
T E C H N O L O G Y I N A C T I O N ™

Data Science with
Raspberry Pi

Real-Time Applications
Using a Localized Cloud
—
K. Mohaideen Abdul Kadhar
G. Anand

Data Science with
Raspberry Pi

Real-Time Applications
Using a Localized Cloud

K. Mohaideen Abdul Kadhar
G. Anand

Data Science with Raspberry Pi: Real-Time Applications Using a

Localized Cloud

ISBN-13 (pbk): 978-1-4842-6824-7		 ISBN-13 (electronic): 978-1-4842-6825-4
https://doi.org/10.1007/978-1-4842-6825-4

Copyright © 2021 by K. Mohaideen Abdul Kadhar and G. Anand

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: Matthew Moodie
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6824-7. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

K. Mohaideen Abdul Kadhar
Pollachi, Tamil Nadu, India

G. Anand
Pollachi, Tamil Nadu, India

https://doi.org/10.1007/978-1-4842-6825-4

To my wife Jashima for her support in
writing this book.

—Dr. K. Mohaideen Abdul Kadhar

To my parents for their continuous
encouragement in writing this book.

—G. Anand

v

Table of Contents

Chapter 1: ��Introduction to Data Science��1

Importance of Data Types in Data Science��3

Data Science: An Overview��4

Data Requirements��5

Data Acquisition���5

Data Preparation��5

Data Processing���6

Data Cleaning���6

Duplicates���6

Human or Machine Errors���7

Missing Values��7

Outliers���7

Transforming the Data��8

Data Visualization���8

Data Analysis���9

Modeling and Algorithms��9

Report Generation/Decision-Making��9

About the Authors���xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

vi

Recent Trends in Data Science��10

Automation in Data Science���10

Artificial Intelligence–Based Data Analyst��10

Cloud Computing��11

Edge Computing���11

Natural Language Processing��11

Why Data Science on the Raspberry Pi?��12

Chapter 2: ��Basics of Python Programming���13

Why Python?��14

Python Installation���14

Python IDEs��16

PyCharm���16

Spyder��16

Jupyter Notebook���17

Python Programming with IDLE��17

Python Comments��20

Python Data Types��21

Numeric Data Types��21

int���21

float��22

complex��22

bool���22

Numeric Operators���23

Sequence Data Types���24

Control Flow Statements��31

Exception Handling��36

Table of Contents

vii

Functions���37

Python Libraries for Data Science��39

NumPy and SciPy for Scientific Computation���39

Scikit-Learn for Machine Learning���44

Pandas for Data Analysis��44

TensorFlow for Machine Learning��47

Chapter 3: ��Introduction to the Raspberry Pi��49

What Can You Do with the Raspberry Pi?��49

Physical Computing with the Raspberry Pi��50

How to Program the Raspberry Pi?��50

Raspberry Pi Hardware��50

System on a Chip��51

Raspberry Pi RAM���52

Connectivity��52

Setting Up the Raspberry Pi���53

microSD Memory Card���53

Installing the OS���53

Inserting the microSD Memory Card��55

Connecting a Keyboard and Mouse��56

Connecting a Monitor���56

Powering the Raspberry Pi���57

Raspberry Pi Enclosure��58

Raspberry Pi Versions��58

Raspberry Pi 1��58

Raspberry Pi 2��58

Raspberry Pi 3��59

Table of Contents

viii

Raspberry Pi Zero (W/WH)��59

Raspberry Pi 4��59

Recommended Raspberry Pi Version���59

Interfacing the Raspberry Pi with Sensors��60

GPIO Pins��60

GPIO Pinout���61

GPIO Outputs��62

Controlling GPIO Output with Python��62

GPIO Input Signals��64

Interfacing a Ultrasonic Sensor with the Raspberry Pi����������������������������������66

Interfacing the Temperature and Humidity Sensor with the Raspberry Pi�����68

Interfacing the Soil Moisture Sensor with the Raspberry Pi���������������������������71

Interfacing Cameras with the Raspberry Pi��72

Raspberry Pi as an Edge Device��75

Edge Computing in Self-Driving Cars���75

What Is an Edge Device?��76

Edge Computing with the Raspberry Pi��76

Raspberry Pi as a Localized Cloud���76

Cloud Computing��76

Raspberry Pi as Localized Cloud��77

Connecting an External Hard Drive���77

Connecting USB Accelerator���78

Chapter 4: ��Sensors and Signals���79

Signals���79

Analog and Digital Signals���80

Continuous-Time and Discrete-Time Signals���80

Table of Contents

ix

Deterministic and Nondeterministic Signals��81

One-Dimensional, Two-Dimensional, and Multidimensional Signals�������������������81

Gathering Real-Time Data��82

Data Acquisition���82

Sensors���82

Analog Sensors���83

Digital Sensors���84

What Is Real-Time Data?���85

Real-Time Data Analytics���85

Getting Real-Time Distance Data from an Ultrasonic Sensor�������������������������85

Interfacing an Ultrasonic Sensor with the Raspberry Pi���������������������������������86

Getting Real-Time Image Data from a Camera��87

Getting Real-Time Video from a Webcam���87

Getting Real-Time Video from Pi-cam��88

Data Transfer��88

Serial and Parallel Communication��88

Interfacing an Arduino with the Raspberry Pi���89

Data Transmission Between an Arduino and the Raspberry Pi�����������������������90

Time-Series Data���92

Time-Series Analysis and Forecasting���93

Memory Requirements���93

More Storage��93

More RAM���93

Case Study: Gathering the Real-Time Industry Data��94

Storing Collected Data Using Pandas���94

Dataframes���94

Saving Data as a CSV File���94

Table of Contents

x

Saving as an Excel File���95

Reading Saved Data Files���95

Adding the Date and Time to the Real-Time Data���95

Industry Data from the Temperature and Humidity Sensor����������������������������96

Chapter 5: ��Preparing the Data���99

Pandas and Data Structures��99

Installing and Using Pandas���99

Pandas Data Structures��100

Series���100

DataFrame���104

Reading Data��104

Reading CSV Data���105

Reading Excel Data���105

Reading URL Data���106

Cleaning the Data���106

Handling Missing Values���107

Handling Outliers��110

Z-Score���113

Filtering Out Inappropriate Values��116

Removing Duplicates��118

Chapter 6: ��Visualizing the Data���121

Matplotlib Library���121

Scatter Plot���122

Line Plot��124

Histogram���127

Bar Chart��129

Table of Contents

xi

Pie Chart���132

Other Plots and Packages��134

Chapter 7: ��Analyzing the Data���135

Exploratory Data Analysis��135

Choosing a Dataset��135

Modifying the Columns in the Dataset���140

Statistical Analysis���141

Uniform Distribution���142

Binomial Distribution��144

Normal Distribution��146

Statistical Analysis of Boston Housing Price Dataset���150

Chapter 8: ��Learning from Data��155

Forecasting from Data Using Regression���156

Linear Regression using Scikit-Learn��160

Principal Component Analysis��162

Outlier Detection Using K-Means Clustering��166

Chapter 9: ��Case Studies���171

Case Study 1: Human Emotion Classification��171

Methodology��172

Dataset���172

Interfacing the Raspberry Pi with MindWave Mobile via Bluetooth��������������173

Data Collection Process��175

Features Taken from the Brain Wave Signal���177

Unstructured Data to Structured Dataset���181

Exploratory Data Analysis from the EEG Data���186

Classifying the Emotion Using Learning Models��188

Table of Contents

xii

Case Study 2: Data Science for Image Data���191

Exploratory Image Data Analysis��195

Preparing the Image Data for Model��200

Object Detection Using a Deep Neural Network���201

Case Study 3: Industry 4.0���207

Raspberry Pi as a Localized Cloud for Industry 4.0��������������������������������������208

Collecting Data from Sensors���210

Preparing the Industry Data in the Raspberry Pi��211

Exploratory Data Analysis for the Real-Time Sensor Data����������������������������214

Visualizing the Real-Time Sensor Data��216

Transmitting Files or Data from the Raspberry Pi to the Computer��������������223

��References���229

�Index��233

Table of Contents

xiii

About the Authors

Dr. K. Mohaideen Abdul Kadhar earned an undergraduate degree in

electronics and communication engineering and a master of technology

degree with a specialization in control and instrumentation. In 2015, he

obtained his PhD in control system design using evolutionary algorithms.

He has more than 14 years of experience in teaching and research. His

areas of interest are evolutionary algorithms, control systems, signal

processing and computer vision. Now, He is working to implement signal

processing and control system concepts with Python programming on the

Raspberry Pi. He has taught many courses and has delivered workshops

about data science with Python programming. In addition, he has acted as

a consultant for many industries in developing machine vision systems for

industrial applications.

G. Anand obtained his bachelor of engineering degree in electronics

and communication engineering in 2008 and his master of engineering

degree in communication systems in 2011. He has more than nine years of

teaching experience with a specialization in signal and image processing.

He has taught courses and acted as a resource person in workshops related

to Python programming. His current research focus is in the domain of

artificial intelligence and machine learning.

xv

About the Technical Reviewer

Maris Sekar is a professional computer engineer, certified information

systems auditor (ISACA), and senior data scientist (Data Science Council

of America). He has a passion for using storytelling to drive better

decision-making and operational efficiencies. Maris has cross-functional

work experience in various domains such as risk management, data

analytics, and strategy.

xvii

Acknowledgments

First, I wish to thank the almighty Allah for giving me strength and courage

in writing this book. Writing a book is more complex than I thought.

We struggled many times when developing the content of this book

because this book focuses not only the concepts but also on the real-time

implementation details on the Raspberry Pi.

My sincere thanks to my family, especially my mom and dad. Without

them, I would not have attained this level of achievement.

A very special thanks to my wife Mrs. M. Jashima Parveen for her

support and love. She always set me free for writing this book. In my hard

times, her support and encouragement gave me strength and courage. I

could not have done it without her.

My sincere thanks to chief editor Mr. Aaron Black and book

coordinator Ms. Jessica Vakkili for their enormous support. Even when

some of the chapters were delayed, they gave their support in developing

the contents of the book.

My heartfelt thanks to the management of Dr. Mahalingam College of

Engineering and Technology, Pollachi, especially, I thank to my Head of

the Department, Dr. R. Sudhakar, Professor, for his encouragement and

trust in my work and knowledge.

Last but not least, special thanks to my colleague G. Anand for his

support and coordination in writing the book.

xix

Introduction

In modern times data can be thought of as a valuable commodity like oil or

gold because we can get a lot of useful information from data with the help

of some scientific methods, and we can make intelligent decisions based

on that information and convert it into money. Data science is the process

of extracting knowledge/useful information from the data.

For example, IBM forecasted that the demand for skilled people in

data science will increase by 28 percent in 2020. Many industries use data

science concepts in different aspects of their business such as checking

whether they have achieved their targets, finding the root cause of failures,

etc. Recently, data science has been effectively implemented in politics

to develop strategies, identify the weak regions, predict the emotions and

expectations of the people, etc. Further, local governments utilize the data

collected from the people of their town to devise the planning and policies

for the development of the town. Data science is also successfully applied

in the agricultural domain in areas like drought assessment, crops yield

and remote sensing, etc. This shows that the applications related to data

science concepts are emerging nowadays across multiple domains.

Most of the recent books have focused on applying data science

techniques to some open and standard dataset. This book is specifically

about applying data science concepts in the Raspberry Pi board. The

Raspberry Pi can act as a single on board computer and can also interact

with the real-time environment via sensors as most of the local servers

can’t do this task.

The book will start with a brief introduction to data science followed

by which there will be a dedicated chapter for explaining the concepts

of Python starting from the installation of the software to the various

xx

data types and modules available. The next two chapters will introduce

the readers to Raspberry Pi devices, their hardware description, and

the setting up of the devices for gathering real-time data. The next four

chapters will deal with the different operations in data science with respect

to real time applications using Raspberry Pi hardware. The penultimate

chapter of the book will discuss about the concepts that will enable the

Raspberry Pi to learn from the data. The last chapter will have few case

studies that will give the readers an idea of the range of domains where

these concepts can be applied.

Introduction

1© K. Mohaideen Abdul Kadhar and G. Anand 2021
K. M. Abdul Kadhar and G. Anand, Data Science with Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6825-4_1

CHAPTER 1

Introduction to
Data Science
Data is a collection of information in the form of words, numbers, and

descriptions about the subject. Consider the following statement: “The

dog has four legs, is 1.5m high, and has brown hair.” This statement has

three different kinds of information (i.e., data) about the dog. The data

“four” and “1.5m” is numerical data, and “brown hair” is descriptive. It

is good to know the various kinds of data types to understand the data,

perform effective analysis, and better extract knowledge from the data.

Basically, data can be categorized into two types.

•	 Quantitative data

•	 Qualitative data

Quantitative data can be obtained only with the help of measurements

and not through observations. This can be represented in the form

of numerical values. Quantitative data can be further classified into

continuous and discrete. The exact integer values are discrete data,

whereas continuous data can be any value in a range. Qualitative data is a

description of the characteristics of a subject. Usually qualitative data can

be obtained from observations and cannot be measured. In other words,

qualitative data may be described as categorical data, and quantitative

data can be called numerical data.

https://doi.org/10.1007/978-1-4842-6825-4_1#DOI

2

For example, in the previous statement, “brown hair” describes a

characteristic of the dog and is qualitative data, whereas “four legs” and

“1.5m” are the quantitative data and are categorized as discrete and

continuous data, respectively.

Data can be available in structured and unstructured form. When

the data is organized in a predefined data model/structure, it is called

structured data. Structured data can be stored in a tabular format or a

relational database with the help of query languages. We can also store

this kind of data in an Excel file format, like the student database given in

Table 1-1.

Most human-generated and machine-generated data are unstructured

data such as emails, documents, text files, log files, text messages, images,

video and audio files, messages on the Web and social media, and data

from sensors. This data can be converted to a structured format only

through human or machine intervention. Figure 1-1 shows the various

sources of unstructured data.

Table 1-1.  An Example of Structured Data

Student Roll Number Marks Attendance Batch Sex

111401 492/500 98% 2011-2014 Male

111402 442/500 72% 2011-2014 Male

121501 465/500 82% 2012-2015 Female

121502 452/500 87% 2012-2015 Male

Chapter 1 Introduction to Data Science

3

�Importance of Data Types in Data Science
Before starting to analyze data, it is important to know about the data

types so you can choose the suitable analysis methods. The analysis of

continuous data is different from the analysis of categorical data; hence,

using the same analysis methods for both may lead to incorrect analysis.

For example, in statistical analysis where continuous data is involved,

the probability of an exact event is zero, while the result can be different for

discrete data.

You can also choose the visualization tools based on the data types.

For instance, continuous data is usually represented using histograms,

whereas discrete data can be visualized with the help of bar charts.

Documents Log files
Images

Sensor data

Video files Audio files

Web and social
media

Email

Figure 1-1.  Sources of unstructured data

Chapter 1 Introduction to Data Science

4

�Data Science: An Overview
As discussed at the beginning of the chapter, data science is nothing but

the extraction of knowledge or information from the data. Unfortunately,

not all data gives useful information. It is based on the client requirements,

the hypothesis, the nature of the data type, and the methods used for

analysis and modeling. Therefore, a few processes are required before

analyzing or modeling the data for intelligent decision-making. Figure 1-2

describes these data science processes.

Figure 1-2.  Data science process

Chapter 1 Introduction to Data Science

5

�Data Requirements
To develop a data science project, the data scientists first understand the

problem based on the client/business requirements and then define the

objectives of the problem for analysis. For example, say a client wants to

analyze the emotion of people on a government policy. First, the objectives

of the problem can be set as “To collect the opinion of the people about the

government policy.” Then, the data scientists decide on the kind of data

that can support the objective and the resources of data. For the example

problem, the possible data is social media data, including text messages

and opinion polls of various categories of people, with information

about their education level, age, occupation, etc. Before starting the

data collection, a good work plan is essential for collecting the data from

various sources. Setting the objectives and work plan can reduce the time

spent collecting the data and can help to prepare the report.

�Data Acquisition
There are many types of structured open data available on the internet that

we call secondary data, because that kind of data is collected by somebody

and structured into some tabular format. If the user wants to collect

the data directly from a source, that is called primary data. Initially, the

unstructured data is collected via many resources such as mobile devices,

emails, sensors, cameras, direct interaction with people, video files, audio

files, text messages, blogs, etc.

�Data Preparation
Data preparation is the most important part of the data science process.

Preparing the data puts the data into proper form for knowledge

extraction. There are three steps in the data preparation stage.

Chapter 1 Introduction to Data Science

6

	 1.	 Data processing

	 2.	 Data cleaning

	 3.	 Data transformation

�Data Processing
This step is important as it is required to check the quality of data while

we import it from various sources. This quality checking is done to ensure

that the data is in the correct data type, standard format, and has no typos

or errors in the variables. This step will reduce data issues when doing

analysis. Moreover, in this phase, the collected unstructured data can be

organized in the form of structured data for analysis and visualization.

�Data Cleaning
Once the data processing is done, cleaning the data is required as the data

might still have some errors. These errors will affect the actual information

present in the data. Possible errors are as follows:

•	 Duplicates

•	 Human or machine errors

•	 Missing values

•	 Outliers

•	 Inappropriate values

�Duplicates
In the database, some data is repeated multiple times, which results in

duplicates. It is better to check and remove the duplicates to reduce the

overhead in computation during data analysis.

Chapter 1 Introduction to Data Science

7

�Human or Machine Errors
The data is collected from sources either by humans or by machines. Some

errors are inevitable during this process due to human carelessness or

machine failure. The possible solution to avoid these kinds of errors is to

match the variables and values with standard ones.

�Missing Values
While converting the unstructured data into a structured form, some rows

and columns may not have any values (i.e., empty). This error will cause

discontinuity in the information and make it difficult to visualize it. There

are many built-in functions available in programming languages we can

use to check if the data has any missing values.

�Outliers
In statistics, an outlier is a data point that differs significantly from other

observations. An outlier may be because of variability in the measurement

or it may indicate experimental errors; outliers are sometimes excluded

from the data set. Figure 1-3 shows an example of outlier data. Outlier

data can cause problems with certain types of models, which in turn will

influence the decision-making.

Chapter 1 Introduction to Data Science

8

�Transforming the Data
Data transformation can be done by many methods using normalization,

min-max operations, correlation information, etc.

�Data Visualization
Based on the requirements of the user, the data can be analyzed with the

help of visualization tools such as charts, graphs, etc. These visualization

tools help people to understand the trends, variations, and deviations in a

particular variable in the data set. Visualization techniques can be used as

a part of exploratory data analysis.

Figure 1-3.  Outlier data

Chapter 1 Introduction to Data Science

9

�Data Analysis
The data can be further analyzed with the help of mathematical

techniques such as statistical techniques. The improvements, deviations,

and variations are determined in a numerical form. We can also generate

an analysis report by combining the results of visualization tools and

analysis techniques.

�Modeling and Algorithms
Today many machine learning algorithms are employed to predict

useful information from raw data. For example, neural networks can be

used to identify the users who are willing to donate funds to orphans

based on the users’ previous behavior. In this scenario, the previous

behavior data of users can be collected based on their education,

activities, occupation, sex, etc. The neural network can be trained with

this collected data. Whenever a new user’s data is fed to this model, it

can predict whether the new user will give funds or not. However, the

accuracy of the prediction is based on the reliability and the amount of

data used while training.

There are many machine learning algorithms available such as

regression techniques, support vector machine (SVM), neural networks,

deep neural networks, recurrent neural networks, etc., that can be applied

to data modeling. After data modeling, the model can be analyzed by

giving data from new users and developing a prediction report.

�Report Generation/Decision-Making
Finally, a report can be developed based on the analysis with the help of

visualization tools, mathematical or statistical techniques, and models.

Such reports can be helpful in many circumstances such as forecasting the

strengths and weakness of an organization, industry, government, etc.

Chapter 1 Introduction to Data Science

10

The facts and findings from the report can make the decisions quite

easy and intelligent. Moreover, the analysis report can be generated

automatically using some automation tools based on the client

requirements.

�Recent Trends in Data Science
Certain fields in data science are growing exponentially and therefore will

be attractive to data scientists. They are discussed in the following sections.

�Automation in Data Science
In the current scenario, data science still needs a lot of manual work such

as data processing, data cleaning, and transforming the data. These steps

consume a lot of time and computations. The modern world demands

the automation of data science processes such as data processing,

data cleaning, data transformations, analysis, visualization, and report

generation. Hence, the automation field will be a top demand in the data

science industry.

�Artificial Intelligence–Based Data Analyst
Artificial intelligence techniques and machine learning algorithms can be

implemented effectively for modeling the data. Particularly, reinforcement

learning with deep neural networks is used to upgrade the learning of the

model based on variations in the data. Also, machine learning techniques

can be used for automated data science projects.

Chapter 1 Introduction to Data Science

11

�Cloud Computing
The amount of data used by people nowadays has increased

exponentially. Some industries gather a large amount of data every

day and hence find it difficult to store and analyze with the help of

local servers. This makes it expensive in terms of computation and

maintenance. So, they prefer cloud computing in which the data can

be stored on cloud servers and can be retrieved anytime and anywhere

for analysis. Many cloud computing companies offer a data analytics

platform on their cloud servers. The more growth in data processing, the

more this field will gain attention.

�Edge Computing
Many small-scale industries don’t require the analysis of data on cloud

servers and instead require analysis reports instantly. For these kinds of

applications, edge devices can be a possible solution to acquire the data,

analyze it, and present a report in visual form or numerical form instantly

to the users. In the future, the requirements of edge computing will

increase significantly.

�Natural Language Processing
Natural language processing (NLP) can be used to extract unstructured

data from websites, emails, servers, log files, etc. In addition, NLP can be

useful for converting text into a single data format. For example, we can

convert people’s emotion into a data format from their messages on social

media. This will be a powerful tool for collecting data from many sources,

and its demand will continue to increase.

Chapter 1 Introduction to Data Science

12

�Why Data Science on the Raspberry Pi?
Many books explain the different processes involved in data science in

relation to cloud computing. But in this book, the concepts of data science

will be discussed as part of real-time applications using the Raspberry

Pi. The Raspberry Pi boards can interact with the real-time world by

connecting to a wide range of sensors using their general-purpose

input/output (GPIO) pins, which makes it easier to collect real-time

data. Owing to their small size and low cost, a number of nodes of these

Raspberry Pi boards can be connected as a network, thereby enabling

localized operation. In other words, the Raspberry Pi can be used as an

edge computing device for data processing and storage, closer to the

devices used for acquiring the information and thereby overcoming the

disadvantages associated with cloud computing. Therefore, a lot of data

processing applications can be implemented using a distribution of these

devices that can manage real-time data and run the analytics locally. This

book will help you to implement real-time data science applications using

the Raspberry Pi.

Chapter 1 Introduction to Data Science

13© K. Mohaideen Abdul Kadhar and G. Anand 2021
K. M. Abdul Kadhar and G. Anand, Data Science with Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6825-4_2

CHAPTER 2

Basics of Python
Programming
Python is a general-purpose dynamic programming language that

was created by Dutch programmer Guido van Rossum in 1989. It is

the most commonly used programming language in the field of data

science. Since it is easier to learn and write code in Python than other

languages, it is an optimal choice for beginners. The widespread use of

Python is also attributed to the fact that it is free and open source. The

number of scientific libraries and packages developed by the Python

community allows for data scientists to work with data-intensive real-time

applications. Some of the leading organizations such as Google, Dropbox,

and Netflix are using Python at various levels to enhance their software. In

this chapter, we will discuss Python installation on the Windows operating

system, different Python IDEs, the fundamental data types available with

Python, control flow statements, Python functions, and different Python

libraries for data science.

https://doi.org/10.1007/978-1-4842-6825-4_2#DOI

14

�Why Python?
Python is the most preferred programming language for data scientists

because of the following reasons:

•	 It is an open source programming language with a

strong and growing community of contributors and

users.

•	 It has a simpler syntax than other programming

languages such as C, C++, and Java.

•	 It allows users to perform object-oriented

programming.

•	 It has a large set of libraries that can be used to perform

a variety of tasks such as developing a website, building

machine learning applications, etc.

•	 It can be used in embedded, small hardware devices

like the Raspberry Pi that allows for real-time

implementation of various applications.

�Python Installation
Most distributions of the Linux operating system come with the preloaded

Python package, but it has to be installed separately in the case of

Windows operating system. The procedure to install Python on the

Windows operating system is as follows:

	 1.	 Open a browser and go to Python.org, the official

site for Python.

	 2.	 On that page, click the Downloads tab and

download the latest version of the software on the

resulting page.

Chapter 2 Basics of Python Programming

15

	 3.	 Once the download is complete, open the installer

package. In the installation wizard, shown in

Figure 2-1, select Add Python to PATH, which will

ensure that Python is added automatically to your

system variable path; otherwise, this path must

be added manually in the Environment Variables

settings in your system.

	 4.	 Click Install Now to install the package.

After the installation is completed, you can verify the installation by

typing python --version at the command prompt, which will display the

version of Python installed on the system. If it does not show the version,

then there could be a problem either with the installation or with the

system path variable.

Figure 2-1.  Installation wizard for Python

Chapter 2 Basics of Python Programming

16

Refer to the Python documentation available on the official site to

understand the procedure for downloading additional modules and

packages for the software. Either you can start working with Python at the

command prompt itself or you can install one among the various IDEs that

are discussed in the next section.

�Python IDEs
An integrated development environment (IDE) is a software suite that

combines developer tools into a graphical user interface (GUI), which

includes options for editing code and building, executing, and debugging

programs. A number of IDEs are available for Python, each of which

comes with its own advantages. Some of the commonly used IDEs are

discussed here.

�PyCharm
The PyCharm IDE was developed by the Czech company JetBrains. It is

a cross-platform IDE that can be used on Windows, macOS, and Linux.

It provides code analysis and a graphical debugger. It also supports web

development with Django as well as data science with Anaconda. Some of

the attractive features of PyCharm are the intelligent code completion, a

simple package management interface, and the refactoring option, which

provides the ability to make changes across multiple lines in a code.

�Spyder
Spyder is a cross-platform IDE for scientific programming in the Python

language. Spyder integrates with a number of scientific packages including

NumPy, SciPy, Matplotlib, Pandas, IPython, and other open source

software. It was released under the MIT license.

Chapter 2 Basics of Python Programming

17

�Jupyter Notebook
Jupyter Notebook is a web-based interactive computational environment.

This notebook integrates code and its output in a single document that

combines visualizations, text, mathematical equations, and other media

thereby making it suitable for data science applications.

�Python Programming with IDLE
IDLE is a simple cross-platform IDE suitable for beginners in an

educational environment. It comes with features such as a multiwindow

text editor, a Python shell with syntax highlighting, and an integrated

debugger. Since this is a default editor that comes with Python, let’s see

how to execute Python code using IDLE.

There are two ways of executing the Python code in this IDLE. The first

way is the interactive mode in which you can directly type the code next to

the symbol >>> in the Python shell, as illustrated in Figure 2-2. Each line of

code will be executed once you press Enter. The disadvantage of using the

interactive mode is that when you save the code, it is saved along with the

results, and this implies that you cannot use the saved code for execution

later.

Chapter 2 Basics of Python Programming

18

The second way is to run the code in script mode where you can open

a script window and type the entire code there, which can then be saved

with a .py extension to be used later. To open a script file window, go to

the File menu at the top and click New File. In the script window, type the

same two lines of code, shown in Figure 2-2. Figure 2-3 shows the script

file window with the code. Then go to the File menu, click Save, and then

save the program by specifying a proper filename. Ensure that the filename

does not start with a number or have the same name as existing Python

keywords.

Figure 2-2.  Running Python code in interactive mode

Chapter 2 Basics of Python Programming

19

Once the file is saved, the script can be executed by going to the Run

menu at the top and clicking Run Module. This will execute the script and

print the output in the Python shell, as shown in Figure 2-4.

Figure 2-3.  Script file window

Chapter 2 Basics of Python Programming

20

�Python Comments
Before we start to discuss the Python data types, it is essential to know about

comment lines in Python as we will be using them often in our code. There are

two ways to write comment lines based on the purpose of your comment.

If you intend to write a short comment, regarding a particular line

in the code, for yourself, then single-line comments are the best choice.

These single-line comments can be created by simply beginning the line

with a hash (#) character, and they are terminated automatically by the

end of the line. While executing the code, the Python compiler will ignore

everything after the hash symbol up to the end of the line.

Multiple-line comments are intended to explain a particular aspect

of your code to others and can be created by adding three single quotes

(''') at the beginning and end of the comment. The Python compiler

will not ignore these comments, and they will appear in the output if your

script has nothing else other than the comment. These two comments are

illustrated using the IDLE Python shell format, as shown here:

Figure 2-4.  Output of the script file

Chapter 2 Basics of Python Programming

21

>>> # This is a comment

>>> "'This is a comment"'

'This is a comment'

�Python Data Types
A data type, in a programming language, is defined by the type of value

that a variable can take. Python data types can be primarily classified into

numeric and sequence data types. The data types that fall under these two

categories are discussed in this section with relevant illustrations for each.

�Numeric Data Types
Numeric data types are scalar variables that can take numeric values. The

categories of numeric data types are int, float, and complex. In addition,

we will discuss the bool data type that uses Boolean variables.

�int
The int data type represents integers that are signed whole numbers

without a decimal point. The code in Listing 2-1 displays the data type of

an integer.

Listing 2-1.  Integer Data Type

a=5

"'print the data type of variable a using type() funcion"'

print("a is of type",type(a))

Output:

a is of type <class 'int'>

Chapter 2 Basics of Python Programming

22

�float
The float data type represents floating-point numbers with a decimal

point separating the integer and fractional parts. The code in Listing 2-2

prints the data type of a float value.

Listing 2-2.  float Data Type

a = 5.0

print('a is of type',type(a))

Output:

a is of type <class 'float'>

�complex
The complex data type represents complex numbers of the form a+bj

where a and b are the real part and imaginary part, respectively. The

numbers a and b may be either integers or floating-point numbers. The

code in Listing 2-3 prints the data type of a complex number.

Listing 2-3.  complex Data Type

a=3.5+4j

print('a is of type',type(a))

Output :

 a is of type <class 'complex'>

�bool
In Python, Boolean variables are defined by True and False keywords.

As Python is case sensitive, the keywords True and False must have an

uppercase first letter. Listing 2-4 illustrates the bool data type.

Chapter 2 Basics of Python Programming

23

Listing 2-4.  bool Data Type

a= 8>9

print('a is of type',type(a))

print(a)

Output:

a is of type <class 'bool'>

False

Boolean values can be manipulated with Boolean operators, which

include and, or, and not, as illustrated in Listing 2-5.

Listing 2-5.  Manipulation of boolean Data Type

a = True

b = False

print(a or b)

Output:

True

�Numeric Operators
Table 2-1 summarizes the numeric operations available in Python that can

be applied to the numeric data types.

Chapter 2 Basics of Python Programming

24

The operators in Table 2-1 are listed in their order of precedence.

When more than one operation is performed in a particular line of your

code, the order of execution will be according to the order of precedence

in Table 2-1. Consider the example 2*3+5 where both multiplication and

addition are involved. Since multiplication has higher precedence than

addition, as observed from Table 2-1, the multiplication operator (*) will

be executed first giving 2*3=6, followed by the addition operator (+), which

would give the final result of 6+5=11.

�Sequence Data Types
Sequence data types allow multiple values to be stored in a variable. The

five categories of sequence data types are list, tuple, str, set, and dict.

�list

Lists are the most commonly used data type in Python by data scientists.

A list is an ordered sequence of elements. The elements in the list need

not be of the same data type. A list can be declared as items separated by

Table 2-1.  Numeric Operators in Python

Operator Operation

() Parentheses

** Exponentiation

* Multiplication

/ Division

+ Addition

- Subtraction

% Modulo operation

Chapter 2 Basics of Python Programming

25

commas enclosed within square brackets, []. Lists are mutable; i.e., the

value of the elements in the list can be changed. The elements in the list

are indexed starting from zero, and hence any element in the list can be

accessed by its corresponding index, as illustrated in Listing 2-6. The index

should be integers, and using any other data type for index will result in

TypeError. Similarly, trying to access an index outside the range of the list

will result in IndexError.

Listing 2-6.  Operations in a List

a = [1, 2.5, 5, 3+4j, 3, -2]

print("a is of type",type(a))

"'print the first value in the list"'

print("a[0]=",a[0])

"'print the third value in the list"'

print("a[2]=",a[2])

"' print the values from index 0 to 2"'

print("a[0:3]=",a[0:3])

"'print the values from index 4 till the end of the list"'

print("a[4:]=",a[4:])

"'Change the value at the index 3 to 4"'

a[3]=4

print("a=",a)

"'fractional index leads to TypeError"'

print(a[1.5])

"out of range index leads to IndexError"'

print(a[8])

Output of line 2: a is of type <class 'list'>

Output of line 4: a[0]= 1

Output of line 6: a[2]= 5

Output of line 8: a[0:3]= [1, 2.5, 5]

Output of line 10: a[4:]= [3, -2]

Chapter 2 Basics of Python Programming

26

Output of line 13: a= [1, 2.5, 5, 4, 3, -2]

Otuput of line 15: TypeError: list indices must be integers or

slices, not float

Output of line 17: IndexError: list index out of range

Consider two lists stored in the variables a and b, respectively.

Table 2-2 shows some additional operations provided by Python that

can be performed on the lists a and b. Some of these functions apply to

tuples, strings, and sets as well.

�tuple

A tuple is also an ordered sequence of elements like a list, but the

difference is that the tuples are immutable; i.e., the values in a tuple cannot

be changed. Trying to change the value of an element in a tuple will result

Table 2-2.  List Operations in Python

Function Description

a+b Concatenates the two lists a and b

a*n Repeats the list a by n times where n is an integer

len(a) Computes the number of elements in list a

a.append() Adds an element to the end of list a

a.remove() Removes an item from list a

a.pop() Removes and returns an element at the given index in list a

a.index() Returns the index of the first matched item in list a

a.count() Returns the count of number of items passed as an argument

in list a

a.sort() Sorts items in list a in ascending order

a.reverse() Reverses the order of items in list a

Chapter 2 Basics of Python Programming

27

in TypeError. By storing data that doesn’t change as tuples, it can be

ensured that they remain write-protected. Tuples can be declared as items

separated by commas enclosed within parentheses, (). Tuples can also be

indexed in the same way as lists, as described in Listing 2-7.

Listing 2-7.  Operations in a Tuple

a = (1, 3, -2, 4, 6)

print("a is of type",type(a))

print("a[3]=",a[3])

a[2] = 5

Output of line 2: a is of type <class 'tuple'>

Output of line 3: a[3]= 4

Output of line 4: TypeError: 'tuple' object does not support

item assignment

�str

The str data type represents a string of characters. The string can be

declared as characters enclosed within double quotes (" "). Single quotes

(' ') can also be used, but since they appear as apostrophes in some

words, using double quotes can avoid confusion. The characters in a string

are indexed in the same way as list and tuples. The space between two

words in a string is also treated as a character. Like tuples, strings are also

immutable and described in Listing 2-8.

Listing 2-8.  Operations in a String

a = "Hello World!"

print("a is of type",type(a))

print("a[3:7]=",a[3:7]

a[2] = "r"

Chapter 2 Basics of Python Programming

28

Output of line 2: a is of type <class 'str'>

Output of line 3: a[3:7]= lo W

Output of line 4: TypeError: 'str' object does not support item

assignment

�set

A set is an unordered collection of items and hence does not support indexing.

A set is defined by values separated by commas inside set braces, {}. A set can

be used for removing duplicates from a sequence. Listing 2-9 shows the

operations in a set.

Listing 2-9.  Operations in a Set

a = {1, 2, 3, 2, 4, 1, 3}

print("a is of type",type(a))

print("a=",a)

Output of line 2: a is of type <class 'set'>

Output of line 3: a= {1, 2, 3, 4}

Consider two sets stored in variables a and b, respectively. Table 2-3

illustrates the various set operations supported by Python that can be

applied on these two sets.

Chapter 2 Basics of Python Programming

29

�dict

A dict represents the dictionary data type, which is an unordered

collection of data represented as key-value pairs. Dictionaries can

be defined within set braces, {}, with each item being a pair in the

form {key:value}. Dictionaries are optimized for retrieving data

where a particular value in the dictionary can be retrieved by using its

corresponding key. In other words, the key acts as the index for that

value. The key and value can be of any data type. The keys are generally

immutable and cannot be duplicated in a dictionary, whereas the values

may have duplicate entries. Trying to access a key that is not present in the

dictionary will result in KeyError, as described in Listing 2-10.

Table 2-3.  Set Operations in Python

Function Description

a.union(b) Returns the union of the two sets a and b in a new set

a.difference(b) Returns the difference of two sets a and b as a new set

a.intersection(b) Returns the intersection of the two sets a and b as a

new set

a.isdisjoint(b) Returns True if the two sets a and b have a null

intersection

a.issubset(b) Returns True if a is a subset of b; i.e., all elements of

set a are present in set b

a.symmetric_

difference(b)

Returns the symmetric difference between the two sets

a and b as a new set

Chapter 2 Basics of Python Programming

30

Listing 2-10.  Operations in a Dictionary

a = {1: 'Hello', 4: 3.6}

print("a is of type", type(a))

print(a[4])

print(a[2])

Output of line 2: a is of type <class 'dict'>

Output of line 3: 3.6

Output of line 4: KeyError: 2

�Type Conversion

Type conversion is the process of converting the value of any data type to

another data type. The functions provided by Python for type conversion

are listed here:

•	 int(): Changes any data type to the int data type

•	 float(): Changes any data type to the float data type

•	 tuple(): Changes any data type to a tuple

•	 list(): Changes any data type to a list

•	 set(): Changes any data type to a set

•	 dict(): Changes any data type to a dictionary

Listing 2-11 illustrates some of these functions.

Listing 2-11.  Type Conversion Operations

a = 2

print(a)

float(a)

b = [2 , 3, -1, 2, 4, 3]

print(tuple(b))

print(set(b))

Chapter 2 Basics of Python Programming

31

Output of line 2: 2.0

Output of line 4: (2, 3, -1, 2, 4, 3)

Output of line 5: (2, 3, 4, -1)

�Control Flow Statements
Control flow statements allow for the execution of a statement or a group

of statements based on the value of an expression. The control flow

statements can be classified into three categories: sequential control flow

statements that execute the statements in the program in the order they

appear, decision control flow statements that either execute or skip a block

of statements based on whether a condition is True or False, and loop

control flow statements that allow the execution of a block of statements

multiple times until a terminate condition is met.

�if Statement

The if control statement in the decision control flow statement category

starts with the if keyword, followed by a conditional statement, and ends

with a colon. The conditional statement evaluates a Boolean expression

and only if the Boolean expression evaluates to True, then the body of

statements in the if statement be executed. if block statements start with

indentation, and the first statement without indentation marks the end.

The syntax for the if statement is as follows, and Listing 2-12 shows how it

works:

if <expression>:

 <statement(s)>

Chapter 2 Basics of Python Programming

32

Listing 2-12.  if Statement Operations

x = 12

y=8

if x > y:

 out = "x is greater than y"

 print(out)

Output: x is greater than y

if-else Statement

The if statement can be followed up by an optional else statement. If the

Boolean expression corresponding to the conditional statement in the if

statement is True, then the statements in the if block are executed, and

the statements in the else block are executed if the Boolean expression is

False. In other words, the if-else statement provides a two-way decision

process. The syntax for the if-else statement is as follows:

if <expression>:

 <statement(s)>

else:

 <statement(s)>

Listing 2-13 shows the example code for the if-else statement.

Listing 2-13.  if-else Statement Operations

x = 7

y=9

if x > y:

 out = "x is greater than y"

else:

 out = "x is less than y"

Chapter 2 Basics of Python Programming

33

print(out)

Output:

x is less than y

if...elif...else statement

The if...elif...else statement can provide a multiway decision

process. The keyword elif is the short form of else-if. The elif

statement can be used along with the if statement if there is a need to

select from several possible alternatives. The else statement will

come last, acting as the default action. The following is the syntax for the

if...elif...else statement, and Listing 2-14 shows the example code:

if <expression>:

 <statement(s)>

elif <expression>:

 <statement(s)>

elif <expression>:

 <statement(s)>

...

else:

 <statement(s)>

Listing 2-14.  if...elif...else Statement Operations

x = 4

y=4

if x > y:

 out = "x is greater than y"

elif x<y:

 out = "x is less than y"

Chapter 2 Basics of Python Programming

34

else:

 out = "x is equal to y"

print(out)

Output:

x is equal to y

while loop

The while and for loops are loop control flow statements. In a while loop,

the Boolean expression in the conditional statement is evaluated. The

block of statements in the while loop is executed only when the Boolean

expression is True. Each repetition of the loop block is called an iteration of

the loop. The Boolean expression in the while statement is checked after

each iteration. The execution of the loop is continued until the expression

becomes False, and the while loop exits at this point. The syntax for the

while loop is as follows, and Listing 2-15 shows how it works:

while <expression>:

<statement(s)>

Listing 2-15.  while Loop Operations

x=0

while x < 4:

 print("Hello World!")

 x=x+1

Output:

Hello World!

Hello World!

Hello World!

Hello World!

Chapter 2 Basics of Python Programming

35

for loop

The for loop runs with an iteration variable that is incremented with each

iteration, and this increment goes on until the variable reaches the end of

the sequence on which the loop is operating. In each iteration, the items in

the sequence corresponding to the location given by the iteration variable

are taken, and the statements in the loop are executed with those items.

The syntax for the for loop is as follows:

for <iteration_variable> in <sequence>:

 <statement(s)>

The range() function is useful in the for loop as it can generate a

sequence of numbers that can be iterated using the for loop. The syntax

for the range() function is range([start,] stop [,step]) where

start indicates the beginning of the sequence (starting from zero if

not specified), stop indicates the value up to which the numbers must

be generated (not including the number itself), and step indicates the

difference between every two consecutive numbers in the generated

sequence. The start and step values are optional. The values generated by

the range argument should always be integers. Listing 2-16 shows a for

loop used to print the elements in a string one by one.

Listing 2-16.  for Loop Operations

x = "Hello"

for i in x:

 print(i)

Output:

H

e

l

l

o

Chapter 2 Basics of Python Programming

36

Listing 2-17 shows how to use the range() function to print a sequence

of integers.

Listing 2-17.  for Loop Operations with range Function

for i in range(4):

 print(i)

Output:

0

1

2

3

�Exception Handling
Exceptions are nothing but errors detected during execution. When an

exception occurs in a program, the execution is terminated and thereby

interrupts the normal flow of the program. By means of exception handling,

meaningful information about the error rather than the system-generated

message can be provided to the user. Exceptions can be built-in or

user-defined. User-defined exceptions are custom exceptions created by

the user, which can be done using try...except statements, as shown in

Listing 2-18.

Listing 2-18.  Exception Handling

while True:

try:

 n=int(input("Enter a number"))

print("The number you entered is",n)

 break

Chapter 2 Basics of Python Programming

37

except ValueError:

 print("The number you entered is not

 the correct data type")

 print("Enter a different number")

Output:

Enter a number 5

The number you have entered is 5

Enter a number3.6

The number you entered is not the correct data type

Enter a different number

In Listing 2-18, a ValueError exception occurs when a variable

receives a value of an inappropriate data type. If no exception occurs,

i.e., the number entered as input is an integer, then the except block is

skipped, and only the try block is executed. If an exception occurs while

entering a number of a different data type, then the rest of the statements

in the try block are skipped, the except block is executed, and the

program is returned to the try block.

�Functions
Functions are fundamental blocks in the Python programming that can

be used when a block of statements needs to be executed multiple times

within a program. Functions can be created by grouping this block of

statements and giving it a name so that the statements can be invoked

at any part of the program simply by this name rather than repeating the

entire block. Thus, functions can be used to reduce the size of the program

by eliminating redundant code. The functions can be either built-in or

user-defined.

Chapter 2 Basics of Python Programming

38

The Python interpreter has a number of built-in functions some of

which we have seen already such as print(), range(), len(), etc. On the

other hand, Python enables users to define their own functions and use

them as needed. The syntax for function definition is as follows:

def function_name(parameter1, parameter n):

 statement(s)

The function name can have letters, numbers, or an underscore, but

it cannot start with a number and should not have the same name as a

keyword. Let’s consider a simple function that takes a single parameter as

input and computes its square; see Listing 2-19.

Listing 2-19.  Square Functions

def sq(a):

 b = a * a

 print(b)

sq(36)

Output:1296

Let’s see a slightly complicated function that computes the binary

representation of a given decimal number.

As shown in Listing 2-20, the five lines of code required to compute the

binary representation of a decimal number can be replaced by a single line

using the user-defined function.

Listing 2-20.  Square Functions

 import math as mt

 def dec2bin(a):

 b=' '

 while a!=0:

 b=b+str(a%2)#concatenation operation

Chapter 2 Basics of Python Programming

39

 a=math.floor(a/2)

 return b[:-1]# reverse the string b

 print(int(dec2bin(19))

Output: 10011

�Python Libraries for Data Science
The Python community is actively involved in the development of a

number of toolboxes intended for various applications. Some of the

toolboxes that are used mostly in data science applications are NumPy,

SciPy, Pandas, and Scikit-Learn.

�NumPy and SciPy for Scientific Computation
NumPy is a scientific computation package available with Python. NumPy

provides support for multidimensional arrays, linear algebra functions,

and matrices. NumPy array representations provide an effective data

structure for data scientists. A NumPy array is called an ndarray , and it

can be created using the array() function. Listing 2-21 illustrates how to

create 1D and 2D arrays and how to index their elements.

Listing 2-21.  Array Using NumPy

'''import the NumPy library'''

import numpy as np

'''creates an 1D array'''

a=np.array([1,2,3,4])

'''print the data type of variable a'''

print(type(a))

'''creates a 2D array'''

a=np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

Chapter 2 Basics of Python Programming

40

print(a)

'''print the dimension of the array'''

print(a.ndim)

'''print the number of rows and columns in the array'''

print(a.shape)

'''print the third element in the first row'''

print(a[0,2])

'''print the sliced matrix as per given index'''

print(a[0:2,1:3])

a=np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])

'''reshape the 1 x 9 array into a 3 x 3 array'''

b=a.reshape(3,3))

print(b)

Output of line 6: <class 'numpy.ndarray'>

Output of line 9:

[[1 2 3 4]

 [5 6 7 8]]

Output of line 11: 2

Output of line 13: (2, 4)

Output of line 15:3

Output of line 17

[[2 3]

 [6 7]]

Output of line 21:

[[1 2 3]

 [4 5 6]

 [7 8 9]]

The sum of elements in an array of any dimension can be computed

using sum(). The sum can be computed either for the entire elements in

the array or along one of the dimensions as illustrated in Listing 2-22 for

the array b created earlier.

Chapter 2 Basics of Python Programming

41

Listing 2-22.  Array Using NumPy

'''print the sum of elements in array b'''

print(b.sum())

'''print the sum of elements along each column'''

print(b.sum(axis=0))

'''print the sum of elements along each row'''

print(b.sum(axis=1))

Output:

Output of line 2: 45

Output of line 4: array([12,15,18])

Output of line 6: array([6, 15, 18])

Another important operation with respect to arrays is the flattening

of multidimensional arrays. This process is more common in many of the

machine learning–based applications, and it can be done by using the

flatten() function, as illustrated here:

b.flatten()

Output:

 array([1, 2, 3, 4, 5, 6, 7, 8, 9]

The flatten() function converts an array of any dimension into a

single-dimensional array. This can be achieved using reshape() as well,

but unlike the flatten() function, the size of the single-dimensional

array has to be specified in that case. Table 2-4 describes some other array

operations that may come in handy while working with data analysis

applications.

Chapter 2 Basics of Python Programming

42

Table 2-4.  NumPy Functions for Data Analysis

Syntax Description

np.ones() Creates an array of ones in the dimension

specified within the parentheses.

np.zeros() Creates an array of zeros in the dimension

specified within the parentheses.

np.flip(a,axis) Reverses the array a along the given axis.

If axis is not specified, the array is reversed

along both dimensions.

np.concatenate(a,b,axis) Concatenates two arrays a and b along the

specified axis (=0 or 1 corresponding to

vertical and horizontal direction).

np.split(a,n) Splits the array a into n number of smaller

arrays. Here n can be any positive integer.

np.where(a==n) Gives the index values of the number n

present in an array a.

np.sort(a,axis) Sorts the numbers in an array a along the

given axis.

np.random.randint(n,size) Generates an array of the given size using

integers ranging from 0 to the number n.

The SciPy ecosystem is a collection of open source software for

scientific computation built on the NumPy extension of Python. It provides

high-level commands for manipulating and visualizing data. Two major

components of this ecosystem are the SciPy library, which is a collection

of numerical algorithms and domain-specific toolboxes, and Matplotlib,

Chapter 2 Basics of Python Programming

43

which is a plotting package that provides 2D and 3D plotting. The

following syntax can be used to import and use any function from a SciPy

module in your code:

from scipy import some_module

some_module.some_function()

As per the official SciPy documentation, the library is organized into

different subtypes covering different domains, as summarized in Table 2-5.

Table 2-5.  Subpackages in SciPY

Subpackage Description

cluster Clustering algorithms

constants Physical and mathematical constants

fftpack Fast Fourier Transform routines

integrate Integration and ordinary differential equation solvers

interpolate Interpolation and smoothing splines

io Input and output

linalg Linear algebra

ndimage N-dimensional image processing

odr Orthogonal distance regression

optimize Optimization and root-finding routines

signal Signal processing

sparse Sparse matrices and associated routines

spatial Spatial data structures and algorithms

special Special functions

stats Statistical distributions and functions

Chapter 2 Basics of Python Programming

44

�Scikit-Learn for Machine Learning
Scikit-Learn is an open source machine learning library for Python

programming that features various classification, regression, and

clustering algorithms. It is designed to interoperate with other Python

libraries like NumPy and SciPy.

�Pandas for Data Analysis
Pandas is a fast and powerful open source library for data analysis and

manipulation written for Python programming. It has a fast and efficient

DataFrame object for data manipulation with integrated indexing. It has

tools for reading and writing data between in-memory data structures and

different file formats such as CSV, Microsoft Excel, etc. Consider a CSV file

called data.csv containing the grades of three students in three subjects,

as shown in Figure 2-5. Listing 2-23 shows the procedure for reading and

accessing this data using Pandas.

Listing 2-23.  Data Modification Using Pandas Functions

import pandas as pd

'''reads the file data.csv with read_csv package and the

header=None option allows pandas to assign default names to the

colums

Consider the data in the above table is typed in a excel sheet and

saved as csv file in the following path C:\Python_book\data.csv

Roll No Science Maths English

RN001 70 76 85

RN002 86 98 88

RN003 76 65 74

Figure 2-5.  CSV file with grade data of students

Chapter 2 Basics of Python Programming

45

'''

d = pd.read_csv("C:\Python_book\data.csv",header=None)

print(type(d))

print(d)

"'print the element common to row1-column2"'

print(d.loc[1,2])

"'print the elements common to rows 1,2 and

 columns 1,2"'

d.loc[1:2, 1:2]

Output of line 4:

<class 'pandas.core.frame.DataFrame'>

Output of line 5:

 0 1 2 3

0 Roll No Science Maths English

1 RN001 70 76 85

2 RN002 86 98 88

3 RN003 76 65 74

Output of line 7: 76

Output of line 9:

 1 2

1 70 76

2 86 98

Similarly, there are other read functions such as read_excel, read_sql,

read_html, etc., to read files in other formats, and every one of these read

functions comes with their corresponding write functions like to_csv, to_

excel, to_sql, to_html, etc., that allows you to write the Pandas dataframe

to different formats.

Chapter 2 Basics of Python Programming

46

Most of the real-time data gathered from sensors is in the form of time-

series data, which is a series of data indexed in time order. Let’s consider a

dataset that consists of the minimum daily temperatures in degrees Celsius

over 10 years (1981 to 1990) in Melbourne, Australia. The source of the data

is the Australian Bureau of Meteorology. Even though this is also a CSV

file, it is time-series data unlike the DataFrame in the previous illustration.

Listing 2-24 shows the different ways to explore the time-series data.

Listing 2-24.  Data Modification in Pandas

Series=pd.read_csv('daily-min-

 temperatures.csv',header=0, index_col=0)

"'prints first 5 data from the top of the series"'

print(series.head(5))

"'prints the number of entries in the series"'

print(series.size)

print(series.describe())

"'describe() function creates 7 descriptive statistics of the

time series data including mean, standard deviation, median,

minimum, and maximum of the observations"'

 Output of line 3:

 Date Temp

1981-01-01 20.7

1981-01-02 17.9

1981-01-03 18.8

1981-01-04 14.6

1981-01-05 15.8

Output of line 5: 3650

Output of line 6:

Chapter 2 Basics of Python Programming

47

 Temp

count 3650.000000

mean 11.177753

std 4.071837

min 0.000000

25% 8.300000

50% 11.000000

75% 14.000000

max 26.300000

�TensorFlow for Machine Learning
TensorFlow is an end-to-end open source platform for machine learning

created by the Google Brain team. TensorFlow has a slew of machine

learning models and algorithms. It uses Python to provide a front-end API

for building applications with the framework. Keras is a high-level neural

network API that runs on top of TensorFlow. Keras allows for easy and

fast prototyping and supports both convolutional networks and recurrent

neural networks.

Chapter 2 Basics of Python Programming

49© K. Mohaideen Abdul Kadhar and G. Anand 2021
K. M. Abdul Kadhar and G. Anand, Data Science with Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6825-4_3

CHAPTER 3

Introduction to the
Raspberry Pi
The Raspberry Pi, or simply the Pi, is a series of small, low-cost, single-

board computers invented by the Raspberry Pi Foundation in the United

Kingdom to promote basic computer science and electronics among

students around the world. Students and tech enthusiasts use the

Raspberry Pi to learn programming concepts, build hardware projects and

robots, and make artificial intelligence projects. It is also used in industrial

applications.

�What Can You Do with the Raspberry Pi?
A Raspberry Pi board can do pretty much everything a desktop computer

can do: surf the Internet, watch high-definition videos, listen to music,

view and edit pictures, perform word processing, make spreadsheets and

presentations, write and compile code, participate in video conferencing,

and even play games.

https://doi.org/10.1007/978-1-4842-6825-4_3#DOI

50

�Physical Computing with the Raspberry Pi
The Raspberry Pi can also be used to interact with the physical world.

This is done with the general-purpose input/output (GPIO) pins on the

Raspberry Pi board. This makes the Raspberry Pi powerful as it can be

interfaced with sensors and other electric and electronic components such

as LEDs, servo and stepper motors, relays, etc.

�How to Program the Raspberry Pi?
The Raspberry Pi comes with two pre-installed languages (Scratch

and Python), but it also supports other languages. Scratch is a visual

programming language for children, whereas Python is a high-level

general-purpose programming language; both languages are easy to

learn. If you learn to program in Python, then you can do everything that’s

possible with the Raspberry Pi.

�Raspberry Pi Hardware
The Raspberry Pi Foundation released the first Raspberry Pi, the Raspberry

Pi model B, in 2012. A number of improved versions were released after

that, and we will look at all those versions later. The latest version is the

Raspberry Pi 4 model B, released in June 2019. Figure 3-1 shows the top

view of a Raspberry Pi board with its many I/O ports. Let’s take a look at its

hardware specifications and other features.

Chapter 3 Introduction to the Raspberry Pi

51

�System on a Chip
The system on a chip (SoC), shown in Figure 3-2, is the brain of the

Raspberry Pi. This small chip consists of many important parts: the central

processing unit (CPU), the graphics processing unit (GPU), and the digital

signal processor.

Figure 3-1.  Raspberry Pi hardware

Figure 3-2.  System on a chip

Chapter 3 Introduction to the Raspberry Pi

52

The Raspberry Pi 4 model B has the powerful Broadcom BCM2711

(1.5 GHz 64-bit quad-core) SoC. The Pi’s CPU performs operations such as

basic arithmetic, logic, controlling, and input/output, while the Pi’s GPU

is used for handling multimedia tasks such as digital image processing,

drawing 3D graphics, and playing games.

�Raspberry Pi RAM
Random access memory (RAM) is the black rectangle located next to the

SoC in the Raspberry Pi 4 model B, as shown in Figure 3-3. In previous

versions of the Raspberry Pi, the RAM was packed inside the SoC. The Pi 4

offers three choices of LPDDR4 RAM: 1GB, 2GB, and 4GB.

RAM stores the short-term data used by the applications, and this data

will be deleted when the Raspberry Pi is turned off. The RAM is shared by

both the central processing unit and the graphics processing unit.

�Connectivity
The Raspberry Pi 4 model B has onboard Wi-Fi, Bluetooth and Gigabit

Ethernet. These features come in handy for accessing the Raspberry

Pi remotely, making it a desirable choice of hardware for Internet of

Things (IoT) projects. This also frees up the USB ports and GPIO pins for

connecting external Wi-Fi and Bluetooth modules.

Figure 3-3.  Raspberry Pi RAM

Chapter 3 Introduction to the Raspberry Pi

53

�Setting Up the Raspberry Pi
This section explains how to set up the Raspberry Pi.

�microSD Memory Card
The Raspberry Pi, unlike desktops and laptops, uses a microSD memory

card for storing the files, applications, and even the operating system.

microSD memory cards are small compared to hard disks and are easy to

use. A minimum of 8GB of memory is required by the Pi. A 16GB or 32GB

microSD memory card is recommended for data science projects. Class

10 ultra-high-speed (UHS) memory cards are recommended for faster

reading/writing of data.

�Installing the OS
Raspbian is the official and most commonly used operating system for

the Raspberry Pi released by the Raspberry Pi Foundation. It can be

easily installed on the microSD card using Raspberry Pi Imager software,

as shown in Figure 3-4. The Raspberry Pi also supports other operating

systems such as Ubuntu and Windows 10 IOT Core.

Chapter 3 Introduction to the Raspberry Pi

54

Follow these instructions to install the Raspbian OS in your

Raspberry Pi:

	 1.	 Visit the Downloads page of the Raspberry Pi

website and download the Raspberry Pi Imager

software on your operating system.

	 2.	 Once the download is completed, launch the

installer by clicking it.

	 3.	 Insert the microSD memory card into your

computer. Make sure to back up any important data

you have in it, as anything stored in the card will be

formatted.

Figure 3-4.  Interface of the Raspberry Pi Imager software

Chapter 3 Introduction to the Raspberry Pi

55

	 4.	 Select the Raspbian or other desired operating

system that you want to install and also the microSD

card you would like to install it on.

	 5.	 Finally, click the Write button and wait for the

operation to complete.

�Inserting the microSD Memory Card
The thin metal slot on the underside of the Raspberry Pi, as shown in

Figure 3-5, is the microSD memory card slot. Once the operating system is

installed on the microSD memory card, insert it in the memory card slot of

the Raspberry Pi.

As the operating system is stored along with the other files on the

microSD memory card, it makes the Pi’s memory portable. The microSD

memory card can be inserted in a new Raspberry Pi, and it will work like a

charm.

Figure 3-5.  MicroSD card slot

Chapter 3 Introduction to the Raspberry Pi

56

�Connecting a Keyboard and Mouse
Figure 3-6 shows the USB ports of a Raspberry Pi pin. The Raspberry Pi 4

model B has two USB 2.0 ports (black) and two Universal Serial Bus (USB)

3.0 ports (blue). USB can be used to connect a keyboard, mouse, webcam,

and other USB peripherals. USB 3.0 ports are about 10 times faster than

the USB 2.0 ports. Normally, peripherals like keyboard and mouse are

connected to the USB 2.0 ports, leaving the faster USB 3.0 ports for devices

such as hard disk and webcam.

If you have a wireless keyboard and mouse instead of a wired

combination, they can be connected to the Raspberry Pi by connecting the

USB dongle in one of the two black ports. This also frees up one of the USB

ports, which can be used to connect other devices.

�Connecting a Monitor
The Raspberry Pi can be connected to a monitor through the micro-HDMI

port shown in Figure 3-7. HDMI stands for High-Definition Multimedia

Interface, and the Raspberry Pi provides combined audio and video output

from this port. The Raspberry Pi model 4 comes with two micro-HDMI

ports with 4K support, which means you can connect two 4K monitors to

the Raspberry Pi at the same time.

Figure 3-6.  USB ports

Chapter 3 Introduction to the Raspberry Pi

57

If your TV or monitor supports HDMI input, then you will need a micro

HDMI-to-HDMI cable to connect the Raspberry Pi to your TV or monitor.

Older versions of the Raspberry Pi come with a single HDMI port. If your

TV or monitor has a VGA input, then you will need to use a micro HDMI-

to-VGA adapter to connect it to the Raspberry Pi. Similarly, you can use a

HDMI-to-DVI cable for monitors with DVI input.

�Powering the Raspberry Pi
The Raspberry Pi 4 B needs to be powered through a 5.1V DC USB-C type

connector, as shown in Figure 3-8, with a minimum current input of 3A. It

can also be powered via the GPIO header. The USB-C type power port is

located near a corner of the Raspberry Pi. None of the Raspberry Pi models

has an on/off switch; once you connect the Raspberry Pi to the power

supply, it turns on.

Figure 3-7.  HDMI ports

Figure 3-8.  USB-C type connector

Chapter 3 Introduction to the Raspberry Pi

58

Supplying the incorrect voltage or insufficient current can cause

damages to the Raspberry Pi; hence, it is recommended to use the official

Raspberry Pi power supply.

�Raspberry Pi Enclosure
The Raspberry Pi needs to be enclosed in a case to prevent the bare

connections and GPIO headers. A variety of enclosure cases are

available for the Raspberry Pi, or you can make your own case, but it

is recommended to use the official cases released by the Raspberry Pi

Foundation. Cases with cooling fans are also available. They can be used to

prevent the Pi from overheating while running heavy-duty applications.

�Raspberry Pi Versions
This section explains the different versions.

�Raspberry Pi 1
The Raspberry Pi B was the first model launched by the Raspberry Pi

Foundation in 2012, followed by the Pi A in 2013. They had 26 GPIO pins,

a 700MHz processor, and 256MB/512MB RAM, and they didn’t have any

built-in Wi-Fi or Bluetooth. In 2014, the compact Pi A+ and improved B+

models were released with 40 GPIO pins.

�Raspberry Pi 2
The Raspberry Pi 2 was released in 2015 with an improved 900MHz quad-

core processor and 1GB RAM. This model had 40 GPIO pins and did not

have built-in Wi-Fi or Bluetooth. It had four USB 2.0 ports, an Ethernet

port, and an HDMI port.

Chapter 3 Introduction to the Raspberry Pi

59

�Raspberry Pi 3
In 2016, the Raspberry Pi 3 was released. It had a 1.2GHz quad-core

processor with 1GB RAM. This model had 40 GPIO pins, and this was

the first Raspberry Pi model to have built-in Wi-Fi and Bluetooth. Similar

to the Raspberry Pi 2, it had four USB 2.0 ports, an Ethernet port, and

an HDMI port. Later in 2018, the compact Pi 3 A+ and improved Pi 3 B+

models were launched.

�Raspberry Pi Zero (W/WH)
In 2015, a small-sized, low-cost Raspberry Pi Zero with fewer GPIO pins

was launched. The Pi Zero W was released in 2017 with built-in Wi-Fi

and Bluetooth. This was followed by the Pi Zero WH that came with pre-

soldered GPIO headers.

�Raspberry Pi 4
The Raspberry Pi 4 model B was released in 2019 and had the powerful

1.5GHz quad-core processor and 1GB/2GB/4GB RAM options. This was

the first model to come with dual 4K display output, USB-C type power

input, and two USB 3.0 ports.

�Recommended Raspberry Pi Version
There are different versions of Raspberry Pi available, but the Raspberry Pi

4 is recommended for data science projects as it is more powerful than the

other versions and also comes with RAM options up to 4GB.

The Raspberry Pi Zero WH is the smallest variant of the Raspberry

Pi available, and it is recommended when the size of the single-board

computer needs to be small. But it comes with a comparatively slower

processor, less RAM, and fewer GPIO pins.

Chapter 3 Introduction to the Raspberry Pi

60

�Interfacing the Raspberry Pi with Sensors
This section highlights how to interface the Raspberry Pi with sensors.

�GPIO Pins
The GPIO pins shown in Figure 3-9 are one of the most powerful

features of the Raspberry Pi. The GPIO pins are the row of little pins

along the edge of the board. All Raspberry Pi versions released recently

have a 40-pin GPIO header. These pins are the connections between

the Raspberry Pi and the real world. GPIO pins can be designated as

input or output in software and can be used for a variety of purposes

like turning on/off LEDs, controlling servo motors, and getting data

from sensors. They can be programmed in Python or any other

language such as Scratch or C/C++.

Chapter 3 Introduction to the Raspberry Pi

61

�GPIO Pinout
Before making any connections to the Raspberry Pi GPIO pins, we need

to know the GPIO pinout reference. Pinout configurations are not printed

on the Raspberry Pi, but we can get the pinout reference of any Raspberry

Figure 3-9.  Raspberry Pi GPIO pins

Chapter 3 Introduction to the Raspberry Pi

62

Pi by opening the terminal window and typing the command pinout.

This tool is given by the gpiozero library, which is pre-installed on the

Raspbian OS.

�GPIO Outputs
The Raspberry Pi has two 5V pins and two 3V3 pins; it also has eight

ground pins (0V), which cannot be configured. The remaining 28 pins are

all general-purpose 3V3 pins. The outputs of these pins are set to 3V3 or

can receive inputs up to 3V3. A GPIO pin designated as an output pin can

be set to high (3V3) or low (0V).

�Controlling GPIO Output with Python
GPIO pins can be easily controlled with Python using the gpiozero library.

Let’s see a simple Python example of how to turn on/off LEDs connected

to GPIO pins. LEDs always need to be connected to the GPIO pins through

a resistor. Resistors will ensure that only a small current will flow in the

circuit; hence, the Raspberry Pi or the LED will be protected from damage.

We will connect an LED to GPIO pin 17 through a 330Ω resistor, as

shown in Figure 3-10. Now, the LED can be made to continuously turn on

and off using the Python code given in Listing 3-1. The led.on() function

turns on the LED, and the led.off() function turns off the LED.

Chapter 3 Introduction to the Raspberry Pi

63

Listing 3-1.  LED Function Using GPIO

from gpiozero import LED

from time import sleep

led = LED(17)

while True:

 led.on()

 sleep(1)

 led.off()

 sleep(1)

Figure 3-10.  Connecting LED to GPIO pins

Chapter 3 Introduction to the Raspberry Pi

64

�GPIO Input Signals
GPIO pins that are designated as input pins can be read as high (3V3) or

low (0V). This means that the GPIO pins do not support analog input and

can receive digital input only. Although there is no hardware for an analog-

to-digital converter in the Raspberry Pi, we can use an external ADC such

as the MCP3008 to read analog data from sensors.

�Reading GPIO Inputs with Python

Sensors can be easily interfaced with the Raspberry Pi by connecting

them to GPIO pins. The sensors can be powered by connecting the VCC

of the sensor to 3.3V/5V of the Raspberry Pi and connecting the GND of

the sensor to the GND of the Raspberry Pi. Digital output from the sensor

can be directly connected to the GPIO pins and read. But while reading

an analog output, an analog-to-digital converter required to interface a

analog sensor with Raspberry Pi.

Digital Signals from Sensors

The Raspberry Pi considers any input below 1.8V as low (0) and anything

above 1.8V as high (1), as shown in Figure 3-11. Digital output data from

any sensor can be easily read using the InputDevice.value function. This

function returns the current state of the given GPIO pin.

The code in the Listing 3-2 prints the state of GPIO pin 17 every second.

Figure 3-11.  Low and high inputs

Chapter 3 Introduction to the Raspberry Pi

65

Listing 3-2.  State of GPIO

from gpiozero import InputDevice

from time import sleep

sensor = InputDevice(17, pull_up=True)

while True:

 print(sensor.value)

 sleep(1)

Analog Signals from Sensors

Figure 3-12 illustrates an analog signal. To read analog signals from sensors

or some other devices, we should use an analog-to-digital converter such

as MCP3008 for the Raspberry Pi. An ADC converts the analog signals into

digital signals. The Serial Peripheral Interface (SPI) protocol is used to

communicate the output from the ADC to the Raspberry Pi.

To enable SPI communication, open the Raspberry Pi configuration

from the main menu and enable SPI on the Interfaces tab. MCP3008 is a

10-bit ADC and has eight input channels (0–7). Let’s connect an analog

input to the first channel (0) of the MCP3008 and the other pins of the

MCP3008, as shown in Figure 3-13.

Figure 3-12.  Analog signal

Chapter 3 Introduction to the Raspberry Pi

66

The code in Listing 3-3 prints the analog value of the sensor connected

to the first channel (0) of MCP3008 every second. Since MCP3008 is a 10-

bit ADC, the output value ranges from 0 to 1023.

Listing 3-3.  Implement the MCP3008

from gpiozero import MCP3008

from time import sleep

sensor = MCP3008(0)

while True:

 print(sensor.value)

 sleep(1)

�Interfacing a Ultrasonic Sensor with the
Raspberry Pi
Ultrasonic sensors are used to measure the distance of objects by finding

the time of the sound wave. The HC-SR04 ultrasonic sensor can be used to

measure the distance from 2cm to 400cm with 3mm accuracy. Ultrasonic

sensors work by sending out a sound wave at a frequency of 40kHz, which is

above the range of human hearing and travels through the air. If there is an

obstacle or object, the sound wave will bounce back to the sensor.

Figure 3-13.  10-bit ADC MCP3008

Chapter 3 Introduction to the Raspberry Pi

67

The distance of the object can be calculated by multiplying half of the

travel time and the speed of sound. Figure 3-14 shows the ultrasonic

sensor and its pins where the VCC pin needs to be connected to the

positive terminal of the Raspberry Pi, the GND pin can be connected to a

GND pin of the Raspberry Pi, the Trig pin is used to trigger the ultrasonic

sound pulses, and the Echo pin produces a pulse when the reflected sound

wave is received.

Connect the ultrasonic distance sensor to the Raspberry Pi, as shown

in Figure 3-15.

Figure 3-14.  Ultrasonic sensor pin

Figure 3-15.  Ultrasonic sensor with the Raspberry Pi GPIO pin

Chapter 3 Introduction to the Raspberry Pi

68

The gpiozero library has an object called DistanceSensor that can

be used to measure distance using the ultrasonic sensor in Python.

The distance function returns the distance measure by the ultrasonic

distance senor in meters. Let’s multiply the value by 100 to convert it into

centimeters. The code in Listing 3-4 continuously prints the distance

measure by the ultrasonic distance sensor in centimeters every second.

Listing 3-4.  Code for calculting distance measured by the

Ultrasonic Sensor

from gpiozero import DistanceSensor

from time import sleep

sensor = DistanceSensor(echo=17, trigger=4)

while True:

 print(sensor.distance * 100)

 sleep(1)

When the code is running, move the position of the objects placed in

front of the ultrasonic sensor to get different values.

�Interfacing the Temperature and Humidity
Sensor with the Raspberry Pi
As the name suggests, these sensors can be used to measure the

temperature and humidity. They consist of a capacitive humidity sensing

element and a thermistor for sensing temperature. The temperature and

humidity sensor has a dedicated resistive-type humidity measurement

component, called the negative temperature coefficient (NTC) temperature

measurement component, and an 8-bit microcontroller to output the

values of temperature and humidity as serial data. A single-bus data

format is used for the communication and synchronization between the

Raspberry Pi and the DHT11 sensor.

Chapter 3 Introduction to the Raspberry Pi

69

Figure 3-16.  Temperature and humidity sensor

Figure 3-17.  Temperature and humidity sensor with the Raspberry
Pi GPIO pin

DHT 11 and DHT 22 are the generally used temperature and humidity

sensors. Figure 3-16 shows the temperature and humidity sensor (THD)

and Figure 3-17 explains the interfacing of THD with Raspberry Pi

where the VCC pin needs to be connected to the positive terminal

of the Raspberry Pi, where the GND pin can be connected to a GND

of the Raspberry Pi, and where the Signal/Data pin is used for serial

communication and needs to connect to a GPIO pin.

Connect the DHT 11/22 sensor module to the Raspberry Pi, as shown

in Figure 3-17.

Chapter 3 Introduction to the Raspberry Pi

70

Let’s use the Adafruit_DHT library to get the temperature and humidity

values from the sensor. The code in Listing 3-5 continuously prints the

temperature in Celsius and the humidity percentage.

Listing 3-5.  Code for Temperature and Humidity Sensor

import Adafruit_DHT

import time

DHT_SENSOR = Adafruit_DHT.DHT11

DHT_PIN = 17

while True:

 humidity, temperature =

 Adafruit_DHT.read(DHT_SENSOR, DHT_PIN)

 if humidity is not None and temperature is not None:

 print("Temperature="{0:0.1f}C)

 humidity={1:0.1f}%".format(temperature, humidity))

 else:

 print("Sensor not connected.");

 time.sleep(3);

The Adafruit module can be installed in the Raspberry Pi using the

following code.

For Python 2:

sudo pip install Adafruit_DHT

For Python 3:

sudo pip3 install Adafruit_DHT

Chapter 3 Introduction to the Raspberry Pi

71

Figure 3-18.  Soil moisture sensor

�Interfacing the Soil Moisture Sensor
with the Raspberry Pi
Soil moisture sensors are used to detect the moisture present in soil. A

soil moisture sensor consists of two probes that are used to measure the

amount of moisture present in the soil. This sensor uses capacitance to

measure the dielectric permittivity of the soil, which is a function of the

moisture content of the soil. The sensor is equipped with both analog

and digital output, so it can be used in both analog and digital modes.

But, let’s take the analog signal from the sensor and read it using Python.

Figure 3-18 shows the soil moisture sensor. Here, the VCC pin needs to be

connected to the positive terminal of the Raspberry Pi, the analog output

(AO) creates a voltage proportional to the dielectric permittivity and

therefore the water content of the soil, and the digital output (DO) creates

a pulse when the soil moisture is higher than the threshold value. The

threshold value is set using the potentiometer in the sensor module, and

the GND pin can be connected to a GND of the Raspberry Pi.

Connect the soil moisture sensor module to the Raspberry Pi through

an MCP3008 ADC, as shown in Figure 3-19.

Chapter 3 Introduction to the Raspberry Pi

72

Let’s use the MCP3008 module from the gpiozero library to get the

values from the MCP3008. The code in Listing 3-6 continuously prints the

analog value of the soil moisture sensor every second.

Listing 3-6.  Code for interfacing soil moisture sensor

from gpiozero import MCP3008

from time import sleep

soil_sensor = MCP3008(0)

while True:

 print(soil_sensor.value)

 sleep(1)

�Interfacing Cameras with the Raspberry Pi
Cameras are optical instruments used to record images using an image

sensor. An image sensor detects and conveys information used to make an

image. Cameras can be easily interfaced with the Raspberry Pi to get image

or video data. There are two options available to interface cameras with the

Raspberry Pi.

Figure 3-19.  Temperature and humidity sensor with the Raspberry
Pi GPIO pin

Chapter 3 Introduction to the Raspberry Pi

73

Method 1: The first method is to connect a USB web camera to the

Raspberry Pi using the USB ports. Figure 3-20 shows a USB web camera.

Once the USB web camera is connected properly, it can be accessed in

Python using the OpenCV library. OpenCV is a Python library for image

processing and real-time computer vision. The code in Listing 3-7 can be

used for connecting the USB web camera to the Raspberry Pi.

Listing 3-7.  Code for Connecting USB Web Cameras with the

Raspberry Pi

import cv2

videoCaptureObject = cv2.VideoCapture(0)

result = True

while(result):

 ret,frame = videoCaptureObject.read()

 cv2.imwrite("/home/pi/Desktop/webcam_image.jpg ",frame)

 result = False

videoCaptureObject.release()

cv2.destroyAllWindows()

Method 2: Another method is to interface a Raspberry Pi camera

module via the Camera Serial Interface (CSI) port. Figure 3-21 shows

the Raspberry Pi camera. There are two Raspberry Pi camera modules

Figure 3-20.  USB web camera

Chapter 3 Introduction to the Raspberry Pi

74

available: a standard module and a NoIR camera module for taking

pictures in the dark. To enable the Raspberry Pi camera, open the

Raspberry Pi configuration from the main menu and enable Camera on

the Interfaces tab.

The code in Listing 3-8 takes a picture from the Raspberry Pi camera

module and stores the image in the specified location.

Listing 3-8.  Code for Connecting Raspberry Pi Camera with the

Raspberry Pi

from picamera import PiCamera

from time import sleep

camera = PiCamera()

camera.start_preview()

sleep(5)

camera.capture('/home/pi/Desktop/cammodule_img.jpg')

camera.stop_preview()

Figure 3-21.  Raspberry Pi camera with CSI

Chapter 3 Introduction to the Raspberry Pi

75

�Raspberry Pi as an Edge Device
Computing done at or near the source of data is known as edge computing.

Edge computing is preferred over cloud computing in areas that require

instant or real-time computing, as well as in remote locations that cannot

be connected to a centralized cloud or have limited connectivity. The most

significant advantage of edge computing is its capacity to reduce latency as

the data gathered by the sensors is processed in edge devices and doesn’t

need to travel far to the data centers. See Figure 3-22.

�Edge Computing in Self-Driving Cars
Self-driving cars will rely on edge computing as every millisecond

is very crucial while driving on the road. The large amount of data

collected from their sensors and cameras can’t be sent to the cloud

for analysis as this would take a considerable amount of time and also

Figure 3-22.  Raspberry Pi as edge device

Chapter 3 Introduction to the Raspberry Pi

76

need an uninterrupted network. So, edge computing is preferred for

these kind of applications due to its faster speed and high reliability.

�What Is an Edge Device?
Edge computing is done in edge devices. Edge devices are capable of

gathering, storing, and processing data in real time. As a result, the

edge devices provide faster response and have better reliability. Sensors

and other devices are connected to the edge device via wired cables or

wireless connectivity such as Wi-Fi or Bluetooth, as shown in Figure 3-22.

Sometimes the edge devices are connected to a centralized cloud for big

data processing and data warehousing.

�Edge Computing with the Raspberry Pi
The Raspberry Pi has good computing power and the ability to connect

to sensors and devices through wired and wireless connections. The

Raspberry Pi also supports many computer programming languages such

as Python, C/C++, and Java. This makes the Raspberry Pi an excellent

choice for edge computing.

�Raspberry Pi as a Localized Cloud
In this chapter, we’ll discuss using the Raspberry Pi as a localized cloud.

�Cloud Computing
Cloud computing is the practice of using a network of remote servers

hosted on the Internet to store, manage, and process data. These remote

servers are called cloud servers and are located in data centers all over the

world. Accessing data from these kind of servers requires strong Internet

connectivity.

Chapter 3 Introduction to the Raspberry Pi

77

Figure 3-23.  Raspberry Pi as a localized cloud

�Raspberry Pi as Localized Cloud
Nowadays, IoT devices generate huge volumes of data at high speed.

Often this data requires real-time processing to make quick decisions, and

this can be supported by a localized cloud. Also, some of the IoT sensor

networks are deployed at remote areas with sparse Internet connectivity,

which challenges the concept of a localized cloud. The Raspberry Pi can

be made as a localized cloud to support real-time data processing closer to

the IoT networks. It needs to be connected to a network via Ethernet or

Wi-Fi. The Raspberry Pi as a localized cloud can be used to store and

process data collected from sensors or from other devices such as

computers and mobile phones, as illustrated in Figure 3-23.

�Connecting an External Hard Drive
External hard disk drives can be connected to the Raspberry Pi to increase

its storage capacity. These HDDs need to be powered externally using a

power supply. If there is no power supply, they can be connected via a

powered USB hub. This enhanced storage can allow the Raspberry Pi to

collect and process large amounts of real-time data from IoT networks.

Chapter 3 Introduction to the Raspberry Pi

78

�Connecting USB Accelerator
Coral USB Accelerator is a super-fast development board for deep learning

practitioners to deploy their models without the need for the Internet,

thereby enabling edge computing. It brings a machine learning interface to

the Raspberry Pi. It consists of an edge TPU coprocessor, which is capable

of performing 4 trillion operations (tera-operations) per second (TOPS).

This makes running ML models in real time possible. For example, the

device can help the Raspberry Pi run MobileNet v2 models at 400 FPS.

Chapter 3 Introduction to the Raspberry Pi

79© K. Mohaideen Abdul Kadhar and G. Anand 2021
K. M. Abdul Kadhar and G. Anand, Data Science with Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6825-4_4

CHAPTER 4

Sensors and Signals
This chapter covers sensors and signals.

�Signals
Generally, signals represent some information with respect to time or

space. For example, a variation of a car’s speed with respect to time is a

kind of signal. The information can be transferred in the form of signals.

In electrical engineering, a signal is a function that carries information

with respect to time or space. The electrical equipment exhibits the signals

in the form of voltage, current, or electromagnetic waves. As per the IEEE

Transactions on Signal Processing, a signal can be audio, video, speech,

image, sonar, radar-related, and so on [1]. Also, mathematically speaking,

a signal is a function of one or more independent variables. Independent

variables are just variables that aren’t changed by the other variables you

are trying to measure. For example, consider the temperature variation

with respect to time. Here, time is the independent variable, because the

time isn’t changed due to the variations in the temperature.

This chapter discusses how to acquire information from a real-time

environment using sensors with Raspberry Pi and then convert that

information in to structured data. The sensor output is in the form of an

https://doi.org/10.1007/978-1-4842-6825-4_4#DOI

80

electrical signal. This chapter first describes about signal and its various

types. There are many classifications of signals of which we concentrate on

describing the following electrical signals:

•	 Analog and digital signals

•	 Continuous-time and discrete-time signals

•	 Deterministic and nondeterministic signals

•	 One-dimensional signals, two-dimensional signals,

multidimensional signals

�Analog and Digital Signals
An analog signal represents the instantaneous values of a physical quantity

that varies continuously with respect to an independent variable (i.e., time).

Simply speaking, analog signals are continuous in time and amplitude. The

physical quantity may be temperature, pressure, speed, etc. Sensors can

convert the variation of physical quantity in to electrical signals like voltage

or current. In this way, real-time environment data can be collected in the

form of electrical signals using sensors.

A digital signal is a signal that is used to represent data as a sequence

of discrete values. The independent variable (i.e., time) is discrete and has

quantized amplitude. Digital signals can be obtained by applying sampling

and quantization on analog signals. At any given time the digital signal can

take on only one of a finite number of values.

�Continuous-Time and Discrete-Time Signals
A continuous time signal or continuous signal is a signal defined over

a continuum of its domain, which is often time. Any analog signal is

continuous by nature.

Chapter 4 Sensors and Signals

81

A discrete-time signal or discrete signal is a signal whose independent

variable (time) has only discrete values. It is a time series consisting of

a sequence of quantities. Discrete-time signals, used in digital signal

processing, can be obtained by sampling and quantization of continuous

signals.

�Deterministic and Nondeterministic Signals
A deterministic signal is a signal with no uncertainty with respect to its

value at any instant in time. In other words, a signal that can be defined

exactly using a mathematical formula is a deterministic signal.

A nondeterministic signal or random signal is a signal that has

uncertainty with respect to its value at some instant in time. This signal

is also called a random signal due to its random nature, and the signal

cannot be described by a mathematical equation.

�One-Dimensional, Two-Dimensional,
and Multidimensional Signals
A one-dimensional signal is a function of only one independent variable.

Voice signal is a good example of one-dimensional signal, because the

amplitude of voice depends on only one independent variable (i.e., time).

Similarly, if the signal is a function of two dependent variables,

the signal is called a two-dimensional signal. A grayscale image is an

example of a two-dimensional signal. Spatial coordinates (x,y) are the two

independent variables in an image. Multidimensional signal is a function

of more than two variables. A motion picture (i.e., video) is the best

example of a multidimensional signal.

Chapter 4 Sensors and Signals

82

�Gathering Real-Time Data
Gathering the data can be conducted in two ways: manual and automated.

In the manual method, the data can be collected from existing files and

documents. Then, the collected data can be organized into a structured

manner (i.e., a tabular format) manually. In automation, the data can be

collected using some devices called sensors. The real-time information about

the physical quantities such as temperature, pressure, images, etc., can be

collected using sensors. This chapter focuses on describing automated data

collection using sensors. To automate the data collection, data acquisition

systems are required. This section explains how to gather data using sensors

such as ultrasonic sensor, humidity, temperature, and image data from a

camera. Also, storing the collected data in the structured format is discussed.

�Data Acquisition
The process of sampling signals that measure real-world physical

conditions and converting the resulting samples into digital numeric

values that can be manipulated by a computer is called data acquisition.

Data acquisition systems (DAS or DAQ) generally convert analog signals

into digital values for processing. The data acquisition systems comprises

the following three components:

•	 Sensors

•	 Signal conditioning circuitry

•	 Analog-to-digital converters

�Sensors
Generally, sensors produce an electrical signal corresponding to the

changes in the environment. A sensor is a device that converts physical

parameters such as temperature, humidity, distance, etc., into an electrical

Chapter 4 Sensors and Signals

83

signal. A sensor can be a device, module, machine, or subsystem that can

detect events or changes in the environment and send the information to

other electronic devices, most often a computer processor. For example,

a thermocouple is a temperature sensor that produces an output voltage

based on the input temperature changes. There are two types of sensors

based on its output signal types: analog and digital.

�Analog Sensors
Analog sensors produce a continuous output signal or voltage that is

generally proportional to the quantity being measured. These sensors

generally produce output signals that change smoothly and continuously

over time. See Figure 4-1.

The following code continuously prints the analog value of the

sensor connected to the first channel (0) of MCP3008 every second. Since

MCP3008 is a 10-bit ADC, the output value ranges from 0 to 1023.

from gpiozero import MCP3008

from time import sleep

sensor = MCP3008(0)

while True:

 print(sensor.value)

Figure 4-1.  Analog signal

Chapter 4 Sensors and Signals

84

�Digital Sensors
Digital sensors produce digital output signals or voltages that are a digital

representation of the quantity being measured. In these sensors, data

conversion and data transmission take place digitally. See Figure 4-2.

The following code prints the digital state of the GPIO pin 17

continuously:

from gpiozero import InputDevice

from time import sleep

sensor = InputDevice(17, pull_up=True)

while True:

 print(sensor.value)]

Some of the common sensors in the electronics industry are listed here:

•	 Temperature sensors

•	 IR sensors

•	 Ultrasonic sensors

•	 Pressure sensors

•	 Proximity sensors

Figure 4-2.  Digital signals

Chapter 4 Sensors and Signals

85

•	 Touch sensors

•	 Level sensors

•	 Smoke and gas sensors

�What Is Real-Time Data?
Real-time data (RTD) is the information that is passed along to the end

user immediately after collection. The real-time data can be either static or

dynamic and is generally processed using real-time computing.

�Real-Time Data Analytics
Real-time analytics is the analysis of collected data as soon as that data

is gathered. Real-time data analytics allow us to make decisions without

delay and can prevent problems and issues before they occur.

Here, we are going to discuss getting real-time data about distance,

humidity, temperature, and image data from a camera.

�Getting Real-Time Distance Data
from an Ultrasonic Sensor
The basic principle of ultrasonic sensors is to transmit and receive the

sound waves. The physical variables (like distance, level, height, flow, etc.)

to be measured can be calculated based on the time duration between

transmitting waves and receiving echo sound waves.

Chapter 4 Sensors and Signals

86

�Interfacing an Ultrasonic Sensor
with the Raspberry Pi
Interfacing the ultrasonic sensors with Raspberry Pi was already discussed

in Chapter 3. We will collect data from the HC-SR04 ultrasonic sensor,

which can be used to measure the distance from 2cm to 400cm with 3mm

accuracy. Here our objective is to interface an ultrasonic distance sensor

with the Raspberry Pi and save the gathered data in CSV format. For that,

an ultrasonic distance sensor can be connected to the Raspberry Pi GPIO

pins, as shown in Figure 4-3.

As covered in Chapter 3, we will use the DistanceSensor object from

gpiozero library. The distance function returns the distance measured

by the ultrasonic distance sensor in meters. To display in centimeters, we

need to multiply the value by 100. The following code prints the distance

measured by the ultrasonic distance sensor in centimeters every second

and saves the collected data after 100 seconds.

from gpiozero import DistanceSensor

from time import sleep

sensor = DistanceSensor(echo=17, trigger=4)

Figure 4-3.  Ultrasonic sensor connection with Raspberry Pi GPIO
pins

Chapter 4 Sensors and Signals

87

n = 100

for i in range(n):

 print(sensor.distance * 100)

 sleep(1)

When the code is running, move the position of objects placed in front

of the ultrasonic sensor to get different values. The measured distance (in

cm) is printed continuously for n seconds; in our case, it’s 100.

�Getting Real-Time Image Data
from a Camera
This section explains how to get real-time video from a webcam.

�Getting Real-Time Video from a Webcam
Connect the USB web camera to the Raspberry Pi via the USB port. Using

the OpenCV Python library, we can access the webcam and capture images

and videos from it. The following code can be used to get real-time video

from the webcam. The collected frames can be analyzed in real time.

import cv2

vid = cv2.VideoCapture(0)

while(True):

 ret, frame = vid.read()

 cv2.imshow('frame', frame)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

vid.release()

cv2.destroyAllWindows()

Chapter 4 Sensors and Signals

88

�Getting Real-Time Video from Pi-cam
Interface a Raspberry Pi camera module to the Raspberry Pi via the

Camera Serial Interface (CSI) port. To enable the Raspberry Pi camera,

open the Raspberry Pi configuration from the main menu and enable

Camera on the Interfaces tab. The following code can be used to capture

an image using the Raspberry Pi camera module and store the captured

image in the specified location: /home/pi/Desktop/cammodule_img.jpg.

from picamera import PiCamera

from time import sleep

camera = PiCamera()

camera.start_preview()

sleep(5)

camera.capture('/home/pi/Desktop/cammodule_img.jpg')

camera.stop_preview()

�Data Transfer
Data transmission or data transfer refers to the process of transferring data

between two or more digital devices. The data is transmitted in analog

or digital format, and the data transmission process enables devices or

components within devices to communicate to each other.

�Serial and Parallel Communication
Serial communication is the process of sending data one bit at a time,

sequentially, over a communication channel or computer bus. Parallel

communication is a method of conveying multiple binary digits (bits)

simultaneously.

Chapter 4 Sensors and Signals

89

�Interfacing an Arduino with the Raspberry Pi
We can connect an Arduino to a Raspberry Pi and transfer data from the

Arduino to the Raspberry Pi and vice versa. The sensors, motors, and

actuators can be connected to the Arduino and make the Arduino transfer

values to and from the Raspberry Pi. By doing this, we can use Arduino as a

node and acquire sensor data via these nodes.

Arduino can be connected to the Raspberry Pi in two ways.

•	 Serial communication via USB

•	 Serial communication via GPIO pins

�Serial via USB

Using an Arduino USB cable to connect the two boards is the easiest way to

establish communication between the Arduino and Raspberry Pi boards.

On the Raspberry Pi, choose any of the four USB ports available on

the board and connect the USB connector. Connect the other end of the

Arduino USB cable to the Arduino. The connector cable will be different

for different versions of Arduino.

�Serial via GPIOs

A serial connection can also be established using plain wires to connect

between the Raspberry Pi GPIOs and the Arduino pins. A voltage level-

shifter might be needed depending on the Arduino board you have.

The Raspberry Pi operates at 3.3V, whereas the Arduino boards such as

Uno, Mega, Leonardo, Nano, etc., operate at 5V. So, a 3.3V/5V level-shifter

needs to be used to protect the Raspberry Pi when connecting the RX and

TX pins, as shown in Figure 4-4.

Chapter 4 Sensors and Signals

90

Generally, the use of an Arduino USB cable is recommended over

GPIOs for serial communication.

�Data Transmission Between an Arduino
and the Raspberry Pi
When connecting the Arduino to the Raspberry Pi via a USB cable, run the

command ls /dev/tty* in the Raspberry Pi terminal window to find the

name of the Arduino device. It should return something like /dev/ttyACM0

or /dev/ttyUSB0.

The pySerial Python library is used to make a serial interface with

Python and encapsulates the access for the serial port.

The following code can be used to make bidirectional communication

between the Arduino and the Raspberry Pi.

Figure 4-4.  Connection between Arduino and Raspberry Pi
via GPIO pins

Chapter 4 Sensors and Signals

91

�Arduino Code

Here is the Arduino code:

void setup() {

Serial.begin(9600);

}

void loop() {

 if (Serial.available() > 0) {

 String data = Serial.readStringUntil('\n');

 Serial.print("Received Data: ");

 Serial.println(data);

 }

}

Serial.available() will give you the number of bytes that have

already arrived and are stored in the receive buffer. This can be used to

check if the Arduino has received data.

If some data has arrived, Serial.readStringUntil() is used with the

newline character \n to get the next line. All the bytes received until the

newline character \n are automatically converted and added in an Arduino

String object.

Then, we just return the string containing the received data with some

additional text.

�Raspberry Pi Python Code

Here is the Raspberry Pi Python code to display the serial data:

#!/usr/bin/env python3

import serial

import time

if __name__ == '__main__':

 ser = serial.Serial('/dev/ttyACM0', 9600, timeout=1)

Chapter 4 Sensors and Signals

92

 ser.flush()

 while True:

 ser.write(b"Data from Raspberry Pi!\n")

 line = ser.readline().decode('utf-8').rstrip()

 print(line)

 time.sleep(1)

The pySerial function write() is used to send data to the Arduino.

Before sending the string, It will encode from string to bytes, as you can

only send bytes through Serial. Any data that is not a byte or byte array

must be converted before being sent through Serial.

Also, we add a newline character \n as the Arduino expects it at the

end of the string while it’s reading with Serial.readStringUntil('\n').

Then we read a line from Serial, decode it into a string, and finally

print the received string and wait for one second before sending the next

string over Serial.

�Time-Series Data
A time series is a series of data points indexed in time order. Most

commonly, it is a sequence taken at successive equally spaced points in

time. Thus, a time series can be defined as a sequence of discrete-time

data. In time-series data, time is often the independent variable, and the

goal is generally to make a forecast for the future.

Time series are frequently plotted via line charts. Time series are

used in statistics, signal processing, communications engineering,

pattern recognition, weather forecasting, earthquake prediction, control

engineering, astronomy, etc.

Chapter 4 Sensors and Signals

93

�Time-Series Analysis and Forecasting
Time-series analysis comprises methods for analyzing time-series data

to extract meaningful statistics and other characteristics of the data. The

time-series analysis also includes forecasting the series for the future,

extracting hidden signals in noisy data, discovering the data generation

mechanism, etc. Time-series forecasting is the use of a model to predict

future values based on historical data.

�Memory Requirements
This section talks about the memory requirements.

�More Storage
Sometimes the memory from the microSD card might not be sufficient,

and more memory might be needed. More storage space can be highly

beneficial to store the collected data and heavy models. To increase

the storage capacity, external hard disk drives can be connected to the

Raspberry Pi.

�More RAM
RAM is another important factor for data science projects. The larger the

RAM, the higher the amount of data it can handle, which results in faster

processing. Although the base variant of 1GB RAM can do the job, the 4GB

RAM version of the Raspberry Pi is recommended for most deep learning

tasks.

Chapter 4 Sensors and Signals

94

�Case Study: Gathering the Real-Time
Industry Data
Let’s look at a case study.

�Storing Collected Data Using Pandas
The collected data can also be saved for later use. Pandas is an open source

data analysis and manipulation tool built in Python. We will use Pandas

to convert the collected data into a structured data format. The Pandas

library can be installed via pip using the following command:

pip install pandas

�Dataframes
A dataframe is a two-dimensional data structure. Data is aligned in

a tabular fashion in rows and columns, and it is generally the most

commonly used Pandas object. Once we convert our data into dataframes,

we can easily manipulate and export the data to other formats such as CSV

and Microsoft Excel.

�Saving Data as a CSV File
A comma-separated values file is a delimited text file that uses a comma to

separate values. Each line of the file is a data record. Each record consists

of one or more fields, separated by commas. A Pandas dataframe’s to_

csv() function exports the dataframe to CSV format.

df.to_csv('file path\File Name.csv')

Chapter 4 Sensors and Signals

95

�Saving as an Excel File
To write a single object to an Excel .xlsx file, it is only necessary to specify

a target filename. To write multiple sheets, it is necessary to create an

ExcelWriter object with a target filename and specify a sheet in the file

to write to. The Pandas dataframe’s to_excel() function exports the

dataframe to .xlsx format.

df.to_excel("output.xlsx")

�Reading Saved Data Files
Once the data is saved, it can be read using the read_csv() or read_

excel() function. The read_excel() function reads an Excel file into a

Pandas dataframe, and it supports the .xls, .xlsx, .xlsm, .xlsb, and .odf

file extensions read from a local filesystem or URL. It has an option to read

a single sheet or a list of sheets. The read_csv() function reads a CSV file

into a dataframe and also supports optionally iterating or breaking of the

file into chunks.

�Adding the Date and Time to the Real-Time Data
While collecting the data, we can also add the data and time to the data.

We will use the datetime Python library. datetime.datetime.now() can

be used to get the current date and time.

from datetime import datetime

now = datetime.now()

print("now =", now)

dd/mm/YY H:M:S

dt_string = now.strftime("%d/%m/%Y %H:%M:%S")

print("date and time =", dt_string)

Chapter 4 Sensors and Signals

96

�Industry Data from the Temperature
and Humidity Sensor
We will use the temperature and humidity sensor to measure the

temperature and humidity. Connect the DHT 11/22 sensor module to the

Raspberry Pi as shown in Chapter 3.

The following code collects the temperature and humidity values for

100 seconds and stores the collected data as a CSV file:

import Adafruit_DHT

import time

from datetime import datetime

DHT_SENSOR = Adafruit_DHT.DHT11

DHT_PIN = 17

data = []

while _ in range(100):

 �humidity, temperature = Adafruit_DHT.read(DHT_SENSOR,

DHT_PIN)

 if humidity is not None and temperature is not None:

 now = datetime.now()

 dt_string = now.strftime("%d/%m/%Y %H:%M:%S")

 data.append(dt_string,humidity,temperature)

 time.sleep(60*5)

df = pd.DataFrame(data)

df.to_csv('data.csv',index=None,header=None)

Chapter 4 Sensors and Signals

97

The CSV file will look as follows:

17/05/2020 01:05:14 26.24 69.91

17/05/2020 01:10:14 26.24 70.65

17/05/2020 01:15:14 26.22 68.87

17/05/2020 01:20:14 26.15 70.11

17/05/2020 01:25:14 26.11 69.02

Chapter 4 Sensors and Signals

99© K. Mohaideen Abdul Kadhar and G. Anand 2021
K. M. Abdul Kadhar and G. Anand, Data Science with Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6825-4_5

CHAPTER 5

Preparing the Data
The most important step in data science is to prepare the data. Data

preparation is the process of cleaning, processing, and transforming

the raw data for analysis. From this stage, the errors in the data can be

effectively handled by cleaning, identifying the missing values, handling

outliers, etc. Hence, this chapter discusses the methodologies used to

prepare the data using the Pandas package in Python.

�Pandas and Data Structures
Pandas is a software library written for the Python programming language

that is used mainly for data manipulation and analysis.

In a nutshell, Pandas is like Excel for Python, with tables (which in

Pandas are called dataframes) made of rows and columns (which in

Pandas are called series). Pandas has many functionalities that make it an

awesome library for data processing, inspection, and manipulation.

�Installing and Using Pandas
Installing Pandas on your system requires NumPy to be installed, and

if building the library from source, it requires the appropriate tools to

compile the C and Cython sources on which Pandas is built.

https://doi.org/10.1007/978-1-4842-6825-4_5#DOI

100

You can find details about this installation in the Pandas

documentation. Pandas can be installed using pip function as: pip install

pandas. Once Pandas is installed, you can import it and check the version,

as shown here:

import pandas

pandas.__version__

Just as we generally import NumPy under the alias np, we will import

Pandas under the alias pd, and this import convention will be used

throughout the remainder of this book.

import pandas as pd

�Pandas Data Structures
A data structure is a data organization, management, and storage format

that enables efficient access and modification. More precisely, a data

structure is a collection of data values, the relationships among them,

and the functions or operations that can be applied to the data. Pandas

introduces two new data structures to Python, Series and DataFrame, both

of which are built on top of NumPy (which means they are fast).

�Series
A series is a one-dimensional object similar to an array, list, or column in

a table. It will assign a labeled index to each item in the series. By default,

each item will receive an index label from 0 to N, where N is the length of

the series minus 1, as illustrated here:

s = pd.Series([1, 'Raspberry Pi', 3.14, -500, 'Data'])

print(s)

Chapter 5 Preparing the Data

101

Output:

0 1

1 Raspberry Pi

2 3.14

3 -500

4 Data

dtype: object

Instead of providing the default index, we can specify an index to be

used for each entry while creating the series, as illustrated here:

s = pd.Series([1, 'Raspberry Pi', 3.14, -500, 'Data'],

 index=['M', 'A', 'X', 'I', 'E'])

print(s)

Output:

M 1

A Raspberry Pi

X 3.14

I -500

E Data

dtype: object

The Series constructor can convert a dictionary into a series as well,

using the keys of the dictionary as its index, as illustrated here:

d = {'English': 95, 'Math': 100, 'Science': 98, 'Social

Science': 93}

marks = pd.Series(d)

print(marks)

Output:

English 95

Math 100

Chapter 5 Preparing the Data

102

Science 98

Social Science 93

dtype: float64

The index can be used to select specific items from the series. For

instance, the marks for math can be selected by specifying the index Math.

Similarly, a group of items can be printed by providing their corresponding

indices separated by commas in a list, as illustrated here:

print (marks['Math'])

print(marks[['English', 'Science', 'Social Science']])

Output :

100.0

English 95

Science 98

Social Science 93

dtype: float64

Boolean indexing for filtering values can also be used. For example,

using the index marks < 96 returns a series of Boolean values, which we

then pass to our series marks, returning the corresponding True items, as

illustrated here:

marks[marks < 96]

Output:

Math 100

Science 98

dtype: float64

The value of a particular item in the series can be changed on the go by

accessing the corresponding index of the item, as illustrated here:

print('Old value:', marks['Math'])

marks['Math'] = 99

Chapter 5 Preparing the Data

103

print('New value:', marks['Math'])

Output:

('Old value:', 100.0)

('New value:', 99.0)

We can also check whether an item exists in the series or not using the

following code:

print('Math' in marks)

print('French' in marks)

Output:

True

False

Mathematical operations can also be done on a series of numerical

values, as illustrated here:

marks * 10

Output:

English 950

Math 990

Science 980

Social Science 930

dtype: float64

np.square(marks)

Output:

English 9025

Math 9801

Science 9604

Social Science 8649

dtype: float64

Chapter 5 Preparing the Data

104

�DataFrame
The tabular DataFrame data structure is composed of rows and columns,

similar to a spreadsheet or a database table. You can also think of a

DataFrame as a group of Series objects that share an index (the column

names).

�Reading Data
To create a DataFrame data structure out of common Python data

structures, we can pass a dictionary of lists to the DataFrame constructor.

a={'Name':['Augustus', 'Hazel', 'Esther', 'Cavas'],

 'Gender':['Male','Female','Female','Male'],

 'Age':[19, 18, 22, 21]}

b=pd.DataFrame.from_dict(a)

 print(b)

Output:

 Name Gender Age

0 Augustus Male 19

1 Hazel Female 18

2 Esther Female 22

3 Cavas Male 21

Chapter 5 Preparing the Data

105

�Reading CSV Data
Reading a CSV file is as simple as calling the read_csv function. By default,

the read_csv function expects the column separator to be a comma, but

you can change that using the sep parameter. The following code shows

the syntax to read a CSV file into a DataFrame 'df' and print the first five

rows of df using the head() function:

df = pd.read_csv('data.csv')

print(df.head())

There’s also a set of writer functions for writing the DataFrame object

to a variety of formats such as CSV files, HTML tables, JSON, etc. The

following line of code shows the syntax to write a DataFrame object to a

CSV file:

df.to_csv('path_to_file.csv')

�Reading Excel Data
Pandas allows us to read and write Excel files, so we can easily read from

Excel, in Python, and then write the data back out to Excel. Reading

Excel files requires the xlrd library, which can be installed using the pip

command, as shown here:

pip install xlrd.

The following code illustrates the syntax used to read a sheet from an

Excel file into a DataFrame df. Replace data.xlsx with the path/filename

of your Excel file to run the code.

df = pd.read_excel('data.xlsx', 'Sheet1')

print(df.head())

Chapter 5 Preparing the Data

106

Similarly, the data from a DataFrame object can be written to an Excel

file, as shown here:

dataframe.to_excel('path_to_file.xlsx', index=False)

�Reading URL Data
The read_table function can be used to read directly from a URL. The

following code illustrates a DataFrame created using raw data from a given

URL:

url = 'https://raw.github.com/gjreda/best-sandwiches/master/

data/best-sandwiches-geocode.tsv'

from_url = pd.read_table(url, sep='\t')

from_url.head(3)

Output:

 rank sandwich ... lat lng

0 1 BLT ... 41.895734 -87.679960

1 2 Fried Bologna ... 41.884672 -87.647754

2 3 Woodland Mushroom ... 41.890602 -87.630925

�Cleaning the Data
In most of the data analytics projects, the available data is not always

perfect. The raw data always tends to be messy with corrupt or inaccurate

data in addition to the useful data. It is therefore essential for the data

scientists to treat these messy data samples so as to convert the raw data to

a form which can work, and they spend a considerably long time doing so.

Chapter 5 Preparing the Data

107

Data cleaning is the process of identifying inaccurate, incorrect, or

incomplete parts of the data and treating them by replacing, deleting, or

modifying the data. In other words, it is the process of preparing the data

for analysis by treating all the irregularities in the raw data. In the following

sections, we will discuss how to handle missing values and outliers, fill in

the inappropriate values, and remove duplicate entries.

�Handling Missing Values
Missing values are quite common in raw data. Assume that the input data

consists of product feedback from thousands of customers collected using

survey forms. It is common behavior for customers to skip a few entries

while filling out the survey forms. For instance, a few customers may not

share their experience with the product, some may not share the duration

for which they have been using the product, and a few others may not

fill their contact information. While compiling these survey forms and

converting them into a table, there is sure to be plenty of missing values in

the table.

Data from sensors may also have missing data due to various reasons

like a temporary power outage at the sensor node, hardware failure,

interference in communication, etc. Therefore, handling these missing

values is the foremost task for data scientists while dealing with raw

data. The following code illustrates the creation of a database of random

numbers using the random.randn function in the NumPy library:

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(6,4),

index = ['1','3','4','6','7','9'], columns = ['a','b','c','d'])

Chapter 5 Preparing the Data

108

It can be seen from the previous code that the indices for rows and

columns have been allocated manually. From the indices allotted for

rows, it can be seen that indexes 2, 5, and 8 are missing. Using the reindex

function in the Pandas library, these indices are created with missing ‘Not

a Number’ (NaN) values, as illustrated here:

df=df.reindex(['1','2','3','4','5','6','7','8','9'])

print(df)

Output:

 a b c d

1 0.099344 0.293956 1.002970 0.516942

2 NaN NaN NaN NaN

3 1.608906 -1.748396 -1.013634 -0.651055

4 3.211263 -2.555312 -1.036068 -0.728020

5 NaN NaN NaN NaN

6 -0.101766 -0.205572 1.369707 -1.133026

7 0.062344 1.483505 0.026995 1.560656

8 NaN NaN NaN NaN

9 -0.324347 -0.342040 0.107224 0.272153

Now that a database with missing values has been created, the next

step is to treat these values. Before considering the options for treating

these values, the foremost task is to detect the location of the missing

values. The isnull() function in the Pandas library can be used to detect

the rows containing missing values, as illustrated here:

df1=df[df.isna().any(axis=1)]

print(df1)

Output:

 a b c d

2 NaN NaN NaN NaN

5 NaN NaN NaN NaN

8 NaN NaN NaN NaN

Chapter 5 Preparing the Data

109

The previous process gives us a fair idea of the amount of missing

data in our database. Once this missing data is detected, the next step is

to treat the missing data. There are two ways we can do this: one is to fill

the missing data with values, and the second one is to simply remove the

missing data.

The fillna() function in the Pandas library can be used to fill the

missing values with a user-specified scalar value, as illustrated here. As

shown, the missing values in rows 2 and 5 are replaced by 0.000000.

df2=df.fillna(0)

print(df2.head())

Output:

 a b c d

1 0.099344 0.293956 1.002970 0.516942

2 0.000000 0.000000 0.000000 0.000000

3 1.608906 -1.748396 -1.013634 -0.651055

4 3.211263 -2.555312 -1.036068 -0.728020

5 0.000000 0.000000 0.000000 0.000000

Another way to replace the missing values is to use the ffill or bfill

function in the Pandas library. ffill stands for “forward fill,” which fills

the missing values by repeating the values that occur before them, and

bfill stands for “backward fill,” which fills the missing values by repeating

the values that occur after them. The following code illustrates the forward

fill approach of filling in the missing values:

df3= df.fillna(method='ffill')

print(df3.head())

Output:

 a b c d

1 0.099344 0.293956 1.002970 0.516942

2 0.099344 0.293956 1.002970 0.516942

Chapter 5 Preparing the Data

110

3 1.608906 -1.748396 -1.013634 -0.651055

4 3.211263 -2.555312 -1.036068 -0.728020

5 3.211263 -2.555312 -1.036068 -0.728020

The second possible way to deal with missing values is to simply drop

them by using the dropna function in the Pandas library, as illustrated

here:

df4=df.dropna()

print(df4)

Output:

 a b c d

1 0.099344 0.293956 1.002970 0.516942

3 1.608906 -1.748396 -1.013634 -0.651055

4 3.211263 -2.555312 -1.036068 -0.728020

6 -0.101766 -0.205572 1.369707 -1.133026

7 0.062344 1.483505 0.026995 1.560656

9 -0.324347 -0.342040 0.107224 0.272153

We have created a simple dataset with missing values to understand

the concept of treating the missing values. In reality, the datasets used in

analytics projects are large and may easily contain 500 to 1,000 rows or

even more. You are encouraged to apply the learning from this example

on real datasets. The method for treating missing values may depend on

the nature of application as well as on the number or frequency of missing

values in the dataset.

�Handling Outliers
In a dataset, outliers are the observations (i.e data) that stand out from

all the other observations. In other words, outliers are data points that are

distant from all the other data in the dataset. Outliers can originate either

due to errors in measurement/data entry or due to genuine extreme values

Chapter 5 Preparing the Data

111

in the data. For instance, consider the series of numbers 112, 123, 120, 132,

106, 26, 118, 140, and 125. In this series, all the numbers are close to 100

except 26. Hence, 26 is an outlier as it is vastly distant from the rest of the

numbers.

Outliers can be detected in two ways: using visualization techniques

and using a mathematical approach. In this section, we introduce

two mathematical approaches to identify outliers in our data, namely,

interquartile range (IQR) and the Z-score.

Interquartile range is a measure of the variability or spread of data

in a dataset. The data is first ordered and divided into four quarters. The

values that divide the total range into four quarters are called quartiles.

Therefore, there will be three quartiles for splitting data into four quarters.

The quartiles are Q1, Q2, and Q3, where Q2 is the median for the entire data,

Q1 is the median for the upper half of the data, and Q3 is the median for the

lower half of the data. IQR is the difference between the third quartile and

first quartile, i.e., Q3 – Q1.

To illustrate the process of removing outliers using IQR, let’s first create

a DataFrame with 15 entries that includes outliers.

 import pandas as pd

 a={�'Name':['A','B','C','D','E','F','G','H','I','J','K','L',

'M','N','O'],

 'Weight':[56,62,48,72,15,80,76,64,68,180,75,47,58,63,71]}

 df=pd.DataFrame.from_dict(a)

 print(df.head())

Output:

 Name Weight

0 A 56

1 B 62

2 C 48

3 D 72

4 E 25

Chapter 5 Preparing the Data

112

In the previous code, we created a database containing the weight

in kilograms of 15 adults. For convenience, we have named the adults

with the letters A to M. Weights of 15kg and 180kg have been included as

outliers as it is unlikely for healthy adults to weigh so little or much. To

detect these outliers, we need to compute the 25 percent and 75 percent

quartile values, Q1 and Q3, respectively. From these values, the IQR value

can be calculated by determining the difference of Q3 – Q1. This process is

illustrated here:

Q1=df.Weight.quantile(0.25)

Q3=df.Weight.quantile(0.75)

IQR=Q3-Q1

print('Q1=',Q1,'Q3=',Q3,'IQR=',IQR)

Output:

Q1= 57.0 Q3= 73.5 IQR= 16.5

By comparing the entries in the DataFrame object with the quartiles

calculated previously, it can be seen that there are four values below Q1,

seven values between Q1 and Q3, and four values above Q3. But we know

that there is only one outlier below Q1 and one outlier above Q3. To detect

those outliers, we need to form an interval with a lower limit much below Q1

and an upper limit well above Q3. Once these limits are established, then it

will be safe to consider that the values below the lower limit and the values

above the upper limit will be outliers. This is illustrated in the following code:

lower_limit = Q1 - 1.5 * IQR

upper_limit = Q3 + 1.5 * IQR

df1=df[(df.Weight < lower_limit) | (df.Weight > upper_limit)]

print(df1)

Output:

 Name Weight

4 E 25

9 J 180

Chapter 5 Preparing the Data

113

It can be seen that the limits created using the IQR value have detected

the outliers in our data accurately. Now these outliers can be easily filtered

out using the following code:

df2=df.drop(df1.index)

 print(df2)

Output:

 Name Weight

0 A 56

1 B 62

2 C 48

3 D 72

5 F 80

6 G 76

7 H 64

8 I 68

10 K 75

11 L 47

12 M 58

13 N 63

14 o 71

�Z-Score
The Z-score, also called the standard score, gives an idea of how far away

a data point is from the mean value. Technically, the Z-score fits the data

in a normal distribution and measures the number of standard deviations

by which the data points are about the mean value of the entire dataset, as

illustrated in Figure 5-1.

Chapter 5 Preparing the Data

114

The Figure 5-1 shows that each data point is mapped along a normal

distribution centered at the zero mean. The data points that are too far

from the zero mean are treated as outliers. In the majority of cases, the

threshold is fixed as 3, and any data point beyond 3σ or -3σ is treated as an

outlier. Let’s take the same database that we used in the previous section

and identify the outliers using the Z-score.

 import pandas as pd

 from scipy import stats

 import numpy as np

 a={�'Name':['A','B','C','D','E','F','G','H','I','J','K','L',

'M','N','O'],

 'Weight':[56,62,48,72,15,80,76,64,68,180,75,47,58,63,71,]}

 df=pd.DataFrame.from_dict(a)

 z = np.abs(stats.zscore(df.Weight))

 print(z)

 df1=df[z>3]

 print(df1)

Figure 5-1.  Normal distribution of data for outlier detection based
on the Z-score

Chapter 5 Preparing the Data

115

Output:

 Name Weight

9 J 180

From the previous code, it can be seen that the Z-score corresponding

to the weight value of 180 exceeds the threshold of 3, and hence it is

displayed as an outlier. Unfortunately, the weight value of 15 is not

detected as an outlier. The reason for this could be understood by

comparing the value with respect to the mean and standard deviation,

which can be achieved through the np.mean and np.std functions, as

illustrated here:

print(np.mean(df.Weight))

print(np.std(df.Weight))

Output:

67.0

33.448467827390836

Let’s approximate the value of standard deviation as 33.45. It can be

seen that the difference between the weight value 180 and the mean value

is 111, which is greater than three times the standard deviation (>3σ),

whereas the difference between the weight values 15 and the mean value is

just 54, which is less than two times the standard deviation (<2σ). One way

to overcome this problem is to reduce the value of threshold. Let’s assume

a Threshold value of 1.

df1=df[z>1]

 print(df1)

Output:

 Name Weight

4 E 15

9 J 180

Chapter 5 Preparing the Data

116

From the previous illustration, it can be seen that the ideal threshold of

3 may not hold true for every dataset, and hence the threshold should be

selected based on the distribution of the data. Now similar to the case of

IQR, these outliers can be simply filtered out using the following code:

df2=df.drop(df.Name[z>1].index)

print(df2)

Output:

 Name Weight

0 A 56

1 B 62

2 C 48

3 D 72

5 F 80

6 G 76

7 H 64

8 I 68

10 K 75

11 L 47

12 M 58

13 N 63

14 o 71

�Filtering Out Inappropriate Values
In some cases, the dataset may contain some inappropriate values that

are completely irrelevant to the data. This is especially true in the case of

sensor data. The data recorded from the sensor is normally time-series

data with a unique timestamp for each data point. These timestamps

Chapter 5 Preparing the Data

117

are not required for analysis in many cases and hence can be treated as

inappropriate values. To illustrate this concept, we create a time-series

temperature data similar to the sensor data as follows:

import pandas as pd

data={'Time':['12:00:05','12:08:33','12:25:12','12:37:53',

'12:59:08'],

 'Temperature':['T=22','T=22','T=23','T=23','T=24']}

df=pd.DataFrame.from_dict(data)

print(df)

Output:

 Time Temperature

0 12:00:05 T=22

1 12:08:33 T=22

2 12:25:12 T=23

3 12:37:53 T=23

4 12:59:08 T=24

Now, the timestamp corresponding to each data point and the header

'T=' in each data point should be removed. The timestamp can be removed

using the drop function in the Pandas library, whereas the header can be

removed by using the str.replace function. Because of the presence of a

header in each data point, the data is initially stored as a string data type.

So, the datatype has to be changed to int or float after removing these

headers. These procedures are illustrated as follows:

df.drop('Time',inplace=True,axis=1)

df=df.Temperature.str.replace('T=','')

df=df.astype(float)

print(df)

Output:

0 22.0

1 22.0

Chapter 5 Preparing the Data

118

2 23.0

3 23.0

4 24.0

Name: Temperature, dtype: float64

�Removing Duplicates
Duplicate entries are common in data science, especially when we

collect data from various sources and consolidate them for processing.

Depending on the nature of our analysis, these duplicates may pose a

problem. Therefore, it is better to remove these duplicates before analyzing

the data, as illustrated here:

import pandas as pd

a={'Name':['Alan','Joe','Jim','Tom','Alan','Anna','Elle','Rachel','

Mindy'],

 'Age':[22,24,25,24,22,23,21,22,23]}

df=pd.DataFrame.from_dict(a)

print('DATA\n',df)

print('DUPLICATES\n',df[df.duplicated()])

df1=df.drop_duplicates()

print('DATA AFTER REMOVING DUPLICATES\n',df1)

Output:

DATA

 Name Age

0 Alan 22

1 Joe 24

2 Jim 25

3 Tom 24

4 Alan 22

5 Anna 23

Chapter 5 Preparing the Data

119

6 Ellen 21

7 Rachel 22

8 Mindy 23

DUPLICATES

 Name Age

4 Alan 22

DATA AFTER REMOVING DUPLICATES

 Name Age

0 Alan 22

1 Joe 24

2 Jim 25

3 Tom 24

5 Anna 23

6 Ellen 21

7 Rachel 22

8 Mindy 23

As shown in the code, a DataFrame is created from a dictionary

consisting of the name and age of a few people, and we have deliberately

created a duplicate entry for the name Alan. It can be seen that the

duplicated function in the Pandas library clearly identifies the second

entry for this name. This duplicate entry is then removed by using the

drop_duplicates function in the Pandas library.

Chapter 5 Preparing the Data

121© K. Mohaideen Abdul Kadhar and G. Anand 2021
K. M. Abdul Kadhar and G. Anand, Data Science with Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6825-4_6

CHAPTER 6

Visualizing the Data
In the previous chapter, we discussed a number of steps involved in

preparing the data for analysis. Before analyzing the data, it is imperative

to get to know the nature of data we are dealing with. Visualizing the data

may give us some useful insights about the nature of data. These insights,

such as patterns in the data, distribution of the data, outliers present in

the data, etc., can prove to be handy in determining the methodology to

be used for analyzing the data. In addition, visualization can be used at

the end of analysis to communicate the findings to the party concerned,

as conveying the results of analysis through visualization techniques can

be more effective than writing pages of textual content explaining the

findings. In this chapter, we will learn about some of the basic visualization

plots provided by the Matplotlib package of Python and how those plots

can be customized to convey the characteristics of different data.

�Matplotlib Library
Matplotlib is a plotting library for creating publication-quality plots using

the Python programming language. This package provides various types

of plots based on the type of information to be conveyed. The plots come

with interactive options such as pan, zoom, and subplot configurations.

The plots can also be saved in different formats such as PNG, PDF, etc.

In addition, the Matplotlib package provides numerous customization

options for each type of plot that can be used for effective representation of

the information to be conveyed.

https://doi.org/10.1007/978-1-4842-6825-4_6#DOI

122

�Scatter Plot
A scatter plot is a type of plot that uses markers to indicate data points to

show the relationship between two variables. The scatter plot can serve

many purposes when it comes to data analysis. For example, the plot can

reveal patterns and trends in data when the data points are taken as whole,

which in turn can help data scientists understand the relationship between

two variables and hence enable them to come up with an effective

prediction technique. Scatter plots can also be used for identifying clusters

in the data. They can also reveal outliers present in the data, which is

crucial as outliers tend to drastically affect the performance of prediction

systems.

Two columns of data are generally required to create scatter plots,

one for each dimension of the plot. Each row of data in the table will

correspond to a single data point in the plot. A scatter plot can be created

using the scatter function in the Matplotlib library. To demonstrate the

usefulness of scatter plots, let’s consider the Boston Housing dataset that

can be imported from the Scikit-Learn library. This dataset is actually

taken from the StatLib library, which is maintained at Carnegie Mellon

University. It consists of 506 samples with 13 different feature attributes

such as per capita crime rate by town (CRIM), average number of rooms

per dwelling (RM), index of accessibility to radial highways (RAD), etc. In

addition, a target attribute MEDV indicates the median value of owner-

occupied homes in the thousands.

The following code illustrates the process of creating a Pandas

dataframe the Boston housing dataset, which is originally in a dictionary

format. For convenience, only the first five rows of the dataframe are

displayed in this code using the print command.

Chapter 6 Visualizing the Data

123

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from sklearn.datasets import load_boston

dataset = load_boston()

boston_data=pd.DataFrame(dataset.data,columns=dataset.feature_

names)

print(boston_data.head())

Output:

 CRIM ZN INDUS CHAS NOX ... RAD TAX PTRATIO B LSTAT

0 0.00632 18.0 2.31 0.0 0.538 ... 1.0 296.0 15.3 396.90 4.98

1 0.02731 0.0 7.07 0.0 0.469 ... 2.0 242.0 17.8 396.90 9.14

2 0.02729 0.0 7.07 0.0 0.469 ... 2.0 242.0 17.8 392.83 4.03

3 0.03237 0.0 2.18 0.0 0.458 ... 3.0 222.0 18.7 394.63 2.94

4 0.06905 0.0 2.18 0.0 0.458 ... 3.0 222.0 18.7 396.90 5.33

[5 rows x 13 columns]

The housing dataset is originally in the form of a dictionary, and it is

saved to the variable dataset. The 13 feature attributes are assigned to the

key data, and the target attribute MEDV is assigned to the key target. The

13 features are then converted to a Pandas dataframe. Now, the scatter

plot of the feature variable RM versus the target variable MEDV can be

obtained by the following code. From the plot in Figure 6-1, we can see that

the price of a house increases with the increase in the number of rooms. In

addition to this trend, a few outliers can also be seen in the plot.

plt.scatter(boston_data['RM'],dataset.target)

plt.xlabel("Average number of rooms per dwelling(RM)")

plt.ylabel("Median value of owner-occupied homes in

$1000s(MEDV)")

plt.show()

Chapter 6 Visualizing the Data

124

�Line Plot
A line plot is nothing but a series of data points connected by a line, and it

can be used to convey the trend of a variable over a particular time. Line

plots are often used for visualizing time-series data to observe the variation

of data with respect to time. It can also be used as part of the analysis

procedure to check the variation of a variable in an iterative process.

Line plots can be obtained using the plot function in the Matplotlib

package. To demonstrate a line plot, let’s consider a time-series dataset

consisting of the minimum daily temperature in 0C over 10 years (1981–

1990) in the city of Melbourne, Australia. The following code illustrates the

process of loading the .csv file containing the dataset, converting it into a

dataframe, and plotting the variation in temperature for 1981.

Figure 6-1.  Plot of pricing of houses versus average number of rooms
per dwelling

Chapter 6 Visualizing the Data

125

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

dataset=pd.read_csv('daily-min-temperatures.csv')

df=pd.DataFrame(dataset,columns=['Date','Temp'])

print(df.head())

Output:

 Date Temp

0 1981-01-01 20.7

1 1981-01-02 17.9

2 1981-01-03 18.8

3 1981-01-04 14.6

4 1981-01-05 15.8

plt.plot(df['Temp'][0:365])

plt.xlabel("Days in the year")

plt.ylabel("Temperature in degree celcius")

plt.show()

The line plot in Figure 6-2 clearly shows the day-to-day variation of

temperature in Melbourne in 1981.

Chapter 6 Visualizing the Data

126

The Matplotlib package also provides the option of subplots

wherein a layout of subplots can be created in a single-figure object. In

this time-series data example, we can use a simple for loop to extract

the data for each of the 10 years and plot it in individual subplots, as

illustrated by the following code:

y,k=0,1

x=np.arange(1,366)

for i in range(10):

 plt.subplot(10,1,k)

 plt.plot(x,df['Temp'][y:y+365])

 y=y+365

 k=k+1

plt.xlabel("Days in the year")

plt.show()

Figure 6-2.  Variation in temperature (0C) in Melbourne
over the year 1981

Chapter 6 Visualizing the Data

127

Figure 6-3 consists of 10 subplots each displaying the variation of

temperature over a particular year from 1981 to 1990. Thus, the use of

multiple subplots has enabled us to compare the trends in temperature

variation in Melbourne over the decade.

�Histogram
Histogram plots work by splitting the data in a variable into different

ranges, called bins; then they count the data points in each bin and plot

them as vertical bars. These types of plots can give a good idea about the

approximate distribution of numerical data. The width of the bins, i.e., the

range of values in each bin, is an important parameter, and the one that

best fits the data has to be selected by trying out different values.

To demonstrate the histogram plot, let’s consider the California

housing dataset that is available in the Scikit-Learn library. This dataset,

derived from the 1990 U.S. Census, uses one row per census block group.

A block group is the smallest geographical unit for which the U.S. Census

Figure 6-3.  Temperature variation in Melbourne over 10 years
(1981 to 1990)

Chapter 6 Visualizing the Data

128

Bureau publishes sample data (a block group typically has a population

of 600 to 3,000 people). The dataset consists of 8 parameters such as

median income in block, median house age in block, average number of

rooms, etc., and one target attribute, which is the median house value for

California districts. There are a total of 20,640 data points (rows) in the

data. The following code plots a histogram that shows the distribution of

blocks based on the median age of houses within the blocks. Figure 6-4

shows the histogram plot. A lower number normally suggests a newer

building.

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing

import pandas as pd

dataset = fetch_california_housing()

df=pd.DataFrame(dataset.data,columns=dataset.feature_names)

print(df.head())

Output:

 MedInc HouseAge AveRooms ... AveOccup Latitude Longitude

0 8.3252 41.0 6.984127 ... 2.555556 37.88 -122.23

1 8.3014 21.0 6.238137 ... 2.109842 37.86 -122.22

2 7.2574 52.0 8.288136 ... 2.802260 37.85 -122.24

3 5.6431 52.0 5.817352 ... 2.547945 37.85 -122.25

4 3.8462 52.0 6.281853 ... 2.181467 37.85 -122.25

plt.hist(df['HouseAge'],bins=20)

plt.xlabel("median age of houses")

plt.ylabel("Frequency")

plt.show()

Chapter 6 Visualizing the Data

129

From the histogram plot in Figure 6-4, we can see that most houses in

the blocks are distributed in the middle, which indicates that the number

of new blocks and very old blocks are lower compared to those with an

average age.

�Bar Chart
Bar charts are often used by data scientists in their presentations and

reports to represent categorical data as horizontal or vertical rectangular

bars whose length or height corresponds to the value of the data that they

represent. Normally, one of the axes will represent the category of data,

while the other axis will represent the corresponding values. Therefore, bar

graphs are the ideal choice for comparing different categories of data. Bar

charts can also be used for conveying the development of one or multiple

variables over a period of time.

Figure 6-4.  Distribution of blocks based on median age of houses in
the blocks

Chapter 6 Visualizing the Data

130

Even though bar charts look similar to histogram plots, there are subtle

differences between them. For instance, histograms are used to plot the

distribution of variables, and bar charts are used to compare variables

belonging to different categories. A histogram groups quantitative data

into a finite number of bins and plots the distribution of data in those bins,

whereas bar charts are used to plot categorical data.

To demonstrate the bar chart, let’s consider the Telecoms Consumer

Complaints dataset, which is a collection of complaints received by

Comcast, an American global telecommunication company. This

company was fined $2.3 million in October 2016 over numerous customer

complaints claiming that they have been charged for services they never

used. This dataset is a collection of 2,224 such complaints categorized

into 11 columns such as customer complaint, date, city, state, ZIP code,

status, etc. In the following code, the dataset available as an Excel sheet

is first loaded and converted to a dataframe. Then the column containing

the states, from which the complaints are received, is selected, and the

multiple entries corresponding to the same states are grouped together

to a single entry using the function groupby(). The count of the number

of times each state is repeated, which in turn corresponds to the number

of complaints received from each state, is obtained by using the function

size(). The data can then be sorted in descending order of the count

values using the function sort_values(). Figure 6-5 shows the plot of top

10 states with the most number of complaints, which gives a clear idea of

where more customers have faced grievances. The plot basically gives a

comparison of the company’s misgivings in different states based on the

number of complaints received from the customers.

Chapter 6 Visualizing the Data

131

import pandas as pd

import matplotlib.pyplot as plt

dataset=pd.read_excel('Comcast_telecom_complaints_data.csv.xlsx')

data=pd.DataFrame(dataset)

print(data.head(3))

Output:

 Ticket # Customer Complaint ... Zip code Status

0 250635 Comcast Cable Internet Speeds ... 21009 Closed

1 223441 Payment disappear - service got disconnected ... 30102 Closed

2 242732 Speed and Service ... 30101 Closed

[3 rows x 11 columns]

a=data.groupby("State").size().sort_values(ascending=False).

reset_index()

plt.bar(a['State'][0:10],a[0][0:10],align='center')

plt.show()

Figure 6-5.  Bar plot showing number of complaints received from
different states

Chapter 6 Visualizing the Data

132

�Pie Chart
Pie charts are generally used to show the distribution of data across

different categories as a percentage of the entire data in the form of

proportional circular segments. In other words, each circular segment

corresponds to a particular category of data. By viewing pie charts, users

can quickly grasp the distribution of categorical data by just visualizing

the plot rather than seeing the percentage in numbers as in the case of

bar plots. Another difference between pie chart and bar charts is that pie

charts are used to compare the contribution of each category of data to

the whole, whereas bar charts are used to compare the contribution of

different categories of data against each other.

To demonstrate a pie chart, let’s consider a dataset containing the

details of immigration to Canada from 1980 to 2013. The dataset contains

various attributes for immigrants both entering and leaving Canada

annually. These attributes include origin/destination name, area name,

region name, etc. There are a total of 197 rows of data based on the origin/

destination of the immigrants. The following code plots a pie chart that

shows the total number of immigrants from 1980 to 2013 categorized by

their continent:

import pandas as pd

import matplotlib.pyplot as plt

df = pd.read_excel('Canada.xlsx',skiprows=range(20),skipfooter=2)

df.columns = list(map(str, df.columns))

df['Total']=df.sum(axis=1)

df_continents = df.groupby('AreaName', axis=0).sum().reset_index()

print(df_continents)

Chapter 6 Visualizing the Data

133

Output:

 AreaName AREA REG ... 2012

2013 Total

0 Africa 48762 49242 ... 38083

38543 765660

1 Asia 45815 109147 ... 152218

155075 3516953

2 Europe 39044 39754 ... 29177

28691 1528488

3 Latin America and the Caribbean 29832 30395 ... 27173

24950 855141

4 Northern America 1810 1810 ... 7892

8503 246564

5 Oceania 12726 13210 ... 1679

1775 93736

After the dataset is loaded as a Pandas dataframe, the column titles

with numbers indicating the year of data are converted to string format.

This is done to ensure that the titles are not added when we sum across

the rows to compute the total number of immigrants in the next step. This

total number of immigrants is saved in an additional column created in the

name Total. After computing the total number of immigrants, the data is

grouped by the column titled AreaName containing the continent details of

the immigrants. By doing this, the number of rows is now reduced to 6 from

197, which indicates that the entire dataset is grouped into 6 continents.

Now the total number of immigrants from the six continents, given in

the column titled Total, can be plotted as a pie chart shown in Figure 6-6.

Therefore, the pie chart will contain six circular segments corresponding to

the six continents. To label these segments in the plot, the continent names

present in the column titled AreaName is converted to a list and stored in

a variable to be used as labels in the plot function. This code is illustrated

here:

Chapter 6 Visualizing the Data

134

t=list(df_continents.AreaName)

plt.pie(df_continents['Total'],labels=t,autopct='%1.1f%%',

shadow=True)

plt.show()

�Other Plots and Packages
In addition to the fundamental plots that are discussed in this chapter,

there are other plots available in the Matplotlib package such as contour

plots, stream plots, 3D plots, etc., that can be used based on the nature of

data or the requirement for analysis. Other than the Matplotlib package,

other packages available provide more sophisticated plots that can be

used to enhance the visualization for different categories of data. One such

package is the Seaborn library, which can be used for making statistical

graphics in Python. The Seaborn library provides more sophisticated plots

like the boxplot, heatmap, violin plot, cluster map, etc., that can provide

enhanced visualization of data. You are encouraged to explore these other

categories of plots and libraries.

Figure 6-6.  Pie chart indicating movement of immigrants belonging
to different continents into and out of Canada from 1980 to 2013

Chapter 6 Visualizing the Data

135© K. Mohaideen Abdul Kadhar and G. Anand 2021
K. M. Abdul Kadhar and G. Anand, Data Science with Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6825-4_7

CHAPTER 7

Analyzing the Data
Exploratory Data Analysis
Exploratory data analysis (EDA) is the process of understanding the data

by summarizing its characteristics. This step is important before modeling

the data for machine learning. From this analysis, the user can extract the

information, identify the root cause of any issues in the data, and figure

out the steps to initiate any policies for development. In simple terms, this

type of analysis explores the data to understand and identify the patterns

and trends in it. There is no common method for doing EDA; it depends

on the data we are working with. For simplicity in this chapter, we will use

common methods and plots for doing EDA.

�Choosing a Dataset
To do the EDA, we’ll use the Boston housing dataset that can be imported

from the Scikit-Learn library. This dataset was already described in

Chapter 6. This dataset contains 506 samples under 13 different feature

attributes such as per capita crime rate by town (CRIM), average number

of rooms per dwelling (RM), index of accessibility to radial highways

(RAD), etc., and a target attribute MEDV indicates the median value of

owner-occupied homes in the thousands.

https://doi.org/10.1007/978-1-4842-6825-4_7#DOI

136

	 1.	 Import the required libraries.

The first step is to load the required libraries for

doing the EDA. In this chapter, we will use the

packages such as Pandas, NumPy, and Matplotlib

for plotting:

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import load_boston

	 2.	 Import a dataset.

The Boston housing dataset can be imported from

the Scikit-Learn library and saved as the boston_data

variable, as given in the following code:

dataset = load_boston()

The more important thing is that most of the open

source data is stored in a comma-separated format.

This comma-separated format has difficulties

fetching and analyzing the data. Thus, the comma-

separated data can be converted into a dataframe

using the Pandas package in Python.

import pandas as pd

boston_data=pd.DataFrame(dataset.data,columns=dataset.

feature_names)

If the dataset is very large, we can display the top

and bottom five rows with headings using the

following code:

Chapter 7 Analyzing the Data

137

To display top 5 rows of data

print(boston_data.head(5))

 CRIM ZN INDUS CHAS NOX ... RAD TAX PTRATIO B LSTAT

0 0.00632 18.0 2.31 0.0 0.538 ... 1.0 296.0 15.3 396.90 4.98

1 0.02731 0.0 7.07 0.0 0.469 ... 2.0 242.0 17.8 396.90 9.14

2 0.02729 0.0 7.07 0.0 0.469 ... 2.0 242.0 17.8 392.83 4.03

3 0.03237 0.0 2.18 0.0 0.458 ... 3.0 222.0 18.7 394.63 2.94

4 0.06905 0.0 2.18 0.0 0.458 ... 3.0 222.0 18.7 396.90 5.33

To display bottom 5 rows of data

print(boston_data.tail(5))

 CRIM ZN INDUS CHAS NOX ... RAD TAX PTRATIO B LSTAT

501 0.06263 0.0 11.93 0.0 0.573 ... 1.0 273.0 21.0 391.99 9.67

502 0.04527 0.0 11.93 0.0 0.573 ... 1.0 273.0 21.0 396.90 9.08

503 0.06076 0.0 11.93 0.0 0.573 ... 1.0 273.0 21.0 396.90 5.64

504 0.10959 0.0 11.93 0.0 0.573 ... 1.0 273.0 21.0 393.45 6.48

505 0.04741 0.0 11.93 0.0 0.573 ... 1.0 273.0 21.0 396.90 7.88

	 3.	 Check the information about the data in a dataset.

Before doing data analysis, checking the information

such as the data type and size of the data, describing

the data, and knowing the amount of data available in

a dataset are important steps because sometimes the

numerical values in the dataset may be stored as string

data types. It is difficult to plot and analyze numerical

values stored as the string data type, so the string

data type that is numerical should be converted into

integers for better analysis. The size of the dataset can

be viewed with the help of the following code:

boston_data.shape

Output:

 (506, 13)

Chapter 7 Analyzing the Data

138

This output shows that the dataset has 506 rows and 13 columns. In

other words, we can say that the dataset has 506 samples with 13 features.

Then, the information about the dataset can be viewed with the help of

the following code:

boston_data.info()

Output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 506 entries, 0 to 505

Data columns (total 13 columns):

 # Column Count Non-Null Dtype

--- ------ -------------- -----

 0 CRIM 506 non-null float64

 1 ZN 506 non-null float64

 2 INDUS 506 non-null float64

 3 CHAS 506 non-null float64

 4 NOX 506 non-null float64

 5 RM 506 non-null float64

 6 AGE 506 non-null float64

 7 DIS 506 non-null float64

 8 RAD 506 non-null float64

 9 TAX 506 non-null float64

 10 PTRATIO 506 non-null float64

 11 B 506 non-null float64

 12 LSTAT 506 non-null float64

dtypes: float64(13)

memory usage: 51.5 KB

boston_data.dtypes

Output:

CRIM float64

ZN float64

INDUS float64

Chapter 7 Analyzing the Data

139

CHAS float64

NOX float64

RM float64

AGE float64

DIS float64

RAD float64

TAX float64

PTRATIO float64

B float64

LSTAT float64

dtype: object

Moreover, with the help of describe() function, we can see the

distribution of data such as minimum values, maximum values, mean, etc.

The description of the Boston data can be viewed using the following code:

boston_data.describe()

Output:

 CRIM ZN INDUS ... PTRATIO

B LSTAT

count 506.000000 506.000000 506.000000 ... 506.000000

506.000000 506.000000

mean 3.613524 11.363636 11.136779 ... 18.455534

356.674032 12.653063

std 8.601545 23.322453 6.860353 ... 2.164946

91.294864 7.141062

min 0.006320 0.000000 0.460000 ... 12.600000

0.320000 1.730000

25 percent 0.082045 0.000000 5.190000 ... 17.400000

375.377500 6.950000

50 percent 0.256510 0.000000 9.690000 ... 19.050000

391.440000 11.360000

Chapter 7 Analyzing the Data

140

75 percent 3.677083 12.500000 18.100000 ... 20.200000

396.225000 16.955000

max 88.976200 100.000000 27.740000 ... 22.000000

396.900000 37.970000

�Modifying the Columns in the Dataset
Modifications in the data such as removing unnecessary columns,

adding dummy columns, dropping duplicate columns, encoding the

column, and normalizing the data are required if the dataset needs to

have preprocessing done. Dropping the unnecessary columns is more

important when many columns are not used for analysis. Dropping

those columns is the better solution to make the data lighter and reliable.

Dropping the unnecessary columns in the Boston dataset can be done

with the following code:

boston_data =boston_data.drop(['CRIM','ZN','LSTAT'])

print(boston_data.head(5))

Output:

 INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B

 0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90

 1 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90

 2 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83

 3 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63

 4 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90

In the previous code, the columns of CRIM, ZN, and LSTAT are dropped,

and only 10 columns of data are presented.

Chapter 7 Analyzing the Data

141

Renaming the column name helps the user to improve the readability

of the data. In the following code, the column name DIS is renamed to

Distance:

boston_data= boston_data.rename(columns={"DIS":"Distance"})

boston_data.head(5)

 INDUS CHAS NOX RM AGE Distance RAD TAX PTRATIO B

 0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90

 1 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90

 2 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83

 3 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63

 4 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90

Identifying duplicates, dropping the duplicates, and detecting outliers

were already discussed in the previous chapters.

�Statistical Analysis
A better understanding of the data at hand can go a long way in simplifying

the job of a data scientist, and this is where statistics can come in handy.

Statistics can provide the tools necessary to identify structures in the data,

and such insights can prove to be valuable in building a model to best fit

our data. The role of statistics with respect to data can vary from simple

analysis to creating self-learning models. In this section, we will introduce

the various types of distributions, statistical measures of data, and ways to

fit data to distributions.

Before discussing distributions, let’s first understand how data is

associated with probability. When we consider a dataset, it normally

represents a single sample from a population. For instance, if we have a

dataset consisting of the height and weight of all the students in a school,

Chapter 7 Analyzing the Data

142

the model developed from this data after some statistical analysis can be

used to predict the height and weight of students from another school. The

dataset in our hand is just one sample, whereas the population may consist

of as many schools.

The numerical data that we encounter may be continuous or discrete

in nature. The difference between the two is that the continuous data may

take any value, whereas the discrete data can take only certain values.

For example, data such as the number of cars manufactured per day,

the number of feedback received from customers, etc., are discrete in

nature, whereas data such as height, weight, humidity, temperature, etc.,

represents continuous data.

Probability distributions, a fundamental concept in statistics, provide

a way to represent the possible values taken by a random variable and the

respective probabilities. The probability mass function (PMF) denotes the

discrete probability distribution, and the probability density function (PDF)

denotes the continuous probability distribution. Some of the common

distributions that a data scientist needs to be aware of are discussed in the

following section.

�Uniform Distribution
Uniform distribution, also called a rectangular distribution, has a constant

probability. In other words, all the outcomes have the same probability of

occurrence. The number of outcomes in the case of uniform distribution

may be unlimited. The most common example for a uniform distribution

is the roll of a fair die, where all six outcomes have an equal probability of

1/6. Let’s illustrate uniform distribution by plotting the probabilities of the

outcomes for the fair die experiment. In other words, the probabilities of

occurrence for each face of the die are equally likely. Figure 7-1 shows the

distribution plot.

Chapter 7 Analyzing the Data

143

import numpy as np

import matplotlib.pyplot as plt

probabilities = np.full((6),1/6)

events = [1,2,3,4,5,6]

plt.bar(events,probabilities)

plt.xlabel('Die roll events')

plt.ylabel('Event Probability')

plt.title('Fair die - Uniform Distribution')

plt.show()

If a histogram plot is made for a dataset by dividing the numerical data

into a number of bins and all the bins are found to have equal distribution,

then the dataset can be said to be uniformly distributed.

Figure 7-1.  Uniform distribution of fair die experiment

Chapter 7 Analyzing the Data

144

�Binomial Distribution
As the name suggests, this distribution is used when there are only

two possible outcomes. A random variable X that follows a binomial

distribution is dependent on two parameters:

•	 The number of trials n in the case of binomial

distribution must be fixed, and the trials are considered

to be independent of each other. In other words, the

outcome of a particular trial does not depend on the

outcomes of the previous trials.

•	 There are only two possible outcomes for each event:

success or failure. The probability of success, say p,

remains the same from trial to trial.

Therefore, the binomial distribution function in Python normally

takes two values as inputs: the number of trials n and the probability of

success p. To understand binomial distribution, let’s look at the common

experiment of tossing a coin:

from scipy.stats import binom

import matplotlib.pyplot as plt

import numpy as np

n=15 # no of times coin is tossed

r_values = list(range(n + 1))

x=[0.2,0.5,0.7,0.9] #probabilities of getting a head

k=1

for p in x:

 dist = [binom.pmf(r, n, p) for r in r_values]

 plt.subplot(2,2,k)

 plt.bar(r_values,dist)

 plt.xlabel('number of heads')

Chapter 7 Analyzing the Data

145

 plt.ylabel('probability')

 plt.title('p= percent.1f' percentp)

 k+=1

plt.show()

In the previous code, we have 15 trials for tossing the coin. The

probability of getting a head remains the same for each trial, and the

outcome of each trial is independent of the previous outcomes. The

binomial distribution is computed using the binom.pmf function available

in the stats module of the scipy package. The experiment is repeated for

different probabilities of success using a for loop, and Figure 7-2 shows the

resulting distribution plot.

Figure 7-2 shows the binomial distribution for our coin toss

experiment for different probabilities of success. The first subplot shows

the binomial distribution when the probability of getting a head is 0.2. This

implies that there is a 20 percent chance of getting a head. Twenty percent

of 15 tosses is 3, which implies that there is a high probability of getting

three heads in 15 tosses. Hence, the probability is at a maximum of 3.

Figure 7-2.  Binomial distribution for tossing a coin 15 times

Chapter 7 Analyzing the Data

146

It can be seen that the binomial distribution has a bell-shaped response.

The response is skewed to the left when the probability of success is low

and shifts to the right with an increase in probability, as illustrated in the

rest of the subplots.

Binomial distribution can be encountered in various domains of data

science. For instance, when a pharmaceutical company wants to test a

new vaccine, then there are only two possible outcomes: the vaccine works

or it does not. Also, the result for an individual patient is an independent

event and does not depend on other trials for different patients. Binomial

distribution can be applied to various business issues as well. For example,

consider people working in the sales department making calls all day

to sell their company’s products. The outcome of the call is whether a

successful sale is made or not, and the outcome is independent for each

worker. Similarly, there are many other areas in a business with binary

outcomes where binomial distribution can be applied, and hence it plays

an important role in business decision-making.

�Normal Distribution
Normal distribution, also known as Gaussian distribution, is normally

a bell-shaped curve centered at the mean where the probability is

the maximum, and the probability reduces the further we move from

the mean. This implies that the values closer to the mean occur more

frequently, and the values that are further away from the mean occur less

frequently. This distribution is dependent on two parameters: the mean

(μ) of the data and the standard deviation (σ). The probability density

function (pdf) for a normal distribution can be given as follows:

	
f x e

x

; ,� �
��

�

�� � �
�

�� �
1

2 2

2

2

2

	

Chapter 7 Analyzing the Data

147

To illustrate the pdf function, consider the following code. An array x

with 100 values in the range of -10 to 10 is created, and the pdf function

of x is computed using the norm.pdf function in the stats module of the

scipy package. The pdf function is computed for four different values of

mean 0, 2.5, 5, and 7.5 using a for loop. If the mean value is not given, the

norm.pdf function takes a default value of zero.

from scipy.stats import norm

import matplotlib.pyplot as plt

import numpy as np

mean=[0.0,2.5,5,7.5] # mean values for the normal distribution

x=np.linspace(-10,10,100) # array of 100 numbers in the

range -10 to 10

for m in mean:

 y=norm.pdf(x,loc=m)

 plt.plot(x,y,label='mean= %.1f' %m)

plt.xlabel('x')

plt.ylabel('pdf(x)')

plt.legend(frameon=True)

plt.show()

Figure 7-3 shows that the normal distribution produces a bell-shaped

curve that is centered on the mean value. That is, the curve is at the

maximum at the point of mean, and it starts decreasing on either side as

we move away from the mean value. Note that we have not specified the

value of standard deviation. In that case, the norm.pdf function takes the

default value of 1.

Chapter 7 Analyzing the Data

148

Similarly, let’s keep the value of the mean as constant and plot

the distribution for different values of standard distribution using the

following code:

from scipy.stats import norm

import matplotlib.pyplot as plt

import numpy as np

stdev=[1.0,2.0,3.0,4.0] # standard deviation values for the

normal distribution

x=np.linspace(-10,10,100)

for s in stdev:

 y=norm.pdf(x,scale=s)

 plt.plot(x,y,label='stdev= %.1f' %s)

plt.xlabel('x')

plt.ylabel('pdf(x)')

plt.legend(frameon=True)

plt.show()

Figure 7-3.  Normal distribution plot for different mean values

Chapter 7 Analyzing the Data

149

From Figure 7-4, we can see that all four curves are centered at

the default mean value of zero. As the value of standard deviation σ is

increased, the density is distributed across a wide range. In other words,

the distribution of data is more spread out from the mean as the standard

deviation value is increased and there is a high likelihood that more

observations are further away from the mean.

An important property of the normal distribution that makes it an

important statistical distribution for data scientists is the empirical rule.

According to this rule, if we divide the range of observations in the x-axis in

terms of standard deviation, then approximately 68.3 percent of the values

fall within one standard deviation from the mean, 95.5 percent of the

values fall within two standard deviation, and 99.7 percent of the values

fall within three standard deviations, respectively. This empirical rule can

be used for identifying outliers in the data if the data can be fit to a normal

distribution. This principle is used in the Z-score for outlier detection,

which we discussed earlier in Chapter 5.

Figure 7-4.  Normal distribution plot for different values of standard
deviation

Chapter 7 Analyzing the Data

150

�Statistical Analysis of Boston Housing Price
Dataset
Let’s take the Boston housing price dataset and try to identify the best

features that can be used to model the data based on the statistical

properties of the features. As we have already discussed, the Boston

dataset consists of 13 different features for 506 cases (506 × 13). In addition

to these features, the median value of owner-occupied homes (in the

thousands) denoted by the variable MEDV is identified as the target. That

is, given the 13 different features, the median value of a house is to be

estimated. The features from the dataset are first converted to a dataframe

using the Pandas package. Then the target variable is added to the last

column of this dataframe, making its dimension 506 × 14. This is illustrated

in the following code:

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from sklearn.datasets import load_boston

import matplotlib.pyplot as plt

dataset = load_boston()

boston_data=pd.DataFrame(dataset.data,columns=dataset.feature_

names)

boston_data['MEDV'] = dataset['target']

print(boston_data.head())

Chapter 7 Analyzing the Data

151

 CRIM ZN INDUS CHAS NOX ... TAX PTRATIO B

LSTAT MEDV

0 0.00632 18.0 2.31 0.0 0.538 ... 296.0 15.3 396.90

4.98 24.0

1 0.02731 0.0 7.07 0.0 0.469 ... 242.0 17.8 396.90

9.14 21.6

2 0.02729 0.0 7.07 0.0 0.469 ... 242.0 17.8 392.83

4.03 34.7

3 0.03237 0.0 2.18 0.0 0.458 ... 222.0 18.7 394.63

2.94 33.4

4 0.06905 0.0 2.18 0.0 0.458 ... 222.0 18.7 396.90

5.33 36.2

[5 rows x 14 columns]

Once we have the data in hand, the best way to go about it is to plot

the histogram of all the features so that we can get an understanding of

the nature of their distribution. Rather than plotting the histogram of each

feature individually, the hist function in the Pandas package can be used

to plot them all in one go, as illustrated here:

fig, axis = plt.subplots(2,7,figsize=(16, 16))

boston_data.hist(ax=axis,grid=False)

plt.show()

From Figure 7-5, we can see that the distribution of the target variable

MEDV is like a normal distribution.

Chapter 7 Analyzing the Data

152

Further, if we observe all the other parameters, the distribution for the

parameter RM (which denotes the average number of rooms per dwelling)

is also similar to the target MEDV. Therefore, the RM can definitely

be used for modeling the dataset. Also, the parameters DIS (weighted

mean of distances to five Boston employment centers) and LSTAT

(percentage of lower status of the population) have similar distribution.

The distribution of the parameter AGE (proportion of owner-occupied

units built prior to 1940) is exactly the opposite of these two parameters.

The rest of the parameters have less significant distribution compared

to the target parameter. Since these three parameters seem to be related

either positively or negatively, it is pointless to use all three for building

the model. So, we have to see which of these three parameters are related

to our target variable MEDV. The best way to do this is to measure the

correlation between these parameters using the corr function in the

Pandas package, as illustrated here:

Figure 7-5.  Histogram plots of the Boston dataset features

Chapter 7 Analyzing the Data

153

cols=['RM','AGE','DIS','LSTAT','MEDV']

print(boston_data[cols].corr())

 RM AGE DIS LSTAT MEDV

RM 1.000000 -0.240265 0.205246 -0.613808 0.695360

AGE -0.240265 1.000000 -0.747881 0.602339 -0.376955

DIS 0.205246 -0.747881 1.000000 -0.496996 0.249929

LSTAT -0.613808 0.602339 -0.496996 1.000000 -0.737663

MEDV 0.695360 -0.376955 0.249929 -0.737663 1.000000

From these results, it can be seen that the diagonal elements are all

1s, which implies maximum correlation, and they represent the self-

correlation values. If we look at the row corresponding to our target

parameter MEDV, we can see that RM is positively more correlated with

MEDV as we judged earlier looking at the histogram distribution. It can

be also seen that the parameter LSTAT is negatively more correlated with

MEDV, which implies that there will be an inverse relationship between

these two parameters. A scatter plot of RM and LSTAT against MEDV,

respectively, would give us a better understanding of this relationship, as

illustrated here:

plt.subplot(1,2,1)

plt.scatter(list(boston_data['RM']),list(boston_data['MEDV']))

plt.xlabel('RM')

plt.ylabel('MEDV')

plt.subplot(1,2,2)

plt.scatter(list(boston_data['LSTAT']),list(boston_

data['MEDV']))

plt.xlabel('LSTAT')

plt.ylabel('MEDV')

plt.show()

Chapter 7 Analyzing the Data

154

Figure 7-6 confirms our conclusions derived using the distribution

graphs and the correlation values. It can be seen that RM and MEDV are

positively correlated; i.e., the median value of owner-occupied homes

increases with an increase in the average number of rooms per dwelling.

Similarly, it can be seen that LSTAT and MEDV are negatively correlated;

i.e., the median value of the owner-occupied home drops with an increase

in the percentage of a lower status of population. Therefore, these two

parameters are good choices to model the Boston housing dataset. It can

also be seen from the figure that there are some outliers in the RM versus

MEDV plot, which could be treated using the techniques discussed in

Chapter 5 before further processing.

Figure 7-6.  Scatter plot of RM and LSTAT versus MEDV

Chapter 7 Analyzing the Data

155© K. Mohaideen Abdul Kadhar and G. Anand 2021
K. M. Abdul Kadhar and G. Anand, Data Science with Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6825-4_8

CHAPTER 8

Learning from Data
Learning from data just means extracting the information from the

data and using it for predicting/forecasting in order to make intelligent

decisions based on it. This area is becoming more popular because it is

applicable to various applications in different industries, such as financial,

healthcare, education, computer vision, politics, etc.

Learning from data is used in various situations when the

analytical solution is not required or there is no clear-cut model about

the problem or requirement of forecasting based on the previous

information, etc. Basically, three types of learning techniques

are available: supervised learning, unsupervised learning, and

reinforcement learning. Supervised learning utilizes the observations

of a process to develop a model. Supervised learning models are

trained based on the input and output observations (i.e., input and

output data) of the process. In unsupervised learning, the training data

doesn’t have any information about the output. The unsupervised

models categorize the model based on the characteristics of the data.

Also, unsupervised models can be used to find patterns in the data,

detect outliers by clustering similar data, find the structure of the data,

etc. The reinforcement learning model also doesn’t utilize the correct

information about the output. However, it has some possible output

with information about the quality of the output.

https://doi.org/10.1007/978-1-4842-6825-4_8#DOI

156

This chapter focuses on describing the learning model development

techniques by utilizing the Boston dataset. Then, we will implement the

learning models in the Raspberry Pi and analyze the industry data that is

acquired from the sensors. This implementation will be discussed as a case

study in Chapter 9.

�Forecasting from Data Using Regression
Regression finds the relationship between the variables in a dataset.

Regression is used to identify the impact of one variable on another

variable. Also, it can be used to forecast a variable based on its previous

data. Regression models can be used in many areas such as forecasting the

trends in economics, predicting sales in business, predicting the impact

of some policies, and predicting the blood pressure levels in healthcare

applications.

In regression, there are two kinds of variables required to develop a

model: input and output. An input variable is the variable in a dataset

used to predict the output variable. An input variable in linear regression

is commonly denoted as X. An output variable is the variable for predicting

and is denoted as Y. Equation 8-1 shows the equation for linear regression.

	 Ye=α+βX	 … (8-1)

Here, Ye is the estimated output variable, Y is the actual output

variable, and α and β are parameters of the linear regression model. For

example, if we want to buy a TV and try to estimate the cost of the TV

(i.e., output variable), we use input variables like the size of the TV. Now,

α, β, and Y are selected (randomly) as 2, 5, and €170, respectively. The

size of the TV (i.e., input variable) is 32 inch, and the estimated output of

the linear regression model in estimating the cost of the TV is shown in

Equation 8-2.

Chapter 8 Learning from Data

157

Ye=2+5 *32

	 = €162	 …(8-2)

So, based on Equation 8-2, the cost of the TV is €162 when the size

of the TV is 32 inches, which is nearer to the actual cost of the TV: €170.

If we modify the parameters α and β as 0.1 and 0.5, respectively, now the

estimated cost of the TV is calculated as follows:

Ye=0.1+0.5 *32

= €16.1

The cost of the TV is drastically changed to €16.1. This shows that the

selection of α and β is important in predicting the output variable. Thus,

the objective in developing the linear regression model is to find α and β by

minimizing the difference between the actual output Y and the estimated

output Ye. There are many methods available to find the optimum

parameters of α and β. However, the ordinary least (OL) square method is

commonly used in finding the optimum parameters of α and β.

The OL method uses covariance and variance of the input variables for

identifying the parameters α and β as shown in Equation 8-3.

	

�

� �

�
� �
� �

� �

Cov X Y

Var X

Y X

,

	 … (8-3)

Here, Y and X are the means of actual output and input variables.

Let’s consider the Boston dataset now. The RM variable is used for

representing the average number of rooms per dwelling, and the target

variable (i.e., output variable) MEDV is used for representing the median

value of owner-occupied homes in the thousands. We consider RM as

the input variable and MEDV as the output variable for linear regression

Chapter 8 Learning from Data

158

modeling. Because RM and MEDV are interlinked with each other closely,

the linear regression model for those variables can be implemented using

the following code. For identifying the α and β parameters, the ordinary

least square method is used.

from sklearn.linear_model import LinearRegression

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import load_boston

import pandas as pd

dataset = load_boston()

boston_data=pd.DataFrame(dataset.data,columns=dataset.feature_

names)

Target=pd.DataFrame(dataset.target,columns=['target'])

two variable for regression model

X1=boston_data['RM']

X=X1.to_numpy() # dataframe is converted in to array for

arithmetic operations

Y=dataset.target

xmean=np.mean(X)

ymean=np.mean(Y)

xcov=np.multiply((X-xmean),(Y-ymean))

xvar=(X-xmean)**2

linear regression model

beta=xcov.sum()/xvar.sum()

alpha=ymean-(beta*xmean)

print(beta)

print(alpha)

Chapter 8 Learning from Data

159

The output of α and β values from the OLS method is shown here:

Beta value is 9.10210898118031

Alpha value is -34.67062077643857

The linear regression model can be developed by using the previous α

and β values, as given in Equation 8-4.

	 Ye=-34.6706+9.1021*X	 … (8-4)

Here, X is the input variable RM. It can be implemented using the

following code:

prediction model

ye=alpha+beta*X

Let’s plot the actual output variable Y and the estimated model Ye,

which gives clear insight about their relationships and can be plotted using

the following code (see Figure 8-1):

plot

plt.figure(figsize=(12,6))

plt.plot(X1,ye)

plt.plot(X,Y,'ro')

plt.title('Actual Vs Predicted')

plt.xlabel('X')

plt.ylabel('Y')

plt.show()

Chapter 8 Learning from Data

160

�Linear Regression using Scikit-Learn
In the previous example, a linear regression predictor uses one input

variable for predicting the output. The output can be predicted with more

than one variable based on the given linear regression (see Equation 8-5).

	 Ye=α+β1x1+ β2 x2+ β3 x3+ ……+ βn xn 	 ……(8-5)

Equation 8-5 used n number of input variables for predicting the

output variable Ye. If we consider all the input variables of the Boston

dataset (totally 13 input variables) and output variables (MEDV), the

regression model by using multiple variables can be implemented using

Scikit-Learn and is given in the following code:

from sklearn.linear_model import LinearRegression

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

from sklearn.datasets import load_boston

import pandas as pd

dataset = load_boston()

Figure 8-1.  Actual output variable versus estimated linear regression
model

Chapter 8 Learning from Data

161

boston_data=pd.DataFrame(dataset.data,columns=dataset.feature_

names)

Target=pd.DataFrame(dataset.target,columns=['target'])

two variable for regression model

X=boston_data

Y=Target

lm=LinearRegression()

model=lm.fit(X,Y)

print(f'alpha={model.intercept_}')

print(f'beta={model.coef_}')

Ye=model.predict(X)

Y1=Y.to_numpy()

E=np.mean(Y1-Ye)

MSE=E**2

print(MSE)

plot

plt.figure(figsize=(12,6))

plt.scatter(Y1,np.arange(0,len(Y)),color='red')

plt.title('Actual')

plt.xlabel('No of samples')

plt.ylabel('Y')

#plt.figure(figsize=(12,6))

plt.scatter(Ye,np.arange(0,len(Y)),color='blue')

plt.legend(['Actual output data','Estimated Linear regression

model',])

plt.show()

Output:

For α and β values
 alpha=[36.45948839]

 �beta=[[-1.08011358e-01 4.64204584e-02 2.05586264e-02

2.68673382e+00

Chapter 8 Learning from Data

162

 �-1.77666112e+01 3.80986521e+00 6.92224640e-04 -

 1.47556685e+00

 �3.06049479e-01 -1.23345939e-02 -9.52747232e-01

 9.31168327e-03

 -5.24758378e-01]]

To evaluate the quality of the model, we can use the mean square error

(MSE) metric. MSE finds the average of the squared error between the

actual output and the predicted output.

1.8463848451630152e-29

Figure 8-2 compares the actual output (Y) to the predicted output (Ye).

�Principal Component Analysis
Principal component analysis is a statistical method used to extract the

strong features in a large dataset. In other words, the dimension of the

dataset can be reduced by extracting the important features from the

dataset. PCA uses standardization for identifying the distances between

the features and implements the covariance information for identifying

Figure 8-2.  Actual output data to the predicted output data using
linear regression

Chapter 8 Learning from Data

163

any relationship between the features. Then, with the help of the

eigenvectors and eigenvalues, the principal components are calculated.

The principal components are used to extract the strong features, i.e.,

reduce the dimensionality of the data. Further, the principal components

are used to optimize the number of clusters for the k-means clustering

technique, and the Boston dataset is used for this work. The Boston dataset

has 13 features. In the first step, the strong features in the Boston dataset

are identified with the help of PCA using the following code:

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

#config InlineBackend.figure_format='retina'

Load in the data

from sklearn.datasets import load_boston

dataset = load_boston()

df=pd.DataFrame(dataset.data,columns=dataset.feature_names)

#df = pd.read_csv('2013_2014_cleaned.csv')

Standardize the data to have a mean of ~0 and a variance of 1

X_std = StandardScaler().fit_transform(df)

Create a PCA instance: pca

pca = PCA(n_components=13)

principalComponents = pca.fit_transform(X_std)

Plot the explained variances

features = range(pca.n_components_)

plt.bar(features, pca.explained_variance_ratio_, color='black')

plt.xlabel('PCA features')

plt.ylabel('variance %')

plt.xticks(features)

plt.show()

Save components to a DataFrame

PCA_components = pd.DataFrame(principalComponents)

Chapter 8 Learning from Data

164

From Figure 8-3, we can see that the first three features give a good

variance in the dataset.

Hence, five features can be selected for clustering. For clustering,

k-means clustering can be used. To identify the optimal number of

clusters, the PCA is fit with the k-means clustering algorithms and

calculates the inertia of the clustering model with the selected principal

components. The following code identifies the inertia of the clustering

model and plots the number of clusters (i.e., k) with the inertia (this code

continues with the previous PCA code). Figure 8-4 shows the plot of inertia

against the number of clusters (k). From Figure 8-4, it can be concluded

that after the number of cluster (k = 5), there are no significant changes

occurring in the inertia. Hence, five can be chosen as the optimal number

of cluster heads for the given dataset.

Figure 8-3.  Features in the dataset with respect to variance

Chapter 8 Learning from Data

165

ks = range(1, 10)

inertias = []

for k in ks:

 # Create a KMeans instance with k clusters: model

 model = KMeans(n_clusters=k)

 # Fit model to samples

 model.fit(PCA_components.iloc[:,:3])

 # Append the inertia to the list of inertias

 inertias.append(model.inertia_)

plt.plot(ks, inertias, '-*', color='blue')

plt.xlabel('number of clusters, k')

plt.ylabel('inertia')

plt.xticks(ks)

plt.show()

Figure 8-4.  Number of clusters versus inertia

Chapter 8 Learning from Data

166

�Outlier Detection Using K-Means Clustering
Clustering is an exploratory data analysis technique used in unsupervised

learning problems, i.e., when there is no prior knowledge about the data. The

idea behind clustering is to group the data points in a dataset into a number

of subgroups called clusters. The data points in each cluster are more similar

to the other points in the same cluster than those of other clusters.

The technique that is used widely for clustering operations is the

centroid-based method called k-means clustering, which is an iterative

algorithm that splits the dataset into k nonoverlapping clusters where

each data point is assigned to only one cluster. The condition for assigning

data points to a cluster is that the sum of the squared overlapping clusters’

distance of the data points to the cluster’s centroid is at a minimum. The

k-means algorithm works as follows:

	 1.	 Specify the number of clusters.

	 2.	 Randomly select center points for each cluster, also

called centroids.

	 3.	 Calculate the distance between each data point and

the cluster centroids, and assign the points to the

cluster whose distance is minimum.

	 4.	 Recompute the centroid for each cluster by taking the

average of all the data points assigned to the cluster.

	 5.	 Iterate steps 3 and 4 until there is no change to the

centroids.

In addition to clustering the data, the k-means algorithm can be used

to identify outliers present in the data. The idea behind this approach is to

sort the distances from each data point to the cluster centroid in ascending

order and treat a portion of the data points that have the maximum

distance from the centroid as outliers.

Chapter 8 Learning from Data

167

To illustrate this approach, let’s look at the Boston housing dataset.

As we discussed in Chapter 7, the average number of rooms per dwelling

(RM) and the medium value of owner-occupied homes in the thousands

(MEDV) are highly correlated. So, these two parameters are taken as

two-dimensional data for the clustering algorithm, as illustrated in the

following code:

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from sklearn.cluster import KMeans

from sklearn.preprocessing import scale

from numpy import sqrt, random, array, argsort

from sklearn.datasets import load_boston

dataset = load_boston()

boston_data=pd.DataFrame(dataset.data,columns=dataset.feature_

names)

x=boston_data['RM']

y=dataset.target

x=x.to_numpy() # convert pandas series data to numpy array

x=x.reshape(x.shape[0],1)

x=scale(x)

y=y.reshape(y.shape[0],1)

y=scale(y)

X=np.zeros((np.shape(x)[0],2))

X[:,0]=x[:,0]

X[:,1]=y[:,0]

The features of the dataset are first loaded to a dataframe. The column

corresponding to the feature RM is moved from the dataframe to the

variable x. Since the RM feature stored in variable x is in the Pandas series

format, it is converted to a NumPy array using the to_numpy function,

making it viable for applying the k-means algorithm. This array is then

Chapter 8 Learning from Data

168

reshaped as it has to be stored along with the target variable MEDV in a

two-dimensional array. Then an additional scaling of the parameter is

done by using the scale function in the sklearn package. This is done

to normalize the data within a particular range. In a similar fashion, the

target MEDV feature (which by default is a NumPy array) is also stored in

the variable y, reshaped and scaled. The two variables x and y are then

combined in the variable X thereby making it a two-dimensional variable.

The application of k-means algorithm to this variable is illustrated in the

following code:

km=KMeans(n_clusters=1).fit(X)

distance = km.transform(X)

indexes = np.argsort(distance.ravel())[::-1][:20]

The Kmeans function imported from the sklearn package can be used

to implement the clustering algorithm. This function can take inputs such

as the number of clusters, the maximum number of iterations, and more.

In our code, we are giving an input of one for number of clusters. In other

words, we are going to group all the data points into a single cluster. Since

the maximum number of iterations is not specified, the default value of

300 iterations is taken by the function. After fitting the k-means algorithm

to our data, the next step is to compute the distance of each data point

from the cluster centroid. This is done using the transform function in the

sklearn package. The resulting distance variable is also an n-dimensional

NumPy array. Therefore, it is first flattened using the ravel function, and

then the flattened array is sorted in descending order. This means the array

starts with the data points that are further from the cluster center and ends

with the points that are closer to the center. This sorting is done using the

argsort function, which provides the indexes corresponding to the sorted

data points.

We know that outliers are abnormal data points that lie far away from

the other data points in the dataset. But what is considered abnormal is

left to the analyst who is aware of the requirements of the analysis. In the

Chapter 8 Learning from Data

169

case of the Boston housing data, the outliers are the high median value for

homes with fewer rooms (overpriced), the low median value for homes

with more rooms (erroneous), and also depending on requirements the

median value of the number of room combinations beyond a particular

limit. To detect these outliers, we randomly pick the first 20 indexes from

the sorted index array and mark the data points corresponding to those

indexes in a scatter plot of all data points, as illustrated here:

f,ax=plt.subplots()

ax.scatter(X[:,0],X[:,1])

ax.scatter(X[indexes][:,0],X[indexes][:,1],edgecolors='r',

 facecolors='none', s=100)

plt.xlabel('MEDV')

plt.ylabel('RM')

f.show()

Figure 8-5 shows a scatter plot of the average number of rooms per

dwelling against the median value of owner-occupied homes. The outliers

in the data are indicated by those points with red circles around them.

Figure 8-5.  Outliers detected using the k-means clustering algorithm

Chapter 8 Learning from Data

171© K. Mohaideen Abdul Kadhar and G. Anand 2021
K. M. Abdul Kadhar and G. Anand, Data Science with Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6825-4_9

CHAPTER 9

Case Studies
This chapter presents real-world case studies for implementing data

science concepts. Three scenarios are considered: data science concepts

for human emotion classification with EEG signals, image data, and

Industry 4.0.

For human emotion classification, EEG signals of humans are

extracted using a NeuroSky MindWave Mobile kit, and the EEG signals are

received and analyzed in the Raspberry Pi. A NeuroSky MindWave Mobile

kit and the Raspberry Pi can be connected via Bluetooth. In image data,

data science steps are applied to preprocess the image data for further

analysis. In the Industry 4.0 case study, the Raspberry Pi acts as a localized

cloud. Here, many sensors are connected to the Raspberry Pi, and the

signals from the sensors are converted to structured data for further

analysis and visualization.

�Case Study 1: Human Emotion Classification
An emotion is a feeling that is characterized by intense brain activity.

A considerable amount of research has been focused on recognizing

human emotions for a wide range of applications such as medical, health,

robotics, and brain-computer interface (BCI) applications. There are a

number of ways to recognize human emotions such as facial emotion

recognition, tone recognition from speech signal, emotion recognition

from EEG signals, etc. Among those, classification from EEG signals is a

https://doi.org/10.1007/978-1-4842-6825-4_9#DOI

172

simple and convenient method. Also, EEG signals have useful information

about human emotions. Thus, many researchers have focused on

classifying human emotion using EEG signals. EEG signals are used to

record the human brain activity by measuring electrical signals by placing

electrodes on the scalp.

Let’s consider a simple emotion recognition system that uses a single

electrode device, namely, a NeuroSky MindWave device for acquiring the

EEG signals from participants and classifying their emotion as happy,

afraid, or sad with the help of machine learning algorithms, namely,

k-nearest neighbor (k-NN) and neural networks (NNs).

�Methodology
The participants included are from different age groups, and they were

subjected to the experiment separately by showing them images in

different categories from the worldwide recognized database Geneva

Affective Picture Database (GAPED). The images include images of babies,

happy scenarios, animal mistreatments, human concerns, snakes, and

spiders, each kindling different emotions in the participants. The dataset of

features corresponding to the recorded EEG signals is then obtained for all

the participants, and these features are then subjected to machine learning

models like k-NN and NN, which classifies each signal into one of three

emotions: happy, afraid, or sad.

�Dataset
The two devices that are used for data collection are the NeuroSky

MindWave Mobile device and a Raspberry Pi 3 board. The NeuroSky

MindWave device can be used to safely record the EEG signals. The

device consists of a headset, an ear clip, and a sensor (electrode) arm. The

headset’s ground electrodes are available on the ear clip, whereas the EEG

Chapter 9 Case Studies

173

electrode is on the sensor arm that will rest on the forehead above the eye

after putting on the headset. The device uses a single AAA battery, which

can last for eight hours.

This device is connected to a Raspberry Pi 3 board via Bluetooth,

as shown in Figure 9-1. It is a third-generation Raspberry Pi model that

comes with a quad-core processor, 1GB of RAM, and a number of ports for

connecting various devices. It also comes with wireless LAN and Bluetooth

support, which can help to connect wireless devices like our MindWave

Mobile. The software provided by the NeuroSky device vendor is installed

on the Pi board to acquire the serial data from the device.

�Interfacing the Raspberry Pi with MindWave
Mobile via Bluetooth
There are two ways to connect the MindWave Mobile with the Raspberry

Pi. The first one is to connect the MindWave Mobile with the Raspberry

Pi desktop. Initially switch on the Raspberry Pi, boot into the Raspberry

Pi operating system, and then switch on the MindWave Mobile Bluetooth.

Then click the Bluetooth symbol in the Raspberry Pi OS, which will show

the devices that are ready to pair with the Raspberry Pi. In the list, the

Figure 9-1.  Raspberry Pi with MindWave Mobile connected via
Bluetooth

Chapter 9 Case Studies

174

MindWave Mobile can be selected, and the pairing password 0000 as

prescribed by the vendor can be used. Now, the MindWave Mobile device

is paired with the Pi, as shown in Figure 9-2.

(b)

Figure 9-2.  Raspberry desktop pairing with MindWave Mobile

(a)

Chapter 9 Case Studies

175

The signals from the MindWave Mobile device can be extracted via

this Bluetooth connection. Another way to connect the Raspberry with

MindWave is by using Pypi 0.1.0. The steps are explained at https://

github.com/cttoronto/python-MindWave-mobile. This link provides

the data about alpha, beta, and gamma values of the brainwave signals.

However, in this work, the dataset is developed from the EEG signals.

�Data Collection Process
The participants are seated in a small, darkened room, which is also

radio silent to prevent them from acoustic and visual disturbances. The

terms and conditions are explained prior to the experiment, and they are

instructed to stop the test if they have any discomfort. A manual score

sheet was also provided to the participants to rate their emotions during

each picture. There was a total of 15 participants, and 15 signals spread

across three different emotions were recorded, thereby making a total of

15 × 3 = 45 EEG signals. The emotions were happy, afraid, and sad.

Figure 9-2.  (continued)

(c)

Chapter 9 Case Studies

https://github.com/cttoronto/python-MindWave-mobile
https://github.com/cttoronto/python-MindWave-mobile

176

Initially, raw EEG signals were acquired from the user using a

NeuroSky device. The raw EEG signal extracted from the brain cannot be

directly used for further processing. As the subject is exposed to emotion

stimulation based on the visual inputs for a specific duration, the resulting

emotional reaction would be a time-varying one. It is essential therefore

to identify the duration of peak activity of the brain and extract the

features only for that duration so as to enhance the classification results.

To achieve this, the recording is started exactly one minute after the start

of experiment, which gives enough time to simulate the emotions of

the participants using the image slides corresponding to the particular

emotion. Also, to avoid dealing with large data, only 15 seconds of data

with 512 samples per second are considered, thereby reducing the data

size to just 15 × 512 =7680 samples, as illustrated in Figure 9-3. Figure 9-3

shows the signal for the entire duration of recording with the signal in the

peak period of brain activity indicated in red, and Figure 9-4 shows this

part separately.

Figure 9-3.  Sample EEG signal for the entire recording duration

Chapter 9 Case Studies

177

�Features Taken from the Brain Wave Signal
EEG signals are a rich source of brain function information. To get

meaningful information from EEG signals, different attributes of the signals

need to be extracted. A total of 9 different time domain attributes are

extracted from the EEG signals, and these features are illustrated as follows.

The latency to amplitude ratio (LAR) is defined as the ratio of the

maximum signal time to the maximum signal amplitude; see Equation 9-1.

	 LAR
t

S
s= max

max

	 (9-1)

Here, tsmax={t|s(t)=smax} is the time where the maximum signal value

occurs, and smax=max{s(t)} is the maximum signal value.

The peak to peak signal value (PP) is defined as the difference between

the maximum signal value and the minimum signal value and is shown in

Equation 9-2.

	 spp = smax − smin	 (9-2)

Figure 9-4.  EEG signal extracted during peak activity of brain

Chapter 9 Case Studies

178

Here, smax and smin are the signal maximum and minimum values,

respectively.

The peak to peak time window (PPT) is defined as the difference

between the maximum signal time and the minimum signal time and is

shown in Equation 9-3.

	 tpp = ts max − ts min	 (9-3)

Here, ts max and ts min are the times at which the maximum and

minimum signal values occur.

The peak to peak slope (PPS) is defined as the ratio of peak to peak

signal value (PP) to the peak to peak time value (PPT) and is shown in

Equation 9-4.

	 s
s

tpps
pp

pp

= 	 (9-4)

Here, spp is the peak to peak signal value, and tpp is the peak to peak

time window.

The signal power (P) is defined as the signal that exists for infinite time

for constant amplitude. The signal power is shown in Equation 9-5.

	 P
T

s t� � � �1 2
	 (9-5)

The mean value of signal (μ) is defined as the average of data samples

between the end points of the selected area and displays the average value.

The mean value of signal is given in Equation 9-6.

	 � � � �
�
�1

1N
s i

i

N

	 (9-6)

where N is total number of samples in signals.

Chapter 9 Case Studies

179

Kurtosis (K) is the sharpness of the peak of a frequency-distribution

curve and is given in Equation 9-7.

	 K
m

m
= 4

2

	 (9-7)

Here, m4 and m2 is the fourth moment and variance of signal.

Mobility (M) is defined as the ratio of first-order variance of signal to

the variance of the signal and is given in Equation 9-8.

	 M
Var s t

Var s t
�

� �� �
� �� �

’

	 (9-8)

Complexity (C) is defined as the first derivative of mobility divided by

mobility and is given in Equation 9-9.

	 C
M

M�
�

�

�
’

	 (9-9)

The Python code for all these formulas for the nine time domain

features is written as a single function that is later called in the main

program. This function, which takes 15 seconds of EEG signal during the

peak emotional activity of brain and the corresponding time samples, is

illustrated here:

def eegfeat(ynew,tnew):

 from scipy.stats import kurtosis

 # latency to amplitude ratio

 smax=max(ynew)

 locmax=np.where(ynew==smax)

Chapter 9 Case Studies

180

 tsmax=tnew[locmax]

 lar1=tsmax/smax

 lar=lar1[0]

 # peak to peak signal value

 smin=min(ynew)

 locmin=np.where(ynew==smax)

 tsmin=tnew[locmin]

 spp=smax-smin

 # peak to peak time window.

 tpp1=tsmax+tsmin

 tpp=tpp1[0]

 # peak to peak slope

 spps=spp/tpp

 # mean value of signal

 m=np.mean(ynew)

 # kurtosis

 k=kurtosis(ynew)

 # mobility and complexity

 n=ynew.shape[0]

 dynew=np.diff(ynew)

 ddynew=np.diff(dynew)

 mx2=np.mean(np.power(ynew,2))

 mdx2=np.mean(np.power(dynew,2))

 mddx2=np.mean(np.power(ddynew,2))

 mob=mdx2/mx2

 complexity=np.sqrt(mddx2/(mdx2-mob))

 mobility=np.sqrt(mob)

 # signal power

 tt=np.power(ynew,2)

 s=0

Chapter 9 Case Studies

181

 for i in np.arange(0,tt.shape[0]):

 s=s+tt[i]

 signalpower=s/ynew.shape[0]

 �feat = [lar, spp, tpp, spps, m, k, complexity, mobility,

signalpower]

 return feat

�Unstructured Data to Structured Dataset
Now that we have a function to extract features from the EEG signal, the

next step is to develop the code to get a structured dataset. First, the EEG

signals of all 15 participants corresponding to three different emotions are

loaded one by one using the pd.read_csv function inside a for loop. After

an EEG signal is loaded as a dataframe, the timestamp is removed first,

and then the amplitude values in the remaining column are converted

to a NumPy array. The array obtained in each iteration is then stacked to

a new variable thereby providing a final array consisting of 45 columns

corresponding to the 45 different EEG signals. Then each column of this

array is passed to the eegfeat function created earlier that provides nine

features corresponding to each column (each signal) there by providing

a final feature array of size 9×45. The dataset is given in Table 9-1 and

saved as emotion_data1.xls in an Excel sheet. Finally, the features are

scaled using the StandardScaler and fit function in the sklearns module.

This scaling works by first computing the mean and standard deviation

of each feature for all the 45 signals and then subtracting the mean from

all the values and dividing this difference by the standard deviation. The

following code illustrates the feature extraction process:

import pandas as pd

import numpy as np

from sklearn.preprocessing import StandardScaler

F=512

Chapter 9 Case Studies

182

a=np.zeros([(75*F)-(60*F),1])

for i in np.arange(1,4):

 for j in np.arange(1,16):

 filename = �'G:/Anand-EEG/EEG Database/Dataset/

user'+str(j)+'_'+str(i)+'.csv'

 s=pd.read_csv(filename)

 s.drop('Time',inplace = True, axis=1)

 s1=s[' Value'][60*F:75*F]

 a=np.column_stack((a,s1.to_numpy()))

a=np.delete(a,0,1)

tnew=np.linspace(0,15,a.shape[0])

features=np.zeros([9,45])

for i in np.arange(0,a.shape[1]):

 parameters=eegfeat(a[:,i],tnew)

 for j in np.arange(0,features.shape[0]):

 features[j,i]=parameters[j]

scaler = StandardScaler()

features=scaler.fit(features)

Chapter 9 Case Studies

183

Ta
bl

e
9-

1.
 H

u
m

an
 E

m
ot

io
n

 D
at

as
et

 F
ea

tu
re

s

LA
R

PP
PP

T
PP

S
Po

w
er

M
ea

n
Ku

rt
os

is
M

ob
ili

ty
Co

m
pl

ex
ity

La
be

l

0.
01

60
24

67
8

11
.1

85
05

60
.6

16
63

-0
.0

43
96

6.
54

35
46

0.
86

46
08

0.
27

27
18

30
95

.7
68

05
‘H

ap
py

’

0.
02

16
38

80
5

17
.9

59
37

44
.8

23
4

-0
.1

31
87

1.
14

71
68

0.
90

83
52

0.
32

36
72

88
61

.5
38

44
‘H

ap
py

’

0.
01

36
45

11
56

18
.5

02
41

62
.4

78
35

-0
.1

35
99

11
.5

45
61

0.
90

94
18

0.
25

31
98

56
15

.1
45

91
‘H

ap
py

’

0.
02

08
61

91
3

20
.6

94
1

44
.1

18
85

-0
.1

95
59

4.
77

64
7

0.
86

97
94

0.
27

46
65

74
88

.5
17

85
‘H

ap
py

’

0.
02

74
64

10
51

29
.4

41
33

35
.6

98
11

0.
07

39
72

-0
.0

49
79

0.
92

03
26

0.
73

95
43

17
47

8.
15

66
‘H

ap
py

’

0.
00

30
51

10
56

3.
21

52
62

32
8.

43
35

0.
55

58
73

-0
.7

03
47

0.
82

97
95

0.
64

85
45

26
83

6.
20

39
‘H

ap
py

’

0.
00

91
42

70
8

5.
99

68
75

11
8.

06
15

-1
.4

20
2

1.
80

10
14

0.
80

79
49

0.
20

30
07

52
24

.7
90

68
‘H

ap
py

’

0.
04

48
71

57
7

27
.6

40
32

20
.8

75
3

0.
77

41
06

5.
35

54
27

0.
87

22
17

0.
22

17
42

36
16

.0
85

85
‘H

ap
py

’

0.
02

57
42

10
17

25
.9

99
48

39
.1

16
17

-0
.0

25
95

15
.2

16
5

0.
90

98
82

0.
27

55
13

42
81

.2
57

47
‘H

ap
py

’

0.
03

71
52

59
5

19
.3

18
92

30
.7

98
82

0.
49

03
21

2.
85

13
22

0.
90

80
83

0.
29

55
61

34
03

.5
27

07
‘H

ap
py

’

0.
01

73
13

94
0

15
.4

08
26

61
.0

06
25

0.
10

77
73

0.
58

27
57

0.
77

26
71

0.
17

94
29

14
81

8.
16

92
‘H

ap
py

’

0.
01

50
74

16
26

22
.5

81
07

72
.0

07
23

-2
.5

41
9

2.
84

78
54

0.
81

31
19

0.
21

66
38

25
07

5.
04

79
‘H

ap
py

’

0.
03

43
36

81
2

24
.7

21
97

32
.8

45
28

0.
31

05
97

9.
08

95
32

0.
90

88
52

0.
32

69
48

34
81

.3
39

12
‘H

ap
py

’

0.
01

22
92

91
8

12
.0

21
1

76
.3

65
75

-0
.1

35
6

12
.5

69
9

0.
88

20
2

0.
21

83
35

46
44

.3
61

49
‘H

ap
py

’

(c
on

ti
n

u
ed

)

Chapter 9 Case Studies

184

Ta
bl

e
9-

1.
 (

co
n

ti
n

u
ed

)

0.
00

17
22

30
60

4.
61

38
82

66
3.

21
59

-0
.0

16
63

34
.3

16
37

0.
82

78
43

0.
09

76
03

30
43

3.
05

06
‘H

ap
py

’

0.
01

86
88

40
2

8.
89

56
9

45
.1

90
43

0.
03

29
93

4.
73

87
17

0.
88

26
02

0.
42

30
34

11
24

.3
80

87
‘F

ea
r’

0.
04

05
25

57
9

26
.5

03
45

21
.8

46
21

0.
25

49
13

2.
88

22
32

0.
90

60
08

0.
30

41
22

41
24

.1
29

24
‘F

ea
r’

0.
02

03
58

15
17

21
.6

2
70

.1
66

5
-0

.1
12

43
40

.3
32

38
0.

91
62

68
0.

27
02

59
76

77
.6

10
01

‘F
ea

r’

0.
05

74
51

38
3

22
.6

35
76

16
.9

20
13

0.
01

22
97

0.
51

55
85

0.
91

52
45

0.
52

47
44

15
86

.2
80

54
‘F

ea
r’

0.
02

73
2

73
5

23
.1

12
38

31
.8

01
13

-0
.4

81
9

2.
37

10
13

0.
84

08
96

0.
43

09
31

55
50

.9
10

16
‘F

ea
r’

0.
01

06
94

15
67

16
.4

04
48

95
.5

22
69

0.
17

06
83

-0
.2

80
34

0.
90

64
62

0.
69

79
89

35
49

3.
90

62
‘F

ea
r’

0.
02

73
47

37
8

10
.8

84
23

34
.7

29
15

0.
02

71
4

0.
02

10
38

0.
77

91
73

0.
31

13
32

22
14

.3
43

04
‘F

ea
r’

0.
03

84
18

71
7

29
.5

81
98

24
.2

37
73

-0
.7

53
75

2.
73

51
93

0.
88

68
21

0.
15

50
92

72
04

.2
34

1
‘F

ea
r’

0.
02

34
23

11
15

25
.7

65
07

43
.2

75
64

-0
.3

60
2

2.
43

51
07

0.
86

08
17

0.
38

88
2

12
42

0.
87

48
‘F

ea
r’

0.
00

28
59

44
20

12
.5

79
76

35
1.

35
8

4.
40

84
42

5.
75

59
33

0.
60

55
0.

12
35

52
29

69
78

.0
69

‘F
ea

r’

0.
02

52
19

97
1

24
.7

14
16

39
.2

89
22

-0
.0

83
03

1.
85

76
94

0.
76

66
82

0.
16

59
19

11
42

5.
81

4
‘F

ea
r’

0.
01

50
38

25
16

21
.5

34
05

11
6.

83
82

-2
.2

01
1

30
.4

52
24

0.
93

14
3

0.
38

43
35

22
24

6.
75

76
‘F

ea
r’

0.
01

75
66

83
3

14
.4

04
22

57
.8

30
28

-0
.4

27
94

2.
69

52
62

0.
84

29
94

0.
17

27
86

83
74

.9
23

73
‘F

ea
r’

0.
01

96
47

93
5

20
.2

76
08

46
.1

13
46

0.
31

64
69

3.
61

66
6

0.
93

39
0.

34
06

9
88

03
.8

57
73

‘F
ea

r’

LA
R

PP
PP

T
PP

S
Po

w
er

M
ea

n
Ku

rt
os

is
M

ob
ili

ty
Co

m
pl

ex
ity

La
be

l
Chapter 9 Case Studies

185

0.
00

66
67

14
04

12
.4

54
75

11
2.

72
81

0.
15

71
55

27
.9

63
96

0.
85

44
43

0.
21

17
12

62
80

.2
59

28
‘F

ea
r’

0.
01

21
3

99
2

14
.4

58
91

68
.6

08
2

-0
.2

92
78

7.
91

83
69

0.
82

60
67

0.
15

78
43

81
35

.8
08

14
‘S

ad
’

0.
01

67
87

11
87

19
.3

38
46

61
.3

80
29

0.
17

17
7

5.
27

43
71

0.
86

21
85

0.
19

51
76

16
22

4.
20

62
‘S

ad
’

0.
02

53
82

10
17

24
.4

68
03

41
.5

64
44

0.
22

86
52

14
.7

81
68

0.
86

36
34

0.
19

55
93

58
41

.3
20

03
‘S

ad
’

0.
01

27
09

15
24

18
.6

82
12

81
.5

75
32

-0
.2

03
64

19
.9

14
8

0.
87

31
79

0.
19

06
31

10
49

5.
43

69
‘S

ad
’

0.
04

77
07

49
9

24
.1

39
86

20
.6

71
2

0.
10

23
37

3.
25

94
16

0.
86

46
54

0.
30

95
53

22
65

.8
52

28
‘S

ad
’

0.
00

60
46

19
33

10
.6

77
17

18
1.

04
05

0.
75

83
43

2.
34

99
37

1.
00

37
61

0.
68

23
23

24
01

0.
30

48
‘S

ad
’

0.
02

08
63

13
05

24
.4

09
43

53
.4

62
95

0.
00

34
27

0.
83

32
97

0.
76

85
99

0.
48

80
95

22
67

1.
45

65
‘S

ad
’

0.
02

08
63

13
05

24
.4

09
43

53
.4

62
95

0.
00

34
27

0.
83

32
97

0.
76

85
99

0.
48

80
95

22
67

1.
45

65
‘S

ad
’

0.
03

38
72

86
3

25
.4

72
07

33
.8

80
25

0.
10

59
06

9.
95

77
7

0.
85

86
91

0.
22

02
24

54
82

.1
19

32
‘S

ad
’

0.
02

91
2

53
5

15
.7

83
31

33
.8

96
58

-0
.0

18
54

0.
23

44
49

0.
89

67
69

0.
61

98
83

46
19

.1
96

34
‘S

ad
’

0.
00

06
49

50
70

3.
14

10
34

16
14

.1
18

-4
.1

15
42

6.
96

46
11

0.
79

56
85

0.
17

32
83

23
16

38
.9

96
‘S

ad
’

0.
01

54
49

85
6

14
.5

83
93

58
.6

94
74

0.
15

79
62

1.
97

37
1

0.
78

61
13

0.
22

51
46

67
64

.7
36

69
‘S

ad
’

0.
00

52
24

38
00

20
.2

68
26

18
7.

48
52

0.
57

06
07

22
.9

41
34

0.
79

16
91

0.
09

45
96

63
67

9.
08

05
‘S

ad
’

0.
01

67
87

11
87

19
.3

38
46

61
.3

80
29

0.
17

17
7

5.
27

43
71

0.
86

21
85

0.
19

51
76

16
22

4.
20

62
‘S

ad
’

0.
00

89
37

49
4

4.
87

95
42

10
1.

23
9

0.
10

94
18

0.
69

64
21

0.
76

93
11

0.
30

48
71

31
85

.6
78

94
‘S

ad
’

Chapter 9 Case Studies

186

�Exploratory Data Analysis from the EEG Data
To read the emotion_data.xls file, use the following code:

import pandas as pd

emotion_data= pd.read_excel('\file_path\emotion_data1.xls')

To show the keys and first 5 dataset using the below code

print(emotion_data.keys())

Output:

Index(['LAR', 'PP', 'PPT', 'PPS', 'Power', 'Mean', 'Kurtosis',

'Mobility', 'Complexity', 'Label'], dtype='object')

print(emotion_data.head(5))

Output:

 LAR PP PPT PPS ... Kurtosis Mobility

Complexity Label

0 0.016024 678 11.18505 60.61663 ... 0.864608 0.272718

3095.76805 'Happy'

1 0.021638 805 17.95937 44.82340 ... 0.908352 0.323672

8861.53844 'Happy'

2 0.013645 1156 18.50241 62.47835 ... 0.909418 0.253198

5615.14591 'Happy'

3 0.020861 913 20.69410 44.11885 ... 0.869794 0.274665

7488.51785 'Happy'

4 0.027464 1051 29.44133 35.69811 ... 0.920326 0.739543

17478.15660 'Happy'

By using the following code, the final five data points can be viewed:

Chapter 9 Case Studies

187

print(emotion_data.tail(5))

 LAR PP PPT ... Mobility

 Complexity Label

40 0.000649 5070 3.141034 ... 0.173283

 231638.99600 'Sad'

41 0.015449 856 14.583930 ... 0.225146

 6764.73669 'Sad'

42 0.005224 3800 20.268260 ... 0.094596

 63679.08050 'Sad'

43 0.016787 1187 19.338460 ... 0.195176

 16224.20620 'Sad'

44 0.008937 494 4.879542 ... 0.304871

 3185.67894 'Sad'

[5 rows x 10 columns]

To check the shape of the data, use the following code:

print(emotion_data.shape)

Output:

(45, 10)

By using the below code, the datatypes in the emotion data can be

displayed.

print(emotion_data.dtypes)

Output:

LAR float64

PP int64

PPT float64

PPS float64

Power float64

Mean float64

Kurtosis float64

Chapter 9 Case Studies

188

Mobility float64

Complexity float64

Emotion Label object

dtype: object

The modifications in the dataset include dropping the columns and

changing the data using the exploratory data analysis section in Chapter 8.

Figure 9-5 shows the visualization of a histogram of the mean data in

the emotion dataset.

�Classifying the Emotion Using Learning Models
The next step after extracting the features is to apply a classification

algorithm to identify the emotion corresponding to the signals. Since we

are already aware of the emotions corresponding to each of the signals we

have used, it is obviously better to go for a supervised learning algorithm

Figure 9-5.  Histogram of mean for each emotion

Chapter 9 Case Studies

189

for classification. Before that, another important task is to split our data

into training and testing data. Out of the 15 signals for each emotion, let’s

consider the data corresponding to first 12 signals for training and the

data corresponding to the remaining 3 signals for testing. Also, the labels

corresponding to the training and testing data should be created. For this,

we are going to label the emotion happy as 1, fear as 2, and sad as 3. This

splitting of data as well as the labels is illustrated in the following code:

m1=np.ones((15,),dtype=int)

ids=np.concatenate((m1,2*m1,3*m1),axis=0)

x_train=np.concatenate((features[:,0:12],features[:,15:27],

features[:,30:42]),axis=1)

x_test=np.concatenate((features[:,12:15],features[:,27:30],

features[:,42:45]),axis=1)

y_train=np.concatenate((ids[0:12],ids[15:27],ids[30:42]))

y_test=np.concatenate((ids[12:15],ids[27:30],ids[42:45]))

	 i.	 k-NN

Let’s first use the k-NN algorithm to classify the emotions based on

the data. k-NN is a simple supervised machine learning algorithm that

categorizes the available data and assigns new data to a particular category

based on a similarity score. The k-NN algorithm works by finding the

distance between the test data and the training data. After finding the

distance to each training data, the training data is sorted in ascending

order of the distance values. In this ordered data, the first k data is selected,

and the algorithm will assign the most frequent label occurring in this to

the test data. The Euclidean distance is the most commonly used distance

measure for the k-NN algorithm, and the distance between two data

points, xi and yi, is given by the following expression:

Euclidean distance
i

k

� �� �
�
�

1

2
x yi i

Chapter 9 Case Studies

190

The k-NN classification is implemented using the

KNeighborsClassifier package in the sklearn Python module. The

emotion classification code using this package is illustrated here:

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import confusion_matrix, classification_

report

classifier = KNeighborsClassifier(n_neighbors=16)

classifier.fit(x_train.T, y_train)

y_pred = classifier.predict(x_test.T)

cm=confusion_matrix(y_test, y_pred)

print("confusion matrix\n",cm)

print("Accuracy:",(sum(np.diagonal(cm))/9)*100)

Output:

 confusion matrix

 [[1 0 2]

 [1 2 0]

 [2 0 1]]

Accuracy: 44.44444444444444

The parameter n_neighbors in the previous code indicates the value of

k, which we have selected as 16. Therefore, 16 neighbors are considered for

making the classification decision. First, the distance between the test data

and all the other training data is computed. Then the training data points

are sorted in ascending order of the computed distance. In the sorted

data, the labels corresponding to the first 16 data are considered, and the

label that occurs more out of the 16 is assigned to the test data. This is

repeated for all nine test signals (three for each emotion), and the results

are displayed using a confusion matrix, which could be better understood

using the information in Table 9-2.

Chapter 9 Case Studies

191

In the confusion matrix, the row headers can be treated as inputs, and

column headers can be treated as outputs. For instance, if we consider

the first row, only one of the three EEG signals corresponding to the

“happy” emotion is identified correctly, and the remaining two signals

are wrongly classified as “sad” emotion. Similarly, in the second row, two

signals corresponding to the “fear” emotion are classified correctly, and in

the third row, one signal corresponding to the “sad” emotion is identified

correctly. To understand better, the diagonal elements in the confusion

matrix represent the data that is classified correctly, and the remaining

elements indicate misclassification. In total, four out of the nine test signals

are classified correctly. giving the system an accuracy of 44.44 percent.

�Case Study 2: Data Science for Image Data
Though digital equipment available today can capture images at a higher

resolution and with more details than human vision, computers can only

treat those images as an array of numerical values that represents colors.

Computer vision refers to the techniques that can enable computers to

understand digital images and videos. Computer vision systems can be

thought of as a replication of the human vision system, enabling computers

to process images and videos in the same way humans do. Computer

vision systems are used in many applications such as face recognition,

autonomous vehicles, healthcare, security, augmented reality, etc.

Table 9-2.  Confusion Matrix for Emotion Classification Using k-NN

Happy Fear Sad

Happy 1 0 2

Fear 1 2 0

Sad 2 0 1

Chapter 9 Case Studies

192

The first step in any computer vision system is to capture the images of

interest. This can be done by many means such as cameras, microscopes,

X-ray machines, radar, etc., depending on the nature of application.

The captured raw images, however, cannot be used directly and require

further processing. The raw images may not be of the desired quality due

to the noise introduced by various reasons. It is therefore essential to

enhance the captured raw images before further processing. To enable

the computer to learn from the images, it is sometimes essential to extract

useful information from the image using analysis techniques. In this

section, we will see how to capture images using a camera interfaced to

a Raspberry Pi board and discuss the steps involved in preparing the raw

images for further processing.

The first step is to interface a USB web camera to our Raspberry Pi

board, as shown in Figure 9-6.

To do this, we have to enable SSH and Camera in the Pi configuration

settings. Secure Shell (SSH) can help to connect with the Raspberry

Pi remotely over your local network, whereas enabling the Camera

configuration can help to interface a webcam with the Pi board. This can

be done with the following steps:

	 1.	 Type the command sudo raspi-config in the

Terminal window of your Raspberry Pi OS. This will

open the Software Configuration Tool window, as

shown in Figure 9-7.

Figure 9-6.  Raspberry Pi with webcam

Chapter 9 Case Studies

193

	 2.	 Go to Interfacing Options, as shown in Figure 9-8,

and enable both SSH and Camera.

	 3.	 Reboot the Raspberry Pi device.

Figure 9-7.  Software Configuration Tool window

Figure 9-8.  Interfacing options for enabling Camera and SSH

Chapter 9 Case Studies

194

Once the reboot is completed, run the lsusb command in the Terminal

window and check whether the connected USB webcam is listed. Then

open the Python IDE and type the following code to capture and save an

image using the webcam:

import cv2

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

camera=cv2.VideoCapture()

ret, img = camera.read()

cv2.imwrite('image.png',img)

img= cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

plt.imshow(img)

plt.axis('off')

plt.show()

As shown in the code, the OpenCV package is used to work with images

in Python. To capture an image, a VideoCapture object is created first. The

read() function is used to capture the image using the created object and

then stored in a variable 'img'. The captured image can then be saved

using the imwrite() function. OpenCV displays an image in BGR format

instead of the standard RGB format. Therefore, the image is first converted

to an RGB image using the cv2.color function before displaying. To display

the image, the imshow() function in the Matplotlib package can be used.

Since the plots created with this package are enabled with an axis value by

default, it is essential to remove the axis while displaying images. This can

be done by setting the axis function in the Matplotlib package to the off

state. Figure 9-9 shows a sample image captured using the previous code.

Chapter 9 Case Studies

195

�Exploratory Image Data Analysis
The image shows a few stationary objects lying on white paper. To

understand the acquired image data, it would be better to print the data

type and size of the image, as illustrated here:

print(type(img))

print(img.shape)

Output:

 <class 'numpy.ndarray'>

 (719, 1206, 3)

The captured image is a NumPy array. The image captured using the

webcam is usually in RGB form where there are three planes of pixels: Red,

Blue, and Green. In other words, each pixel in the image is composed of

three values that represent the proportion of red, blue, and green thereby

leading to various colors in the visible spectrum. The number 3 in the

shape of the image printed indicates the three planes; i.e., the image is

Figure 9-9.  Image captured using a webcam interfaced to the
Raspberry Pi board

Chapter 9 Case Studies

196

composed of three planes corresponding to RGB, each with a size of 719×

1206 pixels. In many applications, other details such as edges, shapes,

etc., in the image are more important than the color information. For

instance, if our objective is to identify the stationary objects in the given

image, the shape of the objects would be more important than the color. In

such cases, the three-plane RGB image can be converted to a single-plane

grayscale image using the following code:

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

plt.imshow(gray,cmap= 'gray')

plt.axis('off')

plt.show()

print(gray.shape)

Output:

 (719, 1206)

Figure 9-10 shows a single-plane grayscale image where the colors

in the image are removed. This can be seen from the size of the image

printed in the previous code. Now the size of the grayscale image is just

719×1206 in a single plane. In some cases, the captured image may have

some missing values caused by defects in the image sensor. These values

may be reflected in the grayscale image as well, and these values can be

detected and treated by converting the image to a dataframe, as illustrated

here:

df=pd.DataFrame(gray)

s=df.isnull().sum().sum()

print(s)

if s!=0:

 df=df.ffill(axis=0)

gray=df.to_numpy()

Output:

 0

Chapter 9 Case Studies

197

The isnull() function can be used to detect the presence of missing

values along the rows and columns of the image. The sum() function can

be used to count the number of missing values in the dataframe along

rows and columns. If the result of the sum() function is not equal to zero,

then the image consists of missing values, and they can be treated using

the ffill() function, which replaces each missing value with the pixel

above it. This method of forward filling or backward filling will not cause

any visible changes in the image because pixel values are often closely

placed in an image except at edges in the image. As shown from the

previous code, the number of missing values is 0; i.e., there are no missing

values in the image. Once the image is checked and treated for missing

values, the dataframe can be converted back to a NumPy array using to_

numpy() in Pandas. Since the pixel values are closely placed, there may

be repetition of same pixel values at many regions in the image. Because

of this property, identification of duplicate values is irrelevant in the case

of the image data.

Figure 9-10.  Image converted to grayscale

Chapter 9 Case Studies

198

Using a USB webcam or the Pi camera in natural lighting may often

result in poor-quality images. So, the next step after treating missing values

is to plot the histogram of the image. The histogram plot will give an idea

about the contrast of the image, as shown in Figure 9-11. This is illustrated

in the following code:

plt.hist(gray.ravel(),bins=256)

plt.xlabel('bins')

plt.ylabel('No of pixels')

plt.show()

The pixel values in a grayscale image range from 0 (representing

black) to 255 (representing white). The hist() function in the previous

code plots a bar chart of the count of each pixel value in this range. This

plot gives insight about the contrast of the image that we are dealing with.

Figure 9-7 shows the histogram of our grayscale image. It can be seen that

the majority of the pixels are in the range (120,160). If the spread of pixels

is concentrated in the lower bins, then we have a low-contrast image,

and vice versa. So, depending on this plot, a decision can be made as to

whether the image needs contrast adjustment.

Figure 9-11.  Histogram of the grayscale image

Chapter 9 Case Studies

199

The other cause for the poor quality of images may be the presence of

noise induced by various factors. These noises can be visually perceived,

while observing the captured images, in the form of grains. In such cases,

these noises have to be removed before going for further processing. There

are many different kinds of noises such as Gaussian noise, salt and pepper

noise, etc., and there are many different types of filters that can be used to

remove those noises that are beyond the scope of this book. Let’s just look

at one particular filter used often in image processing called the averaging

filter. It is a low-pass filter that can be used to remove high-frequency

content from a digital image. This filtering works by passing a kernel of

particular size, say 3×3, across the dimensions of the image, taking the

average of all the pixels under the kernel area and replacing the central

element with this average. The overall effect is to create a blurring effect.

The following code illustrates the implementation of averaging filter to our

image. Figure 9-12 shows the image obtained after filtering.

blur=cv2.blur(gray,(3,3))

plt.imshow(blur)

plt.axis('off')

plt.show()

Figure 9-12.  Image obtained by average filtering

Chapter 9 Case Studies

200

�Preparing the Image Data for Model
Once the preprocessing steps are completed, the next step is to analyze or

prepare the image for a learning model. This can be done in two ways. The

first way is to extract features that represent useful information and use

them for modeling. The features extracted may be another transformed

image, or they may be attributes extracted from the original image. There

are numerous features that can be extracted from an image, and the

selection of a particular feature depends on the nature of our application.

A discussion of these numerous features is beyond the scope of this book.

Instead, we will discuss one particular feature: edge detection.

Edges represent the high-frequency content in an image. Canny edge

detection is an algorithm that uses a multistage approach to detect a wide

range of edges in images. It can be implemented in Python by using the

Canny() function in OpenCV, as illustrated in the following code. Figure 9-13

shows the image after the edge detection process.

edge_img=cv2.Canny(gray,100,200)

plt.imshow(edge_img,cmap='gray')

plt.axis('off')

plt.show()

Chapter 9 Case Studies

201

The second way is to directly feed the image to a deep learning model.

Deep learning is a popular machine learning approach that is being

increasingly used for analyzing and learning from images. This approach

can directly learn the useful information from the image and does not

require any feature extraction. The image may be resized to a different

shape and then fed to the learning model, or the image array may be

converted to a one-dimensional vector and then fed to the model.

�Object Detection Using a Deep Neural Network
Object detection is a technique for identifying the objects in the real world

like a chair, book, car, TV, flowers, animals, humans, etc., from an image or

video. This technique detects, identifies, and recognizes multiple objects

in an image for better understanding or for extracting the information from

a real-world environment. Object detection plays a major role in computer

vision applications like autonomous vehicles, surveillance, automation

Figure 9-13.  Image after edge detection

Chapter 9 Case Studies

202

in industries, and assistive devices for visually impaired people. Many

modules are available in the Python environment for object detection, and

they are as follows:

Feature-based object detection

Viola Jones object detection

SVM classification with HOG features

Deep learning object detection

Single-shot multibox detector (SSD) object

detection

You Only Look Once (YOLO) model object detection

Region-based convolutional neural network

(R-CNN)

Faster R-CNN

Here, we have used a single-shot multibox detector to identify the

multiple objects in an image or video. Single-shot multibox detectors were

proposed by C. Szegedy et al. in November 2016. SSD can be explained as

follows:

Single shot: In this stage, localization and

classification of the image are done with the help of

a single forward-pass network.

Multibox: This represents drawing the bounding

boxes for multiple objects in an image.

Detector: This is an object detector that classifies the

objects in an image or video.

Figure 9-14 shows the architecture of a single-shot multibox detector.

Chapter 9 Case Studies

203

In the architecture, the dimension of the input image is considered

as 300×300×3. The VGG-16 architecture is used as a base network, and

the fully connected networks are discarded. The VGG-16 architecture is

popular and has a strong classification ability with the transfer learning

technique. Here, a part of the convolutional layers of the VGG-16

architecture is used in the earlier stages. A detailed explanation of SSD

is available at https://towardsdatascience.com/understanding-

ssd-multibox-real-time-object-detection-in-deep-learning-

495ef744fab.

The multibox architecture is a technique for identifying the bounding

box coordinates and is based on two loss functions such as confidence loss

and location loss. Confidence loss uses a categorical entropy for measuring

the confidence level of identifying the objects for the bounding box. Location

loss measures the distance of the bounding box, which is away from the

object in the image. For measuring the distance, the L2 norm is used. The

multibox loss can be measured with the help of the following equation:

Multi-box loss=confidence Loss+α* Location Loss

Figure 9-14.  Architecture of single-shot multibox detector (https://
towardsdatascience.com/understanding-ssd-multibox-real-time-

object-detection-in-deep-learning-495ef744fab)

Chapter 9 Case Studies

https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab

204

This gives information about how far the bounding box landed from

the predicted objects. The following code implements the SSD configure

file with the DNN weights for detecting the objects in COCO names. The

SSD configure file (i.e., ssd_mobilenet_v3_large_coco_2020_01_14.

pbtxt) with the DNN weights (i.e., frozen_inference_graph.pb) for

detecting the objects in COCO names can be downloaded from https://

github.com/AlekhyaBhupati/Object_Detection_Using_openCV.

COCO names are called common objects in this context, and the

dataset for the COCO names is available at the official website: https://

cocodataset.org/#home. COCO has segmented common objects such as

chair, car, animals, humans, etc., and these segmented images can be used

to train the deep neural network. See Figure 9-15 and Figure 9-16.

Figure 9-15.  Input image for object identification

Chapter 9 Case Studies

https://github.com/AlekhyaBhupati/Object_Detection_Using_openCV
https://github.com/AlekhyaBhupati/Object_Detection_Using_openCV
https://cocodataset.org/#home
https://cocodataset.org/#home

205

Here’s the code:

import cv2

thres = 0.5# Threshold to detect object

cap = cv2.VideoCapture(0)

cap.set(3,1280)

cap.set(4,720)

cap.set(10,70)

classNames= []

classFile = 'coco.names'

with open(classFile,'rt') as f:

 classNames = f.read().rstrip('\n').split('\n')

configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'

weightsPath = 'frozen_inference_graph.pb'

net = cv2.dnn_DetectionModel(weightsPath,configPath)

net.setInputSize(320,320)

net.setInputScale(1.0/ 127.5)

net.setInputMean((127.5, 127.5, 127.5))

net.setInputSwapRB(True)

print('1st done')

while True:

 success, img = cap.read()

 classIds, confs, bbox = net.detect(img, confThreshold=thres)

 print(classIds, bbox)

 if len(classIds) != 0:

 �for classId, confidence,box in zip(classIds.

flatten(),confs.flatten(),bbox):

 cv2.rectangle(img,box,color=(0,255,0),thickness=2)

 �cv2.putText(img,classNames[classId-1].upper(),

(box[0]+10,box[1]+30),

 cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2)

Chapter 9 Case Studies

206

 �cv2.putText(img,str(round(confidence*100,2)),(box[0

]+200,box[1]+30),

 �cv2.FONT_HERSHEY_COMPLEX,1,

(0,255,0),2)

 cv2.imshow("Output",img)

 # Hit 'q' on the keyboard to quit!

When the code is executed, the frames in the video from the webcam

are captured using the OpenCV capture functions. Then, each and every

frame is inserted into the already trained SSD-DNN model for identifying

the objects. The SSD-DNN model classifies the objects based on the COCO

Figure 9-16.  Output image with identified objects

Chapter 9 Case Studies

207

names and creates a bounding box on the detected images with a COCO

name label and accuracy. The video file of Figure 9-15 was fed as the input

to the previous program. The figure has the objects such as a chair, a book,

and a mouse. From Figure 9-16, it can clearly be concluded that the SSD-

based DNN model identifies the three objects with an accuracy of 72.53

percent for the chair, 67.41 percent for the book, and 81.52 percent for the

mouse.

�Case Study 3: Industry 4.0
Industry 4.0 represents the fourth revolution in the manufacturing

industry. The first revolution in industry (i.e., Industry 1.0) was the

creation of mechanical energy with the help of steam power to increase the

productivity in assembly lines. The second revolution (i.e., Industry 2.0)

incorporated electricity into the assembly line to improve productivity. The

third revolution (i.e., Industry 3.0) incorporated computers for automating

the industrial process. Currently, Industry 4.0 is adopting computers, data

analysis, and machine learning tools for making intelligent decisions or

monitoring the process with the help of data that is acquired with sensors.

The Internet of Things (IoT) has recently played a major role in acquiring

data and transmitting it for remote access.

Figure 9-17 describes the basic process flow in Industry 4.0. Initially,

the physical system’s data is collected with the help of sensors and made

into a digital record. Then the digital record of the physical systems is

sent to a server system for real-time data processing and analysis. The

data science techniques are applied in this stage for preprocessing and

preparing the data. Then modern learning algorithms can be used for

intelligent decision-making by predicting the output with the learned

model. Moreover, visualization techniques are used to monitor the real-

time data of the physical systems. Here, the Raspberry Pi can be used as a

server or a localized cloud for real-time data processing.

Chapter 9 Case Studies

208

�Raspberry Pi as a Localized Cloud for
Industry 4.0
To implement Industry 4.0, a sophisticated computer is required to

connect the devices, collect the data, and process the data. The collected

data can be stored in a cloud service for further processing. However, these

days, subscriptions of cloud services are costlier and suitable for highly

profitable companies. Small-scale companies will want to implement

a localized cloud for real-time processing. Further, a localized cloud

approach can provide data security because it’s on-site and attackers are

not able to invade via remote access.

As discussed in Chapter 3, the Raspberry Pi can act as a localized

cloud that can connect sensors, IoT devices, other nearby computers, and

mobile phones, as shown in Figure 9-18. Sophisticated computers also can

Figure 9-17.  Industry 4.0 block diagram

Chapter 9 Case Studies

209

Figure 9-18.  The Raspberry Pi as a localized cloud

Figure 9-19.  Industry 4.0 framework with the Raspberry Pi

act as a localized cloud, but they occupy a large space. Also, it is difficult

to implement the computers in remote areas. The Raspberry Pi has the

advantage of occupying less space and can be implemented in remote

areas. Based on this, the Raspberry Pi is used as a localized cloud for the

Industry 4.0 framework, as shown in Figure 9-19.

There are three modules available in the Industry 4.0 framework with

the Raspberry Pi. The modules are collecting the data from the sensors,

collecting the information using cameras, and connecting the Raspberry Pi

with other computers.

Chapter 9 Case Studies

210

�Collecting Data from Sensors
We will use the temperature and humidity sensor to measure the

temperature and humidity. Connect the DHT 11/22 sensor module to

the Raspberry Pi, as shown in Chapter 3. The following code collects the

temperature and humidity percentage for 100 seconds and stores the

collected data as a CSV file.

import Adafruit_DHT

import time

from datetime import datetime

DHT_SENSOR = Adafruit_DHT.DHT11

DHT_PIN = 17

data = []

while _ in range(100):

 humidity, temperature = Adafruit_DHT.read(DHT_SENSOR, DHT_PIN)

 if humidity is not None and temperature is not None:

now = datetime.now()

dt_string = now.strftime("%d/%m/%Y %H:%M:%S")

data.append(dt_string,humidity,temperature)

 time.sleep(60*5)

df = pd.DataFrame(data)

df.to_csv('data.csv',index=None,header=None)

The CSV file would look like Table 9-3.

Chapter 9 Case Studies

211

Table 9-3.  Timestamped Data from

the Humidity and Temperature Sensors

17/05/2020 01:05:14 26.24 69.91

17/05/2020 01:10:14 26.24 70.65

17/05/2020 01:15:14 26.22 68.87

17/05/2020 01:20:14 26.15 70.11

17/05/2020 01:25:14 26.11 69.02

�Preparing the Industry Data in the Raspberry Pi
We will use a dataset consisting of two columns of data recorded from the

temperature and humidity sensor connected to a Raspberry Pi board; the

data was recorded every 5 minutes over a duration of 28 hours. So, the

dataset is essentially time-series data in .csv format. It is always better to

get an understanding of the dataset before doing preprocessing. Therefore,

the first step will be to read the file and print the contents, as illustrated

here:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

dataset=pd.read_csv('datasets_384649_744229_log_temp.csv')

print(dataset.head())

Output

 Date Time Temperature Humidity

0 3/14/19 19:33:07 T=22.0 H=20.0

1 3/14/19 19:38:10 T=22.0 H=20.0

2 3/14/19 19:43:11 T=22.0 H=26.0

3 3/14/19 19:48:14 T=22.0 H=26.0

4 3/14/19 19:53:15 T=22.0 H=20.0

Chapter 9 Case Studies

212

From the first five entries of the dataset printed, it is clear that the data

needs to be cleaned before we start analyzing it. The first two columns

consisting of the date and time of the entry are not needed for the analysis,

and hence those columns can be dropped. The third and fourth columns

consisting of the actual data are a mix of string and numbers. We have to

filter out these inappropriate values and convert the dataset from string

to float. These two operations can be performed as illustrated here:

drop the date and time column

drop=['Date','Time']

dataset.drop(drop,inplace=True,axis=1)

remove the 'T=' and 'H=' string

dataset['Temperature']=dataset['Temperature'].str.

replace('T=','')

dataset['Humidity']=dataset['Humidity'].str.replace('H=','')

dataset=dataset.astype(float)

print(dataset.head())

Output:

 Temperature Humidity

0 22.0 20.0

1 22.0 20.0

2 22.0 26.0

3 22.0 26.0

4 22.0 20.0

The next step is to check for missing data in both columns. As

discussed earlier, the missing data is normally in the form of NaN, and

the function isna() from the Pandas package can be used to detect the

presence of such data. The function where() from the NumPy data can

be used along with the function isna() to get the location of the missing

values in the respective columns, as illustrated here:

Chapter 9 Case Studies

213

print(np.where(dataset['Temperature'].isna()))

print(np.where(dataset['Humidity'].isna()))

Outpu:

(array([206, 207, 214, 215, 216, 217, 218, 219, 220, 221, 222,

223, 224, 225, 226, 227], dtype=int64),)

(array([206, 207, 214, 215, 216, 217, 218, 219, 220, 221, 222,

223, 224, 225, 226, 227], dtype=int64),)

As we can see from the previous result, there is missing data in both

the temperature column and the humidity column, and the location of

the missing data is the same in both columns. The next step will be to

treat the missing values. The method of treating the missing values can

vary depending on the nature of data. In our dataset, since we are have

temperature and humidity values measured every five minutes, it is safe to

assume that there will not be much variation over the range of the missing

values. Therefore, the missing values can be filled using the ffill method,

which stands for “forward fill” where the missing values are replaced

by the values in the previous row. This can be implemented using the

fillna() function in the Pandas package. After the implementation of this

filling process, this can be verified by using the isna().any() function,

which will return false if there are no missing values in any of the columns,

as illustrated here:

dataset['Temperature']=dataset['Temperature'].

fillna(axis=0,method='ffill')

dataset['Humidity']=dataset['Humidity'].

fillna(axis=0,method='ffill')

print(dataset.isna().any())

Output:

 Temperature False

 Humidity False

 dtype: bool

Chapter 9 Case Studies

214

Now that the missing values are treated, the next step is to look for

outliers in the data. For this, let’s use the Z-score we discussed earlier.

Before computing the Z-score, the entries in the dataset should be

converted to integers. The following code illustrates the detection and

removal of outliers using the Z-score:

from scipy import stats

z=np.abs(stats.zscore(dataset))

df1=dataset[z>3]

print(df1)

dataset=dataset[(z<3).all(axis=1)]

Output:

 Temperature Humidity

47 9.0 140.0

157 37.0 12.0

It can be seen from the previous illustration that there are two outliers

corresponding to the row indices of 47 and 57. Rather than removing the

outliers that correspond to the data points with a Z-score greater than 3,

we retain all the data points with a Z-score less than 3.

�Exploratory Data Analysis for the Real-Time
Sensor Data
We discussed some of the fundamental plots used frequently by data

scientists and demonstrated each plot with some readily available datasets.

In this section, we are going to demonstrate some plots using real-time

sensor data. Let’s take the same temperature and humidity sensor data

that we used in Chapter 5 to discuss the concepts of preparing the data.

As we already went through all the data cleaning steps in that chapter, the

same code is provided here for preparing the data before going for plots:

Chapter 9 Case Studies

215

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from scipy import stats

dataset=pd.read_csv('datasets_384649_744229_log_temp.csv')

drop the date and time column

drop=['Date','Time']

dataset.drop(drop,inplace=True,axis=1)

remove the string header'T=' and 'H='

dataset['Temperature']=dataset['Temperature'].str.

replace('T=','')

dataset['Humidity']=dataset['Humidity'].str.replace('H=','')

dataset=dataset.astype(float)

print('After removing inappropriate data\n',dataset.head())

detect the location of missing data, if any

print('Missing values in temperature\n',np.

where(dataset['Temperature'].isna()))

print('Missing values in humidity\n',np.

where(dataset['Humidity'].isna()))

filling the missing values using forward fill

dataset['Temperature']=dataset['Temperature'].

fillna(axis=0,method='ffill')

dataset['Humidity']=dataset['Humidity'].

fillna(axis=0,method='ffill')

detect and remove outliers using z-score

z=np.abs(stats.zscore(dataset))

df1=dataset[z>3]

dataset=dataset[(z<3).all(axis=1)]

print(dataset.head())

Chapter 9 Case Studies

216

Output:

 After removing inappropriate data

 Temperature Humidity

0 22.0 20.0

1 22.0 20.0

2 22.0 26.0

3 22.0 26.0

4 22.0 20.0

 Missing values in temperature

 �(array([206, 207, 214, 215, 216, 217, 218, 219, 220, 221,

222, 223, 224, 225, 226, 227], dtype=int64),)

 Missing values in humidity

 �(array([206, 207, 214, 215, 216, 217, 218, 219, 220, 221,

222, 223, 224, 225, 226, 227], dtype=int64),)

 Temperature Humidity

0 22.0 20.0

1 22.0 20.0

2 22.0 26.0

3 22.0 26.0

4 22.0 20.0

�Visualizing the Real-Time Sensor Data
Now that the data cleaning process is complete, the next step is to plot

the data. The type of plot to be used depends on the nature of data as well

as the requirements of the analysis procedure. Since we have taken the

measurements of temperature and humidity over a duration of 28 hours, it is

ideal to plot them with respect to time. But, to get a better understanding of

the variation of these two parameters, the average value is taken every four

hours, and these averages are plotted using a bar plot. If we want to visualize

Chapter 9 Case Studies

217

the distribution of temperature and humidity over the entire duration rather

than their variation, then the range of temperature and humidity can be

divided into bins, and a count of the values in each bin can be used to make

a pie chart. These three types of plots are illustrated as follows:

Taking average over every 4 hours

a=dataset.shape[0]

b=[]

c=[]

for i in np.arange(0,a-(a%12),48):

 b.append(np.mean(dataset.Temperature[i:i+47]))

 c.append(np.mean(dataset.Humidity[i:i+47]))

Temperature vs Time over 28 hours

plt.subplot(221)

plt.plot(np.linspace(0,28,a),dataset.Temperature)

plt.title('Temperature vs Time')

Humidity vs Time over 28 hours

plt.subplot(222)

plt.plot(np.linspace(0,28,a),dataset.Humidity)

plt.title('Humidity vs Time')

#Bar plot of average temperature over every 4 hours during the

28 hours

plt.subplot(223)

x=['1','2','3','4','5','6','7']

plt.bar(x,b)

plt.title('Average temperature over every 4 hours')

#Bar plot of average humidity over every 4 hours during the 28

hours

plt.subplot(224)

plt.bar(x,c)

plt.title('Average humidity over every 4 hours')

#Pie chart for temperature distribution

Chapter 9 Case Studies

218

d=pd.DataFrame(dataset.Temperature.value_counts(bins=4))

plt.subplot(235)

plt.pie(d.Temperature,labels=d.index)

plt.title('Temperature distribution')

#Pie chart for humidity distribution

e=pd.DataFrame(dataset.Humidity.value_counts(bins=4))

plt.subplot(236)

plt.pie(e.Humidity,labels=e.index)

plt.title('Humidity distribution')

plt.show()

In Figure 9-20, the first two plots show the distribution of temperature

and humidity where every sample of the data is plotted along the time axis,

which is indicated in hours. We can see that the temperature and humidity

are inversely proportional as expected. But the distribution over time is

better expressed by taking the average of the samples every four hours and

plotting the data in a bar chart, as shown in the third and fourth figures.

The fifth and sixth figures show pie charts that focus on the distribution of

temperature and humidity rather than their variation over time. Since the

sensor data is recorded for only 28 hours, there will not be large variations

in the data, and hence only four bins are used to plot the distribution.

From these two figures, we can see that the temperature is mostly in the

range of 15 to 20 during those 28 hours, and the humidity is mostly in the

range of 19 to 25, respectively.

Chapter 9 Case Studies

219

�Report Generation by Reading Bar Codes Using
Vision Cameras

Today many industries have documented their products with the help of

barcodes and QR codes. Information about the product can be printed

on the product for easy identification and documentation. Dedicative

bar/QR code scanners are available on the market, but it requires human

effort to scan the bar/QR code on the products. This may decrease

productivity on the assembly line. Nowadays, vision systems are employed

to automatically scan the bar/QR code on the products. This will improve

productivity by eliminating the human effort and by reducing the time on

the assembly line. Hence, a camera can be interfaced with the Raspberry

Pi to scan the bar/QR code of the products on the assembly line.

We already discussed how to enable cameras on the Raspberry Pi in

case study 2 of this chapter (refer to case study 2 for the steps to interface

a webcam with the Raspberry Pi). The following code [30] continuously

collects the images of the product on the assembly line, identifies the bar/

QR code in the image, decodes the information in the bar/QR code, and

displays the decoded information on the image screen.

Figure 9-20.  Variation and distribution of temperature and humidity

Chapter 9 Case Studies

220

import the required packages

from imutils.video import VideoStream

from pyzbar import pyzbar

import argparse

import datetime

import imutils

import time

import cv2

construct the argument parser and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-o", "--output", type=str, default="barcodes.csv",

 help="path to output CSV file containing barcodes")

args = vars(ap.parse_args())

initialize the video stream and allow the camera sensor to

warm up

print("[INFO] starting video stream...")

vs = VideoStream(src=0).start()

#vs = VideoStream(usePiCamera=True).start()

time.sleep(2.0)

open the output CSV file for writing and initialize the set of

barcodes found thus far

csv = open(args["output"], "w")

found = set()

loop over the frames from the video stream

while True:

 �# grab the frame from the threaded video stream and resize

it to

 # have a maximum width of 400 pixels

 frame = vs.read()

 frame = imutils.resize(frame, width=400)

Chapter 9 Case Studies

221

 �# find the barcodes in the frame and decode each of the

barcodes

 barcodes = pyzbar.decode(frame)

 # loop over the detected barcodes

 for barcode in barcodes:

 �# extract the bounding box location of the barcode

and draw

 �# the bounding box surrounding the barcode on the image

 (x, y, w, h) = barcode.rect

 �cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0,

255), 2)

 �# the barcode data is a bytes object so if we want to

draw it

 �# on our output image we need to convert it to a

string first

 barcodeData = barcode.data.decode("utf-8")

 barcodeType = barcode.type

 # draw the barcode data and barcode type on the image

 text = "{} ({})".format(barcodeData, barcodeType)

 cv2.putText(frame, text, (x, y - 10),

 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

 �# if the barcode text is currently not in our CSV

file, write

 # the timestamp + barcode to disk and update the set

 if barcodeData not in found:

 csv.write("{},{}\n".format(datetime.datetime.now(),

 barcodeData))

 csv.flush()

 found.add(barcodeData)

Chapter 9 Case Studies

222

 # show the output frame

 cv2.imshow("Barcode Scanner", frame)

 key = cv2.waitKey(1) & 0xFF

 # if the `q` key was pressed, break from the loop

 if key == ord("q"):

 break

close the output CSV file do a bit of cleanup

print("[INFO] cleaning up...")

csv.close()

cv2.destroyAllWindows()

vs.stop()

The previous code acquires an image using a webcam and captures

each and every frame using a while loop. Further, the frames are displayed

continuously with the help of an infinite while loop. The 'q' key is used to

break the infinite while loop. Then, the image acquisition can be released

with the help of cap.release. In the program, each acquired frame is fed

to the pyzbar module to identify the bar/QR code in the image and also

to decode the data in the bar/QR code [30]. The decoded information is

displayed in the corresponding frame. Figure 9-21 shows the output of the

program.

Chapter 9 Case Studies

223

�Transmitting Files or Data from the Raspberry Pi
to the Computer
In some scenarios, the data in the Raspberry Pi needs to be shared with

nearby computers. Also, if the Raspberry Pi is somewhere else, it needs to

be accessed via remote access. Many ways are available to transfer the data

from the Raspberry Pi to other computers. One of the easiest and more

efficient ways is to use the VNC viewer for sharing data and for remote

Figure 9-21.  Output of barcode and QR code scanner

Chapter 9 Case Studies

224

access. VNC is the graphical desktop sharing application that allows you to

control one system (i.e., the Raspberry Pi) from another system via remote

access. This section discusses the installation procedure and usage of

the VNC viewer for sharing files and controlling the Raspberry Pi from a

remote desktop computer using VNC.

To install the VNC in Pi, the following code is used in the command

window in the Raspberry Pi, as shown in Figure 9-22:

sudo apt update

sudo apt install realvnc-vnc-server realvnc-vnc-viewer

Meanwhile, VNC viewers need to be installed on a remote desktop

computer. If the remote desktop computer has a different operating system

(OS), VNC is compatible with all the OSs. After installing the VNC on the

Pi, we have to enable the VNC server in the Raspberry Pi. The VNC server

can be enabled graphically in the Raspberry Pi by following these steps:

Figure 9-22.  Installation of the VNC viewer in the Raspberry Pi

Chapter 9 Case Studies

225

	 1.	 Go to the Raspberry Pi graphical desktop, and select

Menu ➤ Preferences ➤ Raspberry Pi Configuration.

The Raspberry Pi Configuration window will open,

as shown in Figure 9-23.

	 2.	 In the Raspberry Pi Configuration window, choose

the Interfaces option and ensure that VNC is

enabled. If VNC is not enabled, choose the Enable

button in the window.

	 3.	 After, enabling the VNC server, click the VNC logo

 in the upper-right corner of the Raspberry Pi

graphical desktop. The VNC viewer app window will

open. In it, the IP address of the Raspberry Pi is

displayed, as shown in Figure 9-8. The IP address

should appear only if the Raspberry Pi is connected

to a network. Here, the Raspberry Pi is connected

via a WiFi network using a WiFi dongle/mobile

phone hotspot.

Figure 9-23.  Graphically enabling the VNC server on the Pi

Chapter 9 Case Studies

226

These procedures are for creating a private connection between a

remote desktop with the Raspberry Pi. To create a private connection,

both the remote desktop and the Raspberry Pi are connected in the same

network. This will create a connection only within the campus of the

company. If the user wants to upload the data to the cloud, then the user

needs to sign in to the VNC viewer for connecting the Pi with the remote

desktop, which can be anywhere in the world.

By opening the VNC viewer in another remote desktop, as shown

in Figure 9-24, the IP address of the Raspberry Pi is entered at the space

provided, and the VNC server establishes the connection between the

computer and the Raspberry Pi. The login window will open, as shown in

Figure 9-25, and ask for the username and password.

Figure 9-24.  VNC viewer in Raspberry Pi

Chapter 9 Case Studies

227

Typically, the username and password for the Raspberry Pi is pi. Enter

pi for the username and password, and the Raspberry Pi desktop will

appear on the remote desktop computer, as shown in Figure 9-26.

Figure 9-25.  Establishing a connection from a desktop to the Pi using
the VNC viewer

Figure 9-26.  Raspberry Pi graphical desktop on the remote
computer

Chapter 9 Case Studies

228

Now, the Raspberry Pi desktop can access other computers remotely.

Also, the files and data in the Raspberry Pi can be shared by using the file

sharing option in the VNC viewer, as shown in Figure 9-27.

Figure 9-27.  File transfer from Raspberry Pi on remote desktop

Chapter 9 Case Studies

229© K. Mohaideen Abdul Kadhar and G. Anand 2021
K. M. Abdul Kadhar and G. Anand, Data Science with Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6825-4

�References

	 [1]	 Dr. Ossama Embarak, Data Analysis and

Visualization using Python, Apress, 2018

	 [2]	 Peters Morgan, Data Analysis from Scratch with

Python, AI Sciences, 2016

	 [3]	 Dimitry Zinoviev, Data Science Essentials in Python,

The Pragmatic Programmers, 2016

	 [4]	 Davy Cielen, Arno D. B Meysman, Mohamed Ali,

Introducing Data Science, Manning Publications,

2016

	 [5]	 Laura Igual, Santi Segui, Introduction to Data

Science: A Python Approach to Concepts, Techniques

and Applications, Springer, 2017

	 [6]	 Femi Anthony, Mastering Pandas, Packt Publishing,

2015

	 [7]	 Fabio Nelli, Python Data Analytics, Apress, 2015

	 [8]	 Jake VanderPlas, Python Data Science Handbook,

O’Reilly, 2016

	 [9]	 Wes McKinney, Python for Data Analysis: Data

Wrangling with Pandas, NumPy, and IPython,

O’Reilly, 2017

	[10]	 John Paul Mueller, Luca Massaron, Python for Data

Science for Dummies, John Wiley & Sons, 2015

https://doi.org/10.1007/978-1-4842-6825-4#DOI

230

	[11]	 Dipanjan Sarkar, Text Analytics with Python,

Apress, 2016

	[12]	 Michael Heydt, Mastering Python Data Analysis,

Packt Publishing, 2016

	[13]	 Phuong Vo.T.H, Martin Czygan, Getting started with

Python Data Analysis, Packt Publishing, 2015

	[14]	 Danish Haroon, Python Machine Learning Case

Studies: Five Case Studies for the Data Scientist,

Apress, 2017

	[15]	 Simon Monk, Programming the Raspberry Pi:

Getting Started with Python, Second Edition,

McGraw Hill Education, 2016

	[16]	 Richard Blum, Christine Bresnahan, Python

Programming for Raspberry Pi, SAMS, 2014

	[17]	 “Aims and scope,” IEEE Transactions on Signal

Processing, IEEE, archived from the original on April

17, 2012

	[18]	 Wes McKinney, Python for Data Analysis: Data

Wrangling with Pandas, NumPy, and IPython,

Second Edition, O’Reilly, October 2017

	[19]	 Chris Albon, Machine Learning with Python

Cookbook: Practical Solutions from Pre-processing to

Deep Learning, O’Reilly, March 2018

	[20]	 https://towardsdatascience.com/

understanding-ssd-multibox-real-time-object-

detection-in-deep-learning-495ef744fab

	[21]	 Joel Grus. Data Science from Scratch: First Principles

with Python. O’Reilly, 2015

REFERENCES

https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab

231

	[22]	 Wes McKinney. Python for Data Analysis. O’Reilly,

2012

	[23]	 Jake VanderPlas, Python Data Science Handbook

Essential Tools for Working with Data, O’Reilly, 2017

	[24]	 https://machinelearningmastery.com/time-

series-data-visualization-with-python/

	[25]	 https://scikit-learn.org/stable/datasets/

toy_dataset.html

	[26]	 https://www.kaggle.com/vik2012kvs/comcast-

telecom-consumer-complaints

	[27]	 John Paul Mueller, Luca Massaron, Python for Data

Science for Dummies, John Wiley & Sons, 2015

	[28]	 https://www.kaggle.com/yakinrubaiat/

canadian-immigration-from-1980-to-2013

	[29]	 https://towardsdatascience.com/exploratory-

data-analysis-in-python-c9a77dfa39ce

	[30]	 QR code detector, https://www.pyimagesearch.

com/2018/05/21/an-opencv-barcode-and-qr-

code-scanner-with-zbar/

	[31]	 Daniel Y. Chen, Pandas for Everyone: Python Data

Analysis, Rough Cuts, 2019

	[32]	 Jesús Rogel-Salazar, Data Mining and Knowledge

Discovery Series, CRC Press, 2017

	[33]	 D. McCandless, Information is Beautiful. Collins,

2009

	[34]	 H. Langtangen. A Primer on Scientific Programming

with Python: Texts in Computational Science and

Engineering, Springer, 2014

REFERENCES

https://machinelearningmastery.com/time-series-data-visualization-with-python/
https://machinelearningmastery.com/time-series-data-visualization-with-python/
https://scikit-learn.org/stable/datasets/toy_dataset.html
https://scikit-learn.org/stable/datasets/toy_dataset.html
https://www.kaggle.com/vik2012kvs/comcast-telecom-consumer-complaints
https://www.kaggle.com/vik2012kvs/comcast-telecom-consumer-complaints
https://www.kaggle.com/yakinrubaiat/canadian-immigration-from-1980-to-2013
https://www.kaggle.com/yakinrubaiat/canadian-immigration-from-1980-to-2013
https://towardsdatascience.com/exploratory-data-analysis-in-python-c9a77dfa39ce
https://towardsdatascience.com/exploratory-data-analysis-in-python-c9a77dfa39ce
https://www.pyimagesearch.com/2018/05/21/an-opencv-barcode-and-qr-code-scanner-with-zbar/
https://www.pyimagesearch.com/2018/05/21/an-opencv-barcode-and-qr-code-scanner-with-zbar/
https://www.pyimagesearch.com/2018/05/21/an-opencv-barcode-and-qr-code-scanner-with-zbar/

233© K. Mohaideen Abdul Kadhar and G. Anand 2021
K. M. Abdul Kadhar and G. Anand, Data Science with Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6825-4

Index

A
Analog/digital signals, 80

B
Binomial distribution, 145–147
Boston housing price dataset

corr function, 152
features, 150
histogram plots, 151–152
RM/LSTAT vs. MEDV, 152–154
scatter plot, 153–154

C
Camera serial interface (CSI), 74, 88
Clustering, see K-Means Clustering
Continuous time signal/

continuous signal, 80

D
Data acquisition systems

analog signal, 83
components, 82
digital signals, 84–85
sensors, 82

Data analysis, 44–47
Data science

acquisition, 5
artificial intelligence

techniques, 10
automation, 10
categorization, 1
cloud computing, 11
concepts, 171
data types, 3
edge devices, 11
natural language processing, 11
preparation

analysis techniques, 9
cleaning, 6
duplicates, 6
human/machines errors, 7
missing values, 7
modeling/algorithms, 9
outlier data, 7–8
processing, 6
stage, 5
transformation, 8
visualization tools, 8

processes, 4
quantitative data, 1
Raspberry Pi, 12

https://doi.org/10.1007/978-1-4842-6825-4#DOI

234

report generation/decision-
making, 9

requirements, 5
structured data, 2
trends, 10
unstructured data, 2–3

Data transmission/transfer
Arduino/Raspberry Pi, 89

Arduino code, 90–91
Raspberry Pi Python

code, 91–92
GPIO pins, 89–90
parallel/serial

communication, 88
USB cable, 89

Discrete-time/deterministic
signals, 81

E, F
Edge computing

computing power, 76
devices, 75–76
self-driving cars, 75

Exploratory data analysis (EDA), 135
Boston housing price

dataset, 150–154
column modifications, 140–141
dataset, 135–140
describe() function, 139
statistical analysis

binomial distribution,
144–146

normal distribution, 146–149
numerical data, 141–142
probabilities, 142
uniform distribution, 142–143

G
General-purpose input/output

(GPIO), 12
controlling process, 62–63
input signals, 64
outputs, 62
pinout reference, 61
pins, 60
sensors

analog signals, 65–66
digital output data, 64–65
low/high inputs, 64
reading process, 64

H
High-Definition Multimedia

Interface (HDMI), 56
Human emotion

classification, 171–172

I
Image data

Camera configuration, 192
computer vision systems, 191
data analysis

averaging filter, 199

Data science (cont.)

INDEX

235

captured image, 195–197
grayscale, 197
histogram, 198

edge detection, 200–201
interfacing options, 193
lsusb command, 194
object detection, 201

identification, 204
multibox architecture, 203
output image, 206
Python environment, 202
single-shot multibox

detector, 202–203
source code, 205–207

Raspberry Pi board, 195
software configuration tool

window, 193
webcam, 192

Industry 4.0
barcode/QR code scanner, 223
block diagram, 207–208
collecting data, 210–211
file transfer (computers)

command window, 224
Raspberry Pi graphical

desktop, 227
remote access, 223
remote desktop, 228
VNC viewer, 224

industry data, 211–214
localized cloud approach

framework, 209
remote access, 208

overview, 207

real-time sensor data, 214–216
vision camera systems, 219–223
visualization, 216–219

Integrated development and
learning environment
(IDLE), 17

interactive mode, 18
run module, 19–20
script file window, 19

Integrated development
environment (IDE), 16

comments, 20
IDLE, 17–20
Jupyter Notebook, 17
PyCharm, 17
spyder, 17

Internet of Things (IoT), 52
Interquartile range (IQR), 111

J
Jupyter Notebook, 17

K
K-Means Clustering

algorithm, 166
approaches, 167
data points, 169
features, 167
meaning, 166
NumPy array, 168
outliers, 168–169
source code, 168

INDEX

236

L
latency to amplitude

ratio (LAR), 177
Learning data, 155

clustering, 166–169
regression

actual output variable vs.
estimated linear model, 160

clusters vs. inertia, 165
input/output variable, 156
linear regression model,

156–159
mean square error (MSE), 162
OLS method, 159
OL square method, 157
principal component

analysis, 162–165
Scikit-Learn (linear

regression), 160–162
square method, 158

reinforcement learning
model, 155

supervised/unsupervised
learning, 155

M
Machine learning

Scikit-Learn, 44
TensorFlow, 47

Matplotlib package
bar charts, 129–131
histogram, 127–129

line plot, 124–127
pie charts, 132–134
scatter plot, 122–124

Methodology
brain function, 177–181
data collection process, 175–177
dataset, 172–173
exploratory data

analysis, 186–188
histogram, 188
human emotion dataset

features, 183
learning models, 188–191
MindWave mobile vs.

Bluetooth, 173–175
unstructured/structured

dataset, 181–185
worldwide recognized

database, 172

N
Natural language processing

(NLP), 11
Negative temperature coefficient

(NTC), 68
Nondeterministic signal/random

signal, 81
Normal distribution

deviation, 149
different mean values, 148
empirical rule, 149
norm.pdf function, 147

INDEX

237

probability density function
(pdf), 146

standard values, 148

O
Operating system (OS), 53–55

P, Q
Pandas functions, 44–47
Peak time window (PPT), 178
Preparation process (data), 99

Boolean indexing, 102
DataFrame, 104

cleaning process, 107
CSV file, 105
duplicate entries, 118–119
data structure, 104
Excel data files, 105
handling missing values,

107–110
inappropriate values, 116–118
outliers, 110–113
quarters, 111
URL data, 106
Z-score, 113–116

mathematical operations, 103
Pandas/data structures

dataframes/series, 99
data structure, 100
installation, 100–101

series, 100–103

Python programming, 13
control flow

statements, 31–32
data scientists, 13–14
data types

Boolean variables, 22
complex numbers, 22
floating-point

numbers, 22
integer (int), 21
numeric data types, 21
numeric operations, 23
sequence, 24–30

exception handling, 36–37
functions, 37–38
IDE (see Integrated

development environment
(IDE))

if control statement
elif…else statement, 33–34
for loop, 35–36
if-else statement, 32
iteration, 34
range() function, 35
syntax, 31
while/for loops, 34

libraries
data analysis, 42
flatten() function, 41
NumPy/SciPy, 39–43
pandas, 44–47
Scikit-Learn, 44
TensorFlow, 47

INDEX

238

R
Random access memory (RAM), 52
Raspberry Pi, 12, 49

cloud computing, 76
connectivity, 52
coral USB accelerator, 78
desktop computer, 49
edge (see Edge computing)
enclosure cases, 58
external hard disk drives, 77
GPIO (see General-purpose

input/output (GPIO))
hardware, 50–51
imager software, 54
interface, 60
languages (Scratch/Python), 50
localized cloud, 76–77
microSD memory card

keyboard/mouse, 56
storing data, 53
thin metal slot, 55
USB ports, 56

monitor, 56–57
operating system, 53–55
physical computing, 50
power supply, 57–58
random access memory, 52
Raspberry Pi 1/2/3/4 model, 58
soil moisture sensors, 71–72
system on a chip (SoC), 51
temperature/humidity

sensor, 68–70
Ultrasonic sensors, 66–68

versions, 59
web cameras, 72–74
Zero W/WH, 59

Real-time data (RTD), 85–87
Rectangular distribution, see

Uniform distribution
Reinforcement learning model, 155

S
Scientific computation, 39–43
Scikit-Learn library, 122
SciPy library, 42
Sensors

data acquisition (see Data
acquisition systems)

GPIO pins, 86
temperature/humidity, 96
ultrasonic sensors, 85–86

Sequence data types
dictionaries (dict), 29
list operations, 24
set operation, 28–29
string (str), 27
tuples, 27
type conversion, 30–31

Serial Peripheral Interface (SPI)
protocol, 65

Series, 100–103
Signal processing

analog/digital signals, 80
camera

Pi camera, 88
web camera, 87

INDEX

239

continuous-time/discrete-time
signals, 81

CSV format, 94
data acquisition, 82
data files, 95
dataframe, 94
data transmission/transfer, 88–92
date/time, 95
deterministic/non-

deterministic signal, 81
electrical signals, 79–80
gathering real-time data, 82
memory requirements

RAM, 93
storage, 93

one-dimensional/
multidimensional
signals, 81

Pandas, 94
real-time analytics/

environment, 79, 85–87
temperature/humidity sensor, 96
time series data, 92–93
two-dimensional signal, 81
Excel .xlsx file, 95

Soil moisture sensors, 71–72
Spyder, 17
System on a chip (SoC), 51

T
Temperature/humidity

sensor, 68–70
Time series data, 92–93
Trillion operations (tera-operations)

per second (TOPS), 78

U
Ultrasonic sensors, 66–68, 85–86
Uniform distribution, 142–143

V, W, X, Y
Virtual Network

Computing (VNC)
graphical server, 225
remote desktop, 226
viewers, 224–228

Visualization
Matplotlib (see Matplotlib

package)
overview, 121
plots/packages, 134

Z
Z-score, 113–116

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Data Science
	Importance of Data Types in Data Science
	Data Science: An Overview
	Data Requirements
	Data Acquisition
	Data Preparation
	Data Processing
	Data Cleaning
	Duplicates
	Human or Machine Errors
	Missing Values
	Outliers
	Transforming the Data

	Data Visualization
	Data Analysis
	Modeling and Algorithms
	Report Generation/Decision-Making

	Recent Trends in Data Science
	Automation in Data Science
	Artificial Intelligence–Based Data Analyst

	Cloud Computing
	Edge Computing
	Natural Language Processing
	Why Data Science on the Raspberry Pi?

	Chapter 2: Basics of Python Programming
	Why Python?
	Python Installation
	Python IDEs
	PyCharm
	Spyder
	Jupyter Notebook
	Python Programming with IDLE
	Python Comments

	Python Data Types
	Numeric Data Types
	int
	float
	complex
	bool
	Numeric Operators
	Sequence Data Types
	list
	tuple
	str
	set
	dict
	Type Conversion

	Control Flow Statements
	if Statement
	if-else Statement
	if...elif...else statement
	while loop
	for loop

	Exception Handling
	Functions
	Python Libraries for Data Science
	NumPy and SciPy for Scientific Computation
	Scikit-Learn for Machine Learning
	Pandas for Data Analysis
	TensorFlow for Machine Learning

	Chapter 3: Introduction to the Raspberry Pi
	What Can You Do with the Raspberry Pi?
	Physical Computing with the Raspberry Pi
	How to Program the Raspberry Pi?

	Raspberry Pi Hardware
	System on a Chip
	Raspberry Pi RAM
	Connectivity

	Setting Up the Raspberry Pi
	microSD Memory Card
	Installing the OS
	Inserting the microSD Memory Card
	Connecting a Keyboard and Mouse
	Connecting a Monitor
	Powering the Raspberry Pi
	Raspberry Pi Enclosure

	Raspberry Pi Versions
	Raspberry Pi 1
	Raspberry Pi 2
	Raspberry Pi 3
	Raspberry Pi Zero (W/WH)
	Raspberry Pi 4
	Recommended Raspberry Pi Version

	Interfacing the Raspberry Pi with Sensors
	GPIO Pins
	GPIO Pinout
	GPIO Outputs
	Controlling GPIO Output with Python
	GPIO Input Signals
	Reading GPIO Inputs with Python
	Digital Signals from Sensors
	Analog Signals from Sensors

	Interfacing a Ultrasonic Sensor with the Raspberry Pi
	Interfacing the Temperature and Humidity Sensor with the Raspberry Pi
	Interfacing the Soil Moisture Sensor with the Raspberry Pi
	Interfacing Cameras with the Raspberry Pi

	Raspberry Pi as an Edge Device
	Edge Computing in Self-Driving Cars
	What Is an Edge Device?
	Edge Computing with the Raspberry Pi

	Raspberry Pi as a Localized Cloud
	Cloud Computing
	Raspberry Pi as Localized Cloud
	Connecting an External Hard Drive
	Connecting USB Accelerator

	Chapter 4: Sensors and Signals
	Signals
	Analog and Digital Signals
	Continuous-Time and Discrete-Time Signals
	Deterministic and Nondeterministic Signals
	One-Dimensional, Two-Dimensional, and Multidimensional Signals
	Gathering Real-Time Data
	Data Acquisition
	Sensors
	Analog Sensors
	Digital Sensors

	What Is Real-Time Data?
	Real-Time Data Analytics
	Getting Real-Time Distance Data from an Ultrasonic Sensor
	Interfacing an Ultrasonic Sensor with the Raspberry Pi

	Getting Real-Time Image Data from a Camera
	Getting Real-Time Video from a Webcam
	Getting Real-Time Video from Pi-cam

	Data Transfer
	Serial and Parallel Communication
	Interfacing an Arduino with the Raspberry Pi
	Serial via USB
	Serial via GPIOs

	Data Transmission Between an Arduino and the Raspberry Pi
	Arduino Code
	Raspberry Pi Python Code

	Time-Series Data
	Time-Series Analysis and Forecasting

	Memory Requirements
	More Storage
	More RAM

	Case Study: Gathering the Real-Time Industry Data
	Storing Collected Data Using Pandas
	Dataframes
	Saving Data as a CSV File
	Saving as an Excel File
	Reading Saved Data Files
	Adding the Date and Time to the Real-Time Data
	Industry Data from the Temperature and Humidity Sensor

	Chapter 5: Preparing the Data
	Pandas and Data Structures
	Installing and Using Pandas
	Pandas Data Structures

	Series
	DataFrame
	Reading Data
	Reading CSV Data
	Reading Excel Data
	Reading URL Data
	Cleaning the Data
	Handling Missing Values
	Handling Outliers
	Z-Score
	Filtering Out Inappropriate Values
	Removing Duplicates

	Chapter 6: Visualizing the Data
	Matplotlib Library
	Scatter Plot
	Line Plot
	Histogram
	Bar Chart
	Pie Chart

	Other Plots and Packages

	Chapter 7: Analyzing the Data
	Exploratory Data Analysis
	Choosing a Dataset
	Modifying the Columns in the Dataset
	Statistical Analysis
	Uniform Distribution
	Binomial Distribution
	Normal Distribution

	Statistical Analysis of Boston Housing Price Dataset

	Chapter 8: Learning from Data
	Forecasting from Data Using Regression
	Linear Regression using Scikit-Learn
	Principal Component Analysis

	Outlier Detection Using K-Means Clustering

	Chapter 9: Case Studies
	Case Study 1: Human Emotion Classification
	Methodology
	Dataset
	Interfacing the Raspberry Pi with MindWave Mobile via Bluetooth
	Data Collection Process
	Features Taken from the Brain Wave Signal
	Unstructured Data to Structured Dataset
	Exploratory Data Analysis from the EEG Data
	Classifying the Emotion Using Learning Models

	Case Study 2: Data Science for Image Data
	Exploratory Image Data Analysis
	Preparing the Image Data for Model
	Object Detection Using a Deep Neural Network

	Case Study 3: Industry 4.0
	Raspberry Pi as a Localized Cloud for Industry 4.0
	Collecting Data from Sensors
	Preparing the Industry Data in the Raspberry Pi
	Exploratory Data Analysis for the Real-Time Sensor Data
	Visualizing the Real-Time Sensor Data
	Report Generation by Reading Bar Codes Using Vision Cameras

	Transmitting Files or Data from the Raspberry Pi to the Computer

	References
	Index

