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Introduction

In modern times data can be thought of as a valuable commodity like oil or
gold because we can get a lot of useful information from data with the help
of some scientific methods, and we can make intelligent decisions based
on that information and convert it into money. Data science is the process
of extracting knowledge/useful information from the data.

For example, IBM forecasted that the demand for skilled people in
data science will increase by 28 percent in 2020. Many industries use data
science concepts in different aspects of their business such as checking
whether they have achieved their targets, finding the root cause of failures,
etc. Recently, data science has been effectively implemented in politics
to develop strategies, identify the weak regions, predict the emotions and
expectations of the people, etc. Further, local governments utilize the data
collected from the people of their town to devise the planning and policies
for the development of the town. Data science is also successfully applied
in the agricultural domain in areas like drought assessment, crops yield
and remote sensing, etc. This shows that the applications related to data
science concepts are emerging nowadays across multiple domains.

Most of the recent books have focused on applying data science
techniques to some open and standard dataset. This book is specifically
about applying data science concepts in the Raspberry Pi board. The
Raspberry Pi can act as a single on board computer and can also interact
with the real-time environment via sensors as most of the local servers
can’t do this task.

The book will start with a brief introduction to data science followed
by which there will be a dedicated chapter for explaining the concepts
of Python starting from the installation of the software to the various

Xix



INTRODUCTION

data types and modules available. The next two chapters will introduce

the readers to Raspberry Pi devices, their hardware description, and

the setting up of the devices for gathering real-time data. The next four
chapters will deal with the different operations in data science with respect
to real time applications using Raspberry Pi hardware. The penultimate
chapter of the book will discuss about the concepts that will enable the
Raspberry Pi to learn from the data. The last chapter will have few case
studies that will give the readers an idea of the range of domains where
these concepts can be applied.



CHAPTER 1

Introduction to
Data Science

Data is a collection of information in the form of words, numbers, and
descriptions about the subject. Consider the following statement: “The
dog has four legs, is 1.5m high, and has brown hair” This statement has
three different kinds of information (i.e., data) about the dog. The data
“four” and “1.5m” is numerical data, and “brown hair” is descriptive. It
is good to know the various kinds of data types to understand the data,
perform effective analysis, and better extract knowledge from the data.
Basically, data can be categorized into two types.

¢ Quantitative data

¢ Qualitative data

Quantitative data can be obtained only with the help of measurements
and not through observations. This can be represented in the form
of numerical values. Quantitative data can be further classified into
continuous and discrete. The exact integer values are discrete data,
whereas continuous data can be any value in a range. Qualitative data is a
description of the characteristics of a subject. Usually qualitative data can
be obtained from observations and cannot be measured. In other words,
qualitative data may be described as categorical data, and quantitative
data can be called numerical data.

© K. Mohaideen Abdul Kadhar and G. Anand 2021 1
K. M. Abdul Kadhar and G. Anand, Data Science with Raspberry Pi,
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CHAPTER 1  INTRODUCTION TO DATA SCIENCE

For example, in the previous statement, “brown hair” describes a

characteristic of the dog and is qualitative data, whereas “four legs” and

“1.5m” are the quantitative data and are categorized as discrete and

continuous data, respectively.

Data can be available in structured and unstructured form. When

the data is organized in a predefined data model/structure, it is called

structured data. Structured data can be stored in a tabular format or a

relational database with the help of query languages. We can also store

this kind of data in an Excel file format, like the student database given in

Table 1-1.

Table 1-1. An Example of Structured Data

Student Roll Number  Marks Attendance  Batch Sex
111401 492/500 98% 2011-2014 Male
111402 442/500 72% 2011-2014 Male
121501 465/500 82% 2012-2015 Female
121502 452/500 87% 2012-2015 Male

Most human-generated and machine-generated data are unstructured

data such as emails, documents, text files, log files, text messages, images,

video and audio files, messages on the Web and social media, and data

from sensors. This data can be converted to a structured format only

through human or machine intervention. Figure 1-1 shows the various

sources of unstructured data.



CHAPTER 1  INTRODUCTION TO DATA SCIENCE

or| (2 C= | ((co9)
Sensor data

Documents Images

oNe® =
5 ’ Yo

Web and social Email
media

—
o
7] !

Log files

Video files Audio files

Figure 1-1. Sources of unstructured data

Importance of Data Types in Data Science

Before starting to analyze data, it is important to know about the data
types so you can choose the suitable analysis methods. The analysis of
continuous data is different from the analysis of categorical data; hence,
using the same analysis methods for both may lead to incorrect analysis.

For example, in statistical analysis where continuous data is involved,
the probability of an exact event is zero, while the result can be different for
discrete data.

You can also choose the visualization tools based on the data types.
For instance, continuous data is usually represented using histograms,
whereas discrete data can be visualized with the help of bar charts.
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Data Science: An Overview

As discussed at the beginning of the chapter, data science is nothing but
the extraction of knowledge or information from the data. Unfortunately,
not all data gives useful information. It is based on the client requirements,
the hypothesis, the nature of the data type, and the methods used for
analysis and modeling. Therefore, a few processes are required before
analyzing or modeling the data for intelligent decision-making. Figure 1-2

describes these data science processes.

Data
requirements

y

Data
acquisition

y

Data
preparation

Data

visualization

|ﬂ

Data modeling

Data analysis

Report
generation/
decision-
making

Figure 1-2. Data science process
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Data Requirements

To develop a data science project, the data scientists first understand the
problem based on the client/business requirements and then define the
objectives of the problem for analysis. For example, say a client wants to
analyze the emotion of people on a government policy. First, the objectives
of the problem can be set as “To collect the opinion of the people about the
government policy.” Then, the data scientists decide on the kind of data
that can support the objective and the resources of data. For the example
problem, the possible data is social media data, including text messages
and opinion polls of various categories of people, with information

about their education level, age, occupation, etc. Before starting the

data collection, a good work plan is essential for collecting the data from
various sources. Setting the objectives and work plan can reduce the time
spent collecting the data and can help to prepare the report.

Data Acquisition

There are many types of structured open data available on the internet that
we call secondary data, because that kind of data is collected by somebody
and structured into some tabular format. If the user wants to collect

the data directly from a source, that is called primary data. Initially, the
unstructured data is collected via many resources such as mobile devices,
emails, sensors, cameras, direct interaction with people, video files, audio
files, text messages, blogs, etc.

Data Preparation

Data preparation is the most important part of the data science process.
Preparing the data puts the data into proper form for knowledge
extraction. There are three steps in the data preparation stage.
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1. Data processing
2. Data cleaning

3. Data transformation

Data Processing

This step is important as it is required to check the quality of data while
we import it from various sources. This quality checking is done to ensure
that the data is in the correct data type, standard format, and has no typos
or errors in the variables. This step will reduce data issues when doing
analysis. Moreover, in this phase, the collected unstructured data can be
organized in the form of structured data for analysis and visualization.

Data Cleaning

Once the data processing is done, cleaning the data is required as the data
might still have some errors. These errors will affect the actual information
present in the data. Possible errors are as follows:

e Duplicates

¢ Human or machine errors
e Missing values

e Outliers

o Inappropriate values

Duplicates

In the database, some data is repeated multiple times, which results in
duplicates. It is better to check and remove the duplicates to reduce the
overhead in computation during data analysis.
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Human or Machine Errors

The data is collected from sources either by humans or by machines. Some
errors are inevitable during this process due to human carelessness or
machine failure. The possible solution to avoid these kinds of errors is to
match the variables and values with standard ones.

Missing Values

While converting the unstructured data into a structured form, some rows
and columns may not have any values (i.e., empty). This error will cause
discontinuity in the information and make it difficult to visualize it. There
are many built-in functions available in programming languages we can

use to check if the data has any missing values.

Outliers

In statistics, an outlier is a data point that differs significantly from other
observations. An outlier may be because of variability in the measurement
or it may indicate experimental errors; outliers are sometimes excluded
from the data set. Figure 1-3 shows an example of outlier data. Outlier
data can cause problems with certain types of models, which in turn will
influence the decision-making.
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Figure 1-3. Outlier data

Transforming the Data

Data transformation can be done by many methods using normalization,
min-max operations, correlation information, etc.

Data Visualization

Based on the requirements of the user, the data can be analyzed with the
help of visualization tools such as charts, graphs, etc. These visualization
tools help people to understand the trends, variations, and deviations in a
particular variable in the data set. Visualization techniques can be used as
a part of exploratory data analysis.
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Data Analysis

The data can be further analyzed with the help of mathematical
techniques such as statistical techniques. The improvements, deviations,
and variations are determined in a numerical form. We can also generate
an analysis report by combining the results of visualization tools and
analysis techniques.

Modeling and Algorithms

Today many machine learning algorithms are employed to predict
useful information from raw data. For example, neural networks can be
used to identify the users who are willing to donate funds to orphans
based on the users’ previous behavior. In this scenario, the previous
behavior data of users can be collected based on their education,
activities, occupation, sex, etc. The neural network can be trained with
this collected data. Whenever a new user’s data is fed to this model, it
can predict whether the new user will give funds or not. However, the
accuracy of the prediction is based on the reliability and the amount of
data used while training.

There are many machine learning algorithms available such as
regression techniques, support vector machine (SVM), neural networks,
deep neural networks, recurrent neural networks, etc., that can be applied
to data modeling. After data modeling, the model can be analyzed by
giving data from new users and developing a prediction report.

Report Generation/Decision-Making

Finally, a report can be developed based on the analysis with the help of
visualization tools, mathematical or statistical techniques, and models.
Such reports can be helpful in many circumstances such as forecasting the
strengths and weakness of an organization, industry, government, etc.



CHAPTER 1  INTRODUCTION TO DATA SCIENCE

The facts and findings from the report can make the decisions quite
easy and intelligent. Moreover, the analysis report can be generated
automatically using some automation tools based on the client

requirements.

Recent Trends in Data Science

Certain fields in data science are growing exponentially and therefore will
be attractive to data scientists. They are discussed in the following sections.

Automation in Data Science

In the current scenario, data science still needs a lot of manual work such
as data processing, data cleaning, and transforming the data. These steps
consume a lot of time and computations. The modern world demands
the automation of data science processes such as data processing,

data cleaning, data transformations, analysis, visualization, and report
generation. Hence, the automation field will be a top demand in the data
science industry.

Artificial Intelligence-Based Data Analyst

Artificial intelligence techniques and machine learning algorithms can be
implemented effectively for modeling the data. Particularly, reinforcement
learning with deep neural networks is used to upgrade the learning of the
model based on variations in the data. Also, machine learning techniques
can be used for automated data science projects.

10
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Cloud Computing

The amount of data used by people nowadays has increased
exponentially. Some industries gather a large amount of data every

day and hence find it difficult to store and analyze with the help of

local servers. This makes it expensive in terms of computation and
maintenance. So, they prefer cloud computing in which the data can

be stored on cloud servers and can be retrieved anytime and anywhere
for analysis. Many cloud computing companies offer a data analytics
platform on their cloud servers. The more growth in data processing, the
more this field will gain attention.

Edge Computing

Many small-scale industries don’t require the analysis of data on cloud
servers and instead require analysis reports instantly. For these kinds of
applications, edge devices can be a possible solution to acquire the data,
analyze it, and present a report in visual form or numerical form instantly
to the users. In the future, the requirements of edge computing will

increase significantly.

Natural Language Processing

Natural language processing (NLP) can be used to extract unstructured
data from websites, emails, servers, log files, etc. In addition, NLP can be
useful for converting text into a single data format. For example, we can
convert people’s emotion into a data format from their messages on social
media. This will be a powerful tool for collecting data from many sources,
and its demand will continue to increase.

11
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Why Data Science on the Raspberry Pi?

Many books explain the different processes involved in data science in
relation to cloud computing. But in this book, the concepts of data science
will be discussed as part of real-time applications using the Raspberry

Pi. The Raspberry Pi boards can interact with the real-time world by
connecting to a wide range of sensors using their general-purpose
input/output (GPIO) pins, which makes it easier to collect real-time

data. Owing to their small size and low cost, a number of nodes of these
Raspberry Pi boards can be connected as a network, thereby enabling
localized operation. In other words, the Raspberry Pi can be used as an
edge computing device for data processing and storage, closer to the
devices used for acquiring the information and thereby overcoming the
disadvantages associated with cloud computing. Therefore, a lot of data
processing applications can be implemented using a distribution of these
devices that can manage real-time data and run the analytics locally. This
book will help you to implement real-time data science applications using
the Raspberry Pi.

12



CHAPTER 2

Basics of Python
Programming

Python is a general-purpose dynamic programming language that

was created by Dutch programmer Guido van Rossum in 1989. It is

the most commonly used programming language in the field of data
science. Since it is easier to learn and write code in Python than other
languages, it is an optimal choice for beginners. The widespread use of
Python is also attributed to the fact that it is free and open source. The
number of scientific libraries and packages developed by the Python
community allows for data scientists to work with data-intensive real-time
applications. Some of the leading organizations such as Google, Dropbox,
and Netflix are using Python at various levels to enhance their software. In
this chapter, we will discuss Python installation on the Windows operating
system, different Python IDEs, the fundamental data types available with
Python, control flow statements, Python functions, and different Python
libraries for data science.
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Why Python?

Python is the most preferred programming language for data scientists
because of the following reasons:

o [Itis an open source programming language with a
strong and growing community of contributors and

users.

o Ithasasimpler syntax than other programming
languages such as C, C++, and Java.

o It allows users to perform object-oriented
programming.

o Ithasalarge set of libraries that can be used to perform
a variety of tasks such as developing a website, building
machine learning applications, etc.

e Itcan be used in embedded, small hardware devices
like the Raspberry Pi that allows for real-time
implementation of various applications.

Python Installation

Most distributions of the Linux operating system come with the preloaded
Python package, but it has to be installed separately in the case of
Windows operating system. The procedure to install Python on the
Windows operating system is as follows:

1. Open a browser and go to Python.org, the official
site for Python.

2. On that page, click the Downloads tab and
download the latest version of the software on the
resulting page.

14
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3. Once the download is complete, open the installer

package. In the installation wizard, shown in
Figure 2-1, select Add Python to PATH, which will
ensure that Python is added automatically to your

system variable path; otherwise, this path must

be added manually in the Environment Variables

settings in your system.

4. Click Install Now to install the package.

. Python 3.8.2 (64-bit) Setup

A

python

for

windows

Install Python 3.8.2 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
C:\Users\Anand Gnanasekaran\AppData\Local\Programs\Python\Pythen38

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choose location and features

[ Install launcher for all users (recommended)
[ Add Python 3.8 to PATH Cancel

Figure 2-1. Installation wizard for Python

After the installation is completed, you can verify the installation by

typing python --version at the command prompt, which will display the

version of Python installed on the system. If it does not show the version,

then there could be a problem either with the installation or with the

system path variable.

15
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Refer to the Python documentation available on the official site to
understand the procedure for downloading additional modules and
packages for the software. Either you can start working with Python at the
command prompt itself or you can install one among the various IDEs that
are discussed in the next section.

Python IDEs

An integrated development environment (IDE) is a software suite that
combines developer tools into a graphical user interface (GUI), which
includes options for editing code and building, executing, and debugging
programs. A number of IDEs are available for Python, each of which
comes with its own advantages. Some of the commonly used IDEs are
discussed here.

PyCharm

The PyCharm IDE was developed by the Czech company JetBrains. It is

a cross-platform IDE that can be used on Windows, macOS, and Linux.

It provides code analysis and a graphical debugger. It also supports web
development with Django as well as data science with Anaconda. Some of
the attractive features of PyCharm are the intelligent code completion, a
simple package management interface, and the refactoring option, which
provides the ability to make changes across multiple lines in a code.

Spyder

Spyder is a cross-platform IDE for scientific programming in the Python
language. Spyder integrates with a number of scientific packages including
NumPy, SciPy, Matplotlib, Pandas, IPython, and other open source
software. It was released under the MIT license.

16
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Jupyter Notebook

Jupyter Notebook is a web-based interactive computational environment.
This notebook integrates code and its output in a single document that
combines visualizations, text, mathematical equations, and other media
thereby making it suitable for data science applications.

Python Programming with IDLE

IDLE is a simple cross-platform IDE suitable for beginners in an
educational environment. It comes with features such as a multiwindow
text editor, a Python shell with syntax highlighting, and an integrated
debugger. Since this is a default editor that comes with Python, let’s see
how to execute Python code using IDLE.

There are two ways of executing the Python code in this IDLE. The first
way is the interactive mode in which you can directly type the code next to
the symbol >>> in the Python shell, as illustrated in Figure 2-2. Each line of
code will be executed once you press Enter. The disadvantage of using the
interactive mode is that when you save the code, it is saved along with the
results, and this implies that you cannot use the saved code for execution
later.

17
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B Python 3.7.7 Shell

File Edit Shell Debug Options  Window Help

Python 3.7.7 (tags/v3.7.7:d7c567b08f, Ma
r 10 2020, 10:41:24) [MSC v.1900 64 bit
(AMD64) ] on win32

Type "help", "copyright", "credits" or "
license ()" for more information.

>>> print (2+3)

5

>>> print ("Hello World")

Hello World

3>

Ln: 7 Col:4

Figure 2-2. Running Python code in interactive mode

The second way is to run the code in script mode where you can open
a script window and type the entire code there, which can then be saved
with a . py extension to be used later. To open a script file window, go to
the File menu at the top and click New File. In the script window, type the
same two lines of code, shown in Figure 2-2. Figure 2-3 shows the script
file window with the code. Then go to the File menu, click Save, and then
save the program by specifying a proper filename. Ensure that the filename
does not start with a number or have the same name as existing Python
keywords.

18
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B sample.py - H:/sample.py (3.7.7)
File Edit Format Run Options Window Help

print (2+3)
print ("Hello World")

Ln:3 Col0

Figure 2-3. Script file window

Once the file is saved, the script can be executed by going to the Run
menu at the top and clicking Run Module. This will execute the script and
print the output in the Python shell, as shown in Figure 2-4.

19
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t Python 3.7.7 Shell

_File Edit Shel[_ Dehu_g Options Windr.lw He!p ) B )
Python 3.7.7 (tags/v3.7.7:d7c567b08f, M
ar 10 2020, 10:41:24) [MSC v.1900 64 bi
t (AMD64)] on win32

Type "help", "copyright"”, "credits" or
"license ()" for more information.

b 3= 3

= RESTART:

H:/sample.py

5
Hello World
>>>

Ln:7 Col: 4

Figure 2-4. Output of the script file

Python Comments

Before we start to discuss the Python data types, it is essential to know about
comment lines in Python as we will be using them often in our code. There are
two ways to write comment lines based on the purpose of your comment.

If you intend to write a short comment, regarding a particular line
in the code, for yourself, then single-line comments are the best choice.
These single-line comments can be created by simply beginning the line
with a hash (#) character, and they are terminated automatically by the
end of the line. While executing the code, the Python compiler will ignore
everything after the hash symbol up to the end of the line.

Multiple-line comments are intended to explain a particular aspect
of your code to others and can be created by adding three single quotes
(""") at the beginning and end of the comment. The Python compiler
will not ignore these comments, and they will appear in the output if your
script has nothing else other than the comment. These two comments are
illustrated using the IDLE Python shell format, as shown here:

20
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>>> # This is a comment

>>> "'This is a comment
'This is a comment'

Python Data Types

A data type, in a programming language, is defined by the type of value
that a variable can take. Python data types can be primarily classified into
numeric and sequence data types. The data types that fall under these two
categories are discussed in this section with relevant illustrations for each.

Numeric Data Types

Numeric data types are scalar variables that can take numeric values. The
categories of numeric data types are int, float, and complex. In addition,
we will discuss the bool data type that uses Boolean variables.

int

The int data type represents integers that are signed whole numbers
without a decimal point. The code in Listing 2-1 displays the data type of
an integer.

Listing 2-1. Integer Data Type

a=5
"'print the data type of variable a using type() funcion"'
print("a is of type",type(a))

Output:
a is of type <class 'int'>
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float

The float data type represents floating-point numbers with a decimal
point separating the integer and fractional parts. The code in Listing 2-2
prints the data type of a float value.

Listing 2-2. float Data Type

a =>5.0
print('a is of type',type(a))

Output:
a is of type <class 'float'>

complex

The complex data type represents complex numbers of the form a+bj
where a and b are the real part and imaginary part, respectively. The
numbers a and b may be either integers or floating-point numbers. The
code in Listing 2-3 prints the data type of a complex number.

Listing 2-3. complex Data Type

a=3.5+4j
print('a is of type',type(a))

Output :
a is of type <class 'complex'>

bool

In Python, Boolean variables are defined by True and False keywords.
As Python is case sensitive, the keywords True and False must have an
uppercase first letter. Listing 2-4 illustrates the bool data type.
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Listing 2-4. bool Data Type

a= 8>9
print('a is of type',type(a))
print(a)

Output:
a is of type <class 'bool'>
False

Boolean values can be manipulated with Boolean operators, which
include and, or, and not, as illustrated in Listing 2-5.

Listing 2-5. Manipulation of boolean Data Type

a = True
b = False
print(a or b)

Output:
True

Numeric Operators

Table 2-1 summarizes the numeric operations available in Python that can
be applied to the numeric data types.
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Table 2-1. Numeric Operators in Python

Operator Operation

() Parentheses

ok Exponentiation

* Multiplication

/ Division

+ Addition

- Subtraction

% Modulo operation

The operators in Table 2-1 are listed in their order of precedence.
When more than one operation is performed in a particular line of your
code, the order of execution will be according to the order of precedence
in Table 2-1. Consider the example 2*3+5 where both multiplication and
addition are involved. Since multiplication has higher precedence than
addition, as observed from Table 2-1, the multiplication operator (*) will
be executed first giving 2*3=6, followed by the addition operator (+), which
would give the final result of 6+5=11.

Sequence Data Types

Sequence data types allow multiple values to be stored in a variable. The
five categories of sequence data types are 1ist, tuple, str, set, and dict.

list

Lists are the most commonly used data type in Python by data scientists.
Alistis an ordered sequence of elements. The elements in the list need
not be of the same data type. A list can be declared as items separated by
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commas enclosed within square brackets, [ ]. Lists are mutable; i.e., the
value of the elements in the list can be changed. The elements in the list
are indexed starting from zero, and hence any element in the list can be
accessed by its corresponding index, as illustrated in Listing 2-6. The index
should be integers, and using any other data type for index will result in
TypeError. Similarly, trying to access an index outside the range of the list
will result in IndexError.

Listing 2-6. Operations in a List

a=[1, 2.5, 5, 3+4j, 3, -2]
print("a is of type",type(a))
“'print the first value in the list
print("a[0]=",a[0])

"'print the third value in the list
print("a[2]=",a[2])

"' print the values from index 0 to 2
print("af0:3]=",a[0:3])

“'print the values from index 4 till the end of the list
print("a[4:]=",a[4:])

"'Change the value at the index 3 to 4
a[3]=4

print("a=",a)

"'fractional index leads to TypeError"'
print(a[1.5])

"out of range index leads to IndexError"'
print(a[8])

Output of line 2: a is of type <class 'list'>
Output of line 4: af[0]= 1

Output of line 6: a[2]=5

Output of line 8: a[0:3]= [1, 2.5, 5]

Output of line 10: a[4:]= [3, -2]
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Output of line 13: a= [1, 2.5, 5, 4, 3, -2]

Otuput of line 15: TypeError: list indices must be integers or
slices, not float

Output of line 17: IndexError: list index out of range

Consider two lists stored in the variables a and b, respectively.
Table 2-2 shows some additional operations provided by Python that
can be performed on the lists a and b. Some of these functions apply to
tuples, strings, and sets as well.

Table 2-2. List Operations in Python

Function Description

a+b Concatenates the two lists a and b

a*n Repeats the list a by n times where n is an integer

len(a) Computes the number of elements in list a

a.append() Adds an element to the end of list a

a.remove() Removes an item from list a

a.pop() Removes and returns an element at the given index in list a

a.index() Returns the index of the first matched item in list a

a.count() Returns the count of number of items passed as an argument
inlista

a.sort() Sorts items in list a in ascending order

a.reverse() Reverses the order of items in list a

tuple

A tuple is also an ordered sequence of elements like a list, but the
difference is that the tuples are immutable; i.e., the values in a tuple cannot
be changed. Trying to change the value of an element in a tuple will result
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in TypeError. By storing data that doesn’t change as tuples, it can be
ensured that they remain write-protected. Tuples can be declared as items
separated by commas enclosed within parentheses, (). Tuples can also be
indexed in the same way as lists, as described in Listing 2-7.

Listing 2-7. Operations in a Tuple

a=(1, 3, -2, 4, 6)
print("a is of type",type(a))
print("a[3]=",a[3])

a[2] =5

Output of line 2: a is of type <class 'tuple'>

Output of line 3: a[3]= 4

Output of line 4: TypeError: 'tuple' object does not support
item assignment

str

The str data type represents a string of characters. The string can be

declared as characters enclosed within double quotes (" "). Single quotes
(" ') can also be used, but since they appear as apostrophes in some
words, using double quotes can avoid confusion. The characters in a string
are indexed in the same way as list and tuples. The space between two
words in a string is also treated as a character. Like tuples, strings are also

immutable and described in Listing 2-8.

Listing 2-8. Operations in a String
a = "Hello World!"
print("a is of type",type(a))

print("a[3:7]=",a[3:7]
al2] = "r’
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Output of line 2: a is of type <class 'str'>

Output of line 3: a[3:7]= lo W

Output of line 4: TypeError: 'str' object does not support item
assignment

set

A setis an unordered collection of items and hence does not support indexing.
A set is defined by values separated by commas inside set braces, {}. A set can
be used for removing duplicates from a sequence. Listing 2-9 shows the
operations in a set.

Listing 2-9. Operations in a Set

a = {1) 2, 3, 2, 4, 1, 3}
print("a is of type",type(a))
print("a=",a)

Output of line 2: a is of type <class 'set'>
Output of line 3: a= {1, 2, 3, 4}

Consider two sets stored in variables a and b, respectively. Table 2-3
illustrates the various set operations supported by Python that can be
applied on these two sets.
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Table 2-3. Set Operations in Python

Function Description

a.union(b) Returns the union of the two sets a and b in a new set

a.difference(b) Returns the difference of two sets a and b as a new set

a.intersection(b) Returns the intersection of the two sets a and b as a
new set

a.isdisjoint(b) Returns True if the two sets a and b have a null
intersection

a.issubset(b) Returns True if a is a subset of b; i.e., all elements of

set a are present in set b

a.symmetric_ Returns the symmetric difference between the two sets
difference(b) a and b as a new set
dict

A dict represents the dictionary data type, which is an unordered
collection of data represented as key-value pairs. Dictionaries can

be defined within set braces, { }, with each item being a pair in the

form {key:value}. Dictionaries are optimized for retrieving data

where a particular value in the dictionary can be retrieved by using its
corresponding key. In other words, the key acts as the index for that

value. The key and value can be of any data type. The keys are generally
immutable and cannot be duplicated in a dictionary, whereas the values
may have duplicate entries. Trying to access a key that is not present in the
dictionary will result in KeyError, as described in Listing 2-10.
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Listing 2-10. Operations in a Dictionary

a = {1: 'Hello', 4: 3.6}
print("a is of type", type(a))
print(a[4])

print(a[2])

Output of line 2: a is of type <class 'dict'>
Output of line 3: 3.6
Output of line 4: KeyError: 2

Type Conversion

Type conversion is the process of converting the value of any data type to
another data type. The functions provided by Python for type conversion
are listed here:

o int(): Changes any data type to the int data type

o float(): Changes any data type to the float data type
o tuple(): Changes any data type to a tuple

o list():Changes any data type to a list

o set(): Changes any data type to a set

o dict(): Changes any data type to a dictionary

Listing 2-11 illustrates some of these functions.

Listing 2-11. Type Conversion Operations

a =2

print(a)

float(a)

b = [2 » 3, -1, 2, 4, 3]
print(tuple(b))
print(set(b))
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Output of line 2: 2.0
Output of line 4: (2, 3, -1, 2, 4, 3)
Output of line 5: (2, 3, 4, -1)

Control Flow Statements

Control flow statements allow for the execution of a statement or a group
of statements based on the value of an expression. The control flow
statements can be classified into three categories: sequential control flow
statements that execute the statements in the program in the order they
appear, decision control flow statements that either execute or skip a block
of statements based on whether a condition is True or False, and loop
control flow statements that allow the execution of a block of statements
multiple times until a terminate condition is met.

if Statement

The if control statement in the decision control flow statement category
starts with the if keyword, followed by a conditional statement, and ends
with a colon. The conditional statement evaluates a Boolean expression
and only if the Boolean expression evaluates to True, then the body of
statements in the if statement be executed. if block statements start with
indentation, and the first statement without indentation marks the end.
The syntax for the if statement is as follows, and Listing 2-12 shows how it
works:

if <expression>:
<statement(s)>
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Listing 2-12. if Statement Operations

X =12

y=8

if x > y:
out = "x is greater than y"
print(out)

Output: x is greater than y

if-else Statement

The if statement can be followed up by an optional else statement. If the
Boolean expression corresponding to the conditional statement in the if
statement is True, then the statements in the if block are executed, and
the statements in the else block are executed if the Boolean expression is
False. In other words, the if-else statement provides a two-way decision
process. The syntax for the if-else statement is as follows:

if <expression>:
<statement(s)>

else:
<statement(s)>

Listing 2-13 shows the example code for the if-else statement.

Listing 2-13. if-else Statement Operations

X =17
y=9
if x > y:
out = "x is greater than y"
else:
out = "x is less than y"
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print(out)

Output:
x is less than y

if...elif...else statement

The if...elif...else statement can provide a multiway decision
process. The keyword elif is the short form of else-if. The elif
statement can be used along with the if statement if there is a need to
select from several possible alternatives. The else statement will

come last, acting as the default action. The following is the syntax for the
if...elif...else statement, and Listing 2-14 shows the example code:

if <expression>:
<statement(s)>

elif <expression>:
<statement(s)>

elif <expression>:
<statement(s)>

else:
<statement(s)>

Listing 2-14. if...elif...else Statement Operations

X =4
y=4
if x > y:
out = "x is greater than y"
elif x<y:
out = "x is less than y"
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else:
out = "x is equal to y"
print(out)

Output:
x is equal to y

while loop

The while and for loops are loop control flow statements. In a while loop,
the Boolean expression in the conditional statement is evaluated. The
block of statements in the while loop is executed only when the Boolean
expression is True. Each repetition of the loop block is called an iteration of
the loop. The Boolean expression in the while statement is checked after
each iteration. The execution of the loop is continued until the expression
becomes False, and the while loop exits at this point. The syntax for the
while loop is as follows, and Listing 2-15 shows how it works:

while <expression>:
<statement(s)>

Listing 2-15. while Loop Operations

X=0

while x < 4:
print("Hello World!")
X=X+1

Output:

Hello World!
Hello World!
Hello World!
Hello World!
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for loop

The for loop runs with an iteration variable that is incremented with each
iteration, and this increment goes on until the variable reaches the end of
the sequence on which the loop is operating. In each iteration, the items in
the sequence corresponding to the location given by the iteration variable
are taken, and the statements in the loop are executed with those items.
The syntax for the for loop is as follows:

for <iteration variable> in <sequence>:
<statement(s)>

The range() function is useful in the for loop as it can generate a
sequence of numbers that can be iterated using the for loop. The syntax
for the range() function is range([start,] stop [,step]) where
start indicates the beginning of the sequence (starting from zero if
not specified), stop indicates the value up to which the numbers must
be generated (not including the number itself), and step indicates the
difference between every two consecutive numbers in the generated
sequence. The start and step values are optional. The values generated by
the range argument should always be integers. Listing 2-16 shows a for
loop used to print the elements in a string one by one.

Listing 2-16. for Loop Operations

x = "Hello"
for i in x:
print(i)

Output:
H

o H = o
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Listing 2-17 shows how to use the range() function to print a sequence
of integers.

Listing 2-17. for Loop Operations with range Function

for i in range(4):

print(i)
Output:
0
1
2
3

Exception Handling

Exceptions are nothing but errors detected during execution. When an
exception occurs in a program, the execution is terminated and thereby
interrupts the normal flow of the program. By means of exception handling,
meaningful information about the error rather than the system-generated
message can be provided to the user. Exceptions can be built-in or
user-defined. User-defined exceptions are custom exceptions created by
the user, which can be done using try...except statements, as shown in
Listing 2-18.

Listing 2-18. Exception Handling

while True:
try:
n=int(input("Enter a number"))
print("The number you entered is",n)
break
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except ValueError:
print("The number you entered is not
the correct data type")
print("Enter a different number")

Output:

Enter a number 5

The number you have entered is 5

Enter a number3.6

The number you entered is not the correct data type
Enter a different number

In Listing 2-18, a ValueError exception occurs when a variable
receives a value of an inappropriate data type. If no exception occurs,
i.e., the number entered as input is an integer, then the except block is
skipped, and only the try block is executed. If an exception occurs while
entering a number of a different data type, then the rest of the statements
in the try block are skipped, the except block is executed, and the
program is returned to the try block.

Functions

Functions are fundamental blocks in the Python programming that can

be used when a block of statements needs to be executed multiple times
within a program. Functions can be created by grouping this block of
statements and giving it a name so that the statements can be invoked

at any part of the program simply by this name rather than repeating the
entire block. Thus, functions can be used to reduce the size of the program
by eliminating redundant code. The functions can be either built-in or
user-defined.
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The Python interpreter has a number of built-in functions some of
which we have seen already such as print(), range(), len(), etc. On the
other hand, Python enables users to define their own functions and use
them as needed. The syntax for function definition is as follows:

def function name(parameter1l, .... parameter n):
statement(s)

The function name can have letters, numbers, or an underscore, but
it cannot start with a number and should not have the same name as a
keyword. Let’s consider a simple function that takes a single parameter as
input and computes its square; see Listing 2-19.

Listing 2-19. Square Functions

def sq(a):
b=a*a
print(b)
sq(36)

Output:1296

Let’s see a slightly complicated function that computes the binary
representation of a given decimal number.

As shown in Listing 2-20, the five lines of code required to compute the
binary representation of a decimal number can be replaced by a single line
using the user-defined function.

Listing 2-20. Square Functions

import math as mt
def dec2bin(a):
be'
while al=0:
b=b+str(a%2)#concatenation operation
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a=math.floor(a/2)
return b[:-1]# reverse the string b
print(int(dec2bin(19))

Output: 10011

Python Libraries for Data Science

The Python community is actively involved in the development of a
number of toolboxes intended for various applications. Some of the
toolboxes that are used mostly in data science applications are NumPy,
SciPy, Pandas, and Scikit-Learn.

NumPy and SciPy for Scientific Computation

NumPy is a scientific computation package available with Python. NumPy
provides support for multidimensional arrays, linear algebra functions,
and matrices. NumPy array representations provide an effective data
structure for data scientists. A NumPy array is called an ndarray, and it
can be created using the array() function. Listing 2-21 illustrates how to
create 1D and 2D arrays and how to index their elements.

Listing 2-21. Array Using NumPy

"""import the NumPy library'"''

import numpy as np

""'creates an 1D array'''
a=np.array([1,2,3,4])

""'print the data type of variable a'"'
print(type(a))

""'creates a 2D array'"'’

a=np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
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print(a)
""'print the dimension of the array'''

print(a.ndim)

""'print the number of rows and columns in the array'"''
print(a.shape)

""'print the third element in the first row'"'
print(a[o0,2])

""'print the sliced matrix as per given index'''
print(a[0:2,1:3])

a=np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])

""'reshape the 1 x 9 array into a 3 x 3 array'"'
b=a.reshape(3,3))

print(b)

Output of line 6: <class 'numpy.ndarray'>
Output of line 9:

[[123 4]

[5 6 7 8]]
Output of line 11: 2
Output of line 13: (2, 4)
Output of line 15:3
Output of line 17

[[2 3]

[6 7]]
Output of line 21:

[[12 3]

[4 5 6]

[7 8 9]]

The sum of elements in an array of any dimension can be computed
using sum(). The sum can be computed either for the entire elements in
the array or along one of the dimensions as illustrated in Listing 2-22 for
the array b created earlier.
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Listing 2-22. Array Using NumPy

""'print the sum of elements in array b'''
print(b.sum())

""'print the sum of elements along each column'"’
print(b.sum(axis=0))

""'print the sum of elements along each row'"'

print(b.sum(axis=1))

Output:

Output of line 2: 45

Output of line 4: array([12,15,18])
Output of line 6: array([6, 15, 18])

Another important operation with respect to arrays is the flattening
of multidimensional arrays. This process is more common in many of the
machine learning-based applications, and it can be done by using the
flatten() function, as illustrated here:

b.flatten()
Output:
array([1, 2, 3, 4, 5, 6, 7, 8, 9]

The flatten() function converts an array of any dimension into a
single-dimensional array. This can be achieved using reshape() as well,
but unlike the flatten() function, the size of the single-dimensional
array has to be specified in that case. Table 2-4 describes some other array
operations that may come in handy while working with data analysis
applications.
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Table 2-4. NumPy Functions for Data Analysis

Syntax Description

np.ones() Creates an array of ones in the dimension
specified within the parentheses.

np.zeros() Creates an array of zeros in the dimension
specified within the parentheses.

np.flip(a,axis) Reverses the array a along the given axis.
If axis is not specified, the array is reversed
along both dimensions.

np.concatenate(a,b,axis) Concatenates two arrays a and b along the
specified axis (=0 or 1 corresponding to
vertical and horizontal direction).

np.split(a,n) Splits the array a into n number of smaller
arrays. Here n can be any positive integer.

np.where(a==n) Gives the index values of the number n
present in an array a.

np.sort(a,axis) Sorts the numbers in an array a along the
given axis.

np.random.randint(n,size) Generates an array of the given size using

integers ranging from 0 to the number n.

The SciPy ecosystem is a collection of open source software for
scientific computation built on the NumPy extension of Python. It provides
high-level commands for manipulating and visualizing data. Two major
components of this ecosystem are the SciPy library, which is a collection
of numerical algorithms and domain-specific toolboxes, and Matplotlib,
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which is a plotting package that provides 2D and 3D plotting. The

following syntax can be used to import and use any function from a SciPy

module in your code:

from scipy import some module
some_module.some function()

As per the official SciPy documentation, the library is organized into

different subtypes covering different domains, as summarized in Table 2-5.

Table 2-5. Subpackages in SciPY

Subpackage Description

cluster Clustering algorithms

constants Physical and mathematical constants
fftpack Fast Fourier Transform routines
integrate Integration and ordinary differential equation solvers
interpolate Interpolation and smoothing splines

io Input and output

linalg Linear algebra

ndimage N-dimensional image processing

odr Orthogonal distance regression
optimize Optimization and root-finding routines
signal Signal processing

sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions

stats Statistical distributions and functions
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Scikit-Learn for Machine Learning

Scikit-Learn is an open source machine learning library for Python
programming that features various classification, regression, and
clustering algorithms. It is designed to interoperate with other Python
libraries like NumPy and SciPy.

Pandas for Data Analysis

Pandas is a fast and powerful open source library for data analysis and
manipulation written for Python programming. It has a fast and efficient
DataFrame object for data manipulation with integrated indexing. It has
tools for reading and writing data between in-memory data structures and
different file formats such as CSV, Microsoft Excel, etc. Consider a CSV file
called data.csv containing the grades of three students in three subjects,
as shown in Figure 2-5. Listing 2-23 shows the procedure for reading and
accessing this data using Pandas.

Roll No Science Maths English

RNOO1 70 76 85
RNO02 86 98 88
RNOO3 76 65 74

Figure 2-5. CSV file with grade data of students

Listing 2-23. Data Modification Using Pandas Functions

import pandas as pd
""'reads the file data.csv with read csv package and the
header=None option allows pandas to assign default names to the
colums

Consider the data in the above table is typed in a excel sheet and

saved as csv file in the following path C:\Python book\data.csv
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d = pd.read_csv("C:\Python_book\data.csv",header=None)
print(type(d))

print(d)

"'print the element common to rowil-column2
print(d.loc[1,2])

"'print the elements common to rows 1,2 and

columns 1,2
d.loc[1:2, 1:2]

Output of line 4:
<class 'pandas.core.frame.DataFrame'>
Output of line 5:

0 1 2 3
0 Roll No Science Maths English
1 RNoO1 70 76 85
2 RN002 86 98 88
3 RN0O3 76 65 74

Output of line 7: 76
Output of line 9:

1 2
1 70 76
86 98

Similarly, there are other read functions such as read_excel, read_sql,
read _html, etc., to read files in other formats, and every one of these read
functions comes with their corresponding write functions like to_csv, to_
excel, to sql, to_html, etc., that allows you to write the Pandas dataframe
to different formats.
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Most of the real-time data gathered from sensors is in the form of time-
series data, which is a series of data indexed in time order. Let’s consider a
dataset that consists of the minimum daily temperatures in degrees Celsius
over 10 years (1981 to 1990) in Melbourne, Australia. The source of the data
is the Australian Bureau of Meteorology. Even though this is also a CSV
file, it is time-series data unlike the DataFrame in the previous illustration.
Listing 2-24 shows the different ways to explore the time-series data.

Listing 2-24. Data Modification in Pandas

Series=pd.read csv('daily-min-
temperatures.csv',header=0, index col=0)

"'prints first 5 data from the top of the series"'

print(series.head(5))

"'prints the number of entries in the series"'

print(series.size)

print(series.describe())

"'describe() function creates 7 descriptive statistics of the

time series data including mean, standard deviation, median,

minimum, and maximum of the observations"'

Output of line 3:

Date Temp
1981-01-01 20.7
1981-01-02 17.9
1981-01-03 18.8
1981-01-04 14.6
1981-01-05 15.8

Output of line 5: 3650
Output of line 6:
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Temp
count 3650.000000
mean 11.177753
std 4.071837
min 0.000000
25% 8.300000
50% 11.000000
75% 14.000000
max 26.300000

TensorFlow for Machine Learning

TensorFlow is an end-to-end open source platform for machine learning
created by the Google Brain team. TensorFlow has a slew of machine
learning models and algorithms. It uses Python to provide a front-end API
for building applications with the framework. Keras is a high-level neural
network API that runs on top of TensorFlow. Keras allows for easy and
fast prototyping and supports both convolutional networks and recurrent
neural networks.
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Introduction to the
Raspberry Pi

The Raspberry Pi, or simply the Pj, is a series of small, low-cost, single-
board computers invented by the Raspberry Pi Foundation in the United
Kingdom to promote basic computer science and electronics among
students around the world. Students and tech enthusiasts use the
Raspberry Pi to learn programming concepts, build hardware projects and
robots, and make artificial intelligence projects. It is also used in industrial
applications.

What Can You Do with the Raspberry Pi?

A Raspberry Pi board can do pretty much everything a desktop computer
can do: surf the Internet, watch high-definition videos, listen to music,
view and edit pictures, perform word processing, make spreadsheets and
presentations, write and compile code, participate in video conferencing,
and even play games.
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Physical Computing with the Raspberry Pi

The Raspberry Pi can also be used to interact with the physical world.

This is done with the general-purpose input/output (GPIO) pins on the
Raspberry Pi board. This makes the Raspberry Pi powerful as it can be
interfaced with sensors and other electric and electronic components such
as LEDs, servo and stepper motors, relays, etc.

How to Program the Raspberry Pi?

The Raspberry Pi comes with two pre-installed languages (Scratch

and Python), but it also supports other languages. Scratch is a visual
programming language for children, whereas Python is a high-level
general-purpose programming language; both languages are easy to
learn. If you learn to program in Python, then you can do everything that’s
possible with the Raspberry Pi.

Raspberry Pi Hardware

The Raspberry Pi Foundation released the first Raspberry Pi, the Raspberry
Pimodel B, in 2012. A number of improved versions were released after
that, and we will look at all those versions later. The latest version is the
Raspberry Pi 4 model B, released in June 2019. Figure 3-1 shows the top
view of a Raspberry Pi board with its many I/O ports. Let’s take a look at its
hardware specifications and other features.
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Figure 3-1. Raspberry Pi hardware

System on a Chip

The system on a chip (SoC), shown in Figure 3-2, is the brain of the
Raspberry Pi. This small chip consists of many important parts: the central
processing unit (CPU), the graphics processing unit (GPU), and the digital
signal processor.

Figure 3-2. System on a chip
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The Raspberry Pi 4 model B has the powerful Broadcom BCM2711
(1.5 GHz 64-bit quad-core) SoC. The Pi’s CPU performs operations such as
basic arithmetic, logic, controlling, and input/output, while the Pi’'s GPU
is used for handling multimedia tasks such as digital image processing,
drawing 3D graphics, and playing games.

Raspberry Pi RAM

Random access memory (RAM) is the black rectangle located next to the
SoC in the Raspberry Pi 4 model B, as shown in Figure 3-3. In previous
versions of the Raspberry Pi, the RAM was packed inside the SoC. The Pi 4
offers three choices of LPDDR4 RAM: 1GB, 2GB, and 4GB.

Figure 3-3. Raspberry Pi RAM

RAM stores the short-term data used by the applications, and this data
will be deleted when the Raspberry Pi is turned off. The RAM is shared by
both the central processing unit and the graphics processing unit.

Connectivity

The Raspberry Pi 4 model B has onboard Wi-Fi, Bluetooth and Gigabit
Ethernet. These features come in handy for accessing the Raspberry

Pi remotely, making it a desirable choice of hardware for Internet of
Things (IoT) projects. This also frees up the USB ports and GPIO pins for
connecting external Wi-Fi and Bluetooth modules.
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Setting Up the Raspberry Pi

This section explains how to set up the Raspberry Pi.

microSD Memory Card

The Raspberry Pi, unlike desktops and laptops, uses a microSD memory
card for storing the files, applications, and even the operating system.
microSD memory cards are small compared to hard disks and are easy to
use. A minimum of 8GB of memory is required by the Pi. A 16GB or 32GB
microSD memory card is recommended for data science projects. Class
10 ultra-high-speed (UHS) memory cards are recommended for faster
reading/writing of data.

Installing the 0S

Raspbian is the official and most commonly used operating system for
the Raspberry Pi released by the Raspberry Pi Foundation. It can be
easily installed on the microSD card using Raspberry Pi Imager software,
as shown in Figure 3-4. The Raspberry Pi also supports other operating
systems such as Ubuntu and Windows 10 IOT Core.
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Raspberry Pi Imager v1.2

Raspberry Pi

Operating System SD Card

CHOOQSE 0S CHOOSE SD CARD

Figure 3-4. Interface of the Raspberry Pi Imager software

Follow these instructions to install the Raspbian OS in your
Raspberry Pi:

1. Visit the Downloads page of the Raspberry Pi
website and download the Raspberry Pi Imager
software on your operating system.

2. Once the download is completed, launch the
installer by clicking it.

3. Insert the microSD memory card into your
computer. Make sure to back up any important data
you have in it, as anything stored in the card will be
formatted.

54



CHAPTER 3  INTRODUCTION TO THE RASPBERRY Pl

4. Select the Raspbian or other desired operating
system that you want to install and also the microSD
card you would like to install it on.

5. Finally, click the Write button and wait for the
operation to complete.

Inserting the microSD Memory Card

The thin metal slot on the underside of the Raspberry Pi, as shown in
Figure 3-5, is the microSD memory card slot. Once the operating system is
installed on the microSD memory card, insert it in the memory card slot of
the Raspberry Pi.
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Figure 3-5. MicroSD card slot

As the operating system is stored along with the other files on the
microSD memory card, it makes the Pi’'s memory portable. The microSD
memory card can be inserted in a new Raspberry Pi, and it will work like a
charm.
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Connecting a Keyboard and Mouse

Figure 3-6 shows the USB ports of a Raspberry Pi pin. The Raspberry Pi 4
model B has two USB 2.0 ports (black) and two Universal Serial Bus (USB)
3.0 ports (blue). USB can be used to connect a keyboard, mouse, webcam,
and other USB peripherals. USB 3.0 ports are about 10 times faster than
the USB 2.0 ports. Normally, peripherals like keyboard and mouse are
connected to the USB 2.0 ports, leaving the faster USB 3.0 ports for devices
such as hard disk and webcam.

Figure 3-6. USB ports

If you have a wireless keyboard and mouse instead of a wired
combination, they can be connected to the Raspberry Pi by connecting the
USB dongle in one of the two black ports. This also frees up one of the USB
ports, which can be used to connect other devices.

Connecting a Monitor

The Raspberry Pi can be connected to a monitor through the micro-HDMI
port shown in Figure 3-7. HDMI stands for High-Definition Multimedia
Interface, and the Raspberry Pi provides combined audio and video output
from this port. The Raspberry Pi model 4 comes with two micro-HDMI
ports with 4K support, which means you can connect two 4K monitors to
the Raspberry Pi at the same time.
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Figure 3-7. HDMI ports

If your TV or monitor supports HDMI input, then you will need a micro
HDMI-to-HDMI cable to connect the Raspberry Pi to your TV or monitor.
Older versions of the Raspberry Pi come with a single HDMI port. If your
TV or monitor has a VGA input, then you will need to use a micro HDMI-
to-VGA adapter to connect it to the Raspberry Pi. Similarly, you can use a
HDMI-to-DVI cable for monitors with DVI input.

Powering the Raspberry Pi

The Raspberry Pi 4 B needs to be powered through a 5.1V DC USB-C type
connector, as shown in Figure 3-8, with a minimum current input of 3A. It
can also be powered via the GPIO header. The USB-C type power port is
located near a corner of the Raspberry Pi. None of the Raspberry Pi models
has an on/off switch; once you connect the Raspberry Pi to the power
supply, it turns on.

Figure 3-8. USB-C type connector
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Supplying the incorrect voltage or insufficient current can cause
damages to the Raspberry Pi; hence, it is recommended to use the official
Raspberry Pi power supply.

Raspberry Pi Enclosure

The Raspberry Pi needs to be enclosed in a case to prevent the bare
connections and GPIO headers. A variety of enclosure cases are

available for the Raspberry Pi, or you can make your own case, but it

is recommended to use the official cases released by the Raspberry Pi
Foundation. Cases with cooling fans are also available. They can be used to
prevent the Pi from overheating while running heavy-duty applications.

Raspberry Pi Versions

This section explains the different versions.

Raspberry Pi 1

The Raspberry Pi B was the first model launched by the Raspberry Pi
Foundation in 2012, followed by the Pi A in 2013. They had 26 GPIO pins,
a 700MHz processor, and 256MB/512MB RAM, and they didn’t have any
built-in Wi-Fi or Bluetooth. In 2014, the compact Pi A+ and improved B+
models were released with 40 GPIO pins.

Raspberry Pi 2

The Raspberry Pi 2 was released in 2015 with an improved 900MHz quad-
core processor and 1GB RAM. This model had 40 GPIO pins and did not
have built-in Wi-Fi or Bluetooth. It had four USB 2.0 ports, an Ethernet
port, and an HDMI port.
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Raspberry Pi 3

In 2016, the Raspberry Pi 3 was released. It had a 1.2GHz quad-core
processor with 1GB RAM. This model had 40 GPIO pins, and this was

the first Raspberry Pi model to have built-in Wi-Fi and Bluetooth. Similar
to the Raspberry Pi 2, it had four USB 2.0 ports, an Ethernet port, and

an HDMI port. Later in 2018, the compact Pi 3 A+ and improved Pi 3 B+
models were launched.

Raspberry Pi Zero (W/WH)

In 2015, a small-sized, low-cost Raspberry Pi Zero with fewer GPIO pins
was launched. The Pi Zero W was released in 2017 with built-in Wi-Fi
and Bluetooth. This was followed by the Pi Zero WH that came with pre-
soldered GPIO headers.

Raspberry Pi 4

The Raspberry Pi 4 model B was released in 2019 and had the powerful
1.5GHz quad-core processor and 1GB/2GB/4GB RAM options. This was
the first model to come with dual 4K display output, USB-C type power
input, and two USB 3.0 ports.

Recommended Raspberry Pi Version

There are different versions of Raspberry Pi available, but the Raspberry Pi
4 is recommended for data science projects as it is more powerful than the
other versions and also comes with RAM options up to 4GB.

The Raspberry Pi Zero WH is the smallest variant of the Raspberry
Pi available, and it is recommended when the size of the single-board
computer needs to be small. But it comes with a comparatively slower
processor, less RAM, and fewer GPIO pins.
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Interfacing the Raspberry Pi with Sensors

This section highlights how to interface the Raspberry Pi with sensors.

GPIO Pins

The GPIO pins shown in Figure 3-9 are one of the most powerful
features of the Raspberry Pi. The GPIO pins are the row of little pins
along the edge of the board. All Raspberry Pi versions released recently
have a 40-pin GPIO header. These pins are the connections between
the Raspberry Pi and the real world. GPIO pins can be designated as
input or output in software and can be used for a variety of purposes
like turning on/off LEDs, controlling servo motors, and getting data
from sensors. They can be programmed in Python or any other
language such as Scratch or C/C++.
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Pin Number

3v3 1 2

GPIO 2 3 4

GPIO 3 5 6

GPIO 4 7 8

GND 9 10
GPIO 17 11 12
GPIO 27 13 14
GPIO 22 15 16
3v3 17 18
GPIO 10 19 20
GPIO 9 21 22
GPIO 11 23 24
GND 25 26
DNC 27 28
GPIO 5 29 30
GPIO 6 31 32
GPIO 13 33 34
GPIO 19 35 36
GPIO 26 37 38
GND 39 40

Figure 3-9. Raspberry Pi GPIO pins

GPIO0 Pinout

Before making any connections to the Raspberry Pi GPIO pins, we need
to know the GPIO pinout reference. Pinout configurations are not printed
on the Raspberry Pi, but we can get the pinout reference of any Raspberry
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Pi by opening the terminal window and typing the command pinout.
This tool is given by the gpiozero library, which is pre-installed on the
Raspbian OS.

GPIO Outputs

The Raspberry Pi has two 5V pins and two 3V3 pins; it also has eight
ground pins (0V), which cannot be configured. The remaining 28 pins are
all general-purpose 3V3 pins. The outputs of these pins are set to 3V3 or
can receive inputs up to 3V3. A GPIO pin designated as an output pin can
be set to high (3V3) or low (0V).

Controlling GPI0 Output with Python

GPIO pins can be easily controlled with Python using the gpiozero library.
Let’s see a simple Python example of how to turn on/off LEDs connected
to GPIO pins. LEDs always need to be connected to the GPIO pins through
aresistor. Resistors will ensure that only a small current will flow in the
circuit; hence, the Raspberry Pi or the LED will be protected from damage.

We will connect an LED to GPIO pin 17 through a 330Q resistor, as
shown in Figure 3-10. Now, the LED can be made to continuously turn on
and off using the Python code given in Listing 3-1. The led.on() function
turns on the LED, and the led.off() function turns off the LED.
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av3
GPIO 2
GPIO 3
GPIO 4
GND
GPIO 17
GPIO 27
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GPIO 6
GPIO 13
GPIO 19
GPIO 26
GND

4

/N
I

E o ~wuvwer

LED

Figure 3-10. Connecting LED to GPIO pins

Listing 3-1. LED Function Using GP1O

from gpiozero import LED
from time import sleep
led = LED(17)
while True:

led.on()

sleep(1)

led.off()

sleep(1)

Pin Number

23

31
33
35
37
39

2
4
6
8 GPIO 14
10 GPIO 15
12 GPIO 18

14
16
18

28 DNC
s0 RS
3z GPIO 12
s I
36 GPIO 16
38 GPIO 20
40 GPIO 21
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GPI0 Input Signals

GPIO pins that are designated as input pins can be read as high (3V3) or
low (0V). This means that the GPIO pins do not support analog input and
can receive digital input only. Although there is no hardware for an analog-
to-digital converter in the Raspberry Pi, we can use an external ADC such
as the MCP3008 to read analog data from sensors.

Reading GPIO Inputs with Python

Sensors can be easily interfaced with the Raspberry Pi by connecting
them to GPIO pins. The sensors can be powered by connecting the VCC
of the sensor to 3.3V/5V of the Raspberry Pi and connecting the GND of
the sensor to the GND of the Raspberry Pi. Digital output from the sensor
can be directly connected to the GPIO pins and read. But while reading
an analog output, an analog-to-digital converter required to interface a
analog sensor with Raspberry Pi.

Digital Signals from Sensors

The Raspberry Pi considers any input below 1.8V as low (0) and anything
above 1.8V as high (1), as shown in Figure 3-11. Digital output data from
any sensor can be easily read using the InputDevice.value function. This
function returns the current state of the given GPIO pin.

LOW

Figure 3-11. Low and high inputs

The code in the Listing 3-2 prints the state of GPIO pin 17 every second.
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Listing 3-2. State of GPIO

from gpiozero import InputDevice
from time import sleep
sensor = InputDevice(17, pull up=True)
while True:
print(sensor.value)
sleep(1)

Analog Signals from Sensors

Figure 3-12 illustrates an analog signal. To read analog signals from sensors
or some other devices, we should use an analog-to-digital converter such
as MCP3008 for the Raspberry Pi. An ADC converts the analog signals into
digital signals. The Serial Peripheral Interface (SPI) protocol is used to
communicate the output from the ADC to the Raspberry Pi.

Figure 3-12. Analog signal

To enable SPT communication, open the Raspberry Pi configuration
from the main menu and enable SPI on the Interfaces tab. MCP3008 is a
10-bit ADC and has eight input channels (0-7). Let’s connect an analog
input to the first channel (0) of the MCP3008 and the other pins of the
MCP3008, as shown in Figure 3-13.
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Figure 3-13. 10-bit ADC MCP3008

The code in Listing 3-3 prints the analog value of the sensor connected
to the first channel (0) of MCP3008 every second. Since MCP3008 is a 10-
bit ADC, the output value ranges from 0 to 1023.

Listing 3-3. Implement the MCP3008

from gpiozero import MCP3008

from time import sleep

sensor = MCP3008(0)

while True:
print(sensor.value)
sleep(1)

Interfacing a Ultrasonic Sensor with the
Raspberry Pi

Ultrasonic sensors are used to measure the distance of objects by finding
the time of the sound wave. The HC-SR04 ultrasonic sensor can be used to
measure the distance from 2cm to 400cm with 3mm accuracy. Ultrasonic
sensors work by sending out a sound wave at a frequency of 40kHz, which is
above the range of human hearing and travels through the air. If there is an
obstacle or object, the sound wave will bounce back to the sensor.
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The distance of the object can be calculated by multiplying half of the
travel time and the speed of sound. Figure 3-14 shows the ultrasonic
sensor and its pins where the VCC pin needs to be connected to the
positive terminal of the Raspberry Pi, the GND pin can be connected to a
GND pin of the Raspberry Pi, the Trig pin is used to trigger the ultrasonic
sound pulses, and the Echo pin produces a pulse when the reflected sound
wave is received.

Figure 3-14. Ultrasonic sensor pin

Connect the ultrasonic distance sensor to the Raspberry Pi, as shown
in Figure 3-15.

GND

470Q

330Q

GPI104

Figure 3-15. Ultrasonic sensor with the Raspberry Pi GPIO pin
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The gpiozero library has an object called DistanceSensor that can
be used to measure distance using the ultrasonic sensor in Python.
The distance function returns the distance measure by the ultrasonic
distance senor in meters. Let’s multiply the value by 100 to convert it into
centimeters. The code in Listing 3-4 continuously prints the distance
measure by the ultrasonic distance sensor in centimeters every second.

Listing 3-4. Code for calculting distance measured by the
Ultrasonic Sensor

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(echo=17, trigger=4)

while True:
print(sensor.distance * 100)
sleep(1)

When the code is running, move the position of the objects placed in
front of the ultrasonic sensor to get different values.

Interfacing the Temperature and Humidity
Sensor with the Raspberry Pi

As the name suggests, these sensors can be used to measure the
temperature and humidity. They consist of a capacitive humidity sensing
element and a thermistor for sensing temperature. The temperature and
humidity sensor has a dedicated resistive-type humidity measurement
component, called the negative temperature coefficient (NTC) temperature
measurement component, and an 8-bit microcontroller to output the
values of temperature and humidity as serial data. A single-bus data
format is used for the communication and synchronization between the
Raspberry Pi and the DHT11 sensor.
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DHT 11 and DHT 22 are the generally used temperature and humidity
sensors. Figure 3-16 shows the temperature and humidity sensor (THD)
and Figure 3-17 explains the interfacing of THD with Raspberry Pi
where the VCC pin needs to be connected to the positive terminal
of the Raspberry Pi, where the GND pin can be connected to a GND
of the Raspberry Pi, and where the Signal/Data pin is used for serial
communication and needs to connect to a GPIO pin.

Figure 3-16. Temperature and humidity sensor

Connect the DHT 11/22 sensor module to the Raspberry Pi, as shown
in Figure 3-17.

SENSOR
MODULE

vee ——» T

SIGNAL ———— > GPIO 17

Figure 3-17. Temperature and humidity sensor with the Raspberry
Pi GPIO pin

RASPBERRY PI
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Let’s use the Adafruit DHT library to get the temperature and humidity
values from the sensor. The code in Listing 3-5 continuously prints the
temperature in Celsius and the humidity percentage.

Listing 3-5. Code for Temperature and Humidity Sensor

import Adafruit DHT
import time

DHT _SENSOR = Adafruit DHT.DHT11
DHT PIN = 17

while True:

humidity, temperature =
Adafruit DHT.read(DHT SENSOR, DHT PIN)

if humidity is not None and temperature is not None:
print("Temperature="{0:0.1f}C)

humidity={1:0.1f}%".format(temperature, humidity))

else:
print("Sensor not connected.");

time.sleep(3);

The Adafruit module can be installed in the Raspberry Pi using the
following code.
For Python 2:

sudo pip install Adafruit DHT
For Python 3:

sudo pip3 install Adafruit DHT
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Interfacing the Soil Moisture Sensor
with the Raspberry Pi

Soil moisture sensors are used to detect the moisture present in soil. A
soil moisture sensor consists of two probes that are used to measure the
amount of moisture present in the soil. This sensor uses capacitance to
measure the dielectric permittivity of the soil, which is a function of the
moisture content of the soil. The sensor is equipped with both analog
and digital output, so it can be used in both analog and digital modes.
But, let’s take the analog signal from the sensor and read it using Python.
Figure 3-18 shows the soil moisture sensor. Here, the VCC pin needs to be
connected to the positive terminal of the Raspberry Pi, the analog output
(AO) creates a voltage proportional to the dielectric permittivity and
therefore the water content of the soil, and the digital output (DO) creates
a pulse when the soil moisture is higher than the threshold value. The
threshold value is set using the potentiometer in the sensor module, and
the GND pin can be connected to a GND of the Raspberry Pi.

Figure 3-18. Soil moisture sensor

Connect the soil moisture sensor module to the Raspberry Pi through
an MCP3008 ADC, as shown in Figure 3-19.
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Figure 3-19. Temperature and humidity sensor with the Raspberry
Pi GPIO pin

Let’s use the MCP3008 module from the gpiozero library to get the
values from the MCP3008. The code in Listing 3-6 continuously prints the
analog value of the soil moisture sensor every second.

Listing 3-6. Code for interfacing soil moisture sensor

from gpiozero import MCP3008
from time import sleep

soil sensor = MCP3008(0)

while True:
print(soil sensor.value)
sleep(1)

Interfacing Cameras with the Raspberry Pi

Cameras are optical instruments used to record images using an image
sensor. An image sensor detects and conveys information used to make an
image. Cameras can be easily interfaced with the Raspberry Pi to get image
or video data. There are two options available to interface cameras with the
Raspberry Pi.

72



CHAPTER 3  INTRODUCTION TO THE RASPBERRY Pl

Method 1: The first method is to connect a USB web camera to the
Raspberry Pi using the USB ports. Figure 3-20 shows a USB web camera.
Once the USB web camera is connected properly, it can be accessed in
Python using the OpenCV library. OpenCV is a Python library for image
processing and real-time computer vision. The code in Listing 3-7 can be
used for connecting the USB web camera to the Raspberry Pi.

Figure 3-20. USB web camera

Listing 3-7. Code for Connecting USB Web Cameras with the
Raspberry Pi

import cv2

videoCaptureObject = cv2.VideoCapture(0)
result = True

while(result):
ret,frame = videoCaptureObject.read()
cv2.imwrite("/home/pi/Desktop/webcam_image.jpg ", frame)
result = False

videoCaptureObject.release()
cv2.destroyAllWindows ()

Method 2: Another method is to interface a Raspberry Pi camera
module via the Camera Serial Interface (CSI) port. Figure 3-21 shows
the Raspberry Pi camera. There are two Raspberry Pi camera modules
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available: a standard module and a NoIR camera module for taking
pictures in the dark. To enable the Raspberry Pi camera, open the
Raspberry Pi configuration from the main menu and enable Camera on
the Interfaces tab.

Figure 3-21. Raspberry Pi camera with CSI

The code in Listing 3-8 takes a picture from the Raspberry Pi camera
module and stores the image in the specified location.

Listing 3-8. Code for Connecting Raspberry Pi Camera with the
Raspberry Pi

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start preview()

sleep(5)
camera.capture('/home/pi/Desktop/cammodule img.jpg")
camera.stop preview()

74



CHAPTER 3  INTRODUCTION TO THE RASPBERRY Pl

Raspberry Pi as an Edge Device

Computing done at or near the source of data is known as edge computing.
Edge computing is preferred over cloud computing in areas that require
instant or real-time computing, as well as in remote locations that cannot
be connected to a centralized cloud or have limited connectivity. The most
significant advantage of edge computing is its capacity to reduce latency as
the data gathered by the sensors is processed in edge devices and doesn’t
need to travel far to the data centers. See Figure 3-22.

[ EESS
Sensors

On-board WiFi

Raspberry Pi
7 (Edge Device) MicroHDMI -
HMDI
Real-time data converter
processing

Figure 3-22. Raspberry Pi as edge device

Edge Computing in Self-Driving Cars

Self-driving cars will rely on edge computing as every millisecond

is very crucial while driving on the road. The large amount of data
collected from their sensors and cameras can’t be sent to the cloud
for analysis as this would take a considerable amount of time and also
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need an uninterrupted network. So, edge computing is preferred for
these kind of applications due to its faster speed and high reliability.

What Is an Edge Device?

Edge computing is done in edge devices. Edge devices are capable of
gathering, storing, and processing data in real time. As a result, the

edge devices provide faster response and have better reliability. Sensors
and other devices are connected to the edge device via wired cables or
wireless connectivity such as Wi-Fi or Bluetooth, as shown in Figure 3-22.
Sometimes the edge devices are connected to a centralized cloud for big
data processing and data warehousing.

Edge Computing with the Raspberry Pi

The Raspberry Pi has good computing power and the ability to connect
to sensors and devices through wired and wireless connections. The
Raspberry Pi also supports many computer programming languages such
as Python, C/C++, and Java. This makes the Raspberry Pi an excellent
choice for edge computing.

Raspberry Pi as a Localized Cloud

In this chapter, we’ll discuss using the Raspberry Pi as a localized cloud.

Cloud Computing

Cloud computing is the practice of using a network of remote servers
hosted on the Internet to store, manage, and process data. These remote
servers are called cloud servers and are located in data centers all over the
world. Accessing data from these kind of servers requires strong Internet
connectivity.
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Raspberry Pi as Localized Cloud

Nowadays, IoT devices generate huge volumes of data at high speed.

Often this data requires real-time processing to make quick decisions, and
this can be supported by a localized cloud. Also, some of the IoT sensor
networks are deployed at remote areas with sparse Internet connectivity,
which challenges the concept of a localized cloud. The Raspberry Pi can
be made as a localized cloud to support real-time data processing closer to
the IoT networks. It needs to be connected to a network via Ethernet or
Wi-Fi. The Raspberry Pi as a localized cloud can be used to store and

process data collected from sensors or from other devices such as

computers and mobile phones, as illustrated in Figure 3-23.

Raspberry Pi
(Localized cloud)

—

loT Devices

Mobile Phones

Figure 3-23. Raspberry Pi as a localized cloud

Connecting an External Hard Drive

External hard disk drives can be connected to the Raspberry Pi to increase
its storage capacity. These HDDs need to be powered externally using a
power supply. If there is no power supply, they can be connected via a
powered USB hub. This enhanced storage can allow the Raspberry Pi to
collect and process large amounts of real-time data from IoT networks.
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Connecting USB Accelerator

Coral USB Accelerator is a super-fast development board for deep learning
practitioners to deploy their models without the need for the Internet,
thereby enabling edge computing. It brings a machine learning interface to
the Raspberry Pi. It consists of an edge TPU coprocessor, which is capable
of performing 4 trillion operations (tera-operations) per second (TOPS).
This makes running ML models in real time possible. For example, the
device can help the Raspberry Pi run MobileNet v2 models at 400 FPS.
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Sensors and Signals

This chapter covers sensors and signals.

Signals

Generally, signals represent some information with respect to time or
space. For example, a variation of a car’s speed with respect to time is a
kind of signal. The information can be transferred in the form of signals.
In electrical engineering, a signal is a function that carries information
with respect to time or space. The electrical equipment exhibits the signals
in the form of voltage, current, or electromagnetic waves. As per the IEEE
Transactions on Signal Processing, a signal can be audio, video, speech,
image, sonar, radar-related, and so on [1]. Also, mathematically speaking,
a signal is a function of one or more independent variables. Independent
variables are just variables that aren’t changed by the other variables you
are trying to measure. For example, consider the temperature variation
with respect to time. Here, time is the independent variable, because the
time isn’t changed due to the variations in the temperature.

This chapter discusses how to acquire information from a real-time
environment using sensors with Raspberry Pi and then convert that
information in to structured data. The sensor output is in the form of an
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electrical signal. This chapter first describes about signal and its various
types. There are many classifications of signals of which we concentrate on
describing the following electrical signals:

e Analog and digital signals
o Continuous-time and discrete-time signals
e Deterministic and nondeterministic signals

e One-dimensional signals, two-dimensional signals,
multidimensional signals

Analog and Digital Signals

An analog signal represents the instantaneous values of a physical quantity
that varies continuously with respect to an independent variable (i.e., time).
Simply speaking, analog signals are continuous in time and amplitude. The
physical quantity may be temperature, pressure, speed, etc. Sensors can
convert the variation of physical quantity in to electrical signals like voltage
or current. In this way, real-time environment data can be collected in the
form of electrical signals using sensors.

A digital signal is a signal that is used to represent data as a sequence
of discrete values. The independent variable (i.e., time) is discrete and has
quantized amplitude. Digital signals can be obtained by applying sampling
and quantization on analog signals. At any given time the digital signal can
take on only one of a finite number of values.

Continuous-Time and Discrete-Time Signals

A continuous time signal or continuous signal is a signal defined over
a continuum of its domain, which is often time. Any analog signal is
continuous by nature.
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A discrete-time signal or discrete signal is a signal whose independent
variable (time) has only discrete values. It is a time series consisting of
a sequence of quantities. Discrete-time signals, used in digital signal
processing, can be obtained by sampling and quantization of continuous
signals.

Deterministic and Nondeterministic Signals

A deterministic signal is a signal with no uncertainty with respect to its
value at any instant in time. In other words, a signal that can be defined
exactly using a mathematical formula is a deterministic signal.

A nondeterministic signal or random signal is a signal that has
uncertainty with respect to its value at some instant in time. This signal
is also called a random signal due to its random nature, and the signal
cannot be described by a mathematical equation.

One-Dimensional, Two-Dimensional,
and Multidimensional Signals

A one-dimensional signal is a function of only one independent variable.
Voice signal is a good example of one-dimensional signal, because the
amplitude of voice depends on only one independent variable (i.e., time).
Similarly, if the signal is a function of two dependent variables,
the signal is called a fwo-dimensional signal. A grayscale image is an
example of a two-dimensional signal. Spatial coordinates (x,y) are the two
independent variables in an image. Multidimensional signal is a function
of more than two variables. A motion picture (i.e., video) is the best
example of a multidimensional signal.
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Gathering Real-Time Data

Gathering the data can be conducted in two ways: manual and automated.
In the manual method, the data can be collected from existing files and
documents. Then, the collected data can be organized into a structured
manner (i.e., a tabular format) manually. In automation, the data can be
collected using some devices called sensors. The real-time information about
the physical quantities such as temperature, pressure, images, etc., can be
collected using sensors. This chapter focuses on describing automated data
collection using sensors. To automate the data collection, data acquisition
systems are required. This section explains how to gather data using sensors
such as ultrasonic sensor, humidity, temperature, and image data from a
camera. Also, storing the collected data in the structured format is discussed.

Data Acquisition

The process of sampling signals that measure real-world physical
conditions and converting the resulting samples into digital numeric
values that can be manipulated by a computer is called data acquisition.
Data acquisition systems (DAS or DAQ) generally convert analog signals
into digital values for processing. The data acquisition systems comprises
the following three components:

e Sensors
o Signal conditioning circuitry

o Analog-to-digital converters

Sensors

Generally, sensors produce an electrical signal corresponding to the
changes in the environment. A sensor is a device that converts physical
parameters such as temperature, humidity, distance, etc., into an electrical
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signal. A sensor can be a device, module, machine, or subsystem that can
detect events or changes in the environment and send the information to
other electronic devices, most often a computer processor. For example,
a thermocouple is a temperature sensor that produces an output voltage
based on the input temperature changes. There are two types of sensors
based on its output signal types: analog and digital.

Analog Sensors

Analog sensors produce a continuous output signal or voltage that is
generally proportional to the quantity being measured. These sensors
generally produce output signals that change smoothly and continuously
over time. See Figure 4-1.

Amplitude

mavAN

Time

Figure 4-1. Analog signal

The following code continuously prints the analog value of the
sensor connected to the first channel (0) of MCP3008 every second. Since
MCP3008 is a 10-bit ADC, the output value ranges from 0 to 1023.

from gpiozero import MCP3008
from time import sleep

sensor = MCP3008(0)

while True:
print(sensor.value)
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Digital Sensors

Digital sensors produce digital output signals or voltages that are a digital
representation of the quantity being measured. In these sensors, data
conversion and data transmission take place digitally. See Figure 4-2.

Amplitude
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Figure 4-2. Digital signals

The following code prints the digital state of the GPIO pin 17
continuously:

from gpiozero import InputDevice
from time import sleep

sensor = InputDevice(17, pull up=True)

while True:
print(sensor.value)]

Some of the common sensors in the electronics industry are listed here:
o Temperature sensors
o IRsensors
o Ultrasonic sensors
o Pressure sensors

e Proximity sensors
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e Touch sensors
e Level sensors

¢ Smoke and gas sensors

What Is Real-Time Data?

Real-time data (RTD) is the information that is passed along to the end
user immediately after collection. The real-time data can be either static or
dynamic and is generally processed using real-time computing.

Real-Time Data Analytics

Real-time analytics is the analysis of collected data as soon as that data
is gathered. Real-time data analytics allow us to make decisions without
delay and can prevent problems and issues before they occur.

Here, we are going to discuss getting real-time data about distance,
humidity, temperature, and image data from a camera.

Getting Real-Time Distance Data

from an Ultrasonic Sensor

The basic principle of ultrasonic sensors is to transmit and receive the
sound waves. The physical variables (like distance, level, height, flow, etc.)

to be measured can be calculated based on the time duration between

transmitting waves and receiving echo sound waves.
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Interfacing an Ultrasonic Sensor
with the Raspberry Pi

Interfacing the ultrasonic sensors with Raspberry Pi was already discussed
in Chapter 3. We will collect data from the HC-SR04 ultrasonic sensor,
which can be used to measure the distance from 2cm to 400cm with 3mm
accuracy. Here our objective is to interface an ultrasonic distance sensor
with the Raspberry Pi and save the gathered data in CSV format. For that,
an ultrasonic distance sensor can be connected to the Raspberry Pi GPIO
pins, as shown in Figure 4-3.

4700
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Figure 4-3. Ultrasonic sensor connection with Raspberry Pi GPIO
pins

As covered in Chapter 3, we will use the DistanceSensor object from
gpiozero library. The distance function returns the distance measured
by the ultrasonic distance sensor in meters. To display in centimeters, we
need to multiply the value by 100. The following code prints the distance
measured by the ultrasonic distance sensor in centimeters every second
and saves the collected data after 100 seconds.

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(echo=17, trigger=4)
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n = 100

for i in range(n):
print(sensor.distance * 100)
sleep(1)

When the code is running, move the position of objects placed in front
of the ultrasonic sensor to get different values. The measured distance (in
cm) is printed continuously for 7 seconds; in our case, it’s 100.

Getting Real-Time Image Data
from a Camera

This section explains how to get real-time video from a webcam.

Getting Real-Time Video from a Webcam

Connect the USB web camera to the Raspberry Pi via the USB port. Using
the OpenCV Python library, we can access the webcam and capture images
and videos from it. The following code can be used to get real-time video
from the webcam. The collected frames can be analyzed in real time.

import cv2
vid = cv2.VideoCapture(0)

while(True):

ret, frame = vid.read()
cv2.imshow('frame', frame)

if cv2.waitKey(1) & OxFF == ord('q"):
break

vid.release()
cv2.destroyAllWindows ()
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Getting Real-Time Video from Pi-cam

Interface a Raspberry Pi camera module to the Raspberry Pi via the
Camera Serial Interface (CSI) port. To enable the Raspberry Pi camera,
open the Raspberry Pi configuration from the main menu and enable
Camera on the Interfaces tab. The following code can be used to capture
an image using the Raspberry Pi camera module and store the captured
image in the specified location: /home/pi/Desktop/cammodule_img. jpg.

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start preview()

sleep(5)
camera.capture('/home/pi/Desktop/cammodule img.jpg")
camera.stop preview()

Data Transfer

Data transmission or data transfer refers to the process of transferring data
between two or more digital devices. The data is transmitted in analog

or digital format, and the data transmission process enables devices or
components within devices to communicate to each other.

Serial and Parallel Communication

Serial communication is the process of sending data one bit at a time,
sequentially, over a communication channel or computer bus. Parallel
communication is a method of conveying multiple binary digits (bits)
simultaneously.
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Interfacing an Arduino with the Raspberry Pi

We can connect an Arduino to a Raspberry Pi and transfer data from the
Arduino to the Raspberry Pi and vice versa. The sensors, motors, and
actuators can be connected to the Arduino and make the Arduino transfer
values to and from the Raspberry Pi. By doing this, we can use Arduino as a
node and acquire sensor data via these nodes.

Arduino can be connected to the Raspberry Pi in two ways.

e Serial communication via USB

o Serial communication via GPIO pins

Serial via USB

Using an Arduino USB cable to connect the two boards is the easiest way to

establish communication between the Arduino and Raspberry Pi boards.
On the Raspberry Pi, choose any of the four USB ports available on

the board and connect the USB connector. Connect the other end of the

Arduino USB cable to the Arduino. The connector cable will be different

for different versions of Arduino.

Serial via GPI0s

A serial connection can also be established using plain wires to connect
between the Raspberry Pi GPIOs and the Arduino pins. A voltage level-
shifter might be needed depending on the Arduino board you have.

The Raspberry Pi operates at 3.3V, whereas the Arduino boards such as
Uno, Mega, Leonardo, Nano, etc., operate at 5V. So, a 3.3V/5V level-shifter
needs to be used to protect the Raspberry Pi when connecting the RX and
TX pins, as shown in Figure 4-4.
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Figure 4-4. Connection between Arduino and Raspberry Pi
via GPIO pins

Generally, the use of an Arduino USB cable is recommended over

GPIOs for serial communication.

Data Transmission Between an Arduino
and the Raspberry Pi

When connecting the Arduino to the Raspberry Pi via a USB cable, run the
command 1s /dev/tty* in the Raspberry Pi terminal window to find the
name of the Arduino device. It should return something like /dev/ttyACMO
or /dev/ttyUSBo.

The pySerial Python library is used to make a serial interface with
Python and encapsulates the access for the serial port.

The following code can be used to make bidirectional communication
between the Arduino and the Raspberry Pi.
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Arduino Code

Here is the Arduino code:

void setup() {
Serial.begin(9600);
}
void loop() {
if (Serial.available() > 0) {
String data = Serial.readStringUntil('\n");
Serial.print("Received Data: ");
Serial.println(data);
}
}

Serial.available() will give you the number of bytes that have
already arrived and are stored in the receive buffer. This can be used to
check if the Arduino has received data.

If some data has arrived, Serial.readStringUntil() is used with the
newline character \n to get the next line. All the bytes received until the
newline character \n are automatically converted and added in an Arduino
String object.

Then, we just return the string containing the received data with some
additional text.

Raspberry Pi Python Code
Here is the Raspberry Pi Python code to display the serial data:

#!/usx/bin/env python3

import serial

import time

if _name_ == "' main_ "':
ser = serial.Serial('/dev/ttyACMO', 9600, timeout=1)

91



CHAPTER 4  SENSORS AND SIGNALS

ser.flush()
while True:
ser.write(b"Data from Raspberry Pil\n")
line = ser.readline().decode('utf-8").rstrip()
print(line)
time.sleep(1)

The pySerial function write() is used to send data to the Arduino.
Before sending the string, It will encode from string to bytes, as you can
only send bytes through Serial. Any data that is not a byte or byte array
must be converted before being sent through Serial.

Also, we add a newline character \n as the Arduino expects it at the
end of the string while it's reading with Serial.readStringUntil('\n").

Then we read a line from Serial, decode it into a string, and finally
print the received string and wait for one second before sending the next
string over Serial.

Time-Series Data

A time series is a series of data points indexed in time order. Most
commonly, it is a sequence taken at successive equally spaced points in
time. Thus, a time series can be defined as a sequence of discrete-time
data. In time-series data, time is often the independent variable, and the
goal is generally to make a forecast for the future.

Time series are frequently plotted via line charts. Time series are
used in statistics, signal processing, communications engineering,
pattern recognition, weather forecasting, earthquake prediction, control

engineering, astronomy, etc.
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Time-Series Analysis and Forecasting

Time-series analysis comprises methods for analyzing time-series data
to extract meaningful statistics and other characteristics of the data. The
time-series analysis also includes forecasting the series for the future,
extracting hidden signals in noisy data, discovering the data generation
mechanism, etc. Time-series forecasting is the use of a model to predict
future values based on historical data.

Memory Requirements

This section talks about the memory requirements.

More Storage

Sometimes the memory from the microSD card might not be sufficient,
and more memory might be needed. More storage space can be highly
beneficial to store the collected data and heavy models. To increase
the storage capacity, external hard disk drives can be connected to the
Raspberry Pi.

More RAM

RAM is another important factor for data science projects. The larger the
RAM, the higher the amount of data it can handle, which results in faster
processing. Although the base variant of 1GB RAM can do the job, the 4GB
RAM version of the Raspberry Pi is recommended for most deep learning
tasks.
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Case Study: Gathering the Real-Time
Industry Data

Let’s look at a case study.

Storing Collected Data Using Pandas

The collected data can also be saved for later use. Pandas is an open source
data analysis and manipulation tool built in Python. We will use Pandas

to convert the collected data into a structured data format. The Pandas
library can be installed via pip using the following command:

pip install pandas

Dataframes

A dataframe is a two-dimensional data structure. Data is aligned in

a tabular fashion in rows and columns, and it is generally the most
commonly used Pandas object. Once we convert our data into dataframes,
we can easily manipulate and export the data to other formats such as CSV
and Microsoft Excel.

Saving Data as a CSV File

A comma-separated values file is a delimited text file that uses a comma to
separate values. Each line of the file is a data record. Each record consists
of one or more fields, separated by commas. A Pandas dataframe’s to_
csv() function exports the dataframe to CSV format.

df.to_csv('file path\File Name.csv')
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Saving as an Excel File

To write a single object to an Excel . x1sx file, it is only necessary to specify
a target filename. To write multiple sheets, it is necessary to create an
ExcelWriter object with a target filename and specify a sheet in the file

to write to. The Pandas dataframe’s to_excel() function exports the
dataframe to .x1sx format.

df.to_excel("output.xlsx")

Reading Saved Data Files

Once the data is saved, it can be read using the read_csv() or read
excel() function. The read_excel() function reads an Excel file into a
Pandas dataframe, and it supports the .x1s, .x1sx, .x1sm, .x1sb, and .odf
file extensions read from a local filesystem or URL. It has an option to read
a single sheet or a list of sheets. The read_csv() function reads a CSV file
into a dataframe and also supports optionally iterating or breaking of the
file into chunks.

Adding the Date and Time to the Real-Time Data

While collecting the data, we can also add the data and time to the data.
We will use the datetime Python library. datetime.datetime.now() can
be used to get the current date and time.

from datetime import datetime
now = datetime.now()

print("now =", now)

# dd/mm/YY H:M:S
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
print("date and time =", dt string)
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Industry Data from the Temperature
and Humidity Sensor

We will use the temperature and humidity sensor to measure the
temperature and humidity. Connect the DHT 11/22 sensor module to the
Raspberry Pi as shown in Chapter 3.

The following code collects the temperature and humidity values for
100 seconds and stores the collected data as a CSV file:

import Adafruit DHT
import time
from datetime import datetime

DHT_SENSOR = Adafruit DHT.DHT11
DHT_PIN = 17

data = []

while in range(100):
humidity, temperature = Adafruit DHT.read(DHT_ SENSOR,
DHT_PIN)
if humidity is not None and temperature is not None:

now = datetime.now()
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")

data.append(dt_string,humidity,temperature)
time.sleep(60*5)

df = pd.DataFrame(data)
df.to_csv('data.csv',index=None,header=None)
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The CSV file will look as follows:

17/05/2020 01:05:14 26.24 69.91
17/05/2020 01:10:14 26.24 70.65
17/05/2020 01:15:14 26.22 68.87
17/05/2020 01:20:14 26.15 70.11
17/05/2020 01:25:14 26.11 69.02
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Preparing the Data

The most important step in data science is to prepare the data. Data
preparation is the process of cleaning, processing, and transforming

the raw data for analysis. From this stage, the errors in the data can be
effectively handled by cleaning, identifying the missing values, handling
outliers, etc. Hence, this chapter discusses the methodologies used to
prepare the data using the Pandas package in Python.

Pandas and Data Structures

Pandas is a software library written for the Python programming language
that is used mainly for data manipulation and analysis.

In a nutshell, Pandas is like Excel for Python, with tables (which in
Pandas are called dataframes) made of rows and columns (which in
Pandas are called series). Pandas has many functionalities that make it an

awesome library for data processing, inspection, and manipulation.

Installing and Using Pandas

Installing Pandas on your system requires NumPy to be installed, and
if building the library from source, it requires the appropriate tools to
compile the C and Cython sources on which Pandas is built.
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You can find details about this installation in the Pandas
documentation. Pandas can be installed using pip function as: pip install
pandas. Once Pandas is installed, you can import it and check the version,

as shown here:

import pandas
pandas. version

Just as we generally import NumPy under the alias np, we will import
Pandas under the alias pd, and this import convention will be used
throughout the remainder of this book.

import pandas as pd

Pandas Data Structures

A data structure is a data organization, management, and storage format
that enables efficient access and modification. More precisely, a data
structure is a collection of data values, the relationships among them,

and the functions or operations that can be applied to the data. Pandas
introduces two new data structures to Python, Series and DataFrame, both
of which are built on top of NumPy (which means they are fast).

Series

A series is a one-dimensional object similar to an array, list, or column in
a table. It will assign a labeled index to each item in the series. By default,
each item will receive an index label from 0 to N, where N is the length of
the series minus 1, as illustrated here:

s = pd.Series([1, 'Raspberry Pi', 3.14, -500, 'Data'])
print(s)
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Output

0 1

1 Raspberry Pi
2 3.14

3 -500

4 Data

dtype: object

Instead of providing the default index, we can specify an index to be
used for each entry while creating the series, as illustrated here:

s = pd.Series([1, 'Raspberry Pi', 3.14, -500, 'Data'l],
index=['M", 'A", 'X', 'I', "E'])
print(s)
Output:
M 1
A Raspberry Pi
X 3.14
I -500
E Data
dtype: object
The Series constructor can convert a dictionary into a series as well,
using the keys of the dictionary as its index, as illustrated here:
d = {"English': 95, 'Math': 100, 'Science': 98, 'Social
Science': 93}
marks = pd.Series(d)

print(marks)

Output:

English 95
Math 100

101



CHAPTER 5  PREPARING THE DATA

Science 98
Social Science 93
dtype: float64

The index can be used to select specific items from the series. For
instance, the marks for math can be selected by specifying the index Math.
Similarly, a group of items can be printed by providing their corresponding
indices separated by commas in a list, as illustrated here:

print (marks['Math'])
print(marks[['English', 'Science', 'Social Science']])

Output :

100.0

English 95
Science 98

Social Science 93
dtype: float64

Boolean indexing for filtering values can also be used. For example,
using the indexmarks < 96 returns a series of Boolean values, which we
then pass to our series marks, returning the corresponding True items, as
illustrated here:

marks[marks < 96]

Output:
Math 100
Science 98

dtype: float64

The value of a particular item in the series can be changed on the go by
accessing the corresponding index of the item, as illustrated here:

print('0ld value:', marks['Math'])
marks[ 'Math'] = 99
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print('New value:', marks['Math'])

Output:

('01d value:', 100.0)
("New value:', 99.0)
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We can also check whether an item exists in the series or not using the

following code:

print('Math' in marks)

print('French' in marks)

Output:
True
False

Mathematical operations can also be done on a series of numerical

values, as illustrated here:

marks * 10
Output:
English

Math

Science

Social Science
dtype: float64

np.square(marks)
Output:

English

Math

Science

Social Science
dtype: float64

950
990
980
930

9025
9801
9604
8649
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DataFrame

The tabular DataFrame data structure is composed of rows and columns,
similar to a spreadsheet or a database table. You can also think of a
DataFrame as a group of Series objects that share an index (the column
names).

Reading Data

To create a DataFrame data structure out of common Python data
structures, we can pass a dictionary of lists to the DataFrame constructor.

a={"'Name':['Augustus', 'Hazel', 'Esther', 'Cavas'],
"Gender':['Male’, 'Female', 'Female', 'Male'],
'Age':[19, 18, 22, 21]}

b=pd.DataFrame.from dict(a)

print(b)
Output:
Name Gender Age
0 Augustus Male 19
1 Hazel Female 18
2 Esther Female 22
3 Cavas Male 21
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Reading CSV Data

Reading a CSV file is as simple as calling the read_csv function. By default,
the read_csv function expects the column separator to be a comma, but
you can change that using the sep parameter. The following code shows
the syntax to read a CSV file into a DataFrame 'df' and print the first five
rows of df using the head() function:

df = pd.read csv('data.csv")
print(df.head())

There’s also a set of writer functions for writing the DataFrame object
to a variety of formats such as CSV files, HTML tables, JSON, etc. The
following line of code shows the syntax to write a DataFrame object to a
CSV file:

df.to csv('path to file.csv')

Reading Excel Data

Pandas allows us to read and write Excel files, so we can easily read from
Excel, in Python, and then write the data back out to Excel. Reading
Excel files requires the x1rd library, which can be installed using the pip
command, as shown here:

pip install xlrd.

The following code illustrates the syntax used to read a sheet from an
Excel file into a DataFrame df. Replace data.xlsx with the path/filename
of your Excel file to run the code.

df = pd.read excel('data.xlsx', 'Sheet1')
print(df.head())
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Similarly, the data from a DataFrame object can be written to an Excel
file, as shown here:

dataframe.to excel('path to file.xlsx', index=False)

Reading URL Data

The read_table function can be used to read directly from a URL. The
following code illustrates a DataFrame created using raw data from a given
URL:

url = "https://raw.github.com/gjreda/best-sandwiches/master/
data/best-sandwiches-geocode.tsv'

from url = pd.read table(url, sep="\t")

from url.head(3)

Output:

rank sandwich ... lat 1ng
0 1 BLT ... 41.895734 -87.679960
1 2 Fried Bologna ... 41.884672 -87.647754

2 3 Woodland Mushroom ... 41.890602 -87.630925

Cleaning the Data

In most of the data analytics projects, the available data is not always
perfect. The raw data always tends to be messy with corrupt or inaccurate
data in addition to the useful data. It is therefore essential for the data
scientists to treat these messy data samples so as to convert the raw data to
a form which can work, and they spend a considerably long time doing so.
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Data cleaning is the process of identifying inaccurate, incorrect, or
incomplete parts of the data and treating them by replacing, deleting, or
modifying the data. In other words, it is the process of preparing the data
for analysis by treating all the irregularities in the raw data. In the following
sections, we will discuss how to handle missing values and outliers, fill in
the inappropriate values, and remove duplicate entries.

Handling Missing Values

Missing values are quite common in raw data. Assume that the input data
consists of product feedback from thousands of customers collected using
survey forms. It is common behavior for customers to skip a few entries
while filling out the survey forms. For instance, a few customers may not
share their experience with the product, some may not share the duration
for which they have been using the product, and a few others may not

fill their contact information. While compiling these survey forms and
converting them into a table, there is sure to be plenty of missing values in
the table.

Data from sensors may also have missing data due to various reasons
like a temporary power outage at the sensor node, hardware failure,
interference in communication, etc. Therefore, handling these missing
values is the foremost task for data scientists while dealing with raw
data. The following code illustrates the creation of a database of random
numbers using the random. randn function in the NumPy library:

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(6,4),

index = ['1','3','4","'6','7"',"'9"], columns = ['a','b","'c','d"])
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It can be seen from the previous code that the indices for rows and
columns have been allocated manually. From the indices allotted for
rows, it can be seen that indexes 2, 5, and 8 are missing. Using the reindex
function in the Pandas library, these indices are created with missing ‘Not
a Number’ (NaN) values, as illustrated here:

df=df.reindex(['2','2','3",'4','5','6','7",'8','9"'])
print(df)
Output:

a b C d
1 0.099344 0.293956 1.002970 0.516942
2 NaN NaN NaN NaN
3 1.608906 -1.748396 -1.013634 -0.651055
4 3.211263 -2.555312 -1.036068 -0.728020
5 NaN NaN NaN NaN
6 -0.101766 -0.205572 1.369707 -1.133026
7 0.062344 1.483505 0.026995 1.560656
8 NaN NaN NaN NaN
9 -0.324347 -0.342040 0.107224 0.272153

Now that a database with missing values has been created, the next
step is to treat these values. Before considering the options for treating
these values, the foremost task is to detect the location of the missing
values. The isnull() function in the Pandas library can be used to detect
the rows containing missing values, as illustrated here:

df1=df[df.isna().any(axis=1)]
print(dfi1)
Output:
a b ¢ d
2 NaN NaN NaN NaN
5 NaN NaN NaN NaN
8 NaN NaN NaN NaN
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The previous process gives us a fair idea of the amount of missing
data in our database. Once this missing data is detected, the next step is
to treat the missing data. There are two ways we can do this: one is to fill
the missing data with values, and the second one is to simply remove the
missing data.

The fillna() function in the Pandas library can be used to fill the
missing values with a user-specified scalar value, as illustrated here. As
shown, the missing values in rows 2 and 5 are replaced by 0.000000.

df2=df.fillna(0)
print(df2.head())
Output:

a b o d
0.099344 0.293956 1.002970 0.516942
0.000000 0.000000 0.000000 0.000000
1.608906 -1.748396 -1.013634 -0.651055
3.211263 -2.555312 -1.036068 -0.728020
0.000000 0.000000 0.000000 0.000000

vi B W N R

Another way to replace the missing values is to use the ffill or bfill
function in the Pandas library. ffill stands for “forward fill,” which fills
the missing values by repeating the values that occur before them, and
bfill stands for “backward fill,” which fills the missing values by repeating
the values that occur after them. The following code illustrates the forward
fill approach of filling in the missing values:

df3= df.fillna(method="ffill")
print(df3.head())
Output:

a b C d
1 0.099344 0.293956 1.002970 0.516942
2 0.099344 0.293956 1.002970 0.516942
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3 1.608906 -1.748396 -1.013634 -0.651055
4 3.211263 -2.555312 -1.036068 -0.728020
5 3.211263 -2.555312 -1.036068 -0.728020

The second possible way to deal with missing values is to simply drop
them by using the dropna function in the Pandas library, as illustrated
here:

df4=df.dropna()
print(df4)
Output:

a b C d
1 0.099344 0.293956 1.002970 0.516942
3 1.608906 -1.748396 -1.013634 -0.651055
4 3.211263 -2.555312 -1.036068 -0.728020
6 -0.101766 -0.205572 1.369707 -1.133026
7 0.062344 1.483505 0.026995 1.560656
9 -0.324347 -0.342040 0.107224 0.272153

We have created a simple dataset with missing values to understand
the concept of treating the missing values. In reality, the datasets used in
analytics projects are large and may easily contain 500 to 1,000 rows or
even more. You are encouraged to apply the learning from this example
on real datasets. The method for treating missing values may depend on
the nature of application as well as on the number or frequency of missing
values in the dataset.

Handling Outliers

In a dataset, outliers are the observations (i.e data) that stand out from

all the other observations. In other words, outliers are data points that are
distant from all the other data in the dataset. Outliers can originate either
due to errors in measurement/data entry or due to genuine extreme values

110



CHAPTER 5  PREPARING THE DATA

in the data. For instance, consider the series of numbers 112, 123, 120, 132,
106, 26, 118, 140, and 125. In this series, all the numbers are close to 100
except 26. Hence, 26 is an outlier as it is vastly distant from the rest of the
numbers.

Outliers can be detected in two ways: using visualization techniques
and using a mathematical approach. In this section, we introduce
two mathematical approaches to identify outliers in our data, namely,
interquartile range (IQR) and the Z-score.

Interquartile range is a measure of the variability or spread of data
in a dataset. The data is first ordered and divided into four quarters. The
values that divide the total range into four quarters are called quartiles.
Therefore, there will be three quartiles for splitting data into four quarters.
The quartiles are Q,, Q,, and Qs, where Q, is the median for the entire data,
Q, is the median for the upper half of the data, and Q; is the median for the
lower half of the data. IQR is the difference between the third quartile and
first quartile, i.e., Qs - Q,.

To illustrate the process of removing outliers using IQR, let’s first create
a DataFrame with 15 entries that includes outliers.

import pandas as pd

a={"'Name':['A','B"','C','D","E","F',"'G","H","T","J","K","L",
ML,
'Weight':[56,62,48,72,15,80,76,64,68,180,75,47,58,63,71]}

df=pd.DataFrame.from dict(a)

print(df.head())

Output:

Name Weight
0 A 56
1 B 62
2 C 48
3 D 72
4 E 25
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In the previous code, we created a database containing the weight
in kilograms of 15 adults. For convenience, we have named the adults
with the letters A to M. Weights of 15kg and 180kg have been included as
outliers as it is unlikely for healthy adults to weigh so little or much. To
detect these outliers, we need to compute the 25 percent and 75 percent
quartile values, Q1 and Q3, respectively. From these values, the IQR value
can be calculated by determining the difference of Q3 - Q1. This process is
illustrated here:

Q1=df.Weight.quantile(0.25)
Q3=df.Weight.quantile(0.75)
IQR=03-01

print('01=",01,'03=",03, 'IR=",I0R)
Output:

01= 57.0 03= 73.5 IQR= 16.5

By comparing the entries in the DataFrame object with the quartiles
calculated previously, it can be seen that there are four values below Q1,
seven values between Q1 and Q3, and four values above Q3. But we know
that there is only one outlier below Q1 and one outlier above Q3. To detect
those outliers, we need to form an interval with a lower limit much below Q1
and an upper limit well above Q3. Once these limits are established, then it
will be safe to consider that the values below the lower limit and the values
above the upper limit will be outliers. This is illustrated in the following code:

01 - 1.5 * IQR

upper_limit = Q3 + 1.5 * IOR

df1=df[ (df.Weight < lower limit) | (df.Weight > upper limit)]
print(dfi)

lower limit

Output:

Name Weight
4 E 25
9 J 180
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It can be seen that the limits created using the IQR value have detected
the outliers in our data accurately. Now these outliers can be easily filtered
out using the following code:

df2=df.drop(df1.index)

print(df2)
Output:

Name Weight
0 A 56
1 B 62
2 C 48
3 D 72
5 F 80
6 G 76
7 H 64
8 I 68
10 K 75
11 L 47
12 M 58
13 N 63
14 (o} 71
Z-Score

The Z-score, also called the standard score, gives an idea of how far away
a data point is from the mean value. Technically, the Z-score fits the data
in a normal distribution and measures the number of standard deviations
by which the data points are about the mean value of the entire dataset, as
illustrated in Figure 5-1.
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Figure 5-1. Normal distribution of data for outlier detection based
on the Z-score

The Figure 5-1 shows that each data point is mapped along a normal
distribution centered at the zero mean. The data points that are too far
from the zero mean are treated as outliers. In the majority of cases, the
threshold is fixed as 3, and any data point beyond 3o or -3c is treated as an
outlier. Let’s take the same database that we used in the previous section
and identify the outliers using the Z-score.

import pandas as pd

from scipy import stats

import numpy as np

a={'Name':['A','B','C','D',"E',"F','G","H","I','3",'K","L",
'M','N','0'],
'Weight':[56,62,48,72,15,80,76,64,68,180,75,47,58,63,71,]}

df=pd.DataFrame.from dict(a)

z = np.abs(stats.zscore(df.Weight))

print(z)

df1=df[z>3]

print(dfi1)
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Output:
Name Weight
9 J 180

From the previous code, it can be seen that the Z-score corresponding
to the weight value of 180 exceeds the threshold of 3, and hence it is
displayed as an outlier. Unfortunately, the weight value of 15 is not
detected as an outlier. The reason for this could be understood by
comparing the value with respect to the mean and standard deviation,
which can be achieved through the np.mean and np. std functions, as
illustrated here:

print(np.mean(df.Weight))
print(np.std(df.Weight))
Output:

67.0

33.448467827390836

Let’s approximate the value of standard deviation as 33.45. It can be
seen that the difference between the weight value 180 and the mean value
is 111, which is greater than three times the standard deviation (>3c),
whereas the difference between the weight values 15 and the mean value is
just 54, which is less than two times the standard deviation (<2c). One way
to overcome this problem is to reduce the value of threshold. Let’s assume
a Threshold value of 1.

df1=df[z>1]

print(df1)
Output:

Name Weight
4 E 15
9 J 180
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From the previous illustration, it can be seen that the ideal threshold of
3 may not hold true for every dataset, and hence the threshold should be
selected based on the distribution of the data. Now similar to the case of
IQR, these outliers can be simply filtered out using the following code:

df2=df.drop(df.Name[z>1].index)

print(df2)
Output:

Name Weight
0 A 56
1 B 62
2 C 48
3 D 72
5 F 80
6 G 76
7 H 64
8 I 68
10 K 75
11 L 47
12 M 58
13 N 63
14 0 71

Filtering Out Inappropriate Values

In some cases, the dataset may contain some inappropriate values that
are completely irrelevant to the data. This is especially true in the case of
sensor data. The data recorded from the sensor is normally time-series
data with a unique timestamp for each data point. These timestamps
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are not required for analysis in many cases and hence can be treated as
inappropriate values. To illustrate this concept, we create a time-series
temperature data similar to the sensor data as follows:

import pandas as pd
data={"'Time':["'12:00:05"',"12:08:33","12:25:12","12:37:53",
'12:59:08'],

'Temperature':['T=22",'T=22",'T=23",'T=23",'T=24"]}
df=pd.DataFrame.from dict(data)

print(df)
Output:

Time Temperature
0 12:00:05 T=22
1 12:08:33 T=22
2 12:25:12 T=23
3 12:37:53 T=23
4 12:59:08 T=24

Now, the timestamp corresponding to each data point and the header
'T=" in each data point should be removed. The timestamp can be removed
using the drop function in the Pandas library, whereas the header can be
removed by using the str.replace function. Because of the presence of a
header in each data point, the data is initially stored as a string data type.
So, the datatype has to be changed to int or float after removing these
headers. These procedures are illustrated as follows:

df.drop('Time',inplace=True,axis=1)
df=df.Temperature.str.replace('T=","")
df=df.astype(float)

print(df)

Output:

0] 22.0

1 22.0
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2 23.0
3 23.0
4 24.0

Name: Temperature, dtype: float64

Removing Duplicates

Duplicate entries are common in data science, especially when we

collect data from various sources and consolidate them for processing.
Depending on the nature of our analysis, these duplicates may pose a
problem. Therefore, it is better to remove these duplicates before analyzing
the data, as illustrated here:

import pandas as pd
a={"Name':['Alan', 'Joe"',"'Jim", 'Tom',"'Alan','Anna‘, 'Elle", 'Rachel’,’
Mindy'],

'Age':[22,24,25,24,22,23,21,22,23]}
df=pd.DataFrame.from dict(a)
print('DATA\n',df)
print('DUPLICATES\n',df[df.duplicated()])
df1=df.drop duplicates()
print('DATA AFTER REMOVING DUPLICATES\n',df1)

Output:
DATA

Name Age
0 Alan 22
1 Joe 24
2 Jim 25
3 Tom 24
4 Alan 22
5 Anna 23

118



DATA AFTER REMOVING DUPLICATES

6 Ellen 21
7 Rachel 22
8 Mindy 23
DUPLICATES
Name Age

4 Alan

Name Age
0 Alan 22
1 Joe 24
2 Jim 25
3 Tom 24
5 Anna 23
6 Ellen 21
7 Rachel 22
8 Mindy 23

CHAPTER 5

PREPARING THE DATA

As shown in the code, a DataFrame is created from a dictionary

consisting of the name and age of a few people, and we have deliberately

created a duplicate entry for the name Alan. It can be seen that the

duplicated function in the Pandas library clearly identifies the second

entry for this name. This duplicate entry is then removed by using the

drop_duplicates function in the Pandas library.
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Visualizing the Data

In the previous chapter, we discussed a number of steps involved in
preparing the data for analysis. Before analyzing the data, it is imperative
to get to know the nature of data we are dealing with. Visualizing the data
may give us some useful insights about the nature of data. These insights,
such as patterns in the data, distribution of the data, outliers present in
the data, etc., can prove to be handy in determining the methodology to
be used for analyzing the data. In addition, visualization can be used at
the end of analysis to communicate the findings to the party concerned,
as conveying the results of analysis through visualization techniques can
be more effective than writing pages of textual content explaining the
findings. In this chapter, we will learn about some of the basic visualization
plots provided by the Matplotlib package of Python and how those plots
can be customized to convey the characteristics of different data.

Matplotlib Library

Matplotlib is a plotting library for creating publication-quality plots using
the Python programming language. This package provides various types

of plots based on the type of information to be conveyed. The plots come
with interactive options such as pan, zoom, and subplot configurations.
The plots can also be saved in different formats such as PNG, PDE, etc.

In addition, the Matplotlib package provides numerous customization
options for each type of plot that can be used for effective representation of
the information to be conveyed.
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Scatter Plot

A scatter plot is a type of plot that uses markers to indicate data points to
show the relationship between two variables. The scatter plot can serve
many purposes when it comes to data analysis. For example, the plot can
reveal patterns and trends in data when the data points are taken as whole,
which in turn can help data scientists understand the relationship between
two variables and hence enable them to come up with an effective
prediction technique. Scatter plots can also be used for identifying clusters
in the data. They can also reveal outliers present in the data, which is
crucial as outliers tend to drastically affect the performance of prediction
systems.

Two columns of data are generally required to create scatter plots,
one for each dimension of the plot. Each row of data in the table will
correspond to a single data point in the plot. A scatter plot can be created
using the scatter function in the Matplotlib library. To demonstrate the
usefulness of scatter plots, let’s consider the Boston Housing dataset that
can be imported from the Scikit-Learn library. This dataset is actually
taken from the StatLib library, which is maintained at Carnegie Mellon
University. It consists of 506 samples with 13 different feature attributes
such as per capita crime rate by town (CRIM), average number of rooms
per dwelling (RM), index of accessibility to radial highways (RAD), etc. In
addition, a target attribute MEDV indicates the median value of owner-
occupied homes in the thousands.

The following code illustrates the process of creating a Pandas
dataframe the Boston housing dataset, which is originally in a dictionary
format. For convenience, only the first five rows of the dataframe are
displayed in this code using the print command.
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import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from sklearn.datasets import load boston

dataset = load boston()

boston data=pd.DataFrame(dataset.data,columns=dataset.feature_
names)

print(boston data.head())

Output:

CRIM ZN INDUS CHAS NOX ... RAD TAX PTRATIO B LSTAT
0.00632 18.0 2.31 0.0 0.538 ... 1.0 296.0 15.3 396.90 4.98
0.02731 0.0 7.07 0.0 0.469 ... 2.0 242.0 17.8 396.90 9.14
0.02729 0.0 7.07 0.0 0.469 ... 2.0 242.0 17.8 392.83 4.03
0.03237 0.0 2.18 0.0 0.458 ... 3.0 222.0 18.7 394.63 2.94
0.06905 0.0 2.18 0.0 0.458 ... 3.0 222.0 18.7 396.90 5.33

5 rows X 13 columns]

—/ A W N B O

The housing dataset is originally in the form of a dictionary, and it is
saved to the variable dataset. The 13 feature attributes are assigned to the
key data, and the target attribute MEDV is assigned to the key target. The
13 features are then converted to a Pandas dataframe. Now, the scatter
plot of the feature variable RM versus the target variable MEDV can be
obtained by the following code. From the plot in Figure 6-1, we can see that
the price of a house increases with the increase in the number of rooms. In
addition to this trend, a few outliers can also be seen in the plot.

plt.scatter(boston data['RM'],dataset.target)
plt.xlabel("Average number of rooms per dwelling(RM)")
plt.ylabel("Median value of owner-occupied homes in
$1000s (MEDV)")

plt.show()
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Figure 6-1. Plot of pricing of houses versus average number of rooms
per dwelling

Line Plot

Aline plot is nothing but a series of data points connected by a line, and it
can be used to convey the trend of a variable over a particular time. Line
plots are often used for visualizing time-series data to observe the variation
of data with respect to time. It can also be used as part of the analysis
procedure to check the variation of a variable in an iterative process.

Line plots can be obtained using the plot function in the Matplotlib
package. To demonstrate a line plot, let’s consider a time-series dataset
consisting of the minimum daily temperature in °C over 10 years (1981-
1990) in the city of Melbourne, Australia. The following code illustrates the
process of loading the . csv file containing the dataset, converting it into a
dataframe, and plotting the variation in temperature for 1981.
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import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

dataset=pd.read csv('daily-min-temperatures.csv')
df=pd.DataFrame(dataset,columns=[ 'Date’, 'Temp'])
print(df.head())

Output:

Date Temp
0 1981-01-01 20.7
1 1981-01-02 17.9
2 1981-01-03 18.8
3 1981-01-04 14.6
4 1981-01-05 15.8

plt.plot(df[ 'Temp'][0:365])
plt.xlabel("Days in the year")
plt.ylabel("Temperature in degree celcius")
plt.show()

The line plot in Figure 6-2 clearly shows the day-to-day variation of
temperature in Melbourne in 1981.
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Figure 6-2. Variation in temperature (°C) in Melbourne
over the year 1981

The Matplotlib package also provides the option of subplots
wherein a layout of subplots can be created in a single-figure object. In
this time-series data example, we can use a simple for loop to extract
the data for each of the 10 years and plot it in individual subplots, as
illustrated by the following code:

y,k=0,1

x=np.arange(1,366)

for i in range(10):
plt.subplot(10,1,k)
plt.plot(x,df[ 'Temp'][y:y+365])
y=y+365
k=k+1

plt.xlabel("Days in the year")

plt.show()
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Figure 6-3 consists of 10 subplots each displaying the variation of
temperature over a particular year from 1981 to 1990. Thus, the use of
multiple subplots has enabled us to compare the trends in temperature
variation in Melbourne over the decade.
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Figure 6-3. Temperature variation in Melbourne over 10 years
(1981 to 1990)

Histogram

Histogram plots work by splitting the data in a variable into different
ranges, called bins; then they count the data points in each bin and plot
them as vertical bars. These types of plots can give a good idea about the
approximate distribution of numerical data. The width of the bins, i.e., the
range of values in each bin, is an important parameter, and the one that
best fits the data has to be selected by trying out different values.

To demonstrate the histogram plot, let’s consider the California
housing dataset that is available in the Scikit-Learn library. This dataset,
derived from the 1990 U.S. Census, uses one row per census block group.
A block group is the smallest geographical unit for which the U.S. Census
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Bureau publishes sample data (a block group typically has a population
of 600 to 3,000 people). The dataset consists of 8 parameters such as
median income in block, median house age in block, average number of
rooms, etc., and one target attribute, which is the median house value for
California districts. There are a total of 20,640 data points (rows) in the
data. The following code plots a histogram that shows the distribution of
blocks based on the median age of houses within the blocks. Figure 6-4
shows the histogram plot. A lower number normally suggests a newer
building.

import matplotlib.pyplot as plt

from sklearn.datasets import fetch california housing
import pandas as pd

dataset = fetch_california_housing()
df=pd.DataFrame(dataset.data,columns=dataset.feature names)
print(df.head())

Output:

MedInc HouseAge AveRooms ... AveOccup Latitude Longitude
0 8.3252 41.0 6.984127 ... 2.555556 37.88 -122.23
1 8.3014 21.0 6.238137 ... 2.109842 37.86 -122.22
2 7.2574 52.0 8.288136 ... 2.802260 37.85 -122.24
3 5.6431 52.0 5.817352 ... 2.547945 37.85 -122.25
4 3.8462 52.0 6.281853 ... 2.181467 37.85 -122.25

plt.hist(df[ 'HouseAge'],bins=20)
plt.xlabel("median age of houses")
plt.ylabel("Frequency")

plt.show()
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Figure 6-4. Distribution of blocks based on median age of houses in
the blocks

From the histogram plot in Figure 6-4, we can see that most houses in
the blocks are distributed in the middle, which indicates that the number
of new blocks and very old blocks are lower compared to those with an
average age.

Bar Chart

Bar charts are often used by data scientists in their presentations and
reports to represent categorical data as horizontal or vertical rectangular
bars whose length or height corresponds to the value of the data that they
represent. Normally, one of the axes will represent the category of data,
while the other axis will represent the corresponding values. Therefore, bar
graphs are the ideal choice for comparing different categories of data. Bar
charts can also be used for conveying the development of one or multiple
variables over a period of time.
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Even though bar charts look similar to histogram plots, there are subtle
differences between them. For instance, histograms are used to plot the
distribution of variables, and bar charts are used to compare variables
belonging to different categories. A histogram groups quantitative data
into a finite number of bins and plots the distribution of data in those bins,
whereas bar charts are used to plot categorical data.

To demonstrate the bar chart, let’s consider the Telecoms Consumer
Complaints dataset, which is a collection of complaints received by
Comcast, an American global telecommunication company. This
company was fined $2.3 million in October 2016 over numerous customer
complaints claiming that they have been charged for services they never
used. This dataset is a collection of 2,224 such complaints categorized
into 11 columns such as customer complaint, date, city, state, ZIP code,
status, etc. In the following code, the dataset available as an Excel sheet
is first loaded and converted to a dataframe. Then the column containing
the states, from which the complaints are received, is selected, and the
multiple entries corresponding to the same states are grouped together
to a single entry using the function groupby (). The count of the number
of times each state is repeated, which in turn corresponds to the number
of complaints received from each state, is obtained by using the function
size(). The data can then be sorted in descending order of the count
values using the function sort_values(). Figure 6-5 shows the plot of top
10 states with the most number of complaints, which gives a clear idea of
where more customers have faced grievances. The plot basically gives a
comparison of the company’s misgivings in different states based on the
number of complaints received from the customers.
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import pandas as pd

import matplotlib.pyplot as plt

dataset=pd.read excel('Comcast telecom complaints data.csv.x1lsx")
data=pd.DataFrame(dataset)

print(data.head(3))

Output:

Ticket # Customer Complaint ... Zip code Status
0 250635 Comcast Cable Internet Speeds ... 21009 Closed
1 223441 Payment disappear - service got disconnected ... 30102 Closed
2 242732 Speed and Service ... 30101 Closed
[3 rows x 11 columns]
a=data.groupby("State").size().sort values(ascending=False).
reset_index()
plt.bar(a['State'][0:10],a[0][0:10],align="center")
plt.show()

Number of complaints

g

50

o
Georgia Florida  Cabfomia  Whnois  Tennessee Pennsylvania  Michigan  Washinglon  Colorado  Maryland

Figure 6-5. Bar plot showing number of complaints received from
different states
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Pie Chart

Pie charts are generally used to show the distribution of data across
different categories as a percentage of the entire data in the form of
proportional circular segments. In other words, each circular segment
corresponds to a particular category of data. By viewing pie charts, users
can quickly grasp the distribution of categorical data by just visualizing
the plot rather than seeing the percentage in numbers as in the case of
bar plots. Another difference between pie chart and bar charts is that pie
charts are used to compare the contribution of each category of data to
the whole, whereas bar charts are used to compare the contribution of
different categories of data against each other.

To demonstrate a pie chart, let’s consider a dataset containing the
details of immigration to Canada from 1980 to 2013. The dataset contains
various attributes for immigrants both entering and leaving Canada
annually. These attributes include origin/destination name, area name,
region name, etc. There are a total of 197 rows of data based on the origin/
destination of the immigrants. The following code plots a pie chart that
shows the total number of immigrants from 1980 to 2013 categorized by

their continent:

import pandas as pd

import matplotlib.pyplot as plt

df = pd.read excel('Canada.xlsx',skiprows=range(20),skipfooter=2)
df.columns = list(map(str, df.columns))

df['Total' J=df.sum(axis=1)

df continents = df.groupby('AreaName’, axis=0).sum().reset index()
print(df_continents)
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Output:

AreaName  AREA REG ee. 2012
2013 Total
0 Africa 48762 49242 ... 38083
38543 765660
1 Asia 45815 109147 ... 152218
155075 3516953
2 Europe 39044 39754 ... 29177

28691 1528488
3 Latin America and the Caribbean 29832 30395 ee. 27173
24950 855141

4 Northern America 1810 1810 e.e. 7892
8503 246564
5 Oceania 12726 13210 ... 1679
1775 93736

After the dataset is loaded as a Pandas dataframe, the column titles
with numbers indicating the year of data are converted to string format.
This is done to ensure that the titles are not added when we sum across
the rows to compute the total number of immigrants in the next step. This
total number of immigrants is saved in an additional column created in the
name Total. After computing the total number of immigrants, the data is
grouped by the column titled AreaName containing the continent details of
the immigrants. By doing this, the number of rows is now reduced to 6 from
197, which indicates that the entire dataset is grouped into 6 continents.

Now the total number of immigrants from the six continents, given in
the column titled Total, can be plotted as a pie chart shown in Figure 6-6.
Therefore, the pie chart will contain six circular segments corresponding to
the six continents. To label these segments in the plot, the continent names
present in the column titled AreaName is converted to a list and stored in
avariable to be used as labels in the plot function. This code is illustrated
here:
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t=1ist(df_continents.AreaName)

plt.pie(df continents['Total'],labels=t,autopct="%1.1f%%",
shadow=True)

plt.show()

Africa

Oceania
Northern America

Latin America and the Caribbean

Europe

Figure 6-6. Pie chart indicating movement of immigrants belonging
to different continents into and out of Canada from 1980 to 2013

Other Plots and Packages

In addition to the fundamental plots that are discussed in this chapter,
there are other plots available in the Matplotlib package such as contour
plots, stream plots, 3D plots, etc., that can be used based on the nature of
data or the requirement for analysis. Other than the Matplotlib package,
other packages available provide more sophisticated plots that can be
used to enhance the visualization for different categories of data. One such
package is the Seaborn library, which can be used for making statistical
graphics in Python. The Seaborn library provides more sophisticated plots
like the boxplot, heatmap, violin plot, cluster map, etc., that can provide
enhanced visualization of data. You are encouraged to explore these other
categories of plots and libraries.
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Analyzing the Data

Exploratory Data Analysis

Exploratory data analysis (EDA) is the process of understanding the data
by summarizing its characteristics. This step is important before modeling
the data for machine learning. From this analysis, the user can extract the
information, identify the root cause of any issues in the data, and figure
out the steps to initiate any policies for development. In simple terms, this
type of analysis explores the data to understand and identify the patterns
and trends in it. There is no common method for doing EDA; it depends
on the data we are working with. For simplicity in this chapter, we will use
common methods and plots for doing EDA.

Choosing a Dataset

To do the EDA, we’ll use the Boston housing dataset that can be imported
from the Scikit-Learn library. This dataset was already described in
Chapter 6. This dataset contains 506 samples under 13 different feature
attributes such as per capita crime rate by town (CRIM), average number
of rooms per dwelling (RM), index of accessibility to radial highways
(RAD), etc., and a target attribute MEDV indicates the median value of
owner-occupied homes in the thousands.
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1. Importthe required libraries.

The first step is to load the required libraries for
doing the EDA. In this chapter, we will use the
packages such as Pandas, NumPy, and Matplotlib
for plotting:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load boston

2. Import a dataset.

The Boston housing dataset can be imported from
the Scikit-Learn library and saved as the boston_data
variable, as given in the following code:

dataset = load boston()

The more important thing is that most of the open
source data is stored in a comma-separated format.
This comma-separated format has difficulties
fetching and analyzing the data. Thus, the comma-
separated data can be converted into a dataframe
using the Pandas package in Python.

import pandas as pd
boston data=pd.DataFrame(dataset.data,columns=dataset.
feature names)

If the dataset is very large, we can display the top
and bottom five rows with headings using the
following code:
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# To display top 5 rows of data

print(boston data.head(5))

0
1
2
3

4

CRIM ZN INDUS CHAS NOX
0.00632 18.0 2.31 0.0 0.538
0.02731 0.0 7.07 0.0 0.469
0.02729 0.0 7.07 0.0 0.469
0.03237 0.0 2.18 0.0 0.458
0.06905 0.0 2.18 0.0 0.458
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RAD TAX PTRATIO B LSTAT
1.0 296.0 15.3 396.90 4.98
2.0 242.0 17.8 396.90 9.14
2.0 242.0 17.8 392.83 4.03
3.0 222.0 18.7 394.63 2.94
3.0 222.0 18.7 396.90 5.33

# To display bottom 5 rows of data
print(boston data.tail(5))

501
502
503
504
505

CRIM ZN INDUS CHAS NOX ... RAD TAX PTRATIO B LSTAT
0.06263 0.0 11.93 0.0 0.573 ... 1.0 273.0 21.0 391.99 9.67
0.04527 0.0 11.93 0.0 0.573 ... 1.0 273.0 21.0 396.90 9.08
0.06076 0.0 11.93 0.0 0.573 ... 1.0 273.0 21.0 396.90 5.64
0.10959 0.0 11.93 0.0 0.573 ... 1.0 273.0 21.0 393.45 6.48
0.04741 0.0 11.93 0.0 0.573 ... 1.0 273.0 21.0 396.90 7.88

3. Check the information about the data in a dataset.

Before doing data analysis, checking the information
such as the data type and size of the data, describing
the data, and knowing the amount of data available in
a dataset are important steps because sometimes the
numerical values in the dataset may be stored as string
data types. It is difficult to plot and analyze numerical
values stored as the string data type, so the string

data type that is numerical should be converted into
integers for better analysis. The size of the dataset can
be viewed with the help of the following code:

boston_data.shape
Output:
(506, 13)
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This output shows that the dataset has 506 rows and 13 columns. In
other words, we can say that the dataset has 506 samples with 13 features.

Then, the information about the dataset can be viewed with the help of
the following code:

boston data.info()

Output:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505

Data columns (total 13 columns):

# Column Count Non-Null Dtype

0 CRIM 506 non-null float64
1IN 506 non-null float64
2 INDUS 506 non-null float64
3 CHAS 506 non-null float64
4 NOX 506 non-null float64
5 RM 506 non-null float64
6 AGE 506 non-null float64
7 DIS 506 non-null float64
8 RAD 506 non-null float64
9 TAX 506 non-null float64
10 PTRATIO 506 non-null float64
11 B 506 non-null float64
12 LSTAT 506 non-null float64

dtypes: float64(13)
memory usage: 51.5 KB
boston_data.dtypes

Output:

CRIM float64
ZN float64
INDUS float64
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CHAS
NOX
RM
AGE
DIS
RAD
TAX
PTRATIO
B
LSTAT
dtype:

float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
object
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Moreover, with the help of describe() function, we can see the

distribution of data such as minimum values, maximum values, mean, etc.

The description of the Boston data can be viewed using the following code:

boston_data.describe()

Output:

B

count
506.000000
mean
356.674032
std
91.294864
min
0.320000
25 percent
375.377500
50 percent
391.440000

CRIM

LSTAT
506.000000
506.000000
3.613524
12.653063
.601545
.141062
.006320
.730000
.082045
.950000
.256510
11.360000

O OO O B O N @

ZN

506.000000

11.363636

23.322453

0.000000

0.000000

0.000000

INDUS

506.000000

11.136779

6.860353

0.460000

5.190000

9.690000

PTRATIO

506.000000

18.455534

2.164946

12.600000

17.400000

19.050000
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75 percent 3.677083 12.500000 18.100000 ... 20.200000
396.225000 16.955000
max 88.976200  100.000000 27.740000 ... 22.000000

396.900000 37.970000

Modifying the Columns in the Dataset

Modifications in the data such as removing unnecessary columns,
adding dummy columns, dropping duplicate columns, encoding the
column, and normalizing the data are required if the dataset needs to
have preprocessing done. Dropping the unnecessary columns is more
important when many columns are not used for analysis. Dropping
those columns is the better solution to make the data lighter and reliable.
Dropping the unnecessary columns in the Boston dataset can be done
with the following code:

boston data =boston data.drop(['CRIM','ZN','LSTAT'])
print(boston data.head(5))
Output:

INDUS CHAS NOX RM AGE  DIS RAD TAX PTRATIO B

7.07
7.07
2.18
2.18

A w NN - O

0.0
0.0
0.0
0.0

2.31 0.0 0.538

0.469
0.469
0.458
0.458

6.575
6.421
7.185
6.998
7.147

65.2
78.9
61.1
45.8
54.2

4.0900 1.0 296.0

4.9671
4.9671
6.0622
6.0622

2.0
2.0
3.0
3.0

242.0
242.0
222.0
222.0

15.3
17.8
17.8
18.7
18.7

396.90
396.90
392.83
394.63
396.90

In the previous code, the columns of CRIM, ZN, and LSTAT are dropped,

and only 10 columns of data are presented.
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Renaming the column name helps the user to improve the readability
of the data. In the following code, the column name DIS is renamed to
Distance:

boston _data= boston data.rename(columns={"DIS":"Distance"})
boston_data.head(5)

INDUS CHAS NOX RM AGE Distance RAD TAX PTRATIO B

2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90
7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90
7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83
2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63
2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90

N~ W N R O

Identifying duplicates, dropping the duplicates, and detecting outliers
were already discussed in the previous chapters.

Statistical Analysis

A better understanding of the data at hand can go a long way in simplifying
the job of a data scientist, and this is where statistics can come in handy.
Statistics can provide the tools necessary to identify structures in the data,
and such insights can prove to be valuable in building a model to best fit
our data. The role of statistics with respect to data can vary from simple
analysis to creating self-learning models. In this section, we will introduce
the various types of distributions, statistical measures of data, and ways to
fit data to distributions.

Before discussing distributions, let’s first understand how data is
associated with probability. When we consider a dataset, it normally
represents a single sample from a population. For instance, if we have a
dataset consisting of the height and weight of all the students in a school,
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the model developed from this data after some statistical analysis can be
used to predict the height and weight of students from another school. The
dataset in our hand is just one sample, whereas the population may consist
of as many schools.

The numerical data that we encounter may be continuous or discrete
in nature. The difference between the two is that the continuous data may
take any value, whereas the discrete data can take only certain values.

For example, data such as the number of cars manufactured per day,

the number of feedback received from customers, etc., are discrete in
nature, whereas data such as height, weight, humidity, temperature, etc.,
represents continuous data.

Probability distributions, a fundamental concept in statistics, provide
a way to represent the possible values taken by a random variable and the
respective probabilities. The probability mass function (PMF) denotes the
discrete probability distribution, and the probability density function (PDF)
denotes the continuous probability distribution. Some of the common
distributions that a data scientist needs to be aware of are discussed in the
following section.

Uniform Distribution

Uniform distribution, also called a rectangular distribution, has a constant
probability. In other words, all the outcomes have the same probability of
occurrence. The number of outcomes in the case of uniform distribution
may be unlimited. The most common example for a uniform distribution
is the roll of a fair die, where all six outcomes have an equal probability of
1/6. Let’s illustrate uniform distribution by plotting the probabilities of the
outcomes for the fair die experiment. In other words, the probabilities of
occurrence for each face of the die are equally likely. Figure 7-1 shows the
distribution plot.
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import numpy as np

import matplotlib.pyplot as plt
probabilities = np.full((6),1/6)

events = [1,2,3,4,5,6]
plt.bar(events,probabilities)
plt.xlabel('Die roll events')
plt.ylabel('Event Probability')
plt.title('Fair die - Uniform Distribution')
plt.show()

Fair die - Uniform Distribution
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Die roll events

Figure 7-1. Uniform distribution of fair die experiment

If a histogram plot is made for a dataset by dividing the numerical data
into a number of bins and all the bins are found to have equal distribution,
then the dataset can be said to be uniformly distributed.
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Binomial Distribution

As the name suggests, this distribution is used when there are only
two possible outcomes. A random variable X that follows a binomial
distribution is dependent on two parameters:

e The number of trials n in the case of binomial
distribution must be fixed, and the trials are considered
to be independent of each other. In other words, the
outcome of a particular trial does not depend on the
outcomes of the previous trials.

o There are only two possible outcomes for each event:
success or failure. The probability of success, say p,
remains the same from trial to trial.

Therefore, the binomial distribution function in Python normally
takes two values as inputs: the number of trials n and the probability of
success p. To understand binomial distribution, let’s look at the common
experiment of tossing a coin:

from scipy.stats import binom
import matplotlib.pyplot as plt
import numpy as np
n=15 # no of times coin is tossed
r values = list(range(n + 1))
x=[0.2,0.5,0.7,0.9] #probabilities of getting a head
k=1
for p in x:
dist = [binom.pmf(r, n, p) for r in r values ]
plt.subplot(2,2,k)
plt.bar(r values,dist)
plt.xlabel('number of heads"')
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plt.ylabel('probability")
plt.title('p= percent.1f' percentp)
k+=1

plt.show()

In the previous code, we have 15 trials for tossing the coin. The
probability of getting a head remains the same for each trial, and the
outcome of each trial is independent of the previous outcomes. The
binomial distribution is computed using the binom.pmf function available
in the stats module of the scipy package. The experiment is repeated for
different probabilities of success using a for loop, and Figure 7-2 shows the
resulting distribution plot.
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Figure 7-2. Binomial distribution for tossing a coin 15 times

Figure 7-2 shows the binomial distribution for our coin toss
experiment for different probabilities of success. The first subplot shows
the binomial distribution when the probability of getting a head is 0.2. This
implies that there is a 20 percent chance of getting a head. Twenty percent
of 15 tosses is 3, which implies that there is a high probability of getting
three heads in 15 tosses. Hence, the probability is at a maximum of 3.
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It can be seen that the binomial distribution has a bell-shaped response.
The response is skewed to the left when the probability of success is low
and shifts to the right with an increase in probability, as illustrated in the
rest of the subplots.

Binomial distribution can be encountered in various domains of data
science. For instance, when a pharmaceutical company wants to test a
new vaccine, then there are only two possible outcomes: the vaccine works
or it does not. Also, the result for an individual patient is an independent
event and does not depend on other trials for different patients. Binomial
distribution can be applied to various business issues as well. For example,
consider people working in the sales department making calls all day
to sell their company’s products. The outcome of the call is whether a
successful sale is made or not, and the outcome is independent for each
worker. Similarly, there are many other areas in a business with binary
outcomes where binomial distribution can be applied, and hence it plays
an important role in business decision-making.

Normal Distribution

Normal distribution, also known as Gaussian distribution, is normally

a bell-shaped curve centered at the mean where the probability is

the maximum, and the probability reduces the further we move from

the mean. This implies that the values closer to the mean occur more
frequently, and the values that are further away from the mean occur less
frequently. This distribution is dependent on two parameters: the mean
(p) of the data and the standard deviation (). The probability density
function (pdf) for a normal distribution can be given as follows:

1 _(x_”)z

f(xp0)=
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To illustrate the pdf function, consider the following code. An array x
with 100 values in the range of -10 to 10 is created, and the pdf function
of x is computed using the norm. pdf function in the stats module of the
scipy package. The pdf function is computed for four different values of
mean 0, 2.5, 5, and 7.5 using a for loop. If the mean value is not given, the
norm.pdf function takes a default value of zero.

from scipy.stats import norm
import matplotlib.pyplot as plt
import numpy as np
mean=[0.0,2.5,5,7.5] # mean values for the normal distribution
x=np.linspace(-10,10,100) # array of 100 numbers in the
range -10 to 10
for m in mean:
y=norm.pdf(x,loc=m)
plt.plot(x,y,label="mean= %.1f" %m)
plt.xlabel('x")
plt.ylabel('pdf(x)")
plt.legend(frameon=True)
plt.show()

Figure 7-3 shows that the normal distribution produces a bell-shaped
curve that is centered on the mean value. That is, the curve is at the
maximum at the point of mean, and it starts decreasing on either side as
we move away from the mean value. Note that we have not specified the
value of standard deviation. In that case, the norm. pdf function takes the
default value of 1.
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Figure 7-3. Normal distribution plot for different mean values

Similarly, let’s keep the value of the mean as constant and plot
the distribution for different values of standard distribution using the
following code:

from scipy.stats import norm

import matplotlib.pyplot as plt

import numpy as np

stdev=[1.0,2.0,3.0,4.0] # standard deviation values for the

normal distribution

x=np.linspace(-10,10,100)

for s in stdev:
y=norm.pdf(x,scale=s)
plt.plot(x,y,label="stdev= %.1f" %s)

plt.xlabel('x")

plt.ylabel('pdf(x)")

plt.legend(frameon=True)

plt.show()
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From Figure 7-4, we can see that all four curves are centered at
the default mean value of zero. As the value of standard deviation o is
increased, the density is distributed across a wide range. In other words,
the distribution of data is more spread out from the mean as the standard
deviation value is increased and there is a high likelihood that more
observations are further away from the mean.

0.40 4 stdev=1.0

stdev=2.0
stdev=3.0
stdev=4.0

-10.0 -75 -50 -25 0.0 2.5 5.0 7.5 10.0

Figure 7-4. Normal distribution plot for different values of standard
deviation

An important property of the normal distribution that makes it an
important statistical distribution for data scientists is the empirical rule.
According to this rule, if we divide the range of observations in the x-axis in
terms of standard deviation, then approximately 68.3 percent of the values
fall within one standard deviation from the mean, 95.5 percent of the
values fall within two standard deviation, and 99.7 percent of the values
fall within three standard deviations, respectively. This empirical rule can
be used for identifying outliers in the data if the data can be fit to a normal
distribution. This principle is used in the Z-score for outlier detection,
which we discussed earlier in Chapter 5.
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Statistical Analysis of Boston Housing Price
Dataset

Let’s take the Boston housing price dataset and try to identify the best
features that can be used to model the data based on the statistical
properties of the features. As we have already discussed, the Boston
dataset consists of 13 different features for 506 cases (506 x 13). In addition
to these features, the median value of owner-occupied homes (in the
thousands) denoted by the variable MEDV is identified as the target. That
is, given the 13 different features, the median value of a house is to be
estimated. The features from the dataset are first converted to a dataframe
using the Pandas package. Then the target variable is added to the last
column of this dataframe, making its dimension 506 x 14. This is illustrated
in the following code:

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from sklearn.datasets import load boston

import matplotlib.pyplot as plt

dataset = load boston()
boston_data=pd.DataFrame(dataset.data,columns=dataset.feature_
names)

boston data[ '"MEDV'] = dataset['target’]

print(boston data.head())
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CRIM ZN INDUS CHAS NOX ... TAX PTRATIO B
LSTAT MEDV
0 0.00632 18.0 2.31 0.0 0.538 ... 296.0 15.3 396.90
4.98 24.0
1 0.02731 0.0 7.07 0.0 0.469 ... 242.0 17.8 396.90
9.14 21.6
2 0.02729 0.0 7.07 0.0 0.469 ... 242.0 17.8 392.83
4.03 34.7
3 0.03237 0.0 2.18 0.0 0.458 ... 222.0 18.7 394.63
2.94 33.4
4 0.06905 0.0 2.18 0.0 0.458 ... 222.0 18.7 396.90
5.33  36.2
[5 rows x 14 columns]

Once we have the data in hand, the best way to go about it is to plot
the histogram of all the features so that we can get an understanding of
the nature of their distribution. Rather than plotting the histogram of each
feature individually, the hist function in the Pandas package can be used
to plot them all in one go, as illustrated here:

fig, axis = plt.subplots(2,7,figsize=(16, 16))
boston_data.hist(ax=axis,grid=False)
plt.show()

From Figure 7-5, we can see that the distribution of the target variable
MEDV is like a normal distribution.
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Figure 7-5. Histogram plots of the Boston dataset features

Further, if we observe all the other parameters, the distribution for the
parameter RM (which denotes the average number of rooms per dwelling)
is also similar to the target MEDV. Therefore, the RM can definitely
be used for modeling the dataset. Also, the parameters DIS (weighted
mean of distances to five Boston employment centers) and LSTAT
(percentage of lower status of the population) have similar distribution.
The distribution of the parameter AGE (proportion of owner-occupied
units built prior to 1940) is exactly the opposite of these two parameters.
The rest of the parameters have less significant distribution compared
to the target parameter. Since these three parameters seem to be related
either positively or negatively, it is pointless to use all three for building
the model. So, we have to see which of these three parameters are related
to our target variable MEDV. The best way to do this is to measure the
correlation between these parameters using the corr function in the
Pandas package, as illustrated here:
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cols=['RM',"'AGE', 'DIS','LSTAT', 'MEDV']
print(boston data[cols].corr())

RM AGE DIS LSTAT MEDV
RM 1.000000 -0.240265 0.205246 -0.613808 0.695360
AGE  -0.240265 1.000000 -0.747881 0.602339 -0.376955
DIS 0.205246 -0.747881 1.000000 -0.496996 0.249929
LSTAT -0.613808 0.602339 -0.496996 1.000000 -0.737663
MEDV ~ 0.695360 -0.376955 0.249929 -0.737663 1.000000

From these results, it can be seen that the diagonal elements are all
1s, which implies maximum correlation, and they represent the self-
correlation values. If we look at the row corresponding to our target
parameter MEDV, we can see that RM is positively more correlated with
MEDV as we judged earlier looking at the histogram distribution. It can
be also seen that the parameter LSTAT is negatively more correlated with
MEDYV, which implies that there will be an inverse relationship between
these two parameters. A scatter plot of RM and LSTAT against MEDV,
respectively, would give us a better understanding of this relationship, as
illustrated here:

plt.subplot(1,2,1)

plt.scatter(list(boston data['RM']),list(boston data['MEDV']))
plt.xlabel('RM")

plt.ylabel('MEDV")

plt.subplot(1,2,2)

plt.scatter(list(boston data['LSTAT']),list(boston

data[ '"MEDV']))

plt.xlabel('LSTAT")

plt.ylabel('MEDV")

plt.show()
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Figure 7-6 confirms our conclusions derived using the distribution
graphs and the correlation values. It can be seen that RM and MEDV are
positively correlated; i.e., the median value of owner-occupied homes
increases with an increase in the average number of rooms per dwelling.
Similarly, it can be seen that LSTAT and MEDV are negatively correlated;
i.e., the median value of the owner-occupied home drops with an increase
in the percentage of a lower status of population. Therefore, these two
parameters are good choices to model the Boston housing dataset. It can
also be seen from the figure that there are some outliers in the RM versus
MEDV plot, which could be treated using the techniques discussed in
Chapter 5 before further processing.
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Figure 7-6. Scatter plot of RM and LSTAT versus MEDV
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Learning from Data

Learning from data just means extracting the information from the

data and using it for predicting/forecasting in order to make intelligent
decisions based on it. This area is becoming more popular because it is
applicable to various applications in different industries, such as financial,
healthcare, education, computer vision, politics, etc.

Learning from data is used in various situations when the
analytical solution is not required or there is no clear-cut model about
the problem or requirement of forecasting based on the previous
information, etc. Basically, three types of learning techniques
are available: supervised learning, unsupervised learning, and
reinforcement learning. Supervised learning utilizes the observations
of a process to develop a model. Supervised learning models are
trained based on the input and output observations (i.e., input and
output data) of the process. In unsupervised learning, the training data
doesn’t have any information about the output. The unsupervised
models categorize the model based on the characteristics of the data.
Also, unsupervised models can be used to find patterns in the data,
detect outliers by clustering similar data, find the structure of the data,
etc. The reinforcement learning model also doesn’t utilize the correct
information about the output. However, it has some possible output
with information about the quality of the output.
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CHAPTER 8  LEARNING FROM DATA

This chapter focuses on describing the learning model development
techniques by utilizing the Boston dataset. Then, we will implement the
learning models in the Raspberry Pi and analyze the industry data that is
acquired from the sensors. This implementation will be discussed as a case
study in Chapter 9.

Forecasting from Data Using Regression

Regression finds the relationship between the variables in a dataset.
Regression is used to identify the impact of one variable on another
variable. Also, it can be used to forecast a variable based on its previous
data. Regression models can be used in many areas such as forecasting the
trends in economics, predicting sales in business, predicting the impact

of some policies, and predicting the blood pressure levels in healthcare
applications.

In regression, there are two kinds of variables required to develop a
model: input and output. An input variable is the variable in a dataset
used to predict the output variable. An input variable in linear regression
is commonly denoted as X. An output variable is the variable for predicting
and is denoted as Y. Equation 8-1 shows the equation for linear regression.

Ye=o+pX ... (8-1)

Here, Ye is the estimated output variable, Y is the actual output
variable, and o and f§ are parameters of the linear regression model. For
example, if we want to buy a TV and try to estimate the cost of the TV
(i.e., output variable), we use input variables like the size of the TV. Now,
a, B, and Y are selected (randomly) as 2, 5, and €170, respectively. The
size of the TV (i.e., input variable) is 32 inch, and the estimated output of
the linear regression model in estimating the cost of the TV is shown in
Equation 8-2.
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Ye=2+5 *32
= €162 ...(8-2)

So, based on Equation 8-2, the cost of the TV is €162 when the size
of the TV is 32 inches, which is nearer to the actual cost of the TV: €170.
If we modify the parameters a and p as 0.1 and 0.5, respectively, now the
estimated cost of the TV is calculated as follows:

Ye=0.1+0.5 *32

=€16.1

The cost of the TV is drastically changed to €16.1. This shows that the
selection of a and f is important in predicting the output variable. Thus,
the objective in developing the linear regression model is to find o and p by
minimizing the difference between the actual output Y and the estimated
output Ye. There are many methods available to find the optimum
parameters of a and p. However, the ordinary least (OL) square method is
commonly used in finding the optimum parameters of a and f.

The OL method uses covariance and variance of the input variables for
identifying the parameters a and 3 as shown in Equation 8-3.

- Cov(X,Y)
- Var(X)
o-7-pX - (8:3)

Here, Y and X are the means of actual output and input variables.

Let’s consider the Boston dataset now. The RM variable is used for
representing the average number of rooms per dwelling, and the target
variable (i.e., output variable) MEDV is used for representing the median
value of owner-occupied homes in the thousands. We consider RM as
the input variable and MEDV as the output variable for linear regression
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modeling. Because RM and MEDV are interlinked with each other closely,
the linear regression model for those variables can be implemented using
the following code. For identifying the o and p parameters, the ordinary
least square method is used.

from sklearn.linear _model import LinearRegression
import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import load boston

import pandas as pd

dataset = load boston()

boston data=pd.DataFrame(dataset.data,columns=dataset.feature_
names)
Target=pd.DataFrame(dataset.target,columns=["target'])
# two variable for regression model

X1=boston data['RM"]

X=X1.to_numpy() # dataframe is converted in to array for
arithmetic operations

Y=dataset.target

xmean=np.mean(X)

ymean=np.mean(Y)

xcov=np.multiply((X-xmean), (Y-ymean))
xvar=(X-xmean)**2

# linear regression model

beta=xcov.sum()/xvar.sum()

alpha=ymean- (beta*xmean)

print(beta)

print(alpha)
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The output of a and p values from the OLS method is shown here:

Beta value is 9.10210898118031
Alpha value is -34.67062077643857

The linear regression model can be developed by using the previous a
and p values, as given in Equation 8-4.

Ye=-34.6706+9.1021*X ... (8-4)

Here, X is the input variable RM. It can be implemented using the
following code:

# prediction model
ye=alpha+beta*X

Let’s plot the actual output variable Y and the estimated model Ye,
which gives clear insight about their relationships and can be plotted using
the following code (see Figure 8-1):

# plot
plt.figure(figsize=(12,6))
plt.plot(X1,ye)
plt.plot(X,Y, 'ro0")
plt.title('Actual Vs Predicted')
plt.xlabel('X")

plt.ylabel('Y")

plt.show()
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Actual Vs Predicted
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Figure 8-1. Actual output variable versus estimated linear regression
model

Linear Regression using Scikit-Learn

In the previous example, a linear regression predictor uses one input
variable for predicting the output. The output can be predicted with more
than one variable based on the given linear regression (see Equation 8-5).

Ye=o+f,x,+ By Xot+ P3 Xst ... +PuXy e (8-5)

Equation 8-5 used n number of input variables for predicting the
output variable Ye. If we consider all the input variables of the Boston
dataset (totally 13 input variables) and output variables (MEDV), the
regression model by using multiple variables can be implemented using
Scikit-Learn and is given in the following code:

from sklearn.linear model import LinearRegression
import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

from sklearn.datasets import load boston

import pandas as pd

dataset = load boston()
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boston_data=pd.DataFrame(dataset.data,columns=dataset.feature_
names)
Target=pd.DataFrame(dataset.target,columns=["'target'])
# two variable for regression model

X=boston data

Y=Target

Im=LinearRegression()

model=1m.fit(X,Y)

print(f'alpha={model.intercept }")
print(f'beta={model.coef }")

Ye=model.predict(X)

Y1=Y.to numpy()

E=np.mean(Y1-Ye)

MSE=E**2

print(MSE)

# plot

plt.figure(figsize=(12,6))
plt.scatter(Y1,np.arange(0,len(Y)),color="red")
plt.title('Actual’)

plt.xlabel('No of samples')

plt.ylabel('Y")

#plt.figure(figsize=(12,6))
plt.scatter(Ye,np.arange(0,len(Y)),color="blue")
plt.legend(['Actual output data','Estimated Linear regression
model', 1)

plt.show()

Output:

For o and B values
alpha=[36.45948839]
beta=[[-1.08011358e-01 4.64204584e-02 2.05586264e-02
2.68673382e+00
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-1.77666112e+01 3.80986521e+00 6.92224640e-04 -
1.47556685e+00
3.06049479e-01 -1.23345939e-02 -9.52747232e-01
9.31168327e-03
-5.24758378e-01]]

To evaluate the quality of the model, we can use the mean square error
(MSE) metric. MSE finds the average of the squared error between the
actual output and the predicted output.

1.8463848451630152e-29
Figure 8-2 compares the actual output (Y) to the predicted output (Ye).
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Figure 8-2. Actual output data to the predicted output data using
linear regression

Principal Component Analysis

Principal component analysis is a statistical method used to extract the
strong features in a large dataset. In other words, the dimension of the
dataset can be reduced by extracting the important features from the
dataset. PCA uses standardization for identifying the distances between
the features and implements the covariance information for identifying
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any relationship between the features. Then, with the help of the
eigenvectors and eigenvalues, the principal components are calculated.
The principal components are used to extract the strong features, i.e.,
reduce the dimensionality of the data. Further, the principal components
are used to optimize the number of clusters for the k-means clustering
technique, and the Boston dataset is used for this work. The Boston dataset
has 13 features. In the first step, the strong features in the Boston dataset
are identified with the help of PCA using the following code:

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

#iconfig InlineBackend.figure format='retina'

# Load in the data

from sklearn.datasets import load boston

dataset = load boston()
df=pd.DataFrame(dataset.data,columns=dataset.feature names)
#df = pd.read csv('2013 2014 cleaned.csv')

# Standardize the data to have a mean of ~0 and a variance of 1
X _std = StandardScaler().fit transform(df)

# Create a PCA instance: pca

pca = PCA(n_components=13)

principalComponents = pca.fit_transform(X_ std)

# Plot the explained variances

features = range(pca.n_components )

plt.bar(features, pca.explained variance ratio , color='black')
plt.xlabel('PCA features')

plt.ylabel('variance %")

plt.xticks(features)

plt.show()

# Save components to a DataFrame

PCA_components = pd.DataFrame(principalComponents)
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From Figure 8-3, we can see that the first three features give a good
variance in the dataset.

0.4 -

variance %

0 1 2 3 4 5 6 7 8 9 10 11 12
PCA features

Figure 8-3. Features in the dataset with respect to variance

Hence, five features can be selected for clustering. For clustering,
k-means clustering can be used. To identify the optimal number of
clusters, the PCA is fit with the k-means clustering algorithms and
calculates the inertia of the clustering model with the selected principal
components. The following code identifies the inertia of the clustering
model and plots the number of clusters (i.e., k) with the inertia (this code
continues with the previous PCA code). Figure 8-4 shows the plot of inertia
against the number of clusters (k). From Figure 8-4, it can be concluded
that after the number of cluster (k = 5), there are no significant changes
occurring in the inertia. Hence, five can be chosen as the optimal number
of cluster heads for the given dataset.
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ks = range(1, 10)

inertias = []

for k in ks:
# Create a KMeans instance with k clusters: model
model = KMeans(n_clusters=k)

# Fit model to samples
model.fit(PCA components.iloc[:,:3])

# Append the inertia to the list of inertias
inertias.append(model.inertia )

plt.plot(ks, inertias, '-*', color="blue')
plt.xlabel('number of clusters, k')
plt.ylabel('inertia")

plt.xticks(ks)

plt.show()
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4000 ~
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number of clusters, k

Figure 8-4. Number of clusters versus inertia
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Outlier Detection Using K-Means Clustering

Clustering is an exploratory data analysis technique used in unsupervised
learning problems, i.e., when there is no prior knowledge about the data. The
idea behind clustering is to group the data points in a dataset into a number
of subgroups called clusters. The data points in each cluster are more similar
to the other points in the same cluster than those of other clusters.

The technique that is used widely for clustering operations is the
centroid-based method called k-means clustering, which is an iterative
algorithm that splits the dataset into k nonoverlapping clusters where
each data point is assigned to only one cluster. The condition for assigning
data points to a cluster is that the sum of the squared overlapping clusters’
distance of the data points to the cluster’s centroid is at a minimum. The
k-means algorithm works as follows:

1. Specify the number of clusters.

2. Randomly select center points for each cluster, also
called centroids.

3. Calculate the distance between each data point and
the cluster centroids, and assign the points to the
cluster whose distance is minimum.

4. Recompute the centroid for each cluster by taking the
average of all the data points assigned to the cluster.

5. [Iterate steps 3 and 4 until there is no change to the
centroids.

In addition to clustering the data, the k-means algorithm can be used
to identify outliers present in the data. The idea behind this approach is to
sort the distances from each data point to the cluster centroid in ascending
order and treat a portion of the data points that have the maximum
distance from the centroid as outliers.
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To illustrate this approach, let’s look at the Boston housing dataset.
As we discussed in Chapter 7, the average number of rooms per dwelling
(RM) and the medium value of owner-occupied homes in the thousands
(MEDV) are highly correlated. So, these two parameters are taken as
two-dimensional data for the clustering algorithm, as illustrated in the
following code:

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from sklearn.cluster import KMeans

from sklearn.preprocessing import scale

from numpy import sqrt, random, array, argsort

from sklearn.datasets import load boston

dataset = load boston()
boston_data=pd.DataFrame(dataset.data,columns=dataset.feature
names)

x=boston_data[ 'RM']

y=dataset.target

x=x.to_numpy() # convert pandas series data to numpy array
x=x.reshape(x.shape[0],1)

x=scale(x)

y=y.reshape(y.shape[0],1)

y=scale(y)

X=np.zeros((np.shape(x)[0],2))

X[:,0]=x[:,0]

X[:,1]=y[:,0]

The features of the dataset are first loaded to a dataframe. The column
corresponding to the feature RM is moved from the dataframe to the
variable x. Since the RM feature stored in variable x is in the Pandas series
format, it is converted to a NumPy array using the to_numpy function,
making it viable for applying the k-means algorithm. This array is then
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reshaped as it has to be stored along with the target variable MEDV in a
two-dimensional array. Then an additional scaling of the parameter is
done by using the scale function in the sklearn package. This is done

to normalize the data within a particular range. In a similar fashion, the
target MEDV feature (which by default is a NumPy array) is also stored in
the variable y, reshaped and scaled. The two variables x and y are then
combined in the variable X thereby making it a two-dimensional variable.
The application of k-means algorithm to this variable is illustrated in the
following code:

km=KMeans (n_clusters=1).fit(X)
distance = km.transform(X)
indexes = np.argsort(distance.ravel())[::-1][:20]

The Kmeans function imported from the sklearn package can be used
to implement the clustering algorithm. This function can take inputs such
as the number of clusters, the maximum number of iterations, and more.
In our code, we are giving an input of one for number of clusters. In other
words, we are going to group all the data points into a single cluster. Since
the maximum number of iterations is not specified, the default value of
300 iterations is taken by the function. After fitting the k-means algorithm
to our data, the next step is to compute the distance of each data point
from the cluster centroid. This is done using the transform function in the
sklearn package. The resulting distance variable is also an n-dimensional
NumPy array. Therefore, it is first flattened using the ravel function, and
then the flattened array is sorted in descending order. This means the array
starts with the data points that are further from the cluster center and ends
with the points that are closer to the center. This sorting is done using the
argsort function, which provides the indexes corresponding to the sorted
data points.

We know that outliers are abnormal data points that lie far away from
the other data points in the dataset. But what is considered abnormal is
left to the analyst who is aware of the requirements of the analysis. In the
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case of the Boston housing data, the outliers are the high median value for
homes with fewer rooms (overpriced), the low median value for homes
with more rooms (erroneous), and also depending on requirements the
median value of the number of room combinations beyond a particular
limit. To detect these outliers, we randomly pick the first 20 indexes from
the sorted index array and mark the data points corresponding to those
indexes in a scatter plot of all data points, as illustrated here:

f,ax=plt.subplots()

ax.scatter(X[:,0],X[:,1])

ax.scatter(X[indexes][:,0],X[indexes][:,1],edgecolors="1",
facecolors="none', s=100)

plt.xlabel('MEDV")

plt.ylabel('RM")

f.show()

Figure 8-5 shows a scatter plot of the average number of rooms per
dwelling against the median value of owner-occupied homes. The outliers
in the data are indicated by those points with red circles around them.
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Figure 8-5. Outliers detected using the k-means clustering algorithm
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Case Studies

This chapter presents real-world case studies for implementing data
science concepts. Three scenarios are considered: data science concepts
for human emotion classification with EEG signals, image data, and
Industry 4.0.

For human emotion classification, EEG signals of humans are
extracted using a NeuroSky MindWave Mobile kit, and the EEG signals are
received and analyzed in the Raspberry Pi. A NeuroSky MindWave Mobile
kit and the Raspberry Pi can be connected via Bluetooth. In image data,
data science steps are applied to preprocess the image data for further
analysis. In the Industry 4.0 case study, the Raspberry Pi acts as a localized
cloud. Here, many sensors are connected to the Raspberry Pi, and the
signals from the sensors are converted to structured data for further
analysis and visualization.

Case Study 1: Human Emotion Classification

An emotion is a feeling that is characterized by intense brain activity.

A considerable amount of research has been focused on recognizing
human emotions for a wide range of applications such as medical, health,
robotics, and brain-computer interface (BCI) applications. There are a
number of ways to recognize human emotions such as facial emotion
recognition, tone recognition from speech signal, emotion recognition
from EEG signals, etc. Among those, classification from EEG signals is a
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simple and convenient method. Also, EEG signals have useful information
about human emotions. Thus, many researchers have focused on
classifying human emotion using EEG signals. EEG signals are used to
record the human brain activity by measuring electrical signals by placing
electrodes on the scalp.

Let’s consider a simple emotion recognition system that uses a single
electrode device, namely, a NeuroSky MindWave device for acquiring the
EEG signals from participants and classifying their emotion as happy,
afraid, or sad with the help of machine learning algorithms, namely,
k-nearest neighbor (k-NN) and neural networks (NNs).

Methodology

The participants included are from different age groups, and they were
subjected to the experiment separately by showing them images in
different categories from the worldwide recognized database Geneva
Affective Picture Database (GAPED). The images include images of babies,
happy scenarios, animal mistreatments, human concerns, snakes, and
spiders, each kindling different emotions in the participants. The dataset of
features corresponding to the recorded EEG signals is then obtained for all
the participants, and these features are then subjected to machine learning
models like k-NN and NN, which classifies each signal into one of three
emotions: happy, afraid, or sad.

Dataset

The two devices that are used for data collection are the NeuroSky
MindWave Mobile device and a Raspberry Pi 3 board. The NeuroSky
MindWave device can be used to safely record the EEG signals. The
device consists of a headset, an ear clip, and a sensor (electrode) arm. The
headset’s ground electrodes are available on the ear clip, whereas the EEG
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electrode is on the sensor arm that will rest on the forehead above the eye
after putting on the headset. The device uses a single AAA battery, which
can last for eight hours.

This device is connected to a Raspberry Pi 3 board via Bluetooth,
as shown in Figure 9-1. It is a third-generation Raspberry Pi model that
comes with a quad-core processor, 1GB of RAM, and a number of ports for
connecting various devices. It also comes with wireless LAN and Bluetooth
support, which can help to connect wireless devices like our MindWave
Mobile. The software provided by the NeuroSky device vendor is installed

on the Pi board to acquire the serial data from the device.

(G

Figure 9-1. Raspberry Pi with MindWave Mobile connected via
Bluetooth

Interfacing the Raspberry Pi with MindWave
Mobile via Bluetooth

There are two ways to connect the MindWave Mobile with the Raspberry
Pi. The first one is to connect the MindWave Mobile with the Raspberry
Pi desktop. Initially switch on the Raspberry Pi, boot into the Raspberry
Pi operating system, and then switch on the MindWave Mobile Bluetooth.
Then click the Bluetooth symbol in the Raspberry Pi OS, which will show
the devices that are ready to pair with the Raspberry Pi. In the list, the
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MindWave Mobile can be selected, and the pairing password 0000 as
prescribed by the vendor can be used. Now, the MindWave Mobile device
is paired with the Pi, as shown in Figure 9-2.

@ B e

(b)
Figure 9-2. Raspberry desktop pairing with MindWave Mobile
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(c)

Figure 9-2. (continued)

The signals from the MindWave Mobile device can be extracted via
this Bluetooth connection. Another way to connect the Raspberry with
MindWave is by using Pypi 0.1.0. The steps are explained at https://
github.com/cttoronto/python-MindWave-mobile. This link provides
the data about alpha, beta, and gamma values of the brainwave signals.
However, in this work, the dataset is developed from the EEG signals.

Data Collection Process

The participants are seated in a small, darkened room, which is also
radio silent to prevent them from acoustic and visual disturbances. The
terms and conditions are explained prior to the experiment, and they are
instructed to stop the test if they have any discomfort. A manual score
sheet was also provided to the participants to rate their emotions during
each picture. There was a total of 15 participants, and 15 signals spread
across three different emotions were recorded, thereby making a total of
15 x 3 = 45 EEG signals. The emotions were happy, afraid, and sad.
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Initially, raw EEG signals were acquired from the user using a
NeuroSky device. The raw EEG signal extracted from the brain cannot be
directly used for further processing. As the subject is exposed to emotion
stimulation based on the visual inputs for a specific duration, the resulting
emotional reaction would be a time-varying one. It is essential therefore
to identify the duration of peak activity of the brain and extract the
features only for that duration so as to enhance the classification results.
To achieve this, the recording is started exactly one minute after the start
of experiment, which gives enough time to simulate the emotions of
the participants using the image slides corresponding to the particular
emotion. Also, to avoid dealing with large data, only 15 seconds of data
with 512 samples per second are considered, thereby reducing the data
size to just 15 x 512 =7680 samples, as illustrated in Figure 9-3. Figure 9-3
shows the signal for the entire duration of recording with the signal in the
peak period of brain activity indicated in red, and Figure 9-4 shows this
part separately.
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Figure 9-3. Sample EEG signal for the entire recording duration
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Figure 9-4. EEG signal extracted during peak activity of brain

Features Taken from the Brain Wave Signal

EEG signals are a rich source of brain function information. To get
meaningful information from EEG signals, different attributes of the signals
need to be extracted. A total of 9 different time domain attributes are
extracted from the EEG signals, and these features are illustrated as follows.
The latency to amplitude ratio (LAR) is defined as the ratio of the
maximum signal time to the maximum signal amplitude; see Equation 9-1.

LAR = -smax (9-1)

Here, ta={t|S(t)=Sma} is the time where the maximum signal value
occurs, and s,,,,=max{s(#)} is the maximum signal value.

The peak to peak signal value (PP) is defined as the difference between
the maximum signal value and the minimum signal value and is shown in
Equation 9-2.

Spp = Smax — Smin (9'2)
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Here, s, and sy, are the signal maximum and minimum values,
respectively.

The peak to peak time window (PPT) is defined as the difference
between the maximum signal time and the minimum signal time and is

shown in Equation 9-3.
tpp = ts max ts min (9_3)

Here, t, ,,.x and £, .,;, are the times at which the maximum and
minimum signal values occur.

The peak to peak slope (PPS) is defined as the ratio of peak to peak
signal value (PP) to the peak to peak time value (PPT) and is shown in
Equation 9-4.

s =2 (9-4)

Here, s,, is the peak to peak signal value, and f,, is the peak to peak
time window.

The signal power (P) is defined as the signal that exists for infinite time
for constant amplitude. The signal power is shown in Equation 9-5.

P=%Z|S(t) (9-5)

|2

The mean value of signal (1) is defined as the average of data samples
between the end points of the selected area and displays the average value.
The mean value of signal is given in Equation 9-6.

I =%ile:s[i] (9-6)

where N is total number of samples in signals.

178



CHAPTER9  CASE STUDIES

Kurtosis (K) is the sharpness of the peak of a frequency-distribution
curve and is given in Equation 9-7.
m4

K="2
m

(9-7)

2

Here, m, and m, is the fourth moment and variance of signal.
Mobility (M) is defined as the ratio of first-order variance of signal to
the variance of the signal and is given in Equation 9-8.

M=—->"0 (9-8)

Complexity (C) is defined as the first derivative of mobility divided by
mobility and is given in Equation 9-9.

C, =—*= (9-9)

The Python code for all these formulas for the nine time domain
features is written as a single function that is later called in the main
program. This function, which takes 15 seconds of EEG signal during the
peak emotional activity of brain and the corresponding time samples, is
illustrated here:

def eegfeat(ynew,tnew):
from scipy.stats import kurtosis
# latency to amplitude ratio
smax=max (ynew)
locmax=np.where(ynew==smax)
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180

tsmax=tnew[ locmax]
lar1=tsmax/smax

lar=lari[o0]

# peak to peak signal value
smin=min(ynew)
locmin=np.where(ynew==smax)
tsmin=tnew[locmin]
spp=smax-smin

# peak to peak time window.
tppl=tsmax+tsmin

tpp=tpp1[0]

# peak to peak slope
spps=spp/tpp

# mean value of signal
m=np.mean(ynew)

# kurtosis

k=kurtosis(ynew)

# mobility and complexity
n=ynew.shape[0]
dynew=np.diff(ynew)
ddynew=np.diff(dynew)
mx2=np.mean(np.power (ynew,2))
mdx2=np.mean(np.power (dynew,2))
mddx2=np.mean(np.power (ddynew,2))
mob=mdx2/mx2
complexity=np.sqrt(mddx2/(mdx2-mob))
mobility=np.sqrt(mob)

# signal power
tt=np.power(ynew,2)

s=0
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for i in np.arange(0,tt.shape[0]):

s=s+tt[i]

signalpower=s/ynew.shape[0]

feat = [lar, spp, tpp, spps, m, k, complexity, mobility,
signalpower]

return feat

Unstructured Data to Structured Dataset

Now that we have a function to extract features from the EEG signal, the
next step is to develop the code to get a structured dataset. First, the EEG
signals of all 15 participants corresponding to three different emotions are
loaded one by one using the pd.read_csv function inside a for loop. After
an EEG signal is loaded as a dataframe, the timestamp is removed first,
and then the amplitude values in the remaining column are converted

to a NumPy array. The array obtained in each iteration is then stacked to

a new variable thereby providing a final array consisting of 45 columns
corresponding to the 45 different EEG signals. Then each column of this
array is passed to the eegfeat function created earlier that provides nine
features corresponding to each column (each signal) there by providing

a final feature array of size 9x45. The dataset is given in Table 9-1 and
saved as emotion_datal.xls in an Excel sheet. Finally, the features are
scaled using the StandardScaler and fit function in the sklearns module.
This scaling works by first computing the mean and standard deviation

of each feature for all the 45 signals and then subtracting the mean from
all the values and dividing this difference by the standard deviation. The
following code illustrates the feature extraction process:

import pandas as pd

import numpy as np

from sklearn.preprocessing import StandardScaler
F=512
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a=np.zeros([(75*F)-(60*F),1])
for i in np.arange(1,4):
for j in np.arange(1,16):
filename = 'G:/Anand-EEG/EEG Database/Dataset/
user'+str(j)+' "+str(i)+'.csv'
s=pd.read csv(filename)
s.drop('Time',inplace = True, axis=1)
si=s[' Value'][60*F:75*F]
a=np.column_stack((a,s1.to_numpy()))
a=np.delete(a,0,1)
tnew=np.linspace(0,15,a.shape[0])
features=np.zeros([9,45])
for i in np.arange(0,a.shape[1]):
parameters=eegfeat(a[:,i],tnew)
for j in np.arange(0,features.shape[0]):
features[j,i]=parameters[j]
scaler = StandardScaler()
features=scaler.fit(features)
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Exploratory Data Analysis from the EEG Data

To read the emotion_data.xl1s file, use the following code:

import pandas as pd
emotion data= pd.read excel('\file path\emotion datai.xls")
To show the keys and first 5 dataset using the below code

print(emotion data.keys())

Output:

Index(['LAR', 'PP', 'PPT', 'PPS', 'Power', 'Mean', 'Kurtosis',
"Mobility', 'Complexity', 'Label'], dtype='object"')
print(emotion data.head(5))

Output:

LAR
Complexity
0 0.016024
3095.76805
1 0.021638
8861.53844
2 0.013645
5615.14591
3 0.020861
7488.51785
4 0.027464
17478.15660

PP PPT

Label

678  11.18505
‘Happy'
805 17.95937
'Happy'
1156 18.50241
"Happy'
913 20.69410
"Happy'
1051 29.44133
"Happy'

PPS

60.61663

44.82340

62.47835

44.11885

35.69811

Kurtosis

0.864608

0.908352

0.909418

0.869794

0.920326

Mobility
0.272718
0.323672
0.253198
0.274665

0.739543

By using the following code, the final five data points can be viewed:
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print(emotion data.tail(5))
LAR PP PPT
Complexity Label
40 0.000649 5070 3.141034
231638.99600 "Sad’
41 0.015449 856 14.583930
6764.73669 'Sad’
42 0.005224 3800 20.268260
63679.08050 'Sad’
43 0.016787 1187 19.338460
16224.20620 'Sad'
44 0.008937 494  4.879542
3185.67894 'Sad’
[5 rows x 10 columns]

CHAPTER 9

Mobility
0.173283
0.225146
0.094596
0.195176

0.304871

To check the shape of the data, use the following code:

print(emotion_data.shape)

CASE STUDIES

By using the below code, the datatypes in the emotion data can be

Output:

(45, 10)

displayed.
print(emotion_data.dtypes)
Output:

LAR float64
PP int64
PPT float64
PPS float64
Power float64
Mean float64
Kurtosis float64
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Mobility float64
Complexity float64
Emotion Label object
dtype: object

The modifications in the dataset include dropping the columns and
changing the data using the exploratory data analysis section in Chapter 8.

Figure 9-5 shows the visualization of a histogram of the mean data in
the emotion dataset.

Mean from Human emotion dataset mmm Happy
Hm Fear
. Sad

14 16

35 40

0 5 10 15 20 25

Figure 9-5. Histogram of mean for each emotion

Classifying the Emotion Using Learning Models

The next step after extracting the features is to apply a classification
algorithm to identify the emotion corresponding to the signals. Since we
are already aware of the emotions corresponding to each of the signals we
have used, it is obviously better to go for a supervised learning algorithm
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for classification. Before that, another important task is to split our data
into training and testing data. Out of the 15 signals for each emotion, let’s
consider the data corresponding to first 12 signals for training and the
data corresponding to the remaining 3 signals for testing. Also, the labels
corresponding to the training and testing data should be created. For this,
we are going to label the emotion happy as 1, fear as 2, and sad as 3. This
splitting of data as well as the labels is illustrated in the following code:

ml=np.ones((15,),dtype=int)
ids=np.concatenate((m1,2*m1,3*m1),axis=0)
x_train=np.concatenate((features[:,0:12],features[:,15:27],
features[:,30:42]),axis=1)
x_test=np.concatenate((features[:,12:15],features[:,27:30],
features[:,42:45]),axis=1)
y_train=np.concatenate((ids[0:12],ids[15:27],1ids[30:42]))
y_test=np.concatenate((ids[12:15],1ids[27:30],1ids[42:45]))

i. k-NN

Let’s first use the k-NN algorithm to classify the emotions based on
the data. k-NN is a simple supervised machine learning algorithm that
categorizes the available data and assigns new data to a particular category
based on a similarity score. The k-NN algorithm works by finding the
distance between the test data and the training data. After finding the
distance to each training data, the training data is sorted in ascending
order of the distance values. In this ordered data, the first k data is selected,
and the algorithm will assign the most frequent label occurring in this to
the test data. The Euclidean distance is the most commonly used distance
measure for the k-NN algorithm, and the distance between two data
points, x; and y;, is given by the following expression:

k
Euclidean distance = Z(xl. -y, )2

i=1
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The k-NN classification is implemented using the
KNeighborsClassifier package in the sklearn Python module. The
emotion classification code using this package is illustrated here:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion matrix, classification_
report
classifier = KNeighborsClassifier(n neighbors=16)
classifier.fit(x_train.T, y train)
y_pred = classifier.predict(x_test.T)
cm=confusion matrix(y test, y pred)
print("confusion matrix\n",cm)
print("Accuracy:", (sum(np.diagonal(cm))/9)*100)
Output:

confusion matrix

[[10 2]

[12 0]

[2 01]]

Accuracy: 44.44444444444444

The parameter n_neighbors in the previous code indicates the value of
k, which we have selected as 16. Therefore, 16 neighbors are considered for
making the classification decision. First, the distance between the test data
and all the other training data is computed. Then the training data points
are sorted in ascending order of the computed distance. In the sorted
data, the labels corresponding to the first 16 data are considered, and the
label that occurs more out of the 16 is assigned to the test data. This is
repeated for all nine test signals (three for each emotion), and the results
are displayed using a confusion matrix, which could be better understood
using the information in Table 9-2.
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Table 9-2. Confusion Matrix for Emotion Classification Using k-NN

Happy Fear Sad
Happy 1 0 2
Fear 1 2 0
Sad 2 0 1

In the confusion matrix, the row headers can be treated as inputs, and
column headers can be treated as outputs. For instance, if we consider
the first row, only one of the three EEG signals corresponding to the
“happy” emotion is identified correctly, and the remaining two signals
are wrongly classified as “sad” emotion. Similarly, in the second row, two
signals corresponding to the “fear” emotion are classified correctly, and in
the third row, one signal corresponding to the “sad” emotion is identified
correctly. To understand better, the diagonal elements in the confusion
matrix represent the data that is classified correctly, and the remaining
elements indicate misclassification. In total, four out of the nine test signals
are classified correctly. giving the system an accuracy of 44.44 percent.

Case Study 2: Data Science for Image Data

Though digital equipment available today can capture images at a higher
resolution and with more details than human vision, computers can only
treat those images as an array of numerical values that represents colors.
Computer vision refers to the techniques that can enable computers to
understand digital images and videos. Computer vision systems can be
thought of as a replication of the human vision system, enabling computers
to process images and videos in the same way humans do. Computer
vision systems are used in many applications such as face recognition,
autonomous vehicles, healthcare, security, augmented reality, etc.
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The first step in any computer vision system is to capture the images of
interest. This can be done by many means such as cameras, microscopes,
X-ray machines, radar, etc., depending on the nature of application.

The captured raw images, however, cannot be used directly and require
further processing. The raw images may not be of the desired quality due
to the noise introduced by various reasons. It is therefore essential to
enhance the captured raw images before further processing. To enable
the computer to learn from the images, it is sometimes essential to extract
useful information from the image using analysis techniques. In this
section, we will see how to capture images using a camera interfaced to

a Raspberry Pi board and discuss the steps involved in preparing the raw
images for further processing.

The first step is to interface a USB web camera to our Raspberry Pi

board, as shown in Figure 9-6.

S8 2.0

b
Figure 9-6. Raspberry Pi with webcam

To do this, we have to enable SSH and Camera in the Pi configuration
settings. Secure Shell (SSH) can help to connect with the Raspberry
Pi remotely over your local network, whereas enabling the Camera
configuration can help to interface a webcam with the Pi board. This can
be done with the following steps:

1. Type the command sudo raspi-configin the
Terminal window of your Raspberry Pi OS. This will
open the Software Configuration Tool window, as
shown in Figure 9-7.
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2. Go to Interfacing Options, as shown in Figure 9-8,
and enable both SSH and Camera.

3. Reboot the Raspberry Pi device.

Raspberry Pi Software Configuration Tool (raspi-config)

ngs
Configure connections to peripherals

2 Display Option configure display se
3 Interface Options
4 Performance Options Configure performance settings

5 Localisation Options Configure language and regional settings
6 Advanced Options Configure advanced settings

8 Update Update this tool to the latest version
9

About raspi-config Information about this configuration tool

<Select> <Finish>

Figure 9-7. Software Configuration Tool window

Raspberry Pi Software Configuration Tool (raspi-config)

connection to the Raspl ry P1 Camera
remote command line access using SSH

Pé SSH énaﬁlefd:snble

CASE STUDIES

P8 Remote GPIO Enable/disable

<Select>

P3 VNC Enable/disable graphical remote access using RealVNC
P4 SPI Enable/disable automatic loading of SPI kernel module
P5 I2C Enable/disable automatic loading of I2C kernel module
P6 Serial Port Enable/disable shell messages on the serial connection
P7 1-Wire Enable/disable one-wire interface

remote access to GPIO pins

<Back>

Figure 9-8. Interfacing options for enabling Camera and SSH
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Once the reboot is completed, run the 1susb command in the Terminal
window and check whether the connected USB webcam is listed. Then
open the Python IDE and type the following code to capture and save an

image using the webcam:

import cv2

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
camera=cv2.VideoCapture( )

ret, img = camera.read( )
cv2.imwrite('image.png',img)
img= cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
plt.imshow(img)

plt.axis('off")

plt.show( )

As shown in the code, the OpenCV package is used to work with images
in Python. To capture an image, a VideoCapture object is created first. The
read() function is used to capture the image using the created object and
then stored in a variable 'img'. The captured image can then be saved
using the imwrite() function. OpenCV displays an image in BGR format
instead of the standard RGB format. Therefore, the image is first converted
to an RGB image using the cv2.color function before displaying. To display
the image, the imshow() function in the Matplotlib package can be used.
Since the plots created with this package are enabled with an axis value by
default, it is essential to remove the axis while displaying images. This can
be done by setting the axis function in the Matplotlib package to the off
state. Figure 9-9 shows a sample image captured using the previous code.
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Figure 9-9. Image captured using a webcam interfaced to the
Raspberry Pi board

Exploratory Image Data Analysis

The image shows a few stationary objects lying on white paper. To
understand the acquired image data, it would be better to print the data
type and size of the image, as illustrated here:

print(type(img))
print(img.shape)
Output:
<class 'numpy.ndarray'>
(719, 1206, 3)

The captured image is a NumPy array. The image captured using the
webcam is usually in RGB form where there are three planes of pixels: Red,
Blue, and Green. In other words, each pixel in the image is composed of
three values that represent the proportion of red, blue, and green thereby
leading to various colors in the visible spectrum. The number 3 in the
shape of the image printed indicates the three planes; i.e., the image is
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composed of three planes corresponding to RGB, each with a size of 719x
1206 pixels. In many applications, other details such as edges, shapes,

etc., in the image are more important than the color information. For
instance, if our objective is to identify the stationary objects in the given
image, the shape of the objects would be more important than the color. In
such cases, the three-plane RGB image can be converted to a single-plane
grayscale image using the following code:

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
plt.imshow(gray,cmap= 'gray')
plt.axis('off")
plt.show( )
print(gray.shape)
Output:

(719, 1206)

Figure 9-10 shows a single-plane grayscale image where the colors
in the image are removed. This can be seen from the size of the image
printed in the previous code. Now the size of the grayscale image is just
719x1206 in a single plane. In some cases, the captured image may have
some missing values caused by defects in the image sensor. These values
may be reflected in the grayscale image as well, and these values can be
detected and treated by converting the image to a dataframe, as illustrated
here:

df=pd.DataFrame(gray)
s=df.isnull( ).sum( ).sum( )
print(s)
if s!=0:

df=df.ffill(axis=0)
gray=df.to_numpy( )
Output:

0
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The isnull( ) function can be used to detect the presence of missing
values along the rows and columns of the image. The sum( ) function can
be used to count the number of missing values in the dataframe along
rows and columns. If the result of the sum( ) function is not equal to zero,
then the image consists of missing values, and they can be treated using
the ffill( ) function, which replaces each missing value with the pixel
above it. This method of forward filling or backward filling will not cause
any visible changes in the image because pixel values are often closely
placed in an image except at edges in the image. As shown from the
previous code, the number of missing values is 0; i.e., there are no missing
values in the image. Once the image is checked and treated for missing
values, the dataframe can be converted back to a NumPy array using to_
numpy () in Pandas. Since the pixel values are closely placed, there may
be repetition of same pixel values at many regions in the image. Because
of this property, identification of duplicate values is irrelevant in the case
of the image data.

/

Figure 9-10. Image converted to grayscale
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Using a USB webcam or the Pi camera in natural lighting may often
result in poor-quality images. So, the next step after treating missing values
is to plot the histogram of the image. The histogram plot will give an idea
about the contrast of the image, as shown in Figure 9-11. This is illustrated
in the following code:

plt.hist(gray.ravel( ),bins=256)
plt.xlabel('bins")
plt.ylabel('No of pixels"')
plt.show( )

60000

50000 A

40000 A

30000 A

No of pixels

20000

10000

100 150 200 250
bins

Figure 9-11. Histogram of the grayscale image

The pixel values in a grayscale image range from 0 (representing
black) to 255 (representing white). The hist( ) function in the previous
code plots a bar chart of the count of each pixel value in this range. This
plot gives insight about the contrast of the image that we are dealing with.
Figure 9-7 shows the histogram of our grayscale image. It can be seen that
the majority of the pixels are in the range (120,160). If the spread of pixels
is concentrated in the lower bins, then we have a low-contrast image,
and vice versa. So, depending on this plot, a decision can be made as to
whether the image needs contrast adjustment.
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The other cause for the poor quality of images may be the presence of
noise induced by various factors. These noises can be visually perceived,
while observing the captured images, in the form of grains. In such cases,
these noises have to be removed before going for further processing. There
are many different kinds of noises such as Gaussian noise, salt and pepper
noise, etc., and there are many different types of filters that can be used to
remove those noises that are beyond the scope of this book. Let’s just look
at one particular filter used often in image processing called the averaging

filter. It is a low-pass filter that can be used to remove high-frequency
content from a digital image. This filtering works by passing a kernel of
particular size, say 3x3, across the dimensions of the image, taking the
average of all the pixels under the kernel area and replacing the central
element with this average. The overall effect is to create a blurring effect.
The following code illustrates the implementation of averaging filter to our
image. Figure 9-12 shows the image obtained after filtering.

blur=cv2.blur(gray, (3,3))
plt.imshow(blur)
plt.axis('off")

plt.show( )

/

Figure 9-12. Image obtained by average filtering
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Preparing the Image Data for Model

Once the preprocessing steps are completed, the next step is to analyze or
prepare the image for a learning model. This can be done in two ways. The
first way is to extract features that represent useful information and use
them for modeling. The features extracted may be another transformed
image, or they may be attributes extracted from the original image. There
are numerous features that can be extracted from an image, and the
selection of a particular feature depends on the nature of our application.
A discussion of these numerous features is beyond the scope of this book.
Instead, we will discuss one particular feature: edge detection.

Edges represent the high-frequency content in an image. Canny edge
detection is an algorithm that uses a multistage approach to detect a wide
range of edges in images. It can be implemented in Python by using the
Canny( ) function in OpenCV, as illustrated in the following code. Figure 9-13
shows the image after the edge detection process.

edge img=cv2.Canny(gray,100,200)
plt.imshow(edge img,cmap="gray')
plt.axis('off")

plt.show( )
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Figure 9-13. Image after edge detection

The second way is to directly feed the image to a deep learning model.
Deep learning is a popular machine learning approach that is being
increasingly used for analyzing and learning from images. This approach
can directly learn the useful information from the image and does not
require any feature extraction. The image may be resized to a different
shape and then fed to the learning model, or the image array may be
converted to a one-dimensional vector and then fed to the model.

Object Detection Using a Deep Neural Network

Object detection is a technique for identifying the objects in the real world
like a chair, book, car, TV, flowers, animals, humans, etc., from an image or
video. This technique detects, identifies, and recognizes multiple objects
in an image for better understanding or for extracting the information from
areal-world environment. Object detection plays a major role in computer
vision applications like autonomous vehicles, surveillance, automation
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in industries, and assistive devices for visually impaired people. Many

modules are available in the Python environment for object detection, and

they are as follows:

Feature-based object detection

Viola Jones object detection

SVM classification with HOG features
Deep learning object detection

Single-shot multibox detector (SSD) object
detection

You Only Look Once (YOLO) model object detection

Region-based convolutional neural network
(R-CNN)

Faster R-CNN

Here, we have used a single-shot multibox detector to identify the

multiple objects in an image or video. Single-shot multibox detectors were

proposed by C. Szegedy et al. in November 2016. SSD can be explained as

follows:

Single shot: In this stage, localization and
classification of the image are done with the help of
a single forward-pass network.

Multibox: This represents drawing the bounding
boxes for multiple objects in an image.

Detector: This is an object detector that classifies the
objects in an image or video.

Figure 9-14 shows the architecture of a single-shot multibox detector.
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In the architecture, the dimension of the input image is considered
as 300x300x3. The VGG-16 architecture is used as a base network, and
the fully connected networks are discarded. The VGG-16 architecture is
popular and has a strong classification ability with the transfer learning
technique. Here, a part of the convolutional layers of the VGG-16
architecture is used in the earlier stages. A detailed explanation of SSD
is available at https://towardsdatascience.com/understanding-
ssd-multibox-real-time-object-detection-in-deep-learning-
495ef744fab.

Exira Feature Layers
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I |
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Figure 9-14. Architecture of single-shot multibox detector (https://
towardsdatascience.com/understanding-ssd-multibox-real-time-
object-detection-in-deep-learning-495ef744fab)

The multibox architecture is a technique for identifying the bounding
box coordinates and is based on two loss functions such as confidence loss
and location loss. Confidence loss uses a categorical entropy for measuring
the confidence level of identifying the objects for the bounding box. Location
loss measures the distance of the bounding box, which is away from the
object in the image. For measuring the distance, the L2 norm is used. The
multibox loss can be measured with the help of the following equation:

Multi-box loss=confidence Loss+a* Location Loss
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This gives information about how far the bounding box landed from
the predicted objects. The following code implements the SSD configure
file with the DNN weights for detecting the objects in COCO names. The
SSD configure file (i.e., ssd_mobilenet v3_large coco 2020 01_14.
pbtxt) with the DNN weights (i.e., frozen_inference_graph.pb) for
detecting the objects in COCO names can be downloaded from https://
github.com/AlekhyaBhupati/Object Detection_Using_openCV.

COCO names are called common objects in this context, and the
dataset for the COCO names is available at the official website: https://
cocodataset.org/#home. COCO has segmented common objects such as
chair, car, animals, humans, etc., and these segmented images can be used
to train the deep neural network. See Figure 9-15 and Figure 9-16.

B! frame s | X

Figure 9-15. Input image for object identification
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Here’s the code:

import cv2
thres = 0.5# Threshold to detect object
cap = cv2.VideoCapture(0)
cap.set(3,1280)
cap.set(4,720)
cap.set(10,70)
classNames= []
classFile = 'coco.names'
with open(classFile,'rt") as f:
classNames = f.read().rstrip('\n').split('\n")

configPath = 'ssd mobilenet v3 large coco 2020 01 14.pbtxt'
weightsPath = 'frozen_ inference graph.pb'

net = cv2.dnn_DetectionModel(weightsPath,configPath)
net.setInputSize(320,320)
net.setInputScale(1.0/ 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
print('1st done')
while True:
success, img = cap.read()
classIds, confs, bbox = net.detect(img, confThreshold=thres)
print(classIds, bbox)
if len(classIds) != o:
for classId, confidence,box in zip(classIds.
flatten(),confs.flatten(),bbox):
cv2.rectangle(img,box,color=(0,255,0),thickness=2)
cv2.putText(img,classNames[classId-1].upper(),
(box[0]+10,box[1]+30),
cv2.FONT_HERSHEY_ COMPLEX, 1, (0,255,0),2)
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cv2.putText(img,str(round(confidence*100,2)), (box[0
]+200,box[1]+30),
cv2.FONT_HERSHEY_ COMPLEX, 1,
(0,255,0),2)
cv2.imshow("Output”,img)
# Hit 'q' on the keyboard to quit!

Figure 9-16. Output image with identified objects

When the code is executed, the frames in the video from the webcam
are captured using the OpenCV capture functions. Then, each and every
frame is inserted into the already trained SSD-DNN model for identifying
the objects. The SSD-DNN model classifies the objects based on the COCO
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names and creates a bounding box on the detected images with a COCO
name label and accuracy. The video file of Figure 9-15 was fed as the input
to the previous program. The figure has the objects such as a chair, a book,
and a mouse. From Figure 9-16, it can clearly be concluded that the SSD-
based DNN model identifies the three objects with an accuracy of 72.53
percent for the chair, 67.41 percent for the book, and 81.52 percent for the
mouse.

Case Study 3: Industry 4.0

Industry 4.0 represents the fourth revolution in the manufacturing
industry. The first revolution in industry (i.e., Industry 1.0) was the
creation of mechanical energy with the help of steam power to increase the
productivity in assembly lines. The second revolution (i.e., Industry 2.0)
incorporated electricity into the assembly line to improve productivity. The
third revolution (i.e., Industry 3.0) incorporated computers for automating
the industrial process. Currently, Industry 4.0 is adopting computers, data
analysis, and machine learning tools for making intelligent decisions or
monitoring the process with the help of data that is acquired with sensors.
The Internet of Things (IoT) has recently played a major role in acquiring
data and transmitting it for remote access.

Figure 9-17 describes the basic process flow in Industry 4.0. Initially,
the physical system’s data is collected with the help of sensors and made
into a digital record. Then the digital record of the physical systems is
sent to a server system for real-time data processing and analysis. The
data science techniques are applied in this stage for preprocessing and
preparing the data. Then modern learning algorithms can be used for
intelligent decision-making by predicting the output with the learned
model. Moreover, visualization techniques are used to monitor the real-
time data of the physical systems. Here, the Raspberry Pi can be used as a
server or a localized cloud for real-time data processing.
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2. Analyze the data

Preprocessing and analyze the data
with the help of well-defined
algorithms

o [
Bh <

1. Physical to digital 3. Taking decision or
visualizing the data for human
Capture the physical variable with take decision

the help of sensors and convert
that in to digital data form

Figure 9-17. Industry 4.0 block diagram

Raspberry Pi as a Localized Cloud for
Industry 4.0

To implement Industry 4.0, a sophisticated computer is required to
connect the devices, collect the data, and process the data. The collected
data can be stored in a cloud service for further processing. However, these
days, subscriptions of cloud services are costlier and suitable for highly
profitable companies. Small-scale companies will want to implement
alocalized cloud for real-time processing. Further, a localized cloud
approach can provide data security because it’s on-site and attackers are
not able to invade via remote access.

As discussed in Chapter 3, the Raspberry Pi can act as a localized
cloud that can connect sensors, IoT devices, other nearby computers, and
mobile phones, as shown in Figure 9-18. Sophisticated computers also can
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act as a localized cloud, but they occupy a large space. Also, it is difficult
to implement the computers in remote areas. The Raspberry Pi has the
advantage of occupying less space and can be implemented in remote
areas. Based on this, the Raspberry Pi is used as a localized cloud for the
Industry 4.0 framework, as shown in Figure 9-19.

Raspberry Pi
(Localized Cloud)

Sensors &
10T Devices

Mobile Phones

Figure 9-18. The Raspberry Pi as a localized cloud

Wireless
Sensors

Electronic
Components

GPIO Pins On-board WiFi

Raspberry Pi

“%  (Edge Device) microHOMI -
HMDI
Real-time data Converter
processing

Figure 9-19. Industry 4.0 framework with the Raspberry Pi

There are three modules available in the Industry 4.0 framework with
the Raspberry Pi. The modules are collecting the data from the sensors,
collecting the information using cameras, and connecting the Raspberry Pi
with other computers.
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Collecting Data from Sensors

We will use the temperature and humidity sensor to measure the
temperature and humidity. Connect the DHT 11/22 sensor module to
the Raspberry Pi, as shown in Chapter 3. The following code collects the
temperature and humidity percentage for 100 seconds and stores the
collected data as a CSV file.

import Adafruit DHT
import time
from datetime import datetime

DHT SENSOR = Adafruit DHT.DHT11
DHT PIN = 17

data = []

while _ in range(100):
humidity, temperature = Adafruit DHT.read(DHT SENSOR, DHT PIN)
if humidity is not None and temperature is not None:

now = datetime.now()
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")

data.append(dt_string,humidity,temperature)
time.sleep(60*5)

df = pd.DataFrame(data)
df.to csv('data.csv',index=None,header=None)

The CSV file would look like Table 9-3.
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Table 9-3. Timestamped Data from
the Humidity and Temperature Sensors

17/05/2020 01:05:14 26.24  69.91
17/05/2020 01:10:14 26.24  70.65
17/05/2020 01:15:14 26.22  68.87
17/05/2020 01:20:14 26.15  70.11
17/05/2020 01:25:14 26.11 69.02

Preparing the Industry Data in the Raspberry Pi

We will use a dataset consisting of two columns of data recorded from the
temperature and humidity sensor connected to a Raspberry Pi board; the
data was recorded every 5 minutes over a duration of 28 hours. So, the
dataset is essentially time-series data in . csv format. It is always better to
get an understanding of the dataset before doing preprocessing. Therefore,
the first step will be to read the file and print the contents, as illustrated
here:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np
dataset=pd.read _csv('datasets 384649 744229 log temp.csv')
print(dataset.head())

Output

Date Time Temperature Humidity
0 3/14/19 19:33:07 T=22.0 H=20.0
1 3/14/19 19:38:10 T=22.0 H=20.0
2 3/14/19 19:43:11 T=22.0 H=26.0
3 3/14/19 19:48:14 T=22.0 H=26.0
4 3/14/19 19:53:15 T=22.0 H=20.0
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From the first five entries of the dataset printed, it is clear that the data
needs to be cleaned before we start analyzing it. The first two columns
consisting of the date and time of the entry are not needed for the analysis,
and hence those columns can be dropped. The third and fourth columns
consisting of the actual data are a mix of string and numbers. We have to
filter out these inappropriate values and convert the dataset from string
to float. These two operations can be performed as illustrated here:

# drop the date and time column

drop=[ 'Date’, 'Time']

dataset.drop(drop, inplace=True,axis=1)

# remove the 'T=' and 'H=' string

dataset[ 'Temperature']=dataset['Temperature'].str.
replace('T=","")

dataset[ 'Humidity']=dataset[ 'Humidity'].str.replace('H=","")
dataset=dataset.astype(float)

print(dataset.head())

Output:

Temperature Humidity
0 22.0 20.0
1 22.0 20.0
2 22.0 26.0
3 22.0 26.0
4 22.0 20.0

The next step is to check for missing data in both columns. As
discussed earlier, the missing data is normally in the form of NaN, and
the function isna() from the Pandas package can be used to detect the
presence of such data. The function where() from the NumPy data can
be used along with the function isna() to get the location of the missing
values in the respective columns, as illustrated here:
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print(np.where(dataset['Temperature'].isna()))
print(np.where(dataset[ 'Humidity'].isna()))

Outpu:

(array([206, 207, 214, 215, 216, 217, 218, 219, 220, 221, 222,
223, 224, 225, 226, 227], dtype=int64),)

(array([206, 207, 214, 215, 216, 217, 218, 219, 220, 221, 222,
223, 224, 225, 226, 227], dtype=int64),)

As we can see from the previous result, there is missing data in both
the temperature column and the humidity column, and the location of
the missing data is the same in both columns. The next step will be to
treat the missing values. The method of treating the missing values can
vary depending on the nature of data. In our dataset, since we are have
temperature and humidity values measured every five minutes, it is safe to
assume that there will not be much variation over the range of the missing
values. Therefore, the missing values can be filled using the ffill method,
which stands for “forward fill” where the missing values are replaced
by the values in the previous row. This can be implemented using the
fillna() function in the Pandas package. After the implementation of this
filling process, this can be verified by using the isna().any() function,
which will return false if there are no missing values in any of the columns,
as illustrated here:

dataset[ 'Temperature']=dataset['Temperature'].
fillna(axis=0,method="ffill")
dataset[ 'Humidity']=dataset[ 'Humidity'].
fillna(axis=0,method="ffill")
print(dataset.isna().any())
Output:

Temperature False

Humidity False

dtype: bool
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Now that the missing values are treated, the next step is to look for
outliers in the data. For this, let’s use the Z-score we discussed earlier.
Before computing the Z-score, the entries in the dataset should be
converted to integers. The following code illustrates the detection and
removal of outliers using the Z-score:

from scipy import stats
z=np.abs(stats.zscore(dataset))
dfi=dataset[z>3]

print(df1)
dataset=dataset[(z<3).all(axis=1)]
Output:

Temperature Humidity
47 9.0 140.0
157 37.0 12.0

It can be seen from the previous illustration that there are two outliers
corresponding to the row indices of 47 and 57. Rather than removing the
outliers that correspond to the data points with a Z-score greater than 3,
we retain all the data points with a Z-score less than 3.

Exploratory Data Analysis for the Real-Time
Sensor Data

We discussed some of the fundamental plots used frequently by data
scientists and demonstrated each plot with some readily available datasets.
In this section, we are going to demonstrate some plots using real-time
sensor data. Let’s take the same temperature and humidity sensor data
that we used in Chapter 5 to discuss the concepts of preparing the data.

As we already went through all the data cleaning steps in that chapter, the
same code is provided here for preparing the data before going for plots:
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import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from scipy import stats
dataset=pd.read csv('datasets 384649 744229 log temp.csv')
# drop the date and time column

drop=[ 'Date’, 'Time']

dataset.drop(drop, inplace=True,axis=1)

# remove the string header'T=' and 'H='

dataset[ 'Temperature']=dataset['Temperature'].str.
replace('T=","")

dataset[ 'Humidity']=dataset[ 'Humidity'].str.replace('H=","")
dataset=dataset.astype(float)

print('After removing inappropriate data\n',dataset.head())
# detect the location of missing data, if any
print('Missing values in temperature\n',np.
where(dataset[ ' Temperature'].isna()))

print('Missing values in humidity\n',np.

where(dataset[ 'Humidity'].isna()))

# filling the missing values using forward fill

dataset[ 'Temperature']=dataset['Temperature'].
fillna(axis=0,method="ffill")

dataset[ 'Humidity']=dataset[ 'Humidity'].
fillna(axis=0,method="ffill")

# detect and remove outliers using z-score
z=np.abs(stats.zscore(dataset))

dfi=dataset[z>3]

dataset=dataset[(z<3).all(axis=1)]

print(dataset.head())
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Output:
After removing inappropriate data

Temperature Humidity

0 22.0 20.0

1 22.0 20.0

2 22.0 26.0

3 22.0 26.0

4 22.0 20.0

Missing values in temperature
(array([206, 207, 214, 215, 216, 217, 218, 219, 220, 221,
222, 223, 224, 225, 226, 227], dtype=int64),)

Missing values in humidity
(array([206, 207, 214, 215, 216, 217, 218, 219, 220, 221,
222, 223, 224, 225, 226, 227], dtype=int64),)

Temperature Humidity
0 22.0 20.0
1 22.0 20.0
2 22.0 26.0
3 22.0 26.0
4 22.0 20.0

Visualizing the Real-Time Sensor Data

Now that the data cleaning process is complete, the next step is to plot

the data. The type of plot to be used depends on the nature of data as well

as the requirements of the analysis procedure. Since we have taken the
measurements of temperature and humidity over a duration of 28 hours, it is
ideal to plot them with respect to time. But, to get a better understanding of
the variation of these two parameters, the average value is taken every four
hours, and these averages are plotted using a bar plot. If we want to visualize
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the distribution of temperature and humidity over the entire duration rather
than their variation, then the range of temperature and humidity can be
divided into bins, and a count of the values in each bin can be used to make
a pie chart. These three types of plots are illustrated as follows:

# Taking average over every 4 hours

a=dataset.shape[0]

b=[]

c=[]

for i in np.arange(0,a-(a%12),48):
b.append(np.mean(dataset.Temperature[i:i+47]))
c.append(np.mean(dataset.Humidity[i:1i+47]))

# Temperature vs Time over 28 hours

plt.subplot(221)

plt.plot(np.linspace(0,28,a),dataset.Temperature)

plt.title('Temperature vs Time')

# Humidity vs Time over 28 hours

plt.subplot(222)

plt.plot(np.linspace(0,28,a),dataset.Humidity)

plt.title('Humidity vs Time")

#Bar plot of average temperature over every 4 hours during the

28 hours

plt.subplot(223)

x=['1','2",'3",'4",'5','6",'7"]

plt.bar(x,b)

plt.title('Average temperature over every 4 hours')

#Bar plot of average humidity over every 4 hours during the 28

hours

plt.subplot(224)

plt.bar(x,c)

plt.title('Average humidity over every 4 hours')

#Pie chart for temperature distribution
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d=pd.DataFrame(dataset.Temperature.value counts(bins=4))
plt.subplot(235)

plt.pie(d.Temperature,labels=d.index)
plt.title('Temperature distribution")

#Pie chart for humidity distribution
e=pd.DataFrame(dataset.Humidity.value counts(bins=4))
plt.subplot(236)

plt.pie(e.Humidity,labels=e.index)

plt.title('Humidity distribution")

plt.show()

In Figure 9-20, the first two plots show the distribution of temperature
and humidity where every sample of the data is plotted along the time axis,
which is indicated in hours. We can see that the temperature and humidity
are inversely proportional as expected. But the distribution over time is
better expressed by taking the average of the samples every four hours and
plotting the data in a bar chart, as shown in the third and fourth figures.
The fifth and sixth figures show pie charts that focus on the distribution of
temperature and humidity rather than their variation over time. Since the
sensor data is recorded for only 28 hours, there will not be large variations
in the data, and hence only four bins are used to plot the distribution.
From these two figures, we can see that the temperature is mostly in the
range of 15 to 20 during those 28 hours, and the humidity is mostly in the
range of 19 to 25, respectively.
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Temperature vs Time Humidity vs Time Average temperature over every 4 hours
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Figure 9-20. Variation and distribution of temperature and humidity

Report Generation by Reading Bar Codes Using
Vision Cameras

Today many industries have documented their products with the help of
barcodes and QR codes. Information about the product can be printed
on the product for easy identification and documentation. Dedicative
bar/QR code scanners are available on the market, but it requires human
effort to scan the bar/QR code on the products. This may decrease
productivity on the assembly line. Nowadays, vision systems are employed
to automatically scan the bar/QR code on the products. This will improve
productivity by eliminating the human effort and by reducing the time on
the assembly line. Hence, a camera can be interfaced with the Raspberry
Pi to scan the bar/QR code of the products on the assembly line.

We already discussed how to enable cameras on the Raspberry Pi in
case study 2 of this chapter (refer to case study 2 for the steps to interface
a webcam with the Raspberry Pi). The following code [30] continuously
collects the images of the product on the assembly line, identifies the bar/
QR code in the image, decodes the information in the bar/QR code, and
displays the decoded information on the image screen.
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# import the required packages

from imutils.video import VideoStream
from pyzbar import pyzbar

import argparse

import datetime

import imutils

import time

import cv2

# construct the argument parser and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-o0", "--output", type=str, default="barcodes.csv",
help="path to output CSV file containing barcodes")

args = vars(ap.parse_args())

# initialize the video stream and allow the camera sensor to
warm up

print("[INFO] starting video stream...")

vs = VideoStream(src=0).start()

#vs = VideoStream(usePiCamera=True).start()

time.sleep(2.0)

# open the output CSV file for writing and initialize the set of
# barcodes found thus far

csv = open(args["output"], "w")

found = set()

# loop over the frames from the video stream

while True:
# grab the frame from the threaded video stream and resize
it to
# have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width=400)
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# find the barcodes in the frame and decode each of the
barcodes
barcodes = pyzbar.decode(frame)
# loop over the detected barcodes
for barcode in barcodes:
# extract the bounding box location of the barcode
and draw
# the bounding box surrounding the barcode on the image
(X, y, w, h) = barcode.rect
cv2.rectangle(frame, (x, y), (x +w, y + h), (0, 0,
255), 2)

# the barcode data is a bytes object so if we want to
draw it

# on our output image we need to convert it to a
string first

barcodeData = barcode.data.decode("utf-8")
barcodeType

barcode.type

# draw the barcode data and barcode type on the image

text = "{} ({})".format(barcodeData, barcodeType)

cv2.putText(frame, text, (x, y - 10),
cv2.FONT_HERSHEY SIMPLEX, 0.5, (0, 0, 255), 2)

# if the barcode text is currently not in our CSV
file, write
# the timestamp + barcode to disk and update the set
if barcodeData not in found:
csv.write("{},{}\n".format(datetime.datetime.now(),
barcodeData))
csv.flush()
found.add(barcodeData)
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# show the output frame
cv2.imshow("Barcode Scanner", frame)
key = cv2.waitKey(1) & OxFF

# if the "q key was pressed, break from the loop
if key == ord("q"):
break

# close the output CSV file do a bit of cleanup
print("[INFO] cleaning up...")

csv.close()

cv2.destroyAllWindows ()

vs.stop()

The previous code acquires an image using a webcam and captures
each and every frame using a while loop. Further, the frames are displayed
continuously with the help of an infinite while loop. The 'q" key is used to
break the infinite while loop. Then, the image acquisition can be released
with the help of cap.release. In the program, each acquired frame is fed
to the pyzbar module to identify the bar/QR code in the image and also
to decode the data in the bar/QR code [30]. The decoded information is
displayed in the corresponding frame. Figure 9-21 shows the output of the
program.
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A Barcode Scanner O X B! Barcode Scanner = a x

Figure 9-21. Output of barcode and QR code scanner

Transmitting Files or Data from the Raspberry Pi
to the Computer

In some scenarios, the data in the Raspberry Pi needs to be shared with
nearby computers. Also, if the Raspberry Pi is somewhere else, it needs to
be accessed via remote access. Many ways are available to transfer the data
from the Raspberry Pi to other computers. One of the easiest and more
efficient ways is to use the VNC viewer for sharing data and for remote
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access. VNC is the graphical desktop sharing application that allows you to
control one system (i.e., the Raspberry Pi) from another system via remote
access. This section discusses the installation procedure and usage of
the VNC viewer for sharing files and controlling the Raspberry Pi from a
remote desktop computer using VNC.

To install the VNC in Pj, the following code is used in the command
window in the Raspberry Pi, as shown in Figure 9-22:

sudo apt update
sudo apt install realvnc-vnc-server realvnc-vnc-viewer

B Bl aesptenyp - . 2%

Figure 9-22. Installation of the VNC viewer in the Raspberry Pi

Meanwhile, VNC viewers need to be installed on a remote desktop
computer. If the remote desktop computer has a different operating system
(OS), VNC is compatible with all the OSs. After installing the VNC on the
Pi, we have to enable the VNC server in the Raspberry Pi. The VNC server
can be enabled graphically in the Raspberry Pi by following these steps:
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Figure 9-23. Graphically enabling the VNC server on the Pi
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Go to the Raspberry Pi graphical desktop, and select
Menu » Preferences » Raspberry Pi Configuration.
The Raspberry Pi Configuration window will open,

as shown in Figure 9-23.

In the Raspberry Pi Configuration window, choose
the Interfaces option and ensure that VNC is
enabled. If VNC is not enabled, choose the Enable
button in the window.

After, enabling the VNC server, click the VNC logo

in the upper-right corner of the Raspberry Pi
graphical desktop. The VNC viewer app window will
open. In it, the IP address of the Raspberry Pi is
displayed, as shown in Figure 9-8. The IP address
should appear only if the Raspberry Pi is connected
to a network. Here, the Raspberry Pi is connected
via a WiFi network using a WiFi dongle/mobile
phone hotspot.
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These procedures are for creating a private connection between a
remote desktop with the Raspberry Pi. To create a private connection,
both the remote desktop and the Raspberry Pi are connected in the same
network. This will create a connection only within the campus of the
company. If the user wants to upload the data to the cloud, then the user
needs to sign in to the VNC viewer for connecting the Pi with the remote
desktop, which can be anywhere in the world.

By opening the VNC viewer in another remote desktop, as shown
in Figure 9-24, the IP address of the Raspberry Pi is entered at the space
provided, and the VNC server establishes the connection between the
computer and the Raspberry Pi. The login window will open, as shown in
Figure 9-25, and ask for the username and password.

$ D B Crovomescens [llesamoenpc-  [|/2NNCSever . 2 1514
VIC CONNeCT & Fossen P Esnen - Servce i (] .OJ

Connectivity Security

Hes comrarriol use cry. Dasnkoed VIC Viewee o et connecied.

Figure 9-24. VNC viewer in Raspberry Pi
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Figure 9-25. Establishing a connection from a desktop to the Pi using
the VNC viewer

Typically, the username and password for the Raspberry Pi is pi. Enter
pi for the username and password, and the Raspberry Pi desktop will
appear on the remote desktop computer, as shown in Figure 9-26.

Figure 9-26. Raspberry Pi graphical desktop on the remote
computer
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Now, the Raspberry Pi desktop can access other computers remotely.
Also, the files and data in the Raspberry Pi can be shared by using the file
sharing option in the VNC viewer, as shown in Figure 9-27.

Figure 9-27. File transfer from Raspberry Pi on remote desktop
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trends, 10
unstructured data, 2-3

Data transmission/transfer
Arduino/Raspberry Pi, 89

Arduino code, 90-91

Raspberry Pi Python

code, 91-92
GPIO pins, 89-90
parallel/serial

communication, 88
USB cable, 89

Discrete-time/deterministic

signals, 81

E,F

Edge computing
computing power, 76
devices, 75-76
self-driving cars, 75

Exploratory data analysis (EDA), 135

Boston housing price
dataset, 150-154

column modifications, 140-141

dataset, 135-140
describe() function, 139
statistical analysis
binomial distribution,
144-146

234

normal distribution, 146-149
numerical data, 141-142
probabilities, 142

uniform distribution, 142-143

General-purpose input/output

(GPIO), 12

controlling process, 62-63
input signals, 64

outputs, 62

pinout reference, 61

pins, 60

Sensors

analog signals, 65-66
digital output data, 64-65
low/high inputs, 64
reading process, 64

High-Definition Multimedia

Interface (HDMI), 56

Human emotion

classification, 171-172

Image data
Camera configuration, 192
computer vision systems, 191
data analysis

averaging filter, 199



captured image, 195-197
grayscale, 197
histogram, 198
edge detection, 200-201
interfacing options, 193
Isusb command, 194
object detection, 201
identification, 204
multibox architecture, 203
output image, 206
Python environment, 202
single-shot multibox
detector, 202-203
source code, 205-207
Raspberry Pi board, 195
software configuration tool
window, 193
webcam, 192
Industry 4.0
barcode/QR code scanner, 223
block diagram, 207-208
collecting data, 210-211
file transfer (computers)
command window, 224
Raspberry Pi graphical
desktop, 227
remote access, 223
remote desktop, 228
VNC viewer, 224
industry data, 211-214
localized cloud approach
framework, 209
remote access, 208
overview, 207

INDEX

real-time sensor data, 214-216
vision camera systems, 219-223
visualization, 216-219
Integrated development and
learning environment
(IDLE), 17
interactive mode, 18
run module, 19-20
script file window, 19
Integrated development
environment (IDE), 16
comments, 20
IDLE, 17-20
Jupyter Notebook, 17
PyCharm, 17
spyder, 17
Internet of Things (IoT), 52
Interquartile range (IQR), 111

J

Jupyter Notebook, 17

K

K-Means Clustering
algorithm, 166
approaches, 167
data points, 169
features, 167
meaning, 166
NumPy array, 168
outliers, 168-169
source code, 168

235



INDEX

L

latency to amplitude
ratio (LAR), 177
Learning data, 155
clustering, 166-169
regression
actual output variable vs.

estimated linear model, 160

clusters vs. inertia, 165

input/output variable, 156

linear regression model,
156-159

mean square error (MSE), 162

OLS method, 159
OL square method, 157
principal component
analysis, 162-165
Scikit-Learn (linear
regression), 160-162
square method, 158
reinforcement learning
model, 155
supervised/unsupervised
learning, 155

Machine learning
Scikit-Learn, 44
TensorFlow, 47

Matplotlib package
bar charts, 129-131
histogram, 127-129

236

line plot, 124-127
pie charts, 132-134
scatter plot, 122-124
Methodology
brain function, 177-181
data collection process, 175-177
dataset, 172-173
exploratory data
analysis, 186-188
histogram, 188
human emotion dataset
features, 183
learning models, 188-191
MindWave mobile vs.
Bluetooth, 173-175
unstructured/structured
dataset, 181-185
worldwide recognized
database, 172

N

Natural language processing
(NLP), 11
Negative temperature coefficient
(NTC), 68
Nondeterministic signal/random
signal, 81
Normal distribution
deviation, 149
different mean values, 148
empirical rule, 149
norm.pdf function, 147



probability density function
(pdf), 146
standard values, 148

O

Operating system (OS), 53-55

P, Q

Pandas functions, 44-47
Peak time window (PPT), 178
Preparation process (data), 99
Boolean indexing, 102
DataFrame, 104
cleaning process, 107
CSV file, 105
duplicate entries, 118-119
data structure, 104
Excel data files, 105
handling missing values,
107-110
inappropriate values, 116-118
outliers, 110-113
quarters, 111
URL data, 106
Z-score, 113-116
mathematical operations, 103
Pandas/data structures
dataframes/series, 99
data structure, 100
installation, 100-101
series, 100-103

INDEX

Python programming, 13
control flow
statements, 31-32
data scientists, 13-14
data types
Boolean variables, 22
complex numbers, 22
floating-point
numbers, 22
integer (int), 21
numeric data types, 21
numeric operations, 23
sequence, 24-30
exception handling, 36-37
functions, 37-38
IDE (see Integrated
development environment
(IDE))
if control statement
elif...else statement, 33-34
for loop, 35-36
if-else statement, 32
iteration, 34
range() function, 35
syntax, 31
while/for loops, 34
libraries
data analysis, 42
flatten() function, 41
NumPy/SciPy, 39-43
pandas, 44-47
Scikit-Learn, 44
TensorFlow, 47

237



INDEX

R versions, 59
web cameras, 72-74
Zero W/WH, 59
Real-time data (RTD), 85-87
Rectangular distribution, see
Uniform distribution
Reinforcement learning model, 155

Random access memory (RAM), 52
Raspberry Pi, 12, 49
cloud computing, 76
connectivity, 52
coral USB accelerator, 78
desktop computer, 49
edge (see Edge computing)

enclosure cases, 58 S
external hard disk drives, 77 Scientific computation, 39-43
GPIO (see General-purpose Scikit-Learn library, 122
input/output (GPIO)) SciPy library, 42

hardware, 50-51 Sensors
imager software, 54 data acquisition (see Data
interface, 60 acquisition systems)
languages (Scratch/Python), 50 GPIO pins, 86
localized cloud, 76-77 temperature/humidity, 96
microSD memory card ultrasonic sensors, 85-86

keyboard/mouse, 56 Sequence data types

storing data, 53 dictionaries (dict), 29

thin metal slot, 55 list operations, 24

USB ports, 56 set operation, 28-29
monitor, 56-57 string (str), 27
operating system, 53-55 tuples, 27
physical computing, 50 type conversion, 30-31
power supply, 57-58 Serial Peripheral Interface (SPI)
random access memory, 52 protocol, 65
Raspberry Pi 1/2/3/4 model, 58 Series, 100-103
soil moisture sensors, 71-72 Signal processing
system on a chip (SoC), 51 analog/digital signals, 80
temperature/humidity camera

sensor, 68-70 Pi camera, 88

Ultrasonic sensors, 66-68 web camera, 87

238



continuous-time/discrete-time
signals, 81
CSV format, 94
data acquisition, 82
data files, 95
dataframe, 94
data transmission/transfer, 88-92
date/time, 95
deterministic/non-
deterministic signal, 81
electrical signals, 79-80
gathering real-time data, 82
memory requirements
RAM, 93
storage, 93
one-dimensional/
multidimensional
signals, 81
Pandas, 94
real-time analytics/
environment, 79, 85-87
temperature/humidity sensor, 96
time series data, 92-93
two-dimensional signal, 81
Excel .xIsx file, 95
Soil moisture sensors, 71-72
Spyder, 17
System on a chip (SoC), 51

INDEX

T

Temperature/humidity
sensor, 68-70

Time series data, 92-93

Trillion operations (tera-operations)
per second (TOPS), 78

U

Ultrasonic sensors, 66-68, 85-86
Uniform distribution, 142-143

V,W, X, Y
Virtual Network
Computing (VNC)
graphical server, 225
remote desktop, 226
viewers, 224-228
Visualization
Matplotlib (see Matplotlib
package)
overview, 121
plots/packages, 134

y4

Z-score, 113-116

239



	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Data Science
	Importance of Data Types in Data Science
	Data Science: An Overview
	Data Requirements
	Data Acquisition
	Data Preparation
	Data Processing
	Data Cleaning
	Duplicates
	Human or Machine Errors
	Missing Values
	Outliers
	Transforming the Data

	Data Visualization
	Data Analysis
	Modeling and Algorithms
	Report Generation/Decision-Making

	Recent Trends in Data Science
	Automation in Data Science
	Artificial Intelligence–Based Data Analyst

	Cloud Computing
	Edge Computing
	Natural Language Processing
	Why Data Science on the Raspberry Pi?

	Chapter 2: Basics of Python Programming
	Why Python?
	Python Installation
	Python IDEs
	PyCharm
	Spyder
	Jupyter Notebook
	Python Programming with IDLE
	Python Comments

	Python Data Types
	Numeric Data Types
	int
	float
	complex
	bool
	Numeric Operators
	Sequence Data Types
	list
	tuple
	str
	set
	dict
	Type Conversion

	Control Flow Statements
	if Statement
	if-else Statement
	if...elif...else statement
	while loop
	for loop



	Exception Handling
	Functions
	Python Libraries for Data Science
	NumPy and SciPy for Scientific Computation
	Scikit-Learn for Machine Learning
	Pandas for Data Analysis
	TensorFlow for Machine Learning


	Chapter 3: Introduction to the Raspberry Pi
	What Can You Do with the Raspberry Pi?
	Physical Computing with the Raspberry Pi
	How to Program the Raspberry Pi?

	Raspberry Pi Hardware
	System on a Chip
	Raspberry Pi RAM
	Connectivity

	Setting Up the Raspberry Pi
	microSD Memory Card
	Installing the OS
	Inserting the microSD Memory Card
	Connecting a Keyboard and Mouse
	Connecting a Monitor
	Powering the Raspberry Pi
	Raspberry Pi Enclosure

	Raspberry Pi Versions
	Raspberry Pi 1
	Raspberry Pi 2
	Raspberry Pi 3
	Raspberry Pi Zero (W/WH)
	Raspberry Pi 4
	Recommended Raspberry Pi Version

	Interfacing the Raspberry Pi with Sensors
	GPIO Pins
	GPIO Pinout
	GPIO Outputs
	Controlling GPIO Output with Python
	GPIO Input Signals
	Reading GPIO Inputs with Python
	Digital Signals from Sensors
	Analog Signals from Sensors


	Interfacing a Ultrasonic Sensor with the  Raspberry Pi
	Interfacing the Temperature and Humidity Sensor with the Raspberry Pi
	Interfacing the Soil Moisture Sensor with the Raspberry Pi
	Interfacing Cameras with the Raspberry Pi

	Raspberry Pi as an Edge Device
	Edge Computing in Self-Driving Cars
	What Is an Edge Device?
	Edge Computing with the Raspberry Pi

	Raspberry Pi as a Localized Cloud
	Cloud Computing
	Raspberry Pi as Localized Cloud
	Connecting an External Hard Drive
	Connecting USB Accelerator


	Chapter 4: Sensors and Signals
	Signals
	Analog and Digital Signals
	Continuous-Time and Discrete-Time Signals
	Deterministic and Nondeterministic Signals
	One-Dimensional, Two-Dimensional, and Multidimensional Signals
	Gathering Real-Time Data
	Data Acquisition
	Sensors
	Analog Sensors
	Digital Sensors

	What Is Real-Time Data?
	Real-Time Data Analytics
	Getting Real-Time Distance Data from an Ultrasonic Sensor
	Interfacing an Ultrasonic Sensor with the Raspberry Pi

	Getting Real-Time Image Data from a Camera
	Getting Real-Time Video from a Webcam
	Getting Real-Time Video from Pi-cam

	Data Transfer
	Serial and Parallel Communication
	Interfacing an Arduino with the Raspberry Pi
	Serial via USB
	Serial via GPIOs

	Data Transmission Between an Arduino and the Raspberry Pi
	Arduino Code
	Raspberry Pi Python Code


	Time-Series Data
	Time-Series Analysis and Forecasting

	Memory Requirements
	More Storage
	More RAM

	Case Study: Gathering the Real-Time Industry Data
	Storing Collected Data Using Pandas
	Dataframes
	Saving Data as a CSV File
	Saving as an Excel File
	Reading Saved Data Files
	Adding the Date and Time to the Real-Time Data
	Industry Data from the Temperature and Humidity Sensor


	Chapter 5: Preparing the Data
	Pandas and Data Structures
	Installing and Using Pandas
	Pandas Data Structures

	Series
	DataFrame
	Reading Data
	Reading CSV Data
	Reading Excel Data
	Reading URL Data
	Cleaning the Data
	Handling Missing Values
	Handling Outliers
	Z-Score
	Filtering Out Inappropriate Values
	Removing Duplicates


	Chapter 6: Visualizing the Data
	Matplotlib Library
	Scatter Plot
	Line Plot
	Histogram
	Bar Chart
	Pie Chart

	Other Plots and Packages

	Chapter 7: Analyzing the Data
	Exploratory Data Analysis
	Choosing a Dataset
	Modifying the Columns in the Dataset
	Statistical Analysis
	Uniform Distribution
	Binomial Distribution
	Normal Distribution

	Statistical Analysis of Boston Housing Price Dataset

	Chapter 8: Learning from Data
	Forecasting from Data Using Regression
	Linear Regression using Scikit-Learn
	Principal Component Analysis

	Outlier Detection Using K-Means Clustering

	Chapter 9: Case Studies
	Case Study 1: Human Emotion Classification
	Methodology
	Dataset
	Interfacing the Raspberry Pi with MindWave Mobile via Bluetooth
	Data Collection Process
	Features Taken from the Brain Wave Signal
	Unstructured Data to Structured Dataset
	Exploratory Data Analysis from the EEG Data
	Classifying the Emotion Using Learning Models

	Case Study 2: Data Science for Image Data
	Exploratory Image Data Analysis
	Preparing the Image Data for Model
	Object Detection Using a Deep Neural Network

	Case Study 3: Industry 4.0
	Raspberry Pi as a Localized Cloud for Industry 4.0
	Collecting Data from Sensors
	Preparing the Industry Data in the Raspberry Pi
	Exploratory Data Analysis for the Real-Time Sensor Data
	Visualizing the Real-Time Sensor Data
	Report Generation by Reading Bar Codes Using Vision Cameras

	Transmitting Files or Data from the Raspberry Pi to the Computer


	References
	Index



