€ lektorbooks

Raspberry Pi 5
Essentials

Dogan lbrahim

(>)lektor

design > share > earn

Raspberry Pi 5 Essentials

Program, build, and master over
60 projects with Python

Dogan Ibrahim

(Slektor

@ This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.

PO Box 11, NL-6114-ZG Susteren, The Netherlands

Phone: +31 46 4389444

@ Al rights reserved. No part of this book may be reproduced in any material form, including photocopying, or
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this
publication, without the written permission of the copyright holder except in accordance with the provisions of the
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to
reproduce any part of the publication should be addressed to the publishers.

® Declaration

The author, editor, and publisher have used their best efforts in ensuring the correctness of the information contained
in this book. They do not assume, and hereby disclaim, any liability to any party for any loss or damage caused by
errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other cause.
All the programs given in the book are Copyright of the Author and Elektor International Media. These programs
may only be used for educational purposes. Written permission from the Author or Elektor must be obtained before
any of these programs can be used for commercial purposes.

@ British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

® ISBN 978-3-89576-586-5 Print
ISBN 978-3-89576-587-2 eBook

@® © Copyright 2023: Elektor International Media B.V.
Editor: Clemens Valens
Prepress Production: D-Vision, Julian van den Berg
Print: Ipskamp Printing, Enschede (NL)

Elektor is the world's leading source of essential technical information and electronics products for pro engineers,
electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers
high-quality content - via a variety of media channels (including magazines, video, digital media, and social media) in
several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

Contents

Contents

2 =Y - T ol 11

Chapter1eTheRaspberry Pi 5ttt nnnnnrnsasnsnsnnnnnnnnnns 13
1. OV VI BW L ot 13
1.2 The Raspberry Pi 5 e e e e e 13

Chapter 2 o Installing the Raspberry Pi 5 OperatingSystemvuu. 17
2.1 OVEIVIEW . vttt e s 17
2.2 Using a pre-installed SD card i 17
2.3 Larger fontin Console mode. i e e 18
2.4 Accessing your Raspberry Pi 5 Console from your PC - the Putty program 20
2.4.1 Configuring PUtty 22
2.5 Accessing the Desktop GUI from your PCottt 23
2.6 Assigning a static IP address to your Raspberry Pi5 24
2.7 Enabling Bluetooth. 26
2.8 Connecting the Raspberry Pi 5 to a wired network. 26
2.8.1 Unable to connecttoawired network o 27

2.9 Installing the Raspberry Pi 5 Bookworm operating system

onablank microSD cardt 28
Chapter 3 e UsingTheConsoleCommandscuverrrrensenannnnnnns 31
3.1 OVEIVIEW o e e e e 31
3.2 The Command Prompt ot e e e e 31
3.3 Useful Console commands s 31
3.3.1 System and user information e 31
3.3.2 The Raspberry Pi 5 directory structure. 33
3.3.3 Resource monitoring on the Raspberry Pi 5 i, 44
3.3.4 Shutting DoWN 46
3.3.5 Networking o e 47
3.3.6 System information and other useful commands 48
Chapter 4 e Desktop GUI-Desktop Applications vt vt it i i e e e e e e nnnnn 50
4.1 OVEIVIEW & o i it e et e 50
4.2 Desktop GUI Applications oo it 50
4.2.1 Applications MenU. oo e 51

Raspberry Pi 5 Essentials

4.2.2 Web browser . . . o e 53
4.2, 3 File Manager . . oo e e e e 53
4.2.4 Terminal e e 54
4.2.5 Manage Bluetooth devices i 54
4.2.6 Wi-Fi. . e 54
4.2.7Volume CoNErol. . . oo e e 55
4.2.8Date and time e 55
Chapter 5 e Using a Text EditorinConsoleMode. ottt iieeennnns 56
5.1 nano text editor e 56
5.2 vitexteditor. e 61
Chapter 6 e Creating and Running a PythonProgramo nunn 65
6.1 OVEIVIEW . vt e 65
6.2 Method 1 - Interactively from command prompt in console mode 65
6.3 Method 2 - Create a Python filein console mode. 65
6.4 Method 3 - Create a Python file in Desktop GUI mode 66
6.5 Whichmethod? 68
Chapter 7 e Python Programming and Simple Programs. s v v v v e e s s v ns 69
7.1 OVEIVIEW & vt e e 69
7.2Variable names 69
7.3 Reserved WOrdS. . . . vt vt e e e 70
7.4 COMMENES & v v e 70
7.5 Line continuation. e 70
7.6 Blank liNes . . . o oo e 70
7.7 More than one statementonaline i 71
7.8 Indentation. 71
7.9 Python data types it e e e 71
7.10 Numbers. . . . 72
711 StriNGS . v e e e 75
7.11.1 String functions 76
7.11.2 ESCAPE SEQUENCES . + « « v v v v vttt e 77
7.12 Printstatement L 77
713 Listvariables. e 78

Contents

7.13. 1 List functions oo e 79
7.14 Tuple variables 80
7.15 Dictionary variables 80
7.15.1 Dictionary functions i e 81
7.16 Keyboard input 81
7.17 Comparison Operators v v v i e e e 82
7.18 Logical operators e e e 82
7.19 Assignment operators 82
7.20 Control of flow. 82
7.20.110f, if..else, and elif e e 82
7.20.2 for statement 84
7.20.3 while statement 85
7.20.4 continue statement. 85
7.20.5 break statement 86
7.20.6 pass statement. e e e e 86
7.21 Example 1 - 4-Band resistor colour code identifier. 87
7.22 Example 2 — Series or parallel resistors 89
7.23 Example 3 - Resistive potential divider e 91
7.24 Trigonometric functions 93
7.25 User-defined functions i 93
7.26 EXamples 96
7.27 Recursive fUNCLIONS s 106
7.28 EXCEPLiONS . . o it e e e e e e e 106
7.29 try/final exceptions 109
7.31 Creating yourown modules. 111
Chapter 8 e Raspberry PiSLEDProjects. it nnnnnsrnnnnnnnns 114
8.1 OVeIVIEW & vt 114
8.2 Raspberry Pi 5 GPIO pin definitions 114
8.3 Project 1 — Flashingan LED 115
8.4 Project 2 - Alternately flashing LEDs o oo oo 118
8.5 Project 3 — Binary counting with 8 LEDs i 119
8.6 Project 4 - Christmas lights (random flashing 8 LEDs) 124

Raspberry Pi 5 Essentials

8.7 Project 5 —Chasing LEDS it e e 126
8.8 Project 6 — Rotating LEDs with push-button switch 128
8.9 Project 7 — Morse Code exerciser with LED or buzzer. 132
8.10 Project 8 — Electronicdice. 136
Chapter9 e Usingan I2CLCD.t uunnnnnssssssssssnnnnnnnnnnns 141
0.1 OVEIVIBW o v it et e e e e e e e e e e e 141
9.2 The I2C BUS .« o v v ot et e et e e 141
9.3I2Cpinsof Raspberry Pi 5. 142
9.4 Project 1 — Using an I2C LCD - Seconds counter.o v i i i oo, 142
9.5 Project 2 - Using an I2C LCD - Display time 147
9.6 Project 3 - Using an I2C LCD - Display IP address of Raspberry Pi5.......... 148
9.7 Project 4 — Voltmeter - Outputtothescreen 149
9.8 Project 5 - Voltmeter — OQutput to LCD i 154
9.9 Project 6 — Analog temperature sensor thermometer - output to the screen. 156
9.10 Project 7 - Analog temperature sensor thermometer — outputon LCD 159
9.11 Project 8 - Reaction timer — outputtoscreen, 161
9.12 Project 9 - Reaction timer —outputtoLCD i 163
9.13 Project 10 — Automatic dusk lights. 165
9.14 Project 11 - Ultrasonic distance measurement 167
9.15 Project 12 — Car parking SENSOIS v v v it e e e e e 170
9.16 Project 13 —Fading LED i 172
9.17 Project 14 — Melody maker o i 173
Chapter 10 e Plotting Graphs with Python and Raspberry Pi5............... 176
10.1 OVEIVIBW & vt 176
10.2 The Matplotlib graph plotting library. o o o 176
10.3 Project 1 - RC transient circuit analysis - Charging 189
10.4 Project 2 - RC transient circuit analysis - Discharging 191
10.5 Transient RL CIrCUItS. o o o e e e e 194
10.6 Project 3 - RCL transient circuit analysis 194

10.7 Project 4 - Temperature, pressure and humidity measurement -
Display on the screen 198

Contents

10.8 Project 5 - Temperature, pressure and humidity measurement -

Plotting thedata. 202
Chapter 11 ¢ Waveform Generation — Using the Digital-to-Analog

Converter (DAC)t v vttt nnnnssnnnnnssnnnnnssnnnnnsnns 204

11,1 OVEeIVIEW . ot e e e 204

11.2 The MCP4921 DAC . . . vt et e e e e e e e e e 204

11.3 Project 1 - Generating a square wave signal with any peak voltage up to +3.3 V . 205

11.4 Project 2 - Generating a sawtooth wave signal 209
11.5 Project 3 - Generating a triangle wave signal 211
11.6 Project 4 - Generating an arbitrary wave signal 213
11.7 Project 5 — Generating a sinewavesignal. 215
Chapter 12 e UsingtheSense HATttt ittt n s s s s nnn s nnnnnsnnn 219
12,1 OVEIVIBW & e 219
12.2 The Sense HAT interface. oottt e e e 219
12.3 Programming the Sense HAT. i it i 221
12.4 Project 1 - Displaying texton Sense HAT i 221
12.5 Project 2 - Test your math skills - multiplication 224
12.6 Project 3 - Learning the timestables. 225
12.7 Project 4 - Display the temperature, humidity, and pressure 226
12.8 Project 5 - ON-OFF temperature controller. 228
12.9 Project 6 — Generate two dice numbers e 233
12.10 Project 7 — Display the currenttime. 235
12.11 Project 8 - Displaying two-digit integer numbers. 236
12,12 Project O — Up COUNter e 240
12.13 The inertial measurement sensor. i i ittt i 241
12.13.1 Project 10 - Reading the acceleration 241
12.13.2 Project 11 - Accelerometer-based dice 241
12.13.3 Project 12 - Accelerometer-based LED shapes 243
Chapter13 e Usingadx4Keypadcvvvrnrrnrnnnsnnnnnnnnnnnnnnnns 245
13,1 OVEIVIEW . ottt e e e e e e e e 245
13.2 Project 1 —Usingad4x4 keypad.ot 245
Chapter 14 e Communicationover Wi-Fittt vt vt v s s i s s i s s e s e s s nnnnns 256

Raspberry Pi 5 Essentials

14,1 OVEIVIEW & o ittt e et e e e ettt e e e e e 256
14.2 UDP @nd TCP . . . o ittt et e e e e e e e e e e 256
14.2.1 UDP communication 257
14.2.2 TCP commUNICAtION. v v v v o s e e e et e 257
14.3 Project 1 - Sending a text message to a smartphone using TCP/IP 258
14.4 Project 2 - Two-way communication with the smartphone using TCP/IP. 262
14.5 Project 3 - Communicating with a PCusing TCP/IP 263
14.6 Project 4 — Controlling an LED connected to Raspberry Pi 5 from a

smartphone using TCP/IP. i i e e 266
14.7 Project 5 - Sending a text message to a smartphone using UDP 268
14.8 Project 6 — Controlling an LED connected to Raspberry Pi 5 from a

smartphone using UDP 271
14.9 Communicating with the Raspberry Pi Pico W over Wi-Fi. 273

14.9.1 Project 7 - Raspberry Pi 5 and Raspberry Pi Pico W communication -
controllingarelay over Wi-Fi i 276

14.10 Project 8 - Storing ambient temperature and atmospheric pressure data

iNthe Cloud o e e 280
Chapter 15 ¢ Communication over Bluetooth 288
15,1 OVeIVIEW &t e 288
15.2 Project 1 - Exchanging text with a smartphone. 288
15.3 Project 2 - Bluetooth control of LED from a smartphone. 295
15.4 Arduino UNO - Raspberry Pi 5 Bluetooth communication 297
15.4.1 Project 3 - Communicating with an Arduino UNO over Bluetooth 298

15.4.2 Project 4 - Play audio (e.g. music) on Bluetooth speaker via Raspberry Pi 5 . .303

Chapter 16 e Raspberry Pi5CameraProjects.ttt nnnnnnrnn 305
16.1 OVEIVIEW . ot v et 305
16.2 Installing the Camera. e 305
16.3 Project 1 — Still cameracommands i i 306
16.3.1 ibcamera. 306
16.4 Project 2 - Building a time-lapse camera — Who is in my parking place?. 309
16.5 Project 3 - Video cameracommands e 315
16.6 Project 4 — Who is ringing my doorbell? 315

IndeX ... v ittt it s s s E s s 320

e 10

Preface

The Raspberry Pi 5 is a credit-card-sized computer from Raspberry Pi that can be used in
many applications, such as in audio and video media centers, as a desktop computer, in
industrial controllers, robotics, and in many domestic and commercial applications. In addi-
tion to the many features found in other Raspberry Pi computers, the Raspberry Pi 5 offers
Wi-Fi and Bluetooth 5.0 (with BLE support), which makes it highly desirable in remote and
Internet-based control and monitoring applications.

The Raspberry Pi 5 is based on a 64-bit quad-core ARM Cortex-A76 processor running at
2.4 GHz. This implies a performance boost of two to three times compared to the Raspberry
Pi 4. Raspberry Pi 5 comes with an enhanced graphic performance, using an 800 MHz Vide-
oCore VII graphics chip. Additionally, the Raspberry Pi 5 features the RP1 southbridge chip
made by Raspberry Pi. With the help of this RP1 southbridge, Raspberry Pi 5 delivers higher
performance and more functionality for peripheral devices. It should now be possible to
carry out many real-time operations such as audio digital signal processing, real-time digital
control and monitoring, and many other real-time operations using this tiny powerhouse.

This book is about the Raspberry Pi 5 computer and its use in various control and moni-
toring applications. The book explains in simple terms and with many tested and working
example projects how to configure the Raspberry Pi 5 computer, how to use the latest
operating system (Bookworm), and how to write application programs using the popular
Python programming language.

The book starts with an introduction to the Raspberry Pi 5 computer and covers the impor-
tant topics of accessing the computer locally and remotely. Use of the console command
language as well as accessing and using the desktop GUI have been described with working
examples.

The remaining parts of the book cover many Raspberry-Pi-5-based hardware projects us-
ing components and devices such as LEDs, buzzers, LCDs, ultrasonic sensors, temperature
sensors, Sense HAT, camera modules, etc. Example projects are given using Wi-Fi and
Bluetooth modules to send and receive data from smartphones, from the PC, and sending
real-time temperature and atmospheric pressure data to the cloud.

All the projects presented in the book have been tested and are working. Complete circuit
diagrams and full program listings are given for each project, with detailed descriptions of
the operation of each project. The following subheadings are used in every project wher-
ever necessary:

Project title

e Project description

Block diagram

Circuit diagram

e Program listing

e Suggestions for future work

o 11

Raspberry Pi 5 Essentials

I hope the readers find the book helpful and enjoy reading it, and use a Raspberry Pi 5 in
their next new projects.

Prof Dr. Dogan Ibrahim
London

e 12

Chapter 1 e The Raspberry Pi 5

Chapter 1 e The Raspberry Pi 5

1.1 Overview

The Raspberry Pi 5 is the latest credit card size computer from Raspberry Pi. In this chapter,
we will look at the specifications of this new computer and compare it with the Raspberry
Pi 4.

1.2 The Raspberry Pi 5
Raspberry Pi 4 was released in June 2019. There has been a long wait for a newer model
and finally the Raspberry Pi 5 was launched in October 2023.

The Raspberry Pi 5 is claimed to have two or three times the processing power of The
Raspberry Pi 4, which is already a very popular single board computer. The Raspberry Pi 5
is currently available in 4 GB and 8 GB memory capacities, but smaller memory devices
may appear later. Although the Raspberry Pi 5 is the same size and shape as the Model 4B,
it has a number of interesting new features such as PCle connector, power button, built-in
real-time clock and some others that we will investigate in this chapter.

The Raspberry Pi 5 is based on a 2.4 GHz Cortex-A76 ARM processor with a new south-
bridge for handling the peripheral interface. A new VideoCore VII GPU is provided with
800 MHz speed. The dual camera interface is another nice feature of the Raspberry Pi 5.
The microSD card interface now supports cards that work at much higher speeds.

Table 1.1 shows a comparison of the Raspberry Pi 4 and 5. Notice that both devices have
dual 2 x 4kp60 HDMI display interfaces, although Pi 5 supports HDR output. The 2 x 20 pin
GPIO interface is the same in both devices. The Raspberry Pi 5 additionally has two camera
interfaces, a PCle bus connector, a UART interface, an RTC clock power connector, and a fan
power connector. Wi-Fi and Bluetooth are supported by both devices. The on-board power
switch on Pi 5 is a useful addition and was requested by many users. Pi 5 is powered from
5 V/4 A USB-C type power supply, where Pi 4 is powered from a 3 A power supply. Pi 5 is
slightly more expensive than Pi 4.

Raspberry Pi 4 Raspberry Pi 5

SoC BCM2711 SoC BCM2712 SoC
Cortex-A72 CPU at 1.8 GHz Cortex-A76 CPU at 2.4 GHz
CPU 4 core 4 core
Instruction set ARMvS8-A ARMv8-2
Display 500 MHz VideoCore Vi GPU 800 MHz VideoCore VII GPU
L2 Cache 1 MB (shared) 2 MB
L3 Cache None 2 MB (shared)
RAM 1, 2, 4, 8 GB LPDDR4 4, 8 GB LPDDR4X
SD Card microSD microSD (high speed SDR104
compatible)
GPIO 2 x 20 pin 2 x 20 pin

e 13

Raspberry Pi 5 Essentials

USB ports 2x USB2 2x USB2

2x USB3 2x USB3
Networking Gigabit Ethernet port Gigabit Ethernet port
Connectors 2-lane MIPI display port 2x MIPI camera

2-lane MIPI CSI camera port 2% 4-lane MIPI camera/
4-pole stereo audio and com- | display

posite video port PClIe 2.0 interface

UART port

RTC clock power port
Fan power port

Wi-Fi/Bluetooth 802.11ac, Bluetooth 5/BLE 802.11ac, Bluetooth 5/BLE
Power button None Yes

Power 5V, 3 AUSB-C 5V, 4 AUSB-C

Size 85 x 56 mm 85 x 56 mm

Table 1.1 Comparison of Raspberry Pi 5 and Raspberry Pi 4

There are two micro-HDMI based monitor ports on both devices, with both having the same
specifications.

The Ethernet port and USB ports are swapped. As a result of this, the Raspberry Pi 4 case
is incompatible with the Pi 5 and a new case is required.

The camera and display connectors on the Raspberry Pi 5 are 15-pin and smaller, instead
of the original 22-pin connector used on Pi 4. A ribbon cable with 22-pin on one side and
15-pin on the other side is required to connect an existing Raspberry Pi 4 camera to the
Raspberry Pi 5. The Raspberry Pi 5 has two connectors, allowing two cameras or DSI dis-
plays (or a mix of either) to be connected. The PCle connector is for fast external PCle
compatible peripherals, such as SSDs.

The new power button on the Raspberry Pi 5 could be very useful. When the device is On,
pressing the button brings the shutdown (logout) menu. A safe shutdown will occur with

another press of the power button.

Figure 1.1 shows the front view of the Raspberry Pi 5 with the components labelled for
reference.

e 14

Chapter 1 e The Raspberry Pi 5

Raspberry Pi 5

BCM2712 Fan connector

processor
Model indicator Raspberry Pi RP1
| 1/O controller

PCI

_express . ooy AON Lok Yo = Ethernet
interface .- Ot - ot and USB
£ 3 b, connectors

f reversed
Power-
management IC

S | C . connector

button

2x4-lane
MIPI DSI/CSI

Heatsink UART connectors

mounts RTC battery connector

Figure 1.1 Raspberry Pi 5

The Raspberry Pi 5 gets rather hot, and it is recommended to use a cooler to lower the
CPU temperature. Although the idle CPU temperature is around 50°C, it can go higher than
85°C under a stress test. An active cooler is available for the Raspberry Pi 5. Holes and
power points are provided on the board to install and power the active cooler. Figure 1.2
shows the Raspberry Pi 5 with the active cooler installed. The active cooler cools down the
SoC, RAM, and the southbridge chip. When the CPU is idle, the active cooler keeps the CPU
temperature at around 40°C. The fan of the cooler operates automatically when the CPU
temperature goes just above 50°C.

Figure 1.2 The Raspberry Pi 5 with active cooler

The Raspberry Pi 5 operating system (OS) is based upon Debian 12 with the code name
Bookworm. This OS, released in July 2023, comes with a new Python interpreter (Py-
thon 3.11). This means that a Python package cannot be installed using the pip commands.

e 15

Raspberry Pi 5 Essentials

Another major software change is that the RPi.GPIO library (created by Ben Croston) was
not available at the time of writing this book. As a result of this, all the GPIO-based Python
programs in the book have been developed using the gpiozero library. Most third party
HATs are based on RPi.GPIO and these will not work until their software is changed by their
manufacturers. It is hoped that the manufacturers will change their software by the time
Raspberry Pi 5 becomes officially widely available.

e 16

Chapter 2 o Installing the Raspberry Pi 5 Operating System

Chapter 2 o Installing the Raspberry Pi 5 Operating
System

2.1 Overview

The Raspberry Pi 5 operating system Bookworm is available either on a pre-installed mi-
croSD card, or you can download the operating system image on a blank microSD card. In
this chapter, you will learn to install the operating system using both methods.

2.2 Using a pre-installed SD card

The pre-installed Raspberry Pi operating system is available on various sized microSD
cards. In this section, the author used the pre-installed 32 GB microSD card supplied by
Elektor. Additionally, the author used a 7-inch HDMI compatible monitor, a Raspberry Pi
official keyboard, and a mouse. The author's hardware setup between the Raspberry Pi 5
and various devices is shown in Figure 2.1.

7 inch Monitor Raspberry Pi 5
P Mains Adapter

Monitor

Mains Adapter

KEYBOARD

MOUSE

Figure 2.1 The author's hardware setup
The steps are as follows:
e Insert the pre-installed microSD card into your Raspberry Pi 5

e Connect all the devices as in Figure 2.1

Connect the Raspberry Pi power adapter to the mains supply

¢ You should see the Raspberry Pi booting the first time and asking you various
questions to set up the device, such as the username, password, Wi-Fi network
name and password, any updates if necessary, etc. (see Figure 2.2 for some
displays on the monitor). In this book, the username is set to pi.

The Raspberry Pi will boot in Desktop mode and will display the default screen.
You can press Ctrl+Alt+F1 at any time to change to the Console mode

e 17

Raspberry Pi 5 Essentials

Figure 2.2 Raspberry Pi 5 booting for the first time.

2.3 Larger font in Console mode
It is probably hard to see the characters on a 7-inch monitor in console mode. You can
follow the steps below to increase the font size:

e Make sure you are in the Console mode

¢ Enter the following command:

pi@raspberrypi: ~ $ sudo dpkg-reconfigure console-setup

e Select UTF-8 in the Package Configuration screen (Figure 2.3)

e 18

Chapter 2 o Installing the Raspberry Pi 5 Operating System

Figure 2.3 Select UTF-8

e Select Guess optimal character set (Figure 2.4)

Figure 2.4 Select Guess optimal character set

e Select Terminus (Figure 2.5)

Figure 2.5 Select Terminus

e Select font 16x32 (Figure 2.6)

e 19

Raspberry Pi 5 Essentials

Figure 2.6 Select font 16x32

2.4 Accessing your Raspberry Pi 5 Console from your PC - the Putty
program
In many applications, you may want to access your Raspberry Pi 5 from your PC. This re-
quires enabling the SSH on your Raspberry Pi and then using a terminal emulation software
on your PC. The steps to enable the SSH are as follows:

e Make sure you are in Console mode

e Type: sudo raspi-config

e Move down to Interface Options

¢ Highlight SSH and press Enter (Figure 2.7)

Figure 2.7 Highlight SSH

e Click Yes to enable SSH
e Click OK
e Move down and click Finish

You will now have to install a terminal emulation software on your PC. The one used by the
author is the popular Putty. Download Putty from the following website:

e 20

Chapter 2 o Installing the Raspberry Pi 5 Operating System

https://www.putty.org

e Putty is a standalone program and there is no need to install it. Simply double
click to run it. You should see the Putty startup screen as in Figure 2.8.

[BR PuTTY Configuration]
Category:
=) Session Basic options for your PuTTY session
T Loglgwng Specify the destination you want to connect to
=J- Teminal
Keshond Host Name (or IP address) Port
gel I 2
Features Connection type
Window Raw Telnet Rlogin @ SSH Serial
;’;:earance Load, save or delete a stored session
aviour
Translation Saved Sessions
Selection
Colours Defaut Settings Load |
=) Connection ESP-01
Data ESP32]
Proxy RaspbemyPi Save
Telnet Delete |
Rlogin

+- SSH

Serial
Close window on exit

Aways Never @ Only on clean ext

About | | Open | Cancel

Figure 2.8 Putty startup screen

e Make sure that the Connection type is SSH and enter the IP address of your
Raspberry Pi 5. You can obtain the IP address by entering the command
ifconfig in console mode (Figure 2.9). In this example, the IP address was:
192.168.1.251 (see under wlan0:)

s ifconfig
<UP, BROADCAST, MULTIC > mtu 1500
S H | = elen 1000 (Ethernet)

0 frame 0

carrier 0 colli

carrier 0 collisions 0

mtu 1500

Figure 2.9 Command ifconfig
¢ Click Open in Putty after entering the IP address and selecting SSH

e The first time you run Putty, you may get a security message. Click Yes to
accept this security alert.

e You will then be prompted to enter the Raspberry Pi 5 username and password.
You can now enter all Console-based commands through your PC.

o 21

Raspberry Pi 5 Essentials

e To change your password, enter the following command:
pi@raspberrypi: ~ $ passwd

¢ To restart the Raspberry Pi, enter the following command:
pi@raspberrypi: ~ $ sudo reboot

¢ To shut down the Raspberry Pi, enter the following command. Never shutdown
by pulling the power cable, as this may result in the corruption or loss of files:

pi@raspberrypi: ~ $ sudo shutdown -h now

2.4.1 Configuring Putty

By default, the Putty screen background is black with white characters. The author prefers
a white background with black characters, with the character size set to 12 points bold. You
should save your settings so that they are available next time you want to use Putty. The
steps to configure Putty with these settings are given below:

e 22

e Restart Putty
e Select SSH and enter the Raspberry Pi IP address
¢ Click Colours under Window

e Set the Default Foreground and Default Bold Foreground colours to black
(Red:0, Green:0, Blue:0)

e Set the Default Background and Default Bold Background to white
(Red:255, Green:255, Blue:255)

e Set the Cursor Text and Cursor Colour to black (Red:0, Green:O0, Blue:0)

e Select Appearance under Window and click Change in Font settings. Set
the font to Bold 12.

e Select Session and give a hame to the session (e.g. MyZero) and click Save.
¢ Click Open to open Putty session with the saved configuration

¢ Next time you restart Putty, select the saved session and click Load followed
by Open to start a session with the saved configuration

Chapter 2 o Installing the Raspberry Pi 5 Operating System

2.5 Accessing the Desktop GUI from your PC

If you are using your Raspberry Pi 5 with local keyboard, mouse, and display, you can
skip this section. If, on the other hand, you want to access your Desktop remotely over
the network, you will find that SSH services cannot be used. The easiest and simplest way
to access your Desktop remotely from a computer is by using the VNC (Virtual Network
Connection) client and server. The VNC server runs on your Pi and the VNC client runs on
your computer. It is recommended to use the tightvncserver on your Raspberry Pi 5. The
steps are:

e Enter the following command:
pi$raspberrypi:~ $ sudo apt-get install tightvncserver
¢ Run the tightvncserver:
pi$raspberrypi:~ $ tightvncserver
You will be prompted to create a password for remotely accessing the Raspberry
Pi desktop. You can also set up an optional read-only password. The password

should be entered every time you want to access the Desktop. Enter a password
and remember your password.

Start the VNC server after reboot by the following command:
pi$raspberrypi:~ $ vncserver :1
You can optionally specify screen pixel size and colour depth in bits as follows:
pi$raspberrypi:~ $ vncserver :1 —geometry 1920x1080 -depth 24
e We must now set up a VNC viewer on our laptop (or desktop) PC. There are
many VNC clients available, but the recommended one which is compatible with
TightVNC is TightVNC for the PC, which can be downloaded from the following

link:

https://www.tightvnc.com/download.php

Download and install the TightVNC software for your PC. You will have to
choose a password during the installation.

e Start the TightVNC Viewer on your PC and enter the Raspberry Pi IP address
followed by ':1'. Click Connect to connect to your Raspberry Pi (Figure 2.10)

e 23

Raspberry Pi 5 Essentials

New TightVNC Connection - >

Connection
Remote Host: v| [connect |

Enter a name or an IP address. To specify a port number, -
append it after two colons (for example, mypc::5902). Options...

Reverse Connections
Listening mode allows people to attach your viewer to = =
their desktops. Viewer will wait for incoming connections. e g mode

TightVNC Viewer

TightVNC is cross-platform remote control software.

m Its source code is available to everyone, either freely
C (GNU GPL license) or commercially (with no GPL restrictions).

Version info... Licensing Configure...

Figure 2.10 Connect to TightVNC Viewer

e Enter the password you have chosen earlier. You should now see the Raspberry
Pi 5 Desktop displayed on your PC screen (Figure 2.11)

bi's X desktop (raspberrypi-1) - TIghtVNC Viewer [ERES

Eﬂﬂ@ Il &|e Mo At |laaae|E

s & '=

Wastebasket

Figure 2.11 Raspberry Pi 5 Desktop

e The VNC server is now running on your Raspberry Pi 5 and you have access to
the Desktop GUI.

2.6 Assigning a static IP address to your Raspberry Pi 5

When you try to access your Raspberry Pi 5 remotely over your local network, it is possible
that the IP address given by your Wi-Fi router can change from time to time. This is an-
noying as you have to find out the new IP address allocated to your Raspberry Pi. Without
knowledge of the IP address, you cannot log in using SSH or VNC.

In this section, you will learn how to fix your IP address so that it does not change between
reboots. The steps are as follows:

e Log in to your Raspberry Pi 5 via Putty

e 24

Chapter 2 o Installing the Raspberry Pi 5 Operating System

Check whether DHCP is active on your Raspberry Pi (it should normally be
active):

pi@raspberrypi:~ $ sudo service dhcpcd status
If DHCP is not active, activate it by entering the following commands:

pi@raspberrypi:~ $ sudo service dhcpcd start
pi@raspberrypi:~ $ sudo systemctl enable dhcpcd

Find the IP address currently allocated to you by entering the command
ifconfig or hostname - I (Figure 2.12). In this example, the IP address was:
192.168.1.251. We can use this IP address as our fixed address, since no other
device on the network is currently using it.

ypi: hostname -I

6o.l.251’2a00:23c7:868d:7b01:1562:5802:73c0:1ff6

Figure 2.12 Find the IP address using the command hostname -I

Find the IP address of your router by entering the command ip r (Figure 2.13).
In this example, the IP address was: 192.168.1.254

ip r

default via 192.168.1.254 dev wlanO cp 92. 1.251 metric 600
192.168.1.0/24 dev wlan0 proto kerne i 1 1.251 metric 600

Figure 2.13 Find the IP address of your router.

Find the IP address of your DNS by entering the following command
(Figure 2.14). This is usually the same as your router address:

pi@raspberrypi:~ $ grep "nameserver" /etc/resolv.conf

grep "nameserver" /etc/resolv.conf

192.168.1.254
fe80::4elb:86ff:feb5:ba79%wlan0

igure 2.14 Find the DNS address.
Edit file /etc/dhcpcd.conf by entering the command:

pi@raspberrypi:~ $ nano /etc/dhcpcd.conf
Add the following lines to the bottom of the file (these will be different for your
router). If these lines already exist, remove the comment character '#' at the

beginning of the lines and change the lines as follows (you may notice that
ethO for Ethernet is listed):

e 25

Raspberry Pi 5 Essentials

interface wlan0

static_routers=192.168.1.254

static domain_name_servers=192.168.1.254
static ip_address=192.168.1.251/24

e Save the file by entering CTRL + X followed by Y and reboot your Raspberry Pi

¢ In this example, the Raspberry Pi should reboot with the static IP address:
192.168.1.251

2.7 Enabling Bluetooth
In this section, you will see how to enable the Bluetooth on your Raspberry Pi 5 so that it
can communicate with other Bluetooth devices. The steps are given below:

e Enable the Bluetooth on your other device

e Click on the Bluetooth icon on your Raspberry Pi 5 at the top right-hand side,
and select Make Discoverable. You should see the Bluetooth icon flashing

e Select 'raspberrypi' in the Bluetooth menu on your other device
e Accept the pairing request on your Raspberry Pi 5
¢ You should now see the message Connected Successfully on your Raspberry
Pi 5 and you can exchange files between your other device and the Raspberry
Pi computer.
2.8 Connecting the Raspberry Pi 5 to a wired network
You may want to connect your Raspberry Pi 5 to a network through an Ethernet cable. The
steps are as follows:

Step 1: Connect a network cable between your Raspberry Pi 5 and your Wi-Fi router.

Step 2: Connect the keyboard, mouse and monitor to your Raspberry Pi and power up as
normal

Step 3: Log in to the system by entering your username and password

Step 4: Providing your network hub supports DHCP (nearly all network routers support
DHCP), you will be connected automatically to the network and will be assigned a unique
IP address within your network. Note that DHCP assigns IP addresses to newly connected

devices.

Step 5: Check to find out the IP address assigned to your Raspberry Pi 5 by the network
router. Enter the command ifconfig as described earlier

® 26

Chapter 2 o Installing the Raspberry Pi 5 Operating System

2.8.1 Unable to connect to a wired network
If you find out that you are not assigned an IP address by the DHCP server, possible causes
are:

e Your network cable is faulty

e The network hub does not support DHCP

e DHCP is not enabled on your Raspberry Pi, i.e. it may have been configured for

a fixed IP address

In most cases, it is very unlikely that the network cable is faulty. Also, most network hubs
support the DHCP protocol. If you are having problems with the network, it is possible that
your Raspberry Pi is not configured to accept DHCP issued addresses. The Raspberry Pi is
normally configured to accept DHCP addresses, but it is possible that you have changed the
configuration somehow.

To resolve the wired network connectivity problem, follow the steps given below:

Step 1: find out whether your Raspberry Pi is configured for DHCP or fixed IP addresses.
Enter the following command:

pi@raspberrypi ~$ cat /etc/network/interfaces

If your Raspberry Pi is configured to use the DHCP protocol (which is normally the default
configuration), the word dhcp should appear at the end of the following line:

iface ethO inet dhcp

If, on the other hand, your Raspberry Pi is configured to use static addresses, then you
should see the word static at the end of the following line:

iface ethO inet static
Step 2: To use the DHCP protocol, edit file interfaces (e.g. using the nano text editor)
and change the word static to dhcp. It is recommended to make a backup copy of the file
interfaces before you change it:

pi@raspberrypi ~$ sudo cp /etc/network/interfaces /etc/network/int.bac

You should now restart your Raspberry Pi and an IP address will probably be assigned to
your device.

Step 3: To use static addressing, make sure that the word static appears as shown above.
If not, edit file interfaces and change dhcp to static

Step 4: You need to edit and add the required unique IP address, subnet mask and gate-
way addresses to file interfaces as in the following example (this example assumes that

e 27

Raspberry Pi 5 Essentials

the required fixed IP address is 192.168.1.251, the subnet mask used in the network is
255.255.255.0, and the gateway address is 192.168.1.1):

iface ethO inet static
address 192.168.1.251
netmask 255.255.255.0
gateway 192.168.1.1

Save the changes and exit the editor. If you are using the nano editor, exit by pressing
Ctrl+X, then enter Y to save the changes, and enter the filename to write to as /etc/net-
work/interfaces.

Restart your Raspberry Pi 5.

2.9 Installing the Raspberry Pi 5 Bookworm operating system on a
blank microSD card

If you have a pre-installed Raspberry Pi operating system Bookworm on a microSD card,
then you can start using it as described earlier in this chapter. In this section, you will learn
how to install the latest Bookworm operating system on a microSD card if you do not have
a pre-installed card.

The steps are as follows:

e Insert a microSD card into your PC. You may need to use an SD card adapter

¢ Go to the website: https://www.raspberrypi.com/software/

Click to download the Raspberry Pi Imager. At the time of writing this book,
this file was called: imager_1.7.5.exe

e Double click to start the imager program and click to install it

e Click Finish to run the imager

Click Operating System and select the operating system at the top of the list
as: Raspberry Pi OS (64-bit). See Figure 2.15

e 28

Chapter 2 o Installing the Raspberry Pi 5 Operating System

Operating System

Raspberry Pi 0S (64-bit)

A port of Debian Bookworm with the Raspberry Pi Desktop (Recommended)
Released: 2023-10-10

Online - 1.1 GB download

Raspberry Pi OS (32-bit)

A port of Debian Bookworm with the Raspberry Pi Desktop
Released: 2023-10-10

Online - 1.2 GB download

Raspberry Pi OS (other)
Other Raspberry Pi OS based images

[& & @&

Other general-purpose 0S

Figure 2.15 Se)ect the operating system
¢ Click Storage and select the SD card storage
¢ Click to open the settings (gear shape)
e Click to enable SSH
¢ Click to enable password authentication
e Set username and password
¢ Click to Configure wireless LAN

e Click Save

e Click Write to write the operating system to the microSD card

e Wait until writing and verifying are finished (Figure 2.16)

Raspberry Pi

Operating System

Writing... 10%

CANCEL WRITE

& Raspberry Pi Imager v1.7.5 = a

X

e Remove the microSD card and insert into your Raspberry Pi 5

e 29

Raspberry Pi 5 Essentials

If you have a monitor and keyboard, you can log in to your Raspberry Pi 5 directly and
start using it. Otherwise, find the IP address of your Raspberry Pi 5 (e.g. from your router,
or there are many apps for smartphones, such as who's on my wifi that shows all the
devices connected to your router with their IP addresses). Then log in to your Raspberry
Pi 5 and start using it.

e 30

Chapter 3 e Using The Console Commands

Chapter 3 e Using The Console Commands

3.1 Overview

Raspberry Pi is based on a version of the Linux operating system. Linux is one of the most
popular operating systems in use today. Linux is very similar to other operating systems,
such as Windows and UNIX. Linux is an open operating system based on UNIX and has
been developed collaboratively by many companies since 1991. In general, Linux is harder
to manage than some other operating systems like Windows, but offers more flexibility and
configuration options. There are several popular versions of the Linux operating system,
such as Debian, Ubuntu, Red Hat, Fedora and so on.

Linux commands are text-based. In this chapter, you will be looking at some of the useful
Linux commands and see how you can manage your Raspberry Pi using these commands.

When you apply power to your Raspberry Pi 5, the Linux command line (or the Linux shell,
or Console commands) is the first thing you see, and it is where you can enter operating
system commands.

3.2 The Command Prompt
Assuming your username is pi, after you log in to Raspberry Pi 5, you will see the following
prompt displayed where the system waits for you to enter a command:

pi@raspberrypi: ~$

Here, pi is the name of the user who is logged in.
raspberrypi is the name of the computer, used to identify it when connecting over the
network.

~ character indicates that you are currently in your default directory.

3.3 Useful Console commands

In this section, you will be learning some of the useful Console commands, where examples
will be given for each command. In this chapter, commands entered by the user are
shown in bold for clarity. Also, it is important to remind you that all the commands must
be terminated by the Enter key.

3.3.1 System and user information

These commands are useful as they tell you information about the system. Command
cat /proc/cpuinfo displays information about the processor (command cat displays the
contents of a file. In this example, the contents of file /proc/cpuinfo is displayed). Since
there are four cores in the Raspberry Pi 5, the display is in four sections. Figure 3.1 shows
an example display, where only part of the display is shown here.

e 31

Raspberry Pi 5 Essentials

piGras
processor
BogoMIPS
Features

i~ $ cat /proc/cpuinfo
: 0

: 108.00
: fp asimd evtstrm aes pmull shal sha2 crc32 atomics fphp

p cpuid asimdrdm lrcpc dcpop asimddp

CPU implementer :
CPU architecture:
: 0x4

: 0xdOb
01

CPU variant
CPU part
CPU revision

processor
BogoMIPS
Features

0x41
8

01
: 108.00

fp asimd evtstrm aes pmull shal sha2 crc32 atomics fphp

p cpuid asmd.rdm lrcpz: dcpop asimddp

CPU implementer :
CPU architecture:
: 0x4

: 0xdOb
1

CPU variant
CPU part
CPU revision

[processor
BogoMIPS

0x41
8

2
: 108.00

Figure 3.1 Command: cat /proc/cpuinfo

Command uname -s displays the operating system kernel name, which is Linux. Com-
mand uname -a displays complete detailed information about the kernel and the operat-
ing system. An example is shown in Figure 3.2.

pi@raspberrypi:~ $ uname -a

Linux raspberrypi 6.1.0-rpi4-rpi-2712 #1 SMP PREEMPT Debian 1:6.1.54-1+rptl
3-09- 27) aarch64 GNU/Linux

rrypi:~ $ I

pi@ras:

Figure 3.2 Command: uname - a

Command cat /proc/meminfo displays information about the memory on your Raspber-
ry Pi. Information such as the total memory and free memory at the time of issuing the
command are displayed. Figure 3.3 shows an example, where only part of the display is
shown here.

piCraspberrypi:~ $ cat /proc/meminfo
MemTotal: 8246848 kB
MemFree: 7792320 kB
MemAvailable: 7993952 kB
Buffers: 21552 kB
Cached: 246240 kB
SwapCached: 0 kB
Active: 280096 kB
Inactive: 64848 kB
Active (anon) : 77008 kB
Inactive (anon) : 4112 kB
Active (file): 203088 kB
Inactive (file): 60736 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 102368 kB
SwapFree: 102368 kB
Zswap: 0 kB
Zswapped: 0 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 77232 kB
‘Mapped: 70880 kB

Figure 3.3 Command: cat /proc/meminfo

Command whoami displays the name of the current user. In this case, pi is displayed as
the current user.

e 32

Chapter 3 e Using The Console Commands

A new user can be added to your Raspberry Pi 5 using the command useradd. In the ex-
ample in Figure 3.5, a user called John is added. A password for the new user can be added
using the passwd command followed by the username. In Figure 3.4, the password for
user John is set to mypassword (not displayed for security reasons). Notice that both the
useradd and passwd are privileged commands, and the keyword sudo must be entered
before these commands. Notice that the —m option creates a home directory for the new
user.

:~ $ sudo useradd -m John
E :~ $ sudo passwd John
New password:

Retype new password:

passwd: password updated successfully

pi@raspberrypi:~ $

Figure 3.4 Commands: useradd and passwd

You can log in to the new user account by specifying the username and the password as
shown in Figure 3.5. You can type command exit to log out from the new account.

pi@raspberrypi:~ $§ su John
Password:
John@raspberrypi:/home/pi $§ exit
exit

pi@raspberrypi:~ § l

Figure 3.5 Logging into a new account

Command sudo apt-get upgrade is used to upgrade all the software packages on the
system.

3.3.2 The Raspberry Pi 5 directory structure

The Raspberry Pi 5 directory structure consists of a single root directory, with directories
and subdirectories under the root. Different types of operating system programs and appli-
cation programs are stored in different directories and subdirectories.

Figure 3.6 shows part of the Raspberry Pi 5 directory structure. Notice that the root direc-
tory is identified by the '/' symbol. Under the root we have directories named such as bin,
boot, dev, etc, home, lib, lost+found, media, mnt, opt, proc, and many more. The impor-
tant directory as far as the users are concerned is the home directory. The home directory
contains subdirectories for each user of the system. In the example in Figure 3.7, pi is the
subdirectory for user pi. In a new system, this subdirectory contains two subdirectories
called Desktop and python_games.

e 33

Raspberry Pi 5 Essentials

/ root
- i Lost+fo T [E———
bin boot dev etc home lib media
und
|Desktop| lpython_games

Figure 3.6 Raspberry Pi 5 directory structure (only part of it is shown)

Some useful directory commands are given below. Command pwd displays the user home
directory:

pi@raspberrypi: ~$ pwd
/home/pi
pi@raspberry: ~$

To show the directory structure, enter the command Is / (Figure 3.7):

pi@raspberrypi:~ § 1ls /

etc media proc -
lbboot home mnt root srv usr
dev lost+found opt run sys var
pi@raspberrypi:~ $§

Figure 3.7 Directory structure
To show the subdirectories and files in your working directory, enter Is:

pi@raspberrypi: ~$ Is
Bookshelf Documents Music Public Videos
Desktop Downloads Pictures Templates

pi@raspberrypi: ~$
Notice that the subdirectories are displayed in blue colour and files in black colour.

The Is command can take a number of arguments. Some examples are given below.
To display the subdirectories and files in a single row:

pi@raspberrypi: ~$ Is -1
Bookshelf

Desktop

Documents

Downloads

Music

e 34

Chapter 3 e Using The Console Commands

Pictures

Public

Templates

Videos
pi@raspberrypi: ~$

To display the file types, enter the following command. Note that directories have a '/' after
their names, and executable files have a '*' character after their names:

pi@raspberrypi: ~$ Is =F
Bookshelf/ Documents/ Music/ Public/ Videos/
Desktop/ Downloads/ Pictures/ Templates/
pi@raspberrypi: ~$
To list the results, separated by commas:
pi@raspberrypi: ~$ Is -m
Bookshelf, Desktop, Documents, Downloads, Music, Pictures, Public, Templates, Videos

pi@raspberrypi: ~$

You can mix the arguments as shown in Figure 3.8.

pi@raspberrypi:~ $§ 1ls -m -F

Bookshelf/, Desktop/, Documents/, Downloads/, Music/, Pictures/, Public/,
Templates/, Videos/

pi@raspberrypi:~ § l

Figure 3.8 Mixing the arguments

Subdirectories are created using the command mkdir followed by the name of the subdi-
rectory (Figure 3.9)

pi@raspberrypi:~ $ mkdir myfiles

pi@raspberrypi:~ $ ls

Bookshelf Documents Music Pictures Templates
Desktop Downloads myfiles Public Videos
pi@raspberrypi:~ §

Figure 3.9 Creating a subdirectory

Command find is used to search the whole system for a file and outputs a list of all direc-
tories that contain the file. For example, the command find / -name myfile.txt searches
the whole system for the file myfile.txt.

File Permissions

One of the important arguments used with the Is command is -l (lower case letter |) which
displays the file permissions, file sizes, and when they were last modified. In the example
below, each line relates to one directory or file. Reading from right to left, the name of the

e 35

Raspberry Pi 5 Essentials

directory or the file is on the right-hand side. The date the directory or file was created is
on the left-hand side of its name. Next comes the size, given in bytes. The characters at
the beginning of each line are about permissions, i.e. who is allowed to use or modify the
file or the directory.

The permissions are divided into 3 categories:

e What the user (or owner, or creator) can do - called USER
e What the group owner (people in the same group) can do - GROUP
e What everyone else can do - called WORLD

The first word pi in the example in Figure 3.10 shows who the user of the file (or directory)
is, and the second word pi shows the group name that owns the file. In this example, both
the user and the group names are pi.

piQrasg ypi:~ $ 1s -1
total 40

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

pi dogan-ibrahim 4096 Sep 22 08:25 Bookshelf
pi dogan-ibrahim 4096 Oct 17:42 Desktop
pi dogan-ibrahim 4096 Oct 17:42 Documents
pi dogan-ibrahim 4096 Oct 17:42 Downloads
i dogan-ibrahim 4096 Oct 17:42 Music

pi dogan-ibrahim 4096 Oct myfiles
pi dogan-ibrahim 4096 Oct 17:42 Pictures
pi dogan-ibrahim 4096 Oct 17:42 Public
pi dogan-ibrahim 4096 Oct 17:42 Templates
pi dogin—ibrahim 4096 Oct 17:42 Videos
pi:~ §

RFHRHRERBRWRRERR
=
[
w
~

CNNNNNMNNDNNDNNNN
g
[~

Figure 3.10 File permissions example

The permissions can be analysed by breaking down the characters into four chunks for:
File type, User, Group, World. The first character for a file is '-' and for a directory, it is 'd".
Next come the permissions for the User, Group and World. The permissions are as follows:

e Read permission (r): the permission to open and read a file or to list a directory

e Write permission (w): the permission to modify a file, or to delete or create a
file in a directory

e Execute permission (x): the permission to execute the file (applies to
executable files), or to enter a directory

The three letters rwx are used as a group and if there is no permission assigned then a '-'
character is used.

As an example, considering the Music directory, we have the following permission codes:

drwxr-xr-x which translates to:

d: it is a directory

rwx: user (owner) can read, write, and execute

r-x: group can read and execute, but cannot write (e.g. create or delete)
r-Xx: world (everyone else) can read and execute, but cannot write

e 36

Chapter 3 e Using The Console Commands

The chmod command is used to change the file permissions. Before going into details of
how to change the permissions, let us look and see what arguments are available in chmod
for changing the file permissions.

The available arguments for changing file permissions are given below. We can use these
arguments to add/remove permissions or to explicitly set permissions. It is important to
realize that if we explicitly set permissions, then any unspecified permissions in the com-
mand will be revoked:

u: user (or owner)
g: group

o: other (world)
a: all

+: add

- remove

=: set

r: read

w: write

X: execute

To change the permissions of a file we type the chmod command, followed by one of the
letters 'u', 'g', '0', or 'a' to select the people, followed by the '+', '-' or '=' to select the
type of change, and finally followed by the filename. In this example, a file with the name
mytestfile.txt was created in the home directory for demonstration purposes (See Figure
3.11). In this example, the file mytestfile.txt has the user read and write permissions.

pi@raspberrypi:~ $§ 1ls -1
total 44

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-rw-r--r--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

pi dogan-ibrahim 4096 Sep 22 08:25 Bookshelf
pi dogan-ibrahim 4096 Oct 1 17:42 Desktop
pi dogan-ibrahim 4096 Oct 17:42 Documents
pi dogan-ibrahim 4096 Oct 17:42 Downloads
pi dogan-ibrahim 4096 Oct 17:42 Music
i dogan-ibrahim 4096 Oct 11:37 myfiles
pi dogan-ibrahim 15 Oct mytestfile. txt
pi dogan-ibrahim 4096 Oct 17:42 Pictures
pi dogan-ibrahim 4096 Oct 17:42 Public
pi dogan-ibrahim 4096 Oct 17:42 Templates
pi dogan-ibrahim 4096 Oct 17:42 Videos
ypi:~ § l

NNNMNNENNMNNNNN
kel
%
FREHEFOWRRE
=
=
IS
o

Figure 3.11 File permissions

We will be changing the permissions so that the user does not have read permission on
this file:

pi@raspberrypi: ~$ chmod u-r mytestfile.txt
pi@raspberrypi: ~$ Is =lh

The result is shown in Figure 3.12.

e 37

Raspberry Pi 5 Essentials

:~ $ chmod u-r mytestfile.txt
pi@raspberr $ 1s -1h
total 44K
drwxr-xr-x 2 pi dogan-ibrahim 4.0K Sep 22 08:25 Bookshelf
drwxr-xr-x 2 pi dogan-ibrahim 4.0K Oct 1 17:42 Desktop
drwxr-xr-x 2 pi dogan-ibrahim 4.0K Oct 1 17:42 Documents
drwxr-xr-x 2 pi dogan-ibrahim 4.0K Oct 1 17:42 Downloads
drwxr-xr-x 2 pi dogan-ibrahim 4.0K Oct 1 17:42 Music
drwxr-xr-x 2 pi dogan-ibrahim 4.0K Oct 3 11:37 myfiles
--w-r--r-- 1 pi dogan-ibrahim 15 Oct 3 11:46 mytestfile.txt
drwxr-xr-x 2 pi dogan-ibrahim 4.0K Oct 1 17:42 Pictures
drwxr-xr-x 2 pi dogan-ibrahim 4.0K Oct 1 17:42 Public
drwxr-xr-x 2 pi dogan-ibrahim 4.0K Oct 1 17:42 Templates
drwxr-xr-x 2 pi dogan-ibrahim 4.0K Oct 1 17:42 Videos
pi@raspberr i~ § I

Figure 3.12 File permissions of mytestfile.txt

Notice that if you now try to display the contents of the file mytestfile.txt using the cat
command, you will get an error message:

pi@raspberrypi: ~$ cat mytestfile.txt
cat: mytestfile.txt: Permission denied
pi@raspberrypi: ~$

All the permissions can be removed from a file by the following command:

pi@raspberrypi: ~$ chmod a= mytestfile.txt
In the following example, rwx user permissions are given to file mytestfile.txt:

pi@raspberrypi: ~$ chmod u+rwx mytestfile.txt

Figure 3.13 shows the new permissions of file mytestfile.txt.

To change our working directory, the command cd is used. In the following example, we

~ypi:~ $ chmod u+rwx mytestfile.txt

/pi:~ $ 1s -1
drwxr-xr-x 2 pi dogan-ibrahim 4096 Sep 22 08:25 Bookshelf
drwxr-xr-x 2 pi dogan-ibrahim 4096 Oct 1 17:42 Desktop
drwxr-xr-x 2 pi dogan-ibrahim 4096 Oct 1 17:42 Documents
drwxr-xr-x 2 pi dogan-ibrahim 4096 Oct 1 17:42 Downloads
drwxr-xr-x 2 pi dogan-ibrahim 4096 Oct 1 17:42 Music
drwxr-xr-x 2 pi dogan-ibrahim 4096 Oct 3 11:37 myfiles
—LrWX--—==== 1 pi dogan-ibrahim 15 Oct 3 11:46 mytestfile.txt
drwxr-xr-x 2 pi dogan-ibrahim 4096 Oct 1 17:42 Pictures
drwxr-xr-x 2 pi dogan-ibrahim 4096 Oct 1 17:42 Public
drwxr-xr-x 2 pi dogan-ibrahim 4096 Oct 1 17:42 Templates
drwxr-xr-x 2 pi dogan-ibrahim 4096 Oct 1 17:42 Videos
pi@raspberrypi:~ $

Figure 3.13 New permissions of file mytestfile.txt

change our working directory to Music:

e 38

pi@raspberrypi: ~$ cd /home/pi/Music
pi@raspberrypi: ~/Music $

Chapter 3 e Using The Console Commands

To go up one directory level, i.e. to our default working directory:

pi@raspberrypi: ~/Music $ cd..
pi@raspberrypi: ~$

To change your working directory to Music, you can also enter the command:

pi@raspberrypi: ~$ cd ~/Music
pi@raspberrypi: ~/myfiles $

To go back to the default working directory, you can enter:

pi@raspberrypi: ~/Music $ cd ~
pi@raspberrypi: ~$

To find out more information about a file, you can use the file command. For example:

pi@raspberrypi: ~$ file mytestfiile.txt
mytestfile.txt: ASCII text
pi@raspberrypi: ~$

The =R argument of the command Is lists all the files in all the subdirectories of the current
working directory. An example is given below (only part of the display is shown). Notice here
in Figure 3.14 that subdirectory Bookshelf contains file BeginnersGuide-4thEd-Eng_
v2.pdf

pi@raspberrypi:~ $§ 1ls -R

Bookshelf Documents Music mytestfile.txt Public Videos
Desktop Downloads myfiles Pictures Templates
./Bookshelf:

BeginnersGuide-4thEd-Eng_v2.pdf

. /Desktop:

./Documents:

./Downloads:

Figure 3.14 Command: Is =R

To display information on how to use a command, you can use the man command. As an
example, to get help on using the mkdir command:

pi@raspberrypi: ~$ man mkdir
MKDIR (1)

NAME

Mkdir - make directories

SYNOPSIS

e 39

Raspberry Pi 5 Essentials

Mkdir [OPTION]..DIRECTORY..

DESCRIPTION
Create the DIRECTORY(ies), 1if they do not already exist.

Mandatory arguments for long options are mandatory for short
options

-m, —--mode=MODE

Set file mode (as in chmod), not a=rwx - umask

Enter q to exit the man display.

Help
The man command usually gives several pages of information on how to use a command.
You can type q to exit the man command and return to the operating system prompt.

The less command can be used to display a long listing one page at a time. Using the up
and down arrow keys, we can move between pages. An example is given below. Type q to
exit:

pi@raspberrypi: ~$ man s | less
<display of help on using the Is command>
pi@raspberrypi: ~$

Date and Time
To display the current date and time, the date command is used.

Copying a File
To make a copy of a file, use the command cp. In the following example, a copy of the file
mytestfile.txt is made, and the new file is given the name test.txt:

pi@raspberrypi: ~$ cp mytestfile.txt test.txt
pi@raspberrypi: ~$

Wildcards

You can use wildcard characters to select multiple files with similar characteristics. e.g. files
having the same file-extension names. The * character is used to match any number of
characters. Similarly, the ? character is used to match any single character. In the example
below, all the files with extensions .txt are listed:

pi@raspberrypi: ~$ Is *.txt

mytestfile.txt test.txt
pi@raspberrypi: ~$

e 40

Chapter 3 e Using The Console Commands

The wildcard characters [a-z] can be used to match any single character in the specified
character range. An example is given below which matches any files that start with the
letters 'o', 'p', 'q', 'r', 's', and 't', and with the .txt extension:

pi@raspberrypi: ~$ Is [o-t]*.txt
test.txt
pi@raspberrypi: ~$

Renaming a File
You can rename a file using the mv command. In the example below, the name of file test.
txt is changed to test2.txt:

pi@raspberrypi: ~$ mv test.txt test2.txt
pi@raspberrypi: ~$

Deleting a File
The command rm can be used to remove (delete) a file. In the example below, the file
test2.txt is deleted:

pi@raspberrypi: ~$ rm test2.txt
pi@raspberrypi: ~$

The argument =v can be used to display a message when a file is removed. Also, the =i
argument asks for confirmation before a file is removed. In general, the two arguments are
used together as =vi. An example is given below:

pi@raspberrypi: ~$ rm -vi test2.txt
rm: remove regular file 'test2.txt'? y
removed 'test2.txt'

pi@raspberrypi: ~$

Sorting a file
The command sort displays the contents of a file in ascending order. The general format of
this command is:

sort <options> <filename>

Valid options are:

-u removes duplicates from the output
-r sorts the output in descending order
-0 writes the sorted output to a file

Word count
Command wc <filename> displays the word count in a file

e 41

Raspberry Pi 5 Essentials

File differences
Command diff <filel> <file2) displays the differences between two files line by line

Removing a Directory
A directory can be removed using the rmdir command:

pi@raspberrypi: ~$ rmdir Music
pi@raspberrypi: ~$

Re-directing the Output
The greater sign > can be used to redirect the output of a command to a file. For example,
we can redirect the output of the Is command to a file called Istest.txt:

pi@raspberrypi: ~$ Is > Istest.txt
pi@raspberrypi: ~$

The cat command can be used to display the contents of a file:

pi@raspberrypi: ~$ cat mytestfile.txt
This is a file

This is line 2

pi@raspberrypi: ~$

Using two greater signs '>>' adds to the end of a file.

Writing to the Screen or to a File

The echo command can be used to write to the screen. It can be used to perform simple
mathematical operations if the numbers and the operation are enclosed in two brackets,
preceded by a $ character:

pi@raspberrypi: ~$ echo $((5%*6))
30
pi@raspberrypi: ~$

The echo command can also be used to write a line of text to a file. An example is shown
below:

pi@raspberrypi: ~$ echo a line of text > lin.dat
pi@raspberrypi: ~$ cat lin.dat

a line of text

pi@raspberrypi: ~$

Matching a String

The grep command can be used to match a string in a file. An example is given below,
assuming that the file lin.dat contains sting a line of text. Notice that the matched word is
shown in bold:

e 42

Chapter 3 e Using The Console Commands

pi@raspberrypi: ~$ grep line lin.dat
a line of text
pi@raspberrypi: ~$

Head and Tail Commands
The head command can be used to display the first 10 lines of a file. The format of this
command is as follows:

pi@raspberrypi: ~$ head mytestfile.txt

pi@raspberrypi: ~$

Similarly, the tail command is used to display the last 10 lines of a file. The format of this
command is as follows:

pi@raspberrypi: ~$ tail mytestfile.txt

pi@raspberrypi: ~$

The which command displays the location of an executable program. For example, the
location of the python program can be found as follows:

pi@raspberrypi: ~$ which python
/usr/bin/python
pi@raspberrypi: ~$

Super User Commands

Some of the commands are privileged and only the authorized persons can use them.
Inserting the word sudo at the beginning of a command gives us the authority to use the
command without having to log in as an authorized user.

What software is installed on my Raspberry Pi 5
To find out what software is installed on your Raspberry Pi 5, enter the following command.
You should get several pages of display:

pi@raspberrypi: ~$ dpkg -1

pi@raspberrypi: ~$
You can also find out if a certain software package is already installed on our computer.

An example is given below which checks whether software called xpdf (PDF reader) is
installed. In this example, xpdf is installed and the details of this software are displayed:

e 43

Raspberry Pi 5 Essentials

pi@raspberrypi: ~$ dpkg --s xpdf
Package: xpdf

Status: install ok installed

Priority: optional

Section: text

Installed-Size: 395

pi@raspberrypi: ~$

If the software is not installed, you get a message similar to the following (assuming we are

checking to see if a software package called bbgd is installed):

pi@raspberrypi: ~$ dpkg —s bbgd

dpkg-query: package 'bbgd' is not installed and no information is available

pi@raspberrypi: ~$

3.3.3 Resource monitoring on the Raspberry Pi 5

System monitoring is an important topic for managing usage of your Raspberry Pi. One of
the most useful system monitoring commands is the top, which displays the current usage
of system resources and displays which processes are running and how much memory and

CPU time they are consuming.

Figure 3.15 shows a typical system resource display obtained by entering the following

command (only part of the display is shown, Enter q to exit):

pi@raspberrypi: ~$ top
pi@raspberrypi: ~$

top - 12:14:08 up 2:54, 1 user, load average: 0.00, 0.00, 0.00
Tasks: 136 total, 1 running, 135 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 33.3 sy, 0.0 ni, 66.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 8053.6 total, 7589.7 free, 247.3 used, 303.7 buff/cache
MiB Swap: 100.0 total, 100.0 free, 0.0 used. 7806.2 avail Mem
PID USER PR NI VIRT RES SHR S 3%CPU 3%MEM TIME+ COMMAND
1357 pi 20 0 11984 4416 2784 R 6.2 0.1 0:00.01 top
1 root 20 0 169008 12528 8448 s 0.0 0.2 0:02.72 systemd
2 root 20 0 0 0 0s 0.0 0.0 0:00.00 kthreadd
3 root 0 -20 0 0 0I 0.0 0.0 0:00.00 rcu gp
4 root 0 -20 0 0 0rI 0.0 0.0 0:00.00 rcu par+
5 root 0 -20 0 0 0I 0.0 0.0 0:00.00 slub fl+
6 root 0 -20 0 0 0I 0.0 0.0 0:00.00 netns
10 root 0 -20 0 0 oI 0.0 0.0 0:00.00 mm_perc+
11 root 20 0 0 0 0rI 0.0 0.0 0:00.00 rcu_tas+
12 root 20 0 0 0 0rI 0.0 0.0 0:00.00 rcu_tas+
13 root 20 0 0 0 0rI 0.0 0.0 0:00.00 rcu_tas+
14 root 20 0 0 0 0s 0.0 0.0 0:00.01 ksoftir+
15 root 20 0 0 0 0I 0.0 0.0 0:00.05 rcu_pre+
16 root rt 0 0 0 0s 0.0 0.0 0:00.00 migrati+
17 root 20 0 0 0 0s 0.0 0.0 0:00.00 cpuhp/0
18 root 20 0 0 0 0s 0.0 0.0 0:00.00 cpuhp/1
19 root rt 0 0 0 0s 0.0 0.0 0:00.00 migrati+

Figure 3.15 Typical system resource display

e 44

Chapter 3 e Using The Console Commands

Some of the important points in Figure 3.15 are summarized below (for lines 1 to 5 of the

display):

There are a total of 138 processes in the system

Currently, only one process is running, 1 process is sleeping, and 0 processes
are stopped

The percentage of CPU utilization is 0.0 'us' for user applications (us)

The percentage of CPU utilization for system applications is 0.0 (sy)

There are no processes requiring more or less priority (ni)

100% of the time the CPU is idle (id)

There are no processes waiting for I/O completion (wa)

There are no processes waiting for hardware interrupts (hi)

There are no processes waiting for software interrupts (si)

There is no time reserved for a hypervisor (st)

The total usable memory is 8053 bytes, of which 247 bytes are in use, 7589
bytes are free, and 303 bytes are used by buffers/cache

Line 5 displays the swap space usage

The process table gives the following information for all the processes loaded to the system:

PID: the process ID number

USER: owner of the process

PR: priority of the process

NI: the nice value of the process

VIRT: the amount of virtual memory used by the process
RES: size of the resident memory

SHR: shared memory the process is using

S: process status (sleeping, running, zombie)
%CPU: the percentage of CPU consumed
%MEM: percentage of RAM used

TIME+: total CPU time the task used
COMMAND: The actual name of the command

The command htop is similar to the top command, except it has more features and is more
user-friendly.

The ps command can be used to list all the processes used by the current user. An example
is shown in Figure 3.16.

pi@raspberrypi:~ § ps
PID TTY TIME CMD
971 pts/0 00:00:00 bash
1372 pts/0 OOiOO:OO ps
pilfraspberrypi:~ $

Figure 3.16 Command: ps

Command ps —ef gives a lot more information about the processes running in the system.

e 45

Raspberry Pi 5 Essentials

Killing a process
There are many options for killing (or stopping) a process. A process can be killed by spec-
ifying its PID and using the following command:

pi@raspberrypi: ~$ kill -9 <PID>
Disk (microSD card) usage

The disk free command df can be used to display the disk usage statistics. An example is
shown in Figure 3.17. option —=h displays in human-readable form.

pi@raspberrypi:~ § df -h

Filesystem Size Used Avail Use% Mounted on
judev 3.8G 0 3.8G 0% /dev

tmpfs 806M 3.6M 802M 1% /run
|/dev/mmcblk0p2 296G 4.6G 23 17% /

tmpfs 4.0G 32K 4.0G 1% /dev/shm

tmpfs 5.0M 48K 5.0M 1% /run/lock
|/dev/mmcblkOpl 510M 73M 438M 15% /boot/firmware
tmpfs 806!I4 128K 806M 1% /run/user/1000
[pilra ypi:~ §

Figure 3.17 Command: df -h

Command free shows how much memory is used and the amount of free memory.
3.3.4 Shutting Down

Although you can disconnect the power supply from your Raspberry Pi 5 when you finish
working with it, it is not recommended since there are many processes running on the sys-
tem, and it is possible to corrupt the file system. It is much better to shut down the system

in an orderly manner.

The following command will stop all the processes and make the file system safe, and then
turn off the system safely:

pi@raspberrypi: ~$ sudo halt
The following command stops and then restarts the system:

pi@raspberrypi: ~$ sudo reboot
The system can also be shut down and then restarted after a time by entering the following
command. Optionally, a shutdown message can be displayed if desired:

pi@raspberrypi: ~$ shutdown -r <time> <message>

To shutdown at 1:55 AM:

pi@raspberrypi: ~$ sudo shutdown -h 01:55:

® 46

Chapter 3 e Using The Console Commands

Enter the following command to shut down now:
pi@raspberrypi: ~$ sudo shutdown now
Broadcast message from root @raspberrypi on pts/1 (Tue 2023-10-03 12:03:00 BST)
The system will power off now!
Note: Raspberry Pi 5 includes a power switch at its side. When the Raspberry Pi is ON, a
single press brings the shutdown/logout menu. Another press triggers a safe shutdown,
which is a standby with the Raspberry Pi consuming about 1.4 W. A press of the button

will start up the Raspberry Pi 5.

3.3.5 Networking
Some useful networking commands are:

ifconfig: check the IP address of your Raspberry Pi

iwconfig: check which network the Raspberry Pi is using. An example is shown in Figure
3.18. Here, the SSID of the Wi-Fi adapter used is BTHub5-6SPN

pi@rasp - rrypi:~ $ iwconfig

1o no wireless extensions.

eth0 no wireless extensions.

wlanO IEEE 802.11 ESSID:"BTHub5-6SPN"

Mode:Managed Frequency:5.18 GHz Access Point: 4C:1B:86:B5:BA:7B
Bit Rate=433.3 Mb/s Tx-Power=31 dBm

Retry short limit:7 RTS thr:off Fragment thr:off

Power Management:on

Link Quality=45/70 Signal level=-65 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:3 Invalid misc:0 Missed beacon:0

piraspberrypi:~ $ ||

Figure 3.18 Command iwconfig

ping: used to test the availability of a network device. An example is shown in Figure 3.19

pilra rypi:~ $ ping 192.168.1.251

PING . .1.251 (192.168.1.251) 56(84) bytes of data.

64 bytes from 192.168.1.251: icmp_seg=1l ttl=64 time=0.033 ms
64 bytes from 192.168.1.251: icmp_seq=2 ttl=64 time=0.014 ms
64 bytes from 192.168.1.251: icmp_seq=3 ttl=64 time=0.011 ms

Figure 3.19 Command ping

wget: this command is used to download a file from the web and saves the file in the
current directory.

hostname - I: shows the IP address of the Raspberry Pi

The command vcgencmd measure_temp displays the CPU temperature as shown in
Figure 3.20.

o 47

Raspberry Pi 5 Essentials

pilraspberrypi:~ $ vcgencmd measure_ temp
temp=49.4'C
pi@raspberrypi:~ § I

Figure 3.20 Displaying the CPU temperature

3.3.6 System information and other useful commands
The uname command is used to display system information. This command has the fol-
lowing options:

-a Show all system information

-s display the kernel name

-n print the network node hostname
-r print the kernel release

-v print the kernel version number
-m print the system hardware name
-p print the processor type

-i print the hardware platform type
-0 print the operating system type

Some examples are shown in Figure 3.21

pi@raspberrypi:~ $§ uname -a
Linux raspberrypi 6.1.0-rpid-rpi-2712 #1 SMP PREEMPT Debian 1:6.1.54-1+rptl
3-09-27) aarch64 GNU/Linux

pi@raspberrypi:~ $ uname -s
Linux

pi@raspberrypi:~ $§ uname -n
raspberrypi
pi@raspberrypi:~ $ uname -r

6.1.0-rpid-rpi-2712

Figure 3.21 The uname command

If you have executed many commands and want to use some of them again, but you
cannot remember the command name, you can use the history command. An example
is shown in Figure 3.22. To execute a command from the history, enter ! followed by the
command number. For example, to execute the Is command again, you can enter 16 fol-
lowed by the Enter key.

o
v
r

spberrypi:~ $ history
sudo nano /etc/default/console-setup
sudo /etc/init.d/console-setup restart
sudo restart
sudo reboot
1s
cat /etc/default/console-setup
sudo dpkg-reconfigure console-setup
1s
1ls music

CLVBNOAUIBWNK L

=

Figure 3.22 The history command

e 48

Chapter 3 e Using The Console Commands

The clear command is also useful, and it is used to clear the screen.
To install a package, use the command: sudo apt install <package_name>

The & operator allows you to run any command in the background so that you can use the
terminal for other tasks. This operator must be added to the end of a command.

The && operator allows you to run two or more commands at the same time. For example,
commandl && command?2

e 49

Raspberry Pi 5 Essentials

Chapter 4 e Desktop GUI -Desktop Applications

4.1 Overview
In this chapter, you will learn how to access and use the desktop applications of your Rasp-
berry Pi 5.

4.2 Desktop GUI Applications

If you have connected a monitor, a mouse, and a keyboard to your Raspberry Pi 5 com-
puter, then you can access the desktop GUI by entering command startx in the command
mode.

If you wish to access the Desktop GUI applications from a desktop or a laptop computer,
then the required steps are as follows:

Step 1: Connect to your Raspberry Pi 5 using the Putty terminal emulator with the SSH
services as explained in earlier chapters.

Step 2: Run the VNC server by entering the following command into your SSH window:
pi@raspberrypi ~ $ vncserver :1
Step 3: Run the VNC Viewer program on your computer. Enter the IP address of your

Raspberry Pi 5 computer, followed by characters :1 to indicate that we are using port 1 (see
Figure 4.1). Click the Connect button.

New TightVNC Connection = X
Connection
Remote Host: | PRI v| [connect |
Enter a name or an IP address. To specify a port number, =
append it after two colons (for example, mypc::5902). Options...
Reverse Connections
Listening mode allows people to attach your viewer to Listen

their desktops. Viewer will wait for incoming connections.

TightVNC Viewer
TightVNC is cross-platform remote control software.

u Its source code is available to everyone, either freely
VNC (GNU GPL license) or commerdially (with no GPL restrictions).

Version info... Licensing Configure...

Figure 4.1 Enter the IP address of your Pi 5
You will be asked for your password that you created earlier. Enter the password, and you

will see the Raspberry Pi 5 Desktop displayed (Figure 4.2, only the upper part of the screen
is shown)

e 50

Chapter 4 o Desktop GUI-Desktop Applications

Pi's X desktop (raspberrypi:1) - TightVNC Viewer
SHED IS @R L QAQAAR|E

Figure 4.2 Raspberry Pi 5 Desktop

Assuming you are using a pre-installed micro SD card, at the top of the screen you have a
number of shortcut icons. Below that, you will see four menu icons with the names:

Applications menu
Web Browser

File Manager
Terminal

On the top right-hand side of the screen, starting from the left, you have the following
menus:

Updates
Bluetooth

Wi-Fi

Volume Control
Time

4.2.1 Applications Menu
Figure 4.3 shows the items under the Applications Menu.

&

. Programming >
Lfﬁ?; Internet >
[ﬂ Sound & Video >
$ Graphics >
“ Accessories >
@ Help >
[=] Preferences >
S / Run...

. Shutdown...

Figure 4.3 Items under the Applications Menu
Programming: This menu item includes a number of programming languages that you

can use to program our Raspberry Pi 5. Figure 4.4 shows a list of the items in the Program-
ming menu.

e 51

Raspberry Pi 5 Essentials

e

{} Programming bl 5i) Geany Programmer's Editor
@ nternet > Tk Thonny

H] Sound & Video >

$ Graphics >

a\ Accessories >

@ Help >

(=] Preferences 4

: g"(Run...

. Shutdown...

Figure 4.4 Items under the Programming menu

In this book, you will be using the Thonny IDE in most of your Python programs. Details
about the Thonny IDE are given in a later chapter.

Web Browser: This menu item includes the Chromium and the Firefox web browsers.
Sound & Video: This menu item includes the video program VLC Media Player
Graphics: This menu item includes the Image Viewer program

Accessories: This menu item includes a number of useful programs, as shown in Fig-

ure 4.5. For example, the Calculator program can be used to perform simple and scientific
calculations (Figure 4.6)

8\ Accessories BN @ Archiver

@ Help

=] Preferences > B Document Viewer

=]
> nE Calculator

< / Run.. File Manager

B shutdown... & mager

‘ Raspberry Pi Diagnostics
n SD Card Copier

E Task Manager

B Terminal

./l Text Editor

Figure 4.5 The Accessories menu

e 52

Chapter 4 o Desktop GUI-Desktop Applications

galculator v oA X
File Edit View Calculator Help

0

c AC <
CIEY [Mss]| MR~ |[M+~

i 8 9 / sqrt

4 5 6 = %

1 2 3
0 - /s + i

Figure 4.6 The Calculator program
Help: This menu provides help on various Raspberry Pi tools

Preferences: This menu is used for system and software settings, such as adding/remov-
ing software, print services, screen configuration, etc. (Figure 4.7)

Preferences > ﬂ Add / Remove Software

P }," Run... @_f Appearance Settings

. Shutdown.. "ﬂ Main Menu Editor

@ﬁl Mouse and Keyboard Settings
== Print Settings

' Raspberry Pi Configuration
' Recommended Software

g Screen Configuration

Figure 4.7 The Preferences menu
Run: This menu is used to run a program
Shutdown: Use this menu option to shut down your Raspberry Pi 5

4.2.2 Web browser
Click this menu option to start a web browser

4.2.3 File manager

This menu item is used for file handling and is similar to the File Explorer on Windows sys-
tems. Figure 4.8 shows the options under this menu item. With the File manager, you can
create a file, copy/paste text, view the contents of a file, sort a file, find files, and several
other file processing options.

e 53

Raspberry Pi 5 Essentials

pi VoA x
File Edit View Sort Go Tools
ala ® [N | /homerpi v
[BXHome Folder -
Filesystem Root = (B X Ml
[T
> dev Bookshelf Desktop Documents Downloads Music
»[lete sse
- home - b
John myfiles Pictures Public Templates Videos
Johnson
[rexr | [rexr |
kshelf
Bockehd mytestfiletx- test.txt
Desktop t
Documents
L Downloads
Music

Figure 4.8 The File manager menu

4.2.4 Terminal
This menu item enables the command mode so that you can enter commands in this mode
(Figure 4.9, only part of the screen is shown)

LK) BHli@raspberrypi....

File Edit Tabs Help

pi@raspberrypi

Figure 4.9 The Terminal menu

4.2.5 Manage Bluetooth devices
This menu item at the right-hand side of the screen enables you to enable the Bluetooth on
your Raspberry Pi 5 and to pair with other Bluetooth devices

4.2.6 Wi-Fi

The next menu item to the Bluetooth is the Wi-Fi menu, which can be used to turn the Wi-
Fi on and off, and to connect to a Wi-Fi router. When clicked, a list of the available Wi-Fi
devices is given (see Figure 4.10).

® 3 3
Turn Off Wireless LAN
v BTHub5-6SPN s @ =

Advanced Options >

Figure 4.10 Wi-Fi menu

e 54

Chapter 4 o Desktop GUI-Desktop Applications

4.2.7 Volume control
This menu item is used to control the audio volume through a sliding bar.

4.2.8 Date and time

Next to the Volume control is the date and time menu, which shows the current system
date and time.

e 55

Raspberry Pi 5 Essentials

Chapter 5 e Using a Text Editor in Console Mode

A text editor is used to create or modify the contents of a text file. There are many text
editors available for the Linux operating system. Some popular ones are nano, vim, vi, and
many more. In this chapter, we shall be looking at some of these text editors and see how
to use them.

5.1 nano text editor
Start the nano text editor by entering the word nano, followed by the filename you wish
to create or modify. An example is given below where a new file called first.txt is created:

pi@raspberrypi: ~ $ nano first.txt

You should see the editor screen as in Figure 5.1. The name of the file to be edited is written
at the top middle part of the screen. The message 'New File' at the bottom of the screen
shows that this is a newly created file. The shortcuts at the bottom of the screen are there
to perform various editing functions. These shortcuts are accessed by pressing the Ctrl key
together with another key. Some of the useful shortcuts are given below:

Ctrl+W: Search for a word

Ctrl+V: Move to the next page

Ctrl+Y: Move to the previous page

Ctrl+K: Cut the current row of txt

Ctrl+R: Read file

Ctrl+U: Paste the text you previously cut
Ctrl+J: Justify

Ctrl+\: Search and replace text

Ctrl+C: Display current column and row position
Ctrl+G: Get detailed help on using the nano
Ctrl+-: Go to the specified line and column position
Ctrl+0: Save (write out) the file currently open
Ctrl+X: Exit nano

e 56

Chapter 5 e Using a Text Editor in Console Mode

& pi@raspberrypi: ~ - o P4

GNU nano 7.2 New Buffer A

[Welcome to nano. For basic help, type Ctrl+G.
g% Write Out gy Where Is @y Execute
3 Read File g\ Replace Justify

]

g% Location
Wi Go To Line v

Help
¢ Exit

Figure 5.1 nano text editor screen
Now, type the following text as shown in Figure 5.2:

nano is a simple and yet powerful text editor.
This simple text example demonstrates how to use nano.
This is the last line of the example.

GNU nano 2.2.6 File: firsc.txt Modified -

m

Figure 5.2 Sample text

The use of nano is now demonstrated with the following steps:
Step 1: Go to the beginning of the file by moving the cursor.
Step 2: Look for the word simple by pressing Ctrl+W and then typing simple in the win-

dow opened at the bottom left-hand corner of the screen. Press the Enter key. The cursor
will be positioned on the word simple (see Figure 5.3).

e 57

Raspberry Pi 5 Essentials

[=]E b

B i@ e
2P pil@raspberrypi: - & s aw

GNU nano 2.2.6 File: first.txt Modified

Figure 5.3 Searching the word simple

Step 3: Cut the first line by placing the cursor anywhere on the line and then pressing
Ctrl+K. The first line will disappear, as in Figure 5.4.

EP pi@raspberrypi: ~ a Sa as o [

GNU nano 2.2.6 first.txt Modified

Figure 5.4 Cutting the first line

Step 4: Paste the line cut after the first line. Place the cursor on the second line and press
Ctrl+U (see Figure 5.5).

£P pi@raspberrypi: ~ Sa as =
GNU nano 2.2.6 File: firsc.txt Modified

Figure 5.5 Paste the line cut previously

Step 5: Place cursor at the beginning of the word simple on the first row. Enter Ctrl+C.
The row and column positions of this word will be displayed at the bottom of the screen
(Figure 5.6).

e 58

Chapter 5 e Using a Text Editor in Console Mode

- — (= [O[]
#P pi@raspberrypi: - . e 8 E

GNU nano 2.2.6 firsc.txt Modified

%), col 6/55

Figure 5.6 Displaying row and column position of a word

Step 6: Press Ctrl+G to display the help page as in Figure 5.7. Notice that the display is
many pages long, and you can jump to the next pages by pressing Ctrl+Y or to the previ-
ous pages by pressing Ctrl+V. Press Ctrl+X to exit the help page.

— = (=B ftm|
£P pi@raspberrypi: i Bese -

GNU nano 2.2.6 File: first.txt Modified

Figure 5.7 Displaying the help page

Step 7: Press Ctrl+- and enter line and column numbers as 2 and 5, followed by the Enter
key, to move the cursor to line 2, column 5 (see Figure 5.8).

e 59

Raspberry Pi 5 Essentials

[o] @ [

Modified

i@ i: ~
@pl.ﬂ:raspberwpm - . e a8

GNU nano 2.2.6 File: first.txt

Figure 5.8 Moving to line 2, column 5

Step 8: Replace word example with word file. Press Ctrl+\ and type the first word as
example (see Figure 5.9). Press Enter and then type the replacement word as file. Press
Enter and accept the change by typing y.

|[E=RREE X")

Modified

i@ i: ~
@ pi@raspberrypi: - a e a8
GNU nano 2.2.6 File: first.txt

Figure 5.9 Replacing text

Step 9: Save the changes. Press Ctrl+X to exit the file. Type Y to accept the saving, then
enter the filename to be written to, or simply press Enter to write to the existing file (first.
txt in this example). The file will be saved in your current working directory.
Step 10: Display the contents of the file:

pi@raspberrypi: ~ $ cat firs.txt

This simple text file demonstrates how to use nano.

Nano is a simple and yet powerful text editor

This is the last line of the example.

pi@raspberrypi: ~ $

e 60

Chapter 5 ¢ Using a Text Editor in Console Mode

In summary, nano is a simple and yet powerful text editor, allowing us to create new text
files or to edit existing files.

5.2 vi text editor
The vi text editor has been around for many years when it has been the standard Unix op-
erating system default text editor. The vi editor is a fully featured, powerful text editor for
doing many different tasks. The only problem with using vi is that it is not very user-friend-
ly and learning may take some time. In this section, we shall be looking at the basic fea-

tures of this editor and see how we can use it in simple editing applications.

Notice that you cannot use the keyboard arrow keys with the vi editor. Some of the useful
vi editor commands are listed below:

7

save changes and exit vi

:wq save changes and exit vi

:q!

—_ x — 0

mrTIOTS Own

exit without saving changes

move cursor left (backwards)
move cursor down

move cursor up

move cursor right (space bar)

move to the last column on the current line

move cursor to the first column on current line
move cursor to the beginning of the next word
move cursor to the beginning of the previous word
move cursor to the top of the screen

move cursor to the middle of the screen

move cursor to the bottom of the screen

move to the last line in the file
move to line n

replace character under cursor with next character typed

insert before cursor
append after cursor
append at end of line

delete character under cursor
delete line under cursor
delete word under cursor

search for a word (forwards)
search a word (backwards)
search and replace a word in current line

e 61

Raspberry Pi 5 Essentials

Start the vi text editor by typing vi followed by the name of the file to be created or modi-
fied. In this example, it is assumed that a new file called myfile.txt is to be created:

pi@raspberrypi: ~ $ vi myfile.txt

You should see the vi text editor screen displayed as in Figure 5.10. The name of the file
being edited is displayed at the bottom of the screen.

— — [=] B i)
R pi@raspberrypi: [AW =

m

Figure 5.10 vi text editor screen

The vi editor is different from most other text editors in that it is not possible to start typing
inside the editor window. The steps for editing this file are given below:

Step 1: The vi editor has different modes, and you must be in insert mode to be able to
write to the window. Press i to enter insert mode. Then type in the following text (see Fig-
ure 5.11):

The vi text editor is a powerful text editor.

But it is not easy to use this editor.
This exercise should help you understand the basic commands.

e 62

Chapter 5 e Using a Text Editor in Console Mode

EP pi@raspberrypi: ~ . e 8w i

Figure 5.11 Entering the text

Step 2: To come out of the insert mode, press the ESC key. To save the file, type the
characters :w. You can exit the editor after saving the changes by typing :q. Alternatively,
you can type ZZ (note upper case) to save and exit. If you modified the file and attempt to
quit without saving, you will get an error message. If you want to exit without saving the
changes, simply type :q!

Step 3: Make sure you are in the command mode and type the character / followed by a
word to search for this word in the text. For example, type /editor to search for the word
editor (see Figure 5.12) in the text.

@ pi@raspberrypi: | =SaC] -'EL'J

Figure 5.12 Searching for text

Step 4: Insert word is before word editor. Type i followed by is and space, and terminate
insert mode by pressing the ESC key.

Step 5: Move cursor right by pressing the | key. Similarly, move the cursor left by pressing
the h key. Move the cursor down (to the second line) by pressing the j key.

e 63

Raspberry Pi 5 Essentials

Step 6: Search for the word this and delete it. Type /this followed by the Enter key. Type
dw to delete the word.

Step 7: Delete the second line where the cursor is on by typing dd

Step 8: Search for the word help and replace it with the word guide. Go to the line where
the word help is. Type /help, then type :s/help/guide/

Step 9: You can search and replace a word in any other line than the current line. For this
example, position the cursor on the first line. Change the word basic in the second line to
BASIC. Type:

:1,2s/basic/BASIC/

Notice that you can specify the range of lines by separating them with a comma. In this
example, the search starts from line 1 and terminates at line 2.

e 64

Chapter 6 ¢ Creating and Running a Python Program

Chapter 6 e Creating and Running a Python Program

6.1 Overview

You will be programming your Raspberry Pi 5 using the Python programming language.
It is worthwhile to look at the creation and running of a simple Python program on your
Raspberry Pi 5 computer. In this chapter, the message Hello From Raspberry Pi 5 will be
displayed on your PC screen.

As described below, there are three methods that you can create and run Python programs
on your Raspberry Pi 5.

6.2 Method 1 - Interactively from command prompt in console mode
In this method, you will log in to your Raspberry Pi 5 using the SSH and then create and
run the Python program interactively. This method is excellent for small programs. The
steps are as follows:

e Login to the Raspberry Pi 5 using SSH

e At the command prompt, enter python. You should see the Python command
mode, which is identified by three characters ">>>"

e Type the program:
print ("Hello From Raspberry Pi 5")

e The text will be displayed interactively on the screen as shown in Figure 6.1.
Note that at the time of writing this book, the Python version was: 3.11.2.

pi@raspberrypi:~ $ python
Python 3.11.2 (main, Mar 13 2023, 12:18:29) [GCC 12.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> print("Hello from Raspberry Pi 5")
Hello from Raspberry Pi 5

Figure 6.1 Running a program interactively
e Type Ctrl+z to exit the program

6.3 Method 2 - Create a Python file in console mode

In this method, you will log in to your Raspberry Pi 5 using the SSH as before and then
create a Python file. A Python file is simply a text file with the extension .py. You can use a
text editor, e.g. the nano text editor, to create your file. In this example, a file called hello.
py is created using the nano text editor. Figure 6.2 shows the contents of file hello.py.
This figure also shows how to run the file under Python. Notice that the program is run by
entering the command:

>>> python hello.py

e 65

Raspberry Pi 5 Essentials

pilraspberrypi:~ § ls

Bookshelf Documents hello.py myfiles Pictures Templates Videos
Desktop Downloads Music mytestfile.txt Public test.txt
pi@raspberrypi:~ § cat hello.py

print("Hello from Raspberry Pi 5")

pilraspberrypi:~ $§ python hello.py
Hello from Raspberry Pi 5
pi@raspberrypi:~ $

Figure 6.2 Creating and running a Python file

6.4 Method 3 - Create a Python file in Desktop GUI mode

In this method, you can log in to your Raspberry Pi 5 using either a directly connected
terminal through the mini HDMI port, or if you don't have a monitor, you can log in to the
Desktop using the VNC as described earlier, and then create and run your Python programs
in GUI mode using the Thonny IDE. It is worthwhile at this stage to learn the basics of using
the Thonny IDE.

The Thonny IDE
Start the Thonny IDE from the Desktop under the Programming menu. Figure 6.3 shows
the Thonny startup menu.

Thonny - <untitled> @ 1:1 v

Z!'E;"—"o 0O » @ =

~~~~~ Run Debug stop Zoom Quit Support

<untitied 3

shell

Figure 6.3 Thonny IDE startup menu

The screen consists of two parts: the upper part is where you write your programs. The
lower part is the shell, where small interactive programs can be written. This part is mainly
used for testing code snippets.

In the upper part contains the following menu items:

New: click to create a new program

Load: load an existing program from a folder on Raspberry Pi
Save: save an existing program on the screen to a file

Run: run the program on the screen

Debug: debug the program on the screen

e 66



Chapter 6 ¢ Creating and Running a Python Program

Over: used by the debugger
Into: used by the debugger
Out: used by the debugger
Stop: stop a running program
Zoom: zoom the screen
Quit: Exit the Thonny IDE

The Thonny IDE must be configured before it is used to write and upload programs to your
Raspberry Pi. Click the bottom-right corner of the screen to select your processor type and
select Local Python 3. You are now ready to write your program. The steps are:

e Type the following code in the upper part of the screen:

print("Hello from Raspberry Pi 5")

e Click File — Save and save with the name hello.py (Figure 6.4)

iEile Edit View Run Tools Help

sy OB o=

hello.py %

print(“Hello from Raspberry Pi 5")

Figure 6.4 Type your program and save it

¢ Click the Run icon (green menu button at the top) to run the program. The
output of the program will be displayed at the bottom of the screen as shown in
Figure 6.5.

File Edit View Run Tools Help

+r0 OB o=

hello.py % X
print("Hello from Raspberry Pi 5")

Shell x
>>>
Hello from Raspberry Pi 5

>>>

Figure 6.5 Run the program

You can run small programs in interactive mode by entering them at the lower part of the
screen under shell. The results will be displayed under shell immediately.

e 67



Raspberry Pi 5 Essentials

6.5 Which method?

The choice of a method depends upon the size and complexity of a program. Small pro-
grams can be run interactively without creating a program file. Larger programs can be
created as Python files, and then they can run either in the console mode or in Desktop
GUI mode under the Thonny IDE. Running under the Thonny IDE has the advantage that
justification of the code is corrected automatically as you write the code. In this book, the
Thonny IDE is used for small programs and the nano editor is used for larger programs to
create the program files.

e 68



Chapter 7 ¢ Python Programming and Simple Programs

Chapter 7 e Python Programming and Simple Programs

7.1 Overview

Python is an interpreted, interactive and object-oriented programming language. It was
developed by Guido van Rossum in the 1980s at the National Institute for Mathematics and
Computer Science in the Netherlands. It is derived from many other languages, including
C, C++, Modula-3, SmallTalk, and Unix shells. The language is now maintained by a team
of people at the Institute.

Python is interactive, which means that you can issue a command and see the result im-
mediately without having to compile the command. It is interpreted, thus requiring no
pre-compilation before it is run.

Python supports object-oriented techniques of programming. It is a beginners' language
which is easy to learn and easy to maintain. Beginners can easily learn programming in a
relatively short period of time. Python supports a large library of functions, which makes
it powerful. The language is portable, meaning that it can run on several different popular
platforms.

In this and next chapters, you will be learning the details of the Python programming lan-
guage on the Raspberry Pi 5 computer, and see how you can write programs using this
language. Many example programs are given to show how electronic engineers can use the
Python language to help them in their calculations.

7.2 Variable names

Python variable names are case-sensitive and can start with a letter A to Z or a to z or
an underscore character '_', followed by more letters or numbers 0 to 9. Some valid and
invalid example variable names are given below:

SUM - valid
Sum - valid
SUm - valid
_total - valid
Cnt5 - valid
8tot - invalid
%int - invalid
&xyz - invalid
My_Number - valid
@loop - invalid
_Account - valid

Note that variables total, Total, TOTAL, ToTal, or toTAL are all different.

e 69



Raspberry Pi 5 Essentials

7.3 Reserved words

There are some words which are reserved for use by the Python interpreter and thus cannot
be used as variable names by programmers. A list of these reserved words is given below.
Notice that all the reserved words contain lower-case letters:

and for raise
assert from return
break global try
class if while
continue import with
def in yield
del is

elif lambda

else not

except or

exec pass

finally print

7.4 Comments
Comment lines in Python start with a hash sign '#'. All characters after the # sign are ig-
nored by the Python interpreter. An example comment line is shown below:
# This is a comment line
Comments can also be inserted after a statement:
Sum =0 # Another comment
7.5 Line continuation
The line continuation character '\' can be used to continue a statement on the following
lines. An example is shown below:
Sum = a +\
b +\
C
Which is equivalent to:

Sum=a+b+c

7.6 Blank lines
A line containing no statements is ignored by the Python interpreter.

e 70



Chapter 7 ¢ Python Programming and Simple Programs

7.7 More than one statement on a line
It is permissible to have more than one statement on a single line by separating the state-
ments with a semicolon character. An example is given below:

cnt = 5; sum = 0; tot = 20;

7.8 Indentation

In most programming languages, blocks of code are identified by using braces at the begin-
ning and end of the block, or by identifying the end of the block using a suitable statement.
e.g. END, WEND, or ENDIF. In the Python language, there are no braces or statements to
indicate the start and end of a block. Instead, blocks of code are identified by line indenta-
tion. All statements within a block must be indented the same amount. The actual number
of spaces used to indent a block is not relevant as long as all the statements in the block
use the same number of spaces.

A valid block of code is given below (don't worry at this stage what the code does):

if j == 5:
a=a+1
b=a+2

else:
a=0
b=0

The following block of code is not valid since the indentation is not correct:

if j == 5:
a=a+1
b=a+2

else:
a=0
b=20

7.9 Python data types
Python supports the following data types:

e Numbers

e Strings

o Lists

e Dictionaries
e Tuples

e Sets

e Files

e 71



Raspberry Pi 5 Essentials

7.10 Numbers
Python supports the following numeric variable types:

e int - signed integer
e long - long integer
e float - floating-point real number

Complex number
Numbers can be represented in decimal, octal, binary, or hexadecimal. Long integers are
shown with an upper-case letter L.

Some example numbers are shown below:

Integer

100 - decimal

-67 - decimal

500 - decimal
0x20 - hexadecimal
0b10000001 - binary
002377 - octal
202334567L - long decimal
Ox3AEEFAE - hexadecimal

Floating point
2.355

23.780

-45.6

1.298

24.45E4

Complex
24.442,6j
0.78-4.2j

23.7j

We can assign numeric values to variables. These variable objects are created when values
are assigned to them:

sum = 28

a=0

We can delete a variable object by using the del statement:
del sum, a

We can assign a value to several variables at the same time:
w=x=y=z=0

e 72



Chapter 7 ¢ Python Programming and Simple Programs

Similarly, we can have statements of the form:
WI XI y = 3[ 5! 8

Which is equivalent to:

w =3
Xx=5
y=8

we can perform the following mathematical operations on numbers:

Expression operators
+ addition
- Subtraction
*  multiplication
/ division
>> shift right
<< shift left
**  power (exponentiation)
% remainder

Bitwise operators
| bitwise OR
& bitwise AND
A bitwise exclusive-or
~  bitwise complement

Some mathematical functions
pow(X,y) same as x**y

abs(x) absolute value of x

round(x,n) round x to n digits from the decimal point
floor(x) largest integer not greater than x

int(x) convert x to integer

hex(x) hexadecimal equivalent of integer x
bin(x) binary equivalent of integer x

exp(x) exponential of x

factorial(n) factorial of humber n

ceil(x) smallest integer not less than x

log(x) natural logarithm of x (base 2)

log10(x) logarithm of x (base 10)
Some mathematical utility libraries

random random number library
math mathematics library

e 73



Raspberry Pi 5 Essentials

Figure 7.1 to Figure 7.3 show examples of using numbers in Python. Statement import is
used to import a library to a Python program. The math library contains a large number
of mathematical functions, such as logarithmic and trigonometric functions, square root,
hyperbolic functions, angular conversion, and so on. Further details on these functions can
be obtained from the following link:

https://docs.python.org/3/library/math.html
random library is useful to generate random numbers. The function randint(a, b) in this
library generates an integer random number between integers a and b inclusive. Details of

functions available in the random library can be obtained from the following link:

https://docs.python.org/2/library/random.html

>>> 28 + 35
63

>>> 22 * 6
132

>>> 2 ** 5
32

>>> 2 << 3
16

>>> 5 % 2

1
>>> abs (-100)
100

>>> 0x10

16

>>> 0017

15

>>> 0b00001111
15

>>> (2 + 33) * 3
(6+93)

[>>> hex (20)
'0x14"'

>>> bin(15)
'0bl111"

>>>

Figure 7.1 Using numbers in Python

>>> int (23.256)

23

>>> float (4)

4.0

>>> 1/3.0
0.3333333333333333
>>> 10/4.0

2.5

>>> import math

>>> math.sqrt(16)
4.0

>>> math.pi
3.141592653589793
>>> math.floor (-3.5)
-4.0

>>> math.trunc(-4.5)
-4

>>> math.sin(30.0 * math.pi/180)
0.49999999999999994
>>> pow (2, 4)

16

>>> max(2,5,12,8)

12

>>> min(2,4,6,8)

2

Figure 7.2 Using numbers in Python

o 74



Chapter 7 ¢ Python Programming and Simple Programs

>>> a = 0b00001110

>>> bin(a & Obll)

'0b10"’

>>> bin(a | Obll)

'Obl11l’

>>> math.e

[2.718281828459045

>>> math.floor (-2.7)

~3.0

>>> sum((1,2,3,4,5,6,7,8,9,10))
55

>>> import random

>>> random.randint(l, 5)

3
>>> random.randint(l, 5)
4
P>>> random.randint(l, 5)
5
P>> (2 + 43) + (4 + 33)

(6+73)

>>> (2.4 * 3), (5.0 / 2.0), math.sqrt(12.0)
(7.199999999999999, 2.5, 3.4641016151377544)

Figure 7.3 Using numbers in Python

7.11 Strings
In Python, strings are declared by enclosing characters between a pair of single or double
quotation marks. An example is given below:

myname = "James Booth"
We can manipulate strings by extracting characters, joining two strings, assigning a string

to another string, and so on. Some commonly used string manipulation operations are
shown in Figure 7.4 and Figure 7.5.

>>> name = "John"

p>> surname = "Adams"

p>> full name = name + surname

p>> print (full_name)

JohnAdams

p>> initial = name[0]

>>> print(initial)

7

b>> initials = name[0] + surname[0]
>>> print(initials)

A

>>> print(name[0:3])

goh

>>> print(name[:2])

Jo

>>> print(name[2:])

hn

>>> print (name*2)

JohnJohn

>>> print(name[0:2] + surname[2:4] + "end")
Joamend

>>> print(name + " " + surname)
John Adams

>>> print (len(name))

14

Figure 7.4 String manipulation operations

e 75



Raspberry Pi 5 Essentials

>>> name =
h

t

'Smkth'’

il & b B
[>>> name
'Smith'
>>> name[0]

TypeError:
[>>> name =
[>>> name
'smith’'

"Smith"
>>> print(name[-1])

>>> print(name[-2])

>>> print(name.find('i'))
§>> name.replace('i’',
>>> numbers = "111,222,333,444,555"

>>> numbers.split(',"')
1222%;

'str' object does not support item assignment
gt

gt
Traceback (most recent call last):
File "<stdin>",

k')

'333', '444', '555']

line 1, in <module>

+ name[1l:]

Figure 7.5 String manipulation operations

Notice that a third index as the step can be used in string slicing operation. The step is add-
ed to the first offset until the second offset, and the character at this position is extracted.
In the following example, the characters at positions 0, 2, 4, 6 are extracted:

>>> a = "computer"
>>>b = a[0:7:2]
>>> print(b)

cmue

7.11.1 String functions

Python supports many string functions. Some commonly used string functions are given

below:
e capitalize()
e count(str,beg,end)

¢ find(str,beg,end)

e len(string)
e isalpha()
e isalnum()

e isdigit()

e islower()

e isupper()

e lower()

* upper()

e Istrip()

o rstrip()

e swapcase()

e 76

change first letter of a string to upper case and all
other characters to lower-case.

find how many times str occurs in a string. String
starting and ending positions should be specified
determine if str occurs in a string. String starting

and ending positions should be specified. The index is
returned if the str is found, otherwise -1 is returned
return the length of a string

return true if string contains all alphabetical characters
return true if string contains alphabetical and numeric
characters

return true if string contains all digits

return true if string contains all lower-case letters
return true if string contains all upper-case letters
convert all upper-case characters to lower-case
convert all lower case characters to upper case
remove all leading white spaces

remove all trailing spaces

change case of all letters



Chapter 7 ¢ Python Programming and Simple Programs

Figure 7.6 shows examples of using some of the string functions.

>>> a = "computer"

>>> b = a.capitalize()

>>> print (b)

Computer

>>> print(a.count('p', 0, len(a)))
1
>>> print(a.find('p', 0, len(a)))
3

>>> print(len(a))

8
>>> b = a.upper|()
>>> print(b)
ICOMPUTER

>>> a.isalpha()

True

>>> a.isdigit()
False

>>> b = a.swapcase ()
>>> print (b)
ICOMPUTER

Figure 7.6 Using the string functions

7.11.2 Escape sequences

Escape sequences are special non-printable characters used to generate functions such as
newline, tab, form feed, carriage return and so on. Escape sequences start with the char-
acter '\'. A list of the commonly used escape sequences is given below:

e \n newline

e \a bell

e \b backspace

o \f form feed

o \r carriage return
o \t horizontal tab
o \v vertical tab

e \xhh character defined by the 2-digit hexadecimal value hh

As an example, the following statement will display the letter 'a' followed by two newlines:

print("a\n\n")

7.12 Print statement

The print statement is one of the most commonly used statements. It displays text or num-
bers on the screen. Text is displayed by enclosing it in quotes. Numeric data is displayed by
simply entering the variable name. The data to be displayed is enclosed in round brackets.
Text and numeric data can be mixed in display outputs, and the type of the variable to be
displayed can be declared using formatting characters. A list of the commonly used format-
ting characters is given below:

® %cC character

* %s string

* %d signed integer

* %u unsigned integer

o 77



Raspberry Pi 5 Essentials

® %X lower case hexadecimal number
* %X upper-case hexadecimal number
o %f floating-point number

e %E exponential notation

Figure 7.7 shows some examples of using the print statement.

P>>> first, last = 1, 100

>>> print ("First = %d Last = %d" % (first, last))
[First = 1 Last = 100

>>>

[>>> name, age = "John", 21

[>>> print("Name = %s Age = %d" % (name, age))
Name = John Age = 21

>>>

>>> a = 2.345

[>>> print("a is %E" %(a))

la is 2.345000E+00

>>>

>>> a, b =5, 10

[>>> print("a is %d\n b is %d" %(a, b))

la is 5

b is 10

>>>

>>> a = 100

[>>> print ("2X" %(a))

64

Figure 7.7 Using the print statement

7.13 List variables

List variables are variables separated by commas and enclosed in square brackets. The
variables in a list can be of different types. The contents of a list can be accessed using
square brackets to index the required item in the list. Indexing starts from 0. As with the
strings, the "*' character can be used for repetition and the '+' character can be used for
concatenation. Some examples are given below:

mylist = ['John', 'Adam’, 230, 12.25, 'Peter’, 89]
second = [30, 23]

s = mylist[0] # s = 'John'

s = mylist[2] # s =230

s = mylist[2:4] # s =230,12.25

s = mylist[3:] # s = 12.25, 'Peter’, 89

s = mylist * 2 # s = 'John', 'Adam', 230, 12.25, 'Peter', 89, 'John',
'‘Adam’', 230, 12.25, 'Peter’, 89

s = mylist + second # s = 'John', 'Adam’, 230, 12.25, 'Peter’, 89, 30, 23

The contents of a list can be modified by assigning a new value to the required index po-
sition. For example, we can change the 2" element of the list mylist from 230 to 100 as:

mylist[2] = 100

Python does not allow to reference items that are not present in a list. For example, the
following statement gives an error message:

mylist[200]

e 78



Chapter 7 ¢ Python Programming and Simple Programs

Lists can be nested to form two-dimensional matrices. An example is given below:

M= [[1, 2, 3],
[4I 5/ 6][
[7,8,91]

The nested list is indexed starting from [0][0]. For example, the elements of row 1 can be
accessed as follows:

>>> M[1] # Elements of row 1

[4, 5, 6]

>>> M[1][1] # Element at row 1, column 1
5

The statement L = [ ] creates an empty list called L.

7.13.1 List functions
The Python language supports many list functions. Some commonly used list functions are
given below:

o del([i:j]) delete elements from i to j-1

e list.append(x) append an item to the end of a list

o list.extend([x,y,z]) add several items to the list

e cmp(L1,L2) compare elements of lists L1 and L2

e len(L) length of list L

e max(L) item with the maximum value

e min(L) item with the minimum value

e list.count(x) returns how many times x occurs in a list
e list.index(x) returns the position of the first occurrence of x
o list.insert(i,x) inserts x at position i in the list

e list.remove(x) removes the indexed item from the list

e list.reverse() reverses a list

e list.sort() sorts a list

e list.pop() delete and return the last item

Figure 7.8 shows some examples of using the print statement.

e 79



Raspberry Pi 5 Essentials

P>> 1st = ['A'; "BY 'CY; 'D'; "RE']
>>> del(1lst[2])

[>>> print(lst)

['A', 'B', 'D', 'E']

>>> del(1lst[1:3])

[>>> print(lst)

['A', 'E']

[>>> lst.append('Z')

[>>> print(lst)

['a', 'E', '2']

>>> lst.extend(['a', 'b', 'ec'])
[>>> print(lst)

['A', 'E', 'Z', 'a', 'b', 'ec']

[>>> print(lst.index('a'))

[>>> print (lst.reverse())

None

[>>> print(lst)

['e', 'b', 'a', 'Z', 'E', 'A']
>>> lst.sort()

[>>> print(lst)

['a', 'E', 'Z2', 'a', 'b', 'e']
[>>> print(len(lst))

6

Figure 7.8 Using the list functions

7.14 Tuple variables

Tuples are similar to lists, but their contents cannot be changed, i.e. they are read-only.
Also, tuple variables are enclosed in round brackets (parenthesis). Some examples are
given below:

mytuple = ['John', '"Adam’, 230, 12.25, 'Peter', 89]
second = [30, 23]

s = mytuple[0] # s = 'John'

s = mytuple[2] #s =230

s = mytuple[2:4] # s =230,12.25

s = mytuple[3:] # s = 12.25, 'Peter’, 89

s = mytuple * 2 # s = 'John', 'Adam', 230, 12.25, 'Peter', 89, 'John',

'Adam', 230, 12.25, 'Peter’', 89
s = mytuple + second  # s = 'John', 'Adam’, 230, 12.25, 'Peter’, 89, 30, 23

The following statement is not valid, since we cannot change the contents of a tuple:
mytuple[2] = 200

7.15 Dictionary variables

Dictionaries are similar to hash tables with keys and values. Each key is separated from

its value by a colon sign, the items are separated by command, and the whole thing is en-

closed in curly brackets. The keys in a dictionary must have data types of numbers, strings,

or tuples. The values can be of any data type. An example is given below:

mydict = {'"Name': 'John', 'Surname': 'Adams', 'Age': 25}

s = mydict['Name'] # s = 'John'

s = mydict['Age'] #s=25

s = mydict.keys() # s = ['Age’, 'Surname’, 'Name']
s = mydict.values() # s = [125, 'Adams', 'John']

e 80



Chapter 7 ¢ Python Programming and Simple Programs

7.15.1 Dictionary functions
The Python language supports a large number of dictionary functions. Some commonly
used dictionary functions are given below:

e cmp(dl, d2)
e len()

¢ del(d[key])
e d.clear

o d.keys()
d.values()

compare two dictionaries d1 and d2
the number of items in a dictionary
delete an item from the dictionary
remove all items from the dictionary
return a list of dictionary keys
return a list of dictionary values

Figure 7.9 shows some examples of using the print statement.

4

>>> d = {'A':1,
>>> print (len(d)

'B':2, 'C':3, 'D':4}

>>> print(d.keys())
[a,
>>> print(d.values())
[, 3, 2, 4]

>>> del(d['C'])

>>> print(d)

{"ArE Ty
>>> d.clear()
>>> print(d)
{}

'c', 'B', 'D']

'B': 2, 'D': 4}

Figure 7.9 Using the dictionary functions

7.16 Keyboard input

Python provides the following function for reading data from the keyboard:

e input

returned as a string

provides a prompted read. The data from the keyboard is

Figure 7.10 shows examples of using the keyboard input function. Notice that the function
returns a string. Therefore, if numeric data is entered, then it should be converted into a
numeric data type before being used in mathematical operations.

>>> name = input("Enter your name:
Enter your name:

>>> a =
Enter a
>>> b =

"
)
John Smith
input ("Enter a number:
number: 5

input ("Enter another number:

")
"y

Enter another number: 4

>>> c =

9)
>>> a =
Enter a
>>> b =
Enter

>>> ¢ =

>>> ]

int(a) + int(b)

>>> print(c)

int (input ("Enter a number: "))
number: 2

int (input ("Enter another number:

another number: 4

a *b

>>> print(c)

"))

Figure 7.10 Keyboard input examples

e 81



Raspberry Pi 5 Essentials

7.17 Comparison operators
Valid Python comparison operators are:

checks if two operands are equal

checks if two operands are not equal

checks if the left operand is greater than the right one

checks if the left operand is less than the right one

checks if the left operand is greater than or equal to the right one
checks if the left operand is less than or equal to the right one

.
ANV AV

7.18 Logical operators
Valid Python logical operators are:

e and logical AND of the two operands
e Or logical OR of the two operands

e not logical inverse of the operand

7.19 Assignment operators

o = assignment operator

o += compound add operator

o -= compound subtract operator
o ¥= compound multiply operator
o /= compound divide operator

7.20 Control of flow

In normal program flow, statements are executed sequentially one after another one. The
flow control statements are used to make decisions and change the order of execution de-
pending on the results of these decisions.

The Python programming language supports the following flow control statements:

o if

o if-else

o elif

o for

e while

e break

e continue
e pass

7.20.1 if, if...else, and elif
The general format of the if statement is:

e 82



Chapter 7 ¢ Python Programming and Simple Programs

if expression: statement

if expression:
Statement 1
Statement 2
else:
Statement 1
Statement 2

Notice the use of indentation inside the if blocks and the colon character at the end of the
if and else statements.

An example use of the if statement is:
if a == 5: print('ais 5')
If there is only one statement after the if, then it can be typed on the same line. If there

is more than one statement then all the statements must be written on the next lines with
the same amount of indentation. An example is given below:

ifa == 100:
x=0
y=0

else:
x=1
y =10

The elif statement is used to check for different conditions in an if block. An example is
given below:

ifa > 10:
=0
c=0
elifa == 10:
=2
c=4

Notice that the if statements can be nested, as shown in the following example:

ifa == 100:
c=0
k=1

if b == 10:
c=20
m=1

else:
c=23

e 83



Raspberry Pi 5 Essentials

7.20.2 for statement
The for statement is used to create loops (iteration) in programs. The general format of
this statement is:

for variable in sequence:
statements

Here, the sequence is evaluated first and the first item in the sequence is assigned to the
variable and the statements are executed. Then the second item is assigned to the varia-
ble and the statements are executed. This continues until there are no more items in the
sequence. An example use of the for statement is shown below:

for letter in "COMPUTER":
print(letter)

The following will be displayed on the screen:
C

Am-HdcC ©v=XZO

The for statement is commonly used to create loops in programs. The range statement
denotes the range of the variable, as in the following example:

for cnt in range(0, 5):
print(cnt)

The following will be displayed on the screen:
0

A WN P

Notice that the upper value of the range is one less than the specified value. In the above
example, range is from 0 to 4 and not to 5.

We can specify a step size in the last parameter when using the range statement, in the
following example, the step size is 5 and the list takes values 0O, 5, 10, 15, 20, 25:

List(range(0, 30, 5))

e 84



Chapter 7 ¢ Python Programming and Simple Programs

The for statement can be nested if desired.

7.20.3 while statement
The while statement can also be used to create loops (iteration) in programs. The general
format of this statement is:

while expression:
statements

The statements are executed while the expression evaluates to True. An example is given
below:

cnt = 0

while cnt < 5:
print(cnt)
cnt = cnt + 1

The output of the program is as follows:
0

A WN R

Notice that the statements that belong to the while statement must be indented. It is im-
portant to make sure that the expression is modified inside the loop; otherwise an infinite
loop will be formed as shown in the following example:

cnt = 0
while cnt < 5:
print(cnt)

7.20.4 continue statement

The continue statement is used in for and while loops, and this statement skips all the
remaining statements in a loop and returns to the beginning of the loop. An example is
given below. In this example, number 3 is not displayed by the print statement:

cnt = 0
while cnt < 5:
cnt = cnt + 1
if cnt == 3:
continue

print(cnt)

e 85



Raspberry Pi 5 Essentials

The output of this example is as follows:
1

2
4
5

7.20.5 break statement
The break statement is used in for and while loops, and this statement terminates the
loop and execution continues with the next statement. An example is given below:

cnt = 0
while cnt < 5:
cnt = cnt + 1
if cnt == 3:
break
print(cnt)

The output of this program is as follows:
1
2

7.20.6 pass statement

The pass statement is used when a statement is required syntactically, but you do not
want any command or code to execute. The pass statement is a null operation and nothing
happens when it executes. An example is given below:

for letter in 'COMPUTER':
if letter == 'P':
pass
print('Passed')
print(letter)

The output of this program is:
C
0
M
Passed

o m—-cC ©

We have covered the basic statements of the Python programming language. We will now
develop example programs using the knowledge we have gained so far.

e 86



Chapter 7 ¢ Python Programming and Simple Programs

7.21 Example 1 - 4-Band resistor colour code identifier

In this example, the user enters the three colours of a 4-band resistor and the program
calculates and displays the value of the resistor in ohms. The tolerance of the resistor is
not displayed.

Background Information: Resistor values are identified by the following colour codes:

Black:
Brown:
Red:
Orange:
Yellow:
Green:
Blue:
Violet:
Grey:
White:

O oONOU D~ WNREO

The first two colours determine the first two digits of the value, while the last colour deter-
mines the multiplier. For example, red red red corresponds to 22 x 102 = 2200 Q.

Program Listing: Figure 7.11 shows the program listing (program: resistor.py). At the
beginning of the program, a list called colour is created which stores the valid resistor col-
ours. Then a heading is displayed, and a while loop is created which runs as long as string
variable yn is equal to y. Inside the loop, the program reads the three colours from the
keyboard using functions input and stores as strings in variables FirstColour, Second-
Colour and ThirdColour. These strings are then converted into lower case so that they are
compatible with the values listed in the list box. The index values of these colours in the list
are then found using function calls of the form colours.index. Remember that the index
values start from 0. As an example, if the user entered red, then the corresponding index
value will be 2. The resistor value is then calculated by multiplying the first colour number
by 10 and adding to the second colour number. The result is then multiplied by the power
of 10 of the third colour index. The final result is displayed on the screen. The program then
asks whether the user wants to continue. If the answer is y then the program returns to the
beginning; otherwise the program is terminated.

R S s e e N e e e e
# RESISTOR COLOUR CODES

#

#

# The user enters the three colours of a resistor
# and the program calculates and displays the value
# of the resistor in Ohms

#

# Program: resistor.py

# Date : October, 2023

e 87



Raspberry Pi 5 Essentials

# Author : Dogan Ibrahim

colours = ['black','brown','red','orange','yellow', ' 'green',\

'blue','violet', 'grey','white']

print ("RESISTOR VALUE CALCULATOR")
pr-i nt(":::::::::::::::::::::::::")
yn = nyu

while yn == 'y':
FirstColour = input("Enter First Colour: ")
SecondColour = [dinput("Enter Second Colour: ")
ThirdColour = input("Enter Third Colour: ")

# Convert to lower case
FirstColour = FirstColour.lower ()
SecondColour = SecondColour.lower ()
ThirdColour = ThirdColour.lower ()

# Find the values of colours
FirstValue = colours.index(FirstColour)
SecondValue = colours.index(SecondColour)
ThirdValue = colours.index(ThirdColour)

# Now calculate the value of the resistor
Resistor = 10 * FirstValue + SecondValue
Resistor = Resistor * (10 *x ThirdValue)
print("Resistance = %d Ohms" % (Resistor))

# Ask for more

yn = input("\nDo you want to continue?: ")
yn

yn. lower ()
Figure 7.11 Program listing

The program was created using the nano text editor and then run from the command line
by entering the following command:

pi@raspberrypi:~ $ python resistor.py

Figure 7.12 shows a typical run of the program.

e 88



Chapter 7 ¢ Python Programming and Simple Programs

berrypi:~ $ python resistor.py
R VALUE CALCULATOR

Enter First Colour: red
Enter Second Colour: red
Enter Third Colour: yellow
Resistance = 220000 Ohms

Do you want to continue?: n
— i~ § .

Figure 7.12 Typical run of the program

7.22 Example 2 — Series or parallel resistors

This program calculates the total resistance of a number of series or parallel connected
resistors. The user specifies whether the connection is in series or in parallel. Additionally,
the number of resistors used is also specified at the beginning of the program.

Background Information: When a number of resistors are in series, then the resultant
resistance is the sum of the resistance of each resistor. When the resistors are in parallel,
then the reciprocal of the resultant resistance is equal to the sum of the reciprocal resist-
ances of each resistor.

Program Listing: Figure 7.13 shows the program listing (program: serpal.py). At the
beginning of the program, a heading is displayed, and the program enters into a while
loop. Inside this loop, the user is prompted to enter the number of resistors in the circuit
and whether they are connected in series or in parallel. The function str converts a number
into its equivalent string. e.g. number 5 is converted into the string "5". If the connection
is serial (mode equals to 's") then the value of each resistor is accepted from the keyboard
and the resultant is calculated and displayed on the screen. If on the other hand, the con-
nection is parallel (mode is equal to 'p'), then again the value of each resistor is accepted
from the keyboard and the reciprocal of the number is added to the total. When all the
resistor values are entered, the resultant resistance is displayed on the screen.

R S s N N e e O
# RESISTORS IN SERIES OR PARALLEL

# e

#

# This program calculates the total resistance of

# serial or parallel connected resistors

#

# Program: serpal.py

# Date : October, 2023

# Author : Dogan Ibrahim

R S s N N e e O
print("RESISTORS IN SERIES OR PARALLEL")
print("===============================")

yn = "y"

while yn == 'y':

e 89



Raspberry Pi 5 Essentials

N = int(input("\nHow many resistors are there?: "))
mode = input("Are the resistors series (s) or parallel (p)?:
mode = mode. lower ()

# Read the resistor values and calculate the total

resistor = 0.0

if mode == 's':
for n in range(0,N):
s = "Enter resistor " + str(n+l) + " value in Ohms: "
int(input(s))

resistor = resistor + r

7
print("Total resistance = %d Ohms" %(resistor))

elif mode == 'p':
for n in range(0,N):
s = "Enter resistor " + str(n+l) + " value in Ohms: "
r = float(input(s))
resistor = resistor + 1 / r
print("Total resistance = %.2f Ohms" %(1 / resistor))
#
# Check if the user wants to exit
#
yn = input("\nDo you want to continue?: ")
yn = yn. lower ()

Figure 7.13 Program listing

Figure 7.14 shows a typical run of the program.

i:~ $ python serpal.py
SERIES OR PARALLEL

How many resistors are there?: 2

Are the resistors series (s) or parallel (p)?: s
Enter resistor 1 value in Ohms: 250

Enter resistor 2 value in Ohms: 100

Total resistance = 350 Ohms

Do you want to continue?: y

How many resistors are there?: 2

Are the resistors series (s) or parallel (p)?: p
Enter resistor 1 value in Ohms: 100

Enter resistor 2 value in Ohms: 100

Total resistance = 50.00 Ohms

Do you want to continue?: n

Figure 7.14 Typical run of the program

e 90



Chapter 7 ¢ Python Programming and Simple Programs

7.23 Example 3 — Resistive potential divider
Description: This case study calculates the resistances in a resistive potential divider cir-
cuit.

Background Information: Resistive potential divider circuits consist of two resistors.
These circuits are used to lower a voltage to a desired value. Figure 7.15 shows a typical
resistive potential divider circuit. Here, Vin and Vo are the input and output voltages re-
spectively. R1 and R2 form the resistor pair used to lower the voltage from Vin to Vo. Many
resistor pairs can be used to get the desired output voltage. Choosing large resistors draws
little current from the circuit, and choosing small resistors draws larger current. In this
design, the user specifies Vin, Vo, and R2. The program calculates the required R1 value to
lower the voltage to the desired level. Additionally, the program displays the output voltage
with the chosen physical resistors.

R1
Vo

Vin R2
Figure 7.15 Resistive potential divider circuit

The output voltage is given by:

Vo = Vin R2 / (R1 + R2)
R1 is then given by:

R1 = (Vin - Vo) R2/ Vo
The above formula is used to calculate the required value of R1, given Vin, Vo, and R2
Program Listing: Figure 7.16 shows the program listing (program: divider.py). At the
beginning of the program, a heading is displayed. The program then reads Vin, Vo, and R2
from the keyboard. The program calculates R1 and displays R1 and R2. The user is then
asked to enter a chosen physical value for R1. With the chosen value of R1, the program
displays Vin, Vo, R1, and R2 and asks the user whether the result is acceptable. If the an-

swer to this question is y then the program terminates. If, on the other hand, the answer
is n then the user is given the option of trying again.

# This is a resistive potential divider circuit program.
# The program calculates the resistance values that will
# lower the input voltage to the desired value

#

e 91



Raspberry Pi 5 Essentials

# Program: divider.py
# Date : October, 2023
# Author : Dogan Ibrahim

while Riflag ==
Vin = float(input("\nInput voltage (Volts): "))
Vo = float(input("Desired output voltage (Volts): "))
R2 = float(input("Enter R2 (in Ohms): "))

# Calculate R1

R1 = R2 * (Vin - Vo) / Vo
print("\nR1 = %3.2f Ohms R2 = %3.2f Ohms" %(R1, R2))

# Read chosen physical R1 and display actual Vo

NewR1l = float(input("\nEnter chosen R1 (Ohms): "))

# Display and print the output voltage with chosen R1

print("\nWith the chosen R1l,the results are:")
Vo = R2 * Vin / (NewRl + R2)
print("R1 = %3.2F R2 = %3.2f Vin = %3.2f Vo = %3.3f" %(NewR1,R2,Vin,Vo))

# Check if happy with the values ?

happy = input("\nAre you happy with the values? ")
happy = happy.lower ()
if happy == 'y':
break
else:
mode = input("Do you want to try again? ")
mode = mode. lower ()

if mode == 'y':
Rlflag = 1
else:
Riflag = ©
break

Figure 7.16 Program listing

e 92



Chapter 7 ¢ Python Programming and Simple Programs

Figure 7.17 shows a typical run of the program.

pifraspberrypi:~ $ python divider.py

RESISTIVE POTENTIAL DIVIDER

Input voltage (Volts): 10
Desired output voltage (Volts): 5
Enter R2 (in Ohms): 100

R1 = 100.00 Ohms R2 = 100.00 Ohms
Enter chosen Rl (Ohms): 100

With the chosen Rl,the results are:
Rl = 100.00 R2 = 100.00 Vin = 10.00 Vo = 5.000

Are you happy with the values? y
pi@raspberrypi:~ §

Figure 7.17 Typical run of the program

7.24 Trigonometric functions

Python supports numerous trigonometric functions. The arguments to trigonometric func-
tions must be in radians. The math library must be imported into the program before these
functions can be used:

e sin(x) trigonometric sine

e cos(x) trigonometric cosine

e tan(x) trigonometric tangent

e asin(x) trigonometric arc sin

e atan(x) trigonometric arc tangent

e atan2(y, x) trigonometric atan(y/x)

e degrees(x) convert degrees into radians
¢ radians(x) convert radians into degrees

Some examples of using the trigonometric functions are given in Figure 7.18.

>>> import math

>>> print (math.radians (45))
0.785398163397

>>> print (math.degrees (1))
57.2957795131

>>> print(math.sin(math.radians(30)))
0.5

>>> print(math.cos (math.radians (60)))
0.5

>>> print (math.degrees (math.asin(0.5)))
30.0

Figure 7.18 Trigonometric function examples

7.25 User-defined functions

Functions are like small programs within a program. We can use functions to break up a
complex program into  several manageable sections, where each section can be imple-
mented as a function. Functions enable us to reuse parts of our programs. For example, we
can create a function to calculate the cube-root of a number and then call this function from
different parts of our program. Another advantage of using functions is that they make it
easier to maintain and update our programs.

e 93



Raspberry Pi 5 Essentials

A function that we create can be called from anywhere in a program. Functions have their
own variables and their own commands. As we have seen in earlier parts of this chapter,
Python has many built-in functions for various operations such as arithmetic, trigonometric,
string manipulation and so on. User-defined functions are created by programmers. In this
section, we shall be looking at how functions can be created and used in our programs.

A user-defined function consists of the following:

e Functions begin with the keyword def, followed by the function name, and
round brackets, followed by a colon sign.

e Input arguments to the function must be placed inside the brackets at the

beginning of the function definition.

The body of a function must be indented with the same number of spaces on

the left-hand side

¢ An optional text message can be displayed at the first line of a function to
describe what the function does.

e A function must be terminated with the return statement

An example function, named Mult is given below. This function takes two numbers first and
second as its arguments, multiplies them, and returns the result:

def Mult(first, second):
"This is a simple multiplication function"

result = first x* second
return result

A function is called from the main program by specifying the name of the function and
enclosing any arguments in a pair of brackets. For example, to call the above function to
multiply numbers 5 and 3 and sore the result in a variable called 'a', we include the follow-
ing statement in our program:

a = Mult(5, 3)
We can also call a function by specifying the keyword arguments. i.e.:

a = Mult(first = 5, second = 3)

Figure 7.19 shows the above example in a Python program.

>>> def Mult(first, second):
"This is a simple multiplication function"
result = first * second
return result

>>> a = Mult(5, 3)
>>> print(a)
15

Figure 7.19 Creating and calling a function

e 94



Chapter 7 ¢ Python Programming and Simple Programs

Another example is shown in Figure 7.20. In this example, the function displays a string
passed as an argument. Notice that there is no data returned from this function.

>>> def Prnt(strng):
print (strng)
return

>>> Prnt("Hello there")
Hello there

Figure 7.20 A function displaying a string

The variables used in a function are local to that function. Thus, for example, if there are
two variables with the same name, one inside the function and the other one outside,
changing the one inside the function does not change the one outside. Variables outside
a function are called global variables, whereas the ones inside a function are called lo-
cal variables. See Figure 7.21 for an example where the contents of variable res are not
changed outside the function.

>>> def Mult(first, second):
res = first * second
return res

>>> res = 2

>>> a = Mult(3, 8)

>>> print(a)

24

Figure 7.21 Variables in a function are local
The rules for global variables are as follows:

¢ Global variables are variables assigned at the top of the program outside the
function definitions

¢ Global names must be declared only if they are assigned within a function

e Global names may be referenced within a function without being declared

Therefore, by declaring a variable outside the functions and also inside a function but with
the global keyword allows us to change its contents inside the function. An example is given
below which identifies the use of global variables:

cnt = 10 # variable cnt is global
def tstfunc(): # function declaration
global cnt # variable cnt defined as global
cnt = 200 # value of global cnt is changed
tstfunc() # function is called
print(cnt) # value of cnt is 200

As explained above, if the value of a global variable is not changed inside a function, then
there is no need to define it as global. In the following code, there is no need to define x
as global inside the function:

e 95



Raspberry Pi 5 Essentials

= 10
y =4
def tst():
global y
y = x + 2

It is important to note that the variables in a function call are passed by value. This means
that the value of a parameter cannot be changed inside a function. An example is shown
in Figure 7.22. In this example, notice that the value of variable cnt is not changed inside
the function call.

>>> cnt = 2

>>> def Mult(first, second):
cnt = 5
return(first * second)

>>> a = Mult(5, 6)
>>> print(a)

30

>>> print(cnt)

2

Figure 7.22 Variables are passed by value

A function normally returns only one item to the calling program. In some applications,
we may want to return more than one item to the calling program. This is easily done
by returning a tuple and then unpacking it in the main program. An example is shown in
Figure 7.23. In this example, the function MyFunc is declared with two arguments. The
arguments are added and stored in a local variable called sum. Similarly, the difference of
the arguments is stored in variable diff. The function returns both sum and diff as a tuple.
The calling main program unpacks the returned data and stores in variables x and y.

>>> def MyFunc(a, b):
sum = a + b
diff = a - b
return sum, diff

>>> x, y = MyFunc(12, 5)
>>> print(x, y)
17,_7)

Figure 7.23 Returning more than one variable from a function

7.26 Examples

Example 4

Write a program to read an angle from the keyboard in degrees and display the trigonomet-
ric sine of this angle. Repeat until the user stops the program.

Solution 4

The required program listing and example output are shown in Figure 7.24 (program: trig.
pPY). The angle entered by the user is converted into floating point and is stored in variable
angle. Then the trigonometric sine of this angle is displayed. The program continues until
the user enters n in response to the prompt Any more?

e 96



Chapter 7 ¢ Python Programming and Simple Programs

trig.py * %

import math

yn:=
print(“"Trigonometric sine")
print ("==================\n")

while yn == 'y":
angle = float(input("Enter angle in degrees: "))
r = math.radians(angle)
s = math.sin(r)
print("sine of %3.2f degrees is: %f\n" %(angle, s))
yn = input("Any more? ")

Shell

>>>

Trigonometric sine

Enter angle in degrees: 3@
sine of 30.00 degrees is: 0.500000

Any more? n

Figure 7.24 Program listing
This program was created and run using the Thonny IDE.

Example 5
Modify the program in Example 4 so that the user can choose between sine, cosine, and
tangent.

Solution 5

The modified program listing and example output are shown in Figure 7.25 and Figure 7.26
(program: trigall.py). The user is given a menu with four choices: sine, cosine, tangent,
exit. The angle is read from the keyboard and is converted into radians. The program then
calculates the trigonometric value and displays on the screen. This process is repeated until
the user selects the exit option.

This program reads an angle from the keyboard

and displays its trigonometric sine, cosine, or
tangent depending on user choice. The angle is
read in degrees,converted into radians and then
the required trigonometric function is calculated

Author: Dogan Ibrahim

e 97



Raspberry Pi 5 Essentials

# File : trigall.py
# Date : October, 2023

import math

choice = '1'
while choice != '0':
print(«Trigonometric Sine, Cosine, or Tangent»)
print(«======================================\n»)
print(«l. Sine»)
print(«2. Cosine»)
print(«3. Tangent»)
print(«0. Exit»)
choice = input(«Enter choice: «)

if choice != '0':
angle = float(input(«Enter angle in degrees: «))
r = math.radians(angle)
if choice == '1':
s = math.sin(r)
strng = «sine»
elif choice == '2':
s = math.cos(r)
strng = «cosine»
elif choice == '3':
s = math.tan(r)
strng = «tangent»
print(strng + « of %3.2f degrees 1is: %f\n» %(angle, s))
print(«End of program»)

Figure 7.25 Modified program listing

pi@raspberrypi:~ $§ python trigall.py
Trigonometric Sine, Cosine, or Tangent

. Sine

. Cosine

. Tangent

. Exit

Enter choice: 2

Enter angle in degrees: 30

cosine of 30.00 degrees is: 0.866025

OCWNH

Trigonometric Sine, Cosine, or Tangent

1. Sine

2. Cosine
3. Tangent
0. Exit

Enter choice: 0
End of program
pilr. A |

Figure 7.26 Example output

e 98



Chapter 7 ¢ Python Programming and Simple Programs

This program was created using the nano text editor and then run using the command:
pi@raspberrypi:~ $ python trigall.py

Example 6
Write a program to tabulate the trigonometric sines of angles from 0° to 90° in steps of 5°.

Solution 6

The required program listing is shown in Figure 7.27 (program: sinetable.py). After dis-
playing a heading, the for statement is used to create a loop. Variable angle takes values
from 0 to 90 (inclusive) in steps of 5. The trigonometric sine is calculated and displayed.

B
# TRIGONOMETRIC SINE TABLE

# S e e e e e e e e e e e e

#

# This program tabulates the trigonometric sine of
# angles from 0 to 90 degrees in steps of 5 degress
#

# Author: Dogan Ibrahim

# File : sinetable.py

# Date : October, 2023

import math

print("TABLE OF TRIGONOMETRIC SINE")

print(" ANGLE SINE")

for angle in range(0, 95, 5):

r math.radians(angle)

s = math.sin(r)
print(" %d %f" %(angle, s))
print("End of program")

Figure 7.27 Program listing

An example run of the program is shown in Figure 7.28.

e 99



Raspberry Pi 5 Essentials

Example 7

Write a program to read metres from the keyboard. Convert into yards and inches and
display the result.

Solution 7

The required program listing and example output are shown in Figure 7.29 program: conv.
py). After displaying a heading, metres is read from the keyboard using the input state-
ment. The value is then converted into yards and inches by multiplying with 1.0936 and

pifraspberrypi:~ $ python sinetable.py
TABLE OF TRIGONOMETRIC SINE
ANGLE SINE
] 0.000000
5 0.087156
10 0.173648
15 0.258819
20 0.342020
25 0.422618
30 0.500000
35 0.573576
40 0.642788
45 0.707107
50 0.766044
55 0.819152
60 0.866025
65 0.906308
70 0.939693
75 0.965926
80 0.984808
85 0.996195
90 1.000000
End of program
[pi@raspl rypi:~ § I

Figure 7.28 Example run of the program

39.370 respectively. The results are displayed on the screen.

Example 8

Repeat Example 7 but do the conversion in a function called Conv. Show how this function

conv.py %

print(“Convert metres into yards and inches")
print(" 2
14 metres = float(input("Enter metres: "))
yards = 1.0936 * metres
inches = 39.370 * metres

print("%f metres = %f yards, %f inches" %(metres,

print("End of program")

Shell X

>>>

Convert metres into yards and inches

Enter metres: 10
10.000000 metres = 10.936000 yards, 393.760000 inches
End of program

>>>

yards, inches))

can be called from the main program.

e 100

Figure 7.29 Program listing and example output




Chapter 7 ¢ Python Programming and Simple Programs

Solution 8

The required program listing and example output are shown in Figure 7.30 (program: con-
vfunc.py). Function Conv is declared at the beginning of the program. Metres to be con-
verted into yards and inches is passed as an argument to the function. The function returns
the yards and inches in a tuple. The main program reads the metres from the keyboard and
calls the function Conv. The result is displayed on the screen.

convfunc.py %

def Conv(m):
“Convert metres into yards and inches"
y =1.0936 *m
i=39.370 *m
return y, i

print("Convert metres into yards and inches")
print(
metres = float(input("Enter metres: "))

yards, inches = Conv(metres)

print("%f metres = %f yards, %f inches" %(metres, yards, inches))
print(“End of program")

Shell X

>>>

Convert metres into yards and inches

Enter metres: 10
10.000000 metres = 10.936000 yards, 393.700000 inches
End of program

>>>

Figure 7.30 Program listing and example output

Example 9
Write a function called Cyl to calculate the area and volume of a cylinder, given its radius
and height. Use this function in a main program.

Solution 9
The area and volume of a cylinder are given by the formula:

Area = 2nrh
Volume = nr2h

The required program listing and example output are shown in Figure 7.31 (program:
cylinder.py). The radius and height of the cylinder are passed as arguments to a function
which calculates the area and volume of the cylinder and returns the results to the main
program, which are displayed on the screen.

e 101



Raspberry Pi 5 Essentials

cylinder.py

import math

def cyl(r, h):
"Area and volume of a cylinder"
area = 2 * math.pi * r * h
volume = math.pi * r * r * h
return area, volume

print("Area and Volume of a Cylinder")
print(" ")
radius = float(input("Enter the radius: "))
height = float(input("Enter the height: "))
A, V = Cyl(radius, height)

print("Area = %f Volume = %f" %(A, V))
print("End of program")

Enter the height: 10
Area = 157.079633 Volume = 106.349541
€nd of program

>>> |

Figure 7.31 Program listing and example output

Example 10
Write a calculator program to carry out the four simple mathematical operations of addi-
tion, subtraction, multiplication, and division on two numbers received from the keyboard.

Solution 10

The required program listing is shown in Figure 7.32 (program: calc.py). Two numbers are
received from the keyboard and stored in variables n1 and n2. Then, the required mathe-
matical operation is received and it is performed. The result, stored in the variable result,
is displayed on the screen. The user is given the option of terminating the program.

B
# CALCULATOR PROGRAM

# e e e e e I e ]

#

# This is a simple calculator program that can
# carry out 4 basic arithmetic opertions

#

# Author: Dogan Ibrahim

# File : calc.py

# Date : October, 2023

B
any = 'y'

while any == 'y':

print("\nCalculator Program")

nl = float(input("Enter first number: "))
n2 = float(input("Enter second number: "))
op = input("Enter operation (+-x/): ")

e 102



Chapter 7 ¢ Python Programming and Simple Programs

if op =="+":

result = nl + n2
elif op == "-":

result = nl - n2
elif op == "«*":

result = nl * n2
elif op == "/":

result = nl1 / n2
print("Result = %f" %(result))
any = input("\nAny more (yn): ")

Figure 7.32 Program listing

An example run of the program is shown in Figure 7.33.

rypi:~ $ python calc.py

Calculator Program

Enter first number: 25
Enter second number: 3
Enter operation (+-%*/): *
Result = 75.000000

Any mo:

(yn): n

errypi:~ $ |
Figure 7.33 Example output

Example 11
Write a program to simulate double dice. i.e. to display two random numbers between 1
and 6 every time it is run.

Solution 11
The required program listing and example output are shown in Figure 7.34 (program: dice.
py). Here, the random number generator randint is used to generate random numbers
between 1 and 6 when the Enter key is pressed. The program is terminated when the letter
X is entered.

e 103



Raspberry Pi 5 Essentials

dice.py %

import random
strt = 'a’

while strt.upper() != 'X':
strt = input("Pres ENTER to start, X to exit
first = random.randint(1, 6)
second = random.randint(1, 6)
print("%d %d" %(first, second))

Shell

son
Pres ENTER to start, X to exit
Pres ENTER to start, X to exit
:fES ENTER to start, X to exit
g

Pres ENTER to start, X to exit x

Figure 7.34 Program listing and example output

Example 12

Write a program to use functions to calculate and display the areas of shapes: square,
rectangle, triangle, circle, and cylinder. The sizes of the required sides should be received
from the keyboard.

Solution 12
The areas of the shapes to be used in the program are as follows:

Square: side = a area = a2
Rectangle: sides a, b area = ab
Circle: radius r area = nr2
Triangle: base b, height h area = bh/2
Cylinder: radius r, height h area = 2nrh

The required program listing is shown in Figure 7.35 (program: areas.py). A different
function is used for each shape, and the sizes of the sides are received inside the functions.
The main program displays the calculated area for the chosen shape.

B
# AREAS OF SHAPES

# e e e e ]

#

# This program calculates and displays the areas
# of various geometrical shapes

# of numbers in a list

#

# Author: Dogan Ibrahim

# File : areas.py

e 104



Chapter 7 ¢ Python Programming and Simple Programs

# Date : October, 2023

import math

def Square(a):

return a * a

def Rectangle(a, b):
return(a x b)

def Triangle(b, h):
return(b x h / 2)

def Circle(r):

return(math.pi * r x r)

def Cylinder(r, h):
return(2 * math.pi * r * h)

print("AREAS OF SHAPES")
print("===============\np")
print("What is the shape?: ")

# square

# rectangle

# triangle

# circle

# cylinder

shape = input("Square (s)\nRectangle(r)\nCircle(c)\n\

Triangle(t)\nCylinder(y): ")

shape = shape.lower ()
if shape == 's':

a = float(input("Enter a side of the square: "))

area = Square(a)
s = "Square"
elif shape == 'r':

a = float(input("Enter one side of the rectangle: "))
b = float(input("Enter other side of the rectangle: "))

area = Rectangle(a, b)
s = "Rectangle"
elif shape == 'c':

radius = float(input("Enter radius of the circle: "))

area = Circle(radius)
s = "Circle"
elif shape == 't':

base = float(input("Enter base of the triangle: "))
height = float(input("Enter height of the triangle: "))
area = Triangle(base, height)

s = "Triangle"
elif shape == 'y':

e 105



Raspberry Pi 5 Essentials

radius = float(input("Enter radius of cylinder: "))
height = float(input("Enter height of cylinder: "))
area = Cylinder(radius, height)
s = "Cylinder"

print("Area of %s 1is %f" %(s, area))

Figure 7.35 Program listing

An example run of the program is shown in Figure 7.36.

pifraspberrypi:~ $ python areas.py
AREAS OF SHAPES

What is the shape?:

Square (s)

Rectangle (r)

Circle(c)

Triangle(t)

Cylinder(y): r

Enter one side of the rectangle: 25
Enter other side of the rectangle: 2
Area of Rectangle is 50.000000
pilraspberrypi:~ $ |J

Figure 7.36 Example output

7.27 Recursive functions

Recursive functions are functions that call themselves either directly or indirectly, and such
functions are supported by Python. Although the topic of recursive functions is an advanced
topic, an example is given in Figure 7.37 to illustrate the principles of such functions. This
recursive function implements the factorial operation. Detailed analysis of recursive func-
tions is beyond the scope of this book.

>>> def factorial(n):
if n == 1:
return 1
else:
return n * factorial (n-1)
>>>
>>> factorial (4)
24
>>> factorial (6
720
>>> |

Figure 7.37 Recursive factorial function

7.28 Exceptions

There may be major errors in our programs, such as dividing by zero, file privilege error,
and so on. Normally, when Python encounters such errors, it cannot handle them and the
program crashes.

One way to handle such errors orderly and avoid crashes is to use exception handling in
our programs. The basic method is that whenever an error occurs, the program detects
this error and takes appropriate measures to handle the error and continue to execute
normally. Exception handling is also useful if we wish to terminate a running program in an

e 106



Chapter 7 ¢ Python Programming and Simple Programs

orderly manner, for example to shut down any input-output operations when the program
is terminated asynchronously by the user (e.g. by pressing the Ctrl+C key).

The statements try and except are used to handle unexpected errors or terminations in our
programs. The general format of exception handling is as follows:

try:
Normal program statements
Normal program statements
except condition 1:
if condition 1 type error occurs, then execute this block of code

except condition 2:
if condition 2 type error occurs, then execute this block of code

else:

We can use the except statement with no condition to handle any type of exception. Some
of the commonly used exceptions are:

exception EOFError: end-of-file condition is reached while reading data

exception ImportError: import statement could not load a module

exception IndexError: sequence subscript is out of range

exception KeyError: a dictionary key is not found in the set of existing
keys

exception KeyboardInterrupt: user hit the interrupt key (normally the Ctrl+C or
Delete key)

exception MemoryError: operation ran out of memory

exception OverFlowError: arithmetic operation resulted in overflow

exception RuntimeError: an error is detected that does not fall in any other
categories

exception ValueError: an operation or function receives an argument that

has the right type but an inappropriate value
exception ZeroDivisionError: a division by zero occurred

Some examples of using exceptions in programs are given below.
Example 13

Write a program to wait for an input from the keyboard. Terminate the program orderly
when the Ctrl+C keys are pressed on the keyboard.

e 107



Raspberry Pi 5 Essentials

Solution 13

Figure 7.38 shows the program listing (program: exceptl.py). Exception KeyboardInter-
rupt is used in this program. The message End of Program is displayed when Ctrl+C key
combination is pressed on the keyboard.

KeyboardInteerupt EXCEPTION
This program detects the keyboard entry Cntrl+C and

the program is teminated orderly after the message

#

#

#

#

# End of Program 1is displayed
#

# Author : Dogan Ibrahim

#

#

File : exceptl.py

Date : October, 2023
e == e e s == e R S e e e e e e = = ==—==
try:

mode = input("Enter Cntrl+C to terminate the program: ")
except KeyboardInterrupt:
print("\nEnd of Program")

Figure 7.38 Program listing

Example 14
Write a program to detect division by zero and to display the message Divide by Zero when
this exception is detected.

Solution 14

Figure 7.39 shows the program listing (program: except2.py). Here, the program is forced
to divide a number by zero and this is detected as an exception and the program displays
a message when this occurs.

# ZeroDivisionError EXCEPTION

# This program detects when a number is divided by zero
# and generates an exception to display a message

##

# Author : Dogan Ibrahim

# File ¢ except2.py
# Date : October, 2023
fi======================================================

print("Divide by zero exception'")

try:
s =10 / 0

e 108



Chapter 7 ¢ Python Programming and Simple Programs

except ZeroDivisionError:

print("Divide by Zero")
Figure 7.39 Program listing
When the program is run, it displays the following message:

Divide by zero exception
Divide by Zero

7.29 try/final exceptions

Statement finally can be used in exception handling. Try/finally combination specifies ex-
ception, where the block beginning with finally is always executed on the way out, regard-
less of whether an exception occurs in the try block. An example is given below:

Example 15
Write a program to look for KeyboardInterrupt exception and display the message "Excep-
tion not occurred" if an exception has not occurred.

Solution 15
Figure 7.40 shows the program listing (program: except3.py). The block inside finally is
executed regardless of whether an exception occurs.

R e S e S N S e e e e
# try/finally In EXCEPTION

#

# This program detects the keyboard entry Cntrl+C and
# displays the message Keyboard Interrupt if interrupt
# occurs. Message Continue 1is displayed regardless of
# whether an exception occurrede

#

# Author : Dogan Ibrahim

# File ¢ except3.py

# Date : October, 2023

R s S e e S e e e s
try:

mode = input("Enter Cntrl+C to terminate the program: ")
except KeyboardInterrupt:

print("\nKeyboard Interrupt")
finally:

print("\nContinue")

Figure 7.40 Program listing

When the program is run, the following is displayed

e 109



Raspberry Pi 5 Essentials

Enter Ctrl+C to terminate the program:
After entering Ctrl+C:
Keyboard Interrupt

7.30 Date and time

In some applications it may be necessary to get the current date and time. Python supports
a number of functions to get the current date and time. Module time must be imported
before these functions can be used. Some of the commonly used date and time functions
are as follows:

e time.localtime() returns the current date and time in the following
format:
time.struct_time(tm_year=2013,tm_mon=12,tm_
mday=18, tm_hour=12,tm_min=45,tm_sec=3,tw_
wday=2,tm_yday=352, tm_isdst=0)

e time.asctime() returns the date and time in standard readable format
e time.clock() returns the current CPU time in seconds

e time.ctime() returns the current date and time

e time.time() returns the current time in seconds since the epoch

e time.sleep(x) suspends the calling program for x seconds

Some examples are given in Figure 7.41.

>>> import time

>>> print(time.localtime())
time.struct_time (tm year=2023, tm mon=10, tm mday=6, tm hour=14, tm min=31,
ec=0, tm wday=4, tm_yday=279, tm isdst=1)
>>>

>>> print(time.asctime())

Fri Oct 6 14:31:05 2023

>>>

>>> print(time.ctime())

Fri Oct 6 14:31:15 2023

>>>

>>> print(time.time())

1696599083.4537978

>>> 1

Figure 7.41 Example date and time functions

The datetime module can also be used for date and time functions. This module must be im-
ported to use these functions. Some examples of date functions are shown in Figure 7.42.

>>> from datetime import date
>>> print(date.today())
2023-10-06

[>>>

>>> print(date.today () .year)
2023

>>>

>>> print(date.today () .month)
10

>>>

>>> print(date.today () .day)
|6

>>>

Figure 7.42 Examples of using the datetime date functions

e 110



Chapter 7 ¢ Python Programming and Simple Programs

The function strftime(format) is very useful as it can be used to format a date and time
string. Some examples of using this function are given in Figure 7.43.

>>> from datetime import datetime

>>> print(datetime.now() .strftime ("%Y:%m"))
2023:10

>>>

>>> print (datetime.now() .strftime ("%H:%M:%S"))
14:41:08

>>>

>>> print(datetime.now() .strftime ("%d:%m:%Y"))
06:10:2023

>>>

>>> print(datetime.now() .strftime ("%d:%m:%Y_%H:3M:%S"))
06:10:2023_14:42:07

>>> |1

Figure 7.43 Examples of using strftime
7.31 Creating your own modules
In some applications, we may want to create our own Python modules and import them into
our programs. Python modules are simply .py program files. Writing a module is just like
writing any other Python program. Modules can contain functions, classes, and variables.

A simple module called msg.py is shown below:

def hello():
print("Hello there!")

We can now import this module into our Python programs. An example program called
myprog.py is shown below:

import msg
msg.hello()

Running the program: python myprog.py will display the following output:
Hello there!
We can also modify our program myprog.py and import and then call the module as follows:

from msg import hello
hello()

We can use variables in our module as shown below:

msg.py
def hello():
print("Hello there!")

name = "Jones"

o111



Raspberry Pi 5 Essentials

myprog.py
import msg
msg.hello()
print(msg.name)
The program will display:

Hello there!
Jones

Aliases can be created for modules. This is shown in the following code:

myprog.py
import msg as tst
tst.hello()

Will display the output:
Hello there!
An example module is given below that calculates the cube of a number
Example 16
Write a module that calculates the cube of the integer number passed to it. Show how this
module can be imported and used in a program.
Solution 16
Figure 7.44 shows the module listing (program: cubeno.py). The function cube inside
cubeno.py has the number as its argument. The cube of this number is calculated and re-
turned. Figure 7.45 shows the program (program: myprog.py). As an example, when the
number is 3, the output from the program is:
Cube of 3 is: 27
def cube(N):
r=NxN=*N
return r
Figure 7.44 Program cubeno.py listing
import cubeno
n= 3
res = cubeno.cube(n)

print("Cube of %d 1is: %d" %(n,res))

Figure 7.45 Program myprog.py

o112



Chapter 7 ¢ Python Programming and Simple Programs

Module Search Path: When a module is to be imported, Python looks at the following folders
in the order given:

The folder from which the module is called (where the calling main program is)

e The list of directories contained in the PYTHONPATH environment variable.
¢ Installation dependent list of directories configured when Python was installed

The Python search path can be displayed by entering the following command interactively:

>>> import sys
>>> sys.path

The display on the author's computer is shown in Figure 7.46.

}>>> import sys

|>>> sys.path

['', '"/usr/lib/python31ll.zip', '/usr/lib/python3.11', '/usr/lib/python3.11/lib-d
jynload', '/usr/local/lib/python3.11/dist-packages', '/usr/lib/python3/dist-packa
lges', '/usr/lib/python3.11/dist-packages']

>>> 11

Figure 7.46 Python path display
To make sure that your module is found by Python, you can do one of the following:
e Put the module program file in the folder where your main program is

e Modify PYTHONPATH environment variable to contain the folder where the
module program is

e Put the module program in one of the folders already contained in the
PYTHONPATH

e 113



Raspberry Pi 5 Essentials

Chapter 8 e Raspberry Pi 5 LED Projects

8.1 Overview

This chapter is about the Raspberry Pi 5 hardware interface and using LEDs in simple pro-
jects. The Raspberry Pi 5 is connected to external electronic circuits and devices using its
GPIO (General Purpose Input Output) port connector. This is a 2.54 mm, 40-pin expansion
header, arranged in a 2 x 20 strip as shown in Figure 8.1. The I/O ports are numbered as
GPIO nn

| 27 | GPI000 (DA, FO) GPIOO1 (SCLO, FC) 28

Ground

[ 29 | GPioos

| 31 GPIoos GPIO12 (PWMO)

Ground

| 33 | GPIO13 (PWM1)

| 35 | GpIO19 GPIO16

|37 | GPIO26 GPIO20

PIN NAME NAME PIN
[ 01 | 3.3vDC Power O O | svocrower L0z
| 03 | GPI002 (SDA1,C) O O | svocrower [
| 05 | GPI003 (sDL1,°C) O O Gowmda o6
| 07 | GP100a (GPCLKO) O | GPIO14 (TXD0, UART) | 08 |
[ 09 | Ground 'O GPIO1S (RXDO, UART) | 10
[0y O O crowewmo |12
[13 | cpioz7 10 Ground s
[15 [ Gpio22 O | Grio23 16
|17 | 3.3vDC Power [Xe) | Gpio2s 18
[19 [ariotospromosy | O Ground 20
[ 21 crioos srromiso) | O GPI025 2
[23 | cPotPo.Cl) | (o) | GPIOOB (SPIO_CEON) | 24
|25 | Ground o GPIOO7 (SPIO_CE1N) | 26

(o)

o)

o)

O

(o)

i)

000000 00000000

588888

|39 | Ground | Gpioz1

Figure 8.1 Raspberry Pi 5 GPIO pins (https://linuxhint.com/gpio-pinout-raspberry-pi)

8.2 Raspberry Pi 5 GPIO pin definitions

When the GPIO connector is at the far side of the board, the pins starting from the left of
the connector are numbered as 1, 3, 5, 7, and so on, while the ones at the top are num-
bered as 2, 4, 6, 8 and so on (Figure 8.2)

(1] [2]svews ]
fori02 5] [ ]svewe ]
[Gri03 |51 0o
orios 7] [ Juarro vx |
[ovo I8 Jro]uarro nx ]
forio 1711} 12[orio s ]
ZER® oo ]
fori022_J1s] Jre[orioas ]

® Jieorioas ]
[opio 10 Jio] pefcro ]
| CZXIR D DX
|m§ 24[crios |

°
2
s
EE

Figure 8.2 GPIO pin numbering

e 114



Chapter 8 e Raspberry Pi 5 LED Projects

The GPIO provides 26 general-purpose bidirectional I/O pins. Some of the pins have mul-
tiple functions. For example, pins 3 and 5 are the GPIO2 and GPIO3 input-output pins
respectively. These pins can also be used as the 12C bus SDA and SCL pins respectively.
Similarly, pins 9, 10, 11 and 19 can either be used as general-purpose input-output pins, or
as the SPI bus pins. Pins 8 and 10 are reserved for UART serial communication.

Two power outputs are provided: +3.3 V and +5.0 V. The GPIO pins operate at +3.3 V logic
levels (not like many other computer circuits that operate with +5 V). A pin can either be an
input or an output. When configured as an output, the pin voltage is either 0 V (logic 0) or
+3.3 V (logic 1). Raspberry Pi 5 is normally operated using an external power supply (e.g.
a mains adapter) with +5 V output. A 3.3 V output pin can supply up to 16 mA of current.
The total current drawn from all output pins should not exceed the 51 mA limit. Care should
be taken when connecting external devices to the GPIO pins, as drawing excessive currents
or short-circuiting a pin can easily damage your Raspberry Pi. The amount of current that
can be supplied by the 5 V pin depends on many factors, such as the current required by
the Pi itself, current taken by the USB peripherals, camera current, micro-HDMI port cur-
rent, and so on.

When configured as an input, a voltage above +1.7 V will be taken as logic 1, and a voltage
below +1.7 V will be taken as logic 0. Care should be taken not to supply voltages greater
than +3.3 V to any I/O pin, as large voltages can easily damage your Raspberry Pi. The
Raspberry Pi 5, like others in the family, has no overvoltage protection circuitry.

8.3 Project 1 - Flashing an LED

Description: This is perhaps the easiest hardware project you can design using your Rasp-
berry Pi 5. In this project, you will connect an LED to one of the ports of the Raspberry
Pi 5 and then flash the LED once a second. The aim of this project is to show how a simple
Python program can be written and then run from a file. The project also shows how to
connect an LED to a Raspberry Pi 5 GPIO pin. In addition, the project shows how to use the
GPIO library to configure and set a GPIO pin to logic 0 or 1.

Block diagram: The block diagram of the project is shown in Figure 8.3

LED

Raspberry Pi 5

Figure 8.3 Block diagram of the project

e 115



Raspberry Pi 5 Essentials

Circuit diagram: The circuit diagram of the project is shown in Figure 8.4. A small LED
is connected to port pin GPIO 17 (pin 11) of the Raspberry Pi 5 through a current limiting
resistor. The value of the current limiting resistor is calculated as follows:

The output high voltage of a GPIO pin is 3.3 V. The voltage across an LED is approximately
1.8 V. The current through the LED depends upon the type of LED used and the amount
of required brightness. Assuming that we are using a small LED, we can assume a forward
LED current of about 3 mA. Then, the value of the current limiting resistor is:

R =(3.3-1.8)/0.003 = 500 Q. We can choose a 470 Q resistor.

In Figure 8.4 the LED is operated in current sourcing mode where a high output from the
GPIO pin drives the LED. The LED can also be operated in current sinking mode, where
the other end of the LED is connected to +3.3 V supply and not to the ground. In current
sinking mode, the LED is turned ON when the GPIO pin is at logic low.

470 A

GPIO 17 L:»—ul
LED =+
Raspberry Pi
5

39J:

Figure 8.4 Circuit diagram of the project

Construction: The project is constructed on a breadboard as shown in Figure 8.5. Jumper
wires are used to connect the LED to the GPIO port. Notice that the short side of the LED
must be connected to ground.

Figure 8.5 Constructing the project on a breadboard

e 116



Chapter 8 e Raspberry Pi 5 LED Projects

Program listing: The program is called LED.py and the listing is shown in Figure 8.6.
The program was written using the nano text editor. At the beginning of the program, the
gpiozero and the time modules are imported to the project. The rest of the program is
executed indefinitely in a while loop, where the LED is turned on and off with a one-second
delay between each output change. Press Ctrl+C to terminate the program.

B
#

# FLASHING LED

# —===========

#

# In thisproject a small LED is connected to GPIO 17 of

# the Raspberry Pi 5. The program flashes the LED every

# second.

#

# Program: LED.py

# Date : October, 2023

# Author : Dogan Ibrahim

B o
from gpiozero import LED # import gpiozero

from time import sleep # import time library

led = LED(17)

while True:

led.on() # turn ON LED

sleep(1) # wait 1 second
led.off() # turn OFF LED
sleep (1) # wait 1 second

Figure 8.6 Program listing of the project
The program is run from the console mode as follows:
pi@raspberrypi ~ $ python LED.py

If you wish to run the program from the GUI Desktop environment, you should use the
VNC Viewer to get into the GUI desktop screen (unless you have a monitor connected to
the Raspberry Pi 5 via a micro-HDMI cable). Then, click the Applications menu — Pro-
gramming — Thonny.

Click File and open file LED.py, or type in the program if it is not already in your default di-

rectory. Now, click Run to run the program. You should see the LED flashing every second.
To terminate the program, close the screen by clicking the STOP button.

o117



Raspberry Pi 5 Essentials

Note: You can copy the programs from your Raspberry Pi 5 home directory to your PC
using the winSCP file copy program (available free of charge on the Internet).

8.4 Project 2 - Alternately flashing LEDs

Description: This project is similar to the previous one, but here two LEDs are used, and
they flash alternately every second. The aim of this project is to show how more than one
LED can be connected to the Raspberry Pi 5.

Block diagram: The block diagram of the project is shown in Figure 8.7

LED1 LED2

Raspberry Pi 5

Figure 8.7 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 8.8. Two small LEDs
are connected to port pins GPIO 17 (pin 11) and GPIO 27 (pin 13) of the Raspberry Pi 5
through current limiting resistors.

Raspberry Pi
5
cpio 171 % & Lept
T KB i
GND N

39J_
Figure 8.8 Circuit diagram of the project

Program listing: The program is called alternate.py and the listing is shown in Fig-
ure 8.9. The program was written using the nano text editor. At the beginning of the
program, the gpiozero and the time modules are imported to the project. The rest of the
program is executed indefinitely in a while loop where the LEDs are turned on and off alter-
nately with one-second delay between each output. Press Ctrl+C to terminate the program.

e 118



Chapter 8 e Raspberry Pi 5 LED Projects

oo
#

# ALTERNATELY FLASHING LEDS

# =========================

#

# In thisproject two small LEDs is connected to GPIO 17 and

# GPIO 27 of the Raspberry Pi 5. The program flashes the LEDs
# alternately every second

#

# Program: alternate.py

# Date : October, 2023

# Author : Dogan Ibrahim
o
from gpiozero import LED

from time import sleep # import time library

ledl = LED(17) # LED1 at GPIO 17

led2 = LED(27) # LED2 at GPIO 27

while True:

ledl.on() # Turn ON LED1
led2.off() # Turn OFF LED2
sleep (1) # Wait 1 second
ledl.off() # Turn OFF LED1
led2.on() # Turn ON LED2
sleep (1) # Wait 1 second

Figure 8.9 Program listing of the project

8.5 Project 3 - Binary counting with 8 LEDs

Description: In this project, eight LEDs are connected to the Raspberry Pi 5 GPIO pins.
The LEDs count up in binary every second. The aim of this project is to show how eight
LEDs can be connected to the Raspberry Pi 5 GPIO pins. In addition, the project shows how
to group the LEDs as an 8-bit port and control them as a single port.

Block diagram: The block diagram of the project is shown in Figure 8.10

LEDs

Raspberry Pi 5

Figure 8.10 Block diagram of the project

e 119



Raspberry Pi 5 Essentials

Circuit diagram: The circuit diagram of the project is shown in Figure 8.11. The LEDs are
connected to 8 GPIO pins through 470 Q current limiting resistors. The following 8 GPIO

pins are grouped as an 8-bit port, where GPIO 2 is configured as the LSB and GPIO 9 is
configured as the MSB:

MSB LSB
GPIO: 9 10 22 27 17 4 3 2
Pinno: 2119 15 13 11 7 5 3

Raspberry Pi
5 i LEDs
3 470 A
GPIO2 F——T——}—
5 470 A
GPIO 3
7 470
GPIO4 F—————{}—
14 470 A
GPIO 17
470
GP1027L:|—D|—<
470 A
apio 22|12
470
GPlO10L1:|—D|—<
470 A
GPios 2l = 4
GND L
3] -

Figure 8.11 Circuit diagram of the project

Construction: The project is constructed on a breadboard as shown in Figure 8.12. Notice
that in this project, a T-Cobbler (Figure 8.13) connects to the 40-pin GPIO header of the
Raspberry Pi through a ribbon cable. On the other side of this ribbon cable, a T-type con-
nector is used which is plugged into a breadboard. This setup simplifies making connections
to the Raspberry Pi GPIO header, especially when there are many connections to be made.
The GPIO pin names are written on the T-cobbler for ease of access.

e 120



Chapter 8 e Raspberry Pi 5 LED Projects

Figure 8.13 The T-Cobbler

Program listing: The program is called LEDCNT.py and the listing is shown in Figure 8.14.
The program was written using the nano text editor. Inside the main program, a loop is
formed to execute forever and inside this loop the LEDs count up by one in binary. Variable
cnt is used as the counter. Function Port_Output is used to control the LEDs. This function
can take integer numbers from 0 to 255, and it converts the input number (x) into binary
using the built-in function bin. Then the leading '0b' characters are removed from the out-
put string b (bin function inserts characters '0b' to the beginning of the converted string).
Then, the converted string b is made up of 8 characters by inserting leading zeroes. The
string is then sent to the PORT bit by bit, starting from the least significant bit (GPIO 2)
position. The result is that the 8 LEDs count up in binary.

e 121



Raspberry Pi 5 Essentials

In this project 8 LEDs are connected to the following
GPIO pins:

9 10 22 27 17 4 3 2

The program groups these LEDs as an 8-bit port and then
the LEDs count up in binary with one second delay between
each output.

Program: LEDCNT.py
Date : October, 2023
Author : Dogan Ibrahim

HOoH O H K H H W K H O H H

from gpiozero import LED
from time import sleep # import time library

#

# LED connections
#

PORT = [0] * 8
PORT[0] = LED(9)
PORT[1] = LED(10)
PORT[2] = LED(22)
PORT[3] = LED(27)
PORT[4] = LED(17)
PORT[5] = LED(4)
PORT[6] = LED(3)
PORT[7] = LED(2)

#

# This function sends 8-bit data (0 to 255) to the PORT
#

def Port_Output(x):

b = bin(x) # convert into binary
b = b.replace("ob", "") # remove leading "Ob"
diff = 8 - len(b) # find the length

for i 1in range (0, diff):
b ="e" + b # insert leading os

for i in range (0, 8):
if b[1:| == njn.

e 122



Chapter 8 e Raspberry Pi 5 LED Projects

PORT[i].0on() # bit ON
else:
PORT[i].0ff() # bit OFF
return
#
# Main program loop. Count up in binary every second
#
cnt = 0

while True:

Port_Output(cnt) # send cnt to port
sleep (1) # wait 1 second
cnt = cnt + 1 # increment cnt
if cnt > 255:

cnt = 0

Figure 8.14 Program listing

Recommended modifications: Modify the program such that the LEDs count down every
two seconds.

Modified Program

The program shown in Figure 8.14 can be modified and made more friendly by storing the
LED port numbers in a list. The modified program LEDCNT2.py is shown in Figure 8.15. In
this program, the LED port numbers are stored in list PORT. Then function Port_Output is
used as before to send the port data to the LEDs.

In this project 8 LEDs are connected to the following
GPIO pins:

9 10 22 27 17 4 3 2

The program groups these LEDs as an 8-bit port and then
the LEDs count up in binary with one second delay between
each output.

Program: LEDCNT2.py
Date : October, 2023
Author : Dogan Ibrahim

HOoH O H H B H B o H H H B H w3

from gpiozero import LED

e 123



Raspberry Pi 5 Essentials

from time import sleep # dmport time library
PORT = [9,10,22,27,17,4,3,2] # LED ports

#

# This function initializes the port list PORT[]

#

def Configure():
for i in range(8):
PORT[i] = LED(PORT[1i])

#
# This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
b = bin(x) # convert into binary
b = b.replace("ob", "") # remove leading "Ob"
diff = 8 - len(b) # find the length
for i in range (0, diff):
b ="0e" +b # insert leading os
for i in range (0, 8):
if b[i] == "1":
PORT[1i].on()
else:
PORT[1].0ff()
return
#
# Main program loop. Count up in binary every second
#
cnt = 0
Configure()

while True:

Port_Output(cnt) # send cnt to port
sleep(1l) # wait 1 second
cnt = cnt + 1 # dincrement cnt
if cnt > 255:

cnt = 0

Figure 8.15 Modified program

8.6 Project 4 — Christmas lights (random flashing 8 LEDs)

Description: In this project, eight LEDs are connected to the Raspberry Pi 5 GPIO pins as
in Project 3. The LEDs flash randomly every 0.5 seconds, just like fancy Christmas lights.
The aim of this project is to show how to generate random numbers between 1 and 255.

e 124



Chapter 8 e Raspberry Pi 5 LED Projects

The block diagram and circuit diagram of the projects are the same as in Figure 8.10 and
Figure 8.11 respectively.

Program listing: The program is called XMAS.py and the listing is shown in Figure 8.16.
The program was written using the nano text editor. At the beginning of the program, the
random module and other required modules are imported to the program. Then, a loop
is formed to execute forever and inside this loop a random number is generated between
1 and 255, and this number is used as an argument to function Port_Output. The binary
pattern corresponding to the generated number is sent to the port, which turns the LEDs
ON or OFF randomly.

In this project 8 LEDs are connected to the Raspberry Pi 3
and these LEDs flash randomly at 0.5 second intervals. The
connections of the LEDs are to the following GPIO pins:

9 10 22 27 17 4 3 2

The program groups these LEDs as an 8-bit port and then
generates random numbers between 1 and 255 and turns the
LEDs ON and OFF depending on the generated number.

Program: XMAS.py
Date : October, 2023
Author : Dogan Ibrahim

HOoH H H H o oH o H o H o H R H H

from gpiozero import LED
from time import sleep # import time library
import random # import random library

PORT = [9,10,22,27,17,4,3,2] # LED ports

#
# This function initializes the port list PORT[]
#
def Configure():
for i in range(8):
PORT[i] = LED(PORT[1i])

#

# This function sends 8-bit data (0 to 255) to the PORT
#

e 125



Raspberry Pi 5 Essentials

def Port_Output(x):

b = bin(x) # convert into binary
b = b.replace("ob", "") # remove leading "Ob"
diff = 8 - len(b) # find the length

for i in range (0, diff):
b ="0" + b # dinsert leading os

for i in range (0, 8):

if b[i] == "1":
PORT[1i].on()
else:

PORT[i].0off()

return

#

# Configure PORTs

#

Configure()

#

# Main program loop. Count up in binary every second

#

while True:
numbr = random.randint(1l, 255) # generate a random number
Port_Output (numbr) # send cnt to port
sleep(0.5) # wait 0.5 second

Figure 8.16 Program listing

Recommended modifications: Modify the program such that 10 LEDs can be connected
to the Raspberry Pi 5 and flashed randomly.

8.7 Project 5 — Chasing LEDs

Description: In this project, eight LEDs are connected to the Raspberry Pi 5 GPIO pins as
in the previous project. As shown in Figure 8.17, the LEDs rotate (chase each other) from
the LSB to MSB with a one-second delay between each output.

ololeoleleiele] |

OO0
OO0
OO0
@O0
O00O
O0®
OO0

O® OOO

Figure 8.17 Chasing LEDs

e 126



Chapter 8 e Raspberry Pi 5 LED Projects

The block diagram and circuit diagram of the projects are the same as in Figure 8.10 and
Figure 8.11 respectively.

Program listing: The program is called rotate.py and the listing is shown in Figure 8.18.
The program was written using the nano text editor. Inside the main program, a loop is
formed to execute forever and inside this loop the variable rot is used as an argument to
the Port_Output function. This variable is shifted left at each iteration, and thus the LED
ON sequence is from left to right (from LSB to MSB). A one-second delay is inserted be-
tween each output.

H
# ROTATING LEDs

# —============

#

# In this project 8 LEDs are connected to the Raspberry Pi 5.

# The LEDs rotate from LSB to MSB every second

#

# Program: rotate.py

# Date : October, 2023

# Author : Dogan Ibrahim

B o
from gpiozero import LED

from time import sleep # import time library

PORT = [9,10,22,27,17,4,3,2] # LED ports

#

# This function initializes the port list PORT[]

#

def Configure():
for i in range(8):
PORT[i] = LED(PORT[1i])

#

# This function sends 8-bit data (0 to 255) to the PORT

#

def Port_Output(x):
b = bin(x) # convert into binary
b = b.replace("ob", "") # remove leading "Ob"
diff = 8 - len(b) # find the length

for i in range (0, diff):
b ="e" + b # insert leading os

for i in range (0, 8):

if b['l] == nyn.
PORT[1i].on()

e 127



Raspberry Pi 5 Essentials

else:
PORT[i].off()
return
#
# Configure PORT s
#
Configure()

#
# Main program loop. Rotate the LEDs
#
rot = 1
while True:
Port_Output(rot)

sleep (1) # wait 1 second
rot = rot << 1 # shift left
if rot > 128: # at the end
rot = 1 # back to beginning

Figure 8.18 Program listing

8.8 Project 6 — Rotating LEDs with push-button switch

Description: In this project, eight LEDs are connected to the Raspberry Pi 5 GPIO pins as
in the previous project. In addition, a push-button switch is connected to one of the GPIO
ports. The LEDs rotate in one direction when the button is not pressed, and in the opposite
direction when the button is pressed. Only one LED is ON at any time. A one-second delay is
inserted between each output. The aim of this project is to show how a push-button switch
can be connected to a GPIO pin.

Block diagram: The block diagram of the project is shown in Figure 8.19.

Button

Raspberry Pi 5

Figure 8.19 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 8.20. The LEDs
are connected to 8 GPIO pins through 470 Q current limiting resistors, as in the previous
project. The push-button switch is connected to GPIO 11 (pin 23) of the Raspberry Pi 5.
The push-button switch is connected through a 10 kQ and a 1 kQ resistor. When the switch
is not pressed, the input is at logic 1. When the switch is pressed, the input changes to

e 128



Chapter 8 e Raspberry Pi 5 LED Projects

logic 0. Notice that the 1 kQ resistor is used here for safety if the input channel is config-
ured as an output accidentally. If this is the case, without a resistor the output would be
short-circuited and this could damage the Raspberry Pi hardware.

Raspberry Pi
; 5
3.3V LEDs
470 A
10 GPI02 P— =
231 GPIo 11
5 470 A
GPIO 3
Tk 470
GPIO4 ——P
':D 11 470 A
Button GPIO 17
— 13 470
] GPIO 27 ————}—
470 A
GPIO 22 L:n—%
470
GPIO 10 L:—H—
470 A
GPI09 2=

GND 4

SQJT_

Figure 8.20 Circuit diagram of the project

Construction: The project is constructed on a breadboard as shown in Figure 8.21.

e 129



Raspberry Pi 5 Essentials

.. sasn| o8
.o
...n:::._,..--n .

Figure 8.21 Project constructed on a breadboard

Program listing: The program is called ButtonLED.py and the listing is shown in Fig-
ure 8.22. The program was written using the nano text editor. Module gpiozero is im-
ported with both LED and Button. button is assigned port GPIO 11. A loop is formed
to execute forever, and inside this loop the variable rot is used as an argument to the
Port_Output function. If the button is not pressed, then rot is shifted right and the LED
ON sequence is from left to right (from MSB to LSB). If, on the other hand, the button is
pressed, then the LED On sequence is from right to left (from LSB to MSB). A one-second
delay is inserted between each output.

In this project 8 LEDs are connected to the Raspberry Pi 5.
In addition a push-button switch is connected to GPIO 11.
Normally the output of the button is at logic 1 and goes to 0
when the button is pressed. The LEDs rotate in one direction
and when the button is pressed the direction of rotation

is reversed. One second delay 1is inserted between each output

Program: ButtonLED.py
Date : October, 2023
Author : Dogan Ibrahim

HOHE HE F O I W W W O O I I I

from gpiozero import LED, Button

e 130



Chapter 8 e Raspberry Pi 5 LED Projects

from time import sleep # import time library
button = Button(11l) # Button at GPIO 11
PORT = [9,10,22,27,17,4,3,2] # LED ports

#

# This function initializes the port list PORT[]
#
def Configure():
for i in range(8):
PORT[i] = LED(PORT[1i])

#

# This function sends 8-bit data (0 to 255) to the PORT
#

def Port_Output(x):

b = bin(x) # convert into binary
b = b.replace("ob", "") # remove leading "Ob"
diff = 8 - len(b) # find the length

for i in range (0, diff):
b ="e" +b # insert leading os

for i in range (0, 8):

if b[i] == "1":
PORT[1i].0on()
else:

PORT[i].0ff()
return
#
# Configure PORT s
#
Configure()

#
# Main program loop. Rotate the LEDs
#
rot =1
while True:
Port_Output(rot)

sleep (1)
if button.is_pressed: # wait 1 second
rot = rot << 1 # shift left
if rot > 128: # at the end
rot =1 # back to beginning
else:

rot = rot >> 1

e 131



Raspberry Pi 5 Essentials

if rot == 0:
rot = 128

Figure 8.22 Program listing

Note that the following options are available for the Button function (see https://gpiozero.
readthedocs.io/en/stable/api_input.html):

wait_for_press
wait_for_release
held_time
hold_repeat
hold_time
is_held
is_pressed
value
when_held
when_pressed
when_released

8.9 Project 7 — Morse Code exerciser with LED or buzzer

Description: In this project, an LED or a buzzer is connected to GPIO 17 (pinll) of the
Raspberry Pi 5. The user enters a text from the keyboard. The buzzer is then turned ON
and OFF to sound the letters of the text in Morse code.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.23 where an ac-
tive buzzer is connected to GPIO 11 of the Raspberry Pi 5.

11 Active Buzzer
GPIO 17

Raspberry Pi —
5

39J:

Figure 8.23 Circuit diagram of the project

Morse Code: In Morse code, each letter is made up of dots and dashes. Figure 8.24 shows
the Morse code of all the letters in the English alphabet (this table can be extended by add-
ing the Morse code of numbers and punctuation marks). The following rules apply to the
timing of dots and dashes:

e 132



Chapter 8 e Raspberry Pi 5 LED Projects

The duration of a dot is taken as the unit time, and this determines the speed
of the transmission. Normally, the speed of transmission is quoted in words per
minute (wpm). The standard required minimum in Morse code communication
is 12 wpm.

The duration of a dash is 3 unit times

The time between each dot and dash is one unit time

The time between the letters is 3 unit times

The time between the words is 7 unit times

The unit time in milliseconds is calculated using the following formula:
Time (ms) = 1200/wpm

In this project, the Morse code is simulated at 10 wpm. Thus, the unit time is taken to be
1200/10 = 120 ms.

Letter Morse code

N-<><§<C—|U);U,O'UOZZI_X‘—‘:__'IG)"'|”'|UOUJ_)_>
1
1
1

Figure 8.24 Morse code of English letters

e 133



Raspberry Pi 5 Essentials

Program listing: The program is called morse.py and the listing is shown in Figure 8.25.
The Morse code alphabet is stored in the list Morse_Code. The function DO_DOT imple-
ments a single dot with the duration of one unit time. Function DO_DASH implements a
single dash with a duration of three unit times. Function DO_SPACE implements a space
character with duration of seven unit times. The rest of the program is executed in a loop,
where a text is read from the keyboard and the buzzer sounds in such a way as to repre-
sent the Morse code of this text. The program terminates if the user enters the text QUIT.

You should run the program from the command mode as follows:

pi@raspberrypi:~ $ python morse.py

B
#

# MORSE CODE EXERCISER

# S e e e e e e e e e e s e e ]

#

# This project can be used to learn the Morse code. A buzzer is

# connected to GPIO 17 of the Raspberry Pi 5.

#

# The program reads a text from the keyboard and then sounds the

# buzzer to simulate sending or receiving the Morse code of this

# text.

#

# In this project the Morse code speed is assumed to be 10 wpm,

# but can easily be changed by changing the parameter wpm.

#

# File : morse.py

# Date : October, 2023

# Author: Dogan Ibrahim

B

from gpiozero import LED
from time import sleep

Buzzer = LED(17) # Buzzer pin
words_per_minute = 10 # define words per min
wpm = 1200/words_per_minute # unit time in milliseconds

unit_time = wpm / 1000

Morse_Code = {
At =T,
B8 "=co0y
1Elg V=g=,",
Mg =5,y
1EYg U,V

e 134



Chapter 8 e Raspberry Pi 5 LED Projects

'F': o=ty
lGI: I__.I,
'H': ",
lII: I.'l’
lJI: I.___I’
lKI: I_'_I,
L'y -y,
lMI: I__l’
lNI: I_'l’
lol: I___I,
lPI: I.__'I’
lQI: I__._I’
lRI: I._.I,
1818 ooty
lTI: I_l,
lUI: I.'_I,
Vs oLy,
lWI: I.__I,
lxl: I_'._I’
lYI: I_'__I’
lZI: I__.'I
}

#

# This function sends a DOT (unit time)

#

def DO_DOT():
Buzzer.on()
sleep(unit_time)
Buzzer.off()

sleep(unit_time)

return
#
# This function sends a DASH ( 3*unit time)
#

def DO_DASH():
Buzzer.on()
sleep(3*xunit_time)
Buzzer.off()

sleep(unit_time)

return
#
# This function sends inter-word space (7xunit time)
#

e 135



Raspberry Pi 5 Essentials

def DO_SPACE():
sleep(7xunit_time)

return

#
# Main program code
#
text = ""
while text != "QUIT":
text = input("Enter text to send: ")
if text != "QUIT":
for letter in text:
if letter == ' ':
DO_SPACE ()
else:
for code in Morse_Code[letter.upper()]:
if code == '-":
DO_DASH()
elif code == '.':
DO_DOT ()
sleep(unit_time)
sleep(3xunit_time)
sleep(2)

Figure 8.25 Program listing of the project

Recommended modification: An LED can be connected to the GPIO pin instead of the
buzzer so that the Morse code can be seen in visual form.

8.10 Project 8 — Electronic dice

Description: In this project seven LEDs are arranged in the form of the faces of a dice
and a push-button switch is used. When the button is pressed, the LEDs turn ON to display
numbers 1 to 6 as if on a real dice. The display is turned OFF after 3 seconds, ready for the
next game. The aim of this project is to show how a dice can be constructed with seven
LEDs.

Block diagram: The block diagram of the project is shown in Figure 8.26.

e 136



Chapter 8 e Raspberry Pi 5 LED Projects

Raspberry Pi 5 LEDs

Figure 8.26 Block diagram of the project

Figure 8.27 shows the LEDs that should be turned ON to display the 6 dice humbers.

o O e O e O e o o o o o

cCeO0 OO0 OO0 000 OO e0e

o O O e O e 6 o o o o o
1 2 3 4 5 6

Figure 8.27 LED Dice

Circuit diagram: The circuit diagram of the project is shown in Figure 8.28. Here, 8 GPIO
pins are collected together to form a PORT. The following pins are used for the LEDs (there
are 7 LEDs, but 8 port pins are used in the form of a byte where the most significant bit
position is not used):

Bit 7 6 5 4 3 2 1 0
GPIO: 9 10 22 27 17 4 3 2
+3.3V
1o GPIO 2
23 GPIO Tspio s
lk GPIO 4
Buton ':D GPIO 17

GPIO 27
= GPIO 22

GPIO 10

RASPBERRY
P

Figure 8.28 Circuit diagram of the project

e 137



Raspberry Pi 5 Essentials

The push-button switch is connected to port pin GPIO 11.

Table 8.1 gives the relationship between a dice number and the corresponding LEDs to be
turned ON to imitate the faces of a real dice. For example, to display humber 1 (i.e. only
the middle LED is ON), you have to turn LED D3 ON. Similarly, to display number 4, you
have to turn ON DO, D2, D4 and D6.

Required number LEDs to be turned on

D3
DO, D6

DO, D3, D6

DO, D2, D4, D6

DO, D2, D3, D4, D6
DO, D1, D2, D4, D5, D6

Q| Al WIN|-

Table 8.1 Dice number and LEDs to be turned ON

The relationship between the required number and the data to be sent to the PORT to turn
on the correct LEDs is given in Table 8.2. For example, to display dice number 2, you have
to send hexadecimal 0x41 to the PORT. Similarly, to display number 5, we have to send
hexadecimal 0x5D to the PORT and so on.

Required number PORT data (Hex)

0x08

0x41

0x49

0x5D

1
2
3
4 0x55
5
6

0x77

Table 8.2 Required number and PORT data

Program listing: The program is called dice.py and the listing is shown in Figure 8.29.
The bit pattern to be sent to the LEDs corresponding to each dice number is stored in hex-
adecimal format in a list called DICE_NO (see Table 8.2). GPIO 11 is configured as a button
pin, and the push-button switch is connected to this pin to simulate the 'throwing' of a dice.
The main program waits until a button is pressed. Then, a random number is generated
between 1 and 6 and stored in variable n. The bit pattern corresponding to this number is
found and sent to function Port_Output so that the required LEDs are turned on to repre-
sent the dice number. This process is repeated after 3 seconds of delay.

e 138



Chapter 8 e Raspberry Pi 5 LED Projects

This program is an electronic dice. GPIO 11 of Raspberry Pi 5

is configured as a Button. When this button 1is pressed, a random
dice number 1is generated between 1 and 6 and is displayed through
the LEDs. 7 LEDs are mounted on the breadboard in the form of the
face of a real dice. The following GPIO pins are used for the LEDs@

Bit: 7 6 5 4 3 2 1
GPIO: 106 22 27 17 4 3 2

The following PORT pins are used to construct the dice:

DO D4
D1 D3 D5
D2 D6

Program: dice.py
Date : October, 2023
Author : Dogan Ibrahim

HOoH H H OH H B o H o H R H H o H o H o H H H

from gpiozero import LED, Button
from time import sleep # Import time library

import random

button = Button(11) # Button at GPIO 11
PORT = [9,10,22,27,17,4,3,2] # LED ports
DICE_NO = [0,0x08,0x41,0x49,0x55,0x5D,0x77]

#
# This function initializes the port list PORT[]
#
def Configure():
for i in range(8):
PORT[i] = LED(PORT[1i])

#

# This function sends 8-bit data (0 to 255) to the PORT
#

def Port_Output(x):

b = bin(x) # convert into binary
b = b.replace("ob", "") # remove leading "Ob"
diff = 8 - len(b) # find the length

e 139



Raspberry Pi 5 Essentials

for i in range (0, diff):
b ="0" + b # dinsert leading os

for i in range (0, 8):
if b[i] == "1":
PORT[1i].on()
else:
PORT[i].off()
return
#
# Configure PORTs
#
Configure()

#

# Main program loop. Rotate the LEDs

#

while True:

if button.is_pressed: # wait for buttonn

n = random.randint(l, 6) # generate a number
print(n)
pattern = DICE_NO[n]
Port_Output(pattern)
sleep(3) # wsit for 3 seconds
Port_Output(0) # turn OFF all LEDs

Figure 8.29 Program listing of the project

e 140



Chapter 9 e Using an I2C LCD

Chapter 9 e Using an I2C LCD

9.1 Overview

The I2C (or I2C) bus is commonly used in microcontroller-based projects. In this chapter,
you will be looking at the use of this bus on the Raspberry Pi 5. Some other interesting
projects are also given in this chapter. The aim is to make the reader familiar with the I2C
bus library functions and to show how they can be used in a real project. Before looking
at the details of the projects, it is worthwhile to look at the basic principles of the I2C bus.

9.2 The I2C Bus

12C bus is one of the most commonly used microcontroller communication protocols for
communicating with external devices such as sensors and actuators. The I2C bus is a single
master, multiple slave bus, and it can operate at standard mode: 100 Kbit/s, full speed:
400 Kbit/s, fast mode: 1 Mbit/s, and high speed: 3.2 Mbit/s. The bus consists of two open-
drain wires, pulled up with resistors:

SDA: data line
SCL: clock line

Figure 9.1 shows the structure of an I2C bus with one master and three slaves.

PULL-UP
RESISTORS

SDA

MASTER
SCL

SLAVE 1 SLAVE 2 SLAVE 3

Figure 9.1 I2C bus with one master and three slaves

Because the I2C bus is based on just two wires, there should be a way to address an indi-
vidual slave device on the same bus. For this reason, the protocol defines that each slave
device provides a unique slave address for the given bus. This address is usually 7-bits
wide. When the bus is free, both lines are HIGH. All communication on the bus is initiated
and completed by the master, which initially sends a START bit, and completes a transac-
tion by sending a STOP bit. This alerts all the slaves that some data is coming on the bus,
and all the slaves listen on the bus. After the start bit, 7 bits of unique slave address are
sent. Each slave device on the bus has its own address, and this ensures that only the ad-
dressed slave communicates on the bus at any time to avoid any collisions. The last sent bit
is a read/write bit such that if this bit is 0, it means that the master wishes to write to the
bus (e.g. to a register of a slave), if this bit is a 1, it means that the master wishes to read
from the bus (e.g. from the register of a slave). The data is sent on the bus with the MSB
bit first. An acknowledgement (ACK) bit takes place after every byte and this bit allows the
receiver to signal the transmitter that the byte was received successfully and as a result,
another byte may be sent. The ACK bit is sent at the 9t" clock pulse.

e 141



Raspberry Pi 5 Essentials

The communication over the I2C bus is simply as follows:

e The master sends on the bus the address of the slave it wants to communicate
with

e The LSB is the R/W bit which establishes the direction of data transmission, i.e.
from mater to slave (R/W = 0), or from slave to master (R/W = 1)

e Required bytes are sent, each interleaved with an ACK bit, until a stop condition
occurs

Depending on the type of slave device used, some transactions may require a separate
transaction. For example, the steps to read data from an I2C compatible memory device
are:

e Master starts the transaction in write mode (R/W = 0) by sending the slave
address on the bus

e The memory location to be retrieved are then sent as two bytes (assuming
64Kbit memory)

e The master sends a STOP condition to end the transaction

e The master starts a new transaction in read mode (R/W = 1) by sending the
slave address on the bus

e The master reads the data from the memory. If reading the memory in
sequential format, then more than one byte will be read

e The master sets a stop condition on the bus

9.3 I2C pins of Raspberry Pi 5
Raspberry Pi 5 has 2 x I2C pins at its 40-pin GPIO header as follows:

GPIO 2 SDA1 pin 3
GPIO 3 SCL1  pin5

GPIO 0 SDAO  pin27
GPIO 1 SCLO  pin 28

1.8 Kilo Ohm pull-up resistors are used from the I2C pins to +3.3 V. Notice that because
the I2C pins are pulled up to +3.3 V and Raspberry Pi 5 pins are not +5V compatible, it is
necessary to use voltage level converter circuits if the I°C LCD operates with +5V.

9.4 Project 1 - Using an I2C LCD - Seconds counter

Description: In this project, an I2C-type LCD is connected to the Raspberry Pi 5. The pro-
gram counts up in seconds and displays on the LCD. The aim of this project is to show how
an I2C-type LCD can be used in Raspberry Pi projects.

The I2C LCD

The 12C LCD has four pins: GND, +V, SDA, and SCL. SDA can be connected to pin GPIO 2
and SCL to pin GPIO 3. +V pin of the display should be connected to the +5 V (pin 2) of
the Raspberry Pi 5. Raspberry Pi GPIO pins are not +5 V tolerant, but the I2C LCD operates

e 142



Chapter 9 e Using an I2C LCD

with +5 V where its SDA and SCL pins are pulled to +5 V. It is not a good idea to connect
the LCD directly to the Raspberry Pi, as it can damage its I/0 circuitry. There are several
solutions here. One solution is to remove the I2C pull-up resistors on the LCD module. The
other option is to use an LCD which operates with +3.3 V. The other solution is to use a bidi-
rectional +3.3 V to +5 V logic level converter chip. In this project, you will use the TXS0102
bidirectional logic level converter chip like the one shown in Figure 9.2.

Figure 9.2 Logic-Level converter

Note: Raspberry Pi 5 GPIO pins are claimed to be +5V tolerant as long as the RP1 module
is powered ON. But for safety, a logic-level converter is used in this project.

Block diagram: Figure 9.3 shows the block diagram of the project.

12CLCD

Raspberry Pi 5

Figure 9.3 Block diagram

Circuit diagram: The circuit diagram is shown in Figure 9.4.

e 143



Raspberry Pi 5 Essentials

—{SDA vCC
LcD
SCL GND
2
+5V 3 VB J_—
SDA A1 B1
scL|S a0 B2
VA
Raspberry Pi GND OE |
| Txs0102
+33v
GND

39_L

Figure 9.4 Circuit diagram of the project

Figure 9.5 shows the front and back of the I2C based LCD. Notice that the LCD has a
small board mounted at its back to control the I2C interface. The LCD contrast is adjusted
through the small potentiometer mounted on this board. A jumper is provided on this board
to disable the backlight if required.

Figure 9.5 I2C based LCD (front and back views)

Program Listing: Before using the I2C pins of the Raspberry Pi, we have to enable the I2C
peripheral interface on the device. The steps for this are as follows:

e Start the configuration menu from the command prompt:
pi@raspberrypi:~ $ sudo raspi-config

Go down the menu to Interface Options

Go down and select I2C

Enable the I2C interface

e Select Finish to complete

Now you have to check that the I2C library is available on your Raspberry Pi 5. The steps
are as follows:

e 144



Chapter 9 e Using an I2C LCD

¢ Enter the following command. You should see the I2C tools (Figure 9.6):

pi@raspberrypi:~ $ Ismod | grep i2c

:~ $ lsmod | grep i2c
i2c_designware_platform 65536 0

12c_designware core 65536 1 i2c_designware platform
i2c_dev 65536 0
i2c_bremstb 65536 0

Figure 9.6 Check the I2C tools

e Connect your LCD to the Raspberry Pi 5 device and enter the following
command to check whether the LCD is recognized by the Raspberry Pi 5:

pi@raspberrypi:~ $ sudo i2cdetect -y 1

You should see a table similar to the one shown below. A number in the
table means that the LCD has been recognized correctly, and the I2C slave
address of the LCD is shown in the table. In this example, the LCD address
is 27:

R T

10: —— - — . — J— R R J— R —_ R

208 -- - —= o= o= o= o= 27 = —— —m —— o -

O e
40- J— —_ J— —_—— JR— J— —_ J— —_— J— J— J— J— —_ J—
50: -- -= —= —= o= o= om oo oo oo oo o o o o
60: --= —= —= o= o= o= —m —m o oo o o o

70: —— - —— - — —— —_ R J— R J— R J— _ R

You should now install an I2C LCD library so that you can send commands and data to the
LCD. There are many Python libraries available for the I2C type LCDs. The one chosen here
is on GitHub from Dave Hylands. This library is installed as follows:
¢ Go to the following web link:
https://github.com/dhylands/python_Icd/tree/master/Icd

e Copy the following files to your home directory /home/pi using WinSCP:

12c_lcd.py
lcd_api.py

e Check to make sure that the file is copied successfully. You should see the file
listed with the command:

pi@raspberrypi: ~ $ Is

e 145



Raspberry Pi 5 Essentials

You are now ready to write the program. Figure 9.7 shows the program listing (lcd.py). At
the beginning of the program, the LCD driver libraries lcd_api and i2c_lcd are imported to
the program. The heading SECONDS COUNTER is displayed at the top row (row 1) and the
program enters a loop. Inside this loop the variable cnt is incremented every second and
the total value of cnt is displayed on the LCD continuously in the following format:

SECONDS COUNTER

nn
B
# I2C LCD SECONDS COUNTER
# —=—==—=—==================
#
# In this program an I2C LCD is connected to the Raspberry Pi.
# The program counts up in seconds and displays on the LCD.
#
# At the beginning of the program the text SECONDS COUNTER -s
# displayed
#
# Program: lcd.py
# Date : October 2017
# Author : Dogan Ibrahim
B e

import time
from lcd_api import LcdApi
from i2c_lcd import I2clcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2

I2C_NUM_COLS = 16

mylcd = I2clcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear () # clear LCD
mylcd.putstr ("SECONDS COUNTER'") # display string
cnt = 0 # dinitialize cnt
while True: # infinite loop
cnt = cnt + 1 # increment count
mylcd.move_to(0,1)
mylcd.putstr(str(cnt)) # display cnt
time.sleep (1) # wait one second

Figure 9.7 Program listing

e 146



Chapter 9 e Using an I2C LCD

The I2C LCD library supports many functions. Some of the commonly used functions are
(see the LCD library documentation for more details):

clear() clear LCD and set to home position
show__cursor() show cursor
hide_cursor() hide cursor

blink_cursor_on() blink cursor
blink_cursor_off() stop blinking cursor

display_on() display on
display_off() display off
backlight_on() backlight on
backlight_off() backlight off
move_to(x, y) move cursor to (X, y)
putchar() display a character
putstr() display a string

9.5 Project 2 - Using an I2C LCD - Display time
Description: In this project an I2C type LCD is connected to the Raspberry Pi 5 as in the
previous project. The program displays the current time on the LCD.

The block diagram and circuit diagram are as in Figure 9.3 and Figure 9.4 respectively.

Program listing: Figure 9.8 shows the program listing (LCDtime.py). At the beginning
of the program, time, datetime, and I2cLCD modules are imported to the program. The
LCD is cleared, and the program enters a loop. Inside this loop, the current time is extract-
ed using the strftime() function and the current time is then displayed on the top row of
the LCD every second in the following format:

hh:mm:ss

This program displays the current time on the LCD.

Program: LCDtime.py
Date : October 2017
Author : Dogan Ibrahim

from time import sleep
from datetime import datetime
from Tlcd_api dimport LcdApi

from i2c_lcd import I2clcd

I2C_ADDR = 0x27

e 147



Raspberry Pi 5 Essentials

I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear () # clear LCD

while True: # infinite loop
now = datetime.now()
time = now.strftime("%H:%M:%S")
mylcd.move_to(0,0)
mylcd.putstr(str(time))
sleep (1) # wait one second
mylcd.clear ()

Figure 9.8 Program listing

9.6 Project 3 - Using an I2C LCD - Display IP address of Raspberry
Pi5

Description: In this project an 12C type LCD is connected to the Raspberry Pi 5 as in the

previous projects. The IP address of the Raspberry Pi 5 is displayed on the top row of the

LCD.

The block diagram and circuit diagram are as in Figure 9.3 and Figure 9.4 respectively.

Program listing: Figure 9.9 shows the program listing (LCDip.py). The IP address is ex-
tracted using the hostname command with the =I option. The IP address is then displayed
on the LCD in the following format:

192.168.3.196

This program displays the IP address on the LCD.

Program: LCDip.py
Date : October 2017
Author : Dogan Ibrahim

from time import sleep

from subprocess import check_output
from Tlcd_api import LcdApi

from i2c_lcd import I2clcd

e 148



Chapter 9 e Using an I2C LCD

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

myled = I2cled(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear ()

ip = check_output(["hostname", "-I"],encoding="utf-8").split()[0]
mylcd.putstr(str(ip))

while True:

pass
Figure 9.9 Program listing
9.7 Project 4 — Voltmeter - Output to the screen
Description: This is a voltmeter project. Because the Raspberry Pi 5 does not have any

analog-to-digital converters (ADC) on-board, an external ADC chip is used in this project.
The voltage to be measured is applied to the ADC and its value is displayed on the screen.

Block diagram: Figure 9.10 shows the block diagram.

Figure 9.10 Block diagram

Circuit Diagram: The dual MCP3002 ADC chip is used in this project to provide analog
input capability to the Raspberry Pi 5. This chip has the following features:

e 10-bit resolution (0 to 1023 quantization levels)
e On-chip sample and hold

e SPI bus compatible

e Wide operating voltage (+2.7 V to +5.5V)

e 75 KSPS sampling rate

¢ 5 nA standby current, 50 pA active current

e 149



Raspberry Pi 5 Essentials

The MCP3002 is a successive-approximation 10-bit ADC with on-chip sample-and-hold am-
plifier. The device is programmable to operate as either a differential input pair or as dual
single-ended inputs. The device is offered in an 8-pin package. Figure 9.11 shows the pin
configuration of the MCP3002.

CS/ISHON 1 ~ 8 [O Vpp/Vrer
CHO[] 2 % 7 [0 CLK
CHIL]3 8 6 [ Dour
Vgs4 ™ 50Dy

Figure 9.11 Pin configuration of the MCP3002

The pin definitions are as follows:

vdd/Vref: Power supply and reference voltage input
CHO: Channel 0 analog input

CH1: Channel 1 analog input

CLK: SPI clock input

DIN: SPI serial data in

DOUT: SPI serial data out

CS/SHDN: Chip select/shutdown input

In this project, the supply voltage and the reference voltage are set to +3.3 V. Thus, the
digital output code is given by:

Digital output code = 1024 x Vin / 3.3

310.30 x Vin

or, Digital output code

Each quantization level corresponds to 3300/1024 = 3.22 mV. Thus, for example, input
data '00 0000001' corresponds to 3.22 mV, '00 0000010' corresponds to 6.44 mV and so
on.

The MCP3002 ADC has two configuration bits: SGL/DIFF and ODD/SIGN. These bits follow
the sign bit and are used to select the input channel configuration. The SGL/DIFF is used
to select single ended or pseudo-differential mode. The ODD/SIGN bit selects which chan-
nel is used in single-ended mode and is used to determine polarity in pseudo-differential
mode. In this project, we are using channel 0 (CHO) in single-ended mode. According to
the MCP3002 data sheet, SGL/DIFF and ODD/SIGN must be set to 1 and 0 respectively.

Figure 9.12 shows the circuit diagram of the project, where the voltage to be measured

is applied directly to the CHO input of the ADC. MCP3002 operates with the SPI interface.
Raspberry Pi 5 GPIO SPI pins are:

e 150



Chapter 9 e Using an I2C LCD

SPIO:

MISO - pin 21
MOSI - pin 19
CEO - pin 24
SCLK - pin 23
SPI1:

MISO - pin 35
MOSI - pin 38
CE1l - pin 11
SCLK - pin 40

In this project, SPIO GPIO pins are used.

1
8 +3.3V
Vdd/Vref
cs 1—241ceo
2 Dout 6 21 MISO
Voltage o——CHO CLK 7 23 SCLK
To be ] 5 19
Measured | Din MOSI
— | MCP3002 Raspberry Pi
Vss 5

4‘l_ 39J;

Figure 9.12 Circuit diagram of the project

Program listing: The SPI interface must be enabled on the Raspberry Pi 5 before using
the SPI functions. The steps are:

e Start the configuration menu from the command prompt:
pi@raspberrypi:~ $ sudo raspi-config

e Go down the menu to Interface Options

e Go down and select SPI

e Enable the SPI interface

Select Finish to complete

e 151



Raspberry Pi 5 Essentials

Figure 9.13 shows the program listing (voltmeter.py). The function get_adc_data is
used to read the analog data, where the channel number (channel_no) is specified in the
function argument as 0 or 1. Notice that we have to send the start bit, followed by the SGL/
DIFF and ODD/SIGN bits and the MSBF bit to the chip.

It is recommended to send leading zeroes on the input line before the start bit. This is often
done when using microcontroller-based systems that must send 8 bits at a time.

The following data can be sent to the ADC (SGL/DIFF = 1 and ODD/SIGN = channel_no) as
bytes with leading zeroes for more stable clock cycle. The general data format is:

0000 000S DCMO 0000 0000 0000
Where, S = start bit, D = SGL/DIFF bit, C = ODD/SIGN bit, M = MSBF bit
For channel 0: 0000 0001 1000 0000 0000 0000 (0x01, 0x80, 0x00)
For channel 1: 0000 0001 1100 0000 0000 0000 (0x01, 0xCO, 0x00)

Notice that the second byte can be sent by adding 2 to the channel number (to make it 2
or 3) and then shifting 6 bits to the left as shown above to give 0x80 or 0xCO.

The chip returns 24-bit data (3 bytes) and we must extract the correct 10-bit ADC data
from these 24 bits. The 24-bit data is in the following format ('X' is don't care bit):

XXXX XXXX XXXX DDDD DDDD DDXX
Assuming that the returned data is stored in 24-bit variable ADC, we have:
ADC[0] = "XXXX XXXX"
ADC[1] = "XXXX DDDD"
ADC[2] = "DDDD DDXX"
Thus, we can extract the 10-bit ADC data with the following operations:
(ADC[2] >> 2) so, low byte = '00DD DDDD'
and
(ADC[1] & 15) << 6) so, high byte = 'DD DD00 0000’
Adding the low byte and the high byte, we get the 10-bit converted ADC data as:

DD DDDD DDDD

The SPI bus on the Raspberry Pi supports the following functions:

e 152



Chapter 9 e Using an I2C LCD

Function Description

open (0,0) Open SPI bus 0 using CEO

open (0,1) Open SPI bus 0 using CE1

close() disconnect the device from the SPI bus

writebytes([array of bytes]) Write an array of bytes to SPI bus device

readbytes(len) Read len bytes from SPI bus device

xfer2([array of bytes]) Send an array of bytes to the device with CEx asserted
at all times

xfer([array of bytes]) Send an array of bytes de-asserting and asserting CEx

with every byte transmitted

At the beginning of the program in Figure 9.13 an instance of the SPI is created. Function
get_adc_data reads the temperature from the sensor chip MCP3002 and returns a digital
value between 0 and 1023. This value is then converted into millivolts and is displayed on
the screen. Figure 9.14 shows an example output from the project where the input CHO was

connected to GND or to +3.3 V.

This is a voltmeter project. The voltage to be measured is applied
to CHO input of the MCP3002 ADC. The measured voltage is displayed
on the screen using a print statement

Program: voltmeter.py
Date : October, 2023
Author : Dogan Ibrahim

HOoH H H O H B H H H

import spidev
from time import sleep

#

# Create SPI instance and open the SPI bus

#

spi = spidev.SpiDev ()

spi.open(0,0) # we are using CEQ for CS
spi.max_speed_hz = 4000

#
# This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):
ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])
rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)

return rcv

e 153



Raspberry Pi 5 Essentials

#
# Start of main program. Read the analog temperature, convert
# into degrees Centigrade and display on the monitor every second
#
while True:
adc = get_adc_data(0)

mV = adc * 3300.0 / 1023.0 # convert to mV
print("Voltage = %5.2f mv'" %mV) # display voltage in mV
sleep (1) # wait one second

Figure 9.13 Program listing

:~ $ python voltmeter.py

Voltage = 3287.10 mV
Voltage = 3296.77 mV
Voltage = 3290.32 mV
Voltage = 3290.32 mV
Voltage = 3274.19 mV
Voltage = 0.00 mV

Voltage = 0.00 mV

Voltage = 0.00 mV

Voltage = 0.00 mV

Voltage = 3300.00 mV
Voltage = 3280.65 mV
Voltage = 3277.42 mV
Voltage = 3290.32 mV

Figure 9.14 Example output from the program
9.8 Project 5 - Voltmeter - Output to LCD
Description: This project is basically the same as the previous one, but here the measured

voltage is displayed on LCD.

Block diagram: Figure 9.15 shows the block diagram.

Figure 9.15 Block diagram

Circuit Diagram: The circuit diagram of the project is shown in Figure 9.16. The LCD and
the MCP3002 are connected as in the previous projects.

e 154



Chapter 9 e Using an I2C LCD

8 +3.3V
Vdd/Vref
cs H—24ceo
) pout &2 miso s VA OE
Voltage o——CHO 7 23 SDA A1 B1 SDA
CLK SCLK 5 LCD
To be on 519105  SCL A2 B2 SsCL
Measured 2 TXS0102 Vee GND
— | MCP3002 +5V VB
Vss Rasbb Pi GND i
4 aspberry Pi J_ =
L : 1
GND
S%L

Figure 9.16 Circuit diagram of the project

Program listing: Figure 9.17 shows the program listing (LCDvolt.py). This program is
basically the same as the one in Figure 9.13, but here the output is sent to LCD instead of
being displayed on the screen. The data is displayed in the following format:

nnnn mV
H o
# VOLTMETER WITH LCD DISPLAY
# e e e e e e e e e e e e
#
# This is a voltmeter project. The voltage to be measured s applied
# to CHO input of the MCP3002 ADC. The measured voltage is displayed
# on the LCD
#
# Program: LCDvolt.py
# Date : October, 2023
# Author : Dogan Ibrahim
B e

import spidev

from lcd_api import LcdApi
from i2c_lcd import I2clcd
from time import sleep

#

# Create SPI instance and open the SPI bus

#

spi = spidev.SpiDev ()

spi.open(0,0) # we are using CEQ for CS
spi.max_speed_hz = 4000

I2C_ADDR = 0x27

e 155



Raspberry Pi 5 Essentials

I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear ()

#
# This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):
ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])
((ADC[1] & 15) << 6) + (ADC[2] >> 2)

return rcv

rcv

#
# Start of main program. Read the analog temperature, convert
# into degrees Centigrade and display on the monitor every second
#
while True:
adc = get_adc_data(0)
mV = adc * 3300.0 / 1023.0 # convert to mV
disp = str(mV)[:4] + " mV"
mylcd.move_to(0,0)
mylcd.putstr(disp)
sleep(2)
mylcd.clear ()

Figure 9.17 Program listing

9.9 Project 6 — Analog temperature sensor thermometer - output to

the screen

Description: In this project, an analog temperature sensor chip is used to measure and
then display the ambient temperature every second on the screen. The temperature is
read using an external ADC, as in the previous project. The aim of this project is to show
how the ambient temperature can be read and displayed on the monitor using an analog

temperature sensor chip.

Block Diagram: Figure 9.18 shows the block diagram of the project.

e 156



Chapter 9 e Using an I2C LCD

P o .

ADC

Temperature

R Pi
SETEsi aspberry Pi 5

Figure 9.18 Block diagram of the project

Circuit Diagram: The dual MCP3002 ADC chip is used in this project to provide analog
input capability to the Raspberry Pi. Figure 9.19 shows the circuit diagram of the project. A
TMP36DZ type analog temperature sensor chip is connected to CHO of the ADC. TMP36DZ
is a 3-terminal small sensor chip with pins: Vs, GND, and Vo. Vs is connected to +3.3 V,
GND is connected to system ground, and Vo is the analog output voltage. The temperature
in degrees centigrade is given by:

Temperature = (Vo — 500) / 10
Where, Vo is the sensor output voltage in millivolts.

CS, Dout, CLK, and Din pins of the ADC are connected to the SPI pins CEO, MISO, SCLK,
and MOSI pins of the Raspberry Pi 5 respectively.

1]
8 +3.3V
Vdd/Vref
cs 1—2ceo
—ZCHO Dout : 2; MISO
TMP36 CLK SCLK
pin B—1%fmosi
J_ MCP3002 Raspberry Pi
Temperatﬁre sensor Xj_s 5

39J:

Figure 9.19 Circuit diagram of the project

Program listing: Figure 9.20 shows the Raspberry Pi Python program listing (program:
tmp36.py). The function get_adc_data is used to read the analog data, where the chan-
nel number (channel_no) is specified in the function argument as 0 or 1. Function get_
adc_data reads the temperature from the sensor chip MCP3002 and returns a digital value
between 0 and 1023. This value is then converted into millivolts, 500 is subtracted from it,
and the result is divided by 10 to find the temperature in degrees centigrade. The temper-
ature is displayed on the monitor every second.

e 157



Raspberry Pi 5 Essentials

B
# ANALOG TEMPERATURE MEASUREMENT

# e e e e e e e e e e e e e e e e e

#

# This is a thermometer project. Ambient temperature is read using
# an ADC and is then displayed on the screen every second

#

# Program: tmp36.py

# Date : October, 2023

# Author : Dogan Ibrahim

import spidev
from time import sleep

#

# Create SPI instance and open the SPI bus

#

spi = spidev.SpiDev ()

spi.open(0,0) # we are using CEQ for CS
spi.max_speed_hz = 4000

#
# This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):
ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])
((ADC[1] & 15) << 6) + (ADC[2] >> 2)

return rcv

rcv

#
# Start of main program. Read the analog temperature, convert
# into degrees Centigrade and display on the monitor every second
#
while True:
adc = get_adc_data(0)
mV = adc x* 3300.0 / 1023.0 # convert to mV
Temperature = (mV - 500) / 10.0
print("Temperature = %5.2f C" %Temperature)
sleep (1) # wait one second

Figure 9.20 Python program listing

e 158



Chapter 9 e Using an I2C LCD

A typical display on the monitor is shown in Figure 9.21.

:~ $ python tmp36.py
Temperature = 20.00 C
Temperature = 20.00 C
Temperature = 20.00 C
Temperature = 20.00 C
Temperature = 20.00 C
Temperature = 20.00 C
Temperature = 20.00 C
Temperature = 20.00 C

Figure 9.21 Typical display

9.10 Project 7 — Analog temperature sensor thermometer -

output on LCD
Description: This project is similar to the previous one, but here the temperature is dis-
played on LCD.

Block diagram: Figure 9.22 shows the block diagram of the project.

LCD
Raspberry Pi 5

Temperature
sensor

Figure 9.22 Block diagram

Circuit diagram: The circuit diagram of the project is shown in Figure 9.23. The ADC and
the sensor chip are connected as in the previous project.

1]
8 +3.3V
Vdd/Vref
Ccs 1 24 CEO
6 21
Dout MISO
—20H0 7 23 SDA 3 A1l VA OE B1 SDA
TMP36 CLK SCLK 5 LCD
Din 5 19 MOS! SCL A2 szo10282 SCL
MCP3002 +5v|2 Vec GND
J__ Vss Raspb pi GND l
- aspberry Pi =
Temperature sensor 4J__ 5
GND
39J_

Figure 9.23 Circuit diagram

Program listing: Figure 9.24 shows the program listing (LCDtmp36.py). The program is
very similar to the previous one, but here the temperature is displayed on LCD.

e 159



Raspberry Pi 5 Essentials

B
# ANALOG TEMPERATURE MEASUREMENT - OUTPUT ON LCD

# e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

#

# This is a thermometer project. Ambient temperature is read using
# an ADC and is then displayed on LCD

#

# Program: LCDtmp36.py

# Date : October, 2023

# Author : Dogan Ibrahim

B o

import spidev

from time import sleep
from lcd_api import LcdApi
from i2c_lcd import I2clcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR, I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear ()

#

# Create SPI instance and open the SPI bus

#

spi = spidev.SpiDev ()

spi.open(0,0) # we are using CEOQ for CS
spi.max_speed_hz = 4000

#
# This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):
ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])
rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)

return rcv

#
# Start of main program. Read the analog temperature, convert
# into degrees Centigrade and display on the monitor every second
#
while True:
adc = get_adc_data(0)
mV = adc * 3300.0 / 1023.0 # convert to mV
Temperature = (mV - 500) / 10.0

e 160



Chapter 9 e Using an I2C LCD

T = str(Temperature)[:5] + " C"

mylcd.move_to(0,0)

mylcd.putstr(T)

sleep(5) # wait one second
mylcd.clear ()

Figure 9.24 Program listing

9.11 Project 8 — Reaction timer - output to screen

Description: This is a reaction timer project. The user presses a button as soon as he/
she sees a LED lighting. The time delay between seeing the light and pressing the button is
measured and displayed on the screen. The LED then turns OFF and the process is repeated
after a random delay of 1 to 10 seconds. The aim of this project is to show how the time
can be read and how a simple reaction timer project can be designed.

Block Diagram: Figure 9.25 shows the block diagram of the project.

Button
LED

Raspberry Pi 5

Figure 9.25 Block diagram of the project

Circuit Diagram: The circuit diagram of the project is basic, and it consists of an LED and
a push-button switch. The LED and the button are connected to GPIO 17 and GPIO 3 re-
spectively. The button is connected using two resistors as shown in Figure 9.26.

1{+3.3v LED
11 470 2
10k GPIO 17 _:_M—l
51GPI0 3 =
1k
Raspberry Pi

5

Button d]
P GND

Figure 9.26 Circuit diagram of the project

e 161



Raspberry Pi 5 Essentials

Program listing: The program is called reaction.py and its listing is shown in Figure 9.27.
At the beginning of the program, the random library and other used libraries are imported
to the program. The program runs in a loop where the system time is recorded as soon as
the LED is turned ON. The program waits for the user to press the button, and the system
time is read again at this moment. The difference between this time and the first time is
displayed as the reaction time of the user. This process repeats after a random delay of
1 to 10 seconds. Notice that the floating-point function time.time() returns the time in

seconds since the epoch.

# __________________________________________________________

#

# REACTION TIMER

# S e e e ]

#

# This 1is a reaction timer program. The user presses a button
# as soon as he/she see a light. The time between seeing the
# light and pressing the button is measured and is displayed
# in milliseconds as the reaction time of the user. The light
# comes ON after a random number of seconds between 1 and 10

# seconds.

#

# Program: reaction.py

# Date : October, 2023

# Author : Dogan Ibrahim

# ___________________________________________________________

from time import sleep

import random

from gpiozero import LED, Button
import time

button = Button(3) # At GPIO 3
led = LED(17) # At GPIO 17

# Start of main program
#
while True:
T = random.randint(1, 10)

sleep(T)

led.on() # LED ON
start_time = time.time() # start time
button.wait_for_press() # wait for button

end_time = time.time()

diff_time = 1000.0x(end_time - start_time)
diff_int = int(diff_time)

print("Reaction time=%d ms" %diff_int)
led.off() # LED OFF
sleep(3)

Figure 9.27 Program listing

e 162



Chapter 9 e Using an I2C LCD

An example output is shown in Figure 9.28.

:~ $ python reaction.py
Reaction time=4077 ms
Reaction time=1577 ms
Reaction time=847 ms
Reaction time=327 ms
Reaction time=845 ms

Figure 9.28 Example output

9.12 Project 9 — Reaction timer - output to LCD

Description: This project is very similar to the previous one, but here the output is sent
to LCD instead of the screen. As before, the user presses a button as soon as he/she sees
an LED lighting. The time delay between seeing the light and pressing the button is meas-
ured and displayed on the LCD. The LED then turns OFF and the process is repeated after
a random delay of 1 to 10 seconds.

Block Diagram: Figure 9.29 shows the block diagram of the project.

LCD

Raspberry Pi 5
Figure 9.29 Block diagram of the project
Circuit Diagram: The circuit diagram of the project, shown in Figure 9.30, is simple, and

it consists of an LED, a push-button switch, and an LCD. The LED and the button are con-
nected to GPIO 17 and GPIO 4 respectively.

1] LED
+3.3V 11470 A
GPIO 17 —:n—[>|—_|_
Raspberry Pi -
10k 5
"{ePio4 SDA 3 a1 VA OF g, SDA
5 LCD
1k ScL A2 B2 scL
2 TXS0102 Vec  GND
+5V GND J_
ButtonED 39 =
GND

Figure 9.30 Circuit diagram of the project

e 163



Raspberry Pi 5 Essentials

Program listing: The program is called LCDreaction.py and its listing is shown in Fig-
ure 9.31. The program is basically the same as the one in Figure 9.27, but here the output
is sent to LCD.

B e
#

# REACTION TIMER - OUTPUT TO LCD

# ——=-=—=—=—==—==—===—=—================

#

# This is a reaction timer program. The user presses a button

# as soon as he/she see a light. The time between seeing the

# light and pressing the button is measured and is displayed

# on LCD 1in milliseconds as the reaction time of the user. The
# light comes ON after a random number of seconds between 1 and
# 10 seconds.

#

# Program: LCDreaction.py

# Date : October, 2023

# Author : Dogan Ibrahim

from time import sleep

import random

from gpiozero import LED, Button
import time

from Tlcd_api import LcdApi
from i2c_lcd import I2clcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(l, I2C_ADDR, I2C_NUM_ROWS, I2C_NUM_COLS)
mylcd.clear ()

button = Button(4) # At GPIO 4
led = LED(17) # At GPIO 17

# Start of main program
#
while True:
T = random.randint(1l, 10)

sleep(T)

led.on() # LED ON
start_time = time.time() # start time
button.wait_for_press() # wait for button

end_time = time.time()

e 164



Chapter 9 e Using an I2C LCD

diff_time = 1000.0%(end_time - start_time)
diff_int = int(diff_time)

mylcd.move_to(0, 0)

mylcd.putstr(diff_int)

led.off() # LED OFF
sleep(3)

mylcd.clear ()

Figure 9.31 Program listing

9.13 Project 10 - Automatic dusk lights

Description: In this project, a light dependent resistor (LDR) is used to sense the darkness
and a relay is activated when the ambient light intensity falls below the required level. It
is possible to connect e.g. lights to the relay so that they turn ON automatically when, for
example, it is dusk. The aim of this project is to show how to use an LDR in a Raspberry Pi
project, and also how to connect and activate a relay.

Block Diagram: Figure 9.32 shows the block diagram of the project.

Raspberry Pi 5

Figure 9.32 Block diagram of the project

Circuit Diagram: As shown in Figure 9.33, the circuit diagram of the project is simple, and
it consists of an LDR, a 10 kQ potentiometer, and a relay. The LDR is connected to GPIO 4,
and the relay to GPIO 17.

The resistance of an LDR increases as the light level falls. The response of a typical LDR
is shown in Figure 9.34. The LDR is connected as a resistive potential divider circuit. The
voltage across the LDR increases as the light level falls. At dark, logic O will be sent to the
Raspberry Pi, which in turn will activate the relay. When it is light, logic 1 will be sent to the
Raspberry Pi, which will deactivate the relay. The potentiometer can be adjusted so that the
relay is activated at the required light level. This process will require some trial and error.

e 165



Raspberry Pi 5 Essentials

1]
+3.3V

Raspberry Pi
5

11 .
LDR <> GPIO 17 S RELAY | To lights etc.
" 1GPI0 4 1

Ao o ’

39J:

Figure 9.33 Circuit diagram of the project

1000

100

N

10 \\
10 N

AN

Resistance (k)

0.1

0.1 1.0 10 100 1000 10,000
Lux

Figure 9.34 Response of a typical LDR

Program listing: Figure 9.35 shows the program listing (program: dusklight.py). The
LDR is input and the relay is output. The program detects the voltage at its GPIO 4 pin and
if it at logic 0 (i.e. dark) then it deactivates the relay, otherwise the relay activated. The
potentiometer can be used to adjust the required light trigger level.

In this project a light dependent resistor (LDR) is used to
detect the ambient light level. When the light level falls

below the required value, a relay is activated which turns

ON the lights.

The potentiometer can be used to adjust the triggering
light level of the project.

HOH o H O H H ¥ W K H

e 166



Chapter 9 e Using an I2C LCD

# Program: dusklight.py
# Date : October, 2023
# Author : Dogan Ibrahim

from gpiozero import LED, Button

LDR = Button(4) # LDR at GPIO 4
RELAY = LED(17) # RELAY at GPIO 17
RELAY.off () # RELAY OFF)

while True:

if LDR.is_pressed:

RELAY.on () # At logic 0 (dark)
else:
RELAY.off () # At logic 1 (light)

Figure 9.35 Program listing

9.14 Project 11 - Ultrasonic distance measurement
Description: This project uses an ultrasonic transmitter/receiver pair to measure the dis-
tance in front of the sensor. The distance is displayed on the screen. The aim of the project

is to show how ultrasonic sensors can be attached to a Raspberry Pi 5 and how distance can
be measured using these sensors.

Block diagram: Figure 9.36 shows the block diagram of the project.

Ultrasonic TX/RX
Raspberry Pi 5

Obstacle

Figure 9.36 Block diagram of the project
Circuit Diagram: An ultrasonic sensor is used to sense the distance in front of the sensor.
The outputs of the ultrasonic sensors are +5 V and therefore are incompatible with the
inputs of Raspberry Pi 5. A resistive potential divider circuit is used to lower the voltage to
+3.3 V. The voltage at the output of the potential divider resistor is:

Vo = 5x 2k / (2k + 1k) = 3.3 V

e 167



Raspberry Pi 5 Essentials

In this project, an HC-SR04-type ultrasonic transmitter/receiver module is used (see Fig-
ure 9.37). These modules have the following specifications:

e Operating voltage (current): 5V (2 mA) operation
e Detection distance: 2 cm - 450 cm

e Input trigger signal: 10 ps TTL

e Sensor angle: not more than 15 degrees

The sensor modules have the following pins:

Vcc: +V power
Trig: Trigger input
Echo: Echo output
Gnd: Power ground

Figure 9.37 Ultrasonic transmitter/receiver module

The principle of operation of the ultrasonic sensor module is as follows:

A 10 ps trigger pulse is sent to the module

The module then sends eight 40 kHz square wave signals and automatically
detects the returned (echoed) pulse signal

If an echo signal is returned, the time to receive this signal is recorded

The distance to the object is calculated as:

Distance to object (in metres) = (time to received echo in seconds * speed of
sound) / 2

The speed of sound is 340 m/s, or 0.034 cm/us
Therefore,
Distance to object (in cm) = (time to received echo in us) * 0.034 / 2

or,
Distance to object (in cm) = (time to received echo in us) * 0.017

e 168



Chapter 9 e Using an I2C LCD

Figure 9.38 shows the principle of operation of the ultrasonic sensor module. For example,
if the time to receive the echo is 294 microseconds, then the distance to the object is cal-

culated as:

Distance to object (cm) = 294 x 0.017 = 5 cm

10us trigger

Trig

8 cycle burst |

Figure 9.38 Operation of the ultrasonic sensor module

Figure 9.39 shows the circuit diagram of the project. The trig and echo pins of the sensor
are connected to GPIO 4 and GPIO 17 respectively. The echo output of the ultrasonic sensor
is connected to the Raspberry Pi 5 through a resistive potential divider circuit to drop the
voltage level to +3.3 V.

+5V
Vce
trig ! GPIO 4
HC-SR04 1k 11
echo GPIO 17
GND oK Raspberry Pi
J_ 5
- GND

it
Figure 9.39 Circuit diagram of the project

Program listing: Figure 9.40 shows the program listing (ultrasonic.py). At the beginning
of the program, module DistanceSensor of gpiozero is imported to the program. Then
the echo and trigger pins are defined. The remainder of the program runs in a loop where
the distance is measured and displayed on the screen. Figure 9.41 shows an example out-
put from the program.

e 169



Raspberry Pi 5 Essentials

B
# ULTRASONIC DISTANCE SENSOR

# e e e e e e e e e e e e e e e

#

# This program uses a HC-SR04 type ultrasonic transmitter/receiver
# to measure the distance to an obstacle in-front of the sensor.

# The measured distance is displayed on the screen.

#

# Program: ultrasonic.py

# Date : October 2023

# Author : Dogan Ibrahim

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor (echo=17, trigger=4)
while True:
print("Distanc (cm)= %6.2f" %(sensor.distance *x 100))

sleep (1)

Figure 9.40 Program listing

Distanc (cm)= 60.94
Distanc (cm)= 60.94
Distanc (cm)= 26.01
Distanc (cm)= 10.75
Distanc (cm)= 6.23
Distanc (cm)= 5.97
Distanc (cm)= 10.27
Distanc (cm)= 10.85
Distanc (cm)= 12.46
Distanc (cm)= 19.67

Distanc (cm)= 8.42
Distanc (cm)= 8.35
Distanc (cm)= 8.25

Figure 9.41 Example output

9.15 Project 12 - Car parking sensors

Description: This is a parking sensors project to help a person park a car safely and easily.
A pair of ultrasonic transmitter/receiver sensors is mounted in the front and back of a vehi-
cle to sense the distance to the objects, and an active buzzer sounds if the sensors are too
close to the objects in front of them. In this project, safe distance is assumed to be 10 cm.

Block Diagram: Figure 9.42 shows the block diagram of the project.

e 170



Chapter 9 e Using an I2C LCD

,“ Front of the vehicle

Rear of the vehicle

Raspberry Pi 5 Buzzer

Figure 9.42 Block diagram of the project

Circuit Diagram: Figure 9.43 shows the circuit diagram. The trig and echo pins of the
Front ultrasonic sensor are connected to GPIO 4 and GPIO 17 respectively, as in the previ-
ous project. Similarly, the trig and echo pins of the rear ultrasonic sensor are connected to
GPIO 27 and GPIO 22 respectively. Echo outputs of the ultrasonic sensors are connected to
the Raspberry Pi 5 through resistive potential divider resistors to drop the voltage levels to
+3.3 V. The active buzzer is connected to GPIO 10 of the Raspberry Pi 5.

2|

+5V
Vce
trig ! GPIO 4
FRONT SENSOR |HC-SR04 1k 1"
echo GPIO 17
Gjl_D 2k [Raspberry Pi
= 5 BUZZER
— 19
- GPIO 10 _O—_L
Vce —
trig 131 GpPi0 27 :
REAR SENSOR |HC-SR04 1K 15
echo GPIO 22
Gj‘_D 2k GND

L ]

Figure 9.43 Circuit diagram of the project

Program listing: Figure 9.44 shows the program listing (program parking.py). Module
DistanceSensor of gpiozero is imported to the program. If the distance of either sensor
to the objects is less than or equal to the Allowed_Distance (which is set to 10 cm) then
the buzzer is sounded to indicate that the vehicle is too close to objects (either at the front
or at the rear).

Since the parking sensor is to be operated away from a PC, it is necessary to auto start the
program when power is applied to the Raspberry Pi 5. The program name parking.py must
be included in file /etc/rc.local in the following format so that the program starts as soon

as the Raspberry Pi 5 starts after a power-up or after a reboot:

python /home/pi/robot2.py &

e 171



Raspberry Pi 5 Essentials

B e
# PARKING SENSORS

# SE===RSS==S====s

#

# This is a parking sensors project. Ultrasonic tranamitter/receiver

# sensors are attached to the front and rear of a vehicle. In addition

# an active buzzer is connected to the Raspberry 0i 5. The program senses
# the objects in the front and rear of the vehicle and sounds the buzzer
# if the vehicle 1is too close to the objects. In this project a distance
# less than 10cm is considered to be too close.

#

# File : parking.py

# Date : October, 2023

# Author: Dogan Ibrahim

B

from gpiozero import DistanceSensor, LED
from time import sleep

Buzzer = LED(10) # Buzzer at GPIO 10

sensorForward = DistanceSensor(echo=17, trigger=4)
sensorRear = DistanceSensor(echo=22, trigger=27)
Allowed_Distance = 10

Buzzer.off()

while True:
obstacle_f = sensorForward.distance * 100 # Forward distance
obstacle_r = sensorRear.distance * 100 # Rear distance
if obstacle_f <= Allowed_Distance or obstacle_r <= Allowed_Distance:
Buzzer.on()
else:
Buzzer.off()

Figure 9.44 Program listing

After applying power, wait until the Raspberry Pi 5 boots, and the program should start
automatically. You should remove your Python program name from file /etc/rc.local after
testing and completing your project so that the program does not start every time you
restart your Raspberry Pi 5!

9.16 Project 13 - Fading LED

Description: In this project, an LED is connected to GPIO 21 (pin 40) of the Raspberry Pi 5
through a 470 Ohm current limiting resistor. The brightness of the LED fades in and fades
out every second.

e 172



Chapter 9 e Using an I2C LCD

Program listing: Figure 9.45 shows the program listing (FadeLED.py). Function pulse()
of gpoizero is used to control the LED. The fade-in and fade-out times are set to 1 second

each.
o
#
# FADING LED
# ==========
# In this program an LED is connected to the Raspberry Pi 5.
# The brightness of the LED fades by using th PWMLED function
# of gpiozero
#
# Program: FadelLED.py
# Date : October, 2023
# Author : Dogan Ibrahim

from gpiozero import PWMLED

led = PWMLED(21) # LED at GPIO 21

#

# Fade-in time and fade-out time are set to 1 second each
#

led.pulse(fade_in_time=1,fade_out_time=1)

while True:

pass
Figure 9.45 Program listing
9.17 Project 14 - Melody maker
Description: This project shows how tones with different frequencies can be generated
and sent to a passive buzzer device. The project shows how the simple melody Happy

Birthday can be played on the buzzer.

Block diagram: The block diagram of the project is shown in Figure 9.46.

Passive Buzzer

Raspberry Pi 5

Figure 9.46 Block diagram of the project

e 173



Raspberry Pi 5 Essentials

Circuit diagram: Figure 9.47 shows the circuit diagram of the project. A passive buzzer is
connected to port GPIO 21 (pin 40) of the Raspberry Pi 5. A transistor switch can be used to
increase the voltage level of the buzzer (this can be omitted, and the buzzer can be directly
connected to GPIO 21 if desired). Any NPN bipolar transistor can be used in this project.
The + terminal of the buzzer can be connected to either +3.3 V or to +5V for higher output
from the buzzer.

+V (3.3V or 5V)

+
Buzzer
40 2.2k
GPIO 21 Any NPN
Raspberry Pi
5 -

]
Figure 9.47 Circuit diagram of the project

Melodies

When playing a melody, each note is played for a certain duration and with a certain
frequency. In addition, a certain gap is necessary between two successive notes. The fre-
quencies of the musical notes starting from middle C (i.e. C4) are given below. The har-
monic of a note is obtained by doubling the frequency. For example, the frequency of C5 is
2 X 262 = 524 Hz.

Notes | C4 Ca# D4 D4 # E4 F4 Fa# G4 G4# A4 Ad# B4
Hz 261.63 |277.18 |293.66 |311.13 | 329.63 |349.23 | 370 392 415.3 | 440 466.16 | 493.88

To play the tune of a melody, you need to know its musical notes. Each note is played for
a certain duration and there is a certain time gap between two successive notes. The next
thing we want is to know how to generate a sound with a required frequency and duration.
In this project, we will be generating the classic Happy Birthday melody, and thus you
need to know the notes and their durations. These are given in the table below, where the
durations are in units of 400 milliseconds (i.e. the values given in the table should be mul-
tiplied by 400 to give the actual durations in milliseconds).

Note C4|C4|D4|C4 |F4 |E4|C4[C4 D4 |C4 G4 |F4|C4|C4|C5|A4|F4 | E4|D4 A4 B4 A4 |F4 G4 |F4

[

Duration 1 /2 |2 |2 |3 |1 |1 |2 |2 |2 (3 |1 |1 |2 |2 |2 |2 |2 |1 |1 |2 |2 |2 |4

Program Listing: The program listing (program: Melody) is shown in Figure 9.48. The
notes and their durations are stored in two lists called Notes and Duration, respectively.
Before the main program loop, the durations of each tone are calculated and stored in the
array Duration so that the main program loop does not have to spend any time doing

e 174



Chapter 9 e Using an I2C LCD

these calculations. Inside the program loop, the melody notes are generated with the re-
quired durations. A small delay (100 ms) is introduced between each tone. The melody is
repeated after five seconds of delay. You can try higher notes for clearer sound, and use
speakers instead of a buzzer.

This program plays the melody Happy Birthday through a buzzer

Program: melody.py
Date : October, 2023
Author : Dogan Ibrahim

H o o H O H H H

from gpiozero import TonalBuzzer
from gpiozero.tones import Tone
from time import sleep

t = TonalBuzzer(21)

Notes = ['C4','C4','D4','C4','F4','E4','C4','C4"','D4",'C4"," G4’ ,
"F4','C4','C4','C5','A4"','F4' ,'E4",'D4",'A4",'B4" ,'A4" 4", "G4, 'F4']

Duration = [1,1,2,2,2,3,1,1,2,2,2,3,1,1,2,2,2,2,2,1,1,2,2,2,4]
length = len(Notes)

while True:
for i 1in range(length):
t.play(Notes[i])
sleep(Duration[i] * 0.4)
sleep(0.1)
t.stop()
sleep(5)

Figure 9.48 Program listing

e 175



Raspberry Pi 5 Essentials

Chapter 10 e Plotting Graphs with Python and
Raspberry Pi 5

10.1 Overview

In this chapter, you will be learning how to draw graphs using the Python programming
language. In addition, examples and projects are given on drawing graphs for simple elec-
tronic circuits.

10.2 The Matplotlib graph plotting library

Matplotlib is a Python plotting library that is used to create two-dimensional graphs. Before
using this package, it has to be installed on your Raspberry Pi 5 using the following com-
mand:

pi@raspberrypi:~ $ sudo apt-get install python3-matplotlib

You must import module matplotlib at the beginning of our programs before we can use
Matplotlib using the statement:

import matplotlib.pyplot as plt
Perhaps the easiest way to learn how to use Matplotlib is to look at an example.

Notice that graphs can only be plotted in Desktop mode. If you are not using a directly con-
nected monitor, then you should start the VNC server on your Raspberry Pi and then start
the VNCViewer on your PC to get into the Desktop mode.

Example 1
Write a program to draw a line graph passing from the following (x, y) points:

xX:2468
y: 4812 16

Solution 1

The required program listing is shown in Figure 10.1 (program: graph1.py). This program
is simple. Function call plt.plot plots the graph with the specified x and y values. The graph
is shown on Desktop when statement plt.show() is executed. Start the program by en-
tering the following command in the Accessories — Terminal windows at the Desktop:

pi@raspberrypi:~ $ python graphl.py

#
# —================

#
# This program draws a line graph passing from
# the following points:

e 176



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

X =246 8
4 8 12 16

<
I

Author: Dogan Ibrahim
File : graphl.py
Date : October, 2023

H O H O H H

import matplotlib.pyplot as plt

(2, 4, 6, 8]
y = [4, 8, 12, 16]

plt.plot(x, y)
plt.show()

Figure 10.1 Program listing

Figure 10.2 shows the graph plotted by the program. Notice that at the bottom of the graph
we have several buttons to control the graph, such as zoom, save, etc.

Figure 1 v oA X
16 ’
144
12
10
84
6
a4
2 3 4 5 6 7 8
fneEd PpQ= x=199 y=16.16

Figure 10.2 Line graph drawn by the program
You can add titles, axis labels, and grid to our graph using the following functions:
plt.xlabel(«X values»)
plt.ylabel(«Y values»)

plt.title("Simple X-Y Graph")
plt.grid(True)

e 177



Raspberry Pi 5 Essentials

The new graph is shown in Figure 10.3.

Simple X-Y Graph

Y values
=
o

2 3 4 5 6 7 8
values

fa ey Q= x=3.68 y=15.16
Figure 10.3 Graph with labels, title, and grid

Matplotlib supports a large nhumber of functions (see web link: https://matplotlib.org/sta-
ble/api/pyplot_summary.html for a full description of all the functions). Some commonly
used functions are:

e bar: make a bar plot

e box: turn the axis box on or off

e boxplot: make a box plot

o figtext: add text to the figure

e hist: plot a histogram

¢ legend: place a legend on the axes

e loglog: make a logarithmic plot

e pie: plot a pie chart

e polar: make a polar plot

e plotfile: plot data in a file

e semilogx: logarithmic plot with log on x-axis
e semilogy: logarithmic plot with log on y-axis
e suptitle: add a centered title to the plot

e tick_params: change the appearance of ticks and tick labels

Example 2
Write a program to draw a sine curve from 0 to 2n.

Solution 2

You have to use numpy arrays to store our data points before plotting. Figure 10.4 shows
the program listing (program: graph2.py).

e 178



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

H o o H O H H H

This program draws a sine graph from 0 to 2pi

Author: Dogan Ibrahim
File : graph2.py
Date : October, 2023

import matplotlib.pyplot as plt

import numpy as np

< X H H oH

H

plt.
plt.
plt.
plt.
plt.
plt.

Calculate the data points in np

np.arange(®, 2 * np.pi, 0.1)

np.sin(x)

Now plot the graph

plot(x, y)

xlabel ("X values")
ylabel("Sin(X)")
title("Sine Wave")
grid(True)

show ()

Figure 10.4 Program listing

The graph drawn by the program is shown in Figure 10.5.

e 179



Raspberry Pi 5 Essentials

* Sine Wave

1.00

0.75 1

0.50

0.25 4

0.00

Sin(X)

—=0.25 1

—0.50

—=0.75 A

—-1.00

T T T T T T T
0 1 2 3 4 5 6
X values

f e HQ=B

Figure 10.5 Graph drawn by the program

Example 3
Draw the graph of the following function as x is varied from 0 to 4:

y =2x2+3x+2
Solution 3

Figure 10.6 shows the program listing (program: graph3.py). After calculating the x and
y values, the graph is drawn as shown in Figure 10.7.

This program draws a graph of the function:

#

#

#

#

#

# y = 2x2 + 3x + 2 from x=0 to x = 4
#

# Author: Dogan Ibrahim

# File : graph3.py

# Date : October, 2023

import matplotlib.pyplot as plt
import numpy as np

Calculate the data points in np

np.arange(0, 4, 0.1)

= [(2*1 %17+ 3x*x1d+ 2) for i in x]

<X H H OH®

e 180



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

#

# Now plot the graph

#

plt.plot(x, y)
plt.xlabel("X values")
plt.ylabel("Y values")
plt.title("y=2x2 + 3x + 2")
plt.grid(True)

plt.show()
Figure 10.6 Program listing
y=2x2 + 3x + 2
40
1
30 1
> 204
10
0 T T T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
X values
aeEdy» Q= x=0.912 y=34.9
Figure 10.7 Graph drawn by the program
Example 4

This is an example of drawing two graphs on the same axes. Write a program to draw the
graphs of the following two functions as x is varied from 0 to 3:

y=x2+2
y=x2+4
Solution 4

Figure 10.8 shows the program listing (program: graph4.py). After calculating the x and
y values, the graphs are drawn as shown in Figure 10.9.

e 181



Raspberry Pi 5 Essentials

This program draws a graph of the functions:

y = x2 + 4 from x=0 to x = 3

#

#

#

#

#

# y = x2 + 2
#

#

# Author: Dogan Ibrahim

# File : graph4.py

# Date : October, 2023

import matplotlib.pyplot as plt
import numpy as np

#

# Calculate the data points in np
#

X = np.arange(0, 3, 0.1)

yl = [(i * i + 2) for i in x]

y2 = [(i * i + 4) for i in x]

#

# Now plot the graph

#

plt.plot(x, yl, linestyle='solid')
plt.plot(x, y2, linestyle='dashed')
plt.xlabel("X values")
plt.ylabel("Y values")
plt.title("y=x2+2 and y=x2+4")
plt.grid(True)

plt.show()

Figure 10.8 Program listing

e 182



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

y=x2+2 and y=x2+4

Y values

0.0 0.5 1.0 15 2.0 25 3.0
X values

® ey Q= x=1.701 y=10.84

Figure 10.9 Graph drawn by the program

To identify the individual graphs in a multi-graph drawing, you can plot each graph with a
different colour, or with different types of lines. Some examples are shown below:

plt.plot(x, y1, color="'blue")
plt.plot(x, y2, color="'green')

or
plt.plot(x, y1, linestyle='solid")
plt.plot(x, y2, linestyle='dashed")

Figure 10.10 shows the graph in Figure 10.9 drawn with different line styles.

y=x2+2 and y=x2+4

12 ’ w4

Y values

0.0 0.5 1.0 15 2.0 - 3.0
X values

#® ey Q= x=0871y=12.61

Figure 10.10 Using different line styles

e 183



Raspberry Pi 5 Essentials

Example 5
In this example, you will use legends to identify multiple graphs in a multigraph drawing.
The functions to be drawn are the same as the ones given in the previous example.

Solution 5

Figure 10.11 shows the program listing (program: graph5.py). The Matplotlib function
label is used to identify the two graphs. Also, statement plt.legend() must be specified
to draw the legend.

B
# Function Graph

# —=============

#

# This program draws a graph of the functions:
#

# y = X2 + 2

# = x2 + 4 from x=0 to x = 3

#

# In this program the graphs are +identified

#

# Author: Dogan Ibrahim

# File : graph5.py

# Date : October, 2023

import matplotlib.pyplot as plt
import numpy as np

#

# Calculate the data points in np
#

X = np.arange(0, 3, 0.1)

yl = [(i * i+ 2) for i in x]

y2 = [(i x i + 4) for i in x]

#

# Now plot the graph

#

plt.plot(x, yl, linestyle='solid', label='x2+2")
plt.plot(x, y2, linestyle='dashed', label='x2+4")
plt.xlabel("X values")

plt.ylabel("Y values")

plt.title("y=x2+2 and y=x2+4")

plt.grid(True)

plt.legend()

plt.show()

Figure 10.11 Program listing

e 184



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

Figure 10.12 shows the graph drawn by the program.

y=x2+2 and y=x2+4

—_— X2+2

21 xa+a

10 A

Y values

0.0 0.5 1.0 15 2.0 25 3.0
X values

® eI Q= x=0.659 y=12.02

Figure 10.12 Graph drawn by the program

Example 6
Write a program to draw a pie chart for the following data;

France = 15%, Germany = 20%, Italy = 20%, UK = 45%
Solution 6

Figure 10.13 shows the program listing (program: graph6.py). The Pie chart is drawn with
equal aspect ratio, so that is a circle.

This program draws a pie chart for the data:
France=15%, Germany=20%,Italy=20%,UK=45%
Author: Dogan Ibrahim

File : graph6.py
Date : October, 2023

HOoH H H O H B H H H

import matplotlib.pyplot as plt
import numpy as np

labels = "France", "Germany", "Italy", "UK"
sizes = [15, 20, 20, 45]

e 185



Raspberry Pi 5 Essentials

x, chrt = plt.subplots()
chrt.pie(sizes, labels=labels)
chrt.axis('equal')

plt.show()

Figure 10.13 Program listing

The Pie chart drawn by the program is shown in Figure 10.14.

’ Germany

Italy

fée€> Q=B

Figure 10.14 Pie chart drawn by the program

We can explode parts of the Pie chart by specifying the parts to be exploded. For example,
to explode the fourth item in our example, we can issue the statement:

Explode = (0, 0, 0, 0.1) # specify amount to be exploded

The amount of explosion is determined by the value we specify. Also, the percentages of
each part can be written inside the Pie chart elements by using the statement:

autopct="9%1.1f%%" # Specify 1 digit after the decimal point

Parts of the Pie chart can be shadowed if desired to give it a 3D effect. This can be done
using the statement:

shadow=True

The program shown in Figure 10.15 (program: graph7.py) makes use of the above fea-
tures, and the resulting Pie chart is shown in Figure 10.16.

e 186



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

H o H O H oH o H o H o H H H

5§

5§

1
s
e

X
(
a
(

P

This program draws a pie chart for the data:
France=15%, Germany=20%,Italy=20%,UK=45%

Part UK is exploded in this graph.Also, the
percentage of each part is written inside the
corresponding parts and pats are shadowed

Author: Dogan Ibrahim

File : graph7.py

Date : October, 2023
mport matplotlib.pyplot as plt
mport numpy as np

abels = "France", "Germany", "Italy", "UK"
izes = [15, 20, 20, 45]
xplode = (0, 0, 0, 0.1)

, chrt = plt.subplots()

hrt.pie(sizes, labels=labels, explode=explode,\
utopct="'%1.1f%%"',shadow=True)

hrt.axis('equal')

1t.show()

Figure 10.15 Program listing

’ Germany

Italy

f e PQE

Figure 10.16 Pie chart drawn by the program

e 187



Raspberry Pi 5 Essentials

Example 7
Write a program to draw a bar chart for the following data:

France = 10, Italy = 8, Germany = 6, UK = 2

Solution 7
Figure 10.17 shows the program listing (program: graph8.py). After specifying the values
for each bar, the bar chart is drawn.

#

#

#

# This program draws a bar chart for the data:
# France=10, Italy=8,Germany=6,UK=2
#
#
#
#

Author: Dogan Ibrahim
File : graph8.py
Date : October, 2023

import matplotlib.pyplot as plt
import numpy as np

labels = ("France", "Germany", "Italy", "UK")
pos = np.arange(len(labels))
values = [10, 8, 6, 2]

plt.bar(pos, values, align='center',alpha=0.5)
plt.xticks(pos, labels)

plt.ylabel('MB/s"')

plt.title('Internet Speed')

plt.show()

Figure 10.17 Program listing

Figure 10.18 shows the graph drawn by the program.

e 188



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

Internet Speed

10 4

MB/s

France Germany Italy UK

ft e pQ=

Figure 10.18 Graph drawn by the program
You can plot a horizontal bar chart by replacing the statement plt.bar with plt.barh.

10.3 Project 1 — RC transient circuit analysis - Charging
Description: This project is about analysing a charging RC transient circuit by plotting its
time response.

Background Information: RC circuits are used in many radio and communications cir-
cuits. A typical RC transient circuit consists of a resistor in series with a capacitor, as shown
in Figure 10.19. When the switch is closed, the voltage across the capacitor rises exponen-
tially with a time constant, T = RC.

R

Vin |
c Vc
1,

Figure 10.19 Charging RC circuit

Expressed mathematically, assuming that initially the capacitor is discharged, when the
switch is closed the voltage across the capacitor rises a given by the following formula:

Ve = Vin(1 — e t/RC) (10.1)

Initially, the voltage across the capacitor is 0 V, and in steady state the voltage across the
capacitor becomes equal to Vin. The time constant is the time when the output voltage

rises to around 63.2% of its final value.

Program Listing: Figure 10.20 shows the program listing (program: RCrise.py). After dis-
playing the heading, the values of the input voltage Vin, and resistor and capacitor values

e 189



Raspberry Pi 5 Essentials

are read from the keyboard. The program then calculates the time constant as T=RC and
displays the time constant and also draws the time response of the circuit. The graph is
drawn as the time value (x-axis) changes from 0 to 6T, and 50 points are taken to draw the
graph. The time constant is also written on the graph at the point (Time constant, Vin/2).
The horizontal axis is in seconds, while the vertical axis is in volts.

This program reads the R and C values and then
calculates and displays the time conctant. Also,
the time response of teh circuit is drawn

Author: Dogan Ibrahim
File : RCrise.py
Date : October, 2023

HOoH K W K H H H H

import matplotlib.pyplot as plt
import numpy as np
import math

print("RC Transient Response")

# Read Vin, R and C

#

Vin = float(input("Enter Vin in Volts: "))

R = float(input("Enter R in Ohms: "))

C = float(input("Enter C in microfarads: "))
C =C / 1000000.0

Calculate and display time constant

= 6.0 xT
F / 50.0
rint("Time constant = %f seconds" %(T))

#
#
#
T=Rx*xC
F
N
P

Now plot the time response

np.arange(0, F, N)
[(Vin * (1.0 - math.exp(-i/T))) for i in x]

<X H H OH®

e 190



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

plt.plot(x, y)
plt.xlabel("Time (s)")
plt.ylabel("Capacitor Volts")
plt.title("RC Response')
plt.grid(True)

TC = "T="+str(T)+"s"
plt.text(T, Vin/2, TC)
plt.show()

Figure 10.20 Program listing

Figure 10.21 shows an example graph displayed by the program. In this program, the fol-
lowing input values were used (see Figure 10.22):

Vin =10V
R=100Q
C =10 pF

The time constant was calculated to be 0.1 seconds.

RC Response

T=0.001s

Capacitor Volts

0000 0001 0002 0003 0004 0005 0006
Time (s)

AE> Q=B

Figure 10.21 The graph plotted by the program

Figure 10.22 Input values to the example program
10.4 Project 2 — RC transient circuit analysis - Discharging

Description: This case study is about analysing a discharging RC transient circuit by plot-
ting its time response.

e 1901



Raspberry Pi 5 Essentials

Background Information: In this case study an RC circuit is used as in Figure 10.23. We
assume that the capacitor is fully charged after switch s1 is closed. We then close switch s2
so that the capacitor discharges through resistor R. The time response of the voltage across
the capacitor is then given by:

Ve =Voe t/RC (10.2)

Where Vo is the initial voltage across the capacitor (normally same as Vin) before s2 is
closed. Again, T=RC is known as the time constant of the circuit.

s R

C}—-*—E:::]——:I:—————<3
Vin /s2 _l_c Ve
o

Figure 10.23 Discharging RC circuit

Program Listing: Figure 10.24 shows the program listing (program: RCfall.py). After dis-
playing the heading, the values of the initial voltage across the capacitor (Vo), the resistor
and the capacitor are read from the keyboard. The program then calculates the time con-
stant as T=RC and displays the time constant and draws the time response of the circuit.
The graph is drawn as the time value (x-axis) changes from 0 to 6T and 50 points are taken
to draw the graph. The time constant is also written on the graph at the point (Time con-
stant, Vo/2). The horizontal axis is in seconds, while the vertical axis is in volts.

T
# RC TRANSIENT RESPONSE

# === ================

#

# This program reads the R and C values and then

# calculates and displays the time constant. Also,
# the time response of the circuit is drawn as the
# capacitor is discharged

#

# Author: Dogan Ibrahim

# File : RCfall.py

# Date : October, 2023

import matplotlib.pyplot as plt
import numpy as np
import math

print("RC Transient Response")

e 192



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

#

# Read Vo, R and C

#

Vo = float(input("Enter Initial Capacitor Voltage in Volts: "))
R = float(input("Enter R in Ohms: "))

float(input("Enter C in microfarads: "))

C / 1000000.0

O O
]

Calculate and display time constant

R x C

=6.0 x T

= F / 50.0

print("Time constant = %f seconds" %(T))

Z m - #= H* #*
]

Now plot the time response

= np.arange(0, F, N)
[(Vo * (math.exp(-i/T))) for i in x]

< X H H oH

plt.plot(x, y)
plt.xlabel("Time (s)")
plt.ylabel("Capacitor Volts")
plt.title("RC Response')
plt.grid(True)

TC = "T="+str(T)+"s"
plt.text(T, Vo/2, TC)
plt.show()

Figure 10.24 Program listing

Figure 10.25 shows an example graph displayed by the program. In this program, the fol-

lowing input values were used (see Figure 10.26):
Initial capacitor voltage = 10 V
R = 1000 Q
C =100 pF

The time constant was calculated to be 0.1 seconds.

e 193



Raspberry Pi 5 Essentials

RC Response

T=0.1s

Capacitor Volts

0.0 01 02 03 0.4 05 0.6
Time (s)

#er pQE
Figure 10.25 The graph plotted by the program

Figure 10.26 Input values to the example program

10.5 Transient RL circuits

The time response of a transient resistor-inductor circuit is similar to the RC circuit. When
the circuit is connected to a DC supply of value Vin, the current in the circuit rises exponen-
tially and is given by the following formula:

. Vin -
= (1-e) (10.3)

Where, Vin is in volts, R in ohms, L in henries, and t in seconds. The time constant of this
circuit is given by T = L/R.

After the current reaches its steady state value, disconnecting the DC supply and shorting
the leads causes the current in the circuit to fall exponentially, given by the following for-
mula:

Yo o=Rt/L
R (10.4)

i:

Where, Vo is the initial voltage across the inductor.

The transient response of RL circuits is similar to those of the RC circuits and therefore are
not covered further in this book.

10.6 Project 3 — RCL transient circuit analysis

Description: This case study is about analysing the transient response of a second order
series connected RLC circuit by plotting its time response.

e 194



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

Background Information: An RLC circuit (Figure 10.27) is a second-order system that
can have 3 modes of operation depending on the values of the components when a DC
voltage is applied across its terminals.

Vin C

1

Figure 10.27 RLC circuit

Underdamped mode: This mode is identified when the following condition holds true:

R<2 |-
< \ﬁ (10.5)

When DC voltage is applied to the circuit, the current in the circuit is given by the following
formula:

it) = %e‘thsin(Wtwll - &2) (10.6)

Where,

ZNL (10.7)

Critically damped mode: In this mode of operation, the following is satisfied:

R=2|%
\ﬁ (10.8)

When DC voltage is applied to the circuit, the current in the circuit is given by the following
formula:

i(8) = Th eV

(10.9)
Where,
W = and 52%\[5 -1 (10.10)
Overdamped mode: In this mode of operation, the following is satisfied:
R > Z\F
¢ (10.11)

e 195



Raspberry Pi 5 Essentials

When DC voltage is applied to the circuit, the current in the circuit is given by the following
formula:

i(t) = M/Lj%e—wsinh(wm/{z —1) (10.12)

Where,

1 R |C
W=—and,€=—\/: >1
NG 2y (10.13)

Program Listing: Figure 10.28 shows the program listing (program: RLC.py). At the
beginning of the program a heading is displayed and then the values of the input voltage,
resistor, capacitor and the inductor are read and stored in variables Vin, R, C, and L re-
spectively. The program then finds out in which mode the circuit will be operating based
on the value of €. Then, three functions are used, one for each mode, to calculate and plot
the transient response of the circuit. The mode of the circuit is displayed on the graph at
the coordinate (3T, 0), where T = 2n/W. In all the graphs, 80 points are used to draw the
points from 0 to 6T.

This program reads the R,L,C values and then
calculates and displays the transient response

Author: Dogan Ibrahim
File : RLC.py
Date : October, 2023

HOH K H H H H K

import matplotlib.pyplot as plt
import numpy as np

import math

global x, y, z

def critically_damped():
global x,y
X = np.arange(0, F, N)
y = [Vinx((1/L) * i * math.exp(-i*w)) for i in x]

def underdamped():
global x,y,z
X = np.arange(0, F, N)
zeta = math.sqrt(l - zxz)
y = [Vinx(1/(wxLxzeta)*(math.exp(-z*wx*i))*math.sin(wxixzeta)) for i in x]

e 196



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

def overdamped():

global x,y,z

X = np.arange(0, F, N)

y = [Vinx(1/(wxLx(math.sqrt(z*z-1))))*(math.exp(—zxw*i))*\
math.sinh(wxi*math.sqrt(zxz-1)) for i in x]

print("RLC Transient Response")

# Read Vin, R,C and L
#
Vin = float(input("Enter Vin in Volts: "))

R = float(input("Enter R in Ohms: "))

C = float(input("Enter C in microfarads: "))
C =C / 1000000.0

L = float(input("Enter L in millihenries: "))
L =1L/ 1000.0

w = math.sqrt(1/(L *x C))

z = (R/2) * math.sqrt(C / L)

T = (2.0 * math.pi) / w

F=6xT

N=F / 80.0

#

# Find the mode of operation

#

mode = R - 2.0 x math.sqrt(L / C)
if abs(mode) < 0.01:
case = 2
md = "Critically Damped"
critically_damped()
elif mode < 0:
case = 1
md = "Underdamped"
underdamped ()
elif mode > 0:
case = 3
md = "Overdamped"

overdamped ()

# Now plot the time response

e 197



Raspberry Pi 5 Essentials

plt.plot(x, y)
plt.xlabel("Time (s)")
plt.ylabel("Current'")
plt.title("RLC Response")
plt.grid(True)
plt.text(3*T,0, md)
plt.show()

Figure 10.28 Program listing

Figure 10.29 shows a typical run of the program with the following values:

Vin =10V
R=10Q
C =100 pF
L = 200 pH
4 RLC Response
0.20 {77
0.15
0.10 4
o 005
s
© 0.00 ndexdam

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Time (s)

# €Y FQAEB

Figure 10.29 Response of the circuit
10.7 Project 4 - Temperature, pressure and humidity measurement -
Display on the screen
Description: In this project the BME280 sensor module is used to read the ambient tem-

perature, pressure and humidity and to display the readings on the screen.

Block diagram: Figure 10.30 shows the block diagram of the project.

e 198



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

BME280 sensor

Raspberry Pi 5

Figure 10.30 Block diagram of the project

The BME280 sensor module

The BME280 module (Figure 10.31) is a low-cost sensor developed for measuring the am-
bient temperature, atmospheric pressure, and the humidity. This module operates with the
12C (or SPI) bus interface and has the pins SDA, SCL, Vin, and GND. The basic specifica-
tions of this module are:

e Operating voltage: 1.2 to 3.6 V
Interface 12C or SPI

e Current consumption: 1.8 pA

e Humidity sensor response time: 1s

e Humidity sensor accuracy: £3%

e Pressure sensor range: 300 to 1100 hPa
e Temperature range: -40 to +85°C

Figure 10.31 The BME280 sensor module
Circuit diagram: The project circuit diagram is shown in Figure 10.32. The module is

connected to Raspberry Pi SDA (pin 3) and SCL (pin 5) pins. +3.3 V power is applied from
pin 1.

e 199



Raspberry Pi 5 Essentials

1
+3.3V
Vin 3
SDA SDA
BME280 SCL 5 SCL
GND
J_ Raspberry Pi
= 5
GND

39J:

Figure 10.32 Circuit diagram of the project

The default address of the BME280 is 0x76. This can be confirmed by entering the following
command after the circuit is built (Figure 10.33):

i2cdetect -y 1

i2cdetect -y 1
5 6 7 8 9 a b c d e f£

Figure 10.33 Checking the I2C bus for the sensor module

Program listing: Figure 10.34 shows the program listing (bme280.py). Before running
the program, it is necessary to load the BME280 library. The steps are:

e git clone https://github.com/MarcoAndreaBuchmann/bme280pi.git
e cd bme280pi
e python setup.py install

The sensor library can be imported to your Python programs as follows:

from bme280pi import Sensor
sensor = Sensor()

At the beginning of the program, the BME280 sensor library is imported s above, Inside

the main program loop the temperature, atmospheric pressure, and humidity are read and
displayed on the screen every 5 seconds.

e 200



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

H e
# TEMPERATURE ,ATMOSPHERIC PRESSURE AND HUMIDITY

# e e e e e e e e e e e e e e e e e e e e e e e e = ]

#

# This program reads the ambient temperature, atmospheric

# pressure, and humidity using a BME280 sensor module. The

# readings are dislayed on the screen every 5 seconds

#

# Program: bme280.py

# Date : October, 2023

# Author : Dogan Ibrahim

B

from time import sleep
from bme280pi import Sensor

sensor = Sensor(address = 0x76)

while True: # infinite loop
data = sensor.get_data() # get sensor data
temperature = data['temperature'] # temperature
pressure = data['pressure'] # pressure
humidity = data['humidity'] # humidity

print("Temperature = %5.2f C" %temperature)
print("Pressure = %d hPa" %pressure)
print("Humidity = %d" %humidity)

print("")

sleep(5)

Figure 10.34 Program listing

Figure 10.35 shows an example output from the program.

:~ $ python bme280.py
Temperature = 26.16 C
Pressure = 1004 hPa
Humidity = 60

Temperature = 26.13 C
Pressure = 1004 hPa
Humidity = 60

Temperature = 27.68 C
Pressure = 1004 hPa
Humidity = 62

Temperature = 30.13 C
Pressure = 1004 hPa
Humidity = 61

Figure 10.35 Output from the program

e 201



Raspberry Pi 5 Essentials

10.8 Project 5 - Temperature, pressure and humidity measurement -
Plotting the data

Description: This project is very similar to the previous one, but here the data is plotted
on the Desktop.

The block diagram and circuit diagram of the project are the same as in Figure 10.30 and
Figure 10.32.

Program listing: Figure 10.36 shows the program listing (bme280plot.py). The sen-
sor data is collected for 60 seconds where the temperature, pressure and humidity are
stored in t[]1, p[], and h[]. The seconds are stored in tim[]. When the program runs,
the message Collecting data... is displayed. The collected data is plotted as shown in
Figure 10.37. Note that you can adjust the position of the graphs on the screen using the
horizontal arrow tool at the bottom of the screen.

B
# PLOT TEMPERATURE,ATMOSPHERIC PRESSURE AND HUMIDITY

# e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

#

# This program reads the ambient temperature, atmospheric

# pressure, and humidity using a BME280 sensor module. The

# readings are plotted on the Desktop

#

# Program: bme280plot.py

# Date : October, 2023

# Author : Dogan Ibrahim

B

from time import sleep
from bme280pi import Sensor
import matplotlib.pyplot as plt

sensor = Sensor(address = 0x76)

p = [0]*60

t=[0]*60

h=[0]*60

data = [0]*60

tim=[0] *60
print("Collecting data...")

for i in range(60):
data=sensor.get_data()
tim[i]=1
p[i] =int(data['pressure'])
t[i] = int(datal['temperature'])
h[i] = int(data['humidity'])

e 202



Chapter 10 e Plotting Graphs with Python and Raspberry Pi 5

plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.

sleep(0.1)

figure()

subplot(2, 2, 1)
plot(tim,t)
title("Temperature (C)")
grid()

subplot(2, 2, 2)
plot(tim,p)
title("Pressure (hPa)")
grid()

subplot(2, 2, 3)

plot(tim,h)

title("Relative Humidity (%)")
grid()

show ()

Figure 10.36 Program listing

f Temperature (C) Pressure (hPa)
3.0 1050
30.5 4 !_\ [7 1025 4
0,0 1000 4
29.5 J 975 4
29.0 J 950

0 20 4 60 o0 20 o 60
Relative Humidity (%)

53 4

52 4

0 20 40 60

A€ Q=B

Figure 10.37 Example output from the program

e 203



Raspberry Pi 5 Essentials

Chapter 11 ¢ Waveform Generation - Using the
Digital-to-Analog Converter (DAC)

11.1 Overview

Waveform generators are important in many electronic communication applications. In this
chapter, you will be developing projects to generate various waveforms such as square,
sine, triangular, staircase, etc. by using an external DAC chip and programming the Rasp-
berry Pi 5. In this book, you will be using the popular MCP4921 DAC chip from Microchip.

11.2 The MCP4921 DAC

Before using the MCP4921, it is worthwhile to look at its features and operation in some
detail. MCP4921 is a 12-bit DAC that operates with the SPI bus interface. Figure 11.1 shows
the pin layout of this chip. The basic features are:

e 12-bit operation

e 20 MHz clock support

e 4.5 ps settling time

e External voltage reference input

e 1x or 2x gain

e 2.7 to 5.5 V supply voltage

e -400C to +125°C temperature range

Vop [1]
cs[2]
sck [3]
SDI [4]

Figure 11.1 MCP4921 DAC

8] Vour
[7]Vss
6] VRer

5] [DAC

[ ]
MCP49x1 (|

The pin descriptions are:

vdd: supply voltage

CS: chip select (active LOW)

SCK: SPI clock

SDI: SPI data in

LDAC: Used to transfer input register data to the output (active LOW)
Vref: Reference input voltage

Vout: analog output

Vss: supply ground

In projects in this book, you will be operating the MCP4921 with a gain of one. As a result,
with a reference voltage of 3.3 V and 12-bit conversion data, the LSB resolution of the DAC
will be 3300/4096 = 0.8 mV

e 204



Chapter 11 e« Waveform Generation - Using the Digital-to-Analog Converter (DAC)

The SPI Bus

As it was discussed in an earlier chapter, the Serial Peripheral Interface (SPI) bus consists
of two data wires and one clock wire. Additionally, a chip enable (CE or CS) connection is
used to select a slave in a multi-slave system. The wires used are:

MOSI (or SDI): Master Out Slave In. This signal is output from the master and is input
to a slave

MISO: Master In Slave Out. This signal is output from a slave and input to a master
SCLK (or SCK): The clock, controlled by the master
CE (r CS): Chip Enable (slave select)

The following pins are the SPI bus pins on Raspberry Pi 4:

GPIO pin SPI Physical pin no
GPIO 10 MOSI (SPIO) 19
GPIO 9 MISO (SPIO) 21
GPIO 11 SCLK (SPIO) 23
GPIO 8 CEO (SPIO) 24
GPIO 7 CE1 (SPIO) 26
GPIO 20 MOSI (SPI1) 38
GPIO 19 MISO (SPI1) 35
GPIO 21 SCLK (SPI1) 40
GPIO 18 CEO (SPI1) 12
GPIO 17 CE1 (SPI1) 11

The SPI bus must be enabled using the raspi-config console command on the Raspberry
Pi before it can be used.

11.3 Project 1 - Generating a square wave signal with any peak
voltage up to +3.3V

Description: In this project you will be using the DAC to generate a square wave signal

with the frequency of 1 kHz where the required output voltage is 2 V peak.

Block Diagram: Figure 11.2 shows the block diagram of the project. The output

e 205



Raspberry Pi 5 Essentials

MCP4921

PSCGU250

Raspberry Pi 5

Figure 11.2 Block diagram of the project

Circuit Diagram: The circuit diagram of the project is shown in Figure 11.3. The output of
the DAC is connected to a PSCGU250 type digital oscilloscope.

[
3.3V

1
Vdd  Vref

Raspberry Pi »—I
6

23 3 8 To Oscilloscope
GPIO11 SCK Vout >

apPio10 M4 spy

37 2

GP1026

CS
MCP4921
Vss LDAC

Gjl_D 7 5

Figure 11.3 Circuit diagram of the project

Program Listing: Data is written to the DAC in 2 bytes. The lower byte specifies D0:D8 of
the digital input data. The upper byte consists of the following bits:

D8: D11bits D8:D11 of the digital input data

SHDN 1: active (output available), 0: shutdown the device

GA output gain control. 0: gain is 2x, 1: gain is 1x

BUF 0: input unbuffered, 1: input buffered

A/B 0: write to DACa, 1: Write to DACb (MCP4921 supports only DACa)

In normal operation, we will send the upper byte (D8:D11) of the 12-bit (D0:D11) input
data with bits D12 and D13 set to 1 so that the device is active, and the gain is set to 1x.
Then we will send the low byte (D0:D7) of the data. This means that 0x30 should be added
to the upper byte before sending it to the DAC.

e 206



Chapter 11 e« Waveform Generation - Using the Digital-to-Analog Converter (DAC)

Figure 11.4 shows the program listing (program: squaredac.py). GPIO 26 is used as the
CS pin. The frequency variable is set to 1000, which is the required frequency. Function
DAC sends the 12-bit input data to the DAC. This function has two parts. In the first part,
the HIGH byte is sent after adding 0x30 as described above. Function xfer2 is used to send
the data to the DAC. In the second part of the function, the LOW byte is extracted and is
sent to the DAC. Notice that we could have sent both the high byte and the low byte using
the same xfer2 function, as follows:

highbyte = (data >> 8) & Ox0F
highbyte = highbyte + 0x30

lowbyte = data & OxFF
xfer2([highbyte, lowbyte])

Variable ONvalue is set to 2000 x 4095/3300, which is the digital value corresponding to
2000 mV (i.e. 2V, remember that the 12-bit DAC has 4095 steps, and the reference voltage
is set to 3300 mV). The OFFvalue is set to 0 V. Normally, the delay between the ON and
OFF times should have been equal to halfperiod. However, it was found by experiment
that the DAC routine takes about 0.2 ms (0.0002 second) and this changes the period and
consequently the frequency of the output waveform. Because of this, 2 mV is subtracted
from halfperiod as shown in Figure 13.9

B o
# GENERATE SQUARE WAVEFORM

# —=======================

#

# This program generates square waveform with the frequency 1kHz.

# In this program the MC4921 DAC chip is used to set the output

# peak voltage to 2V

#

# Author: Dogan Ibrahim

# File : squaredac.py

# Date : October, 2023

B e

from gpiozero import LED
from time import sleep
import spidev # Import SPI

spi = spidev.SpiDev ()
spi.open(0, 0) # Bus=0, device=0
spi.max_speed_hz = 3900000

CS = LED(26) # GPIO26 is CS output
CS.on() # DIsable CS
frequency = 1000 # Required Frequency

e 207



Raspberry Pi 5 Essentials

period = 1 / frequency
halfperiod = period / 2

#

#
#

Period of the signal
Half period

# This function implements the DAC. The data in "data" is sent

# to the DAC

#
def DAC(data):
CS.off() # Enable CS
#
# Send HIGH byte
#
temp = (data >> 8) & OxOF # Get upper byte
temp = temp + 0x30 # OR with 0x30
spi.xfer2([temp]) # Send to DAC
#
# Send LOW byte
#
temp = data & OxFF # Get lower byte
spi.xfer2([temp]) # Send to DAC
CS.on() # Disable CS
try:
ONvalue = int(2000%4095/3300) # 2V output
OFFvalue = 0
while True:
DAC(ONvalue) # Send to DAC
sleep(halfperiod - 0.0002) # Wait
DAC(OFFvalue) # Send to DAC
sleep(halfperiod - 0.0002) # Wait

except KeyboardInterrupt:

pass

Figure 11.4 Program listing

Figure 11.5 shows the output waveform generated by the program. Notice that the peak
output voltage is 2 V, as expected.

e 208



Chapter 11 e« Waveform Generation - Using the Digital-to-Analog Converter (DAC)

'@ PcsGu2s0

File Edit Options View Math Help Function Generator:  Options  Tools

Gscloscope I [l ¢ ] (Conooio | [ Tme-

v ms

U HHH T

el

e ElEEEEEER
BE3GEA

Ll

Lr Y * | History
Vols/Div. Chl Ch2 Trigger

([ Con ) (CAuest ] [ Pest J [ 0n ) [CAwesat ] o[ |: owort [[0n | (Lo ] [2i<]
== T=1——1—= TR | 1} =

Figure 11.5 Output waveform

11.4 Project 2 - Generating a sawtooth wave signal
Description: In this project, you will be using the DAC to generate a sawtooth wave signal
with the following specifications:

Peak voltage: 3.3V
Step width: 1 ms
Number of steps: 6

The block diagram and circuit diagram of the project are as in Figure 11.2 and Figure 11.3

Program Listing: Figure 11.6 shows the program listing (program: sawtooth.py). The
program is very similar to the one given in Figure 11.4.

This program generates sawtooth waveform with 6 steps where each
step has a width of 1ms

Author: Dogan Ibrahim
File : sawtooth.py
Date : October, 2023

H O H O o H H H H

from gpiozero import LED
from time import sleep # Import time
import spidev # Import SPI

spi = spidev.SpiDev ()

spi.open(0, 0) # Bus=0, device=0
spi.max_speed_hz = 3900000

e 209



Raspberry Pi 5 Essentials

CS = LED(26) # GPIO26 1is CS output
CS.on() # Disable CS
#

# This function implements the DAC. The data in "data" is sent
# to the DAC

#
def DAC(data):
CS.off() # Enable CS
#
# Send HIGH byte
#
temp = (data >> 8) & OxOF # Get upper byte
temp = temp + 0x30 # OR with 0x30
spi.xfer2([temp]) # Send to DAC
#
# Send LOW byte
#
temp = data & OxFF # Get lower byte
spi.xfer2([temp]) # Send to DAC
CS.on() # Disable CS
try:
while True: # Do forever
i=0
while i < 1.1:
DACValue = int(i*4095) # Value to send
DAC(DACValue) # Send to DAC
sleep(0.0007) # Wait

i=1+ 0.2

except KeyboardInterrupt:

pass
Figure 11.6 Program listing

An example output waveform taken from the oscilloscope is shown in Figure 11.7. Notice
that the time delay had to be adjusted experimentally to give the correct timing.

e 210



Chapter 11 e« Waveform Generation - Using the Digital-to-Analog Converter (DAC)

' PCsGu250
File Edit Options View Math Help
Osciloscope

tion Generator.

Options Tools

( Osciloscope |[___SpectumAnabzer | [ Tiansient Recorder ||

Circuit Analyzer | (10110010

v

2ms

* | Histoy

Lr Y
Voks/Div. Chi
) [ Auoset ] [_Pesit ] [

On On___ | [_Autoset |

Time/Div.

i

(e ]
i

Sms_
(ims J(05ms]

(WFJ 1 e E
BEEEGGEGEE

owor (5] () (5]

1

4f !
;[w Bigsceen | [ |[Cv_|[oav

o1 | (oo

Figure 11.7 Example output waveform

11.5 Project 3 - Generating a triangle wave signal
Description: In this project, we will be using the DAC to generate a triangle wave signal.

The block diagram and circuit diagram of the project are as in Figure 11.2 and Figure 11.3

Program Listing: Figure 11.8 shows the program listing (program: triangle.py). The
program is very similar to the one given in Figure 11.6.

oo
# GENERATE TRIANGLE WAVEFORM

# =======z===z=====z===z=====z===

#

# This program generates triangle waveform

#

# Author: Dogan Ibrahim

# File : triangle.py

# Date : October, 2023

from gpiozero import LED
from time import sleep
import spidev

spi = spidev.SpiDev ()

spi.open(0, 0)

spi.max_speed_hz 3900000

CS = LED(26)
CS.on()
sample

0
0.05

Inc

# Import time

# Import SPI

# Bus=0, device=0

# Disable CS

e 211



Raspberry Pi 5 Essentials

# This function implements the DAC. The data in "data" is sent
# to the DAC

#

def DAC(data):
CS.off() # Enable CS

#

# Send HIGH byte

#
temp = (data >> 8) & OxOF # Get upper byte
temp = temp + 0x30 # OR with 0x30
spi.xfer2([temp]) # Send to DAC

#

# Send LOW byte

#
temp = data & OxFF # Get lower byte
spi.xfer2([temp]) # Send to DAC
CS.on() # Disable CS

try:

while True:

DACValue = int(samplex4095) # Value to send
DAC(DACValue) # Send to DAC
sleep(0.0001) # Wait

#

sample = sample + Inc Next sample

if sample > 1.0 or sample < 0:
Inc = -Inc
sample = sample + Inc

except KeyboardInterrupt:

pass
Figure 11.8 Program listing

An example output waveform taken from the oscilloscope is shown in Figure 11.9.

e 212



Chapter 11 e« Waveform Generation - Using the Digital-to-Analog Converter (DAC)

' PCSGU250
File Edit Options View Math Help Function Generator:  Options  Tools

T [ - ) G| ™=

@CJ

rm 2ms

VolxIDw Chi ' Ch2 Triager
On ) [ Adoset | [ Pesis ] [_On H Avoset_| - s owor [0n ) (Lo ] [21<]
’r Bmm LIES- -[:]W M ’V :’( R (o)

Figure 11.9 Example output waveform

11.6 Project 4 - Generating an arbitrary wave signal

Description: In this project, you will be using the DAC to generate an arbitrary waveform.
One period of the shape of the waveform will be sketched and values of the waveform at
different points will be extracted and loaded into a lookup table. The program will output
the data points at the appropriate times to generate the required waveform.

The shape of one period of the waveform to be generated is shown in Figure 11.10. Notice
that the waveform has a period of 20 ms.

? Vs
| |
| |
| |
| |
| |
| |
| |

I
|
|
|
|
I I
| |
| | :
: | 1\ o oms

|

|

1
617181920

[
[
[
[
[
[
[
[
[
T
011

012345678 9101112131415

Figure 11.10 Waveform to be generated
The waveform takes the following values:

Time (ms) Amplitude (V) Time (ms) Amplitude (V)

0 0 11 3.00
1 0.375 12 3.00
2 0.75 13 2.625
3 1.125 14 2.25
4 1.50 15 1.875
5 1.875 16 1.50
6 2.25 17 1.125
7 2.625 18 0.75
8 3.00 19 0.375
9 3.00 20 0

10 3.00

e 213



Raspberry Pi 5 Essentials

The block diagram and circuit diagram of the project are as in Figure 11.2 and Figure 11.3

Program Listing: Figure 11.11 shows the program listing (program: arbit.py). The sam-
ple points of the waveform are stored in a list called wave. Variable sample indexes this
list and sends the sample values to the DAC. The time of each sample was specified to be
1 ms. It was found by experiment that a 0.8 ms delay gave the correct results because of

the delay in the DAC routine.

are defined in the program

Author: Dogan Ibrahim
File : arbit.py
Date : October, 2023

HOH K H H H H K

from gpiozero import LED
from time import sleep
import spidev

spi = spidev.SpiDev ()
spi.open(0, 0)
spi.max_speed_hz=3900000

CS = LED(26)
CS.on()
sample = 0

#
# Waveform sample points
#

This program generates an arbitrary waveform whose sample points

Import time
Import SPI

Bus=0, device=0

GPIO26 is CS output
Disable CS

wave = [0,0.375,0.75,1.125,1.5,1.875,2.25,2.625,3,3,3,3,3,\

2.625,2.25,1.875,1.5,1.125,0.75,0.375,0]

#

# This function implements the DAC. The data in "data" is sent

# to the DAC

#

def DAC(data):
CS.off()

#

# Send HIGH byte

#

e 214

# Enable CS



Chapter 11 e« Waveform Generation - Using the Digital-to-Analog Converter (DAC)

temp = (data >> 8) & OxOF

temp + Ox30

temp
spi.xfer2([temp])

temp = data & OxFF
spi.xfer2([temp])

# Get upper byte
# OR with 0x30
# Send to DAC

CS.on() #
try:

while True:
DACValue = int(wave[sample]*4095/3.3) #
DAC(DACValue) #
sample = sample + 1 #
sleep(0.0008) #
if sample == 20: #

sample 0

except KeyboardInterrupt:
pass

Disable CS

Value to send
Send to DAC

Inc sample index
Wait

If 20 sampes

Figure 11.11 Program listing

An example output waveform taken from the oscilloscope is shown in Figure 11.12.

'@ PcsGu2s0
File Edt Options View Math Help Function Generator:  Options  Tools
Oscloscope
( Oscloscope | |__ SpectumAnabeer | [ TransentRecodsr | CucutAnabesr | (10170010 | | ™™
200m|
v Sms %\
(20ms  (10ms

[l

(10w | 5s |
(20 J s |
(050 (02
(ot ]

el e
g

un

Ll

Lr
Volts/Div. Cht

On_ ][ Auoset | [ Pemsit | [

On_ | [Autoset ]

L

|

~ | History

[ Cono 1

i

Figure 11.12 Example output waveform

11.7 Project 5 - Generating a sine wave signal

Description: In this project, we will be using the DAC to generate a low frequency sine
wave using the built-in trigonometric sin function. The generated sine wave will have an
amplitude of 1.5V, a frequency of 100 Hz (period = 10 ms), and an offset of 1.5 V.

e 215



Raspberry Pi 5 Essentials

The block diagram and circuit diagram of the project are as in Figure 11.2 and Figure 11.3

Program Listing: The frequency of the sine wave to be generated is 100 Hz. This wave
has a period of 10 ms, or 10,000 pus. If we assume that the sine wave will consist of
100 samples, then each sample should be output at 10,000/100 = 100 ps intervals. The
sample values will be calculated using the trigonometric sin function of Python.

The sin function will have the format:

sin (ZTI'CTOuTlt)

where T is the period of the waveform and is equal to 100 samples. Thus, the sine wave is
divided into 100 samples and each sample is output at 100 ps. The above formula can be
rewritten as:

sin (0.0628 ¢ count)

It is required that the amplitude of the waveform should be 1.5 V. With a reference voltage
of +3.3 V and a 12-bit DAC converter (0 to 4095 quantization levels), 1.5 V is equal to 1.5
x 4095/3.3, which is equal to 1861.3 (i.e. the amplitude). Thus, we will multiply our sine
function with the amplitude at each sample to give:

1861.3 # sin (0.0628 ¢ count)

The D/A converter used in this project is unipolar and cannot output negative values.
Therefore, an offset is added to the sine wave to shift it so that it is always positive. The
offset should be larger than the absolute value of the maximum negative value of the sine
wave, which is 1861.3 when the sin function above is equal to 1.5. In this project, we are
adding a 1.5 V offset which corresponds to a decimal value of 1861.3 (i.e. the offset) at
the DAC output. Thus, for each sample, we will calculate and output the following value to
the DAC:

1861.3 + 1861.2 ¢ sin (0.0628 » count)
The sine waveform values for a period are obtained outside the program loop using the
following statement. The list sins contains all the 100 sine values of the waveform. The
reason for calculating these values outside the program loop is to minimize the time to

calculate the sin function:

for i in range(100):
sins[i] = int(offset + amplitude * sin(R*i)

where R is set to 0.0628

e 216



Chapter 11 e« Waveform Generation - Using the Digital-to-Analog Converter (DAC)

Figure 11.13 shows the program listing (program: sine.py). Most parts of the program are
similar to the other waveform generation programs. Inside the program loop, samples of
the sine wave are sent to the DAC at each sample time.

B e
# GENERATE SINE WAVEFORM

# —=====================

#

# This program generates sine waveform with a period of 10ms. Both

# the amplitude and the offset of the waveform are set to 1.5V

#

# Author: Dogan Ibrahim

# File : sine.py

# Date : October, 2023

B e
from gpiozero import LED

from time import sleep # Import time

import spidev # Import SPI

+*+

import math Import math

spi = spidev.SpiDev ()

spi.open(0, 0) # Bus=0, device=0
spi.max_speed_hz = 3900000

CS = LED(26)
CS.on() # Disable CS

sample = 0

T = 100

R = 0.0628
amplitude = 1861.3
offset = 1861.3
sins = [None]*101

#
# This function implements the DAC. The data in "data" is sent
# to the DAC

#

def DAC(data):
CS.off() # Enable CS

#

# Send HIGH byte

#
temp = (data >> 8) & OxOF # Get upper byte
temp = temp + 0x30 # OR with 0x30
spi.xfer2([temp]) # Send to DAC

e 217



Raspberry Pi 5 Essentials

#
# Send LOW byte
#

data & OxFF
spi.xfer2([temp])

temp

CS.on()

#

# Get lower byte
# Send to DAC

# Disable CS

# Generate the 100 sine wave samples and store in list sins

#
for i in range(100):

sins[i]
try:
while True:
DACValue sins[sample]
DAC (DACValue)
sleep(0.0001)
sample

sample + 1
if sample == 100:
0

sample

except KeyboardInterrupt:

pass

int(offset + amplitudexmath.sin(Rxi))

# Value to send
# Send to DAC
# Wait

# Next sample
# 100 samples?

Figure 11.13 Program listing

An example output waveform taken from the oscilloscope is shown in Figure 11.14. Notice
that the frequency of the waveform is not very accurate because the delay function of Py-

thon is not accurate.

| Dionoono ] [ ™™™

i

10ms

(100050 |

Eli
e
ERED

5

-

1

* | Histoy

Lr Y
Vols/Div. Chi

) [ Autoset | [ Pessist | |

On | [ Autoset |

L=

7

o ) ear] (wsemn ] (o Jo)eor)

=l ~wul

e 218

Figure 11.14 Example output waveform



Chapter 12 e Using the Sense HAT

Chapter 12 e Using the Sense HAT

12.1 Overview

The Sense HAT is a small plug-in board developed by Raspberry Pi in collaboration with the
UK Space Agency and the European Space Agency (ESA). The board includes a number of
sensors and that's why it is called 'Sense'. The word 'HAT' stands for 'Hardware Attached on
Top' to indicate that the board is attached or plugged in on top of the Raspberry Pi. Sense
HAT gives the flexibility to carry out various environmental measurements using its built-in
sensors, and the board was specially developed for the Astro Pi Challenge and competition.
An emulator-based version of the Sense HAT is also available to enable students to carry
out experiments without having the physical board.

The Sense HAT board has the following features:

e 8 x 8 RGB LED matrix, having 15-bit colour resolution

Five-button joystick with left, right, up, down, and enter movements

e Gyroscope (angular rate sensor): £245/500/2000 dps

e Accelerometer (linear acceleration sensor): £2/4/8/16 G

e Magnetometer (magnetic sensor): £4/8/12/16 gauss

e Barometer: 260-1260 hPa

e Temperature sensor (with barometer): accuracy +£2°C in the 0-65°C range
Relative humidity sensor: accuracy £4.5% in the 20-80% range

e Temperature sensor (with humidity): accuracy £0.5°C in the 15-40°C range
e Graphics controller chip

12.2 The Sense HAT interface

The Sense HAT board (Figure 12.1) consists of 7 main components and an LED matrix. The
components on the board are controlled via the I2C bus interface. The following are the
main components on the board:

Component I2C bus address Function

HTS221 Ox5F humidity sensor

LPS254H 0x5C Pressure/temperature sensor
LSM9DS1 0x1C,0x6A Accelerometer+magnetometer
SKRHABEO010 - joystick

LED2472G 0x46 LED matrix controller

LED matrix - -

ATTINY88 - Microchip microcontroller

The Sense HAT board is normally plugged into the 40-way connector of the Raspberry Pi. To
interface external components to the Raspberry Pi in addition to the Sense HAT board, you
need to connect the Sense HAT to the Raspberry Pi using either a ribbon cable or jumper
wires so that other pins of the Raspberry Pi can be accessed. Additionally, if you are using
an active cooler on your Raspberry Pi 5 then it is not possible to connect the Sense HAT
to your board unless you use a ribbon cable or 2x20 pin header extension. Therefore, it is
useful to know which pins of the Sense HAT board are used by Raspberry Pi 5, and which

e 219



Raspberry Pi 5 Essentials

pins are free so that you can make connections to the Sense HAT using jumper wires.

WMDY

L)
aseeEsees 1: !

esEEsEEs:
ACCEL/GTRONAG
IIEDOEE®

CIDEREEEE H'

= ’
1.0 @
tey Pi 2015

Figure 12.1 The Sense HAT board

In addition to the I2C control lines, the ATTINY88 microcontroller on the board can be
programmed via the SPI bus control lines (MOSI, MISO, SCK, CEQ) provided on the board.

The following pins are used by the Sense HAT 40-way connector:

Pin number Raspberry Pi 5 port Function

3 GPIO2 SDA (I2C)
5 GPIO3 SCL (12C)
1 +3.3V power
19 GPIO10 MOSI (SPI)
21 GPIO9 MISO (SPI)
23 GPIO11 SCK (SPI)
24 GPIO8 CEO (SPI
9 GND power ground
2 +5V power
16 GPI1O23 INT
18 GP1024 INT
22 GPIO25 PROG
27 ID_SD EEPROM
28 ID_SC EEPROM

The Sense HAT board can be connected to your Raspberry Pi 5 using only the following 9
pins of the 40-way connector:

Sense HAT pin Raspberry Pi 5 Pin Function
3 3 (GP102) SDA (I2C)
5 5 (GPIO3) SCL (12C)
1 1(+3.3V) power
9 9 (GND) power ground

e 220



Chapter 12 e Using the Sense HAT

2 2(+5V) power
16 16 (GPI023) joystick
18 18 (GPI024) joystick
27 27 (ID_SD) EEPROM
28 28 (ID_SC) EEPROM

Note: You can also plug in the Sense HAT board directly on top of your Raspberry Pi 5
board instead of making the above connections provided the GPIO pins are available
(e.g. you are not using a Raspberry Pi active cooler)

12.3 Programming the Sense HAT

Sense HAT is installed by default on your latest Raspberry Pi 5 SD card. You may, however,
enter the following command to install the latest version of the Sense HAT (at the time of
writing this book, the latest version was: 1.4):

pi@raspberrypi:~ $ sudo apt-get install sense-hat

Before developing a project using the Sense HAT board, the Sense HAT library must be
imported into your Python program and also the sense object must be created at the be-
ginning of the program. i.e. the following two statements must be included at the beginning
of your programs:

from sense_hat import SenseHat
sense = SenseHat()

The remainder part of this chapter is devoted to developing simple projects with the Sense
HAT. In all the projects, the Sense HAT was connected to the Raspberry Pi 5 using jumper
wires as described earlier.

12.4 Project 1 — Displaying text on Sense HAT

Description: In this project, you will learn how to display as well as scroll text messages
on Sense HAT. The statement show_message is used to scroll a text message. In the
following code, the message Sense HAT is scrolled on the LED matrix. Notice that the
message is displayed only once:

>>> from sense_hat import SenseHat
>>> sense = SenseHat()
>>> sense.show_message("Sense HAT")

If you get an error message saying that the RPi-Sense FB device cannot be detected,
then do the following:

e pi@raspberrypi:~ $ sudo nano /boot/config.txt

e go to the end of the file and enter the following statement:
dtoverlay=rpi-sense

e 221



Raspberry Pi 5 Essentials

e Press CNTRL+X followed by Y to save the change
¢ Reboot your Raspberry Pi
e pi@raspberrypi:~ $ sudo reboot now

Notice that there are two versions of the Sense HAT board. Version 1.0 has no colour sen-
sor, while Version 2.0 has a colour sensor. You may get a warning message saying that it

failed to initialize the colour sensor if you are using Version 1.0.

You can also display a single letter using the statement: sense.show__letter, for example,
sense.show_letter("A"). Notice that the letter is displayed permanently.

In addition to displaying text in default mode, you can use the following options:

scroll_speed: This floating-point number changes the speed that the text scrolls. The
default value is 0.1. A higher number slows down the scroll speed.

text_colour: Used to change the text colour. The colour is specified as (Red, Green, Blue)
where each colour can take a value between 0 and 255, and we can mix the colours to

obtain any other colour. For example, (255, 0, 0) is red and so on.

back_colour: used to change the colour of the background. Colour is defined as in the
text_colour option.

In the following example, the same text as above is scrolled slowly, in red colour, with yel-
low background colour:

>>> from sense_hat import SenseHat
>>> sense = SenseHat()
>>> sense.show_message("Sense HAT", scroll_speed=0.3,

text_colour=[255,0,0], back_colour=[255,255,0])

Notice that in the above program, the text is displayed only once, but the background col-
our remains as yellow.

If, for example, you wish to repeat displaying the text, say every two seconds, then the re-
quired program is as shown in Figure 12.2 (program: txt.py). Notice how the continuation

line is used in Python. Run the program from the Console mode as:

pi@raspberrypi:~ $ python txt.py

HOH

This program displays the text Sense HAT every 2 seconds.

222



Chapter 12 e Using the Sense HAT

the text colour is RED and back ground colour is YELLOW

Author: Dogan Ibrahim
File : txt.py
Date : October, 2023

HOoH o H

from sense_hat import SenseHat
import time

sense = SenseHat()

while True:
sense.show_message ("Sense HAT'",scroll_speed=0.3,\
text_colour=[255,0,0],back_colour=[255,255,0])
time.sleep(2)

Figure 12.2 Program listing

The sense.clear() statement can be used to turn OFF all the LEDs. This may be necessary
to ensure that all the LEDs are turned OFF at the beginning of a program. Similarly, a colour
can be passed to the clear statement to set all the LEDs to the same colour, such as:

red = (255, 0, 0)
sense.clear(red)

The brightness of the LED matrix can be changed by toggling the low_light statement. In
the following examples, the brightness is toggled:

sense.low_light = True
or
sense.low_light = False

The displayed text (or image) can be rotated by using the statement set_rotation(n)
where n is the rotation angle in degrees, and it can take the values of 0, 90, 180, 270. The
following statement rotates character s by 90 degrees and displays it on the LED matrix:

sense.set_rotation(90)
sense.show_letter("s")

Text (or image) can be flipped horizontally or vertically by using the statements flip_h or
flip_v respectively. In the following example, the character X is flipped horizontally and is

then displayed:

sense.flip_h
sense.show_letter("X")

e 223



Raspberry Pi 5 Essentials

12.5 Project 2 — Test your math skills - multiplication

Description: This project is aimed for younger readers who may want to test their mul-
tiplication skills. The program displays two numbers which are required to be multiplied
together. The result of the multiplication is hidden for 10 seconds, and time is given to the
user to find the correct answer. After 10 seconds, the correct answer is displayed so that
the user can check it against his/her answer. Only numbers from 1 to 99 are considered
for simplicity.

Figure 12.3 shows the program listing (program: mult.py). Two integer random numbers
are generated between 1 and 99 and are stored in variables nol and no2. Variable ques-
tion holds the question as a string and this is displayed in green colour as shown in the
following example:

25 x 10 =
The program waits for 10 seconds and after this time, the result 250 is displayed in red

colour. After 2 seconds, the LEDs are cleared, and the program continues displaying two
new numbers.

B
# Multiplication Test

s

#

# This program displays two numbers between 1 and 99 and waits

# for 10 seconds until the user finds the correct answer. The

# correct answer is then displayed so that the user can check with
# his/her answer

#

# Author: Dogan Ibrahim

# File : mult.py

# Date : October, 2023

from sense_hat import SenseHat
sense = SenseHat()
import time

import random

spd = 0.2 # Scroll speed
red = (255, 0, 0) # Red colour
green = (0, 255, 0) # Green colour
try:

while True:
nol = random.randint(1,99) # First number
no2 = random.randint(l, 99) # Second number
question = str(nol) + "x" + str(no2) + "="

e 224



Chapter 12 e Using the Sense HAT

sense.show_message (question, scroll_speed = spd, text_colour=(green))
time.sleep(10)

result = str(nol * no2)

sense.show_message(result, scroll_speed = spd, text_colour=(red))
time.sleep(2)

sense.clear()

time.sleep (1)

except KeyboardInterrupt:
exit()

Figure 12.3 Program listing

12.6 Project 3 — Learning the times tables

Description: This project helps the children to practise their times tables. A number (which
can be changed) is hard-coded into the program. The program displays the times table for
the selected number. For example, if the hard-coded number is 5 then the following is dis-
played on the LED matrix:

5x1=5
5x2=10
5x3=15
5x4=20
5x5=25
5x6=30
5x7=35
5x8=40
5x9=45
5x10=50
5x11=55
5x12=60

Figure 12.4 shows the program listing (program: timestab.py). Variable Tablefor stores
the number whose times table is required. A loop is formed which goes from 0 to 11. Inside
this loop, variable j takes on values from 1 to 12. Variable result stores the result of the
multiplication at each iteration of the loop. String variable disp stores the data to be dis-
played by the LED matrix at each iteration. Users can easily change the value of Tablefor
to generate times table for another number.

# This program generates a times table. The table is selected at the
# beginning of the program by setting variable Tablefor.
#

e 225



Raspberry Pi 5 Essentials

# Author: Dogan Ibrahim
# File : timestab.py
# Date : October, 2023

from sense_hat import SenseHat
sense = SenseHat()

import time

spd = 0.2 # Scroll speed
red = (255, 0, 0) # Red colour
Tablefor = 5 # Table for 5
try:
for k in range(12): # Do 0 to 11

j=k+1 # 1 to 12

result = Tablefor x j

disp = str(Tablefor) + "x" + str(j) + "=" + str(result)

sense.show_message(disp, scroll_speed = spd, text_colour=(red))
time.sleep (1)
sense.clear ()

except KeyboardInterrupt:
exit()

Figure 12.4 Program listing

12.7 Project 4 — Display the temperature, humidity, and pressure
Description: In this project we display the ambient temperature, humidity, and pressure
on the Sense HAT.

Figure 12.5 shows the program listing (program: thp.py). The program runs in a loop
every two seconds where the temperature, humidity, and pressure readings are displayed
on the scrolling LED. Notice that the readings are all in floating-point format, and the
round() function is used to configure them to have one digit after the decimal point.

This program reads the temperature, humidity and pressure and
displays on the scrolling LEDs. The data 1is displayed in the
following format:

T=nn.nC H=nn.n% P=nnnn.nmb

HOH K H H H H K

e 226



Chapter 12 e Using the Sense HAT

# Author: Dogan Ibrahim
# Date : October, 2023
# File : thp.py

from sense_hat import SenseHat
sense=SenseHat ()

import time

while True:

T = round(sense.get_temperature(), 1) # Get temperature
H = round(sense.get_humidity(), 1) # Get humidity
P = round(sense.get_pressure(), 1) # Get pressure

enviro = "T="+str(T)+ "C H="+str(H)+ "% P="+str(P)+"mb "
sense.show_message(enviro, scroll_speed = 0.2)
time.sleep(2)

Figure 12.5 Program listing

You could also have displayed the data on the PC screen by running the following program
code. Figure 12.6 shows the output of the program:

from sense_hat import SenseHat
import time
sense = SenseHat()
while True:
T = sense.get_temperature()
H = sense.get_humidity()
P = sense.get_pressure()
TT = round(T, 1)
HH = round(H, 1)
PP = round(P, 1)
print("Temperature: %s, Humidity: %s, Pressure:%s"
%(TT, HH, PP))
time.sleep(1)

‘oo v o oo oo

g

Figure 12.6 Displaying the data on the PC screen

You could also display the temperature or the humidity as integer variables on non-scrolling
LEDs by using the Disp function.

e 227



Raspberry Pi 5 Essentials

12.8 Project 5 - ON-OFF temperature controller

Description: This is an on-off temperature controller project. The Sense HAT is connected
to the Raspberry Pi 5 to measure the ambient temperature. Additionally, a small buzzer is
connected to one of the ports of the Raspberry Pi. The set temperature value is hard-coded
in the program. If the ambient temperature is lower than the set temperature, then the
buzzer is activated, and the LED matrix displays the ambient temperature in red colour. If,
on the other hand, the ambient temperature is higher than the set temperature value, then
the buzzer is deactivated, and the ambient temperature is displayed in blue colour. The
buzzer in this project can easily be replaced with a relay which can be connected to control
a heater. The heater will turn ON if the ambient temperature is lower than the set value.

Block diagram: Figure 12.7 shows the block diagram of the project.

Raspberry Pi 5

Buzzer

Sense HAT

Figure 12.7 Block diagram of the project
Circuit diagram: The circuit diagram of the project is shown in Figure 12.8, where the

buzzer is connected to port pin GPIO 4 of the Raspberry Pi 5. Both the buzzer and the Sense
HAT board are connected to the Raspberry Pi 5 using jumper wires.

e 228



Chapter 12 e Using the Sense HAT

Raspberry Pi

GPI104

Buzzer

Sense HAT

NIN|= =N |O |glw|=
®|N |0 | )

GND
1

Figure 12.8 Circuit diagram of the project

Program listing: In this program, the library function created by the author, named
Disp() is used. This function has 3 arguments: number to be displayed, colour, and mode
(0 or 1, 1 to clear the display). This function is in a Python program called display.py,
which can be found on the web page of the book. Calling function Disp() display a number
without scrolling the display. Figure 12.9 shows the listing of program display.py. Make
sure that display.py is in the same directory as your main program.

H e
# FUNCTION TO DISPLAY NUMBERS

&

#

# This function displays a two-digit number on the LED matrix

# without scrolling the display. The number to be displayed and
# dts colour are entered as the arguments of the function.The

# third parameter controls whether or not to clear the display
# before displaying the number. Setting this parameter to 1

# will clear the display

#

# Author: Dogan Ibrahim

# Date : October, 2023

# File : display.py

from sense_hat import SenseHat
sense = SenseHat()

def Disp(no, colour, mode):

#

# Number patterns for all the numbers 0 to 9
#

numbers = [

e 229



Raspberry Pi 5 Essentials

[[0,1,1,0],
[L,©,0,4
[L,©,0,4
[L,©,0,4
[L,©,0,4
[L,©,0,4
[L,©,0,4
[®yi,1,@11

[[0,0,1,0],
[®yi,1,@1
[©,0,1,0]1
[©,0,1,0]1
[©,0,1,0]1
[©,0,1,0]1
[©,0,1,0]1
[(OPPIPFIPSIN[ R[S

[[0,1,1,0],
[L,©,0,4
[©,0,0,1]
[©,0,0,1]
[©,0,1,0]1
[®,1,0,0],
[1,0,0,0,],
kg al gl atTT)

[ri,1,1,17,
[©,0,1,1]
[©,0,1,1]
kgLl )
kgLl )
[©,0,1,1]
[©,0,1,1]
kg al gl atTT)

[[0,0,1,0],
[®yi,1,@1
Lyl al @1 5
[Ly©,1,@1
kgLl )
[©,0,1,0]1,
[©,0,1,0]1,
[©,0,1,011,

(ri,1,1,1],

e 230



Chapter 12 e Using the Sense HAT

[1,0,0,0],
[1,0,0,0],
[y al gl ) o
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[y algdly a1 1],

[R[S1O TR IN # 6
[1,0,0,0],
[1,0,0,0],
[y al gl ) o
[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[y algdly a1 1],

[R[S1S ISR # 7
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,0,0,1]],

[[[®yi,1,@1 # 8
[1,0,0,1],
[1,0,0,1],
[y al gl ) o
[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[6,1,1,0]],

[R[S1S ISR #9
[1,0,0,1],

[1,0,0,1],

[y al gl ) o

[0,0,0,1],

[0,0,0,1],

[0,0,0,1],

[1,1,1,1]]

]

blank = [0,0,0]

e 231



Raspberry Pi 5 Essentials

blanks=[0,0,0,0]
Disp = [] # List to store patterns

for index in range(0, 8):

if (no >= 10): # If >= 10
intno = int(no / 10) # MSD digit
Disp.extend (numbers[intno] [index])

else:
Disp.extend(blanks)

remno = int(no % 10) # LSD digit

Disp.extend (numbers[remno] [index])

for index in range(64):
if(Disp[index]):

Disp[index]=colour # Colour
else:
Disp[index]=blank
if mode ==
sense.clear () # Clear LEDs
sense.set_pixels(Disp) # Display number

Figure 12.9 Program display.py

The program listing is shown in Figure 12.10 (program: tempcont.py). At the beginning
of the program, the modules used in the program are imported to the program. Buzzer
is assigned to number 4, which will correspond to GPIO 4. The set temperature value is
stored in the variable SetTemperature and is hard-coded as 24 in his example. The buzzer
is turned OFF at the beginning of the program. The remainder of the program runs in an
endless loop. Inside this loop, the ambient temperature is read from the Sense HAT and this
temperature is compared with the set point value. If the ambient temperature is less than
the set value, then the buzzer is turned ON and the ambient temperature is displayed in red
as non-scrolling. If, on the other hand, the ambient temperature is greater than the set val-
ue, then the buzzer is turned OFF and the ambient temperature is displayed in blue colour.

This is an ON-OFF temperature control project. In this project
a buzzer 1is connected to port pin GPIO 4 of the Raspberry Pi 5
In addition to the Sense HAT. The Sense HAT 1is connected using
jumper wires. The buzzer is turned ON if the ambient temperature
is below the setpoint temperature. At the same time, the ambient

HOH K H H H H K

temperature is displayed in red colour. If on the other hand the

e 232



Chapter 12 e Using the Sense HAT

example to control a heater

Author: Dogan Ibrahim
Date : October, 2023
File : tempcont.py

HOoH o H H H H H

from gpiozero import LED

from display import Disp

from sense_hat import SenseHat
sense=SenseHat ()

from time import sleep

Buzzer = LED(4)
Buzzer.off()

SetTemperature = 24
red = (255, 0 ,0)
blue = (0, 0, 255)

while True:
T = int(sense.get_temperature_from_humidity())
if(T < SetTemperature):
Disp(T, red, 0)
Buzzer.on()
else:
Disp(T, blue, 0)
Buzzer.off()

sleep(5)

Figure 12.10 Program listing

ambient temperature 1is higher than the setpoint value then the
buzzer 1is turned OFF and the display is in blue colour.

The buzzer 1in this program can be replaced with a relay for

# import Disp

# import Sense HAT

import time

Buzzer at GPIO 4

# Buzzer off

setpoint temp

# red colour

# blue colour

H O H O H

+*+

get temperature
T < setpoint?
display in red
Buzzer ON

display in blue

# Buzzer OFF

wait 5 secs

The buzzer used in this project can easily be replaced with a relay and a heater can be
connected to the heater. The room temperature will then be controlled by the program.

12.9 Project 6 — Generate two dice numbers

Description: Most dice-based games (e.g. backgammon) are played with two dice, where
both dice are thrown at the same time. In this project, two random dice numbers are gen-
erated and displayed on the LED matrix. The dice numbers are displayed in red.

e 233



Raspberry Pi 5 Essentials

Figure 12.11 shows the program listing (program: dice2.py). Here, two integer random
numbers are generated, converted into strings, and stored in variables nol and no2. State-
ment show_message is used to scroll the generated numbers, where the speed is set to
0.05 and the text colour is set to red. The LED matrix shows the numbers as in the format:

32 24 66 24 etc. as shown in Figure 12.12.

B e
# Display Two Dice Numbers
T

#

# This program displays two dice numbers every 5 seconds.
# numbers are displayed in red

#

# Author: Dogan Ibrahim

# File : dice2.py

# Date : October 2023

B e

from sense_hat import SenseHat
sense = SenseHat()

import time

import random

red = (255,0,0)

try:
while True:
nol = str(random.randint(1,6))
no2 = str(random.randint(1,6))

no = nol + no2

The

sense.show_message(no, scroll_speed=0.05, text_colour=(red))

time.sleep(5)
sense.clear ()
time.sleep (1)

except KeyboardInterrupt:
exit()

Figure 12.11 Program listing

® 234



Chapter 12 e Using the Sense HAT

Figure 12.12 Displaying dice numbers 2 and 1

12.10 Project 7 — Display the current time
Description: In this project, the current time is extracted and displayed on the LED matrix
in the format: HH:MM:SS. The display is scrolled every second.

Figure 12.13 shows the program listing (program: curtime.py). At the beginning of the
program, datetime is imported to the program in addition to the other libraries. The scroll-
ing speed is set to 0.15 and the text colour is set to blue. Current time is extracted from
the function datetime.now() and strftime function is used to extract only the hours,
minutes, and seconds. The time is updated and displayed every second using show_mes-
sage.

This program displays the current time every second on the following
format:
HH:MM:SS

Author: Dogan Ibrahim
File : curtime.py
Date : October 2023

HOoH H H O H B H H H

from sense_hat import SenseHat
sense = SenseHat()
import time

import datetime

spd = 0.15 # Scroll speed

e 235



Raspberry Pi 5 Essentials

blue = (0, 0, 255) # Text colour

while True:
TimeFormat = "%H:%M:%S"
msg = str(datetime.datetime.now().strftime(TimeFormat))
sense.show_message(msg,scroll_speed=spd, text_colour=(blue))

time.sleep (1)
Figure 12.13 Program listing

The strftime() returns a formatted string representing data and time. Some examples are
given below:

from datatime import datatime
now = datetime.now()

year = now.strftime("%Y") # return current year
month = now.strftime("%m") # return current month
date = now.strftime("%Y:%m:%d") # return current date
tim = now.strftime("%H:%M:%S") # return current time

Some other codes that can be used with strftime are (for more details, see link: https://
www.programiz.com/python-programming/datetime/strftime):

%A - weekday name (e.g. Monday, Tuesday)

%w - weekday as a number (e.g. 1, 2)

%d - day of the month as zero padded decimal (e.g. 01, 02)

%b - month name (e.g. Jan, Feb)

%B - full month name (e.g. January, February)

%m - month as a zero padded decimal (e.g. 01, 02)

%p - AM or M

%H - hour as a zero padded decimal, 24-hour clock (e.g. 05, 06)
%! - hour as a zero padded decimal, 12-hour clock (e.g. 05, 06)
%y - year without century as a zero padded number

%Y - year with century

12.11 Project 8 — Displaying two-digit integer numbers

Description: Sense HAT displays two-digit integer numbers by scrolling the display. In
some applications, we may want to display a two-digit number without scrolling the display.
For example, while displaying the temperature, humidity, etc., you may want a non-scrolling
steady display. In this project, a program has been developed that can display a two-digit
number without scrolling the display.

Figure 12.14 shows the program listing (program: dispnum.py). This program displays
the number 20 as an example. At the beginning of the program, the patterns for all the
numbers from 0 to 9 are defined. The two digits of the number are extracted and saved in
variables intno and remno. For example, if the number is 20, then intno and remno are

e 236



Chapter 12 e Using the Sense HAT

set to 2 and 0 respectively. The LEDs to be turned ON are then combined in a list called
Disp. The LED matrix is cleared just before displaying the number. The numbers are dis-
played in red colour. Figure 12.15 shows the number 20 displayed on the LED matrix.

B o
# DISPLAY NUMBERS
e

#

# This program displays a two-digit number on the LED matrix
# without scrolling the display. In this example number 20 1s
# displayed

#

# Author: Dogan Ibrahim

# Date : October 2023

# File : dispnum.py

from sense_hat import SenseHat
sense = SenseHat()

#

# Number patterns for all the numbers 0 to 9
#

numbers = [

[[06,1,1,0], # 0

[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[0,1,1,0]],

[[0,0,1,0], # 1
[0,1,1,0],
[0,0,1,0],
[0,0,1,0],
[0,0,1,0],
[0,0,1,0],
[0,0,1,0],
[0,1,1,111,

[[o,1,1,0], # 2
[1,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,0,1,0],

e 237



Raspberry Pi 5 Essentials

[0’110’0]’
[l’e’o’e)]’
[111’111]]!

Ly dLgdl ] 5
[0,0,1,1],
[0,0,1,1],
Lo Lo dl g aL]| 5
[LabgdLgdl gLyl 5
[0,0,1,1],
[0,0,1,1],
LabgdLgdl g aL] 1) 5

[[0,0,1,0],
[0,1,1,0],
[BIPSIPSIRNE)
[1,0,1,0],
[Lalgdlgdlgal]| 5
[0,0,1,0],
[0,0,1,0],
[0,0,1,0]],

L[l dlyal gl
[1,0,0,0],
[1,0,0,0],
[k, algdly
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
Lol a1y 1) 5

[[1,1,1,1],
[1,0,0,0],
[1,0,0,0],
[[al,algaly il
[iL,®,@,1L]
[1,0,0,1],
[1,0,0,1],
Ly dlgdl a1

L[y aLgdly Lty 5
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],

e 238



Chapter 12 e Using the Sense HAT

[0’050’1]]’

[[0,1,1,0],
[1,0,0,1],
[1,0,0,1],
kg dlydl g )
[1,0,0,1],
[1,0,0,1],
[1,0,0,1],
[0,1,1,0]]

[[1,1,1,1]
[1,0,0,1],
[1,0,0,1],
L gLy dly ]l o
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[1,1,1,1]]
]

3

blank = [0,0,0]
blanks=[0,0,0,0]
[1

Disp

no 20

for index in range(0, 8):
if (no >= 10):
intno = int(no / 10)

List to store patterns

Number to be displayed

4 If >= 10
# MSD digit

Disp.extend(numbers[intno] [index])

else:
Disp.extend(blanks)
remno int(no % 10)

LSD digit

Disp.extend(numbers[remno] [index])

for index in range(64):
if(Disp[index]):
Disp[index]=(255,0,0)
else:
Disp[index]=blank

sense.clear ()
sense.set_pixels(Disp)

Red colour

# Clear LEDs
# Display number

Figure 12.14 Program listing

e 239



Raspberry Pi 5 Essentials

& bk & Kk &k K kbbb

Jeennes
euneenmne

Joheenns

To0eenne

JUeNenne
0 @eN0e
@umnenue
0000 180

Figure 12.15 Displaying number 20

12.12 Project 9 — Up counter
Description: In this project, the display program developed in the previous project is con-
figured as a function and is then used in a program to count up every second from 0 to 99.

Figure 12.16 shows the program listing (program: nums.py). The display function is
named Disp and is stored in a file called Display.py (Figure 12.9). The Function Disp has
three arguments. The first argument is the number to be displayed, the second argument
is the text colour of the display. The third parameter controls whether to clear the display
before displaying the number. Setting this parameter to 1 clears the display. At the begin-
ning of the program, the function Disp is imported into the program. You should make sure
that the Python program display.py is in the same directory as the main program nums.
py. The program creates a loop where variable j changes from 0 to 99. Function Disp is
called with j as the number and the colour is set to green. Therefore, the display shows the
numbers counting up every second from 0 to 99, without scrolling the display.

This program counts up from © to 99 every second and displays

on the LED matrix without any scrolling

Author: Dogan Ibrahim
Date : October, 2023
File : nums.py

HOH K H H H H K

from sense_hat import SenseHat
sense = SenseHat()

e 240



Chapter 12 e Using the Sense HAT

from display import Disp # Disp function

import time

for j in range(100): # Do 0 to 99
Disp(j, (0,255,0), 1) # Display j
time.sleep(1) # 1 sec delay

Figure 12.16 Program listing

12.13 The inertial measurement sensor

The Sense HAT contains an Inertial Measurement Unit (IMU) which is a combination of a
compass sensor, gyroscope sensor, and accelerometer sensor. These sensors can be ena-
bled or disabled on an individual basis using the imu_config statement. For example, in
the following example, all three sensors are enabled:

sense.set_imu_config(True, True, True)
Similarly, if we wish to enable only the gyroscope sensor, we have to use the statement:
sense.set_imu_config(False, True, False)

12.13.1 Project 10 - Reading the acceleration
Description: You can get the acceleration (amount of G-force) in three dimensions x, y
and z by using the statement:

X, Y, z = sense.get_accelerometer_raw().values()

In the example code below, the acceleration in 3 dimensions is read and displayed continu-
ously. You should run this program and move your Sense HAT in three dimensions and see
the acceleration changing in each direction:

from sense_hat import SenseHat

sense = SenseHat()

while True:
X, Y, Z = sense.get_accelerometer_raw().values()
print("X=%s, Y=%s, Z=%s" %(X, Y, z))

Rotating the Sense HAT will change the accelerometer x and y values between -1 and +1. If
it is placed upside down, the z value will change between -1 and +1. If any axis has £1 G,
then we know that axis is pointing downwards.

An example project is given below.
12.13.2 Project 11 - Accelerometer-based dice

Description: In this example, the shaking of the Sense HAT board is detected, and then a
dice number is displayed on the LCD matrix.

e 241



Raspberry Pi 5 Essentials

If the board is rotated, then the acceleration will be 1 G maximum in any direction. If on
the other hand, the board is shaken then the acceleration will be greater than 1 G. In this
program, the acceleration in three dimensions is checked to determine when the board is
shaken and if so, a dice number is displayed for two seconds.

Figure 12.17 shows the program listing (program: shake.py). The dice numbers 1 to 6
are stored in list dice. Inside the program loop, the accelerometer values are read, and
then their absolute values are taken. If the acceleration exceeds 2 in any direction, i.e. if
the board is shaken, a dice number is chosen at random and displayed on the LED matrix
in red.

B
# ACCELEROMETER BASED DICE

s

#

# This program displays a dice number after the Sense HAT board

# is shaken. The accelerometer in 3 dimensions is used to determine
# when the board 1is shaken

#

# Author: Dogan Ibrahim

# Date : October, 2023

# File : shake.py

B

from sense_hat import SenseHat

sense=SenseHat ()

import time

import random

dice = ['1', '2', '3','4', '5', '6'] # Dice nos

sense.clear ()

while True:

X, Y, z = sense.get_accelerometer_raw().values() # Read acc
x = abs(x) # x val
y = abs(y) # y val
z = abs(z) # z val

if x > 2 o0ory >2o0r z > 2:
sense.show_letter (random.choice(dice), text_colour = (255,0,0))
time.sleep(2)
sense.clear ()

Figure 12.17 Program listing

e 242



Chapter 12 e Using the Sense HAT

12.13.3 Project 12 - Accelerometer-based LED shapes

Description: In this project, the accelerometer is used to sense when the Sense HAT
board is tilted in its pitch and roll axes. Initially, the LED at the center of the board is lit.
By tilting the board on its axes, you can make turn ON other LEDs and make various inter-
esting shapes.

Figure 12.18 shows the program listing (program: shapes.py). The reason for using the
accelerometer in this project is because it is more reliable and gives consistent results. If
any axis has £1 G, then we know that axis is pointing downwards. When the Sense HAT
board is tilted in its pitch axis, the LEDs in the x-direction are turned ON depending on
whether the tilt is in the positive or the negative direction (+G or -G). Similarly, when the
board is tilted in its roll axis, the LEDs in the y-direction are turned ON depending on wheth-
er the tilt is in the positive or the negative direction.

T
# ACCELEROMETER BASED LED SHAPES

®

#

# In this program the accelerometer is used. The Sense HAT board
# is tilted in 1dts pitch and roll axes to make shapes with LEDs
#

# Author: Dogan Ibrahim

# Date : October, 2023

# File : shapes.py

from sense_hat import SenseHat
sense=SenseHat ()
from time import sleep

sense.clear()

sense.set_pixel(3, 3, (255,0,0)) # Starting LED
x =3
y =3

while True:

X,Y,Z = sense.get_accelerometer_raw().values() # Read acc

X = round(X, 0) # X dir

Y = round(Y, 0) # Y dir

if X > 0:
X =x + 1
if x > 7: # If the end
X =7

elif X < 0:

e 243



Raspberry Pi 5 Essentials

if x < 0: # If the end
X = 0
if Y > 0:
y=y+1
ify > 7 # If the end
y =7
elif Y < 0
y=y-1
if y < o: # If the end
y =0
sense.set_pixel(x,y, (255,0,0)) # Display
sleep(1) # 1 sec delay

Figure 12.18 Program listing

Figure 12.19 shows an example shape drawn by tilting the Sense Hat board.

PRESSURE

.--.---. Al CEL/GYRO/MAG

BEEER

& Ras;ibcrry Pi
C Sensc HAT
€ RIS Version

Figure 12.19 Example drawing shapes on the Sense HAT board

e 244



Chapter 13 e Using a 4x4 Keypad

Chapter 13 e Using a 4x4 Keypad

13.1 Overview

Keypads are useful devices for entering data to microcontroller-based systems. They are
especially useful in portable applications where the user has to enter data or make a choice.
In this chapter, you will be learning to use a 4x4 keypad in your Raspberry Pi 5 projects.

13.2 Project 1 - Using a 4x4 keypad
Description: This is a 4x4 keypad program. The program reads the key pressed by the
user and displays its code on the screen. The aim of the project is to show how a 4x4 key-
pad can be used with a Raspberry Pi 5 project.

The 4%x4 Keypad: There are several types of keypads that can be used in microcontrol-
ler-based projects. In this project, a 4x4 keypad (see Figure 13.1) is used. This keypad has
keys for numbers 0 to 9 and the letters A, B, C, D, *, and #. The keypad is interfaced to the
processor with 8 wires with the names R1 to R4 and C1 to C4, representing the rows and
columns respectively of the keypad (see Figure 13.2).

Figure 13.1 4x4 keypad

1 2 3 A
A A A -
—e —e - I- o 4
R1—e L * °
4 5 6 B
ig Ay A e
R 1T E
7 8 9 C
A A A A
—e —e - -
I Al AR
—e —e - —
R-i o g A v -

Figure 13.2 Circuit diagram of the 4x4 keypad

e 245



Raspberry Pi 5 Essentials

The operation of the keypad is basic: the columns are configured as inputs, and they are
all set HIGH, and the rows are configured as outputs. The pressed key is identified by using
column scanning. Here, a row is forced LOW while the other rows are held HIGH. Then the
state of each column is scanned, and if a column is found to be LOW, then the intersection
of that column and row is the key pressed. This process is repeated for all the rows.

Block diagram: Figure 13.3 shows the block diagram

(] Raspberry Pi 5
4 x 4 Keypad

Figure 13.3 Block diagram

Circuit diagram: The circuit diagram of the project is shown in Figure 13.4. The 4x4 key-
pad is connected to the following GPIO pins of the Raspberry Pi 5. The column pins are held
high by using external 10 Kilo-ohm resistors to +3.3 V:

Keypad pin Raspberry Pi pin
R1 GPIO 4
R2 GPIO 17
R3 GPIO 27
R4 GPIO 22
C1 GPIO 10
Cc2 GPIO 9
C3 GPIO 11
c4 GPIO 0

e 246



Chapter 13 e Using a 4x4 Keypad

10k [,]_[‘]-[’]_[‘]1 Ok

1

R1 !
R2 11
R3 13
4x4 R4 15
Keypad
yp o 19
c2 21
c3 23
c4 2

+3.3V

Raspberry Pi
5

GPIO 4

GPIO 17
GPIO 27
GPIO 22

GPIO 10
GPIO 9
GPIO 11
GPIO O

GND

39JT_

Figure 13.4 Circuit diagram

Figure 13.5 shows the pin configuration of the 4x4 keypad used in the project.

Figure 13.5 Pin configuration of the 4x4 keypad

Program listing: Figure 13.6 shows the program listing (program: keypad.py). At the
beginning of the program, modules OutputDevice and InputDevice of gpiozero are im-
ported to the program. The row and column pins of the keypad are assigned to GPIO ports.
Rows are configured as outputs and columns as inputs. All the rows are set HIGH initially.
The Function GetChar() waits until a key is pressed and then returns the key to the calling
code. This function calls function ReadRow(). ReadRow() has two arguments: the row

e 247



Raspberry Pi 5 Essentials

number and the keypad characters on that row. The function scans the columns and if a
column is detected with LOW state, then the keypad character corresponding to the column
is returned by the function. The program calls GetChar() and displays the pressed key on
the screen.

In this program a 4 x 4 keypad 1is connected to Raspberry Pi 5.
the program displays the key pressed on the screen

Program: keypad.py
Date : October, 2023
Author : Dogan Ibrahim

HOoH K W K H H H H

from gpiozero import OutputDevice,InputDevice
from time import sleep

#

# ROW pins

#

ROW1 = 4

ROW2 = 17
ROW3 = 27
ROW4 = 22

#

# COLUMN pins
#

COoL1l = 10
coL2 = 9

coL3 = 11
coL4 = 0

#

# ROWS as outputs
#

rowl = OutputDevice(ROW1)
row2 = OutputDevice (ROW2)
row3 = OutputDevice (ROW3)
row4 = OutputDevice (ROW4)
rowl.on()
row2.on()
row3.on()

e 248



Chapter 13 ¢ Using a 4x4 Keypad

row4.on()

#

# COLUMNS as inputs and (pulled HIGH in hardware)
#

coll = InputDevice(COL1)

col2 = InputDevice(COL2)

col3 = InputDevice(COL3)
col4 = InputDevice(COL4)

#
# This function sets a row to 0 and then finds out which
# key is pressed on a column
#
def ReadRow(line, char):
x = 'E'
line.off()
if coll.value == 0O:
x = char[0]
if col2.value ==
x = char[1]
if col3.value == 0:
x = char[2]
if col4.value ==
x = char[3]
line.on()

return x

#
# This function waits until a character 1is pressed on keypad
#
def GetChar():
r ="E'
while r == 'E':
a = ReadRow(rowl, ["1","2","3" "A"])
b = ReadRow(row2, ["4","5","6","B"])
c = ReadRow(row3, ["7","8","9","C"])
d = ReadRow(row4, ["x","Q","#" ,"D"])

if a != 'E':
r=a

elif b !='E':
r=~>b

elif c != 'E':
r=-c

elif d != 'E':
r=d

e 249



Raspberry Pi 5 Essentials

sleep(0.1)
return r
c = GetChar() # Wait for key press
print (c) # Display the pressed key

Figure 13.6 Program listing

Importing the keypad functions in a program

It is easier to import the keypad function under a file instead of writing them every time
you want to use these functions. This can easily be done by collecting all the functions in
a file and then importing that file at the beginning of your Python programs. Figure 13.7
shows a program called keypadfuncs.py which can be imported into your programs. It
is important that this file should be in your default directory (/home/pi). Note that the
keypad rows and columns must be connected to the same Raspberry Pi 5 GPIO pins as
given in this project.

B o
# 4 x 4 KEYPAD FUNCTIONS

# S e e e e e s e S e

#

# Import this file in your Python programs

#

# Program: keypadfuncs.py

# Date : October, 2023

# Author : Dogan Ibrahim

B o

from gpiozero import OutputDevice,DigitalInputDevice
from time import sleep

#

# ROW pins
#

ROW1 = 4
ROW2 = 17
ROW3 = 27
ROW4 = 22
#

# COLUMN pins
#

COoL1l = 10
coL2 = 9
coL3 = 11
coL4 =0

e 250



Chapter 13 ¢ Using a 4x4 Keypad

# ROWS as outputs

rowl
row2
row3

row4

rowl.

row2.

row3.

row4.

#

# COLUMNS as inputs and (pulled HIGH in hardware)

#

coll
col2
col3
col4

#

= OutputDevice(ROW1)
= OutputDevice(ROW2)
= OutputDevice(ROW3)
= OutputDevice (ROW4)
on()
on()
on()
on()

DigitalInputDevice(COL1l, bounce_time
= DigitalInputDevice(COL2, bounce_time

DigitalInputDevice(COL3, bounce_time

DigitalInputDevice(COL4, bounce_time

1)
1)
1)
1)

# This function sets a row to 0 and then finds out which

# key is pressed on a column

#

def ReadRow(line, char):
X = 'E'

line.off()

if

if

if

if

coll.value == 0:
x = char[0]
col2.value == 0:
x = char[1]
col3.value ==

x = char[2]
col4.value ==

x = char[3]

line.on()

return x

#

# This function waits until a character 1is pressed on keypad

#

def GetChar():

r

TE!

while r == 'E':

a = ReadRow(rowl, ["1","2","3" "A"])
b = ReadRow(row2, ["4","5","6","B"])

e 251



Raspberry Pi 5 Essentials

c ReadRow(row3, ["7","8","9","C"])
d = ReadRow(row4, ["x","Q","#" "D"])
if a != 'E':

r=a
elif b !='E':

r=>b
elif ¢ != 'E':

r=-c
elif d != 'E':

r
sleep(0.1)

return r

1
Q.

Figure 13.7 Program: keypadfuncs.py

Figure 13.8 shows a program (keypadtest.py) that imports the keypad functions.

#
#
#
#
# This program imports the keypad functions
#
# Program: keypadtest.py

# Date : October, 2023

# Author : Dogan Ibrahim

from keypadfuncs import GetChar

c = GetChar() # Wait for key press
print (c) # Display the pressed key

Figure 13.8 Program: keypadtest.py
13.3 Project 2 - Security lock with keypad and LCD
Description: This is an electronic lock project where a relay is used to open a door. A 4-digit
secret code is set up in the program. The user has to enter the secret code for the door to

open.

Block diagram: Figure 13.9 shows the block diagram of the project.

e 252



Chapter 13 e Using a 4x4 Keypad

L) Raspberry Pi 5
4 x 4 Keypad

Figure 13.9 Block diagram

Circuit diagram: The circuit diagram is shown in Figure 13.10. The LCD is connected as
in the previous LCD-based projects. The keypad is connected as in the previous project. A
relay is connected to GPIO 21 (pin 40) of the Raspberry Pi 5.

1]

+3.3V
10k ['I_[T[j_[‘]mk Raspgerry Pi
. +5v|2
R1 GPIO 4
R2 "GP0 17 |
R3 13 GPIO 27 Ve
4x4 R4 51GPI022 SDA LeD
Keypad 19
c1 v s 5 SCL 5ND
c2 53] CF109  spa Al B1 1
c3 GPIO11 gL | =
27 A2 B2 +3.3V
C4 GPIO 0 sz0102VA A‘
GND OE j_
40
GPIO 21 —l—
GND ’ Vce
39] Relay
= GND

1

Figure 13.10 Circuit diagram

Program listing: Figure 13.11 shows the program listing (lock.py). At the beginning of
the program, the LCD is initialized. The secret code is set to '1357'. The program then dis-
plays Code: and expects the user to enter the correct code. If the correct code is entered,
the message Door Opened is displayed and the relay is turned ON for 20 seconds. After
this time, the relay is deactivated. If the wrong code is entered, the message Error is dis-
played for 5 seconds and the user is asked to enter the correct code again.

e 253



Raspberry Pi 5 Essentials

B
#

# KEYPAD OPERATED LOCK

# —==—=================

#

#

#

# 20 seconds

#

# Program: lock.py

# Date : October, 2023

# Author Dogan Ibrahim

B

from time import sleep

from lcd_api import LcdApi

from i2c_lcd import I2clcd

from keypadfuncs import GetChar
from gpiozero import OutputDevice

Relay = OutputDevice(21)
Relay.off ()

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

In this program a door (or a safe) is opened via a relay.
The user is required to enter the correct secret code for
the door to open. Once opened, the door stays open for

mylcd = I2clcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear ()

Codea = "1"
Codeb = "3"
Codec = "5"
Coded = "7"

while True:
mylcd.move_to(0,0)
mylcd.putstr("Code: ")

a = GetChar()
b = GetChar()
c = GetChar()
d = GetChar()

if (a == Codea and b == Codeb and c

mylcd.clear ()
mylcd.putstr ("Door Opened")

e 254

# clear LCD

# Secret code

# First no
# Second no
# Third no
# Fourth no

== Codec and d == Coded):



Chapter 13 ¢ Using a 4x4 Keypad

Relay.on()
sleep(20)
Relay.off ()
mylcd.clear ()

else:
Relay.off()
mylcd.clear ()
mylcd.putstr("Error")
sleep(5)
mylcd.clear ()

Figure 13.11 Program listing

Suggested modification: Modify the program in Figure 13.11 so that the lock is disabled
for ten minutes if the wrong code is entered three times.

e 255



Raspberry Pi 5 Essentials

Chapter 14 ¢ Communication over Wi-Fi

14.1 Overview

Perhaps the two major features of the Raspberry Pi 5 are its Wi-Fi and Bluetooth communi-
cation capabilities. Raspberry Pi 5 is equipped with a dual-band 2.4 GHz 802.11ac wireless
LAN module and Bluetooth 5.0/Bluetooth Low Energy (BLE). Without such features, you
have to use external network-based hardware communication modules to communicate
over the Internet. Network communication is handled using either UDP or TCP type proto-
cols. In this chapter, you will be learning how to write Python programs using both the UDP
and TCP type protocols using the on-board Wi-Fi module.

14.2 UDP and TCP

Communication over a Wi-Fi link is in the form of client and server, and sockets are used
to send and receive data packets. The server side usually waits for a connection from the
clients and once a connection is made, two-way communication can start. Two protocols
are mainly used for sending and receiving data packets over a Wi-Fi link: UDP and TCP.
TCP is a connection-based protocol which guarantees the delivery of packets. Packets are
given sequence numbers and the reception of all the packets is acknowledged to avoid
them arriving in the wrong order. As a result of this confirmation, TCP is usually slow, but
it is reliable as it guarantees the delivery of packets. UDP, on the other hand, is not con-
nection-based. Packets do not have sequence numbers and as a result of this, there is no
guarantee that the packets will arrive at their destinations, or they may arrive in the wrong
order. UDP has less overhead than TCP and, as a result, it is faster. Table 14.1 lists some of
the differences between the TCP and UDP protocols.

TCP UDP

Packets have sequence numbers and delivery | There is no delivery acknowledgement
of every packet is acknowledged

Slow Fast

No packet loss Packets may be lost

Large overhead Small overhead

Requires more resources Requires fewer resources

Connection based Not connection based

Not suitable for multicast Has multicast capability

More difficult to program Easier to program

Examples: HTTP, HTTPS, FTP Examples: DNS, DHCP, Computer games

Table 14.1 TCP and UDP packet communications

e 256



Chapter 14 « Communication over Wi-Fi

14.2.1 UDP communication
Figure 14.1 shows the UDP communication over a Wi-Fi link:

Server

QO hwWwN =

Client

ukwnhN e

Create UDP socket

Bind the socket to server address

Wait until datagram packet arrives from the client
Process the datagram packet

Send a reply to the client, or close the socket

Go back to Step 3 (if not closed)

Create UDP socket (and optionally Bind)

Send a message to the server

Wait until a response from the server is received
Process reply

Go back to step 2, or close the socket

CREATE SOCKET CREATE SOCKET
Y
BIND TO SOCKET
Y Y
RECEIVE DATA
(Wait for data) == SEND DATA
Or CLOSE Or CLOSE
Y Y
SENDDATA | — — — — — —> RECEIVE DATA

A\ Y

Figure 14.1 UDP communication

14.2.2 TCP communication
Figure 14.2 shows the TCP communication over a Wi-Fi link:

Server

1.

Create UDP socket

e 257



Raspberry Pi 5 Essentials

N AN

Client

ounhkwneE

14.3 Project 1 - Sending a text message to a smartphone using

Description: In this project, a TCP/IP-based communication is established with an Android
smartphone. The program reads text messages from the keyboard and sends to the smart-
phone. The aim of this project is to show how TCP/IP communication can be established

Bind the socket to server address

Listen for connections

Accept connection

Wait until datagram packet arrives from the client
Process the datagram packet

Send a reply to the client, or close the socket

Go back to Step 3 (if not closed)

Create UDP socket

Connect to the server

Send a message to the server

Wait until a response from the server is received
Process reply

Go back to step 2, or close the socket

CREATE SOCKET

CREATE SOCKET

BIND TO SOCKET
Y
LISTEN
- CONNECT
—
_ -
_ -
Y
RECEIVE DATA
(Wait for data) il SEND DATA
Or CLOSE Or CLOSE
y Y
SENDDATA | — — — — — —> RECEIVE DATA
y Y

Figure 14.2 TCP communication

TCP/IP

with an Android smartphone.

e 258



Chapter 14 « Communication over Wi-Fi

Background Information: Port nhumbers range from 0 to 65,535. Numbers from 0 to
1023 are reserved and are called as well-known ports. For example, port 23 is the Telnet
port, port 25 is the SMTP port, etc. In this section, you will be using port number 5000 in
your program.

Block diagram: Figure 14.3 shows the project block diagram where the Raspberry Pi 5
and smartphone communicate over a Wi-Fi router.

| W Wi-Fi

ROUTER
Raspberry Pi 5
IP: 192.168.3.196 SMART PHONE
Port: 5000 IP: 192.168.3.166

Port: 5000

Figure 14.3 Block diagram of the project

Program listing: In this project, Raspberry Pi 5 is the server. Figure 14.4 shows the pro-
gram listing (tcpserver.py). At the beginning of the program, a TCP/IP socket is created
(sock.SOCK_STREAM) and is then bind to port 5000. The program listens for a connec-
tion. Notice that it is possible for the server to listen to multiple clients, but of course, it
can communicate with only one at any time. When the client makes a connection, this is
accepted by the server. The server then reads a message from the keyboard and sends it
to the client over the Wi-Fi link. Notice that the setsockopt() statement makes sure that
the program can be used again without having to wait for the socket timeout of 30 seconds.

This is the TCP/IP server program. It receives text messages
from the keyboard and sends to an Android smart phone over
a Wi-Fi link

Author: Dogan Ibrahim
File : tcpserver.py
Date : October, 2023

HOoH H H O H B H H H

e 259



Raspberry Pi 5 Essentials

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

sock.bind(("192.168.3.196", 5000))
sock.listen(1)

client, addr = sock.accept()

print("Connected to client: ", addr)
yn = 'y'
while yn == 'y':

msg = input("Enter your message: ")
client.send(msg.encode('utf-8'))

yn = input("Send more messages?: ")
yn

yn. lower ()

print("\nClosing connection to client")

sock.close()

# accept connection
# connected message

# read a message
# send the message

Figure 14.4 Program listing

Testing

There are many TCP apps available free of charge on the Internet for smartphones. In this
project, the TCP Client by JOY S.R.L. apps is used on an Android smartphone. This app is
available free of charge in the Play Store (see Figure 14.5).

1335 M=

&

Uninstall

TCP Client

HARDCODED JOY S.R.L.

Al 44% =

Qi

Figure 14.5 Apps used in the project

The program is run as follows:

e Run the server program first:

pi@raspberrypi:~ $ python tcpserver.py

e 260



Chapter 14 « Communication over Wi-Fi

e Run the Android apps and configure it as shown in Figure 14.6 (click the

settings icon at the top right hand of the screen), where 192.168.3.196 is the

IP address of the Raspberry Pi 5.

08:06 8° # [d - 20 73%8
Settings
TCP
Address: 192.168.3.196
Port: 5000
Options
& local echo

Buf. size: 4096

Terminal: @ Ascll O HEX
Send: ® ascll Q HEX

Clear terminal

J

Figure 14.6 Configure the TCP Client apps

e Click the icon in the top left corner of the apps (disconnected) to connect to

Raspberry Pi 5 over TCP/IP.

¢ You should see a connection message on your Raspberry Pi screen and also the
IP address of the remote Android smartphone. Now enter a message and press
the Enter key. In this example, the message HELLO FROM RASPBERRY PI is
sent to the client (Figure 14.7). Figure 14.8 shows the message displayed on

the smartphone.

pilraspberrypi:~ $ python tcpserver.py
Connected to client: ('192.168.3.166"',

Send more messages?: n

‘Closing connection to client
pi@raspberrypi:~ $

35406)

Enter your message: HELLO FROM RASPBERRY PI

Figure 14.7 Enter the message on the keyboard

08:12™M P 8° - 2072%m
2 192.168.3.166 @ *
&  (connected, 192.168.3.196:5000) e

HELLO FROM RASPBERRY PI

Figure 14.8 Message displayed on smartphone

e 261



Raspberry Pi 5 Essentials

14.4 Project 2 - Two-way communication with the smartphone using
TCP/IP

Description: This project is similar to the previous one, but here two-way communication

is established between the Raspberry Pi 5 and the smartphone.

The block diagram of the project is the same as Figure 14.3

Program listing: Figure 14.9 shows the program listing (tcp2way.py). Here, port 5000 is
used as in the previous project. The program has been changed to send and receive mes-
sages from the smartphone. Socket function recv(byte count) sends a message over the
TCP/IP link to the connected node.

This is the TCP/IP server program. It receives text messages
from the keyboard and sends to an Android smart phone over
a Wi-Fi link

Author: Dogan Ibrahim
File : tcp2way.py
Date : December, 2023

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(("192.168.3.196", 5000))

sock.listen(1)

client, addr = sock.accept() # accept connection
print("Connected to client: ", addr) # connected message
yn = 'y'
try:
while yn == 'y':
msg = input("Enter your message: ") # read a message

msg = msg +"\n"

client.send(msg.encode('utf-8')) # send the message
msg = client.recv(1024)

print("Received message: ")
print(msg.decode('utf-8'))

® 262



Chapter 14 « Communication over Wi-Fi

input("Send more messages?: ")

yn
yn = yn.lower ()

except KeyboardInterrupt:
print("\nClosing connection to client")

sock.close()
Figure 14.9 Program listing

Testing

You will be using the Android apps as in Figure 14.5. Start the Raspberry Pi 5 server pro-
gram and then exchange messages between the smartphone and Raspberry Pi. Example
communication is shown in Figure 14.10. In this example, Raspberry Pi sends message
Message from RASPBERRY PI. In return, Android smartphone sends the message mes-
sage from ANDROID.

pi@raspberrypi:~ § python tcp2way.py
Connected to client: ('192.168.3.166"', 35486)
Enter your message: Message from RASPBERRY PI
Received message:

message from ANDROID

Send more messages?: n
pi@raspberrypi:~ §

08:22 ™ P 8° - A T72%
= 192.168.3.166 @ *
# | (connected, 192.168.3.196:5000) —— ——

Message from RASPBERRY Pl
message from ANDROID

Figure 14.10 Example communication between Raspberry Pi 5 and Android apps

14.5 Project 3 - Communicating with a PC using TCP/IP

Description: In this project, a TCP/IP-based communication is established between the
Raspberry Pi 5 and a PC running Python. Messages are exchanged between the Raspberry
Pi 5 and the PC. The aim of this project is to show how TCP/IP communication can be es-
tablished with a PC.

Background Information: In this project, the Raspberry Pi 5 is the server and the PC
is the client. The programs on both sides are developed using the Python programming
language. Python 3.10 is used on the PC. If you do not have Python on your PC, you could
install it from the following website:

https://www.python.org/downloads/

e 263



Raspberry Pi 5 Essentials

Block diagram: Figure 14.11 shows the block diagram.

CLIENT

\/

{5 i T
Raspberry Pi 5 PC

1P:192.168.3.196 IP: 192.168.3.227
Port: 5000 Port: 5000

Figure 14.11 Block diagram

Raspberry Pi 5 program listing: The Raspberry Pi 5 program listing is shown in Fig-
ure 14.12 (tcppc.py). The program is very similar to the one given in Figure 14.9, i.e.
program: tcp2way.py. You should terminate the program by entering Ctrl+C.

This is the TCP/IP server program. It communicates with a PC

#
#
#
#
# running TCP/IP on the same port
#
# Author: Dogan Ibrahim

# File : tcppc.py

# Date : October, 2023

import socket

import time

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(("192.168.3.196", 5000))

sock.listen(1)

client, addr = sock.accept() # accept connection
print("Connected to client: ", addr) # connected message
try:

while True:
msg = input("Enter your message: ") # read a message

° 264



Chapter 14 « Communication over Wi-Fi

msg = msg +"\n"

client.send(msg.encode('utf-8"')) # send the message

msg = client.recv(1024)
print("Received message: ", msg.decode('utf-8'))

except KeyboardInterrupt:
print("\nClosing connection to client")
sock.close()
time.sleep(1)

Figure 14.12 Raspberry Pi 5 program listing
PC Program Listing: The PC program listing is shown in Figure 14.13 (client.py). The

program creates a socket and connects to the server. Then, messages are exchanged be-
tween the client and the server.

B R === == = e e s S e e e R e e e e e e s e e s e R
# TCP/IP CLIENT

# ————=—=—=—=—=—=—=—==

#

# This 1is the client program on the PC.The program exchanges

# messages with the server on the Raspberry Pi 5

#

# Author: Dogan Ibrahim

# File : client.py

# Date : October, 2023

e S S e e e s == == e e e S S S S e S e e e e e = e e e e e e e e e S S S S S S S s E s

import socket

import time

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.connect(("192.168.3.196", 5000))

try:
while True:
msg = sock.recv(1024)
print("Received message: ", msg.decode('utf-8"))
data = input("Enter message to send: ")
sock.send(data.encode('utf-8'))

except KeyboardInterrupt:
print("Closing connection to server")
sock.close()
time.sleep (1)

Figure 14.13 PC program listing

e 265



Raspberry Pi 5 Essentials

The steps to run the program are as follows:
e Run the server program on the Raspberry Pi 5
e Run the client program on the PC

e Write messages as desired

Figure 14.14 shows a typical run of the two programs.

pi@raspberrypi:~ $§ python tcppc.py
Connected to client: ('192.168.3.227', 50363)
Enter your message: Hello pc

Received message: Hello Raspberry Pi 5

Enter your message:

D: \>python client.py
[Received message: Hello pc

IEnter message to send: Hello Raspberry Pi 5

Figure 14.14 Example run of the program

Note: You may find that after exiting the program, you may not be able to run it again.
This is because the socket stays open for about 30 seconds and the error message saying
that the Address is already in use may be displayed. You can check the state of the port
with the following command:

pi@raspberrypi:~ $ netstat -n | grep 5000

If the display includes the text ESTABLISHED, then it means that the socket has not been
closed properly, and you will have to restart your Zero 2 W to run the program again. If on
the other hand, you see the message with TIME_WAIT, then you should wait about 30
seconds before restarting the program.

14.6 Project 4 - Controlling an LED connected to Raspberry Pi 5 from a
smartphone using TCP/IP

Description: In this project, an LED is connected to a Raspberry Pi 5. The LED is turned
ON and OFF by sending commands ON and OFF respectively from an Android smartphone.
The aim of this project is to show how an LED connected to a Raspberry Pi can be controlled
from an Android smartphone remotely by sending commands using the TCP/IP protocol
over a Wi-Fi link. In this project, Raspberry Pi 5 is the server, and the smartphone is the
client.

Block diagram: Figure 14.15 shows the block diagram of the project.

e 266



Chapter 14 « Communication over Wi-Fi

ROUTER CLIENT
SERVER
b ( 1
|

Smart Phone

LED IP: 192.168.3.166
Port: 5000

Raspberry Pi 5
IP: 192.168.3.196
Port: 5000

Figure 14.15 Block diagram of the project]#

The LED is connected to port pin GPIO 21 (pin 49) through a 470 Ohm current limiting

resistor.

Program Listing: Figure 14.16 shows the program listing (program: serverled.py). As
in the previous program, a socket is created and port 5000 is used. LED is assigned to
port GPIO pin 21, and turned OFF at the beginning of the program. The server waits for a
connection from the client and then accepts the connection and displays the message Con-
nected. It then waits to receive a command from the client. If the command is ON, then
the LED is turned ON. If, on the other hand, the command is OFF, then the LED is turned

OFF. Sending command X terminates the server connection and exits the program.

HOoH H H O H B H H H

In this program TCP/IP is used where Raspberry Pi 5 is the server
and smart phone 1is the client. An LED connected to Raspberry Pi 5
GPIO 21 and 1is controlled from the smart phone

Author: DOgan Ibrahim
: serverled.py
: December, 2023

import socket

from gpiozero import LED

from time import sleep

led
led.off()

sock

LED(21)

# LED at GPIO 21

socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

® 267



Raspberry Pi 5 Essentials

sock.bind(("192.168.3.196", 5000)) # Raspberry Pi 5 IP,port
sock.listen(1)

client, addr = sock.accept()

print("Connected")

data = [' '] * 10

while data != b'X\n': # Terminate?
data = client.recv(1024)
if data == b'ON\n': # ON
led.on()
elif data == b'OFF\n': # OFF
led.off()

print("Closing connection")
GPIO.cleanup()

sock.close()

sleep(1)

Figure 14.16 Program listing

The program can be tested using the Android apps TCP client (Figure 14.5) used in Pro-
ject 1. The server program started, then the client is started. Figure 14.17 shows sending
the ON command to turn ON the LED.

15:30 =& 12° 25194%m
= 192.168.3.166

#  (connected, 192.168.3.196:5000) i e

ON
OFF

Figure 14.17 Command sent to turn ON/OFF the LED

Suggestions: The LED in this project can be replaced, for example with a relay and elec-
trical equipment can be controlled remotely over Wi-Fi.

14.7 Project 5 - Sending a text message to a smartphone using UDP
Description: In this project, a UDP-based communication is established with an Android
smartphone. The program reads text messages from the keyboard and sends to the smart-
phone. The aim of this project is to show how UDP communication can be established with
an Android smartphone.

e 268



Chapter 14 « Communication over Wi-Fi

The block diagram is the same as in Figure 14.3.

Program Listing: In this project, Raspberry Pi 5 is the server and the smartphone is the
client. Figure 14.18 shows the program listing (udpserver.py). At the beginning of the
program, a UDP socket is created (sock.SOCK_DGRAM) and is then bind to port 5000.
The server program then reads text messages sent from the smartphone and displays on
the screen. Messages sent by Raspberry Pi 5 are displayed on the smartphone.

This is the UDP server program running on Raspberry Pi 5.
The program exchanges text messages with an Android
smart phone

Author: Dogan Ibrahim
File : udpserver.py
Date : October, 2023

HOoH H H O H B H H H

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(("192.168.3.196", 5000))

try:
while True:

print()
print("Waiting for messages")
data, addr = sock.recvfrom(1024)
print(addr)
print("Received msg:", data.decode('utf-8'))
msg = input("Message to send: ")
sock.sendto(msg.encode('utf-8'), addr)
print("Message sent")

except KeyboardInterrupt:
print("\nClosing connection to client")
sock.close()
Figure 14.18 Program listing
There are many UDP apps available free of charge for both Android and iOS smartphones.

In this project, UDP Sender/Receiver by JC Accounting & Innovative Technologies
Inc for Android smartphones is used (Figure 14.19).

e 269



Raspberry Pi 5 Essentials

0826 MG ™= il 82% W
¢« Q
UDP Sender/

Receiver

JC Accounting & Innovative
Technologies, Inc
Contains ads

Figure 14.19 UDP Sender/Receiver apps

The steps to test the program are as follows:
e Start the server program on Raspberry Pi 5:
pi@raspberrypi:~ $ python udpserver.py
e Start the smartphone apps and configure for the IP/Host and Port

e Write a message on mobile phone apps and click SEND. The message Hello
from Android was sent as an example (Figure 14.20)

e Write a message on Raspberry Pi 5 and this message will be displayed on
the smartphone. Hello from Raspberry Pi 5 was sent for an example

(Figure 14.20)

e Enter Ctrl+C on Raspberry Pi 5 to close the socket

e 270



Chapter 14 « Communication over Wi-Fi

pilraspberrypi:~ $ python udpserver.py

Waiting for messages

('192.168.3.166', 56915)

Received msg: Hello from Android

Message to send: Hello from Raspberry Pi 5
Message sent

Waiting for messages

16:37 B M 13° « A 186%m
® o
IP/Host: Port
192.168.3.196 5000
Message:
Hello from Android m
Listening Port
56915 STOP
Response / Log

@ <Hello from Raspberry Pi 5
@ < Listening for UDP packets on port 56915

@ > Hello from Android

Figure 14.20 Sending and receiving messages

14.8 Project 6 — Controlling an LED connected to Raspberry Pi 5 from a
smartphone using UDP

Description: In this project, an LED is connected to Raspberry Pi 5 port pin GPIO 21
(pin 40) through a 470 Ohm current limiting resistor. The LED is turned ON and OFF by
sending commands ON and OFF respectively from an Android smartphone. The aim of this
project is to show how an LED on the Raspberry Pi 5 can be controlled from a smartphone
by sending commands using the UDP protocol over a Wi-Fi link. Here, the Raspberry Pi 5 is
the server and the smartphone is a client.

The LED can easily be replaced with a relay, for example, to control electrical appliances
from a smartphone.

Program Listing: Figure 14.21 shows the program listing (udpled.py). As in the previous
program, a socket is created and the server waits to receive commands from a client to
control the LED. If the command is ON, then the LED is turned ON. If on the other hand,
the command is OFF, the LED is turned OFF. Command X terminates the server program.

e 271



Raspberry Pi 5 Essentials

e e e = === e e e e e e e e === e R = ——
# CONTROL LED FROM SMART PHONE

# —==—=—==—=—==—===—================

#

# In this program UDP is used where Zero 2 W is the server

# and smart phone is the client. An LED connected to the server

# and is controlled from the smart phone

#

# Author: DOgan Ibrahim

# File : udpled.py

# Date : October, 2023

R S s S s e e O O e S SNSRIy

import socket
from gpiozero import LED
from time import sleep

led = LED(21)
led.off()

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(("192.168.3.196", 2000)) # Bind to Zero 2 W IP,port

data = [' '] * 10
while data != b'X':
data, addr = sock.recvfrom(1024)

if data == b'ON': # ON command
led.on() # LED ON

elif data == b'OFF': # OFF command
led.off() # LED OFF

sock.close()
sleep(1)

Figure 14.21 Program listing
The program can be tested using the UDP Sender/Receiver apps used in Figure 14.19.
The steps to test the program are as follows:
e Construct the circuit on Raspberry Pi 5 with the LED
e Start the server program on Raspberry Pi 5:
pi@raspberrypi:~ $ python udpled.py

e Start and configure the smartphone app

e 272



Chapter 14 « Communication over Wi-Fi

e Write the command ON and press Send on the smartphone (Figure 14.22).
The LED should turn ON. Similarly, write OFF and the LED should turn OFF.
Sending X should terminate the Raspberry Pi 5 program.

STOP

201184%m
® m
IP / Host : Port
192.168.3.196 2000
Message:
o SEND
Listening Port

Response / Log

®>OFF

@®>0N

Figure 14.22 Turning ON/OFF the LED

14.9 Communicating with the Raspberry Pi Pico W over Wi-Fi

Raspberry Pi Pico W (it will be called Pico from now on) is a low-cost $6 microcontrol-
ler module based on the RP2040 microcontroller with dual-core Cortex-MO+ processor
and with on-board Wi-Fi module. Figure 14.23 shows the front view of the Pico hardware
module, which is basically a small board. At the middle of the board is the tiny 7 x 7 mm
RP2040 microcontroller chip housed in a QFN-56 package. At the two edges of the board,
there are 40 gold-coloured metal GPIO (General Purpose Input-Output) pins with holes.
You should solder pins to these holes so that external connections can be made easily to
the board. The holes are marked starting with number 1 in the top left corner of the board
and the numbers increase downwards up to number 40 which is at the top right-hand cor-
ner of the board. The board is breadboard compatible (i.e. 0.1 inch pin spacing), and after
soldering the pins, the board can be plugged into a breadboard for easy connection to the
GPIO pins using jumper wires. Next to these holes, you will see bumpy circular cut-outs
which can be plugged-in on top of other modules without having any physical pins fitted.

e 273



Raspberry Pi 5 Essentials

Pi_PicoW (© 2022

—BOOTSEL (@ o

Figure 14.23 Front view of the Pico module

At one edge of the board, there is the micro-USB B port for providing power to the board
and for programming the board. Next to the USB port, there is an on-board user LED that
can be used during program development. Next to this LED there is a button named as
BOOTSEL that is used during programming of the microcontroller as we will see in the next
chapters. Next to the processor chip, there are 3 holes where external connections can be
made to. These are used to debug your programs using Serial Wire Debug (SWD). At the
other edge of the board is the single-band 2.4 GHz Wi-Fi module (802.11n). Next to the
Wi-Fi module is the on-board antenna.

You will notice the following types of letters and numbers at the back of the board:

GND

AGND

3V3

GPO - GP22
GP26_A0 - GP28_A2
ADC_VREF

TP1 - TP6

SWDIO, GND, SWCLK
RUN

3V3_EN

VSYS

VBUS

power supply ground (digital ground)

power supply ground (analog ground)

+3.3 V power supply (output)

digital GPIO

analog inputs

ADC reference voltage

test points

debug interface

default RUN pin. Connect LOW to reset the RP2040
this pin by default enables the +3.3 V power supply.
+3.3 V can be disabled by connecting this pin LOW
system input voltage (1.8V to 5.5V) used by the
on-board SMPS to generate +3.3 V supply for the board
micro-USB input voltage (+5V)

Some of the GPIO pins are used for internal board functions. These are:

GP29 (input)
GP24 (input)
GP23 (output)

e 274

used in ADC mode (ADC3) to measure VSYS/3
VBUS sense - HIGH if VBUS is present, else LOW
Controls the on-board SMPS Power Save pin



Chapter 14 « Communication over Wi-Fi

The specifications of the Pico hardware module are as follows:

32-bit RP2040 Cortex-M0+ dual-core processor operating at 133 MHz

2 MB Q-SPI Flash memory

264 KB SRAM memory

26 GPIO (+3.3 V compatible)

3x 12-bit ADC pins

Accelerated floating-point libraries on chip

On-board single-band Infineon CYW43439 wireless chip, 2.4 GHz wireless
interface (802.11b/g/n) and Bluetooth 5.2

Serial Wire Debug (SWD) port

Micro-USB port (USB 1.1) for power (+5 V) and data (programming)

2x UART, 2x I2C, 2x SPI bus interface

16x PWM channels

1x Timer (with 4 alarms), 1x Real-Time Clock

On-board temperature sensor

On-board LED at GPIOO, controlled by the CYW43439 chip

Castellated module, allowing soldering direct to carrier boards

8x Programmable IO (PIO) state machines for custom peripheral support
MicroPython, C, C++ programming

Drag & drop programming using mass storage over USB

Pico GPIO hardware is +3.3 V compatible, and it is therefore important to be careful not
to exceed this voltage when interfacing external input devices to the GPIO pins. +5 V to
+3.3 V logic converter circuits or resistive potential divider circuits must be used if it is
required to interface devices with +5 V outputs to the Pico GPIO pins.

Pico can be programmed using MicroPython or C/C++ languages. It is assumed that the
readers have Pico development boards with the MicroPython installed. It will also be useful
if the readers are familiar using Thonny with the Pico. A book entitled Raspberry Pi Pico W
and written by the author is available from Elektor and interested readers might consider
purchasing this book for developing Pico-based projects.

Figure 14.24 shows the pin configuration of the Pico.

e 275



Raspberry Pi 5 Essentials

12C0SDA § _SPIORX_§_GPO Q]

--. 40 IR
1200 SCL 2-XF KL} Vsys |
| GND JERSbe
J2CTSDAJ SPIOSCK §GP2__gigr ® 5 IEEE
12C1SCL § sPioTX § GP3  RIfEe o “g‘. 36 [EE)
(Bre 2 | = 3%
| UART1RX § 12C0SCL § SPIOCSn § -GPSRV o I '8 P28 § Aoc2 |
8- L 33 IO
12C1 SDA § SPIOSCK § __GP6__ SUJS® ® E78  GP27 _§ ADCT _§ I2C1 SCL
2C1SCLY SPIOTX § _GP7 __Rlgp® @ 6P26 3§ ADCO J 12C1 SDA
| UART1 TX § 12C0SDA § SPITRX 3 GP8_milss o O 8 RUN |
o~
| UART1 RX § 12COSCL § SPI1CSn §  GP9__RFEp @ © s g OP22
[Fovo EiRe = H; oo |
o
[ 12C1 SDA § SPI1SCK § _GP10_Rlp @ © r  GP21 | 12C0 SCL
12C1SCL § SPIITX § GP11_BSp @ & FL§  GP20 |
I2C0SDA § SPIRX § GP12 RlEp e FIR GP19.§ SPIO TX_J 1261 SCL
| UARTO RX § 12COSCL § SPI1CSn § GP13_ Siiisp ® %’l S8 CP18 § SPI0 SCK §I2C1 SDA
| _cnD BEESe 3 23 IO
o
12C1 SDA § SPI1SCK § _GP14__BLES o Q3 GPI7 } SPI0 CSn § 12C0SCL
1201SCL § SPI1TX J§ GP15 FIE® @ . FAR GP16_§ SPI0RX § 12C0SDA

2lo
=

215

=

Figure 14.24 Pico pin configuration

14.9.1 Project 7 — Raspberry Pi 5 and Raspberry Pi Pico W communica-
tion - controlling a relay over Wi-Fi

Description: In this project, you have a Raspberry Pi 5 and Raspberry Pi Pico W. A push-
button is connected to Pico, and a +3.3 V relay is connected to the Raspberry Pi 5. Pressing
the button on the Pico sends a command to the Raspberry Pi over the Wi-Fi to activate the
relay. The relay remains active for 5 seconds. In this project, Raspberry Pi and Pico commu-
nicate using the UDP protocol. Raspberry Pi is the server and Pico is the client.

Block diagram: Figure 14.25 shows the block diagram of the project.

e 276



Chapter 14 « Communication over Wi-Fi

WI-FI ROUTER

®.__0
Raspberry Pi Pico W Raspberry Pi Zero 2 W

Figure 14.25 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 14.26 with the but-
ton and relay connected to the Pico and Raspberry Pi respectively.

36 +3.3V +3.3V 1—|
10k
4 GPio2lo—| s Relay
© GP2 ——oO

Button [I _|_
Raspberry Pi Raspberry Pi 1

= Pico W 5 )

GND GND

| ]
Figure 14.26 Circuit diagram of the project

Pico program listing: Figure 14.27 shows the Pico program listing (picoudp.py). At the
beginning of the program, LED is assigned to port GP2 and is turned OFF. The Function
Connect() is called to connect to the local Wi-Fi network. Then, a socket is created with
port number 2000 and IP address 192.168.3.21. When the Button is pressed, the program
sends 1 to the Raspberry Pi 5 so that the LED can be turned ON. This process is repeated
after a 1-second delay.

e 277



Raspberry Pi 5 Essentials

B
# RASPBERRY PI PICO W - RASPBERRY PI 5 COMMS

# —=========================================

#

# In this project a pushbutton is connected to GP2 of PICO W.
# Presingthe button sends a command to Raspberry Pi 5 to

# activate a relay. UDP protocol 1is used in this project

#

# Author: Dogan Ibrahim

# File : picoudp.py

# Date : October, 2023

B e

from machine {import Pin
import network

import socket

import utime

global wlan

BUTTON = Pin(2, Pin.IN) # Button at GP2
#

# This function attempts to connect to Wi-Fi

#

def connect():

global wlan

wlan = network.WLAN(network.STA_IF)

while wlan.isconnected() == False:
print("Waiting to be connected")
wlan.active(True)
wlan.connect ("TP-Link_6138_EXT", '"24844604")
utime.sleep(5)

connect()

print("Connected")

UDP_PORT = 2000 # Port used
UDP_IP = "192.168.3.21" # Zero 2W IP

cmd = b"1" # Cmd to turn ON

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

while True:

while BUTTON.value() == 1: # Not pressed
pass

while BUTTON.value() == 0: # Not released
pass

sock.sendto(cmd, (UDP_IP, UDP_PORT)) # Send cmd

print("Command sent'") # Message

utime.sleep (1) Wait 1 sec

Figure 14.27 Raspberry Pi Pico W program listing (picoudp.py)

e 278



Chapter 14 « Communication over Wi-Fi

Raspberry Pi 5 program listing: Figure 14.28 shows the Raspberry Pi 5 program listing
(RPiudp.py). At the beginning of the program the libraries used are imported, the relay
control output is configured at port GPIO 2 and is deactivated. Then a socket is created, and
the program binds to it with the Raspberry Pi 5 address. The program then waits to receive
a command from the Pico. The received command is stored in variable data and if it is 1,
then the relay is activated for 5 seconds. At the end of this time, the relay is deactivated
and the program repeats waiting for a command.

R s S e N S e O e O e SNSRI
# RASPBERRY PI PICO W - RASPBERRY PI 5 COMMS

# —SCSCSSCSSSSSSSSSSSSSSSSSSSSSSSSSSSSS=S=S======

#

# This is the UDP server program running on Raspberry Pi 5.
# The program receives a command from PICO W and activates a
# relay connected to GPIO 2 for 5 seconds

#

# Author: Dogan Ibrahim

# File : RPiudp.py

# Date : October, 2023

from gpiozero import LED
import socket
from time import sleep

RELAY = LED(2) # Relay at port GPIO 2
RELAY.off() # RELAY off

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind (("192.168.3.196", 2000))

try:
while True:

data, addr = sock.recvfrom(1024) # GEt command
if data == b'1': # Command s 17?
RELAY.on() # Activate Relay
sleep(5) # 5 seconds delay
#

RELAY.off () Deactivate Relay

except KeyboardInterrupt: # Keyboard -interrupt
print("\nClosing connection to client")

sock.close()

Figure 14.28 Raspberry Pi 5 program listing (RPiudp.py)

e 279



Raspberry Pi 5 Essentials

Testing the project
The steps to test the project are:

e Run the server on Raspberry Pi 5:
pi@raspberry: ~$ python RPiudp.py

e Run the Pico program in Thonny by clicking the green Run button. You should
see the message Connected when Pico connects to the local router.

e Push the button on Pico. The message Command sent will be displayed on Pico
terminal. A packet will be sent to Raspberry Pi 5 which will turn ON the LED for
5 seconds

e Enter Ctrl+C to terminate the program
14.10 Project 8 - Storing ambient temperature and atmospheric pres-
sure data on the Cloud
Description: In this project, the ambient temperature and atmospheric pressure are read
and stored on the Cloud. A BME280 type sensor module (see Chapter 10.6) is used in this

project.

Block diagram: The block diagram of the project is shown in Figure 14.29.

/

Wi-Fi Router

BME280

Figure 14.29 Block diagram of the project
Circuit diagram: Figure 14.30 shows the circuit diagram. SCL and SDA pins of BME280

are connected to SDA (pin 3) and SCL (pin 5) of Raspberry Pi 5. The sensor is powered
from +3.3 V.

e 280



Chapter 14 « Communication over Wi-Fi

1

+3.3V
Vce
SDA 3 1GPI02 (SDA)
BMe280 5
SCL GPIO3 (SCL)
GND Raspberry Pi
1 5
- GND

oL

Figure 14.30 Circuit diagram of the project

The Cloud

There are several cloud services that can be used to store data (for example SparkFun,
ThingSpeak, Cloudino, Bluemix etc.). In this project, the Thingspeak is used. This
is a free cloud service where sensor data can be stored and retrieved using simple HTTP
requests. Before using the Thingspeak we have to create an account on their website and
then log in to this account.

Go to the ThingSpeak website:
https://thingspeak.com/

Click Get Started For Free and create an account if you don't already have one. Then,
you should create a New Channel by clicking on New Channel. Fill in the form as shown
in Figure 14.31. Give the name Raspberry Pi 5 to the application, give a description, and
create two fields called Atmospheric Pressure and Temperature. You can optionally fill
in the other items as well if you wish.

m ThingSpeak’" Channels~ ~ Apps~  Devicesv  Support~

New Channel
Name Raspberry Pi 5

Description Raspberry Pi 5 temperature and atmospheric
pressure data

Field 1 Atmospheric Pressure
Field 2 Temperature|

Field 3 [m]

Figure 14.31 Create a New Channel (only part of the form shown)

e 281



Raspberry Pi 5 Essentials

Click Save Channel at the bottom of the form. Your channel is now ready to be used with
your data. You will now see tabs with the following names. You can click on these tabs and
see the contents to make corrections if necessary:

e Private View: This tab displays private information about your channel where
only you can see.

e Public View: If your channel is public, use this tab to display selected fields and
channel visualizations.

e Channel Settings: This tab shows all the channel options you set at creation.
You can edit, clear, or delete the channel from this tab.

e API Keys: This tab displays your channel API keys. Use the keys to read from
and write to your channel.

e Data Import/Export: This tab enables you to import and export channel data.

You should click the API Keys tab and save your unique Write API and Read API keys
and unique Channel ID in a safe place, as you will need to use them in our program. The
API Keys and the Channel ID in this project were as in Figure 14.32.

Channel ID: 2304635 Ra
Author: doganibrahim pre
Access: Private
Private View Public View Channel Settings Sh
Write API Key

Key 9D8X6FABBQLX45LK

Read API Keys

Key PJLPSDL8CTIC51CI

Figure 14.32 Author's Channel ID and API Keys

Also, select the Public View and navigate to Sharing. You may select the option Share
channel view with everyone so that everyone can access your data remotely.

Program listing: In this program you will be using the BME280 library as in Chapter 10.6.
The steps to install the library are not repeated here.

After constructing the circuit, you should check to make sure that the BME280 is detected
by the Raspberry Pi 5. Enter the following command:

° 282



Chapter 14 « Communication over Wi-Fi

pi@raspberrypi:~ $ sudo i2cdetect -y 1

You should see the hardware address of the BME280 chip displayed as 76 (see Figure 14.33).

pberrypi:~ $§
4

01 2 3

sudo i2cdetect -y 1
5 6 7 8 9 a b ¢ d e £

- em = - —= 76 --

Figure 14.33 BME280 hardware address detected

Figure 14.34 shows the program listing (Cloud.py). At the beginning of the program, the
libraries used are imported to the program. Thingspeak Write Key and Host Address are
defined. The main program loop starts with the while statement. Inside this loop, the IP
address of the Thingspeak website is extracted, and a connection is made to this site at
port 80. Then the atmospheric pressure and temperature readings are obtained from the
BMP280 module and are included in the path statement. The sock.send statement sends
an HTTP GET request to the ThingSpeak site and uploads the pressure and temperature
values. This process is repeated every 30 seconds.

Figure 14.35 shows the pressure and temperature data plotted by ThingSpeak. The Chart
Options can be clicked to change various parameters of the charts. For example, Fig-
ure 14.36 shows the temperature as a column display. In Figure 14.37 the pressure is
shown as a step graph. A title and X-axis label is added in Figure 14.38 to the pressure
graph. Figure 14.39 shows the current temperature displayed in a clock format (click Add
Widgets for this type of display). Figure 14.40 shows the current temperature in digital
format.

Because the Channel was saved as Public, you can view the graph from a web browser (see
Figure 14.41) by entering the Channel ID. In this project, the link to view the data graphs
from a web browser is:

https://api.thingspeak.com/channels/2304635

We can also export some or all of the fields in CSV format by clicking Export recent data
so that it can be analysed by external statistical packages such as Excel.

#
# —================================================

#
# The ambient temperature and pressure sensor BMPE280 1is connected to Raspberry
# Pi 5.The project reads the temperature and atmospheric pressure and sends

e 283



Raspberry Pi 5 Essentials

to the Cloud where it can be accessed from anywhere. In addition, change
of the temperature and the pressure can be plotted in the cloud.

The program uses the Thingspeak cloud service

Author: Dogan Ibrahim

File : Cloud.py
Date : October, 2023

HOH K H H H H K

import socket
from time import sleep
from bme280pi import Sensor

sensor = Sensor(address = 0x76)

APIKEY = "9D8X6FABBQLX45LK" # Thingspeak API key
host = "api.thingspeak.com" # Thigspeak host
#

# Send data to Thingspeak. This function sends the temperature and
# humidity data to the cloud every 30 seconds
#
while True:
sock = socket.socket()
addr = socket.getaddrinfo("api.thingspeak.com",80)[0][-1]
sock.connect (addr)
data = sensor.get_data()
p = data['pressure'] # Pressure in haP
t = data['temperature'] # Temperature in C
path = "api_key="+APIKEY+"&fieldl="+str(p)+"&field2="+str(t)
sock.send(bytes("GET /update?%s HTTP/1.0\r\nHost: %s\r\n\r\n"
%(path,host),"utf8"))
sleep(5)
sock.close()
sleep(25)

Figure 14.34 Program listing

e 284



Chapter 14 « Communication over Wi-Fi

Field 1 Chart g o & % Field 2 Chart g o & =

9 Raspberry Pi 5 Raspberry Pi 5
4
2 24.9
]
= g
'é g 248
£ 1002 g
g :

= 247
<
2
E 05:46 05:47 05:48 05:49 05:46 05:47 05:48 05:49

Date Date
ThingSpeak.com ThingSpeak.com

Figure 14.35 Plotting the pressure and temperature

Field 2 Chart g o & %

Raspberry Pi 5

0 |||||
o

05:46 5:48 05:50
Date

N
S}

Temperature
)

ThingSpeak.com

Figure 14.36 Displaying temperature as columns

Field 1 Chart Z O & %

Raspberry Pi 5

1002.1
1002
05:46 05:48 05:50 05:52
Date

Field Atmospheric Pressure

ThingSpeak.com

Figure 14.37 Displaying pressure as steps

e 285



Raspberry Pi 5 Essentials

Field 1 Chart g o ¢ x Field 2 Chart 2 O & %

J ATMOSPHERIC PRESSURE TEMPERATURE

5

¢

$ 10021 £

] ®

£ ¥y 24.8

g -1

: 5

5 1002 =

z

£ 05:46 05:48 05:50 05:52 05:54 05:46 05:48 05:50 05:52 05:54
Time Time

ThingSpeak.com ThingSpeak.com

Figure 14.38 Adding title and x-axis label

Field 1 Gauge g o & =

Figure 14.39 Displaying the current temperature in a clock format

Field 2 Numeric Display o & %

25

2 hours ago

Figure 14.40 Displaying the current temperature in digital format

e 286



Chapter 14 « Communication over Wi-Fi

ngSpeak™
nel Stats

about 13 hours ago
: about 2 hours ago
b

4

5

2 1002.2
£

4

2

E 1002.1
-3

8

g 1002
2

2 0545

O B httpsy//thingspeak.com/channels/2304635

Channels ~ Apps ~ Devices~ Support~ Commercial Use How to Buy|

Field 1 Chart 2 o ¢ x Field 2 Chart

Raspberry Pi 5 Raspberry Pi 5

Temperature

05:50 05:55 06:00 05:45 05:50 05:55
Date Date
ThingSpeak com

2 o ¢ x

ThingSpeak com

Figure 14.41 Displaying the graphs from a website

e 287



Raspberry Pi 5 Essentials

Chapter 15 ¢ Communication over Bluetooth

15.1 Overview

In the last chapter, you have learned how to write programs to use the Wi-Fi and communi-
cate with other devices over the LAN using the UDP and TCP protocols. In this chapter, you
will develop programs for using the Bluetooth communication.

Bluetooth is a short-range communication technology and is commonly used to communi-
cate with other devices, mainly developed with the IoT applications in mind. All smartphones
nowadays support communication through Bluetooth. Bluetooth operates at 2.4 GHz, with
data rates lower than that of Wi-Fi. Bluetooth is not as secure as Wi-Fi, but it is easier to
use. The power consumption of Bluetooth is lower compared to Wi-Fi, and also it has a
shorter range than Wi-Fi. Bluetooth is a packet-based protocol with a master-slave archi-
tecture, where one master may communicate with up to seven slaves. The effective range
of Bluetooth depends on propagation conditions, antenna configuration, power supply con-
dition, material coverage and so on. Most Bluetooth applications are for indoors where
because of the walls the signals attenuate and result in shorter range.

Raspberry Pi 5 supports both the Classic Bluetooth and Bluetooth Low Energy (BLE). BLE
is intended for reduced power applications while providing reasonable range. Most smart-
phones, including Android, i0S, Windows Phone, Blackberry, macOS and many others sup-
port the BLE. BLE uses the same 2.4 GHz radio frequency as the classic Bluetooth and
dual-mode devices, therefore can share the same single antenna. Classical Bluetooth can
handle large amounts of data quickly, whereas BLE has been developed to handle smaller
amounts of data.

15.2 Project 1 - Exchanging text with a smartphone
Description: In this project, Classical Bluetooth communication is established between
the Raspberry Pi 5 and an Android smartphone. Text messages are exchanged between

the two devices.

Block diagram: Figure 15.1 shows the block diagram of the project.

BLUETOOTH

Smart Phone

Figure 15.1 Block diagram of the project

e 288



Chapter 15 ¢« Communication over Bluetooth

Enabling Bluetooth

Before using your smartphone for Bluetooth applications, you must enable the Bluetooth
on it. Depending on the model of the smartphone you have, this is usually done from the
Settings menu.

Similarly, before using Bluetooth on your Raspberry Pi, you must enable it. There are two
ways you can enable Bluetooth on the Raspberry Pi 5: using the graphical desktop (GUI
mode), or using the Console mode.

Using the Graphical Desktop
The steps for enabling Bluetooth on the Raspberry Pi 5 using the graphical desktop are
given below:

Enable Bluetooth on your smartphone

o If you have a monitor connected directly to the Raspberry Pi 5 then skip the
next line

Start the VNC server on your Raspberry Pi 5 and login using the VNC Viewer.

Click on the blue Bluetooth icon on your Raspberry Pi 5 screen at the top right-
hand side, and turn Bluetooth ON, if it is not already ON. Then, select Make
Discoverable. You should see the Bluetooth icon flashing. Click Add Device

Select raspberrypi in the Bluetooth menu (raspberrypi is the default
Bluetooth name of your Raspberry Pi 5) on your mobile device (you may have
to scan on your mobile device). You should see the Connecting message on
your smart device.

Click Pair to accept the pairing request on your Raspberry Pi 5 as shown in
Figure 15.2

Add New Device v oA X

Searchmg(for Bluetooth devices

B Dogan's Galaxy A71

Cancel Pair

Figure 15.2 Bluetooth pairing request on Raspberry Pi 5

¢ You should now see the message Pairing Successfully on your Raspberry Pi 5

e 289



Raspberry Pi 5 Essentials

Using Console mode

You can enable Bluetooth on your Raspberry Pi 5 using the Console mode. Additionally, you
can make Bluetooth discoverable, scan for nearby Bluetooth devices and then connect to a
Bluetooth device. The steps are given below (characters typed by the user are in bold for

clarity):

Find the Bluetooth MAC address of your smartphone. For Android phones, the
steps are usually:

Go to the Settings menu

Tap About Phone

Tap Status information

e Scroll down to see your Bluetooth address (e.g. Figure 15.3). In this
example, the MAC address was 50:50:A4:0F:62:3F

08:53 M == * A= 81%M

< Status information

IP address
fe80::1¢c9c:7bff:fe76:14f6
192.168.3.166

Wi-Fi MAC address

Phone Wi-Fi MAC address
50:50:A4:0F 6
S——————
Bluetooth addres;*)

50:50:A4:0F:62:3F

Ethernet MAC address

Unavailable

Figure 15.3 Bluetooth MAC address
e Make your Bluetooth discoverable with the following command:
pi@raspberrypi: ~ $ sudo hciconfig hciO piscan
e Start the Bluetooth tool on your Raspberry Pi 5 from the command mode:

pi@raspberrypi:~ $ bluetoothctl

e 290



Chapter 15 ¢« Communication over Bluetooth

Turn Bluetooth ON:

[bluetooth]# power on

Configure Bluetooth to run:

[bluetooth]# agent on

[bluetooth]# default-agent

Make device discoverable:

[bluetooth]# discoverable on

Scan for nearby Bluetooth devices, you may have to wait several minutes:

[bluetooth]# scan on

Enter command devices to see the nearby Bluetooth devices (see Figure 15.4).
You may have to wait a couple of minutes for the display to update. Make a
note of the MAC address of the device you wish to connect to (Android mobile
phone in this project) as we will be using this address to connect to the device.

An example is shown in Figure 15.4:

[Bluetooth]# devices

NEW] Device
[DEL] Device
[NEW] Device

[DEL] Device
NEW] Device
[ ] Device

69:
69:
69:
69:

50
50

FC:9E:
FC:9E:
FC:9E:
FC:9E:
:50:24:
:50:24:

62:DA:
:DA:
:DA:
:DA:
62:
62:

62
62
62

OF:
OF:

4D
4D
4D
4D
3F
3F

69-FC-9E-62-DA-4D
69-FC-9E-62-DA-4D
69-FC-9E-62-DA-4D
69-FC-9E-62-DA-4D
Dogan's Galaxy A71

RSSI:

=71

Figure 15.4 Nearby Bluetooth devices

In this example, the author's smartphone is Galaxy A71 and the Bluetooth
MAC address is: 50:50:A4:0F:62:3F

Pair the device:

[bluetooth]# pair 50:50:A4:0F:62:3F

Connect to our smartphone:

[bluetooth]# connect 50:50:A4:0F:62:3F

Enter yes to confirm passkey

Accept pairing on your smartphone

e 201



Raspberry Pi 5 Essentials

¢ You should see message device 50:50:A4:0F:62:3F Connected : yes
displayed

e Exit from the Bluetooth tool by entering Ctrl+Z

You can find the Bluetooth MAC address of your Raspberry Pi 5 by entering the following
command:

pi@raspberrypi:~ $ hciconfig | grep "BD Address"
You can change the Bluetooth broadcast name by the following command:
pi@raspberrypi:~ $ sudo hciconfig hci0 name "new name"
To see your Bluetooth broadcast name, enter:
pi@raspberrypi:~ $ sudo hciconfig hci0 name
Some other useful Raspberry Pi 5 Bluetooth commands are:
¢ To reset the Bluetooth adapter: sudo hciconfig hciO reset
e To restart Bluetooth: sudo invoke-rc.d bluetooth restart
¢ To list Bluetooth adapters: hciconfig
Python Classical Bluetooth Library
You will need to install the Python Classical Bluetooth library before developing your pro-
gram. This is done by entering the following command in the command mode:
pi@raspberrypi:~ $ sudo apt-get install bluez python3-bluez
Accessing From the Mobile Phone
To access the Raspberry Pi 5 from a smartphone app, make the following changes to your
Raspberry Pi 5 from the command line:

e Start nano to edit the following file:

pi@raspberrypi:~ $ sudo nano /etc/systemd/system/dbus-org.
bluez.service

e Add -C at the end of the ExecStart= line. Also add another line after the
ExecStart line. The final two lines should look like:

ExecStart=/usr/libexec/bluetooth/bluetoothd -C
ExecStartPost=/usr/bin/sdptool add SP

e Exit and save the file by entering Ctrl+X followed by Y

° 292



Chapter 15 ¢« Communication over Bluetooth

e Reboot the Raspberry Pi 5:
pi@raspberrypi:~ $ sudo reboot

Program listing: Figure 15.5 shows the program listing (bluetxt.py). Do not call your
program Bluetooth.py! The Bluetooth code is similar to TCP/IP code. At the beginning of
the program, modules socket, and Bluetooth are imported to the program. The program
then creates a Bluetooth socket, binds and listens on this socket, and then waits to accept
a connection. The remainder of the program is executed in a loop, where the program
issues the statement ClientSock.recv and waits to read data from the smartphone. The
received data is decoded and displayed on the screen. The user is then expected to send a
text message to the smartphone. This message is displayed on the smartphone's screen.
This process is repeated until stopped by the user.

R e S e N e N R e O SIS

# BLUETOOTH COMMUNICATION

# —SS=S=S=S=S=S=S=S===S==========

#

# In this project text messages are exchanged with a smart
# phone using the Bluetooth protocol

#

# Author: Dogan Ibrahim

# File : bluetxt.py

# Date : October, 2023

import socket
import bluetooth

#

# Start of main program loop.Configure Bluetooth, create a

# port, listen for client connections, and accept connection
#

port = 1

ServerSock = bluetooth.BluetoothSocket(bluetooth.RFCOMM)
ServerSock.bind(("", port))

ServerSock. listen(1)

ClientSock, addr = ServerSock.accept()

#

# Now receive text from smart phone and display
#

try:

while True:

data = ClientSock.recv(1024) # receive text
print("Received data: ", data.decode('utf-8'))

e 293



Raspberry Pi 5 Essentials

msg = input("Enter data to send: ") # TExt to send

ClientSock.send(msg.encode('utf-8')) # Send text
except KeyboardInterrupt: # Keyboard int

ServerSock.close() # Close socket

Figure 15.5 Program listing

Testing
The project can be tested by the following steps:

e Make sure that Bluetooth is enabled on both the smartphone and Raspberry
Pi 5 and they are paired

e You can use the freely available Bluetooth apps on our smartphone to
communicate with the Raspberry Pi 5. In this project, the apps called
Bluetooth Terminal HCO5 by mightyIT is used (Figure 15.6)

0930 MG ® N =5l 78%m
< Q
o Bluetooth Terminal
4 HC-05
mightyIT

Contains ads * In-app purchases

Figure 15.6 Android Bluetooth apps used in the project

e Start the Raspberry Pi program:
pi@raspberrypi:~ $ python bluetxt.py

e Start the smartphone apps and select the paired Raspberry Pi 5 device (e.g.
raspberrypi)

e Enter a message in column Enter ASCII Command and press Send ASCII.
The message will be sent to the Raspberry Pi 5.

e Enter a message on the Raspberry Pi 5. This message will be sent and
displayed on the smartphone top part of the screen

e Figure 15.7 shows an example message exchange between the Raspberry Pi 5

and the smartphone. In this example, the smartphone sends the message:
message from the smartphone and Raspberry Pi 5 sends the message:

e 294



Chapter 15 ¢« Communication over Bluetooth

message from Raspberry Pi 5

pilraspberrypi:~ $ python bluetxt.py
Received data: message from the smart phone

Enter data to send: message from Raspberry Pi 5

1638 B -
Bluetooth Terminal HC-05
i

d to r

Auto Scroll

-\ message from the smart phone

Figure 15.7 Message exchange between the Raspberry Pi 5 and a smartphone
e Enter Ctrl+C to close the socket and terminate the program
15.3 Project 2 - Bluetooth control of LED from a smartphone
Description: In this project, an LED is connected to port GPIO 21 (pin 40) of Raspberry
Pi 5 through a 470 Ohm current limiting resistor. The LED is controlled by sending com-

mands from an Android smartphone using Bluetooth communication.

The following commands can be sent from the Android smartphone to control the LED:

L1 Turn the LED ON
LO Turn the LED OFF

Block diagram: Figure 15.8 shows the block diagram of the project.

BLUETOOTH

Smart Phone

LED

Raspberry Pi 5

Figure 15.8 Block diagram of the project

e 295



Raspberry Pi 5 Essentials

Program Listing: Figure 15.9 shows the program listing of the project (blueled.py, do
not call your program Bluetooth.py!). The Bluetooth code is similar to TCP/IP code. The
LED port is defined and configured as output through the gpiozero module. The program
then creates a Bluetooth socket, binds and listens on this socket, and then waits to accept a
connection. The remainder of the program is executed in a loop, where the program issues
the statement ClientSock.recv and waits to read data from the smartphone. Note that
the smartphone app automatically appends carriage-return and line-feed characters to the
end of the data (i.e. \r\n)

In this project an LED is connected to GPIO 21.The LED
LED is controlled by sending commands from an Android
smart phone using a Bluetooth apps.

Valid commands are:
L1 Turn ON the LED
L® Turn OFF the LED

Author: Dogan Ibrahim
File : blueled.py
Date : October, 2023

HOoH O OH O O H H W H W K H

import socket
import bluetooth
from gpiozero import LED

#

# LED is at GPIO 21, configure as output and turn OFF

#

led = LED(21) # LED at port 21
led.off() # LED off

#

# Start of main program loop.Configure Bluetooth, create a

# port, listen for client connections, and accept connection
#

port = 1

ServerSock = bluetooth.BluetoothSocket(bluetooth.RFCOMM)
ServerSock.bind(("", port))

ServerSock. listen(1)

ClientSock, addr = ServerSock.accept()

e 296



Chapter 15 ¢« Communication over Bluetooth

# Now receive comamnds and decode
#
try:

while True:

data = ClientSock.recv(1024) # receive command
if data == b'L1\r\n': # L1?
led.on() # turn ON LED
elif data == b'LO\r\n': # LO?
led.off() # turn OFF LED
except KeyboardInterrupt: # Interrupt

ServerSock.close()
Figure 15.9 Program listing

Testing
The same Android app as in the previous project is used. The steps are:

e Make sure that the Bluetooth is enabled on both the smartphone and Raspberry
Pi 5 and that they are already paired

e Start the Raspberry Pi 5 program:
pi@raspberrypi:~ $ python blueled.py

e Start the apps as before. To send command L1, enter L1 and click Send
ASCII. The LED should turn ON.

Suggestion for additional work
You could enter the program name in the following format inside file /etc/rc.local so that
the program starts automatically every time the Raspberry Pi 5 restarts:

python /home/pi/blueled.py &

When you finish your project, don't forget to remove the above line from file /etc/rc.lo-
cal; otherwise the program will run every time your Raspberry Pi 5 is restarted. You should
also shut down your Raspberry Pi 5 orderly instead of just removing the power cable. The
command to shut down orderly is:

pi@raspberrypi:~ $ sudo shutdown now
15.4 Arduino UNO - Raspberry Pi 5 Bluetooth communication
The Arduino Uno has no built-in Bluetooth module. You have to use an external Bluetooth

module to communicate with other devices via the Bluetooth protocol. You can, however,
easily use a serial Bluetooth module, such as the HC-06. In the next section, you will de-

e 297



Raspberry Pi 5 Essentials

velop a project and learn how to connect a HC-06 type low-cost Bluetooth module to your
Arduino UNO and communicate with the Raspberry Pi 5.

15.4.1 Project 3 - Communicating with an Arduino UNO over Bluetooth
Description: In this project, a button is connected to the Arduino UNO. Also, a +3.3 V re-
lay is connected to the Raspberry Pi 5. Pressing the button on the Arduino sends command
L1 to Raspberry Pi 5 which then activates the relay for 5 seconds. Similarly, sending LO
deactivated the LED. The aim of this project is to show how the Arduino UNO and Raspberry
Pi 5 can communicate by using an external Bluetooth module on the Arduino UNO.

The HC-06 Bluetooth module
HC-06 is a low-cost, popular 4-pin serially controlled module with the following pins (see
Figure 15.10):

Figure 15.10 The HC-06 Bluetooth module
HC-06 is a serially controlled module, having the following basic specifications:

e +3.3 Vto +6 V operation

e 30 mA unpaired current (10 mA matched current)

e Built-in antenna

e Band: 2.40 GHz - 2.48 GHz

e Power level: +6 dBm

e Default communication: 9600 baud, 8 data bits, no parity, 1 stop bit
¢ Signal coverage: 30 feet

o Safety feature: Authentication and encryption

e Modulation mode: Gauss frequency shift keying

Block diagram: Figure 15.11 shows the block diagram of the project.

Arduino Uno

Figure 15.11 Block diagram of the project

Circuit diagram: The circuit diagram is shown in Figure 15.12. The button is connected to
pin 2 of Arduino UNO through a pull-up resistor. The relay is connected to port GPIO 21 of
the Raspberry Pi 5. HC-06 is a serial device with TX and RX pins. Only the RX input of the
HC-06 is used, since in this project you only send data to the Bluetooth module. The output
pin voltage of the Arduino UNO is +5 V, but HC-06 is not 5-V compatible. Therefore, a resis-

e 298



Chapter 15 ¢« Communication over Bluetooth

tive voltage divider circuit is used to lower the Arduino voltage to +3.3 V. TX pin of HC-06 is
connected to pin 3 of Arduino UNO (pin 3 is configured as a software serial port in software)

Antenna

I (on-board) 1
10k

+5V +3.3V
° 2
cc
Button[l P10 21 40 s Vee +—o
HC-06 Rela
1k V o
I 3 RX GND
1 Arduino Raspberry Pi
; Uno 2 GND 5 J_-
JT— = Bluetooth module 39_l_

Figure 15.12 Circuit diagram of the project

Connecting to Arduino over Bluetooth
You will find the MAC address of the HC-06 and then use this address to connect to it. The
default HC-06 passcode is 1234. The steps to find the MAC address are:

Construct the Arduino circuit (Figure 15.12) and apply power so that HC-06 can
be accessible. The red LED on HC-06 will be flashing to indicate that it is not
currently connected to any device.
e Make your Raspberry Pi 5 Bluetooth discoverable:

pi@raspberrypi: ~ $ sudo hciconfig hciO piscan
e Start the Bluetooth tool:

pi@raspberrypi:~ $ bluetoothctl

Turn Bluetooth ON:

[bluetooth]# power on
e Configure Bluetooth to run:

[bluetooth]# agent on
[bluetooth]# default-agent

e Make device discoverable:
[bluetooth]# discoverable on
e Scan for nearby Bluetooth devices, you may have to wait several minutes:

[bluetooth]# scan on

e 299



Raspberry Pi 5 Essentials

e Enter command devices to see the nearby Bluetooth devices. You may have to
wait several minutes for the display to update. You should see the HC-06 listed
with its MAC address.

[Bluetooth]# devices

In this example, the author's HC-06 was identified with the MAC address:
98:D3:91:F9:6C:19

o After finding its MAC address, you may get information about the HC-06 by
entering the following command:

[Bluetooth]# info 98:D3:91:F9:6C:19

Which may be displayed as in Figure 15.13:

[bluetooth]# info 98:D3:91:F9:6C:19
Device 98:D3:91:F9:6C:19 (public)
Name: HC-06
Alias: HC-06
Class: 0x00001£00
Paired: yes
Trusted: yes
Blocked: no
Connected: no
LegacyPairing: yes
UUID: Serial Port
RSSI: -29

Figure 15.13 Getting information on HC-06
If Trusted: no is displayed, enter command trust 98:D3:91:F9:6C:19

Exit the Bluetooth tool by entering Ctrl+Z and then enter the following statement to make
a connection in command mode (enter your own HC-06 MAC address):

e pi@raspberrypi:~ $ sudo rfcomm connect hcio 98:D3:91:F9:6C:19 &
e Enter Ctrl+C to exit

You should be connected now and the red LED on HC-06 should stop flashing. You are now
ready to develop your programs for the Arduino UNO and Raspberry Pi 5.

Raspberry Pi 5 program: Figure 15.14 shows the Raspberry Pi 5 program (zeroprog.
py). In this program, we will not be using the Bluetooth library. When we connect to the
HC-06, a virtual serial terminal named /dev/rfcommO is created on the Raspberry Pi 5.
You can read the commands sent by the HC-06 by opening this serial port and then reading
the data.

e 300



Chapter 15 ¢« Communication over Bluetooth

Serial port /dev/rfcommO is opened with the baud rate set to 9600 (default baud rate of
HC-06 is 9600) using the following statement:

ser = serial.Serial(port='/dev/rfcomm0’, baudrate=9600)
Data sent by HC-06 is then read using statement:
data = ser.read()

If the received data is b'l' then the relay is activated for 5 seconds by the following state-
ments:

RELAY.on()
sleep(5)
RELAY.off()

In this project a Relay is connected to GPIO 21.The
Relay 1is controlled by sending command from an Arduino
Uno using a Bluetooth apps.

Valid command 1is: «1»
Author: Dogan Ibrahim

File : zeroprog.py
Date : October, 2023

HOoH o H B H H o H O H R

import serial
from time import sleep
from gpiozero import LED

#

# Relay is on GPIO 21, configure as output and turn OFF
#

RELAY = LED(21) # Relay at port 21
RELAY.off () # Relay off

#

# Attach to virtual serial port /dev/rfcomm®

#

ser = serial.Serial(port='/dev/rfcomm@', baudrate=9600)

e 301



Raspberry Pi 5 Essentials

# Now receive commands and decode

#
try:
while True:
data = ser.read() # receive comman
if data == b'1l': # 17
RELAY.on () # activate Relay
sleep(5) # 5 seconds
RELAY.off () # Relay OFF
except KeyboardInterrupt: # Interrupt
RELAY.off () # deactivate Relay

Figure 15.14 Program: zeroprog.py

Arduino UNO program: Figure 15.15 shows the Arduino Uno program (ardprog). A soft-
ware serial port is used in this program, where pin 3 is configured as the TX pin and pin 4
as the RX pin (RX is not used in this project). Button is then assigned to port 2. Inside the
setup() function, serial port baud rate is set to 9600 and Button is configured as an input
pin. Inside the main program loop, the program waits until the button is pressed and then
released. '1' is then sent to the HC-06, where Raspberry Pi 5 will turn ON the relay when
it receives this command.

In this project a button is connectd to Arduino Uno
pin 2. HC-06 Bluetooth module is connected to pin 3
The program sends command "1" over the Bluetooth when

the button is pressed

Autjor: Dogan Ibrahim
File : ardprog
Date : October, 2023

::::::::::::::::::::::::::::::::::::::::::::::::::*/
#include <SoftwareSerial.h>
SoftwareSerial MySerial(4, 3); // rx, tx
int Button = 2; // Button at pin 2
void setup()
{
MySerial.begin(9600) ; // Baud rate
pinMode (Button, INPUT); // Button is dinput

e 302



Chapter 15 ¢« Communication over Bluetooth

}
//
// MAin program looop
//
void loop()
{
while (digitalRead(Button) == 1); // Button not pressed
while (digitalRead(Button) == 0); // Button not released
MySerial.print("1"); // Send "1"
delay (1000);
}
Figure 15.15 Program: ardprog
Testing

e Run the Raspberry Pi 5 program:
pi@raspberrypi:~ $ python zeroprog,py
e Compile and upload the Arduino UNO program
e Press and release the button. The relay should turn ON for 5 seconds

15.4.2 Project 4 - Play audio (e.g. music) on Bluetooth speaker via
Raspberry Pi 5

Description: In this project, we will play music on an external Bluetooth speaker via our
Raspberry Pi 5. We will store our MP3 music files on the Raspberry Pi 5 and then play them
on the Bluetooth speaker.

Before you can send audio to a Bluetooth speaker, you have to have a program on the
Raspberry Pi 5 that can play audio files (e.g. MP3 files). In this project, we will be using the
popular VLC Media Player program on the Raspberry Pi 5. The steps to install VLC are:

e pi@reaspberrypi:~ $ sudo apt-get update
e pi@reaspberrypi:~ $ sudo apt-get upgrade
e pi@raspberrypi:~ $ sudo apt-get install vic

Wait until the VLC program is installed. You need to have MP3 files to test
the project. Download or copy some of your favourite MP3 music files to your
Raspberry Pi 5 (e.g. to the default home directory /home/pi or to a newly
created directory).

You now have to pair with the Bluetooth speaker and connect to it. We will do this from the
Desktop. The steps are:

e 303



Raspberry Pi 5 Essentials

e Start Desktop on your Raspberry Pi 5

¢ Click the Bluetooth icon at the top right-hand corner of Desktop and select to
turn ON Bluetooth

e Click on the Bluetooth icon and set to make it discoverable

¢ Click on the Bluetooth icon and click Add Device to pair and add your
speaker, or if your speaker is already listed then click on it and click to Connect
(in the author's example, the Bluetooth speaker had the name BT-888). See
Figure 15.15.

Tum Off Bluetooth

Make Discoverable

Add Device

@ BT-888 >
@® Dogan's Galaxy A71 >
© HC-06 X >

Figure 15.16 Click on Bluetooth speaker device to connect to it

e We are now connected to the speaker. The next thing to do is to direct our
audio output to the speaker. Right-click on the Volume icon at the top right-
hand corner of the Desktop and select your Bluetooth speaker name (e.g. BT-
888 in the author's case).

¢ Open File Manager in Desktop (Accessories — File Manager) and double-
click on your MP3 file. The Bluetooth speaker should start playing your chosen
music.

¢ Click Media — Quit to stop playing the music and exit from VLC.

¢ Click File — Close Window to exit File Manager

Suggestion: You can create a Play List using the VLC Media Player and store your favourite
music files in this list. You can then play the list.

e 304



Chapter 16 e Raspberry Pi 5 Camera Projects

Chapter 16 e Raspberry Pi 5 Camera Projects

16.1 Overview

In this chapter, you will be developing various camera projects using the Raspberry Pi 5.
The early sections of the chapter describe how to install and use the camera in still picture
mode. In later sections, you will develop more interesting camera-based projects using the
Python programming language.

There are several Raspberry Pi camera modules. Version 1 was released in 2013, and it was
a 5-megapixel model, which is not available anymore from Raspberry Pi. This was followed
by Version 2, which was 8-megapixels and was released in 2016. The latest model Ver-
sion 3 has 12 megapixels and was released in 2023. Additionally, 12-megapixel high-qual-
ity cameras for use with external lenses with CS or M12 type mounting were released in
2020 and 2023 respectively. Raspberry Pi cameras are available as either visible-light-type
or infrared-type for night vision. All cameras can take high-resolution pictures along with
HD 1080p video, and they can all be controlled by software. See the following link for fur-
ther information on Raspberry Pi cameras:

https://www.raspberrypi.com/documentation/accessories/
camera.html#about-the-camera-modules

Note: The Raspberry Pi 5 camera socket is a 15-pin socket, where most of the Rasp-

berry Pi cameras have 22 pins. It may therefore be necessary to purchase a 15-pin to
22-pin cable to connect your camera to the Raspberry Pi 5 (see Figure 16.1).

15PIN 1.0mm

22PIN 0.5mm

Figure 16.1 15-pin to 22-pin camera cable

16.2 Installing the Camera
The steps to install the camera on your Raspberry Pi 5 are as follows:

e Make sure that your Raspberry Pi 5 is switched off

e Locate one of the camera ports (Figure 1.1)

e 305



Raspberry Pi 5 Essentials

Pull up the plastic cable holder slider of the camera port gently by holding from
both ends. The cable holder slider will open

Insert the 15-pin camera ribbon cable (with the connector side facing the white
side of the connector) into the cable holder

e Push down the plastic cable holder slider so that it locks and holds the cable
e Connect the 22-pin side of the cable to your camera
e Apply power to your Raspberry Pi 5

You should now be able to test your camera interface and carry out camera operations to
capture still images and video frames. Notice that you must be in Desktop GUI mode with a
monitor directly attached to Raspberry Pi 5 through the micro-HDMI cable to use the cam-
era. The author had problems using the camera remotely using his PC even though he was
in Desktop GUI mode. Also, the old camera commands raspistill, raspiyuv, raspivid, and
raspividyuv are now obsolete and cannot be used with the Raspberry Pi 5.

In this chapter, a Version 2 visible-light camera is used by the author.

16.3 Project 1 - Still camera commands

In this project, you will be investigating and using the various camera commands to capture
still images.

16.3.1 libcamera

libcamera is the new camera software which supports the four Raspberry Pi cameras:
V1: OV5647, V2: IMX219, V3: IMX708, and third-party sensors such as IMX290, IMX327,
0V9281, IMX378. The following libcamera commands are supported:

libcamera-hello: this command starts a camera preview and displays it on the screen for
5 seconds

libcamera-jpeg: this command captures high resolution JPEG still images

libcamera-still: this is a more complex still camera command which emulates features of
the original old raspistill command

libcamera-vid: this is a video capture command

libcamera-raw: this command captures raw (unprocessed) frames directly from the cam-
era sensor

libcamera-hello: This command starts the camera and displays a preview window for

5 seconds. The -t <duration> option enables the user to select for how long the window
should be displayed, where <duration> is in milliseconds. For example, the following acti-

e 306



Chapter 16 e Raspberry Pi 5 Camera Projects

vates the camera for 10 seconds:

libcamera-hello -t 10000

To activate the camera indefinitely, use the command:

libcamera-hello -t 0

Use Ctrl+C to stop the camera

The following options are available:

Options

The following website displays all the options:

https://www.raspberrypi.com/documentation/computers/
camera_software.html#common-command-line-options

The options are in 3 groups: common options, still camera options, and video options.

Some options are:

Common options:
--help
--version
--list-cameras
--camera

--config —c <filename>

--preview (--p)

--fullscreen (or --f)

--n
ing

--info-text
--shutter
--awb
--output
--0

Still camera options:

--quality
--exif
--timelapse
onds
--datetime
--timestamp

--keypress (or --k)

display help information

display the software version

list the cameras available for use

select a camera to use

read camera options from file <filename>

preview window settings <x,y,w,h>

fullscreen preview

suppress the preview. This is very useful for quickly tak-

images without preview

set window title bar to <text>

set the exposure time in microseconds

set the AWB mode

specify the output filename to save the image
same as above

JPEG quality number (93 default, 100 maximum)
add extra EXIT tags
time interval between time-lapse captures in millisec-

use date format for the output filename

use system timestamp for the output filename
capture image when the Enter key is pressed

e 307



Raspberry Pi 5 Essentials

--encoding (or --e) set the image encoding (jpg, png, bmp, rgb, yuv420)

--raw (or --r)

Video options:

save raw file

--quality (or --q) JPEG quality
--bitrate (or --b) H.264 bitrate
--codec encoder to use (h264, mjpeg, yuv420, libav)

--keypress (--k) toggle between recording and pausing

--split

split multiple recordings into separate files

Some examples are given below:

libcamera-hello --list
Figure 16.2 shows the available cameras.

pi@raspberrypi:~ $ libcamera-hello --list
Available cameras

: imx219 [3280x2464] (/base/axi/pcie@120000/rpl/i2c@80000/imx219@10)

pilraspberrypi:~ $ JJ

'SRGGB10_CSI2P' : 640x480 [206.65 fps - (1000, 752)/1280x960 crop]
1640x1232 [41.85 fps - (0, 0)/3280x2464 crop]
1920x1080 [47.57 fps - (680, 692)/1920x1080 crop]
3280x2464 [21.19 fps - (0, 0)/3280x2464 crop]

'SRGGB8' : 640x480 [206.65 fps - (1000, 752)/1280x960 crop]

1640x1232 [41.85 fps - (0, 0)/3280x2464 crop]
1920x1080 [47.57 fps - (680, 692)/1920x1080 crop]
3280x2464 [21.19 fps - (0, 0)/3280x2464 crop]

Figure 16.2 Available cameras

libcamera-jpeg —o mycamera.jpg image is captured and saved in file mycamera.
jpg. To view the captured image, click to open File Manager in Desktop GUI mode, scroll
down and right-click on the image file mycamera.jpg and select Image Viewer. You
should see the image displayed on your monitor. An example display is shown in Fig-

ure 16.3

e 308

O S .l

Figure 16.3 example display on the monitor



Chapter 16 e Raspberry Pi 5 Camera Projects

Notice that there are several menu options when the image is displayed. Selecting the Edit
menu option, you can copy, flip horizontal, flip vertical, rotate clockwise, rotate anti-clock-
wise, etc. Selecting the View option, you can see in full screen, do a slideshow, zoom in,
zoom out, etc. Selecting the Go option, you can see the previous or the next image, or the
last image etc.

libcamera-jpeg -o test.jpg —t 5000 --width 640 --height 480 will display the preview
for 5 seconds, save the image in file test.jpg where the image will be in VGA format

libcamera-jpeg -o test.jpg -t 3000 --shutter 20000 --gain 1.5 will display the pre-
view for 3 seconds, set the shutter speed to 20 ms and gain to 1.5x

libcamera-still is similar to libcamera-jpeg, but it supports more of the legacy raspistill op-
tions. Some examples are:

libcamera-still —o test.jpg image is captured and saved in file test.jpg.
libcamera-still —e bmp —o test.bmp saves the file as BMP format in file test.bmp
libcamera-still -r —o test.jpg saves in raw format

16.4 Project 2 - Building a time-lapse camera — Who is in my parking
place?

Description: In this project, we have positioned our camera to take pictures of our park-

ing place. We will be taking still images every minute (60,000 ms) for the duration of ten

minutes (600,000 ms).

The stages in creating a time-lapse camera session are as follows:

e Fix the camera at the place of interest

e Take a picture of the object to make sure that it is in the field of view and is in
focus

e Take pictures of the object at regular intervals

e Combine the pictures into a movie file

e Play the movie file

Required Commands: In time-lapse camera sessions, you usually have to store large
number of pictures taken at regular intervals. Before doing this, you have to know the size
of a picture, how often the pictures will be taken, and the space available on your storage
device (e.g. the Raspberry Pi SD card). The author has taken a number of 3280 x 2434
(8 megapixel) pictures of the same environment at different quality levels using the follow-
ing command:

libcamera-still -t 600000 -0 Mypics%d.jpg -timelapse 60000

e 309



Raspberry Pi 5 Essentials

The file sizes are as follows:

Quality level (-q setting) Exact File size (bytes) Approximate file size (MB)

100 4,799,812 4.8
50 4,149,210 4.2
25 2,484,031 2.5
10 739,408 0.74
5 281,971 0.3

It was observed by the author that there was not much noticeable change in the visible
quality of the images at different quality levels. It is therefore recommended to take the
picture at say 10% quality level (option —q 10) where the size of a file is around 0.74 MB.
If f is how often we want to capture the images in minutes, and d is the total duration of
the capturing process in minutes, then the required storage is, s = 0.74d/f MB. During
this period, n = d/f images will be taken and also n files will be created. As an example, if
we want to capture images every minute for the duration of 10 minutes, then the required
storage will be s = 0.74 x 10/1 = 7.4 MB and 9 images will be taken with 9 files created.

The required commands to start the time-lapse in this project are as follows. Images will
be taken every minute for the duration of 10 minutes. A directory called mypics is created
and all the created image files are stored in this directory with the filenames starting with
Mypics and including a four-digit ascending number:

pi@raspberrypi:~ $ mkdir mypics

pi@raspberrypi:~ $ cd mypics

pi@raspberrypi:~/mypics $ libcamera-still -t 600000 -o Mypics%04d.jpg
--timelapse 60000 -q 10

Figure 16.4 shows the files created in directory mypics. The image files are created with
the names such as Mypics0000.jpg, Mypics0001.jpg, Mypics0002.jpg, ... etc.

pi@raspberrypi:~/mypics $ 1s

Mypics0000.jpg Mypics0002.jpg Mypics0004.jpg Mypics@006.jpg Mypics0008.jpg
Mypics0001l.jpg Mypics0003.jpg Mypics0005.jpg Mypicd@OO7.jpg
pi@raspberrypi:~/mypics $ 1s

Figure 16.4 Created image files
After all the still JPEG files have been created, you may want to join the files together and
create a video file. This can be done in several ways. In this section, we shall be using the
software called ffmpeg which is already installed on Raspberry Pi 5.
Now we can join our JPEG files together into a video file. Enter the following commands to

move to the directory where the files are, and then join the still image files to create the
video file Mytimelapse.mp4:

e 310



Chapter 16 e Raspberry Pi 5 Camera Projects

pi@raspberrypi:~ $ cd mypics

pi@raspberrypi:~/mypics $ ffmpeg -framerate 1 -i Mypics%04d.jpg —-c:v
libx264 -r 30 Mytimelapse.mp4

The above command takes all the input images, =i Mypics%04d.jpg. This will search
for the image with the lowest digit and sets that as the starting image. It will then incre-
ment that number by one and if the image exists, it will be added to the sequence. Option
-framerate 1 is used to define how fast the pictures are read in, in this case, one picture
per second. Omitting the frame rate will default to 25. -r 30 is the frame rate of the output
video. Again, if it defaults to 25 if not defined. The -c:v libx264 specifies the codec to use
to encode the video. x264 is a library used for encoding video streams into the H.264/
MPEG-4 AVC compression format.

You can play the output video (Mytimelapse.mp4) file by double-clicking on it and se-
lecting the VLC media player in your Desktop GUI. You can, if you wish, copy the created
video file to your PC after installing and using the file copy software called winSCP on your
PC. After the file is copied to your PC, you can play it using various video player software:

This completes the design of our time-lapse camera processing.

Scheduling the Time-lapse

The process we have described to capture still time-lapse images requires the Raspberry
Pi 5 to be connected to a computer (or a monitor) so that the commands can be issued
from the command line. In this section, you will see how to schedule the time-lapse process
so that it starts automatically after the Raspberry Pi 5 is powered up, without the need to
connect a monitor or a computer. This can be done using the software tool called crontab
as described below.

With the command crontab you can specify a list of tasks to be scheduled at specified
times of the day, and at specified days of the week. You should run crontab by entering the
following command:

pi@raspberrypi:~ $ crontab —e
The first time you run crontab you should be asked to select an editor. Select nano (op-
tion 1) as this is the easiest editor to use. crontab consists of six components for minutes,

hours, day of the month, month of the year, day of the week, and the command to be ex-
ecuted, organized as shown in Figure 16.5.

e 311



Raspberry Pi 5 Essentials

m h dom mon dow command

* *x * x % command to execute

TTTTT

R

R

| | | | | day of week (0 - 7) (0 to 6 are Sunday to Saturday, or use

names; 7 is Sunday, the same as 0)
|
|
|
|

HOH K H H R

| | b——— month (1 - 12)

| L—---—-—-——-——————-—-—-—'——-day of month (1 - 31)
' hour (0 - 23)

min (0 - 59)

HOH =

Figure 16.5 crontab fields

Some examples are given below (notice that you must give the full path to the script file):

* x % x * sh /home/pi/test.sh run test.sh every minute

*/2 * * * * sh /home/pi/test.sh run test.sh every 2 minutes

*/20 * * * * sh /home/pi/test.sh run test.sh every 20 minutes

0 0 * * * sh /home/pi/test.sh run test.sh every day at midnight

* *x % *x 1,3 sh /home/pi/test.sh run test.sh every minute on Mondays and
Wednesdays

* 1 * * 1 sh /home/pi/test.sh run test.sh every Monday at 1:00 a.m.

30 9 * * 5 sh /home/pi/test.sh run test.sh every Friday at 9:30

0 6 * * * sh /home/pi/test.sh run test.sh every day at 6 a.m.

As well as single numbers for each of the first 5 parameters, you can also use the following
special formats:

¢ A sequence of numbers, separated by a comma (e.g. 0,20,40,42)

e Arange (4-9)

¢ A sequence of ranges (e.g. 0-10,30-50)

e An asterisk, meaning 'all' (e.g. *)

e Every n'th time by adding the /c character (e.g. */2 for every 2nd minute)

The crontab generator utility helps to generate a crontab table for the specified sched-
uling times. This utility can be accessed from the following website on your PC:

https://crontab-generator.org/

An example use of the crontab generator utility is shown in Figure 16.6 where the utility
is used to set the scheduling time to be every 5 minutes. The script file is set to /home/
pi/test.sh, which should be entered in the field Command to Execute at the lower part
of the screen. Then, click Generate Crontab Line. The required crontab command and
sample times that the script will run at are shown at the top of the crontab generator as
shown in Figure 16.7.

e 312



Chapter 16 e Raspberry Pi 5 Camera Projects

Complete the following form to generate a crontab line

Ctri-click (or command-click on the Mac) to select multiple entries

7am
8am
- 9am =

Minutes Hours Days
Every Minute 0o B @ Every Hour Midnight = @ Every Day P
Even Minutes 1 |E Even Hours 1am Even Days 2 |8
0Odd Minutes 2 0Odd Hours 2am = 0Odd Days 3
@ Every 5 Minutes i Every 6 Hours "j:: Every 5 Days ;
Every 15 Minutes 5 Every 12 Hours 5am Every 10 Days 6
Every 30 Minutes 6 6am Every Half Month 7
7 8
8 9
9 1

=)
1

Months Weekday
© Every Month R © Every Weekda)

ry Jan ry J Sun
Even Months Feb Monday-Friday Mon
Odd Months Mar Weekend Days Tue
Every 4 Months Apr |8 Wed
May |= Thu

Every Half Year Jun Fri
Jul Sat

Aug
Sep
Oct . -

Figure 16.6 crontab generator utility set to one minute past every hour

Cron Job Generated (you may copy & paste it to your crontab):

*I5*** * Jnomel/piltest.sh >/dev/null 2>&1

Your cron job will be run at: (5 times displayed)

¢ 2018-12-26 15:15:00 UTC
o 2018-12-26 15:20:00 UTC
* 2018-12-26 15:25:00 UTC
o 2018-12-26 15:30:00 UTC
¢ 2018-12-26 15:35:00 UTC

Figure 16.7 The required command and sample scheduling times
Now, going back to our project, we wish to run a script file every minute to capture still im-
ages. The script is given the filename timelapse.sh. The crontab command for this project
should be as follows:
*/1 * * * * sh /home/pic/mypics/timelapse.sh 2>&1

Notice that 2>&1 at the end of the script ensures that email messages are not sent after
the command is executed. Here, we redirect 2 (stderr) to 1 (stdout) and since the output
is redirected to a file, it will not generate emails of outputs. Exit from the crontab table by

pressing Ctrl followed by Y and return to save the new file.

The scheduled tasks can be listed with the following command. Enter the command, and
you should see your script file scheduled to run:

pi@raspberrypi:~ $ crontab -I

e 313



Raspberry Pi 5 Essentials

Next, we have to create the script file timelapse.sh in the folder mypics. This can be done
using the nano editor. The steps are:

e 314

Navigate to the folder mypics: pi@raspberrypi:~ $ cd mypics

start the nano editor: pi@raspberrypi:~/mypics $ nano timelapse.sh

Enter the following lines into the blank file. Variable DATETIME will extract the
current data and time every time (every minute) the script runs. Date and
time-stamped images will then be taken and stored in files with extensions

.jpg. The images will be captured with 10% resolution (-q 10):

DATETIME=$(date +"%d-%m-%Y_%H%M%S")
libcamera-jpeg —q 10 —o /home/pi/mypics/$DATETIME.jpg

Exit from the nano editor by pressing Ctrl X followed by Y and return to save

Display the contents of the file to make sure that you have the correct lines in
the file:

pi@raspberrypi:~/mypics $ cat timelapse.sh

Make sure that your script file runs correctly. Enter the command: sh
timelapse.sh

and you should see a new JPEG file with the filename containing the date and
time.

You should now reboot your Raspberry Pi 5. The still images will be taken every
minute after your Raspberry Pi 5 starts. After taking all the necessary images,
don't forget to edit the crontab table and remove the timelapse.sh entry. Then
reboot your Raspberry Pi 5 (pi@raspberrypi:~/mypics $ sudo reboot) so that
no more images will be taken.

Check folder mypics to make sure that you have the image files. You can use
the following command to list the files in the folder:

pi@raspberrypi:~/mypics $ Is

After collecting all your images, you may want to join all the image files
together and create a video file as described earlier.

Don't forget to run the crontab —e and remove the scheduling



Chapter 16 e Raspberry Pi 5 Camera Projects

16.5 Project 3 - Video camera commands

libcamera-vid is the video capture command. By default, it uses the Raspberry Pi's hard-
ware H.264 encoder. It will display a preview window and write the encoded bit stream to
the specified output. For example, to write a 10-second video to file test.h264, use the
command:

libcamera-vid -t 10000 -o test.h264

Video is recorded as raw H264 format, which is incompatible with many video players. The
resulting file can be played using the VLC media player program.

Note that this is an unpacked video bit stream, it is not wrapped in any kind of container
format (such as an MP4 file). The --save-pts option can be used to output frame times-
tamps so that the bit stream can subsequently be converted into an appropriate format
using a tool like mkvmerge.

libcamera-vid -0 test.h264 --save-pts timestamps.txt
and then if you want an mkv file:

mkvmerge -0 test.mkv --timecodes 0:timestamps.txt test.h264
the following command can be used for mpeg output format:

libcamera-vid -t 10000 --codec mjpeg -0 test.mjpeg
16.6 Project 4 - Who is ringing my doorbell?
Description: In this project, the camera is mounted on our front door. When the doorbell
button is pressed, the camera automatically takes a picture of the person ringing the door-
bell, and this picture is sent to an Android smartphone. Additionally, a relay is turned ON

for 5 seconds to activate a doorbell.

Block Diagram: Figure 16.8 shows the block diagram of the project.

Bluetooth J
Nk B
s - Smartphone
o H i —»%—»@
Raspberry Pi 5 Relay Doorbell
Doorbell
Button

Figure 16.8 Block diagram of the project

e 315



Raspberry Pi 5 Essentials

Circuit Diagram: The circuit diagram of the project is shown in Figure 16.9. The doorbell
button and the relay are connected to port pins GPIO 20 and GPIO 21 respectively.

Program listing: In this program, you will be using the OBEX Object Push in Raspberry
Pi 5 command mode to send pictures to your smartphone using Bluetooth. Before using
OBEX Object Push, you have to find out the MAC address and the channel number of your

w

N & =

GET STARTED ~ DISMISS

(?) [ CREATE 0

VIEW CHANNEL ~ CANCEL

Figure 16.9 Circuit diagram of the project

smartphone. The steps on an Android phone are given below:

e 316

Enable Bluetooth on your smartphone
Go to Settings, then click System

Click About phone, then click Status

You should see the Bluetooth MAC address listed. On the author's phone, the
MAC address was 50:50:A4:0F:62:3F, as shown in Figure 16.10

21140100 @ -

< Status information

SIM card status

IMEl information

IP address

Wi-Fi MAC address

Phone Wi-Fi MAC address
50:A4:0F62:40

Bluetooth address
50:50:A4:0F 62:3F
Ethernet MAC address
Unavailable

Serial number
RSBN33F3PGW

Up time
1:07:52

Phone status
Official

B A1 75%8

Figure 16.10 Displaying the Bluetooth MAC address




Chapter 16 e Raspberry Pi 5 Camera Projects

We now have to find the channel number for the Bluetooth communication. Enter the fol-
lowing command on your Raspberry Pi 5 and look for the channel number under section
Service Name: OBEX Object Push

pi@raspberrypi:~ $ sdptool browse 50:50:A4:0F:62:3F

Figure 16.11 shows the channel number as 12 in this example.

Browsing 50:50:A4:0F:62:3F ...
Service Search failed: Invalid argument
Service Name: OBEX Object Push
Service RecHandle: 0x1000b
Service Class ID List:
"OBEX Object Push" (0x1105)
Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)
Channel: 12
"OBEX" (0x0008)
Profile Descriptor List:
"OBEX Object Push" (0x1105)
Version: 0x0102

Figure 16.11 Read the channel number

Now, we have to install the OBEX software onto our Raspberry Pi 5. Enter the following
command:

pi@raspberrypi:~ $ sudo apt-get install obexftp

We are now ready to develop our program (bell.py), which is shown in Figure 16.12. The
button and relay are initialized at the beginning of the program and os module is imported
since we want to run a shell command from within our Python program. The program then
enters an endless loop using the while statement. Inside this loop, the program waits until
the button is pressed. At this point, the camera takes a picture using a libcamera com-
mand and stores in a file called door.jpg. The relay is also activated for 5 seconds. The
picture is then sent to the smartphone using OBEX.

T

#

# WHO IS AT MY DOOR

# —==—=—=============

#

# In this program a camera, aa pushbutton switch and a relay are all

# connected to Raspberry Pi 5. The camera 1is positioned outside the

# door so that it can see whos 1is outside the door.Pressing the button
# activates the relay for 5 seconds and then takes a picture of the

# person outside the door and sends it to a smart phone over Bluetooth.
#

# Program: bell.py

# Date : October, 2023

e 317



Raspberry Pi 5 Essentials

# Author : Dogan Ibrahim

from gpiozero import LED, Button

from time import sleep #
import os

button = Button(20) #
relay = LED(21) #

relay.off()

while True:
sleep (1)

if button.is_pressed: #
relay.on() #
sleep(5)

relay.off()
os.system("obexftp --nopath --uuid n
50:50:A4:0F:62:3F —--channel 12 -p door.jp
else:
relay.off()

import time library

Button at GPIO 20

Relay at GPIO 21

If button

Relay on for 5 secs

one --noconn --bluetooth
g")

Figure 16.12 Program listing

Figure 16.13 shows how the program is run and its output on the screen. You should wait
for the file transfer to complete, since it may take some time. A confirmation message is
sent to the smartphone before the file transfer takes place. You should click the ACCEPT
button to receive the picture as shown in Figure 16.14.

K pberrypi:~ § pytho
Suppressing FBS.
Connecting. .\done
Sending "door.jpg"...\do
Disconnecting. . |done
Suppressing FBS.
Connecting. .\done
Sending "door.jpg"...|"C

n bell.py

ne

Figure 16.13 Run

e 318

ning the program



Chapter 16 e Raspberry Pi 5 Camera Projects

File transfer

Receiving file...
File: door.jpg

2 . [ ¢ TN
Figure 16.14 Accept the file transfer

e 319



Raspberry Pi 5 Essentials

Index

A
Accelerometer
ADC

B

Binary counting
Blank lines
Bluetooth

288

BME280
Bookworm
Break statement
Buzzer

C

Car parking

Cat

Chasing LEDs
Chmod

Christmas lights
Cloud

Command prompt
Comments
Comparison operators
Control of flow
Cooler
Cortex-A76

Critically damped mode

CSI
Current time

D

DAC

Data types

Date and time
Dhcpd

Dictionary functions
Dictionary variables
Discoverable

Dpkg

Dusk lights

E
Echo

e 320

241
150

119
70
26

199
15, 17
86
171

170
38
126
37
124
280
31
70
82
82
15
13
195
14
235

204

71

55, 110
25

81

80

26

44

165

42, 168

Electronic dice
Escape sequences
Exceptions

F

Fading LED
File manager
Final

Flashing LED
Floating point
For statement

G
GPIO

H
HC-SR04
HDMI
Help
Htop

I

If-else

Ifconfig

Indentation

Inertial measurement
Integer

IP address

Iwconfig

K

Keyboard input
Keypad

Kill

L

Large font

LCD

LDR

Line continuation
List functions

List variables

Logical operators
Logic level converter
Ls

136
77
106

172
53
109
115
72
84

114

168
13, 17
40, 53

45

82
47
71
241
72
148
47

81
245
46

18
141
165

70

79

78

82
143

35



Index

M

Matplotlib
Melody maker
Meminfo

MIPI

Morse code
Mv

N

Nano
Netstat
Numbers

o

On-off temperature control
Operators

(O

Overdampled mode

P
Passwd

PCle

Pie chart
Plotting graphs
Potential divider
Preferences
Putty

Python

R

Randint

Random

Raspberry Pi imager
RC transient charging
RC transient discharging
Reaction timer
Recursive functions
Rename

Reserved words

RL transient

Rmdir

Rotating LEDs

S
Sawtooth wave
SCA

176
173
32
14
132
41

56
266
72

228
73
15

195

22,33
13
185
176
91

53

20

65

103
74
28

189

191

161

106
41
70

194
42

128

209
141

SCL

Seconds counter
Security lock
Sense Hat
Shutdown

Sine

Sine graph

Sine wave

Sort

SPI bus

SSD

SSH

Static IP
Strings

String functions
Super user

T
T-cobbler

TCP

Temperature sensor
Terminal

Terminus

ThingSpeak

Thonny

Tightvnc
Tightvncserver

Tmp36

Top

Triangle wave
Trigonometric functions
Try

Tuple variables

Two dice numbers

U

uDP

Ultrasonic distance measurement
Uname

Up counter

Upgrade

USB-C

User defined functions

\"
Variable names

141
142
252
219
22,46
99
179
215
41
205
14
20
24
75
76
43

121
256
156
54
19
281
66
23
23
157
44
211
93
109
80
233

256
167
32,48
240
33

13

93

69

e 321



Raspberry Pi 5 Essentials

Vi

VNC

Voltmeter
Volume control

W

While statement
WiFi

Wired network
Wireless LAN

e 322

61
23
149
55

85
256
26
29






€ lektorbooks

Raspberry Pi 5
Essentials

The Raspberry Pi 5 is the latest single-board computer from the Raspberry Pi
Foundation. It can be used in many applications, such as in audio and
video media centers, as a desktop computer, in industrial controllers,
robotics, and in many domestic and commercial applications. In addition
to the well-established features found in other Raspberry Pi computers,
the Raspberry Pi 5 offers Wi-Fi and Bluetooth (classic and BLE), which
makes it a perfect match for loT as well as in remote and Internet-based
control and monitoring applications. It is now possible to develop many
real-time projects such as audio digital signal processing, real-time digital
filtering, real-time digital control and monitoring, and many other real-time
operations using this tiny powerhouse.

The book starts with an introduction to the Raspberry Pi 5 computer
and covers the important topics of accessing the computer locally and
remotely. Use of the console language commands as well as accessing
and using the desktop GUI are described with working examples. The
remaining parts of the book cover many Raspberry Pi 5-based hardware
projects using components and devices such as

> LEDs and buzzers

> LCDs

> Ultrasonic sensors

> Temperature and atmospheric pressure sensors
% The Sense HAT

% Camera modules

Example projects are given using Wi-Fi and Bluetooth modules to send
and receive data from smartphones and PCs, and sending real-time
temperature and atmospheric pressure data to the cloud.

All projects given in the book have been fully tested for correct operation.
Only basic programming and electronics experience are required to follow
the projects. Brief descriptions, block diagrams, detailed circuit diagrams,
and full Python program listings are given for all projects described.
Readers can find the program listings on the Elektor Store website,
www.elektor.com (search for: book title).

(>)lektor

design > share > earn

Prof Dogan Ibrahim has a BSc
(Hons) degree in Electronic
Engineering, an MSc degree in
Automatic Control Engineering,
and a PhD degree in Digital Signal
Processing and Microprocessors.

Dogan has worked in many
organizations and is a Fellow of

the Institution of Engineering

and Technology (IET) in UK as

well as a Chartered Electrical
Engineer. He has authored over

100 technical books and over

200 technical articles on electronics,
microprocessors, microcontrollers,
and related fields. Dogan is a
certified Arduino professional and
has many years of experience with
numerous types of microprocessors
and microcontrollers.

Elektor International Media
www.elektor.com

IiBN 9|7|8|3895|?6|5i36|5
9 |783895 765865




	Search…
	Raspberry Pi 5 Essentials
	All rights reserved
	Contents
	Preface

	Chapter 1 • The Raspberry Pi 5
	1.1 Overview
	1.2 The Raspberry Pi 5

	Chapter 2 • Installing the Raspberry Pi 5 Operating System
	2.1 Overview
	2.2 Using a pre-installed SD card
	2.3 Larger font in Console mode
	2.4 Accessing your Raspberry Pi 5 Console from your PC – the Putty program
	2.4.1 Configuring Putty

	2.5 Accessing the Desktop GUI from your PC
	2.6 Assigning a static IP address to your Raspberry Pi 5
	2.7 Enabling Bluetooth
	2.8 Connecting the Raspberry Pi 5 to a wired network
	2.8.1 Unable to connect to a wired network

	2.9 Installing the Raspberry Pi 5 Bookworm operating system on a blank microSD card

	Chapter 3 • Using The Console Commands
	3.1 Overview
	3.2 The Command Prompt
	3.3 Useful Console commands
	3.3.1 System and user information
	3.3.2 The Raspberry Pi 5 directory structure
	3.3.3 Resource monitoring on the Raspberry Pi 5
	3.3.4 Shutting Down
	3.3.5 Networking
	3.3.6 System information and other useful commands


	Chapter 4 • Desktop GUI – Desktop Applications
	4.1 Overview
	4.2 Desktop GUI Applications
	4.2.1 Applications Menu
	4.2.2 Web browser
	4.2.3 File manager
	4.2.4 Terminal
	4.2.5 Manage Bluetooth devices
	4.2.6 Wi-Fi
	4.2.7 Volume control
	4.2.8 Date and time


	Chapter 5 • Using a Text Editor in Console Mode
	5.1 nano text editor
	5.2 vi text editor

	Chapter 6 • Creating and Running a Python Program
	6.1 Overview
	6.2 Method 1 – Interactively from command prompt in console mode
	6.3 Method 2 – Create a Python file in console mode
	6.4 Method 3 – Create a Python file in Desktop GUI mode
	6.5 Which method?

	Chapter 7 • Python Programming and Simple Programs
	7.1 Overview
	7.2 Variable names
	7.3 Reserved words
	7.4 Comments
	7.5 Line continuation
	7.6 Blank lines
	7.7 More than one statement on a line
	7.8 Indentation
	7.9 Python data types
	7.10 Numbers
	7.11 Strings
	7.11.1 String functions
	7.11.2 Escape sequences

	7.12 Print statement
	7.13 List variables
	7.13.1 List functions

	7.14 Tuple variables
	7.15 Dictionary variables
	7.15.1 Dictionary functions

	7.16 Keyboard input
	7.17 Comparison operators
	7.18 Logical operators
	7.19 Assignment operators
	7.20 Control of flow
	7.20.1 if, if…else, and elif
	7.20.2 for statement
	7.20.3 while statement
	7.20.4 continue statement
	7.20.5 break statement
	7.20.6 pass statement

	7.21 Example 1 – 4-Band resistor colour code identifier
	7.22 Example 2 – Series or parallel resistors
	7.23 Example 3 – Resistive potential divider
	7.24 Trigonometric functions
	7.25 User-defined functions
	7.26 Examples
	7.27 Recursive functions
	7.28 Exceptions
	7.29 try/final exceptions
	7.30 Date and time
	7.31 Creating your own modules

	Chapter 8 • Raspberry Pi 5 LED Projects
	8.1 Overview
	8.2 Raspberry Pi 5 GPIO pin definitions
	8.3 Project 1 – Flashing an LED
	8.4 Project 2 – Alternately flashing LEDs
	8.5 Project 3 – Binary counting with 8 LEDs
	8.6 Project 4 – Christmas lights (random flashing 8 LEDs)
	8.7 Project 5 – Chasing LEDs
	8.8 Project 6 – Rotating LEDs with push-button switch
	8.9 Project 7 – Morse Code exerciser with LED or buzzer
	8.10 Project 8 – Electronic dice

	Chapter 9 • Using an I²C LCD
	9.1 Overview
	9.2 The I²C Bus
	9.3 I²C pins of Raspberry Pi 5
	9.4 Project 1 – Using an I²C LCD – Seconds counter
	9.5 Project 2 – Using an I²C LCD – Display time
	9.6 Project 3 – Using an I²C LCD – Display IP address of Raspberry Pi 5
	9.7 Project 4 – Voltmeter – Output to the screen
	9.8 Project 5 – Voltmeter – Output to LCD
	9.9 Project 6 – Analog temperature sensor thermometer – output to the screen
	9.10 Project 7 – Analog temperature sensor thermometer – output on LCD
	9.11 Project 8 – Reaction timer – output to screen
	9.12 Project 9 – Reaction timer – output to LCD
	9.13 Project 10 – Automatic dusk lights
	9.14 Project 11 – Ultrasonic distance measurement
	9.15 Project 12 – Car parking sensors
	9.16 Project 13 – Fading LED
	9.17 Project 14 – Melody maker

	Chapter 10 • Plotting Graphs with Python and Raspberry Pi 5
	10.1 Overview
	10.2 The Matplotlib graph plotting library
	10.3 Project 1 – RC transient circuit analysis - Charging
	10.4 Project 2 – RC transient circuit analysis - Discharging
	10.5 Transient RL circuits
	10.6 Project 3 – RCL transient circuit analysis
	10.7 Project 4 – Temperature, pressure and humidity measurement – Display on the screen
	10.8 Project 5 – Temperature, pressure and humidity measurement – Plotting the data

	Chapter 11 • Waveform Generation – Using the Digital-to-Analog Converter (DAC)
	11.1 Overview
	11.2 The MCP4921 DAC
	11.3 Project 1 – Generating a square wave signal with any peak voltage up to +3.3 V
	11.4 Project 2 – Generating a sawtooth wave signal
	11.5 Project 3 – Generating a triangle wave signal
	11.6 Project 4 – Generating an arbitrary wave signal
	11.7 Project 5 – Generating a sine wave signal

	Chapter 12 • Using the Sense HAT
	12.1 Overview
	12.2 The Sense HAT interface
	12.3 Programming the Sense HAT
	12.4 Project 1 – Displaying text on Sense HAT
	12.5 Project 2 – Test your math skills – multiplication
	12.6 Project 3 – Learning the times tables
	12.7 Project 4 – Display the temperature, humidity, and pressure
	12.8 Project 5 – ON-OFF temperature controller
	12.9 Project 6 – Generate two dice numbers
	12.10 Project 7 – Display the current time
	12.11 Project 8 – Displaying two-digit integer numbers
	12.12 Project 9 – Up counter
	12.13 The inertial measurement sensor
	12.13.1 Project 10 - Reading the acceleration
	12.13.2 Project 11 – Accelerometer-based dice
	12.13.3 Project 12 – Accelerometer-based LED shapes


	Chapter 13 • Using a 4×4 Keypad
	13.1 Overview
	13.2 Project 1 – Using a 4×4 keypad

	Chapter 14 • Communication over Wi-Fi
	14.1 Overview
	14.2 UDP and TCP
	14.2.1 UDP communication
	14.2.2 TCP communication

	14.3 Project 1 – Sending a text message to a smartphone using TCP/IP
	14.4 Project 2 – Two-way communication with the smartphone using TCP/IP
	14.5 Project 3 – Communicating with a PC using TCP/IP
	14.6 Project 4 – Controlling an LED connected to Raspberry Pi 5 from a smartphone using TCP/IP
	14.7 Project 5 – Sending a text message to a smartphone using UDP
	14.8 Project 6 – Controlling an LED connected to Raspberry Pi 5 from a smartphone using UDP
	14.9 Communicating with the Raspberry Pi Pico W over Wi-Fi
	14.9.1 Project 7 – Raspberry Pi 5 and Raspberry Pi Pico W communication – controlling a relay over Wi-Fi

	14.10 Project 8 – Storing ambient temperature and atmospheric pressure data on the Cloud

	Chapter 15 • Communication over Bluetooth
	15.1 Overview
	15.2 Project 1 – Exchanging text with a smartphone
	15.3 Project 2 – Bluetooth control of LED from a smartphone
	15.4 Arduino UNO – Raspberry Pi 5 Bluetooth communication
	15.4.1 Project 3 - Communicating with an Arduino UNO over Bluetooth
	15.4.2 Project 4 – Play audio (e.g. music) on Bluetooth speaker via Raspberry Pi 5


	Chapter 16 • Raspberry Pi 5 Camera Projects
	16.1 Overview
	16.2 Installing the Camera
	16.3 Project 1 – Still camera commands
	16.3.1 libcamera

	16.4 Project 2 – Building a time-lapse camera – Who is in my parking place?
	16.5 Project 3 – Video camera commands
	16.6 Project 4 – Who is ringing my doorbell?

	Index



