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Introduction

In modern times data can be thought of as a valuable commodity like oil or 

gold because we can get a lot of useful information from data with the help 

of some scientific methods, and we can make intelligent decisions based 

on that information and convert it into money. Data science is the process 

of extracting knowledge/useful information from the data.

For example, IBM forecasted that the demand for skilled people in 

data science will increase by 28 percent in 2020. Many industries use data 

science concepts in different aspects of their business such as checking 

whether they have achieved their targets, finding the root cause of failures, 

etc. Recently, data science has been effectively implemented in politics 

to develop strategies, identify the weak regions, predict the emotions and 

expectations of the people, etc. Further, local governments utilize the data 

collected from the people of their town to devise the planning and policies 

for the development of the town. Data science is also successfully applied 

in the agricultural domain in areas like drought assessment, crops yield 

and remote sensing, etc. This shows that the applications related to data 

science concepts are emerging nowadays across multiple domains.

Most of the recent books have focused on applying data science 

techniques to some open and standard dataset. This book is specifically 

about applying data science concepts in the Raspberry Pi board. The 

Raspberry Pi can act as a single on board computer and can also interact 

with the real-time environment via sensors as most of the local servers 

can’t do this task.

The book will start with a brief introduction to data science followed 

by which there will be a dedicated chapter for explaining the concepts 

of Python starting from the installation of the software to the various 



xx

data types and modules available. The next two chapters will introduce 

the readers to Raspberry Pi devices, their hardware description, and 

the setting up of the devices for gathering real-time data. The next four 

chapters will deal with the different operations in data science with respect 

to real time applications using Raspberry Pi hardware. The penultimate 

chapter of the book will discuss about the concepts that will enable the 

Raspberry Pi to learn from the data. The last chapter will have few case 

studies that will give the readers an idea of the range of domains where 

these concepts can be applied.

Introduction
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CHAPTER 1

Introduction to  
Data Science
Data is a collection of information in the form of words, numbers, and 

descriptions about the subject. Consider the following statement: “The 

dog has four legs, is 1.5m high, and has brown hair.” This statement has 

three different kinds of information (i.e., data) about the dog. The data 

“four” and “1.5m” is numerical data, and “brown hair” is descriptive. It 

is good to know the various kinds of data types to understand the data, 

perform effective analysis, and better extract knowledge from the data. 

Basically, data can be categorized into two types.

•	 Quantitative data

•	 Qualitative data

Quantitative data can be obtained only with the help of measurements 

and not through observations. This can be represented in the form 

of numerical values. Quantitative data can be further classified into 

continuous and discrete. The exact integer values are discrete data, 

whereas continuous data can be any value in a range. Qualitative data is a 

description of the characteristics of a subject. Usually qualitative data can 

be obtained from observations and cannot be measured. In other words, 

qualitative data may be described as categorical data, and quantitative 

data can be called numerical data.

https://doi.org/10.1007/978-1-4842-6825-4_1#DOI
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For example, in the previous statement, “brown hair” describes a 

characteristic of the dog and is qualitative data, whereas “four legs” and 

“1.5m” are the quantitative data and are categorized as discrete and 

continuous data, respectively.

Data can be available in structured and unstructured form. When 

the data is organized in a predefined data model/structure, it is called 

structured data. Structured data can be stored in a tabular format or a 

relational database with the help of query languages. We can also store 

this kind of data in an Excel file format, like the student database given in 

Table 1-1.

Most human-generated and machine-generated data are unstructured 

data such as emails, documents, text files, log files, text messages, images, 

video and audio files, messages on the Web and social media, and data 

from sensors. This data can be converted to a structured format only 

through human or machine intervention. Figure 1-1 shows the various 

sources of unstructured data.

Table 1-1.  An Example of Structured Data

Student Roll Number Marks Attendance Batch Sex

111401 492/500 98% 2011-2014 Male

111402 442/500 72% 2011-2014 Male

121501 465/500 82% 2012-2015 Female

121502 452/500 87% 2012-2015 Male

Chapter 1  Introduction to Data Science 
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�Importance of Data Types in Data Science
Before starting to analyze data, it is important to know about the data 

types so you can choose the suitable analysis methods. The analysis of 

continuous data is different from the analysis of categorical data; hence, 

using the same analysis methods for both may lead to incorrect analysis.

For example, in statistical analysis where continuous data is involved, 

the probability of an exact event is zero, while the result can be different for 

discrete data.

You can also choose the visualization tools based on the data types. 

For instance, continuous data is usually represented using histograms, 

whereas discrete data can be visualized with the help of bar charts.

Documents Log files
Images

Sensor data

Video files Audio files

Web and social 
media 

Email

Figure 1-1.  Sources of unstructured data

Chapter 1  Introduction to Data Science 
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�Data Science: An Overview
As discussed at the beginning of the chapter, data science is nothing but 

the extraction of knowledge or information from the data. Unfortunately, 

not all data gives useful information. It is based on the client requirements, 

the hypothesis, the nature of the data type, and the methods used for 

analysis and modeling. Therefore, a few processes are required before 

analyzing or modeling the data for intelligent decision-making. Figure 1-2 

describes these data science processes.

Figure 1-2.  Data science process

Chapter 1  Introduction to Data Science 
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�Data Requirements
To develop a data science project, the data scientists first understand the 

problem based on the client/business requirements and then define the 

objectives of the problem for analysis. For example, say a client wants to 

analyze the emotion of people on a government policy. First, the objectives 

of the problem can be set as “To collect the opinion of the people about the 

government policy.” Then, the data scientists decide on the kind of data 

that can support the objective and the resources of data. For the example 

problem, the possible data is social media data, including text messages 

and opinion polls of various categories of people, with information 

about their education level, age, occupation, etc. Before starting the 

data collection, a good work plan is essential for collecting the data from 

various sources. Setting the objectives and work plan can reduce the time 

spent collecting the data and can help to prepare the report.

�Data Acquisition
There are many types of structured open data available on the internet that 

we call secondary data, because that kind of data is collected by somebody 

and structured into some tabular format. If the user wants to collect 

the data directly from a source, that is called primary data. Initially, the 

unstructured data is collected via many resources such as mobile devices, 

emails, sensors, cameras, direct interaction with people, video files, audio 

files, text messages, blogs, etc.

�Data Preparation
Data preparation is the most important part of the data science process. 

Preparing the data puts the data into proper form for knowledge 

extraction. There are three steps in the data preparation stage.

Chapter 1  Introduction to Data Science 



6

	 1.	 Data processing

	 2.	 Data cleaning

	 3.	 Data transformation

�Data Processing
This step is important as it is required to check the quality of data while 

we import it from various sources. This quality checking is done to ensure 

that the data is in the correct data type, standard format, and has no typos 

or errors in the variables. This step will reduce data issues when doing 

analysis. Moreover, in this phase, the collected unstructured data can be 

organized in the form of structured data for analysis and visualization.

�Data Cleaning
Once the data processing is done, cleaning the data is required as the data 

might still have some errors. These errors will affect the actual information 

present in the data. Possible errors are as follows:

•	 Duplicates

•	 Human or machine errors

•	 Missing values

•	 Outliers

•	 Inappropriate values

�Duplicates
In the database, some data is repeated multiple times, which results in 

duplicates. It is better to check and remove the duplicates to reduce the 

overhead in computation during data analysis.

Chapter 1  Introduction to Data Science 
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�Human or Machine Errors
The data is collected from sources either by humans or by machines. Some 

errors are inevitable during this process due to human carelessness or 

machine failure. The possible solution to avoid these kinds of errors is to 

match the variables and values with standard ones.

�Missing Values
While converting the unstructured data into a structured form, some rows 

and columns may not have any values (i.e., empty). This error will cause 

discontinuity in the information and make it difficult to visualize it. There 

are many built-in functions available in programming languages we can 

use to check if the data has any missing values.

�Outliers
In statistics, an outlier is a data point that differs significantly from other 

observations. An outlier may be because of variability in the measurement 

or it may indicate experimental errors; outliers are sometimes excluded 

from the data set. Figure 1-3 shows an example of outlier data. Outlier 

data can cause problems with certain types of models, which in turn will 

influence the decision-making.

Chapter 1  Introduction to Data Science 
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�Transforming the Data
Data transformation can be done by many methods using normalization, 

min-max operations, correlation information, etc.

�Data Visualization
Based on the requirements of the user, the data can be analyzed with the 

help of visualization tools such as charts, graphs, etc. These visualization 

tools help people to understand the trends, variations, and deviations in a 

particular variable in the data set. Visualization techniques can be used as 

a part of exploratory data analysis.

Figure 1-3.  Outlier data

Chapter 1  Introduction to Data Science 
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�Data Analysis
The data can be further analyzed with the help of mathematical 

techniques such as statistical techniques. The improvements, deviations, 

and variations are determined in a numerical form. We can also generate 

an analysis report by combining the results of visualization tools and 

analysis techniques.

�Modeling and Algorithms
Today many machine learning algorithms are employed to predict 

useful information from raw data. For example, neural networks can be 

used to identify the users who are willing to donate funds to orphans 

based on the users’ previous behavior. In this scenario, the previous 

behavior data of users can be collected based on their education, 

activities, occupation, sex, etc. The neural network can be trained with 

this collected data. Whenever a new user’s data is fed to this model, it 

can predict whether the new user will give funds or not. However, the 

accuracy of the prediction is based on the reliability and the amount of 

data used while training.

There are many machine learning algorithms available such as 

regression techniques, support vector machine (SVM), neural networks, 

deep neural networks, recurrent neural networks, etc., that can be applied 

to data modeling. After data modeling, the model can be analyzed by 

giving data from new users and developing a prediction report.

�Report Generation/Decision-Making
Finally, a report can be developed based on the analysis with the help of 

visualization tools, mathematical or statistical techniques, and models. 

Such reports can be helpful in many circumstances such as forecasting the 

strengths and weakness of an organization, industry, government, etc.  

Chapter 1  Introduction to Data Science 
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The facts and findings from the report can make the decisions quite 

easy and intelligent. Moreover, the analysis report can be generated 

automatically using some automation tools based on the client 

requirements.

�Recent Trends in Data Science
Certain fields in data science are growing exponentially and therefore will 

be attractive to data scientists. They are discussed in the following sections.

�Automation in Data Science
In the current scenario, data science still needs a lot of manual work such 

as data processing, data cleaning, and transforming the data. These steps 

consume a lot of time and computations. The modern world demands 

the automation of data science processes such as data processing, 

data cleaning, data transformations, analysis, visualization, and report 

generation. Hence, the automation field will be a top demand in the data 

science industry.

�Artificial Intelligence–Based Data Analyst
Artificial intelligence techniques and machine learning algorithms can be 

implemented effectively for modeling the data. Particularly, reinforcement 

learning with deep neural networks is used to upgrade the learning of the 

model based on variations in the data. Also, machine learning techniques 

can be used for automated data science projects.

Chapter 1  Introduction to Data Science 
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�Cloud Computing
The amount of data used by people nowadays has increased 

exponentially. Some industries gather a large amount of data every 

day and hence find it difficult to store and analyze with the help of 

local servers. This makes it expensive in terms of computation and 

maintenance. So, they prefer cloud computing in which the data can 

be stored on cloud servers and can be retrieved anytime and anywhere 

for analysis. Many cloud computing companies offer a data analytics 

platform on their cloud servers. The more growth in data processing, the 

more this field will gain attention.

�Edge Computing
Many small-scale industries don’t require the analysis of data on cloud 

servers and instead require analysis reports instantly. For these kinds of 

applications, edge devices can be a possible solution to acquire the data, 

analyze it, and present a report in visual form or numerical form instantly 

to the users. In the future, the requirements of edge computing will 

increase significantly.

�Natural Language Processing
Natural language processing (NLP) can be used to extract unstructured 

data from websites, emails, servers, log files, etc. In addition, NLP can be 

useful for converting text into a single data format. For example, we can 

convert people’s emotion into a data format from their messages on social 

media. This will be a powerful tool for collecting data from many sources, 

and its demand will continue to increase.

Chapter 1  Introduction to Data Science 
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�Why Data Science on the Raspberry Pi?
Many books explain the different processes involved in data science in 

relation to cloud computing. But in this book, the concepts of data science 

will be discussed as part of real-time applications using the Raspberry 

Pi. The Raspberry Pi boards can interact with the real-time world by 

connecting to a wide range of sensors using their general-purpose 

input/output (GPIO) pins, which makes it easier to collect real-time 

data. Owing to their small size and low cost, a number of nodes of these 

Raspberry Pi boards can be connected as a network, thereby enabling 

localized operation. In other words, the Raspberry Pi can be used as an 

edge computing device for data processing and storage, closer to the 

devices used for acquiring the information and thereby overcoming the 

disadvantages associated with cloud computing. Therefore, a lot of data 

processing applications can be implemented using a distribution of these 

devices that can manage real-time data and run the analytics locally. This 

book will help you to implement real-time data science applications using 

the Raspberry Pi.

Chapter 1  Introduction to Data Science 
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CHAPTER 2

Basics of Python 
Programming
Python is a general-purpose dynamic programming language that 

was created by Dutch programmer Guido van Rossum in 1989. It is 

the most commonly used programming language in the field of data 

science. Since it is easier to learn and write code in Python than other 

languages, it is an optimal choice for beginners. The widespread use of 

Python is also attributed to the fact that it is free and open source. The 

number of scientific libraries and packages developed by the Python 

community allows for data scientists to work with data-intensive real-time 

applications. Some of the leading organizations such as Google, Dropbox, 

and Netflix are using Python at various levels to enhance their software. In 

this chapter, we will discuss Python installation on the Windows operating 

system, different Python IDEs, the fundamental data types available with 

Python, control flow statements, Python functions, and different Python 

libraries for data science.

https://doi.org/10.1007/978-1-4842-6825-4_2#DOI
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�Why Python?
Python is the most preferred programming language for data scientists 

because of the following reasons:

•	 It is an open source programming language with a 

strong and growing community of contributors and 

users.

•	 It has a simpler syntax than other programming 

languages such as C, C++, and Java.

•	 It allows users to perform object-oriented 

programming.

•	 It has a large set of libraries that can be used to perform 

a variety of tasks such as developing a website, building 

machine learning applications, etc.

•	 It can be used in embedded, small hardware devices 

like the Raspberry Pi that allows for real-time 

implementation of various applications.

�Python Installation
Most distributions of the Linux operating system come with the preloaded 

Python package, but it has to be installed separately in the case of 

Windows operating system. The procedure to install Python on the 

Windows operating system is as follows:

	 1.	 Open a browser and go to Python.org, the official 

site for Python.

	 2.	 On that page, click the Downloads tab and 

download the latest version of the software on the 

resulting page.

Chapter 2  Basics of Python Programming
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	 3.	 Once the download is complete, open the installer 

package. In the installation wizard, shown in 

Figure 2-1, select Add Python to PATH, which will 

ensure that Python is added automatically to your 

system variable path; otherwise, this path must 

be added manually in the Environment Variables 

settings in your system.

	 4.	 Click Install Now to install the package.

After the installation is completed, you can verify the installation by 

typing python --version at the command prompt, which will display the 

version of Python installed on the system. If it does not show the version, 

then there could be a problem either with the installation or with the 

system path variable.

Figure 2-1.  Installation wizard for Python

Chapter 2  Basics of Python Programming



16

Refer to the Python documentation available on the official site to 

understand the procedure for downloading additional modules and 

packages for the software. Either you can start working with Python at the 

command prompt itself or you can install one among the various IDEs that 

are discussed in the next section.

�Python IDEs
An integrated development environment (IDE) is a software suite that 

combines developer tools into a graphical user interface (GUI), which 

includes options for editing code and building, executing, and debugging 

programs. A number of IDEs are available for Python, each of which 

comes with its own advantages. Some of the commonly used IDEs are 

discussed here.

�PyCharm
The PyCharm IDE was developed by the Czech company JetBrains. It is 

a cross-platform IDE that can be used on Windows, macOS, and Linux. 

It provides code analysis and a graphical debugger. It also supports web 

development with Django as well as data science with Anaconda. Some of 

the attractive features of PyCharm are the intelligent code completion, a 

simple package management interface, and the refactoring option, which 

provides the ability to make changes across multiple lines in a code.

�Spyder
Spyder is a cross-platform IDE for scientific programming in the Python 

language. Spyder integrates with a number of scientific packages including 

NumPy, SciPy, Matplotlib, Pandas, IPython, and other open source 

software. It was released under the MIT license.

Chapter 2  Basics of Python Programming
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�Jupyter Notebook
Jupyter Notebook is a web-based interactive computational environment. 

This notebook integrates code and its output in a single document that 

combines visualizations, text, mathematical equations, and other media 

thereby making it suitable for data science applications.

�Python Programming with IDLE
IDLE is a simple cross-platform IDE suitable for beginners in an 

educational environment. It comes with features such as a multiwindow 

text editor, a Python shell with syntax highlighting, and an integrated 

debugger. Since this is a default editor that comes with Python, let’s see 

how to execute Python code using IDLE.

There are two ways of executing the Python code in this IDLE. The first 

way is the interactive mode in which you can directly type the code next to 

the symbol >>> in the Python shell, as illustrated in Figure 2-2. Each line of 

code will be executed once you press Enter. The disadvantage of using the 

interactive mode is that when you save the code, it is saved along with the 

results, and this implies that you cannot use the saved code for execution 

later.

Chapter 2  Basics of Python Programming



18

The second way is to run the code in script mode where you can open 

a script window and type the entire code there, which can then be saved 

with a .py extension to be used later. To open a script file window, go to 

the File menu at the top and click New File. In the script window, type the 

same two lines of code, shown in Figure 2-2. Figure 2-3 shows the script 

file window with the code. Then go to the File menu, click Save, and then 

save the program by specifying a proper filename. Ensure that the filename 

does not start with a number or have the same name as existing Python 

keywords.

Figure 2-2.  Running Python code in interactive mode
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Once the file is saved, the script can be executed by going to the Run 

menu at the top and clicking Run Module. This will execute the script and 

print the output in the Python shell, as shown in Figure 2-4.

Figure 2-3.  Script file window
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�Python Comments
Before we start to discuss the Python data types, it is essential to know about 

comment lines in Python as we will be using them often in our code. There are 

two ways to write comment lines based on the purpose of your comment.

If you intend to write a short comment, regarding a particular line 

in the code, for yourself, then single-line comments are the best choice. 

These single-line comments can be created by simply beginning the line 

with a hash (#) character, and they are terminated automatically by the 

end of the line. While executing the code, the Python compiler will ignore 

everything after the hash symbol up to the end of the line.

Multiple-line comments are intended to explain a particular aspect 

of your code to others and can be created by adding three single quotes 

(''') at the beginning and end of the comment. The Python compiler 

will not ignore these comments, and they will appear in the output if your 

script has nothing else other than the comment. These two comments are 

illustrated using the IDLE Python shell format, as shown here:

Figure 2-4.  Output of the script file
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>>> # This is a comment

>>> "'This is a comment"'

'This is a comment'

�Python Data Types
A data type, in a programming language, is defined by the type of value 

that a variable can take. Python data types can be primarily classified into 

numeric and sequence data types. The data types that fall under these two 

categories are discussed in this section with relevant illustrations for each.

�Numeric Data Types
Numeric data types are scalar variables that can take numeric values. The 

categories of numeric data types are int, float, and complex. In addition, 

we will discuss the bool data type that uses Boolean variables.

�int
The int data type represents integers that are signed whole numbers 

without a decimal point. The code in Listing 2-1 displays the data type of 

an integer.

Listing 2-1.  Integer Data Type

a=5

"'print the data type of variable a using type() funcion"'

print("a is of type",type(a))

Output:

a is of type <class 'int'>
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�float
The float data type represents floating-point numbers with a decimal 

point separating the integer and fractional parts. The code in Listing 2-2 

prints the data type of a float value.

Listing 2-2.  float Data Type

a = 5.0

print('a is of type',type(a))

Output:

a is of type <class 'float'>

�complex
The complex data type represents complex numbers of the form a+bj 

where a and b are the real part and imaginary part, respectively. The 

numbers a and b may be either integers or floating-point numbers. The 

code in Listing 2-3 prints the data type of a complex number.

Listing 2-3.  complex Data Type

a=3.5+4j

print('a is of type',type(a))

Output :

 a is of type <class 'complex'>

�bool
In Python, Boolean variables are defined by True and False keywords. 

As Python is case sensitive, the keywords True and False must have an 

uppercase first letter. Listing 2-4 illustrates the bool data type.
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Listing 2-4.  bool Data Type

a= 8>9

print('a is of type',type(a))

print(a)

Output:

a is of type <class 'bool'>

False

Boolean values can be manipulated with Boolean operators, which 

include and, or, and not, as illustrated in Listing 2-5.

Listing 2-5.  Manipulation of boolean Data Type

a = True

b = False

print(a or b)

Output:

True

�Numeric Operators
Table 2-1 summarizes the numeric operations available in Python that can 

be applied to the numeric data types.
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The operators in Table 2-1 are listed in their order of precedence. 

When more than one operation is performed in a particular line of your 

code, the order of execution will be according to the order of precedence 

in Table 2-1. Consider the example 2*3+5 where both multiplication and 

addition are involved. Since multiplication has higher precedence than 

addition, as observed from Table 2-1, the multiplication operator (*) will 

be executed first giving 2*3=6, followed by the addition operator (+), which 

would give the final result of 6+5=11.

�Sequence Data Types
Sequence data types allow multiple values to be stored in a variable. The 

five categories of sequence data types are list, tuple, str, set, and dict.

�list

Lists are the most commonly used data type in Python by data scientists. 

A list is an ordered sequence of elements. The elements in the list need 

not be of the same data type. A list can be declared as items separated by 

Table 2-1.  Numeric Operators in Python

Operator Operation

( ) Parentheses

** Exponentiation

* Multiplication

/ Division

+ Addition

- Subtraction

% Modulo operation
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commas enclosed within square brackets, []. Lists are mutable; i.e., the 

value of the elements in the list can be changed. The elements in the list 

are indexed starting from zero, and hence any element in the list can be 

accessed by its corresponding index, as illustrated in Listing 2-6. The index 

should be integers, and using any other data type for index will result in 

TypeError. Similarly, trying to access an index outside the range of the list 

will result in IndexError.

Listing 2-6.  Operations in a List

a = [1, 2.5, 5, 3+4j, 3, -2]

print("a is of type",type(a))

"'print the first value in the list"'

print("a[0]=",a[0])

"'print the third value in the list"'

print("a[2]=",a[2])

"' print the values from index 0 to 2"'

print("a[0:3]=",a[0:3])

"'print the values from index 4 till the end of the list"'

print("a[4:]=",a[4:])

"'Change the value at the index 3 to 4"'

a[3]=4

print("a=",a)

"'fractional index leads to TypeError"'

print(a[1.5])

"out of range index leads to IndexError"'

print(a[8])

Output of line 2: a is of type <class 'list'>

Output of line 4: a[0]= 1

Output of line 6: a[2]= 5

Output of line 8: a[0:3]= [1, 2.5, 5]

Output of line 10: a[4:]= [3, -2]
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Output of line 13: a= [1, 2.5, 5, 4, 3, -2]

Otuput of line 15: TypeError: list indices must be integers or 

slices, not float

Output of line 17: IndexError: list index out of range

Consider two lists stored in the variables a and b, respectively. 

Table 2-2 shows some additional operations provided by Python that 

can be performed on the lists a and b. Some of these functions apply to 

tuples, strings, and sets as well.

�tuple

A tuple is also an ordered sequence of elements like a list, but the 

difference is that the tuples are immutable; i.e., the values in a tuple cannot 

be changed. Trying to change the value of an element in a tuple will result 

Table 2-2.  List Operations in Python

Function Description

a+b Concatenates the two lists a and b

a*n Repeats the list a by n times where n is an integer

len(a) Computes the number of elements in list a

a.append() Adds an element to the end of list a

a.remove() Removes an item from list a

a.pop() Removes and returns an element at the given index in list a

a.index() Returns the index of the first matched item in list a

a.count() Returns the count of number of items passed as an argument 

in list a

a.sort() Sorts items in list a in ascending order

a.reverse() Reverses the order of items in list a
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in TypeError. By storing data that doesn’t change as tuples, it can be 

ensured that they remain write-protected. Tuples can be declared as items 

separated by commas enclosed within parentheses, (). Tuples can also be 

indexed in the same way as lists, as described in Listing 2-7.

Listing 2-7.  Operations in a Tuple

a = (1, 3, -2, 4, 6)

print("a is of type",type(a))

print("a[3]=",a[3])

a[2] = 5

Output of line 2: a is of type <class 'tuple'>

Output of line 3: a[3]= 4

Output of line 4: TypeError: 'tuple' object does not support 

item assignment

�str

The str data type represents a string of characters. The string can be 

declared as characters enclosed within double quotes (" "). Single quotes 

(' ') can also be used, but since they appear as apostrophes in some 

words, using double quotes can avoid confusion. The characters in a string 

are indexed in the same way as list and tuples. The space between two 

words in a string is also treated as a character. Like tuples, strings are also 

immutable and described in Listing 2-8.

Listing 2-8.  Operations in a String

a = "Hello World!"

print("a is of type",type(a))

print("a[3:7]=",a[3:7]

a[2] = "r"
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Output of line 2: a is of type <class 'str'>

Output of line 3: a[3:7]= lo W

Output of line 4: TypeError: 'str' object does not support item 

assignment

�set

A set is an unordered collection of items and hence does not support indexing. 

A set is defined by values separated by commas inside set braces, {}. A set can 

be used for removing duplicates from a sequence. Listing 2-9 shows the 

operations in a set.

Listing 2-9.  Operations in a Set

a = {1, 2, 3, 2, 4, 1, 3}

print("a is of type",type(a))

print("a=",a)

Output of line 2: a is of type <class 'set'>

Output of line 3: a= {1, 2, 3, 4}

Consider two sets stored in variables a and b, respectively. Table 2-3 

illustrates the various set operations supported by Python that can be 

applied on these two sets.
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�dict

A dict represents the dictionary data type, which is an unordered 

collection of data represented as key-value pairs. Dictionaries can 

be defined within set braces, {}, with each item being a pair in the 

form {key:value}. Dictionaries are optimized for retrieving data 

where a particular value in the dictionary can be retrieved by using its 

corresponding key. In other words, the key acts as the index for that 

value. The key and value can be of any data type. The keys are generally 

immutable and cannot be duplicated in a dictionary, whereas the values 

may have duplicate entries. Trying to access a key that is not present in the 

dictionary will result in KeyError, as described in Listing 2-10.

Table 2-3.  Set Operations in Python

Function Description

a.union(b) Returns the union of the two sets a and b in a new set

a.difference(b) Returns the difference of two sets a and b as a new set

a.intersection(b) Returns the intersection of the two sets a and b as a 

new set

a.isdisjoint(b) Returns True if the two sets a and b have a null 

intersection

a.issubset(b) Returns True if a is a subset of b; i.e., all elements of 

set a are present in set b

a.symmetric_

difference(b)

Returns the symmetric difference between the two sets 

a and b as a new set
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Listing 2-10.  Operations in a Dictionary

a = {1: 'Hello', 4: 3.6}

print("a is of type", type(a))

print(a[4])

print(a[2])

Output of line 2: a is of type <class 'dict'>

Output of line 3: 3.6

Output of line 4: KeyError: 2

�Type Conversion

Type conversion is the process of converting the value of any data type to 

another data type. The functions provided by Python for type conversion 

are listed here:

•	 int(): Changes any data type to the int data type

•	 float(): Changes any data type to the float data type

•	 tuple(): Changes any data type to a tuple

•	 list(): Changes any data type to a list

•	 set(): Changes any data type to a set

•	 dict(): Changes any data type to a dictionary

Listing 2-11 illustrates some of these functions.

Listing 2-11.  Type Conversion Operations

a = 2

print(a)

float(a)

b = [2 , 3, -1, 2, 4, 3]

print(tuple(b))

print(set(b))
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Output of line 2: 2.0

Output of line 4: (2, 3, -1, 2, 4, 3)

Output of line 5: (2, 3, 4, -1)

�Control Flow Statements
Control flow statements allow for the execution of a statement or a group 

of statements based on the value of an expression. The control flow 

statements can be classified into three categories: sequential control flow 

statements that execute the statements in the program in the order they 

appear, decision control flow statements that either execute or skip a block 

of statements based on whether a condition is True or False, and loop 

control flow statements that allow the execution of a block of statements 

multiple times until a terminate condition is met.

�if Statement

The if control statement in the decision control flow statement category 

starts with the if keyword, followed by a conditional statement, and ends 

with a colon. The conditional statement evaluates a Boolean expression 

and only if the Boolean expression evaluates to True, then the body of 

statements in the if statement be executed. if block statements start with 

indentation, and the first statement without indentation marks the end. 

The syntax for the if statement is as follows, and Listing 2-12 shows how it 

works:

if <expression>:

     <statement(s)>
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Listing 2-12.  if Statement Operations

x = 12

y=8

if x > y:

   out = "x is greater than y"

   print(out)

Output: x is greater than y

if-else Statement

The if statement can be followed up by an optional else statement. If the 

Boolean expression corresponding to the conditional statement in the if 

statement is True, then the statements in the if block are executed, and 

the statements in the else block are executed if the Boolean expression is 

False. In other words, the if-else statement provides a two-way decision 

process. The syntax for the if-else statement is as follows:

if <expression>:

     <statement(s)>

else:

     <statement(s)>

Listing 2-13 shows the example code for the if-else statement.

Listing 2-13.  if-else Statement Operations

x = 7

y=9

if x > y:

   out = "x is greater than y"

else:

   out = "x is less than y"
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print(out)

Output:

x is less than y

if...elif...else statement

The if...elif...else statement can provide a multiway decision 

process. The keyword elif is the short form of else-if. The elif 

statement can be used along with the if statement if there is a need to 

select from several possible alternatives. The else statement will  

come last, acting as the default action. The following is the syntax for the 

if...elif...else statement, and Listing 2-14 shows the example code:

if <expression>:

     <statement(s)>

elif <expression>:

     <statement(s)>

elif <expression>:

     <statement(s)>

...

else:

     <statement(s)>

Listing 2-14.  if...elif...else Statement Operations

x = 4

y=4

if x > y:

   out = "x is greater than y"

elif x<y:

   out = "x is less than y"
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else:

   out = "x is equal to y"

print(out)

Output:

x is equal to y

while loop

The while and for loops are loop control flow statements. In a while loop, 

the Boolean expression in the conditional statement is evaluated. The 

block of statements in the while loop is executed only when the Boolean 

expression is True. Each repetition of the loop block is called an iteration of 

the loop. The Boolean expression in the while statement is checked after 

each iteration. The execution of the loop is continued until the expression 

becomes False, and the while loop exits at this point. The syntax for the 

while loop is as follows, and Listing 2-15 shows how it works:

while <expression>:

<statement(s)>

Listing 2-15.  while Loop Operations

x=0

while x < 4:

      print("Hello World!")

      x=x+1

Output:

Hello World!

Hello World!

Hello World!

Hello World!
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for loop

The for loop runs with an iteration variable that is incremented with each 

iteration, and this increment goes on until the variable reaches the end of 

the sequence on which the loop is operating. In each iteration, the items in 

the sequence corresponding to the location given by the iteration variable 

are taken, and the statements in the loop are executed with those items. 

The syntax for the for loop is as follows:

for <iteration_variable> in <sequence>:

    <statement(s)>

The range() function is useful in the for loop as it can generate a 

sequence of numbers that can be iterated using the for loop. The syntax 

for the range() function is range([start,] stop [,step]) where 

start indicates the beginning of the sequence (starting from zero if 

not specified), stop indicates the value up to which the numbers must 

be generated (not including the number itself), and step indicates the 

difference between every two consecutive numbers in the generated 

sequence. The start and step values are optional. The values generated by 

the range argument should always be integers. Listing 2-16 shows a for 

loop used to print the elements in a string one by one.

Listing 2-16.  for Loop Operations

x = "Hello"

for i in x:

    print(i)

Output:

H

e

l

l

o
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Listing 2-17 shows how to use the range() function to print a sequence 

of integers.

Listing 2-17.  for Loop Operations with range Function

for i in range(4):

    print(i)

Output:

0

1

2

3

�Exception Handling
Exceptions are nothing but errors detected during execution. When an 

exception occurs in a program, the execution is terminated and thereby 

interrupts the normal flow of the program. By means of exception handling, 

meaningful information about the error rather than the system-generated 

message can be provided to the user. Exceptions can be built-in or  

user-defined. User-defined exceptions are custom exceptions created by 

the user, which can be done using try...except statements, as shown in 

Listing 2-18.

Listing 2-18.  Exception Handling

while True:

try:

    n=int(input("Enter a number"))

print("The number you entered is",n)

     break

Chapter 2  Basics of Python Programming



37

except ValueError:

    print("The number you entered is not

          the correct data type")

    print("Enter a different number")

Output:

Enter a number 5

The number you have entered is 5

Enter a number3.6

The number you entered is not the correct data type

Enter a different number

In Listing 2-18, a ValueError exception occurs when a variable 

receives a value of an inappropriate data type. If no exception occurs, 

i.e., the number entered as input is an integer, then the except block is 

skipped, and only the try block is executed. If an exception occurs while 

entering a number of a different data type, then the rest of the statements 

in the try block are skipped, the except block is executed, and the 

program is returned to the try block.

�Functions
Functions are fundamental blocks in the Python programming that can 

be used when a block of statements needs to be executed multiple times 

within a program. Functions can be created by grouping this block of 

statements and giving it a name so that the statements can be invoked 

at any part of the program simply by this name rather than repeating the 

entire block. Thus, functions can be used to reduce the size of the program 

by eliminating redundant code. The functions can be either built-in or 

user-defined.
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The Python interpreter has a number of built-in functions some of 

which we have seen already such as print(), range(), len(), etc. On the 

other hand, Python enables users to define their own functions and use 

them as needed. The syntax for function definition is as follows:

def function_name(parameter1, ....  parameter n):

        statement(s)

The function name can have letters, numbers, or an underscore, but 

it cannot start with a number and should not have the same name as a 

keyword. Let’s consider a simple function that takes a single parameter as 

input and computes its square; see Listing 2-19.

Listing 2-19.  Square Functions

def sq(a):

    b = a * a

    print(b)

sq(36)

Output:1296

Let’s see a slightly complicated function that computes the binary 

representation of a given decimal number.

As shown in Listing 2-20, the five lines of code required to compute the 

binary representation of a decimal number can be replaced by a single line 

using the user-defined function.

Listing 2-20.  Square Functions

    import math as mt

    def dec2bin(a):

        b=' '

        while a!=0:

            b=b+str(a%2)#concatenation operation
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            a=math.floor(a/2)

            return b[:-1]# reverse the string b

    print(int(dec2bin(19))

Output: 10011

�Python Libraries for Data Science
The Python community is actively involved in the development of a 

number of toolboxes intended for various applications. Some of the 

toolboxes that are used mostly in data science applications are NumPy, 

SciPy, Pandas, and Scikit-Learn.

�NumPy and SciPy for Scientific Computation
NumPy is a scientific computation package available with Python. NumPy 

provides support for multidimensional arrays, linear algebra functions, 

and matrices. NumPy array representations provide an effective data 

structure for data scientists. A NumPy array is called an ndarray , and it 

can be created using the array() function. Listing 2-21 illustrates how to 

create 1D and 2D arrays and how to index their elements.

Listing 2-21.  Array Using NumPy

'''import the NumPy library'''

import numpy as np

'''creates an 1D array'''

a=np.array([1,2,3,4])

'''print the data type of variable a'''

print(type(a))

'''creates a 2D array'''

a=np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
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print(a)

'''print the dimension of the array'''

print(a.ndim)

'''print the number of rows and columns in the array'''

print(a.shape)

'''print the third element in the first row'''

print(a[0,2])

'''print the sliced matrix as per given index'''

print(a[0:2,1:3])

a=np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])

'''reshape the 1 x 9 array into a 3 x 3 array'''

b=a.reshape(3,3))

print(b)

Output of line 6: <class 'numpy.ndarray'>

Output of line 9:

[[1 2 3 4]

 [5 6 7 8]]

Output of line 11: 2

Output of line 13: (2, 4)

Output of line 15:3

Output of line 17

[[2 3]

 [6 7]]

Output of line 21:

[[1 2 3]

 [4 5 6]

 [7 8 9]]

The sum of elements in an array of any dimension can be computed 

using sum(). The sum can be computed either for the entire elements in 

the array or along one of the dimensions as illustrated in Listing 2-22 for 

the array b created earlier.
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Listing 2-22.  Array Using NumPy

'''print the sum of elements in array b'''

print(b.sum())

'''print the sum of elements along each column'''

print(b.sum(axis=0))

'''print the sum of elements along each row'''

print(b.sum(axis=1))

Output:

Output of line 2: 45

Output of line 4: array([12,15,18])

Output of line 6: array([6, 15, 18])

Another important operation with respect to arrays is the flattening 

of multidimensional arrays. This process is more common in many of the 

machine learning–based applications, and it can be done by using the 

flatten() function, as illustrated here:

b.flatten()

Output:

       array([1, 2, 3, 4, 5, 6, 7, 8, 9]

The flatten() function converts an array of any dimension into a 

single-dimensional array. This can be achieved using reshape() as well, 

but unlike the flatten() function, the size of the single-dimensional 

array has to be specified in that case. Table 2-4 describes some other array 

operations that may come in handy while working with data analysis 

applications.
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Table 2-4.  NumPy Functions for Data Analysis

Syntax Description

np.ones() Creates an array of ones in the dimension 

specified within the parentheses.

np.zeros() Creates an array of zeros in the dimension 

specified within the parentheses.

np.flip(a,axis) Reverses the array a along the given axis. 

If axis is not specified, the array is reversed 

along both dimensions.

np.concatenate(a,b,axis) Concatenates two arrays a and b along the 

specified axis (=0 or 1 corresponding to 

vertical and horizontal direction).

np.split(a,n) Splits the array a into n number of smaller 

arrays. Here n can be any positive integer.

np.where(a==n) Gives the index values of the number n 

present in an array a.

np.sort(a,axis) Sorts the numbers in an array a along the 

given axis.

np.random.randint(n,size) Generates an array of the given size using 

integers ranging from 0 to the number n.

The SciPy ecosystem is a collection of open source software for 

scientific computation built on the NumPy extension of Python. It provides 

high-level commands for manipulating and visualizing data. Two major 

components of this ecosystem are the SciPy library, which is a collection 

of numerical algorithms and domain-specific toolboxes, and Matplotlib, 
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which is a plotting package that provides 2D and 3D plotting. The 

following syntax can be used to import and use any function from a SciPy 

module in your code:

from scipy import some_module

some_module.some_function()

As per the official SciPy documentation, the library is organized into 

different subtypes covering different domains, as summarized in Table 2-5.

Table 2-5.  Subpackages in SciPY

Subpackage Description

cluster Clustering algorithms

constants Physical and mathematical constants

fftpack Fast Fourier Transform routines

integrate Integration and ordinary differential equation solvers

interpolate Interpolation and smoothing splines

io Input and output

linalg Linear algebra

ndimage N-dimensional image processing

odr Orthogonal distance regression

optimize Optimization and root-finding routines

signal Signal processing

sparse Sparse matrices and associated routines

spatial Spatial data structures and algorithms

special Special functions

stats Statistical distributions and functions
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�Scikit-Learn for Machine Learning
Scikit-Learn is an open source machine learning library for Python 

programming that features various classification, regression, and 

clustering algorithms. It is designed to interoperate with other Python 

libraries like NumPy and SciPy.

�Pandas for Data Analysis
Pandas is a fast and powerful open source library for data analysis and 

manipulation written for Python programming. It has a fast and efficient 

DataFrame object for data manipulation with integrated indexing. It has 

tools for reading and writing data between in-memory data structures and 

different file formats such as CSV, Microsoft Excel, etc. Consider a CSV file 

called data.csv containing the grades of three students in three subjects, 

as shown in Figure 2-5. Listing 2-23 shows the procedure for reading and 

accessing this data using Pandas.

Listing 2-23.  Data Modification Using Pandas Functions

import pandas as pd

'''reads the file data.csv with read_csv package and the 

header=None option allows pandas to assign default names to the 

colums

Consider the data in the above table is typed in a excel sheet and 

saved as csv file in the following path C:\Python_book\data.csv

Roll No Science Maths English

RN001 70 76 85

RN002 86 98 88

RN003 76 65 74

Figure 2-5.  CSV file with grade data of students
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'''

d = pd.read_csv("C:\Python_book\data.csv",header=None)

print(type(d))

print(d)

"'print the element common to row1-column2"'

print(d.loc[1,2])

"'print the elements common to rows 1,2 and

  columns 1,2"'

d.loc[1:2, 1:2]

Output of line 4:

<class 'pandas.core.frame.DataFrame'>

Output of line 5:

     0           1       2           3

0  Roll No    Science  Maths   English

1    RN001       70        76          85

2    RN002       86        98          88

3    RN003       76        65          74

Output of line 7: 76

Output of line 9:

    1      2

1   70   76

2   86   98

Similarly, there are other read functions such as read_excel, read_sql, 

read_html, etc., to read files in other formats, and every one of these read 

functions comes with their corresponding write functions like to_csv, to_

excel, to_sql, to_html, etc., that allows you to write the Pandas dataframe 

to different formats.
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Most of the real-time data gathered from sensors is in the form of time-

series data, which is a series of data indexed in time order. Let’s consider a 

dataset that consists of the minimum daily temperatures in degrees Celsius 

over 10 years (1981 to 1990) in Melbourne, Australia. The source of the data 

is the Australian Bureau of Meteorology. Even though this is also a CSV 

file, it is time-series data unlike the DataFrame in the previous illustration. 

Listing 2-24 shows the different ways to explore the time-series data.

Listing 2-24.  Data Modification in Pandas

Series=pd.read_csv('daily-min-

             temperatures.csv',header=0, index_col=0)

"'prints first 5 data from the top of the series"'

print(series.head(5))

"'prints the number of entries in the series"'

print(series.size)

print(series.describe())

"'describe() function creates 7 descriptive   statistics of the 

time series data including mean, standard deviation, median, 

minimum, and maximum of the observations"'

      Output of line 3:

   Date                  Temp

1981-01-01            20.7

1981-01-02            17.9

1981-01-03            18.8

1981-01-04            14.6

1981-01-05            15.8

Output of line 5: 3650

Output of line 6:
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            Temp

count  3650.000000

mean     11.177753

std       4.071837

min       0.000000

25%       8.300000

50%      11.000000

75%      14.000000

max      26.300000

�TensorFlow for Machine Learning
TensorFlow is an end-to-end open source platform for machine learning 

created by the Google Brain team. TensorFlow has a slew of machine 

learning models and algorithms. It uses Python to provide a front-end API 

for building applications with the framework. Keras is a high-level neural 

network API that runs on top of TensorFlow. Keras allows for easy and 

fast prototyping and supports both convolutional networks and recurrent 

neural networks.
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CHAPTER 3

Introduction to the 
Raspberry Pi
The Raspberry Pi, or simply the Pi, is a series of small, low-cost, single-

board computers invented by the Raspberry Pi Foundation in the United 

Kingdom to promote basic computer science and electronics among 

students around the world. Students and tech enthusiasts use the 

Raspberry Pi to learn programming concepts, build hardware projects and 

robots, and make artificial intelligence projects. It is also used in industrial 

applications.

�What Can You Do with the Raspberry Pi?
A Raspberry Pi board can do pretty much everything a desktop computer 

can do: surf the Internet, watch high-definition videos, listen to music, 

view and edit pictures, perform word processing, make spreadsheets and 

presentations, write and compile code, participate in video conferencing, 

and even play games.

https://doi.org/10.1007/978-1-4842-6825-4_3#DOI
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�Physical Computing with the Raspberry Pi
The Raspberry Pi can also be used to interact with the physical world. 

This is done with the general-purpose input/output (GPIO) pins on the 

Raspberry Pi board. This makes the Raspberry Pi powerful as it can be 

interfaced with sensors and other electric and electronic components such 

as LEDs, servo and stepper motors, relays, etc.

�How to Program the Raspberry Pi?
The Raspberry Pi comes with two pre-installed languages (Scratch 

and Python), but it also supports other languages. Scratch is a visual 

programming language for children, whereas Python is a high-level 

general-purpose programming language; both languages are easy to 

learn. If you learn to program in Python, then you can do everything that’s 

possible with the Raspberry Pi.

�Raspberry Pi Hardware
The Raspberry Pi Foundation released the first Raspberry Pi, the Raspberry 

Pi model B, in 2012. A number of improved versions were released after 

that, and we will look at all those versions later. The latest version is the 

Raspberry Pi 4 model B, released in June 2019. Figure 3-1 shows the top 

view of a Raspberry Pi board with its many I/O ports. Let’s take a look at its 

hardware specifications and other features.
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�System on a Chip
The system on a chip (SoC), shown in Figure 3-2, is the brain of the 

Raspberry Pi. This small chip consists of many important parts: the central 

processing unit (CPU), the graphics processing unit (GPU), and the digital 

signal processor.

Figure 3-1.  Raspberry Pi hardware

Figure 3-2.  System on a chip
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The Raspberry Pi 4 model B has the powerful Broadcom BCM2711 

(1.5 GHz 64-bit quad-core) SoC. The Pi’s CPU performs operations such as 

basic arithmetic, logic, controlling, and input/output, while the Pi’s GPU 

is used for handling multimedia tasks such as digital image processing, 

drawing 3D graphics, and playing games.

�Raspberry Pi RAM
Random access memory (RAM) is the black rectangle located next to the 

SoC in the Raspberry Pi 4 model B, as shown in Figure 3-3. In previous 

versions of the Raspberry Pi, the RAM was packed inside the SoC. The Pi 4 

offers three choices of LPDDR4 RAM: 1GB, 2GB, and 4GB.

RAM stores the short-term data used by the applications, and this data 

will be deleted when the Raspberry Pi is turned off. The RAM is shared by 

both the central processing unit and the graphics processing unit.

�Connectivity
The Raspberry Pi 4 model B has onboard Wi-Fi, Bluetooth and Gigabit 

Ethernet. These features come in handy for accessing the Raspberry 

Pi remotely, making it a desirable choice of hardware for Internet of 

Things (IoT) projects. This also frees up the USB ports and GPIO pins for 

connecting external Wi-Fi and Bluetooth modules.

Figure 3-3.  Raspberry Pi RAM
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�Setting Up the Raspberry Pi
This section explains how to set up the Raspberry Pi.

�microSD Memory Card
The Raspberry Pi, unlike desktops and laptops, uses a microSD memory 

card for storing the files, applications, and even the operating system. 

microSD memory cards are small compared to hard disks and are easy to 

use. A minimum of 8GB of memory is required by the Pi. A 16GB or 32GB 

microSD memory card is recommended for data science projects. Class 

10 ultra-high-speed (UHS) memory cards are recommended for faster 

reading/writing of data.

�Installing the OS
Raspbian is the official and most commonly used operating system for 

the Raspberry Pi released by the Raspberry Pi Foundation. It can be 

easily installed on the microSD card using Raspberry Pi Imager software, 

as shown in Figure 3-4. The Raspberry Pi also supports other operating 

systems such as Ubuntu and Windows 10 IOT Core.
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Follow these instructions to install the Raspbian OS in your 

Raspberry Pi:

	 1.	 Visit the Downloads page of the Raspberry Pi 

website and download the Raspberry Pi Imager 

software on your operating system.

	 2.	 Once the download is completed, launch the 

installer by clicking it.

	 3.	 Insert the microSD memory card into your 

computer. Make sure to back up any important data 

you have in it, as anything stored in the card will be 

formatted.

Figure 3-4.  Interface of the Raspberry Pi Imager software
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	 4.	 Select the Raspbian or other desired operating 

system that you want to install and also the microSD 

card you would like to install it on.

	 5.	 Finally, click the Write button and wait for the 

operation to complete.

�Inserting the microSD Memory Card
The thin metal slot on the underside of the Raspberry Pi, as shown in 

Figure 3-5, is the microSD memory card slot. Once the operating system is 

installed on the microSD memory card, insert it in the memory card slot of 

the Raspberry Pi.

As the operating system is stored along with the other files on the 

microSD memory card, it makes the Pi’s memory portable. The microSD 

memory card can be inserted in a new Raspberry Pi, and it will work like a 

charm.

Figure 3-5.  MicroSD card slot
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�Connecting a Keyboard and Mouse
Figure 3-6 shows the USB ports of a Raspberry Pi pin. The Raspberry Pi 4 

model B has two USB 2.0 ports (black) and two Universal Serial Bus (USB) 

3.0 ports (blue). USB can be used to connect a keyboard, mouse, webcam, 

and other USB peripherals. USB 3.0 ports are about 10 times faster than 

the USB 2.0 ports. Normally, peripherals like keyboard and mouse are 

connected to the USB 2.0 ports, leaving the faster USB 3.0 ports for devices 

such as hard disk and webcam.

If you have a wireless keyboard and mouse instead of a wired 

combination, they can be connected to the Raspberry Pi by connecting the 

USB dongle in one of the two black ports. This also frees up one of the USB 

ports, which can be used to connect other devices.

�Connecting a Monitor
The Raspberry Pi can be connected to a monitor through the micro-HDMI 

port shown in Figure 3-7. HDMI stands for High-Definition Multimedia 

Interface, and the Raspberry Pi provides combined audio and video output 

from this port. The Raspberry Pi model 4 comes with two micro-HDMI 

ports with 4K support, which means you can connect two 4K monitors to 

the Raspberry Pi at the same time.

Figure 3-6.  USB ports
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If your TV or monitor supports HDMI input, then you will need a micro 

HDMI-to-HDMI cable to connect the Raspberry Pi to your TV or monitor. 

Older versions of the Raspberry Pi come with a single HDMI port. If your 

TV or monitor has a VGA input, then you will need to use a micro HDMI-

to-VGA adapter to connect it to the Raspberry Pi. Similarly, you can use a 

HDMI-to-DVI cable for monitors with DVI input.

�Powering the Raspberry Pi
The Raspberry Pi 4 B needs to be powered through a 5.1V DC USB-C type 

connector, as shown in Figure 3-8, with a minimum current input of 3A. It 

can also be powered via the GPIO header. The USB-C type power port is 

located near a corner of the Raspberry Pi. None of the Raspberry Pi models 

has an on/off switch; once you connect the Raspberry Pi to the power 

supply, it turns on.

Figure 3-7.  HDMI ports

Figure 3-8.  USB-C type connector
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Supplying the incorrect voltage or insufficient current can cause 

damages to the Raspberry Pi; hence, it is recommended to use the official 

Raspberry Pi power supply.

�Raspberry Pi Enclosure
The Raspberry Pi needs to be enclosed in a case to prevent the bare 

connections and GPIO headers. A variety of enclosure cases are 

available for the Raspberry Pi, or you can make your own case, but it 

is recommended to use the official cases released by the Raspberry Pi 

Foundation. Cases with cooling fans are also available. They can be used to 

prevent the Pi from overheating while running heavy-duty applications.

�Raspberry Pi Versions
This section explains the different versions.

�Raspberry Pi 1
The Raspberry Pi B was the first model launched by the Raspberry Pi 

Foundation in 2012, followed by the Pi A in 2013. They had 26 GPIO pins, 

a 700MHz processor, and 256MB/512MB RAM, and they didn’t have any 

built-in Wi-Fi or Bluetooth. In 2014, the compact Pi A+ and improved B+ 

models were released with 40 GPIO pins.

�Raspberry Pi 2
The Raspberry Pi 2 was released in 2015 with an improved 900MHz quad-

core processor and 1GB RAM. This model had 40 GPIO pins and did not 

have built-in Wi-Fi or Bluetooth. It had four USB 2.0 ports, an Ethernet 

port, and an HDMI port.
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�Raspberry Pi 3
In 2016, the Raspberry Pi 3 was released. It had a 1.2GHz quad-core 

processor with 1GB RAM. This model had 40 GPIO pins, and this was 

the first Raspberry Pi model to have built-in Wi-Fi and Bluetooth. Similar 

to the Raspberry Pi 2, it had four USB 2.0 ports, an Ethernet port, and 

an HDMI port. Later in 2018, the compact Pi 3 A+ and improved Pi 3 B+ 

models were launched.

�Raspberry Pi Zero (W/WH)
In 2015, a small-sized, low-cost Raspberry Pi Zero with fewer GPIO pins 

was launched. The Pi Zero W was released in 2017 with built-in Wi-Fi 

and Bluetooth. This was followed by the Pi Zero WH that came with pre-

soldered GPIO headers.

�Raspberry Pi 4
The Raspberry Pi 4 model B was released in 2019 and had the powerful 

1.5GHz quad-core processor and 1GB/2GB/4GB RAM options. This was 

the first model to come with dual 4K display output, USB-C type power 

input, and two USB 3.0 ports.

�Recommended Raspberry Pi Version
There are different versions of Raspberry Pi available, but the Raspberry Pi 

4 is recommended for data science projects as it is more powerful than the 

other versions and also comes with RAM options up to 4GB.

The Raspberry Pi Zero WH is the smallest variant of the Raspberry 

Pi available, and it is recommended when the size of the single-board 

computer needs to be small. But it comes with a comparatively slower 

processor, less RAM, and fewer GPIO pins.
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�Interfacing the Raspberry Pi with Sensors
This section highlights how to interface the Raspberry Pi with sensors.

�GPIO Pins
The GPIO pins shown in Figure 3-9 are one of the most powerful 

features of the Raspberry Pi. The GPIO pins are the row of little pins 

along the edge of the board. All Raspberry Pi versions released recently 

have a 40-pin GPIO header. These pins are the connections between 

the Raspberry Pi and the real world. GPIO pins can be designated as 

input or output in software and can be used for a variety of purposes 

like turning on/off LEDs, controlling servo motors, and getting data 

from sensors. They can be programmed in Python or any other 

language such as Scratch or C/C++.
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�GPIO Pinout
Before making any connections to the Raspberry Pi GPIO pins, we need 

to know the GPIO pinout reference. Pinout configurations are not printed 

on the Raspberry Pi, but we can get the pinout reference of any Raspberry 

Figure 3-9.  Raspberry Pi GPIO pins
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Pi by opening the terminal window and typing the command pinout. 

This tool is given by the gpiozero library, which is pre-installed on the 

Raspbian OS.

�GPIO Outputs
The Raspberry Pi has two 5V pins and two 3V3 pins; it also has eight 

ground pins (0V), which cannot be configured. The remaining 28 pins are 

all general-purpose 3V3 pins. The outputs of these pins are set to 3V3 or 

can receive inputs up to 3V3. A GPIO pin designated as an output pin can 

be set to high (3V3) or low (0V).

�Controlling GPIO Output with Python
GPIO pins can be easily controlled with Python using the gpiozero library. 

Let’s see a simple Python example of how to turn on/off LEDs connected 

to GPIO pins. LEDs always need to be connected to the GPIO pins through 

a resistor. Resistors will ensure that only a small current will flow in the 

circuit; hence, the Raspberry Pi or the LED will be protected from damage.

We will connect an LED to GPIO pin 17 through a 330Ω resistor, as 

shown in Figure 3-10. Now, the LED can be made to continuously turn on 

and off using the Python code given in Listing 3-1. The led.on() function 

turns on the LED, and the led.off() function turns off the LED.
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Listing 3-1.  LED Function Using GPIO

from gpiozero import LED

from time import sleep

led = LED(17)

while True:

      led.on()

      sleep(1)

      led.off()

      sleep(1)

Figure 3-10.  Connecting LED to GPIO pins
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�GPIO Input Signals
GPIO pins that are designated as input pins can be read as high (3V3) or 

low (0V). This means that the GPIO pins do not support analog input and 

can receive digital input only. Although there is no hardware for an analog-

to-digital converter in the Raspberry Pi, we can use an external ADC such 

as the MCP3008 to read analog data from sensors.

�Reading GPIO Inputs with Python

Sensors can be easily interfaced with the Raspberry Pi by connecting 

them to GPIO pins. The sensors can be powered by connecting the VCC 

of the sensor to 3.3V/5V of the Raspberry Pi and connecting the GND of 

the sensor to the GND of the Raspberry Pi. Digital output from the sensor 

can be directly connected to the GPIO pins and read. But while reading 

an analog output, an analog-to-digital converter required to interface a 

analog sensor with Raspberry Pi.

Digital Signals from Sensors

The Raspberry Pi considers any input below 1.8V as low (0) and anything 

above 1.8V as high (1), as shown in Figure 3-11. Digital output data from 

any sensor can be easily read using the InputDevice.value function. This 

function returns the current state of the given GPIO pin.

The code in the Listing 3-2 prints the state of GPIO pin 17 every second.

Figure 3-11.  Low and high inputs
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Listing 3-2.  State of GPIO

from gpiozero import InputDevice

from time import sleep

sensor = InputDevice(17, pull_up=True)

while True:

      print(sensor.value)

      sleep(1)

Analog Signals from Sensors

Figure 3-12 illustrates an analog signal. To read analog signals from sensors 

or some other devices, we should use an analog-to-digital converter such 

as MCP3008 for the Raspberry Pi. An ADC converts the analog signals into 

digital signals. The Serial Peripheral Interface (SPI) protocol is used to 

communicate the output from the ADC to the Raspberry Pi.

To enable SPI communication, open the Raspberry Pi configuration 

from the main menu and enable SPI on the Interfaces tab. MCP3008 is a 

10-bit ADC and has eight input channels (0–7). Let’s connect an analog 

input to the first channel (0) of the MCP3008 and the other pins of the 

MCP3008, as shown in Figure 3-13.

Figure 3-12.  Analog signal
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The code in Listing 3-3 prints the analog value of the sensor connected 

to the first channel (0) of MCP3008 every second. Since MCP3008 is a 10-

bit ADC, the output value ranges from 0 to 1023.

Listing 3-3.  Implement the MCP3008

from gpiozero import MCP3008

from time import sleep

sensor = MCP3008(0)

while True:

      print(sensor.value)

      sleep(1)

�Interfacing a Ultrasonic Sensor with the  
Raspberry Pi
Ultrasonic sensors are used to measure the distance of objects by finding 

the time of the sound wave. The HC-SR04 ultrasonic sensor can be used to 

measure the distance from 2cm to 400cm with 3mm accuracy. Ultrasonic 

sensors work by sending out a sound wave at a frequency of 40kHz, which is 

above the range of human hearing and travels through the air. If there is an 

obstacle or object, the sound wave will bounce back to the sensor.  

Figure 3-13.  10-bit ADC MCP3008

Chapter 3  Introduction to the Raspberry Pi



67

The distance of the object can be calculated by multiplying half of the 

travel time and the speed of sound. Figure 3-14 shows the ultrasonic 

sensor and its pins where the VCC pin needs to be connected to the 

positive terminal of the Raspberry Pi, the GND pin can be connected to a 

GND pin of the Raspberry Pi, the Trig pin is used to trigger the ultrasonic 

sound pulses, and the Echo pin produces a pulse when the reflected sound 

wave is received.

Connect the ultrasonic distance sensor to the Raspberry Pi, as shown 

in Figure 3-15.

Figure 3-14.  Ultrasonic sensor pin

Figure 3-15.  Ultrasonic sensor with the Raspberry Pi GPIO pin
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The gpiozero library has an object called DistanceSensor that can 

be used to measure distance using the ultrasonic sensor in Python. 

The distance function returns the distance measure by the ultrasonic 

distance senor in meters. Let’s multiply the value by 100 to convert it into 

centimeters. The code in Listing 3-4 continuously prints the distance 

measure by the ultrasonic distance sensor in centimeters every second.

Listing 3-4.  Code for calculting distance measured by the 

Ultrasonic Sensor

from gpiozero import DistanceSensor

from time import sleep

sensor = DistanceSensor(echo=17, trigger=4)

while True:

    print(sensor.distance * 100)

    sleep(1)

When the code is running, move the position of the objects placed in 

front of the ultrasonic sensor to get different values.

�Interfacing the Temperature and Humidity 
Sensor with the Raspberry Pi
As the name suggests, these sensors can be used to measure the 

temperature and humidity. They consist of a capacitive humidity sensing 

element and a thermistor for sensing temperature. The temperature and 

humidity sensor has a dedicated resistive-type humidity measurement 

component, called the negative temperature coefficient (NTC) temperature 

measurement component, and an 8-bit microcontroller to output the 

values of temperature and humidity as serial data. A single-bus data 

format is used for the communication and synchronization between the 

Raspberry Pi and the DHT11 sensor.
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Figure 3-16.  Temperature and humidity sensor

Figure 3-17.  Temperature and humidity sensor with the Raspberry 
Pi GPIO pin

DHT 11 and DHT 22 are the generally used temperature and humidity 

sensors. Figure 3-16 shows the temperature and humidity sensor (THD)  

and Figure 3-17 explains the interfacing of THD with Raspberry Pi 

where the VCC pin needs to be connected to the positive terminal 

of the Raspberry Pi, where the GND pin can be connected to a GND 

of the Raspberry Pi, and where the Signal/Data pin is used for serial 

communication and needs to connect to a GPIO pin.

Connect the DHT 11/22 sensor module to the Raspberry Pi, as shown 

in Figure 3-17.
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Let’s use the Adafruit_DHT library to get the temperature and humidity 

values from the sensor. The code in Listing 3-5 continuously prints the 

temperature in Celsius and the humidity percentage.

Listing 3-5.  Code for Temperature and Humidity Sensor

import Adafruit_DHT

import time

DHT_SENSOR = Adafruit_DHT.DHT11

DHT_PIN = 17

while True:

    humidity, temperature =

        Adafruit_DHT.read(DHT_SENSOR, DHT_PIN)

    if humidity is not None and temperature is not None:

        print("Temperature="{0:0.1f}C)

      humidity={1:0.1f}%".format(temperature, humidity))

    else:

        print("Sensor not connected.");

    time.sleep(3);

The Adafruit module can be installed in the Raspberry Pi using the 

following code.

For Python 2:

sudo pip install Adafruit_DHT

For Python 3:

sudo pip3 install Adafruit_DHT
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Figure 3-18.  Soil moisture sensor

�Interfacing the Soil Moisture Sensor 
with the Raspberry Pi
Soil moisture sensors are used to detect the moisture present in soil. A 

soil moisture sensor consists of two probes that are used to measure the 

amount of moisture present in the soil. This sensor uses capacitance to 

measure the dielectric permittivity of the soil, which is a function of the 

moisture content of the soil. The sensor is equipped with both analog 

and digital output, so it can be used in both analog and digital modes. 

But, let’s take the analog signal from the sensor and read it using Python. 

Figure 3-18 shows the soil moisture sensor. Here, the VCC pin needs to be 

connected to the positive terminal of the Raspberry Pi, the analog output 

(AO) creates a voltage proportional to the dielectric permittivity and 

therefore the water content of the soil, and the digital output (DO) creates 

a pulse when the soil moisture is higher than the threshold value. The 

threshold value is set using the potentiometer in the sensor module, and 

the GND pin can be connected to a GND of the Raspberry Pi.

Connect the soil moisture sensor module to the Raspberry Pi through 

an MCP3008 ADC, as shown in Figure 3-19.
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Let’s use the MCP3008 module from the gpiozero library to get the 

values from the MCP3008. The code in Listing 3-6 continuously prints the 

analog value of the soil moisture sensor every second.

Listing 3-6.  Code for interfacing soil moisture sensor

from gpiozero import MCP3008

from time import sleep

soil_sensor = MCP3008(0)

while True:

    print(soil_sensor.value)

    sleep(1)

�Interfacing Cameras with the Raspberry Pi
Cameras are optical instruments used to record images using an image 

sensor. An image sensor detects and conveys information used to make an 

image. Cameras can be easily interfaced with the Raspberry Pi to get image 

or video data. There are two options available to interface cameras with the 

Raspberry Pi.

Figure 3-19.  Temperature and humidity sensor with the Raspberry 
Pi GPIO pin
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Method 1: The first method is to connect a USB web camera to the 

Raspberry Pi using the USB ports. Figure 3-20 shows a USB web camera. 

Once the USB web camera is connected properly, it can be accessed in 

Python using the OpenCV library. OpenCV is a Python library for image 

processing and real-time computer vision. The code in Listing 3-7 can be 

used for connecting the USB web camera to the Raspberry Pi.

Listing 3-7.  Code for Connecting USB Web Cameras with the 

Raspberry Pi

import cv2

videoCaptureObject = cv2.VideoCapture(0)

result = True

while(result):

    ret,frame = videoCaptureObject.read()

    cv2.imwrite("/home/pi/Desktop/webcam_image.jpg ",frame)

    result = False

videoCaptureObject.release()

cv2.destroyAllWindows()

Method 2: Another method is to interface a Raspberry Pi camera 

module via the Camera Serial Interface (CSI) port. Figure 3-21 shows 

the Raspberry Pi camera. There are two Raspberry Pi camera modules 

Figure 3-20.  USB web camera
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available: a standard module and a NoIR camera module for taking 

pictures in the dark. To enable the Raspberry Pi camera, open the 

Raspberry Pi configuration from the main menu and enable Camera on 

the Interfaces tab.

The code in Listing 3-8 takes a picture from the Raspberry Pi camera 

module and stores the image in the specified location.

Listing 3-8.  Code for Connecting Raspberry Pi Camera with the 

Raspberry Pi

from picamera import PiCamera

from time import sleep

camera = PiCamera()

camera.start_preview()

sleep(5)

camera.capture('/home/pi/Desktop/cammodule_img.jpg')

camera.stop_preview()

Figure 3-21.  Raspberry Pi camera with CSI
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�Raspberry Pi as an Edge Device
Computing done at or near the source of data is known as edge computing. 

Edge computing is preferred over cloud computing in areas that require 

instant or real-time computing, as well as in remote locations that cannot 

be connected to a centralized cloud or have limited connectivity. The most 

significant advantage of edge computing is its capacity to reduce latency as 

the data gathered by the sensors is processed in edge devices and doesn’t 

need to travel far to the data centers. See Figure 3-22.

�Edge Computing in Self-Driving Cars
Self-driving cars will rely on edge computing as every millisecond 

is very crucial while driving on the road. The large amount of data 

collected from their sensors and cameras can’t be sent to the cloud 

for analysis as this would take a considerable amount of time and also 

Figure 3-22.  Raspberry Pi as edge device
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need an uninterrupted network. So, edge computing is preferred for 

these kind of applications due to its faster speed and high reliability.

�What Is an Edge Device?
Edge computing is done in edge devices. Edge devices are capable of 

gathering, storing, and processing data in real time. As a result, the 

edge devices provide faster response and have better reliability. Sensors 

and other devices are connected to the edge device via wired cables or 

wireless connectivity such as Wi-Fi or Bluetooth, as shown in Figure 3-22. 

Sometimes the edge devices are connected to a centralized cloud for big 

data processing and data warehousing.

�Edge Computing with the Raspberry Pi
The Raspberry Pi has good computing power and the ability to connect 

to sensors and devices through wired and wireless connections. The 

Raspberry Pi also supports many computer programming languages such 

as Python, C/C++, and Java. This makes the Raspberry Pi an excellent 

choice for edge computing.

�Raspberry Pi as a Localized Cloud
In this chapter, we’ll discuss using the Raspberry Pi as a localized cloud.

�Cloud Computing
Cloud computing is the practice of using a network of remote servers 

hosted on the Internet to store, manage, and process data. These remote 

servers are called cloud servers and are located in data centers all over the 

world. Accessing data from these kind of servers requires strong Internet 

connectivity.
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Figure 3-23.  Raspberry Pi as a localized cloud

�Raspberry Pi as Localized Cloud
Nowadays, IoT devices generate huge volumes of data at high speed. 

Often this data requires real-time processing to make quick decisions, and 

this can be supported by a localized cloud. Also, some of the IoT sensor 

networks are deployed at remote areas with sparse Internet connectivity, 

which challenges the concept of a localized cloud. The Raspberry Pi can 

be made as a localized cloud to support real-time data processing closer to 

the IoT networks. It needs to be connected to a network via Ethernet or  

Wi-Fi. The Raspberry Pi as a localized cloud can be used to store and 

process data collected from sensors or from other devices such as 

computers and mobile phones, as illustrated in Figure 3-23.

�Connecting an External Hard Drive
External hard disk drives can be connected to the Raspberry Pi to increase 

its storage capacity. These HDDs need to be powered externally using a 

power supply. If there is no power supply, they can be connected via a 

powered USB hub. This enhanced storage can allow the Raspberry Pi to 

collect and process large amounts of real-time data from IoT networks.
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�Connecting USB Accelerator
Coral USB Accelerator is a super-fast development board for deep learning 

practitioners to deploy their models without the need for the Internet, 

thereby enabling edge computing. It brings a machine learning interface to 

the Raspberry Pi. It consists of an edge TPU coprocessor, which is capable 

of performing 4 trillion operations (tera-operations) per second (TOPS). 

This makes running ML models in real time possible. For example, the 

device can help the Raspberry Pi run MobileNet v2 models at 400 FPS.
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CHAPTER 4

Sensors and Signals
This chapter covers sensors and signals.

�Signals
Generally, signals represent some information with respect to time or 

space. For example, a variation of a car’s speed with respect to time is a 

kind of signal. The information can be transferred in the form of signals.  

In electrical engineering, a signal is a function that carries information 

with respect to time or space. The electrical equipment exhibits the signals 

in the form of voltage, current, or electromagnetic waves. As per the IEEE 

Transactions on Signal Processing, a signal can be audio, video, speech, 

image, sonar, radar-related, and so on [1]. Also, mathematically speaking, 

a signal is a function of one or more independent variables. Independent 

variables are just variables that aren’t changed by the other variables you 

are trying to measure. For example, consider the temperature variation 

with respect to time. Here, time is the independent variable, because the 

time isn’t changed due to the variations in the temperature.

This chapter discusses how to acquire information from a real-time 

environment using sensors with Raspberry Pi and then convert that 

information in to structured data. The sensor output is in the form of an 

https://doi.org/10.1007/978-1-4842-6825-4_4#DOI
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electrical signal. This chapter first describes about signal and its various 

types. There are many classifications of signals of which we concentrate on 

describing the following electrical signals:

•	 Analog and digital signals

•	 Continuous-time and discrete-time signals

•	 Deterministic and nondeterministic signals

•	 One-dimensional signals, two-dimensional signals, 

multidimensional signals

�Analog and Digital Signals
An analog signal represents the instantaneous values of a physical quantity 

that varies continuously with respect to an independent variable (i.e., time). 

Simply speaking, analog signals are continuous in time and amplitude. The 

physical quantity may be temperature, pressure, speed, etc. Sensors can 

convert the variation of physical quantity in to electrical signals like voltage 

or current. In this way, real-time environment data can be collected in the 

form of electrical signals using sensors.

A digital signal is a signal that is used to represent data as a sequence 

of discrete values. The independent variable (i.e., time) is discrete and has 

quantized amplitude. Digital signals can be obtained by applying sampling 

and quantization on analog signals. At any given time the digital signal can 

take on only one of a finite number of values.

�Continuous-Time and Discrete-Time Signals
A continuous time signal or continuous signal is a signal defined over 

a continuum of its domain, which is often time. Any analog signal is 

continuous by nature.
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A discrete-time signal or discrete signal is a signal whose independent 

variable (time) has only discrete values. It is a time series consisting of 

a sequence of quantities. Discrete-time signals, used in digital signal 

processing, can be obtained by sampling and quantization of continuous 

signals.

�Deterministic and Nondeterministic Signals
A deterministic signal is a signal with no uncertainty with respect to its 

value at any instant in time. In other words, a signal that can be defined 

exactly using a mathematical formula is a deterministic signal.

A nondeterministic signal or random signal is a signal that has 

uncertainty with respect to its value at some instant in time. This signal 

is also called a random signal due to its random nature, and the signal 

cannot be described by a mathematical equation.

�One-Dimensional, Two-Dimensional, 
and Multidimensional Signals
A one-dimensional signal is a function of only one independent variable.  

Voice signal is a good example of one-dimensional signal, because the 

amplitude of voice depends on only one independent variable (i.e., time).

Similarly, if the signal is a function of two dependent variables, 

the signal is called a two-dimensional signal. A grayscale image is an 

example of a two-dimensional signal. Spatial coordinates (x,y) are the two 

independent variables in an image. Multidimensional signal is a function 

of more than two variables. A motion picture (i.e., video) is the best 

example of a multidimensional signal.
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�Gathering Real-Time Data
Gathering the data can be conducted in two ways: manual and automated. 

In the manual method, the data can be collected from existing files and 

documents. Then, the collected data can be organized into a structured 

manner (i.e., a tabular format) manually. In automation, the data can be 

collected using some devices called sensors. The real-time information about 

the physical quantities such as temperature, pressure, images, etc., can be 

collected using sensors. This chapter focuses on describing automated data 

collection using sensors. To automate the data collection, data acquisition 

systems are required. This section explains how to gather data using sensors 

such as ultrasonic sensor, humidity, temperature, and image data from a 

camera. Also, storing the collected data in the structured format is discussed.

�Data Acquisition
The process of sampling signals that measure real-world physical 

conditions and converting the resulting samples into digital numeric 

values that can be manipulated by a computer is called data acquisition. 

Data acquisition systems (DAS or DAQ) generally convert analog signals 

into digital values for processing. The data acquisition systems comprises 

the following three components:

•	 Sensors

•	 Signal conditioning circuitry

•	 Analog-to-digital converters

�Sensors
Generally, sensors produce an electrical signal corresponding to the 

changes in the environment. A sensor is a device that converts physical 

parameters such as temperature, humidity, distance, etc., into an electrical 
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signal. A sensor can be a device, module, machine, or subsystem that can 

detect events or changes in the environment and send the information to 

other electronic devices, most often a computer processor. For example, 

a thermocouple is a temperature sensor that produces an output voltage 

based on the input temperature changes. There are two types of sensors 

based on its output signal types: analog and digital.

�Analog Sensors
Analog sensors produce a continuous output signal or voltage that is 

generally proportional to the quantity being measured. These sensors 

generally produce output signals that change smoothly and continuously 

over time. See Figure 4-1.

The following code continuously prints the analog value of the 

sensor connected to the first channel (0) of MCP3008 every second. Since 

MCP3008 is a 10-bit ADC, the output value ranges from 0 to 1023.

from gpiozero import MCP3008

from time import sleep

sensor = MCP3008(0)

while True:

    print(sensor.value)

Figure 4-1.  Analog signal
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�Digital Sensors
Digital sensors produce digital output signals or voltages that are a digital 

representation of the quantity being measured. In these sensors, data 

conversion and data transmission take place digitally. See Figure 4-2.

The following code prints the digital state of the GPIO pin 17 

continuously:

from gpiozero import InputDevice

from time import sleep

sensor = InputDevice(17, pull_up=True)

while True:

    print(sensor.value)]

Some of the common sensors in the electronics industry are listed here:

•	 Temperature sensors

•	 IR sensors

•	 Ultrasonic sensors

•	 Pressure sensors

•	 Proximity sensors

Figure 4-2.  Digital signals
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•	 Touch sensors

•	 Level sensors

•	 Smoke and gas sensors

�What Is Real-Time Data?
Real-time data (RTD) is the information that is passed along to the end 

user immediately after collection. The real-time data can be either static or 

dynamic and is generally processed using real-time computing.

�Real-Time Data Analytics
Real-time analytics is the analysis of collected data as soon as that data 

is gathered. Real-time data analytics allow us to make decisions without 

delay and can prevent problems and issues before they occur.

Here, we are going to discuss getting real-time data about distance, 

humidity, temperature, and image data from a camera.

�Getting Real-Time Distance Data 
from an Ultrasonic Sensor
The basic principle of ultrasonic sensors is to transmit and receive the 

sound waves. The physical variables (like distance, level, height, flow, etc.) 

to be measured can be calculated based on the time duration between 

transmitting waves and receiving echo sound waves.
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�Interfacing an Ultrasonic Sensor 
with the Raspberry Pi
Interfacing the ultrasonic sensors with Raspberry Pi was already discussed 

in Chapter 3. We will collect data from the HC-SR04 ultrasonic sensor, 

which can be used to measure the distance from 2cm to 400cm with 3mm 

accuracy. Here our objective is to interface an ultrasonic distance sensor 

with the Raspberry Pi and save the gathered data in CSV format. For that, 

an ultrasonic distance sensor can be connected to the Raspberry Pi GPIO 

pins, as shown in Figure 4-3.

As covered in Chapter 3, we will use the DistanceSensor object from 

gpiozero library. The distance function returns the distance measured 

by the ultrasonic distance sensor in meters. To display in centimeters, we 

need to multiply the value by 100. The following code prints the distance 

measured by the ultrasonic distance sensor in centimeters every second 

and saves the collected data after 100 seconds.

from gpiozero import DistanceSensor

from time import sleep

sensor = DistanceSensor(echo=17, trigger=4)

Figure 4-3.  Ultrasonic sensor connection with Raspberry Pi GPIO 
pins
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n = 100

for i in range(n):

    print(sensor.distance * 100)

    sleep(1)

When the code is running, move the position of objects placed in front 

of the ultrasonic sensor to get different values. The measured distance (in 

cm) is printed continuously for n seconds; in our case, it’s 100.

�Getting Real-Time Image Data 
from a Camera
This section explains how to get real-time video from a webcam.

�Getting Real-Time Video from a Webcam
Connect the USB web camera to the Raspberry Pi via the USB port. Using 

the OpenCV Python library, we can access the webcam and capture images 

and videos from it. The following code can be used to get real-time video 

from the webcam. The collected frames can be analyzed in real time.

import cv2

vid = cv2.VideoCapture(0)

while(True):

    ret, frame = vid.read()

    cv2.imshow('frame', frame)

    if cv2.waitKey(1) & 0xFF == ord('q'):

        break

vid.release()

cv2.destroyAllWindows()
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�Getting Real-Time Video from Pi-cam
Interface a Raspberry Pi camera module to the Raspberry Pi via the 

Camera Serial Interface (CSI) port. To enable the Raspberry Pi camera, 

open the Raspberry Pi configuration from the main menu and enable 

Camera on the Interfaces tab. The following code can be used to capture 

an image using the Raspberry Pi camera module and store the captured 

image in the specified location: /home/pi/Desktop/cammodule_img.jpg.

from picamera import PiCamera

from time import sleep

camera = PiCamera()

camera.start_preview()

sleep(5)

camera.capture('/home/pi/Desktop/cammodule_img.jpg')

camera.stop_preview()

�Data Transfer
Data transmission or data transfer refers to the process of transferring data 

between two or more digital devices. The data is transmitted in analog 

or digital format, and the data transmission process enables devices or 

components within devices to communicate to each other.

�Serial and Parallel Communication
Serial communication is the process of sending data one bit at a time, 

sequentially, over a communication channel or computer bus. Parallel 

communication is a method of conveying multiple binary digits (bits) 

simultaneously.
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�Interfacing an Arduino with the Raspberry Pi
We can connect an Arduino to a Raspberry Pi and transfer data from the 

Arduino to the Raspberry Pi and vice versa. The sensors, motors, and 

actuators can be connected to the Arduino and make the Arduino transfer 

values to and from the Raspberry Pi. By doing this, we can use Arduino as a 

node and acquire sensor data via these nodes.

Arduino can be connected to the Raspberry Pi in two ways.

•	 Serial communication via USB

•	 Serial communication via GPIO pins

�Serial via USB

Using an Arduino USB cable to connect the two boards is the easiest way to 

establish communication between the Arduino and Raspberry Pi boards.

On the Raspberry Pi, choose any of the four USB ports available on 

the board and connect the USB connector. Connect the other end of the 

Arduino USB cable to the Arduino. The connector cable will be different 

for different versions of Arduino.

�Serial via GPIOs

A serial connection can also be established using plain wires to connect 

between the Raspberry Pi GPIOs and the Arduino pins. A voltage level-

shifter might be needed depending on the Arduino board you have.

The Raspberry Pi operates at 3.3V, whereas the Arduino boards such as 

Uno, Mega, Leonardo, Nano, etc., operate at 5V. So, a 3.3V/5V level-shifter 

needs to be used to protect the Raspberry Pi when connecting the RX and 

TX pins, as shown in Figure 4-4.

Chapter 4  Sensors and Signals



90

Generally, the use of an Arduino USB cable is recommended over 

GPIOs for serial communication.

�Data Transmission Between an Arduino 
and the Raspberry Pi
When connecting the Arduino to the Raspberry Pi via a USB cable, run the 

command ls /dev/tty* in the Raspberry Pi terminal window to find the 

name of the Arduino device. It should return something like /dev/ttyACM0 

or /dev/ttyUSB0.

The pySerial Python library is used to make a serial interface with 

Python and encapsulates the access for the serial port.

The following code can be used to make bidirectional communication 

between the Arduino and the Raspberry Pi.

Figure 4-4.  Connection between Arduino and Raspberry Pi  
via GPIO pins
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�Arduino Code

Here is the Arduino code:

void setup() {

Serial.begin(9600);

}

void loop() {

  if (Serial.available() > 0) {

    String data = Serial.readStringUntil('\n');

    Serial.print("Received Data: ");

    Serial.println(data);

  }

}

Serial.available() will give you the number of bytes that have 

already arrived and are stored in the receive buffer. This can be used to 

check if the Arduino has received data.

If some data has arrived, Serial.readStringUntil() is used with the 

newline character \n to get the next line. All the bytes received until the 

newline character \n are automatically converted and added in an Arduino 

String object.

Then, we just return the string containing the received data with some 

additional text.

�Raspberry Pi Python Code

Here is the Raspberry Pi Python code to display the serial data:

#!/usr/bin/env python3

import serial

import time

if __name__ == '__main__':

    ser = serial.Serial('/dev/ttyACM0', 9600, timeout=1)
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    ser.flush()

    while True:

        ser.write(b"Data from Raspberry Pi!\n")

        line = ser.readline().decode('utf-8').rstrip()

        print(line)

        time.sleep(1)

The pySerial function write() is used to send data to the Arduino. 

Before sending the string, It will encode from string to bytes, as you can 

only send bytes through Serial. Any data that is not a byte or byte array 

must be converted before being sent through Serial.

Also, we add a newline character \n as the Arduino expects it at the 

end of the string while it’s reading with Serial.readStringUntil('\n').

Then we read a line from Serial, decode it into a string, and finally 

print the received string and wait for one second before sending the next 

string over Serial.

�Time-Series Data
A time series is a series of data points indexed in time order. Most 

commonly, it is a sequence taken at successive equally spaced points in 

time. Thus, a time series can be defined as a sequence of discrete-time 

data. In time-series data, time is often the independent variable, and the 

goal is generally to make a forecast for the future.

Time series are frequently plotted via line charts. Time series are 

used in statistics, signal processing, communications engineering, 

pattern recognition, weather forecasting, earthquake prediction, control 

engineering, astronomy, etc.
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�Time-Series Analysis and Forecasting
Time-series analysis comprises methods for analyzing time-series data 

to extract meaningful statistics and other characteristics of the data. The 

time-series analysis also includes forecasting the series for the future, 

extracting hidden signals in noisy data, discovering the data generation 

mechanism, etc. Time-series forecasting is the use of a model to predict 

future values based on historical data.

�Memory Requirements
This section talks about the memory requirements.

�More Storage
Sometimes the memory from the microSD card might not be sufficient, 

and more memory might be needed. More storage space can be highly 

beneficial to store the collected data and heavy models. To increase 

the storage capacity, external hard disk drives can be connected to the 

Raspberry Pi.

�More RAM
RAM is another important factor for data science projects. The larger the 

RAM, the higher the amount of data it can handle, which results in faster 

processing. Although the base variant of 1GB RAM can do the job, the 4GB 

RAM version of the Raspberry Pi is recommended for most deep learning 

tasks.
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�Case Study: Gathering the Real-Time 
Industry Data
Let’s look at a case study.

�Storing Collected Data Using Pandas
The collected data can also be saved for later use. Pandas is an open source 

data analysis and manipulation tool built in Python. We will use Pandas 

to convert the collected data into a structured data format. The Pandas 

library can be installed via pip using the following command:

pip install pandas

�Dataframes
A dataframe is a two-dimensional data structure. Data is aligned in 

a tabular fashion in rows and columns, and it is generally the most 

commonly used Pandas object. Once we convert our data into dataframes, 

we can easily manipulate and export the data to other formats such as CSV 

and Microsoft Excel.

�Saving Data as a CSV File
A comma-separated values file is a delimited text file that uses a comma to 

separate values. Each line of the file is a data record. Each record consists 

of one or more fields, separated by commas. A Pandas dataframe’s to_

csv() function exports the dataframe to CSV format.

df.to_csv('file path\File Name.csv')
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�Saving as an Excel File
To write a single object to an Excel .xlsx file, it is only necessary to specify 

a target filename. To write multiple sheets, it is necessary to create an 

ExcelWriter object with a target filename and specify a sheet in the file 

to write to. The Pandas dataframe’s to_excel() function exports the 

dataframe to .xlsx format.

df.to_excel("output.xlsx")

�Reading Saved Data Files
Once the data is saved, it can be read using the read_csv() or read_

excel() function. The read_excel() function reads an Excel file into a 

Pandas dataframe, and it supports the .xls, .xlsx, .xlsm, .xlsb, and .odf 

file extensions read from a local filesystem or URL. It has an option to read 

a single sheet or a list of sheets. The read_csv() function reads a CSV file 

into a dataframe and also supports optionally iterating or breaking of the 

file into chunks.

�Adding the Date and Time to the Real-Time Data
While collecting the data, we can also add the data and time to the data. 

We will use the datetime Python library. datetime.datetime.now() can 

be used to get the current date and time.

from datetime import datetime

now = datetime.now()

print("now =", now)

# dd/mm/YY H:M:S

dt_string = now.strftime("%d/%m/%Y %H:%M:%S")

print("date and time =", dt_string)
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�Industry Data from the Temperature 
and Humidity Sensor
We will use the temperature and humidity sensor to measure the 

temperature and humidity. Connect the DHT 11/22 sensor module to the 

Raspberry Pi as shown in Chapter 3.

The following code collects the temperature and humidity values for 

100 seconds and stores the collected data as a CSV file:

import Adafruit_DHT

import time

from datetime import datetime

DHT_SENSOR = Adafruit_DHT.DHT11

DHT_PIN = 17

data = []

while _ in range(100):

    �humidity, temperature = Adafruit_DHT.read(DHT_SENSOR,  

DHT_PIN)

    if humidity is not None and temperature is not None:

      now = datetime.now()

      dt_string = now.strftime("%d/%m/%Y %H:%M:%S")

      data.append(dt_string,humidity,temperature)

    time.sleep(60*5)

df = pd.DataFrame(data)

df.to_csv('data.csv',index=None,header=None)
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The CSV file will look as follows:

17/05/2020 01:05:14 26.24 69.91

17/05/2020 01:10:14 26.24 70.65

17/05/2020 01:15:14 26.22 68.87

17/05/2020 01:20:14 26.15 70.11

17/05/2020 01:25:14 26.11 69.02
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CHAPTER 5

Preparing the Data
The most important step in data science is to prepare the data. Data 

preparation is the process of cleaning, processing, and transforming 

the raw data for analysis. From this stage, the errors in the data can be 

effectively handled by cleaning, identifying the missing values, handling 

outliers, etc. Hence, this chapter discusses the methodologies used to 

prepare the data using the Pandas package in Python.

�Pandas and Data Structures
Pandas is a software library written for the Python programming language 

that is used mainly for data manipulation and analysis.

In a nutshell, Pandas is like Excel for Python, with tables (which in 

Pandas are called dataframes) made of rows and columns (which in 

Pandas are called series). Pandas has many functionalities that make it an 

awesome library for data processing, inspection, and manipulation.

�Installing and Using Pandas
Installing Pandas on your system requires NumPy to be installed, and 

if building the library from source, it requires the appropriate tools to 

compile the C and Cython sources on which Pandas is built.
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You can find details about this installation in the Pandas 

documentation. Pandas can be installed using pip function as: pip install 

pandas. Once Pandas is installed, you can import it and check the version, 

as shown here:

import pandas

pandas.__version__

Just as we generally import NumPy under the alias np, we will import 

Pandas under the alias pd, and this import convention will be used 

throughout the remainder of this book.

import pandas as pd

�Pandas Data Structures
A data structure is a data organization, management, and storage format 

that enables efficient access and modification. More precisely, a data 

structure is a collection of data values, the relationships among them, 

and the functions or operations that can be applied to the data. Pandas 

introduces two new data structures to Python, Series and DataFrame, both 

of which are built on top of NumPy (which means they are fast).

�Series
A series is a one-dimensional object similar to an array, list, or column in 

a table. It will assign a labeled index to each item in the series. By default, 

each item will receive an index label from 0 to N, where N is the length of 

the series minus 1, as illustrated here:

s = pd.Series([1, 'Raspberry Pi', 3.14, -500, 'Data'])

print(s)
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Output:

0          1

1   Raspberry Pi

2    3.14

3    -500

4    Data

dtype: object

Instead of providing the default index, we can specify an index to be 

used for each entry while creating the series, as illustrated here:

s = pd.Series([1, 'Raspberry Pi', 3.14, -500, 'Data'],

               index=['M', 'A', 'X', 'I', 'E'])

print(s)

Output:

M          1

A   Raspberry Pi

X    3.14

I    -500

E    Data

dtype: object

The Series constructor can convert a dictionary into a series as well, 

using the keys of the dictionary as its index, as illustrated here:

d = {'English': 95, 'Math': 100, 'Science': 98, 'Social 

Science': 93}

marks = pd.Series(d)

print(marks)

Output:

English           95

Math             100
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Science           98

Social Science    93

dtype: float64

The index can be used to select specific items from the series. For 

instance, the marks for math can be selected by specifying the index Math. 

Similarly, a group of items can be printed by providing their corresponding 

indices separated by commas in a list, as illustrated here:

print (marks['Math'])

print(marks[['English', 'Science', 'Social Science']])

Output :

100.0

English           95

Science           98

Social Science    93

dtype: float64

Boolean indexing for filtering values can also be used. For example, 

using the index marks < 96 returns a series of Boolean values, which we 

then pass to our series marks, returning the corresponding True items, as 

illustrated here:

marks[marks < 96]

Output:

Math             100

Science           98

dtype: float64

The value of a particular item in the series can be changed on the go by 

accessing the corresponding index of the item, as illustrated here:

print('Old value:', marks['Math'])

marks['Math'] = 99
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print('New value:', marks['Math'])

Output:

('Old value:', 100.0)

('New value:', 99.0)

We can also check whether an item exists in the series or not using the 

following code:

print('Math' in marks)

print('French' in marks)

Output:

True

False

Mathematical operations can also be done on a series of numerical 

values, as illustrated here:

marks * 10

Output:

English           950

Math              990

Science           980

Social Science    930

dtype: float64

np.square(marks)

Output:

English           9025

Math              9801

Science           9604

Social Science    8649

dtype: float64
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�DataFrame
The tabular DataFrame data structure is composed of rows and columns, 

similar to a spreadsheet or a database table. You can also think of a 

DataFrame as a group of Series objects that share an index (the column 

names).

�Reading Data
To create a DataFrame data structure out of common Python data 

structures, we can pass a dictionary of lists to the DataFrame constructor.

a={'Name':['Augustus', 'Hazel', 'Esther', 'Cavas'],

      'Gender':['Male','Female','Female','Male'],

      'Age':[19, 18, 22, 21]}

b=pd.DataFrame.from_dict(a)

            print(b)

Output:

   Name      Gender   Age

0  Augustus    Male   19

1     Hazel  Female   18

2    Esther  Female   22

3     Cavas    Male   21
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�Reading CSV Data
Reading a CSV file is as simple as calling the read_csv function. By default, 

the read_csv function expects the column separator to be a comma, but 

you can change that using the sep parameter. The following code shows 

the syntax to read a CSV file into a DataFrame 'df' and print the first five 

rows of df using the head() function:

df = pd.read_csv('data.csv')

print(df.head())

There’s also a set of writer functions for writing the DataFrame object 

to a variety of formats such as CSV files, HTML tables, JSON, etc. The 

following line of code shows the syntax to write a DataFrame object to a 

CSV file:

df.to_csv('path_to_file.csv')

�Reading Excel Data
Pandas allows us to read and write Excel files, so we can easily read from 

Excel, in Python, and then write the data back out to Excel. Reading 

Excel files requires the xlrd library, which can be installed using the pip 

command, as shown here:

pip install xlrd.

The following code illustrates the syntax used to read a sheet from an 

Excel file into a DataFrame df. Replace data.xlsx with the path/filename 

of your Excel file to run the code.

df = pd.read_excel('data.xlsx', 'Sheet1')

print(df.head())
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Similarly, the data from a DataFrame object can be written to an Excel 

file, as shown here:

dataframe.to_excel('path_to_file.xlsx', index=False)

�Reading URL Data
The read_table function can be used to read directly from a URL. The 

following code illustrates a DataFrame created using raw data from a given 

URL:

url = 'https://raw.github.com/gjreda/best-sandwiches/master/

data/best-sandwiches-geocode.tsv'

from_url = pd.read_table(url, sep='\t')

from_url.head(3)

Output:

      rank         sandwich  ...   lat        lng

0     1                 BLT  ...   41.895734  -87.679960

1     2       Fried Bologna  ...   41.884672  -87.647754

2     3   Woodland Mushroom  ...   41.890602  -87.630925

�Cleaning the Data
In most of the data analytics projects, the available data is not always 

perfect. The raw data always tends to be messy with corrupt or inaccurate 

data in addition to the useful data. It is therefore essential for the data 

scientists to treat these messy data samples so as to convert the raw data to 

a form which can work, and they spend a considerably long time doing so.
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Data cleaning is the process of identifying inaccurate, incorrect, or 

incomplete parts of the data and treating them by replacing, deleting, or 

modifying the data. In other words, it is the process of preparing the data 

for analysis by treating all the irregularities in the raw data. In the following 

sections, we will discuss how to handle missing values and outliers, fill in 

the inappropriate values, and remove duplicate entries.

�Handling Missing Values
Missing values are quite common in raw data. Assume that the input data 

consists of product feedback from thousands of customers collected using 

survey forms. It is common behavior for customers to skip a few entries 

while filling out the survey forms. For instance, a few customers may not 

share their experience with the product, some may not share the duration 

for which they have been using the product, and a few others may not 

fill their contact information. While compiling these survey forms and 

converting them into a table, there is sure to be plenty of missing values in 

the table.

Data from sensors may also have missing data due to various reasons 

like a temporary power outage at the sensor node, hardware failure, 

interference in communication, etc. Therefore, handling these missing 

values is the foremost task for data scientists while dealing with raw 

data. The following code illustrates the creation of a database of random 

numbers using the random.randn function in the NumPy library:

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(6,4),

index = ['1','3','4','6','7','9'], columns = ['a','b','c','d'])
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It can be seen from the previous code that the indices for rows and 

columns have been allocated manually. From the indices allotted for 

rows, it can be seen that indexes 2, 5, and 8 are missing. Using the reindex 

function in the Pandas library, these indices are created with missing ‘Not 

a Number’ (NaN) values, as illustrated here:

df=df.reindex(['1','2','3','4','5','6','7','8','9'])

print(df)

Output:

         a         b         c         d

1  0.099344  0.293956  1.002970  0.516942

2       NaN       NaN       NaN       NaN

3  1.608906 -1.748396 -1.013634 -0.651055

4  3.211263 -2.555312 -1.036068 -0.728020

5       NaN       NaN       NaN       NaN

6 -0.101766 -0.205572  1.369707 -1.133026

7  0.062344  1.483505  0.026995  1.560656

8       NaN       NaN       NaN       NaN

9 -0.324347 -0.342040  0.107224  0.272153

Now that a database with missing values has been created, the next 

step is to treat these values. Before considering the options for treating 

these values, the foremost task is to detect the location of the missing 

values. The isnull() function in the Pandas library can be used to detect 

the rows containing missing values, as illustrated here:

df1=df[df.isna().any(axis=1)]

print(df1)

Output:

      a   b   c   d

2   NaN NaN NaN NaN

5   NaN NaN NaN NaN

8   NaN NaN NaN NaN
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The previous process gives us a fair idea of the amount of missing 

data in our database. Once this missing data is detected, the next step is 

to treat the missing data. There are two ways we can do this: one is to fill 

the missing data with values, and the second one is to simply remove the 

missing data.

The fillna() function in the Pandas library can be used to fill the 

missing values with a user-specified scalar value, as illustrated here. As 

shown, the missing values in rows 2 and 5 are replaced by 0.000000.

df2=df.fillna(0)

print(df2.head())

Output:

          a         b         c         d

1  0.099344  0.293956  1.002970  0.516942

2  0.000000  0.000000  0.000000  0.000000

3  1.608906 -1.748396 -1.013634 -0.651055

4  3.211263 -2.555312 -1.036068 -0.728020

5  0.000000  0.000000  0.000000  0.000000

Another way to replace the missing values is to use the ffill or bfill 

function in the Pandas library. ffill stands for “forward fill,” which fills 

the missing values by repeating the values that occur before them, and 

bfill stands for “backward fill,” which fills the missing values by repeating 

the values that occur after them. The following code illustrates the forward 

fill approach of filling in the missing values:

df3= df.fillna(method='ffill')

print(df3.head())

Output:

          a         b         c         d

1  0.099344  0.293956  1.002970  0.516942

2  0.099344  0.293956  1.002970  0.516942
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3  1.608906 -1.748396 -1.013634 -0.651055

4  3.211263 -2.555312 -1.036068 -0.728020

5  3.211263 -2.555312 -1.036068 -0.728020

The second possible way to deal with missing values is to simply drop 

them by using the dropna function in the Pandas library, as illustrated 

here:

df4=df.dropna()

print(df4)

Output:

          a         b         c         d

1  0.099344  0.293956  1.002970  0.516942

3  1.608906 -1.748396 -1.013634 -0.651055

4  3.211263 -2.555312 -1.036068 -0.728020

6 -0.101766 -0.205572  1.369707 -1.133026

7  0.062344  1.483505  0.026995  1.560656

9 -0.324347 -0.342040  0.107224  0.272153

We have created a simple dataset with missing values to understand 

the concept of treating the missing values. In reality, the datasets used in 

analytics projects are large and may easily contain 500 to 1,000 rows or 

even more. You are encouraged to apply the learning from this example 

on real datasets. The method for treating missing values may depend on 

the nature of application as well as on the number or frequency of missing 

values in the dataset.

�Handling Outliers
In a dataset, outliers are the observations (i.e data) that stand out from 

all the other observations. In other words, outliers are data points that are 

distant from all the other data in the dataset. Outliers can originate either 

due to errors in measurement/data entry or due to genuine extreme values 
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in the data. For instance, consider the series of numbers 112, 123, 120, 132, 

106, 26, 118, 140, and 125. In this series, all the numbers are close to 100 

except 26. Hence, 26 is an outlier as it is vastly distant from the rest of the 

numbers.

Outliers can be detected in two ways: using visualization techniques 

and using a mathematical approach. In this section, we introduce 

two mathematical approaches to identify outliers in our data, namely, 

interquartile range (IQR) and the Z-score.

Interquartile range is a measure of the variability or spread of data 

in a dataset. The data is first ordered and divided into four quarters. The 

values that divide the total range into four quarters are called quartiles. 

Therefore, there will be three quartiles for splitting data into four quarters. 

The quartiles are Q1, Q2, and Q3, where Q2 is the median for the entire data, 

Q1 is the median for the upper half of the data, and Q3 is the median for the 

lower half of the data. IQR is the difference between the third quartile and 

first quartile, i.e., Q3 – Q1.

To illustrate the process of removing outliers using IQR, let’s first create 

a DataFrame with 15 entries that includes outliers.

  import pandas as pd

  a={�'Name':['A','B','C','D','E','F','G','H','I','J','K','L', 

'M','N','O'],

     'Weight':[56,62,48,72,15,80,76,64,68,180,75,47,58,63,71]}

  df=pd.DataFrame.from_dict(a)

  print(df.head())

Output:

   Name  Weight

0    A      56

1    B      62

2    C      48

3    D      72

4    E      25
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In the previous code, we created a database containing the weight 

in kilograms of 15 adults. For convenience, we have named the adults 

with the letters A to M. Weights of 15kg and 180kg have been included as 

outliers as it is unlikely for healthy adults to weigh so little or much. To 

detect these outliers, we need to compute the 25 percent and 75 percent 

quartile values, Q1 and Q3, respectively. From these values, the IQR value 

can be calculated by determining the difference of Q3 – Q1. This process is 

illustrated here:

Q1=df.Weight.quantile(0.25)

Q3=df.Weight.quantile(0.75)

IQR=Q3-Q1

print('Q1=',Q1,'Q3=',Q3,'IQR=',IQR)

Output:

Q1= 57.0 Q3= 73.5 IQR= 16.5

By comparing the entries in the DataFrame object with the quartiles 

calculated previously, it can be seen that there are four values below Q1, 

seven values between Q1 and Q3, and four values above Q3. But we know 

that there is only one outlier below Q1 and one outlier above Q3. To detect 

those outliers, we need to form an interval with a lower limit much below Q1 

and an upper limit well above Q3. Once these limits are established, then it 

will be safe to consider that the values below the lower limit and the values 

above the upper limit will be outliers. This is illustrated in the following code:

lower_limit = Q1 - 1.5 * IQR

upper_limit = Q3 + 1.5 * IQR

df1=df[(df.Weight < lower_limit) | (df.Weight > upper_limit)]

print(df1)

Output:

   Name  Weight

4    E      25

9    J     180
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It can be seen that the limits created using the IQR value have detected 

the outliers in our data accurately. Now these outliers can be easily filtered 

out using the following code:

df2=df.drop(df1.index)

   print(df2)

Output:

   Name  Weight

0     A      56

1     B      62

2     C      48

3     D      72

5     F      80

6     G      76

7     H      64

8     I      68

10    K      75

11    L      47

12    M      58

13    N      63

14    o      71

�Z-Score
The Z-score, also called the standard score, gives an idea of how far away 

a data point is from the mean value. Technically, the Z-score fits the data 

in a normal distribution and measures the number of standard deviations 

by which the data points are about the mean value of the entire dataset, as 

illustrated in Figure 5-1.
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The Figure 5-1 shows that each data point is mapped along a normal 

distribution centered at the zero mean. The data points that are too far 

from the zero mean are treated as outliers. In the majority of cases, the 

threshold is fixed as 3, and any data point beyond 3σ or -3σ is treated as an 

outlier. Let’s take the same database that we used in the previous section 

and identify the outliers using the Z-score.

  import pandas as pd

  from scipy import stats

  import numpy as np

  a={�'Name':['A','B','C','D','E','F','G','H','I','J','K','L', 

'M','N','O'],

     'Weight':[56,62,48,72,15,80,76,64,68,180,75,47,58,63,71,]}

  df=pd.DataFrame.from_dict(a)

  z = np.abs(stats.zscore(df.Weight))

  print(z)

  df1=df[z>3]

  print(df1)

Figure 5-1.  Normal distribution of data for outlier detection based 
on the Z-score
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Output:

   Name  Weight

9    J     180

From the previous code, it can be seen that the Z-score corresponding 

to the weight value of 180 exceeds the threshold of 3, and hence it is 

displayed as an outlier. Unfortunately, the weight value of 15 is not 

detected as an outlier. The reason for this could be understood by 

comparing the value with respect to the mean and standard deviation, 

which can be achieved through the np.mean and np.std functions, as 

illustrated here:

print(np.mean(df.Weight))

print(np.std(df.Weight))

Output:

67.0

33.448467827390836

Let’s approximate the value of standard deviation as 33.45. It can be 

seen that the difference between the weight value 180 and the mean value 

is 111, which is greater than three times the standard deviation (>3σ), 

whereas the difference between the weight values 15 and the mean value is 

just 54, which is less than two times the standard deviation (<2σ). One way 

to overcome this problem is to reduce the value of threshold. Let’s assume 

a Threshold value of 1.

df1=df[z>1]

     print(df1)

Output:

     Name  Weight

4    E      15

9    J     180
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From the previous illustration, it can be seen that the ideal threshold of 

3 may not hold true for every dataset, and hence the threshold should be 

selected based on the distribution of the data. Now similar to the case of 

IQR, these outliers can be simply filtered out using the following code:

df2=df.drop(df.Name[z>1].index)

print(df2)

Output:

    Name  Weight

0     A      56

1     B      62

2     C      48

3     D      72

5     F      80

6     G      76

7     H      64

8     I      68

10    K      75

11    L      47

12    M      58

13    N      63

14    o      71

�Filtering Out Inappropriate Values
In some cases, the dataset may contain some inappropriate values that 

are completely irrelevant to the data. This is especially true in the case of 

sensor data. The data recorded from the sensor is normally time-series 

data with a unique timestamp for each data point. These timestamps 

Chapter 5  Preparing the Data



117

are not required for analysis in many cases and hence can be treated as 

inappropriate values. To illustrate this concept, we create a time-series 

temperature data similar to the sensor data as follows:

import pandas as pd

data={'Time':['12:00:05','12:08:33','12:25:12','12:37:53', 

'12:59:08'],

      'Temperature':['T=22','T=22','T=23','T=23','T=24']}

df=pd.DataFrame.from_dict(data)

print(df)

Output:

       Time Temperature

0  12:00:05        T=22

1  12:08:33        T=22

2  12:25:12        T=23

3  12:37:53        T=23

4  12:59:08        T=24

Now, the timestamp corresponding to each data point and the header 

'T=' in each data point should be removed. The timestamp can be removed 

using the drop function in the Pandas library, whereas the header can be 

removed by using the str.replace function. Because of the presence of a 

header in each data point, the data is initially stored as a string data type. 

So, the datatype has to be changed to int or float after removing these 

headers. These procedures are illustrated as follows:

df.drop('Time',inplace=True,axis=1)

df=df.Temperature.str.replace('T=','')

df=df.astype(float)

print(df)

Output:

0    22.0

1    22.0
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2    23.0

3    23.0

4    24.0

Name: Temperature, dtype: float64

�Removing Duplicates
Duplicate entries are common in data science, especially when we 

collect data from various sources and consolidate them for processing. 

Depending on the nature of our analysis, these duplicates may pose a 

problem. Therefore, it is better to remove these duplicates before analyzing 

the data, as illustrated here:

import pandas as pd

a={'Name':['Alan','Joe','Jim','Tom','Alan','Anna','Elle','Rachel','

Mindy'],

   'Age':[22,24,25,24,22,23,21,22,23]}

df=pd.DataFrame.from_dict(a)

print('DATA\n',df)

print('DUPLICATES\n',df[df.duplicated()])

df1=df.drop_duplicates()

print('DATA AFTER REMOVING DUPLICATES\n',df1)

Output:

DATA

     Name  Age

0    Alan   22

1     Joe   24

2     Jim   25

3     Tom   24

4    Alan   22

5    Anna   23

Chapter 5  Preparing the Data



119

6   Ellen   21

7  Rachel   22

8   Mindy   23

DUPLICATES

   Name  Age

4  Alan   22

DATA AFTER REMOVING DUPLICATES

     Name  Age

0    Alan   22

1     Joe   24

2     Jim   25

3     Tom   24

5    Anna   23

6   Ellen   21

7  Rachel   22

8   Mindy   23

As shown in the code, a DataFrame is created from a dictionary 

consisting of the name and age of a few people, and we have deliberately 

created a duplicate entry for the name Alan. It can be seen that the 

duplicated function in the Pandas library clearly identifies the second 

entry for this name. This duplicate entry is then removed by using the 

drop_duplicates function in the Pandas library.
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CHAPTER 6

Visualizing the Data
In the previous chapter, we discussed a number of steps involved in 

preparing the data for analysis. Before analyzing the data, it is imperative 

to get to know the nature of data we are dealing with. Visualizing the data 

may give us some useful insights about the nature of data. These insights, 

such as patterns in the data, distribution of the data, outliers present in 

the data, etc., can prove to be handy in determining the methodology to 

be used for analyzing the data. In addition, visualization can be used at 

the end of analysis to communicate the findings to the party concerned, 

as conveying the results of analysis through visualization techniques can 

be more effective than writing pages of textual content explaining the 

findings. In this chapter, we will learn about some of the basic visualization 

plots provided by the Matplotlib package of Python and how those plots 

can be customized to convey the characteristics of different data.

�Matplotlib Library
Matplotlib is a plotting library for creating publication-quality plots using 

the Python programming language. This package provides various types 

of plots based on the type of information to be conveyed. The plots come 

with interactive options such as pan, zoom, and subplot configurations. 

The plots can also be saved in different formats such as PNG, PDF, etc. 

In addition, the Matplotlib package provides numerous customization 

options for each type of plot that can be used for effective representation of 

the information to be conveyed.

https://doi.org/10.1007/978-1-4842-6825-4_6#DOI


122

�Scatter Plot
A scatter plot is a type of plot that uses markers to indicate data points to 

show the relationship between two variables. The scatter plot can serve 

many purposes when it comes to data analysis. For example, the plot can 

reveal patterns and trends in data when the data points are taken as whole, 

which in turn can help data scientists understand the relationship between 

two variables and hence enable them to come up with an effective 

prediction technique. Scatter plots can also be used for identifying clusters 

in the data. They can also reveal outliers present in the data, which is 

crucial as outliers tend to drastically affect the performance of prediction 

systems.

Two columns of data are generally required to create scatter plots, 

one for each dimension of the plot. Each row of data in the table will 

correspond to a single data point in the plot. A scatter plot can be created 

using the scatter function in the Matplotlib library. To demonstrate the 

usefulness of scatter plots, let’s consider the Boston Housing dataset that 

can be imported from the Scikit-Learn library. This dataset is actually 

taken from the StatLib library, which is maintained at Carnegie Mellon 

University. It consists of 506 samples with 13 different feature attributes 

such as per capita crime rate by town (CRIM), average number of rooms 

per dwelling (RM), index of accessibility to radial highways (RAD), etc. In 

addition, a target attribute MEDV indicates the median value of owner-

occupied homes in the thousands.

The following code illustrates the process of creating a Pandas 

dataframe the Boston housing dataset, which is originally in a dictionary 

format. For convenience, only the first five rows of the dataframe are 

displayed in this code using the print command.
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import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from sklearn.datasets import load_boston

dataset = load_boston()

boston_data=pd.DataFrame(dataset.data,columns=dataset.feature_

names)

print(boston_data.head())

Output:

  CRIM  ZN   INDUS   CHAS  NOX ...  RAD  TAX PTRATIO  B  LSTAT

0  0.00632  18.0  2.31  0.0  0.538  ...  1.0  296.0  15.3  396.90  4.98

1  0.02731   0.0  7.07  0.0  0.469  ...  2.0  242.0  17.8  396.90  9.14

2  0.02729   0.0  7.07  0.0  0.469  ...  2.0  242.0  17.8  392.83  4.03

3  0.03237   0.0  2.18  0.0  0.458  ...  3.0  222.0  18.7  394.63  2.94

4  0.06905   0.0  2.18  0.0  0.458  ...  3.0  222.0  18.7  396.90  5.33

[5 rows x 13 columns]

The housing dataset is originally in the form of a dictionary, and it is 

saved to the variable dataset. The 13 feature attributes are assigned to the 

key data, and the target attribute MEDV is assigned to the key target. The 

13 features are then converted to a Pandas dataframe. Now, the scatter 

plot of the feature variable RM versus the target variable MEDV can be 

obtained by the following code. From the plot in Figure 6-1, we can see that 

the price of a house increases with the increase in the number of rooms. In 

addition to this trend, a few outliers can also be seen in the plot.

plt.scatter(boston_data['RM'],dataset.target)

plt.xlabel("Average number of rooms per dwelling(RM)")

plt.ylabel("Median value of owner-occupied homes in 

$1000s(MEDV)")

plt.show()
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�Line Plot
A line plot is nothing but a series of data points connected by a line, and it 

can be used to convey the trend of a variable over a particular time. Line 

plots are often used for visualizing time-series data to observe the variation 

of data with respect to time. It can also be used as part of the analysis 

procedure to check the variation of a variable in an iterative process.

Line plots can be obtained using the plot function in the Matplotlib 

package. To demonstrate a line plot, let’s consider a time-series dataset 

consisting of the minimum daily temperature in 0C over 10 years (1981–

1990) in the city of Melbourne, Australia. The following code illustrates the 

process of loading the .csv file containing the dataset, converting it into a 

dataframe, and plotting the variation in temperature for 1981.

Figure 6-1.  Plot of pricing of houses versus average number of rooms 
per dwelling
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import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

dataset=pd.read_csv('daily-min-temperatures.csv')

df=pd.DataFrame(dataset,columns=['Date','Temp'])

print(df.head())

Output:

               Date    Temp

0        1981-01-01    20.7

1        1981-01-02    17.9

2        1981-01-03    18.8

3        1981-01-04    14.6

4        1981-01-05    15.8

plt.plot(df['Temp'][0:365])

plt.xlabel("Days in the year")

plt.ylabel("Temperature in degree celcius")

plt.show()

The line plot in Figure 6-2 clearly shows the day-to-day variation of 

temperature in Melbourne in 1981.
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The Matplotlib package also provides the option of subplots 

wherein a layout of subplots can be created in a single-figure object. In 

this time-series data example, we can use a simple for loop to extract 

the data for each of the 10 years and plot it in individual subplots, as 

illustrated by the following code:

y,k=0,1

x=np.arange(1,366)

for i in range(10):

          plt.subplot(10,1,k)

          plt.plot(x,df['Temp'][y:y+365])

          y=y+365

          k=k+1

plt.xlabel("Days in the year")

plt.show()

Figure 6-2.  Variation in temperature (0C) in Melbourne  
over the year 1981
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Figure 6-3 consists of 10 subplots each displaying the variation of 

temperature over a particular year from 1981 to 1990. Thus, the use of 

multiple subplots has enabled us to compare the trends in temperature 

variation in Melbourne over the decade.

�Histogram
Histogram plots work by splitting the data in a variable into different 

ranges, called bins; then they count the data points in each bin and plot 

them as vertical bars. These types of plots can give a good idea about the 

approximate distribution of numerical data. The width of the bins, i.e., the 

range of values in each bin, is an important parameter, and the one that 

best fits the data has to be selected by trying out different values.

To demonstrate the histogram plot, let’s consider the California 

housing dataset that is available in the Scikit-Learn library. This dataset, 

derived from the 1990 U.S. Census, uses one row per census block group. 

A block group is the smallest geographical unit for which the U.S. Census 

Figure 6-3.  Temperature variation in Melbourne over 10 years  
(1981 to 1990)
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Bureau publishes sample data (a block group typically has a population 

of 600 to 3,000 people). The dataset consists of 8 parameters such as 

median income in block, median house age in block, average number of 

rooms, etc., and one target attribute, which is the median house value for 

California districts. There are a total of 20,640 data points (rows) in the 

data. The following code plots a histogram that shows the distribution of 

blocks based on the median age of houses within the blocks. Figure 6-4 

shows the histogram plot. A lower number normally suggests a newer 

building.

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing

import pandas as pd

dataset = fetch_california_housing()

df=pd.DataFrame(dataset.data,columns=dataset.feature_names)

print(df.head())

Output:

     MedInc  HouseAge    AveRooms  ...  AveOccup  Latitude  Longitude

0    8.3252      41.0    6.984127  ...  2.555556     37.88    -122.23

1    8.3014      21.0    6.238137  ...  2.109842     37.86    -122.22

2    7.2574      52.0    8.288136  ...  2.802260     37.85    -122.24

3    5.6431      52.0    5.817352  ...  2.547945     37.85    -122.25

4    3.8462      52.0    6.281853  ...  2.181467     37.85    -122.25

plt.hist(df['HouseAge'],bins=20)

plt.xlabel("median age of houses")

plt.ylabel("Frequency")

plt.show()
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From the histogram plot in Figure 6-4, we can see that most houses in 

the blocks are distributed in the middle, which indicates that the number 

of new blocks and very old blocks are lower compared to those with an 

average age.

�Bar Chart
Bar charts are often used by data scientists in their presentations and 

reports to represent categorical data as horizontal or vertical rectangular 

bars whose length or height corresponds to the value of the data that they 

represent. Normally, one of the axes will represent the category of data, 

while the other axis will represent the corresponding values. Therefore, bar 

graphs are the ideal choice for comparing different categories of data. Bar 

charts can also be used for conveying the development of one or multiple 

variables over a period of time.

Figure 6-4.  Distribution of blocks based on median age of houses in 
the blocks
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Even though bar charts look similar to histogram plots, there are subtle 

differences between them. For instance, histograms are used to plot the 

distribution of variables, and bar charts are used to compare variables 

belonging to different categories. A histogram groups quantitative data 

into a finite number of bins and plots the distribution of data in those bins, 

whereas bar charts are used to plot categorical data.

To demonstrate the bar chart, let’s consider the Telecoms Consumer 

Complaints dataset, which is a collection of complaints received by 

Comcast, an American global telecommunication company. This 

company was fined $2.3 million in October 2016 over numerous customer 

complaints claiming that they have been charged for services they never 

used. This dataset is a collection of 2,224 such complaints categorized 

into 11 columns such as customer complaint, date, city, state, ZIP code, 

status, etc. In the following code, the dataset available as an Excel sheet 

is first loaded and converted to a dataframe. Then the column containing 

the states, from which the complaints are received, is selected, and the 

multiple entries corresponding to the same states are grouped together 

to a single entry using the function groupby(). The count of the number 

of times each state is repeated, which in turn corresponds to the number 

of complaints received from each state, is obtained by using the function 

size(). The data can then be sorted in descending order of the count 

values using the function sort_values(). Figure 6-5 shows the plot of top 

10 states with the most number of complaints, which gives a clear idea of 

where more customers have faced grievances. The plot basically gives a 

comparison of the company’s misgivings in different states based on the 

number of complaints received from the customers.
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import pandas as pd

import matplotlib.pyplot as plt

dataset=pd.read_excel('Comcast_telecom_complaints_data.csv.xlsx')

data=pd.DataFrame(dataset)

print(data.head(3))

Output:

   Ticket #        Customer Complaint   ...   Zip code  Status

0  250635  Comcast Cable Internet Speeds   ...   21009  Closed

1  223441  Payment disappear - service got disconnected ... 30102  Closed

2  242732               Speed and Service  ...  30101  Closed

[3 rows x 11 columns]

a=data.groupby("State").size().sort_values(ascending=False).

reset_index()

plt.bar(a['State'][0:10],a[0][0:10],align='center')

plt.show()

Figure 6-5.  Bar plot showing number of complaints received from 
different states
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�Pie Chart
Pie charts are generally used to show the distribution of data across 

different categories as a percentage of the entire data in the form of 

proportional circular segments. In other words, each circular segment 

corresponds to a particular category of data. By viewing pie charts, users 

can quickly grasp the distribution of categorical data by just visualizing 

the plot rather than seeing the percentage in numbers as in the case of 

bar plots. Another difference between pie chart and bar charts is that pie 

charts are used to compare the contribution of each category of data to 

the whole, whereas bar charts are used to compare the contribution of 

different categories of data against each other.

To demonstrate a pie chart, let’s consider a dataset containing the 

details of immigration to Canada from 1980 to 2013. The dataset contains 

various attributes for immigrants both entering and leaving Canada 

annually. These attributes include origin/destination name, area name, 

region name, etc. There are a total of 197 rows of data based on the origin/

destination of the immigrants. The following code plots a pie chart that 

shows the total number of immigrants from 1980 to 2013 categorized by 

their continent:

import pandas as pd

import matplotlib.pyplot as plt

df = pd.read_excel('Canada.xlsx',skiprows=range(20),skipfooter=2)

df.columns = list(map(str, df.columns))

df['Total']=df.sum(axis=1)

df_continents = df.groupby('AreaName', axis=0).sum().reset_index()

print(df_continents)
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Output:

                         AreaName   AREA    REG     ...  2012   

2013    Total

0                          Africa   48762   49242   ...  38083  

38543   765660

1                            Asia   45815   109147  ...  152218  

155075  3516953

2                          Europe   39044   39754   ...  29177  

28691   1528488

3 Latin America and the Caribbean   29832   30395   ...  27173  

24950   855141

4                Northern America   1810    1810    ...  7892    

8503    246564

5                         Oceania   12726   13210   ...  1679      

1775    93736

After the dataset is loaded as a Pandas dataframe, the column titles 

with numbers indicating the year of data are converted to string format. 

This is done to ensure that the titles are not added when we sum across 

the rows to compute the total number of immigrants in the next step. This 

total number of immigrants is saved in an additional column created in the 

name Total. After computing the total number of immigrants, the data is 

grouped by the column titled AreaName containing the continent details of 

the immigrants. By doing this, the number of rows is now reduced to 6 from 

197, which indicates that the entire dataset is grouped into 6 continents.

Now the total number of immigrants from the six continents, given in 

the column titled Total, can be plotted as a pie chart shown in Figure 6-6. 

Therefore, the pie chart will contain six circular segments corresponding to 

the six continents. To label these segments in the plot, the continent names 

present in the column titled AreaName is converted to a list and stored in 

a variable to be used as labels in the plot function. This code is illustrated 

here:
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t=list(df_continents.AreaName)

plt.pie(df_continents['Total'],labels=t,autopct='%1.1f%%', 

shadow=True)

plt.show()

�Other Plots and Packages
In addition to the fundamental plots that are discussed in this chapter, 

there are other plots available in the Matplotlib package such as contour 

plots, stream plots, 3D plots, etc., that can be used based on the nature of 

data or the requirement for analysis. Other than the Matplotlib package, 

other packages available provide more sophisticated plots that can be 

used to enhance the visualization for different categories of data. One such 

package is the Seaborn library, which can be used for making statistical 

graphics in Python. The Seaborn library provides more sophisticated plots 

like the boxplot, heatmap, violin plot, cluster map, etc., that can provide 

enhanced visualization of data. You are encouraged to explore these other 

categories of plots and libraries.

Figure 6-6.  Pie chart indicating movement of immigrants belonging 
to different continents into and out of Canada from 1980 to 2013
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CHAPTER 7

Analyzing the Data
Exploratory Data Analysis
Exploratory data analysis (EDA) is the process of understanding the data 

by summarizing its characteristics. This step is important before modeling 

the data for machine learning. From this analysis, the user can extract the 

information, identify the root cause of any issues in the data, and figure 

out the steps to initiate any policies for development. In simple terms, this 

type of analysis explores the data to understand and identify the patterns 

and trends in it. There is no common method for doing EDA; it depends 

on the data we are working with. For simplicity in this chapter, we will use 

common methods and plots for doing EDA.

�Choosing a Dataset
To do the EDA, we’ll use the Boston housing dataset that can be imported 

from the Scikit-Learn library. This dataset was already described in 

Chapter 6. This dataset contains 506 samples under 13 different feature 

attributes such as per capita crime rate by town (CRIM), average number 

of rooms per dwelling (RM), index of accessibility to radial highways 

(RAD), etc., and a target attribute MEDV indicates the median value of 

owner-occupied homes in the thousands.

https://doi.org/10.1007/978-1-4842-6825-4_7#DOI
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	 1.	 Import the required libraries.

The first step is to load the required libraries for 

doing the EDA. In this chapter, we will use the 

packages such as Pandas, NumPy, and Matplotlib 

for plotting:

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import load_boston

	 2.	 Import a dataset.

The Boston housing dataset can be imported from 

the Scikit-Learn library and saved as the boston_data 

variable, as given in the following code:

dataset = load_boston()

The more important thing is that most of the open 

source data is stored in a comma-separated format. 

This comma-separated format has difficulties 

fetching and analyzing the data. Thus, the comma-

separated data can be converted into a dataframe 

using the Pandas package in Python.

import pandas as pd

boston_data=pd.DataFrame(dataset.data,columns=dataset.

feature_names)

If the dataset is very large, we can display the top 

and bottom five rows with headings using the 

following code:
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# To display top 5 rows of data

print(boston_data.head(5))

   CRIM  ZN  INDUS  CHAS  NOX  ...  RAD  TAX  PTRATIO  B  LSTAT

0  0.00632 18.0 2.31 0.0 0.538   ...   1.0 296.0 15.3 396.90 4.98

1  0.02731 0.0 7.07 0.0 0.469  ...  2.0 242.0 17.8  396.90 9.14

2  0.02729 0.0 7.07 0.0 0.469  ...  2.0 242.0 17.8  392.83 4.03

3  0.03237 0.0 2.18 0.0 0.458  ...  3.0 222.0 18.7 394.63 2.94

4  0.06905 0.0 2.18 0.0 0.458  ...  3.0 222.0 18.7  396.90 5.33

# To display bottom 5 rows of data

print(boston_data.tail(5))

     CRIM  ZN  INDUS  CHAS  NOX  ...  RAD  TAX  PTRATIO  B  LSTAT

501  0.06263  0.0  11.93  0.0  0.573   ...  1.0  273.0  21.0  391.99  9.67

502  0.04527  0.0  11.93 0.0  0.573   ...  1.0  273.0  21.0  396.90  9.08

503  0.06076  0.0  11.93  0.0  0.573  ...  1.0  273.0  21.0  396.90 5.64

504  0.10959  0.0  11.93  0.0  0.573  ...  1.0  273.0  21.0  393.45  6.48

505  0.04741  0.0  11.93  0.0  0.573  ...  1.0  273.0  21.0  396.90  7.88

	 3.	 Check the information about the data in a dataset.

Before doing data analysis, checking the information 

such as the data type and size of the data, describing 

the data, and knowing the amount of data available in 

a dataset are important steps because sometimes the 

numerical values in the dataset may be stored as string 

data types. It is difficult to plot and analyze numerical 

values stored as the string data type, so the string 

data type that is numerical should be converted into 

integers for better analysis. The size of the dataset can 

be viewed with the help of the following code:

boston_data.shape

Output:

     (506, 13)
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This output shows that the dataset has 506 rows and 13 columns. In 

other words, we can say that the dataset has 506 samples with 13 features.

Then, the information about the dataset can be viewed with the help of 

the following code:

boston_data.info()

Output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 506 entries, 0 to 505

Data columns (total 13 columns):

 #   Column    Count    Non-Null     Dtype

---  ------           -------------- -----

 0   CRIM        506    non-null    float64

 1   ZN          506    non-null    float64

 2   INDUS       506    non-null    float64

 3   CHAS        506    non-null    float64

 4   NOX         506    non-null    float64

 5   RM          506    non-null    float64

 6   AGE         506    non-null    float64

 7   DIS         506    non-null    float64

 8   RAD         506    non-null    float64

 9   TAX         506    non-null    float64

 10  PTRATIO     506    non-null    float64

 11  B           506    non-null    float64

 12  LSTAT       506    non-null    float64

dtypes: float64(13)

memory usage: 51.5 KB

boston_data.dtypes

Output:

CRIM       float64

ZN         float64

INDUS      float64
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CHAS       float64

NOX        float64

RM         float64

AGE        float64

DIS        float64

RAD        float64

TAX        float64

PTRATIO    float64

B          float64

LSTAT      float64

dtype:     object

Moreover, with the help of describe() function, we can see the 

distribution of data such as minimum values, maximum values, mean, etc. 

The description of the Boston data can be viewed using the following code:

boston_data.describe()

Output:

            CRIM        ZN          INDUS       ...  PTRATIO     

B           LSTAT

count       506.000000  506.000000  506.000000  ...  506.000000  

506.000000  506.000000

mean        3.613524    11.363636   11.136779   ...  18.455534   

356.674032  12.653063

std         8.601545    23.322453   6.860353    ...  2.164946    

91.294864   7.141062

min         0.006320    0.000000    0.460000    ...  12.600000   

0.320000    1.730000

25 percent  0.082045    0.000000    5.190000    ...  17.400000   

375.377500  6.950000

50 percent  0.256510    0.000000    9.690000    ...  19.050000   

391.440000  11.360000
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75 percent  3.677083    12.500000   18.100000   ...  20.200000   

396.225000  16.955000

max         88.976200   100.000000  27.740000   ...  22.000000   

396.900000  37.970000

�Modifying the Columns in the Dataset
Modifications in the data such as removing unnecessary columns, 

adding dummy columns, dropping duplicate columns, encoding the 

column, and normalizing the data are required if the dataset needs to 

have preprocessing done. Dropping the unnecessary columns is more 

important when many columns are not used for analysis. Dropping 

those columns is the better solution to make the data lighter and reliable. 

Dropping the unnecessary columns in the Boston dataset can be done 

with the following code:

boston_data =boston_data.drop(['CRIM','ZN','LSTAT'])

print(boston_data.head(5))

Output:

    INDUS CHAS NOX    RM     AGE   DIS     RAD  TAX    PTRATIO  B

 0  2.31  0.0  0.538  6.575  65.2  4.0900  1.0  296.0  15.3  396.90

 1  7.07  0.0  0.469  6.421  78.9  4.9671  2.0  242.0  17.8  396.90

 2  7.07  0.0  0.469  7.185  61.1  4.9671  2.0  242.0  17.8  392.83

 3  2.18  0.0  0.458  6.998  45.8  6.0622  3.0  222.0  18.7  394.63

 4  2.18  0.0  0.458  7.147  54.2  6.0622  3.0  222.0  18.7  396.90

In the previous code, the columns of CRIM, ZN, and LSTAT are dropped, 

and only 10 columns of data are presented.
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Renaming the column name helps the user to improve the readability 

of the data. In the following code, the column name DIS is renamed to 

Distance:

boston_data= boston_data.rename(columns={"DIS":"Distance"})

boston_data.head(5)

    INDUS CHAS NOX     RM    AGE  Distance RAD  TAX    PTRATIO  B

 0  2.31  0.0  0.538  6.575  65.2  4.0900  1.0  296.0  15.3  396.90

 1  7.07  0.0  0.469  6.421  78.9  4.9671  2.0  242.0  17.8  396.90

 2  7.07  0.0  0.469  7.185  61.1  4.9671  2.0  242.0  17.8  392.83

 3  2.18  0.0  0.458  6.998  45.8  6.0622  3.0  222.0  18.7  394.63

 4  2.18  0.0  0.458  7.147  54.2  6.0622  3.0  222.0  18.7  396.90

Identifying duplicates, dropping the duplicates, and detecting outliers 

were already discussed in the previous chapters.

�Statistical Analysis
A better understanding of the data at hand can go a long way in simplifying 

the job of a data scientist, and this is where statistics can come in handy. 

Statistics can provide the tools necessary to identify structures in the data, 

and such insights can prove to be valuable in building a model to best fit 

our data. The role of statistics with respect to data can vary from simple 

analysis to creating self-learning models. In this section, we will introduce 

the various types of distributions, statistical measures of data, and ways to 

fit data to distributions.

Before discussing distributions, let’s first understand how data is 

associated with probability. When we consider a dataset, it normally 

represents a single sample from a population. For instance, if we have a 

dataset consisting of the height and weight of all the students in a school, 
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the model developed from this data after some statistical analysis can be 

used to predict the height and weight of students from another school. The 

dataset in our hand is just one sample, whereas the population may consist 

of as many schools.

The numerical data that we encounter may be continuous or discrete 

in nature. The difference between the two is that the continuous data may 

take any value, whereas the discrete data can take only certain values. 

For example, data such as the number of cars manufactured per day, 

the number of feedback received from customers, etc., are discrete in 

nature, whereas data such as height, weight, humidity, temperature, etc., 

represents continuous data.

Probability distributions, a fundamental concept in statistics, provide 

a way to represent the possible values taken by a random variable and the 

respective probabilities. The probability mass function (PMF) denotes the 

discrete probability distribution, and the probability density function (PDF) 

denotes the continuous probability distribution. Some of the common 

distributions that a data scientist needs to be aware of are discussed in the 

following section.

�Uniform Distribution
Uniform distribution, also called a rectangular distribution, has a constant 

probability. In other words, all the outcomes have the same probability of 

occurrence. The number of outcomes in the case of uniform distribution 

may be unlimited. The most common example for a uniform distribution 

is the roll of a fair die, where all six outcomes have an equal probability of 

1/6. Let’s illustrate uniform distribution by plotting the probabilities of the 

outcomes for the fair die experiment. In other words, the probabilities of 

occurrence for each face of the die are equally likely. Figure 7-1 shows the 

distribution plot.
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import numpy as np

import matplotlib.pyplot as plt

probabilities = np.full((6),1/6)

events = [1,2,3,4,5,6]

plt.bar(events,probabilities)

plt.xlabel('Die roll events')

plt.ylabel('Event Probability')

plt.title('Fair die - Uniform Distribution')

plt.show()

If a histogram plot is made for a dataset by dividing the numerical data 

into a number of bins and all the bins are found to have equal distribution, 

then the dataset can be said to be uniformly distributed.

Figure 7-1.  Uniform distribution of fair die experiment
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�Binomial Distribution
As the name suggests, this distribution is used when there are only 

two possible outcomes. A random variable X that follows a binomial 

distribution is dependent on two parameters:

•	 The number of trials n in the case of binomial 

distribution must be fixed, and the trials are considered 

to be independent of each other. In other words, the 

outcome of a particular trial does not depend on the 

outcomes of the previous trials.

•	 There are only two possible outcomes for each event: 

success or failure. The probability of success, say p, 

remains the same from trial to trial.

Therefore, the binomial distribution function in Python normally 

takes two values as inputs: the number of trials n and the probability of 

success p. To understand binomial distribution, let’s look at the common 

experiment of tossing a coin:

from scipy.stats import binom

import matplotlib.pyplot as plt

import numpy as np

n=15 # no of times coin is tossed

r_values = list(range(n + 1))

x=[0.2,0.5,0.7,0.9]  #probabilities of getting a head

k=1

for p in x:

    dist = [binom.pmf(r, n, p) for r in r_values ]

    plt.subplot(2,2,k)

    plt.bar(r_values,dist)

    plt.xlabel('number of heads')
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    plt.ylabel('probability')

    plt.title('p= percent.1f' percentp)

    k+=1

plt.show()

In the previous code, we have 15 trials for tossing the coin. The 

probability of getting a head remains the same for each trial, and the 

outcome of each trial is independent of the previous outcomes. The 

binomial distribution is computed using the binom.pmf function available 

in the stats module of the scipy package. The experiment is repeated for 

different probabilities of success using a for loop, and Figure 7-2 shows the 

resulting distribution plot.

Figure 7-2 shows the binomial distribution for our coin toss 

experiment for different probabilities of success. The first subplot shows 

the binomial distribution when the probability of getting a head is 0.2. This 

implies that there is a 20 percent chance of getting a head. Twenty percent 

of 15 tosses is 3, which implies that there is a high probability of getting 

three heads in 15 tosses. Hence, the probability is at a maximum of 3.  

Figure 7-2.  Binomial distribution for tossing a coin 15 times
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It can be seen that the binomial distribution has a bell-shaped response. 

The response is skewed to the left when the probability of success is low 

and shifts to the right with an increase in probability, as illustrated in the 

rest of the subplots.

Binomial distribution can be encountered in various domains of data 

science. For instance, when a pharmaceutical company wants to test a 

new vaccine, then there are only two possible outcomes: the vaccine works 

or it does not. Also, the result for an individual patient is an independent 

event and does not depend on other trials for different patients. Binomial 

distribution can be applied to various business issues as well. For example, 

consider people working in the sales department making calls all day 

to sell their company’s products. The outcome of the call is whether a 

successful sale is made or not, and the outcome is independent for each 

worker. Similarly, there are many other areas in a business with binary 

outcomes where binomial distribution can be applied, and hence it plays 

an important role in business decision-making.

�Normal Distribution
Normal distribution, also known as Gaussian distribution, is normally 

a bell-shaped curve centered at the mean where the probability is 

the maximum, and the probability reduces the further we move from 

the mean. This implies that the values closer to the mean occur more 

frequently, and the values that are further away from the mean occur less 

frequently. This distribution is dependent on two parameters: the mean 

(μ) of the data and the standard deviation (σ). The probability density 

function (pdf) for a normal distribution can be given as follows:
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To illustrate the pdf function, consider the following code. An array x 

with 100 values in the range of -10 to 10 is created, and the pdf function 

of x is computed using the norm.pdf function in the stats module of the 

scipy package. The pdf function is computed for four different values of 

mean 0, 2.5, 5, and 7.5 using a for loop. If the mean value is not given, the 

norm.pdf function takes a default value of zero.

from scipy.stats import norm

import matplotlib.pyplot as plt

import numpy as np

mean=[0.0,2.5,5,7.5] # mean values for the normal distribution

x=np.linspace(-10,10,100) # array of 100 numbers in the  

range -10 to 10

for m in mean:

     y=norm.pdf(x,loc=m)

     plt.plot(x,y,label='mean= %.1f' %m)

plt.xlabel('x')

plt.ylabel('pdf(x)')

plt.legend(frameon=True)

plt.show()

Figure 7-3 shows that the normal distribution produces a bell-shaped 

curve that is centered on the mean value. That is, the curve is at the 

maximum at the point of mean, and it starts decreasing on either side as 

we move away from the mean value. Note that we have not specified the 

value of standard deviation. In that case, the norm.pdf function takes the 

default value of 1.
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Similarly, let’s keep the value of the mean as constant and plot 

the distribution for different values of standard distribution using the 

following code:

from scipy.stats import norm

import matplotlib.pyplot as plt

import numpy as np

stdev=[1.0,2.0,3.0,4.0] # standard deviation values for the 

normal distribution

x=np.linspace(-10,10,100)

for s in stdev:

              y=norm.pdf(x,scale=s)

              plt.plot(x,y,label='stdev= %.1f' %s)

plt.xlabel('x')

plt.ylabel('pdf(x)')

plt.legend(frameon=True)

plt.show()

Figure 7-3.  Normal distribution plot for different mean values

Chapter 7  Analyzing the Data



149

From Figure 7-4, we can see that all four curves are centered at 

the default mean value of zero. As the value of standard deviation σ is 

increased, the density is distributed across a wide range. In other words, 

the distribution of data is more spread out from the mean as the standard 

deviation value is increased and there is a high likelihood that more 

observations are further away from the mean.

An important property of the normal distribution that makes it an 

important statistical distribution for data scientists is the empirical rule. 

According to this rule, if we divide the range of observations in the x-axis in 

terms of standard deviation, then approximately 68.3 percent of the values 

fall within one standard deviation from the mean, 95.5 percent of the 

values fall within two standard deviation, and 99.7 percent of the values 

fall within three standard deviations, respectively. This empirical rule can 

be used for identifying outliers in the data if the data can be fit to a normal 

distribution. This principle is used in the Z-score for outlier detection, 

which we discussed earlier in Chapter 5.

Figure 7-4.  Normal distribution plot for different values of standard 
deviation
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�Statistical Analysis of Boston Housing Price 
Dataset
Let’s take the Boston housing price dataset and try to identify the best 

features that can be used to model the data based on the statistical 

properties of the features. As we have already discussed, the Boston 

dataset consists of 13 different features for 506 cases (506 × 13). In addition 

to these features, the median value of owner-occupied homes (in the 

thousands) denoted by the variable MEDV is identified as the target. That 

is, given the 13 different features, the median value of a house is to be 

estimated. The features from the dataset are first converted to a dataframe 

using the Pandas package. Then the target variable is added to the last 

column of this dataframe, making its dimension 506 × 14. This is illustrated 

in the following code:

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from sklearn.datasets import load_boston

import matplotlib.pyplot as plt

dataset = load_boston()

boston_data=pd.DataFrame(dataset.data,columns=dataset.feature_

names)

boston_data['MEDV'] = dataset['target']

print(boston_data.head())
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   CRIM     ZN    INDUS  CHAS  NOX   ...  TAX    PTRATIO  B    

LSTAT  MEDV

0  0.00632  18.0  2.31   0.0  0.538  ...  296.0  15.3  396.90  

4.98   24.0

1  0.02731  0.0   7.07   0.0  0.469  ...  242.0  17.8  396.90  

9.14   21.6

2  0.02729  0.0   7.07   0.0  0.469  ...  242.0  17.8  392.83  

4.03   34.7

3  0.03237  0.0   2.18   0.0  0.458  ...  222.0  18.7  394.63  

2.94   33.4

4  0.06905  0.0   2.18   0.0  0.458  ...  222.0  18.7  396.90  

5.33   36.2

[5 rows x 14 columns]

Once we have the data in hand, the best way to go about it is to plot 

the histogram of all the features so that we can get an understanding of 

the nature of their distribution. Rather than plotting the histogram of each 

feature individually, the hist function in the Pandas package can be used 

to plot them all in one go, as illustrated here:

fig, axis = plt.subplots(2,7,figsize=(16, 16))

boston_data.hist(ax=axis,grid=False)

plt.show()

From Figure 7-5, we can see that the distribution of the target variable 

MEDV is like a normal distribution.
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Further, if we observe all the other parameters, the distribution for the 

parameter RM (which denotes the average number of rooms per dwelling) 

is also similar to the target MEDV. Therefore, the RM can definitely 

be used for modeling the dataset. Also, the parameters DIS (weighted 

mean of distances to five Boston employment centers) and LSTAT 

(percentage of lower status of the population) have similar distribution. 

The distribution of the parameter AGE (proportion of owner-occupied 

units built prior to 1940) is exactly the opposite of these two parameters. 

The rest of the parameters have less significant distribution compared 

to the target parameter. Since these three parameters seem to be related 

either positively or negatively, it is pointless to use all three for building 

the model. So, we have to see which of these three parameters are related 

to our target variable MEDV. The best way to do this is to measure the 

correlation between these parameters using the corr function in the 

Pandas package, as illustrated here:

Figure 7-5.  Histogram plots of the Boston dataset features
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cols=['RM','AGE','DIS','LSTAT','MEDV']

print(boston_data[cols].corr())

       RM           AGE          DIS           LSTAT        MEDV

RM     1.000000    -0.240265     0.205246     -0.613808     0.695360

AGE   -0.240265     1.000000    -0.747881      0.602339     -0.376955

DIS    0.205246    -0.747881     1.000000     -0.496996     0.249929

LSTAT -0.613808     0.602339    -0.496996      1.000000     -0.737663

MEDV   0.695360    -0.376955     0.249929     -0.737663     1.000000

From these results, it can be seen that the diagonal elements are all 

1s, which implies maximum correlation, and they represent the self-

correlation values. If we look at the row corresponding to our target 

parameter MEDV, we can see that RM is positively more correlated with 

MEDV as we judged earlier looking at the histogram distribution. It can 

be also seen that the parameter LSTAT is negatively more correlated with 

MEDV, which implies that there will be an inverse relationship between 

these two parameters. A scatter plot of RM and LSTAT against MEDV, 

respectively, would give us a better understanding of this relationship, as 

illustrated here:

plt.subplot(1,2,1)

plt.scatter(list(boston_data['RM']),list(boston_data['MEDV']))

plt.xlabel('RM')

plt.ylabel('MEDV')

plt.subplot(1,2,2)

plt.scatter(list(boston_data['LSTAT']),list(boston_

data['MEDV']))

plt.xlabel('LSTAT')

plt.ylabel('MEDV')

plt.show()

Chapter 7  Analyzing the Data



154

Figure 7-6 confirms our conclusions derived using the distribution 

graphs and the correlation values. It can be seen that RM and MEDV are 

positively correlated; i.e., the median value of owner-occupied homes 

increases with an increase in the average number of rooms per dwelling. 

Similarly, it can be seen that LSTAT and MEDV are negatively correlated; 

i.e., the median value of the owner-occupied home drops with an increase 

in the percentage of a lower status of population. Therefore, these two 

parameters are good choices to model the Boston housing dataset. It can 

also be seen from the figure that there are some outliers in the RM versus 

MEDV plot, which could be treated using the techniques discussed in 

Chapter 5 before further processing.

Figure 7-6.  Scatter plot of RM and LSTAT versus MEDV
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CHAPTER 8

Learning from Data
Learning from data just means extracting the information from the 

data and using it for predicting/forecasting in order to make intelligent 

decisions based on it. This area is becoming more popular because it is 

applicable to various applications in different industries, such as financial, 

healthcare, education, computer vision, politics, etc.

Learning from data is used in various situations when the 

analytical solution is not required or there is no clear-cut model about 

the problem or requirement of forecasting based on the previous 

information, etc. Basically, three types of learning techniques 

are available: supervised learning, unsupervised learning, and 

reinforcement learning. Supervised learning utilizes the observations 

of a process to develop a model. Supervised learning models are 

trained based on the input and output observations (i.e., input and 

output data) of the process. In unsupervised learning, the training data 

doesn’t have any information about the output. The unsupervised 

models categorize the model based on the characteristics of the data. 

Also, unsupervised models can be used to find patterns in the data, 

detect outliers by clustering similar data, find the structure of the data, 

etc. The reinforcement learning model also doesn’t utilize the correct 

information about the output. However, it has some possible output 

with information about the quality of the output.

https://doi.org/10.1007/978-1-4842-6825-4_8#DOI
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This chapter focuses on describing the learning model development 

techniques by utilizing the Boston dataset. Then, we will implement the 

learning models in the Raspberry Pi and analyze the industry data that is 

acquired from the sensors. This implementation will be discussed as a case 

study in Chapter 9.

�Forecasting from Data Using Regression
Regression finds the relationship between the variables in a dataset. 

Regression is used to identify the impact of one variable on another 

variable. Also, it can be used to forecast a variable based on its previous 

data. Regression models can be used in many areas such as forecasting the 

trends in economics, predicting sales in business, predicting the impact 

of some policies, and predicting the blood pressure levels in healthcare 

applications.

In regression, there are two kinds of variables required to develop a 

model: input and output. An input variable is the variable in a dataset 

used to predict the output variable. An input variable in linear regression 

is commonly denoted as X. An output variable is the variable for predicting 

and is denoted as Y. Equation 8-1 shows the equation for linear regression.

	 Ye=α+βX	 … (8-1)

Here, Ye is the estimated output variable, Y is the actual output 

variable, and α and β are parameters of the linear regression model. For 

example, if we want to buy a TV and try to estimate the cost of the TV 

(i.e., output variable), we use input variables like the size of the TV. Now, 

α, β, and Y are selected (randomly) as 2, 5, and €170, respectively. The 

size of the TV (i.e., input variable) is 32 inch, and the estimated output of 

the linear regression model in estimating the cost of the TV is shown in 

Equation 8-2.
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Ye=2+5 *32

	 = €162	 …(8-2)

So, based on Equation 8-2, the cost of the TV is €162 when the size 

of the TV is 32 inches, which is nearer to the actual cost of the TV: €170. 

If we modify the parameters α and β as 0.1 and 0.5, respectively, now the 

estimated cost of the TV is calculated as follows:

Ye=0.1+0.5 *32

= €16.1

The cost of the TV is drastically changed to €16.1. This shows that the 

selection of α and β is important in predicting the output variable. Thus, 

the objective in developing the linear regression model is to find α and β by 

minimizing the difference between the actual output Y and the estimated 

output Ye. There are many methods available to find the optimum 

parameters of α and β. However, the ordinary least (OL) square method is 

commonly used in finding the optimum parameters of α and β.

The OL method uses covariance and variance of the input variables for 

identifying the parameters α and β as shown in Equation 8-3.

	

�
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Cov X Y

Var X

Y X

,

	 … (8-3)

Here, Y and X are the means of actual output and input variables.

Let’s consider the Boston dataset now. The RM variable is used for 

representing the average number of rooms per dwelling, and the target 

variable (i.e., output variable) MEDV is used for representing the median 

value of owner-occupied homes in the thousands. We consider RM as 

the input variable and MEDV as the output variable for linear regression 
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modeling. Because RM and MEDV are interlinked with each other closely, 

the linear regression model for those variables can be implemented using 

the following code. For identifying the α and β parameters, the ordinary 

least square method is used.

from sklearn.linear_model import LinearRegression

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import load_boston

import pandas as pd

dataset = load_boston()

boston_data=pd.DataFrame(dataset.data,columns=dataset.feature_

names)

Target=pd.DataFrame(dataset.target,columns=['target'])

# two variable for regression model

X1=boston_data['RM']

X=X1.to_numpy()  # dataframe is converted in to array for 

arithmetic operations

Y=dataset.target

xmean=np.mean(X)

ymean=np.mean(Y)

xcov=np.multiply((X-xmean),(Y-ymean))

xvar=(X-xmean)**2

# linear regression model

beta=xcov.sum()/xvar.sum()

alpha=ymean-(beta*xmean)

print(beta)

print(alpha)
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The output of α and β values from the OLS method is shown here:

Beta value is 9.10210898118031

Alpha value is -34.67062077643857

The linear regression model can be developed by using the previous α 

and β values, as given in Equation 8-4.

	 Ye=-34.6706+9.1021*X	 … (8-4)

Here, X is the input variable RM. It can be implemented using the 

following code:

# prediction model

ye=alpha+beta*X

Let’s plot the actual output variable Y and the estimated model Ye, 

which gives clear insight about their relationships and can be plotted using 

the following code (see Figure 8-1):

# plot

plt.figure(figsize=(12,6))

plt.plot(X1,ye)

plt.plot(X,Y,'ro')

plt.title('Actual Vs Predicted')

plt.xlabel('X')

plt.ylabel('Y')

plt.show()
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�Linear Regression using Scikit-Learn
In the previous example, a linear regression predictor uses one input 

variable for predicting the output. The output can be predicted with more 

than one variable based on the given linear regression (see Equation 8-5).

	 Ye=α+β1x1+ β2 x2+ β3 x3+ ……+ βn xn 	 ……(8-5)

Equation 8-5 used n number of input variables for predicting the 

output variable Ye. If we consider all the input variables of the Boston 

dataset (totally 13 input variables) and output variables (MEDV), the 

regression model by using multiple variables can be implemented using 

Scikit-Learn and is given in the following code:

from sklearn.linear_model import LinearRegression

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

from sklearn.datasets import load_boston

import pandas as pd

dataset = load_boston()

Figure 8-1.  Actual output variable versus estimated linear regression 
model
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boston_data=pd.DataFrame(dataset.data,columns=dataset.feature_

names)

Target=pd.DataFrame(dataset.target,columns=['target'])

# two variable for regression model

X=boston_data

Y=Target

lm=LinearRegression()

model=lm.fit(X,Y)

print(f'alpha={model.intercept_}')

print(f'beta={model.coef_}')

Ye=model.predict(X)

Y1=Y.to_numpy()

E=np.mean(Y1-Ye)

MSE=E**2

print(MSE)

# plot

plt.figure(figsize=(12,6))

plt.scatter(Y1,np.arange(0,len(Y)),color='red')

plt.title('Actual')

plt.xlabel('No of samples')

plt.ylabel('Y')

#plt.figure(figsize=(12,6))

plt.scatter(Ye,np.arange(0,len(Y)),color='blue')

plt.legend(['Actual output data','Estimated Linear regression 

model',  ])

plt.show()

Output:

For α and β values
    alpha=[36.45948839]

    �beta=[[-1.08011358e-01  4.64204584e-02  2.05586264e-02     

2.68673382e+00
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      �-1.77666112e+01  3.80986521e+00  6.92224640e-04 - 

    1.47556685e+00

       �3.06049479e-01 -1.23345939e-02 -9.52747232e-01 

     9.31168327e-03

      -5.24758378e-01]]

To evaluate the quality of the model, we can use the mean square error 

(MSE) metric. MSE finds the average of the squared error between the 

actual output and the predicted output.

1.8463848451630152e-29

Figure 8-2 compares the actual output (Y) to the predicted output (Ye).

�Principal Component Analysis
Principal component analysis is a statistical method used to extract the 

strong features in a large dataset. In other words, the dimension of the 

dataset can be reduced by extracting the important features from the 

dataset. PCA uses standardization for identifying the distances between 

the features and implements the covariance information for identifying 

Figure 8-2.  Actual output data to the predicted output data using 
linear regression
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any relationship between the features. Then, with the help of the 

eigenvectors and eigenvalues, the principal components are calculated. 

The principal components are used to extract the strong features, i.e., 

reduce the dimensionality of the data. Further, the principal components 

are used to optimize the number of clusters for the k-means clustering 

technique, and the Boston dataset is used for this work. The Boston dataset 

has 13 features. In the first step, the strong features in the Boston dataset 

are identified with the help of PCA using the following code:

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

#config InlineBackend.figure_format='retina'

# Load in the data

from sklearn.datasets import load_boston

dataset = load_boston()

df=pd.DataFrame(dataset.data,columns=dataset.feature_names)

#df = pd.read_csv('2013_2014_cleaned.csv')

# Standardize the data to have a mean of ~0 and a variance of 1

X_std = StandardScaler().fit_transform(df)

# Create a PCA instance: pca

pca = PCA(n_components=13)

principalComponents = pca.fit_transform(X_std)

# Plot the explained variances

features = range(pca.n_components_)

plt.bar(features, pca.explained_variance_ratio_, color='black')

plt.xlabel('PCA features')

plt.ylabel('variance %')

plt.xticks(features)

plt.show()

# Save components to a DataFrame

PCA_components = pd.DataFrame(principalComponents)
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From Figure 8-3, we can see that the first three features give a good 

variance in the dataset.

Hence, five features can be selected for clustering. For clustering, 

k-means clustering can be used. To identify the optimal number of 

clusters, the PCA is fit with the k-means clustering algorithms and 

calculates the inertia of the clustering model with the selected principal 

components. The following code identifies the inertia of the clustering 

model and plots the number of clusters (i.e., k) with the inertia (this code 

continues with the previous PCA code). Figure 8-4 shows the plot of inertia 

against the number of clusters (k). From Figure 8-4, it can be concluded 

that after the number of cluster (k = 5), there are no significant changes 

occurring in the inertia. Hence, five can be chosen as the optimal number 

of cluster heads for the given dataset.

Figure 8-3.  Features in the dataset with respect to variance
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ks = range(1, 10)

inertias = []

for k in ks:

    # Create a KMeans instance with k clusters: model

    model = KMeans(n_clusters=k)

    # Fit model to samples

    model.fit(PCA_components.iloc[:,:3])

    # Append the inertia to the list of inertias

    inertias.append(model.inertia_)

plt.plot(ks, inertias, '-*', color='blue')

plt.xlabel('number of clusters, k')

plt.ylabel('inertia')

plt.xticks(ks)

plt.show()

Figure 8-4.  Number of clusters versus inertia

Chapter 8  Learning from Data



166

�Outlier Detection Using K-Means Clustering
Clustering is an exploratory data analysis technique used in unsupervised 

learning problems, i.e., when there is no prior knowledge about the data. The 

idea behind clustering is to group the data points in a dataset into a number 

of subgroups called clusters. The data points in each cluster are more similar 

to the other points in the same cluster than those of other clusters.

The technique that is used widely for clustering operations is the 

centroid-based method called k-means clustering, which is an iterative 

algorithm that splits the dataset into k nonoverlapping clusters where 

each data point is assigned to only one cluster. The condition for assigning 

data points to a cluster is that the sum of the squared overlapping clusters’ 

distance of the data points to the cluster’s centroid is at a minimum. The 

k-means algorithm works as follows:

	 1.	 Specify the number of clusters.

	 2.	 Randomly select center points for each cluster, also 

called centroids.

	 3.	 Calculate the distance between each data point and 

the cluster centroids, and assign the points to the 

cluster whose distance is minimum.

	 4.	 Recompute the centroid for each cluster by taking the 

average of all the data points assigned to the cluster.

	 5.	 Iterate steps 3 and 4 until there is no change to the 

centroids.

In addition to clustering the data, the k-means algorithm can be used 

to identify outliers present in the data. The idea behind this approach is to 

sort the distances from each data point to the cluster centroid in ascending 

order and treat a portion of the data points that have the maximum 

distance from the centroid as outliers.
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To illustrate this approach, let’s look at the Boston housing dataset. 

As we discussed in Chapter 7, the average number of rooms per dwelling 

(RM) and the medium value of owner-occupied homes in the thousands 

(MEDV) are highly correlated. So, these two parameters are taken as 

two-dimensional data for the clustering algorithm, as illustrated in the 

following code:

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from sklearn.cluster import KMeans

from sklearn.preprocessing import scale

from numpy import sqrt, random, array, argsort

from sklearn.datasets import load_boston

dataset = load_boston()

boston_data=pd.DataFrame(dataset.data,columns=dataset.feature_

names)

x=boston_data['RM']

y=dataset.target

x=x.to_numpy() # convert pandas series data to numpy array

x=x.reshape(x.shape[0],1)

x=scale(x)

y=y.reshape(y.shape[0],1)

y=scale(y)

X=np.zeros((np.shape(x)[0],2))

X[:,0]=x[:,0]

X[:,1]=y[:,0]

The features of the dataset are first loaded to a dataframe. The column 

corresponding to the feature RM is moved from the dataframe to the 

variable x. Since the RM feature stored in variable x is in the Pandas series 

format, it is converted to a NumPy array using the to_numpy function, 

making it viable for applying the k-means algorithm. This array is then 
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reshaped as it has to be stored along with the target variable MEDV in a 

two-dimensional array. Then an additional scaling of the parameter is 

done by using the scale function in the sklearn package. This is done 

to normalize the data within a particular range. In a similar fashion, the 

target MEDV feature (which by default is a NumPy array) is also stored in 

the variable y, reshaped and scaled. The two variables x and y are then 

combined in the variable X thereby making it a two-dimensional variable. 

The application of k-means algorithm to this variable is illustrated in the 

following code:

km=KMeans(n_clusters=1).fit(X)

distance = km.transform(X)

indexes = np.argsort(distance.ravel())[::-1][:20]

The Kmeans function imported from the sklearn package can be used 

to implement the clustering algorithm. This function can take inputs such 

as the number of clusters, the maximum number of iterations, and more. 

In our code, we are giving an input of one for number of clusters. In other 

words, we are going to group all the data points into a single cluster. Since 

the maximum number of iterations is not specified, the default value of 

300 iterations is taken by the function. After fitting the k-means algorithm 

to our data, the next step is to compute the distance of each data point 

from the cluster centroid. This is done using the transform function in the 

sklearn package. The resulting distance variable is also an n-dimensional 

NumPy array. Therefore, it is first flattened using the ravel function, and 

then the flattened array is sorted in descending order. This means the array 

starts with the data points that are further from the cluster center and ends 

with the points that are closer to the center. This sorting is done using the 

argsort function, which provides the indexes corresponding to the sorted 

data points.

We know that outliers are abnormal data points that lie far away from 

the other data points in the dataset. But what is considered abnormal is 

left to the analyst who is aware of the requirements of the analysis. In the 
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case of the Boston housing data, the outliers are the high median value for 

homes with fewer rooms (overpriced), the low median value for homes 

with more rooms (erroneous), and also depending on requirements the 

median value of the number of room combinations beyond a particular 

limit. To detect these outliers, we randomly pick the first 20 indexes from 

the sorted index array and mark the data points corresponding to those 

indexes in a scatter plot of all data points, as illustrated here:

f,ax=plt.subplots()

ax.scatter(X[:,0],X[:,1])

ax.scatter(X[indexes][:,0],X[indexes][:,1],edgecolors='r',

             facecolors='none', s=100)

plt.xlabel('MEDV')

plt.ylabel('RM')

f.show()

Figure 8-5 shows a scatter plot of the average number of rooms per 

dwelling against the median value of owner-occupied homes. The outliers 

in the data are indicated by those points with red circles around them.

Figure 8-5.  Outliers detected using the k-means clustering algorithm
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CHAPTER 9

Case Studies
This chapter presents real-world case studies for implementing data 

science concepts. Three scenarios are considered: data science concepts 

for human emotion classification with EEG signals, image data, and 

Industry 4.0.

For human emotion classification, EEG signals of humans are 

extracted using a NeuroSky MindWave Mobile kit, and the EEG signals are 

received and analyzed in the Raspberry Pi. A NeuroSky MindWave Mobile 

kit and the Raspberry Pi can be connected via Bluetooth. In image data, 

data science steps are applied to preprocess the image data for further 

analysis. In the Industry 4.0 case study, the Raspberry Pi acts as a localized 

cloud. Here, many sensors are connected to the Raspberry Pi, and the 

signals from the sensors are converted to structured data for further 

analysis and visualization.

�Case Study 1: Human Emotion Classification
An emotion is a feeling that is characterized by intense brain activity. 

A considerable amount of research has been focused on recognizing 

human emotions for a wide range of applications such as medical, health, 

robotics, and brain-computer interface (BCI) applications. There are a 

number of ways to recognize human emotions such as facial emotion 

recognition, tone recognition from speech signal, emotion recognition 

from EEG signals, etc. Among those, classification from EEG signals is a 

https://doi.org/10.1007/978-1-4842-6825-4_9#DOI
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simple and convenient method. Also, EEG signals have useful information 

about human emotions. Thus, many researchers have focused on 

classifying human emotion using EEG signals. EEG signals are used to 

record the human brain activity by measuring electrical signals by placing 

electrodes on the scalp.

Let’s consider a simple emotion recognition system that uses a single 

electrode device, namely, a NeuroSky MindWave device for acquiring the 

EEG signals from participants and classifying their emotion as happy, 

afraid, or sad with the help of machine learning algorithms, namely, 

k-nearest neighbor (k-NN) and neural networks (NNs).

�Methodology
The participants included are from different age groups, and they were 

subjected to the experiment separately by showing them images in 

different categories from the worldwide recognized database Geneva 

Affective Picture Database (GAPED). The images include images of babies, 

happy scenarios, animal mistreatments, human concerns, snakes, and 

spiders, each kindling different emotions in the participants. The dataset of 

features corresponding to the recorded EEG signals is then obtained for all 

the participants, and these features are then subjected to machine learning 

models like k-NN and NN, which classifies each signal into one of three 

emotions: happy, afraid, or sad.

�Dataset
The two devices that are used for data collection are the NeuroSky 

MindWave Mobile device and a Raspberry Pi 3 board. The NeuroSky 

MindWave device can be used to safely record the EEG signals. The 

device consists of a headset, an ear clip, and a sensor (electrode) arm. The 

headset’s ground electrodes are available on the ear clip, whereas the EEG 
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electrode is on the sensor arm that will rest on the forehead above the eye 

after putting on the headset. The device uses a single AAA battery, which 

can last for eight hours.

This device is connected to a Raspberry Pi 3 board via Bluetooth, 

as shown in Figure 9-1. It is a third-generation Raspberry Pi model that 

comes with a quad-core processor, 1GB of RAM, and a number of ports for 

connecting various devices. It also comes with wireless LAN and Bluetooth 

support, which can help to connect wireless devices like our MindWave 

Mobile. The software provided by the NeuroSky device vendor is installed 

on the Pi board to acquire the serial data from the device.

�Interfacing the Raspberry Pi with MindWave 
Mobile via Bluetooth
There are two ways to connect the MindWave Mobile with the Raspberry 

Pi. The first one is to connect the MindWave Mobile with the Raspberry 

Pi desktop. Initially switch on the Raspberry Pi, boot into the Raspberry 

Pi operating system, and then switch on the MindWave Mobile Bluetooth. 

Then click the Bluetooth symbol in the Raspberry Pi OS, which will show 

the devices that are ready to pair with the Raspberry Pi. In the list, the 

Figure 9-1.  Raspberry Pi with MindWave Mobile connected via 
Bluetooth
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MindWave Mobile can be selected, and the pairing password 0000 as 

prescribed by the vendor can be used. Now, the MindWave Mobile device 

is paired with the Pi, as shown in Figure 9-2.

(b)

Figure 9-2.  Raspberry desktop pairing with MindWave Mobile

(a)
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The signals from the MindWave Mobile device can be extracted via 

this Bluetooth connection. Another way to connect the Raspberry with 

MindWave is by using Pypi 0.1.0. The steps are explained at https://

github.com/cttoronto/python-MindWave-mobile. This link provides 

the data about alpha, beta, and gamma values of the brainwave signals. 

However, in this work, the dataset is developed from the EEG signals.

�Data Collection Process
The participants are seated in a small, darkened room, which is also 

radio silent to prevent them from acoustic and visual disturbances. The 

terms and conditions are explained prior to the experiment, and they are 

instructed to stop the test if they have any discomfort. A manual score 

sheet was also provided to the participants to rate their emotions during 

each picture. There was a total of 15 participants, and 15 signals spread 

across three different emotions were recorded, thereby making a total of  

15 × 3 = 45 EEG signals. The emotions were happy, afraid, and sad.

Figure 9-2.  (continued)

(c)
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Initially, raw EEG signals were acquired from the user using a 

NeuroSky device. The raw EEG signal extracted from the brain cannot be 

directly used for further processing. As the subject is exposed to emotion 

stimulation based on the visual inputs for a specific duration, the resulting 

emotional reaction would be a time-varying one. It is essential therefore 

to identify the duration of peak activity of the brain and extract the 

features only for that duration so as to enhance the classification results. 

To achieve this, the recording is started exactly one minute after the start 

of experiment, which gives enough time to simulate the emotions of 

the participants using the image slides corresponding to the particular 

emotion. Also, to avoid dealing with large data, only 15 seconds of data 

with 512 samples per second are considered, thereby reducing the data 

size to just 15 × 512 =7680 samples, as illustrated in Figure 9-3. Figure 9-3 

shows the signal for the entire duration of recording with the signal in the 

peak period of brain activity indicated in red, and Figure 9-4 shows this 

part separately.

Figure 9-3.  Sample EEG signal for the entire recording duration
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�Features Taken from the Brain Wave Signal
EEG signals are a rich source of brain function information. To get 

meaningful information from EEG signals, different attributes of the signals 

need to be extracted. A total of 9 different time domain attributes are 

extracted from the EEG signals, and these features are illustrated as follows.

The latency to amplitude ratio (LAR) is defined as the ratio of the 

maximum signal time to the maximum signal amplitude; see Equation 9-1.

	 LAR
t

S
s= max

max

	 (9-1)

Here, tsmax={t|s(t)=smax} is the time where the maximum signal value 

occurs, and smax=max{s(t)} is the maximum signal value.

The peak to peak signal value (PP) is defined as the difference between 

the maximum signal value and the minimum signal value and is shown in 

Equation 9-2.

	 spp = smax − smin	 (9-2)

Figure 9-4.  EEG signal extracted during peak activity of brain
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Here, smax and smin are the signal maximum and minimum values, 

respectively.

The peak to peak time window (PPT) is defined as the difference 

between the maximum signal time and the minimum signal time and is 

shown in Equation 9-3.

	 tpp = ts max − ts min	 (9-3)

Here, ts max and ts min are the times at which the maximum and 

minimum signal values occur.

The peak to peak slope (PPS) is defined as the ratio of peak to peak 

signal value (PP) to the peak to peak time value (PPT) and is shown in 

Equation 9-4.

	 s
s

tpps
pp

pp

= 	 (9-4)

Here, spp is the peak to peak signal value, and tpp is the peak to peak 

time window.

The signal power (P) is defined as the signal that exists for infinite time 

for constant amplitude. The signal power is shown in Equation 9-5.

	 P
T

s t� � � �1 2
	 (9-5)

The mean value of signal (μ) is defined as the average of data samples 

between the end points of the selected area and displays the average value. 

The mean value of signal is given in Equation 9-6.

	 � � � �
�
�1

1N
s i

i

N

	 (9-6)

where N is total number of samples in signals.
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Kurtosis (K) is the sharpness of the peak of a frequency-distribution 

curve and is given in Equation 9-7.

	 K
m

m
= 4

2

	 (9-7)

Here, m4 and m2 is the fourth moment and variance of signal.

Mobility (M) is defined as the ratio of first-order variance of signal to 

the variance of the signal and is given in Equation 9-8.

	 M
Var s t

Var s t
�

� �� �
� �� �

’

	 (9-8)

Complexity (C) is defined as the first derivative of mobility divided by 

mobility and is given in Equation 9-9.

	 C
M

M�
�

�

�
’

	 (9-9)

The Python code for all these formulas for the nine time domain 

features is written as a single function that is later called in the main 

program. This function, which takes 15 seconds of EEG signal during the 

peak emotional activity of brain and the corresponding time samples, is 

illustrated here:

def eegfeat(ynew,tnew):

    from scipy.stats import kurtosis

    # latency to amplitude ratio

    smax=max(ynew)

    locmax=np.where(ynew==smax)
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    tsmax=tnew[locmax]

    lar1=tsmax/smax

    lar=lar1[0]

    # peak to peak signal value

    smin=min(ynew)

    locmin=np.where(ynew==smax)

    tsmin=tnew[locmin]

    spp=smax-smin

    # peak to peak time window.

    tpp1=tsmax+tsmin

    tpp=tpp1[0]

    # peak to peak slope

    spps=spp/tpp

    # mean value of signal

    m=np.mean(ynew)

    # kurtosis

    k=kurtosis(ynew)

    # mobility and complexity

    n=ynew.shape[0]

    dynew=np.diff(ynew)

    ddynew=np.diff(dynew)

    mx2=np.mean(np.power(ynew,2))

    mdx2=np.mean(np.power(dynew,2))

    mddx2=np.mean(np.power(ddynew,2))

    mob=mdx2/mx2

    complexity=np.sqrt(mddx2/(mdx2-mob))

    mobility=np.sqrt(mob)

    # signal power

    tt=np.power(ynew,2)

    s=0
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    for i in np.arange(0,tt.shape[0]):

    s=s+tt[i]

    signalpower=s/ynew.shape[0]

    �feat = [lar, spp, tpp, spps, m, k, complexity, mobility, 

signalpower]

    return feat

�Unstructured Data to Structured Dataset
Now that we have a function to extract features from the EEG signal, the 

next step is to develop the code to get a structured dataset. First, the EEG 

signals of all 15 participants corresponding to three different emotions are 

loaded one by one using the pd.read_csv function inside a for loop. After 

an EEG signal is loaded as a dataframe, the timestamp is removed first, 

and then the amplitude values in the remaining column are converted 

to a NumPy array. The array obtained in each iteration is then stacked to 

a new variable thereby providing a final array consisting of 45 columns 

corresponding to the 45 different EEG signals. Then each column of this 

array is passed to the eegfeat function created earlier that provides nine 

features corresponding to each column (each signal) there by providing 

a final feature array of size 9×45. The dataset is given in Table 9-1 and 

saved as emotion_data1.xls in an Excel sheet. Finally, the features are 

scaled using the StandardScaler and fit function in the sklearns module. 

This scaling works by first computing the mean and standard deviation 

of each feature for all the 45 signals and then subtracting the mean from 

all the values and dividing this difference by the standard deviation. The 

following code illustrates the feature extraction process:

import pandas as pd

import numpy as np

from sklearn.preprocessing import StandardScaler

F=512
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a=np.zeros([(75*F)-(60*F),1])

for i in np.arange(1,4):

    for j in np.arange(1,16):

        filename = �'G:/Anand-EEG/EEG Database/Dataset/

user'+str(j)+'_'+str(i)+'.csv'

        s=pd.read_csv(filename)

        s.drop('Time',inplace = True, axis=1)

        s1=s[' Value'][60*F:75*F]

        a=np.column_stack((a,s1.to_numpy()))

a=np.delete(a,0,1)

tnew=np.linspace(0,15,a.shape[0])

features=np.zeros([9,45])

for i in np.arange(0,a.shape[1]):

    parameters=eegfeat(a[:,i],tnew)

    for j in np.arange(0,features.shape[0]):

        features[j,i]=parameters[j]

scaler = StandardScaler()

features=scaler.fit(features)
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�Exploratory Data Analysis from the EEG Data
To read the emotion_data.xls file, use the following code:

import pandas as pd

emotion_data= pd.read_excel('\file_path\emotion_data1.xls')

To show the keys and first 5 dataset using the below code

print(emotion_data.keys())

Output:

Index(['LAR', 'PP', 'PPT', 'PPS', 'Power', 'Mean', 'Kurtosis', 

'Mobility', 'Complexity', 'Label'], dtype='object')

print(emotion_data.head(5))

Output:

   LAR       PP    PPT       PPS       ...  Kurtosis  Mobility  

Complexity  Label

0  0.016024  678   11.18505  60.61663  ...  0.864608  0.272718  

3095.76805  'Happy'

1  0.021638  805   17.95937  44.82340  ...  0.908352  0.323672  

8861.53844  'Happy'

2  0.013645  1156  18.50241  62.47835  ...  0.909418  0.253198  

5615.14591  'Happy'

3  0.020861  913   20.69410  44.11885  ...  0.869794  0.274665  

7488.51785  'Happy'

4  0.027464  1051  29.44133  35.69811  ...  0.920326  0.739543  

17478.15660 'Happy'

By using the following code, the final five data points can be viewed:
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print(emotion_data.tail(5))

         LAR    PP        PPT  ...  Mobility 

   Complexity      Label

40  0.000649  5070   3.141034  ...  0.173283 

  231638.99600    'Sad'

41  0.015449   856  14.583930  ...  0.225146 

    6764.73669      'Sad'

42  0.005224  3800  20.268260  ...  0.094596 

   63679.08050  'Sad'

43  0.016787  1187  19.338460  ...  0.195176 

   16224.20620  'Sad'

44  0.008937   494   4.879542  ...  0.304871 

    3185.67894     'Sad'

[5 rows x 10 columns]

To check the shape of the data, use the following code:

print(emotion_data.shape)

Output:

(45, 10)

By using the below code, the datatypes in the emotion data can be 

displayed.

print(emotion_data.dtypes)

Output:

LAR              float64

PP                 int64

PPT              float64

PPS              float64

Power            float64

Mean             float64

Kurtosis         float64
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Mobility         float64

Complexity       float64

Emotion Label     object

dtype: object

The modifications in the dataset include dropping the columns and 

changing the data using the exploratory data analysis section in Chapter 8.

Figure 9-5 shows the visualization of a histogram of the mean data in 

the emotion dataset.

�Classifying the Emotion Using Learning Models
The next step after extracting the features is to apply a classification 

algorithm to identify the emotion corresponding to the signals. Since we 

are already aware of the emotions corresponding to each of the signals we 

have used, it is obviously better to go for a supervised learning algorithm 

Figure 9-5.  Histogram of mean for each emotion
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for classification. Before that, another important task is to split our data 

into training and testing data. Out of the 15 signals for each emotion, let’s 

consider the data corresponding to first 12 signals for training and the 

data corresponding to the remaining 3 signals for testing. Also, the labels 

corresponding to the training and testing data should be created. For this, 

we are going to label the emotion happy as 1, fear as 2, and sad as 3. This 

splitting of data as well as the labels is illustrated in the following code:

m1=np.ones((15,),dtype=int)

ids=np.concatenate((m1,2*m1,3*m1),axis=0)

x_train=np.concatenate((features[:,0:12],features[:,15:27], 

features[:,30:42]),axis=1)

x_test=np.concatenate((features[:,12:15],features[:,27:30], 

features[:,42:45]),axis=1)

y_train=np.concatenate((ids[0:12],ids[15:27],ids[30:42]))

y_test=np.concatenate((ids[12:15],ids[27:30],ids[42:45]))

	 i.	 k-NN

Let’s first use the k-NN algorithm to classify the emotions based on 

the data. k-NN is a simple supervised machine learning algorithm that 

categorizes the available data and assigns new data to a particular category 

based on a similarity score. The k-NN algorithm works by finding the 

distance between the test data and the training data. After finding the 

distance to each training data, the training data is sorted in ascending 

order of the distance values. In this ordered data, the first k data is selected, 

and the algorithm will assign the most frequent label occurring in this to 

the test data. The Euclidean distance is the most commonly used distance 

measure for the k-NN algorithm, and the distance between two data 

points, xi and yi, is given by the following expression:

Euclidean distance
i

k

� �� �
�
�

1

2
x yi i
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The k-NN classification is implemented using the 

KNeighborsClassifier package in the sklearn Python module. The 

emotion classification code using this package is illustrated here:

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import confusion_matrix, classification_

report

classifier = KNeighborsClassifier(n_neighbors=16)

classifier.fit(x_train.T, y_train)

y_pred = classifier.predict(x_test.T)

cm=confusion_matrix(y_test, y_pred)

print("confusion matrix\n",cm)

print("Accuracy:",(sum(np.diagonal(cm))/9)*100)

Output:

       confusion matrix

       [[1 0 2]

       [1 2 0]

        [2 0 1]]

Accuracy: 44.44444444444444

The parameter n_neighbors in the previous code indicates the value of 

k, which we have selected as 16. Therefore, 16 neighbors are considered for 

making the classification decision. First, the distance between the test data 

and all the other training data is computed. Then the training data points 

are sorted in ascending order of the computed distance. In the sorted 

data, the labels corresponding to the first 16 data are considered, and the 

label that occurs more out of the 16 is assigned to the test data. This is 

repeated for all nine test signals (three for each emotion), and the results 

are displayed using a confusion matrix, which could be better understood 

using the information in Table 9-2.
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In the confusion matrix, the row headers can be treated as inputs, and 

column headers can be treated as outputs. For instance, if we consider 

the first row, only one of the three EEG signals corresponding to the 

“happy” emotion is identified correctly, and the remaining two signals 

are wrongly classified as “sad” emotion. Similarly, in the second row, two 

signals corresponding to the “fear” emotion are classified correctly, and in 

the third row, one signal corresponding to the “sad” emotion is identified 

correctly. To understand better, the diagonal elements in the confusion 

matrix represent the data that is classified correctly, and the remaining 

elements indicate misclassification. In total, four out of the nine test signals 

are classified correctly. giving the system an accuracy of 44.44 percent.

�Case Study 2: Data Science for Image Data
Though digital equipment available today can capture images at a higher 

resolution and with more details than human vision, computers can only 

treat those images as an array of numerical values that represents colors. 

Computer vision refers to the techniques that can enable computers to 

understand digital images and videos. Computer vision systems can be 

thought of as a replication of the human vision system, enabling computers 

to process images and videos in the same way humans do. Computer 

vision systems are used in many applications such as face recognition, 

autonomous vehicles, healthcare, security, augmented reality, etc.

Table 9-2.  Confusion Matrix for Emotion Classification Using k-NN

Happy Fear Sad

Happy 1 0 2

Fear 1 2 0

Sad 2 0 1
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The first step in any computer vision system is to capture the images of 

interest. This can be done by many means such as cameras, microscopes, 

X-ray machines, radar, etc., depending on the nature of application. 

The captured raw images, however, cannot be used directly and require 

further processing. The raw images may not be of the desired quality due 

to the noise introduced by various reasons. It is therefore essential to 

enhance the captured raw images before further processing. To enable 

the computer to learn from the images, it is sometimes essential to extract 

useful information from the image using analysis techniques. In this 

section, we will see how to capture images using a camera interfaced to 

a Raspberry Pi board and discuss the steps involved in preparing the raw 

images for further processing.

The first step is to interface a USB web camera to our Raspberry Pi 

board, as shown in Figure 9-6.

To do this, we have to enable SSH and Camera in the Pi configuration 

settings. Secure Shell (SSH) can help to connect with the Raspberry 

Pi remotely over your local network, whereas enabling the Camera 

configuration can help to interface a webcam with the Pi board. This can 

be done with the following steps:

	 1.	 Type the command sudo raspi-config in the 

Terminal window of your Raspberry Pi OS. This will 

open the Software Configuration Tool window, as 

shown in Figure 9-7.

Figure 9-6.  Raspberry Pi with webcam
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	 2.	 Go to Interfacing Options, as shown in Figure 9-8, 

and enable both SSH and Camera.

	 3.	 Reboot the Raspberry Pi device.

Figure 9-7.  Software Configuration Tool window

Figure 9-8.  Interfacing options for enabling Camera and SSH
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Once the reboot is completed, run the lsusb command in the Terminal 

window and check whether the connected USB webcam is listed. Then 

open the Python IDE and type the following code to capture and save an 

image using the webcam:

import cv2

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

camera=cv2.VideoCapture( )

ret, img = camera.read( )

cv2.imwrite('image.png',img)

img= cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

plt.imshow(img)

plt.axis('off')

plt.show( )

As shown in the code, the OpenCV package is used to work with images 

in Python. To capture an image, a VideoCapture object is created first. The 

read() function is used to capture the image using the created object and 

then stored in a variable 'img'. The captured image can then be saved 

using the imwrite() function. OpenCV displays an image in BGR format 

instead of the standard RGB format. Therefore, the image is first converted 

to an RGB image using the cv2.color function before displaying. To display 

the image, the imshow() function in the Matplotlib package can be used. 

Since the plots created with this package are enabled with an axis value by 

default, it is essential to remove the axis while displaying images. This can 

be done by setting the axis function in the Matplotlib package to the off 

state. Figure 9-9 shows a sample image captured using the previous code.
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�Exploratory Image Data Analysis
The image shows a few stationary objects lying on white paper. To 

understand the acquired image data, it would be better to print the data 

type and size of the image, as illustrated here:

print(type(img))

print(img.shape)

Output:

      <class 'numpy.ndarray'>

      (719, 1206, 3)

The captured image is a NumPy array. The image captured using the 

webcam is usually in RGB form where there are three planes of pixels: Red, 

Blue, and Green. In other words, each pixel in the image is composed of 

three values that represent the proportion of red, blue, and green thereby 

leading to various colors in the visible spectrum. The number 3 in the 

shape of the image printed indicates the three planes; i.e., the image is 

Figure 9-9.  Image captured using a webcam interfaced to the 
Raspberry Pi board
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composed of three planes corresponding to RGB, each with a size of 719× 

1206 pixels. In many applications, other details such as edges, shapes, 

etc., in the image are more important than the color information. For 

instance, if our objective is to identify the stationary objects in the given 

image, the shape of the objects would be more important than the color. In 

such cases, the three-plane RGB image can be converted to a single-plane 

grayscale image using the following code:

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

plt.imshow(gray,cmap= 'gray')

plt.axis('off')

plt.show( )

print(gray.shape)

Output:

      (719, 1206)

Figure 9-10 shows a single-plane grayscale image where the colors 

in the image are removed. This can be seen from the size of the image 

printed in the previous code. Now the size of the grayscale image is just 

719×1206 in a single plane. In some cases, the captured image may have 

some missing values caused by defects in the image sensor. These values 

may be reflected in the grayscale image as well, and these values can be 

detected and treated by converting the image to a dataframe, as illustrated 

here:

df=pd.DataFrame(gray)

s=df.isnull( ).sum( ).sum( )

print(s)

if s!=0:

    df=df.ffill(axis=0)

gray=df.to_numpy( )

Output:

      0
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The isnull( ) function can be used to detect the presence of missing 

values along the rows and columns of the image. The sum( ) function can 

be used to count the number of missing values in the dataframe along 

rows and columns. If the result of the sum( ) function is not equal to zero, 

then the image consists of missing values, and they can be treated using 

the ffill( ) function, which replaces each missing value with the pixel 

above it. This method of forward filling or backward filling will not cause 

any visible changes in the image because pixel values are often closely 

placed in an image except at edges in the image. As shown from the 

previous code, the number of missing values is 0; i.e., there are no missing 

values in the image. Once the image is checked and treated for missing 

values, the dataframe can be converted back to a NumPy array using to_

numpy( ) in Pandas. Since the pixel values are closely placed, there may 

be repetition of same pixel values at many regions in the image. Because 

of this property, identification of duplicate values is irrelevant in the case 

of the image data.

Figure 9-10.  Image converted to grayscale
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Using a USB webcam or the Pi camera in natural lighting may often 

result in poor-quality images. So, the next step after treating missing values 

is to plot the histogram of the image. The histogram plot will give an idea 

about the contrast of the image, as shown in Figure 9-11. This is illustrated 

in the following code:

plt.hist(gray.ravel( ),bins=256)

plt.xlabel('bins')

plt.ylabel('No of pixels')

plt.show( )

The pixel values in a grayscale image range from 0 (representing 

black) to 255 (representing white). The hist( ) function in the previous 

code plots a bar chart of the count of each pixel value in this range. This 

plot gives insight about the contrast of the image that we are dealing with. 

Figure 9-7 shows the histogram of our grayscale image. It can be seen that 

the majority of the pixels are in the range (120,160). If the spread of pixels 

is concentrated in the lower bins, then we have a low-contrast image, 

and vice versa. So, depending on this plot, a decision can be made as to 

whether the image needs contrast adjustment.

Figure 9-11.  Histogram of the grayscale image
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The other cause for the poor quality of images may be the presence of 

noise induced by various factors. These noises can be visually perceived, 

while observing the captured images, in the form of grains. In such cases, 

these noises have to be removed before going for further processing. There 

are many different kinds of noises such as Gaussian noise, salt and pepper 

noise, etc., and there are many different types of filters that can be used to 

remove those noises that are beyond the scope of this book. Let’s just look 

at one particular filter used often in image processing called the averaging 

filter. It is a low-pass filter that can be used to remove high-frequency 

content from a digital image. This filtering works by passing a kernel of 

particular size, say 3×3, across the dimensions of the image, taking the 

average of all the pixels under the kernel area and replacing the central 

element with this average. The overall effect is to create a blurring effect. 

The following code illustrates the implementation of averaging filter to our 

image. Figure 9-12 shows the image obtained after filtering.

blur=cv2.blur(gray,(3,3))

plt.imshow(blur)

plt.axis('off')

plt.show( )

Figure 9-12.  Image obtained by average filtering
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�Preparing the Image Data for Model
Once the preprocessing steps are completed, the next step is to analyze or 

prepare the image for a learning model. This can be done in two ways. The 

first way is to extract features that represent useful information and use 

them for modeling. The features extracted may be another transformed 

image, or they may be attributes extracted from the original image. There 

are numerous features that can be extracted from an image, and the 

selection of a particular feature depends on the nature of our application. 

A discussion of these numerous features is beyond the scope of this book. 

Instead, we will discuss one particular feature: edge detection.

Edges represent the high-frequency content in an image. Canny edge 

detection is an algorithm that uses a multistage approach to detect a wide 

range of edges in images. It can be implemented in Python by using the 

Canny( ) function in OpenCV, as illustrated in the following code. Figure 9-13 

shows the image after the edge detection process.

edge_img=cv2.Canny(gray,100,200)

plt.imshow(edge_img,cmap='gray')

plt.axis('off')

plt.show( )
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The second way is to directly feed the image to a deep learning model. 

Deep learning is a popular machine learning approach that is being 

increasingly used for analyzing and learning from images. This approach 

can directly learn the useful information from the image and does not 

require any feature extraction. The image may be resized to a different 

shape and then fed to the learning model, or the image array may be 

converted to a one-dimensional vector and then fed to the model.

�Object Detection Using a Deep Neural Network
Object detection is a technique for identifying the objects in the real world 

like a chair, book, car, TV, flowers, animals, humans, etc., from an image or 

video. This technique detects, identifies, and recognizes multiple objects 

in an image for better understanding or for extracting the information from 

a real-world environment. Object detection plays a major role in computer 

vision applications like autonomous vehicles, surveillance, automation 

Figure 9-13.  Image after edge detection
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in industries, and assistive devices for visually impaired people. Many 

modules are available in the Python environment for object detection, and 

they are as follows:

Feature-based object detection

Viola Jones object detection

SVM classification with HOG features

Deep learning object detection

Single-shot multibox detector (SSD) object 

detection

You Only Look Once (YOLO) model object detection

Region-based convolutional neural network 

(R-CNN)

Faster R-CNN

Here, we have used a single-shot multibox detector to identify the 

multiple objects in an image or video. Single-shot multibox detectors were 

proposed by C. Szegedy et al. in November 2016. SSD can be explained as 

follows:

Single shot: In this stage, localization and 

classification of the image are done with the help of 

a single forward-pass network.

Multibox: This represents drawing the bounding 

boxes for multiple objects in an image.

Detector: This is an object detector that classifies the 

objects in an image or video.

Figure 9-14 shows the architecture of a single-shot multibox detector.
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In the architecture, the dimension of the input image is considered 

as 300×300×3. The VGG-16 architecture is used as a base network, and 

the fully connected networks are discarded. The VGG-16 architecture is 

popular and has a strong classification ability with the transfer learning 

technique. Here, a part of the convolutional layers of the VGG-16 

architecture is used in the earlier stages. A detailed explanation of SSD 

is available at https://towardsdatascience.com/understanding-

ssd-multibox-real-time-object-detection-in-deep-learning-

495ef744fab.

The multibox architecture is a technique for identifying the bounding 

box coordinates and is based on two loss functions such as confidence loss 

and location loss. Confidence loss uses a categorical entropy for measuring 

the confidence level of identifying the objects for the bounding box. Location 

loss measures the distance of the bounding box, which is away from the 

object in the image. For measuring the distance, the L2 norm is used. The 

multibox loss can be measured with the help of the following equation:

Multi-box loss=confidence Loss+α* Location Loss

Figure 9-14.  Architecture of single-shot multibox detector (https://
towardsdatascience.com/understanding-ssd-multibox-real-time-

object-detection-in-deep-learning-495ef744fab)
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This gives information about how far the bounding box landed from 

the predicted objects. The following code implements the SSD configure 

file with the DNN weights for detecting the objects in COCO names. The 

SSD configure file (i.e., ssd_mobilenet_v3_large_coco_2020_01_14.

pbtxt) with the DNN weights (i.e., frozen_inference_graph.pb) for 

detecting the objects in COCO names can be downloaded from https://

github.com/AlekhyaBhupati/Object_Detection_Using_openCV.

COCO names are called common objects in this context, and the 

dataset for the COCO names is available at the official website: https://

cocodataset.org/#home. COCO has segmented common objects such as 

chair, car, animals, humans, etc., and these segmented images can be used 

to train the deep neural network. See Figure 9-15 and Figure 9-16.

Figure 9-15.  Input image for object identification
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Here’s the code:

import cv2

thres = 0.5# Threshold to detect object

cap = cv2.VideoCapture(0)

cap.set(3,1280)

cap.set(4,720)

cap.set(10,70)

classNames= []

classFile = 'coco.names'

with open(classFile,'rt') as f:

     classNames = f.read().rstrip('\n').split('\n')

configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'

weightsPath = 'frozen_inference_graph.pb'

net = cv2.dnn_DetectionModel(weightsPath,configPath)

net.setInputSize(320,320)

net.setInputScale(1.0/ 127.5)

net.setInputMean((127.5, 127.5, 127.5))

net.setInputSwapRB(True)

print('1st done')

while True:

     success, img = cap.read()

     classIds, confs, bbox = net.detect(img, confThreshold=thres)

     print(classIds, bbox)

      if len(classIds) != 0:

         �for classId, confidence,box in zip(classIds.

flatten(),confs.flatten(),bbox):

            cv2.rectangle(img,box,color=(0,255,0),thickness=2)

            �cv2.putText(img,classNames[classId-1].upper(), 

(box[0]+10,box[1]+30),

                        cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2)
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            �cv2.putText(img,str(round(confidence*100,2)),(box[0

]+200,box[1]+30),

                         �cv2.FONT_HERSHEY_COMPLEX,1, 

(0,255,0),2)

     cv2.imshow("Output",img)

     # Hit 'q' on the keyboard to quit!

When the code is executed, the frames in the video from the webcam 

are captured using the OpenCV capture functions. Then, each and every 

frame is inserted into the already trained SSD-DNN model for identifying 

the objects. The SSD-DNN model classifies the objects based on the COCO 

Figure 9-16.  Output image with identified objects
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names and creates a bounding box on the detected images with a COCO 

name label and accuracy. The video file of Figure 9-15 was fed as the input 

to the previous program. The figure has the objects such as a chair, a book, 

and a mouse. From Figure 9-16, it can clearly be concluded that the SSD-

based DNN model identifies the three objects with an accuracy of 72.53 

percent for the chair, 67.41 percent for the book, and 81.52 percent for the 

mouse.

�Case Study 3: Industry 4.0
Industry 4.0 represents the fourth revolution in the manufacturing 

industry. The first revolution in industry (i.e., Industry 1.0) was the 

creation of mechanical energy with the help of steam power to increase the 

productivity in assembly lines. The second revolution (i.e., Industry 2.0) 

incorporated electricity into the assembly line to improve productivity. The 

third revolution (i.e., Industry 3.0) incorporated computers for automating 

the industrial process. Currently, Industry 4.0 is adopting computers, data 

analysis, and machine learning tools for making intelligent decisions or 

monitoring the process with the help of data that is acquired with sensors. 

The Internet of Things (IoT) has recently played a major role in acquiring 

data and transmitting it for remote access.

Figure 9-17 describes the basic process flow in Industry 4.0. Initially, 

the physical system’s data is collected with the help of sensors and made 

into a digital record. Then the digital record of the physical systems is 

sent to a server system for real-time data processing and analysis. The 

data science techniques are applied in this stage for preprocessing and 

preparing the data. Then modern learning algorithms can be used for 

intelligent decision-making by predicting the output with the learned 

model. Moreover, visualization techniques are used to monitor the real-

time data of the physical systems. Here, the Raspberry Pi can be used as a 

server or a localized cloud for real-time data processing.
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�Raspberry Pi as a Localized Cloud for  
Industry 4.0
To implement Industry 4.0, a sophisticated computer is required to 

connect the devices, collect the data, and process the data. The collected 

data can be stored in a cloud service for further processing. However, these 

days, subscriptions of cloud services are costlier and suitable for highly 

profitable companies. Small-scale companies will want to implement 

a localized cloud for real-time processing. Further, a localized cloud 

approach can provide data security because it’s on-site and attackers are 

not able to invade via remote access.

As discussed in Chapter 3, the Raspberry Pi can act as a localized 

cloud that can connect sensors, IoT devices, other nearby computers, and 

mobile phones, as shown in Figure 9-18. Sophisticated computers also can 

Figure 9-17.  Industry 4.0 block diagram
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Figure 9-18.  The Raspberry Pi as a localized cloud

Figure 9-19.  Industry 4.0 framework with the Raspberry Pi

act as a localized cloud, but they occupy a large space. Also, it is difficult 

to implement the computers in remote areas. The Raspberry Pi has the 

advantage of occupying less space and can be implemented in remote 

areas. Based on this, the Raspberry Pi is used as a localized cloud for the 

Industry 4.0 framework, as shown in Figure 9-19.

There are three modules available in the Industry 4.0 framework with 

the Raspberry Pi. The modules are collecting the data from the sensors, 

collecting the information using cameras, and connecting the Raspberry Pi 

with other computers.
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�Collecting Data from Sensors
We will use the temperature and humidity sensor to measure the 

temperature and humidity. Connect the DHT 11/22 sensor module to 

the Raspberry Pi, as shown in Chapter 3. The following code collects the 

temperature and humidity percentage for 100 seconds and stores the 

collected data as a CSV file.

import Adafruit_DHT

import time

from datetime import datetime

DHT_SENSOR = Adafruit_DHT.DHT11

DHT_PIN = 17

data = []

while _ in range(100):

    humidity, temperature = Adafruit_DHT.read(DHT_SENSOR, DHT_PIN)

    if humidity is not None and temperature is not None:

now = datetime.now()

dt_string = now.strftime("%d/%m/%Y %H:%M:%S")

data.append(dt_string,humidity,temperature)

    time.sleep(60*5)

df = pd.DataFrame(data)

df.to_csv('data.csv',index=None,header=None)

The CSV file would look like Table 9-3.
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Table 9-3.  Timestamped Data from 

the Humidity and Temperature Sensors

17/05/2020 01:05:14 26.24 69.91

17/05/2020 01:10:14 26.24 70.65

17/05/2020 01:15:14 26.22 68.87

17/05/2020 01:20:14 26.15 70.11

17/05/2020 01:25:14 26.11 69.02

�Preparing the Industry Data in the Raspberry Pi
We will use a dataset consisting of two columns of data recorded from the 

temperature and humidity sensor connected to a Raspberry Pi board; the 

data was recorded every 5 minutes over a duration of 28 hours. So, the 

dataset is essentially time-series data in .csv format. It is always better to 

get an understanding of the dataset before doing preprocessing. Therefore, 

the first step will be to read the file and print the contents, as illustrated 

here:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

dataset=pd.read_csv('datasets_384649_744229_log_temp.csv')

print(dataset.head())

Output

      Date      Time    Temperature    Humidity

0  3/14/19  19:33:07         T=22.0      H=20.0

1  3/14/19  19:38:10         T=22.0      H=20.0

2  3/14/19  19:43:11         T=22.0      H=26.0

3  3/14/19  19:48:14         T=22.0      H=26.0

4  3/14/19  19:53:15         T=22.0      H=20.0
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From the first five entries of the dataset printed, it is clear that the data 

needs to be cleaned before we start analyzing it. The first two columns 

consisting of the date and time of the entry are not needed for the analysis, 

and hence those columns can be dropped. The third and fourth columns 

consisting of the actual data are a mix of string and numbers. We have to 

filter out these inappropriate values and convert the dataset from string 

to float. These two operations can be performed as illustrated here:

# drop the date and time column

drop=['Date','Time']

dataset.drop(drop,inplace=True,axis=1)

# remove the 'T=' and 'H=' string

dataset['Temperature']=dataset['Temperature'].str.

replace('T=','')

dataset['Humidity']=dataset['Humidity'].str.replace('H=','')

dataset=dataset.astype(float)

print(dataset.head())

Output:

    Temperature    Humidity

0          22.0        20.0

1          22.0        20.0

2          22.0        26.0

3          22.0        26.0

4          22.0        20.0

The next step is to check for missing data in both columns. As 

discussed earlier, the missing data is normally in the form of NaN, and 

the function isna() from the Pandas package can be used to detect the 

presence of such data. The function where() from the NumPy data can 

be used along with the function isna() to get the location of the missing 

values in the respective columns, as illustrated here:
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print(np.where(dataset['Temperature'].isna()))

print(np.where(dataset['Humidity'].isna()))

Outpu:

(array([206, 207, 214, 215, 216, 217, 218, 219, 220, 221, 222, 

223, 224, 225, 226, 227], dtype=int64),)

(array([206, 207, 214, 215, 216, 217, 218, 219, 220, 221, 222, 

223, 224, 225, 226, 227], dtype=int64),)

As we can see from the previous result, there is missing data in both 

the temperature column and the humidity column, and the location of 

the missing data is the same in both columns. The next step will be to 

treat the missing values. The method of treating the missing values can 

vary depending on the nature of data. In our dataset, since we are have 

temperature and humidity values measured every five minutes, it is safe to 

assume that there will not be much variation over the range of the missing 

values. Therefore, the missing values can be filled using the ffill method, 

which stands for “forward fill” where the missing values are replaced 

by the values in the previous row. This can be implemented using the 

fillna() function in the Pandas package. After the implementation of this 

filling process, this can be verified by using the isna().any() function, 

which will return false if there are no missing values in any of the columns, 

as illustrated here:

dataset['Temperature']=dataset['Temperature'].

fillna(axis=0,method='ffill')

dataset['Humidity']=dataset['Humidity'].

fillna(axis=0,method='ffill')

print(dataset.isna().any())

Output:

    Temperature    False

    Humidity       False

    dtype: bool
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Now that the missing values are treated, the next step is to look for 

outliers in the data. For this, let’s use the Z-score we discussed earlier. 

Before computing the Z-score, the entries in the dataset should be 

converted to integers. The following code illustrates the detection and 

removal of outliers using the Z-score:

from scipy import stats

z=np.abs(stats.zscore(dataset))

df1=dataset[z>3]

print(df1)

dataset=dataset[(z<3).all(axis=1)]

Output:

       Temperature  Humidity

47             9.0     140.0

157           37.0      12.0

It can be seen from the previous illustration that there are two outliers 

corresponding to the row indices of 47 and 57. Rather than removing the 

outliers that correspond to the data points with a Z-score greater than 3, 

we retain all the data points with a Z-score less than 3.

�Exploratory Data Analysis for the Real-Time 
Sensor Data
We discussed some of the fundamental plots used frequently by data 

scientists and demonstrated each plot with some readily available datasets. 

In this section, we are going to demonstrate some plots using real-time 

sensor data. Let’s take the same temperature and humidity sensor data 

that we used in Chapter 5 to discuss the concepts of preparing the data. 

As we already went through all the data cleaning steps in that chapter, the 

same code is provided here for preparing the data before going for plots:

Chapter 9  Case Studies



215

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from scipy import stats

dataset=pd.read_csv('datasets_384649_744229_log_temp.csv')

# drop the date and time column

drop=['Date','Time']

dataset.drop(drop,inplace=True,axis=1)

# remove the string  header'T=' and 'H='

dataset['Temperature']=dataset['Temperature'].str.

replace('T=','')

dataset['Humidity']=dataset['Humidity'].str.replace('H=','')

dataset=dataset.astype(float)

print('After removing inappropriate data\n',dataset.head())

# detect the location of missing data, if any

print('Missing values in temperature\n',np.

where(dataset['Temperature'].isna()))

print('Missing values in humidity\n',np.

where(dataset['Humidity'].isna()))

# filling the missing values using forward fill

dataset['Temperature']=dataset['Temperature'].

fillna(axis=0,method='ffill')

dataset['Humidity']=dataset['Humidity'].

fillna(axis=0,method='ffill')

# detect and remove outliers using z-score

z=np.abs(stats.zscore(dataset))

df1=dataset[z>3]

dataset=dataset[(z<3).all(axis=1)]

print(dataset.head())
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Output:

    After removing inappropriate data

                 Temperature     Humidity

0                       22.0         20.0

1                       22.0         20.0

2                       22.0         26.0

3                       22.0         26.0

4                       22.0         20.0

    Missing values in temperature

      �(array([206, 207, 214, 215, 216, 217, 218, 219, 220, 221, 

222, 223, 224,  225, 226, 227], dtype=int64),)

    Missing values in humidity

      �(array([206, 207, 214, 215, 216, 217, 218, 219, 220, 221, 

222, 223, 224,  225, 226, 227], dtype=int64),)

             Temperature     Humidity

0                   22.0         20.0

1                   22.0         20.0

2                   22.0         26.0

3                   22.0         26.0

4                   22.0         20.0

�Visualizing the Real-Time Sensor Data
Now that the data cleaning process is complete, the next step is to plot 

the data. The type of plot to be used depends on the nature of data as well 

as the requirements of the analysis procedure. Since we have taken the 

measurements of temperature and humidity over a duration of 28 hours, it is 

ideal to plot them with respect to time. But, to get a better understanding of 

the variation of these two parameters, the average value is taken every four 

hours, and these averages are plotted using a bar plot. If we want to visualize 
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the distribution of temperature and humidity over the entire duration rather 

than their variation, then the range of temperature and humidity can be 

divided into bins, and a count of the values in each bin can be used to make 

a pie chart. These three types of plots are illustrated as follows:

# Taking average over every 4 hours

a=dataset.shape[0]

b=[]

c=[]

for i in np.arange(0,a-(a%12),48):

    b.append(np.mean(dataset.Temperature[i:i+47]))

    c.append(np.mean(dataset.Humidity[i:i+47]))

# Temperature vs Time over 28 hours

plt.subplot(221)

plt.plot(np.linspace(0,28,a),dataset.Temperature)

plt.title('Temperature vs Time')

# Humidity vs Time over 28 hours

plt.subplot(222)

plt.plot(np.linspace(0,28,a),dataset.Humidity)

plt.title('Humidity vs Time')

#Bar plot of average temperature over every 4 hours during the 

28 hours

plt.subplot(223)

x=['1','2','3','4','5','6','7']

plt.bar(x,b)

plt.title('Average temperature over every 4 hours')

#Bar plot of average humidity over every 4 hours during the 28 

hours

plt.subplot(224)

plt.bar(x,c)

plt.title('Average humidity over every 4 hours')

#Pie chart for temperature distribution
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d=pd.DataFrame(dataset.Temperature.value_counts(bins=4))

plt.subplot(235)

plt.pie(d.Temperature,labels=d.index)

plt.title('Temperature distribution')

#Pie chart for humidity distribution

e=pd.DataFrame(dataset.Humidity.value_counts(bins=4))

plt.subplot(236)

plt.pie(e.Humidity,labels=e.index)

plt.title('Humidity distribution')

plt.show()

In Figure 9-20, the first two plots show the distribution of temperature 

and humidity where every sample of the data is plotted along the time axis, 

which is indicated in hours. We can see that the temperature and humidity 

are inversely proportional as expected. But the distribution over time is 

better expressed by taking the average of the samples every four hours and 

plotting the data in a bar chart, as shown in the third and fourth figures. 

The fifth and sixth figures show pie charts that focus on the distribution of 

temperature and humidity rather than their variation over time. Since the 

sensor data is recorded for only 28 hours, there will not be large variations 

in the data, and hence only four bins are used to plot the distribution. 

From these two figures, we can see that the temperature is mostly in the 

range of 15 to 20 during those 28 hours, and the humidity is mostly in the 

range of 19 to 25, respectively.
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�Report Generation by Reading Bar Codes Using  
Vision Cameras

Today many industries have documented their products with the help of 

barcodes and QR codes. Information about the product can be printed 

on the product for easy identification and documentation. Dedicative 

bar/QR code scanners are available on the market, but it requires human 

effort to scan the bar/QR code on the products. This may decrease 

productivity on the assembly line. Nowadays, vision systems are employed 

to automatically scan the bar/QR code on the products. This will improve 

productivity by eliminating the human effort and by reducing the time on 

the assembly line. Hence, a camera can be interfaced with the Raspberry 

Pi to scan the bar/QR code of the products on the assembly line.

We already discussed how to enable cameras on the Raspberry Pi in 

case study 2 of this chapter (refer to case study 2 for the steps to interface 

a webcam with the Raspberry Pi). The following code [30] continuously 

collects the images of the product on the assembly line, identifies the bar/

QR code in the image, decodes the information in the bar/QR code, and 

displays the decoded information on the image screen.

Figure 9-20.  Variation and distribution of temperature and humidity
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# import the required packages

from imutils.video import VideoStream

from pyzbar import pyzbar

import argparse

import datetime

import imutils

import time

import cv2

# construct the argument parser and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-o", "--output", type=str, default="barcodes.csv",

     help="path to output CSV file containing barcodes")

args = vars(ap.parse_args())

# initialize the video stream and allow the camera sensor to 

warm up

print("[INFO] starting video stream...")

vs = VideoStream(src=0).start()

#vs = VideoStream(usePiCamera=True).start()

time.sleep(2.0)

# open the output CSV file for writing and initialize the set of

# barcodes found thus far

csv = open(args["output"], "w")

found = set()

# loop over the frames from the video stream

while True:

     �# grab the frame from the threaded video stream and resize 

it to

     # have a maximum width of 400 pixels

     frame = vs.read()

     frame = imutils.resize(frame, width=400)
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     �# find the barcodes in the frame and decode each of the 

barcodes

     barcodes = pyzbar.decode(frame)

     # loop over the detected barcodes

     for barcode in barcodes:

          �# extract the bounding box location of the barcode 

and draw

          �# the bounding box surrounding the barcode on the image

          (x, y, w, h) = barcode.rect

          �cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 

255), 2)

          �# the barcode data is a bytes object so if we want to 

draw it

          �# on our output image we need to convert it to a 

string first

          barcodeData = barcode.data.decode("utf-8")

          barcodeType = barcode.type

          # draw the barcode data and barcode type on the image

          text = "{} ({})".format(barcodeData, barcodeType)

          cv2.putText(frame, text, (x, y - 10),

               cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

          �# if the barcode text is currently not in our CSV 

file, write

          # the timestamp + barcode to disk and update the set

          if barcodeData not in found:

               csv.write("{},{}\n".format(datetime.datetime.now(),

                    barcodeData))

               csv.flush()

               found.add(barcodeData)
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               # show the output frame

     cv2.imshow("Barcode Scanner", frame)

     key = cv2.waitKey(1) & 0xFF

     # if the `q` key was pressed, break from the loop

     if key == ord("q"):

          break

# close the output CSV file do a bit of cleanup

print("[INFO] cleaning up...")

csv.close()

cv2.destroyAllWindows()

vs.stop()

The previous code acquires an image using a webcam and captures 

each and every frame using a while loop. Further, the frames are displayed 

continuously with the help of an infinite while loop. The 'q' key is used to 

break the infinite while loop. Then, the image acquisition can be released 

with the help of cap.release. In the program, each acquired frame is fed 

to the pyzbar module to identify the bar/QR code in the image and also 

to decode the data in the bar/QR code [30]. The decoded information is 

displayed in the corresponding frame. Figure 9-21 shows the output of the 

program.
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�Transmitting Files or Data from the Raspberry Pi 
to the Computer
In some scenarios, the data in the Raspberry Pi needs to be shared with 

nearby computers. Also, if the Raspberry Pi is somewhere else, it needs to 

be accessed via remote access. Many ways are available to transfer the data 

from the Raspberry Pi to other computers. One of the easiest and more 

efficient ways is to use the VNC viewer for sharing data and for remote 

Figure 9-21.  Output of barcode and QR code scanner
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access. VNC is the graphical desktop sharing application that allows you to 

control one system (i.e., the Raspberry Pi) from another system via remote 

access. This section discusses the installation procedure and usage of 

the VNC viewer for sharing files and controlling the Raspberry Pi from a 

remote desktop computer using VNC.

To install the VNC in Pi, the following code is used in the command 

window in the Raspberry Pi, as shown in Figure 9-22:

sudo apt update

sudo apt install realvnc-vnc-server realvnc-vnc-viewer

Meanwhile, VNC viewers need to be installed on a remote desktop 

computer. If the remote desktop computer has a different operating system 

(OS), VNC is compatible with all the OSs. After installing the VNC on the 

Pi, we have to enable the VNC server in the Raspberry Pi. The VNC server 

can be enabled graphically in the Raspberry Pi by following these steps:

Figure 9-22.  Installation of the VNC viewer in the Raspberry Pi
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	 1.	 Go to the Raspberry Pi graphical desktop, and select 

Menu ➤ Preferences ➤ Raspberry Pi Configuration. 

The Raspberry Pi Configuration window will open, 

as shown in Figure 9-23.

	 2.	 In the Raspberry Pi Configuration window, choose 

the Interfaces option and ensure that VNC is 

enabled. If VNC is not enabled, choose the Enable 

button in the window.

	 3.	 After, enabling the VNC server, click the VNC logo 

 in the upper-right corner of the Raspberry Pi 

graphical desktop. The VNC viewer app window will 

open. In it, the IP address of the Raspberry Pi is 

displayed, as shown in Figure 9-8. The IP address 

should appear only if the Raspberry Pi is connected 

to a network. Here, the Raspberry Pi is connected 

via a WiFi network using a WiFi dongle/mobile 

phone hotspot.

Figure 9-23.  Graphically enabling the VNC server on the Pi
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These procedures are for creating a private connection between a 

remote desktop with the Raspberry Pi. To create a private connection, 

both the remote desktop and the Raspberry Pi are connected in the same 

network. This will create a connection only within the campus of the 

company. If the user wants to upload the data to the cloud, then the user 

needs to sign in to the VNC viewer for connecting the Pi with the remote 

desktop, which can be anywhere in the world.

By opening the VNC viewer in another remote desktop, as shown 

in Figure 9-24, the IP address of the Raspberry Pi is entered at the space 

provided, and the VNC server establishes the connection between the 

computer and the Raspberry Pi. The login window will open, as shown in 

Figure 9-25, and ask for the username and password.

Figure 9-24.  VNC viewer in Raspberry Pi
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Typically, the username and password for the Raspberry Pi is pi. Enter 

pi for the username and password, and the Raspberry Pi desktop will 

appear on the remote desktop computer, as shown in Figure 9-26.

Figure 9-25.  Establishing a connection from a desktop to the Pi using 
the VNC viewer

Figure 9-26.  Raspberry Pi graphical desktop on the remote 
computer
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Now, the Raspberry Pi desktop can access other computers remotely. 

Also, the files and data in the Raspberry Pi can be shared by using the file 

sharing option in the VNC viewer, as shown in Figure 9-27.

Figure 9-27.  File transfer from Raspberry Pi on remote desktop
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