Raspberry 5 Projects.indd   69Raspberry 5 Projects.indd   69 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 70

7.3 Reserved words
There are some words which are reserved for use by the Python interpreter and thus cannot 
be used as variable names by programmers. A list of these reserved words is given below. 
Notice that all the reserved words contain lower-case letters:

	 and		 for		  raise
	 assert		 from		  return
	 break		 global		  try
	 class		 if		  while
	 continue	 import		  with
	 def		 in		  yield
	 del		 is
	 elif		 lambda
	 else		 not
	 except		 or
	 exec		 pass
	 finally		 print

7.4 Comments
Comment lines in Python start with a hash sign '#'. All characters after the # sign are ig-
nored by the Python interpreter. An example comment line is shown below:

	 # This is a comment line

Comments can also be inserted after a statement:

	 Sum = 0		  # Another comment

7.5 Line continuation
The line continuation character '\' can be used to continue a statement on the following 
lines. An example is shown below:

	 Sum =	 a +\
		  b +\
		  c

Which is equivalent to:

	 Sum = a + b + c

7.6 Blank lines
A line containing no statements is ignored by the Python interpreter.

Raspberry 5 Projects.indd   70Raspberry 5 Projects.indd   70 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 71

7.7 More than one statement on a line
It is permissible to have more than one statement on a single line by separating the state-
ments with a semicolon character. An example is given below:

	 cnt = 5; sum = 0; tot = 20;

7.8 Indentation
In most programming languages, blocks of code are identified by using braces at the begin-
ning and end of the block, or by identifying the end of the block using a suitable statement. 
e.g. END, WEND, or ENDIF. In the Python language, there are no braces or statements to 
indicate the start and end of a block. Instead, blocks of code are identified by line indenta-
tion. All statements within a block must be indented the same amount. The actual number 
of spaces used to indent a block is not relevant as long as all the statements in the block 
use the same number of spaces.

A valid block of code is given below (don't worry at this stage what the code does):

	 if j == 5:
		  a = a + 1
		  b = a + 2
	 else:
		  a = 0
		  b = 0

The following block of code is not valid since the indentation is not correct:

	 if j == 5:
		  a = a + 1
		  b = a + 2
	 else:
		  a = 0
	   	 b = 0

7.9 Python data types
Python supports the following data types:

•	Numbers
•	Strings
•	Lists
•	Dictionaries
•	Tuples
•	Sets
•	Files

Raspberry 5 Projects.indd   71Raspberry 5 Projects.indd   71 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 72

7.10 Numbers
Python supports the following numeric variable types:

•	int	 -	 signed integer
•	long	 -	 long integer
•	float	 -	 floating-point real number

Complex number
Numbers can be represented in decimal, octal, binary, or hexadecimal. Long integers are 
shown with an upper-case letter L.

Some example numbers are shown below:

Integer
100			  -	 decimal
-67			   -	 decimal
500			  -	 decimal
0x20		  -	 hexadecimal
0b10000001		 -	 binary
0o2377		  -	 octal
202334567L		 -	 long decimal
0x3AEEFAE		  -	 hexadecimal

Floating point
2.355
23.780
-45.6
1.298
24.45E4

Complex
24.4+2,6j
0.78-4.2j
23.7j

We can assign numeric values to variables. These variable objects are created when values 
are assigned to them:
	 sum = 28
	 a = 0

We can delete a variable object by using the del statement:
	 del sum, a

We can assign a value to several variables at the same time:
	 w = x = y = z = 0

Raspberry 5 Projects.indd   72Raspberry 5 Projects.indd   72 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 73

Similarly, we can have statements of the form:
	 w, x, y = 3, 5, 8

Which is equivalent to:
	 w = 3
	 x = 5
	 y = 8

we can perform the following mathematical operations on numbers:

Expression operators
+	 addition
- 	 Subtraction
*	 multiplication
/	 division
>>	 shift right
<<	 shift left
**	 power (exponentiation)
%	 remainder

Bitwise operators
 |	 bitwise OR
&	 bitwise AND
^	 bitwise exclusive-or
~	 bitwise complement

Some mathematical functions
pow(x,y)	 same as x**y
abs(x)	 absolute value of x
round(x,n)	 round x to n digits from the decimal point
floor(x)	 largest integer not greater than x
int(x)	 convert x to integer
hex(x)	 hexadecimal equivalent of integer x
bin(x)	 binary equivalent of integer x
exp(x)	 exponential of x
factorial(n)	 factorial of number n
ceil(x)	 smallest integer not less than x
log(x)	 natural logarithm of x (base 2)
log10(x)	 logarithm of x (base 10)

Some mathematical utility libraries
random	 random number library
math	 mathematics library

Raspberry 5 Projects.indd   73Raspberry 5 Projects.indd   73 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 74

Figure 7.1 to Figure 7.3 show examples of using numbers in Python. Statement import is 
used to import a library to a Python program. The math library contains a large number 
of mathematical functions, such as logarithmic and trigonometric functions, square root, 
hyperbolic functions, angular conversion, and so on. Further details on these functions can 
be obtained from the following link:

	 https://docs.python.org/3/library/math.html

random library is useful to generate random numbers. The function randint(a, b) in this 
library generates an integer random number between integers a and b inclusive. Details of 
functions available in the random library can be obtained from the following link:

	 https://docs.python.org/2/library/random.html

Figure 7.1 Using numbers in Python

Figure 7.2 Using numbers in Python

Raspberry 5 Projects.indd   74Raspberry 5 Projects.indd   74 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 75

Figure 7.3 Using numbers in Python

7.11 Strings
In Python, strings are declared by enclosing characters between a pair of single or double 
quotation marks. An example is given below:

	 myname = "James Booth"

We can manipulate strings by extracting characters, joining two strings, assigning a string 
to another string, and so on. Some commonly used string manipulation operations are 
shown in Figure 7.4 and Figure 7.5.

Figure 7.4 String manipulation operations

Raspberry 5 Projects.indd   75Raspberry 5 Projects.indd   75 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 76

Figure 7.5 String manipulation operations

Notice that a third index as the step can be used in string slicing operation. The step is add-
ed to the first offset until the second offset, and the character at this position is extracted. 
In the following example, the characters at positions 0, 2, 4, 6 are extracted:

	 >>> a = "computer"
	 >>> b = a[0:7:2]
	 >>> print(b)
	 cmue

7.11.1 String functions
Python supports many string functions. Some commonly used string functions are given 
below:

•	capitalize()		�  change first letter of a string to upper case and all 
other characters to lower-case.

•	count(str,beg,end)	� find how many times str occurs in a string. String 
starting and ending positions should be specified

•	find(str,beg,end)	� determine if str occurs in a string. String starting 
and ending positions should be specified. The index is 
returned if the str is found, otherwise -1 is returned

•	 len(string)		  return the length of a string
•	 isalpha()		  return true if string contains all alphabetical characters
•	 isalnum()		�  return true if string contains alphabetical and numeric 

characters
•	 isdigit()		  return true if string contains all digits
•	 islower()		  return true if string contains all lower-case letters
•	 isupper()		  return true if string contains all upper-case letters
•	 lower()		  convert all upper-case characters to lower-case
•	upper()		  convert all lower case characters to upper case
•	 lstrip()			  remove all leading white spaces
•	rstrip()		  remove all trailing spaces
•	swapcase()		  change case of all letters

Raspberry 5 Projects.indd   76Raspberry 5 Projects.indd   76 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 77

Figure 7.6 shows examples of using some of the string functions.

Figure 7.6 Using the string functions

7.11.2 Escape sequences
Escape sequences are special non-printable characters used to generate functions such as 
newline, tab, form feed, carriage return and so on. Escape sequences start with the char-
acter '\'. A list of the commonly used escape sequences is given below:

•	\n	 newline
•	\a	 bell
•	\b	 backspace
•	\f	 form feed
•	\r	 carriage return
•	\t	 horizontal tab
•	\v	 vertical tab
•	\xhh	 character defined by the 2-digit hexadecimal value hh

As an example, the following statement will display the letter 'a' followed by two newlines:

	 print("a\n\n")

7.12 Print statement
The print statement is one of the most commonly used statements. It displays text or num-
bers on the screen. Text is displayed by enclosing it in quotes. Numeric data is displayed by 
simply entering the variable name. The data to be displayed is enclosed in round brackets. 
Text and numeric data can be mixed in display outputs, and the type of the variable to be 
displayed can be declared using formatting characters. A list of the commonly used format-
ting characters is given below:

•	%c		  character
•	%s		  string
•	%d		  signed integer
•	%u		  unsigned integer

Raspberry 5 Projects.indd   77Raspberry 5 Projects.indd   77 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 78

•	%x		  lower case hexadecimal number
•	%X		  upper-case hexadecimal number
•	%f		  floating-point number
•	%E		  exponential notation

Figure 7.7 shows some examples of using the print statement.

Figure 7.7 Using the print statement

7.13 List variables
List variables are variables separated by commas and enclosed in square brackets. The 
variables in a list can be of different types. The contents of a list can be accessed using 
square brackets to index the required item in the list. Indexing starts from 0. As with the 
strings, the '*' character can be used for repetition and the '+' character can be used for 
concatenation. Some examples are given below:

	 mylist = ['John', 'Adam', 230, 12.25, 'Peter', 89]
	 second = [30, 23]

	 s = mylist[0]		  # s = 'John'
	 s = mylist[2]		  # s = 230
	 s = mylist[2:4]		  # s = 230, 12.25
	 s = mylist[3:]		  # s = 12.25, 'Peter', 89
	 s = mylist * 2		�  # s = 'John', 'Adam', 230, 12.25, 'Peter', 89, 'John', 

'Adam', 230, 12.25, 'Peter', 89
	 s = mylist + second	 # s = 'John', 'Adam', 230, 12.25, 'Peter', 89, 30, 23

The contents of a list can be modified by assigning a new value to the required index po-
sition. For example, we can change the 2nd element of the list mylist from 230 to 100 as:

	 mylist[2] = 100

Python does not allow to reference items that are not present in a list. For example, the 
following statement gives an error message:

	 mylist[200]

Raspberry 5 Projects.indd   78Raspberry 5 Projects.indd   78 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 79

Lists can be nested to form two-dimensional matrices. An example is given below:

	 M =	 [[1, 2, 3],
		  [4, 5, 6],
		  [7, 8, 9]]

The nested list is indexed starting from [0][0]. For example, the elements of row 1 can be 
accessed as follows:

	 >>> M[1]		  # Elements of row 1
	 [4, 5, 6]

	 >>> M[1][1]		  # Element at row 1, column 1
	 5

The statement L = [ ] creates an empty list called L.

7.13.1 List functions
The Python language supports many list functions. Some commonly used list functions are 
given below:

•	del([i:j])		  delete elements from i to j-1	
•	 list.append(x)		  append an item to the end of a list
•	 list.extend([x,y,z])	 add several items to the list
•	cmp(L1,L2)		  compare elements of lists L1 and L2
•	 len(L)			   length of list L
•	max(L)		  item with the maximum value
•	min(L)			  item with the minimum value
•	 list.count(x)		  returns how many times x occurs in a list
•	 list.index(x)		  returns the position of the first occurrence of x
•	 list.insert(i,x)		  inserts x at position i in the list
•	 list.remove(x)		  removes the indexed item from the list
•	 list.reverse()		  reverses a list
•	 list.sort()		  sorts a list
•	 list.pop()		  delete and return the last item

Figure 7.8 shows some examples of using the print statement.

Raspberry 5 Projects.indd   79Raspberry 5 Projects.indd   79 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 80

Figure 7.8 Using the list functions

7.14 Tuple variables
Tuples are similar to lists, but their contents cannot be changed, i.e. they are read-only. 
Also, tuple variables are enclosed in round brackets (parenthesis). Some examples are 
given below:

	 mytuple = ['John', 'Adam', 230, 12.25, 'Peter', 89]
	 second = [30, 23]

	 s = mytuple[0]		  # s = 'John'
	 s = mytuple[2]		  # s = 230
	 s = mytuple[2:4]	 # s = 230, 12.25
	 s = mytuple[3:]		  # s = 12.25, 'Peter', 89
	 s = mytuple * 2		�  # s = 'John', 'Adam', 230, 12.25, 'Peter', 89, 'John', 

'Adam', 230, 12.25, 'Peter', 89
	 s = mytuple + second	 # s = 'John', 'Adam', 230, 12.25, 'Peter', 89, 30, 23

The following statement is not valid, since we cannot change the contents of a tuple:

	 mytuple[2] = 200

7.15 Dictionary variables
Dictionaries are similar to hash tables with keys and values. Each key is separated from 
its value by a colon sign, the items are separated by command, and the whole thing is en-
closed in curly brackets. The keys in a dictionary must have data types of numbers, strings, 
or tuples. The values can be of any data type. An example is given below:

	 mydict = {'Name': 'John', 'Surname': 'Adams', 'Age': 25}
	 s = mydict['Name']		  # s = 'John'
	 s = mydict['Age']		  # s = 25
	 s = mydict.keys()		  # s = ['Age', 'Surname', 'Name']
	 s = mydict.values()		  # s = [125, 'Adams', 'John']

Raspberry 5 Projects.indd   80Raspberry 5 Projects.indd   80 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 81

7.15.1 Dictionary functions
The Python language supports a large number of dictionary functions. Some commonly 
used dictionary functions are given below:

•	cmp(d1, d2)		  compare two dictionaries d1 and d2
•	 len()			   the number of items in a dictionary
•	del(d[key])		  delete an item from the dictionary
•	d.clear			  remove all items from the dictionary
•	d.keys()		  return a list of dictionary keys
•	d.values()		  return a list of dictionary values

Figure 7.9 shows some examples of using the print statement.

Figure 7.9 Using the dictionary functions

7.16 Keyboard input
Python provides the following function for reading data from the keyboard:

•	 input		�  provides a prompted read. The data from the keyboard is 
returned as a string

Figure 7.10 shows examples of using the keyboard input function. Notice that the function 
returns a string. Therefore, if numeric data is entered, then it should be converted into a 
numeric data type before being used in mathematical operations.

Figure 7.10 Keyboard input examples

Raspberry 5 Projects.indd   81Raspberry 5 Projects.indd   81 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 82

7.17 Comparison operators
Valid Python comparison operators are:

•	==	 checks if two operands are equal
•	!=	 checks if two operands are not equal
•	>	 checks if the left operand is greater than the right one
•	<	 checks if the left operand is less than the right one
•	>=	 checks if the left operand is greater than or equal to the right one
•	<=	 checks if the left operand is less than or equal to the right one

7.18 Logical operators
Valid Python logical operators are:

•	and	 logical AND of the two operands
•	or	 logical OR of the two operands
•	not	 logical inverse of the operand

7.19 Assignment operators
•	=	 assignment operator
•	+=	 compound add operator
•	-=	 compound subtract operator
•	*=	 compound multiply operator
•	/=	 compound divide operator

7.20 Control of flow
In normal program flow, statements are executed sequentially one after another one. The 
flow control statements are used to make decisions and change the order of execution de-
pending on the results of these decisions.

The Python programming language supports the following flow control statements:

•	 if
•	 if-else
•	elif
•	 for
•	while
•	break
•	continue
•	pass

7.20.1 if, if…else, and elif
The general format of the if statement is:

Raspberry 5 Projects.indd   82Raspberry 5 Projects.indd   82 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 83

	 if expression: statement
or
	 if expression:
		  Statement 1
		  Statement 2
	 else:
		  Statement 1
		  Statement 2

Notice the use of indentation inside the if blocks and the colon character at the end of the 
if and else statements.

An example use of the if statement is:

	 if a == 5: print('a is 5')

If there is only one statement after the if, then it can be typed on the same line. If there 
is more than one statement then all the statements must be written on the next lines with 
the same amount of indentation. An example is given below:

	 if a == 100:
		  x = 0
		  y = 0
	 else:
		  x = 1
		  y = 10

The elif statement is used to check for different conditions in an if block. An example is 
given below:

	 if a > 10:
		  b = 0
		  c = 0
	 elif a == 10:
		  b = 2
		  c = 4

Notice that the if statements can be nested, as shown in the following example:
	 if a == 100:
		  c = 0
		  k = 1
	 if b == 10:
		  c = 20
		  m = 1
	 else:
		  c = 23

Raspberry 5 Projects.indd   83Raspberry 5 Projects.indd   83 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 84

7.20.2 for statement
The for statement is used to create loops (iteration) in programs. The general format of 
this statement is:

	 for variable in sequence:
		  statements

Here, the sequence is evaluated first and the first item in the sequence is assigned to the 
variable and the statements are executed. Then the second item is assigned to the varia-
ble and the statements are executed. This continues until there are no more items in the 
sequence. An example use of the for statement is shown below:

	 for letter in "COMPUTER":
		  print(letter)

The following will be displayed on the screen:
	 C
	 O
	 M
	 P
	 U
	 T
	 E
	 R

The for statement is commonly used to create loops in programs. The range statement 
denotes the range of the variable, as in the following example:

	 for cnt in range(0, 5):
		  print(cnt)

The following will be displayed on the screen:
	 0
	 1
	 2
	 3
	 4

Notice that the upper value of the range is one less than the specified value. In the above 
example, range is from 0 to 4 and not to 5.

We can specify a step size in the last parameter when using the range statement, in the 
following example, the step size is 5 and the list takes values 0, 5, 10, 15, 20, 25:

	 List(range(0, 30, 5))

Raspberry 5 Projects.indd   84Raspberry 5 Projects.indd   84 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 85

The for statement can be nested if desired.

7.20.3 while statement
The while statement can also be used to create loops (iteration) in programs. The general 
format of this statement is:

	 while expression:
		  statements

The statements are executed while the expression evaluates to True. An example is given 
below:

	 cnt = 0
	 while cnt < 5:
		  print(cnt)
		  cnt = cnt + 1

The output of the program is as follows:
	 0
	 1
	 2
	 3
	 4

Notice that the statements that belong to the while statement must be indented. It is im-
portant to make sure that the expression is modified inside the loop; otherwise an infinite 
loop will be formed as shown in the following example:

	 cnt = 0
	 while cnt < 5:
		  print(cnt)

7.20.4 continue statement
The continue statement is used in for and while loops, and this statement skips all the 
remaining statements in a loop and returns to the beginning of the loop. An example is 
given below. In this example, number 3 is not displayed by the print statement:

	 cnt = 0
	 while cnt < 5:
		  cnt = cnt + 1
		  if cnt == 3:
			   continue
		  print(cnt)

Raspberry 5 Projects.indd   85Raspberry 5 Projects.indd   85 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 86

The output of this example is as follows:
	 1
	 2
	 4
	 5

7.20.5 break statement
The break statement is used in for and while loops, and this statement terminates the 
loop and execution continues with the next statement. An example is given below:

	 cnt = 0
	 while cnt < 5:
		  cnt = cnt + 1
		  if cnt == 3:
			   break
		  print(cnt)

The output of this program is as follows:
	 1
	 2

7.20.6 pass statement
The pass statement is used when a statement is required syntactically, but you do not 
want any command or code to execute. The pass statement is a null operation and nothing 
happens when it executes. An example is given below:

	 for letter in 'COMPUTER':
		  if letter == 'P':
			   pass
			   print('Passed')
		  print(letter)

The output of this program is:
	 C
	 O
	 M
	 Passed
	 P
	 U
	 T
	 E
	 R

We have covered the basic statements of the Python programming language. We will now 
develop example programs using the knowledge we have gained so far.	

Raspberry 5 Projects.indd   86Raspberry 5 Projects.indd   86 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 87

7.21 Example 1 – 4-Band resistor colour code identifier
In this example, the user enters the three colours of a 4-band resistor and the program 
calculates and displays the value of the resistor in ohms. The tolerance of the resistor is 
not displayed.

Background Information: Resistor values are identified by the following colour codes:

Black: 	 0
Brown: 	 1
Red: 	 2
Orange: 	 3
Yellow: 	 4
Green: 	 5
Blue: 	 6
Violet: 	 7
Grey:	 8
White: 	 9

The first two colours determine the first two digits of the value, while the last colour deter-
mines the multiplier. For example, red red red corresponds to 22 × 102 = 2200 Ω.

Program Listing: Figure 7.11 shows the program listing (program: resistor.py). At the 
beginning of the program, a list called colour is created which stores the valid resistor col-
ours. Then a heading is displayed, and a while loop is created which runs as long as string 
variable yn is equal to y. Inside the loop, the program reads the three colours from the 
keyboard using functions input and stores as strings in variables FirstColour, Second-
Colour and ThirdColour. These strings are then converted into lower case so that they are 
compatible with the values listed in the list box. The index values of these colours in the list 
are then found using function calls of the form colours.index. Remember that the index 
values start from 0. As an example, if the user entered red, then the corresponding index 
value will be 2. The resistor value is then calculated by multiplying the first colour number 
by 10 and adding to the second colour number. The result is then multiplied by the power 
of 10 of the third colour index. The final result is displayed on the screen. The program then 
asks whether the user wants to continue. If the answer is y then the program returns to the 
beginning; otherwise the program is terminated.

#=================================================
#               RESISTOR COLOUR CODES
#               ---------------------
#
# The user enters the three colours of a resistor
# and the program calculates and displays the value
# of the resistor in Ohms
#
# Program: resistor.py
# Date   : October, 2023

Raspberry 5 Projects.indd   87Raspberry 5 Projects.indd   87 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 88

# Author : Dogan Ibrahim
#===================================================
colours = ['black','brown','red','orange','yellow','green',\
'blue','violet','grey','white']

print("RESISTOR VALUE CALCULATOR")
print("=========================")
yn = "y"

while yn == 'y':
  FirstColour = input("Enter First Colour: ")
  SecondColour = input("Enter Second Colour: ")
  ThirdColour = input("Enter Third Colour: ")
#
# Convert to lower case
# 
  FirstColour = FirstColour.lower()
  SecondColour = SecondColour.lower()
  ThirdColour = ThirdColour.lower()
#
# Find the values of colours
#
  FirstValue = colours.index(FirstColour)
  SecondValue = colours.index(SecondColour)
  ThirdValue = colours.index(ThirdColour)
#
# Now calculate the value of the resistor
#
  Resistor = 10 * FirstValue  + SecondValue
  Resistor = Resistor * (10 ** ThirdValue)
  print("Resistance = %d Ohms" % (Resistor))
#
# Ask for more
#  
  yn = input("\nDo you want to continue?: ")
  yn = yn.lower()

 Figure 7.11 Program listing

The program was created using the nano text editor and then run from the command line 
by entering the following command:

	 pi@raspberrypi:~ $ python resistor.py

Figure 7.12 shows a typical run of the program.

Raspberry 5 Projects.indd   88Raspberry 5 Projects.indd   88 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 89

Figure 7.12 Typical run of the program

7.22 Example 2 – Series or parallel resistors
This program calculates the total resistance of a number of series or parallel connected 
resistors. The user specifies whether the connection is in series or in parallel. Additionally, 
the number of resistors used is also specified at the beginning of the program.

Background Information: When a number of resistors are in series, then the resultant 
resistance is the sum of the resistance of each resistor. When the resistors are in parallel, 
then the reciprocal of the resultant resistance is equal to the sum of the reciprocal resist-
ances of each resistor.

Program Listing: Figure 7.13 shows the program listing (program: serpal.py). At the 
beginning of the program, a heading is displayed, and the program enters into a while 
loop. Inside this loop, the user is prompted to enter the number of resistors in the circuit 
and whether they are connected in series or in parallel. The function str converts a number 
into its equivalent string. e.g. number 5 is converted into the string "5". If the connection 
is serial (mode equals to 's') then the value of each resistor is accepted from the keyboard 
and the resultant is calculated and displayed on the screen. If on the other hand, the con-
nection is parallel (mode is equal to 'p'), then again the value of each resistor is accepted 
from the keyboard and the reciprocal of the number is added to the total. When all the 
resistor values are entered, the resultant resistance is displayed on the screen.

#===================================================
#         RESISTORS IN SERIES OR PARALLEL 
#         -------------------------------
#
# This program calculates the total resistance of
# serial or parallel connected resistors
#
# Program: serpal.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#===================================================
print("RESISTORS IN SERIES OR PARALLEL")
print("===============================")
yn = "y"

while yn == 'y':

Raspberry 5 Projects.indd   89Raspberry 5 Projects.indd   89 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 90

  N = int(input("\nHow many resistors are there?: "))
  mode = input("Are the resistors series (s) or parallel (p)?: ")
  mode = mode.lower()
#
# Read the resistor values and calculate the total
#
  resistor = 0.0
  
  if mode == 's':
    for n in range(0,N):
       s = "Enter resistor " + str(n+1) + " value in Ohms: "
       r = int(input(s))
       resistor = resistor + r
    print("Total resistance = %d Ohms" %(resistor))

  elif mode == 'p':
    for n in range(0,N):
      s = "Enter resistor " + str(n+1) + " value in Ohms: "
      r = float(input(s))
      resistor = resistor + 1 / r
    print("Total resistance = %.2f Ohms" %(1 / resistor))
#
# Check if the user wants to exit
#
  yn = input("\nDo you want to continue?: ")
  yn = yn.lower()

Figure 7.13 Program listing

Figure 7.14 shows a typical run of the program.

Figure 7.14 Typical run of the program

Raspberry 5 Projects.indd   90Raspberry 5 Projects.indd   90 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 91

7.23 Example 3  –  Resistive potential divider
Description: This case study calculates the resistances in a resistive potential divider cir-
cuit.

Background Information: Resistive potential divider circuits consist of two resistors. 
These circuits are used to lower a voltage to a desired value. Figure 7.15 shows a typical 
resistive potential divider circuit. Here, Vin and Vo are the input and output voltages re-
spectively. R1 and R2 form the resistor pair used to lower the voltage from Vin to Vo. Many 
resistor pairs can be used to get the desired output voltage. Choosing large resistors draws 
little current from the circuit, and choosing small resistors draws larger current. In this 
design, the user specifies Vin, Vo, and R2. The program calculates the required R1 value to 
lower the voltage to the desired level. Additionally, the program displays the output voltage 
with the chosen physical resistors.

Figure 7.15 Resistive potential divider circuit

The output voltage is given by:

	 Vo = Vin R2 / (R1 + R2)

R1 is then given by:

	 R1 = (Vin – Vo) R2/ Vo

The above formula is used to calculate the required value of R1, given Vin, Vo, and R2

Program Listing: Figure 7.16 shows the program listing (program: divider.py). At the 
beginning of the program, a heading is displayed. The program then reads Vin, Vo, and R2 
from the keyboard. The program calculates R1 and displays R1 and R2. The user is then 
asked to enter a chosen physical value for R1. With the chosen value of R1, the program 
displays Vin, Vo, R1, and R2 and asks the user whether the result is acceptable. If the an-
swer to this question is y then the program terminates. If, on the other hand, the answer 
is n then the user is given the option of trying again.

#======================================================
#             RESISTIVE POTENTIAL DIVIDER
#             ---------------------------
#
# This is a resistive potential divider circuit program.
# The program calculates the resistance values that will
# lower the input voltage to the desired value
#

Raspberry 5 Projects.indd   91Raspberry 5 Projects.indd   91 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 92

# Program: divider.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#=======================================================
print("RESISTIVE POTENTIAL DIVIDER")
print("===========================")
R1flag = 1
R2flag = 0

while R1flag == 1:
  Vin = float(input("\nInput voltage (Volts): "))
  Vo = float(input("Desired output voltage (Volts): "))
  R2 = float(input("Enter R2 (in Ohms): "))
#
# Calculate R1
# 
  R1 = R2 * (Vin - Vo) / Vo
  print("\nR1 = %3.2f Ohms R2 = %3.2f Ohms" %(R1, R2))
#
# Read chosen physical R1 and display actual Vo
#
  NewR1 = float(input("\nEnter chosen R1 (Ohms): "))

#
# Display and print the output voltage with chosen R1
#
  print("\nWith the chosen R1,the results are:")
  Vo = R2 * Vin / (NewR1 + R2)
  print("R1 = %3.2F R2 = %3.2f Vin = %3.2f Vo = %3.3f" %(NewR1,R2,Vin,Vo))
#
# Check if happy with the values ?
#
  happy = input("\nAre you happy with the values? ")
  happy = happy.lower()
  if happy == 'y':
    break
  else:
    mode = input("Do you want to try again? ")
    mode = mode.lower()
    if mode == 'y':
      R1flag = 1
    else:
      R1flag = 0
      break

Figure 7.16 Program listing

Raspberry 5 Projects.indd   92Raspberry 5 Projects.indd   92 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 93

Figure 7.17 shows a typical run of the program.

Figure 7.17 Typical run of the program

7.24 Trigonometric functions
Python supports numerous trigonometric functions. The arguments to trigonometric func-
tions must be in radians. The math library must be imported into the program before these 
functions can be used:

•	sin(x)		  trigonometric sine
•	cos(x)		 trigonometric cosine
•	tan(x)		 trigonometric tangent
•	asin(x)	 trigonometric arc sin
•	atan(x)	 trigonometric arc tangent
•	atan2(y, x)	 trigonometric atan(y/x)
•	degrees(x)	 convert degrees into radians
•	radians(x)	 convert radians into degrees

Some examples of using the trigonometric functions are given in Figure 7.18.

Figure 7.18 Trigonometric function examples

7.25 User-defined functions
Functions are like small programs within a program. We can use functions to break up a 
complex program into	 several manageable sections, where each section can be imple-
mented as a function. Functions enable us to reuse parts of our programs. For example, we 
can create a function to calculate the cube-root of a number and then call this function from 
different parts of our program. Another advantage of using functions is that they make it 
easier to maintain and update our programs.

Raspberry 5 Projects.indd   93Raspberry 5 Projects.indd   93 09-11-2023   15:4409-11-2023   15:44

.



Raspberry Pi 5 Essentials

● 94

A function that we create can be called from anywhere in a program. Functions have their 
own variables and their own commands. As we have seen in earlier parts of this chapter, 
Python has many built-in functions for various operations such as arithmetic, trigonometric, 
string manipulation and so on. User-defined functions are created by programmers. In this 
section, we shall be looking at how functions can be created and used in our programs.

A user-defined function consists of the following:

•	Functions begin with the keyword def, followed by the function name, and 
round brackets, followed by a colon sign.

•	Input arguments to the function must be placed inside the brackets at the 
beginning of the function definition.

•	The body of a function must be indented with the same number of spaces on 
the left-hand side

•	An optional text message can be displayed at the first line of a function to 
describe what the function does.

•	A function must be terminated with the return statement

An example function, named Mult is given below. This function takes two numbers first and 
second as its arguments, multiplies them, and returns the result:

	 def Mult(first, second):
		  "This is a simple multiplication function"
		  result = first * second
		  return result

A function is called from the main program by specifying the name of the function and 
enclosing any arguments in a pair of brackets. For example, to call the above function to 
multiply numbers 5 and 3 and sore the result in a variable called 'a', we include the follow-
ing statement in our program:

	 a = Mult(5, 3)

We can also call a function by specifying the keyword arguments. i.e.:

	 a = Mult(first = 5, second = 3)

Figure 7.19 shows the above example in a Python program.

Figure 7.19 Creating and calling a function

Raspberry 5 Projects.indd   94Raspberry 5 Projects.indd   94 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 95

Another example is shown in Figure 7.20. In this example, the function displays a string 
passed as an argument. Notice that there is no data returned from this function.

Figure 7.20 A function displaying a string

The variables used in a function are local to that function. Thus, for example, if there are 
two variables with the same name, one inside the function and the other one outside, 
changing the one inside the function does not change the one outside. Variables outside 
a function are called global variables, whereas the ones inside a function are called lo-
cal variables. See Figure 7.21 for an example where the contents of variable res are not 
changed outside the function.

Figure 7.21 Variables in a function are local

The rules for global variables are as follows:

•	Global variables are variables assigned at the top of the program outside the 
function definitions

•	Global names must be declared only if they are assigned within a function
•	Global names may be referenced within a function without being declared

Therefore, by declaring a variable outside the functions and also inside a function but with 
the global keyword allows us to change its contents inside the function. An example is given 
below which identifies the use of global variables:

	 cnt = 10			   # variable cnt is global
	 def tstfunc():			   # function declaration
		  global cnt		  # variable cnt defined as global
		  cnt = 200		  # value of global cnt is changed

	 tstfunc()			   # function is called
	 print(cnt)			   # value of cnt is 200

As explained above, if the value of a global variable is not changed inside a function, then 
there is no need to define it as global. In the following code, there is no need to define x 
as global inside the function:

Raspberry 5 Projects.indd   95Raspberry 5 Projects.indd   95 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 96

	 x = 10
	 y = 4

	 def tst():
		  global y
		  y = x + 2	

It is important to note that the variables in a function call are passed by value. This means 
that the value of a parameter cannot be changed inside a function. An example is shown 
in Figure 7.22. In this example, notice that the value of variable cnt is not changed inside 
the function call.

Figure 7.22 Variables are passed by value

A function normally returns only one item to the calling program. In some applications, 
we may want to return more than one item to the calling program. This is easily done 
by returning a tuple and then unpacking it in the main program. An example is shown in 
Figure 7.23. In this example, the function MyFunc is declared with two arguments. The 
arguments are added and stored in a local variable called sum. Similarly, the difference of 
the arguments is stored in variable diff. The function returns both sum and diff as a tuple. 
The calling main program unpacks the returned data and stores in variables x and y.

Figure 7.23 Returning more than one variable from a function

7.26 Examples
Example 4
Write a program to read an angle from the keyboard in degrees and display the trigonomet-
ric sine of this angle. Repeat until the user stops the program.

Solution 4
The required program listing and example output are shown in Figure 7.24 (program: trig.
py). The angle entered by the user is converted into floating point and is stored in variable 
angle. Then the trigonometric sine of this angle is displayed. The program continues until 
the user enters n in response to the prompt Any more?

Raspberry 5 Projects.indd   96Raspberry 5 Projects.indd   96 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 97

Figure 7.24 Program listing

This program was created and run using the Thonny IDE.

Example 5
Modify the program in Example 4 so that the user can choose between sine, cosine, and 
tangent.

Solution 5
The modified program listing and example output are shown in Figure 7.25 and Figure 7.26 
(program: trigall.py). The user is given a menu with four choices: sine, cosine, tangent, 
exit. The angle is read from the keyboard and is converted into radians. The program then 
calculates the trigonometric value and displays on the screen. This process is repeated until 
the user selects the exit option.

#--------------------------------------------------
#    TRIGONOMETRIC SINE,COSINE,TANGENT PROGRAM
#    =========================================
#
# This program reads an angle from the keyboard
# and displays its trigonometric sine, cosine, or
# tangent depending on user choice. The angle is
# read in degrees,converted into radians and then
# the required trigonometric function is calculated
#
# Author: Dogan Ibrahim

Raspberry 5 Projects.indd   97Raspberry 5 Projects.indd   97 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 98

# File  : trigall.py
# Date  : October, 2023
#--------------------------------------------------
import math

choice = '1'
while choice != '0':
  print(«Trigonometric Sine, Cosine, or Tangent»)
  print(«======================================\n»)
  print(«1. Sine»)
  print(«2. Cosine»)
  print(«3. Tangent»)
  print(«0. Exit»)
  choice = input(«Enter choice: «)

  if choice != '0':
    angle = float(input(«Enter angle in degrees: «))
    r = math.radians(angle)
    if choice == '1':
      s = math.sin(r)
      strng = «sine»
    elif choice == '2':
      s = math.cos(r)
      strng = «cosine»
    elif choice == '3':
      s = math.tan(r)
      strng = «tangent»
    print(strng + « of %3.2f degrees is: %f\n» %(angle, s))
print(«End of program»)

Figure 7.25 Modified program listing

Figure 7.26 Example output

Raspberry 5 Projects.indd   98Raspberry 5 Projects.indd   98 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 99

This program was created using the nano text editor and then run using the command:

	 pi@raspberrypi:~ $ python trigall.py

Example 6
Write a program to tabulate the trigonometric sines of angles from 0º to 90º in steps of 5º.

Solution 6
The required program listing is shown in Figure 7.27 (program: sinetable.py). After dis-
playing a heading, the for statement is used to create a loop. Variable angle takes values 
from 0 to 90 (inclusive) in steps of 5. The trigonometric sine is calculated and displayed.

#--------------------------------------------------
#    	 TRIGONOMETRIC SINE TABLE
#    	 ========================
#
# This program tabulates the trigonometric sine of
# angles from 0 to 90 degrees in steps of 5 degress
#
# Author: Dogan Ibrahim
# File  : sinetable.py
# Date  : October, 2023
#--------------------------------------------------
import math

print("TABLE OF TRIGONOMETRIC SINE")
print("=========================\n")
print("  ANGLE      SINE")

for angle in range(0, 95, 5):
  r = math.radians(angle)
  s = math.sin(r)
  print("  %d        %f" %(angle, s))

print("End of program")

Figure 7.27 Program listing

An example run of the program is shown in Figure 7.28.

Raspberry 5 Projects.indd   99Raspberry 5 Projects.indd   99 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 100

Figure 7.28 Example run of the program

Example 7
Write a program to read metres from the keyboard. Convert into yards and inches and 
display the result.

Solution 7
The required program listing and example output are shown in Figure 7.29 program: conv.
py). After displaying a heading, metres is read from the keyboard using the input state-
ment. The value is then converted into yards and inches by multiplying with 1.0936 and 
39.370 respectively. The results are displayed on the screen.

Figure 7.29 Program listing and example output

Example 8
Repeat Example 7 but do the conversion in a function called Conv. Show how this function 
can be called from the main program.

Raspberry 5 Projects.indd   100Raspberry 5 Projects.indd   100 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 101

Solution 8
The required program listing and example output are shown in Figure 7.30 (program: con-
vfunc.py). Function Conv is declared at the beginning of the program. Metres to be con-
verted into yards and inches is passed as an argument to the function. The function returns 
the yards and inches in a tuple. The main program reads the metres from the keyboard and 
calls the function Conv. The result is displayed on the screen.

Figure 7.30 Program listing and example output

Example 9
Write a function called Cyl to calculate the area and volume of a cylinder, given its radius 
and height. Use this function in a main program.

Solution 9
The area and volume of a cylinder are given by the formula:

	 Area = 2πrh
	 Volume = πr2h

The required program listing and example output are shown in Figure  7.31 (program: 
cylinder.py). The radius and height of the cylinder are passed as arguments to a function 
which calculates the area and volume of the cylinder and returns the results to the main 
program, which are displayed on the screen.

Raspberry 5 Projects.indd   101Raspberry 5 Projects.indd   101 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 102

Figure 7.31 Program listing and example output

Example 10
Write a calculator program to carry out the four simple mathematical operations of addi-
tion, subtraction, multiplication, and division on two numbers received from the keyboard.

Solution 10
The required program listing is shown in Figure 7.32 (program: calc.py). Two numbers are 
received from the keyboard and stored in variables n1 and n2. Then, the required mathe-
matical operation is received and it is performed. The result, stored in the variable result, 
is displayed on the screen. The user is given the option of terminating the program.

#----------------------------------------------
#	   	 CALCULATOR PROGRAM
#	   	 ==================
#
# This is a simple calculator program that can
# carry out 4 basic arithmetic opertions
#
# Author: Dogan Ibrahim
# File  : calc.py
# Date  : October, 2023
#----------------------------------------------
any = 'y'
while any == 'y':
   print("\nCalculator Program")
   print("==================")

   n1 = float(input("Enter first number: "))
   n2 = float(input("Enter second number: "))
   op = input("Enter operation (+-*/): ")

Raspberry 5 Projects.indd   102Raspberry 5 Projects.indd   102 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 103

   if op =="+":
      result = n1 + n2
   elif op == "-":
      result = n1 - n2
   elif op == "*":
      result = n1 * n2
   elif op == "/":
      result = n1 / n2
   print("Result = %f" %(result))
   any = input("\nAny more (yn): ")

Figure 7.32 Program listing

An example run of the program is shown in Figure 7.33.

Figure 7.33 Example output

Example 11
Write a program to simulate double dice. i.e. to display two random numbers between 1 
and 6 every time it is run.

Solution 11
The required program listing and example output are shown in Figure 7.34 (program: dice.
py). Here, the random number generator randint is used to generate random numbers 
between 1 and 6 when the Enter key is pressed. The program is terminated when the letter 
X is entered.

Raspberry 5 Projects.indd   103Raspberry 5 Projects.indd   103 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 104

Figure 7.34 Program listing and example output

Example 12
Write a program to use functions to calculate and display the areas of shapes: square, 
rectangle, triangle, circle, and cylinder. The sizes of the required sides should be received 
from the keyboard.

Solution 12
The areas of the shapes to be used in the program are as follows:

	 Square: side = a		  area = a2
	 Rectangle: sides a, b		  area = ab
	 Circle: radius r			   area = πr2
	 Triangle: base b, height h	 area = bh/2
	 Cylinder: radius r, height h	 area = 2πrh

The required program listing is shown in Figure 7.35 (program: areas.py). A different 
function is used for each shape, and the sizes of the sides are received inside the functions. 
The main program displays the calculated area for the chosen shape.

#----------------------------------------------
#	   	 AREAS OF SHAPES
#	   	 ===============
#
# This program calculates and displays the areas
# of various geometrical shapes
# of numbers in a list
#
# Author: Dogan Ibrahim
# File  : areas.py

Raspberry 5 Projects.indd   104Raspberry 5 Projects.indd   104 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 105

# Date  : October, 2023
#----------------------------------------------
import math

def Square(a):				   # square
  return a * a

def Rectangle(a, b):			   # rectangle
  return(a * b)

def Triangle(b, h):			   # triangle
  return(b * h / 2)

def Circle(r):				   # circle
  return(math.pi * r * r)

def Cylinder(r, h):			   # cylinder
  return(2 * math.pi * r * h)

print("AREAS OF SHAPES")
print("===============\n")
print("What is the shape?: ")

shape = input("Square (s)\nRectangle(r)\nCircle(c)\n\
Triangle(t)\nCylinder(y): ")

shape = shape.lower()
if shape == 's':
  a = float(input("Enter a side of the square: "))
  area = Square(a)
  s = "Square"
elif shape == 'r':
  a = float(input("Enter one side of the rectangle: "))
  b = float(input("Enter other side of the rectangle: "))
  area = Rectangle(a, b)
  s = "Rectangle"
elif shape == 'c':
  radius = float(input("Enter radius of the circle: "))
  area = Circle(radius)
  s = "Circle"
elif shape == 't':
  base = float(input("Enter base of the triangle: "))
  height = float(input("Enter height of the triangle: "))
  area = Triangle(base, height)
  s = "Triangle"
elif shape == 'y':

Raspberry 5 Projects.indd   105Raspberry 5 Projects.indd   105 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 106

  radius = float(input("Enter radius of cylinder: "))
  height = float(input("Enter height of cylinder: "))
  area = Cylinder(radius, height)
  s = "Cylinder"

print("Area of %s is %f" %(s, area))

Figure 7.35 Program listing

An example run of the program is shown in Figure 7.36.

Figure 7.36 Example output

7.27 Recursive functions
Recursive functions are functions that call themselves either directly or indirectly, and such 
functions are supported by Python. Although the topic of recursive functions is an advanced 
topic, an example is given in Figure 7.37 to illustrate the principles of such functions. This 
recursive function implements the factorial operation. Detailed analysis of recursive func-
tions is beyond the scope of this book.

Figure 7.37 Recursive factorial function

7.28 Exceptions
There may be major errors in our programs, such as dividing by zero, file privilege error, 
and so on. Normally, when Python encounters such errors, it cannot handle them and the 
program crashes.

One way to handle such errors orderly and avoid crashes is to use exception handling in 
our programs. The basic method is that whenever an error occurs, the program detects 
this error and takes appropriate measures to handle the error and continue to execute 
normally. Exception handling is also useful if we wish to terminate a running program in an 

Raspberry 5 Projects.indd   106Raspberry 5 Projects.indd   106 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 107

orderly manner, for example to shut down any input-output operations when the program 
is terminated asynchronously by the user (e.g. by pressing the Ctrl+C key).

The statements try and except are used to handle unexpected errors or terminations in our 
programs. The general format of exception handling is as follows:

	 try:
		  Normal program statements
		  Normal program statements
	 except condition 1:
		  if condition 1 type error occurs, then execute this block of code
			   ……………..
			   ……………..
	 except condition 2:
		  if condition 2 type error occurs, then execute this block of code
			   ……………….
			   ……………….
	 else:
		  if there are no errors detected, then execute this block of code
			   …………………
			   …………………

We can use the except statement with no condition to handle any type of exception. Some 
of the commonly used exceptions are:

exception EOFError: 	�� end-of-file condition is reached while reading data
exception ImportError: 	 import statement could not load a module
exception IndexError: 	 sequence subscript is out of range
exception KeyError: 	� a dictionary key is not found in the set of existing 

keys
exception KeyboardInterrupt:	 �user hit the interrupt key (normally the Ctrl+C or 

Delete key)
exception MemoryError: 	 operation ran out of memory
exception OverFlowError: 	 arithmetic operation resulted in overflow
exception RuntimeError: �	� an error is detected that does not fall in any other 

categories
exception ValueError: �	� an operation or function receives an argument that 

has the right type but an inappropriate value
exception ZeroDivisionError: 	 a division by zero occurred

Some examples of using exceptions in programs are given below.

Example 13
Write a program to wait for an input from the keyboard. Terminate the program orderly 
when the Ctrl+C keys are pressed on the keyboard.

Raspberry 5 Projects.indd   107Raspberry 5 Projects.indd   107 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 108

Solution 13
Figure 7.38 shows the program listing (program: except1.py). Exception KeyboardInter-
rupt is used in this program. The message End of Program is displayed when Ctrl+C key 
combination is pressed on the keyboard.

#=====================================================
#	 KeyboardInteerupt EXCEPTION
#
# This program detects the keyboard entry Cntrl+C and
# the program is teminated orderly after the message
# End of Program is displayed
#
# Author : Dogan Ibrahim
# File   : except1.py
# Date   : October, 2023
#======================================================
try:
   mode = input("Enter Cntrl+C to terminate the program: ")
except KeyboardInterrupt:
   print("\nEnd of Program")

Figure 7.38 Program listing

Example 14
Write a program to detect division by zero and to display the message Divide by Zero when 
this exception is detected.

Solution 14
Figure 7.39 shows the program listing (program: except2.py). Here, the program is forced 
to divide a number by zero and this is detected as an exception and the program displays 
a message when this occurs.

#=====================================================
#	 ZeroDivisionError EXCEPTION
#
# This program detects when a number is divided by zero
# and generates an exception to display a message
##
# Author : Dogan Ibrahim
# File   : except2.py
# Date   : October, 2023
#======================================================
print("Divide by zero exception")

try:
   s = 10 / 0

Raspberry 5 Projects.indd   108Raspberry 5 Projects.indd   108 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 109

except  ZeroDivisionError:
   print("Divide by Zero")

Figure 7.39 Program listing

When the program is run, it displays the following message:

	 Divide by zero exception
	 Divide by Zero

7.29 try/final exceptions
Statement finally can be used in exception handling. Try/finally combination specifies ex-
ception, where the block beginning with finally is always executed on the way out, regard-
less of whether an exception occurs in the try block. An example is given below:

Example 15
Write a program to look for KeyboardInterrupt exception and display the message "Excep-
tion not occurred" if an exception has not occurred.

Solution 15
Figure 7.40 shows the program listing (program: except3.py). The block inside finally is 
executed regardless of whether an exception occurs.

#=====================================================
#	     try/finally In EXCEPTION
#
# This program detects the keyboard entry Cntrl+C and
# displays the message Keyboard Interrupt if interrupt
# occurs. Message Continue is displayed regardless of
# whether an exception occurrede
#
# Author : Dogan Ibrahim
# File   : except3.py
# Date   : October, 2023
#======================================================
try:
   mode = input("Enter Cntrl+C to terminate the program: ")
except KeyboardInterrupt:
   print("\nKeyboard Interrupt")
finally:
   print("\nContinue")

Figure 7.40 Program listing

When the program is run, the following is displayed 

Raspberry 5 Projects.indd   109Raspberry 5 Projects.indd   109 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 110

	 Enter Ctrl+C to terminate the program:
	 After entering Ctrl+C:
	 Keyboard Interrupt

7.30 Date and time
In some applications it may be necessary to get the current date and time. Python supports 
a number of functions to get the current date and time. Module time must be imported 
before these functions can be used. Some of the commonly used date and time functions 
are as follows:

•	time.localtime()	� returns the current date and time in the following 
format: 
time.struct_time(tm_year=2013,tm_mon=12,tm_
mday=18, tm_hour=12,tm_min=45,tm_sec=3,tw_
wday=2,tm_yday=352, tm_isdst=0)

•	time.asctime()		  returns the date and time in standard readable format
•	time.clock()		  returns the current CPU time in seconds
•	time.ctime()		  returns the current date and time
•	time.time()		  returns the current time in seconds since the epoch
•	time.sleep(x)		  suspends the calling program for x seconds

Some examples are given in Figure 7.41.

Figure 7.41 Example date and time functions

The datetime module can also be used for date and time functions. This module must be im-
ported to use these functions. Some examples of date functions are shown in Figure 7.42.

Figure 7.42 Examples of using the datetime date functions

Raspberry 5 Projects.indd   110Raspberry 5 Projects.indd   110 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 111

The function strftime(format) is very useful as it can be used to format a date and time 
string. Some examples of using this function are given in Figure 7.43.

Figure 7.43 Examples of using strftime

7.31 Creating your own modules
In some applications, we may want to create our own Python modules and import them into 
our programs. Python modules are simply .py program files. Writing a module is just like 
writing any other Python program. Modules can contain functions, classes, and variables.

A simple module called msg.py is shown below:

	 def hello():
                print("Hello there!")

We can now import this module into our Python programs. An example program called 
myprog.py is shown below:

	 import msg
	 msg.hello()

Running the program: python myprog.py will display the following output:

	 Hello there!

We can also modify our program myprog.py and import and then call the module as follows:

	 from msg import hello
	 hello()

We can use variables in our module as shown below:

msg.py
	 def hello():
                print("Hello there!")

	 name = "Jones"

Raspberry 5 Projects.indd   111Raspberry 5 Projects.indd   111 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 112

myprog.py
	 import msg
	 msg.hello()
	 print(msg.name)
The program will display:

	 Hello there!
	 Jones

Aliases can be created for modules. This is shown in the following code:

myprog.py
	 import msg as tst
	 tst.hello()

Will display the output:

	 Hello there!

An example module is given below that calculates the cube of a number

Example 16
Write a module that calculates the cube of the integer number passed to it. Show how this 
module can be imported and used in a program.

Solution 16
Figure  7.44 shows the module listing (program: cubeno.py). The function cube inside 
cubeno.py has the number as its argument. The cube of this number is calculated and re-
turned. Figure 7.45 shows the program (program: myprog.py). As an example, when the 
number is 3, the output from the program is:

	 Cube of 3 is: 27

def cube(N):
  r = N * N * N
  return r

Figure 7.44 Program cubeno.py listing

import cubeno
n= 3
res = cubeno.cube(n)
print("Cube of %d is: %d" %(n,res))

Figure 7.45 Program myprog.py

Raspberry 5 Projects.indd   112Raspberry 5 Projects.indd   112 09-11-2023   15:4409-11-2023   15:44



Chapter 7 • Python Programming and Simple Programs

● 113

Module Search Path: When a module is to be imported, Python looks at the following folders 
in the order given:

The folder from which the module is called (where the calling main program is)

•	The list of directories contained in the PYTHONPATH environment variable.
•	Installation dependent list of directories configured when Python was installed

The Python search path can be displayed by entering the following command interactively:

	 >>> import sys
	 >>> sys.path
 
The display on the author's computer is shown in Figure 7.46.

Figure 7.46 Python path display

To make sure that your module is found by Python, you can do one of the following:

•	Put the module program file in the folder where your main program is

•	Modify PYTHONPATH environment variable to contain the folder where the 
module program is

•	Put the module program in one of the folders already contained in the 
PYTHONPATH

Raspberry 5 Projects.indd   113Raspberry 5 Projects.indd   113 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 114

Chapter 8 • Raspberry Pi 5 LED Projects

8.1 Overview
This chapter is about the Raspberry Pi 5 hardware interface and using LEDs in simple pro-
jects. The Raspberry Pi 5 is connected to external electronic circuits and devices using its 
GPIO (General Purpose Input Output) port connector. This is a 2.54 mm, 40-pin expansion 
header, arranged in a 2 × 20 strip as shown in Figure 8.1. The I/O ports are numbered as 
GPIO nn

Figure 8.1 Raspberry Pi 5 GPIO pins (https://linuxhint.com/gpio-pinout-raspberry-pi)

8.2 Raspberry Pi 5 GPIO pin definitions
When the GPIO connector is at the far side of the board, the pins starting from the left of 
the connector are numbered as 1, 3, 5, 7, and so on, while the ones at the top are num-
bered as 2, 4, 6, 8 and so on (Figure 8.2)

Figure 8.2 GPIO pin numbering

Raspberry 5 Projects.indd   114Raspberry 5 Projects.indd   114 09-11-2023   15:4409-11-2023   15:44



Chapter 8 • Raspberry Pi 5 LED Projects

● 115

The GPIO provides 26 general-purpose bidirectional I/O pins. Some of the pins have mul-
tiple functions. For example, pins 3 and 5 are the GPIO2 and GPIO3 input-output pins 
respectively. These pins can also be used as the I²C bus SDA and SCL pins respectively. 
Similarly, pins 9, 10, 11 and 19 can either be used as general-purpose input-output pins, or 
as the SPI bus pins. Pins 8 and 10 are reserved for UART serial communication.

Two power outputs are provided: +3.3 V and +5.0 V. The GPIO pins operate at +3.3 V logic 
levels (not like many other computer circuits that operate with +5 V). A pin can either be an 
input or an output. When configured as an output, the pin voltage is either 0 V (logic 0) or 
+3.3 V (logic 1). Raspberry Pi 5 is normally operated using an external power supply (e.g. 
a mains adapter) with +5 V output. A 3.3 V output pin can supply up to 16 mA of current. 
The total current drawn from all output pins should not exceed the 51 mA limit. Care should 
be taken when connecting external devices to the GPIO pins, as drawing excessive currents 
or short-circuiting a pin can easily damage your Raspberry Pi. The amount of current that 
can be supplied by the 5 V pin depends on many factors, such as the current required by 
the Pi itself, current taken by the USB peripherals, camera current, micro-HDMI port cur-
rent, and so on.

When configured as an input, a voltage above +1.7 V will be taken as logic 1, and a voltage 
below +1.7 V will be taken as logic 0. Care should be taken not to supply voltages greater 
than +3.3 V to any I/O pin, as large voltages can easily damage your Raspberry Pi. The 
Raspberry Pi 5, like others in the family, has no overvoltage protection circuitry.

8.3 Project 1 – Flashing an LED
Description: This is perhaps the easiest hardware project you can design using your Rasp-
berry Pi 5. In this project, you will connect an LED to one of the ports of the Raspberry 
Pi 5 and then flash the LED once a second. The aim of this project is to show how a simple 
Python program can be written and then run from a file. The project also shows how to 
connect an LED to a Raspberry Pi 5 GPIO pin. In addition, the project shows how to use the 
GPIO library to configure and set a GPIO pin to logic 0 or 1.

Block diagram: The block diagram of the project is shown in Figure 8.3

Figure 8.3 Block diagram of the project

Raspberry 5 Projects.indd   115Raspberry 5 Projects.indd   115 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 116

Circuit diagram: The circuit diagram of the project is shown in Figure 8.4. A small LED 
is connected to port pin GPIO 17 (pin 11) of the Raspberry Pi 5 through a current limiting 
resistor. The value of the current limiting resistor is calculated as follows:

The output high voltage of a GPIO pin is 3.3 V. The voltage across an LED is approximately 
1.8 V. The current through the LED depends upon the type of LED used and the amount 
of required brightness. Assuming that we are using a small LED, we can assume a forward 
LED current of about 3 mA. Then, the value of the current limiting resistor is:

	 R = (3.3 − 1.8) / 0.003 = 500 Ω. We can choose a 470 Ω resistor.

In Figure 8.4 the LED is operated in current sourcing mode where a high output from the 
GPIO pin drives the LED. The LED can also be operated in current sinking mode, where 
the other end of the LED is connected to +3.3 V supply and not to the ground. In current 
sinking mode, the LED is turned ON when the GPIO pin is at logic low.

Figure 8.4 Circuit diagram of the project

Construction: The project is constructed on a breadboard as shown in Figure 8.5. Jumper 
wires are used to connect the LED to the GPIO port. Notice that the short side of the LED 
must be connected to ground.

Figure 8.5 Constructing the project on a breadboard

Raspberry 5 Projects.indd   116Raspberry 5 Projects.indd   116 09-11-2023   15:4409-11-2023   15:44



Chapter 8 • Raspberry Pi 5 LED Projects

● 117

Program listing: The program is called LED.py and the listing is shown in Figure 8.6. 
The program was written using the nano text editor. At the beginning of the program, the 
gpiozero and the time modules are imported to the project. The rest of the program is 
executed indefinitely in a while loop, where the LED is turned on and off with a one-second 
delay between each output change. Press Ctrl+C to terminate the program.

#-------------------------------------------------------
#
#               	 FLASHING LED
#               	 ============
#
# In thisproject a small LED is connected to GPIO 17 of
# the Raspberry Pi 5. The program flashes the LED every
# second.
#
# Program: LED.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#--------------------------------------------------------
from gpiozero import LED	 # import gpiozero
from time import sleep		 # import time library

led = LED(17)

while True:
  led.on()			   # turn ON LED
  sleep(1)			   # wait 1 second
  led.off()			   # turn OFF LED
  sleep(1)			   # wait 1 second

Figure 8.6 Program listing of the project

The program is run from the console mode as follows:

	 pi@raspberrypi ~ $ python LED.py

If you wish to run the program from the GUI Desktop environment, you should use the 
VNC Viewer to get into the GUI desktop screen (unless you have a monitor connected to 
the Raspberry Pi 5 via a micro-HDMI cable). Then, click the Applications menu → Pro-
gramming → Thonny.

Click File and open file LED.py, or type in the program if it is not already in your default di-
rectory. Now, click Run to run the program. You should see the LED flashing every second. 
To terminate the program, close the screen by clicking the STOP button.

Raspberry 5 Projects.indd   117Raspberry 5 Projects.indd   117 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 118

Note: You can copy the programs from your Raspberry Pi 5 home directory to your PC 
using the winSCP file copy program (available free of charge on the Internet).

8.4 Project 2 – Alternately flashing LEDs
Description: This project is similar to the previous one, but here two LEDs are used, and 
they flash alternately every second. The aim of this project is to show how more than one 
LED can be connected to the Raspberry Pi 5.

Block diagram: The block diagram of the project is shown in Figure 8.7

Figure 8.7 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 8.8. Two small LEDs 
are connected to port pins GPIO 17 (pin 11) and GPIO 27 (pin 13) of the Raspberry Pi 5 
through current limiting resistors.

Figure 8.8 Circuit diagram of the project

Program listing: The program is called alternate.py and the listing is shown in Fig-
ure 8.9. The program was written using the nano text editor. At the beginning of the 
program, the gpiozero and the time modules are imported to the project. The rest of the 
program is executed indefinitely in a while loop where the LEDs are turned on and off alter-
nately with one-second delay between each output. Press Ctrl+C to terminate the program.

Raspberry 5 Projects.indd   118Raspberry 5 Projects.indd   118 09-11-2023   15:4409-11-2023   15:44



Chapter 8 • Raspberry Pi 5 LED Projects

● 119

#-------------------------------------------------------
#
#               ALTERNATELY FLASHING LEDS
#               =========================
#
# In thisproject two small LEDs is connected to GPIO 17 and
# GPIO 27 of the Raspberry Pi 5. The program flashes the LEDs
# alternately every second
#
# Program: alternate.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#--------------------------------------------------------
from gpiozero import LED
from time import sleep		 # import time library

led1 = LED(17)			  # LED1 at GPIO 17
led2 = LED(27)			  # LED2 at GPIO 27

while True:
  led1.on()			   # Turn ON LED1
  led2.off()			   # Turn OFF LED2
  sleep(1)			   # Wait 1 second
  led1.off()			   # Turn OFF LED1
  led2.on()			   # Turn ON LED2
  sleep(1)			   # Wait 1 second

Figure 8.9 Program listing of the project

8.5 Project 3 – Binary counting with 8 LEDs
Description: In this project, eight LEDs are connected to the Raspberry Pi 5 GPIO pins. 
The LEDs count up in binary every second. The aim of this project is to show how eight 
LEDs can be connected to the Raspberry Pi 5 GPIO pins. In addition, the project shows how 
to group the LEDs as an 8-bit port and control them as a single port.

Block diagram: The block diagram of the project is shown in Figure 8.10

Figure 8.10 Block diagram of the project

Raspberry 5 Projects.indd   119Raspberry 5 Projects.indd   119 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 120

Circuit diagram: The circuit diagram of the project is shown in Figure 8.11. The LEDs are 
connected to 8 GPIO pins through 470 Ω current limiting resistors. The following 8 GPIO 
pins are grouped as an 8-bit port, where GPIO 2 is configured as the LSB and GPIO 9 is 
configured as the MSB:

                       MSB                                   LSB
	 GPIO:    9   10   22   27   17   4   3   2
	 Pin no:   21 19   15   13   11   7   5   3

Figure 8.11 Circuit diagram of the project

Construction: The project is constructed on a breadboard as shown in Figure 8.12. Notice 
that in this project, a T-Cobbler (Figure 8.13) connects to the 40-pin GPIO header of the 
Raspberry Pi through a ribbon cable. On the other side of this ribbon cable, a T-type con-
nector is used which is plugged into a breadboard. This setup simplifies making connections 
to the Raspberry Pi GPIO header, especially when there are many connections to be made. 
The GPIO pin names are written on the T-cobbler for ease of access.

Raspberry 5 Projects.indd   120Raspberry 5 Projects.indd   120 09-11-2023   15:4409-11-2023   15:44



Chapter 8 • Raspberry Pi 5 LED Projects

● 121

Figure 8.12 Constructing the project on a breadboard

Figure 8.13 The T-Cobbler

Program listing: The program is called LEDCNT.py and the listing is shown in Figure 8.14. 
The program was written using the nano text editor. Inside the main program, a loop is 
formed to execute forever and inside this loop the LEDs count up by one in binary. Variable 
cnt is used as the counter. Function Port_Output is used to control the LEDs. This function 
can take integer numbers from 0 to 255, and it converts the input number (x) into binary 
using the built-in function bin. Then the leading '0b' characters are removed from the out-
put string b (bin function inserts characters '0b' to the beginning of the converted string). 
Then, the converted string b is made up of 8 characters by inserting leading zeroes. The 
string is then sent to the PORT bit by bit, starting from the least significant bit (GPIO 2) 
position. The result is that the 8 LEDs count up in binary.

Raspberry 5 Projects.indd   121Raspberry 5 Projects.indd   121 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 122

#-----------------------------------------------------------
#
#               	 BINARY UP COUNTING LEDs
#               	 =======================
#
# In this project 8 LEDs are connected to the following
# GPIO pins:
#
# 9 10 22 27 17 4 3 2
#
# The program groups these LEDs as an 8-bit port and then
# the LEDs count up in binary with one second delay between
# each output.
#
# Program: LEDCNT.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#------------------------------------------------------------
from gpiozero import LED
from time import sleep		 # import time library

#
# LED connections
#
PORT = [0] * 8
PORT[0] = LED(9)
PORT[1] = LED(10)
PORT[2] = LED(22)
PORT[3] = LED(27)
PORT[4] = LED(17)
PORT[5] = LED(4)
PORT[6] = LED(3)
PORT[7] = LED(2)
 
#
# This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
   b = bin(x)				    # convert into binary
   b = b.replace("0b", "")		  # remove leading "0b"
   diff = 8 - len(b)			   # find the length
   for i in range (0, diff):
      b = "0" + b			   # insert leading os

   for i in range (0, 8):
      if b[i] == "1":

Raspberry 5 Projects.indd   122Raspberry 5 Projects.indd   122 09-11-2023   15:4409-11-2023   15:44



Chapter 8 • Raspberry Pi 5 LED Projects

● 123

         PORT[i].on()			   # bit ON
      else:
         PORT[i].off()			  # bit OFF
   return
#
# Main program loop. Count up in binary every second
#
cnt = 0

while True:
  Port_Output(cnt)			   # send cnt to port
  sleep(1)				    # wait 1 second
  cnt = cnt + 1			   # increment cnt
  if cnt > 255:
     cnt = 0

Figure 8.14 Program listing

Recommended modifications: Modify the program such that the LEDs count down every 
two seconds.

Modified Program
The program shown in Figure 8.14 can be modified and made more friendly by storing the 
LED port numbers in a list. The modified program LEDCNT2.py is shown in Figure 8.15. In 
this program, the LED port numbers are stored in list PORT. Then function Port_Output is 
used as before to send the port data to the LEDs.

#-----------------------------------------------------------
#
#               	 BINARY UP COUNTING LEDs
#               	 =======================
#
# In this project 8 LEDs are connected to the following
# GPIO pins:
#
# 9 10 22 27 17 4 3 2
# 
# The program groups these LEDs as an 8-bit port and then
# the LEDs count up in binary with one second delay between
# each output.
#
# Program: LEDCNT2.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#------------------------------------------------------------
from gpiozero import LED

Raspberry 5 Projects.indd   123Raspberry 5 Projects.indd   123 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 124

from time import sleep			  # import time library

PORT = [9,10,22,27,17,4,3,2]		  # LED ports

#
# This function initializes the port list PORT[]
#
def Configure():
  for i in range(8):
     PORT[i] = LED(PORT[i])
 
#
# This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
   b = bin(x)				    # convert into binary
   b = b.replace("0b", "")		  # remove leading "0b"
   diff = 8 - len(b)			   # find the length
   for i in range (0, diff):
      b = "0" + b			   # insert leading os

   for i in range (0, 8):
      if b[i] == "1":
         PORT[i].on()
      else:
         PORT[i].off()
   return
#
# Main program loop. Count up in binary every second
#
cnt = 0
Configure()

while True:
  Port_Output(cnt)			   # send cnt to port
  sleep(1)				    # wait 1 second
  cnt = cnt + 1			   # increment cnt
  if cnt > 255:
     cnt = 0

Figure 8.15 Modified program

8.6 Project 4 – Christmas lights (random flashing 8 LEDs)
Description: In this project, eight LEDs are connected to the Raspberry Pi 5 GPIO pins as 
in Project 3. The LEDs flash randomly every 0.5 seconds, just like fancy Christmas lights. 
The aim of this project is to show how to generate random numbers between 1 and 255.

Raspberry 5 Projects.indd   124Raspberry 5 Projects.indd   124 09-11-2023   15:4409-11-2023   15:44



Chapter 8 • Raspberry Pi 5 LED Projects

● 125

The block diagram and circuit diagram of the projects are the same as in Figure 8.10 and 
Figure 8.11 respectively.

Program listing: The program is called XMAS.py and the listing is shown in Figure 8.16. 
The program was written using the nano text editor. At the beginning of the program, the 
random module and other required modules are imported to the program. Then, a loop 
is formed to execute forever and inside this loop a random number is generated between 
1 and 255, and this number is used as an argument to function Port_Output. The binary 
pattern corresponding to the generated number is sent to the port, which turns the LEDs 
ON or OFF randomly.

#-----------------------------------------------------------
#
#               	 CHRISTMAS LIGHTS
#               	 ================
#
# In this project 8 LEDs are connected to the Raspberry Pi 3
# and these LEDs flash randomly at 0.5 second intervals. The
# connections of the LEDs are to the following GPIO pins:
#
# 9 10 22 27 17 4 3 2
# 
# The program groups these LEDs as an 8-bit port and then
# generates random numbers between 1 and 255 and turns the
# LEDs ON and OFF depending on the generated number.
#
# Program: XMAS.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#------------------------------------------------------------
from gpiozero import LED
from time import sleep		 # import time library
import random			   # import random library

PORT = [9,10,22,27,17,4,3,2]	 # LED ports

#
# This function initializes the port list PORT[]
#
def Configure():
  for i in range(8):
     PORT[i] = LED(PORT[i])
 
#
# This function sends 8-bit data (0 to 255) to the PORT
#

Raspberry 5 Projects.indd   125Raspberry 5 Projects.indd   125 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 126

def Port_Output(x):
   b = bin(x)				    # convert into binary
   b = b.replace("0b", "")		  # remove leading "0b"
   diff = 8 - len(b)			   # find the length
   for i in range (0, diff):
      b = "0" + b			   # insert leading os

   for i in range (0, 8):
      if b[i] == "1":
         PORT[i].on()
      else:
         PORT[i].off()
   return
#
# Configure PORTs
#
Configure()

#
# Main program loop. Count up in binary every second
#
while True:
  numbr = random.randint(1, 255)	 # generate a random number
  Port_Output(numbr)			   # send cnt to port
  sleep(0.5)				    # wait 0.5 second

Figure 8.16 Program listing

Recommended modifications: Modify the program such that 10 LEDs can be connected 
to the Raspberry Pi 5 and flashed randomly.

8.7 Project 5 – Chasing LEDs
Description: In this project, eight LEDs are connected to the Raspberry Pi 5 GPIO pins as 
in the previous project. As shown in Figure 8.17, the LEDs rotate (chase each other) from 
the LSB to MSB with a one-second delay between each output.

Figure 8.17 Chasing LEDs

Raspberry 5 Projects.indd   126Raspberry 5 Projects.indd   126 09-11-2023   15:4409-11-2023   15:44



Chapter 8 • Raspberry Pi 5 LED Projects

● 127

The block diagram and circuit diagram of the projects are the same as in Figure 8.10 and 
Figure 8.11 respectively.

Program listing: The program is called rotate.py and the listing is shown in Figure 8.18. 
The program was written using the nano text editor. Inside the main program, a loop is 
formed to execute forever and inside this loop the variable rot is used as an argument to 
the Port_Output function. This variable is shifted left at each iteration, and thus the LED 
ON sequence is from left to right (from LSB to MSB). A one-second delay is inserted be-
tween each output.

#------------------------------------------------------------------
#               ROTATING LEDs
#               =============
#
# In this project 8 LEDs are connected to the Raspberry Pi 5.
# The LEDs rotate from LSB to MSB every second
#
# Program: rotate.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#--------------------------------------------------------------------
from gpiozero import LED
from time import sleep			  # import time library

PORT = [9,10,22,27,17,4,3,2]		  # LED ports

#
# This function initializes the port list PORT[]
#
def Configure():
  for i in range(8):
     PORT[i] = LED(PORT[i])

#
# This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
   b = bin(x)				    # convert into binary
   b = b.replace("0b", "")		  # remove leading "0b"
   diff = 8 - len(b)			   # find the length
   for i in range (0, diff):
      b = "0" + b			   # insert leading os

   for i in range (0, 8):
      if b[i] == "1":
         PORT[i].on()

Raspberry 5 Projects.indd   127Raspberry 5 Projects.indd   127 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 128

      else:
         PORT[i].off()
   return
#
# Configure PORT s
#
Configure()

#
# Main program loop. Rotate the LEDs
#
rot = 1
while True:
  Port_Output(rot)
  sleep(1)				    # wait 1 second
  rot = rot << 1			   # shift left
  if rot > 128:			   # at the end
      rot = 1				    # back to beginning

Figure 8.18 Program listing

8.8 Project 6 – Rotating LEDs with push-button switch
Description: In this project, eight LEDs are connected to the Raspberry Pi 5 GPIO pins as 
in the previous project. In addition, a push-button switch is connected to one of the GPIO 
ports. The LEDs rotate in one direction when the button is not pressed, and in the opposite 
direction when the button is pressed. Only one LED is ON at any time. A one-second delay is 
inserted between each output. The aim of this project is to show how a push-button switch 
can be connected to a GPIO pin.

Block diagram: The block diagram of the project is shown in Figure 8.19.

Figure 8.19 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 8.20. The LEDs 
are connected to 8 GPIO pins through 470 Ω current limiting resistors, as in the previous 
project. The push-button switch is connected to GPIO 11 (pin 23) of the Raspberry Pi 5. 
The push-button switch is connected through a 10 kΩ and a 1 kΩ resistor. When the switch 
is not pressed, the input is at logic 1. When the switch is pressed, the input changes to 

Raspberry 5 Projects.indd   128Raspberry 5 Projects.indd   128 09-11-2023   15:4409-11-2023   15:44



Chapter 8 • Raspberry Pi 5 LED Projects

● 129

logic 0. Notice that the 1 kΩ resistor is used here for safety if the input channel is config-
ured as an output accidentally. If this is the case, without a resistor the output would be 
short-circuited and this could damage the Raspberry Pi hardware.

Figure 8.20 Circuit diagram of the project

Construction: The project is constructed on a breadboard as shown in Figure 8.21.

Raspberry 5 Projects.indd   129Raspberry 5 Projects.indd   129 09-11-2023   15:4409-11-2023   15:44



Raspberry Pi 5 Essentials

● 130

Figure 8.21 Project constructed on a breadboard

Program listing: The program is called ButtonLED.py and the listing is shown in Fig-
ure 8.22. The program was written using the nano text editor. Module gpiozero is im-
ported with both LED and Button. button is assigned port GPIO 11. A loop is formed 
to execute forever, and inside this loop the variable rot is used as an argument to the 
Port_Output function. If the button is not pressed, then rot is shifted right and the LED 
ON sequence is from left to right (from MSB to LSB). If, on the other hand, the button is 
pressed, then the LED On sequence is from right to left (from LSB to MSB). A one-second 
delay is inserted between each output.

#------------------------------------------------------------------
#
#               ROTATING LEDs WITH PUSH-BUTTON
#               ==============================
#
# In this project 8 LEDs are connected to the Raspberry Pi 5.
# In addition a push-button switch is connected to GPIO 11.
# Normally the output of the button is at logic 1 and goes to 0
# when the button is pressed. The LEDs rotate in one direction
# and when the button is pressed the direction of rotation
# is reversed. One second delay is inserted between each output
#
# Program: ButtonLED.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#--------------------------------------------------------------------
from gpiozero import LED, Button

Raspberry 5 Projects.indd   130Raspberry 5 Projects.indd   130 09-11-2023   15:4509-11-2023   15:45



Chapter 8 • Raspberry Pi 5 LED Projects

● 131

from time import sleep			  # import time library

button = Button(11)			   # Button at GPIO 11
PORT = [9,10,22,27,17,4,3,2]		  # LED ports

#
# This function initializes the port list PORT[]
#
def Configure():
  for i in range(8):
     PORT[i] = LED(PORT[i])

#
# This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
   b = bin(x)				    # convert into binary
   b = b.replace("0b", "")		  # remove leading "0b"
   diff = 8 - len(b)			   # find the length
   for i in range (0, diff):
      b = "0" + b			   # insert leading os

   for i in range (0, 8):
      if b[i] == "1":
         PORT[i].on()
      else:
         PORT[i].off()
   return
#
# Configure PORT s
#
Configure()

#
# Main program loop. Rotate the LEDs
#
rot = 1
while True:
  Port_Output(rot)
  sleep(1)
  if button.is_pressed:		  # wait 1 second
     rot = rot << 1			   # shift left
     if rot > 128:			   # at the end
       rot = 1				   # back to beginning
  else:
     rot = rot >> 1

Raspberry 5 Projects.indd   131Raspberry 5 Projects.indd   131 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 132

     if rot == 0:
       rot = 128

Figure 8.22 Program listing

Note that the following options are available for the Button function (see https://gpiozero.
readthedocs.io/en/stable/api_input.html):

wait_for_press
wait_for_release
held_time
hold_repeat
hold_time
is_held
is_pressed
value
when_held
when_pressed
when_released

8.9 Project 7 – Morse Code exerciser with LED or buzzer
Description: In this project, an LED or a buzzer is connected to GPIO 17 (pin11) of the 
Raspberry Pi 5. The user enters a text from the keyboard. The buzzer is then turned ON 
and OFF to sound the letters of the text in Morse code.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.23 where an ac-
tive buzzer is connected to GPIO 11 of the Raspberry Pi 5.

Figure 8.23 Circuit diagram of the project

Morse Code:  In Morse code, each letter is made up of dots and dashes. Figure 8.24 shows 
the Morse code of all the letters in the English alphabet (this table can be extended by add-
ing the Morse code of numbers and punctuation marks). The following rules apply to the 
timing of dots and dashes:

Raspberry 5 Projects.indd   132Raspberry 5 Projects.indd   132 09-11-2023   15:4509-11-2023   15:45



Chapter 8 • Raspberry Pi 5 LED Projects

● 133

•	The duration of a dot is taken as the unit time, and this determines the speed 
of the transmission. Normally, the speed of transmission is quoted in words per 
minute (wpm). The standard required minimum in Morse code communication 
is 12 wpm.

•	The duration of a dash is 3 unit times
•	The time between each dot and dash is one unit time
•	The time between the letters is 3 unit times
•	The time between the words is 7 unit times

The unit time in milliseconds is calculated using the following formula:

	 Time (ms) = 1200/wpm

In this project, the Morse code is simulated at 10 wpm. Thus, the unit time is taken to be 
1200/10 = 120 ms.
		

Letter     Morse code
   A:	  .-   
   B :  	 -...   
   C :  	 -.-.   
   D :  	 -..   
   E :  	 .   
   F :  	 ..-.   
   G :  	 --.   
   H :  	 ....   
   I :  	 ..   
   J :  	 .---   
   K :  	 -.-   
   L :  	 .-..   
   M :  	 --   
   N :  	 -.   
   O :  	 ---   
   P :  	 .--.   
   Q :  	 --.-   
   R :  	 .-.   
   S :  	 ...   
   T :  	 -   
   U :  	 ..-   
   V :  	 ...-   
   W :  	 .--   
   X :  	 -..-   
   Y :  	 -.--   
   Z :  	 --..   

Figure 8.24 Morse code of English letters

Raspberry 5 Projects.indd   133Raspberry 5 Projects.indd   133 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 134

Program listing: The program is called morse.py and the listing is shown in Figure 8.25. 
The Morse code alphabet is stored in the list Morse_Code. The function DO_DOT imple-
ments a single dot with the duration of one unit time. Function DO_DASH implements a 
single dash with a duration of three unit times. Function DO_SPACE implements a space 
character with duration of seven unit times. The rest of the program is executed in a loop, 
where a text is read from the keyboard and the buzzer sounds in such a way as to repre-
sent the Morse code of this text. The program terminates if the user enters the text QUIT. 

You should run the program from the command mode as follows:

	 pi@raspberrypi:~ $ python morse.py

#-----------------------------------------------------------------
#
#                  MORSE CODE EXERCISER
#                  ====================
#
# This project can be used to learn the Morse code. A buzzer is
# connected to GPIO 17 of the Raspberry Pi 5.
#
# The program reads a text from the keyboard and then sounds the
# buzzer to simulate sending or receiving the Morse code of this
# text.
#
# In this project the Morse code speed is assumed to be 10 wpm,
# but can easily be changed by changing the parameter wpm.
#
# File  : morse.py
# Date  : October, 2023
# Author: Dogan Ibrahim
#-----------------------------------------------------------------
from gpiozero import LED
from time import sleep

Buzzer = LED(17)			   # Buzzer pin

words_per_minute = 10			   # define words per min
wpm = 1200/words_per_minute		  # unit time in milliseconds
unit_time = wpm / 1000

Morse_Code = {
         'A': '.-',
         'B': '-...',
         'C': '-.-.',
         'D': '-..',
         'E': '.',

Raspberry 5 Projects.indd   134Raspberry 5 Projects.indd   134 09-11-2023   15:4509-11-2023   15:45



Chapter 8 • Raspberry Pi 5 LED Projects

● 135

         'F': '..-.',
         'G': '--.',
         'H': '....',
         'I': '..',
         'J': '.---',
         'K': '-.-',
         'L': '.-..',
         'M': '--',
         'N': '-.',
         'O': '---',
         'P': '.--.',
         'Q': '--.-',
         'R': '.-.',
         'S': '...',
         'T': '-',
         'U': '..-',
         'V': '...-',
         'W': '.--',
         'X': '-..-',
         'Y': '-.--',
         'Z': '--..'
         }

#
# This function sends a DOT (unit time)
#
def DO_DOT():
   Buzzer.on()
   sleep(unit_time)
   Buzzer.off()
   sleep(unit_time)
   return

#
# This function sends a DASH ( 3*unit time)
#
def DO_DASH():
   Buzzer.on()
   sleep(3*unit_time)
   Buzzer.off()
   sleep(unit_time)
   return

#
# This function sends inter-word space (7*unit time)
#

Raspberry 5 Projects.indd   135Raspberry 5 Projects.indd   135 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 136

def DO_SPACE():
   sleep(7*unit_time)
   return

#
# Main program code
#
text = ""
while text != "QUIT":
   text = input("Enter text to send: ")
   if text != "QUIT":
      for letter in text:
         if letter == ' ':
            DO_SPACE()
         else:
            for code in Morse_Code[letter.upper()]:
               if code == '-':
                  DO_DASH()
               elif code == '.':
                  DO_DOT()
               sleep(unit_time)
         sleep(3*unit_time)
   sleep(2)

Figure 8.25 Program listing of the project

Recommended modification: An LED can be connected to the GPIO pin instead of the 
buzzer so that the Morse code can be seen in visual form.

8.10 Project 8 – Electronic dice
Description: In this project seven LEDs are arranged in the form of the faces of a dice 
and a push-button switch is used. When the button is pressed, the LEDs turn ON to display 
numbers 1 to 6 as if on a real dice. The display is turned OFF after 3 seconds, ready for the 
next game. The aim of this project is to show how a dice can be constructed with seven 
LEDs.

Block diagram: The block diagram of the project is shown in Figure 8.26.

Raspberry 5 Projects.indd   136Raspberry 5 Projects.indd   136 09-11-2023   15:4509-11-2023   15:45



Chapter 8 • Raspberry Pi 5 LED Projects

● 137

Figure 8.26 Block diagram of the project

Figure 8.27 shows the LEDs that should be turned ON to display the 6 dice numbers.

Figure 8.27 LED Dice

Circuit diagram: The circuit diagram of the project is shown in Figure 8.28. Here, 8 GPIO 
pins are collected together to form a PORT. The following pins are used for the LEDs (there 
are 7 LEDs, but 8 port pins are used in the form of a byte where the most significant bit 
position is not used):

	 Bit	 7	 6	 5	 4	 3	 2	 1	 0
	 GPIO:	 9	 10	 22	 27	 17	 4	 3	 2

Figure 8.28 Circuit diagram of the project

Raspberry 5 Projects.indd   137Raspberry 5 Projects.indd   137 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 138

The push-button switch is connected to port pin GPIO 11.

Table 8.1 gives the relationship between a dice number and the corresponding LEDs to be 
turned ON to imitate the faces of a real dice. For example, to display number 1 (i.e. only 
the middle LED is ON), you have to turn LED D3 ON. Similarly, to display number 4, you 
have to turn ON D0, D2, D4 and D6.

Required number LEDs to be turned on

1 D3

2 D0, D6

3 D0, D3, D6

4 D0, D2, D4, D6

5 D0, D2, D3, D4, D6

6 D0, D1, D2, D4, D5, D6

Table 8.1 Dice number and LEDs to be turned ON

The relationship between the required number and the data to be sent to the PORT to turn 
on the correct LEDs is given in Table 8.2. For example, to display dice number 2, you have 
to send hexadecimal 0x41 to the PORT. Similarly, to display number 5, we have to send 
hexadecimal 0x5D to the PORT and so on.

Required number PORT data (Hex)

1 0x08

2 0x41

3 0x49

4 0x55

5 0x5D

6 0x77

Table 8.2  Required number and PORT data

Program listing: The program is called dice.py and the listing is shown in Figure 8.29. 
The bit pattern to be sent to the LEDs corresponding to each dice number is stored in hex-
adecimal format in a list called DICE_NO (see Table 8.2). GPIO 11 is configured as a button 
pin, and the push-button switch is connected to this pin to simulate the 'throwing' of a dice. 
The main program waits until a button is pressed. Then, a random number is generated 
between 1 and 6 and stored in variable n. The bit pattern corresponding to this number is 
found and sent to function Port_Output so that the required LEDs are turned on to repre-
sent the dice number. This process is repeated after 3 seconds of delay.

Raspberry 5 Projects.indd   138Raspberry 5 Projects.indd   138 09-11-2023   15:4509-11-2023   15:45



Chapter 8 • Raspberry Pi 5 LED Projects

● 139

#------------------------------------------------------------------
#
#               ELECTRONIC DICE WITH LEDs
#               =========================
#
# This program is an electronic dice. GPIO 11 of  Raspberry Pi 5
# is configured as a Button. When this button is pressed, a random
# dice number is generated between 1 and 6 and is displayed through
# the LEDs. 7 LEDs are mounted on the breadboard in the form of the
# face of a real dice. The following GPIO pins are used for the LEDs@
#
#  Bit:    7   6   5   4  3  2  1   0
#  GPIO:      10  22  27  17  4  3  2
#
# The following PORT pins are used to construct the dice:
#
# D0     D4
# D1  D3 D5
# D2     D6
#
# Program: dice.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#--------------------------------------------------------------------
from gpiozero import LED, Button
from time import sleep				   # Import time library
import random

button = Button(11)				    # Button at GPIO 11
PORT = [9,10,22,27,17,4,3,2]			   # LED ports
DICE_NO = [0,0x08,0x41,0x49,0x55,0x5D,0x77]

#
# This function initializes the port list PORT[]
#
def Configure():
  for i in range(8):
     PORT[i] = LED(PORT[i])

#
# This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
   b = bin(x)				    # convert into binary
   b = b.replace("0b", "")		  # remove leading "0b"
   diff = 8 - len(b)			   # find the length

Raspberry 5 Projects.indd   139Raspberry 5 Projects.indd   139 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 140

   for i in range (0, diff):
      b = "0" + b			   # insert leading os

   for i in range (0, 8):
      if b[i] == "1":
         PORT[i].on()
      else:
         PORT[i].off()
   return
#
# Configure PORTs
#
Configure()

#
# Main program loop. Rotate the LEDs
#
while True:
  if button.is_pressed:			   # wait for buttonn
     n = random.randint(1, 6)			   # generate a number
     print(n)
     pattern = DICE_NO[n]
     Port_Output(pattern)
     sleep(3)					     # wsit for 3 seconds
     Port_Output(0)				    # turn OFF all LEDs

Figure 8.29 Program listing of the project

Raspberry 5 Projects.indd   140Raspberry 5 Projects.indd   140 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 141

Chapter 9 • Using an I²C LCD

9.1 Overview
The I²C (or I2C) bus is commonly used in microcontroller-based projects. In this chapter, 
you will be looking at the use of this bus on the Raspberry Pi 5. Some other interesting 
projects are also given in this chapter. The aim is to make the reader familiar with the I²C 
bus library functions and to show how they can be used in a real project. Before looking 
at the details of the projects, it is worthwhile to look at the basic principles of the I²C bus.

9.2 The I²C Bus
I²C bus is one of the most commonly used microcontroller communication protocols for 
communicating with external devices such as sensors and actuators. The I²C bus is a single 
master, multiple slave bus, and it can operate at standard mode: 100 Kbit/s, full speed: 
400 Kbit/s, fast mode: 1 Mbit/s, and high speed: 3.2 Mbit/s. The bus consists of two open-
drain wires, pulled up with resistors:

	 SDA: data line
	 SCL: clock line

Figure 9.1 shows the structure of an I²C bus with one master and three slaves.

Figure 9.1 I²C bus with one master and three slaves

Because the I²C bus is based on just two wires, there should be a way to address an indi-
vidual slave device on the same bus. For this reason, the protocol defines that each slave 
device provides a unique slave address for the given bus. This address is usually 7-bits 
wide. When the bus is free, both lines are HIGH. All communication on the bus is initiated 
and completed by the master, which initially sends a START bit, and completes a transac-
tion by sending a STOP bit. This alerts all the slaves that some data is coming on the bus, 
and all the slaves listen on the bus. After the start bit, 7 bits of unique slave address are 
sent. Each slave device on the bus has its own address, and this ensures that only the ad-
dressed slave communicates on the bus at any time to avoid any collisions. The last sent bit 
is a read/write bit such that if this bit is 0, it means that the master wishes to write to the 
bus (e.g. to a register of a slave), if this bit is a 1, it means that the master wishes to read 
from the bus (e.g. from the register of a slave). The data is sent on the bus with the MSB 
bit first. An acknowledgement (ACK) bit takes place after every byte and this bit allows the 
receiver to signal the transmitter that the byte was received successfully and as a result, 
another byte may be sent. The ACK bit is sent at the 9th clock pulse.

Raspberry 5 Projects.indd   141Raspberry 5 Projects.indd   141 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 142

The communication over the I²C bus is simply as follows:

•	The master sends on the bus the address of the slave it wants to communicate 
with

•	The LSB is the R/W bit which establishes the direction of data transmission, i.e. 
from mater to slave (R/W = 0), or from slave to master (R/W = 1)

•	Required bytes are sent, each interleaved with an ACK bit, until a stop condition 
occurs

Depending on the type of slave device used, some transactions may require a separate 
transaction. For example, the steps to read data from an I²C compatible memory device 
are:

•	Master starts the transaction in write mode (R/W = 0) by sending the slave 
address on the bus

•	The memory location to be retrieved are then sent as two bytes (assuming 
64Kbit memory)

•	The master sends a STOP condition to end the transaction
•	The master starts a new transaction in read mode (R/W = 1) by sending the 

slave address on the bus
•	The master reads the data from the memory. If reading the memory in 

sequential format, then more than one byte will be read
•	The master sets a stop condition on the bus

9.3 I²C pins of Raspberry Pi 5
Raspberry Pi 5 has 2 x I²C pins at its 40-pin GPIO header as follows:

GPIO 2	 SDA1	 pin 3
GPIO 3	 SCL1	 pin 5

GPIO 0	 SDA0	 pin27
GPIO 1	 SCL0	 pin 28

1.8 Kilo Ohm pull-up resistors are used from the I²C pins to +3.3 V. Notice that because 
the I²C pins are pulled up to +3.3 V and Raspberry Pi 5 pins are not +5V compatible, it is 
necessary to use voltage level converter circuits if the I²C LCD operates with +5V.

9.4 Project 1 – Using an I²C LCD – Seconds counter
Description: In this project, an I²C-type LCD is connected to the Raspberry Pi 5. The pro-
gram counts up in seconds and displays on the LCD. The aim of this project is to show how 
an I²C-type LCD can be used in Raspberry Pi projects.

The I²C LCD
The I²C LCD has four pins: GND, +V, SDA, and SCL. SDA can be connected to pin GPIO 2 
and SCL to pin GPIO 3. +V pin of the display should be connected to the +5 V (pin 2) of 
the Raspberry Pi 5. Raspberry Pi GPIO pins are not +5 V tolerant, but the I²C LCD operates 

Raspberry 5 Projects.indd   142Raspberry 5 Projects.indd   142 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 143

with +5 V where its SDA and SCL pins are pulled to +5 V. It is not a good idea to connect 
the LCD directly to the Raspberry Pi, as it can damage its I/O circuitry. There are several 
solutions here. One solution is to remove the I²C pull-up resistors on the LCD module. The 
other option is to use an LCD which operates with +3.3 V. The other solution is to use a bidi-
rectional +3.3 V to +5 V logic level converter chip. In this project, you will use the TXS0102 
bidirectional logic level converter chip like the one shown in Figure 9.2.

Figure 9.2 Logic-Level converter

Note: Raspberry Pi 5 GPIO pins are claimed to be +5V tolerant as long as the RP1 module 
is powered ON. But for safety, a logic-level converter is used in this project.

Block diagram: Figure 9.3 shows the block diagram of the project.

Figure 9.3 Block diagram

Circuit diagram: The circuit diagram is shown in Figure 9.4.

Raspberry 5 Projects.indd   143Raspberry 5 Projects.indd   143 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 144

Figure 9.4 Circuit diagram of the project

Figure 9.5 shows the front and back of the I²C based LCD. Notice that the LCD has a 
small board mounted at its back to control the I²C interface. The LCD contrast is adjusted 
through the small potentiometer mounted on this board. A jumper is provided on this board 
to disable the backlight if required.

Figure 9.5 I²C based LCD (front and back views)

Program Listing: Before using the I²C pins of the Raspberry Pi, we have to enable the I²C 
peripheral interface on the device. The steps for this are as follows:

•	Start the configuration menu from the command prompt:

pi@raspberrypi:~ $ sudo raspi-config

•	Go down the menu to Interface Options

•	Go down and select I2C

•	Enable the I²C interface

•	Select Finish to complete

Now you have to check that the I²C library is available on your Raspberry Pi 5. The steps 
are as follows:

Raspberry 5 Projects.indd   144Raspberry 5 Projects.indd   144 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 145

•	Enter the following command. You should see the I²C tools (Figure 9.6):

pi@raspberrypi:~ $ lsmod | grep i2c

Figure 9.6 Check the I²C tools

•	Connect your LCD to the Raspberry Pi 5 device and enter the following 
command to check whether the LCD is recognized by the Raspberry Pi 5:

pi@raspberrypi:~ $ sudo i2cdetect –y 1

You should see a table similar to the one shown below. A number in the 
table means that the LCD has been recognized correctly, and the I²C slave 
address of the LCD is shown in the table. In this example, the LCD address 
is 27:

     1   2   3   4   5   6   7   8   9   a   b   c   d   e   f
00:  --  --  --  --  --  --  --  --  --  --  --  --
10:  --  --  --  --  --  --  --  --  --  --  --  --
20:  --  --  --  --  --  --  --  27  --  --  --  --  --  --  --   
30:  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --
40:  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --
50:  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --
60:  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --
70:  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --

You should now install an I²C LCD library so that you can send commands and data to the 
LCD. There are many Python libraries available for the I²C type LCDs. The one chosen here 
is on GitHub from Dave Hylands. This library is installed as follows:

•	Go to the following web link:

https://github.com/dhylands/python_lcd/tree/master/lcd

•	Copy the following files to your home directory /home/pi using WinSCP:

I2c_lcd.py
lcd_api.py

•	Check to make sure that the file is copied successfully. You should see the file 
listed with the command:

pi@raspberrypi: ~ $ ls

Raspberry 5 Projects.indd   145Raspberry 5 Projects.indd   145 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 146

You are now ready to write the program. Figure 9.7 shows the program listing (lcd.py). At 
the beginning of the program, the LCD driver libraries lcd_api and i2c_lcd are imported to 
the program. The heading SECONDS COUNTER is displayed at the top row (row 1) and the 
program enters a loop. Inside this loop the variable cnt is incremented every second and 
the total value of cnt is displayed on the LCD continuously in the following format:

	 SECONDS COUNTER
	 nn 

#---------------------------------------------------------
#             I2C LCD SECONDS COUNTER
#             =======================
#
# In this program an I2C LCD is connected to the Raspberry Pi.
# The program counts up in seconds and displays on the LCD.
#
# At the beginning of the program the text SECONDS COUNTER is
# displayed
#
# Program: lcd.py
# Date   : October 2017
# Author : Dogan Ibrahim
#----------------------------------------------------------
import time
from lcd_api import LcdApi
from i2c_lcd import I2cLcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear()					     # clear LCD
mylcd.putstr("SECONDS COUNTER")		  # display string

cnt = 0					     # initialize cnt

while True:					     # infinite loop
  cnt = cnt + 1				    # increment count
  mylcd.move_to(0,1)
  mylcd.putstr(str(cnt))			   # display cnt
  time.sleep(1)				    # wait one second

Figure 9.7 Program listing

Raspberry 5 Projects.indd   146Raspberry 5 Projects.indd   146 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 147

The I²C LCD library supports many functions. Some of the commonly used functions are 
(see the LCD library documentation for more details):

clear()		  clear LCD and set to home position
show_cursor()	 show cursor
hide_cursor()	 hide cursor
blink_cursor_on()	 blink cursor
blink_cursor_off()	 stop blinking cursor
display_on()		 display on
display_off()		 display off
backlight_on()	 backlight on
backlight_off()	 backlight off
move_to(x, y)	 move cursor to (x, y)
putchar()		  display a character
putstr()		  display a string

9.5 Project 2 – Using an I²C LCD – Display time
Description: In this project an I²C type LCD is connected to the Raspberry Pi 5 as in the 
previous project. The program displays the current time on the LCD.

The block diagram and circuit diagram are as in Figure 9.3 and Figure 9.4 respectively.

Program listing: Figure 9.8 shows the program listing (LCDtime.py). At the beginning 
of the program, time, datetime, and I2cLCD modules are imported to the program. The 
LCD is cleared, and the program enters a loop. Inside this loop, the current time is extract-
ed using the strftime() function and the current time is then displayed on the top row of 
the LCD every second in the following format:

	 hh:mm:ss

#---------------------------------------------------------
#             I2C LCD TIME DISPLAY
#             =======================
#
# This program displays the current time on the LCD.
#
# Program: LCDtime.py
# Date   : October 2017
# Author : Dogan Ibrahim
#----------------------------------------------------------
from time import sleep
from datetime import datetime
from  lcd_api  import LcdApi
from i2c_lcd import I2cLcd

I2C_ADDR = 0x27

Raspberry 5 Projects.indd   147Raspberry 5 Projects.indd   147 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 148

I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear()				    # clear LCD

while True:				    # infinite loop
  now = datetime.now()
  time = now.strftime("%H:%M:%S")
  mylcd.move_to(0,0)
  mylcd.putstr(str(time))
  sleep(1)				    # wait one second
  mylcd.clear()

Figure 9.8 Program listing

9.6 Project 3 – �Using an I²C LCD – Display IP address of Raspberry 
Pi 5

Description: In this project an I²C type LCD is connected to the Raspberry Pi 5 as in the 
previous projects. The IP address of the Raspberry Pi 5 is displayed on the top row of the 
LCD.

The block diagram and circuit diagram are as in Figure 9.3 and Figure 9.4 respectively.

Program listing: Figure 9.9 shows the program listing (LCDip.py). The IP address is ex-
tracted using the hostname command with the –I option. The IP address is then displayed 
on the LCD in the following format:

	 192.168.3.196

#---------------------------------------------------------
#
#             I2C LCD IP DISPLAY
#             ==================
# This program displays the IP address on the LCD.
#
# Program: LCDip.py
# Date   : October 2017
# Author : Dogan Ibrahim
#----------------------------------------------------------
from time import sleep
from subprocess import check_output
from  lcd_api import LcdApi
from i2c_lcd import I2cLcd

Raspberry 5 Projects.indd   148Raspberry 5 Projects.indd   148 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 149

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear()

ip = check_output(["hostname", "-I"],encoding="utf-8").split()[0]
mylcd.putstr(str(ip))

while True:
   pass

Figure 9.9 Program listing

9.7 Project 4 – Voltmeter – Output to the screen
Description: This is a voltmeter project. Because the Raspberry Pi 5 does not have any 
analog-to-digital converters (ADC) on-board, an external ADC chip is used in this project. 
The voltage to be measured is applied to the ADC and its value is displayed on the screen.

Block diagram: Figure 9.10 shows the block diagram.

Figure 9.10 Block diagram

Circuit Diagram: The dual MCP3002 ADC chip is used in this project to provide analog 
input capability to the Raspberry Pi 5. This chip has the following features:

•	10-bit resolution (0 to 1023 quantization levels)
•	On-chip sample and hold
•	SPI bus compatible
•	Wide operating voltage (+2.7 V to +5.5 V)
•	75 KSPS sampling rate
•	5 nA standby current, 50 µA active current

Raspberry 5 Projects.indd   149Raspberry 5 Projects.indd   149 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 150

The MCP3002 is a successive-approximation 10-bit ADC with on-chip sample-and-hold am-
plifier. The device is programmable to operate as either a differential input pair or as dual 
single-ended inputs. The device is offered in an 8-pin package. Figure 9.11 shows the pin 
configuration of the MCP3002.

 Figure 9.11 Pin configuration of the MCP3002

The pin definitions are as follows:

Vdd/Vref:		  Power supply and reference voltage input
CH0:		  Channel 0 analog input
CH1:		  Channel 1 analog input
CLK:		  SPI clock input
DIN:		  SPI serial data in
DOUT:		  SPI serial data out
CS/SHDN:		  Chip select/shutdown input

In this project, the supply voltage and the reference voltage are set to +3.3 V. Thus, the 
digital output code is given by:

	 Digital output code = 1024 x Vin / 3.3

or,	 Digital output code = 310.30 x Vin

Each quantization level corresponds to 3300/1024 = 3.22 mV. Thus, for example, input 
data '00 0000001' corresponds to 3.22 mV, '00 0000010' corresponds to 6.44 mV and so 
on.

The MCP3002 ADC has two configuration bits: SGL/DIFF and ODD/SIGN. These bits follow 
the sign bit and are used to select the input channel configuration. The SGL/DIFF is used 
to select single ended or pseudo-differential mode. The ODD/SIGN bit selects which chan-
nel is used in single-ended mode and is used to determine polarity in pseudo-differential 
mode. In this project, we are using channel 0 (CH0) in single-ended mode. According to 
the MCP3002 data sheet, SGL/DIFF and ODD/SIGN must be set to 1 and 0 respectively.

Figure 9.12 shows the circuit diagram of the project, where the voltage to be measured 
is applied directly to the CH0 input of the ADC. MCP3002 operates with the SPI interface. 
Raspberry Pi 5 GPIO SPI pins are:

Raspberry 5 Projects.indd   150Raspberry 5 Projects.indd   150 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 151

SPI0:
MISO	 - pin 21
MOSI	 - pin 19
CE0		 - pin 24
SCLK	 - pin 23

SPI1:
MISO	 - pin 35
MOSI	 - pin 38
CE1		 - pin 11
SCLK	 - pin 40

In this project, SPI0 GPIO pins are used.

Figure 9.12 Circuit diagram of the project

Program listing: The SPI interface must be enabled on the Raspberry Pi 5 before using 
the SPI functions. The steps are:

•	Start the configuration menu from the command prompt:

pi@raspberrypi:~ $ sudo raspi-config

•	Go down the menu to Interface Options

•	Go down and select SPI

•	Enable the SPI interface

•	Select Finish to complete

Raspberry 5 Projects.indd   151Raspberry 5 Projects.indd   151 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 152

Figure  9.13 shows the program listing (voltmeter.py). The function get_adc_data is 
used to read the analog data, where the channel number (channel_no) is specified in the 
function argument as 0 or 1. Notice that we have to send the start bit, followed by the SGL/
DIFF and ODD/SIGN bits and the MSBF bit to the chip.

It is recommended to send leading zeroes on the input line before the start bit. This is often 
done when using microcontroller-based systems that must send 8 bits at a time.

The following data can be sent to the ADC (SGL/DIFF = 1 and ODD/SIGN = channel_no) as 
bytes with leading zeroes for more stable clock cycle. The general data format is:

	 0000 000S DCM0 0000 0000 0000

Where, S = start bit, D = SGL/DIFF bit, C = ODD/SIGN bit, M = MSBF bit

For channel 0: 0000 0001 1000 0000 0000 0000 (0x01, 0x80, 0x00)

For channel 1: 0000 0001 1100 0000 0000 0000 (0x01, 0xC0, 0x00)

Notice that the second byte can be sent by adding 2 to the channel number (to make it 2 
or 3) and then shifting 6 bits to the left as shown above to give 0x80 or 0xC0.

The chip returns 24-bit data (3 bytes) and we must extract the correct 10-bit ADC data 
from these 24 bits. The 24-bit data is in the following format ('X' is don't care bit):

	 XXXX XXXX XXXX DDDD DDDD DDXX

Assuming that the returned data is stored in 24-bit variable ADC, we have:

	 ADC[0] = "XXXX XXXX"
	 ADC[1] = "XXXX DDDD"
	 ADC[2] = "DDDD DDXX"

Thus, we can extract the 10-bit ADC data with the following operations:

	 (ADC[2] >> 2)		  so, low byte = '00DD DDDD'
and
	 (ADC[1] & 15) << 6)	 so, high byte = 'DD DD00 0000'

Adding the low byte and the high byte, we get the 10-bit converted ADC data as:

	 DD DDDD DDDD

The SPI bus on the Raspberry Pi supports the following functions:

Raspberry 5 Projects.indd   152Raspberry 5 Projects.indd   152 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 153

Function			   Description
open (0,0)			   Open SPI bus 0 using CE0
open (0,1)			   Open SPI bus 0 using CE1
close()			   disconnect the device from the SPI bus
writebytes([array of bytes])	 Write an array of bytes to SPI bus device
readbytes(len)		  Read len bytes from SPI bus device
xfer2([array of bytes])	 Send an array of bytes to the device with CEx asserted
				    at all times
xfer([array of bytes])		� Send an array of bytes de-asserting and asserting CEx 

with every byte transmitted

At the beginning of the program in Figure 9.13 an instance of the SPI is created. Function 
get_adc_data reads the temperature from the sensor chip MCP3002 and returns a digital 
value between 0 and 1023. This value is then converted into millivolts and is displayed on 
the screen. Figure 9.14 shows an example output from the project where the input CH0 was 
connected to GND or to +3.3 V.

#---------------------------------------------------------------
#               		  VOLTMETER
#               		  =========
#
# This is a voltmeter project. The voltage to be measured is applied
# to CH0 input of the MCP3002 ADC. The measured voltage is displayed
# on the screen using a print statement
#
# Program: voltmeter.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#----------------------------------------------------------------
import spidev
from time import sleep

#
# Create SPI instance and open the SPI bus
#
spi = spidev.SpiDev()
spi.open(0,0)				    # we are using CE0 for CS
spi.max_speed_hz = 4000

#
# This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):
   ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])
   rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)
   return rcv

Raspberry 5 Projects.indd   153Raspberry 5 Projects.indd   153 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 154

#
# Start of main program. Read the analog temperature, convert
# into degrees Centigrade and display on the monitor every second
#
while True:
   adc = get_adc_data(0)
   mV = adc * 3300.0 / 1023.0		  # convert to mV
   print("Voltage = %5.2f mV" %mV)	 # display voltage in mV
   sleep(1)				    # wait one second

Figure 9.13 Program listing

Figure 9.14 Example output from the program

9.8 Project 5 – Voltmeter – Output to LCD
Description: This project is basically the same as the previous one, but here the measured 
voltage is displayed on LCD.

Block diagram: Figure 9.15 shows the block diagram.

Figure 9.15 Block diagram

Circuit Diagram: The circuit diagram of the project is shown in Figure 9.16. The LCD and 
the MCP3002 are connected as in the previous projects.

Raspberry 5 Projects.indd   154Raspberry 5 Projects.indd   154 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 155

Figure 9.16 Circuit diagram of the project

Program listing: Figure 9.17 shows the program listing (LCDvolt.py). This program is 
basically the same as the one in Figure 9.13, but here the output is sent to LCD instead of 
being displayed on the screen. The data is displayed in the following format:

	 nnnn mV

#---------------------------------------------------------------
#               	 VOLTMETER WITH LCD DISPLAY
#               	 ==========================
#
# This is a voltmeter project. The voltage to be measured is applied
# to CH0 input of the MCP3002 ADC. The measured voltage is displayed
# on the LCD
#
# Program: LCDvolt.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#----------------------------------------------------------------
import spidev
from lcd_api import LcdApi
from i2c_lcd import I2cLcd
from time import sleep

#
# Create SPI instance and open the SPI bus
#
spi = spidev.SpiDev()
spi.open(0,0)				    # we are using CE0 for CS
spi.max_speed_hz = 4000

I2C_ADDR = 0x27

Raspberry 5 Projects.indd   155Raspberry 5 Projects.indd   155 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 156

I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear()

#
# This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):
   ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])
   rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)
   return rcv

#
# Start of main program. Read the analog temperature, convert
# into degrees Centigrade and display on the monitor every second
#
while True:
   adc = get_adc_data(0)
   mV = adc * 3300.0 / 1023.0			   # convert to mV
   disp = str(mV)[:4] + " mV"
   mylcd.move_to(0,0)
   mylcd.putstr(disp)
   sleep(2)
   mylcd.clear()

Figure 9.17 Program listing

9.9 Project 6 – Analog temperature sensor thermometer – output to 
the screen
Description: In this project, an analog temperature sensor chip is used to measure and 
then display the ambient temperature every second on the screen. The temperature is 
read using an external ADC, as in the previous project. The aim of this project is to show 
how the ambient temperature can be read and displayed on the monitor using an analog 
temperature sensor chip.

Block Diagram: Figure 9.18 shows the block diagram of the project.

Raspberry 5 Projects.indd   156Raspberry 5 Projects.indd   156 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 157

Figure 9.18 Block diagram of the project

Circuit Diagram: The dual MCP3002 ADC chip is used in this project to provide analog 
input capability to the Raspberry Pi. Figure 9.19 shows the circuit diagram of the project. A 
TMP36DZ type analog temperature sensor chip is connected to CH0 of the ADC. TMP36DZ 
is a 3-terminal small sensor chip with pins: Vs, GND, and Vo. Vs is connected to +3.3 V, 
GND is connected to system ground, and Vo is the analog output voltage. The temperature 
in degrees centigrade is given by:

	 Temperature = (Vo − 500) / 10

Where, Vo is the sensor output voltage in millivolts.

CS, Dout, CLK, and Din pins of the ADC are connected to the SPI pins CE0, MISO, SCLK, 
and MOSI pins of the Raspberry Pi 5 respectively.			 

Figure 9.19 Circuit diagram of the project

Program listing: Figure 9.20 shows the Raspberry Pi Python program listing (program: 
tmp36.py). The function get_adc_data is used to read the analog data, where the chan-
nel number (channel_no) is specified in the function argument as 0 or 1. Function get_
adc_data reads the temperature from the sensor chip MCP3002 and returns a digital value 
between 0 and 1023. This value is then converted into millivolts, 500 is subtracted from it, 
and the result is divided by 10 to find the temperature in degrees centigrade. The temper-
ature is displayed on the monitor every second.

Raspberry 5 Projects.indd   157Raspberry 5 Projects.indd   157 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 158

#---------------------------------------------------------------
#               ANALOG TEMPERATURE MEASUREMENT
#               ==============================
#
# This is a thermometer project. Ambient temperature is read using
# an ADC and is then displayed on the screen every second
#
# Program: tmp36.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#----------------------------------------------------------------
import spidev
from time import sleep

#
# Create SPI instance and open the SPI bus
#
spi = spidev.SpiDev()
spi.open(0,0)				    # we are using CE0 for CS
spi.max_speed_hz = 4000

#
# This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):
   ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])
   rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)
   return rcv

#
# Start of main program. Read the analog temperature, convert
# into degrees Centigrade and display on the monitor every second
#
while True:
   adc = get_adc_data(0)
   mV = adc * 3300.0 / 1023.0			   # convert to mV
   Temperature = (mV - 500) / 10.0
   print("Temperature = %5.2f C" %Temperature)
   sleep(1)					     # wait one second

Figure 9.20 Python program listing

Raspberry 5 Projects.indd   158Raspberry 5 Projects.indd   158 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 159

A typical display on the monitor is shown in Figure 9.21.

Figure 9.21 Typical display

9.10 Project 7 – �Analog temperature sensor thermometer –  
output on LCD

Description: This project is similar to the previous one, but here the temperature is dis-
played on LCD.

Block diagram: Figure 9.22 shows the block diagram of the project.

Figure 9.22 Block diagram

Circuit diagram: The circuit diagram of the project is shown in Figure 9.23. The ADC and 
the sensor chip are connected as in the previous project.

Figure 9.23 Circuit diagram

Program listing: Figure 9.24 shows the program listing (LCDtmp36.py). The program is 
very similar to the previous one, but here the temperature is displayed on LCD.

Raspberry 5 Projects.indd   159Raspberry 5 Projects.indd   159 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 160

#---------------------------------------------------------------
#           ANALOG TEMPERATURE MEASUREMENT - OUTPUT ON LCD
#           =============================================
#
# This is a thermometer project. Ambient temperature is read using
# an ADC and is then displayed on LCD
#
# Program: LCDtmp36.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#----------------------------------------------------------------
import spidev
from time import sleep
from lcd_api import LcdApi
from i2c_lcd import I2cLcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR, I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear()

#
# Create SPI instance and open the SPI bus
#
spi = spidev.SpiDev()
spi.open(0,0)				    # we are using CE0 for CS
spi.max_speed_hz = 4000

#
# This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):
   ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])
   rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)
   return rcv

#
# Start of main program. Read the analog temperature, convert
# into degrees Centigrade and display on the monitor every second
#
while True:
   adc = get_adc_data(0)
   mV = adc * 3300.0 / 1023.0		  # convert to mV
   Temperature = (mV - 500) / 10.0

Raspberry 5 Projects.indd   160Raspberry 5 Projects.indd   160 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 161

   T = str(Temperature)[:5] + " C"
   mylcd.move_to(0,0)
   mylcd.putstr(T)
   sleep(5)				    # wait one second
   mylcd.clear()

Figure 9.24 Program listing

9.11 Project 8 – Reaction timer – output to screen
Description: This is a reaction timer project. The user presses a button as soon as he/
she sees a LED lighting. The time delay between seeing the light and pressing the button is 
measured and displayed on the screen. The LED then turns OFF and the process is repeated 
after a random delay of 1 to 10 seconds. The aim of this project is to show how the time 
can be read and how a simple reaction timer project can be designed.

Block Diagram: Figure 9.25 shows the block diagram of the project.

Figure 9.25 Block diagram of the project

Circuit Diagram: The circuit diagram of the project is basic, and it consists of an LED and 
a push-button switch. The LED and the button are connected to GPIO 17 and GPIO 3 re-
spectively. The button is connected using two resistors as shown in Figure 9.26.

Figure 9.26 Circuit diagram of the project

Raspberry 5 Projects.indd   161Raspberry 5 Projects.indd   161 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 162

Program listing: The program is called reaction.py and its listing is shown in Figure 9.27. 
At the beginning of the program, the random library and other used libraries are imported 
to the program. The program runs in a loop where the system time is recorded as soon as 
the LED is turned ON. The program waits for the user to press the button, and the system 
time is read again at this moment. The difference between this time and the first time is 
displayed as the reaction time of the user. This process repeats after a random delay of 
1 to 10 seconds. Notice that the floating-point function time.time() returns the time in 
seconds since the epoch.

#----------------------------------------------------------
#
#                 REACTION TIMER
#                 ==============
#
# This is a reaction timer program. The user presses a button
# as soon as he/she see a light. The time between seeing the
# light and pressing the button is measured and is displayed
# in milliseconds as the reaction time of the user. The light
# comes ON after a random number of seconds between 1 and 10
# seconds.
#
# Program: reaction.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#-----------------------------------------------------------
from time import sleep
import random
from gpiozero import LED, Button
import time

button = Button(3)			   # At GPIO 3
led = LED(17)				    # At GPIO 17

# Start of main program
#
while True:
   T = random.randint(1, 10)
   sleep(T)
   led.on()				    # LED ON
   start_time = time.time()		  # start time
   button.wait_for_press() 		  # wait for button
   end_time = time.time()
   diff_time = 1000.0*(end_time - start_time)
   diff_int = int(diff_time)
   print("Reaction time=%d ms" %diff_int)
   led.off()				    # LED OFF
   sleep(3)

Figure 9.27 Program listing

Raspberry 5 Projects.indd   162Raspberry 5 Projects.indd   162 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 163

An example output is shown in Figure 9.28.

Figure 9.28 Example output

9.12 Project 9 – Reaction timer – output to LCD
Description: This project is very similar to the previous one, but here the output is sent 
to LCD instead of the screen. As before, the user presses a button as soon as he/she sees 
an LED lighting. The time delay between seeing the light and pressing the button is meas-
ured and displayed on the LCD. The LED then turns OFF and the process is repeated after 
a random delay of 1 to 10 seconds.

Block Diagram: Figure 9.29 shows the block diagram of the project.

Figure 9.29 Block diagram of the project

Circuit Diagram: The circuit diagram of the project, shown in Figure 9.30, is simple, and 
it consists of an LED, a push-button switch, and an LCD. The LED and the button are con-
nected to GPIO 17 and GPIO 4 respectively.

Figure 9.30 Circuit diagram of the project

Raspberry 5 Projects.indd   163Raspberry 5 Projects.indd   163 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 164

Program listing: The program is called LCDreaction.py and its listing is shown in Fig-
ure 9.31. The program is basically the same as the one in Figure 9.27, but here the output 
is sent to LCD.

#----------------------------------------------------------
#
#                 REACTION TIMER - OUTPUT TO LCD
#                 ==============================
#
# This is a reaction timer program. The user presses a button
# as soon as he/she see a light. The time between seeing the
# light and pressing the button is measured and is displayed
# on LCD in milliseconds as the reaction time of the user. The
# light comes ON after a random number of seconds between 1 and
# 10 seconds.
#
# Program: LCDreaction.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#-----------------------------------------------------------
from time import sleep
import random
from gpiozero import LED, Button
import time
from  lcd_api import  LcdApi
from i2c_lcd import  I2cLcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1, I2C_ADDR, I2C_NUM_ROWS, I2C_NUM_COLS)
mylcd.clear()

button = Button(4)			   # At GPIO 4
led = LED(17)				    # At GPIO 17

# Start of main program
#
while True:
   T = random.randint(1, 10)
   sleep(T)
   led.on()				    # LED ON
   start_time = time.time()		  # start time
   button.wait_for_press() 		  # wait for button
   end_time = time.time()

Raspberry 5 Projects.indd   164Raspberry 5 Projects.indd   164 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 165

   diff_time = 1000.0*(end_time - start_time)
   diff_int = int(diff_time)
   mylcd.move_to(0, 0)
   mylcd.putstr(diff_int)
   led.off()				    # LED OFF
   sleep(3)
   mylcd.clear()

Figure 9.31 Program listing

9.13 Project 10 – Automatic dusk lights
Description: In this project, a light dependent resistor (LDR) is used to sense the darkness 
and a relay is activated when the ambient light intensity falls below the required level. It 
is possible to connect e.g. lights to the relay so that they turn ON automatically when, for 
example, it is dusk. The aim of this project is to show how to use an LDR in a Raspberry Pi 
project, and also how to connect and activate a relay.

Block Diagram: Figure 9.32 shows the block diagram of the project.

Figure 9.32 Block diagram of the project

Circuit Diagram: As shown in Figure 9.33, the circuit diagram of the project is simple, and 
it consists of an LDR, a 10 kΩ potentiometer, and a relay. The LDR is connected to GPIO 4, 
and the relay to GPIO 17.

The resistance of an LDR increases as the light level falls. The response of a typical LDR 
is shown in Figure 9.34. The LDR is connected as a resistive potential divider circuit. The 
voltage across the LDR increases as the light level falls. At dark, logic 0 will be sent to the 
Raspberry Pi, which in turn will activate the relay. When it is light, logic 1 will be sent to the 
Raspberry Pi, which will deactivate the relay. The potentiometer can be adjusted so that the 
relay is activated at the required light level. This process will require some trial and error.

Raspberry 5 Projects.indd   165Raspberry 5 Projects.indd   165 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 166

Figure 9.33 Circuit diagram of the project

Figure 9.34 Response of a typical LDR

Program listing: Figure 9.35 shows the program listing (program: dusklight.py). The 
LDR is input and the relay is output. The program detects the voltage at its GPIO 4 pin and 
if it at logic 0 (i.e. dark) then it deactivates the relay, otherwise the relay activated. The 
potentiometer can be used to adjust the required light trigger level.

#------------------------------------------------------------
#
#                   DUSK LIGHT
#                   ==========
#
# In this project a light dependent resistor (LDR) is used to
# detect the ambient light level. When the light level falls
# below the required value, a relay is activated which turns
# ON the lights.
#
# The potentiometer can be used to adjust the triggering
# light level of the project.
#

Raspberry 5 Projects.indd   166Raspberry 5 Projects.indd   166 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 167

# Program: dusklight.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#-------------------------------------------------------------
from gpiozero import LED, Button

LDR = Button(4)			   # LDR at GPIO 4
RELAY = LED(17)			   # RELAY at GPIO 17

RELAY.off()			   # RELAY OFF)

while True:
   if LDR.is_pressed:
      RELAY.on()		  # At logic 0 (dark)
   else:
      RELAY.off()		  # At logic 1 (light)

Figure 9.35 Program listing

9.14 Project 11 – Ultrasonic distance measurement
Description: This project uses an ultrasonic transmitter/receiver pair to measure the dis-
tance in front of the sensor. The distance is displayed on the screen. The aim of the project 
is to show how ultrasonic sensors can be attached to a Raspberry Pi 5 and how distance can 
be measured using these sensors.

Block diagram: Figure 9.36 shows the block diagram of the project.

Figure 9.36 Block diagram of the project

Circuit Diagram: An ultrasonic sensor is used to sense the distance in front of the sensor. 
The outputs of the ultrasonic sensors are +5 V and therefore are incompatible with the 
inputs of Raspberry Pi 5. A resistive potential divider circuit is used to lower the voltage to 
+3.3 V. The voltage at the output of the potential divider resistor is:

	 Vo = 5 x 2k / (2k + 1k) = 3.3 V

Raspberry 5 Projects.indd   167Raspberry 5 Projects.indd   167 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 168

In this project, an HC-SR04-type ultrasonic transmitter/receiver module is used (see Fig-
ure 9.37). These modules have the following specifications:

•	Operating voltage (current): 5 V (2 mA) operation
•	Detection distance: 2 cm – 450 cm
•	Input trigger signal: 10 µs TTL
•	Sensor angle: not more than 15 degrees

The sensor modules have the following pins:

Vcc: 	 +V power 
Trig: 	 Trigger input
Echo: 	 Echo output
Gnd: 	 Power ground

Figure 9.37 Ultrasonic transmitter/receiver module

The principle of operation of the ultrasonic sensor module is as follows:

•	A 10 µs trigger pulse is sent to the module
•	The module then sends eight 40 kHz square wave signals and automatically 

detects the returned (echoed) pulse signal
•	If an echo signal is returned, the time to receive this signal is recorded
•	The distance to the object is calculated as:

	  �Distance to object (in metres) = (time to received echo in seconds * speed of 
sound) / 2

The speed of sound is 340 m/s, or 0.034 cm/µs

Therefore,

	 Distance to object (in cm) = (time to received echo in µs) * 0.034 / 2
or,
	 Distance to object (in cm) = (time to received echo in µs) * 0.017
 

Raspberry 5 Projects.indd   168Raspberry 5 Projects.indd   168 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 169

Figure 9.38 shows the principle of operation of the ultrasonic sensor module. For example, 
if the time to receive the echo is 294 microseconds, then the distance to the object is cal-
culated as:

	 Distance to object (cm) = 294 × 0.017 = 5 cm

Figure 9.38 Operation of the ultrasonic sensor module

Figure 9.39 shows the circuit diagram of the project. The trig and echo pins of the sensor 
are connected to GPIO 4 and GPIO 17 respectively. The echo output of the ultrasonic sensor 
is connected to the Raspberry Pi 5 through a resistive potential divider circuit to drop the 
voltage level to +3.3 V.

Figure 9.39 Circuit diagram of the project

Program listing: Figure 9.40 shows the program listing (ultrasonic.py). At the beginning 
of the program, module DistanceSensor of gpiozero is imported to the program. Then 
the echo and trigger pins are defined. The remainder of the program runs in a loop where 
the distance is measured and displayed on the screen. Figure 9.41 shows an example out-
put from the program.

Raspberry 5 Projects.indd   169Raspberry 5 Projects.indd   169 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 170

#---------------------------------------------------------
#             ULTRASONIC DISTANCE SENSOR
#             ==========================
#
# This program uses a HC-SR04 type ultrasonic transmitter/receiver
# to measure the distance to an obstacle in-front of the sensor.
# The measured distance is displayed on the screen.
#
# Program: ultrasonic.py
# Date   : October 2023
# Author : Dogan Ibrahim
#----------------------------------------------------------
from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(echo=17, trigger=4)

while True:
  print("Distanc (cm)= %6.2f" %(sensor.distance * 100))
  sleep(1)

Figure 9.40 Program listing

Figure 9.41 Example output

9.15 Project 12 – Car parking sensors
Description: This is a parking sensors project to help a person park a car safely and easily. 
A pair of ultrasonic transmitter/receiver sensors is mounted in the front and back of a vehi-
cle to sense the distance to the objects, and an active buzzer sounds if the sensors are too 
close to the objects in front of them. In this project, safe distance is assumed to be 10 cm.

Block Diagram: Figure 9.42 shows the block diagram of the project.

Raspberry 5 Projects.indd   170Raspberry 5 Projects.indd   170 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 171

Figure 9.42 Block diagram of the project

Circuit Diagram: Figure 9.43 shows the circuit diagram. The trig and echo pins of the 
Front ultrasonic sensor are connected to GPIO 4 and GPIO 17 respectively, as in the previ-
ous project. Similarly, the trig and echo pins of the rear ultrasonic sensor are connected to 
GPIO 27 and GPIO 22 respectively. Echo outputs of the ultrasonic sensors are connected to 
the Raspberry Pi 5 through resistive potential divider resistors to drop the voltage levels to 
+3.3 V. The active buzzer is connected to GPIO 10 of the Raspberry Pi 5.

Figure 9.43 Circuit diagram of the project

Program listing: Figure 9.44 shows the program listing (program parking.py). Module 
DistanceSensor of gpiozero is imported to the program. If the distance of either sensor 
to the objects is less than or equal to the Allowed_Distance (which is set to 10 cm) then 
the buzzer is sounded to indicate that the vehicle is too close to objects (either at the front 
or at the rear).

Since the parking sensor is to be operated away from a PC, it is necessary to auto start the 
program when power is applied to the Raspberry Pi 5. The program name parking.py must 
be included in file /etc/rc.local in the following format so that the program starts as soon 
as the Raspberry Pi 5 starts after a power-up or after a reboot:

	 python /home/pi/robot2.py &

Raspberry 5 Projects.indd   171Raspberry 5 Projects.indd   171 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 172

#----------------------------------------------------------------------
#                         PARKING SENSORS
#                         ===============
#
# This is a parking sensors project. Ultrasonic tranamitter/receiver
# sensors are attached to the front and rear of a vehicle. In addition
# an active buzzer is connected to the Raspberry Oi 5. The program senses
# the objects in the front and rear of the vehicle and sounds the buzzer
# if the vehicle is too close to the objects. In this project a distance
# less than 10cm is considered to be too close. 
#
# File  : parking.py
# Date  : October, 2023
# Author: Dogan Ibrahim
#-----------------------------------------------------------------------
from gpiozero import DistanceSensor, LED
from time import sleep

Buzzer = LED(10)					     # Buzzer at GPIO 10

sensorForward = DistanceSensor(echo=17, trigger=4)
sensorRear = DistanceSensor(echo=22, trigger=27)
Allowed_Distance = 10

Buzzer.off()

while True:
  obstacle_f = sensorForward.distance * 100		  # Forward distance
  obstacle_r = sensorRear.distance * 100		  # Rear distance
  if obstacle_f <= Allowed_Distance or obstacle_r <= Allowed_Distance:
     Buzzer.on()
  else:
     Buzzer.off()

Figure 9.44 Program listing

After applying power, wait until the Raspberry Pi 5 boots, and the program should start 
automatically. You should remove your Python program name from file /etc/rc.local after 
testing and completing your project so that the program does not start every time you 
restart your Raspberry Pi 5!

9.16 Project 13 – Fading LED
Description: In this project, an LED is connected to GPIO 21 (pin 40) of the Raspberry Pi 5 
through a 470 Ohm current limiting resistor. The brightness of the LED fades in and fades 
out every second.

Raspberry 5 Projects.indd   172Raspberry 5 Projects.indd   172 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 173

Program listing: Figure 9.45 shows the program listing (FadeLED.py). Function pulse() 
of gpoizero is used to control the LED. The fade-in and fade-out times are set to 1 second 
each.

#---------------------------------------------------------
#
#             		 FADING LED
#             		 ==========
# In this program an LED is connected to the Raspberry Pi 5.
# The brightness of the LED fades by using th PWMLED function
# of gpiozero
# 
# Program: FadeLED.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#----------------------------------------------------------
from gpiozero import PWMLED

led = PWMLED(21)			   # LED at GPIO 21

#
# Fade-in time and fade-out time are set to 1 second each
#
led.pulse(fade_in_time=1,fade_out_time=1)

while True:
  pass

Figure 9.45 Program listing

9.17 Project 14 – Melody maker
Description: This project shows how tones with different frequencies can be generated 
and sent to a passive buzzer device. The project shows how the simple melody Happy 
Birthday can be played on the buzzer.

Block diagram: The block diagram of the project is shown in Figure 9.46.

Figure 9.46 Block diagram of the project

Raspberry 5 Projects.indd   173Raspberry 5 Projects.indd   173 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 174

Circuit diagram: Figure 9.47 shows the circuit diagram of the project. A passive buzzer is 
connected to port GPIO 21 (pin 40) of the Raspberry Pi 5. A transistor switch can be used to 
increase the voltage level of the buzzer (this can be omitted, and the buzzer can be directly 
connected to GPIO 21 if desired). Any NPN bipolar transistor can be used in this project. 
The + terminal of the buzzer can be connected to either +3.3 V or to +5V for higher output 
from the buzzer.

Figure 9.47 Circuit diagram of the project

Melodies
When playing a melody, each note is played for a certain duration and with a certain 
frequency. In addition, a certain gap is necessary between two successive notes. The fre-
quencies of the musical notes starting from middle C (i.e. C4) are given below. The har-
monic of a note is obtained by doubling the frequency. For example, the frequency of C5 is 
2 × 262 = 524 Hz.

Notes C4 C4# D4 D4# E4 F4 F4# G4 G4# A4 A4# B4

Hz 261.63 277.18 293.66 311.13 329.63 349.23 370 392 415.3 440 466.16 493.88

To play the tune of a melody, you need to know its musical notes. Each note is played for 
a certain duration and there is a certain time gap between two successive notes. The next 
thing we want is to know how to generate a sound with a required frequency and duration. 
In this project, we will be generating the classic Happy Birthday melody, and thus you 
need to know the notes and their durations. These are given in the table below, where the 
durations are in units of 400 milliseconds (i.e. the values given in the table should be mul-
tiplied by 400 to give the actual durations in milliseconds).

Note C4 C4 D4 C4 F4 E4 C4 C4 D4 C4 G4 F4 C4 C4 C5 A4 F4 E4 D4 A4 B4 A4 F4 G4 F4

Duration 1 1 2 2 2 3 1 1 2 2 2 3 1 1 2 2 2 2 2 1 1 2 2 2 4

Program Listing: The program listing (program: Melody) is shown in Figure 9.48. The 
notes and their durations are stored in two lists called Notes and Duration, respectively. 
Before the main program loop, the durations of each tone are calculated and stored in the 
array Duration so that the main program loop does not have to spend any time doing 

Raspberry 5 Projects.indd   174Raspberry 5 Projects.indd   174 09-11-2023   15:4509-11-2023   15:45



Chapter 9 • Using an I²C LCD

● 175

these calculations. Inside the program loop, the melody notes are generated with the re-
quired durations. A small delay (100 ms) is introduced between each tone. The melody is 
repeated after five seconds of delay. You can try higher notes for clearer sound, and use 
speakers instead of a buzzer.

#---------------------------------------------------------
#             PLAY A MELODY (Happy Birthday)
#             ==============================
#
# This program plays the melody Happy Birthday through a buzzer
#
# Program: melody.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#----------------------------------------------------------
from gpiozero import TonalBuzzer
from gpiozero.tones import Tone
from time import sleep

t = TonalBuzzer(21)

Notes = ['C4','C4','D4','C4','F4','E4','C4','C4','D4','C4','G4',
'F4','C4','C4','C5','A4','F4','E4','D4','A4','B4','A4','F4','G4','F4']

Duration = [1,1,2,2,2,3,1,1,2,2,2,3,1,1,2,2,2,2,2,1,1,2,2,2,4]

length = len(Notes) 

while True:
   for i in range(length):
      t.play(Notes[i])
      sleep(Duration[i] * 0.4)
      sleep(0.1)
   t.stop()
   sleep(5)

Figure 9.48 Program listing

Raspberry 5 Projects.indd   175Raspberry 5 Projects.indd   175 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 176

Chapter 10 • �Plotting Graphs with Python and  
Raspberry Pi 5

10.1 Overview
In this chapter, you will be learning how to draw graphs using the Python programming 
language. In addition, examples and projects are given on drawing graphs for simple elec-
tronic circuits.

10.2 The Matplotlib graph plotting library
Matplotlib is a Python plotting library that is used to create two-dimensional graphs. Before 
using this package, it has to be installed on your Raspberry Pi 5 using the following com-
mand:

	 pi@raspberrypi:~ $ sudo apt-get install python3-matplotlib

You must import module matplotlib at the beginning of our programs before we can use 
Matplotlib using the statement:

	 import matplotlib.pyplot as plt

Perhaps the easiest way to learn how to use Matplotlib is to look at an example.

Notice that graphs can only be plotted in Desktop mode. If you are not using a directly con-
nected monitor, then you should start the VNC server on your Raspberry Pi and then start 
the VNCViewer on your PC to get into the Desktop mode.

Example 1
Write a program to draw a line graph passing from the following (x, y) points:

	 x: 2 4 6 8
	 y: 4 8 12 16

Solution 1
The required program listing is shown in Figure 10.1 (program: graph1.py). This program 
is simple. Function call plt.plot plots the graph with the specified x and y values. The graph 
is shown on Desktop when statement plt.show() is executed. Start the program by en-
tering the following command in the Accessories → Terminal windows at the Desktop:

	 pi@raspberrypi:~ $ python graph1.py

#----------------------------------------------
#	   	 SIMPLE LINE GRAPH
#	   	 =================
#
# This program draws a line graph passing from
# the following points:

Raspberry 5 Projects.indd   176Raspberry 5 Projects.indd   176 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 177

#
# x = 2 4 6  8
# y = 4 8 12 16
#
# Author: Dogan Ibrahim
# File  : graph1.py
# Date  : October, 2023
#----------------------------------------------
import matplotlib.pyplot as plt

x = [2, 4, 6, 8]
y = [4, 8, 12, 16]

plt.plot(x, y)
plt.show()

Figure 10.1 Program listing

Figure 10.2 shows the graph plotted by the program. Notice that at the bottom of the graph 
we have several buttons to control the graph, such as zoom, save, etc.

Figure 10.2 Line graph drawn by the program

You can add titles, axis labels, and grid to our graph using the following functions:

	 plt.xlabel(«X values»)
	 plt.ylabel(«Y values»)
	 plt.title("Simple X-Y Graph")
	 plt.grid(True)

Raspberry 5 Projects.indd   177Raspberry 5 Projects.indd   177 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 178

The new graph is shown in Figure 10.3.

Figure 10.3 Graph with labels, title, and grid

Matplotlib supports a large number of functions (see web link: https://matplotlib.org/sta-
ble/api/pyplot_summary.html for a full description of all the functions). Some commonly 
used functions are:

•	bar:		  make a bar plot
•	box:		  turn the axis box on or off
•	boxplot:	 make a box plot
•	figtext:	 add text to the figure
•	hist:		  plot a histogram
•	legend:	 place a legend on the axes
•	 loglog:		 make a logarithmic plot
•	pie:		  plot a pie chart
•	polar:		  make a polar plot
•	plotfile:	 plot data in a file
•	semilogx:	 logarithmic plot with log on x-axis
•	semilogy:	 logarithmic plot with log on y-axis
•	suptitle:	 add a centered title to the plot
•	tick_params:	 change the appearance of ticks and tick labels

Example 2
Write a program to draw a sine curve from 0 to 2π.

Solution 2
You have to use numpy arrays to store our data points before plotting. Figure 10.4 shows 
the program listing (program: graph2.py). 

Raspberry 5 Projects.indd   178Raspberry 5 Projects.indd   178 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 179

#----------------------------------------------
#	   	 SINE GRAPH
#	   	 ==========
#
# This program draws a sine graph from 0 to 2pi
#
# Author: Dogan Ibrahim
# File  : graph2.py
# Date  : October, 2023
#----------------------------------------------
import matplotlib.pyplot as plt
import numpy as np

#
# Calculate the data points in np
#
x = np.arange(0, 2 * np.pi, 0.1)
y = np.sin(x)

#
# Now plot the graph
#
plt.plot(x, y)
plt.xlabel("X values")
plt.ylabel("Sin(X)")
plt.title("Sine Wave")
plt.grid(True)
plt.show()

Figure 10.4 Program listing

The graph drawn by the program is shown in Figure 10.5.

Raspberry 5 Projects.indd   179Raspberry 5 Projects.indd   179 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 180

Figure 10.5 Graph drawn by the program

Example 3
Draw the graph of the following function as x is varied from 0 to 4:

	 y = 2x2 + 3x + 2

Solution 3
Figure 10.6 shows the program listing (program: graph3.py). After calculating the x and 
y values, the graph is drawn as shown in Figure 10.7.

#----------------------------------------------
#	   	 Function Graph
#	   	 ==============
#
# This program draws a graph of the function:
#
#    y = 2x2 + 3x + 2 from x=0 to x = 4
#
# Author: Dogan Ibrahim
# File  : graph3.py
# Date  : October, 2023
#----------------------------------------------
import matplotlib.pyplot as plt
import numpy as np

#
# Calculate the data points in np
#
x = np.arange(0, 4, 0.1)
y = [(2 * i * i + 3 * i + 2) for i in x]

Raspberry 5 Projects.indd   180Raspberry 5 Projects.indd   180 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 181

#
# Now plot the graph
#
plt.plot(x, y)
plt.xlabel("X values")
plt.ylabel("Y values")
plt.title("y=2x2 + 3x + 2")
plt.grid(True)
plt.show()

Figure 10.6 Program listing

Figure 10.7 Graph drawn by the program

Example 4
This is an example of drawing two graphs on the same axes. Write a program to draw the 
graphs of the following two functions as x is varied from 0 to 3:

	 y = x2 + 2
	 y = x2 + 4

Solution 4
Figure 10.8 shows the program listing (program: graph4.py). After calculating the x and 
y values, the graphs are drawn as shown in Figure 10.9.

Raspberry 5 Projects.indd   181Raspberry 5 Projects.indd   181 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 182

#----------------------------------------------
#	   	 Function Graph
#	   	 ==============
#
# This program draws a graph of the functions:
#
#   y = x2 + 2
#   y = x2 + 4 from x=0 to x = 3
#
# Author: Dogan Ibrahim
# File  : graph4.py
# Date  : October, 2023
#----------------------------------------------
import matplotlib.pyplot as plt
import numpy as np

#
# Calculate the data points in np
#
x = np.arange(0, 3, 0.1)
y1 = [(i * i + 2) for i in x]
y2 = [(i * i + 4) for i in x]

#
# Now plot the graph
#
plt.plot(x, y1, linestyle='solid')
plt.plot(x, y2, linestyle='dashed')
plt.xlabel("X values")
plt.ylabel("Y values")
plt.title("y=x2+2 and y=x2+4")
plt.grid(True)
plt.show()

Figure 10.8 Program listing

Raspberry 5 Projects.indd   182Raspberry 5 Projects.indd   182 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 183

Figure 10.9 Graph drawn by the program

To identify the individual graphs in a multi-graph drawing, you can plot each graph with a 
different colour, or with different types of lines. Some examples are shown below:

	 plt.plot(x, y1, color='blue')
	 plt.plot(x, y2, color='green')

or
	 plt.plot(x, y1, linestyle='solid')
	 plt.plot(x, y2, linestyle='dashed')

Figure 10.10 shows the graph in Figure 10.9 drawn with different line styles.

Figure 10.10 Using different line styles

Raspberry 5 Projects.indd   183Raspberry 5 Projects.indd   183 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 184

Example 5
In this example, you will use legends to identify multiple graphs in a multigraph drawing. 
The functions to be drawn are the same as the ones given in the previous example.

Solution 5
Figure 10.11 shows the program listing (program: graph5.py). The Matplotlib function 
label is used to identify the two graphs. Also, statement plt.legend() must be specified 
to draw the legend.

#----------------------------------------------
#	   	 Function Graph
#	   	 ==============
#
# This program draws a graph of the functions:
#
#   y = x2 + 2
#   y = x2 + 4 from x=0 to x = 3
#
# In this program the graphs are identified
#
# Author: Dogan Ibrahim
# File  : graph5.py
# Date  : October, 2023
#----------------------------------------------
import matplotlib.pyplot as plt
import numpy as np

#
# Calculate the data points in np
#
x = np.arange(0, 3, 0.1)
y1 = [(i * i + 2) for i in x]
y2 = [(i * i + 4) for i in x]

#
# Now plot the graph
#
plt.plot(x, y1, linestyle='solid', label='x2+2')
plt.plot(x, y2, linestyle='dashed', label='x2+4')
plt.xlabel("X values")
plt.ylabel("Y values")
plt.title("y=x2+2 and y=x2+4")
plt.grid(True)
plt.legend()
plt.show()

Figure 10.11 Program listing

Raspberry 5 Projects.indd   184Raspberry 5 Projects.indd   184 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 185

Figure 10.12 shows the graph drawn by the program.

Figure 10.12 Graph drawn by the program

Example 6
Write a program to draw a pie chart for the following data;

	 France = 15%, Germany = 20%, Italy = 20%, UK = 45%

Solution 6
Figure 10.13 shows the program listing (program: graph6.py). The Pie chart is drawn with 
equal aspect ratio, so that is a circle.

#----------------------------------------------
#	   	 Pie Chart
#	   	 =========
#
# This program draws a pie chart for the data:
#
#   France=15%, Germany=20%,Italy=20%,UK=45%
#
# Author: Dogan Ibrahim
# File  : graph6.py
# Date  : October, 2023
#----------------------------------------------
import matplotlib.pyplot as plt
import numpy as np

labels = "France", "Germany", "Italy", "UK"
sizes = [15, 20, 20, 45]

Raspberry 5 Projects.indd   185Raspberry 5 Projects.indd   185 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 186

x, chrt = plt.subplots()
chrt.pie(sizes, labels=labels)
chrt.axis('equal')
plt.show()

Figure 10.13 Program listing

The Pie chart drawn by the program is shown in Figure 10.14.

Figure 10.14 Pie chart drawn by the program

We can explode parts of the Pie chart by specifying the parts to be exploded. For example, 
to explode the fourth item in our example, we can issue the statement:

	 Explode = (0, 0, 0, 0.1)	 # specify amount to be exploded

The amount of explosion is determined by the value we specify. Also, the percentages of 
each part can be written inside the Pie chart elements by using the statement:

	 autopct='%1.1f%%' 		  # Specify 1 digit after the decimal point

Parts of the Pie chart can be shadowed if desired to give it a 3D effect. This can be done 
using the statement:

	 shadow=True

The program shown in Figure 10.15 (program: graph7.py) makes use of the above fea-
tures, and the resulting Pie chart is shown in Figure 10.16.

Raspberry 5 Projects.indd   186Raspberry 5 Projects.indd   186 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 187

#----------------------------------------------
#	   		  Pie Chart
#	   		  =========
#
# This program draws a pie chart for the data:
#
#   France=15%, Germany=20%,Italy=20%,UK=45%
#
# Part UK is exploded in this graph.Also, the
# percentage of each part is written inside the
# corresponding parts and pats are shadowed
#
# Author: Dogan Ibrahim
# File  : graph7.py
# Date  : October, 2023
#----------------------------------------------
import matplotlib.pyplot as plt
import numpy as np

labels = "France", "Germany", "Italy", "UK"
sizes = [15, 20, 20, 45]
explode = (0, 0, 0, 0.1)

x, chrt = plt.subplots()
chrt.pie(sizes, labels=labels, explode=explode,\
autopct='%1.1f%%',shadow=True)
chrt.axis('equal')
plt.show()

Figure 10.15 Program listing

Figure 10.16 Pie chart drawn by the program

Raspberry 5 Projects.indd   187Raspberry 5 Projects.indd   187 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 188

Example 7
Write a program to draw a bar chart for the following data:

	 France = 10, Italy = 8, Germany = 6, UK = 2

Solution 7
Figure 10.17 shows the program listing (program: graph8.py). After specifying the values 
for each bar, the bar chart is drawn.

#----------------------------------------------
#	   	 Bar Chart
#	   	 =========
#
# This program draws a bar chart for the data:
#   France=10, Italy=8,Germany=6,UK=2
#
# Author: Dogan Ibrahim
# File  : graph8.py
# Date  : October, 2023
#----------------------------------------------
import matplotlib.pyplot as plt
import numpy as np

labels = ("France", "Germany", "Italy", "UK")
pos = np.arange(len(labels))
values = [10, 8, 6, 2]

plt.bar(pos, values, align='center',alpha=0.5)
plt.xticks(pos, labels)
plt.ylabel('MB/s')
plt.title('Internet Speed')
plt.show()

Figure 10.17 Program listing

Figure 10.18 shows the graph drawn by the program.

Raspberry 5 Projects.indd   188Raspberry 5 Projects.indd   188 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 189

Figure 10.18 Graph drawn by the program

You can plot a horizontal bar chart by replacing the statement plt.bar with plt.barh.

10.3 Project 1 – RC transient circuit analysis - Charging
Description: This project is about analysing a charging RC transient circuit by plotting its 
time response.

Background Information: RC circuits are used in many radio and communications cir-
cuits. A typical RC transient circuit consists of a resistor in series with a capacitor, as shown 
in Figure 10.19. When the switch is closed, the voltage across the capacitor rises exponen-
tially with a time constant, T = RC.

Figure 10.19 Charging RC circuit

Expressed mathematically, assuming that initially the capacitor is discharged, when the 
switch is closed the voltage across the capacitor rises a given by the following formula:

	  						      (10.1)

Initially, the voltage across the capacitor is 0 V, and in steady state the voltage across the 
capacitor becomes equal to Vin. The time constant is the time when the output voltage 
rises to around 63.2% of its final value.

Program Listing: Figure 10.20 shows the program listing (program: RCrise.py). After dis-
playing the heading, the values of the input voltage Vin, and resistor and capacitor values 

Raspberry 5 Projects.indd   189Raspberry 5 Projects.indd   189 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 190

are read from the keyboard. The program then calculates the time constant as T=RC and 
displays the time constant and also draws the time response of the circuit. The graph is 
drawn as the time value (x-axis) changes from 0 to 6T, and 50 points are taken to draw the 
graph. The time constant is also written on the graph at the point (Time constant, Vin/2). 
The horizontal axis is in seconds, while the vertical axis is in volts.

#----------------------------------------------
#	   	 RC TRANSIENT RESPONSE
#	   	 =====================
#
# This program reads the R and C values and then
# calculates and displays the time conctant. Also,
# the time response of teh circuit is drawn
#
# Author: Dogan Ibrahim
# File  : RCrise.py
# Date  : October, 2023
#----------------------------------------------
import matplotlib.pyplot as plt
import numpy as np
import math

print("RC Transient Response")
print("=====================")

#
# Read Vin, R and C
#
Vin = float(input("Enter Vin in Volts: "))
R = float(input("Enter R in Ohms: "))
C = float(input("Enter C in microfarads: "))
C = C / 1000000.0

#
# Calculate and display time constant
#
T = R * C
F = 6.0 * T
N = F / 50.0
print("Time constant = %f seconds" %(T))

#
# Now plot the time response
#
x = np.arange(0, F, N)
y = [(Vin * (1.0 - math.exp(-i/T))) for i in x]

Raspberry 5 Projects.indd   190Raspberry 5 Projects.indd   190 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 191

plt.plot(x, y)
plt.xlabel("Time (s)")
plt.ylabel("Capacitor Volts")
plt.title("RC Response")
plt.grid(True)
TC = "T="+str(T)+"s"
plt.text(T, Vin/2, TC)
plt.show()

Figure 10.20 Program listing

Figure 10.21 shows an example graph displayed by the program. In this program, the fol-
lowing input values were used (see Figure 10.22):

	 Vin = 10 V
	 R = 100 Ω
	 C = 10 µF

The time constant was calculated to be 0.1 seconds.

Figure 10.21 The graph plotted by the program

Figure 10.22 Input values to the example program

10.4 Project 2 – RC transient circuit analysis - Discharging
Description: This case study is about analysing a discharging RC transient circuit by plot-
ting its time response.

Raspberry 5 Projects.indd   191Raspberry 5 Projects.indd   191 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 192

Background Information: In this case study an RC circuit is used as in Figure 10.23. We 
assume that the capacitor is fully charged after switch s1 is closed. We then close switch s2 
so that the capacitor discharges through resistor R. The time response of the voltage across 
the capacitor is then given by:

	 							       (10.2)

Where Vo is the initial voltage across the capacitor (normally same as Vin) before s2 is 
closed. Again, T=RC is known as the time constant of the circuit.

Figure 10.23 Discharging RC circuit

Program Listing: Figure 10.24 shows the program listing (program: RCfall.py). After dis-
playing the heading, the values of the initial voltage across the capacitor (Vo), the resistor 
and the capacitor are read from the keyboard. The program then calculates the time con-
stant as T=RC and displays the time constant and draws the time response of the circuit. 
The graph is drawn as the time value (x-axis) changes from 0 to 6T and 50 points are taken 
to draw the graph. The time constant is also written on the graph at the point (Time con-
stant, Vo/2). The horizontal axis is in seconds, while the vertical axis is in volts.

#----------------------------------------------
#	   	 RC TRANSIENT RESPONSE
#	   	 =====================
#
# This program reads the R and C values and then
# calculates and displays the time constant. Also,
# the time response of the circuit is drawn as the
# capacitor is discharged
#
# Author: Dogan Ibrahim
# File  : RCfall.py
# Date  : October, 2023
#----------------------------------------------
import matplotlib.pyplot as plt
import numpy as np
import math

print("RC Transient Response")
print("=====================")

Raspberry 5 Projects.indd   192Raspberry 5 Projects.indd   192 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 193

#
# Read Vo, R and C
#
Vo = float(input("Enter Initial Capacitor Voltage in Volts: "))
R = float(input("Enter R in Ohms: "))
C = float(input("Enter C in microfarads: "))
C = C / 1000000.0

#
# Calculate and display time constant
#
T = R * C
F = 6.0 * T
N = F / 50.0
print("Time constant = %f seconds" %(T))

#
# Now plot the time response
#
x = np.arange(0, F, N)
y = [(Vo * (math.exp(-i/T))) for i in x]

plt.plot(x, y)
plt.xlabel("Time (s)")
plt.ylabel("Capacitor Volts")
plt.title("RC Response")
plt.grid(True)
TC = "T="+str(T)+"s"
plt.text(T, Vo/2, TC)
plt.show()

Figure 10.24 Program listing

Figure 10.25 shows an example graph displayed by the program. In this program, the fol-
lowing input values were used (see Figure 10.26):

	 Initial capacitor voltage = 10 V
	 R = 1000 Ω
	 C = 100 µF

The time constant was calculated to be 0.1 seconds.

Raspberry 5 Projects.indd   193Raspberry 5 Projects.indd   193 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 194

Figure 10.25 The graph plotted by the program

Figure 10.26 Input values to the example program

10.5 Transient RL circuits
The time response of a transient resistor-inductor circuit is similar to the RC circuit. When 
the circuit is connected to a DC supply of value Vin, the current in the circuit rises exponen-
tially and is given by the following formula:

	 						      (10.3)

Where, Vin is in volts, R in ohms, L in henries, and t in seconds. The time constant of this 
circuit is given by T = L/R.

After the current reaches its steady state value, disconnecting the DC supply and shorting 
the leads causes the current in the circuit to fall exponentially, given by the following for-
mula:

	 							       (10.4)

Where, Vo is the initial voltage across the inductor.

The transient response of RL circuits is similar to those of the RC circuits and therefore are 
not covered further in this book.

10.6 Project 3 – RCL transient circuit analysis
Description: This case study is about analysing the transient response of a second order 
series connected RLC circuit by plotting its time response.

Raspberry 5 Projects.indd   194Raspberry 5 Projects.indd   194 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 195

Background Information: An RLC circuit (Figure 10.27) is a second-order system that 
can have 3 modes of operation depending on the values of the components when a DC 
voltage is applied across its terminals.

Figure 10.27 RLC circuit

Underdamped mode: This mode is identified when the following condition holds true:

	 							       (10.5)

When DC voltage is applied to the circuit, the current in the circuit is given by the following 
formula:

	 				    (10.6)

Where,

	 					     (10.7)

Critically damped mode: In this mode of operation, the following is satisfied:

	 							       (10.8)

When DC voltage is applied to the circuit, the current in the circuit is given by the following 
formula:

	 							       (10.9)

Where,

	 					     (10.10)

Overdamped mode: In this mode of operation, the following is satisfied:

	 							       (10.11)

Raspberry 5 Projects.indd   195Raspberry 5 Projects.indd   195 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 196

When DC voltage is applied to the circuit, the current in the circuit is given by the following 
formula:

    (10.12)

Where,

          (10.13)

Program Listing: Figure 10.28 shows the program listing (program: RLC.py). At the 
beginning of the program a heading is displayed and then the values of the input voltage, 
resistor, capacitor and the inductor are read and stored in variables Vin, R, C, and L re-
spectively. The program then fi nds out in which mode the circuit will be operating based 
on the value of ξ. Then, three functions are used, one for each mode, to calculate and plot 
the transient response of the circuit. The mode of the circuit is displayed on the graph at 
the coordinate (3T, 0), where T = 2π/W. In all the graphs, 80 points are used to draw the 
points from 0 to 6T.

#------------------------------------------------
#    RLC TRANSIENT RESPONSE
#    ======================
#
# This program reads the R,L,C values and then
# calculates and displays the transient response
#
# Author: Dogan Ibrahim
# File  : RLC.py
# Date  : October, 2023
#------------------------------------------------
import matplotlib.pyplot as plt
import numpy as np
import math
global x, y, z

def critically_damped():
  global x,y
  x = np.arange(0, F, N)
  y = [Vin*((1/L) * i * math.exp(-i*w)) for i in x]

def underdamped():
  global x,y,z
  x = np.arange(0, F, N)
  zeta = math.sqrt(1 - z*z)
  y = [Vin*(1/(w*L*zeta)*(math.exp(-z*w*i))*math.sin(w*i*zeta)) for i in x]

Raspberry 5 Projects.indd   196Raspberry 5 Projects.indd   196 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 197

def overdamped():
  global x,y,z
  x = np.arange(0, F, N)
  y = [Vin*(1/(w*L*(math.sqrt(z*z-1))))*(math.exp(-z*w*i))*\
math.sinh(w*i*math.sqrt(z*z-1)) for i in x]

print("RLC Transient Response")
print("=====================")

#
# Read Vin, R,C and L
#
Vin = float(input("Enter Vin in Volts: "))
R = float(input("Enter R in Ohms: "))
C = float(input("Enter C in microfarads: "))
C = C / 1000000.0
L = float(input("Enter L in millihenries: "))
L = L / 1000.0
w = math.sqrt(1/(L * C))
z = (R/2) * math.sqrt(C / L)
T = (2.0 * math.pi) / w
F = 6 * T
N = F / 80.0

#
# Find the mode of operation
#
mode = R - 2.0 * math.sqrt(L / C)
if abs(mode) < 0.01:
  case = 2
  md = "Critically Damped"
  critically_damped()
elif mode < 0:
  case = 1
  md = "Underdamped"
  underdamped()
elif mode > 0:
  case = 3
  md = "Overdamped"
  overdamped()

#
# Now plot the time response
#

Raspberry 5 Projects.indd   197Raspberry 5 Projects.indd   197 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 198

plt.plot(x, y)
plt.xlabel("Time (s)")
plt.ylabel("Current")
plt.title("RLC Response")
plt.grid(True)
plt.text(3*T,0,  md)
plt.show()

Figure 10.28 Program listing

Figure 10.29 shows a typical run of the program with the following values:

	 Vin = 10 V
	 R = 10 Ω
	 C = 100 µF
	 L = 200 µH

Figure 10.29 Response of the circuit

10.7 Project 4 – Temperature, pressure and humidity measurement – 
Display on the screen
Description: In this project the BME280 sensor module is used to read the ambient tem-
perature, pressure and humidity and to display the readings on the screen.

Block diagram: Figure 10.30 shows the block diagram of the project.

Raspberry 5 Projects.indd   198Raspberry 5 Projects.indd   198 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 199

Figure 10.30 Block diagram of the project

The BME280 sensor module
The BME280 module (Figure 10.31) is a low-cost sensor developed for measuring the am-
bient temperature, atmospheric pressure, and the humidity. This module operates with the 
I²C (or SPI) bus interface and has the pins SDA, SCL, Vin, and GND. The basic specifica-
tions of this module are:

•	Operating voltage: 1.2 to 3.6 V
•	Interface I²C or SPI
•	Current consumption: 1.8 μA
•	Humidity sensor response time: 1 s
•	Humidity sensor accuracy: ±3%
•	Pressure sensor range: 300 to 1100 hPa
•	Temperature range: -40 to +85ºC

Figure 10.31 The BME280 sensor module

Circuit diagram: The project circuit diagram is shown in Figure 10.32. The module is 
connected to Raspberry Pi SDA (pin 3) and SCL (pin 5) pins. +3.3 V power is applied from 
pin 1.

Raspberry 5 Projects.indd   199Raspberry 5 Projects.indd   199 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 200

Figure 10.32 Circuit diagram of the project

The default address of the BME280 is 0x76. This can be confirmed by entering the following 
command after the circuit is built (Figure 10.33):

	 i2cdetect –y 1

Figure 10.33 Checking the I²C bus for the sensor module

Program listing: Figure 10.34 shows the program listing (bme280.py). Before running 
the program, it is necessary to load the BME280 library. The steps are:

•	git clone https://github.com/MarcoAndreaBuchmann/bme280pi.git
•	cd bme280pi
•	python setup.py install

The sensor library can be imported to your Python programs as follows:

	    from bme280pi import Sensor
	 sensor = Sensor()

At the beginning of the program, the BME280 sensor library is imported s above, Inside 
the main program loop the temperature, atmospheric pressure, and humidity are read and 
displayed on the screen every 5 seconds.

Raspberry 5 Projects.indd   200Raspberry 5 Projects.indd   200 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 201

#-------------------------------------------------------------
#         TEMPERATURE,ATMOSPHERIC PRESSURE AND HUMIDITY
#         =============================================
#
# This program reads the ambient temperature, atmospheric
# pressure, and humidity using a BME280 sensor module. The
# readings are dislayed on the screen every 5 seconds
#
# Program: bme280.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#--------------------------------------------------------------
from time import sleep
from bme280pi import Sensor

sensor = Sensor(address = 0x76)

while True:					     # infinite loop
  data = sensor.get_data()			   # get sensor data
  temperature = data['temperature']		  # temperature
  pressure = data['pressure']			   # pressure
  humidity = data['humidity']			   # humidity
  print("Temperature = %5.2f C" %temperature)
  print("Pressure = %d hPa" %pressure)
  print("Humidity = %d" %humidity)
  print("")
  sleep(5)

Figure 10.34 Program listing

Figure 10.35 shows an example output from the program.

Figure 10.35 Output from the program

Raspberry 5 Projects.indd   201Raspberry 5 Projects.indd   201 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 202

10.8 Project 5 – Temperature, pressure and humidity measurement – 
Plotting the data
Description: This project is very similar to the previous one, but here the data is plotted 
on the Desktop.

The block diagram and circuit diagram of the project are the same as in Figure 10.30 and 
Figure 10.32.

Program listing: Figure 10.36 shows the program listing (bme280plot.py). The sen-
sor data is collected for 60 seconds where the temperature, pressure and humidity are 
stored in t[], p[], and h[]. The seconds are stored in tim[]. When the program runs, 
the message Collecting data… is displayed. The collected data is plotted as shown in 
Figure 10.37. Note that you can adjust the position of the graphs on the screen using the 
horizontal arrow tool at the bottom of the screen.

#-------------------------------------------------------------
#     PLOT TEMPERATURE,ATMOSPHERIC PRESSURE AND HUMIDITY
#     ==================================================
#
# This program reads the ambient temperature, atmospheric
# pressure, and humidity using a BME280 sensor module. The
# readings are plotted on the Desktop
#
# Program: bme280plot.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#--------------------------------------------------------------
from time import sleep
from bme280pi import Sensor
import matplotlib.pyplot as plt

sensor = Sensor(address = 0x76)

p = [0]*60
t=[0]*60
h=[0]*60
data = [0]*60
tim=[0]*60
print("Collecting data...")

for i in range(60):
   data=sensor.get_data()
   tim[i]=i
   p[i] =int(data['pressure'])
   t[i] = int(data['temperature'])
   h[i] = int(data['humidity'])

Raspberry 5 Projects.indd   202Raspberry 5 Projects.indd   202 09-11-2023   15:4509-11-2023   15:45



Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5

● 203

   sleep(0.1)

plt.figure()
plt.subplot(2, 2, 1)
plt.plot(tim,t)
plt.title("Temperature (C)")
plt.grid()

plt.subplot(2, 2, 2)
plt.plot(tim,p)
plt.title("Pressure (hPa)")
plt.grid()

plt.subplot(2, 2, 3)
plt.plot(tim,h)
plt.title("Relative Humidity (%)")
plt.grid()
plt.show()

Figure 10.36 Program listing

Figure 10.37 Example output from the program

Raspberry 5 Projects.indd   203Raspberry 5 Projects.indd   203 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 204

Chapter 11 • �Waveform Generation – Using the 
Digital-to-Analog Converter (DAC)

11.1 Overview
Waveform generators are important in many electronic communication applications. In this 
chapter, you will be developing projects to generate various waveforms such as square, 
sine, triangular, staircase, etc. by using an external DAC chip and programming the Rasp-
berry Pi 5. In this book, you will be using the popular MCP4921 DAC chip from Microchip.

11.2 The MCP4921 DAC
Before using the MCP4921, it is worthwhile to look at its features and operation in some 
detail. MCP4921 is a 12-bit DAC that operates with the SPI bus interface. Figure 11.1 shows 
the pin layout of this chip. The basic features are:

•	12-bit operation
•	20 MHz clock support
•	4.5 μs settling time
•	External voltage reference input
•	1× or 2× gain
•	2.7 to 5.5 V supply voltage
•	-40ºC to +125ºC temperature range

Figure 11.1 MCP4921 DAC

The pin descriptions are:

Vdd:	 supply voltage
CS:		 chip select (active LOW)
SCK:	 SPI clock
SDI:	 SPI data in
LDAC:	 Used to transfer input register data to the output (active LOW)
Vref:	 Reference input voltage
Vout:	 analog output
Vss:	 supply ground

In projects in this book, you will be operating the MCP4921 with a gain of one. As a result, 
with a reference voltage of 3.3 V and 12-bit conversion data, the LSB resolution of the DAC 
will be 3300/4096 = 0.8 mV

Raspberry 5 Projects.indd   204Raspberry 5 Projects.indd   204 09-11-2023   15:4509-11-2023   15:45



Chapter 11 • Waveform Generation – Using the Digital-to-Analog Converter (DAC)

● 205

The SPI Bus
As it was discussed in an earlier chapter, the Serial Peripheral Interface (SPI) bus consists 
of two data wires and one clock wire. Additionally, a chip enable (CE or CS) connection is 
used to select a slave in a multi-slave system. The wires used are:

MOSI (or SDI): Master Out Slave In. This signal is output from the master and is input 
to a slave

MISO: Master In Slave Out. This signal is output from a slave and input to a master

SCLK (or SCK): The clock, controlled by the master

CE (r CS): Chip Enable (slave select)

The following pins are the SPI bus pins on Raspberry Pi 4:

GPIO pin	 SPI		  Physical pin no
GPIO 10	 MOSI (SPI0)		  19
GPIO 9	 MISO (SPI0)		  21
GPIO 11	 SCLK (SPI0)		  23
GPIO 8	 CE0 (SPI0)		  24
GPIO 7	 CE1 (SPI0)		  26

GPIO 20	 MOSI (SPI1)		  38
GPIO 19	 MISO (SPI1)		  35
GPIO 21	 SCLK (SPI1)		  40
GPIO 18	 CE0 (SPI1)		  12
GPIO 17	 CE1 (SPI1)		  11

The SPI bus must be enabled using the raspi-config console command on the Raspberry 
Pi before it can be used.

11.3 Project 1 - �Generating a square wave signal with any peak 
voltage up to +3.3 V

Description: In this project you will be using the DAC to generate a square wave signal 
with the frequency of 1 kHz where the required output voltage is 2 V peak.

Block Diagram: Figure 11.2 shows the block diagram of the project. The output

Raspberry 5 Projects.indd   205Raspberry 5 Projects.indd   205 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 206

Figure 11.2 Block diagram of the project

Circuit Diagram: The circuit diagram of the project is shown in Figure 11.3. The output of 
the DAC is connected to a PSCGU250 type digital oscilloscope.

Figure 11.3 Circuit diagram of the project

Program Listing: Data is written to the DAC in 2 bytes. The lower byte specifies D0:D8 of 
the digital input data. The upper byte consists of the following bits:

D8: D11bits D8:D11 of the digital input data
SHDN 1: active (output available), 0: shutdown the device
GA output gain control. 0: gain is 2x, 1: gain is 1x
BUF 0: input unbuffered, 1: input buffered
A/B 0: write to DACa, 1: Write to DACb (MCP4921 supports only DACa)

In normal operation, we will send the upper byte (D8:D11) of the 12-bit (D0:D11) input 
data with bits D12 and D13 set to 1 so that the device is active, and the gain is set to 1x. 
Then we will send the low byte (D0:D7) of the data. This means that 0x30 should be added 
to the upper byte before sending it to the DAC.

Raspberry 5 Projects.indd   206Raspberry 5 Projects.indd   206 09-11-2023   15:4509-11-2023   15:45



Chapter 11 • Waveform Generation – Using the Digital-to-Analog Converter (DAC)

● 207

Figure 11.4 shows the program listing (program: squaredac.py). GPIO 26 is used as the 
CS pin. The frequency variable is set to 1000, which is the required frequency. Function 
DAC sends the 12-bit input data to the DAC. This function has two parts. In the first part, 
the HIGH byte is sent after adding 0x30 as described above. Function xfer2 is used to send 
the data to the DAC. In the second part of the function, the LOW byte is extracted and is 
sent to the DAC. Notice that we could have sent both the high byte and the low byte using 
the same xfer2 function, as follows:

	 highbyte = (data >> 8) & 0x0F
  	 highbyte = highbyte + 0x30

	 lowbyte = data & 0xFF
	 xfer2([highbyte, lowbyte])

Variable ONvalue is set to 2000 × 4095/3300, which is the digital value corresponding to 
2000 mV (i.e. 2 V, remember that the 12-bit DAC has 4095 steps, and the reference voltage 
is set to 3300 mV). The OFFvalue is set to 0 V. Normally, the delay between the ON and 
OFF times should have been equal to halfperiod. However, it was found by experiment 
that the DAC routine takes about 0.2 ms (0.0002 second) and this changes the period and 
consequently the frequency of the output waveform. Because of this, 2 mV is subtracted 
from halfperiod as shown in Figure 13.9

#-----------------------------------------------------------------
#                GENERATE SQUARE WAVEFORM
#                ========================
#
# This program generates square waveform with the frequency 1kHz.
# In this program the MC4921 DAC chip is used to set the output
# peak voltage to 2V
#
# Author: Dogan Ibrahim
# File  : squaredac.py
# Date  : October, 2023
#-------------------------------------------------------------------
from gpiozero import LED
from time import sleep
import spidev					     # Import SPI

spi = spidev.SpiDev()
spi.open(0, 0)					    # Bus=0, device=0
spi.max_speed_hz = 3900000

CS = LED(26)					     # GPIO26 is CS output
CS.on()					     # DIsable CS

frequency = 1000				    # Required Frequency

Raspberry 5 Projects.indd   207Raspberry 5 Projects.indd   207 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 208

period = 1 / frequency				   # Period of the signal
halfperiod = period / 2			   # Half period

#
# This function implements the DAC. The data in "data" is sent
# to the DAC
#
def DAC(data):
   CS.off()					     # Enable CS
#
# Send HIGH byte
#
   temp = (data >> 8) & 0x0F			   # Get upper byte
   temp = temp + 0x30				    # OR with 0x30
   spi.xfer2([temp])				    # Send to DAC
#
# Send LOW byte
#
   temp = data & 0xFF				    # Get lower byte
   spi.xfer2([temp])				    # Send to DAC

   CS.on()					     # Disable CS
 
try:
  ONvalue = int(2000*4095/3300)		  # 2V output
  OFFvalue = 0

  while True:
     DAC(ONvalue)				    # Send to DAC
     sleep(halfperiod - 0.0002)		  # Wait
     DAC(OFFvalue)				    # Send to DAC
     sleep(halfperiod - 0.0002)		  # Wait

except KeyboardInterrupt:
     pass

Figure 11.4 Program listing

Figure 11.5 shows the output waveform generated by the program. Notice that the peak 
output voltage is 2 V, as expected.

Raspberry 5 Projects.indd   208Raspberry 5 Projects.indd   208 09-11-2023   15:4509-11-2023   15:45



Chapter 11 • Waveform Generation – Using the Digital-to-Analog Converter (DAC)

● 209

Figure 11.5 Output waveform

11.4 Project 2 – Generating a sawtooth wave signal
Description: In this project, you will be using the DAC to generate a sawtooth wave signal 
with the following specifications:

	 Peak voltage: 		  3.3 V
	 Step width:		  1 ms
	 Number of steps:	 6

The block diagram and circuit diagram of the project are as in Figure 11.2 and Figure 11.3

Program Listing: Figure 11.6 shows the program listing (program: sawtooth.py). The 
program is very similar to the one given in Figure 11.4.

#-----------------------------------------------------------------
#                GENERATE SAWTOOTH WAVEFORM
#                ==========================
#
# This program generates sawtooth waveform with 6 steps where each
# step has a width of 1ms
#
# Author: Dogan Ibrahim
# File  : sawtooth.py
# Date  : October, 2023
#-------------------------------------------------------------------
from gpiozero import LED
from time import sleep				   # Import time
import spidev					     # Import SPI

spi = spidev.SpiDev()
spi.open(0, 0)					    # Bus=0, device=0
spi.max_speed_hz = 3900000

Raspberry 5 Projects.indd   209Raspberry 5 Projects.indd   209 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 210

CS = LED(26)					     # GPIO26 is CS output
CS.on()					     # Disable CS

#
# This function implements the DAC. The data in "data" is sent
# to the DAC
#
def DAC(data):
   CS.off()					     # Enable CS
#
# Send HIGH byte
#
   temp = (data >> 8) & 0x0F			   # Get upper byte
   temp = temp + 0x30				    # OR with 0x30
   spi.xfer2([temp])				    # Send to DAC
#
# Send LOW byte
#
   temp = data & 0xFF				    # Get lower byte
   spi.xfer2([temp])				    # Send to DAC

   CS.on()					     # Disable CS
 
try:
  while True:					     # Do forever
     i = 0
     while i < 1.1:
        DACValue = int(i*4095)			  # Value  to send
        DAC(DACValue)				    # Send to DAC
        sleep(0.0007)				    # Wait
        i = i + 0.2

except KeyboardInterrupt:
    pass

Figure 11.6 Program listing

An example output waveform taken from the oscilloscope is shown in Figure 11.7. Notice 
that the time delay had to be adjusted experimentally to give the correct timing.

Raspberry 5 Projects.indd   210Raspberry 5 Projects.indd   210 09-11-2023   15:4509-11-2023   15:45



Chapter 11 • Waveform Generation – Using the Digital-to-Analog Converter (DAC)

● 211

Figure 11.7 Example output waveform

11.5 Project 3 - Generating a triangle wave signal
Description: In this project, we will be using the DAC to generate a triangle wave signal.

The block diagram and circuit diagram of the project are as in Figure 11.2 and Figure 11.3

Program Listing: Figure 11.8 shows the program listing (program: triangle.py). The 
program is very similar to the one given in Figure 11.6.

#-----------------------------------------------------------------
#                GENERATE TRIANGLE WAVEFORM
#                ==========================
#
# This program generates triangle waveform
#
# Author: Dogan Ibrahim
# File  : triangle.py
# Date  : October, 2023
#-------------------------------------------------------------------
from gpiozero import LED
from time import sleep				   # Import time
import spidev					     # Import SPI

spi = spidev.SpiDev()
spi.open(0, 0)					    # Bus=0, device=0
spi.max_speed_hz = 3900000

CS = LED(26)
CS.on()					     # Disable CS
sample = 0
Inc = 0.05

#

Raspberry 5 Projects.indd   211Raspberry 5 Projects.indd   211 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 212

# This function implements the DAC. The data in "data" is sent
# to the DAC
#
def DAC(data):
   CS.off()					     # Enable CS
#
# Send HIGH byte
#
   temp = (data >> 8) & 0x0F			   # Get upper byte
   temp = temp + 0x30				    # OR with 0x30
   spi.xfer2([temp])				    # Send to DAC
#
# Send LOW byte
#
   temp = data & 0xFF				    # Get lower byte
   spi.xfer2([temp])				    # Send to DAC

   CS.on()					     # Disable CS
 
try:
   while True:
        DACValue = int(sample*4095)		  # Value  to send
        DAC(DACValue)				    # Send to DAC
        sleep(0.0001)				    # Wait
        sample = sample + Inc			   # Next sample
        if sample > 1.0 or sample < 0:
           Inc = -Inc
           sample = sample + Inc

except KeyboardInterrupt:
    pass

Figure 11.8 Program listing

An example output waveform taken from the oscilloscope is shown in Figure 11.9.

Raspberry 5 Projects.indd   212Raspberry 5 Projects.indd   212 09-11-2023   15:4509-11-2023   15:45



Chapter 11 • Waveform Generation – Using the Digital-to-Analog Converter (DAC)

● 213

Figure 11.9 Example output waveform

11.6 Project 4 - Generating an arbitrary wave signal
Description: In this project, you will be using the DAC to generate an arbitrary waveform. 
One period of the shape of the waveform will be sketched and values of the waveform at 
different points will be extracted and loaded into a lookup table. The program will output 
the data points at the appropriate times to generate the required waveform.

The shape of one period of the waveform to be generated is shown in Figure 11.10. Notice 
that the waveform has a period of 20 ms.

Figure 11.10 Waveform to be generated

The waveform takes the following values:

Time (ms)	 Amplitude (V)	       Time (ms)	       Amplitude (V)
0		  0			   11		  3.00
1		  0.375			   12		  3.00
2		  0.75			   13		  2.625
3		  1.125			   14		  2.25
4		  1.50			   15		  1.875
5		  1.875			   16		  1.50
6		  2.25			   17		  1.125
7		  2.625			   18		  0.75
8		  3.00			   19		  0.375
9		  3.00			   20		  0
10		  3.00

Raspberry 5 Projects.indd   213Raspberry 5 Projects.indd   213 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 214

The block diagram and circuit diagram of the project are as in Figure 11.2 and Figure 11.3

Program Listing: Figure 11.11 shows the program listing (program: arbit.py). The sam-
ple points of the waveform are stored in a list called wave. Variable sample indexes this 
list and sends the sample values to the DAC. The time of each sample was specified to be 
1 ms. It was found by experiment that a 0.8 ms delay gave the correct results because of 
the delay in the DAC routine.

#-----------------------------------------------------------------
#                GENERATE ARBITRARY WAVEFORM
#                ===========================
#
# This program generates an arbitrary waveform whose sample points
# are defined in the program
#
# Author: Dogan Ibrahim
# File  : arbit.py
# Date  : October, 2023
#-------------------------------------------------------------------
from gpiozero import LED
from time import sleep				   # Import time
import spidev					     # Import SPI

spi = spidev.SpiDev()
spi.open(0, 0)					    # Bus=0, device=0
spi.max_speed_hz=3900000

CS = LED(26)					     # GPIO26 is CS output
CS.on()					     # Disable CS
sample = 0

#
# Waveform sample points
#
wave = [0,0.375,0.75,1.125,1.5,1.875,2.25,2.625,3,3,3,3,3,\
2.625,2.25,1.875,1.5,1.125,0.75,0.375,0]

#
# This function implements the DAC. The data in "data" is sent
# to the DAC
#
def DAC(data):
   CS.off()					     # Enable CS
#
# Send HIGH byte
#

Raspberry 5 Projects.indd   214Raspberry 5 Projects.indd   214 09-11-2023   15:4509-11-2023   15:45



Chapter 11 • Waveform Generation – Using the Digital-to-Analog Converter (DAC)

● 215

   temp = (data >> 8) & 0x0F			   # Get upper byte
   temp = temp + 0x30				    # OR with 0x30
   spi.xfer2([temp])				    # Send to DAC

   temp = data & 0xFF
   spi.xfer2([temp])

   CS.on()					     # Disable CS
 
try:
   while True:
        DACValue = int(wave[sample]*4095/3.3)	 # Value  to send
        DAC(DACValue)				    # Send to DAC
        sample = sample + 1			   # Inc sample index
        sleep(0.0008)				    # Wait
        if sample == 20:			   # If 20 sampes
           sample = 0

except KeyboardInterrupt:
    pass

Figure 11.11 Program listing

An example output waveform taken from the oscilloscope is shown in Figure 11.12.

Figure 11.12 Example output waveform

11.7 Project 5 - Generating a sine wave signal
Description: In this project, we will be using the DAC to generate a low frequency sine 
wave using the built-in trigonometric sin function. The generated sine wave will have an 
amplitude of 1.5 V, a frequency of 100 Hz (period = 10 ms), and an offset of 1.5 V.

Raspberry 5 Projects.indd   215Raspberry 5 Projects.indd   215 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 216

The block diagram and circuit diagram of the project are as in Figure 11.2 and Figure 11.3

Program Listing: The frequency of the sine wave to be generated is 100 Hz. This wave 
has a period of 10 ms, or 10,000 µs. If we assume that the sine wave will consist of 
100 samples, then each sample should be output at 10,000/100 = 100 µs intervals. The 
sample values will be calculated using the trigonometric sin function of Python.

The sin function will have the format:

	

where T is the period of the waveform and is equal to 100 samples. Thus, the sine wave is 
divided into 100 samples and each sample is output at 100 µs. The above formula can be 
rewritten as:

	

It is required that the amplitude of the waveform should be 1.5 V. With a reference voltage 
of +3.3 V and a 12-bit DAC converter (0 to 4095 quantization levels), 1.5 V is equal to 1.5 
× 4095/3.3, which is equal to 1861.3 (i.e. the amplitude). Thus, we will multiply our sine 
function with the amplitude at each sample to give:

	

The D/A converter used in this project is unipolar and cannot output negative values. 
Therefore, an offset is added to the sine wave to shift it so that it is always positive. The 
offset should be larger than the absolute value of the maximum negative value of the sine 
wave, which is 1861.3 when the sin function above is equal to 1.5. In this project, we are 
adding a 1.5 V offset which corresponds to a decimal value of 1861.3 (i.e. the offset) at 
the DAC output. Thus, for each sample, we will calculate and output the following value to 
the DAC:

	

The sine waveform values for a period are obtained outside the program loop using the 
following statement. The list sins contains all the 100 sine values of the waveform. The 
reason for calculating these values outside the program loop is to minimize the time to 
calculate the sin function:

		  for i in range(100):
                               sins[i] = int(offset + amplitude * sin(R*i)

where R is set to 0.0628

Raspberry 5 Projects.indd   216Raspberry 5 Projects.indd   216 09-11-2023   15:4509-11-2023   15:45



Chapter 11 • Waveform Generation – Using the Digital-to-Analog Converter (DAC)

● 217

Figure 11.13 shows the program listing (program: sine.py). Most parts of the program are 
similar to the other waveform generation programs. Inside the program loop, samples of 
the sine wave are sent to the DAC at each sample time.

#-----------------------------------------------------------------
#                GENERATE SINE WAVEFORM
#                ======================
#
# This program generates sine waveform with a period of 10ms. Both
# the amplitude and the offset of the waveform are set to 1.5V
#
# Author: Dogan Ibrahim
# File  : sine.py
# Date  : October, 2023
#-------------------------------------------------------------------
from gpiozero import LED
from time import sleep				   # Import time
import spidev					     # Import SPI
import math					     # Import math

spi = spidev.SpiDev()
spi.open(0, 0)					    # Bus=0, device=0
spi.max_speed_hz = 3900000

CS = LED(26)
CS.on()					     # Disable CS

sample = 0
T = 100
R = 0.0628
amplitude = 1861.3
offset = 1861.3
sins = [None]*101

#
# This function implements the DAC. The data in "data" is sent
# to the DAC
#
def DAC(data):
   CS.off()					     # Enable CS
#
# Send HIGH byte
#
   temp = (data >> 8) & 0x0F			   # Get upper byte
   temp = temp + 0x30				    # OR with 0x30
   spi.xfer2([temp])				    # Send to DAC

Raspberry 5 Projects.indd   217Raspberry 5 Projects.indd   217 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 218

#
# Send LOW byte
#
   temp = data & 0xFF				    # Get lower byte
   spi.xfer2([temp])				    # Send to DAC

   CS.on()					     # Disable CS

#
# Generate the 100 sine wave samples and store in list sins
#
for i in range(100):
   sins[i] = int(offset + amplitude*math.sin(R*i))

try:
     while True:
        DACValue = sins[sample]		  # Value  to send
        DAC(DACValue)				    # Send to DAC
        sleep(0.0001)				    # Wait
        sample = sample + 1			   # Next sample
        if sample == 100:			   # 100 samples?
            sample  = 0

except KeyboardInterrupt:
    pass

Figure 11.13 Program listing

An example output waveform taken from the oscilloscope is shown in Figure 11.14. Notice 
that the frequency of the waveform is not very accurate because the delay function of Py-
thon is not accurate.

Figure 11.14 Example output waveform

Raspberry 5 Projects.indd   218Raspberry 5 Projects.indd   218 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 219

Chapter 12 • Using the Sense HAT

12.1 Overview
The Sense HAT is a small plug-in board developed by Raspberry Pi in collaboration with the 
UK Space Agency and the European Space Agency (ESA). The board includes a number of 
sensors and that's why it is called 'Sense'. The word 'HAT' stands for 'Hardware Attached on 
Top' to indicate that the board is attached or plugged in on top of the Raspberry Pi. Sense 
HAT gives the flexibility to carry out various environmental measurements using its built-in 
sensors, and the board was specially developed for the Astro Pi Challenge and competition. 
An emulator-based version of the Sense HAT is also available to enable students to carry 
out experiments without having the physical board.

The Sense HAT board has the following features:

•	8 × 8 RGB LED matrix, having 15-bit colour resolution
•	Five-button joystick with left, right, up, down, and enter movements
•	Gyroscope (angular rate sensor): ±245/500/2000 dps
•	Accelerometer (linear acceleration sensor): ±2/4/8/16 G
•	Magnetometer (magnetic sensor): ±4/8/12/16 gauss
•	Barometer: 260-1260 hPa
•	Temperature sensor (with barometer): accuracy ±2ºC in the 0–65ºC range
•	Relative humidity sensor: accuracy ±4.5% in the 20–80% range
•	Temperature sensor (with humidity): accuracy ±0.5ºC in the 15–40ºC range
•	Graphics controller chip

12.2 The Sense HAT interface
The Sense HAT board (Figure 12.1) consists of 7 main components and an LED matrix. The 
components on the board are controlled via the I²C bus interface. The following are the 
main components on the board:

Component		 I²C bus address	 Function
HTS221		  0x5F			   humidity sensor
LPS254H		  0x5C			   Pressure/temperature sensor
LSM9DS1		  0x1C,0x6A		  Accelerometer+magnetometer
SKRHABE010	 -			   joystick
LED2472G		  0x46			   LED matrix controller
LED matrix		  -			   -
ATTINY88		  -			   Microchip microcontroller

The Sense HAT board is normally plugged into the 40-way connector of the Raspberry Pi. To 
interface external components to the Raspberry Pi in addition to the Sense HAT board, you 
need to connect the Sense HAT to the Raspberry Pi using either a ribbon cable or jumper 
wires so that other pins of the Raspberry Pi can be accessed. Additionally, if you are using 
an active cooler on your Raspberry Pi 5 then it is not possible to connect the Sense HAT 
to your board unless you use a ribbon cable or 2×20 pin header extension. Therefore, it is 
useful to know which pins of the Sense HAT board are used by Raspberry Pi 5, and which 

Raspberry 5 Projects.indd   219Raspberry 5 Projects.indd   219 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 220

pins are free so that you can make connections to the Sense HAT using jumper wires.

Figure 12.1 The Sense HAT board

In addition to the I²C control lines, the ATTINY88 microcontroller on the board can be 
programmed via the SPI bus control lines (MOSI, MISO, SCK, CE0) provided on the board.

The following pins are used by the Sense HAT 40-way connector:

Pin number	    Raspberry Pi 5 port	 Function
      3		  GPIO2		  SDA (I²C)
      5		  GPIO3		  SCL (I²C)
      1		  +3.3 V		  power
     19		  GPIO10		 MOSI (SPI)
     21		  GPIO9		  MISO (SPI)
     23		  GPIO11		 SCK (SPI)
     24		  GPIO8		  CE0 (SPI
       9		  GND		  power ground
       2		  +5 V		  power
     16		  GPIO23		 INT
     18		  GPIO24		 INT
     22		  GPIO25		 PROG
     27		  ID_SD		  EEPROM
     28		  ID_SC		  EEPROM

The Sense HAT board can be connected to your Raspberry Pi 5 using only the following 9 
pins of the 40-way connector:

Sense HAT pin	 Raspberry Pi 5 Pin	 Function
     3		  3 (GPIO2)		  SDA (I²C)
     5		  5 (GPIO3)		  SCL (I²C)
     1		  1 (+3.3 V)		  power
     9		  9 (GND)			  power ground

Raspberry 5 Projects.indd   220Raspberry 5 Projects.indd   220 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 221

     2		  2 (+5 V)		  power
   16		  16 (GPIO23)		  joystick
   18		  18 (GPIO24)		  joystick
   27		  27 (ID_SD)		  EEPROM
   28		  28 (ID_SC)		  EEPROM

Note: You can also plug in the Sense HAT board directly on top of your Raspberry Pi 5 
board instead of making the above connections provided the GPIO pins are available 
(e.g. you are not using a Raspberry Pi active cooler)

12.3 Programming the Sense HAT
Sense HAT is installed by default on your latest Raspberry Pi 5 SD card. You may, however, 
enter the following command to install the latest version of the Sense HAT (at the time of 
writing this book, the latest version was: 1.4):

	 pi@raspberrypi:~ $ sudo apt-get install sense-hat

Before developing a project using the Sense HAT board, the Sense HAT library must be 
imported into your Python program and also the sense object must be created at the be-
ginning of the program. i.e. the following two statements must be included at the beginning 
of your programs:

from sense_hat import SenseHat
sense = SenseHat()

The remainder part of this chapter is devoted to developing simple projects with the Sense 
HAT. In all the projects, the Sense HAT was connected to the Raspberry Pi 5 using jumper 
wires as described earlier.

12.4 Project 1 – Displaying text on Sense HAT
Description: In this project, you will learn how to display as well as scroll text messages 
on Sense HAT. The statement show_message is used to scroll a text message. In the 
following code, the message Sense HAT is scrolled on the LED matrix. Notice that the 
message is displayed only once:

	 >>> from sense_hat import SenseHat
	 >>> sense = SenseHat()
	 >>> sense.show_message("Sense HAT")

If you get an error message saying that the RPi-Sense FB device cannot be detected, 
then do the following:

•	pi@raspberrypi:~ $ sudo nano /boot/config.txt
•	go to the end of the file and enter the following statement:

dtoverlay=rpi-sense

Raspberry 5 Projects.indd   221Raspberry 5 Projects.indd   221 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 222

•	Press CNTRL+X followed by Y to save the change
•	Reboot your Raspberry Pi
•	pi@raspberrypi:~ $ sudo reboot now

Notice that there are two versions of the Sense HAT board. Version 1.0 has no colour sen-
sor, while Version 2.0 has a colour sensor. You may get a warning message saying that it 
failed to initialize the colour sensor if you are using Version 1.0.

You can also display a single letter using the statement: sense.show_letter, for example, 
sense.show_letter("A"). Notice that the letter is displayed permanently.

In addition to displaying text in default mode, you can use the following options:

scroll_speed: This floating-point number changes the speed that the text scrolls. The 
default value is 0.1. A higher number slows down the scroll speed.

text_colour: Used to change the text colour. The colour is specified as (Red, Green, Blue) 
where each colour can take a value between 0 and 255, and we can mix the colours to 
obtain any other colour. For example, (255, 0, 0) is red and so on.

back_colour: used to change the colour of the background. Colour is defined as in the 
text_colour option.

In the following example, the same text as above is scrolled slowly, in red colour, with yel-
low background colour:

	 >>> from sense_hat import SenseHat
	 >>> sense = SenseHat()
	 >>> sense.show_message("Sense HAT", scroll_speed=0.3,

	 text_colour=[255,0,0], back_colour=[255,255,0])

Notice that in the above program, the text is displayed only once, but the background col-
our remains as yellow. 

If, for example, you wish to repeat displaying the text, say every two seconds, then the re-
quired program is as shown in Figure 12.2 (program: txt.py). Notice how the continuation 
line is used in Python. Run the program from the Console mode as:

	  pi@raspberrypi:~ $ python txt.py

#-----------------------------------------------------------
#		             Display Text
#                          ------------
#
# This program displays the text Sense HAT every 2 seconds.

Raspberry 5 Projects.indd   222Raspberry 5 Projects.indd   222 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 223

# the text colour is RED and back ground colour is YELLOW
#
# Author: Dogan Ibrahim
# File  : txt.py
# Date  : October, 2023
#------------------------------------------------------------
from sense_hat import SenseHat
import time
sense = SenseHat()

while True:
   sense.show_message("Sense HAT",scroll_speed=0.3,\
text_colour=[255,0,0],back_colour=[255,255,0])
   time.sleep(2)

Figure 12.2 Program listing

The sense.clear() statement can be used to turn OFF all the LEDs. This may be necessary 
to ensure that all the LEDs are turned OFF at the beginning of a program. Similarly, a colour 
can be passed to the clear statement to set all the LEDs to the same colour, such as:

	 red = (255, 0, 0)
 	 sense.clear(red)

The brightness of the LED matrix can be changed by toggling the low_light statement. In 
the following examples, the brightness is toggled:

	 sense.low_light = True
or
	 sense.low_light = False

The displayed text (or image) can be rotated by using the statement set_rotation(n) 
where n is the rotation angle in degrees, and it can take the values of 0, 90, 180, 270. The 
following statement rotates character s by 90 degrees and displays it on the LED matrix:

	 sense.set_rotation(90)
	 sense.show_letter("s")

Text (or image) can be flipped horizontally or vertically by using the statements flip_h or 
flip_v respectively. In the following example, the character X is flipped horizontally and is 
then displayed:

	 sense.flip_h
	 sense.show_letter("X")

Raspberry 5 Projects.indd   223Raspberry 5 Projects.indd   223 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 224

12.5 Project 2 – Test your math skills - multiplication
Description: This project is aimed for younger readers who may want to test their mul-
tiplication skills. The program displays two numbers which are required to be multiplied 
together. The result of the multiplication is hidden for 10 seconds, and time is given to the 
user to find the correct answer. After 10 seconds, the correct answer is displayed so that 
the user can check it against his/her answer. Only numbers from 1 to 99 are considered 
for simplicity.

Figure 12.3 shows the program listing (program: mult.py). Two integer random numbers 
are generated between 1 and 99 and are stored in variables no1 and no2. Variable ques-
tion holds the question as a string and this is displayed in green colour as shown in the 
following example:

	 25 × 10 =

The program waits for 10 seconds and after this time, the result 250 is displayed in red 
colour. After 2 seconds, the LEDs are cleared, and the program continues displaying two 
new numbers.

#-----------------------------------------------------------
#		          Multiplication Test
#                       -------------------
#
# This program displays two numbers between 1 and 99 and waits
# for 10 seconds until the user finds the correct answer. The
# correct answer is then displayed so that the user can check with
# his/her answer
#
# Author: Dogan Ibrahim
# File  : mult.py
# Date  : October, 2023
#------------------------------------------------------------
from sense_hat import SenseHat
sense = SenseHat()
import time
import random
spd = 0.2					     # Scroll speed
red = (255, 0, 0)				    # Red colour
green = (0, 255, 0)				    # Green colour

try:

  while True:
    no1 = random.randint(1,99)			  # First number
    no2 = random.randint(1, 99)		  # Second number
    question = str(no1) + "x" + str(no2) + "="

Raspberry 5 Projects.indd   224Raspberry 5 Projects.indd   224 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 225

    sense.show_message(question, scroll_speed = spd, text_colour=(green))
    time.sleep(10)
    result = str(no1 * no2)
    sense.show_message(result, scroll_speed = spd, text_colour=(red))
    time.sleep(2)
    sense.clear()
    time.sleep(1)

except KeyboardInterrupt:
    exit()

Figure 12.3 Program listing

12.6 Project 3 – Learning the times tables
Description: This project helps the children to practise their times tables. A number (which 
can be changed) is hard-coded into the program. The program displays the times table for 
the selected number. For example, if the hard-coded number is 5 then the following is dis-
played on the LED matrix:

	 5x1=5
	 5x2=10
	 5x3=15
	 5x4=20
	 5x5=25
	 5x6=30
	 5x7=35
	 5x8=40
	 5x9=45
	 5x10=50
	 5x11=55
	 5x12=60

Figure 12.4 shows the program listing (program: timestab.py). Variable Tablefor stores 
the number whose times table is required. A loop is formed which goes from 0 to 11. Inside 
this loop, variable j takes on values from 1 to 12. Variable result stores the result of the 
multiplication at each iteration of the loop. String variable disp stores the data to be dis-
played by the LED matrix at each iteration. Users can easily change the value of Tablefor 
to generate times table for another number.

#-----------------------------------------------------------------
#		          Times Table
#                       -----------
#
# This program generates a times table. The table is selected at the
# beginning of the program by setting variable Tablefor.
#

Raspberry 5 Projects.indd   225Raspberry 5 Projects.indd   225 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 226

# Author: Dogan Ibrahim
# File  : timestab.py
# Date  : October, 2023
#-------------------------------------------------------------------
from sense_hat import SenseHat
sense = SenseHat()
import time

spd = 0.2						      # Scroll speed
red = (255, 0, 0)					     # Red colour
Tablefor = 5						      # Table for 5

try:

  for k in range(12):					     # Do 0 to 11
    j = k + 1						      # 1 to 12
    result = Tablefor * j
    disp = str(Tablefor) + "x" + str(j) + "=" + str(result) 
    sense.show_message(disp, scroll_speed = spd, text_colour=(red))
    time.sleep(1)
    sense.clear()

except KeyboardInterrupt:
    exit()

Figure 12.4 Program listing

12.7 Project 4 – Display the temperature, humidity, and pressure
Description: In this project we display the ambient temperature, humidity, and pressure 
on the Sense HAT.

Figure 12.5 shows the program listing (program: thp.py). The program runs in a loop 
every two seconds where the temperature, humidity, and pressure readings are displayed 
on the scrolling LED. Notice that the readings are all in floating-point format, and the 
round() function is used to configure them to have one digit after the decimal point.

#--------------------------------------------------------------
#		  TEMPERATURE,HUMIDITY & PRESSURE
#		  -------------------------------
#
# This program reads the temperature, humidity and pressure and
# displays on the scrolling LEDs. The data is displayed in the
# following format:
#
#  T=nn.nC H=nn.n% P=nnnn.nmb
#

Raspberry 5 Projects.indd   226Raspberry 5 Projects.indd   226 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 227

# Author: Dogan Ibrahim
# Date  : October, 2023
# File  : thp.py
#--------------------------------------------------------------
from sense_hat import SenseHat
sense=SenseHat()
import time

while True:
   T = round(sense.get_temperature(), 1)	 # Get temperature
   H = round(sense.get_humidity(), 1)		  # Get humidity
   P = round(sense.get_pressure(), 1)		  # Get pressure
   enviro = "T="+str(T)+ "C H="+str(H)+ "% P="+str(P)+"mb "
   sense.show_message(enviro, scroll_speed = 0.2)
   time.sleep(2)

Figure 12.5 Program listing

You could also have displayed the data on the PC screen by running the following program 
code. Figure 12.6 shows the output of the program:

	 from sense_hat import SenseHat
	 import time
	 sense = SenseHat()
	 while True:
	      T = sense.get_temperature()
	      H = sense.get_humidity()
	      P = sense.get_pressure()
	      TT = round(T, 1)
	      HH = round(H, 1)
	      PP = round(P, 1)
	      print("Temperature: %s, Humidity: %s, Pressure:%s"
	  %(TT, HH, PP))
	      time.sleep(1)

Figure 12.6 Displaying the data on the PC screen

You could also display the temperature or the humidity as integer variables on non-scrolling 
LEDs by using the Disp function.

Raspberry 5 Projects.indd   227Raspberry 5 Projects.indd   227 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 228

12.8 Project 5 – ON-OFF temperature controller
Description: This is an on-off temperature controller project. The Sense HAT is connected 
to the Raspberry Pi 5 to measure the ambient temperature. Additionally, a small buzzer is 
connected to one of the ports of the Raspberry Pi. The set temperature value is hard-coded 
in the program. If the ambient temperature is lower than the set temperature, then the 
buzzer is activated, and the LED matrix displays the ambient temperature in red colour. If, 
on the other hand, the ambient temperature is higher than the set temperature value, then 
the buzzer is deactivated, and the ambient temperature is displayed in blue colour. The 
buzzer in this project can easily be replaced with a relay which can be connected to control 
a heater. The heater will turn ON if the ambient temperature is lower than the set value.

Block diagram: Figure 12.7 shows the block diagram of the project. 

Figure 12.7 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 12.8, where the 
buzzer is connected to port pin GPIO 4 of the Raspberry Pi 5. Both the buzzer and the Sense 
HAT board are connected to the Raspberry Pi 5 using jumper wires.

Raspberry 5 Projects.indd   228Raspberry 5 Projects.indd   228 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 229

Figure 12.8 Circuit diagram of the project

Program listing: In this program, the library function created by the author, named 
Disp() is used. This function has 3 arguments: number to be displayed, colour, and mode 
(0 or 1, 1 to clear the display). This function is in a Python program called display.py, 
which can be found on the web page of the book. Calling function Disp() display a number 
without scrolling the display. Figure 12.9 shows the listing of program display.py. Make 
sure that display.py is in the same directory as your main program.

#-------------------------------------------------------------
#			   FUNCTION TO DISPLAY NUMBERS
#			   ---------------------------
#
# This function displays a two-digit number on the LED matrix
# without scrolling the display. The number to be displayed and
# its colour are entered as the arguments of the function.The
# third parameter controls whether or not to clear the display
# before displaying the number. Setting this parameter to 1
# will clear the display
#
# Author: Dogan Ibrahim
# Date  : October, 2023
# File  : display.py
#------------------------------------------------------------
from sense_hat import SenseHat
sense = SenseHat()

def Disp(no, colour, mode):
#
# Number patterns for all the numbers 0 to 9
#
	 numbers = [

Raspberry 5 Projects.indd   229Raspberry 5 Projects.indd   229 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 230

	 [[0,1,1,0], 		  # 0
	 [1,0,0,1],
	 [1,0,0,1],
	 [1,0,0,1],
	 [1,0,0,1],
	 [1,0,0,1],
	 [1,0,0,1],
	 [0,1,1,0]],

	 [[0,0,1,0],		  # 1
	 [0,1,1,0],
	 [0,0,1,0],
	 [0,0,1,0],
	 [0,0,1,0],
	 [0,0,1,0],
	 [0,0,1,0],
	 [0,1,1,1]],

	 [[0,1,1,0],		  # 2
	 [1,0,0,1],
	 [0,0,0,1],
	 [0,0,0,1],
	 [0,0,1,0],
	 [0,1,0,0],
	 [1,0,0,0,],
	 [1,1,1,1]],

	 [[1,1,1,1],		  # 3
	 [0,0,1,1],
	 [0,0,1,1],
	 [1,1,1,1],
	 [1,1,1,1],
	 [0,0,1,1],
	 [0,0,1,1],
	 [1,1,1,1]],

	 [[0,0,1,0],		  # 4
	 [0,1,1,0],
	 [1,1,1,0],
	 [1,0,1,0],
	 [1,1,1,1],
	 [0,0,1,0],
	 [0,0,1,0],
	 [0,0,1,0]],

	 [[1,1,1,1],		  # 5

Raspberry 5 Projects.indd   230Raspberry 5 Projects.indd   230 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 231

	 [1,0,0,0],
	 [1,0,0,0],
	 [1,1,1,1],
	 [0,0,0,1],
	 [0,0,0,1],
	 [0,0,0,1],
	 [1,1,1,1]],

	 [[1,1,1,1],		  # 6
	 [1,0,0,0],
	 [1,0,0,0],
	 [1,1,1,1],
	 [1,0,0,1],
	 [1,0,0,1],
	 [1,0,0,1],
	 [1,1,1,1]],

	 [[1,1,1,1],		  # 7
	 [0,0,0,1],
	 [0,0,0,1],
	 [0,0,0,1],
	 [0,0,0,1],
	 [0,0,0,1],
	 [0,0,0,1],
	 [0,0,0,1]],

	 [[0,1,1,0],		  # 8
	 [1,0,0,1],
	 [1,0,0,1],
	 [1,1,1,1],
	 [1,0,0,1],
	 [1,0,0,1],
	 [1,0,0,1],
	 [0,1,1,0]],

	 [[1,1,1,1],		  # 9
	 [1,0,0,1],
	 [1,0,0,1],
	 [1,1,1,1],
	 [0,0,0,1],
	 [0,0,0,1],
	 [0,0,0,1],
	 [1,1,1,1]]
	 ]

	 blank = [0,0,0]

Raspberry 5 Projects.indd   231Raspberry 5 Projects.indd   231 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 232

	 blanks=[0,0,0,0]
	 Disp = []					     # List to store patterns

	 for index in range(0, 8):
    		  if (no >= 10):				    # If >= 10
        		  intno = int(no / 10)		  # MSD digit
        		  Disp.extend(numbers[intno][index])
    		  else:
        		  Disp.extend(blanks)
    		  remno = int(no % 10)			   # LSD digit
    		  Disp.extend(numbers[remno][index])

	 for index in range(64):
  		  if(Disp[index]):
      			  Disp[index]=colour		  # Colour
  		  else:
    			   Disp[index]=blank

	 if mode == 1:
           sense.clear()				    # Clear LEDs

	 sense.set_pixels(Disp)				    # Display number

Figure 12.9 Program display.py

The program listing is shown in Figure 12.10 (program: tempcont.py). At the beginning 
of the program, the modules used in the program are imported to the program. Buzzer 
is assigned to number 4, which will correspond to GPIO 4. The set temperature value is 
stored in the variable SetTemperature and is hard-coded as 24 in his example. The buzzer 
is turned OFF at the beginning of the program. The remainder of the program runs in an 
endless loop. Inside this loop, the ambient temperature is read from the Sense HAT and this 
temperature is compared with the set point value. If the ambient temperature is less than 
the set value, then the buzzer is turned ON and the ambient temperature is displayed in red 
as non-scrolling. If, on the other hand, the ambient temperature is greater than the set val-
ue, then the buzzer is turned OFF and the ambient temperature is displayed in blue colour.

#-----------------------------------------------------------------------
#		  ON-OFF TEMPERATURE CONTROLLER
#		  -----------------------------
#
# This is an ON-OFF temperature control project. In this project
# a buzzer is connected to port pin GPIO 4 of the Raspberry Pi 5
# In addition to the Sense HAT. The Sense HAT is connected using
# jumper wires. The buzzer is turned ON if the ambient temperature
# is below the setpoint temperature. At the same time, the ambient
# temperature is displayed in red colour. If on the other hand the

Raspberry 5 Projects.indd   232Raspberry 5 Projects.indd   232 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 233

# ambient temperature is higher than the setpoint value then the
# buzzer is turned OFF and the display is in blue colour.
#
# The buzzer in this program can be replaced with a relay for
# example to control a heater
#
# Author: Dogan Ibrahim
# Date  : October, 2023
# File  : tempcont.py
#-----------------------------------------------------------------------
from gpiozero import LED
from display import Disp				    # import Disp
from sense_hat import SenseHat				   # import Sense HAT
sense=SenseHat()
from time import sleep					    # import time

Buzzer = LED(4)					     # Buzzer at GPIO 4
Buzzer.off()						      # Buzzer off

SetTemperature = 24					     # setpoint temp
red = (255, 0 ,0)					     # red colour
blue = (0, 0, 255)					     # blue colour

while True:
   T = int(sense.get_temperature_from_humidity())	 # get temperature
   if(T < SetTemperature):				    # T < setpoint?
      Disp(T, red, 0)					     # display in red
      Buzzer.on()					     # Buzzer ON
   else:
      Disp(T, blue, 0)					    # display in blue
      Buzzer.off()					     # Buzzer OFF

   sleep(5)						      # wait 5 secs

Figure 12.10 Program listing

The buzzer used in this project can easily be replaced with a relay and a heater can be 
connected to the heater. The room temperature will then be controlled by the program.

12.9 Project 6 – Generate two dice numbers
Description: Most dice-based games (e.g. backgammon) are played with two dice, where 
both dice are thrown at the same time. In this project, two random dice numbers are gen-
erated and displayed on the LED matrix. The dice numbers are displayed in red.

Raspberry 5 Projects.indd   233Raspberry 5 Projects.indd   233 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 234

Figure 12.11 shows the program listing (program: dice2.py). Here, two integer random 
numbers are generated, converted into strings, and stored in variables no1 and no2. State-
ment show_message is used to scroll the generated numbers, where the speed is set to 
0.05 and the text colour is set to red. The LED matrix shows the numbers as in the format: 
32 24 66 24 etc. as shown in Figure 12.12.

#-----------------------------------------------------------
#		          Display Two Dice Numbers
#                      ------------------------
#
# This program displays two dice numbers every 5 seconds. The
# numbers are displayed in red
#
# Author: Dogan Ibrahim
# File  : dice2.py
# Date  : October 2023
#------------------------------------------------------------
from sense_hat import SenseHat
sense = SenseHat()
import time
import random
red = (255,0,0)

try:
  while True:
    no1 = str(random.randint(1,6))
    no2 = str(random.randint(1,6))
    no = no1 + no2
    sense.show_message(no, scroll_speed=0.05, text_colour=(red))
    time.sleep(5)
    sense.clear()
    time.sleep(1)
except KeyboardInterrupt:
    exit()

Figure 12.11 Program listing

Raspberry 5 Projects.indd   234Raspberry 5 Projects.indd   234 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 235

Figure 12.12 Displaying dice numbers 2 and 1

12.10 Project 7 – Display the current time
Description: In this project, the current time is extracted and displayed on the LED matrix 
in the format: HH:MM:SS. The display is scrolled every second.

Figure 12.13 shows the program listing (program: curtime.py). At the beginning of the 
program, datetime is imported to the program in addition to the other libraries. The scroll-
ing speed is set to 0.15 and the text colour is set to blue. Current time is extracted from 
the function datetime.now() and strftime function is used to extract only the hours, 
minutes, and seconds. The time is updated and displayed every second using show_mes-
sage.

#--------------------------------------------------------------------
#		          Display Current Time
#                       ---------------------
#
# This program displays the current time every second on the following
# format:
#         HH:MM:SS
#
# Author: Dogan Ibrahim
# File  : curtime.py
# Date  : October 2023
#---------------------------------------------------------------------
from sense_hat import SenseHat
sense = SenseHat()
import time
import datetime

spd = 0.15					     # Scroll speed

Raspberry 5 Projects.indd   235Raspberry 5 Projects.indd   235 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 236

blue = (0, 0, 255)				    # Text colour

while True:
    TimeFormat = "%H:%M:%S"
    msg = str(datetime.datetime.now().strftime(TimeFormat))
    sense.show_message(msg,scroll_speed=spd, text_colour=(blue))
    time.sleep(1)

Figure 12.13 Program listing

The strftime() returns a formatted string representing data and time. Some examples are 
given below:

	 from datatime import datatime
	 now = datetime.now()
	 year = now.strftime("%Y")			   # return current year
	 month = now.strftime("%m")			   # return current month
	 date = now.strftime("%Y:%m:%d")		  # return current date
	 tim = now.strftime("%H:%M:%S")		  # return current time

Some other codes that can be used with strftime are (for more details, see link: https://
www.programiz.com/python-programming/datetime/strftime):

	 %A	 -	 weekday name (e.g. Monday, Tuesday)
	 %w	 -	 weekday as a number (e.g. 1, 2)
	 %d	 -	 day of the month as zero padded decimal (e.g. 01, 02)
	 %b	 -	 month name (e.g. Jan, Feb)
	 %B	 -	 full month name (e.g. January, February)
	 %m	 -	 month as a zero padded decimal (e.g. 01, 02)
	 %p	 -	 AM or M
	 %H	 -	 hour as a zero padded decimal, 24-hour clock (e.g. 05, 06) 
	 %I	 -	 hour as a zero padded decimal, 12-hour clock (e.g. 05, 06)
	 %y	 -	 year without century as a zero padded number
	 %Y	 -	 year with century

12.11 Project 8 – Displaying two-digit integer numbers
Description: Sense HAT displays two-digit integer numbers by scrolling the display. In 
some applications, we may want to display a two-digit number without scrolling the display. 
For example, while displaying the temperature, humidity, etc., you may want a non-scrolling 
steady display. In this project, a program has been developed that can display a two-digit 
number without scrolling the display.

Figure 12.14 shows the program listing (program: dispnum.py). This program displays 
the number 20 as an example. At the beginning of the program, the patterns for all the 
numbers from 0 to 9 are defined. The two digits of the number are extracted and saved in 
variables intno and remno. For example, if the number is 20, then intno and remno are 

Raspberry 5 Projects.indd   236Raspberry 5 Projects.indd   236 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 237

set to 2 and 0 respectively. The LEDs to be turned ON are then combined in a list called 
Disp. The LED matrix is cleared just before displaying the number. The numbers are dis-
played in red colour. Figure 12.15 shows the number 20 displayed on the LED matrix.

#-------------------------------------------------------------
#			   DISPLAY NUMBERS
#			   ---------------
#
# This program displays a two-digit number on the LED matrix
# without scrolling the display. In this example number 20 is
# displayed
#
# Author: Dogan Ibrahim
# Date  : October 2023
# File  : dispnum.py
#------------------------------------------------------------

from sense_hat import SenseHat
sense = SenseHat()

#
# Number patterns for all the numbers 0 to 9
#
numbers = [
[[0,1,1,0], 		  # 0
[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[0,1,1,0]],

[[0,0,1,0],		  # 1
[0,1,1,0],
[0,0,1,0],
[0,0,1,0],
[0,0,1,0],
[0,0,1,0],
[0,0,1,0],
[0,1,1,1]],

[[0,1,1,0],		  # 2
[1,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,0,1,0],

Raspberry 5 Projects.indd   237Raspberry 5 Projects.indd   237 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 238

[0,1,0,0],
[1,0,0,0,],
[1,1,1,1]],

[[1,1,1,1],		  # 3
[0,0,1,1],
[0,0,1,1],
[1,1,1,1],
[1,1,1,1],
[0,0,1,1],
[0,0,1,1],
[1,1,1,1]],

[[0,0,1,0],		  # 4
[0,1,1,0],
[1,1,1,0],
[1,0,1,0],
[1,1,1,1],
[0,0,1,0],
[0,0,1,0],
[0,0,1,0]],

[[1,1,1,1],		  # 5
[1,0,0,0],
[1,0,0,0],
[1,1,1,1],
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[1,1,1,1]],

[[1,1,1,1],		  # 6
[1,0,0,0],
[1,0,0,0],
[1,1,1,1],
[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[1,1,1,1]],

[[1,1,1,1],		  # 7
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],

Raspberry 5 Projects.indd   238Raspberry 5 Projects.indd   238 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 239

[0,0,0,1]],

[[0,1,1,0],		  # 8
[1,0,0,1],
[1,0,0,1],
[1,1,1,1],
[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[0,1,1,0]],

[[1,1,1,1],		  # 9
[1,0,0,1],
[1,0,0,1],
[1,1,1,1],
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[1,1,1,1]]
]

blank = [0,0,0]
blanks=[0,0,0,0]
Disp = []					     # List to store patterns

no = 20					     # Number to be displayed

for index in range(0, 8):
    if (no >= 10):				    # If >= 10
        intno = int(no / 10)			   # MSD digit
        Disp.extend(numbers[intno][index])
    else:
        Disp.extend(blanks)
    remno = int(no % 10)			   # LSD digit
    Disp.extend(numbers[remno][index])

for index in range(64):
  if(Disp[index]):
      Disp[index]=(255,0,0)			   # Red colour
  else:
    Disp[index]=blank

sense.clear()					     # Clear LEDs
sense.set_pixels(Disp)				   # Display number

Figure 12.14 Program listing

Raspberry 5 Projects.indd   239Raspberry 5 Projects.indd   239 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 240

Figure 12.15 Displaying number 20

12.12 Project 9 – Up counter
Description: In this project, the display program developed in the previous project is con-
figured as a function and is then used in a program to count up every second from 0 to 99.

Figure  12.16 shows the program listing (program: nums.py). The display function is 
named Disp and is stored in a file called Display.py (Figure 12.9). The Function Disp has 
three arguments. The first argument is the number to be displayed, the second argument 
is the text colour of the display. The third parameter controls whether to clear the display 
before displaying the number. Setting this parameter to 1 clears the display. At the begin-
ning of the program, the function Disp is imported into the program. You should make sure 
that the Python program display.py is in the same directory as the main program nums.
py. The program creates a loop where variable j changes from 0 to 99. Function Disp is 
called with j as the number and the colour is set to green. Therefore, the display shows the 
numbers counting up every second from 0 to 99, without scrolling the display.

#-------------------------------------------------------------
#			       UP COUNTER
#			       ----------
#
# This program counts up from 0 to 99 every second and displays
# on the LED matrix without any scrolling
#
# Author: Dogan Ibrahim
# Date  : October, 2023
# File  : nums.py
#------------------------------------------------------------
from sense_hat import SenseHat
sense = SenseHat()

Raspberry 5 Projects.indd   240Raspberry 5 Projects.indd   240 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 241

from display import Disp			   # Disp function
import time

for j in range(100):				    # Do 0 to 99
  Disp(j, (0,255,0), 1)			   # Display j
  time.sleep(1)				    # 1 sec delay

Figure 12.16 Program listing

12.13 The inertial measurement sensor
The Sense HAT contains an Inertial Measurement Unit (IMU) which is a combination of a 
compass sensor, gyroscope sensor, and accelerometer sensor. These sensors can be ena-
bled or disabled on an individual basis using the imu_config statement. For example, in 
the following example, all three sensors are enabled:

	 sense.set_imu_config(True, True, True)

Similarly, if we wish to enable only the gyroscope sensor, we have to use the statement:

	 sense.set_imu_config(False, True, False)

12.13.1 Project 10 - Reading the acceleration
Description: You can get the acceleration (amount of G-force) in three dimensions x, y 
and z by using the statement:

	 x, y, z = sense.get_accelerometer_raw().values()

In the example code below, the acceleration in 3 dimensions is read and displayed continu-
ously. You should run this program and move your Sense HAT in three dimensions and see 
the acceleration changing in each direction:

	 from sense_hat import SenseHat
	 sense = SenseHat()
	 while True:
	       x, y, z = sense.get_accelerometer_raw().values()
	       print("X=%s, Y=%s, Z=%s" %(x, y, z))

Rotating the Sense HAT will change the accelerometer x and y values between -1 and +1. If 
it is placed upside down, the z value will change between -1 and +1. If any axis has ±1 G, 
then we know that axis is pointing downwards.

An example project is given below.

12.13.2 Project 11 – Accelerometer-based dice
Description: In this example, the shaking of the Sense HAT board is detected, and then a 
dice number is displayed on the LCD matrix.

Raspberry 5 Projects.indd   241Raspberry 5 Projects.indd   241 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 242

If the board is rotated, then the acceleration will be 1 G maximum in any direction. If on 
the other hand, the board is shaken then the acceleration will be greater than 1 G. In this 
program, the acceleration in three dimensions is checked to determine when the board is 
shaken and if so, a dice number is displayed for two seconds.

Figure 12.17 shows the program listing (program: shake.py). The dice numbers 1 to 6 
are stored in list dice. Inside the program loop, the accelerometer values are read, and 
then their absolute values are taken. If the acceleration exceeds 2 in any direction, i.e. if 
the board is shaken, a dice number is chosen at random and displayed on the LED matrix 
in red.

#--------------------------------------------------------------
#		        ACCELEROMETER BASED DICE
#		        ------------------------
#
# This program displays a dice number after the Sense HAT board
# is shaken. The accelerometer in 3 dimensions is used to determine
# when the board is shaken
#
# Author: Dogan Ibrahim
# Date  : October, 2023
# File  : shake.py
#--------------------------------------------------------------
from sense_hat import SenseHat
sense=SenseHat()
import time
import random

dice = ['1', '2', '3','4', '5', '6']			   # Dice nos

sense.clear()

while True:
  x, y, z = sense.get_accelerometer_raw().values()	 # Read acc
  x = abs(x)						      # x val
  y = abs(y)						      # y val
  z = abs(z)						      # z val
  if x > 2 or y > 2 or z > 2:
    sense.show_letter(random.choice(dice), text_colour = (255,0,0))
    time.sleep(2)
    sense.clear()

 Figure 12.17 Program listing

Raspberry 5 Projects.indd   242Raspberry 5 Projects.indd   242 09-11-2023   15:4509-11-2023   15:45



Chapter 12 • Using the Sense HAT

● 243

12.13.3 Project 12 – Accelerometer-based LED shapes
Description: In this project, the accelerometer is used to sense when the Sense HAT 
board is tilted in its pitch and roll axes. Initially, the LED at the center of the board is lit. 
By tilting the board on its axes, you can make turn ON other LEDs and make various inter-
esting shapes.

Figure 12.18 shows the program listing (program: shapes.py). The reason for using the 
accelerometer in this project is because it is more reliable and gives consistent results. If 
any axis has ±1 G, then we know that axis is pointing downwards. When the Sense HAT 
board is tilted in its pitch axis, the LEDs in the x-direction are turned ON depending on 
whether the tilt is in the positive or the negative direction (+G or –G). Similarly, when the 
board is tilted in its roll axis, the LEDs in the y-direction are turned ON depending on wheth-
er the tilt is in the positive or the negative direction.

#--------------------------------------------------------------
#		        ACCELEROMETER BASED LED SHAPES
#		        -------------------------------
#
# In this program the accelerometer is used. The Sense HAT board
# is tilted in its pitch and roll axes to make shapes with LEDs
#
# Author: Dogan Ibrahim
# Date  : October, 2023
# File  : shapes.py
#--------------------------------------------------------------
from sense_hat import SenseHat
sense=SenseHat()
from time import sleep

sense.clear()
sense.set_pixel(3, 3, (255,0,0))			   # Starting LED
x = 3
y = 3

while True:
  X,Y,Z = sense.get_accelerometer_raw().values()	 # Read acc
  X = round(X, 0)					     # X dir
  Y = round(Y, 0)					     # Y dir

  if X > 0:
     x = x + 1
     if x > 7:						     # If the end
      x = 7
  elif X < 0:
     x = x - 1

Raspberry 5 Projects.indd   243Raspberry 5 Projects.indd   243 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 244

     if x < 0:						     # If the end
       x = 0

  if Y > 0:
     y = y + 1
     if y > 7:						     # If the end
        y = 7
  elif Y < 0:
     y = y - 1
     if y < 0:						     # If the end
       y = 0
  sense.set_pixel(x,y,(255,0,0))			   # Display
  sleep(1)						      # 1 sec delay

Figure 12.18 Program listing

Figure 12.19 shows an example shape drawn by tilting the Sense Hat board.

Figure 12.19 Example drawing shapes on the Sense HAT board

Raspberry 5 Projects.indd   244Raspberry 5 Projects.indd   244 09-11-2023   15:4509-11-2023   15:45



Chapter 13 • Using a 4×4 Keypad

● 245

Chapter 13 • Using a 4×4 Keypad

13.1 Overview
Keypads are useful devices for entering data to microcontroller-based systems. They are 
especially useful in portable applications where the user has to enter data or make a choice. 
In this chapter, you will be learning to use a 4×4 keypad in your Raspberry Pi 5 projects. 

13.2 Project 1 – Using a 4×4 keypad
Description: This is a 4×4 keypad program. The program reads the key pressed by the 
user and displays its code on the screen. The aim of the project is to show how a 4×4 key-
pad can be used with a Raspberry Pi 5 project.

The 4×4 Keypad: There are several types of keypads that can be used in microcontrol-
ler-based projects. In this project, a 4×4 keypad (see Figure 13.1) is used. This keypad has 
keys for numbers 0 to 9 and the letters A, B, C, D, *, and #. The keypad is interfaced to the 
processor with 8 wires with the names R1 to R4 and C1 to C4, representing the rows and 
columns respectively of the keypad (see Figure 13.2).

Figure 13.1 4×4 keypad

Figure 13.2 Circuit diagram of the 4×4 keypad

Raspberry 5 Projects.indd   245Raspberry 5 Projects.indd   245 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 246

The operation of the keypad is basic: the columns are configured as inputs, and they are 
all set HIGH, and the rows are configured as outputs. The pressed key is identified by using 
column scanning. Here, a row is forced LOW while the other rows are held HIGH. Then the 
state of each column is scanned, and if a column is found to be LOW, then the intersection 
of that column and row is the key pressed. This process is repeated for all the rows.

Block diagram: Figure 13.3 shows the block diagram

Figure 13.3 Block diagram

Circuit diagram: The circuit diagram of the project is shown in Figure 13.4. The 4×4 key-
pad is connected to the following GPIO pins of the Raspberry Pi 5. The column pins are held 
high by using external 10 Kilo-ohm resistors to +3.3 V:

Keypad pin		 Raspberry Pi pin
      R1		  GPIO 4
      R2		  GPIO 17
      R3		  GPIO 27
      R4		  GPIO 22
      C1		  GPIO 10
      C2		  GPIO 9
      C3		  GPIO 11
      C4		  GPIO 0

Raspberry 5 Projects.indd   246Raspberry 5 Projects.indd   246 09-11-2023   15:4509-11-2023   15:45



Chapter 13 • Using a 4×4 Keypad

● 247

Figure 13.4 Circuit diagram

Figure 13.5 shows the pin configuration of the 4×4 keypad used in the project.

Figure 13.5 Pin configuration of the 4×4 keypad

Program listing: Figure 13.6 shows the program listing (program: keypad.py). At the 
beginning of the program, modules OutputDevice and InputDevice of gpiozero are im-
ported to the program. The row and column pins of the keypad are assigned to GPIO ports. 
Rows are configured as outputs and columns as inputs. All the rows are set HIGH initially. 
The Function GetChar() waits until a key is pressed and then returns the key to the calling 
code. This function calls function ReadRow(). ReadRow() has two arguments: the row 

Raspberry 5 Projects.indd   247Raspberry 5 Projects.indd   247 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 248

number and the keypad characters on that row. The function scans the columns and if a 
column is detected with LOW state, then the keypad character corresponding to the column 
is returned by the function. The program calls GetChar() and displays the pressed key on 
the screen.

#------------------------------------------------------------------
#
#               4 x 4 KEYPAD
#               ============
#
# In this program a 4 x 4 keypad is connected to Raspberry Pi 5.
# the program displays the key pressed on the screen
#
# Program: keypad.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#--------------------------------------------------------------------
from gpiozero import OutputDevice,InputDevice
from time import sleep

#
# ROW pins
#
ROW1 = 4
ROW2 = 17
ROW3 = 27
ROW4 = 22

#
# COLUMN pins
#
COL1 = 10
COL2 = 9
COL3 = 11
COL4 = 0

#
# ROWS as outputs
#
row1 = OutputDevice(ROW1)
row2 = OutputDevice(ROW2)
row3 = OutputDevice(ROW3)
row4 = OutputDevice(ROW4)
row1.on()
row2.on()
row3.on()

Raspberry 5 Projects.indd   248Raspberry 5 Projects.indd   248 09-11-2023   15:4509-11-2023   15:45



Chapter 13 • Using a 4×4 Keypad

● 249

row4.on()

#
# COLUMNS as inputs and (pulled HIGH in hardware)
#
col1 = InputDevice(COL1)
col2 = InputDevice(COL2)
col3 = InputDevice(COL3)
col4 = InputDevice(COL4)

#
# This function sets a row  to 0 and then finds out which
# key is pressed on a column
#
def ReadRow(line, char):
   x = 'E'
   line.off()
   if col1.value == 0:
      x = char[0]
   if col2.value == 0:
      x = char[1]
   if col3.value == 0:
      x = char[2]
   if col4.value == 0:
      x = char[3]
   line.on()
   return x

#
# This function waits until a character is pressed on keypad
#
def GetChar():
  r = 'E'
  while r == 'E':
     a = ReadRow(row1, ["1","2","3","A"])
     b = ReadRow(row2, ["4","5","6","B"])
     c = ReadRow(row3, ["7","8","9","C"])
     d = ReadRow(row4, ["*","0","#","D"])
     if  a != 'E':
        r = a
     elif b !='E':
        r = b
     elif c != 'E':
        r = c
     elif d != 'E':
        r = d

Raspberry 5 Projects.indd   249Raspberry 5 Projects.indd   249 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 250

     sleep(0.1)
  return r

c = GetChar()			   # Wait for key press
print (c)			   # Display the pressed key

Figure 13.6 Program listing

Importing the keypad functions in a program
It is easier to import the keypad function under a file instead of writing them every time 
you want to use these functions. This can easily be done by collecting all the functions in 
a file and then importing that file at the beginning of your Python programs. Figure 13.7 
shows a program called keypadfuncs.py which can be imported into your programs. It 
is important that this file should be in your default directory (/home/pi). Note that the 
keypad rows and columns must be connected to the same Raspberry Pi 5 GPIO pins as 
given in this project.

#------------------------------------------------------------------
#               4 x 4 KEYPAD FUNCTIONS
#               ======================
#
# Import this file in your Python programs
#
# Program: keypadfuncs.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#--------------------------------------------------------------------
from gpiozero import OutputDevice,DigitalInputDevice
from time import sleep

#
# ROW pins
#
ROW1 = 4
ROW2 = 17
ROW3 = 27
ROW4 = 22

#
# COLUMN pins
#
COL1 = 10
COL2 = 9
COL3 = 11
COL4 = 0

Raspberry 5 Projects.indd   250Raspberry 5 Projects.indd   250 09-11-2023   15:4509-11-2023   15:45



Chapter 13 • Using a 4×4 Keypad

● 251

#
# ROWS as outputs
#
row1 = OutputDevice(ROW1)
row2 = OutputDevice(ROW2)
row3 = OutputDevice(ROW3)
row4 = OutputDevice(ROW4)
row1.on()
row2.on()
row3.on()
row4.on()

#
# COLUMNS as inputs and (pulled HIGH in hardware)
#
col1 = DigitalInputDevice(COL1, bounce_time = 1)
col2 = DigitalInputDevice(COL2, bounce_time = 1)
col3 = DigitalInputDevice(COL3, bounce_time = 1)
col4 = DigitalInputDevice(COL4, bounce_time = 1)

#
# This function sets a row  to 0 and then finds out which
# key is pressed on a column
#
def ReadRow(line, char):
   x = 'E'
   line.off()
   if col1.value == 0:
      x = char[0]
   if col2.value == 0:
      x = char[1]
   if col3.value == 0:
      x = char[2]
   if col4.value == 0:
      x = char[3]
   line.on()
   return x

#
# This function waits until a character is pressed on keypad
#
def GetChar():
  r = 'E'
  while r == 'E':
     a = ReadRow(row1, ["1","2","3","A"])
     b = ReadRow(row2, ["4","5","6","B"])

Raspberry 5 Projects.indd   251Raspberry 5 Projects.indd   251 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 252

     c = ReadRow(row3, ["7","8","9","C"])
     d = ReadRow(row4, ["*","0","#","D"])
     if  a != 'E':
        r = a
     elif b !='E':
        r = b
     elif c != 'E':
        r = c
     elif d != 'E':
        r = d
     sleep(0.1)
  return r

Figure 13.7 Program: keypadfuncs.py

Figure 13.8 shows a program (keypadtest.py) that imports the keypad functions.

#------------------------------------------------------------------
#
#               4 x 4 KEYPAD TEST
#               =================
#
# This program imports the keypad functions
#
# Program: keypadtest.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#--------------------------------------------------------------------
from keypadfuncs import GetChar

c = GetChar()			   # Wait for key press
print (c)			   # Display the pressed key

Figure 13.8 Program: keypadtest.py

13.3 Project 2 – Security lock with keypad and LCD
Description: This is an electronic lock project where a relay is used to open a door. A 4-digit 
secret code is set up in the program. The user has to enter the secret code for the door to 
open.

Block diagram: Figure 13.9 shows the block diagram of the project.

Raspberry 5 Projects.indd   252Raspberry 5 Projects.indd   252 09-11-2023   15:4509-11-2023   15:45



Chapter 13 • Using a 4×4 Keypad

● 253

Figure 13.9 Block diagram

Circuit diagram: The circuit diagram is shown in Figure 13.10. The LCD is connected as 
in the previous LCD-based projects. The keypad is connected as in the previous project. A 
relay is connected to GPIO 21 (pin 40) of the Raspberry Pi 5.

Figure 13.10 Circuit diagram

Program listing: Figure 13.11 shows the program listing (lock.py). At the beginning of 
the program, the LCD is initialized. The secret code is set to '1357'. The program then dis-
plays Code: and expects the user to enter the correct code. If the correct code is entered, 
the message Door Opened is displayed and the relay is turned ON for 20 seconds. After 
this time, the relay is deactivated. If the wrong code is entered, the message Error is dis-
played for 5 seconds and the user is asked to enter the correct code again.

Raspberry 5 Projects.indd   253Raspberry 5 Projects.indd   253 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 254

#---------------------------------------------------------
#
#             KEYPAD OPERATED LOCK
#             ====================
# In this program a door (or a safe) is opened via a relay.
# The user is required to enter the correct secret code for
# the door to open. Once opened, the door stays open for
# 20 seconds
#
# Program: lock.py
# Date   : October, 2023
# Author : Dogan Ibrahim
#----------------------------------------------------------
from time import sleep
from lcd_api import LcdApi
from i2c_lcd import I2cLcd
from keypadfuncs import GetChar
from gpiozero import OutputDevice

Relay = OutputDevice(21)
Relay.off()

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear()				    # clear LCD

Codea = "1"				    # Secret code
Codeb = "3"
Codec = "5"
Coded = "7"

while True:
  mylcd.move_to(0,0)
  mylcd.putstr("Code: ")
  a = GetChar()				    # First no
  b = GetChar()				    # Second no
  c = GetChar()				    # Third no
  d = GetChar()				    # Fourth no

  if (a == Codea and b == Codeb and c == Codec and d == Coded):
     mylcd.clear()
     mylcd.putstr("Door Opened")

Raspberry 5 Projects.indd   254Raspberry 5 Projects.indd   254 09-11-2023   15:4509-11-2023   15:45



Chapter 13 • Using a 4×4 Keypad

● 255

     Relay.on()
     sleep(20)
     Relay.off()
     mylcd.clear()
  else:
     Relay.off()
     mylcd.clear()
     mylcd.putstr("Error")
     sleep(5)
     mylcd.clear()

Figure 13.11 Program listing

Suggested modification: Modify the program in Figure 13.11 so that the lock is disabled 
for ten minutes if the wrong code is entered three times.

Raspberry 5 Projects.indd   255Raspberry 5 Projects.indd   255 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 256

Chapter 14 • Communication over Wi-Fi

14.1 Overview
Perhaps the two major features of the Raspberry Pi 5 are its Wi-Fi and Bluetooth communi-
cation capabilities. Raspberry Pi 5 is equipped with a dual-band 2.4 GHz 802.11ac wireless 
LAN module and Bluetooth 5.0/Bluetooth Low Energy (BLE). Without such features, you 
have to use external network-based hardware communication modules to communicate 
over the Internet. Network communication is handled using either UDP or TCP type proto-
cols. In this chapter, you will be learning how to write Python programs using both the UDP 
and TCP type protocols using the on-board Wi-Fi module.

14.2 UDP and TCP
Communication over a Wi-Fi link is in the form of client and server, and sockets are used 
to send and receive data packets. The server side usually waits for a connection from the 
clients and once a connection is made, two-way communication can start. Two protocols 
are mainly used for sending and receiving data packets over a Wi-Fi link: UDP and TCP. 
TCP is a connection-based protocol which guarantees the delivery of packets. Packets are 
given sequence numbers and the reception of all the packets is acknowledged to avoid 
them arriving in the wrong order. As a result of this confirmation, TCP is usually slow, but 
it is reliable as it guarantees the delivery of packets. UDP, on the other hand, is not con-
nection-based. Packets do not have sequence numbers and as a result of this, there is no 
guarantee that the packets will arrive at their destinations, or they may arrive in the wrong 
order. UDP has less overhead than TCP and, as a result, it is faster. Table 14.1 lists some of 
the differences between the TCP and UDP protocols.

TCP UDP

Packets have sequence numbers and delivery 
of every packet is acknowledged

There is no delivery acknowledgement

Slow Fast

No packet loss Packets may be lost

Large overhead Small overhead

Requires more resources Requires fewer resources

Connection based Not connection based

Not suitable for multicast Has multicast capability

More difficult to program Easier to program

Examples: HTTP, HTTPS, FTP Examples: DNS, DHCP, Computer games

Table 14.1 TCP and UDP packet communications

Raspberry 5 Projects.indd   256Raspberry 5 Projects.indd   256 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 257

14.2.1 UDP communication
Figure 14.1 shows the UDP communication over a Wi-Fi link:

Server
1.	 Create UDP socket
2.	 Bind the socket to server address 
3.	 Wait until datagram packet arrives from the client 
4.	 Process the datagram packet
5.	 Send a reply to the client, or close the socket
6.	 Go back to Step 3 (if not closed)

Client
1.	 Create UDP socket (and optionally Bind)
2.	 Send a message to the server 
3.	 Wait until a response from the server is received 
4.	 Process reply 
5.	 Go back to step 2, or close the socket 

Figure 14.1 UDP communication

14.2.2 TCP communication
Figure 14.2 shows the TCP communication over a Wi-Fi link:

Server
1.	 Create UDP socket

Raspberry 5 Projects.indd   257Raspberry 5 Projects.indd   257 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 258

2.	 Bind the socket to server address 
3.	 Listen for connections
4.	 Accept connection
5.	 Wait until datagram packet arrives from the client 
6.	 Process the datagram packet
7.	 Send a reply to the client, or close the socket
8.	 Go back to Step 3 (if not closed)

Client
1.	 Create UDP socket
2.	 Connect to the server
3.	 Send a message to the server 
4.	 Wait until a response from the server is received 
5.	 Process reply 
6.	 Go back to step 2, or close the socket 

Figure 14.2 TCP communication

14.3 Project 1 – �Sending a text message to a smartphone using  
TCP/IP

Description: In this project, a TCP/IP-based communication is established with an Android 
smartphone. The program reads text messages from the keyboard and sends to the smart-
phone. The aim of this project is to show how TCP/IP communication can be established 
with an Android smartphone.

Raspberry 5 Projects.indd   258Raspberry 5 Projects.indd   258 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 259

Background Information: Port numbers range from 0 to 65,535. Numbers from 0 to 
1023 are reserved and are called as well-known ports. For example, port 23 is the Telnet 
port, port 25 is the SMTP port, etc. In this section, you will be using port number 5000 in 
your program. 

Block diagram: Figure 14.3 shows the project block diagram where the Raspberry Pi 5 
and smartphone communicate over a Wi-Fi router.

Figure 14.3 Block diagram of the project

Program listing: In this project, Raspberry Pi 5 is the server. Figure 14.4 shows the pro-
gram listing (tcpserver.py). At the beginning of the program, a TCP/IP socket is created 
(sock.SOCK_STREAM) and is then bind to port 5000. The program listens for a connec-
tion. Notice that it is possible for the server to listen to multiple clients, but of course, it 
can communicate with only one at any time. When the client makes a connection, this is 
accepted by the server. The server then reads a message from the keyboard and sends it 
to the client over the Wi-Fi link. Notice that the setsockopt() statement makes sure that 
the program can be used again without having to wait for the socket timeout of 30 seconds.

#===============================================================
#	 SEND TEXT MESSAGES USING TCP/IP
#	 ===============================
#
# This is the TCP/IP server program. It receives text messages
# from the keyboard and sends to an Android smart phone over 
# a Wi-Fi link
#
# Author: Dogan Ibrahim
# File  : tcpserver.py
# Date  : October, 2023
#==============================================================

Raspberry 5 Projects.indd   259Raspberry 5 Projects.indd   259 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 260

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(("192.168.3.196", 5000))
sock.listen(1)

client, addr = sock.accept()			   # accept connection
print("Connected to client: ", addr)		  # connected message

yn = 'y'

while yn == 'y':
  msg = input("Enter your message: ")		  # read a message
  client.send(msg.encode('utf-8'))		  # send the message

  yn = input("Send more messages?: ")
  yn = yn.lower()

print("\nClosing connection to client")
sock.close()

Figure 14.4 Program listing

Testing
There are many TCP apps available free of charge on the Internet for smartphones. In this 
project, the TCP Client by JOY S.R.L. apps is used on an Android smartphone. This app is 
available free of charge in the Play Store (see Figure 14.5).

Figure 14.5 Apps used in the project

The program is run as follows:

•	Run the server program first:

pi@raspberrypi:~ $ python tcpserver.py

Raspberry 5 Projects.indd   260Raspberry 5 Projects.indd   260 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 261

•	Run the Android apps and configure it as shown in Figure 14.6 (click the 
settings icon at the top right hand of the screen), where 192.168.3.196 is the 
IP address of the Raspberry Pi 5.

Figure 14.6 Configure the TCP Client apps

•	Click the icon in the top left corner of the apps (disconnected) to connect to 
Raspberry Pi 5 over TCP/IP.

•	You should see a connection message on your Raspberry Pi screen and also the 
IP address of the remote Android smartphone. Now enter a message and press 
the Enter key. In this example, the message HELLO FROM RASPBERRY PI is 
sent to the client (Figure 14.7). Figure 14.8 shows the message displayed on 
the smartphone.	

Figure 14.7 Enter the message on the keyboard

Figure 14.8 Message displayed on smartphone

Raspberry 5 Projects.indd   261Raspberry 5 Projects.indd   261 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 262

14.4 Project 2 – �Two-way communication with the smartphone using 
TCP/IP

Description: This project is similar to the previous one, but here two-way communication 
is established between the Raspberry Pi 5 and the smartphone.

The block diagram of the project is the same as Figure 14.3

Program listing: Figure 14.9 shows the program listing (tcp2way.py). Here, port 5000 is 
used as in the previous project. The program has been changed to send and receive mes-
sages from the smartphone. Socket function recv(byte count) sends a message over the 
TCP/IP link to the connected node.

#===============================================================
#	 SEND/RECEIVE TEXT MESSAGES USING TCP/IP
#	 =======================================
#
# This is the TCP/IP server program. It receives text messages
# from the keyboard and sends to an Android smart phone over 
# a Wi-Fi link
#
# Author: Dogan Ibrahim
# File  : tcp2way.py
# Date  : December, 2023
#==============================================================
import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(("192.168.3.196", 5000))
sock.listen(1)

client, addr = sock.accept()			   # accept connection
print("Connected to client: ", addr)		  # connected message

yn = 'y'

try:
   while yn == 'y':
      msg = input("Enter your message: ")	 # read a message
      msg = msg +"\n"
      client.send(msg.encode('utf-8'))		 # send the message

      msg = client.recv(1024)
      print("Received message: ")
      print(msg.decode('utf-8'))

Raspberry 5 Projects.indd   262Raspberry 5 Projects.indd   262 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 263

      yn = input("Send more messages?: ")
      yn = yn.lower()

except KeyboardInterrupt:
      print("\nClosing connection to client")
      sock.close()

Figure 14.9 Program listing

Testing
You will be using the Android apps as in Figure 14.5. Start the Raspberry Pi 5 server pro-
gram and then exchange messages between the smartphone and Raspberry Pi. Example 
communication is shown in Figure 14.10. In this example, Raspberry Pi sends message 
Message from RASPBERRY PI. In return, Android smartphone sends the message mes-
sage from ANDROID.

Figure 14.10 Example communication between Raspberry Pi 5 and Android apps

14.5 Project 3 – Communicating with a PC using TCP/IP
Description: In this project, a TCP/IP-based communication is established between the 
Raspberry Pi 5 and a PC running Python. Messages are exchanged between the Raspberry 
Pi 5 and the PC. The aim of this project is to show how TCP/IP communication can be es-
tablished with a PC.

Background Information: In this project, the Raspberry Pi 5 is the server and the PC 
is the client. The programs on both sides are developed using the Python programming 
language. Python 3.10 is used on the PC. If you do not have Python on your PC, you could 
install it from the following website:

	 https://www.python.org/downloads/

Raspberry 5 Projects.indd   263Raspberry 5 Projects.indd   263 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 264

Block diagram: Figure 14.11 shows the block diagram.

Figure 14.11 Block diagram

Raspberry Pi 5 program listing: The Raspberry Pi 5 program listing is shown in Fig-
ure 14.12 (tcppc.py). The program is very similar to the one given in Figure 14.9, i.e. 
program: tcp2way.py. You should terminate the program by entering Ctrl+C.

#===============================================================
#	 SEND/RECEIVE TEXT MESSAGES USING TCP/IP
#	 =======================================
#
# This is the TCP/IP server program. It communicates with a PC
# running TCP/IP on the same port
#
# Author: Dogan Ibrahim
# File  : tcppc.py
# Date  : October, 2023
#==============================================================
import socket
import time

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(("192.168.3.196", 5000))
sock.listen(1)

client, addr = sock.accept()			   # accept connection
print("Connected to client: ", addr)		  # connected message

try:
   while True:
      msg = input("Enter your message: ")	 # read a message

Raspberry 5 Projects.indd   264Raspberry 5 Projects.indd   264 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 265

      msg = msg +"\n"
      client.send(msg.encode('utf-8'))		 # send the message

      msg = client.recv(1024)
      print("Received message: ", msg.decode('utf-8'))

except KeyboardInterrupt:
      print("\nClosing connection to client")
      sock.close()
      time.sleep(1)

Figure 14.12 Raspberry Pi 5 program listing

PC Program Listing: The PC program listing is shown in Figure 14.13 (client.py). The 
program creates a socket and connects to the server. Then, messages are exchanged be-
tween the client and the server.

#=============================================================
#               TCP/IP CLIENT
#               =============
#
# This is the client program on the PC.The program exchanges
# messages with the server on the Raspberry Pi 5
#
# Author: Dogan Ibrahim
# File  : client.py
# Date  : October, 2023
#=============================================================
import socket
import time
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.connect(("192.168.3.196", 5000))

try:
    while True:
        msg = sock.recv(1024)
        print("Received message: ", msg.decode('utf-8'))
        data = input("Enter message to send: ")
        sock.send(data.encode('utf-8'))

except KeyboardInterrupt:
    print("Closing connection to server")
    sock.close()
    time.sleep(1)

Figure 14.13 PC program listing

Raspberry 5 Projects.indd   265Raspberry 5 Projects.indd   265 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 266

The steps to run the program are as follows:

•	Run the server program on the Raspberry Pi 5
•	Run the client program on the PC
•	Write messages as desired

Figure 14.14 shows a typical run of the two programs.

Figure 14.14 Example run of the program

Note: You may find that after exiting the program, you may not be able to run it again. 
This is because the socket stays open for about 30 seconds and the error message saying 
that the Address is already in use may be displayed. You can check the state of the port 
with the following command:

	 pi@raspberrypi:~ $ netstat –n | grep 5000

If the display includes the text ESTABLISHED, then it means that the socket has not been 
closed properly, and you will have to restart your Zero 2 W to run the program again. If on 
the other hand, you see the message with TIME_WAIT, then you should wait about 30 
seconds before restarting the program.

14.6 Project 4 – Controlling an LED connected to Raspberry Pi 5 from a 
smartphone using TCP/IP
Description: In this project, an LED is connected to a Raspberry Pi 5. The LED is turned 
ON and OFF by sending commands ON and OFF respectively from an Android smartphone. 
The aim of this project is to show how an LED connected to a Raspberry Pi can be controlled 
from an Android smartphone remotely by sending commands using the TCP/IP protocol 
over a Wi-Fi link. In this project, Raspberry Pi 5 is the server, and the smartphone is the 
client.

Block diagram: Figure 14.15 shows the block diagram of the project.

Raspberry 5 Projects.indd   266Raspberry 5 Projects.indd   266 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 267

Figure 14.15 Block diagram of the project]#

The LED is connected to port pin GPIO 21 (pin 49) through a 470 Ohm current limiting 
resistor.

Program Listing: Figure 14.16 shows the program listing (program: serverled.py). As 
in the previous program, a socket is created and port 5000 is used. LED is assigned to 
port GPIO pin 21, and turned OFF at the beginning of the program. The server waits for a 
connection from the client and then accepts the connection and displays the message Con-
nected. It then waits to receive a command from the client. If the command is ON, then 
the LED is turned ON. If, on the other hand, the command is OFF, then the LED is turned 
OFF. Sending command X terminates the server connection and exits the program.

#==================================================================
#		  CONTROL LED FROM SMART PHONE
#		  ============================
#
# In this program TCP/IP is used where Raspberry Pi 5 is the server
# and smart phone is the client. An LED connected to Raspberry Pi 5
# GPIO 21 and is controlled from the smart phone
#
# Author: DOgan Ibrahim
# File  : serverled.py
# Date  : December, 2023
#===================================================================
import socket
from gpiozero import LED
from time import sleep

led = LED(21)				    # LED at GPIO 21
led.off()

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

Raspberry 5 Projects.indd   267Raspberry 5 Projects.indd   267 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 268

sock.bind(("192.168.3.196", 5000))       # Raspberry Pi 5 IP,port
sock.listen(1)
client, addr = sock.accept()
print("Connected")

data = [' '] * 10

while data != b'X\n':			   # Terminate?
  data = client.recv(1024)
  if data == b'ON\n':			   # ON
     led.on()
  elif data == b'OFF\n':		  # OFF
     led.off()

print("Closing connection")
GPIO.cleanup()
sock.close()
sleep(1)

Figure 14.16 Program listing

The program can be tested using the Android apps TCP client (Figure 14.5) used in Pro-
ject 1. The server program started, then the client is started. Figure 14.17 shows sending 
the ON command to turn ON the LED.

Figure 14.17 Command sent to turn ON/OFF the LED

Suggestions: The LED in this project can be replaced, for example with a relay and elec-
trical equipment can be controlled remotely over Wi-Fi.

14.7 Project 5 – Sending a text message to a smartphone using UDP
Description: In this project, a UDP-based communication is established with an Android 
smartphone. The program reads text messages from the keyboard and sends to the smart-
phone. The aim of this project is to show how UDP communication can be established with 
an Android smartphone.

Raspberry 5 Projects.indd   268Raspberry 5 Projects.indd   268 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 269

The block diagram is the same as in Figure 14.3.

Program Listing: In this project, Raspberry Pi 5 is the server and the smartphone is the 
client. Figure 14.18 shows the program listing (udpserver.py). At the beginning of the 
program, a UDP socket is created (sock.SOCK_DGRAM) and is then bind to port 5000. 
The server program then reads text messages sent from the smartphone and displays on 
the screen. Messages sent by Raspberry Pi 5 are displayed on the smartphone.

#==========================================================
#	 SEND TEXT MESSAGES USING UDP
#	 ============================
#
# This is the UDP server program running on Raspberry Pi 5.
# The program exchanges text messages with an Android
# smart phone
# 
# Author: Dogan Ibrahim
# File  : udpserver.py
# Date  : October, 2023
#==========================================================
import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(("192.168.3.196", 5000))

try:
  while True:
    print()
    print("Waiting for messages")
    data, addr = sock.recvfrom(1024)
    print(addr)
    print("Received msg:", data.decode('utf-8'))
    msg = input("Message to send: ")
    sock.sendto(msg.encode('utf-8'), addr)
    print("Message sent")

except KeyboardInterrupt:
  print("\nClosing connection to client")
  sock.close()

Figure 14.18 Program listing

There are many UDP apps available free of charge for both Android and iOS smartphones. 
In this project, UDP Sender/Receiver by JC Accounting & Innovative Technologies 
Inc for Android smartphones is used (Figure 14.19).

Raspberry 5 Projects.indd   269Raspberry 5 Projects.indd   269 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 270

Figure 14.19 UDP Sender/Receiver apps

The steps to test the program are as follows:

•	Start the server program on Raspberry Pi 5:

pi@raspberrypi:~ $ python udpserver.py

•	Start the smartphone apps and configure for the IP/Host and Port

•	Write a message on mobile phone apps and click SEND. The message Hello 
from Android was sent as an example (Figure 14.20)

•	Write a message on Raspberry Pi 5 and this message will be displayed on 
the smartphone. Hello from Raspberry Pi 5 was sent for an example 
(Figure 14.20)

•	Enter Ctrl+C on Raspberry Pi 5 to close the socket

Raspberry 5 Projects.indd   270Raspberry 5 Projects.indd   270 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 271

Figure 14.20 Sending and receiving messages

14.8 Project 6 – Controlling an LED connected to Raspberry Pi 5 from a 
smartphone using UDP
Description: In this project, an LED is connected to Raspberry Pi  5 port pin GPIO 21 
(pin 40) through a 470 Ohm current limiting resistor. The LED is turned ON and OFF by 
sending commands ON and OFF respectively from an Android smartphone. The aim of this 
project is to show how an LED on the Raspberry Pi 5 can be controlled from a smartphone 
by sending commands using the UDP protocol over a Wi-Fi link. Here, the Raspberry Pi 5 is 
the server and the smartphone is a client.

The LED can easily be replaced with a relay, for example, to control electrical appliances 
from a smartphone.

Program Listing: Figure 14.21 shows the program listing (udpled.py). As in the previous 
program, a socket is created and the server waits to receive commands from a client to 
control the LED. If the command is ON, then the LED is turned ON. If on the other hand, 
the command is OFF, the LED is turned OFF. Command X terminates the server program.

Raspberry 5 Projects.indd   271Raspberry 5 Projects.indd   271 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 272

#==================================================================
#	 CONTROL LED FROM SMART PHONE
#	 ============================
#
# In this program UDP is used where Zero 2 W is the server
# and smart phone is the client. An LED connected to the server
# and is controlled from the smart phone
#
# Author: DOgan Ibrahim
# File  : udpled.py
# Date  : October, 2023
#===================================================================
import socket
from gpiozero import LED
from time import sleep

led = LED(21)
led.off()

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(("192.168.3.196", 2000))		  # Bind to Zero 2 W IP,port

data = [' '] * 10
while data != b'X':
  data, addr = sock.recvfrom(1024)
  if data == b'ON':				    # ON command
     led.on()					     # LED ON
  elif data == b'OFF':				   # OFF command
     led.off()					    # LED OFF

sock.close()
sleep(1)

Figure 14.21 Program listing

The program can be tested using the UDP Sender/Receiver apps used in Figure 14.19.

The steps to test the program are as follows:

•	Construct the circuit on Raspberry Pi 5 with the LED

•	Start the server program on Raspberry Pi 5:

pi@raspberrypi:~ $ python udpled.py

•	Start and configure the smartphone app

Raspberry 5 Projects.indd   272Raspberry 5 Projects.indd   272 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 273

•	Write the command ON and press Send on the smartphone (Figure 14.22). 
The LED should turn ON. Similarly, write OFF and the LED should turn OFF. 
Sending X should terminate the Raspberry Pi 5 program.

 Figure 14.22 Turning ON/OFF the LED

14.9 Communicating with the Raspberry Pi Pico W over Wi-Fi
Raspberry Pi Pico W (it will be called Pico from now on) is a low-cost $6 microcontrol-
ler module based on the RP2040 microcontroller with dual-core Cortex-M0+ processor 
and with on-board Wi-Fi module. Figure 14.23 shows the front view of the Pico hardware 
module, which is basically a small board. At the middle of the board is the tiny 7 × 7 mm 
RP2040 microcontroller chip housed in a QFN-56 package. At the two edges of the board, 
there are 40 gold-coloured metal GPIO (General Purpose Input-Output) pins with holes. 
You should solder pins to these holes so that external connections can be made easily to 
the board. The holes are marked starting with number 1 in the top left corner of the board 
and the numbers increase downwards up to number 40 which is at the top right-hand cor-
ner of the board. The board is breadboard compatible (i.e. 0.1 inch pin spacing), and after 
soldering the pins, the board can be plugged into a breadboard for easy connection to the 
GPIO pins using jumper wires. Next to these holes, you will see bumpy circular cut-outs 
which can be plugged-in on top of other modules without having any physical pins fitted.

Raspberry 5 Projects.indd   273Raspberry 5 Projects.indd   273 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 274

Figure 14.23 Front view of the Pico module

At one edge of the board, there is the micro-USB B port for providing power to the board 
and for programming the board. Next to the USB port, there is an on-board user LED that 
can be used during program development. Next to this LED there is a button named as 
BOOTSEL that is used during programming of the microcontroller as we will see in the next 
chapters. Next to the processor chip, there are 3 holes where external connections can be 
made to. These are used to debug your programs using Serial Wire Debug (SWD). At the 
other edge of the board is the single-band 2.4 GHz Wi-Fi module (802.11n). Next to the 
Wi-Fi module is the on-board antenna.

You will notice the following types of letters and numbers at the back of the board:

GND	 -	 power supply ground (digital ground)
AGND	 -	 power supply ground (analog ground)
3V3	 -	 +3.3 V power supply (output)
GP0 – GP22	 -	 digital GPIO
GP26_A0 – GP28_A2	 -	 analog inputs
ADC_VREF	 -	 ADC reference voltage
TP1 – TP6	 -	 test points
SWDIO, GND, SWCLK	 -	 debug interface
RUN	 -	 default RUN pin. Connect LOW to reset the RP2040
3V3_EN	 -	 this pin by default enables the +3.3 V power supply.
		  +3.3 V can be disabled by connecting this pin LOW
VSYS	 -	 system input voltage (1.8V to 5.5V) used by the
		  on-board SMPS to generate +3.3 V supply for the board
VBUS	 -	 micro-USB input voltage (+5V)

Some of the GPIO pins are used for internal board functions. These are:

GP29 (input)	 -	 used in ADC mode (ADC3) to measure VSYS/3
GP24 (input)	 -	 VBUS sense - HIGH if VBUS is present, else LOW
GP23 (output)	 -	 Controls the on-board SMPS Power Save pin

Raspberry 5 Projects.indd   274Raspberry 5 Projects.indd   274 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 275

The specifications of the Pico hardware module are as follows:

•	32-bit RP2040 Cortex-M0+ dual-core processor operating at 133 MHz
•	2 MB Q-SPI Flash memory
•	264 KB SRAM memory
•	26 GPIO (+3.3 V compatible)
•	3× 12-bit ADC pins
•	Accelerated floating-point libraries on chip
•	On-board single-band Infineon CYW43439 wireless chip, 2.4 GHz wireless 

interface (802.11b/g/n) and Bluetooth 5.2
•	Serial Wire Debug (SWD) port
•	Micro-USB port (USB 1.1) for power (+5 V) and data (programming)
•	2× UART, 2× I²C, 2× SPI bus interface
•	16× PWM channels
•	1× Timer (with 4 alarms), 1× Real-Time Clock
•	On-board temperature sensor
•	On-board LED at GPIO0, controlled by the CYW43439 chip
•	Castellated module, allowing soldering direct to carrier boards
•	8× Programmable IO (PIO) state machines for custom peripheral support
•	MicroPython, C, C++ programming
•	Drag & drop programming using mass storage over USB

Pico GPIO hardware is +3.3 V compatible, and it is therefore important to be careful not 
to exceed this voltage when interfacing external input devices to the GPIO pins. +5 V to 
+3.3 V logic converter circuits or resistive potential divider circuits must be used if it is 
required to interface devices with +5 V outputs to the Pico GPIO pins.

Pico can be programmed using MicroPython or C/C++ languages. It is assumed that the 
readers have Pico development boards with the MicroPython installed. It will also be useful 
if the readers are familiar using Thonny with the Pico. A book entitled Raspberry Pi Pico W 
and written by the author is available from Elektor and interested readers might consider 
purchasing this book for developing Pico-based projects.

Figure 14.24 shows the pin configuration of the Pico.

Raspberry 5 Projects.indd   275Raspberry 5 Projects.indd   275 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 276

Figure 14.24 Pico pin configuration

14.9.1 Project 7 – Raspberry Pi 5 and Raspberry Pi Pico W communica-
tion – controlling a relay over Wi-Fi
Description: In this project, you have a Raspberry Pi 5 and Raspberry Pi Pico W. A push-
button is connected to Pico, and a +3.3 V relay is connected to the Raspberry Pi 5. Pressing 
the button on the Pico sends a command to the Raspberry Pi over the Wi-Fi to activate the 
relay. The relay remains active for 5 seconds. In this project, Raspberry Pi and Pico commu-
nicate using the UDP protocol. Raspberry Pi is the server and Pico is the client.

Block diagram: Figure 14.25 shows the block diagram of the project.

Raspberry 5 Projects.indd   276Raspberry 5 Projects.indd   276 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 277

Figure 14.25 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 14.26 with the but-
ton and relay connected to the Pico and Raspberry Pi respectively.

Figure 14.26 Circuit diagram of the project

Pico program listing: Figure 14.27 shows the Pico program listing (picoudp.py). At the 
beginning of the program, LED is assigned to port GP2 and is turned OFF. The Function 
Connect() is called to connect to the local Wi-Fi network. Then, a socket is created with 
port number 2000 and IP address 192.168.3.21. When the Button is pressed, the program 
sends 1 to the Raspberry Pi 5 so that the LED can be turned ON. This process is repeated 
after a 1-second delay.

Raspberry 5 Projects.indd   277Raspberry 5 Projects.indd   277 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 278

#----------------------------------------------------------
#	 RASPBERRY PI PICO W - RASPBERRY PI 5 COMMS
#	 ==========================================
#
# In this project a pushbutton is connected to GP2 of PICO W.
# Presingthe button sends a command to Raspberry Pi 5 to
# activate a relay. UDP protocol is used in this project
#
# Author: Dogan Ibrahim
# File  : picoudp.py
# Date  : October, 2023
#------------------------------------------------------------
from machine import Pin
import network
import socket
import utime
global wlan

BUTTON = Pin(2, Pin.IN)				    # Button at GP2

#
# This function attempts to connect to Wi-Fi
#
def connect():
    global wlan
    wlan = network.WLAN(network.STA_IF)
    while wlan.isconnected() == False:
       print("Waiting to be connected")
       wlan.active(True)
       wlan.connect("TP-Link_6138_EXT", "24844604")
       utime.sleep(5)

connect()
print("Connected")
UDP_PORT = 2000					     # Port used
UDP_IP = "192.168.3.21"				    # Zero 2W IP
cmd = b"1"						      # Cmd to turn ON
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

while True:
    while BUTTON.value() == 1:				   # Not pressed
       pass
    while BUTTON.value() == 0:				   # Not released
       pass
    sock.sendto(cmd, (UDP_IP, UDP_PORT))		  # Send cmd
    print("Command sent")				    # Message
    utime.sleep(1)					      Wait 1 sec

Figure 14.27 Raspberry Pi Pico W program listing (picoudp.py)

Raspberry 5 Projects.indd   278Raspberry 5 Projects.indd   278 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 279

Raspberry Pi 5 program listing: Figure 14.28 shows the Raspberry Pi 5 program listing 
(RPiudp.py). At the beginning of the program the libraries used are imported, the relay 
control output is configured at port GPIO 2 and is deactivated. Then a socket is created, and 
the program binds to it with the Raspberry Pi 5 address. The program then waits to receive 
a command from the Pico. The received command is stored in variable data and if it is 1, 
then the relay is activated for 5 seconds. At the end of this time, the relay is deactivated 
and the program repeats waiting for a command.

#=============================================================
#	 RASPBERRY PI PICO W - RASPBERRY PI 5 COMMS
#	 ==========================================
#
# This is the UDP server program running on Raspberry Pi 5.
# The program receives a command from PICO W and activates a
# relay connected to GPIO 2 for 5 seconds
# 
# Author: Dogan Ibrahim
# File  : RPiudp.py
# Date  : October, 2023
#============================================================
from gpiozero import LED
import socket
from time import sleep

RELAY = LED(2)				   # Relay at port GPIO 2
RELAY.off()				    # RELAY off

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(("192.168.3.196", 2000))

try:
  while True:
    data, addr = sock.recvfrom(1024)	 # GEt command
    if data == b'1':			   # Command is 1?
       RELAY.on()			   # Activate Relay
       sleep(5)			   # 5 seconds delay
       RELAY.off()			   # Deactivate Relay

except KeyboardInterrupt:		  # Keyboard interrupt
  print("\nClosing connection to client")
  sock.close()

Figure 14.28 Raspberry Pi 5 program listing (RPiudp.py)

Raspberry 5 Projects.indd   279Raspberry 5 Projects.indd   279 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 280

Testing the project
The steps to test the project are:

•	Run the server on Raspberry Pi 5:

pi@raspberry: ~$ python RPiudp.py

•	Run the Pico program in Thonny by clicking the green Run button. You should 
see the message Connected when Pico connects to the local router.

•	Push the button on Pico. The message Command sent will be displayed on Pico 
terminal. A packet will be sent to Raspberry Pi 5 which will turn ON the LED for 
5 seconds

•	Enter Ctrl+C to terminate the program

14.10 Project 8 - Storing ambient temperature and atmospheric pres-
sure data on the Cloud
Description: In this project, the ambient temperature and atmospheric pressure are read 
and stored on the Cloud. A BME280 type sensor module (see Chapter 10.6) is used in this 
project.

Block diagram: The block diagram of the project is shown in Figure 14.29.

Figure 14.29 Block diagram of the project

Circuit diagram: Figure 14.30 shows the circuit diagram. SCL and SDA pins of BME280 
are connected to SDA (pin 3) and SCL (pin 5) of Raspberry Pi 5. The sensor is powered 
from +3.3 V.

Raspberry 5 Projects.indd   280Raspberry 5 Projects.indd   280 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 281

Figure 14.30 Circuit diagram of the project

The Cloud
There are several cloud services that can be used to store data (for example SparkFun, 
ThingSpeak, Cloudino, Bluemix etc.). In this project, the Thingspeak is used. This 
is a free cloud service where sensor data can be stored and retrieved using simple HTTP 
requests. Before using the Thingspeak we have to create an account on their website and 
then log in to this account. 

Go to the ThingSpeak website:

	 https://thingspeak.com/

Click Get Started For Free and create an account if you don't already have one. Then, 
you should create a New Channel by clicking on New Channel. Fill in the form as shown 
in Figure 14.31. Give the name Raspberry Pi 5 to the application, give a description, and 
create two fields called Atmospheric Pressure and Temperature. You can optionally fill 
in the other items as well if you wish.

Figure 14.31 Create a New Channel (only part of the form shown)

Raspberry 5 Projects.indd   281Raspberry 5 Projects.indd   281 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 282

Click Save Channel at the bottom of the form. Your channel is now ready to be used with 
your data. You will now see tabs with the following names. You can click on these tabs and 
see the contents to make corrections if necessary:

•	Private View: This tab displays private information about your channel where 
only you can see.

•	Public View: If your channel is public, use this tab to display selected fields and 
channel visualizations.

•	Channel Settings: This tab shows all the channel options you set at creation. 
You can edit, clear, or delete the channel from this tab.

•	API Keys: This tab displays your channel API keys. Use the keys to read from 
and write to your channel.

•	Data Import/Export: This tab enables you to import and export channel data.

You should click the API Keys tab and save your unique Write API and Read API keys 
and unique Channel ID in a safe place, as you will need to use them in our program. The 
API Keys and the Channel ID in this project were as in Figure 14.32.

Figure 14.32 Author's Channel ID and API Keys

Also, select the Public View and navigate to Sharing. You may select the option Share 
channel view with everyone so that everyone can access your data remotely.

Program listing: In this program you will be using the BME280 library as in Chapter 10.6. 
The steps to install the library are not repeated here.

After constructing the circuit, you should check to make sure that the BME280 is detected 
by the Raspberry Pi 5. Enter the following command:

Raspberry 5 Projects.indd   282Raspberry 5 Projects.indd   282 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 283

	 pi@raspberrypi:~ $ sudo i2cdetect –y 1

You should see the hardware address of the BME280 chip displayed as 76 (see Figure 14.33).

Figure 14.33 BME280 hardware address detected

Figure 14.34 shows the program listing (Cloud.py). At the beginning of the program, the 
libraries used are imported to the program. Thingspeak Write Key and Host Address are 
defined. The main program loop starts with the while statement. Inside this loop, the IP 
address of the Thingspeak website is extracted, and a connection is made to this site at 
port 80. Then the atmospheric pressure and temperature readings are obtained from the 
BMP280 module and are included in the path statement. The sock.send statement sends 
an HTTP GET request to the ThingSpeak site and uploads the pressure and temperature 
values. This process is repeated every 30 seconds.

Figure 14.35 shows the pressure and temperature data plotted by ThingSpeak. The Chart 
Options can be clicked to change various parameters of the charts. For example, Fig-
ure 14.36 shows the temperature as a column display. In Figure 14.37 the pressure is 
shown as a step graph. A title and X-axis label is added in Figure 14.38 to the pressure 
graph. Figure 14.39 shows the current temperature displayed in a clock format (click Add 
Widgets for this type of display). Figure 14.40 shows the current temperature in digital 
format.

Because the Channel was saved as Public, you can view the graph from a web browser (see 
Figure 14.41) by entering the Channel ID. In this project, the link to view the data graphs 
from a web browser is:

	 https://api.thingspeak.com/channels/2304635

We can also export some or all of the fields in CSV format by clicking Export recent data 
so that it can be analysed by external statistical packages such as Excel.

#-----------------------------------------------------------------------------
#        ATMOSPHERIC PRESSURE AND TEMPERATURE ON THE CLOUD
#	  =================================================
#
# The ambient temperature and pressure sensor BMPE280 is connected to Raspberry
# Pi 5.The project reads the temperature and atmospheric pressure and sends

Raspberry 5 Projects.indd   283Raspberry 5 Projects.indd   283 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 284

# to the Cloud where it can be accessed from anywhere. In addition, change
# of the temperature and the pressure can be plotted in the cloud.
#
#
# The program uses the Thingspeak cloud service
#
# Author: Dogan Ibrahim
# File  : Cloud.py
# Date  : October, 2023
#------------------------------------------------------------------------------
import socket
from time import sleep
from bme280pi import Sensor

sensor = Sensor(address = 0x76)

APIKEY = "9D8X6FABBQLX45LK"                    # Thingspeak API key
host = "api.thingspeak.com"                    # Thigspeak host

#
# Send data to Thingspeak. This function sends the temperature and
# humidity data to the cloud every 30 seconds
#
while True:
   sock = socket.socket()
   addr = socket.getaddrinfo("api.thingspeak.com",80)[0][-1] 
   sock.connect(addr)
   data = sensor.get_data()
   p = data['pressure']				    # Pressure in haP
   t = data['temperature']                  	 # Temperature in C
   path = "api_key="+APIKEY+"&field1="+str(p)+"&field2="+str(t)  
   sock.send(bytes("GET /update?%s HTTP/1.0\r\nHost: %s\r\n\r\n" 
%(path,host),"utf8"))
   sleep(5)
   sock.close()
   sleep(25)

Figure 14.34 Program listing

Raspberry 5 Projects.indd   284Raspberry 5 Projects.indd   284 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 285

  
Figure 14.35 Plotting the pressure and temperature

Figure 14.36 Displaying temperature as columns

Figure 14.37 Displaying pressure as steps

Raspberry 5 Projects.indd   285Raspberry 5 Projects.indd   285 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 286

  
Figure 14.38 Adding title and x-axis label

Figure 14.39 Displaying the current temperature in a clock format

Figure 14.40 Displaying the current temperature in digital format

Raspberry 5 Projects.indd   286Raspberry 5 Projects.indd   286 09-11-2023   15:4509-11-2023   15:45



Chapter 14 • Communication over Wi-Fi

● 287

Figure 14.41 Displaying the graphs from a website

Raspberry 5 Projects.indd   287Raspberry 5 Projects.indd   287 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 288

Chapter 15 • Communication over Bluetooth

15.1 Overview
In the last chapter, you have learned how to write programs to use the Wi-Fi and communi-
cate with other devices over the LAN using the UDP and TCP protocols. In this chapter, you 
will develop programs for using the Bluetooth communication.

Bluetooth is a short-range communication technology and is commonly used to communi-
cate with other devices, mainly developed with the IoT applications in mind. All smartphones 
nowadays support communication through Bluetooth. Bluetooth operates at 2.4 GHz, with 
data rates lower than that of Wi-Fi. Bluetooth is not as secure as Wi-Fi, but it is easier to 
use. The power consumption of Bluetooth is lower compared to Wi-Fi, and also it has a 
shorter range than Wi-Fi. Bluetooth is a packet-based protocol with a master-slave archi-
tecture, where one master may communicate with up to seven slaves. The effective range 
of Bluetooth depends on propagation conditions, antenna configuration, power supply con-
dition, material coverage and so on. Most Bluetooth applications are for indoors where 
because of the walls the signals attenuate and result in shorter range.

Raspberry Pi 5 supports both the Classic Bluetooth and Bluetooth Low Energy (BLE). BLE 
is intended for reduced power applications while providing reasonable range. Most smart-
phones, including Android, iOS, Windows Phone, Blackberry, macOS and many others sup-
port the BLE. BLE uses the same 2.4 GHz radio frequency as the classic Bluetooth and 
dual-mode devices, therefore can share the same single antenna. Classical Bluetooth can 
handle large amounts of data quickly, whereas BLE has been developed to handle smaller 
amounts of data.

15.2 Project 1 – Exchanging text with a smartphone
Description: In this project, Classical Bluetooth communication is established between 
the Raspberry Pi 5 and an Android smartphone. Text messages are exchanged between 
the two devices.

Block diagram: Figure 15.1 shows the block diagram of the project.

Figure 15.1 Block diagram of the project

Raspberry 5 Projects.indd   288Raspberry 5 Projects.indd   288 09-11-2023   15:4509-11-2023   15:45



Chapter 15 • Communication over Bluetooth

● 289

Enabling Bluetooth
Before using your smartphone for Bluetooth applications, you must enable the Bluetooth 
on it. Depending on the model of the smartphone you have, this is usually done from the 
Settings menu.

Similarly, before using Bluetooth on your Raspberry Pi, you must enable it. There are two 
ways you can enable Bluetooth on the Raspberry Pi 5: using the graphical desktop (GUI 
mode), or using the Console mode. 

Using the Graphical Desktop
The steps for enabling Bluetooth on the Raspberry Pi 5 using the graphical desktop are 
given below:

•	Enable Bluetooth on your smartphone

•	If you have a monitor connected directly to the Raspberry Pi 5 then skip the 
next line

•	Start the VNC server on your Raspberry Pi 5 and login using the VNC Viewer.

•	Click on the blue Bluetooth icon on your Raspberry Pi 5 screen at the top right-
hand side, and turn Bluetooth ON, if it is not already ON. Then, select Make 
Discoverable. You should see the Bluetooth icon flashing. Click Add Device

•	Select raspberrypi in the Bluetooth menu (raspberrypi is the default 
Bluetooth name of your Raspberry Pi 5) on your mobile device (you may have 
to scan on your mobile device). You should see the Connecting message on 
your smart device.

•	Click Pair to accept the pairing request on your Raspberry Pi 5 as shown in 
Figure 15.2

Figure 15.2 Bluetooth pairing request on Raspberry Pi 5

•	You should now see the message Pairing Successfully on your Raspberry Pi 5

Raspberry 5 Projects.indd   289Raspberry 5 Projects.indd   289 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 290

Using Console mode
You can enable Bluetooth on your Raspberry Pi 5 using the Console mode. Additionally, you 
can make Bluetooth discoverable, scan for nearby Bluetooth devices and then connect to a 
Bluetooth device. The steps are given below (characters typed by the user are in bold for 
clarity):

•	Find the Bluetooth MAC address of your smartphone. For Android phones, the 
steps are usually:

•	Go to the Settings menu

•	Tap About Phone

•	Tap Status information

•	Scroll down to see your Bluetooth address (e.g. Figure 15.3). In this 
example, the MAC address was 50:50:A4:0F:62:3F

Figure 15.3 Bluetooth MAC address

•	Make your Bluetooth discoverable with the following command:

pi@raspberrypi: ~ $ sudo hciconfig hci0 piscan

•	Start the Bluetooth tool on your Raspberry Pi 5 from the command mode:

pi@raspberrypi:~ $ bluetoothctl

Raspberry 5 Projects.indd   290Raspberry 5 Projects.indd   290 09-11-2023   15:4509-11-2023   15:45



Chapter 15 • Communication over Bluetooth

● 291

•	Turn Bluetooth ON:

[bluetooth]# power on 

•	Configure Bluetooth to run:

[bluetooth]# agent on
[bluetooth]# default-agent

•	Make device discoverable:

[bluetooth]# discoverable on

•	Scan for nearby Bluetooth devices, you may have to wait several minutes:

[bluetooth]# scan on

•	Enter command devices to see the nearby Bluetooth devices (see Figure 15.4). 
You may have to wait a couple of minutes for the display to update. Make a 
note of the MAC address of the device you wish to connect to (Android mobile 
phone in this project) as we will be using this address to connect to the device. 
An example is shown in Figure 15.4:

[Bluetooth]# devices

Figure 15.4 Nearby Bluetooth devices

In this example, the author's smartphone is Galaxy A71 and the Bluetooth 
MAC address is: 50:50:A4:0F:62:3F

•	Pair the device:

[bluetooth]# pair 50:50:A4:0F:62:3F

•	Connect to our smartphone:

[bluetooth]# connect 50:50:A4:0F:62:3F

•	Enter yes to confirm passkey

•	Accept pairing on your smartphone

Raspberry 5 Projects.indd   291Raspberry 5 Projects.indd   291 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 292

•	You should see message device 50:50:A4:0F:62:3F Connected : yes 
displayed

•	Exit from the Bluetooth tool by entering Ctrl+Z

You can find the Bluetooth MAC address of your Raspberry Pi 5 by entering the following 
command:

	 pi@raspberrypi:~ $ hciconfig | grep "BD Address"

You can change the Bluetooth broadcast name by the following command:

	 pi@raspberrypi:~ $ sudo hciconfig hci0 name "new name"

To see your Bluetooth broadcast name, enter:

	 pi@raspberrypi:~ $ sudo hciconfig hci0 name

Some other useful Raspberry Pi 5 Bluetooth commands are:

•	To reset the Bluetooth adapter: sudo hciconfig hci0 reset
•	To restart Bluetooth: sudo invoke-rc.d bluetooth restart
•	To list Bluetooth adapters: hciconfig

Python Classical Bluetooth Library
You will need to install the Python Classical Bluetooth library before developing your pro-
gram. This is done by entering the following command in the command mode:

	 pi@raspberrypi:~ $ sudo apt-get install bluez python3-bluez

Accessing From the Mobile Phone
To access the Raspberry Pi 5 from a smartphone app, make the following changes to your 
Raspberry Pi 5 from the command line:

•	Start nano to edit the following file:

pi@raspberrypi:~ $ sudo nano /etc/systemd/system/dbus-org.
bluez.service

•	Add –C at the end of the ExecStart= line. Also add another line after the 
ExecStart line. The final two lines should look like:

	 ExecStart=/usr/libexec/bluetooth/bluetoothd -C
	 ExecStartPost=/usr/bin/sdptool add SP

•	Exit and save the file by entering Ctrl+X followed by Y

Raspberry 5 Projects.indd   292Raspberry 5 Projects.indd   292 09-11-2023   15:4509-11-2023   15:45



Chapter 15 • Communication over Bluetooth

● 293

•	Reboot the Raspberry Pi 5:

pi@raspberrypi:~ $ sudo reboot

Program listing: Figure 15.5 shows the program listing (bluetxt.py). Do not call your 
program Bluetooth.py! The Bluetooth code is similar to TCP/IP code. At the beginning of 
the program, modules socket, and Bluetooth are imported to the program. The program 
then creates a Bluetooth socket, binds and listens on this socket, and then waits to accept 
a connection. The remainder of the program is executed in a loop, where the program 
issues the statement ClientSock.recv and waits to read data from the smartphone. The 
received data is decoded and displayed on the screen. The user is then expected to send a 
text message to the smartphone. This message is displayed on the smartphone's screen. 
This process is repeated until stopped by the user.

#=======================================================
#		  BLUETOOTH COMMUNICATION
#		  =======================
#
# In this project text messages are exchanged with a smart
# phone using the Bluetooth protocol
#
# Author: Dogan Ibrahim
# File  : bluetxt.py
# Date  : October, 2023
#========================================================
import socket
import bluetooth

#
# Start of main program loop.Configure Bluetooth, create a
# port, listen for client connections, and accept connection
#
port = 1
ServerSock = bluetooth.BluetoothSocket(bluetooth.RFCOMM)
ServerSock.bind(("", port))
ServerSock.listen(1)
ClientSock, addr = ServerSock.accept()

#
# Now receive text from smart phone and display
#
try:

   while True:
      data = ClientSock.recv(1024)			   # receive text
      print("Received data: ", data.decode('utf-8'))

Raspberry 5 Projects.indd   293Raspberry 5 Projects.indd   293 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 294

      msg = input("Enter data to send: ")		  # TExt to send
      ClientSock.send(msg.encode('utf-8'))		  # Send text

except KeyboardInterrupt:				    # Keyboard int
      ServerSock.close()				    # Close socket

Figure 15.5 Program listing

Testing
The project can be tested by the following steps:

•	Make sure that Bluetooth is enabled on both the smartphone and Raspberry 
Pi 5 and they are paired

•	You can use the freely available Bluetooth apps on our smartphone to 
communicate with the Raspberry Pi 5. In this project, the apps called 
Bluetooth Terminal HC05 by mightyIT is used (Figure 15.6)

Figure 15.6 Android Bluetooth apps used in the project

•	Start the Raspberry Pi program:

pi@raspberrypi:~ $ python bluetxt.py

•	Start the smartphone apps and select the paired Raspberry Pi 5 device (e.g. 
raspberrypi)

•	Enter a message in column Enter ASCII Command and press Send ASCII. 
The message will be sent to the Raspberry Pi 5.

•	Enter a message on the Raspberry Pi 5. This message will be sent and 
displayed on the smartphone top part of the screen

•	Figure 15.7 shows an example message exchange between the Raspberry Pi 5 
and the smartphone. In this example, the smartphone sends the message: 
message from the smartphone and Raspberry Pi 5 sends the message: 

Raspberry 5 Projects.indd   294Raspberry 5 Projects.indd   294 09-11-2023   15:4509-11-2023   15:45



Chapter 15 • Communication over Bluetooth

● 295

message from Raspberry Pi 5

Figure 15.7 Message exchange between the Raspberry Pi 5 and a smartphone

•	Enter Ctrl+C to close the socket and terminate the program

15.3 Project 2 – Bluetooth control of LED from a smartphone
Description: In this project, an LED is connected to port GPIO 21 (pin 40) of Raspberry 
Pi 5 through a 470 Ohm current limiting resistor. The LED is controlled by sending com-
mands from an Android smartphone using Bluetooth communication.

The following commands can be sent from the Android smartphone to control the LED:

	 L1	 Turn the LED ON
	 L0	 Turn the LED OFF

Block diagram: Figure 15.8 shows the block diagram of the project.

Figure 15.8 Block diagram of the project

Raspberry 5 Projects.indd   295Raspberry 5 Projects.indd   295 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 296

Program Listing: Figure 15.9 shows the program listing of the project (blueled.py, do 
not call your program Bluetooth.py!). The Bluetooth code is similar to TCP/IP code. The 
LED port is defined and configured as output through the gpiozero module. The program 
then creates a Bluetooth socket, binds and listens on this socket, and then waits to accept a 
connection. The remainder of the program is executed in a loop, where the program issues 
the statement ClientSock.recv and waits to read data from the smartphone. Note that 
the smartphone app automatically appends carriage-return and line-feed characters to the 
end of the data (i.e. \r\n)

#=======================================================
#		  LED CONTROL BY BLUETOOTH
#		  ========================
#
# In this project an LED is connected to GPIO 21.The LED
# LED is controlled by sending commands from an Android
# smart phone using a Bluetooth apps.
#
# Valid commands are:
# L1 Turn ON the LED
# L0 Turn OFF the LED
#
# Author: Dogan Ibrahim
# File  : blueled.py
# Date  : October, 2023
#========================================================
import socket
import bluetooth
from gpiozero import LED

#
# LED is at GPIO 21, configure as output and turn OFF
#
led = LED(21)					     # LED at port 21
led.off()					     # LED off

#
# Start of main program loop.Configure Bluetooth, create a
# port, listen for client connections, and accept connection
#
port = 1
ServerSock = bluetooth.BluetoothSocket(bluetooth.RFCOMM)
ServerSock.bind(("", port))
ServerSock.listen(1)
ClientSock, addr = ServerSock.accept()

#

Raspberry 5 Projects.indd   296Raspberry 5 Projects.indd   296 09-11-2023   15:4509-11-2023   15:45



Chapter 15 • Communication over Bluetooth

● 297

# Now receive comamnds and decode
#
try:

   while True:
     data = ClientSock.recv(1024)		  # receive command
     if data == b'L1\r\n':			   # L1?
         led.on()				    # turn ON LED
     elif data == b'L0\r\n':			   # L0?
          led.off()				    # turn OFF LED

except KeyboardInterrupt:			   # Interrupt
     ServerSock.close()

Figure 15.9 Program listing

Testing
The same Android app as in the previous project is used. The steps are:

•	Make sure that the Bluetooth is enabled on both the smartphone and Raspberry 
Pi 5 and that they are already paired

•	Start the Raspberry Pi 5 program:

pi@raspberrypi:~ $ python blueled.py

•	Start the apps as before. To send command L1, enter L1 and click Send 
ASCII. The LED should turn ON.

Suggestion for additional work
You could enter the program name in the following format inside file /etc/rc.local so that 
the program starts automatically every time the Raspberry Pi 5 restarts:

	 python /home/pi/blueled.py &

When you finish your project, don't forget to remove the above line from file /etc/rc.lo-
cal; otherwise the program will run every time your Raspberry Pi 5 is restarted. You should 
also shut down your Raspberry Pi 5 orderly instead of just removing the power cable. The 
command to shut down orderly is:

	 pi@raspberrypi:~ $ sudo shutdown now

15.4 Arduino UNO – Raspberry Pi 5 Bluetooth communication
The Arduino Uno has no built-in Bluetooth module. You have to use an external Bluetooth 
module to communicate with other devices via the Bluetooth protocol. You can, however, 
easily use a serial Bluetooth module, such as the HC-06. In the next section, you will de-

Raspberry 5 Projects.indd   297Raspberry 5 Projects.indd   297 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 298

velop a project and learn how to connect a HC-06 type low-cost Bluetooth module to your 
Arduino UNO and communicate with the Raspberry Pi 5.

15.4.1 Project 3 - Communicating with an Arduino UNO over Bluetooth
Description: In this project, a button is connected to the Arduino UNO. Also, a +3.3 V re-
lay is connected to the Raspberry Pi 5. Pressing the button on the Arduino sends command 
L1 to Raspberry Pi 5 which then activates the relay for 5 seconds. Similarly, sending L0 
deactivated the LED. The aim of this project is to show how the Arduino UNO and Raspberry 
Pi 5 can communicate by using an external Bluetooth module on the Arduino UNO.

The HC-06 Bluetooth module
HC-06 is a low-cost, popular 4-pin serially controlled module with the following pins (see 
Figure 15.10):

Figure 15.10 The HC-06 Bluetooth module

HC-06 is a serially controlled module, having the following basic specifications:

•	+3.3 V to +6 V operation
•	30 mA unpaired current (10 mA matched current)
•	Built-in antenna
•	Band: 2.40 GHz – 2.48 GHz
•	Power level: +6 dBm
•	Default communication: 9600 baud, 8 data bits, no parity, 1 stop bit
•	Signal coverage: 30 feet
•	Safety feature: Authentication and encryption
•	Modulation mode: Gauss frequency shift keying

Block diagram: Figure 15.11 shows the block diagram of the project.

Figure 15.11 Block diagram of the project

Circuit diagram: The circuit diagram is shown in Figure 15.12. The button is connected to 
pin 2 of Arduino UNO through a pull-up resistor. The relay is connected to port GPIO 21 of 
the Raspberry Pi 5. HC-06 is a serial device with TX and RX pins. Only the RX input of the 
HC-06 is used, since in this project you only send data to the Bluetooth module. The output 
pin voltage of the Arduino UNO is +5 V, but HC-06 is not 5-V compatible. Therefore, a resis-

Raspberry 5 Projects.indd   298Raspberry 5 Projects.indd   298 09-11-2023   15:4509-11-2023   15:45



Chapter 15 • Communication over Bluetooth

● 299

tive voltage divider circuit is used to lower the Arduino voltage to +3.3 V. TX pin of HC-06 is 
connected to pin 3 of Arduino UNO (pin 3 is configured as a software serial port in software)

Figure 15.12 Circuit diagram of the project

Connecting to Arduino over Bluetooth
You will find the MAC address of the HC-06 and then use this address to connect to it. The 
default HC-06 passcode is 1234. The steps to find the MAC address are:

•	Construct the Arduino circuit (Figure 15.12) and apply power so that HC-06 can 
be accessible. The red LED on HC-06 will be flashing to indicate that it is not 
currently connected to any device.

•	Make your Raspberry Pi 5 Bluetooth discoverable:

pi@raspberrypi: ~ $ sudo hciconfig hci0 piscan

•	Start the Bluetooth tool:

pi@raspberrypi:~ $ bluetoothctl

•	Turn Bluetooth ON:

[bluetooth]# power on 

•	Configure Bluetooth to run:

[bluetooth]# agent on
[bluetooth]# default-agent

•	Make device discoverable:

[bluetooth]# discoverable on

•	Scan for nearby Bluetooth devices, you may have to wait several minutes:

[bluetooth]# scan on

Raspberry 5 Projects.indd   299Raspberry 5 Projects.indd   299 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 300

•	Enter command devices to see the nearby Bluetooth devices. You may have to 
wait several minutes for the display to update. You should see the HC-06 listed 
with its MAC address.

[Bluetooth]# devices

In this example, the author's HC-06 was identified with the MAC address: 
98:D3:91:F9:6C:19

•	After finding its MAC address, you may get information about the HC-06 by 
entering the following command:

[Bluetooth]# info 98:D3:91:F9:6C:19

Which may be displayed as in Figure 15.13:

Figure 15.13 Getting information on HC-06

	 If Trusted: no is displayed, enter command trust 98:D3:91:F9:6C:19

Exit the Bluetooth tool by entering Ctrl+Z and then enter the following statement to make 
a connection in command mode (enter your own HC-06 MAC address):

•	pi@raspberrypi:~ $ sudo rfcomm connect hcio 98:D3:91:F9:6C:19 &
•	Enter Ctrl+C to exit

You should be connected now and the red LED on HC-06 should stop flashing. You are now 
ready to develop your programs for the Arduino UNO and Raspberry Pi 5.

Raspberry Pi 5 program: Figure 15.14 shows the Raspberry Pi 5 program (zeroprog.
py). In this program, we will not be using the Bluetooth library. When we connect to the 
HC-06, a virtual serial terminal named /dev/rfcomm0 is created on the Raspberry Pi 5. 
You can read the commands sent by the HC-06 by opening this serial port and then reading 
the data. 

Raspberry 5 Projects.indd   300Raspberry 5 Projects.indd   300 09-11-2023   15:4509-11-2023   15:45



Chapter 15 • Communication over Bluetooth

● 301

Serial port /dev/rfcomm0 is opened with the baud rate set to 9600 (default baud rate of 
HC-06 is 9600) using the following statement:

	 ser = serial.Serial(port='/dev/rfcomm0', baudrate=9600)

Data sent by HC-06 is then read using statement: 

	 data = ser.read()

If the received data is b'1' then the relay is activated for 5 seconds by the following state-
ments:

	 RELAY.on()
	 sleep(5)
	 RELAY.off()

#=======================================================
#		  RELAY CONTROL BY BLUETOOTH
#		  ==========================
#
# In this project a Relay is connected to GPIO 21.The
# Relay is controlled by sending command from an Arduino
# Uno using a Bluetooth apps.
#
# Valid command is: «1»
#
# Author: Dogan Ibrahim
# File  : zeroprog.py
# Date  : October, 2023
#========================================================
import serial
from time import sleep
from gpiozero import LED

#
# Relay is on GPIO 21, configure as output and turn OFF
#
RELAY = LED(21)			   # Relay at port 21
RELAY.off()				    # Relay off

#
# Attach to virtual serial port /dev/rfcomm0
#
ser = serial.Serial(port='/dev/rfcomm0', baudrate=9600)

#

Raspberry 5 Projects.indd   301Raspberry 5 Projects.indd   301 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 302

# Now receive commands and decode
#
try:

   while True:
     data = ser.read()			  # receive comman
     if data == b'1':			   # 1?
         RELAY.on()			   # activate Relay
         sleep(5)			   # 5 seconds
         RELAY.off()			   # Relay OFF

except KeyboardInterrupt:		  # Interrupt
     RELAY.off()			   # deactivate Relay

Figure 15.14 Program: zeroprog.py

Arduino UNO program: Figure 15.15 shows the Arduino Uno program (ardprog). A soft-
ware serial port is used in this program, where pin 3 is configured as the TX pin and pin 4 
as the RX pin (RX is not used in this project). Button is then assigned to port 2. Inside the 
setup() function, serial port baud rate is set to 9600 and Button is configured as an input 
pin. Inside the main program loop, the program waits until the button is pressed and then 
released. '1' is then sent to the HC-06, where Raspberry Pi 5 will turn ON the relay when 
it receives this command.

/*================================================
      ARDUINO UNO - RASPBERRY PI 5
      ============================

In this project a button is connectd to Arduino Uno
pin 2. HC-06 Bluetooth module is connected to pin 3
The program sends command "1" over the Bluetooth when
the button is pressed

Autjor: Dogan Ibrahim
File  : ardprog
Date  : October, 2023
==================================================*/
#include <SoftwareSerial.h>
SoftwareSerial MySerial(4, 3);        // rx, tx

int Button = 2;                       // Button at pin 2

void setup() 
{
  MySerial.begin(9600);               // Baud rate
  pinMode(Button, INPUT);             // Button is input

Raspberry 5 Projects.indd   302Raspberry 5 Projects.indd   302 09-11-2023   15:4509-11-2023   15:45



Chapter 15 • Communication over Bluetooth

● 303

}

//
// MAin program looop
//
void loop() 
{
  while (digitalRead(Button) == 1);   // Button not pressed
  while (digitalRead(Button) == 0);   // Button not released
  MySerial.print("1");                // Send "1"
  delay(1000);
}

Figure 15.15 Program: ardprog

Testing

•	Run the Raspberry Pi 5 program:

pi@raspberrypi:~ $ python zeroprog,py

•	Compile and upload the Arduino UNO program

•	Press and release the button. The relay should turn ON for 5 seconds

15.4.2 Project 4 – Play audio (e.g. music) on Bluetooth speaker via 
Raspberry Pi 5
Description: In this project, we will play music on an external Bluetooth speaker via our 
Raspberry Pi 5. We will store our MP3 music files on the Raspberry Pi 5 and then play them 
on the Bluetooth speaker.

Before you can send audio to a Bluetooth speaker, you have to have a program on the 
Raspberry Pi 5 that can play audio files (e.g. MP3 files). In this project, we will be using the 
popular VLC Media Player program on the Raspberry Pi 5. The steps to install VLC are:

•	pi@reaspberrypi:~ $ sudo apt-get update
•	pi@reaspberrypi:~ $ sudo apt-get upgrade
•	pi@raspberrypi:~ $ sudo apt-get install vlc

•	Wait until the VLC program is installed. You need to have MP3 files to test 
the project. Download or copy some of your favourite MP3 music files to your 
Raspberry Pi 5 (e.g. to the default home directory /home/pi or to a newly 
created directory).

You now have to pair with the Bluetooth speaker and connect to it. We will do this from the 
Desktop. The steps are:

Raspberry 5 Projects.indd   303Raspberry 5 Projects.indd   303 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 304

•	Start Desktop on your Raspberry Pi 5

•	Click the Bluetooth icon at the top right-hand corner of Desktop and select to 
turn ON Bluetooth

•	Click on the Bluetooth icon and set to make it discoverable

•	Click on the Bluetooth icon and click Add Device to pair and add your 
speaker, or if your speaker is already listed then click on it and click to Connect 
(in the author's example, the Bluetooth speaker had the name BT-888). See 
Figure 15.15.

Figure 15.16 Click on Bluetooth speaker device to connect to it

•	We are now connected to the speaker. The next thing to do is to direct our 
audio output to the speaker. Right-click on the Volume icon at the top right-
hand corner of the Desktop and select your Bluetooth speaker name (e.g. BT-
888 in the author's case).

•	Open File Manager in Desktop (Accessories → File Manager) and double-
click on your MP3 file. The Bluetooth speaker should start playing your chosen 
music.

•	Click Media → Quit to stop playing the music and exit from VLC.

•	Click File → Close Window to exit File Manager

Suggestion: You can create a Play List using the VLC Media Player and store your favourite 
music files in this list. You can then play the list.

Raspberry 5 Projects.indd   304Raspberry 5 Projects.indd   304 09-11-2023   15:4509-11-2023   15:45



Chapter 16 • Raspberry Pi 5 Camera Projects

● 305

Chapter 16 • Raspberry Pi 5 Camera Projects

16.1 Overview
In this chapter, you will be developing various camera projects using the Raspberry Pi 5. 
The early sections of the chapter describe how to install and use the camera in still picture 
mode. In later sections, you will develop more interesting camera-based projects using the 
Python programming language.

There are several Raspberry Pi camera modules. Version 1 was released in 2013, and it was 
a 5-megapixel model, which is not available anymore from Raspberry Pi. This was followed 
by Version 2, which was 8-megapixels and was released in 2016. The latest model Ver-
sion 3 has 12 megapixels and was released in 2023. Additionally, 12-megapixel high-qual-
ity cameras for use with external lenses with CS or M12 type mounting were released in 
2020 and 2023 respectively. Raspberry Pi cameras are available as either visible-light-type 
or infrared-type for night vision. All cameras can take high-resolution pictures along with 
HD 1080p video, and they can all be controlled by software. See the following link for fur-
ther information on Raspberry Pi cameras:

	 �https://www.raspberrypi.com/documentation/accessories/ 
camera.html#about-the-camera-modules

Note: The Raspberry Pi 5 camera socket is a 15-pin socket, where most of the Rasp-
berry Pi cameras have 22 pins. It may therefore be necessary to purchase a 15-pin to 
22-pin cable to connect your camera to the Raspberry Pi 5 (see Figure 16.1).

Figure 16.1 15-pin to 22-pin camera cable

16.2 Installing the Camera
The steps to install the camera on your Raspberry Pi 5 are as follows:

•	Make sure that your Raspberry Pi 5 is switched off

•	Locate one of the camera ports (Figure 1.1)

Raspberry 5 Projects.indd   305Raspberry 5 Projects.indd   305 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 306

•	Pull up the plastic cable holder slider of the camera port gently by holding from 
both ends. The cable holder slider will open

•	Insert the 15-pin camera ribbon cable (with the connector side facing the white 
side of the connector) into the cable holder

•	Push down the plastic cable holder slider so that it locks and holds the cable

•	Connect the 22-pin side of the cable to your camera

•	Apply power to your Raspberry Pi 5

You should now be able to test your camera interface and carry out camera operations to 
capture still images and video frames. Notice that you must be in Desktop GUI mode with a 
monitor directly attached to Raspberry Pi 5 through the micro-HDMI cable to use the cam-
era. The author had problems using the camera remotely using his PC even though he was 
in Desktop GUI mode. Also, the old camera commands raspistill, raspiyuv, raspivid, and 
raspividyuv are now obsolete and cannot be used with the Raspberry Pi 5.

In this chapter, a Version 2 visible-light camera is used by the author.

16.3 Project 1 - Still camera commands
In this project, you will be investigating and using the various camera commands to capture 
still images.

16.3.1	libcamera
libcamera is the new camera software which supports the four Raspberry Pi cameras: 
V1: OV5647, V2: IMX219, V3: IMX708, and third-party sensors such as IMX290, IMX327, 
OV9281, IMX378. The following libcamera commands are supported:

libcamera-hello: this command starts a camera preview and displays it on the screen for 
5 seconds

libcamera-jpeg: this command captures high resolution JPEG still images

libcamera-still: this is a more complex still camera command which emulates features of 
the original old raspistill command

libcamera-vid: this is a video capture command

libcamera-raw: this command captures raw (unprocessed) frames directly from the cam-
era sensor

libcamera-hello: This command starts the camera and displays a preview window for 
5 seconds. The –t <duration> option enables the user to select for how long the window 
should be displayed, where <duration> is in milliseconds. For example, the following acti-

Raspberry 5 Projects.indd   306Raspberry 5 Projects.indd   306 09-11-2023   15:4509-11-2023   15:45



Chapter 16 • Raspberry Pi 5 Camera Projects

● 307

vates the camera for 10 seconds:

	 libcamera-hello –t 10000

To activate the camera indefinitely, use the command:

	 libcamera-hello –t 0

Use Ctrl+C to stop the camera

The following options are available:

Options
The following website displays all the options:

	 �https://www.raspberrypi.com/documentation/computers/ 
camera_software.html#common-command-line-options

The options are in 3 groups: common options, still camera options, and video options.
Some options are:

Common options:
--help			   display help information
--version			   display the software version
--list-cameras		  list the cameras available for use
--camera			   select a camera to use
--config –c <filename>	 read camera options from file <filename>
--preview (--p)		  preview window settings <x,y,w,h>
--fullscreen (or --f)		  fullscreen preview
--n				    suppress the preview. This is very useful for quickly tak-
ing 
				    images without preview
--info-text			   set window title bar to <text>
--shutter			   set the exposure time in microseconds
--awb			   set the AWB mode
--output			   specify the output filename to save the image
--o				    same as above

Still camera options:
--quality			   JPEG quality number (93 default, 100 maximum)
--exif			   add extra EXIT tags
--timelapse			   time interval between time-lapse captures in millisec-
onds
--datetime			   use date format for the output filename
--timestamp			  use system timestamp for the output filename
--keypress (or --k)		  capture image when the Enter key is pressed

Raspberry 5 Projects.indd   307Raspberry 5 Projects.indd   307 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 308

--encoding (or --e)		  set the image encoding (jpg, png, bmp, rgb, yuv420)
--raw (or --r)		  save raw file

Video options:
--quality (or --q)		  JPEG quality
--bitrate (or --b)		  H.264 bitrate
--codec			   encoder to use (h264,  mjpeg, yuv420, libav)
--keypress (--k)		  toggle between recording and pausing
--split			   split multiple recordings into separate files

Some examples are given below:

libcamera-hello --list
Figure 16.2 shows the available cameras.

Figure 16.2 Available cameras

libcamera-jpeg –o mycamera.jpg	 image is captured and saved in file mycamera.
jpg. To view the captured image, click to open File Manager in Desktop GUI mode, scroll 
down and right-click on the image file mycamera.jpg and select Image Viewer. You 
should see the image displayed on your monitor. An example display is shown in Fig-
ure 16.3

Figure 16.3 example display on the monitor

Raspberry 5 Projects.indd   308Raspberry 5 Projects.indd   308 09-11-2023   15:4509-11-2023   15:45



Chapter 16 • Raspberry Pi 5 Camera Projects

● 309

Notice that there are several menu options when the image is displayed. Selecting the Edit 
menu option, you can copy, flip horizontal, flip vertical, rotate clockwise, rotate anti-clock-
wise, etc. Selecting the View option, you can see in full screen, do a slideshow, zoom in, 
zoom out, etc. Selecting the Go option, you can see the previous or the next image, or the 
last image etc.

libcamera-jpeg –o test.jpg –t 5000 --width 640 --height 480 will display the preview 
for 5 seconds, save the image in file test.jpg where the image will be in VGA format

libcamera-jpeg –o test.jpg –t 3000 --shutter 20000 --gain 1.5 will display the pre-
view for 3 seconds, set the shutter speed to 20 ms and gain to 1.5x

libcamera-still is similar to libcamera-jpeg, but it supports more of the legacy raspistill op-
tions. Some examples are:

libcamera-still –o test.jpg	 image is captured and saved in file test.jpg.

libcamera-still –e bmp –o test.bmp saves the file as BMP format in file test.bmp

libcamera-still –r –o test.jpg saves in raw format 

16.4 Project 2 – �Building a time-lapse camera – Who is in my parking 
place?

Description: In this project, we have positioned our camera to take pictures of our park-
ing place. We will be taking still images every minute (60,000 ms) for the duration of ten 
minutes (600,000 ms).

The stages in creating a time-lapse camera session are as follows:

•	Fix the camera at the place of interest
•	Take a picture of the object to make sure that it is in the field of view and is in 

focus
•	Take pictures of the object at regular intervals
•	Combine the pictures into a movie file
•	Play the movie file

Required Commands: In time-lapse camera sessions, you usually have to store large 
number of pictures taken at regular intervals. Before doing this, you have to know the size 
of a picture, how often the pictures will be taken, and the space available on your storage 
device (e.g. the Raspberry Pi SD card). The author has taken a number of 3280 × 2434 
(8 megapixel) pictures of the same environment at different quality levels using the follow-
ing command:

	 libcamera-still  -t 600000 -o Mypics%d.jpg –timelapse 60000

Raspberry 5 Projects.indd   309Raspberry 5 Projects.indd   309 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 310

The file sizes are as follows:

Quality level (-q setting)	 Exact File size (bytes)	Approximate file size (MB)
	 100			   4,799,812		  4.8
	 50			   4,149,210		  4.2
	 25			   2,484,031		  2.5
	 10			   739,408			  0.74
	 5			   281,971			  0.3

It was observed by the author that there was not much noticeable change in the visible 
quality of the images at different quality levels. It is therefore recommended to take the 
picture at say 10% quality level (option –q 10) where the size of a file is around 0.74 MB. 
If f is how often we want to capture the images in minutes, and d is the total duration of 
the capturing process in minutes, then the required storage is, s = 0.74d/f MB. During 
this period, n = d/f images will be taken and also n files will be created. As an example, if 
we want to capture images every minute for the duration of 10 minutes, then the required 
storage will be s = 0.74 × 10/1 = 7.4 MB and 9 images will be taken with 9 files created.

The required commands to start the time-lapse in this project are as follows. Images will 
be taken every minute for the duration of 10 minutes. A directory called mypics is created 
and all the created image files are stored in this directory with the filenames starting with 
Mypics and including a four-digit ascending number:

pi@raspberrypi:~ $ mkdir mypics
pi@raspberrypi:~ $ cd mypics
pi@raspberrypi:~/mypics $ libcamera-still  -t 600000 -o Mypics%04d.jpg 
--timelapse 60000 –q 10

Figure 16.4 shows the files created in directory mypics. The image files are created with 
the names such as Mypics0000.jpg, Mypics0001.jpg, Mypics0002.jpg, … etc.

pi@raspberrypi:~/mypics $ ls
Mypics0000.jpg  Mypics0002.jpg  Mypics0004.jpg  Mypics0006.jpg  Mypics0008.jpg
Mypics0001.jpg  Mypics0003.jpg  Mypics0005.jpg  Mypicd0007.jpg
pi@raspberrypi:~/mypics $ ls

Figure 16.4 Created image files

After all the still JPEG files have been created, you may want to join the files together and 
create a video file. This can be done in several ways. In this section, we shall be using the 
software called ffmpeg which is already installed on Raspberry Pi 5.

Now we can join our JPEG files together into a video file. Enter the following commands to 
move to the directory where the files are, and then join the still image files to create the 
video file Mytimelapse.mp4:

Raspberry 5 Projects.indd   310Raspberry 5 Projects.indd   310 09-11-2023   15:4509-11-2023   15:45



Chapter 16 • Raspberry Pi 5 Camera Projects

● 311

	 pi@raspberrypi:~ $ cd mypics

	� pi@raspberrypi:~/mypics $ ffmpeg -framerate 1 –i Mypics%04d.jpg –c:v 
libx264 –r 30 Mytimelapse.mp4 

The above command takes all the input images, -i Mypics%04d.jpg. This will search 
for the image with the lowest digit and sets that as the starting image. It will then incre-
ment that number by one and if the image exists, it will be added to the sequence. Option 
-framerate 1 is used to define how fast the pictures are read in, in this case, one picture 
per second. Omitting the frame rate will default to 25. -r 30 is the frame rate of the output 
video. Again, if it defaults to 25 if not defined. The -c:v libx264 specifies the codec to use 
to encode the video. x264 is a library used for encoding video streams into the H.264/
MPEG-4 AVC compression format.

You can play the output video (Mytimelapse.mp4) file by double-clicking on it and se-
lecting the VLC media player in your Desktop GUI. You can, if you wish, copy the created 
video file to your PC after installing and using the file copy software called winSCP on your 
PC. After the file is copied to your PC, you can play it using various video player software:

This completes the design of our time-lapse camera processing.

Scheduling the Time-lapse
The process we have described to capture still time-lapse images requires the Raspberry 
Pi 5 to be connected to a computer (or a monitor) so that the commands can be issued 
from the command line. In this section, you will see how to schedule the time-lapse process 
so that it starts automatically after the Raspberry Pi 5 is powered up, without the need to 
connect a monitor or a computer. This can be done using the software tool called crontab 
as described below.

With the command crontab you can specify a list of tasks to be scheduled at specified 
times of the day, and at specified days of the week. You should run crontab by entering the 
following command:

	 pi@raspberrypi:~ $ crontab –e

The first time you run crontab you should be asked to select an editor. Select nano (op-
tion 1) as this is the easiest editor to use. crontab consists of six components for minutes, 
hours, day of the month, month of the year, day of the week, and the command to be ex-
ecuted, organized as shown in Figure 16.5.

Raspberry 5 Projects.indd   311Raspberry 5 Projects.indd   311 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 312

# m h  dom mon dow   command
# * * * * *  command to execute
# ┬ ┬ ┬ ┬ ┬
# │ │ │ │ │
# │ │ │ │ │
# │ │ │ │ └───── day of week (0 - 7) (0 to 6 are Sunday to Saturday, or use 
names; 7 is Sunday, the same as 0)
# │ │ │ └────────── month (1 - 12)
# │ │ └─────────────── day of month (1 - 31)
# │ └──────────────────── hour (0 - 23)
# └───────────────────────── min (0 - 59)

Figure 16.5 crontab fields

Some examples are given below (notice that you must give the full path to the script file):

* * * * * sh /home/pi/test.sh		 run test.sh every minute
*/2 * * * * sh /home/pi/test.sh	 run test.sh every 2 minutes
*/20 * * * * sh /home/pi/test.sh	 run test.sh every 20 minutes
0 0 * * * sh /home/pi/test.sh		 run test.sh every day at midnight
* * * * 1,3 sh /home/pi/test.sh	� run test.sh every minute on Mondays and 

Wednesdays
* 1 * * 1 sh /home/pi/test.sh		 run test.sh every Monday at 1:00 a.m.
30 9 * * 5 sh /home/pi/test.sh	 run test.sh every Friday at 9:30
0 6 * * * sh /home/pi/test.sh		 run test.sh every day at 6 a.m.

As well as single numbers for each of the first 5 parameters, you can also use the following 
special formats:

•	A sequence of numbers, separated by a comma (e.g. 0,20,40,42)
•	A range  (4–9)
•	A sequence of ranges (e.g. 0–10,30-50)
•	An asterisk, meaning 'all' (e.g. *)
•	Every n'th time by adding the /c character  (e.g. */2 for every 2nd minute)

The crontab generator utility helps to generate a crontab table for the specified sched-
uling times. This utility can be accessed from the following website on your PC:

 	  https://crontab-generator.org/

An example use of the crontab generator utility is shown in Figure 16.6 where the utility 
is used to set the scheduling time to be every 5 minutes. The script file is set to /home/
pi/test.sh, which should be entered in the field Command to Execute at the lower part 
of the screen. Then, click Generate Crontab Line. The required crontab command and 
sample times that the script will run at are shown at the top of the crontab generator as 
shown in Figure 16.7.

Raspberry 5 Projects.indd   312Raspberry 5 Projects.indd   312 09-11-2023   15:4509-11-2023   15:45



Chapter 16 • Raspberry Pi 5 Camera Projects

● 313

Figure 16.6 crontab generator utility set to one minute past every hour

Figure 16.7 The required command and sample scheduling times

Now, going back to our project, we wish to run a script file every minute to capture still im-
ages. The script is given the filename timelapse.sh. The crontab command for this project 
should be as follows:

	 */1 * * * * sh /home/pic/mypics/timelapse.sh 2>&1

Notice that 2>&1 at the end of the script ensures that email messages are not sent after 
the command is executed. Here, we redirect 2 (stderr) to 1 (stdout) and since the output 
is redirected to a file, it will not generate emails of outputs. Exit from the crontab table by 
pressing Ctrl followed by Y and return to save the new file.

The scheduled tasks can be listed with the following command. Enter the command, and 
you should see your script file scheduled to run:

	 pi@raspberrypi:~ $ crontab –l

Raspberry 5 Projects.indd   313Raspberry 5 Projects.indd   313 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 314

Next, we have to create the script file timelapse.sh in the folder mypics. This can be done 
using the nano editor. The steps are:

•	Navigate to the folder mypics: pi@raspberrypi:~ $ cd mypics

•	start the nano editor: pi@raspberrypi:~/mypics $ nano timelapse.sh

•	Enter the following lines into the blank file. Variable DATETIME will extract the 
current data and time every time (every minute) the script runs. Date and 
time-stamped images will then be taken and stored in files with extensions 
.jpg. The images will be captured with 10% resolution (-q 10):

DATETIME=$(date +"%d-%m-%Y_%H%M%S")
libcamera-jpeg –q 10 –o /home/pi/mypics/$DATETIME.jpg

•	Exit from the nano editor by pressing Ctrl X followed by Y and return to save

•	Display the contents of the file to make sure that you have the correct lines in 
the file:

pi@raspberrypi:~/mypics $ cat timelapse.sh

•	Make sure that your script file runs correctly. Enter the command: sh 
timelapse.sh

•	and you should see a new JPEG file with the filename containing the date and 
time.

•	You should now reboot your Raspberry Pi 5. The still images will be taken every 
minute after your Raspberry Pi 5 starts. After taking all the necessary images, 
don't forget to edit the crontab table and remove the timelapse.sh entry. Then 
reboot your Raspberry Pi 5 (pi@raspberrypi:~/mypics $  sudo reboot) so that 
no more images will be taken.

•	Check folder mypics to make sure that you have the image files. You can use 
the following command to list the files in the folder:

pi@raspberrypi:~/mypics $ ls

•	After collecting all your images, you may want to join all the image files 
together and create a video file as described earlier.

•	Don't forget to run the crontab –e and remove the scheduling

Raspberry 5 Projects.indd   314Raspberry 5 Projects.indd   314 09-11-2023   15:4509-11-2023   15:45



Chapter 16 • Raspberry Pi 5 Camera Projects

● 315

16.5 Project 3 - Video camera commands
libcamera-vid is the video capture command. By default, it uses the Raspberry Pi's hard-
ware H.264 encoder. It will display a preview window and write the encoded bit stream to 
the specified output. For example, to write a 10-second video to file test.h264, use the 
command:

	 libcamera-vid -t 10000 -o test.h264

Video is recorded as raw H264 format, which is incompatible with many video players. The 
resulting file can be played using the VLC media player program. 

Note that this is an unpacked video bit stream, it is not wrapped in any kind of container 
format (such as an MP4 file). The --save-pts option can be used to output frame times-
tamps so that the bit stream can subsequently be converted into an appropriate format 
using a tool like mkvmerge.

	 libcamera-vid -o test.h264 --save-pts timestamps.txt

and then if you want an mkv file:

	 mkvmerge -o test.mkv --timecodes 0:timestamps.txt test.h264

the following command can be used for mpeg output format:

	 libcamera-vid -t 10000 --codec mjpeg -o test.mjpeg

16.6 Project 4 – Who is ringing my doorbell?
Description: In this project, the camera is mounted on our front door. When the doorbell 
button is pressed, the camera automatically takes a picture of the person ringing the door-
bell, and this picture is sent to an Android smartphone. Additionally, a relay is turned ON 
for 5 seconds to activate a doorbell. 

Block Diagram: Figure 16.8 shows the block diagram of the project.

Figure 16.8 Block diagram of the project

Raspberry 5 Projects.indd   315Raspberry 5 Projects.indd   315 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 316

Circuit Diagram: The circuit diagram of the project is shown in Figure 16.9. The doorbell 
button and the relay are connected to port pins GPIO 20 and GPIO 21 respectively.

Figure 16.9 Circuit diagram of the project

Program listing: In this program, you will be using the OBEX Object Push in Raspberry 
Pi 5 command mode to send pictures to your smartphone using Bluetooth. Before using 
OBEX Object Push, you have to find out the MAC address and the channel number of your 
smartphone. The steps on an Android phone are given below:

•	Enable Bluetooth on your smartphone

•	Go to Settings, then click System

•	Click About phone, then click Status

•	You should see the Bluetooth MAC address listed. On the author's phone, the 
MAC address was 50:50:A4:0F:62:3F, as shown in Figure 16.10

Figure 16.10 Displaying the Bluetooth MAC address

Raspberry 5 Projects.indd   316Raspberry 5 Projects.indd   316 09-11-2023   15:4509-11-2023   15:45



Chapter 16 • Raspberry Pi 5 Camera Projects

● 317

We now have to find the channel number for the Bluetooth communication. Enter the fol-
lowing command on your Raspberry Pi 5 and look for the channel number under section 
Service Name:  OBEX Object Push

	  pi@raspberrypi:~ $ sdptool browse 50:50:A4:0F:62:3F

Figure 16.11 shows the channel number as 12 in this example.

Figure 16.11 Read the channel number

Now, we have to install the OBEX software onto our Raspberry Pi 5. Enter the following 
command:

	 pi@raspberrypi:~ $ sudo apt-get install obexftp

We are now ready to develop our program (bell.py), which is shown in Figure 16.12. The 
button and relay are initialized at the beginning of the program and os module is imported 
since we want to run a shell command from within our Python program. The program then 
enters an endless loop using the while statement. Inside this loop, the program waits until 
the button is pressed. At this point, the camera takes a picture using a libcamera com-
mand and stores in a file called door.jpg. The relay is also activated for 5 seconds. The 
picture is then sent to the smartphone using OBEX.

#------------------------------------------------------------------
#
#               	 WHO IS AT MY DOOR
#               	 =================
#
# In this program a camera, aa pushbutton switch and a relay are all
# connected to Raspberry Pi 5. The camera is positioned outside the
# door so that it can see whos is outside the door.Pressing the button
#  activates the relay for 5 seconds and then takes a picture of the
#  person outside the door and sends it to a smart phone over Bluetooth.
#
# Program: bell.py
# Date   : October, 2023

Raspberry 5 Projects.indd   317Raspberry 5 Projects.indd   317 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 318

# Author : Dogan Ibrahim
#--------------------------------------------------------------------
from gpiozero import LED, Button
from time import sleep			  # import time library
import os

button = Button(20)			   # Button at GPIO 20
relay = LED(21)			   # Relay at GPIO 21
relay.off()

while True:
  sleep(1)
  if button.is_pressed:		  # If button
     relay.on()			   # Relay on for 5 secs
     sleep(5)
     relay.off()
     os.system("obexftp --nopath --uuid none --noconn --bluetooth 
50:50:A4:0F:62:3F --channel 12 -p door.jpg")
  else:
     relay.off()

Figure 16.12 Program listing

Figure 16.13 shows how the program is run and its output on the screen. You should wait 
for the file transfer to complete, since it may take some time. A confirmation message is 
sent to the smartphone before the file transfer takes place. You should click the ACCEPT 
button to receive the picture as shown in Figure 16.14. 

Figure 16.13 Running the program

Raspberry 5 Projects.indd   318Raspberry 5 Projects.indd   318 09-11-2023   15:4509-11-2023   15:45



Chapter 16 • Raspberry Pi 5 Camera Projects

● 319

Figure 16.14 Accept the file transfer

Raspberry 5 Projects.indd   319Raspberry 5 Projects.indd   319 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 320

Index

A
Accelerometer	 241
ADC	 150

B
Binary counting	 119
Blank lines	 70
Bluetooth	 26	
288
BME280	 199
Bookworm	 15, 17
Break statement	 86
Buzzer	 171

C
Car parking	 170
Cat	 38
Chasing LEDs	 126
Chmod	 37
Christmas lights	 124
Cloud	 280
Command prompt	 31
Comments	 70
Comparison operators	 82
Control of flow	 82
Cooler	 15
Cortex-A76	 13
Critically damped mode	 195
CSI	 14
Current time	 235

D
DAC	 204
Data types	 71
Date and time	 55, 110
Dhcpd	 25
Dictionary functions	 81
Dictionary variables	 80
Discoverable	 26
Dpkg	 44
Dusk lights	 165

E
Echo	 42, 168

Electronic dice	 136
Escape sequences	 77
Exceptions	 106

F
Fading LED	 172
File manager	 53
Final	 109
Flashing LED	 115
Floating point	 72
For statement	 84

G
GPIO	 114

H
HC-SR04	 168
HDMI	 13, 17
Help	 40, 53
Htop	 45

I
If-else	 82
Ifconfig	 47
Indentation	 71
Inertial measurement	 241
Integer	 72
IP address	 148
Iwconfig	 47

K
Keyboard input	 81
Keypad	 245
Kill	 46

L
Large font	 18
LCD	 141
LDR	 165
Line continuation	 70
List functions	 79
List variables	 78
Logical operators	 82
Logic level converter	 143
Ls	 35

Raspberry 5 Projects.indd   320Raspberry 5 Projects.indd   320 09-11-2023   15:4509-11-2023   15:45



Index

● 321

M
Matplotlib	 176
Melody maker	 173
Meminfo	 32
MIPI	 14
Morse code	 132
Mv	 41

N
Nano	 56
Netstat	 266
Numbers	 72

O
On-off temperature control	 228
Operators	 73
OS	 15
Overdampled mode	 195

P
Passwd	 22, 33
PCIe	 13
Pie chart	 185
Plotting graphs	 176
Potential divider	 91
Preferences	 53
Putty	 20
Python	 65

R
Randint	 103
Random	 74
Raspberry Pi imager	 28
RC transient charging	 189
RC transient discharging	 191
Reaction timer	 161
Recursive functions	 106
Rename	 41
Reserved words	 70
RL transient	 194
Rmdir	 42
Rotating LEDs	 128

S
Sawtooth wave	 209
SCA	 141

SCL	 141
Seconds counter	 142
Security lock	 252
Sense Hat	 219
Shutdown	 22, 46
Sine	 99
Sine graph	 179
Sine wave	 215
Sort	 41
SPI bus	 205
SSD	 14
SSH	 20
Static IP	 24
Strings	 75
String functions	 76
Super user	 43

T
T-cobbler	 121
TCP	 256
Temperature sensor	 156
Terminal	 54
Terminus	 19
ThingSpeak	 281
Thonny	 66
Tightvnc	 23
Tightvncserver	 23
Tmp36	 157
Top	 44
Triangle wave	 211
Trigonometric functions	 93
Try	 109
Tuple variables	 80
Two dice numbers	 233

U
UDP	 256
Ultrasonic distance measurement	 167
Uname	 32, 48
Up counter	 240
Upgrade	 33
USB-C	 13
User defined functions	 93

V
Variable names	 69

Raspberry 5 Projects.indd   321Raspberry 5 Projects.indd   321 09-11-2023   15:4509-11-2023   15:45



Raspberry Pi 5 Essentials

● 322

Vi	 61
VNC	 23
Voltmeter	 149
Volume control	 55

W
While statement	 85
WiFi	 256
Wired network	 26
Wireless LAN	 29

Raspberry 5 Projects.indd   322Raspberry 5 Projects.indd   322 09-11-2023   15:4509-11-2023   15:45





spi.open(0, 0) 
    # Bus=0, device=0

spi.max_speed_hz 
= 3900000

CS = LED(26)     # GPIO26 is CS ou
tput

CS = LED(26)     # GPIO26 is CS ou
tput

CS.on()      # Disable CS

# This function i
mplements the DAC

. The data in „da
ta“ is sent

# to the DAC

def DAC(data):

   CS.off()     # Enable CS

#
# Send HIGH byte

#
   temp = (data >

> 8) & 0x0F   # Get upper byte

   temp = temp + 
0x30    # OR with 0x30

   spi.xfer2([tem
p])    # Send to DAC

#

CS = LED(26)     # GPIO26 is CS ou
tput

CS.on()      # Disable CS

# This function i
mplements the DAC

. The data in „da
ta“ is sent

# to the DAC

def DAC(data):

   CS.off()     # Enable CS

# Send HIGH byte

   temp = (data >
> 8) & 0x0F   # Get upper byte

   temp = temp + 
0x30    # OR with 0x30

   spi.xfer2([tem
p])    # Send to DAC

#
Dogan Ibrahim

Raspberry Pi 5 
Essentials 

Program, build, and master over 60 projects 
with Python

Raspberry Pi 5 
Essentials
Program, build, and master over 60 projects 
with Python

Prof Dogan Ibrahim has a BSc 
(Hons) degree in Electronic 
Engineering, an MSc degree in 
Automatic Control Engineering, 
and a PhD degree in Digital Signal 
Processing and Microprocessors.

Dogan has worked in many 
organizations and is a Fellow of 
the Institution of Engineering 
and Technology (IET) in UK as 
well as a Chartered Electrical 
Engineer. He has authored over 
100 technical books and over 
200 technical articles on electronics, 
microprocessors, microcontrollers, 
and related fields. Dogan is a 
certified Arduino professional and 
has many years of experience with 
numerous types of microprocessors 
and microcontrollers.

The Raspberry Pi 5 is the latest single-board computer from the Raspberry Pi 
Foundation. It can be used in many applications, such as in audio and 
video media centers, as a desktop computer, in industrial controllers, 
robotics, and in many domestic and commercial applications. In addition 
to the well-established features found in other Raspberry Pi computers, 
the Raspberry Pi 5 o� ers Wi-Fi and Bluetooth (classic and BLE), which 
makes it a perfect match for IoT as well as in remote and Internet-based 
control and monitoring applications. It is now possible to develop many 
real-time projects such as audio digital signal processing, real-time digital 
filtering, real-time digital control and monitoring, and many other real-time 
operations using this tiny powerhouse.

The book starts with an introduction to the Raspberry Pi 5 computer 
and covers the important topics of accessing the computer locally and 
remotely. Use of the console language commands as well as accessing 
and using the desktop GUI are described with working examples. The 
remaining parts of the book cover many Raspberry Pi 5-based hardware 
projects using components and devices such as 

> LEDs and buzzers 
> LCDs
> Ultrasonic sensors
> Temperature and atmospheric pressure sensors
> The Sense HAT
> Camera modules

Example projects are given using Wi-Fi and Bluetooth modules to send 
and receive data from smartphones and PCs, and sending real-time 
temperature and atmospheric pressure data to the cloud.

All projects given in the book have been fully tested for correct operation. 
Only basic programming and electronics experience are required to follow 
the projects. Brief descriptions, block diagrams, detailed circuit diagrams, 
and full Python program listings are given for all projects described. 
Readers can find the program listings on the Elektor Store website, 
www.elektor.com (search for: book title).

TR
IED

•
T

E S T E
D
•

Raspberry Pi 5 Essentials  •  D
ogan Ibrahim

Elektor International Media
www.elektor.com

books booksbooks books

SKU20703_COV_Raspberry Pi 5 Essentials_v02.indd   Alle pagina'sSKU20703_COV_Raspberry Pi 5 Essentials_v02.indd   Alle pagina's 09-11-2023   14:2309-11-2023   14:23


	Search…
	Raspberry Pi 5 Essentials
	All rights reserved
	Contents
	Preface

	Chapter 1 • The Raspberry Pi 5
	1.1 Overview
	1.2 The Raspberry Pi 5

	Chapter 2 • Installing the Raspberry Pi 5 Operating System
	2.1 Overview
	2.2 Using a pre-installed SD card
	2.3 Larger font in Console mode
	2.4 Accessing your Raspberry Pi 5 Console from your PC – the Putty program
	2.4.1 Configuring Putty

	2.5 Accessing the Desktop GUI from your PC
	2.6 Assigning a static IP address to your Raspberry Pi 5
	2.7 Enabling Bluetooth
	2.8 Connecting the Raspberry Pi 5 to a wired network
	2.8.1 Unable to connect to a wired network

	2.9 Installing the Raspberry Pi 5 Bookworm operating system on a blank microSD card

	Chapter 3 • Using The Console Commands
	3.1 Overview
	3.2 The Command Prompt
	3.3 Useful Console commands
	3.3.1 System and user information
	3.3.2 The Raspberry Pi 5 directory structure
	3.3.3 Resource monitoring on the Raspberry Pi 5
	3.3.4 Shutting Down
	3.3.5 Networking
	3.3.6 System information and other useful commands


	Chapter 4 • Desktop GUI – Desktop Applications
	4.1 Overview
	4.2 Desktop GUI Applications
	4.2.1 Applications Menu
	4.2.2 Web browser
	4.2.3 File manager
	4.2.4 Terminal
	4.2.5 Manage Bluetooth devices
	4.2.6 Wi-Fi
	4.2.7 Volume control
	4.2.8 Date and time


	Chapter 5 • Using a Text Editor in Console Mode
	5.1 nano text editor
	5.2 vi text editor

	Chapter 6 • Creating and Running a Python Program
	6.1 Overview
	6.2 Method 1 – Interactively from command prompt in console mode
	6.3 Method 2 – Create a Python file in console mode
	6.4 Method 3 – Create a Python file in Desktop GUI mode
	6.5 Which method?

	Chapter 7 • Python Programming and Simple Programs
	7.1 Overview
	7.2 Variable names
	7.3 Reserved words
	7.4 Comments
	7.5 Line continuation
	7.6 Blank lines
	7.7 More than one statement on a line
	7.8 Indentation
	7.9 Python data types
	7.10 Numbers
	7.11 Strings
	7.11.1 String functions
	7.11.2 Escape sequences

	7.12 Print statement
	7.13 List variables
	7.13.1 List functions

	7.14 Tuple variables
	7.15 Dictionary variables
	7.15.1 Dictionary functions

	7.16 Keyboard input
	7.17 Comparison operators
	7.18 Logical operators
	7.19 Assignment operators
	7.20 Control of flow
	7.20.1 if, if…else, and elif
	7.20.2 for statement
	7.20.3 while statement
	7.20.4 continue statement
	7.20.5 break statement
	7.20.6 pass statement

	7.21 Example 1 – 4-Band resistor colour code identifier
	7.22 Example 2 – Series or parallel resistors
	7.23 Example 3 – Resistive potential divider
	7.24 Trigonometric functions
	7.25 User-defined functions
	7.26 Examples
	7.27 Recursive functions
	7.28 Exceptions
	7.29 try/final exceptions
	7.30 Date and time
	7.31 Creating your own modules

	Chapter 8 • Raspberry Pi 5 LED Projects
	8.1 Overview
	8.2 Raspberry Pi 5 GPIO pin definitions
	8.3 Project 1 – Flashing an LED
	8.4 Project 2 – Alternately flashing LEDs
	8.5 Project 3 – Binary counting with 8 LEDs
	8.6 Project 4 – Christmas lights (random flashing 8 LEDs)
	8.7 Project 5 – Chasing LEDs
	8.8 Project 6 – Rotating LEDs with push-button switch
	8.9 Project 7 – Morse Code exerciser with LED or buzzer
	8.10 Project 8 – Electronic dice

	Chapter 9 • Using an I²C LCD
	9.1 Overview
	9.2 The I²C Bus
	9.3 I²C pins of Raspberry Pi 5
	9.4 Project 1 – Using an I²C LCD – Seconds counter
	9.5 Project 2 – Using an I²C LCD – Display time
	9.6 Project 3 – Using an I²C LCD – Display IP address of Raspberry Pi 5
	9.7 Project 4 – Voltmeter – Output to the screen
	9.8 Project 5 – Voltmeter – Output to LCD
	9.9 Project 6 – Analog temperature sensor thermometer – output to the screen
	9.10 Project 7 – Analog temperature sensor thermometer – output on LCD
	9.11 Project 8 – Reaction timer – output to screen
	9.12 Project 9 – Reaction timer – output to LCD
	9.13 Project 10 – Automatic dusk lights
	9.14 Project 11 – Ultrasonic distance measurement
	9.15 Project 12 – Car parking sensors
	9.16 Project 13 – Fading LED
	9.17 Project 14 – Melody maker

	Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5
	10.1 Overview
	10.2 The Matplotlib graph plotting library
	10.3 Project 1 – RC transient circuit analysis - Charging
	10.4 Project 2 – RC transient circuit analysis - Discharging
	10.5 Transient RL circuits
	10.6 Project 3 – RCL transient circuit analysis
	10.7 Project 4 – Temperature, pressure and humidity measurement – Display on the screen
	10.8 Project 5 – Temperature, pressure and humidity measurement – Plotting the data

	Chapter 11 • Waveform Generation – Using the Digital-to-Analog Converter (DAC)
	11.1 Overview
	11.2 The MCP4921 DAC
	11.3 Project 1 – Generating a square wave signal with any peak voltage up to +3.3 V
	11.4 Project 2 – Generating a sawtooth wave signal
	11.5 Project 3 – Generating a triangle wave signal
	11.6 Project 4 – Generating an arbitrary wave signal
	11.7 Project 5 – Generating a sine wave signal

	Chapter 12 • Using the Sense HAT
	12.1 Overview
	12.2 The Sense HAT interface
	12.3 Programming the Sense HAT
	12.4 Project 1 – Displaying text on Sense HAT
	12.5 Project 2 – Test your math skills – multiplication
	12.6 Project 3 – Learning the times tables
	12.7 Project 4 – Display the temperature, humidity, and pressure
	12.8 Project 5 – ON-OFF temperature controller
	12.9 Project 6 – Generate two dice numbers
	12.10 Project 7 – Display the current time
	12.11 Project 8 – Displaying two-digit integer numbers
	12.12 Project 9 – Up counter
	12.13 The inertial measurement sensor
	12.13.1 Project 10 - Reading the acceleration
	12.13.2 Project 11 – Accelerometer-based dice
	12.13.3 Project 12 – Accelerometer-based LED shapes


	Chapter 13 • Using a 4×4 Keypad
	13.1 Overview
	13.2 Project 1 – Using a 4×4 keypad

	Chapter 14 • Communication over Wi-Fi
	14.1 Overview
	14.2 UDP and TCP
	14.2.1 UDP communication
	14.2.2 TCP communication

	14.3 Project 1 – Sending a text message to a smartphone using TCP/IP
	14.4 Project 2 – Two-way communication with the smartphone using TCP/IP
	14.5 Project 3 – Communicating with a PC using TCP/IP
	14.6 Project 4 – Controlling an LED connected to Raspberry Pi 5 from a smartphone using TCP/IP
	14.7 Project 5 – Sending a text message to a smartphone using UDP
	14.8 Project 6 – Controlling an LED connected to Raspberry Pi 5 from a smartphone using UDP
	14.9 Communicating with the Raspberry Pi Pico W over Wi-Fi
	14.9.1 Project 7 – Raspberry Pi 5 and Raspberry Pi Pico W communication – controlling a relay over Wi-Fi

	14.10 Project 8 – Storing ambient temperature and atmospheric pressure data on the Cloud

	Chapter 15 • Communication over Bluetooth
	15.1 Overview
	15.2 Project 1 – Exchanging text with a smartphone
	15.3 Project 2 – Bluetooth control of LED from a smartphone
	15.4 Arduino UNO – Raspberry Pi 5 Bluetooth communication
	15.4.1 Project 3 - Communicating with an Arduino UNO over Bluetooth
	15.4.2 Project 4 – Play audio (e.g. music) on Bluetooth speaker via Raspberry Pi 5


	Chapter 16 • Raspberry Pi 5 Camera Projects
	16.1 Overview
	16.2 Installing the Camera
	16.3 Project 1 – Still camera commands
	16.3.1 libcamera

	16.4 Project 2 – Building a time-lapse camera – Who is in my parking place?
	16.5 Project 3 – Video camera commands
	16.6 Project 4 – Who is ringing my doorbell?

	Index



