
books books

C
ontrol Your H

om
e w

ith Raspberry Pi • Koen Vervloesem

Koen Vervloesem

Control Your Home
with Raspberry Pi

Control Your Home
with Raspberry Pi

Koen Vervloesem has been
writing for over 20 years on Linux,
open-source software, security, home
automation, AI, and programming. He
holds a Master‘s degree in Computer
Science Engineering, a Master’s
degree in Philosophy and an LPIC-3
303 Security certificate. He is editor-
in-chief of the Dutch MagPi magazine
and is a board member of the Belgian
privacy activist organization, the
Ministry of Privacy.

Ever since the Raspberry Pi was introduced, it has been used by enthusi-
asts to automate their homes. The Raspberry Pi is a powerful computer in
a small package, with lots of interfacing options to control various devices.
This book shows you how you can automate your home with a Raspberry
Pi. You’ll learn how to use various wireless protocols for home automation,
such as Bluetooth, 433.92 MHz radio waves, Z-Wave, and Zigbee. Soon
you’ll automate your home with Python, Node-RED, and Home Assis-
tant, and you’ll even be able to speak to your home automation system.
All this is done securely, with a modular system, completely open-source,
without relying on third-party services. You’re in control of your home,
and no one else.

At the end of this book, you can install and configure your Raspberry Pi as
a highly flexible home automation gateway for protocols of your choice,
and link various services with MQTT to make it your own system. This
DIY (do it yourself) approach is a bit more laborious than just installing
an o� -the-shelf home automation system, but in the process, you can
learn a lot, and in the end, you know exactly what’s running your house
and how to tweak it. This is why you were interested in the Raspberry Pi
in the first place, right?

> Turn your Raspberry Pi into a reliable gateway for various home
automation protocols.

> Make your home automation setup reproducible with Docker
Compose.

> Secure all your network communication with TLS.
> Create a video surveillance system for your home.
> Automate your home with Python, Node-RED, Home Assistant and

AppDaemon.
> Securely access your home automation dashboard from remote

locations.
> Use fully o� line voice commands in your own language. Elektor International Media BV

www.elektor.com

Secure, Modular, Open-Source and Self-Suffi cient

Koen Vervloesem

Control Your Home
with Raspberry Pi
Secure, Modular, Open-Source

 and Self-Suffi cient

Control Your Home with
Raspberry Pi

●

an Elektor Publication

Koen Vervloesem

SHAREDESIGNLEARN

● This is an Elektor Publication. Elektor is the media brand of

Elektor International Media B.V.

78 York Street

London W1H 1DP, UK

Phone: (+44) (0)20 7692 8344

© Elektor International Media BV 2020

First published in the United Kingdom 2020

● All rights reserved. No part of this book may be reproduced in any material form, including

photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally

to some other use of this publication, without the written permission of the copyright holder except in

accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a

licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE.

Applications for the copyright holder's written permission to reproduce any part of this publication should be

addressed to the publishers. The publishers have used their best efforts in ensuring the correctness of the

information contained in this book. They do not assume, and hereby disclaim, any liability to any party for

any loss or damage caused by errors or omissions in this book, whether such errors or omissions result from

negligence, accident or any other cause.

● British Library Cataloguing in Publication Data

Catalogue record for this book is available from the British Library

● ISBN 978-1-907920-94-3

● EISBN 978-3-89576-383-0

● EPUB 978-3-89576-382-3

Prepress production: DMC ¦ daverid.com

Printed in the Netherlands by Wilco

Images and logos used in this book are courtesy of Material Design Icons, Cisco, and the Raspberry Pi Foundation

Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro
engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops
and delivers high-quality content - via a variety of media channels (e.g., magazines, video, digital media, and social media)
in several languages - relating to electronics design and DIY electronics. www.elektor.com

SHAREDESIGNLEARN

Table of Contents

● 5

Table of Contents

• Preface . 13

Chapter 1 • Introduction . 14

1.1 • What is home automation? . 14
1.2 • Why use a Raspberry Pi as a home automation gateway? 15
1.3 • The properties of a good home automation system . 16

1.3.1 • Secure . 17

1.3.2 • Modular . 18

1.3.3 • Open-Source . . 19

1.3.4 • Self-sufficient . 20

1.4 • How to use this book . 23
1.5 • Summary and further exploration . . 25

Chapter 2 • The Raspberry Pi as a home automation gateway 27

2.1 • Which Raspberry Pi models are suitable for home automation? 27
2.2 • Requirements for a reliable home automation gateway 30
2.3 • Installing Raspberry Pi OS . . 32
2.4 • Setting up network connectivity with Ethernet or Wi-Fi 35

2.4.1 • Ethernet . . 35

2.4.2 • Wi-Fi . 36

2.4.3 • Setting a fixed IP address . 36

2.5 • Remote access using SSH . 37

2.5.1 • Enabling the SSH server . 37

2.5.2 • Connecting with the SSH client . 37

2.6 • Basic setup . . 39
2.7 • The tmux terminal multiplexer . 40

2.7.1 • The basics of tmux: windows . 40

2.7.2 • Working with tmux sessions . 41

2.7.3 • Seeing more at the same time with panes . 42

2.7.4 • Copying and pasting text . 43

2.8 • Python . . 43

2.8.1 • Virtual environments . 44

2.8.2 • Package requirements . 45

2.9 • Docker . . 46

2.9.1 • Installing Docker . 46

2.9.2 • Installing Docker Compose . 48

Control Your Home with Raspberry Pi

● 6

2.9.3 • Creating a Docker Compose YAML file . 49

2.10 • Summary and further exploration . 51

Chapter 3 • Secure your home automation system . . 53

3.1 • Some general computer security principles . 53
3.2 • Isolate your home automation devices . 55

3.2.1 • Physical isolation . 55

3.2.2 • VLANs . 57

3.2.3 • Firewalls . 58

3.3 • User management . 62

3.3.1 • Permissions . 62

3.3.2 • Passwords . 63

3.3.3 • Lifecycle . . 65

3.4 • Encryption . 65

3.4.1 • Your threat model . 65

3.4.2 • TLS . 66

3.4.3 • Setting up your own CA with mkcert . 67

3.4.4 • Creating a CA . 68

3.4.5 • Creating and signing a certificate . 70

3.4.6 • Keeping your root CA key secure . 71

3.5 • Keeping your software up-to-date . 72

3.5.1 • Update apt packages . 72

3.5.2 • Update Docker images . 76

3.5.3 • Update pip packages . 77

3.5.4 • Update manually installed packages . 77

3.5.5 • Update your home automation devices . 78

3.6 • Summary and further exploration . . 78

Chapter 4 • MQTT (Message Queuing Telemetry Transport) 80

4.1 • What is MQTT? . 80

4.1.1 • Central intermediary . 80

4.1.2 • Hierarchical names . 81

4.1.3 • Using wildcards . 82

4.2 • Installing and configuring the Mosquitto MQTT broker 83

4.2.1 • A basic Mosquitto setup . 83

4.2.2 • Testing your setup with the Mosquitto clients . 85

Table of Contents

● 7

4.2.3 • A secure Mosquitto setup . 86

4.2.4 • Testing your secure setup with the Mosquitto clients 90

4.2.5 • Default options for Mosquitto clients . 92

4.3 • Using graphical MQTT clients . 93

4.3.1 • MQTT.fx . 93

4.3.2 • MQTT Explorer . . 95

4.4 • Using MQTT in Python . 97
4.5 • Direct communication between other containers and Mosquitto 100
4.6 • Summary and further exploration . . 103

Chapter 5 • TCP/IP . 105

5.1 • Wake other network devices . 105
5.2 • Remote control with SSH . 107

5.2.1 Run commands on other devices . 108

5.2.2 • Secure passwordless logins using SSH keys . 109

5.3 • Collecting information from devices using SNMP . 111

5.3.1 • Walking through the MIB tree . 111

5.3.2 • Collecting your router's version using SNMP . 113

5.3.3 • Collecting your printer's ink levels . 114

5.4 • Using devices with a HTTP/REST API . 116

5.4.1 • Setting up a Shelly device for secure remote control 117

5.4.2 • Using Shelly's HTTP API with curl . 118

5.4.3 • Using the HTTP API in Python . 119

5.5 • Creating a video surveillance system . . 121

5.5.1 • Turn your Raspberry Pi into an IP camera . 123

5.5.2 • Turn your Raspberry Pi into a camera controller 125

5.5.3 • Viewing your remote cameras . 128

5.5.4 • Motion detection . 129

5.5.5 • Notifications on motion . 131

5.6 • Summary and further exploration . . 133

Chapter 6 • Bluetooth . 134

6.1 • An introduction to Bluetooth Low Energy . 134

6.1.1 • Broadcasting data . 134

6.1.2 • Connecting to services . 135

6.2 • Enabling Bluetooth . . 137
6.3 • Investigating Bluetooth Low Energy devices . 138

6.3.1 • Scanning for Bluetooth Low Energy devices . 139

Control Your Home with Raspberry Pi

● 8

6.3.2 • Dumping raw Bluetooth broadcast data . 140

6.3.3 • Discovering device characteristics . . 141

6.3.4 • Reading device characteristics . 142

6.4 • Reading BLE sensor values in Python . 143

6.4.1 • RuuviTag Sensor . 143

6.4.2 • Miflora . 146

6.5 • Relaying Bluetooth sensor values with bt-mqtt-gateway 148

6.5.1 • Configuring bt-mqtt-gateway . 148

6.5.2 • Running bt-mqtt-gateway . 150

6.6 • Presence detection with Bluetooth . 152

6.6.1 • Presence detection with monitor.sh . 152

6.6.2 • Configuring and running monitor.sh . 153

6.6.3 • Trigger arrival and departure scans in monitor.sh 155

6.7 • Summary and further exploration . . 156

Chapter 7 • 433.92 MHz . 157

7.1 • 433.92 MHz protocols . . 157
7.2 • Hardware requirements . 158

7.2.1 • Receiver . . 158

7.2.2 • Antenna . 159

7.3 • Receiving sensor values with rtl_433 . 160

7.3.1 • Installing rtl_433toMQTT . . 161

7.3.2 • Configuring rtl_433 . 163
7.4 • Publishing 433.92 MHz sensor values to MQTT . 165
7.5 • Summary and further exploration . . 166

Chapter 8 • Z-Wave . 168

8.1 • An introduction to Z-Wave . . 168

8.1.1 • The specification . 168

8.1.2 • How does Z-Wave work? . 169

8.2 • Choosing a Z-Wave transceiver . 170

8.2.1 • Transceiver on the GPIO header: RaZberry . . 171

8.2.2 • USB Transceiver . 172

8.3 • OpenZWave and Zwave2Mqtt . . 173

8.3.1 • Installing Zwave2Mqtt . 174

8.3.2 • Configuring Zwave2Mqtt . 175

8.3.3 • Using the Zwave2Mqtt Control Panel . 179

8.4 • Using your Z-Wave devices with MQTT . . 183

Table of Contents

● 9

8.4.1 • Reading sensor values . 184

8.4.2 • Controlling switches . 185

8.5 • Summary and further exploration . . 186

Chapter 9 • Zigbee . 188

9.1 • An introduction to Zigbee . 188

9.1.1 • The specification . 188

9.1.2 • How does Zigbee work? . 189

9.2 • Creating a Zigbee transceiver . 189

9.2.1 • Connect the downloader cable . 190

9.2.2 • Install the flashing software . . 192

9.2.3 • Flash the firmware . 192

9.3 • Zigbee2mqtt and Zigbee2MqttAssistant . 193

9.3.1 • Connecting the CC2531 . 194

9.3.2 • Installing Zigbee2mqtt and Zigbee2MqttAssistant 195

9.3.3 • Configuring Zigbee2mqtt and Zigbee2MqttAssistant 196

9.3.4 • Using Zigbee2MqttAssistant . . 198

9.4 • Using our Zigbee devices with MQTT . 200

9.4.1 • Reading sensor values . 201

9.4.2 • Controlling switches . 201

9.5 • Summary and further exploration . . 202

Chapter 10 • Automating your home . 203

10.1 • Node-RED . . 204

10.1.1 • Installing Node-RED . 204

10.1.2 • Adding authentication to Node-RED . . 205

10.1.3 • Using Node-RED over HTTPS . 207

10.1.4 • Creating Node-RED flows . . 209

10.1.5 • Installing extra nodes in Node-RED . 213

10.1.6 • Creating a dashboard in Node-RED . 215

10.2 • Home Assistant . 219

10.2.1 • Installing Home Assistant . 219

10.2.2 • Integrating MQTT . 221

10.2.3 • Creating automation rules . 224

10.3 • AppDaemon . 226

10.3.1 • Installing AppDaemon . . 226

Control Your Home with Raspberry Pi

● 10

10.3.2 • Creating an AppDaemon app with MQTT: the time 229

10.3.3 • Creating an AppDaemon app with MQTT: garage door alert 231

10.4 • Summary and further exploration . 233

Chapter 11 • Notifications . 234

11.1 • Forwarding local email . 234

11.1.1 • Installing Nullmailer . 234

11.1.2 • Testing Nullmailer . 236

11.1.3 • Using Nullmailer . 237

11.2 • Forwarding emails from Docker containers . 237

11.2.1 • Installing docker-postfix . 237

11.2.2 • Sending emails to docker-postfix . 239

11.3 • Push notifications with Gotify . 241

11.3.1 • Installing the Gotify server . 242

11.3.2 • Adding applications to Gotify . 243

11.3.3 • Using Gotify applications . 244

11.3.4 • Using Gotify clients . 247

11.4 • Notifications on receiving MQTT messages . 248

11.4.1 • Installing mqttwarn . 248

11.4.2 • Sending emails with mqttwarn . 251

11.4.3 • Transforming and filtering payloads . . 252

11.5 • Summary and further exploration . 255

Chapter 12 • Voice control . . 256

12.1 • A basic Rhasspy setup . 256

12.1.1 • Hardware requirements . . 257

12.1.2 • Configure audio hardware . 257

12.1.3 • Installing Rhasspy . 260

12.1.4 • Rhasspy's settings . 261

12.1.5 • Configuring audio . . 262

12.1.6 • Configuring the wake word . 263

12.1.7 • Configuring text to speech . . 263

12.1.8 • Configuring speech to text . . 264

12.1.9 • Configuring intent recognition . 265

12.1.10 • Configuring dialogue management . 266

12.1.11 • Testing your Rhasspy setup . 266

Table of Contents

● 11

12.2 • A Rhasspy base with satellites . 267

12.2.1 • Hardware requirements . . 268

12.2.2 • Setting up the satellites . 269

12.2.3 • Setting up the base . 270

12.2.4 • Testing your base and satellites . 271

12.2.5 • Enable UDP audio streaming . 273

12.3 • Train your sentences . 274

12.3.1 • Rhasspy's template language . 276

12.3.2 • Slots . 277

12.4 • Intent handling . 278

12.4.1 • Intent handling with MQTT . . 278

12.4.2 • Intent handling with AppDaemon and MQTT . 280

12.4.3 • Intent handling with WebSocket in Node-RED 282

12.5 • Summary and further exploration . 287

Chapter 13 • Remote access . 289

13.1 • Three ways for remote access . 289

13.1.1 • Port forwarding . 289

13.1.2 • A localhost tunneling solution . . 293

13.1.3 • A virtual private network (VPN) . 295

13.2 • Updating your dynamic DNS with ddclient . 297
13.3 • Running WireGuard on your Raspberry Pi . 298

13.3.1 • Installing PiVPN . 299

13.3.2 • Adding a VPN client . 300

13.3.3 • Connecting with a VPN client . 302

13.3.4 • Managing your VPN clients . . 304

13.4 • Summary and further exploration . 305

Chapter 14 • Conclusion . 306

14.1 • A dashboard for all your services . 306
14.2 • More about home automation . 310

• Appendix . . 312

15.1 • Getting the name and ID of a serial device . 312
15.2 • Switching USB ports . 313
15.3 • Disabling the onboard radio chips . 313

15.3.1 • Disabling onboard Bluetooth . 314

15.3.2 • Disabling onboard Wi-Fi . 314

Control Your Home with Raspberry Pi

● 12

15.4 • Disabling the on-board LEDs . 314

15.4.1 • Raspberry Pi Zero (W) . 315

15.4.2 • The big Raspberry Pi models . 315

15.4.3 • Ethernet models . 315

15.4.4 • Raspberry Pi Camera Module . 316

15.5 • Securing insecure web services with a reverse proxy 317

15.5.1 • Using nginx as a reverse proxy with HTTPS . 317

15.5.2 • Adding basic authentication to nginx . 321

15.6 • Bridging two MQTT brokers securely . 323

• Index . 327

Preface

● 13

• Preface

Ever since the Raspberry Pi was introduced, the popular single-board computer has been
used by enthusiasts to automate their home. That's not a coincidence: the Raspberry Pi is
a powerful computer in a small package, with lots of interfacing options to control various
devices.

In this book, I'll show you how you can automate your home with a Raspberry Pi. You can
do this in many ways and with various software and hardware choices. I'll show you one
way, which is a bit different from what you'll read in many other books, but my approach
has its merits, and I'll explain why.

You'll learn how to use various wireless protocols for home automation, such as Bluetooth,
433.92 MHz radio waves, Z-Wave, and Zigbee. Soon you'll automate your home with Py-
thon, Node-RED, and Home Assistant, and you'll even be able to speak to your home auto-
mation system. All of this in a secure way, with a modular system, completely open-source
and without relying on third-party services.

At the end of the book, you can install and configure your Raspberry Pi as a highly flexible
home automation gateway for your protocols of choice and link various services with MQTT
to make it a system of your own. This DIY (do it yourself) approach is a bit more laborious
than just installing an off-the-shelf home automation system, but in the process, you learn
a lot, and in the end, know exactly what's running your house and how to tweak it. And
that's why you were interested in the Raspberry Pi in the first place, right?

Koen Vervloesem, May 2020

Control Your Home with Raspberry Pi

● 14

Chapter 1 • Introduction

In this introductory chapter, I give a short overview of what home automation is and why
you would use a Raspberry Pi as a home automation gateway. Then I describe what I
consider properties of a 'good' home automation system:

•	 secure
•	 modular
•	 open-source
•	 self-sufficient

In the rest of this book, I'll explain step by step how to create such a good home automation
system with a Raspberry Pi.

1.1 • What is home automation?

Home automation is the process or result of automating systems that are running at home:
lighting, HVAC (heating, ventilation, and air conditioning), appliances such as washing
machines, blinds, and roller shutters, and so on. A home automation system is also able to
use information from environmental sensors (temperature, humidity, pressure, CO2, …),
smart meters, movement sensors, presence sensors, cameras, and so on.

A home automation system typically consists of:

•	 a central gateway (also called controller or hub), which controls devices and reads
sensor measurements

•	 controllable devices
•	 sensors

The controllable devices and sensors are regularly called "smart devices", although almost
none of them are really smart. Another name you'll see for them is IoT (Internet of Things)
devices because they can be (directly or indirectly) linked to and controlled over the internet.

Figure 1.1 A home automation system consists of a central gateway and various controllable devices and
sensors.

Chapter 1 ● Introduction

● 15

A home automation gateway always has a user interface. Of course, the purpose of home
automation is to automate as much as possible, so the idea is that the user shouldn't have
to use this user interface that much. But a user interface is still essential to:

•	 configure the home automation gateway: for instance if the sun goes down, close the
blinds;

•	 manually control your devices: this should still be possible because you can't automate
everything;

•	 show you a nice dashboard of sensor measurements: for instance to see the inside and
outside temperature.

This user interface can come in many forms:

•	 Most home automation gateways have a web server running, which supplies a web
interface as the user interface. You can access this web interface on any computer or
mobile device.

•	 Some systems have a mobile app for Android or iOS, which is generally better adapted
to the specific requirements of mobile devices, such as a smaller screen.

•	 It's also possible to use a dedicated touch screen, for instance hanging on the wall, to
control your home automation system, and to show you some nice graphs.1

•	 Last but not least, in recent years home automation systems have added a new kind of
user interface: speech. With a so-called voice assistant or smart assistant (again, they
are not that smart), you can give speech commands to your home automation system
and it replies with spoken messages.

This book is not focused on any of these user interfaces; it's more about the backend
services and how to link and automate them. However, I cover two home automation
projects with a web interface in Chapter 10 (Home Assistant and Node-RED), and create a
voice assistant for your home automation system with Rhasspy (Chapter 12). You should
consult the documentation of these projects if you're more interested in the user interface
side of home automation.

1.2 • Why use a Raspberry Pi as a home automation gateway?

If you buy an off-the-shelf home automation system, the gateway is a small box that looks
somewhat like a router or a Wi-Fi access point. In this book, we'll show you how you can
create your own home automation gateway with a Raspberry Pi.

But why would you do that? Because you can, of course! More seriously, the Raspberry
Pi is what makes the approach in this book possible. We'll go into the advantages of this
approach in the next section, but the number one reason to use a Raspberry Pi as your
home automation gateway is: you are in control.

An off-the-shelf home automation gateway isn't flexible: you can only do with it what the

1	 In many cases this touch screen is just running a fullscreen web browser visiting the
home automation gateway's embedded web server.

Control Your Home with Raspberry Pi

● 16

manufacturer allows, you rely on the manufacturer's goodwill to receive updates and new
functionality, and most of the time you can't "hack" on it yourself.2

Contrast this with the Raspberry Pi. You can choose your operating system (which we'll do
in the next chapter), you can choose which communication protocols you'll want to support
(which we'll cover in various chapters in this book), you can choose your user interface,
and so on. You can even choose the case to protect your Raspberry Pi and which expansion
boards you connect, as there's a whole ecosystem of hardware for the Raspberry Pi.

Of course, you can also run home automation software on a more powerful system, such
as a NAS (network-attached storage) or a home server. But the Raspberry Pi has several
advantages to these systems:

•	 It's very low-power, so it doesn't cost you much to keep it running 24/7.
•	 For most home automation tasks you don't need the processing power that these other

systems offer.
•	 The ecosystem of software and hardware for the Raspberry Pi is immense, as well

as the number of resources where you find more information about it.3 This is also
a reason to choose the Raspberry Pi over similar single-board computers from other
manufacturers.

1.3 • The properties of a good home automation system

A good home automation system should:

•	 be secure, so you don't risk someone else controlling your house or spying on you at
home;

•	 be modular, to make it easy to plug in other protocols or applications;
•	 only use open-source software;
•	 be self-sufficient, not relying on cloud systems from Google, Amazon, or other parties.

This is my highly opinionated vision, and it's this vision that I build upon in this book.
If you consider these properties for a moment, you'll see that this vision is almost
diametrically opposed to most off-the-shelf systems you'll find. I'll give some examples in
the next subsections.

It's possible that you don't agree with some of these properties, or that you don't have such
strong feelings about them as I do. That's OK: while I explain an approach in this book

2	 With hacking I don't mean gaining unauthorized access to a computer (which is the
connotation the word unfortunately has received). The Jargon File describes a hacker as "a
person who enjoys exploring the details of programmable systems and how to stretch their
capabilities, as opposed to most users, who prefer to learn only the minimum necessary." (The
Jargon File, http://www.catb.org/jargon/html/H/hacker.html)
3	 For instance, the Raspberry Pi Foundation publishes its official magazine about the
Raspberry Pi, MagPi (https://magpi.raspberrypi.org), and Elektor (the publisher of this book)
publishes Dutch (https://www.magpi.nl) and French (https://www.magpi.fr) editions of the
magazine.

http://www.catb.org/jargon/html/H/hacker.html
https://magpi.raspberrypi.org
https://www.magpi.nl
https://www.magpi.fr

Chapter 1 ● Introduction

● 17

that implements this vision, thanks to its modularity you can certainly plug in proprietary
software or cloud systems if you prefer these. Heck, you can even add monolithic and
insecure software, but I don't tell you how.

In the next subsections, I'll go over these four properties in more detail, and I hope that
at the end of this chapter you'll agree with me that this approach to home automation is
the right one.

1.3.1 • Secure

Of course, a home automation system should be secure. No one can be against it, can't
they? A home automation system controls your home, so whoever can break into it can
make your life very miserable.

Unfortunately, even if a manufacturer tells you that his system is secure, chances are that
it isn't. Security is very difficult to attain, and most manufacturers don't want to spend the
resources needed to secure their system.4

Home automation and IoT devices are notoriously insecure. At the Usenix Security
Conference 2019, the Czech security software company Avast and Stanford University
presented their research of household IoT devices. Avast scanned 83 million IoT devices
in 16 million homes around the world of people who agreed to share these data. The
results of the study published in "All Things Considered: An Analysis of IoT Devices on
Home Networks" (https://press.avast.com/hubfs/stanford_avast_state_of_iot.pdf) were
staggering:

•	 7% percent of all IoT devices support an obsolete, insecure, and completely unencrypted
protocol such as Telnet or FTP.

•	 Of these, 17% exhibit weak FTP passwords, and 2% have weak Telnet passwords.
•	 Surveillance cameras have the weakest Telnet profile, with more than 10% of them

that support Telnet with weak credentials.
•	 3% percent of the homes are externally visible on the internet and more than half of

those have a known vulnerability or a weak password.

This is not an isolated study. Not a week goes by without some news items about insecure
devices, most of the time because basic security measures such as strong passwords are
not enforced by the manufacturer or basic programming errors have been made. To give
you an idea about what can happen: in 2018 nude videos of the Dutch women's handball
team appeared on a popular porn website because the surveillance cameras of the dressing
room of a sauna were broken into. Imagine if someone can access your baby monitor with
a camera or your security camera in your living room or bedroom…

So what can you do to secure your home automation system? If you choose an off-the-
shelf system: not much. You fully rely on the manufacturer's ability to create a secure

4	 Most consumers probably wouldn't want to pay more for a secure home automation
system anyway.

https://press.avast.com/hubfs/stanford_avast_state_of_iot.pdf

Control Your Home with Raspberry Pi

● 18

system and the goodwill to keep supplying patches that solve security issues that have
been discovered. And the home automation and IoT industries have clearly shown they
are not up to the task. This is one of the reasons why I prefer open-source software. Not
because it is always secure, but because the transparency of the open-source development
process forces developers to create more secure software.

Security is such an important property of a home automation system that I dedicate an
entire chapter in this book about it. It's such a vast topic that entire books are written
about it, and I encourage you to read much more about computer security than I can tell
you here. In Chapter 3 I'll cover the most important tools you need to secure your home
automation system, so you don't need to be paranoid and continuously think about the
possibility that someone is currently spying on you.

1.3.2 • Modular

There are many competing standards and communication protocols for home automation,
such as Z-Wave, Zigbee, and KNX. Other protocols aren't specific to home automation but
are very usable in this domain too, such as Wi-Fi, Bluetooth, or Near Field Communication
(NFC).

Unfortunately, many off-the-shelf home automation gateways support only a small subset
of these protocols or even use a proprietary protocol that locks you into using devices of
the same manufacturer. That severely limits your choice of products.

You can't know which protocols will become popular in a few years, and maybe you like
one product that uses Z-Wave and another product that uses Zigbee. It should be easy to
interconnect these devices, even when they use different protocols.

This is why a good home automation system should be modular, which makes it possible
to plug in new components when you want to support a new protocol, add a new user
interface or extend its functionality in another way.

Many of the wireless communication protocols for home automation need a dedicated
transceiver because they work on a specific radio frequency. That's where the Raspberry Pi
shines: you can easily connect Z-Wave, Zigbee, or 433.92 MHz transceivers using the USB
ports or the GPIO header. So you can start with a basic Raspberry Pi setup supporting only
IoT devices that are communicating over Wi-Fi and Bluetooth, add an RTL-SDR USB dongle
to read the measurements of your 433.92 MHz weather sensors, later add a Z-Wave HAT
on the board when you start adding Z-Wave sensors to your house and then add a Zigbee
USB transceiver when you want to control some Zigbee lights.

Figure 1.2 A good home automation system is modular enough to support many home automation protocols.

Chapter 1 ● Introduction

● 19

Modularity is also important for software. There's a lot of user-friendly software to make
your Raspberry Pi a home automation gateway.5 So you just install this software on your
Raspberry Pi and that's it: you have a gateway that supports several devices. Some of
these systems are very modular and extensible, others aren't. Many of them support MQTT
(Message Queuing Telemetry Transport), a common language to exchange messages.

MQTT has become the standard for interoperability between various home automation
devices. For instance, if your home automation gateway of choice doesn't support Zigbee
but it does support MQTT, then you only have to run the Zigbee2mqtt software (see Chapter
9), which translates the Zigbee protocol to MQTT messages. Your gateway can then talk to
your Zigbee devices using MQTT.

Modularity also means that you don't have to have one gateway. You can perfectly have
your main gateway in your basement, but install a second gateway with your 433.92 MHz
receiver for your environmental sensors in your living room because that gives you better
coverage to receive data from these wireless sensors. If you're using MQTT, that's very
simple to implement: you just relay the sensor readings that your gateway in the living
room receives to your MQTT broker, after which your main gateway receives the readings
in the MQTT format.

In short: a good modular home automation system means that you can mix and match
the devices that you like, irrespective of their protocol, and you can use the software and
hardware components of your choice, in various locations in your house.

1.3.3 • Open-Source

Source code is code written in a human-readable programming language, that specifies
the actions a computer has to perform. The source code of a program is then compiled to
machine code that the computer can execute, or it's interpreted on the fly to machine code
and thus immediately executed by the computer.

Most software is being distributed as machine code, so it's not readable for us. If you buy
an off-the-shelf home automation gateway, you generally don't get access to its source
code, so you cannot peek into it to see what it does or to assess its quality. You just have to
believe the manufacturer on his word. Is that enough for you if it's about software that will
get to know you intimately because it processes sensor readings and even camera images
about you in your home? Not for me.

But there's a type of software where you do get access to the source code: free and
open-source software (sometimes abbreviated as FOSS or even FLOSS).6 If you really
want to be precise, there's free software and open-source software, but for the end-user,
the differences are minimal and mostly philosophical. When I talk about "open-source

5	 An example is Home Assistant, which I will introduce in Chapter 10.
6	 The L in FLOSS stands for "libre", which is kind of a synonym to "free" but making it
clearer that it's about maintaining the user's civil liberties: "free" as in "free speech", not as in
"free beer", as they say.

Control Your Home with Raspberry Pi

● 20

software" in this book, I mean free and open-source software.

But what when you're not a programmer and don't even understand the source code of
your home automation system? Even then the use of open-source software has a lot of
advantages. It's not because you don't have the programming experience that others can't
help. Most open-source projects have a decentralized software-development model that
encourages open collaboration.

So if you find a bug in the software, or see something wrong in its source code but don't
have the programming experience needed to fix it, just report the bug on the issue tracker
of the project, and hopefully, someone else in the project's community will step in and fix
it. It all depends on the health of the project's community. But a good open-source project
has a vibrant community of developers and users who collaborate to continuously improve
the software.

In the process of writing this book, I participated in various communities of the programs I
covered. I opened issues to report bugs, fixed some bugs, added support for new devices,
contributed documentation, and helped people build their software for Raspberry Pi. This
was all only possible because they are open-source.

And open-source doesn't just mean getting access to the source code, it's much more
than that. If you want to get an idea about what open-source is, I recommend you to read
the Open Source Definition on https://opensource.org by the Open Source Initiative. For
instance, with open-source software you are not only able to read its source code, you are
also allowed to modify it and distribute your modifications.

Even more, when you know a specific software project is open-source, you know that
it doesn't arbitrarily restrict what you can do with it. The Open Source Definition even
explicitly lists that the license of open-source software must not discriminate against any
person or group of persons, nor restrict anyone from making use of the program in a
specific field of endeavor.

Open-source is a complex and nuanced topic, and I recommend you to read about it more
if you're not accustomed to it. The decentralization and transparency of the open-source
development model gives power back to the users, where it belongs. For home automation
that's even more important. I don't want a company having control over my house. That's
why you'll see that all software in this book is open-source.

1.3.4 • Self-sufficient

During the last ten years, there has been a worrying development in the computer
industry: we all depend more and more on (centralized) cloud systems. Unfortunately, the
home automation industry didn't escape this fate. Many popular home automation and IoT
systems depend on a cloud server. Some examples:

•	 the Ring video doorbell with Wi-Fi camera;

https://opensource.org

Chapter 1 ● Introduction

● 21

•	 the Nest Learning Thermostat;
•	 so-called 'smart speakers' running voice assistants, like Amazon Echo and Google

Home;
•	 the IFTTT service that links various other services.

This isn't without its problems. In the last couple of years a couple of cloud services for
home automation stopped working for their users:

Revolv Hub
In 2014 Nest bought the company that was selling the Revolv Hub home automation
system, not long after Nest itself was acquired by Google. In 2016 Nest shut down the
servers Revolv Hub depended on, after announcing it with a quiet note on the website
of Revolv a few months earlier. That meant that the $300 Revolv Hub ceased functioning
entirely.

Best Buy Insignia devices
At the end of 2019, Best Buy announced that several of their Insignia-branded smart
devices would stop working because they decided to shut down the corresponding backend
systems.

Wink devices
In May 2020 Wink (with the catchphrase "A simpler way to a smarter home") announced
with just a week's notice that it would start charging a monthly fee for the use of their
services. Users that didn't want to pay were no longer be able to access their Wink devices
and their automations were disabled. The Wink Hub, that had been in stores with the
clear description "no required monthly fees, ever", was rendered useless. Ironically, the
announcement ended with the message "Our user community is integral to Wink, and we
want to continue to be your trusted smart home provider."

Now imagine when the highly popular IFTTT would stop their service: suddenly the
automations of millions of people would stop working.

It also just makes no sense to use cloud services to automate your home. Home automation
comes down to: you want one device to be able to respond to another device in your home.
For instance: the motion sensor in your bathroom detects motion at night, and this turns
the bathroom light on for five minutes. If you use IFTTT to link both devices, the motion
sensor has to send a message to the internet, IFTTT relays the message to your bathroom
light (for instance a Philips Hue light), and the bathroom light turns on.

But there's no need for an internet service like IFTTT between both devices because they
both are in your home, so it makes much more sense to link them locally, using a server at
home. This could be a Raspberry Pi running home automation software that doesn't need a
cloud server to function, but does all its processing on-device (or on the edge, as it's called
now). You can perfectly do this with Node-RED or Home Assistant (see Chapter 10). Then
there's no way a company can render your home automation system useless by shutting
down their service, or your bathroom light doesn't turn on at night because your internet

Control Your Home with Raspberry Pi

● 22

connection or IFTTT's servers are down. You're fully in control of your home automation
system.

Using cloud services for your home automation system has another risk: it invades your
privacy. Look at some of the privacy issues with the services I talked about above:

•	 If you use the Ring video doorbell, it sends a video of everyone that steps on your
porch to the manufacturer. The Ring company (which has been bought by Amazon in
2018) has a questionable approach to privacy: in January 2019 it was uncovered that
employees have access to the video recordings of all Ring devices and even that the
data are stored unencrypted.

•	 If you use the Nest Learning Thermostat, Google knows precisely when you are home
and when you aren't.

•	 If you run a smart speaker like the Amazon Echo, what you tell your house members will
be sent countless times inadvertently to Amazon because the Echo thinks it has heard
its wake word.7 Moreover, Amazon's employees listen to a part of all 'conversations'
with the Echo to improve its algorithms.

•	 If you use the IFTTT service to link your various other services, you give one company

7	 In 2020, a team of researchers at Northeastern University and Imperial College
London simulated real-world conditions by playing popular TV shows. They found that a variety
of smart speakers would activate by mistake up to 19 times each day on average. The study
can be found here: https://moniotrlab.ccis.neu.edu/smart-speakers-study/.

Figure 1.3 The home automation at the left is cloud-based: a simple motion detection message first goes to a
server over the internet before returning to your light. The self-hosted system on the right makes much more

sense: a Raspberry Pi on your network relays the message without using the internet detour.

https://moniotrlab.ccis.neu.edu/smart-speakers-study/

Chapter 1 ● Introduction

● 23

access to all your home automation services, which is too much power concentrated in
one company's hands: they can see exactly what you're doing.

1.4 • How to use this book

This book describes a lot of components to support various home automation and IoT
protocols. I don't expect that everyone will want to support all these protocols by installing
these components manually. Home automation platforms such as Home Assistant (described
in Chapter 10) have a fairly complete support for these and many more protocols. You can
use such a platform to turn your Raspberry Pi into a home automation gateway.

However, I'm also a big believer in choice. You will have your preferences. Perhaps:

•	 you don't like these user-friendly home automation platforms.
•	 you do like one of these platforms, but it doesn't support one of the protocols.
•	 one of these platforms does support the protocol, but only with a local transceiver and

you need a transceiver in another location for better coverage.

In all of these cases, you can use one of the open-source projects in this book to link this
protocol to your gateway.

You can look at this book as a DIY manual to create your home automation gateway from
scratch. But it's also describing a software architecture for a secure, modular, open-source,
and self-sufficient home automation system. It's up to you to choose the components that
implement this architecture in your own house, and if a home automation platform such as
Home Assistant or Mozilla IoT WebThings Gateway does the job for you, that's fine. They
don't lock you into their way of doing things, so you could perfectly use them and still link
them to other systems thanks to MQTT and other protocols.

This book expects some familiarity with Raspberry Pi OS (formerly called Raspbian) or
Linux in general. I explain most commands the first time I use them, but if you have
never worked with a Linux system, I recommend reading an introductory text about Linux,
Debian, Raspberry Pi OS, or bash (the Linux command line used in this book).

In various chapters, I show short Python programs that interact with your home automation
system. The Python code in this book is not that advanced. If you don't know Python, you
should be able to understand what the code does, and maybe you will even be able to adapt
it because Python is known for its clarity. However, if you want to make the most out of
this book, I do recommend you to learn some Python. The official Python documentation
(https://docs.python.org/3/), especially the Python tutorial (https://docs.python.org/3/
tutorial/index.html), is a good way to start. A home automation system is typically
something very personal, and being able to program it is the best way to customize8 it to
your taste.

8	 All Python code in this book has been developed for and tested on Python 3. Its
predecessor, Python 2, has been retired on January 1 2020 (https://pythonclock.org), and
shouldn’t be used anymore.

https://docs.python.org/3/
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://pythonclock.org

Control Your Home with Raspberry Pi

● 24

Note:
This book is not about how you connect sensors, relays, and so on directly to your Raspberry
Pi using the GPIO header, but it strictly covers how you use your Raspberry Pi as a home
automation gateway, collecting data and controlling devices remotely using radio and
network protocols. Of course, it's perfectly possible to let your Raspberry Pi combine both
tasks, but I wouldn't recommend it because it could lead to stability problems, and your
gateway should be as reliable as possible.

Here's a short overview of what I'll cover in this book:

Chapter 1: Introduction
The theoretical foundation for this book, with my vision of what good home automation
should look like and why you should use a Raspberry Pi for it.

Chapter 2: The Raspberry Pi as a home automation gateway
The practical foundation for this book, where you prepare your Raspberry Pi for its task as
a home automation gateway.

Chapter 3: Secure your home automation system
Some general computer security principles and specific instructions to keep your home
automation gateway secure, including encryption of all network traffic.

Chapter 4: MQTT (Message Queuing Telemetry Transport)
The lightweight network protocol that is at the center of this book, including the installation
of an MQTT broker with encryption and authentication of all messages and the exploration
of some MQTT clients.

Chapter 5: TCP/IP
Some TCP/IP-based protocols that everyone can use for home automation without the
need for specialized transceivers, such as Wake-on-LAN, SSH, SNMP, HTTP/REST, and video
surveillance systems.

Chapter 6: Bluetooth
An introduction to Bluetooth Low Energy, including a way to investigate Bluetooth Low
Energy devices and using them to read sensor data and for presence detection.

Chapter 7: 433.92 MHz
The use of the RTL-SDR dongle to receive sensor measurements from devices transmitting
on the popular 433.92 MHz frequency.

Chapter 8: Z-Wave
An introduction to the Z-Wave mesh protocol for wireless home automation.

Chapter 9: Zigbee
An introduction to the Zigbee mesh protocol for wireless home automation made popular

Chapter 1 ● Introduction

● 25

by Philips Hue and IKEA TRÅDFRI products.

Chapter 10: Automating your home
Complete home automation platforms such as Node-RED, Home Assistant, and AppDaemon,
including dashboards for your home automation gateway.

Chapter 11: Notifications
Email and push notifications to warn you about events in your home, including an easy way
to create notifications on receiving specific MQTT messages.

Chapter 12: Voice control
Voice control for your home automation gateway, without depending on online servers.

Chapter 13: Remote access
An overview of ways to remotely access your home automation gateway, with specific
instructions about how to create a VPN.

Chapter 14: Conclusion
A wrap-up of this book, with a dashboard for all the discussed services.

Appendix
Some specialized tips that could come in handy in various situations.

Note:
Code examples from this book are published on https://github.com/koenvervloesem/
raspberry-pi-home-automation. They can be copied from the GitHub repository one-by-
one when trying the various applications in this book. You can also download them all at
once. Refer to the instructions in the GitHub repository for more information.

1.5 • Summary and further exploration

In this introductory chapter, I gave a theoretical foundation for this book, with my vision of
what good home automation should look like and why you should use a Raspberry Pi for it.
I argued why your home automation system should be:

•	 secure
•	 modular
•	 open-source
•	 self-sufficient

I hope the examples I gave you have convinced you that these are important properties of
your home automation system. In the rest of this book, I show you how you create such a
system with a Raspberry Pi.

If you want to read more about some issues I raised in this chapter, I can recommend

https://github.com/koenvervloesem/raspberry-pi-home-automation
https://github.com/koenvervloesem/raspberry-pi-home-automation

Control Your Home with Raspberry Pi

● 26

the special edition of Mozilla's Internet Health Report of November 2019, called "*Privacy
Included: Rethinking the Smart Home" (https://foundation.mozilla.org/en/privacy-
included/). It talks about the so-called "smart home" from a more general point of view
and is much in line with the approach I advocate in this book. The report stresses the
importance of privacy, security, interoperability, and sustainability for smart home devices.

Note:
The use of the ⏎ symbol denotes that code should be typed contiguously on the same line.

https://foundation.mozilla.org/en/privacy-included/
https://foundation.mozilla.org/en/privacy-included/

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 27

Chapter 2 • The Raspberry Pi as a home automation gateway

While the previous chapter gave you a theoretical foundation with an overview of what
you're going to build in this book (and especially why), the second chapter gives you
a practical foundation: it's all about preparing your Raspberry Pi for its task as a home
automation gateway.

I'll first talk a bit about which Raspberry Pi models are suitable for home automation, after
which you'll learn how to install Raspberry Pi OS, configure network connectivity and access
your Raspberry Pi over the network using SSH. I also talk a bit about the tmux terminal
multiplexer, which is indispensable for many tasks in this book, and about installing Python
packages. I'll finish this chapter by installing Docker, which is essential to be able to install
various programs in later chapters without messing up your base system.

2.1 • Which Raspberry Pi models are suitable for home automation?

Since its first release at the beginning of 2012, various Raspberry Pi models have been
released. Most of them, even the first ones, are suitable for home automation, but not
every model is up to every task. I have been running the Domoticz home automation
software on the first Raspberry Pi B model for more than five years to control my home,
and it has only been replaced by a newer model in the last three years.

So if you have an older model like the Raspberry Pi 2 or even the first model lying in your
cupboard, by all means, try it. Whether you can use it as your home automation gateway
depends on how many devices you want to control and which extra software packages you
want to run on your Raspberry Pi.

Note:
These early models don't have Wi-Fi or Bluetooth. If you want to use these wireless
protocols, you'll have to use adapters that plug into the USB ports.

In most cases, I recommend you to use a Raspberry Pi 3B or 3B+ as your home automation
gateway. These models have enough processing power to run most home automation
workloads, and they have Ethernet, Wi-Fi, and Bluetooth. The Raspberry Pi 3A+ (which has
the same processing power as the 3B+) is fine if you don't need Ethernet connectivity and
one USB 2.0 port is enough for you. You can always connect more USB devices with a USB
hub. But note that 512 MB RAM could be insufficient for some applications.

Control Your Home with Raspberry Pi

● 28

Only if you're serious about home automation and are running very demanding workloads,
or need the USB 3.0 and Gigabit Ethernet throughput, would I recommend choosing a
Raspberry Pi 4 as your home automation gateway.1 This model exists in versions with 1, 2,
4 and 8 GB. Choose the RAM size depending on your workload.2

1	 The Raspberry Pi 4 is essential if you're running AI (artificial intelligence) tasks such
as image recognition with the Google Coral USB Accelerator: this TensorFlow Light accelerator
dongle needs USB 3 acess to use its full speed.
2	 The model with 1 GB RAM has been retired in the beginning of 2020, but if you have
still one of these, it's perfectly usable for most home automation tasks.

Figure 2.1 In many home automation scenarios the Raspberry Pi 3B+ is up to the task.

Figure 2.2 The Raspberry Pi 3A+ is fine as a home automation gateway if you don't need Ethernet
connectivity and one USB 2.0 port is enough.

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 29

The Raspberry Pi Zero W(H) has the same processor as the first Raspberry Pi model, but
clocked at 1 GHz instead of 700 MHz. So this is only suitable for minimal home automation
workloads. It has Wi-Fi and Bluetooth connectivity, but no Ethernet and only one micro-USB
OTG connector. So for a gateway, the Raspberry Pi Zero W(H) is seriously handicapped. On
the other hand, because of its low price, small size, and low power consumption, it's a very
interesting model to read Bluetooth sensors at various places in your house, for instance,
to detect in which room you are (see Chapter 6). And in combination with a Raspberry Pi
Camera the Raspberry Pi Zero W can function as a cheap IP camera.

There are still other Raspberry Pi models: the Compute Module, Compute Model 3, and
3+. These are meant for industrial use. While they have their advantages, I'm not going
to use them in this book. This is, after all, a book about home automation, not industrial

Figure 2.3 You only need the Raspberry Pi 4 for very demanding home automation workloads, for instance for
image recognition.

Figure 2.4 The Raspberry Pi Zero W(H) is not powerful enough to run a serious home automation gateway,
but it's perfect as a simple gateway for Bluetooth or Wi-Fi sensors or other devices.

Control Your Home with Raspberry Pi

● 30

automation. But if by any chance you have one of these, feel free to try them: they should
work because they are fully compatible with software for the 'normal' Raspberry Pi models.
To sum up, this table shows some specifications of the Raspberry Pi models that are most
relevant for home automation:

Pi 4B Pi 3B+ Pi 3A+ Pi 3B Pi Zero
W(H)

SoC BCM2711 BCM2837B0 BCM2837B0 BCM2837 BCM2835

Cores 4 4 4 4 1

CPU clock 1.5 GHz 1.4 GHz 1.4 GHz 1.2 GHz 1.0 GHz

RAM 1 / 2 / 4 / 8 GB 1 GB 512 MB 1 GB 512 MB

USB 2 × USB 3.0, 2
× USB 2.0 4 × USB 2.0 1 × USB 2.0 4 × USB 2.0 1 × micro-

USB 2.0 OTG

Ethernet Gigabit Gigabit over
USB 2.0 / 10/100 Mbps /

Wi-Fi 802.11b/g/n/
ac dual-band

802.11b/g/n/
ac dual-band

802.11b/g/n/
ac dual-band 802.11n 802.11n

Bluetooth 5.0 4.2 4.2 4.1 4.1

Size 85.6 mm ×
56.5 mm

85.6 mm ×
56.5 mm

65.0 mm ×
56.5 mm

85.6 mm ×
56.5 mm

65.0 mm ×
30.0 mm

2.2 • Requirements for a reliable home automation gateway

The Raspberry Pi is an easy computer board to experiment with. If you pick a Raspberry
Pi, put a Raspberry Pi OS image on the microSD card, and start installing some programs
explained in this book, you'll have a home automation gateway in no time.

It's tempting to start this way, and if it's just to see what the possibilities are, that's no
problem. But you'll run your house on this Raspberry Pi, so you'll have to at least think
about how to make it reliable. These are some aspects you have to consider:

Place
Your home automation gateway should be in an accessible place so it's easy to troubleshoot
it or attach or replace adapters. But at the same time, you don't want it to be too accessible.
For instance, if you have it lying on your desk, the risk is too high that you spill coffee on
it, yank off its power cable, or just that it's in your way.

Storage
The capacity of the microSD card for your Raspberry Pi should be high enough to store all
software, logs, and data. If you install all projects in this book, you need a microSD card
of at least 16 GB. I recommend 32 GB to be on the safe side. Because microSD cards are
notoriously unreliable, especially after a power failure, regularly take a backup of the most

Table 2.1 Raspberry Pi models for home automation

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 31

important data.3

Case
It's perfectly acceptable to use the Raspberry Pi without a case when you are experimenting.
But as soon as you're starting to rely on it as a home automation gateway, you should put
it in a case: this protects your Raspberry Pi from dust or small accidents. Choose a case fit
for your purpose. For instance, if you need to use the GPIO pins, make sure the case gives
access to them.

Cooling
Especially with the Raspberry Pi 4, the temperature mustn't rise too much. If the temperature
of the SoC is between 80 and 85 degrees Celsius, the ARM core(s) will be throttled back
in an attempt to reduce the core temperature. If the temperature of the SoC reaches 85
degrees Celsius, the GPU will also be throttled back. Running for too long on these high
temperatures is detrimental to the health of the processor. If you are doing intensive
computations on your home automation gateway, add a heat sink or a fan. There are even
cases that double as a heat sink with their body.

Power
Use a reliable power supply for your Raspberry Pi, as you don't want your home automation
gateway to fail when the power requirements are not met temporarily. The official Raspberry
Pi power supply is a safe choice, but other adapters that supply 5.1 V 2.5 A (or 3 A for the
Raspberry Pi 4 to be on the safe side) should be fine too. Note that the power consumption
depends on the peripherals you have connected, such as USB transceivers or the Raspberry
Pi Camera Module (which requires 250 mA).

Network
Wi-Fi connections are not as reliable as Ethernet connections. If it's possible, use an
Ethernet connection for your home automation gateway. This way your house doesn't lose
its head when your Wi-Fi access point fails.

3	 In this book, you only need to copy the docker-compose.yml file and the contents of
the directory /home/pi/containers to have all your home automation data.

Control Your Home with Raspberry Pi

● 32

Note:
If you have a power outage in your home, the microSD card of your Raspberry Pi may
become corrupt and your home automation gateway will not work anymore after the
power comes back on. If you want to protect for this scenario, use a UPS (uninterruptible
power supply) for your Raspberry Pi. It has an emergency battery with enough power to
safely turn off your Raspberry Pi.

2.3 • Installing Raspberry Pi OS

In this book, you'll use Raspberry Pi OS (formerly called Raspbian) as the operating system
for your Raspberry Pi. Raspberry Pi OS is a Linux distribution based on Debian GNU/Linux,
optimized for its use on a Raspberry Pi. It's the official operating system that the Raspberry
Pi Foundation recommends.

If you visit the download page on https://www.raspberrypi.org/downloads/raspberry-pi-
os/, at the moment I'm writing this book you'll see three variants of Raspberry Pi OS:

•	 Raspberry Pi OS (32-bit) with desktop and recommended software
•	 Raspberry Pi OS (32-bit) with desktop
•	 Raspberry Pi OS (32-bit) Lite

You'll use the Lite version: this doesn't have a graphical desktop, so you have to work with
Raspberry Pi OS using the command line. Some familiarity with the Linux command line is
therefore recommended, but I'll explain the commands that you need.

Figure 2.5 Pimoroni's Fan SHIM is an efficient cooling solution for the Raspberry Pi 4.

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 33

I'm choosing the Lite version for several reasons:

•	 The less software is installed, the more secure the setup (see Chapter 3).
•	 The less software is installed, the faster the operating system runs.
•	 Software for a home automation gateway doesn't need the graphical desktop, because

it has its own user interface.

So, download the Raspberry Pi OS Buster Lite image (click on Download ZIP), and then
download balenaEtcher from https://www.balena.io/etcher/. This program is available on
Windows, macOS, and Linux and offers an easy way to write operating system images to
(micro)SD cards.

Now put a microSD card in your computer's card reader. If your computer hasn't one, you'll
need an external card reader that you connect to a USB slot of your computer.

If you start balenaEtcher now, you just have to choose the image and the drive letter of
the microSD card you want the image to be written to. Make sure that you have chosen
the right image and drive letter, and then click Flash! to begin writing data to the microSD
card.

Figure 2.6 In this book you'll use Raspberry Pi OS Buster Lite as the base operating system for your home
automation gateway.

https://www.balena.io/etcher/

Control Your Home with Raspberry Pi

● 34

Note:
You don't have to unzip the zip file: balenaEtcher automatically unzips it before writing the
img file in it to the microSD card.

Warning:
Double-check whether you chose the correct drive letter before you write it to your
microSD card: if you accidentally select the wrong drive, all data is overwritten!

Figure 2.7 Make sure that you choose the correct drive to write the Raspberry Pi OS image to.

Figure 2.8 Write the Raspberry Pi OS image to a microSD card with balenaEtcher

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 35

For more advanced options, consult the Raspberry Pi Foundation's documentation about
installing operating system images (https://www.raspberrypi.org/documentation/
installation/installing-images/).

When you have successfully written the microSD card, remove it from the card reader but
don't put in your Raspberry Pi's microSD card slot yet: reinsert it in your computer's card
slot. A boot volume should be mounted.

2.4 • Setting up network connectivity with Ethernet or Wi-Fi

As you are not using a desktop operating system on the Raspberry Pi, you have to configure
it fully on the command line. You could now connect a keyboard and monitor to the
Raspberry Pi and configure it like this, which is the way shown in many other tutorials. But
you won't need the keyboard and monitor later to run a home automation gateway, so it
doesn't make much sense to use them now. Running a computer without a keyboard and
monitor is called a headless system.

But without a keyboard and monitor to type commands and see some output, you need
another means to interact with the Pi: the network. So first you need to set up network
connectivity on your Pi.

2.4.1 • Ethernet

If you connect your Raspberry Pi to your home network's router using an Ethernet cable,
the connectivity should become configured automatically: Raspberry Pi OS asks for an IP
address to your network's DHCP server (usually running on your router), and this returns
an IP address that the Pi can use on your network. It's this IP address that you need to
know to connect to your Pi.

But what is this IP address? Raspberry Pi OS shows this on the login screen when you
have attached a monitor, but in headless mode, there's another way to discover your Pi's
IP address: visit the web interface of your router and search for the DHCP leases of your
DHCP server. There you should see your Raspberry Pi with its MAC and IP address. The
MAC address of every Raspberry Pi starts with b8:27:eb (the older models) or dc:a6:32
(beginning from the Raspberry Pi 4), so it's easy to find. If you have more than one
Raspberry Pi on your network, you'll have to guess which one is your home automation
gateway…

I recommend Ethernet for your home automation gateway because it's more reliable than
Wi-Fi: this way your home automation gateway doesn't depend on your Wi-Fi access point
working correctly and Wi-Fi signals coming through.

Note:
Especially when you depend on your home automation gateway to secure your home, for
instance with smart locks or security cameras, ethernet is much more reliable and secure:
Wi-Fi signals can be blocked with a Wi-Fi jammer in your environment.

https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/

Control Your Home with Raspberry Pi

● 36

2.4.2 • Wi-Fi

Although I generally don't recommend using Wi-Fi for your home automation gateway,
there are situations where you don't have any other choice, for instance, if your gateway
is in a place where you don't have an Ethernet socket. Of course, you can use Wi-Fi in this
instance.

When you reinserted the microSD card into your computer's card slot, you should have
seen a boot volume being mounted. Now create a file with the name wpa_supplicant.conf
in this folder, with the following configuration:

country=COUNTRYCODE
update_config=1
ctrl_interface=/var/run/wpa_supplicant

network={
 ssid="SSID"
 psk="PASSWORD"
}

Instead of COUNTRYCODE, SSID and PASSWORD, enter your country's ISO 3166-1 alpha-2
code (BE for Belgium, NL for the Netherlands, DE for Germany, and so on)4 and the SSID
(Service Set Identifier) and password of your Wi-Fi access point.

Then save this configuration file, and be sure to save it as plain text, not as a Word file or
any other rich text format.

2.4.3 • Setting a fixed IP address

Your Raspberry Pi will get an IP address from the DHCP server of your router, and this
will probably stay the same. This is important because you will use the IP address of your
Raspberry Pi to access all services running on your home automation gateway.
You should make sure that the IP address of your home automation gateway always stays
the same. One way to do this is in the DHCP settings of your router. The exact procedure
depends on your model, but it should be called something like "DHCP static mappings".

Add a mapping where you enter the Raspberry Pi's MAC address and the corresponding IP
address that you want to assign to it.

4	 See https://en.wikipedia.org/wiki/ISO_3166-1 for the full list of ISO-3166-1 country
codes.

https://en.wikipedia.org/wiki/ISO_3166-1

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 37

Note:
If you assign another IP address in the DHCP static mappings to the one your Raspberry
Pi currently has, reboot your Raspberry Pi to be sure that it is assigned the correct one.

2.5 • Remote access using SSH

Whether you choose Ethernet or Wi-Fi, your Raspberry Pi should now have access to your
network when you start it from this microSD card. But you still need something else: you
should have access to the Raspberry Pi over the network. You'll get this access using SSH
(Secure Shell), which is the default remote login solution for Linux and UNIX computers.

In this section, you'll make your Raspberry Pi accessible in your home network with
OpenSSH. After this, all commands that I show in this book can be entered remotely. So
you can configure your home automation gateway from everywhere in your home: from
your desktop PC, your laptop, even your tablet or smartphone if you have installed an
OpenSSH client app on it.5

2.5.1 • Enabling the SSH server

Raspberry Pi OS already has an SSH server, but it doesn't run by default because it would
open a security hole: everyone on your network who knows the default password for
Raspberry Pi OS, would be able to log in. To enable SSH, just create an empty file called
ssh in the boot folder of the microSD card.

Then unmount the microSD card, put it into the microSD card slot of your Raspberry Pi,
(optionally) connect the Ethernet cable between your Raspberry Pi and your router or
switch, and finally connect the power adapter to your Raspberry Pi, after which it boots.
Now have a bit of patience: Raspberry Pi OS is booting, and the first time this takes a while
because it expands the file system to use the microSD card's full capacity. In the meantime,
have a look at the DHCP leases of your router to discover your Raspberry Pi's IP address.

2.5.2 • Connecting with the SSH client

Now you'll use the OpenSSH client to log into the Raspberry Pi over the network. If you're
running a recent Windows 10 release, the OpenSSH client is automatically installed. On
Linux and macOS, it's also generally installed. Just open a command prompt and enter:

ssh pi@IPADDRESS

Substitute your Raspberry Pi's IP address for IPADDRESS. The pi before the @ sign is the

5	 You could also connect a keyboard and a display to your Raspberry Pi, log in and enter
all commands this way, but then you'll have to physically sit at your Raspberry Pi every time
you want to install or configure something on your home automation gateway.

Control Your Home with Raspberry Pi

● 38

default user in Raspberry Pi OS.

If the Windows command prompt doesn't understand the ssh command, maybe you still
have to install the OpenSSH client. To do this, open Settings, then go to Apps > Apps
and Features > Manage Optional Features. At the top of the window select Add a
feature, then locate OpenSSH Client and click Install. After this, you can use the ssh
command in the command prompt.

Note:
If you can't find the OpenSSH client in the optional features of the Windows settings,
you're running an older Windows version. You should then follow the instructions of
Microsoft's project Win32-OpenSSH.
(https://github.com/PowerShell/Win32-OpenSSH/wiki/Install-Win32-OpenSSH)
or download PuTTY
(https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html). The latter has a
graphical interface.

Now when you first log in to your Raspberry Pi with the ssh command, it will show you
an SSH fingerprint. Accept it by entering yes and pressing Enter, and after this enter the
password raspberry.6

If you entered the correct password, you see something like this in your terminal:

The last line, pi@raspberrypy:~ $, is the command prompt. The pi is your username,
raspberrypi is the default hostname of your Raspberry Pi (you'll change this in the next

6	 To be sure that no one is executing a man-in-the-middle (MITM) attack on you and
presenting you a rogue SSH server instead of your Raspberry Pi, you should check whether the
shown SSH fingerprint matches the fingerprint of the actual SSH host key of your Raspberry
Pi. If you want to be sure, log into your Raspberry Pi with a keyboard and monitor, enter the
command ssh-keygen -l -f /etc/ssh/ssh_host_ecdsa_key.pub and verify whether the
output matches the fingerprint shown to you by the ssh command.

Figure 2.9 You use the ssh command to log in to your Raspberry Pi remotely.

https://github.com/PowerShell/Win32-OpenSSH/wiki/Install-Win32-OpenSSH
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 39

section) and the ~ is your current working directory, which is a shortcut to your home
directory, /home/pi. After the dollar sign, you can start typing commands.

What you see now is called the bash shell. It's like the command prompt in Windows. You
type commands, and these commands show some output.

2.6 • Basic setup

As soon as you're logged in, change the default password of the pi user with the following
command:

passwd

Choose a strong password: at least 12 characters long, and no one else should be able to
guess it.

Warning:
Choosing a strong password for a Raspberry Pi in your home network may sound paranoid,
but it's really important. If by any chance you make an error and expose your Raspberry
Pi to the internet, anyone can log in to your Raspberry Pi when they guess your password,
and they can use your Raspberry Pi as a stepping stone for breaking into other systems
in your home. See Chapter 3 for more information about securing your Raspberry Pi and
choosing a strong password.

Then update the package repositories and upgrade all packages to their newest version:

sudo apt update
sudo apt upgrade

If you get the question Do you want to continue? [Y/N], confirm with the Enter key.
Now all newest versions of the installed software packages are downloaded and installed.

After this, configure some extra settings by running the Raspberry Pi OS configuration
program:

sudo raspi-config

This opens the Raspberry Pi Software Configuration Tool, which offers a command-line

Control Your Home with Raspberry Pi

● 40

menu-based way to configure basic settings. You can go through the menu with the arrow
keys, select a menu with Enter, and go to the 'buttons' below with the Tab key. Now
change the following essential settings:

•	 2 Network Options - N1 Hostname: Change the hostname of your Raspberry Pi to
something else than raspberrypi if you have more than one Raspberry Pi running at
home.

•	 4 Localisation Options - I2 Change Timezone: Choose your timezone to get the
right time.

•	 7 Advanced Options - A3 Memory Split: Change the RAM that the GPU gets to
the minimal value, 16 MB. As your Raspberry Pi operates as a home automation
gateway and doesn't need a graphical interface, giving more RAM to the GPU is just a
waste of memory.

After this, go to Finish in the main menu and press Enter. If you're asked to reboot now,
confirm with Yes.

2.7 • The tmux terminal multiplexer

Suppose that you're logged into your Raspberry Pi using SSH and you are running a sudo
apt upgrade command. It's a long upgrade, and you want to do something else in the
meantime. Should you log into your Raspberry Pi again then using SSH?

Fortunately not. Because you're going to work a lot on the command line in this book and
you'll regularly have to do various tasks at the same time, I'll show you a tool that will
help you work more efficiently: a terminal multiplexer. This lets you run multiple terminal
sessions in one window and adds various other interesting features, such as shortcuts to
copy and paste text.

In this book, I'm working with tmux (https://tmux.github.io). Install it like this:7

sudo apt install tmux

2.7.1 • The basics of tmux: windows

Now just run tmux. It looks like you're in just another terminal session, but there's one
difference: there's a status bar visible on the bottom. To the right shows the Pi's hostname
and current date and time.

When you start a tmux session, this opens one window, where you can start typing Linux
commands. With Ctrl+b followed by c (that is, push Ctrl and b simultaneously, release both
keys, and then push c only) you open a new window. It's like you started a completely new

7	 Another well-known terminal multiplexer is screen (https://www.gnu.org/software/
screen/).

https://tmux.github.io
https://www.gnu.org/software/screen/
https://www.gnu.org/software/screen/

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 41

terminal window, for instance from a separate SSH session.

The status bar shows you all windows with an index number and the name of the currently
active program. For now, this is bash, the shell that lets you type Linux commands. Always
keep an eye on the names of the tmux windows, because it can give you interesting
information. For instance, if a long upgrade command is running in one window and you're
running commands in another window, and you suddenly see that the name of the first
window changes to bash, you know that the upgrade process is complete.

Moving from one window to the next is easy: you use Ctrl+b n (for next) or Ctrl+b p (for
previous). Ctrl+b followed by a number moves you to the window with that specific index
number, for instance, Ctrl+b 0 for the first window.

You can exit a tmux window like any other terminal session, with exit or the Ctrl+d key
combination. If there's only one window, exiting the window exits tmux too, and you return
to the terminal session where you started the tmux command. If at any time the program
in a tmux window 'hangs', you can exit the window with Ctrl+b &.

2.7.2 • Working with tmux sessions

All programs running in your terminal since you started tmux are in a 'session'. The cool
part about tmux is that you can 'detach' this session, with Ctrl+b d. A detached session
keeps running in the background as long as your Raspberry Pi is on, even after you have
logged out.

You can also reattach to the session:

tmux attach

After this, all your tmux windows are visible again and you can interact with them like
before. This is helpful if you have started a long upgrade process on your Raspberry Pi but
then the computer from which you have logged into your Raspberry Pi using SSH has to
reboot. If you had just started the upgrade process directly from the shell, the upgrade
process would stop as soon as your session ended because the network connection was
disrupted. With tmux, you just detach the session, log off and let the process run while you
reboot your computer and log on again.

Note:
You can create multiple sessions and even give them names. See man tmux for this and
much more.

Control Your Home with Raspberry Pi

● 42

2.7.3 • Seeing more at the same time with panes

Another nice feature of tmux are panes: they let you create multiple terminal sessions next
to each other in the same window. This is useful if you're editing a configuration file in one
pane, running commands in another pane, and looking at the output of a log file with tail
-f in a third pane. You see al these panes at a glance without having to move from one
window to another one.

By default, tmux starts one pane in each window. Hitting Ctrl+b % divides this pane into
two panes next to each other and brings you to the new pane. Ctrl+b " divides the current
pane into two panes above each other. With Ctrl+b o you jump from one pane to the next.
With Ctrl+b and an arrow key, you jump to the next pane in the direction of the arrow.

Note:
Ctrl+b followed by the space bar cycles through all default layouts of the panes: from left
to right, from top to bottom, one big pane at the top and the other ones above, one big
pane at the left and the other ones at the right, or all panes equally sized.

Panes are not 'stuck' in their window indefinitely. Sometimes you have created a couple
of panes in a window and you want to open one of these panes in its own window. This
is very easy to do: hit Ctrl+b ! and tmux moves the current pane to its own window. If
you just want to temporarily show one pane fullscreen, hit Ctrl+b z. The same keyboard
combination brings you back to the normal layout. Exiting a pane is done the same as
exiting a window: with the exit command or Ctrl+d.

Figure 2.10 With tmux panes and windows you can execute a lot of terminal sessions without losing the
overview.

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 43

2.7.4 • Copying and pasting text

Terminal sessions are all about text: the content of a configuration file or log file, the output
of a command, … In the very powerful copy mode of tmux, you can copy and paste text
from your terminal session. You enter the copy mode with Ctrl+b [.
As soon as you enter the copy mode, you see two numbers between square brackets at the
top right of your current pane. These numbers are the current and maximum line numbers
of all output that has been written since the beginning of the current pane's session.
In the copy mode, you can navigate through this output with the arrow keys. This way you
can revisit output that has scrolled off your screen. Enter q to leave the copy mode.

The name of the copy mode comes from what you can do with it: copy text. But to enable
this functionality, you first have to enable mode keys in the tmux configuration file:

echo "setw -g mode-keys vi" > ~/.tmux.conf

Exit tmux completely and then run tmux again.

Enter copy mode with Ctrl+b [. Move the cursor to the beginning of what you want to copy
and press the space bar. Then move to the end of your selection and press Enter. All text
between will be copied now. Now go to the place where you want to paste the text. This
can be another panel or another window.8 And then hit Ctrl+b] to paste the text. Or hit
Ctrl+b = to get a list of all previously copied texts in this session and choose the one you
want to paste.

2.8 • Python

Many projects in this book use the Python programming language. Python 3 is installed by
default in Raspberry Pi OS, but there exist a lot of external packages, and many of them
are available in the Python Package Index (PyPI), which can be found on https://pypi.org.
These additional Python packages from PyPI can be installed with the pip package manager.

So first install it with:

sudo apt install python3-pip

8	 You can even copy and paste between different tmux sessions, if you are working with
multiple sessions.

https://pypi.org

Control Your Home with Raspberry Pi

● 44

Note:
Always use python3, pip3 (and so on) commands to use the Python 3 versions of
these Python commands. If you forget to type the number 3, you are using the Python 2
versions, and Python 2 has been deprecated. Although in a Python 3 virtual environment
the python command refers to python3, it's better to always use python3 so you don't
have to think about it.

Now you can install a Python package called 'foobar' globally with sudo pip3 install
foobar, or only for the local user with pip3 install --user foobar. But I'm only going
to do this a few times in this book, for some very specific packages.

The reason is simple: Python packages are in constant flux and if you install all the packages
you need globally or locally there will be a moment where you bump in a problem where
package A needs version 1.0 of packet Z and packet B needs version 2.0 of packet Z, which
is incompatible with version 1.0. You can only install one version of a Python package this
way, so package A or package B will stop working.

Note:
If you want to develop upon some of the Python projects used in this book, for instance
you want to fix bugs or add support for extra devices, you'll have to download the source
code. Most of the time this is done using the git command. Install it with sudo apt
install git.

2.8.1 • Virtual environments

Python has a solution for this 'dependency hell': virtual environments. A virtual environment
is a directory where you install Python packages instead of in your global or user-local Python
package directory. This virtual environment is isolated from other virtual environments and
your global and user-local Python package directory.

The idea is that you create a new virtual environment for each non-trivial Python project
that you want to install or develop. This way you're sure that you don't mess with the
dependencies of other installed Python packages.

First, install the virtual environment functionality:

sudo apt install python3-venv

Creating a virtual environment in the directory .venv9 is then easy:

9	 This is a hidden directory because its name starts with a dot. This way commands like
ls don't show the directory by default. Use ls -a to show hidden files and directories too.

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 45

python3 -m venv .venv

This creates the directory .venv and puts the Python 3 interpreter and the standard Python
library in it, including the pip package manager.

If you want to use the Python interpreter from your virtual environment now, you have to
'activate' the environment:

source .venv/bin/activate

If you run python3 after this, you don't use the system's Python command (in /usr/bin/
python3), but the Python version in your virtual environment. You can check this with the
command which python3. And if you install packages with pip3, they will be installed in the
virtual environment. Leave the virtual environment with deactivate. Now the packages
you installed are not available anymore.

Reactivating a virtual environment is just a matter of typing source .venv/bin/activate
again in the right directory. You can have a virtual environment everywhere, and you can
give it any other name than .venv. Because it's so easy to create a virtual environment,
I recommend using virtual environments for almost all Python projects that have
dependencies. It will save you some difficult to solve issues in the long run.

2.8.2 • Package requirements

If you install a Python project with pip3, all its Python dependencies are installed
automatically. But if you use a Python project that doesn't have a package and you have
to download its source, it will probably have a list of its dependencies in a file called
requirements.txt.

These dependencies are easy to install. Just create and activate a virtual environment in
the directory of the project, and then install its dependencies with:

pip3 install -r requirements.txt

Some packages have non-Python requirements. Then you have to install these requirements
with the Raspberry Pi OS package manager, apt. Note that these dependencies are not
limited to the virtual environment then. Most of the time, this won't be problematic. But
because eventually, you can encounter the same kind of dependency problems as with pip
packages, a better idea is to use Docker. I'll explain this in the next section.

Control Your Home with Raspberry Pi

● 46

2.9 • Docker

Docker (https://www.docker.com) is an easy way to run various services: it works by
running each service in a separate container, which is isolated from all other containers. I
use Docker a lot in this book.

Essentially each container you're running on Raspberry Pi OS using Docker is a minimal
Linux system (an image) that makes use of the Raspberry Pi OS Linux kernel. If you're
running a service in a Docker container, you can be sure that it doesn't pollute the Raspberry
Pi OS. If you don't need a container anymore, you can just delete it without having to fear
that you have done something wrong, forgot to delete some files, or deleted some essential
files and your Raspberry Pi OS system doesn't work anymore.

2.9.1 • Installing Docker

The easiest way to install Docker on Raspberry Pi OS is as follows:

curl -sSL https://get.docker.com | sh

Then give the pi user access to Docker:

sudo usermod pi -aG docker

Log out with exit and log in again, or reboot your Raspberry Pi with sudo reboot. Then
execute the following command to see the status of the Docker engine:

systemctl status docker

If you're seeing active (running) in the output, Docker is running fine. To double-check
your configuration, try running the hello-world container:

Figure 2.11 Docker isolates different programs from each other in containers.

https://www.docker.com)

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 47

docker run --rm hello-world

If all goes well, you should see something like this:

In the first line of Docker's output, you see the message "Unable to find image 'hello-
world:latest' locally". Because the docker command can't find the image on your Raspberry
Pi, it downloads it from the Docker Hub, a central repository with Docker images. After
downloading the image, Docker creates a new container from that image and runs a
program in that container showing you the helpful description from Figure 2.12. After this,
the container is removed (because of the --rm option of the docker command).

Finally, create a directory where the data for your Docker containers will be stored:

mkdir /home/pi/containers

In this book, I'll use the convention that data for a container (configuration files, logs, data,
and so on) will be put in a subdirectory of this /home/pi/containers directory, with the
same name as the container.

Figure 2.12 The hello-world Docker container runs fine on this system.

Control Your Home with Raspberry Pi

● 48

2.9.2 • Installing Docker Compose

After a few chapters you'll be running multiple Docker containers, and this can become
difficult to maintain. That's why I'm using Docker Compose (https://docs.docker.com/
compose) in this book. With Docker Compose you define all your containers in one YAML
file.10

The advantage is that if you want to add, remove, or change services, you just have to
modify this one configuration file. You can also create and start all your containers with a
single command.

Docker Compose is distributed as a Python package, so you can install it with:

sudo pip3 install docker-compose

And verify whether it has been installed correctly by asking for the version number:

10	 YAML is a recursive acronym for "YAML Ain't Markup Language".

Figure 2.13 After completing this book, the containers directory should look something like this.

https://docs.docker.com/compose
https://docs.docker.com/compose

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 49

docker-compose --version

2.9.3 • Creating a Docker Compose YAML file

As an example of the Docker Compose YAML file, and to double-check whether Docker
Compose works, create a file docker-compose.yml in your user's home directory:

nano docker-compose.yml

This opens nano, the Raspberry Pi OS default command line text editor, and creates an
empty file called docker-compose.yml in the current directory.11

Give this file the following content:

version: '3.7'

services:
 hello-world:
 image: python:3.8-alpine
 ports:
 - "80:8000"
 command: "python -m http.server 8000"

The file defines a container with the name hello-world, based on an image python:3.8-
alpine, where port 80 from the Raspberry Pi is forwarded to port 8000 from the container.

Finally, the command python -m http.server 8000 is run in the container, which serves
the container's root file system on a web server running on port 8000.

Save the file with Ctrl+o and exit nano with Ctrl+x. It's a good practice to always check the
syntax of your Docker Compose file. You can do this with:

docker-compose config -q

11	 While nano is an easy editor to use for beginners, if you're serious about using
Raspberry Pi OS and Linux in general I recommend you to use a more powerful command line
text editor, such as Vim or Emacs. Both editors are highly configurable and can be extended
with plugins, for instance for automatic syntax highlighting. I use Vim for everything that I
write: code, configuration files, as well as texts. In fact, this complete book has been written in
Vim.

Control Your Home with Raspberry Pi

● 50

If you get no output, the Docker Compose file in the current directory passes some basic
checks. But I recommend doing some extra checks with the yamllint command, which can
check all sorts of YAML files, not only Docker Compose files. Install it like this:

sudo apt install yamllint

Then check your Docker Compose file with:

yamllint docker-compose.yml

Warnings are shown in yellow: those are tolerable. Errors are shown in red: those should
be corrected. The numbers at the beginning of the line are the line and column numbers
that concern the error or warning. Look at your file at that location, fix the error, and then
check the syntax again.

If your Docker Compose file has valid syntax, start up the container:12

docker-compose up -d

Now, open your web browser and visit the IP address of your Raspberry Pi. You should see
a directory listing such as this one:

12	 If you want to use another name for your Docker Compose file, for instance if you
want to maintain two versions of your container setup, use the -f FILENAME option to the
docker-compose command. For instance: docker-compose -f docker-compose-alternate.
yml up -d.

Figure 2.14 Docker Compose has started the Python container, which runs a web server.

Chapter 2 ● The Raspberry Pi as a home automation gateway

● 51

If this works, take the container down:

docker-compose down

You can verify that there's no container running anymore:

docker ps

Normally this should list all running containers. If no container is running, you should see
an empty list.

Finally remove the YAML file, because it was just an example to illustrate how Docker
Compose works:

rm docker-compose.yml

If working with Docker Compose seems convoluted for now, give it some time to grow on
you. The advantage will become much clearer after a few chapters. At the end of this book,
you have your complete home automation setup defined in one docker-compose.yml file
and one directory. This means you can easily create a backup without the risk of forgetting
files. And you can easily recreate your whole home automation setup in a few minutes on
another Raspberry Pi if you want to move it to other hardware.

2.10 • Summary and further exploration

In this chapter you learned which Raspberry Pi models are suitable for home automation and
what the requirements for a reliable home automation gateway are. This is the foundation
upon which the rest of this book builds.

Then you installed Raspberry Pi OS Lite on your Raspberry Pi, learned to set up network
connectivity and SSH for remote access, and the basic setup steps to get your Raspberry
Pi up and running. There's much more to say about Raspberry Pi OS. If you want to feel
more comfortable on the command line of Raspberry Pi OS, I recommend you to buy an
introductory Linux book.

I also talked about the tmux terminal multiplexer. While it's not strictly necessary, you'll
soon find yourself executing many long-running commands and doing various tasks at
the same time. Tmux helps you to do this more efficiently: you can run multiple terminal
sessions in one window and even copy and paste text with a few keyboard shortcuts.

Control Your Home with Raspberry Pi

● 52

Because I use the Python programming language in this book, I also introduced you to
its package manager pip and Python virtual environments. Another important program
I'm using in this book is Docker: it's an easy way to run various services by running each
service in a separate container, isolated from all other containers. I'm especially a big fan
of Docker Compose because it lets you specify all your containers in one file.

There's a lot more to tell about Docker and Docker Compose, but the basics are in this
chapter, and in the various chapters in this book, I'll add more when you need to know it.

Ultimately, the main takeaway of this chapter is this: the Raspberry Pi is a powerful platform
to create a home automation gateway, and there are almost no limits to its flexibility.

Chapter 3 ● Secure your home automation system

● 53

Chapter 3 • Secure your home automation system

Security is an important topic in home automation. You don't want someone else controlling
your house or spying at home. That's why I advocate a fully open-source and self-sufficient
solution in this book. But these are just architectural choices that tend to result in a more
secure system. The devil is in the details, and the security of your system depends on a lot
of parameters.

People tend to forget that a home automation gateway, especially a Raspberry Pi, is a full-
blown computer. The advantage is that a Raspberry Pi can do a lot, but the disadvantage is
that it can be misused to do a lot of things in your house that you don't want.

In this chapter, I'll explain some steps you can take to keep your home automation
system secure: separating home automation devices on their network, user management,
encryption and authentication, keeping your packages up-to-date, and so on.1 I don't
cover all these topics in detail, because then this book would become a network and Linux
security book. But I'll explain enough to make your setup 'reasonably secure', which means
more secure than 99% of the home automation systems in the world.

Warning:
There's no such thing as 100% security. Software can be broken, people can make
mistakes, or you can just have bad luck. Even I had one of my servers been broken into
recently because I was lax with updating a web application on my webserver. And that's
after writing about Linux security for 20 years and after passing the LPIC-3 303 Linux
Enterprise Professional - Security exam. So you should expect that one day you'll face
malware or a break-in. The only thing you can do is make sure that the attacker will face
continuous hurdles and won't be able to do much when he's in your system.

3.1 • Some general computer security principles

There are a lot of general computer security principles, and writing about them would take
a complete book, but the topic is important enough to at least give you a general overview
of the things you should think about concerning the security of your home automation
system. I can't address all these principles in detail, but this way you know which concepts
you should read about when you're interested in more information. I'll refer to some of
these principles in the other sections of this chapter, where I talk about some concrete
steps you can take to secure your home automation system.

1	 Note that I talk about your home automation system here. That is, while this chapter
(and this book) focuses on your home automation gateway, you also have to think about the
security of your other devices and your network.

Control Your Home with Raspberry Pi

● 54

Note:
Most of these security principles are really common sense, so it's tempting to brush them
aside. Many of the biggest security vulnerabilities are the result of developers violating
these 'common sense' principles, so they are not as common as you would think. As
ordinary as these principles sound, please take a moment to think about them!

Minimize the attack surface
When security experts talk about attack surface, they mean everything that can be attacked.
In theory, this is everything. So what this principle comes down to in practice is: install only
the software you need and nothing else, and disable functionality that you don't need. You
already encountered this principle in Chapter 1 when I urged you to install the Lite version
of Raspberry Pi OS on your Raspberry Pi.

Keep It Simple Stupid (KISS)
This principle is also known as: "Complexity is the worst enemy of security". The more
complex your setup, the easier you'll make mistakes, forget to update a system, or you
just don't understand the security ramifications of your setup.2 The same principle holds
for specific software: using more complex software is a bigger risk (and has a bigger attack
surface) than using simple software. Keep your setup and your programs as simple as
possible.

Security is as strong as its weakest link
If you're installing highly secure software, keeping your packages up-to-date, running a
firewall, encrypting all network traffic, and so on, you're maybe confident enough to make
your Raspberry Pi available on the internet so you can control your devices at home when
you're outdoors. But this won't hold off attackers if you're using the Raspberry Pi's default
password or another very simple password. The whole chain of your security breaks as
soon as someone breaks the weakest link, in this case, a weak password.

The principle of least privilege
Each component and user should have the least privileges possible. If you want to follow
this principle to the letter, each program should be able to do exactly what it needs and
nothing more, and the same should hold for users. The reason is simple: if one system or
one user account has been compromised, it will be used as a stepping stone to attack other
systems. The fewer privileges the compromised system or user has, the less an attacker
can abuse the system to attack the rest of your network.3

Defense in depth
This is also called the castle approach. The idea is that in a Medieval castle the lord has

2	 This is actually a risk with the DIY approach I'm advocating in this book. If you don't
keep this principle in mind while enthusiastically building your home automation system, you
risk ending up with a complex amalgam of various interconnecting systems that you're not
equipped to handle.
3	 This is a principle that is very difficult to follow to the letter for specific programs, also
in this book. If you want to know more about ways to implement this, read about mandatory
access control (MAC), implemented by systems such as SELinux and AppArmor.

Chapter 3 ● Secure your home automation system

● 55

various layers of security to protect him from attackers: water, outer walls, inner walls,
and so on. In your home automation system, you should do the same. Don't trust only
one security measure such as a password to hold off attackers, but also implement IP
blacklisting, a firewall, TLS, and so on. If one layer of security is broken, the other ones are
still there to protect you.

3.2 • Isolate your home automation devices

Insecure home automation devices can be used as a stepping stone to attack the rest
of your network. One of the most powerful ways to decrease this risk is to isolate these
devices on their network. This is following the principle of least privilege: your home
automation devices shouldn't have access to your whole network. So if you isolate your
home automation devices and someone manages to break into one of them, he doesn't
have access to your main network, which contains your computers, smartphones, tablets,
and so on.

There are a couple of ways to isolate your devices, but they all need some network
infrastructure, which is out of scope for this book, so here's a general overview of how you
could do this.

3.2.1 • Physical isolation

The most drastic way to isolate your home automation devices is to put them on a network
that is physically isolated from the rest of your network, so there's no link (or a gatekeeper)
between them. In many cases, complete physical isolation is not possible or desirable,
because this means that you don't have access to your home automation devices or your
home automation dashboard from your computer and smartphone.

However, if you're particularly security-conscious, it is possible. You connect your Raspberry
Pi home automation gateway and all your networked home automation devices to one
switch, router, or wireless access point, which you connect to one Ethernet port of your
main router/firewall. Your main home network is connected to another Ethernet port of
your main router/firewall. And with the right firewall rules in your router, you forbid all
network traffic between both networks. This way your home automation gateway still
has internet access, which is needed for software updates and to collect information from
internet sources, but it doesn't have access to the rest of your network.

Of course, interacting with your home automation gateway becomes much more
troublesome this way, because the rest of your network doesn't have access to your home
automation network either. You can't connect to your Raspberry Pi from your computer
using SSH, because you're not on the same network. You could (temporarily) connect a
keyboard and monitor to the Raspberry Pi each time you have to administer it, but that's
not very user-friendly.

So if you choose full physical isolation, it's a good idea to connect a dedicated tablet to your
home automation network that you only use to administer your home automation gateway

Control Your Home with Raspberry Pi

● 56

and to view your home automation software's dashboard. For instance, you can mount this
tablet on the wall in your living room and let it run the browser app in fullscreen mode to
show the dashboard, and when you need to administer your gateway you take it from the
wall, connect a USB keyboard and use an SSH app to connect to your gateway and enter
commands.4

Many networked home automation devices will probably use Wi-Fi instead of Ethernet
these days. In this case, you only need a dedicated access point for your home automation
devices, preferably with one or more LAN (Ethernet) ports, so you can connect your
Raspberry Pi gateway using an Ethernet cable, and your other devices such as Shelly or
Sonoff devices or your dedicated home automation tablet connect to your access point
using Wi-Fi. The WAN port of your access point then goes to one of the LAN ports of your
main router/firewall. Make sure to firewall both networks in your main router, and check
that they can't access each other. A dedicated access point is a cheap and easy way to
create an isolated network for your home automation devices.

Some manufacturers are now selling so-called "IoT routers", specifically developed for this
purpose of isolating and securing a home automation network. Most of these are not open-
source, and you depend on the manufacturer for updates. If you're fine with that, buying
one of these is a good solution, but they're not cheap. In principle, you could also use any
general-purpose Wi-Fi access point for this purpose, as long as you can make sure that you
can keep it secure and that you update it regularly.

If you have an older Wi-Fi access point that you want to use for your home automation
network and it doesn't get any updates anymore from its manufacturer, chances are that
you can still use it securely after installing the alternative open-source firmware OpenWrt
(https://openwrt.org). This is the system I advocate: it's open-source and it supports a

4	 A popular open-source SSH app for Android is ConnectBot (https://connectbot.org),
and for iOS there's Blink Shell (https://blink.sh). Termius (https://termius.com) is also a pop-
ular choice for both iOS and Android. It's free but not open-source.

Figure 3.1 An isolated network for your home automation devices is the best security measure you can take.

https://openwrt.org
https://connectbot.org
https://blink.sh
https://termius.com

Chapter 3 ● Secure your home automation system

● 57

lot of Wi-Fi access points, new ones as well as older ones. OpenWrt also has a firewall
integrated, so you can further restrict what the connected devices are allowed to do.

If you want to take it up a notch, you can install extra software on OpenWrt to visualize
the network traffic on your home automation network. An interesting piece of software is
SPIN, which stands for Security and Privacy for In-home Networks (https://spin.sidnlabs.
nl). This open-source software for OpenWrt lets you visually inspect live network traffic of
devices on your network and you can even block suspicious or unwanted traffic or complete
devices in a couple of clicks.5

3.2.2 • VLANs

A VLAN or virtual local area network is a way to separate network devices that are
connected to the same physical network into different 'virtual' networks. This is called
'logical isolation', in contrast to the physical isolation of connecting your home automation
devices to a physically separate network than your other devices.

So by using VLANs, you don't need extra cables or access points, but you need a switch
that understands VLANs: a managed switch. Entry-level switches don't support VLANs. In
many situations, your router also needs to understand VLANs. A router running OpenWrt or
OPNsense (https://opnsense.org) supports VLANs.

There are various options to get your Wi-Fi devices on a specific VLAN. You could get a
separate Wi-Fi access point for your home automation devices and assign it to your home
automation VLAN by connecting it to a port on your switch with that VLAN ID. This way
all the network traffic from that access point is in that VLAN. Or you could set up separate

5	 The easiest way to install SPIN is by installing the Valibox firmware (https://valibox.
sidnlabs.nl) on supported hardware, such as the GL-Inet AR-150 or GL-Inet MT300A travel
routers, or even on a Raspberry Pi 3.

Figure 3.2 Install SPIN on an OpenWrt router to visually inspect live network traffic of your home automation
devices.

https://spin.sidnlabs.nl
https://spin.sidnlabs.nl
https://opnsense.org
https://valibox.sidnlabs.nl
https://valibox.sidnlabs.nl

Control Your Home with Raspberry Pi

● 58

SSIDs on a Wi-Fi access point: one for your home automation devices and another one for
your main network devices. You can then assign each SSID to a separate VLAN. However,
not every access point supports multiple SSIDs.

3.2.3 • Firewalls

Another way to isolate your home automation devices is by setting some firewall rules. A
firewall is software that blocks or allows network traffic based on specific rules. For instance,
you could configure your Wi-Fi lamp to talk to your home automation gateway and your
router, but not have access to the internet, nor any other devices on your network.

A firewall can be run on any network device, but often it runs on your main router that
connects all your local network devices to the internet. If you're running a combined router/
modem of your internet provider, that's the central place where you could configure firewall
rules. If you're running your router (for instance using OpenWrt or OPNsense) that is
connected to your internet provider's modem to connect to the internet, your firewall rules
should be configured on your router device.

Figure 3.3 With a managed switch you can logically isolate different parts of your physical network: the red
connections form one VLAN and the green connections another one.

Chapter 3 ● Secure your home automation system

● 59

You can also combine a firewall on one or more devices with the other types of network
isolation. For instance, you could isolate all your home automation devices using a separate
Wi-Fi access point, and then run a firewall on this access point that further restricts the
network connectivity of all devices on your home automation network. Maybe you want to
restrict your dashboard tablet's traffic so that you are only able to use it to connect to your
dashboard software running on your home automation gateway, as well as some other
traffic that you need for updates, DHCP, NTP and so on.

You can even run a firewall on a device such as your home automation gateway. On the
Raspberry Pi, you can do this with the iptables command, or the more user-friendly ufw
command. This way you can further restrict what devices can connect to your Raspberry
Pi. Even if you have a firewall running on your router, another firewall on your home
automation gateway is a sensible move, according to the defense in depth principle.

As iptables has a complex syntax, let's use ufw instead on your Raspberry Pi. The name
ufw stands for 'uncomplicated firewall'. The program comes from Ubuntu - the Linux
distribution that prides itself on being user-friendly. Install it with:

sudo apt install ufw

By default, the firewall is turned off. You can check this with:

sudo ufw status

This should show Status: inactive. Now enable it:

sudo ufw enable

You should get the message Firewall is active and enabled on system startup. A sudo
ufw status will show Status: active now.

Note:
If you get an error message, for instance, ERROR: problem running ufw-init, you have
probably updated the Linux kernel without restarting your Raspberry Pi, and ufw tries
to load a kernel module that doesn't match the currently running kernel version. Simply
reboot and try enabling ufw again.

You can get a more verbose status with:

Control Your Home with Raspberry Pi

● 60

sudo ufw status verbose

This should show you additionally that logging is on, and that the default firewall rules are:
deny (incoming), allow (outgoing), deny (routed). This means:

incoming
This is network traffic that is coming into your Raspberry Pi from other computers. It's
blocked by default (deny), which is a sensible move: if you accidentally run an insecure
service on your Raspberry Pi, it's not reachable from other computers, so it can't be
exploited.

outgoing
This is network traffic that is going from your Raspberry Pi to other computers or the
internet. It's allowed by default (allow), which makes sense: it would be a herculean
effort to deny all outgoing traffic by default and specify case by case which servers your
Raspberry Pi is allowed to reach.

routed
This is network traffic that is routed. This is blocked by default (deny) because it's only
useful on a router and you're using your Raspberry Pi as a home automation gateway.

Note:
The default firewall rules are more complex than what sudo ufw status verbose shows.
For instance, ufw adds firewall rules to allow ICMP packets (ping), mDNS (Bonjour) and
other low-level network traffic. You can see them all with sudo ufw show raw.

Now that you have enabled the firewall, it blocks most traffic, including SSH. So if you close
your SSH session now, you can't log in again. The first thing you should do is allow SSH.
Luckily you don't have to know which ports you have to open to allow SSH, because ufw
knows the concept of 'apps'. You can list all available apps with:

sudo ufw app list

You should see OpenSSH in the list. You can add firewall rules for OpenSSH with:

sudo ufw allow "OpenSSH"

Chapter 3 ● Secure your home automation system

● 61

Note:
The quotes around OpenSSH aren't required here, but you need them when an app has
a space in its name, such as WWW Secure.

This gives a message with two lines: Rule added and Rule added (v6), telling you that ufw
has added firewall rules for IPv4 and IPv6. If you now ask for a status again, you should
see two firewall rules added:

This shows you that incoming traffic to port 22 (where the OpenSSH server is running) is
allowed from anywhere.

Note:
If you want to know which ports the OpenSSH app rule allows before you allow the app,
you can ask this information using the sudo ufw app info "OpenSSH" command. This
also gives you a short description of the application.

If you later want to remove a firewall rule, this needs an extra step. First show all numbered
firewall rules:

sudo ufw status numbered

This shows a number before each firewall rule. Then you can delete a rule, for instance,
rule 1:

Figure 3.4 The status of the firewall shows that you have added two firewall rules for OpenSSH.

Control Your Home with Raspberry Pi

● 62

sudo ufw delete 1

You don't need the app rules. You can also add a rule for specific ports, such as:

sudo ufw allow 22

Or you can allow SSH access only from a specific IP address:

sudo ufw allow from 192.168.0.100 port 22

If you enable the firewall on Raspberry Pi OS, don't forget to allow traffic to the ports for
applications you install.

Warning:
If you publish ports for Docker containers, Docker bypasses the ufw rules so the published
ports can be accessed from outside. You can let ufw and Docker play nice with each
other, but that requires some work. See https://github.com/chaifeng/ufw-docker for an
explanation.

3.3 • User management

Many programs know the concept of a user. You can create multiple users, each of them
having specific permissions, having their own data or dashboard, … You must manage these
users securely. The most important security aspects of users are permissions, passwords,
and lifecycle.

3.3.1 • Permissions

Raspberry Pi OS has a default user, pi, which has quite broad permissions: you have access
to the GPIO pins, audio, video, you can run any command with root permissions with sudo,
and so on. It's important that you give this user as many permissions as it needs, but not
any more (the principle of least privilege). In practice, these broad permissions of the pi
user are needed because you have to be able to manage your system.

By default, the pi user on Raspberry Pi OS can run commands with root privileges using
sudo without having to enter the password. So if you're logged in on Raspberry Pi OS, you
leave your keyboard and someone passes by, he has full access to your system. To prevent
this, you can change the sudo configuration:

https://github.com/chaifeng/ufw-docker

Chapter 3 ● Secure your home automation system

● 63

sudo visudo /etc/sudoers.d/010_pi-nopasswd

This file has this line by default:

pi ALL=(ALL) NOPASSWD: ALL

Change this to:

pi ALL=(ALL) PASSWD: ALL

Note the difference: PASSWD instead of NOPASSWD. After you have saved this configuration,
every time you use sudo you will be asked your password.

Other programs can have their own permissions. Many programs know two types of users:
an administrator and a normal user. An administrator can manage the system, add, remove,
and edit users, and has full power over the system. Normal users have limited permissions:
they can use the system, but not manage it.

In this book, I use some software where user accounts and permissions are possible, but I
don't cover these permissions in detail. If you want to set specific permissions, you have to
look it up in the program's documentation.

3.3.2 • Passwords

One of the things you have to give some thought to is your password. The default password
of the pi user in Raspberry Pi OS is raspberry, and I already urged you to change it in
Chapter 2. If you keep this default password or change it to an easily guessable one, a
compromised device on your network can log into your Raspberry Pi. You want to avoid
that.

There are a lot of ways to choose a strong password, but keep in mind that you still have
to be able to remember it. The classical rules for a good password are:

•	 Use at least 12 characters.
•	 Use a mix of upper and lower case letters, numbers, punctuation, and special characters.
•	 Don't use an existing word, name, or date.

However, if you try to come up with a password according to these rules, you get something
like N%2SKYsjs%#W2PBV7%Aq. Are you able to remember this?

A better way is Diceware (http://world.std.com/~reinhold/diceware.html), which is a

http://world.std.com/~reinhold/diceware.html

Control Your Home with Raspberry Pi

● 64

method for picking passphrases using dice to select words at random from a word list. How
does this work? Each word in this list is preceded by a five-digit number, with all these digits
between one and six. This means that five dice rolls are enough to select a word from this
list. A passphrase with six of these words is quite secure, and for better security, you select
seven or eight words.

The upside of this rather arcane password generating process is that Diceware passwords
are quite easy to remember, such as "lather creasing boastful gradation opal verbally".
And although it contradicts the classical rule of not using existing words, it's quite hard to
crack because it's so long. A brute-force attack attempt on this six-word Diceware password
would take thousands of years. If you're paranoid, just add another word to get an attack
time of tens of millions of years, and another one for hundreds of billions of years.

The same rules hold for all your accounts. For instance, if one of the home automation
programs that you install, such as the Mosquitto MQTT broker, Node-RED or Home Assistant,
offers accounts, you should use them and secure them with a strong password.

Generally, it's not a good idea to use the same password for various services, because if
your password for one service is compromised the attacker also gets access to your other
services. But of course, it's difficult to come up with a unique strong password for many
services. In this case, you should use a password manager, such as Bitwarden (https://

Figure 3.5 Diceware is a strange but very effective way to generate secure passwords that are quite easy to
remember. This is a printout by the https://github.com/diafygi/diceware-prettyprint project.

https://bitwarden.com
https://github.com/diafygi/diceware-prettyprint

Chapter 3 ● Secure your home automation system

● 65

bitwarden.com). You get access to this password manager with one 'master password', and
the program stores all your other passwords. If you find this too much of a hassle for all
these accounts on your home automation gateway, a compromise could be that you use
the same password on all these accounts for Raspberry Pi OS, Mosquitto, Node-RED and so
on, but don't share it with other services such as your email account.

3.3.3 • Lifecycle

Each user account has a lifecycle: you create it, you use it, and you destroy it. However,
in practice, the destruction of a user account is regularly forgotten. This could become a
weak spot in your security: if you have forgotten that there's a user account lingering on
your system and if it has broad permission, someone breaking into it can get access to
your system.

That's why you should make it a habit to regularly check whether all accounts you have
created are still used. If not, then destroy the account. Each user is a possible entry point
into your system for an attacker.

One situation you should check is when you create a test account to test a new system.
After your test has succeeded, you create a regular account that you use. It's easy to forget
to destroy the test account then, and the risk is compounded when you chose an easy
password such as 'test' for this test account because you thought you would destroy this
account anyway.

3.4 • Encryption

If your Wi-Fi access point or one of your other network devices has been compromised, it
could snoop on your network traffic. That's why it's important to use encryption as much
as possible for your network connections, even on your local network: someone snooping
on your network traffic doesn't see the content of your traffic then, but only some garbled
data.

You already encountered an encrypted communication protocol in the previous chapter:
SSH. You use it throughout this book to log into your Raspberry Pi securely. SSH is so easy
to use that it's a no-brainer: you don't want to use another way to log in to your Raspberry
Pi remotely.

3.4.1 • Your threat model

There are two situations now, which are called threat models in security language:

You assume that your local network is trusted
If you trust your local network, it's not that important to have all traffic between devices on
your network encrypted. This can save you some work because setting up encrypted traffic
is not always that simple. You should still encrypt your traffic with the outside world, as you
can't trust it, but that's out of scope for this book.

https://bitwarden.com

Control Your Home with Raspberry Pi

● 66

You assume that your local network is untrusted
If you don't trust your local network, you should treat all network traffic on your local
network as internet traffic, and thus encrypt it. This is more work to set up, but it's an extra
hurdle for attackers if they manage to break into your network.

In this book, I assume more or less the second situation. I set up encryption (and
authentication) for all services that I describe.6 If you fully trust your local network, you
can skip these steps.

3.4.2 • TLS

Probably the most widely deployed encrypted communication protocol is TLS (Transport
Layer Security), previously (and even now still) known as SSL (Secure Sockets Layer).
This is generally used as part of HTTPS (HyperText Transfer Protocol Secure) to secure
communication to websites, but it can also be used as an encrypted wrapper around other
protocols, such as MQTT. The secure version of a protocol commonly gets an S at the end
of its name. So MQTTS is MQTT encrypted with TLS, just like HTTPS is HTTP encrypted with
TLS.

TLS is not only about encryption, but also about authentication: the server you connect
to shows a certificate, which 'proves' that the server you connect to is the server that you
think you connect to. This proof is given by a CA (Certificate Authority), that digitally signs
the server's certificate. Your operating system has a store of CA certificates it trusts, and
when it connects to a server with a TLS certificate signed by one of these CAs, it trusts this
connection; otherwise, it gives a warning or an error.

The problem with TLS on your local network is that you have to sign the certificates of your
servers yourself. So you have to create a TLS certificate for each of your servers and then
do one of the following:

Trust all the TLS certificates
You have to manually trust all your TLS certificates on all your client devices.

Trust your own CA
You have to create your own CA, let this CA sign all your TLS certificates, and manually trust
your own CA on all your client devices.

The second way is more maintainable because you only have to trust one CA once on each
of your client devices. After this, you can add new services on various devices with new TLS
certificates and they are automatically trusted by your client devices when they're signed
by your CA.

6	 Some of the services I describe don't support encryption and/or authentication
directly. In the appendix at the end of this book I describe a way to secure them.

Chapter 3 ● Secure your home automation system

● 67

Note:
TLS is used to create a certificate for a domain. This could be the domain of a public
website, but also a local domain for one of your computers on your local network. If you
want to use TLS on your local network, make sure you use hostnames and preferably set
up a local domain in your router's settings. In this book I use the domain home for all
computers on my network, so they have names such as raspberrypi.home, nas.home,
laptop.home, and so on.

3.4.3 • Setting up your own CA with mkcert

Setting up your own CA can be as simple or complex as you want. For the use case of
this book, a home setup with only a handful of devices that need a TLS certificate, I find
mkcert (https://github.com/FiloSottile/mkcert) a good choice. This program lets you create
a CA certificate and create and sign TLS certificates for your devices. It doesn't need any
configuration, and it runs on Windows as well as macOS and Linux. In this section, I assume
that you run mkcert on your Raspberry Pi that is your home automation gateway. If you
make another choice, you just have to copy some of the certificate files to the right device.

Unfortunately, mkcert is not in the Raspberry Pi OS package repository yet, so you have to
install the package manually. Visit its releases page (https://github.com/FiloSottile/mkcert/
releases) and search for the ARM version of the latest release. At the moment of writing
this book, this was mkcert-v1.4.1-linux-arm. Right-click on the version and copy the link.

Then on your Raspberry Pi, download the version with wget and make the program
executable. For the above version this is:

wget -O mkcert https://github.com/FiloSottile/mkcert/releases/download/
v1.4.1/mkcert-v1.4.1-linux-arm
chmod +x mkcert

To check whether it's installed correctly, run it with the --help option to see the usage
description:

./mkcert --help

This should show you the available commands and options.

https://github.com/FiloSottile/mkcert
https://github.com/FiloSottile/mkcert/releases
https://github.com/FiloSottile/mkcert/releases

Control Your Home with Raspberry Pi

● 68

3.4.4 • Creating a CA

First, create your CA:

./mkcert -install

Note:
Don't think there's something wrong when the program seems to be stuck: even on a
Raspberry Pi 4, it takes more than 10 seconds to generate the keys for the CA.

This will generate the CA keys, save them in /home/pi/.local/share/mkcert/rootCA-
key.pem (for the private key) and /home/pi/.local/share/mkcert/rootCA.pem (for the
public key), and ask for your password to install the latter in the Raspberry Pi OS trust store
(/usr/local/share/ca-certificates/).

Now the operating system on your Raspberry Pi trusts your CA, but you need this trust
too on all your devices that want to use TLS to communicate with your Raspberry Pi: your
laptop, your smartphone, and so on. To make this happen, you have to copy your CA

Figure 3.6 Mkcert is a simple tool to create TLS certificates for your local network.

Figure 3.7 Root CA certificate will be used to sign TLS certificates.

Chapter 3 ● Secure your home automation system

● 69

certificate to your other device.

Let's see how this goes on a Windows laptop. Open a command prompt in Windows and copy
the file from your Raspberry Pi to your computer with the scp command from OpenSSH:

scp pi@IP:.local/share/mkcert/rootCA.pem .

Instead of IP, use the IP address or hostname of your Raspberry Pi. The dot (.) at the end
of this command is the current directory. So make sure you know in which directory you
run this command, so you find the copied file afterwards.

Now you have to add the CA certificate to your web browser. In Firefox you open the menu
Edit and then Preferences (or the page about:preferences) and then go to Privacy &
Security. Scroll towards the bottom and click on View Certificates….

The window you're seeing now is the Certificate Manager. This shows the list of all
certificate authorities that Firefox trusts. Click on Import… and then select the rootCA.
pem file that you copied from your Raspberry Pi.

Before you trust the CA, click on View to examine the certificate. You're seeing a lot of
information about the CA certificate, including an SHA-256 fingerprint:

Figure 3.8 Always examine a CA certificate before you trust it.

Control Your Home with Raspberry Pi

● 70

Now enter the following command on your Raspberry Pi:

openssl x509 -in ~/.local/share/mkcert/rootCA.pem -noout -sha256 -fingerprint

Compare this fingerprint to the one in Firefox. If they match, enable Trust this CA to
identify websites in the import window of Firefox and click OK. Afterwards, you should
see your CA certificate in the list, under mkcert development CA. Restart Firefox to make
it trust all certificates signed by this CA.

3.4.5 • Creating and signing a certificate

Now that you have created a CA and trust it on your clients, you can create a TLS certificate
for the services on your Raspberry Pi. Use your Raspberry Pi's hostname and optionally add
the hostname with the domain of your local network. For instance, my Raspberry Pi has
the hostname pi-red and the domain of my local network is home, so I create a certificate
with the following command:

Figure 3.9 After trusting your CA certificate, as added to the list of CAs in Firefox.

Chapter 3 ● Secure your home automation system

● 71

./mkcert pi-red.home pi-red

Generating the keys takes a while, and afterwards the program shows you where it has
created the private key (for instance pi-red.home+1-key.pem) and the certificate (for
instance pi-red.home+1.pem).

Now to make it easier to use the TLS certificates in your services, copy the relevant files
(the key, the certificate, and the CA certificate) to a separate directory:

mkdir -p /home/pi/containers/certificates
cp pi-red.home+1-key.pem ~/containers/certificates/key.pem
cp pi-red.home+1.pem ~/containers/certificates/cert.pem
cp ~/.local/share/mkcert/rootCA.pem ~/containers/certificates

How you use these certificates depends on the services you start. I'll explain this in the rest
of this book in the relevant sections.

3.4.6 • Keeping your root CA key secure

Currently, mkcert doesn't secure the root CA certificate you create with a password.7 This
means that everyone who gets access to your Raspberry Pi, can find your root CA key in
~/.local/share/mkcert/rootCA-key.pem and sign certificates with it that are trusted by
your devices. According to mkcert's developer, mkcert is meant to be used for development
certificates, not for "production use". However, for this book, I find mkcert a convenient
way to add TLS certificates.

I suggest some extra measures to keep your root CA key secure. I have shown here how
you generate certificates on your home automation gateway, but it's better to do this on a
separate Raspberry Pi or another computer that is not connected to a network. Then you

7	 https://github.com/FiloSottile/mkcert/issues/122

Figure 3.10 Creating and signing a certificate is easy with mkcert.

https://github.com/FiloSottile/mkcert/issues/122

Control Your Home with Raspberry Pi

● 72

put the generated server certificate and key file on a USB stick and copy it to the device
it's meant for.

You can reach even better security if you encrypt your root CA key and decrypt it before
each use. However, that's out of scope for this book. Consult some online documentation
about OpenSSL (https://www.openssl.org) if you want to know more about this.

3.5 • Keeping your software up-to-date

Software is never ready. And I'm not only talking about features, in this chapter I'm talking
about security. Every piece of software contains security vulnerabilities, and each day many
of these are found. The developers then release a new version that fixes the vulnerability,
but that's no use if you don't update your software to this new version.

That's why it's important to keep all your software up-to-date, not only on your computer
and mobile devices but also on your home automation gateway and other devices. The
Raspberry Pi that you use as your home automation gateway is the digital centre of your
home, so you must keep it up-to-date to fix security vulnerabilities as soon as they are
discovered.

3.5.1 • Update apt packages

The basic system packages and some of the ones that I use in this book are installed with
the apt package manager. Just entering a sudo apt instal foobar to install a package
and then forgetting about it is not very secure.

To update all packages that you have installed with apt to their latest available version, you
first have to update the available information about the newest packages:

sudo apt update

It's important to think about what this does: this command doesn't update the packages on
your system; it updates the information it has about all available packages.

Figure 3.11 Update the information about available package versions with apt update.

https://www.openssl.org

Chapter 3 ● Secure your home automation system

● 73

So now that Raspberry Pi OS has updated its information about the available package
versions, the next step is to upgrade the outdated packages. At the end of the apt update
command, you already get a message that you can list the upgradable packages with the
apt list --upgradable command. You can type this command to have a look, or just
upgrade them with:

sudo apt upgrade

This will first show you which packages will be upgraded, which new ones will be installed
(because they are needed by newer versions of packages you have installed), how much
data will be downloaded, and how much additional disk space will be needed. It then asks
you for your confirmation. Press Enter to start the upgrade process.

After all the updates have been downloaded and installed, your operating system is up-to-
date again.

Of course, you can now regularly execute a sudo apt update && sudo apt upgrade
command to update your packages, but the chances are that you will forget this after
a while. So another option is to configure Raspberry Pi OS to automatically update all
packages.

Figure 3.12 Upgrade all packages to the latest available versions with apt upgrade.

Control Your Home with Raspberry Pi

● 74

Warning:
It sounds like a no-brainer to automatically update all packages, but be aware that
with each update you risk breaking a working system. So if you depend on your home
automation gateway to automatically close your blinds, send you notifications and so on,
you risk these things suddenly stopping working because an automatic update has broken
something.

Automatically updating all apt packages can be done with the unattended-upgrades
package. Install it:

sudo apt install unattended-upgrades

Then open the configuration file:

sudo nano /etc/apt/apt.conf.d/50unattended-upgrades

Now you see a lot of lines that are commented out with two slashes (//). If you ignore these
(because they aren't active) and only look at the other ones, you should see something
like this:

Unattended-Upgrade::Origins-Pattern {
 "origin=Debian,codename=${distro_codename},label=Debian";
 "origin=Debian,codename=${distro_codename},label=Debian-Security";
};

However, as you're using Raspberry Pi OS and not Debian, these lines don't apply. You
should replace this block by:8

Unattended-Upgrade::Origins-Pattern {
 "origin=Raspbian,codename=${distro_codename},label=Raspbian";
 "origin=Raspberry Pi Foundation,codename=${distro_codename},label=Raspberry
Pi Foundation";
 "origin=Docker,archive=${distro_codename},label=Docker CE";
};

8	 How do you know these values? Just look at the output of the apt policy command.
This gives you the origin, label, codename and archive values you need to fill in. Also read the
comments in the beginning of the configuration file of unattended-upgrades.

Chapter 3 ● Secure your home automation system

● 75

Now uncomment the following line:

//Unattended-Upgrade::Mail "";

And fill in the email address where unattended-upgrades sends it reports:

Unattended-Upgrade::Mail "root";

Just use root to send the emails to the local root user. If you have configured Raspberry
Pi OS to forward emails for local users to your email address (see Chapter 11), you will
receive a report of updated packages in your mailbox.

Save your changes, and after this check unattended-upgrades manually with:

sudo unattended-upgrades --dry-run --debug

If all goes well, Raspberry Pi OS should check for updates daily, install the available updates,
and send you an email with a report.

Figure 3.13 The unattended-upgrades package can send you an email on each automatic upgrade it installs

Control Your Home with Raspberry Pi

● 76

3.5.2 • Update Docker images

In this book, a lot of services are installed in Docker containers. This means that you have
to update these Docker images too. You can see the list of currently downloaded images
with:

docker images

Because I'm using Docker Compose in this book and all Docker containers are defined in
the file docker-compose.yml in the home directory of the user pi, updating the images is
as easy as:

docker-compose pull

The command now downloads (pull) the newest version of the images of all containers
defined in your Docker Compose file. After this command exits, you can verify this by
running docker images again. The Created column should show today instead of some
time in the past.

Now your images have been updated, but if the containers are running they are still using
the old version of the image. So you have to restart the containers:

docker-compose restart

After this command, the containers use the updated images. The older images can now be
deleted to free some disk space:

docker image prune -f

Note:
Some programs can automatically update all your Docker containers, but I won't
recommend this because it can break your services if you upgrade to a version with
breaking changes in configuration file formats. If you want to do this, you can install
watchtower (https://containrrr.github.io/watchtower/) or ouroboros (https://github.com/
pyouroboros/ouroboros).

https://containrrr.github.io/watchtower/
https://github.com/pyouroboros/ouroboros
https://github.com/pyouroboros/ouroboros

Chapter 3 ● Secure your home automation system

● 77

3.5.3 • Update pip packages

If you've installed Python packages with pip, you can upgrade them too. First upgrade pip
itself:

sudo pip3 install --upgrade pip

Then you can list the outdated packages with:9

sudo pip3 list --outdated

You can upgrade them individually with sudo pip3 install --upgrade PACKAGENAME, or
upgrade all outdated packages with:

sudo pip3 install --upgrade $(sudo pip3 list --outdated|tail -n +3|awk ⏎
'{printf $1" "}')

Warning:
Updating Python packages this way may clash with Python packages that you installed
as apt packages. This is one of the reasons I prefer to run most software in Docker
containers: this will never break the Raspberry Pi OS packages.

If you have created virtual environments, you have to do repeat the same actions in all
your virtual environments, but without sudo. That is, activate your virtual environment (see
Chapter 2), upgrade pip, upgrade all Python packages, and then deactivate your virtual
environment.

3.5.4 • Update manually installed packages

Sometimes a package is not yet in the Raspberry Pi OS repositories or Python's PyPI
packages. You can manually install it then, for instance by downloading the source code
and compiling and installing it.10 But you are responsible then for updating it too. That's
why I try to avoid this approach in this book.

9	 Drop the sudo if you want to upgrade the Python packages that you installed only
for the local user.
10	 The installation of mkcert earlier in this chapter was an example that required a
manual install.

Control Your Home with Raspberry Pi

● 78

If you do this, make sure to regularly check whether there's a new release and download it.
If you're using a program that doesn't have releases, you probably downloaded its source
code initially with a git clone command and then compiled and installed it. Make sure then
to regularly do a git pull in the source code directory to download the latest changes from
the Git repository and recompile and reinstall it.

3.5.5 • Update your home automation devices

Your home automation devices also run software, and it's easy to forget this because these
devices don't look like a computer. But you must keep them up-to-date too. Generally,
the software on these devices is called firmware. So you should regularly consult the
manufacturer's website for firmware updates and look up how you install these on your
devices.

The same holds for your network devices, actually, such as your routers, Wi-Fi access
points, and so on. Consult their manufacturer's websites and update them. Many of these
network devices can (manually or automatically) check for updates, so it's quite easy to
keep them secure, as long as the device gets updated. If your router or access point doesn't
receive updates anymore from its manufacturer, you could try installing OpenWrt on it.

3.6 • Summary and further exploration

These were quite some pages about security, but I hope you agree with me that it's an
important topic to think about when you're building an home automation system. That's
also why I have discussed this topic so early in this book.

First, it's important to know that the basics of computer security are not that difficult. They
are embodied in general principles such as minimizing the attack surface, Keep It Simple
Stupid (KISS), security being as strong as its weakest link, the principle of least privilege,
and defense in depth. If you are only able to remember one thing, it should be these five
computer security principles.

The next step should be to isolate your home automation devices, be it by connecting them
on their own physical network, VLAN and/or with a firewall. User management is also an
important topic: have all the user accounts the right permissions and strong passwords and
don't you keep them lingering when they're not needed anymore?

Encryption is another important topic. You already used it in the previous chapter to log into
your Raspberry Pi from your computer with SSH. In this chapter, I walked you through the
foundation of TLS encryption. You'll heavily use this in the rest of this book to encrypt the
connection to all your home automation services.

And last but not least I talked about the importance of keeping your software up-to-date.
Unfortunately, there's no one-size-fits-all solution to this, and that's why I covered how to
keep software updated you installed with apt, Docker, pip, and git.

Chapter 3 ● Secure your home automation system

● 79

There's much more to tell about computer security, but with this chapter, you already have
a good foundation. If you want to delve deeper into it, I recommend you to buy some books
about network security and Linux security. But above all, try to break into your systems:
it's the best way to learn how to secure them.

Control Your Home with Raspberry Pi

● 80

Chapter 4 • MQTT (Message Queuing Telemetry Transport)

In this chapter, you'll learn how to work with MQTT, a lightweight network protocol for data
exchange. MQTT is a perfect protocol for a modular home automation system because it's
supported by various home automation systems and programs. As such, MQTT works as
the 'glue' to connect different parts of a heterogeneous system.

First I'll give you an overview of what MQTT is. Then I show you how to install and
configure an MQTT server on your Raspberry Pi, including a secure setup with encrypted
communication (using TLS), authentication, and an access control list (ACL). I show you
how you send and receive messages with a couple of MQTT clients (both command line and
graphical client) and explain how you can write Python programs to communicate using the
MQTT protocol.

4.1 • What is MQTT?

The first version of MQTT (which stands for Message Queuing Telemetry Transport) already
dates from 1999. The original designers envisioned a protocol that could efficiently use
available network bandwidth to send various types of data with all sorts of Quality of
Service (QoS). Back in 2009, one of the inventors of MQTT, IBM's Andy Stanford-Clark,
already showed the world the potential of MQTT for home automation by linking his home
automation system to Twitter using MQTT.

4.1.1 • Central intermediary

The following parties take part in MQTT communication:

•	 the broker, which acts as a central intermediary that handles all communication;
•	 clients, who are:
•	 publishers, who send data using the MQTT protocol
•	 subscribers, who subscribe to specific topics and receive the relevant messages

You already see that MQTT has its own jargon: traditionally the broker would be called a
server, the publishers senders and the subscribers receivers.

A broker can have multiple clients, and a client can be both publisher and subscriber.
The broker works as an intermediary so publishers and subscribers don't have to know of
each other's existence. This works like this: each MQTT message has a topic (comparable to
a URI for a web page, see the next subsection) and a payload (the content of the message).
If a subscriber is interested in receiving the content of a specific topic, it connects to the
MQTT broker and subscribes to that topic.

Now when a publisher sends a message to the MQTT broker, the broker forwards the
message to all clients that are subscribed to the topic. The clients don't even see which
publisher has sent the topic.

Chapter 4 ● MQTT (Message Queuing Telemetry Transport)

● 81

Note:
MQTT topics are case sensitive: foo/bar is another topic than Foo/bar.

4.1.2 • Hierarchical names

You could consider a topic as a sort of a name that clients can use to publish data or
subscribe to receive data. But to bring some order in this naming, MQTT defines topics as
hierarchical names: a topic consists of components separated by a slash (/), such as in
URIs or Linux file paths.

Warning:
There's one essential difference: an MQTT topic never starts with a slash. If you start a
topic with a slash, it's a topic with an empty first component.

Apart from being hierarchical, the names can be chosen freely. Applications are free to
use their naming conventions. So in contrast to URIs, there's no specific list of top-level
domains.

For instance, the home automation system Home Assistant (which I'll cover in Chapter 10)
uses the following convention for its MQTT topics about the state of components:

<discovery_prefix>/<component>/[<node_id>/]<object_id>/state

Here <discovery_prefix> defaults to homeassistant (you choose this prefix in your
configuration of Home Assistant), <component> is the type of component (such as binary_
sensor, sensor, switch and so on), <node_id> is an optional ID of a node, and <object_
id> is the ID of the object.

As an example, if you have a temperature sensor in your bedroom that sends its sensor
value to MQTT, it could publish a message to the homeassistant/sensor/bedroom_
temperature/state topic, which would have a value such as 18.7.

Another architectural proposal to try to bring some conventions in the topic names is
mqtt-smarthome (https://github.com/mqtt-smarthome/). It defines some conventions for
topics, such as:

https://github.com/mqtt-smarthome/

Control Your Home with Raspberry Pi

● 82

	 toplevelname/status/itemname
		 Report states (values from sensors, feedback from actuators).
	 toplevelname/set/itemname
		 Request state changes by publishing a new value.
	 toplevelname/get/itemname
		 Actively request values from a device.
	 toplevelname/command
		 Request to execute a specific command.
	 toplevelname/connected
		 Report the connection status of a program or device.

Various projects follow the mqtt-smarthome conventions. A list can be found on https://
github.com/mqtt-smarthome/mqtt-smarthome/blob/master/Software.md.

4.1.3 • Using wildcards

A very convenient feature of MQTT are wildcards for topics. For instance, a client which is
interested in all topics below homeassistant/sensor/bedroom_temperature, subscribes
to homeassistant/sensor/bedroom_temperature/#. Apart from messages with the
homeassistant/sensor/bedroom_temperature/state topic, the subscriber then also
receives messages with the topics homeassistant/sensor/bedroom_temperature/last_
updated, homeassistant/sensor/bedroom_temperature/last_changed and so on.

If a client is interested in all topics of Home Assistant, it subscribes to homeassistant/#.
And a client that wants to receive all topics of the MQTT broker just subscribes to #: this is
the ultimate wildcard that covers all topics.

But sometimes you're interested in all topics with a specific component in the lowest level,
for instance, all topics below homeassistant/sensor that end on last_changed. That's
where you use the + wildcard. So if you are interested in all messages about the last
changes of all sensors in Home Assistant, you subscribe to homeassistant/sensor/+/
last_changed. Thanks to the hierarchical nature of MQTT topics, this is very easy.

Figure 4.1 Sensors can publish their values to specific MQTT topics, while dashboards and other software can
subscribe to topics with wildcards.

https://github.com/mqtt-smarthome/mqtt-smarthome/blob/master/Software.md
https://github.com/mqtt-smarthome/mqtt-smarthome/blob/master/Software.md

Chapter 4 ● MQTT (Message Queuing Telemetry Transport)

● 83

4.2 • Installing and configuring the Mosquitto MQTT broker

A well-known open-source MQTT broker is Eclipse Mosquitto (https://mosquitto.org), which
implements MQTT protocol versions 5.0, 3.1.1, and 3.1 and supports plain (unencrypted)
MQTT, MQTT over TLS, MQTT over TLS with a client certificate, MQTT over WebSocket and
MQTT over WebSocket with TLS.

You're going to install Mosquitto in a Docker container on your Raspberry Pi and use it as
the MQTT broker for all other home automation software in this book. But first create some
directories for Mosquitto's configuration, data, and logs:

mkdir -p /home/pi/containers/mosquitto/{config,data,log}

On the next few pages I'll explain the installation and configuration of two setups:

•	 A basic setup without encryption, authentication or access control for plain MQTT and
MQTT over WebSocket

•	 A secure set up with encryption, authentication, and access control for MQTT over TLS
and MQTT over WebSocket with TLS.

Depending on your threat model (see Chapter 3), you choose the first setup if you trust all
devices on your network and the second setup if you don't.

Note:
If you created a CA and server certificate for your Raspberry Pi in Chapter 3, the addition
of TLS encryption and authentication is not that difficult, so I encourage you to use the
secure setup.

4.2.1 • A basic Mosquitto setup

Even if you want to have a secure MQTT setup, first try a basic setup without encryption
and authentication. Create a basic configuration file:

nano /home/pi/containers/mosquitto/config/mosquitto.conf

Add the following lines in this file:

https://mosquitto.org

Control Your Home with Raspberry Pi

● 84

port 1883
listener 9001
protocol websockets
persistence true
persistence_location /mosquitto/data/
log_dest file /mosquitto/log/mosquitto.log

This configures Mosquitto to both use plain MQTT on port 1883 as MQTT over WebSocket
on port 9001.

Now create a docker-compose.yml file in your home directory with the following content:

version: '3.7'

services:
 mosquitto:
 image: eclipse-mosquitto
 container_name: mosquitto
 restart: always
 ports:
 - "1883:1883"
 - "9001:9001"
 volumes:
 - ./containers/mosquitto/config:/mosquitto/config
 - ./containers/mosquitto/data:/mosquitto/data
 - ./containers/mosquitto/log:/mosquitto/log
 - /etc/localtime:/etc/localtime:ro
 user: "1000:1000"

This exposes ports 1883 (for plain MQTT) and 9001 (for MQTT over WebSocket) and
forwards the same ports on your Raspberry Pi to the Docker container. It also mounts the
directories you created so they become available in the container. At the end you specify
that the container is run as the user with user ID 1000 and group ID 1000, which is the pi
user. This prevents the permissions problem when Mosquitto tries to write to the log file.

Note:
This Docker Compose file also mounts the /etc/localtime file on your Raspberry Pi on
the same file in the container. This is one way to synchronize the time zone between the
Raspberry Pi OS and your container.

Chapter 4 ● MQTT (Message Queuing Telemetry Transport)

● 85

Now start the container:

docker-compose up -d

Your Raspberry Pi is now running an MQTT broker.

4.2.2 • Testing your setup with the Mosquitto clients

The Mosquitto project also develops two client programs, which are convenient for quick
tests. Install them like this:

sudo apt install mosquitto-clients

This installs two programs:

A publisher: mosquitto_pub
This publishes a single message on a specified topic and exits.

A subscriber: mosquitto_sub
This subscribes to specified topics and shows all messages that it receives from the broker
on these topics.

Now start tmux and open two panes next to each other. In the first pane, subscribe to all
topics:

mosquitto_sub -t '#'

In the second pane, publish a message:

mosquitto_pub -t 'test/foobar' -m 'test message'

You specify the topic with the -t option and the payload with the -m option.

As soon as the mosquitto_pub command runs (and immediately exits), you see the test
message appearing in the first pane. The mosquitto_sub command keeps listening for
messages until you interrupt it with Ctrl+c.

You entered these commands on the same Raspberry Pi, but you can do the same on other

Control Your Home with Raspberry Pi

● 86

Raspberry Pis or Linux computers. If you're subscribing or sending to an MQTT broker on
another machine, you just have to add the hostname of the broker with the -h HOSTNAME
option, where you change HOSTNAME to the relevant hostname.

Warning:
Because you don't have set up authentication, using Mosquitto with this configuration
means that every device on your network can subscribe to all messages sent to the MQTT
broker. And because you don't have set up encryption, MQTT traffic could be sniffed by
some devices on your network.

The mosquitto_sub command has a couple of other interesting options:

-v
This not only shows the payload but also the topic for each message.

-F
This lets you show you each message in a specific format.

For instance, the following command shows all messages with a timestamp, their topic and
payload:

mosquitto_sub -F '@Y-@m-@dT@H:@M:@S : %t : %p' -t '#'

4.2.3 • A secure Mosquitto setup

Let's now add encryption, authentication and access control. Change Mosquitto's
configuration file mosquitto.conf to:

MQTT over TLS
port 8883
cafile /mosquitto/config/certs/rootCA.pem
keyfile /mosquitto/config/certs/key.pem
certfile /mosquitto/config/certs/cert.pem

MQTT over WebSocket over TLS
listener 9091
protocol websockets
cafile /mosquitto/config/certs/rootCA.pem
keyfile /mosquitto/config/certs/key.pem
certfile /mosquitto/config/certs/cert.pem

Chapter 4 ● MQTT (Message Queuing Telemetry Transport)

● 87

Authentication and access control
password_file /mosquitto/config/passwords
allow_anonymous false
acl_file /mosquitto/config/acl

Miscellaneous
persistence true
persistence_location /mosquitto/data/
log_dest file /mosquitto/log/mosquitto.log

This configures Mosquitto to both use port 8883 for MQTT as well as port 9091 for MQTT
over WebSocket.

Note:
Port 8883 is reserved for MQTT over TLS. There's no such reserved port for MQTT over
secure WebSocket, so you're free to choose one.

Both for the MQTT as the WebSocket part, you define the location of the CA file, key file,
and certificate file for TLS.1

After this comes the authentication part. You define the location of the password file, and
the line allow_anonymous false makes sure that you need to supply a username and
password to the MQTT broker to be able to connect. Then you define an ACL file (access
control list), in which you limit what topics specific users can subscribe and publish to.

Now create a password file with a user home. You can do this with the mosquitto_passwd
program:

docker exec -ti mosquitto /usr/bin/mosquitto_passwd -c /mosquitto/config/⏎
passwords home

Note:
I run the mosquitto_passwd program in the Docker container, so the path to the password
file is relative to the Docker container too: /mosquitto/config/passwords and not /home/
pi/containers/mosquitto/config/passwords.

Enter a password and re-enter it. Now the content of the password file (/home/pi/
containers/mosquitto/config/passwords) looks something like this:

1	 You copied these there in the previous chapter

Control Your Home with Raspberry Pi

● 88

home:6OUhCo1IlgIUa0oZt$tAP79TwdJj2o50u86K/
YvyZYtXD7C8bfKP6kggxPCip+Bg30UtdiGVJJLJ4OTjehhOIVIAXBo8l43hH3DOB4QA==

This is a hashed version of the password you entered.

In the same way, you can add other users with their password.

Warning:
Don't use the -c option to the mosquitto_passwd command for the other users: this
creates the password file again and overwrites your existing users.

Now create the ACL file:

nano /home/pi/containers/mosquitto/config/acl

Here you specify what topics each user can subscribe and publish to. This is a way to
implement the principle of least privilege (see the previous chapter).

To keep tests in this book easy, I always use the same user, home, for all MQTT clients.
If you want to give the user home read and write access to all MQTT topics, the ACL file
should be:

user home
topic #

I recommend testing your Mosquitto setup with this ACL file first. If this works, you can
refine the ACL. For instance, you could give an app for your voice control system only
access to the specific MQTT topics to get the intent behind your voice command and to send
a voice message to your text to speech engine (see Chapter 12 for this app):

user rhasspy-app-time
topic read hermes/intent/GetTime
topic write hermes/tts/say

Of course, you have to create a password for this user then and let the program authenticate
to the MQTT broker with the rhasspy-app-time username and the relevant password. If
this app tries to subscribe to another topic or send a message to another topic than is

Chapter 4 ● MQTT (Message Queuing Telemetry Transport)

● 89

specified in the ACL, it won't be able to.

You can also use wildcards in the topic, for instance:

user bt-mqtt-gateway
topic write bt-mqtt-gateway/#

user temperature-dashboard
topic read bt-mqtt-gateway/+/+/temperature
topic read rtl433/+/+/+/temperature_C

If you don't add read or write before the topic, Mosquitto will give read and write
permissions to the user, such as in the broad topic # permissions I gave to the user home
earlier.

Note:
I won't create a user and access control list for every application or service in the rest of
this book. This all depends on your specific set up and threat model. Just remember to
revisit this section from a time when you've configured a service and want to secure it
further.

Now change your docker-compose.yml file for Mosquitto to:

version: '3.7'

services:
 mosquitto:
 image: eclipse-mosquitto
 container_name: mosquitto
 restart: always
 ports:
 - "8883:8883"
 - "9091:9091"
 volumes:
 - ./containers/mosquitto/config:/mosquitto/config
 - ./containers/mosquitto/data:/mosquitto/data
 - ./containers/mosquitto/log:/mosquitto/log
 - ./containers/certificates:/mosquitto/config/certs:ro
 - /etc/localtime:/etc/localtime:ro
 user: "1000:1000"

Control Your Home with Raspberry Pi

● 90

This exposes ports 8883 (for MQTT over TLS) and 9091 (for MQTT over WebSocket over
TLS) and additionally mounts the volume with your certificate files.

Note:
The volume with the certificate files is mounted read-only. You don't want them to be
changed accidentally.

Now start the container:

docker-compose up -d

Your Raspberry Pi is now running an MQTT broker with all communication encrypted by
TLS, and all clients need to supply the right username and password to be able to connect.

4.2.4 • Testing your secure setup with the Mosquitto clients

Test this setup again with two panes next to each other in tmux. In the first pane, subscribe
to all topics. Try it first as you did with the non-secured setup:

mosquitto_sub -t '#'

You get the message Error: Connection refused because mosquitto_sub by default
connects to the unencrypted port 1883. So add the right port:

mosquitto_sub -p 8883 -t '#'

This doesn't show a message, so you could think subscribing worked. But it hasn't, because
by default mosquitto_sub doesn't use TLS for the connection. To use TLS, you have to add
an option with the path of the CA file:

mosquitto_sub -p 8883 --cafile ~/containers/certificates/rootCA.pem -t '#'

This gives the message Error: A TLS error occurred. because you didn't specify the
hostname, and the certificate is only valid for the hostname of your Raspberry Pi that
you specified while generating it (see Chapter 3). So add it (replace HOSTNAME with the
hostname of your Raspberry Pi):

Chapter 4 ● MQTT (Message Queuing Telemetry Transport)

● 91

mosquitto_sub -h HOSTNAME -p 8883 --cafile ⏎
~/containers/certificates/rootCA.pem -t '#'

This gives the message Connection Refused: not authorised. That's because you didn't
supply a valid username and password. So finally add these:

mosquitto_sub -h HOSTNAME -p 8883 --cafile ⏎
~/containers/certificates/rootCA.pem -u home -P PASSWORD -t '#'

If you have added the correct username and password, you don't get an error message but
the program has been able to subscribe to all topics and is listening to incoming messages.
If your username and/or password were wrong, you get the Connection Refused: not
authorised message again. So now you have verified that only the authorized user can
connect to your MQTT broker.

In the second pane, publish a message, with the same parameters for the hostname, port,
CA file, username, and password:

mosquitto_pub -h HOSTNAME -p 8883 --cafile ⏎
~/containers/certificates/rootCA.pem -u home -P PASSWORD -t 'test/foobar' ⏎
-m 'test message'

As soon as the mosquitto_pub command runs (and immediately exits), you see test
message appearing in the first pane. The mosquitto_sub command keeps listening for
messages until you interrupt it with Ctrl+c.

Warning:
Make sure you perform these tests with a username that has the permission to subscribe
or publish to your test topic. If you use a valid username and password but the user
doesn't have the topic you subscribe to in his access control list, mosquitto_sub just
doesn't show anything, not even an error message. Publishing to a topic your user doesn't
have in his access control list has the same effect: mosquitto_pub will just exit silently
without publishing anything. If you have forgotten that you're using an access control list,
this behaviour can be puzzling.

You entered these commands on the same Raspberry Pi, but you can do the same on other
Raspberry Pis or Linux computers. The commands are the same, as long as you use the
right hostname, and you probably have to change the path to your root CA because you
have copied it to another location on the other computer.

Control Your Home with Raspberry Pi

● 92

Note:
If you want to verify whether the network traffic between the MQTT client on your computer
and the MQTT broker on your Raspberry Pi is encrypted, start a network sniffer such as
Wireshark (https://www.wireshark.org) on your computer and add the display filter tcp.
port==8883. You should only see encrypted TLS traffic.

4.2.5 • Default options for Mosquitto clients

Repeating all those options (hostname, port number, CA file, username, and password) each
time you execute the mosquitto_pub and mosquitto_sub commands is a bit cumbersome.
Luckily, you can create a configuration file with default options that will be used if you don't
specify them on the command line. First create a configuration file for mosquitto_sub:

nano ~/.config/mosquitto_sub

Now enter each of the parameters on their own line:

-h HOSTNAME
-p 8883
--cafile /home/pi/containers/certificates/rootCA.pem
-u home
-P PASSWORD

Note:
Make sure you use the full path to the root CA file: /home/pi/containers/certificates/
rootCA.pem instead of containers/certificates/rootCA.pem. If you use the latter, the
mosquitto_sub command will only work when you're in your home directory.

After this, you can just execute the mosquitto_sub command as if you would do with an
unsecured setup:

mosquitto_sub -t '#' -v

The connection works now because mosquitto_sub reads all the extra options from its
configuration file. If you also want this to happen with its counterpart mosquitto_pub, just
create the following symbolic link:

https://www.wireshark.org

Chapter 4 ● MQTT (Message Queuing Telemetry Transport)

● 93

cd ~/.config
ln -s mosquitto_sub mosquitto_pub

This creates a symbolic link mosquitto_pub linking to the file mosquitto_sub, both in the
~/.config directory. The mosquitto_pub command reads its default configuration from
the file ~/.config/mosquitto_pub, which is the same file as the ~/.config/mosquitto_
sub file that you created with nano.

In the rest of this book, I use the short commands for mosquitto_pub and mosquitto_sub.
You can do the same if you put all the connection parameters in this configuration file.

4.3 • Using graphical MQTT clients

You can now send messages to your MQTT broker and receive messages with a command
line MQTT client. While the Mosquitto clients are useful for quick tests of your MQTT setup,
you don't get a good overview of what is happening on your MQTT broker. So let's look at
some graphical clients.

These clients can run on your home automation gateway or another Raspberry Pi or
computer, as long as they have access to your gateway in your local network.

4.3.1 • MQTT.fx

A nice graphical client is MQTT.fx (https://mqttfx.jensd.de), which is written in Java and
runs on all major operating systems. You can find pre-compiled binaries for Windows,
macOS, and Linux on its website.

When you run MQTT.fx for the first time, add a connection profile for your MQTT broker.
Click on Extras > Edit Connection Profiles and then click on the plus sign at the bottom
left.

Enter the following fields:

Profile Name
The name of your MQTT broker profile, for instance, Home automation gateway.

Profile Type
Leave this on MQTT Broker.

Broker Address
The hostname or IP address of your Raspberry Pi that is running the MQTT broker. If you
use TLS, make sure that you enter the same hostname as in the certificate of the MQTT
broker.

https://mqttfx.jensd.de

Control Your Home with Raspberry Pi

● 94

Broker Port
Leave this on 1883 for an unencrypted connection or change this to 8883 for an encrypted
connection.

If you have enabled authentication on your MQTT broker, fill out the right fields in the User
Credentials section. If you have enabled encryption, go to the SSL/TLS section, check
Enable SSL/TLS, choose CA certificate file, and then select the rootCA.pem file you
copied from your Raspberry Pi to your computer (see Chapter 3).

When you're finished with the configuration, click on OK to save and use this connection
profile.

With your newly added connection profile selected at the top left, click on the Connect
button. If the connection settings are correct, the circle at the top right should get a green
colour.

Now go to the Subscribe tab, enter an MQTT topic (wildcards such as # are allowed), and
click on Subscribe. In the right panel, you'll see MQTT messages appearing as soon as
they are sent to the broker. If you click on one of them, you can see its content. You can
even decode the content as specific formats, such as JSON, Base64, or hexadecimal values.

Figure 4.2 Add a connection profile for your MQTT broker in the MQTT.fx client.

Chapter 4 ● MQTT (Message Queuing Telemetry Transport)

● 95

Publishing an MQTT message in MQTT.fx is equally easy: go to the Publish tab, enter the
topic at the top left, enter the payload in the text field below and then click on Publish. If
you switch to the Subscribe tab and you have subscribed to this topic, you'll see that it
appears in the messages to the MQTT broker.

4.3.2 • MQTT Explorer

Another graphical MQTT client, which is also available on Windows, macOS, and Linux, is
MQTT Explorer (http://mqtt-explorer.com). It differentiates itself from other MQTT clients
by providing a hierarchical overview of your MQTT topics.

When the program starts, it shows the available MQTT brokers to connect to. Click on the
yellow plus sign at the top left to add a new broker. Then enter the following fields:

Name
The name of your MQTT broker profile, for instance, Home automation gateway.
Protocol
Leave this on mqtt://.

Host
The hostname or IP address of your Raspberry Pi that is running the MQTT broker. If you
use TLS, make sure that you enter the same hostname as in the certificate of the MQTT
broker.

Figure 4.3 Subscribe to MQTT topics with the MQTT.fx client.

http://mqtt-explorer.com

Control Your Home with Raspberry Pi

● 96

Port
Leave this on 1883 for an unencrypted connection or change this to 8883 for an encrypted
connection.

If you have enabled authentication and/or encryption on your MQTT broker, fill out the
fields Username and Password and enable Encryption (tls). Then click on Advanced,
Certificates and Server certificate (CA). Select the rootCA.pem file you copied from
your Raspberry Pi to your computer (see Chapter 3).

When you're finished with the configuration, click two times on Back to return to the main
profile window, then Save to save this connection profile and then Connect to use it.

If the connection settings are correct, the icon at the top right should be green. In the left
panel, you see a hierarchical view of the MQTT topics that have messages on the broker.
By default, MQTT Explorer subscribes to all topics. Click on the small arrows to open topics
and navigate the hierarchy.

Message payloads are shown in the right panel, and if the payload is a number, you can
even see a graph if you click on the arrow next to History. Publishing an MQTT message
can be done by entering the topic and payload at the bottom and then clicking on Publish.

Figure 4.4 Add a connection profile for your MQTT broker in MQTT Explorer.

Chapter 4 ● MQTT (Message Queuing Telemetry Transport)

● 97

4.4 • Using MQTT in Python

If you want to process MQTT messages in your Python programs, you can use the Python
library of the Eclipse Paho project (https://www.eclipse.org/paho/). This project implements
an MQTT client in Python. As it's on PyPI (https://pypi.org/project/paho-mqtt/), you can
easily install the library with pip, and the PyPI project page shows extensive documentation.
You'll be using MQTT directly and indirectly in many Python programs in the rest of this
book, so I'll limit myself here to a simple example: a client that lets you know the current
time. Here's the code:

Figure 4.5 With a hierarchical view and graphs to interpret numerical payloads, MQTT Explorer is a very
useful MQTT client.

https://www.eclipse.org/paho/
https://pypi.org/project/paho-mqtt/

Control Your Home with Raspberry Pi

● 98

"""Send an MQTT message with the time to your broker when asked.

Copyright (C) 2020 Koen Vervloesem

License: MIT
"""
from datetime import datetime

import paho.mqtt.client as mqtt

MQTT_HOST = "HOSTNAME"
MQTT_PORT = 8883
MQTT_CAFILE = "/path/to/rootCA.pem"
MQTT_USERNAME = "home"
MQTT_PASSWORD = "PASSWORD"
MQTT_CLIENT_ID = "Time"

MQTT_TOPIC_TIME_REQUEST = "time/request"
MQTT_TOPIC_TIME_REPLY = "time/reply"

TIME_FORMAT = "%Y-%m-%d %H:%M"

def on_connect(client, userdata, flags, rc):
 """Subscribe to the right MQTT topics after connecting."""
 print("Connected with result code " + str(rc))
 client.subscribe(MQTT_TOPIC_TIME_REQUEST)

def on_message(client, userdata, message):
 """Reply with the time when asked."""
 now = datetime.now().strftime(TIME_FORMAT)
 client.publish(MQTT_TOPIC_TIME_REPLY, now)

if __name__ == "__main__":
 # Initialize MQTT connection
 mqtt_client = mqtt.Client(MQTT_CLIENT_ID)
 mqtt_client.on_connect = on_connect
 mqtt_client.on_message = on_message

 # Set up authentication and TLS encryption
 mqtt_client.username_pw_set(MQTT_USERNAME, MQTT_PASSWORD)
 mqtt_client.tls_set(ca_certs=MQTT_CAFILE)

Chapter 4 ● MQTT (Message Queuing Telemetry Transport)

● 99

 # Connect and start event loop
 mqtt_client.connect(MQTT_HOST, MQTT_PORT)
 mqtt_client.loop_forever()

Most of the code is bookkeeping. In the beginning, I import some classes in the datetime
and paho.mqtt.client modules. Then I define some constants with the MQTT host, port,
location of the CA file, username, password, client ID, the used topics, and a format string
for the time.

Then the on_connect function runs when the MQTT client is connected to the broker,
because of the line mqtt_client.on_connect = on_connect at the end, which registers
the on_connect function as a callback. In this function, the client subscribes to the topic
time/request. That way every time someone publishes a message on the topic time/
request on this MQTT broker, the client gets notified.

It's the on_message function that gets called when the client gets notified of a message
because it's registered as a callback in the line mqtt_client.on_message = on_message at
the end. The function doesn't have to check for which topic it's called, because the program
has only subscribed to one topic. So the client then publishes the current date and time as
a payload to the topic time/reply.

At the end of the program, the MQTT client object is created, the callbacks are registered,
the username and password are supplied, the CA file for the TLS connection is given and
the client connects to the MQTT broker. After this, the program starts an infinite loop,
waiting for messages and then running the on_message callback.

Note:
If you want to connect to an unencrypted MQTT broker, just change the value of MQTT_
PORT to 1883 and remove the call to mqtt_client.tls_set.

Also add a requirements.txt file with this content, a dependency of the program:

paho-mqtt

Set up a virtual environment and install the dependencies:

python3 -m venv .venv
source .venv/bin/activate
pip3 install -r requirements.txt

Control Your Home with Raspberry Pi

● 100

Optionally change the constants at the beginning of the mqtt_time.py file, and then run
the program like this:

python3 mqtt_time.py

Now open another shell and subscribe to the time/reply topic:

mosquitto_sub -t 'time/reply' -v

In yet another shell, send a request to the program:

mosquitto_pub -t 'time/request' -m ''

The -m '' means that the message payload is empty, as the program just ignores the
payload. If all goes well, you'll see the current date and time appearing in the shell running
mosquitto_sub. If your test is completed, just quit the mqtt_time.py program with Ctrl+c.

This is just a simple example, but it shows the basic architecture of many MQTT programs:
setting up an MQTT client, registering callbacks, connecting to the MQTT broker, starting
the event loop, and then replying to the messages received.

Asking for the time is of course no home automation yet, but I'll show you a lot of examples
in the rest of this book using the same approach.

4.5 • Direct communication between other containers and Mosquitto

In the rest of this book, I'll add other Docker containers for various home automation
services. Many of them are using MQTT as their communication protocol. As long as they
are all running on the same Raspberry Pi as the Mosquitto container, it doesn't make much
sense to let them communicate over TLS.

Luckily, Docker Compose creates an 'internal' network for all services you define in your
docker-compose.yml file. Each container can reach other containers by their internal
hostname, which is identical to the container_name defined for the service in the Docker
Compose file. So if another container wants to connect to the MQTT broker running in
the Mosquitto container, it can do this using the hostname mosquitto, and none of this
communication leaves the Raspberry Pi: it's all going through a virtual network.

This way all communication from and to other devices with the MQTT broker running on
your Raspberry Pi will happen encrypted over TLS on port 8883 (or 9091 with WebSocket

Chapter 4 ● MQTT (Message Queuing Telemetry Transport)

● 101

over TLS), while all communication from and to other containers can happen unencrypted
over the internal network using the default port 1883.

If you execute the docker ps command, you already see this in the PORTS column of the
mosquitto container. This shows 0.0.0.0:8883->8883/tcp, 1883/tcp, 0.0.0.0:9091-
>9091/tcp. What this means is that TCP ports 8883 and 9091 are forwarded to the same
externally reachable ports of your Raspberry Pi, while TCP port 1883 (which isn't shown
with 0.0.0.0:1883-> before it) is not externally reachable. But for containers in the same
internal network created by Docker Compose, it is reachable.

However, the fact that port 1883 is exposed to the other containers doesn't mean that
something is listening on the port. In the secure configuration of Mosquitto that I showed
earlier in this chapter, the MQTT broker only listens on ports 8883 and 9091. So you should
change Mosquitto's configuration so it also listens on port 1883:2

Unencrypted MQTT
port 1883

MQTT over TLS
listener 8883
cafile /mosquitto/config/certs/rootCA.pem
keyfile /mosquitto/config/certs/key.pem
certfile /mosquitto/config/certs/cert.pem

MQTT over WebSocket over TLS
listener 9091
protocol websockets
cafile /mosquitto/config/certs/rootCA.pem

2	 If you want to add unencrypted MQTT over WebSocket for other Docker containers,
just add the lines listener 9001 and protocol websocket to the first section in Mosquitto's con-
figuration file.

Figure 4.6 The Docker containers on one Raspberry Pi communicate with each other unencrypted on the
internal Docker network, while the container on the second Raspberry Pi communicates over an encrypted

connection.

Control Your Home with Raspberry Pi

● 102

keyfile /mosquitto/config/certs/key.pem
certfile /mosquitto/config/certs/cert.pem

Authentication and access control
password_file /mosquitto/config/passwords
allow_anonymous false
acl_file /mosquitto/config/acl

Miscellaneous
persistence true
persistence_location /mosquitto/data/
log_dest file /mosquitto/log/mosquitto.log

In the next chapters, you'll keep adding services to the docker-compose.yml file in your
home directory, so it looks something like this:

version: '3.7'

services:
 mosquitto:
 image: eclipse-mosquitto
 container_name: mosquitto
 restart: always
 ports:
 - "8883:8883"
 - "9091:9091"
 volumes:
 - ./containers/mosquitto/config:/mosquitto/config
 - ./containers/mosquitto/data:/mosquitto/data
 - ./containers/mosquitto/log:/mosquitto/log
 - ./containers/certificates:/mosquitto/config/certs:ro
 - /etc/localtime:/etc/localtime:ro
 user: "1000:1000"
 motioneye:
 # motionEye configuration
 bt-mqtt-gateway:
 # bt-mqtt-gateway configuration

Your Docker Compose file will always have the mosquitto service, because this is central to
the architecture used in this book. The lines starting with the # for the other services are
comments. These are not configuration values, but some remarks you can add to explain
things to yourself or others. I have used them here just as placeholders. You'll see in the
rest of the book which configuration you should add to these services.

Chapter 4 ● MQTT (Message Queuing Telemetry Transport)

● 103

In the other chapters, I'll use such a placeholder for the configuration of the mosquitto
service, so I don't have to repeat this every time in the Docker Compose file. I also don't
repeat other services from previous chapters. So you should keep in mind that I only show
a part of the Docker Compose file each time I explain a new service. At the end of this book,
you should have a big Docker Compose file containing all your home automation services.

Note:
For some services, it could be interesting to run them on another Raspberry Pi to your
main home automation gateway. For these services, your Docker Compose file shouldn't
contain the mosquitto service, and the communication to the MQTT broker should happen
over TLS using the hostname of your home automation gateway. However, if the service
doesn't support MQTT over TLS, you do need to run mosquitto on the machine and
configure it as a bridge to communicate with your main MQTT broker over TLS. See the
appendix at the end of this book for details.

4.6 • Summary and further exploration

This chapter is really about the core architecture of this book. I introduced the lightweight
network protocol MQTT that is used for almost every software in this book. You learned
about MQTT brokers, publishers and subscribers, messages, topics, hierarchical names, and
wildcards.

I also guided you through the installation and configuration of Mosquitto, including a secure
setup with TLS (which gives you server authentication and encryption), client authentication
with a password, and an access control list. Afterwards I showed you some graphical clients
that come in handy to test your MQTT setup, and you learned how to subscribe to MQTT
topics and publish MQTT messages in Python using the Paho MQTT library.

MQTT is a very interesting protocol. If you want to know more about it, consult the
documentation on the official website (https://mqtt.org). Eclipse Mosquitto also has a lot of
documentation on its website (https://mosquitto.org), including the excellent man pages,
such as the one for mosquitto.conf (https://mosquitto.org/man/mosquitto-conf-5.html).
These are essential resources if you need a more complex broker configuration.

In the rest of this book, I introduce various services that translate other home automation
protocols to MQTT messages. There are also Wi-Fi devices that support MQTT directly, and
it's interesting to explore these.

For instance, the Shelly devices I cover in the next chapter offer an MQTT API (https://
shelly-api-docs.shelly.cloud/#mqtt-support), although unfortunately not with TLS. You
could also buy the inexpensive Sonoff devices (https://sonoff.tech) and flash them with the
open-source firmware Tasmota (https://tasmota.github.io/docs/), which supports MQTT
(although you have to build the firmware yourself to get TLS support).

https://mqtt.org
https://mosquitto.org
https://mosquitto.org/man/mosquitto-conf-5.html
https://shelly-api-docs.shelly.cloud/#mqtt-support
https://shelly-api-docs.shelly.cloud/#mqtt-support
https://sonoff.tech
https://tasmota.github.io/docs/

Control Your Home with Raspberry Pi

● 104

MQTT is also lightweight enough that you can use it in devices you create yourself. The
ESP8266 and ESP32 are popular choices for DIY Wi-Fi devices for home automation. The
PubSubClient library (https://pubsubclient.knolleary.net) for Arduino can be used on both
devices, although TLS support is not built-in.3

3	 If you want to learn how to create your own home automation devices with the
ESP8266 and MQTT, I can recommend the book "IoT Home Hacks with ESP8266" by Hans Hen-
rik Skovgaard (https://www.elektor.com/iot-home-hacks-with-esp8266-e-book).

https://pubsubclient.knolleary.net
https://www.elektor.com/iot-home-hacks-with-esp8266-e-book

Chapter 5 ● TCP/IP

● 105

Chapter 5 • TCP/IP

Many home automation products use specialized protocols, mostly wireless, that require
you to have a specific transceiver. However, many other products just use the network
protocols that you're used to on your desktop computer, laptop, smartphone, and tablet.
This is the internet protocol suite, commonly known as TCP/IP because the fundamental
protocols in this suite are the Transmission Control Protocol (TCP) and the
Internet Protocol (IP).

The internet protocol suite consists of protocols in four layers (from top to bottom):1

Application layer
Application protocols operate in this layer: they let applications communicate to other
applications. MQTT (see Chapter 4) is one example of a protocol in the application layer, as
are SSH, HTTP, and DNS.

Transport layer
Transport protocols provide a communication channel between hosts on the network. TCP
and UDP are the dominant transport layer protocols.

Internet layer
Protocols in this layer interconnect networks and hence create the 'internet'. IP (IPv4 and
IPv6) is the internet layer protocol you'll use the most.

Link layer
Protocols in this layer transmit network packets over a physical medium. Examples are ARP
and NDP.

The big advantage of using TCP/IP for home automation is that you don't need any specific
hardware. The Raspberry Pi has already Wi-Fi and Ethernet, and your other computers and
IP cameras too. You can even find many Wi-Fi-enabled home automation products, such
as smart lights, smart switches, and so on. So without having to buy any specific bridges,
transceivers, or gateways, you can already have a good taste of home automation.

In the previous chapter you encountered MQTT. In this chapter, I'll show you some other
possibilities to automate your home with only a network connection.

5.1 • Wake other network devices

If you have computers on your network attached using an Ethernet interface, you can
make use of the Wake-on-LAN (WoL) standard.2 This is done by sending a "magic packet"
to all computers on your network. This packet contains the MAC address of the network

1	 This is the canonical naming of the four layers as defined by RFC 1122 (https://tools.
ietf.org/html/rfc1122). Other network models add layers or give the lower layers other names.
For instance, some network models split the link layer into a data link layer and a physical layer.
2	 Wake-on-LAN is quite low-level: it works in the link layer of the internet protocol suite.

https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc1122

Control Your Home with Raspberry Pi

● 106

interface of the computer you want to wake. A computer that supports WoL will have his
network interface listening to these incoming packets. If it recognizes its MAC address, it
signals the computer's power supply to boot the system, as if you're physically pressing the
power button. This not only works for computers but also printers, NAS systems (network-
attached storage), and so on.

Wake-on-LAN is only able to wake the computer because (part of) the network interface
card is still on. This consumes a very small amount of standby power. If you physically
remove the device's power plug, of course, the network interface card isn't able to do
anything anymore, so you can't wake the device.

Note:
Wake-on-LAN only works for ethernet devices. For Wi-Fi devices there's a Wake on Wireless
LAN (WoWLAN) standard, but it's not widely implemented and has several limitations
which don't make it very practical except in some very specific cases.

If you want to wake another device with WoL from your Raspberry Pi, first install the
wakeonlan package:

sudo apt install wakeonlan

Then wake the device with:

wakeonlan bc:30:5b:de:ee:94

Of course, substitute the MAC address for the MAC address of your device. If you don't
know the device's MAC address, you can find it in the list with DHCP leases of your home
router.

To wake one device, this wakeonlan command is easy, but if you want to wake more
devices, you should use a more user-friendly approach, such as Home Assistant's Wake on
LAN component (https://www.home-assistant.io/integrations/wake_on_lan/). See Chapter
10 for more information about Home Assistant.

Note:
You can wake other devices from your Raspberry Pi with Wake-on-LAN, but you can't
wake your Raspberry Pi from other devices: the Raspberry Pi's ethernet port doesn't have
the necessary circuitry.

https://www.home-assistant.io/integrations/wake_on_lan/

Chapter 5 ● TCP/IP

● 107

5.2 • Remote control with SSH

Waking other devices on your network is neat, but what about shutting down other devices?
This is possible too. Even more: you can run arbitrary commands on remote devices on
your network. You already know how to do this: with the ssh command (see Chapter 2).

So the only thing you need is an OpenSSH server running on the device. Most Linux machines
have this running or installed by default, or just one command away from installation. This
includes:

•	 a Raspberry Pi running Raspberry Pi OS or another Linux distribution;
•	 your wireless router or access point (especially if it's running OpenWrt);
•	 your NAS (network-attached storage) system.

If not, consult the operating system's manual to discover how to install and enable the
OpenSSH server.3

OpenSSH is not only for Linux: it also runs on macOS (which shares the same UNIX ancestry
as Linux), and recently it has even become possible to run an OpenSSH server on Windows
10. So it's the ideal mechanism to run commands on other devices and even to shut them
down remotely.

Note:
To install the OpenSSH server in Windows, revisit the installation instructions for the
OpenSSH client in Chapter 2, but this time choose OpenSSH Server. Then after
installation, start PowerShell as an administrator, run Start-Service sshd to start the
server, and Set-Service -Name sshd -StartupType 'Automatic' to configure it to start
automatically every time Windows boots.

Now you can just log in to the devices with the SSH client on your Raspberry Pi:

ssh USERNAME@ADDRESS

Substitute USERNAME and ADDRESS by the username you have on the device and the IP
address or hostname the device has on your network. See Chapter 2 for more information
about the login progress.

After you have entered the correct password for the username on the device, you get a
login prompt. This can look a bit different from what you're used to on your Raspberry Pi,

3	 On a Debian-based Linux distribution with systemd, you enable and start the OpenSSH
server with sudo systemctl enable --now ssh. By enabling the service it starts automatically
every time Raspberry Pi OS boots.

Control Your Home with Raspberry Pi

● 108

but usually, it has the same components: your username, the device's hostname, and your
current directory.

5.2.1 Run commands on other devices

Now you can enter commands on the prompt as if you're sitting at the device with a keyboard
and monitor. But you're doing this for home automation purposes, so you generally don't
want to interactively type commands. So log out with exit.

Now log in again, but this time with a command at the end of your command line:

ssh USERNAME@ADDRESS df -h

After you have entered your password, the ssh command logs into the device, runs the df
-h command (which shows the device's disk usage) and logs out.4

So if you want to turn off the device, you're going to use this command if it's a Linux device:

ssh USERNAME@ADDRESS sudo shutdown -h now

This assumes that the user is non-privileged but has been given the rights by sudo to run
the shutdown command without having to enter a password. Raspberry Pi OS already
has this configuration (see Chapter 3). If this is not your configuration, run the following
command on the device:5

sudo visudo

Then add the following configuration lines:

Allow members of group sudo to execute any command
%sudo ALL=(ALL) NOPASSWD: ALL

This means that every user that belongs to the sudo group can run all commands without
a password.

4	 Of course df is a Linux/UNIX command and won't work when you use this on a
Windows machine.
5	 I assume that you're running these commands as a non-privileged user with sudo
rights. If you're logged in as the root user on the device, run the commands without sudo.

Chapter 5 ● TCP/IP

● 109

After saving the file with Ctrl+o and quitting nano, add the user to the sudo group with:

sudo adduser USERNAME sudo

You can also turn off a Windows computer remotely:

ssh USERNAME@ADDRESS shutdown /h /f

This assumes that the Windows user is an Administrator, who has the right to turn off the
computer.

5.2.2 • Secure passwordless logins using SSH keys

Now you can remotely run a command, for instance, to turn off a device, but you still have
to enter your password while logging in on the device. This means that you can't use this
ssh command in scripts to automate remote tasks.

Luckily SSH has another way to log in: public-key authentication. First, create a key pair
on your Raspberry Pi:

ssh-keygen

Press ENTER for the default file path and two times ENTER again for an empty passphrase
and its confirmation.6 After this, you see a fingerprint and 'randomart image' for your key
pair. If you have changed nothing to the default values, your public key is saved in /home/
pi/.ssh/id_rsa.pub and your private key in /home/pi/.ssh/id_rsa.

6	 Choosing an empty passphrase is not the most secure way of working with key pairs,
but it's acceptable on a local network. If you want to have a secure key pair but don't want to
enter a passphrase every time you log in with the key pair, you can use ssh-agent: it asks you
for the passphrase the first time and then remembers it the following times.

Control Your Home with Raspberry Pi

● 110

Now you have to add your public key to the remote system's database of trusted keys. If
the remote system is a Linux system (such as Raspberry Pi OS), this is simple:

ssh-copy-id USERNAME@ADDRESS

If you have changed the default file name, use:

ssh-copy-id -i ~/.ssh/name_of_file.pub USERNAME@ADDRESS

The ssh-copy-id command logs into the other computer (you have to enter your password
this time) and then saves your public key in the database of trusted keys.

If the target system is Windows, the procedure is a bit more laborious. First show the
content of your public key on your Raspberry Pi:

cat ~/.ssh/id_rsa.pub

The output should start with ssh-rsa and then a long list of characters. Copy the whole
output, including the ssh-rsa part.

Then log in to your account on Windows, open Explorer and navigate to C:\Users\
USERNAME\.ssh, with USERNAME your username on Windows. If there's no .ssh directory
in your user directory, create it. Enter the .ssh directory, create a new file: authorized_

Figure 5.1 Create a key pair for passwordless logins using SSH.

Chapter 5 ● TCP/IP

● 111

keys there (note: this file doesn't have a file extension), and open it in Notepad. Paste the
content of the id_rsa.pub file from your Raspberry Pi in it and save the file.

The next step is to set the permission of this file right. So right-click on the authorized_keys
file, go to Properties, then Security and then Advanced and click Disable Inheritance.
Also, choose Convert inherited permissions into explicit permissions on this object.
Then remove all permissions, except for SYSTEM and your username, who should have
Full Control.

After this, every ssh command you enter on your Raspberry Pi to log into the computer and
run commands, will use your private key to log in. The computer has your corresponding
public key and can verify with it that you're using the private key to log in. So now you
have passwordless logins to a remote computer, and you can automate running remote
commands with SSH.

Warning:
Anyone with access to your Raspberry Pi can now log in to any remote system that trusts
your public key, without having to enter a password. So it's very important that you
secure your Raspberry Pi (see Chapter 3).

5.3 • Collecting information from devices using SNMP

SNMP (Simple Network Management Protocol) is an application layer protocol to collect
information from devices on your network and configure settings. Typical devices that
support SNMP are printers, cable modems, switches, routers, and so on. SNMP is used to
poll information such as up/down status, interface utilization, and ink level.

I'm not going to explain configuration changes through SNMP in this book but will show
you how you can collect usable information from some of your devices. As an example, I'll
collect information from:

OPNsense/pfSense
open-source router operating systems based on FreeBSD

The HP Color LaserJet Pro MFP M281fdw
an all-in-one wireless color laser printer

5.3.1 • Walking through the MIB tree

All data that can be accessed using SNMP is described through a Management Information
Base (MIB), structured in a hierarchical tree. So if you want to know which information you
can collect from a device, you have to know which MIB it's using. In this MIB each data
object has an Object Identifier (OID).

Control Your Home with Raspberry Pi

● 112

First, install an SNMP client and a package with many widely used MIBs:

sudo apt install snmp snmp-mibs-downloader

Now, configuring SNMP on the device you want to monitor is out of scope for this book, but
you need to know two parameters:

The SNMP version
This can be 1, 2c, or 3. The latter is more secure, but isn't used that much. Most devices
you'll encounter use version 2c.

The SNMP community
This is something like a group name. Most devices use public by default.
If you know that a specific device on your network has SNMP configured and is using SNMP
version 2c with community string public, you can get a list of all available SNMP OIDs with:

snmpwalk -v2c -c public IP

Substitute IP by the IP address or hostname of the device.

Now you'll see a lot of OIDs and their values scrolling by. But if you want to get some more
human-readable names, add the -m ALL option:

snmpwalk -v2c -c public -m ALL IP

You can go through these and see which ones are interesting to collect.

Chapter 5 ● TCP/IP

● 113

Warning:
SNMP is not a very secure protocol. If you enable SNMP version 1 or 2c on a device (and
typically it's enabled by default), everyone on your network can collect information of the
device using snmpwalk or a similar command. The minimal security measure you should
take is to change the community string to something else than public. But if you're serious
about security, use SNMP 3 with authentication and encryption (which is the beyond scope
of this book), or disable SNMP and use a more secure protocol.

5.3.2 • Collecting your router's version using SNMP

If you know the OID of some data you're interested in, collecting these data from the device
is as easy as:

snmpget -v2c -c public 192.168.0.1 SNMPv2-MIB::sysDescr.0

This example shows you the system description of the OPNsense router on IP address
192.168.0.1. This shows something like:

SNMPv2-MIB::sysDescr.0 = STRING: FreeBSD OPNsense.home 11.2-RELEASE-p10-
HBSD FreeBSD 11.2-RELEASE-p10-HBSD 5e5adf26fc3(stable/19.1) amd64

Figure 5.2 Translating the OIDs (left) to their human-friendly names (right) with the -m ALL option gives a
lot more information if you want to collect data using SNMP.

Control Your Home with Raspberry Pi

● 114

Now if you want to get the system's version, you can use the grep command on this output
to only show the string after "FreeBSD" and then tail to only show the last time it matches.

This gives the following command:

snmpget -v2c -c public 192.168.0.1 SNMPv2-MIB::sysDescr.0|grep -o ⏎
"FreeBSD \S*"|tail -n 1

This gives (at the moment of writing) as a result:

FreeBSD 11.2-RELEASE-p10-HBSD

If you're doing an snmpwalk, you'll see a lot of other interesting data you can get from your
router, including network interface statistics, IP to MAC address mappings, memory and
storage usage, and so on.

5.3.3 • Collecting your printer's ink levels

If you're doing an snmpwalk on your printer's IP address, chances are that you'll see a lot
of interesting information scrolling by. For instance, you can ask for the printer's status:

snmpget -v2c -c public 192.168.0.104 HOST-RESOURCES-MIB::hrPrinterStatus.1

You'll get output like this:

HOST-RESOURCES-MIB::hrPrinterStatus.1 = INTEGER: idle(3)

You see that the result is an integer value, 3, but snmpget is friendly enough to translate
this to a human-friendly value, "idle". If you want to know which other possible values
exist, you'll have to look at the specification of HOST-RESOURCES-MIB. You can find this on
http://www.net-snmp.org/docs/mibs/. Look for the name of the MIB and click on the link.
There you'll see a table with the possible values for hrPrinterStatus:

http://www.net-snmp.org/docs/mibs/

Chapter 5 ● TCP/IP

● 115

Value Printer status

1 other

2 unknown

3 idle

4 printing

5 warmup

If you want to know how long your printer has been on, this is also possible:

snmpget -v2c -c public 192.168.0.104 DISMAN-EVENT-MIB::sysUpTimeInstance

This shows something like:

DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (265804) 0:44:18.04

Now if you want to parse this, you'll have to use some options for the snmpget command:7

snmpget -v2c -c public 192.168.0.104 -Ov -OQ DISMAN-EVENT-⏎
MIB::sysUpTimeInstance

The -Ov option removes the DISMAN-EVENT-MIB::sysUpTimeInstance = and the -OQ
option removes the type information (Timeticks), so you get only the duration:

0:44:18.04

If you use -Ot instead of -OQ, you get the duration in Timeticks, which are hundredths of a
second. To convert to minutes, divide this number by 6000. Now you can use this result for
instance to notify you when your printer has been on for longer than half an hour.

But now the most important information for a printer: the ink levels. If you search around
the output of snmpwalk for your printer, you'll easily find how to get the printer's ink levels.
On my printer, I get the following relevant OIDs:

7	 Use man snmpcmd to see all the available options.

Table 5.1 Values for hrPrinterStatus

Control Your Home with Raspberry Pi

● 116

Printer-MIB::prtMarkerSuppliesDescription.1.1 = STRING: "Black Cartridge HP
CF540A"
Printer-MIB::prtMarkerSuppliesDescription.1.2 = STRING: "Cyan Cartridge HP
CF541A"
Printer-MIB::prtMarkerSuppliesDescription.1.3 = STRING: "Magenta Cartridge
HP CF543A"
Printer-MIB::prtMarkerSuppliesDescription.1.4 = STRING: "Yellow Cartridge HP
CF542A"
Printer-MIB::prtMarkerSuppliesSupplyUnit.1.1 = INTEGER: percent(19)
Printer-MIB::prtMarkerSuppliesSupplyUnit.1.2 = INTEGER: percent(19)
Printer-MIB::prtMarkerSuppliesSupplyUnit.1.3 = INTEGER: percent(19)
Printer-MIB::prtMarkerSuppliesSupplyUnit.1.4 = INTEGER: percent(19)
Printer-MIB::prtMarkerSuppliesMaxCapacity.1.1 = INTEGER: 100
Printer-MIB::prtMarkerSuppliesMaxCapacity.1.2 = INTEGER: 100
Printer-MIB::prtMarkerSuppliesMaxCapacity.1.3 = INTEGER: 100
Printer-MIB::prtMarkerSuppliesMaxCapacity.1.4 = INTEGER: 100
Printer-MIB::prtMarkerSuppliesLevel.1.1 = INTEGER: 60
Printer-MIB::prtMarkerSuppliesLevel.1.2 = INTEGER: 42
Printer-MIB::prtMarkerSuppliesLevel.1.3 = INTEGER: 51
Printer-MIB::prtMarkerSuppliesLevel.1.4 = INTEGER: 55

Now how will you monitor or visualize all this information for your printer? You could write
a shell script or Python script that periodically collects this information and reacts to it. But
a more robust way is to use an SNMP integration in a home automation system such as
Home Assistant (see Chapter 10). For instance, Home Assistant supports an SNMP OID as
a sensor or a switch (https://www.home-assistant.io/integrations/snmp/). Many of these
integrations don't support the human-readable OIDs but only their numerical counterparts.
If you want to know which is the numerical representation of an OID, use the -On option
(but without -Ov) in your snmpget command.

5.4 • Using devices with a HTTP/REST API

A more widely supported family of protocols is HTTP (Hypertext Transfer Protocol), HTTPS
(HyperText Transfer Protocol Secure) and REST (Representational state transfer). These
are the basic protocols of the web: they are not only used by every web site you visit, but
many web-enabled devices support them too.

HTTP knows various methods, of which the most commonly used are GET and POST: the
former is used to fetch a web page and the latter to submit a form. REST is essentially a set
of useful conventions for structuring an API on top of HTTP, by redefining HTTP methods to
do interesting stuff with other software than a web browser.

GET is used to get information about some object, while PUT is used to create some object.
What this object looks like is up to the API's implementer. For instance, this can look like
JSON (JavaScript Object Notation), a structured object. Which object you want to get

https://www.home-assistant.io/integrations/snmp/

Chapter 5 ● TCP/IP

● 117

information about or create is set in the URL. For instance, the API could have a /led/0
page for LED 0, /led/1 for LED 1, and so on.

More and more home automation devices are working over Wi-Fi and are using an HTTP or
REST API. Unfortunately, many of these only use a HTTP API with a web server in the cloud
as an intermediary: you connect with a server of the manufacturer, using an API key as
authentication, and you don't talk directly to your device, even if you and your device are
both on your local network. As explained in Chapter 1, this is not desirable.

5.4.1 • Setting up a Shelly device for secure remote control

A nice counterexample is the Shelly family of devices (https://shelly.cloud): while the
manufacturer encourages you to use their cloud service, all their devices also support an
HTTP API that works completely locally. That is, you're connecting directly to the device
using its local IP address and all your API calls work completely disconnected from Shelly's
servers.8

The details of the initial installation of the Shelly devices is beyond the scope of this book.
But roughly it goes like this for the Shelly RGBW2 LED controller (see the figure below):
the Shelly device is powered by a 12 V DC power adapter, and it powers a LED strip and
controls the R, G, B, and W signal lines.

When the Shelly device is powered on the first time, it starts an open Wi-Fi access point
with the SSID shelly<MODEL>-XXXXXXXXXXXX. If you connect to it and then visit
http://192.168.33.1 in your web browser, you get access to its web interface. In the

8	 The Shelly devices also support MQTT, see Chapter 4.

Figure 5.3 The Shelly RGBW2 LED controller is not only accessible with a mobile app, but also a web interface
over Wi-Fi and a HTTP API.

https://shelly.cloud

Control Your Home with Raspberry Pi

● 118

Internet & Security settings, change the Wi-Fi mode to Client and enter your own Wi-Fi
network's SSID and its password. After you save these settings, the device reboots and
connects to your network.

Now find the new IP address of your Shelly device in your router's DHCP address leases.
Visit this new IP address in your web browser, after which you see the same interface as
before. First, return to the Internet & Security settings. Choose Restrict Login and
enable the option so you need to enter a username and password to access the web
interface and control the device. Change the default settings (admin and admin) and save
them. After this, your Shelly device is ready to be controlled securely by the HTTP API.

Warning:
At the time of writing this book, the Shelly devices don't support HTTPS, so all
communication (including the username and password you supply) is unencrypted.

5.4.2 • Using Shelly's HTTP API with curl

The HTTP API for Shelly devices is neatly documented on https://shelly-api-docs.shelly.
cloud/#common-http-api. If there are device-specific extensions to the API, these can be
found in the device's section on that page.

I'll be using the curl command on the Raspberry Pi's command line to show how you use
the API. First, here's how you get some basic information about your device:

curl http://192.168.0.202/shelly

This does not require you to enter a username or password, even if you have authentication
enabled. But the only information you're getting anyway is the device type (such as
"SHRGBW2"), the MAC address, whether authentication is enabled, the firmware version,
and the number of outputs you can control (4 for the RGBW2 LED controller).

The information is returned on one line in a long string of characters in JSON format. If you
want to have a better look at it in a structured way, pipe the curl command's output to
the jq JSON processor:9

curl http://192.168.0.202/shelly | jq

Now if you read about the /status endpoint and try to get the status information, you'll

9	 You can install jq with sudo apt install jq.

https://shelly-api-docs.shelly.cloud/#common-http-api
https://shelly-api-docs.shelly.cloud/#common-http-api

Chapter 5 ● TCP/IP

● 119

see that you get a "401 Unauthorized" error.

This is because the device requires authentication. So you have to add your username and
password after the -u option separated by a colon (:):

curl -u USER:PASSWORD http://192.168.0.202/status | jq

This will give you a lot of information, including the availability of a firmware update and
the current RGBW values of the LEDs.

What about controlling the LEDs? You can do this with the /color/0 endpoint. For instance,
turn off the LEDs by setting the turn parameter to off:

curl -u USER:PASSWORD http://192.168.0.202/color/0?turn=off| jq

And turn them on again:

curl -u USER:PASSWORD http://192.168.0.202/color/0?turn=on | jq

Note that you still get JSON output: the command not only controls the LEDs but also
returns the current state of the LEDs.

Note:
Have a look at Shelly's documentation for all other things you can control, such as effects
(the effect parameter), individual R, G, B and W values, timers, and so on.

5.4.3 • Using the HTTP API in Python

The curl command gives you a quick way to test a new device, but for serious home
automation, you need a programming language such as Python or a full-blown home
automation environment such as Home Assistant (see Chapter 10).

In this subsection, I'll show you how you use the Shelly's (or any other device's or service's)
HTTP API in Python with the requests library. For instance, here's a simple Python script
that first gets Shelly's status information and then continuously flashes the LEDs red with
an interval of one second:

Control Your Home with Raspberry Pi

● 120

"""Let a Shelly RGBW2 LED controller flash the LEDs red.

Copyright (C) 2020 Koen Vervloesem

License: MIT
"""
import time

import requests

Define URLs for the Shelly HTTP API
IP = "http://192.168.0.202"
SHELLY = IP + "/shelly"
COLOR = IP + "/color/0/"
DISABLE_EFFECTS = "effect=0"
ONLY_RED = "red=255&green=0&blue=0&white=0"
ON = "turn=on"
OFF = "turn=off"
AUTH = ("admin", "admin")
HEADER = {"Content-Type": "application/x-www-form-urlencoded"}

try:
 shelly = requests.get(SHELLY)
 if shelly.status_code == 200:
 shelly_json = shelly.json()
 shelly_type = shelly_json["type"]
 shelly_mac = shelly_json["mac"]
 print(
 "Connected to device {} with MAC address {}.".format(
 shelly_type, shelly_mac
)
)

 # Disable effects and show only red
 disable_effects = requests.post(
 COLOR, auth=AUTH, headers=HEADER, data=DISABLE_EFFECTS
)
 only_red = requests.post(COLOR, auth=AUTH, headers=HEADER, data=ONLY_RED)

 while True:
 on = requests.post(COLOR, auth=AUTH, headers=HEADER, data=ON)
 time.sleep(1)
 off = requests.post(COLOR, auth=AUTH, headers=HEADER, data=OFF)
 time.sleep(1)
except requests.exceptions.ConnectionError as e:
 print("Can't connect to device {}: {}".format(IP, e))

Chapter 5 ● TCP/IP

● 121

So this code first defines some constants for the URLs and authentication values. You
have to change these to your situation. Then the code gets the "/shelly" URL (requests.
get does a HTTP GET request) to show the device type and MAC address. This is done by
checking whether the HTTP status code is 200 and extracting some JSON values from the
returned data. From this JSON formatted content, the code needs the type and mac values.

For the next calls to the HTTP API, the code uses HTTP POST requests (with requests.
post). All these HTTP requests need authentication, so that's why they have the auth=AUTH
parameter.

According to Shelly's documentation, all parameters should be supplied either as a query
string in the URL (the parameters are added after the ? character in the URL, like in the
previous subsection on the command line) or as an application/x-www-form-urlencoded
POST payload (https://shelly-api-docs.shelly.cloud/#http-dialect). In this Python code, the
latter approach is used: that's why the "Content-Type": "application/x-www-form-
urlencoded" header is added. The data parameter contains the parameter for the URL, for
instance effect=0 to disable effects and red=255&green=0&blue=0&white=0 to only show
the red LEDs.

So using the same approach for all these POST requests, the code disables effects, enables
only the red LEDs, and then continuously turns these LEDs on and off for a second, thereby
flashing the LED strip.

If you want to exit the program, press Ctrl+c.

There's a lot more about HTTP and REST APIs. If you're serious about writing Python
programs to use the HTTP API of your devices, the documentation of the requests package
(https://requests.readthedocs.io) has a lot of information about more advanced features.

Note:
There's a package called ShellyPy (https://pypi.org/project/ShellyPy/) which is a Python
wrapper around the Shelly HTTP API. This lets you do things like device = ShellyPy.
Shelly("192.168.0.220") and then device.relay(0, turn=True). Unfortunately,
Shelly RGBW2 isn't supported yet.

5.5 • Creating a video surveillance system

In this section I use three related projects to make a video surveillance system:

Motion (https://motion-project.github.io)
A highly configurable program that monitors video signals from many types of cameras,
including network cameras via RTSP, RTMP, and HTTP, as well as Pi Camera Modules and
Video4Linux (V4L) USB based webcams.

https://shelly-api-docs.shelly.cloud/#http-dialect
https://requests.readthedocs.io
https://pypi.org/project/ShellyPy/
https://motion-project.github.io

Control Your Home with Raspberry Pi

● 122

motionEye (https://github.com/ccrisan/motioneye/wiki)
A web-based front-end for Motion, which lets you configure Motion easily.

motionEyeOS (https://github.com/ccrisan/motioneyeos/wiki)
A Linux distribution that turns a single-board computer such as a Raspberry Pi into a video
surveillance system. It essentially combines Motion as a back-end and motionEye as a
front-end in a dedicated operating system.

With these projects the Raspberry Pi can be used to create a video surveillance system in
two ways:

As an IP camera
You attach a Raspberry Pi Camera Module or another camera to the Raspberry Pi and install
motionEyeOS on it to stream video of the camera to your network.

As a camera controller
You install motionEye in a Docker container to collect the output of multiple IP cameras,
watch their streams, and invoke scripts when one of the cameras detects action.

Note:
If you want to use a Raspberry Pi as an IP camera, you can install Raspberry Pi OS and
motionEye on it together with other software, but this will be less reliable. I recommend
using a dedicated Raspberry Pi with motionEyeOS installed on it. This way your camera
cannot fail due to other software running on the same system.

You can also just use dedicated IP cameras: these don't have to be based on a Raspberry
Pi.

Figure 5.4 With motionEye, one Raspberry Pi can control multiple IP cameras and Raspberry Pis with
cameras.

https://github.com/ccrisan/motioneye/wiki
https://github.com/ccrisan/motioneyeos/wiki

Chapter 5 ● TCP/IP

● 123

5.5.1 • Turn your Raspberry Pi into an IP camera

A Raspberry Pi with a camera module and motionEyeOS makes a great IP camera.
MotionEyeOS supports all models of the Raspberry Pi, including the original Model B and
the Compute Module, as well as a couple of other single-board computers. The project's
wiki has a full list of supported devices (https://github.com/ccrisan/motioneyeos/wiki/
Supported-Devices), including a link to the newest installation image for each board.

Apart from the board, you need a camera. Motion supports the Raspberry Pi Camera
Module, which you connect to the CSI socket on your Pi or webcam that you connect to one
of the Pi's USB sockets.10 Of course, you need a decent power adapter, a microSD card for
the operating system, and optionally an Ethernet cable if you don't use Wi-Fi.

Note:
If you want to use this set up as an IP camera, you'll have to use a case that houses both
the Pi and camera.

If you use the official Raspberry Pi Camera Module or another camera that uses the CSI
port, you need to locate this port first: on a full-size Raspberry Pi, it's next to the HDMI
port, white with a black plastic clip on top.

Now gently pull up on the edges of the port's plastic clip until it moves: this opens the
port. Then you can insert the camera's ribbon cable vertically. The blue side of the cable

10	 I use the Pi Supply Night Vision Camera Module for the Raspberry Pi. It has a 160°
fish-eye lens and infrared LEDs. It's supported out-of-the-box in motionEye. Note that right
before I finished this book the Raspberry Pi Foundation released its new High Quality Camera.
I haven't tested it yet.

Figure 5.5 A Raspberry Pi with the Pi Camera Module makes an excellent IP camera.

https://github.com/ccrisan/motioneyeos/wiki/Supported-Devices
https://github.com/ccrisan/motioneyeos/wiki/Supported-Devices

Control Your Home with Raspberry Pi

● 124

should face the Ethernet port. Then push the plastic clip back into its place, firmly locking
the cable.

Note:
The Raspberry Pi Zero W has a smaller CSI port. You need an adapter cable to connect a
CSI camera to it.

Now that the hardware is ready, on to the software. Download the motionEyeOS image
and write it to a microSD card with balenaEtcher (https://www.balena.io/etcher/). See
Chapter 2, with the notable difference that you don't install the Raspberry Pi OS now on this
Raspberry Pi, but motionEyeOS. After you have written the image to the card, configure
Wi-Fi (see Chapter 2 again) if you don't use or have Ethernet on this Pi.

Then put the microSD card in your Pi and boot it. Have a bit of patience: the first time
motionEyeOS resizes your data partition and configures various services.

After a while, motionEye is accessible on port 80 of your Raspberry Pi, so you can access
it by typing its IP address in your favourite web browser. By default, you can log in with
the username user or admin and an empty password. Log in as admin. If the camera is
connected correctly, you already see the live camera image.

Warning:
MotionEyeOS doesn't support HTTPS for its web interface. This means that all communication
with the Raspberry Pi running motionEyeOS happens unencrypted. However, according to
the developer, your username and password are encrypted with a signature mechanism.

First, change some settings. Click on the hamburger menu in the top left and then on
General Settings. Change the user password and admin password to something secure.

Then change your time zone and set a unique hostname.

If you want to change something to the video output, go to Video Device. For instance, if
the image is shown upside down, change Video Rotation to 180°.

Then go to Expert Settings. You can turn off the LED on your camera by disabling Enable
CSI Camera Led.11 Set GPU Memory to the minimum value of 16 MB if you don't use a
CSI camera, or 96 MB if you do. And if you have a CSI camera connected to this Raspberry
Pi and you'll use another Raspberry Pi as a camera controller, you can enable Fast Network
Camera to improve performance. Don't forget to click the orange Apply button at the top

11	 If you want to turn off the ACT and PWR LEDs of your Raspberry Pi, as well as the
Ethernet LEDs, you'll have to change some boot parameters in /boot/config.txt. See the
appendix at the end of this book for instructions.

https://www.balena.io/etcher/

Chapter 5 ● TCP/IP

● 125

to apply your changes.

Note:
The Fast Network Camera option improves performance, but sacrifices advanced features.
If you want to use motion detection, picture capturing or movie recording, don't enable
Fast Network Camera. If you want to have even better performance than with the Fast
Network Camera option, install Raspberry Pi OS on the Pi and then run v4l2rtspserver
(https://github.com/mpromonet/v4l2rtspserver) to stream the video with RTSP.

5.5.2 • Turn your Raspberry Pi into a camera controller

So now you have turned a Raspberry Pi into an IP camera. If you do this with multiple
Raspberry Pis, or if you already have other IP cameras, it would be awkward to have to log
into all these devices and look at their video output one by one. Luckily you can also use
motionEye(OS) as a camera controller: you can add remote cameras and see them all in
one interface.

For the camera controller you can also use motionEyeOS: just repeat the installation and

Figure 5.6 With motionEyeOS and a couple of changes to the default configuration, your Raspberry Pi with
camera module has become an IP camera.

https://github.com/mpromonet/v4l2rtspserver

Control Your Home with Raspberry Pi

● 126

configuration steps of the previous subsection, but without the camera part; you'll add
remote cameras instead. Another option is that you install motionEye as a Docker container
on your Raspberry Pi that is working as a home automation gateway. This is what I'll show
you next.

Warning:
Just like motionEyeOS, motionEye (which is from the same developer) doesn't support
HTTPS for its web interface. This means that all communication with motionEye on your
home automation gateway happens unencrypted. Again, according to the developer, your
username and password are encrypted with a signature mechanism. To support HTTPS
anyway, you could use a reverse proxy in a container on the same machine. See the
appendix at the end of this book for a method of doing this.

A Docker Compose file for motionEye could look like this:12

version: "3.7"

services:
 mosquitto:
 # mosquitto configuration
 motioneye:
 image: ccrisan/motioneye:master-armhf
 container_name: motioneye
 restart: always
 volumes:
 - ./containers/motioneye/etc:/etc/motioneye
 - ./containers/motioneye/lib:/var/lib/motioneye
 - /etc/localtime:/etc/localtime:ro
 ports:
 - "8765:8765"

Then create the directory structure for motionEye:

mkdir -p /home/pi/containers/motioneye/{etc,lib}

Now you can start the Docker container with motionEye:

12	 See the previous chapter for the configuration of the mosquitto service that is left out
here.

Chapter 5 ● TCP/IP

● 127

docker-compose up -d

After this, you can log in to motionEye's web interface on port 8765 of your Raspberry Pi.
Again, change the empty user and admin password. Then add a camera by clicking on the
message in the main window.

If you have enabled Fast Network Camera on the camera of your Raspberry Pi IP camera,
choose Simple MJPEG Camera as the camera type here and add the URL with port 8081,
so http://IP:8081 if IP is your other Pi's IP address. If all goes well, the Camera text field
should now change to MJPEG Network Camera. Click on OK to add the camera.

But if you want to have the full features of motionEye, you have left Fast Network Camera
disabled in the previous subsection, and you can add this remote camera here as a Remote
motionEye Camera. Enter the URL of the remote motionEyeOS system (http://IP with IP
the IP address of that Raspberry Pi) and enter the username admin and its password. If
all goes well, the Camera text field now changes to the name of the camera. Click on OK
to add it.

In the same way, you can add other remote cameras. Just click on the hamburger menu
at the top left, then on the text field with the current camera name, and then on add
camera…. For most IP cameras, the camera type should be Network Camera. Those
devices stream RTSP/RTMP or MJPEG videos or plain JPEG images. Consult the camera's
manual to find out the correct URL. If you have set up a username and password for the
camera (as you should), add it here too.

Warning:
If you use a URL beginning with http://, the camera images will be streamed unencrypted
over your network. Only do this on a trusted network.

Figure 5.7 You can add remote cameras in motionEye to centrally manage and view all of them.

Control Your Home with Raspberry Pi

● 128

If you have a camera attached to your controller Pi, you can use this camera too. You only
have to forward the device on your host to the device in your Docker container. The Docker
Compose file should be changed like this:

version: "3.7"

services:
 mosquitto:
 # mosquitto configuration
 motioneye:
 image: ccrisan/motioneye:master-armhf
 container_name: motioneye
 restart: always
 volumes:
 - ./containers/motioneye/etc:/etc/motioneye
 - ./containers/motioneye/lib:/var/lib/motioneye
 - /etc/localtime:/etc/localtime:ro
 ports:
 - "8765:8765"
 devices:
 - "/dev/video0:/dev/video0"

After a restart of the container with docker-compose up -d, the local camera is available
for motionEye too.

Remote motionEye Camera is the most versatile camera type. If you have added
your remote motionEyeOS camera as this type to your motionEye install on your camera
controller, you can not only view the camera image, but also manage the settings remotely,
view the pictures and movies, configure motion detection, and so on. If you do this for a
couple of cameras attached to Raspberry Pis in your house, you have a very powerful and
centrally managed video surveillance system.

5.5.3 • Viewing your remote cameras

MotionEye's web interface is not the only way to view your cameras: each camera also has
video streaming enabled by default. This means that you only have to know the right URL
to look at the streaming video in any other program on your network. This gives you a lot
of possibilities. For instance, in Chapter 10 you'll see how Home Assistant can integrate and
manage your home automation devices. Home Assistant can directly show your camera's
video stream and snapshots using the camera integration (https://www.home-assistant.io/
integrations/camera/).

You can find these URLs in the Video Streaming part of motionEye's settings:

https://www.home-assistant.io/integrations/camera/
https://www.home-assistant.io/integrations/camera/

Chapter 5 ● TCP/IP

● 129

Snapshot URL
It provides a JPEG image with the most recent snapshot of the camera. You can use this
URL for instance as the src attribute from an img element in a HTML page, or in a shell
script that automatically downloads this image periodically. The snapshot URL contains a
unique code, which you shouldn't share with others: this random code in the URL is the
only authentication.

Streaming URL
It provides a MJPEG stream of the camera. You can use this in other programs that support
MJPEG streams. If Authentication Mode is disabled, everyone with this URL can view the
stream. That's why you should enable authentication, for instance by setting it to Basic.
This will require the user to supply his username and password for motionEye.

Embed URL
It provides a minimal HTML page with the live camera stream. You can put this in an iframe
element in another HTML page.

5.5.4 • Motion detection

By default, motionEye enables motion detection for all cameras, but it doesn't do anything
with these motion events. Now, if you want to have a picture taken when the camera
detects motion, enable Still Images in the settings and change Capture Mode from
Manual to Motion Triggered (which takes a series of pictures as the motion is happening)
or Motion Triggered (One Picture) (which takes one picture when motion is detected).

Warning:
By default, motionEye preserves the pictures forever. This can fill your microSD card very
rapidly. It's recommended to change this, for instance to For One Week. You can always
check the disk usage in the settings in File Storage.

After you have applied this change, you'll have to start fine-tuning the camera's motion
detection settings. Go to Motion Detection and first enable Show Frame Changes. This
will show you a red frame around a region with motion, and you get to see the number of
changed pixels in the right top corner of the camera view.

If you want to detect your cat running around in your living room, this number should of
course be smaller than if you want to detect a courier ringing your doorbell at your front
door. Observe such a situation a couple of times, look when a change is detected (shown
by the red frame) and take note of the number of changed pixels.

Control Your Home with Raspberry Pi

● 130

The Frame Change Threshold in the motion detection settings is a percentage of your
image, so you have to compute this percentage of your number by dividing the number
of changed pixels by the total number of pixels in the image (if it's a 640 x 480 camera,
that is 307,200 pixels) and multiplying it by 100. For instance, if you see that 1000 pixels
is enough to detect your cat's movements and you have a camera with a 1600 x 1200
resolution, the percentage is 1000 / 1600 / 1200 x 100 or around 0,05%. The smallest
threshold you can have in motionEye is 0,1%, so set the slider to 0,1% then.

Now you can view the pictures taken in the camera view, by clicking on the open pictures
browser icon (next to the full screen icon). When you do this the first time, you'll probably
see too many pictures (pictures were taken while there was no motion) or too few (not all
motion events resulted in a picture being taken). But after you have fine-tuned the frame
change threshold, this should only show pictures for movements.

Note:
Don't forget to disable the Show Frame Changes option after you have adjusted the
motion detection parameters.

In the pictures browser, you can view, download, and delete each picture individually. By
default, they are arranged in a folder by day (this can be changed in the Image File Name
in the Still Images settings). You can download a zip file of them all, and you can even
create a timelapse video, which gives you a nice overview of your day.

Figure 5.8 With motion detection enabled in motionEye, you can detect your cats running around at night.

Chapter 5 ● TCP/IP

● 131

Sometimes you are only interested in movement in a specific region on the camera image.
For instance, you don't want to have a picture created each time a car rides by on the road,
but you do want to have a picture when a visitor appears at your front door.

MotionEye has a nice feature to implement this: masks. Go to Motion Detection and
enable Mask. Choose Editable for the Mask Type and then click Edit Mask. Your camera
image is now divided by a raster of small blocks. Choose the blocks where you don't want
to have movement detected, click on Save Mask and then Apply.

5.5.5 • Notifications on motion

So now you have motion detection for your cameras, and you can look at the camera
images afterwards, but motionEye can do even more: notify you in real-time when it
detects motion. Go to Motion Notifications in the settings. Notifications can be done by
email, webhook or by using a command. In an email, you can even attach pictures.

If you just want to know whether there's motion or not, enable Run A Command.
Fortunately, the motionEye Docker container has the mosquitto_pub command installed,
so you can run the following command to publish an MQTT message to your broker:

mosquitto_pub -h mosquitto -u home -P PASSWORD -t "camera/front_door/⏎
motion" -m "ON"

This command uses an unencrypted connection to the MQTT broker running on the same
Raspberry Pi, which is reachable on the internal Docker network with the hostname
mosquitto. Just supply the same password as you have configured for Mosquitto in Chapter
4.

Figure 5.9 If you have enabled motion detection, the pictures browser lets you easily investigate the moments
when there was motion.

Control Your Home with Raspberry Pi

● 132

In the same way, you can add a command to the Run An End Command option:

mosquitto_pub -h mosquitto -u home -P PASSWORD -t "camera/front_door/⏎
motion" -m "OFF"

If you're now listening to the camera/+/motion topic of your MQTT broker, you get ON when
motion starts and OFF when motion ends, for all your cameras:

mosquitto_sub -h mosquitto -t "camera/+/motion" -v

So now you can let other systems, such as Home Assistant, Node-RED, or your own script,
react to motion.

If you want to use this with an encrypted and authenticated MQTT broker running on
another device, you have to add your certificates directory as a volume to the Docker
container. So change your Docker Compose file to:

version: "3.7"

services:
 motioneye:
 image: ccrisan/motioneye:master-armhf
 container_name: motioneye
 restart: always
 volumes:
 - ./containers/motioneye/etc:/etc/motioneye
 - ./containers/motioneye/lib:/var/lib/motioneye
 - /etc/localtime:/etc/localtime:ro
 - ./containers/certificates:/usr/local/share/ca-certificates/:ro
 ports:
 - "8765:8765"
 devices:
 - "/dev/video0:/dev/video0"

And recreate the container:

docker-compose up -d

Chapter 5 ● TCP/IP

● 133

And then the command to run when motionEye detects motion would become:

mosquitto_pub -h HOSTNAME -p 8883 --cafile /usr/local/share/ca-⏎
certificates/rootCA.pem -u home -P PASSWORD -t "camera/front_door/motion" ⏎
-m "ON"

Note:
Make sure you use the full hostname, including your network's domain. For instance,
instead of pi-red, use pi-red.home. Otherwise, the Docker container can't find your
MQTT broker.

5.6 • Summary and further exploration

In this chapter, I showed you how to use some TCP/IP protocols to automate things. This is
an easy way to start with home automation because you don't need any special transceivers
for it. You can wake other devices on your network, execute commands remotely using
SSH, collect information using SNMP, control smart devices with a REST API and you can
even create a video surveillance system with motionEye.

You can explore many other topics in this way. For instance, instead of Shelly devices,
you could buy Sonoff devices (https://sonoff.tech) and flash them with the open-source
firmware Tasmota (https://tasmota.github.io/docs/). This lets you control your devices
over HTTP, and you can easily connect extra sensors.

Instead of pure HTTP or REST, you could also use a WebSocket API. This provides a
full-duplex communication channel over a single TCP connection. In practice, almost all
WebSocket implementations work over HTTP(S). You can use the WebSocket protocol for
real-time bi-directional data transfer between a client and a web server. In Chapter 12 I
give an example of WebSocket communication between the Node-RED automation platform
and the Rhasspy voice assistant. You can also create a WebSocket client in Python with the
WebSocket-client package (https://pypi.org/project/websocket_client/).

https://sonoff.tech
https://tasmota.github.io/docs/
https://pypi.org/project/websocket_client/

Control Your Home with Raspberry Pi

● 134

Chapter 6 • Bluetooth

Bluetooth isn't the first protocol you'd think about when you're talking about home
automation, but it's quite interesting, especially Bluetooth Low Energy (BLE). Many sensors,
fitness trackers and smartwatches send their measurements to other devices using BLE.

The nice thing about BLE sensors is that you don't need anything special on recent models
of the Raspberry Pi to read them because all models since the Raspberry Pi 3 have built-in
Bluetooth functionality.

One downside about BLE is that it doesn't have a long-range. If you have thick walls in your
house, or if you have a sensor in your attic and your home automation gateway is in your
basement, chances are that you can't reliably read the sensor values. But there's a cheap
solution: just place an extra Raspberry Pi Zero W on the location with bad coverage to be
able to read the values.

In this chapter, I illustrate the use of BLE with the Xiaomi Mi Flora plant sensor and the
RuuviTag environmental sensor. If you have other BLE devices, you can follow most of this
chapter, but you'll have to adapt some examples. My explanation is general enough that
this shouldn't be a problem.

6.1 • An introduction to Bluetooth Low Energy

Bluetooth Low Energy has been introduced in 2011 as a subset of Bluetooth 4.0. Sometimes
it's called Bluetooth Smart. It's an entirely new protocol compared to the classic Bluetooth.
However, the Bluetooth 4.0 specification permits devices to implement both protocols.
Moreover, both protocols use the same 2.4 GHz radio frequency, so a dual-mode device can
use the same radio antenna for both protocols.

There are two kinds of BLE device:

Peripheral
A low-power, constrained device: for example an environmental sensor or a heart rate
sensor

Central
A more powerful device: for example your smartphone or your Raspberry Pi

The Raspberry Pi that you use as a home automation gateway gets the central role as a
BLE device, while the BLE sensors you want to read have the peripheral role.

6.1.1 • Broadcasting data

The fundamental part of the BLE protocol is the Generic Access Profile (GAP), which defines
how a Bluetooth device is visible to the outside world. This also defines the data format of
the packets that BLE devices can advertise. A GAP payload can contain up to 31 bytes of

Chapter 6 ● Bluetooth

● 135

data.

It's important to know that BLE devices can send their data without being connected to
a specific device. This is called broadcasting: the device (for instance a sensor) sends
advertising packets with a custom payload (such as sensor measurements), and every BLE
device in the neighborhood can pick up these packets and decode the data. So it's one-to-
many data transfer.

BLE devices advertise data continuously with a specific advertising interval. The longer the
interval, the less power the device needs, and the longer the battery lasts: the device can
sleep most of the time. It just wakes up for sending the advertisement and then goes to
sleep again until the next interval starts.

A Raspberry Pi can listen to advertisements and decode the custom data in the payload.
This way you can read sensor measurements of a lot of BLE sensors. I'll show you some
examples later in this chapter.

6.1.2 • Connecting to services

Generic Attribute Profile (GATT) defines another way of working with BLE devices:
by connecting to them, which is a one-to-one data transfer. This also makes two-way
communication possible.

It's important to know that a BLE peripheral can only be connected to one central device at
a time and stops advertising as soon as it's connected. That's why other devices can't 'see'
a BLE peripheral like a heart rate sensor anymore when it's connected to your smartphone.

A Raspberry Pi can connect to various BLE devices and communicate with them. So if
you want multiple devices to communicate with a BLE peripheral using GATT (which isn't

Figure 6.1 A Bluetooth Low Energy peripheral broadcasting data to every device in the vicinity.

Control Your Home with Raspberry Pi

● 136

possible), you can let the Raspberry Pi make a GATT connection and act as a central
intermediary for other devices. Those then have to communicate to the Raspberry Pi using
other means, such as MQTT.

GATT defines three important concepts:

Characteristic
A single value that can be read or written. Each characteristic is distinguished by a
UUID (Universally Unique Identifier). A manufacturer of a BLE device can define custom
characteristics or use the standard characteristics defined in https://www.bluetooth.com/
specifications/gatt/characteristics/. For instance, there are standard characteristics for
device name (0x2A00), heart rate measurement (0x2A37), temperature (x2A6E), and so
on.

Service
A collection of one or more logically related characteristics. Each service is distinguished
by a UUID. A manufacturer of a BLE device can define custom services or use the
standard services defined in https://www.bluetooth.com/specifications/gatt/services/.
Some standard services are Heart Rate (0x180D), Battery Service (0x180F), and Indoor
Positioning (0x1821). A service can have mandatory and optional characteristics. For
instance, the Heart Rate service (0x180D) has three characteristics: the mandatory Heart
Rate Measurement and the optional Body Sensor Location and Heart Rate Control Point.

Profile
A collection of logically related services. A manufacturer of a BLE device can define custom
profiles or use the standard profiles defined in https://www.bluetooth.com/specifications/
gatt/. Some examples of standard GATT profiles are Alert Notification Profile, Environmental
Sensing Profile, and Find Me Profile. A profile can have mandatory and optional services.

Figure 6.2 A Bluetooth Low Energy central can connect to multiple peripherals in the vicinity and
communicate in both directions.

https://www.bluetooth.com/specifications/gatt/characteristics/
https://www.bluetooth.com/specifications/gatt/characteristics/
https://www.bluetooth.com/specifications/gatt/services/
https://www.bluetooth.com/specifications/gatt/
https://www.bluetooth.com/specifications/gatt/

Chapter 6 ● Bluetooth

● 137

6.2 • Enabling Bluetooth

All models since the Raspberry Pi 3B have an integrated Bluetooth chipset. They all support
a Bluetooth version higher than 4.0, and thus support Bluetooth Low Energy:

Raspberry Pi Model Bluetooth Support

Raspberry Pi 3B Bluetooth 4.1

Raspberry Pi Zero W(H) Bluetooth 4.1

Raspberry Pi 3B+ Bluetooth 4.2

Raspberry Pi 3A+ Bluetooth 4.2

Raspberry Pi 4B Bluetooth 5.0

If you are using an older model of the Raspberry Pi, you can add Bluetooth functionality
with a Bluetooth USB adapter. There's a page with adapters that are known to be working

Figure 6.3 A Bluetooth Low Energy profile consists of services, which have characteristics.

Table 6.1 Bluetooth support of Raspberry Pi models

Control Your Home with Raspberry Pi

● 138

on https://elinux.org/RPi_USB_Bluetooth_adapters.

Whether you're using the built-in Bluetooth chipset or an external one, check whether it's
recognized with:

hciconfig -a

You should see something like this:

This shows you the Bluetooth device (hci0), the bus (UART for a built-in device, USB for a
USB device), its MAC address, and some statistics. You also see whether the device is UP.
If for some reason the device is shown as DOWN, re-enable it with:

sudo hciconfig hci0 up

The hciconfig -a command is also nice if you're not sure what Bluetooth version your chip
has. This is shown in the line beginning with LMP Version.

6.3 • Investigating Bluetooth Low Energy devices

You can learn a lot about Bluetooth Low Energy devices in the neighborhood with just a
couple of tools.

Figure 6.4 Raspberry Pi OS recognizes the Bluetooth chipset.

https://elinux.org/RPi_USB_Bluetooth_adapters

Chapter 6 ● Bluetooth

● 139

Make sure that you have the relevant packages installed:

sudo apt install bluez bluez-hcidump

6.3.1 • Scanning for Bluetooth Low Energy devices

First, you can start scanning for Bluetooth Low Energy devices in the neighborhood:

sudo hcitool lescan

You get a list of MAC addresses, some of them with a name, others with (unknown) as
their name. If after a while no new devices appear in the list, interrupt the program with
Ctrl+c.

You can ask for additional information that a device with a specific MAC address is
advertising. For instance:

sudo hcitool leinfo C4:7C:8D:67:65:AD

This will show something like:

One interesting piece of information is the LMP version (Link Manager Protocol). In this
case, you're seeing a Bluetooth 4.0 device.

Figure 6.5 Investigate additional information of a Bluetooth device.

Control Your Home with Raspberry Pi

● 140

6.3.2 • Dumping raw Bluetooth broadcast data

One of the things you can do to reverse-engineer Bluetooth broadcast packets is dumping
the raw data:

sudo hcidump --raw

This should result in something like this:

Without knowing what you have to look at, it's very difficult to get meaningful information
out of this stream of raw data.

However, if you look closely you'll discover the MAC addresses of broadcasting peripherals
in the data, with the bytes reversed. For instance, a RuuviTag with MAC address
C5:98:17:63:C3:E3 will show up in the raw data as:

Figure 6.6 The hcidump command lets you receive raw data of Bluetooth broadcast packets.

Chapter 6 ● Bluetooth

● 141

> 04 3E 25 02 01 03 01 E3 C3 63 17 98 C5 19 02 01 04 15 FF 99
 04 03 5C 15 12 C6 24 FF F0 00 10 03 F4 0B 3B 00 00 00 00 A6

So if you know which device is broadcasting this data, and if you have another way of
interpreting this data (for instance an official app of the device), you can start reverse-
engineering the raw data.

Luckily in many cases, you don't have to do this because someone has already done this
and has written a library for it. And in the case of the RuuviTag, the Ruuvi company has
documented the raw data format extensively on https://github.com/ruuvi/ruuvi-sensor-
protocols.

6.3.3 • Discovering device characteristics

You can also ask for the BLE characteristics of a device with a specific MAC address (in this
case a Xiaomi Mi Flora plant sensor):

sudo gatttool -b C4:7C:8D:67:65:AD --characteristics

As a result, you get a list of numbers that looks daunting at first:

Figure 6.7 The characteristics of a Bluetooth device tell you what it can do

https://github.com/ruuvi/ruuvi-sensor-protocols
https://github.com/ruuvi/ruuvi-sensor-protocols

Control Your Home with Raspberry Pi

● 142

The most important numbers here are the first parts of the UUIDs:

•	 2a00
•	 2a01
•	 2a02
•	 2a04
•	 2a05
•	 0001
•	 …

Now, look up these numbers in the list of GATT characteristics on the web site of the Bluetooth
Special Interest Group (https://www.bluetooth.com/specifications/gatt/characteristics/).
Search for each of these numbers in the Assigned Number column. The Name column
describes what kind of value this characteristic corresponds to. For the above list this is:

•	 Device Name
•	 Appearance
•	 Peripheral Privacy Flag
•	 Peripheral Preferred Connection Parameters
•	 Service Changed
•	 …

Only the numbers beginning with 2a are standard characteristics; the other ones are
implemented by the manufacturer in a non-standard way.

6.3.4 • Reading device characteristics

So according to the Bluetooth specification, the UUID 00002a00-0000-1000-8000-
00805f9b34fb should give us the device name, because 2a00 is the assigned number for
the device name. How should you read it? Look in the output of gatttool at the value of
char value handle, in this case, 0x0003. Then read the value like this:

sudo gatttool -b C4:7C:8D:67:65:AD --char-read -a 0x0003

In my case, this gives the following output:

Characteristic value/descriptor: 46 6c 6f 77 65 72 20 63 61 72 65

Those numbers are hexadecimal representations of bytes. Let's convert them to their
corresponding ASCII characters:

https://www.bluetooth.com/specifications/gatt/characteristics/

Chapter 6 ● Bluetooth

● 143

echo "0x46 6c 6f 77 65 72 20 63 61 72 65"|xxd -r

This shows Flower care, which confirms that I have been investigating the Xiaomi Mi Flora
plant sensor.

If you're feeling particularly brave, you can start reverse-engineering the values of all these
characteristics, especially the non-standard ones, but for many sensors it's not needed
because someone else has already done it. For instance, Xiaomi's Mi Flora sensor is well-
supported by a couple of open-source programs. One of these programs is covered in the
next section.

6.4 • Reading BLE sensor values in Python

Reading raw broadcast data or device characteristics using hcidump and gatttool is fine
for experimenting and reverse-engineering, but there's no point in doing this if you just
want to read sensor values and someone else has already written useful software to do this.

In this section, I'll show two examples of interesting Python libraries for the RuuviTag and
Xiaomi Mi Flora sensors and how to use them in your software.

6.4.1 • RuuviTag Sensor

The RuuviTag (https://ruuvi.com/ruuvitag-specs/) is an open-source environmental sensor
that broadcasts its sensor data using Bluetooth Low Energy. There's a RuuviTag Sensor
package for Python, which you can find on https://github.com/ttu/ruuvitag-sensor. It's also
available on PyPI.

First, create a virtual environment, activate it, and then install the ruuvitag_sensor
package in this environment:

python3 -m venv venv-ruuvitag-sensor
source venv-ruuvitag-sensor/bin/activate
pip install ruuvitag_sensor

After installation, check whether the Python package can find your RuuviTag sensors with:

python -m ruuvitag_sensor -f

After a few seconds, expect something like this:

https://ruuvi.com/ruuvitag-specs/
https://github.com/ttu/ruuvitag-sensor

Control Your Home with Raspberry Pi

● 144

If this works, you can start using the ruuvitag_sensor library in your Python programs.

The RuuviTag not only broadcasts temperature, humidity, and pressure measurements,
but it also has an accelerometer. This can be used for some interesting applications. For
instance, the Z component of the accelerometer tells you whether the sensor is positioned
the right side up, upside down or on its side. If you attach the sensor at the right place
on your garage door, this can be used to see whether your garage door is open or closed:

Upside down
Garage door is open

On its side
Garage door is closed

Now you can write a program that sends an MQTT message to your broker when the
position of your garage door changes. This could look like this:

"""Send an MQTT message when the position of your garage door changes.

Copyright (C) 2020 Koen Vervloesem

License: MIT
"""
from threading import Thread

import paho.mqtt.client as mqtt
from ruuvitag_sensor.ruuvi import RuuviTagSensor

MQTT_HOST = "HOSTNAME"
MQTT_PORT = 8883
MQTT_CAFILE = "/path/to/rootCA.pem"
MQTT_USERNAME = "home"
MQTT_PASSWORD = "PASSWORD"
MQTT_CLIENT_ID = "RuuviTagGarageDoor"

MQTT_TOPIC = "garagedoor/state"
MAC = "C8:03:24:74:7E:0E"

def handle_data(found_data):

Figure 6.8 The ruuvitag_sensor package lets you pick up data broadcasted by RuuviTag sensors.

Chapter 6 ● Bluetooth

● 145

 """Handle acceleration data from the RuuviTag sensor."""
 global state
 acceleration_z = found_data[1]["acceleration_z"]
 if acceleration_z > 100:
 print("Right side up")
 if state != "error":
 state = "error"
 mqtt_client.publish(MQTT_TOPIC, "error")
 elif acceleration_z < -100:
 print("Upside down")
 if state != "open":
 state = "open"
 mqtt_client.publish(MQTT_TOPIC, "open")
 else:
 print("On its side")
 if state != "closed":
 state = "closed"
 mqtt_client.publish(MQTT_TOPIC, "closed")

def on_connect(client, userdata, flags, rc):
 """Start receiving RuuviTag sensor data after connecting."""
 print("Connected with result code " + str(rc))
 Thread(
 target=RuuviTagSensor.get_datas, args=(handle_data, [MAC]), daemon=True
).start()

if __name__ == "__main__":
 # Initialize program state and MQTT connection
 state = "error"
 mqtt_client = mqtt.Client(MQTT_CLIENT_ID)
 mqtt_client.on_connect = on_connect

 # Set up authentication and TLS encryption
 mqtt_client.username_pw_set(MQTT_USERNAME, MQTT_PASSWORD)
 mqtt_client.tls_set(ca_certs=MQTT_CAFILE)

 # Connect and start event loop
 mqtt_client.connect(MQTT_HOST, MQTT_PORT)
 mqtt_client.loop_forever()

If you want to try this in your setup, make sure that you change the constants in the
beginning. See Chapter 4 for the first couple of constants regarding the MQTT connection.

Control Your Home with Raspberry Pi

● 146

Then come the following constants specific for this code:

MQTT_TOPIC
The MQTT topic used to signal the state of the garage door.

MAC
The Bluetooth MAC address of the RuuviTag you have secured to your garage door.

What does the program do? It's quite simple. At the bottom of the file, you create an MQTT
client that connects to the MQTT broker and starts a loop until the program is interrupted
(for instance if you press Ctrl+c). On connecting to the broker, a new thread is started that
starts collecting data from the RuuviTag sensor with the specified MAC address. Every time
new data are found, the function handle_data is called with the found data.

This function extracts the Z component of the acceleration data and derives whether the
RuuviTag is right side up (which shouldn't happen in this setup, so it's an error state),
upside down (in which case the garage door is open) or on its side (in which case the
garage door is closed). In the state differs from the previous state, it's published as an
MQTT message on the configured topic.

If you're still in the ruuvitag_sensor virtual environment, you just have to install an
additional dependency:

pip install paho_mqtt

Then run the program like this:

python ruuvitag_garage_door.py

And you can see the state changes of your garage door in your MQTT client on the topic
garagedoor/state.

Note:
Here's an exercise: how would you adjust the code to be able to send the state of multiple
garage doors to the MQTT broker?

6.4.2 • Miflora

The Xiaomi Mi Flora plant sensor also has a package for Python, which you can find on
https://github.com/open-homeautomation/miflora. It's also available on PyPI.

https://github.com/open-homeautomation/miflora

Chapter 6 ● Bluetooth

● 147

First, create a virtual environment, activate it, and then install the miflora package in this
environment, together with the bluepy library:

python3 -m venv venv-miflora
source venv-miflora/bin/activate
pip install miflora bluepy

Now make sure that you know your plant sensor's MAC address. Then the following program
will show some values of the plant sensor:

"""Show some measurements of a Xiaomi Mi Flora plant sensor.

Copyright (C) 2020 Koen Vervloesem

License: MIT
"""
from btlewrap.bluepy import BluepyBackend
from miflora.miflora_poller import MiFloraPoller

MAC = "C4:7C:8D:67:65:AD"
POLLER = MiFloraPoller(MAC, BluepyBackend)

print("Temperature; " + str(POLLER.parameter_value("temperature")))
print("Moisture: " + str(POLLER.parameter_value("moisture")))
print("Light: " + str(POLLER.parameter_value("light")))
print("Conductivity: " + str(POLLER.parameter_value("conductivity")))
print("Battery: " + str(POLLER.parameter_value("battery")))

Run this like this:

python3 test_miflora.py

After a few seconds, expect something like this:

Figure 6.9 The miflora package lets you read data of Xiaomi Mi Flora plant sensors.

Control Your Home with Raspberry Pi

● 148

If this works, you can start using the miflora library in your Python programs. But it's
already integrated into a couple of other projects, one of which I'll show you in the next
section.

6.5 • Relaying Bluetooth sensor values with bt-mqtt-gateway

Using ad hoc Python scripts is interesting if you like tinkering and exploring devices directly,
but for a home automation system, you need another approach. One interesting project
is bt-mqtt-gateway (https://github.com/zewelor/bt-mqtt-gateway), which provides a
gateway that reads Bluetooth sensor values and translates them to MQTT messages.

At the moment, bt-mqtt-gateway supports the following Bluetooth devices:

•	 EQ3 Bluetooth smart thermostat
•	 Xiaomi Mi Scale
•	 Linak Desk
•	 MySensors devices
•	 Xiaomi Mi Flora plant sensor (based on the miflora library of the previous section)
•	 Xiaomi Aqara thermometer
•	 BLE beacons
•	 Oral-B connected toothbrush
•	 Switchbot Bluetooth switch
•	 Sensirion SmartGadget sensor
•	 RuuviTag sensor (based on the ruuvitag_sensor library of the previous section)

The architecture is highly extensible: support for other devices can be added by writing
custom workers. I have added support for the RuuviTag sensor to the project by copying
the worker code for the Sensirion SmartGadget sensor and changing a couple of lines so it
would use the ruuvitag_sensor library, which is a testament to the project's extensibility.

Note:
If you are only interested in relaying Mi Flora measurements to MQTT, two excellent
projects are miflora-mqtt-gateway (https://github.com/ThomDietrich/miflora-mqtt-
daemon) and plantgateway (https://github.com/ChristianKuehnel/plantgateway).

6.5.1 • Configuring bt-mqtt-gateway

First create a directory for the bt-mqtt-gateway container:

mkdir -p /home/pi/containers/bt-mqtt-gateway

The bt-mqtt-gateway program is configured in a YAML file, config.yaml. Create this in

https://github.com/zewelor/bt-mqtt-gateway
https://github.com/ThomDietrich/miflora-mqtt-daemon
https://github.com/ThomDietrich/miflora-mqtt-daemon
https://github.com/ChristianKuehnel/plantgateway

Chapter 6 ● Bluetooth

● 149

the directory you just created and give it this content:

mqtt:
 host: pi-red.home
 port: 8883
 username: home
 password: PASSWORD
 ca_cert: /etc/ssl/certs/rootCA.pem
 topic_prefix: bt-mqtt-gateway
 client_id: bt-mqtt-gateway
 availability_topic: availability

manager:
 command_timeout: 30
 workers:
 miflora:
 args:
 devices:
 aglaonema: C4:7C:8D:67:65:AD
 topic_prefix: miflora
 update_interval: 300
 ruuvitag:
 args:
 devices:
 bedroom: F9:DA:D2:0D:62:24
 livingroom: C8:03:24:74:7E:0E
 terrace: C5:98:17:63:C3:E3
 topic_prefix: ruuvitag
 update_interval: 60

At the beginning, under the mqtt key, you specify the hostname and port number of the
MQTT broker, as well as the username and password. In previous chapters, I showed you
how you can just use mosquitto as the hostname and 1883 as the port number because
you connect to the MQTT broker on Docker's internal network. However, as the bt-mqtt-
gateway container has to connect directly to the host network of the Raspberry Pi for its
Bluetooth access, you have to use the fully qualified hostname (such as pi-red.home) for
the hostname, 8883 for the port number and also make sure that you refer to the right
CA certificate file in the ca_cert line (you'll see the path in the Docker Compose file right
away).

Then come the topic prefix, client ID, and an availability topic. The latter is a topic that bt-
mqtt-gateway will use to signal when it goes online or offline.

The manager key consists of a general timeout value and some workers. In this case, I

Control Your Home with Raspberry Pi

● 150

defined two workers: miflora and ruuvitag. For each device, a name is assigned to a
MAC address.

Note:
If you want to know the syntax for workers for other devices, have a look at the file
config.yaml.example on the GitHub repository of the project.

For instance, because I configured topic_prefix in the mqtt key as bt-mqtt-gateway
and topic_prefix for the ruuvitag worker as ruuvitag, and configured a couple of
names for the RuuviTag sensors, all measurements of the RuuviTag with MAC address
F9:DA:D2:0D:62:24 will be published on the MQTT topic bt-mqtt-gateway/ruuvitag/
bedroom.

6.5.2 • Running bt-mqtt-gateway

A Docker Compose file for bt-mqtt-gateway could look like this:1

version: '3.7'

services:
 mosquitto:
 # mosquitto configuration
 bt-mqtt-gateway:
 image: zewelor/bt-mqtt-gateway
 container_name: bt-mqtt-gateway
 restart: always
 volumes:
 - ./containers/bt-mqtt-gateway/config.yaml:/config.yaml
 - ./containers/certificates:/etc/ssl/certs:ro
 # These capabilities are needed for Bluetooth
 cap_add:
 - NET_ADMIN
 - SYS_ADMIN
 # The Docker host should have working Bluetooth
 network_mode: host

This begins all rather straightforward if you have seen the other Docker Compose files

1	 If you want to run bt-mqtt-gateway on another device than your main home automation
gateway, just drop the mosquitto service, because your MQTT broker is then on your home
automation gateway. This could be interesting when your home automation gateway is in a
place with bad Bluetooth coverage and you want to read sensor data from Bluetooth devices
farther away.

Chapter 6 ● Bluetooth

● 151

earlier in this book. The second volume of the container refers to the directory with your
TLS certificates, so bt-mqtt-gateway can find the CA certificate to verify your MQTT broker's
certificate.

Towards the end, there are a couple of new lines. First, you see that the bt-mqtt-gateway
container needs some special capabilities NET_ADMIN and SYS_ADMIN. And second, it needs
to run its network in host mode. Otherwise, it won't have access to Bluetooth. Network
host mode means that the container has direct access to the network of your Raspberry Pi
instead of to an internal network that Docker Compose creates. That's also the reason why
you couldn't just use the name of the mosquitto container as the hostname in bt-mqtt-
gateway's configuration file: this name is only valid as a hostname in the internal network
that Docker Compose has created.

Now you only have to run docker-compose up -d to start bt-mqtt-gateway. If all goes well,
you'll start seeing sensor measurements coming through in your favourite MQTT client.

Figure 6.10 With bt-mqtt-gateway running, measurements of your Bluetooth sensors are relayed to MQTT
messages.

Control Your Home with Raspberry Pi

● 152

6.6 • Presence detection with Bluetooth

Bluetooth can not only be used to broadcast sensor measurements but also for presence
detection. Indeed, there's a whole class of devices specifically designed to track your
location: Bluetooth beacons. A Bluetooth beacon is a BLE device that broadcasts a unique
identifier. An app on your smartphone then receives the identifier and knows that you're
in the vicinity of that specific beacon. Retail stores use this technology to offer specific
information or deals if you're standing at a specific spot.

Now, you could use the same approach at home, with a beacon in every room transmitting
its ID, and an app in your phone that receives these broadcasts. But that would mean you'd
have to install an app on your phone.

There's another approach: carry a Bluetooth beacon around, and let a device in every room
pick up the beacon broadcasts. You can implement this at home by putting a Raspberry Pi
in every room (or on every floor) and letting it scan for Bluetooth devices in the vicinity.
When you're entering your home with a beacon (or your smartphone) in your pocket, the
Raspberry Pi on the first floor detects your presence (if you have Bluetooth enabled on your
phone). When you're leaving the house, your phone's Bluetooth signals aren't received
anymore by your Raspberry Pi, so it knows you're not home anymore.

When doing this on the first and the second floor, your home automation system can even
detect on which floor you are. For each Bluetooth signal that your Raspberry Pi receives,
it also gets an RSSI (Received Signal Strength Indicator) value from the device. This RSSI
is a rough indication of the distance between the device and the Raspberry Pi. So by
comparing the RSSI values of your phone as received by a Raspberry Pi on your first floor
and a Raspberry Pi on your second floor, you can estimate whether your phone is on the
first or second floor.2

6.6.1 • Presence detection with monitor.sh

One project that implements this is monitor.sh (https://github.com/andrewjfreyer/
monitor). It detects phones, smartwatches, and laptops, as well as Bluetooth beacons, and
reports their presence with MQTT messages.3

Monitor.sh works differently for beacons and phones:

Beacons
A Bluetooth beacon periodically broadcasts its ID, which can be considered as a name.

2	 In practice the RSSI also varies with the obstacles between the Bluetooth sender and
receiver, whether it rains (if you're outside), the orientation of both devices, whether the phone
is in your pocket, and each device has unique transmitter and receiver characteristics, so the
relation between RSSI and distance should be calibrated.
3	 An alternative program for presence detection is Room Assistant (https://github.com/
mKeRix/room-assistant). This is not written in Python but in Node.js. There's also a Docker
image available. Room Assistant integrates nicely with Home Assistant's mqtt_room component
(https://www.home-assistant.io/integrations/mqtt_room).

https://github.com/andrewjfreyer/monitor
https://github.com/andrewjfreyer/monitor
https://github.com/mKeRix/room-assistant
https://github.com/mKeRix/room-assistant
https://www.home-assistant.io/integrations/mqtt_room

Chapter 6 ● Bluetooth

● 153

Monitor.sh just listens to these broadcasts and reports on MQTT when a beacon announces
its presence.

Phones (smartwatches, laptops)
Contrary to a Bluetooth beacon, a phone doesn't advertise a public ID, but it does respond
to a name query. But if you would constantly ask for a specific name, that would interfere
with 2.4 GHz Wi-Fi, which is using the same frequencies as Bluetooth. So what monitor.
sh does is waiting for some Bluetooth advertisement, and then ask that device whether it
has this specific name. If it replies affirmatively, monitor.sh reports its presence on MQTT.

Warning:
Monitor.sh needs exclusive access to the Bluetooth radio to function properly. So you
can't run bt-mqtt-gateway and monitor.sh on the same Raspberry Pi. If you need both, I
suggest you run monitor.sh on a cheap Raspberry Pi Zero W dedicated to this task.

6.6.2 • Configuring and running monitor.sh

The monitor.sh project doesn't have an official Docker image yet, but one of the community
members has created a Docker image that has the developer's support. You can find it on
Docker Hub (https://hub.docker.com/r/mashupmill/presence-monitor).

Monitor.sh can be configured completely with environment variables in the Docker Compose
file. This is an example file:4

version: '3.7'

services:
 mosquitto:
 # mosquitto configuration
 monitor:
 container_name: monitor
 image: mashupmill/presence-monitor:latest
 network_mode: host
 cap_add:
 - NET_ADMIN
 - SYS_ADMIN
 restart: always
 command: ['-b', '-x']
 volumes:

4	 If you want to run monitor.sh on another device than your main home automation
gateway, just drop the mosquitto service, because your MQTT broker is then on your home
automation gateway. This could be interesting when your home automation gateway is in a
place with bad Bluetooth coverage and you want to monitor Bluetooth devices farther away.

https://hub.docker.com/r/mashupmill/presence-monitor

Control Your Home with Raspberry Pi

● 154

 - ./containers/certificates:/etc/ssl/certs:ro
 - /etc/localtime:/etc/localtime:ro
 environment:
 MQTT_ADDRESS: HOSTNAME
 MQTT_PORT: 8883
 MQTT_USER: home
 MQTT_PASSWORD: PASSWORD
 MQTT_CERTIFICATE_PATH: /etc/ssl/certs/rootCA.pem
 MQTT_PUBLISHER_IDENTITY: secondfloor
 KNOWN_BEACON_ADDRESSES: |
 FF:FF:FF:FF:FF:FF Red Tag
 FF:FF:FF:FF:FF:FF Green Tag
 FF:FF:FF:FF:FF:FF White Tag
 FF:FF:FF:FF:FF:FF Black Tag
 KNOWN_STATIC_ADDRESSES: |
 FF:FF:FF:FF:FF:FF Alpha Phone BT
 FF:FF:FF:FF:FF:FF Beta Phone BT
 PREF_ARRIVAL_SCAN_ATTEMPTS: 2
 PREF_DEVICE_TRACKER_REPORT: "true"

Just like bt-mqtt-gateway, monitor.sh needs the host network mode and NET_ADMIN and
SYS_ADMIN capabilities.

Make sure that the MQTT_ADDRESS environment variable points to the correct hostname,
and that you enter the right port, username, password, and path to the root CA certificate.
Change these to your situation.

KNOWN_BEACON_ADDRESSES lists the Bluetooth MAC addresses of your Bluetooth beacons5
and KNOWN_STATIC_ADDRESSES lists the Bluetooth MAC addresses of your other devices,
such as your smartphone, smartwatch or laptop. Don't put a device of one type in the other
list, because they behave differently and then monitor.sh wouldn't be able to detect them.

Now if you start monitor.sh with docker-compose up -d, you should start seeing MQTT
messages on the monitor/IDENTITY/DEVICE topic, where IDENTITY is the identity you
have configured in the MQTT_PUBLISHER_IDENTITY environment variable or the hostname
of your Raspberry Pi if you haven't done that. DEVICE is the name of your device that you
have configured in the lists KNOWN_BEACON_ADDRESSES and KNOWN_STATIC_ADDRESSES.
The message for each device is a JSON object. For instance, when monitor.sh detects the
presence of my phone, mosquitto_sub -t 'monitor/#' -v shows:

5	 This list is optional, because the advertisements of Bluetooth beacons are picked up
anyway. But if yours isn't recognized, you can define its MAC address in this list.

Chapter 6 ● Bluetooth

● 155

monitor/raspberrypi/xperia_z5_compact
{"id":"40:B8:37:1C:4F:01","confidence":"100","name":"Xperia Z5
Compact","manufacturer":"Sony Mobile Communications
Inc","type":"KNOWN_MAC","retained":"false","timestamp":"Sun Nov 17 2019
12:00:42 GMT+0100 (CET)","version":"0.2.197"}

With this JSON string formatted in a more human-readable way, this becomes:

{
 "id": "40:B8:37:1C:4F:01",
 "confidence": "100",
 "name": "Xperia Z5 Compact",
 "manufacturer": "Sony Mobile Communications Inc",
 "type": "KNOWN_MAC",
 "retained": "false",
 "timestamp": "Sun Nov 17 2019 12:00:42 GMT+0100 (CET)",
 "version": "0.2.197"
}

You can see here the id of the phone (its Bluetooth MAC address), its name, the
manufacturer, and the timestamp when it has been detected.

The confidence property merits an explanation. This value is the confidence value of
the presence of the device. If monitor.sh is 100% sure the device is present, it gives
confidence the value "100". On the other hand, it monitor.sh is 100% sure the device is
absent, it gives confidence the value "0".

If you have set the PREF_DEVICE_TRACKER_REPORT environment variable to "true", as
I've done in my example Docker Compose file, you also see MQTT topics like monitor/
secondfloor/xperia_z5_compact/device_tracker with the value home or not_home.
These are useful topics to subscribe to if you want an easy way to know if a device is home
or not, and they are used to integrate monitor.sh with Home Assistant (see Chapter 10).

6.6.3 • Trigger arrival and departure scans in monitor.sh

Monitor.sh has many configuration options to tweak its behavior. If you want to know the
details, have a look at the GitHub project, especially the support README file (https://
github.com/andrewjfreyer/monitor/tree/master/support/). One interesting functionality is
that you can trigger arrival and departure scans. That is, monitor.sh reacts on a message
(with blank content, but the content is not important: it's ignored) with these two topics:

monitor/scan/arrive
Monitor.sh issues a name request, sequentially, for each device listed in the KNOWN_STATIC_
ADDRESSES environment variable that is known to be absent.

https://github.com/andrewjfreyer/monitor/tree/master/support/
https://github.com/andrewjfreyer/monitor/tree/master/support/

Control Your Home with Raspberry Pi

● 156

monitor/scan/depart
Monitor.sh issues a name request, sequentially, for each device listed in the KNOWN_STATIC_
ADDRESSES environment variable that is known to be present.

This can be used to make presence detection with monitor.sh more reliable. For instance,
you could put a door sensor on your front door, and let your home automation gateway
trigger and arrival and departure scan every time your front door is opened.
As I've said in the introduction of this section, you can also run monitor.sh on multiple
Raspberry Pis, for instance, one on your first floor and one on your second floor. On each
Raspberry Pi, you configure another value for the MQTT_PUBLISHER_IDENTITY environment
value.

Then you could let another script look at the RSSI values of the Bluetooth messages picked
up by both instances. The instance that has the biggest RSSI is probably the one that is
the closest to the device. This way you can deduce on which floor the device (for instance
your smartphone) is.

6.7 • Summary and further exploration

In this chapter, I explained the basics of Bluetooth and how you can investigate Bluetooth
Low Energy devices. To make this more practical, I illustrated how you read sensor values
from the RuuviTag Sensor and the Xiaomi Mi Flora plant sensor with some Python programs.
Next, I showed you bt-mqtt-gateway, an interesting project that acts as a gateway that
reads Bluetooth sensor values and translates them to MQTT messages. You also learned the
basics of Bluetooth presence detection with monitor.sh.

Bluetooth is a vast topic to study, especially in the context of home automation. You can
find many cheap Bluetooth gadgets, and it's quite rewarding to try to find out how they
work and support them in your home automation setup. This doesn't even have to be that
difficult. Just as I was able to add support for the RuuviTag sensor to bt-mqtt-gateway by
using an existing library, you could also do this for a Bluetooth device you own.

Presence detection is another fruitful topic to explore. I just covered the basics in this
chapter, but if you want to dig deeper you can start experimenting with multiple monitor.
sh instances in your house and try to tweak some configuration values to find a setup that
works. It would probably be even better to combine Bluetooth presence detection with the
detection of your phone on your Wi-Fi network.

With an automation platform such as Node-RED, Home Assistant, or AppDaemon (see
Chapter 10) you could combine these values to get better detection rates. Home Assistant
is an especially powerful platform to build presence detection on as it has concepts such
as a device tracker, a person (to which you can link multiple device trackers) and even
Bayesian sensors to estimate the probability of your presence based on the state of multiple
other sensors.

Chapter 7 ● 433.92 MHz

● 157

Chapter 7 • 433.92 MHz

It probably sounds weird to name a chapter after a frequency, but in the DIY community (at
least in Europe where I'm living), 433.92 MHz will ring a bell. Many cheap wireless devices
such as garage door openers, weather sensors, and doorbells are using this frequency.
Moreover, the hardware to communicate with these devices is equally cheap.

The disadvantage is that most of these devices use plain unencrypted radio communication,
and if they do use some sort of security, it's quite weak and/or some proprietary algorithm
that doesn't inspire much confidence. But there are so many available devices and they
are so cheap, that you can't ignore them. For security reasons I only use 433.92 MHz
temperature sensors: I have one of them in almost every room of my house, and outside
too. I wouldn't trust 433.92 MHz devices for critical tasks.

In this chapter, I show you how you read measurements of these wireless temperature
sensors and how to relay them to your MQTT broker for further integration in your home
automation system.

Note:
In this book, I'm talking about 433.92 MHz, but depending on where you live you have
to substitute this by another frequency. For instance, in the Americas, the corresponding
frequency is 915 MHz. Just make sure that you buy the correct devices for your country.

7.1 • 433.92 MHz protocols

Devices that are using the 433.92 MHz frequency operate in the unlicensed industrial,
scientific, and medical (ISM) frequency band. But the frequency is one thing, the protocol
they're using is another one. There's no standard protocol for this frequency. This is no
Z-Wave or Zigbee. However, many protocols of these devices have been reverse engineered,
and you can talk to them as long as you have a transceiver for the frequency band around
433.92 MHz and the right software to decode and/or encode the protocol.
Some interesting devices are:

•	 Temperature, humidity and weather sensors by Alecto, Cresta, La Crosse, and Oregon
Scientific;

•	 Door/window sensors with Hall sensor;
•	 Switches and dimmers by Energenie, KlikAanKlikUit and LightwaveRF;
•	 Doorbell chimes by Byron and Chacon.

You can also find many even cheaper devices on AliExpress and Banggood that support the
same protocols. And there are even small PCBs such as the STX882 transmitter that you
can connect to a microcontroller or an Arduino board to create your own wireless sensor

Control Your Home with Raspberry Pi

● 158

boards.1

In this chapter, I'm focusing on the first types of devices: temperature and humidity
sensors. You can find these for less than 10 euros, even for a few euros on AliExpress or
Banggood. Their range is quite good: I can read sensors in my whole house, including in
my fridge and freezer, and even on my terrace outside.

7.2 • Hardware requirements

For your Raspberry Pi to be able to receive 433.92 MHz sensor measurements, you need a
receiver and an antenna.

7.2.1 • Receiver

A popular type of receiver for 433.92 MHz projects is a Realtek RTL2832 based DVB dongle.
Yes, you read that right, DVB as in Digital Video Broadcasting. As it turns out, the RTL2832
chip in many of these dongles can do quite more than decoding digital video signals: with
the right software, you can create a true software-defined radio (SDR) with it.

So if you have an old DVB dongle lying in your closet, chances are that you can use it
to receive signals from your weather sensors. Otherwise, the RTL-SDR (https://www.rtl-

1	 Elektor sells a kit with antennas, mounts and extension cable on https://www.elektor.
com/rtl-sdr-software-defined-radio-with-dipole-antenna-kit.

Figure 7.1 For around €5 you can find a temperature and humidity sensor from DANIU that transmits its
values over 433.92 MHz and shows it on a clear display.

https://www.rtl-sdr.com
https://www.elektor.com/rtl-sdr-software-defined-radio-with-dipole-antenna-kit
https://www.elektor.com/rtl-sdr-software-defined-radio-with-dipole-antenna-kit

Chapter 7 ● 433.92 MHz

● 159

sdr.com) is a good choice. You can find variations of this stick for € 25 and in a kit with
an antenna and other accessories for € 40 to € 45.2 You can find something useful even
cheaper: I have read about € 7 DVB dongles on AliExpress that are working perfectly for
this purpose, but I haven't had any experience with them.

7.2.2 • Antenna

The next item you need is a good antenna. There are whole books written about antenna
theory, and I'm not going to delve into this vast topic because I'm no antenna specialist.
One thing you should know for the choice of your antenna is its length. This depends on
the wavelength of the signal. The wavelength equals the speed (in m/s) divided by the
frequency (in Hz), and is measured in meters.

Let's do the maths for 433.92 MHz communication. In the air, the speed of the wave is
the speed of light. So the wavelength becomes: 299,792,458 m/s / 433,920,000 Hz =
0,69 m. So the full wavelength is 69 cm, the half-wavelength is 34,5 cm, and the quarter-
wavelength is 17,25 cm. These are the theoretical optimal lengths for an antenna to receive
433.92 MHz transmissions. In practice, various factors are influencing the antenna's
characteristics, including positioning, and there's a rule of thumb to subtract 5% from this
theoretical length.

2	 Elektor sells a kit with antennas, mounts and extension cable on https://www.elektor.
com/rtl-sdr-software-defined-radio-with-dipole-antenna-kit.

Figure 7.2 The RTL-SDR decodes a lot of wireless signals, including weather sensors transmitting on 433.92
MHz

https://www.rtl-sdr.com
https://www.elektor.com/rtl-sdr-software-defined-radio-with-dipole-antenna-kit
https://www.elektor.com/rtl-sdr-software-defined-radio-with-dipole-antenna-kit

Control Your Home with Raspberry Pi

● 160

Again, this is not an antenna theory book, so I'm not going to talk about the different types
of antennas. Moreover, for reading sensor values in your house it doesn't even matter that
much what the quality of your antenna is. You could try experimenting with it, but chances
are that it just works if you buy a "433 MHz antenna" for a few euros on AliExpress or
Banggood. If you don't want to take any chances, use an antenna included in a kit with the
RTL-SDR. The official antenna kit has telescopic dipole antennas you can extend from 5 cm
to 1 m, which covers the optimal wavelengths for the 433.92 MHz frequency.3

7.3 • Receiving sensor values with rtl_433

On the software side, a popular choice to read 433.92 MHz signals is rtl_433 (https://
github.com/merbanan/rtl_433), which despite its name is a generic data receiver, mainly
for the 433.92 MHz, 868 MHz (SRD), 315 MHz, 345 MHz, and 915 MHz ISM bands.

Any Realtek RTL2832 based DVB dongle should work with rtl_433, including the official
RTL-SDR dongle. I'm using the RTL-SDR dongle with a dipole antenna from the RTL-SDR
antenna kit. Just connect the antenna to the RTL-SDR and put the RTL-SDR in a USB port
of your Raspberry Pi.

3	 There's an extensive explanation of using a dipole antenna kit on the RTL-SDR's web
site: https://www.rtl-sdr.com/using-our-new-dipole-antenna-kit/.

Figure 7.3 With the tripod mount, dipole base and telescopic antennas from the RTL-SDR kit, you have all you
need to receive measurements from all your 433.92 MHz sensors.

https://github.com/merbanan/rtl_433
https://github.com/merbanan/rtl_433
https://www.rtl-sdr.com/using-our-new-dipole-antenna-kit/

Chapter 7 ● 433.92 MHz

● 161

Warning:
The RTL-SDR produces quite a lot heat while it's running. Take care of where you position
it.

7.3.1 • Installing rtl_433toMQTT

The rtl_433 program is actively developed and maintained and has more than 150
protocol decoders for various devices that transmit on 433.92 MHz. Moreover, it can send
the received values to an MQTT broker. Luckily, someone created a Docker container with
rtl_433 for this exact purpose (https://github.com/bademux/rtl_433toMQTT).4

First, create a directory for the container:

mkdir -p /home/pi/containers/rtl433tomqtt

Then add the container definition to your docker-compose.yml file:

version: '3.7'

service:
 mosquitto:
 # mosquitto config
 rtl433tomqtt:
 image: bademux/rtl_433tomqtt:latest
 container_name: rtl433tomqtt
 restart: always
 volumes:
 - ./containers/rtl433tomqtt:/home/user/.config/rtl_433:ro
 - /etc/localtime:/etc/localtime:ro
 devices:
 - /dev/bus/usb:/dev/bus/usb

The container needs access to the USB bus to read from the RTL-SDR device. Note also that
the directory you created is mounted as a volume. You don't have to create a configuration
file yet.

4	 Right before this book was finished, the developer announced that he wouldn't actively
develop this Docker image (which has more than 100,000 pulls) anymore, so there will be no
new features. It remains to be seen if another image becomes popular. But even if you need to
find another one, you should only need some minor changes to use it: the main configuration
file of rtl_433 stays the same.

https://github.com/bademux/rtl_433toMQTT

Control Your Home with Raspberry Pi

● 162

First create a udev rule to give the right permissions to the USB device:

sudo nano /etc/udev/rules.d/20.rtl-sdr.rules

Enter the following line:

SUBSYSTEM=="usb", ATTRS{idVendor}=="0bda", ATTRS{idProduct}=="2838",
OWNER="pi", MODE="0660"

Save the file with Ctrl+o and exit nano with Ctrl+x. Then unplug the RTL-SDR and reattach
it. Now look at the list of attached USB devices:

lsusb

Search in this list for a line like this:

Bus 001 Device 008: ID 0bda:2838 Realtek Semiconductor Corp. RTL2838 DVB-T

Note the bus and device number: 001 and 008. Now look at the device files for the bus 001:

ls -l /dev/bus/usb/001

You should see a line like this:

crw-rw---- 1 pi root 189, 10 May 7 20:22 008

This shows that the device is owned by the user pi, which has read and write permissions.
After this, create the container with:

docker-compose up -d

After the container has been created, look at its logs:

Chapter 7 ● 433.92 MHz

● 163

docker logs -f rtl433tomqtt

You should see some messages that the rtl_433 program is trying to find a configuration
file in a few places, that is has registered more than 120 decoding protocols and that is has
found a receiver device. Then you should see a message "Tuned to 433.920MHz." and if all
goes well you should now see sensor values coming in. Have some patience, because many
of these sensors only transmit once a minute.

7.3.2 • Configuring rtl_433

In the beginning of the logs, you saw that rtl_433 tried to find some configuration files.
It didn't find one, so it just used a default configuration, which was fine for testing but
didn't use MQTT. Now let's copy an example configuration file to a path where rtl_433 is
searching:

docker cp rtl433tomqtt:/usr/local/etc/rtl_433/rtl_433.example.conf /home/
pi/containers/rtl433tomqtt/rtl_433.conf

Because I have mapped the directory containers/rtl433tomqtt in your pi user's
home directory to /home/user/.config/rtl_433 in the container, you can now edit this

Figure 7.4 The rtl_433 command automatically finds the RTL-SDR receiver and starts showing received
sensor readings.

Control Your Home with Raspberry Pi

● 164

configuration file and restart the container to use this configuration. For instance, you can
disable protocols you don't need, or enable protocols that are disabled by default.

The configuration file is heavily commented, which should help you figure out what to
change. Moreover, you can find a lot of information in rtl_433's online documentation
(https://triq.org/rtl_433/), including steps to add support for a sensor that is not (yet)
supported.

After the changes to your configuration file, restart the container:

docker restart rtl433tomqtt

If all goes well, the logs should show that rtl_433 stops searching for a configuration file
after the second file and finds it:

Reading conf from "/home/user/.config/rtl_433/rtl_433.conf".

With the example configuration file, rtl_433 now shows the output of each sensor as a
JSON dictionary:

This is already a big step forward to integrate your 433.92 MHz sensors into your home
automation setup, but the final step is to publish these values to your MQTT broker.

Figure 7.5 The rtl_433 command can show the sensor values in many formats, including JSON.

https://triq.org/rtl_433/

Chapter 7 ● 433.92 MHz

● 165

7.4 • Publishing 433.92 MHz sensor values to MQTT

The rtl_433 program has already support for sending the sensor values it receives to an
MQTT broker. Open the configuration file (/home/pi/containers/rtl433tomqtt/rtl_433.
conf) and find the line that says:

output json

You can keep this line here because you can specify multiple outputs, or change it to output
kv if you prefer the default more human-friendly output. Add the following line to define
an MQTT output:

output mqtt://mosquitto:1883,user=home,pass=PASSWORD

Make sure to enter the correct username and password for your MQTT broker.

Warning:
The rtl_433 program doesn't support MQTT over TLS. If you're running the rtl_433toMQTT
container on the same Raspberry Pi as your mosquitto container, it's no problem that
they communicate unencrypted: they're on the same machine anyway. If you have your
RTL-SDR receiver on another machine than your MQTT broker (for instance because you
have better coverage there), I recommend you run a mosquitto container aside from the
rtl_433toMQTT container and configure it as a bridge to your main MQTT broker over an
encrypted connection. See the appendix at the end of this book for the details.

After a restart of your container, you should see an MQTT message published under the
rtl_433 main topic for each sensor value. You can find see this with:

mosquitto_sub -t 'rtl_433/#' -v

For instance, every time the temperature and humidity sensor in my freezer transmits a
message, I see:

Control Your Home with Raspberry Pi

● 166

Now, you can still tweak a couple of things from the MQTT configuration. Consult the
comments in the example configuration file for the details. For instance, this configuration
changes the MQTT topics to something shorter:

output
mqtt://mosquitto:1883,user=home,pass=PASSWORD,devices=rtl433/[model]/
[channel]/[id]

And if you're not interested in the low-level metadata about the radio connection, such
as modulation, frequency, RSSI (received signal strength indicator), SNR (signal-to-noise
ratio) and noise, just remove or comment out the report_meta level line in the configuration
file.

So there you have it: all the measurements of your 433.92 MHz sensors are sent to your
MQTT broker, and you can subscribe to their topics in your Python scripts or your other
home automation software.

7.5 • Summary and further exploration

Wireless devices in the 433.92 MHz frequency band are very popular in the DIY community
and they are cheap and easy to find in a lot of places. Especially interesting are temperature
and humidity sensors that you can use to monitor your fridge, freezer, or greenhouse.

All you need to read these sensors is a cheap DVB dongle and an antenna. The rtl_433
program supports more than 150 protocols of 433.92 MHz devices and lets you relay
the received signals as messages to your MQTT broker, so your other home automation
software can act upon them.

There are still a lot of interesting topics I barely touched, such as the optimal antenna choice
and placement for better coverage. It's also an exciting exercise to try to add support for
an unsupported device to rtl_433. The project has detailed documentation about how you
capture the raw signals and how you should try to reverse engineer the protocol.

You can also try other receivers, for instance, the RFXtrx family of devices, which even

Figure 7.6 The rtl_433 command can send the received sensor values to your MQTT broker.

Chapter 7 ● 433.92 MHz

● 167

includes a transceiver that lets you control Somfy RTS roller shutters. There's even a
Python library, pyRFXtrx (https://github.com/Danielhiversen/pyRFXtrx), to communicate
with your 433.92 MHz devices using a RFXtrx transceiver. Home Assistant (see Chapter 10)
is using this library for its support of 433.92 MHz devices. However, the RFXtrx transceiver
costs a lot more than a RTL-SDR.

At the other end of the price spectrum, if you want to try what you can do with the cheapest
possible equipment, the STX882 transmitter and SRX887 receiver are a good place to start.

https://github.com/Danielhiversen/pyRFXtrx

Control Your Home with Raspberry Pi

● 168

Chapter 8 • Z-Wave

Although in recent years Zigbee and Wi-Fi have become more popular, Z-Wave is still one
of the main wireless home automation protocols. In this chapter, I show you how you can
turn your Raspberry Pi into a Z-Wave controller and integrate it with the rest of your home
automation system using MQTT.

8.1 • An introduction to Z-Wave

The Z-Wave protocol is a wireless home automation standard originally developed by
Zensys, then acquired by Sigma Designs and in 2018 sold to Silicon Labs. Since 2005,
all major companies developing Z-Wave devices are grouped in the Z-Wave Alliance
(https://z-wavealliance.org). A big advantage of Z-Wave is that all products by companies
in the alliance are tested to be interoperable. Each Z-Wave product must pass a stringent
conformance test to assure that it meets the Z-Wave standard for complete compliance
with all other devices.

Another advantage is that Z-Wave is not using the already crowded 2.4 GHz frequency
band, so it avoids interference with the numerous Wi-Fi, Bluetooth, or Zigbee devices in
your house.

Z-Wave is specifically designed to provide low-latency transmission of small data packets.
That makes it a very suitable protocol for reliable control and sensor purposes.

8.1.1 • The specification

For a long time, Z-Wave has been a closed standard. Manufacturers that wanted to implement
the Z-Wave protocol had to sign a non-disclosure agreement before they received access to
the Z-Wave Alliance's developer kit. On the software side, OpenZWave became a popular
choice for open-source enthusiasts to control their Z-Wave devices.

In recent years the Z-Wave standard has been opened up. In September 2016, certain
parts of the standard were made publicly available, which allowed software developers
to integrate Z-Wave into devices more easily: Z-Wave's S2 security, Z/IP for transporting
Z-Wave signals over IP networks, and the Z-Ware middleware (https://www.silabs.com/
products/development-tools/software/z-wave/controller-sdk/z-ware).

At the end of 2019, Silicon Labs and the Z-Wave Alliance announced that the complete
Z-Wave Specification would be made publicly available in the second half of 2020, including
the ITU.G9959 PHY/MAC radio specification, the application layer, the network layer, and
the host-device communication protocol. Before this change, the only company that could
make Z-Wave radios was Silicon Labs (and Sigma Designs and Zensys earlier), which meant
it had control over the entire ecosystem.1 After opening up the complete specification, other
companies can make Z-Wave radios too. This should drive down prices of Z-Wave products,

1	 Although in 2014 Mitsumi received a license from Sigma Designs to manufacture the
Z-Wave 500 series chips.

https://z-wavealliance.org
https://www.silabs.com/products/development-tools/software/z-wave/controller-sdk/z-ware
https://www.silabs.com/products/development-tools/software/z-wave/controller-sdk/z-ware

Chapter 8 ● Z-Wave

● 169

which is welcome because of their rather high price compared to other similar technologies.

8.1.2 • How does Z-Wave work?

Z-Wave is technologically a mesh network, also called a wireless ad hoc network. Each
device wirelessly sends its messages to neighbouring devices, which relay them to the
intended receiver. So there's no central router that decides what the optimal path between
two devices is. This way Z-Wave devices can communicate even if they're not in each
other's range, as long as there's an intermediate device that is in range of the two devices.
These routes can even be changed dynamically: if one of the intermediate devices gets out
of range, another one relays the messages.

Z-Wave knows two types of devices:

Figure 8.1 Z-Wave is using a mesh network: each device sends or relays messages to neighbouring devices.
This is a network graph of a real Z-Wave network, as shown in the web interface of Zwave2Mqtt.

Control Your Home with Raspberry Pi

● 170

A Controller
This is the central part of the Z-Wave network. It's not like a traditional router (because of
the mesh architecture), but it sends commands to the other Z-Wave devices and receives
information from them. A controller can be a part of a dedicated gateway device, or it can
be a remote control. Each Z-Wave network has one primary controller and optionally one
or more secondary controllers.

Nodes
A node is a 'controllable' device, for instance, a sensor or a switch.

A Z-Wave network can consist of up to 232 devices. If you need more devices, you can
bridge multiple Z-Wave networks.

Each Z-Wave network is identified by a Network ID, also called Home ID, which is a 32-bits
number. For a node to become part of the Z-Wave network, it has to be 'included' by the
controller, a procedure that is also called 'pairing'. Usually, this is done by pressing a button
on the node and/or on the controller. After this, the primary controller assigns the Network
ID to the node, so it becomes part of the network. Nodes with the same Network ID can
communicate with each other; nodes with a different Network ID can't. Nodes are removed
from the network by unsetting their Network ID.

Each node also has an identifier, the Node ID. This is 8 bits long and is used as an address
of the node on the network, hence it needs to be unique in the network.

Z-Wave nodes can be battery-powered (for instance wireless sensors) or using mains
electricity (for instance power plugs). Battery-powered nodes are kept in sleep mode as
much as possible to consume less energy, and they only wake periodically to perform their
task, such as sending a sensor reading. Because nodes can only relay messages when
they are not sleeping, only mains-powered nodes are relaying messages on the Z-Wave
network. This means that you need to have enough mains-powered Z-Wave nodes that are
spatially distributed in your house to get the best range.

Z-Wave radios operate in the unlicensed industrial, scientific, and medical (ISM) frequency
band. This means there will be interference with other devices using these frequencies,
such as cordless phones. The specific frequencies used by Z-Wave depend on your country's
regulations. In Europe, it's 868.42 MHz. In North America, it's 908.42 MHz.

Warning:
If you're buying Z-Wave devices on an international web site, always check whether it's
using the correct frequency for your country.

8.2 • Choosing a Z-Wave transceiver

In this book, you're using a Raspberry Pi as a home automation gateway with a Z-Wave

Chapter 8 ● Z-Wave

● 171

controller, which is essentially a transceiver (sender and receiver) that sends data packets
to your Z-Wave nodes and receives data packets from then.

The most important choice you have to make for a Z-Wave transceiver on your Raspberry
Pi is the way to connect it: on the GPIO header of your Raspberry Pi or into a USB socket.
Both have their advantages and disadvantages, but the differences are minimal and only
relevant in specific situations. Once installed and configured, there's no difference between
both options, as the software used to interface with the transceivers is the same.

8.2.1 • Transceiver on the GPIO header: RaZberry

The most well-known Z-Wave transceiver that sits on top of the Raspberry Pi's GPIO
header is the RaZberry (https://z-wave.me/products/razberry/), made by Z-Wave.Me. The
RaZberry, currently in its second version, is compatible with all models of the Raspberry Pi.
It even works on the original Raspberry Pi.

The RaZberry is a tiny daughterboard that only blocks the first 10 GPIO pins of the Raspberry
Pi with its header. It's powered by the Raspberry Pi's 3.3 V pin and typically uses 18 mA of
current, with peaks of up to 40 mA while transmitting. It communicates with the Raspberry
Pi using UART TTL signals (RX/TX) on pins BCM14 and BCM15 (physical pins 8 and 10 on
the header).

The heart of the RaZberry is a Sigma Designs ZM5101 Z-Wave transceiver ("5th-generation
Z-Wave"). The daughterboard also has two LEDs to indicate the status of the Z-Wave
controller chip, an external 32 K SPI flash memory chip, and a PCBA antenna. There's

Figure 8.2 RaZberry is a tiny daughterboard with a Z-Wave controller chip that sits on top of the Raspberry
Pi's GPIO header.

https://z-wave.me/products/razberry/

Control Your Home with Raspberry Pi

● 172

also an option to solder a U.FL connector on the board if you want to use an external SMA
antenna for better coverage.

Warning:
You can't use the Raspberry Pi's on-board Bluetooth chip together with the RaZberry
daughter board. Both need the Raspberry Pi's hardware UART to communicate. See the
appendix at the end of this book for instructions on how to disable the on-board Bluetooth
chip. If you want to use both Bluetooth and Z-Wave on your Raspberry Pi, you have to add
a USB Bluetooth adapter or switch your Z-Wave setup to a Z-Wave USB adapter.

8.2.2 • USB Transceiver

While the RaZberry is specifically designed for the Raspberry Pi2, a couple of Z-Wave USB
transceivers exist that are not designed to fit on the GPIO header, but just slot into a USB
socket.

A popular choice is the Z-Stick (https://aeotec.com/z-wave-usb-stick/, currently in its Gen5
version), created by Aeotec, which manufactures many Z-Wave devices.

An advantage of a USB-based Z-Wave transceiver is that you can easily switch it out if you
want to use it on another system, for instance, if you want to try it on a second Raspberry
Pi or even on a completely different type of computer.

Most of these USB-based Z-Wave transceivers also have a backup battery. So you can take
the transceiver off your Raspberry Pi, bring it with you in the vicinity of a Z-Wave node you
want to add, and then put it back into your Raspberry Pi.

2	 According to Z-Wave.Me, their RaZberry also supports the Orange Pi.

Figure 8.3 Aeotec's Z-Stick is a popular Z-Wave controller in the footprint of a USB stick.

https://aeotec.com/z-wave-usb-stick/

Chapter 8 ● Z-Wave

● 173

Warning:
Aeotec's Z-Stick seems to violate the USB electrical specification, and as a result, doesn't
work on Raspberry Pi 4 if plugged in directly to one of the USB ports. Luckily, a workaround
is easy: plug the Z-stick into a USB hub that is plugged into one of the Raspberry Pi's USB
ports. The issue doesn't occur on older models of the Raspberry Pi because they use a
different USB controller.

8.3 • OpenZWave and Zwave2Mqtt

I already mentioned OpenZWave (https://github.com/OpenZWave) at the beginning of this
chapter: this is a collection of open-source libraries and language wrappers that allow
applications to talk to a Z-Wave network using a Z-Wave transceiver.

OpenZWave is a very important piece of software in the world of open-source home
automation. The Z-Wave integration of many open-source home automation projects,
including Home Assistant (see Chapter 10), is ultimately based on the OpenZWave library.
So if you're using a project like Home Assistant that has Z-Wave support directly integrated
using OpenZWave, you can use it like this. However, there's another way: with a subproject
of OpenZWave, Zwave2Mqtt (https://github.com/OpenZWave/Zwave2Mqtt). This is a fully
configurable Z-Wave-to-MQTT gateway and control panel.

Note:
Why would you use Zwave2Mqtt instead of the direct integration with home automation
software like Home Assistant, Domoticz or openHAB? If you're this far in this book, I hope
that you're already convinced of the approach with MQTT. For Z-Wave in particular this
approach has some advantages. For instance, maybe you're still experimenting with Home
Assistant and you restart it often, and you want your Z-Wave setup still be functional all
this time (Home Assistant takes a lot of time to restart). Or maybe there's bad Z-Wave
coverage where your Raspberry Pi running Home Assistant is positioned. Then you can set
up a Raspberry Pi running Zwave2Mqtt on a location with better coverage.

Either way, you have to make sure that both your Z-Wave controller and your Z-Wave
nodes are supported by OpenZWave:

Controller
Most USB Z-Wave controllers (including various generations of Aeotec's Z-Stick) as well as
the Razberry daughterboard are supported. The only real requirement currently is that the
Z-Wave controller runs the Static Controller firmware and not the Bridge Firmware. Consult
OpenZWave's controller compatibility list (https://github.com/OpenZWave/open-zwave/
wiki/Controller-Compatibility-List) for the current status.

Nodes
The OpenZWave project has a device database (http://www.openzwave.com/device-

https://github.com/OpenZWave
https://github.com/OpenZWave/Zwave2Mqtt
https://github.com/OpenZWave/open-zwave/wiki/Controller-Compatibility-List
https://github.com/OpenZWave/open-zwave/wiki/Controller-Compatibility-List
http://www.openzwave.com/device-database/

Control Your Home with Raspberry Pi

● 174

database/) which lists the supported Z-Wave devices, both nodes, and controllers. Even if
one of your nodes is not listed in the database, chances are that it works perfectly.

8.3.1 • Installing Zwave2Mqtt

Zwave2Mqtt creates a bridge between a Z-Wave network and your local (IP) network using
MQTT. It translates Z-Wave messages to MQTT messages on your MQTT broker and vice
versa and lets you manage your Z-Wave network using a web interface.

Warning:
Zwave2Mqtt doesn't support HTTPS and at the moment it also doesn't have an option yet
to protect the control panel with a password (the developer has promised this feature),
so you should only visit its web interface on a trusted network. To add HTTPS and
authentication anyway, you could add a Docker container running Nginx (https://www.
nginx.com) to your Docker Compose file and configure it to run as a reverse proxy with
HTTPS and authentication for your Zwave2Mqtt container. See the appendix at the end of
this book for this procedure.

Just like almost all the software in this book, you'll run Zwave2Mqtt in a Docker container.
First create a directory for Zwave2Mqtt to store its data in:

mkdir -p /home/pi/containers/zwave2mqtt

Then edit the docker-compose.yml file in your home directory to have the following
content: 3

version: '3.7'

services:
 mosquitto:
 # mosquitto configuration
 zwave2mqtt:
 image: robertslando/zwave2mqtt
 container_name: zwave2mqtt
 restart: always
 volumes:
 - ./containers/zwave2mqtt:/usr/src/app/store
 ports:
 - "8091:8091"

3	 Remember that this is an incomplete Docker Compose file: I don't show the configu-
ration of the mosquitto service anymore.

http://www.openzwave.com/device-database/
https://www.nginx.com
https://www.nginx.com

Chapter 8 ● Z-Wave

● 175

 environment:
 - TZ=Europe/Brussels
 devices:
 - "/dev/ttyUSB0:/dev/ttyUSB0"

 - "8091:8091"

Some of these values should be adapted to your situation. For instance, the TZ environment
variable should be set to your location's time zone.

But the most important value is the one under the devices key. This could be one of
/dev/ttyUSB0, /dev/ttyACM0 or /dev/ttyAMA0. Change both occurrences to your
Z-Wave transceiver's device path, so the container gets access to it. Normally you should
see the right path for your setup if you execute the command dmesg | grep tty. See the
appendix at the end of the book for a better way using the device ID.

Now start the container:

docker-compose up -d

8.3.2 • Configuring Zwave2Mqtt

You can now access the web interface of Zwave2Mqtt on your web browser on the URL
http://IP:8091. This will show the Control Panel. But first, you have to change some
settings. Click on the gear icon on the left You see three categories of settings: Zwave,
Mqtt, and Gateway.

Let's go through all of them, beginning with Zwave. The most important setting is Serial
Port. This should be the device path of your Z-Wave transceiver, the same one you have
configured in the docker-compose.yml file.

Then there are some switches you can enable or disable: Logging, Save configuration,
and Assume awake. Enable these. Under Poll interval, fill in 60000 (60 seconds). The
Config Path can be left empty.

Control Your Home with Raspberry Pi

● 176

If you're using Z-Wave Secure nodes, such as door locks, then you also need to fill in a
network key. If you currently have a working Z-Wave network on another controller that
you want to migrate to Zwave2Mqtt, you can copy the network key from your current home
automation controller and paste it here, under Network Key in the format
0xFD,0x5D,0x45,0xC7,0xFA,0xE9,0xBE,0x07,0x57,0x90,0x84,0xC4,0xA8,0x80,0xBE,0xB3.

If this is the first time you're setting up your Z-Wave network with a Z-Wave Secure network
key, generate a key with the following command on your Raspberry Pi:

openssl rand -hex 16 | sed -e 's/\(..\)/0x\1,/g' -e 's/,$//'

Don't panic if you don't understand this magical incantation. It's enough to know that it
generates a pseudo-random number and converts it to the right format so you can use it
as a Z-Wave network key.

Then copy the output of this command and paste it under Network Key in the Z-Wave
settings of ZWave2Mqtt.

Figure 8.4 Zwave2Mqtt's settings for your Z-Wave transceiver.

Chapter 8 ● Z-Wave

● 177

Warning:
Always make sure that you have a backup of your Z-Wave network key. If you lose it, you
can’t connect to your Z-Wave Secure nodes. The only way to use these devices again with
another network key is to give them a factory reset.

Now that these low-level Z-Wave settings have been configured, move over to the Mqtt
part. If you run Zwave2Mqtt on the same Raspberry Pi as the MQTT broker, fill in a name
(without spaces), enter mosquitto as the host URL, and 1883 as the port.

If you run Zwave2Mqtt on another device than your MQTT broker, fill in a name (without
spaces), fully qualified hostname, and port number (8883 for encrypted MQTT, 1883 for
unencrypted MQTT). If you use MQTT over TLS, add the protocol to the hostname, for
instance, mqtts://pi-red.home. After this, a couple of new fields for TLS certificates
appear. Click on the CA.PEM field and choose the rootCA.pem file that you have copied
from your Raspberry Pi to your computer.

Figure 8.5 Zwave2Mqtt's settings for the connection with your internal MQTT broker.

Control Your Home with Raspberry Pi

● 178

After these first connection settings, enable Auth and enter the username and password
for your MQTT broker.

For Reconnect period (ms) you can use for example 5000 (5 seconds). Choose a Prefix
that will be used for all MQTT topics that ZWave2Mqtt generates, for instance, zwave. For
QoS you can choose 2. Enable Retain and Store.

In the last section, Gateway, you configure Zwave2Mqtt's translation between the Z-Wave
and MQTT messages. The most important choice you have to make here is the Type field.
If you set it to ValueID topics, Zwave2Mqtt automatically chooses MQTT topics based on
the properties of your Z-Wave nodes.

The advantage of the ValueID topics is that you don't have to manually configure all your
Z-Wave nodes to get your system working. But these auto-generated topics are not very
human-readable by default, so it's recommended to also enable Use nodes name instead
of numeric nodeIDs.

In Payload type you can choose which data the MQTT messages contain. If you want to
see as much data as possible, choose Entire Z-Wave value Object. If you want to have
Zwave2Mqtt seamlessly integrated with Home Assistant (see Chapter 10), switch on Hass
Discovery.

Figure 8.6 If you run Zwave2Mqtt on another device than your MQTT broker, you need to configure TLS for the
connection.

Chapter 8 ● Z-Wave

● 179

Finally, click on the Save button at the bottom to save all your settings.

8.3.3 • Using the Zwave2Mqtt Control Panel

After you have configured the settings, click on the icon with the four squares at the top
left. This opens the Control Panel. If all goes well and if you already paired Z-Wave nodes
to your controller in the past, you'll see (some of) your Z-Wave devices in the list, including
your controller.

Figure 8.7 Zwave2Mqtt's gateway settings define how the translation between Z-Wave and MQTT messages
happens.

Control Your Home with Raspberry Pi

● 180

Adding new nodes is easy. Click on the Actions menu, choose Add Node (inclusion),
and click on the arrow on the right. Most Z-Wave nodes now require you to push a button
once or three times quickly. Consult your device's user manual for this pairing procedure.
If the node has been added correctly to the network, the Controller status changes to
Completed. It can take a while before the node appears in the list.

If you click on a node in the list, the tab Node at the bottom lists some information about
your device and lets you take some actions. Most of the relevant information is in the
entities under Values:

User
Here you can see the values of a sensor or change the state of a switch.

Configuration
Here you can change the device's parameters, such as a sensor's sensitivity, thresholds,
intervals, or the behavior of status LEDs.

System
Here you'll find system information such as the supported Z-Wave version and you can
configure low-level settings such as a timeout value or a power level.

Figure 8.8 Zwave2Mqtt's control panel lets you control specific Z-Wave nodes.

Chapter 8 ● Z-Wave

● 181

You can also assign a name (don't use ", +, *, and spaces in the name) and location to
your node. Just enter the fields and click on the arrow at the right. If you have enabled Use
nodes name instead of numeric nodeIDs in the gateway configuration, this human-
readable name is used to identify the device in the MQTT messages and the control panel,
for instance in the table with nodes.

You can also execute various actions on a node. Just choose the right action in the Node
actions drop-down menu and click on the arrow at the right.

If you encounter some problems with a Z-Wave node, open the Debug tab. Click on Start
to start receiving debug messages. If you have found a solution to your problem, don't
forget to click on Stop so the debug logs aren't needlessly filling your Raspberry Pi's
microSD card.

Figure 8.9 Zwave2Mqtt shows information about each specific Z-Wave node.

Control Your Home with Raspberry Pi

● 182

Another way to debug problems is by using the logs of the Docker container, for instance
with:

docker logs -f zwave2mqtt

The output you get would look something like this:

Figure 8.10 You can debug a specific Z-Wave device in the Zwave2Mqtt control panel.

Figure 8.11 Zwave2Mqtt shows a lot of logs, which is helpful to debug problems with your Z-Wave network.

Chapter 8 ● Z-Wave

● 183

Note:
If you have enabled Hass Discovery in the gateway configuration, you'll see at the
bottom (under Home Assistant - Devices) the virtual devices that Zwave2Mqtt creates
for this Z-Wave device in Home Assistant. One Z-Wave device can become multiple devices
in Home Assistant. For instance, a so-called multisensor can have a temperature sensor,
movement sensor, light sensor, and so on. See Chapter 10 about using MQTT (and hence
Zwave2Mqtt) in Home Assistant.

8.4 • Using your Z-Wave devices with MQTT

Now that you have Zwave2Mqtt running and have your devices configured, it's time to start
using the system with MQTT.

Let's first see what MQTT messages Zwave2Mqtt emits, for instance when a Z-Wave sensor
sends a value. Have a look with the mosquitto_sub command:

mosquitto_sub -t 'zwave/#' -v

Use the same prefix as the one you configured in the MQTT settings of Zwave2Mqtt, in this
example zwave.

The output you get would look something like this:

This looks quite intimidating, but that's partly because it's the output of a multisensor,
which packages many sensors in one device. Let's fully dissect the first MQTT message. The
topic is zwave/Bathroom/Multi_bathroom/49/1/1.

Looking at the hierarchical components of the topic, you see:

Figure 8.12 Zwave2Mqtt translates Z-Wave messages to MQTT messages, and vice versa.

Control Your Home with Raspberry Pi

● 184

zwave
The prefix you configured in Zwave2Mqtt's settings.

Bathroom
The location you assigned to the device in the node's settings.

Multi_bathroom
The name you assigned to the device in the node's settings.

49
The node's class ID.

1
The node's instance.

1
The node's index.

You can find the latter three numbers in the node's user values in Zwave2Mqtt's control
panel. With this sensor, it shows the value Air Temperature (16-49-1-1). Apart from
the first number (16, which is the node ID), these numbers come back in the MQTT topic.
So if you want to create a program that listens to the temperature of this sensor, you only
have to subscribe to the zwave/Bathroom/Multi_bathroom/49/1/1 topic.

8.4.1 • Reading sensor values

Now that you know what the hierarchical components of the MQTT topics mean, let's take
a look at the message itself. This is a long JSON string, so I have created a more human-
readable representation of it with the jq command, which shows each value on its own
line:4

{
 "value_id": "16-49-1-1",
 "node_id": 16,
 "class_id": 49,
 "type": "decimal",
 "genre": "user",
 "instance": 1,
 "index": 1,
 "label": "Air Temperature",
 "units": "C",
 "help": "Air Temperature Sensor Value",
 "read_only": true,

4	 You can also have these JSON messages formatted like this in MQTT.fx by choosing
JSON Pretty Format Decoder on the bottom right.

Chapter 8 ● Z-Wave

● 185

 "write_only": false,
 "min": 0,
 "max": 0,
 "is_polled": false,
 "value": 17.2
}

Here you see again the node ID, class ID, instance, and index, as well as the full value ID,
which is 16-49-1-1 in this case.

But the more interesting information is in some of the other values. For instance, you can
find the value of the sensor in value, the unit of measurement in units, a short description
in label and a longer description in help, and you can even see if it's a read-only value or if
you can change it by publishing an MQTT message to the topic yourself.

In this case, reading the MQTT message tells you that it's a sensor reading of a temperature
sensor, and the temperature is 17.2 degrees Celsius.

If you want to use these values in your programs, you can easily subscribe to the relevant
MQTT topics with the Paho MQTT Python library, parse the JSON content of the messages
and react to the values and/or use the label and units to show these values in a human-
readable way.

8.4.2 • Controlling switches

Now how do you set a value, for instance, if you want to turn on a switch? First, you have
to know the topic of the specific switch. For instance, zwave/Storage_room/Rain_water_
pump/37/1/0. Make sure that it's not a read-only value, and find out what type of value it
expects, such as a boolean value (true or false), an integer or a decimal value.

Setting the value then is simple: just write the value (for instance true to turn on a switch)
to the topic with /set after it. On the command line, this would look like this:

mosquitto_pub -t 'zwave/Storage_room/Rain_water_pump/37/1/0/set' -m 'true'

After this, the Z-Wave switch turns on, because Zwave2Mqtt translates the MQTT message
you sent to the corresponding Z-Wave command to the right node.

Note:
You will also receive a new MQTT message on zwave/Storage_room/Rain_water_
pump/37/1/0 with the new value.

Control Your Home with Raspberry Pi

● 186

You can use the same approach to dim lights, setting heating setpoint temperatures, and so
on. Doing this in Python with Paho MQTT is straightforward. See Chapter 4.

8.5 • Summary and further exploration

Z-Wave is an interesting home automation protocol supported by many high-quality
devices. With a Z-Wave transceiver connected to your Raspberry Pi and the Zwave2Mqtt
software, you turn your Raspberry Pi into a Z-Wave controller.

With Zwave2Mqtt's web-based control panel, you can configure all your Z-Wave devices
and manage your Z-Wave network. After this, you can read sensor values by subscribing

Figure 8.13 A graphical MQTT client like MQTT.fx is very helpful to try to understand the various MQTT
messages that Zwave2Mqtt sends.

Chapter 8 ● Z-Wave

● 187

to MQTT topics and control switches and lights by publishing to MQTT topics. This makes
it easy to integrate your Z-Wave devices with the rest of your home automation system.
If one of your Z-Wave devices isn't supported by OpenZWave, that shouldn't be a big
concern. See the wiki page "Adding Devices" (https://github.com/OpenZWave/open-
zwave/wiki/Adding-Devices) on how to add support for a new device. It boils down to
adding a configuration file with the information you find in the user manual or technical
specification that comes with the product you bought. By adding your device configuration
to OpenZWave, you can use it in Zwave2Mqtt and you help other owners to do the same.

https://github.com/OpenZWave/open-zwave/wiki/Adding-Devices
https://github.com/OpenZWave/open-zwave/wiki/Adding-Devices

Control Your Home with Raspberry Pi

● 188

Chapter 9 • Zigbee

Zigbee has become a quite popular home automation protocol in recent years. Many people
are using it, even if they don't know it. For instance, the popular Philips Hue and IKEA
TRÅDFRI lamps are based on Zigbee technology. Compared to Z-Wave (see the previous
chapter), Zigbee devices are quite affordable too.

Many people use Zigbee with a gateway of the manufacturer of their Zigbee devices, such
as the Philips Hue Bridge. However, that's yet another device in your home, and why do you
need another gateway if your Raspberry Pi can do this? This is why I show you how you can
create your own Zigbee gateway with your Raspberry Pi in this chapter.

9.1 • An introduction to Zigbee

Zigbee is a standard for short-range and low-power wireless communication with a low
data rate between devices. It's popular in home automation, but also industrial applications
such as energy monitoring. The Zigbee protocol can use a couple of frequency bands, but
most Zigbee devices for home automation operate in the 2.4 GHz band.

Warning:
Zigbee shares its 2.4 GHz frequency band with Bluetooth and Wi-Fi. This may result
in interference and thus low performance and in the worst case, unreliable networks.
You can find more about Zigbee and Wi-Fi coexistence on https://www.metageek.com/
training/resources/zigbee-wifi-coexistence.html.

The standard is maintained and published by a group of companies that have formed the
Zigbee Alliance (https://zigbeealliance.org). It's not an open standard: only members have
access to the complete Zigbee specifications, and they have to pay annual membership
fees. This is a challenge for free and open-source software developers.

9.1.1 • The specification

Zigbee builds on the lower-level physical and media access control layers defined in the IEEE
802.15.4 standard for low-rate wireless personal area networks (LR-WPANs). The Zigbee
specification adds layers on top of this for device discovery, network joining, security, and
so on.

Version 1.0 of the Zigbee specification has been ratified in 2004. Since then, the specification
has been updated with so-called application profiles. The Zigbee Alliance has defined a profile
for various application domains, including home automation, smart energy management,
building automation, and toys. Not only are there public profiles. A manufacturer can also
define a profile specific for its own purpose.

https://www.metageek.com/training/resources/zigbee-wifi-coexistence.html
https://www.metageek.com/training/resources/zigbee-wifi-coexistence.html
https://zigbeealliance.org

Chapter 9 ● Zigbee

● 189

9.1.2 • How does Zigbee work?

Just as Z-Wave, Zigbee is technologically a mesh network, also called a wireless ad hoc
network. Each device wirelessly sends its messages to neighbouring devices, which relay
them to the intended receiver. So there's no central router that decides what the optimal
path between two devices is. This way Zigbee devices can communicate even if they're not
in each other's range, as long as there's an intermediate device that is in range of the two
devices. These routes can even be changed dynamically: if one of the intermediate devices
gets out of range, another one relays the messages.

Zigbee knows three types of devices:

A coordinator
This is the central part of the Zigbee network: this device starts the network, stores
information about the network, and can bridge the Zigbee network to other types of
networks. Every Zigbee network has precisely one coordinator.

A router
This device routes traffic between different devices. Apart from this, it can also have another
function, such as being a lamp or a sensor. A coordinator has all router capabilities, but you
can add extra routers to a Zigbee network to improve coverage.

End devices
An end device has a function, such as a sensor or switch, but it is not able to relay data
from other devices. Each end device has one parent, the coordinator, or a router, and it
communicates with the network via this parent.

Battery-powered devices are typically end devices: they remain asleep as long as possible
and only wake up temporarily from time to time to execute their function, such as sending
a sensor measurement. Afterwards they return to sleep.

Mains-powered devices, such as Philips Hue or IKEA TRÅDFRI lamps, are typically routers.
Because they don't have to consume as less power as possible, they can stay awake
continuously and relay data they receive from other devices.

9.2 • Creating a Zigbee transceiver

In this book, you'll use a Raspberry Pi as a home automation gateway. To add Zigbee
support, and essentially to turn your Raspberry Pi into a Zigbee coordinator, you need
a Zigbee transceiver. There are a couple of options (see https://www.zigbee2mqtt.io/
information/supported_adapters.html), but in this chapter, I'll only talk about the CC2531
USB stick, because this is the option with the best support in Zigbee2mqtt (https://www.
zigbee2mqtt.io), the software that you'll use.

The CC2531 is not an out-of-the-box Zigbee coordinator, so you need some extra
components and you have to follow a couple of steps before you have a usable Zigbee

https://www.zigbee2mqtt.io/information/supported_adapters.html
https://www.zigbee2mqtt.io/information/supported_adapters.html
https://www.zigbee2mqtt.io
https://www.zigbee2mqtt.io

Control Your Home with Raspberry Pi

● 190

system. First, you need to purchase the following hardware:

•	 CC2531 USB sniffer
•	 Downloader cable for the CC2531
•	 Four (or five) female-to-female jumper wires
•	 Male-to-female USB extension cable

These are all available on AliExpress for a couple of dollars per component.

9.2.1 • Connect the downloader cable

The downloader PCB is a small PCB with 10 full-size header pins on one side and another
smaller header with 10 pins on the other side. It comes with a fine ribbon cable: attach it to
the small header pins. Position the cable in such a way on the header that the cable points
away from the PCB.

Attach the other side of this ribbon cable to the CC2531, again with the cable pointing away
from the PCB.

Warning:
The small header pins on the downloader PCB and the CC2531 are quite vulnerable.
Attach the ribbon cable slowly on both ends, so you don't bend or break any pins.

Now connect the full-size header pins of the debug port of the downloader cable to your

Figure 9.1 Connect the downloader cable (left) to the CC2531 (right) using the small header pins.

Chapter 9 ● Zigbee

● 191

Raspberry Pi with jumper wires, like this:

Downloader PCB Raspberry Pi GPIO

pin 1 (GND) pin 39 (GND)

pin 7 (reset) pin 35 (GPIO24, BCM19)

pin 3 (DC) pin 36 (GPIO27, BCM16)

pin 4 (DD) pin 38 (GPIO28, BCM20)

For the downloader PCB, the pin numbers are printed on the PCB behind the header. For
the Raspberry Pi, consult the GPIO pinout on https://pinout.xyz.

After you have connected the jumper wires, connect the CC2531 to a USB port of the
Raspberry Pi to power it.

Note:
You can add a fifth connection: between pin 2 (Target Voltage Sense) on the downloader
PCB and pin 1 or pin 17 (3V3) on the Raspberry Pi. This powers the CC2531 using your
Raspberry Pi's GPIO pins instead of the USB connector. You can even do the whole
procedure without a downloader cable, but then you need to bend the small debug pins
outwards because they are too close together to connect the jumper wires.

Table 9.1 Pin connections between downloader cable and Raspberry Pi

Figure 9.2 Connect the CC2531 and the downloader cable to the Raspberry Pi to flash new firmware to the
USB sniffer.

https://pinout.xyz

Control Your Home with Raspberry Pi

● 192

9.2.2 • Install the flashing software

On the software side, first, install the wiringPi library on your Raspberry Pi:

sudo apt install wiringpi

Then download the software to flash the CC2531 from GitHub:

git clone https://github.com/jmichault/flash_cc2531.git
cd flash_cc2531

Double-check whether you have connected the downloader cable and CC2531 correctly.
Then test whether the flashing software recognizes your CC2531:1

./cc_chipid

It should return:

ID = b524.

If you see ID = 0000. or ID = ffff. in the output, something is wrong and you should
probably check your wiring. If it still doesn't work, consult the project's GitHub repository
(https://github.com/jmichault/flash_cc2531).

9.2.3 • Flash the firmware

Koen Kanters, the developer of Zigbee2mqtt, has put some custom firmware in the
project Z-Stack-firmware (https://github.com/Koenkk/Z-Stack-firmware). You can find the
firmware for a coordinator in the directory coordinator.

In this book, I use the Z-Stack_Home_1.2 firmware, which implements the Zigbee Home
Automation 1.2 standard. With a CC2531 this is enough to support 20 direct children with
one coordinator. Download the correct zip file on your Raspberry Pi. At the moment when
I'm writing this chapter, this is the following:

1	 This uses the precompiled version of the tool. You can compile it yourself with the
make command.

https://github.com/jmichault/flash_cc2531
https://github.com/Koenkk/Z-Stack-firmware

Chapter 9 ● Zigbee

● 193

wget https://github.com/Koenkk/Z-Stack-firmware/raw/master/coordinator/Z-⏎
Stack_Home_1.2/bin/default/CC2531_DEFAULT_20190608.zip

Then unzip the file:

unzip CC2531_DEFAULT_20190608.zip

This results in two files: CC2531ZNP-Prod.hex and CC2531ZNP-Prod.bin.

With both the downloader cable and the CC2531 USB sniffer connected to your Raspberry
Pi, you can erase and flash the firmware on the CC2531:

./cc_erase

./cc_write CC2531ZNP-Prod.hex

This takes a couple of minutes.

Afterwards you can remove the downloader cable and the CC2531. Disconnect the
downloader cable too from the CC2531.

9.3 • Zigbee2mqtt and Zigbee2MqttAssistant

I already mentioned Zigbee2mqtt: as its name implies, this project lets you interact with
Zigbee devices using MQTT, which fits directly into the main approach I use in this book.

First, you have to make sure that both your Zigbee coordinator as your other devices
are supported by Zigbee2mqtt. The CC2531 is the main supported Zigbee coordinator in
Zigbee2mqtt, and for the other devices, you should consult the list of supported devices on

Figure 9.3 I just flashed the Z-Stack coordinator firmware for Zigbee Home Automation 1.2 on the CC2531
USB sniffer.

Control Your Home with Raspberry Pi

● 194

https://www.zigbee2mqtt.io/information/supported_devices.html.

Even if one of your devices is not on the list of supported devices, chances are that you
can easily add support for it. The procedure to add support of a new device is extensively
documented on https://www.zigbee2mqtt.io/how_tos/how_to_support_new_devices.html.

While Zigbee2mqtt does the heavy lifting, it doesn't have a web interface. That's why you also
should install Zigbee2MqttAssistant (https://github.com/yllibed/Zigbee2MqttAssistant). It
displays all your Zigbee devices and their status in a web interface and lets you configure,
rename, and remove your devices. It's also able to display an interactive map of your
Zigbee network.

Warning:
Zigbee2MqttAssistant doesn't support HTTPS and also doesn't have an option to protect
its web interface with a password, so you should only visit it on a trusted network. To
add HTTPS and authentication anyway, you can add a Docker container running nginx
to your Docker Compose file and configure it to run as a reverse proxy with HTTPS and
authentication for your Zigbee2MqttAssistant container. See the appendix at the end of
this book for a way to do this.

9.3.1 • Connecting the CC2531

With the correct firmware on your CC2531 now, you can connect it to your Raspberry Pi
again, but it's recommended to do this not directly, but with a USB extension cable. Even
a short one of 20 cm to 50 cm long is already enough to put the CC2531 further from the
on-board Wi-Fi and Bluetooth antennas of the Raspberry Pi and reduce interference.

Figure 9.4 Connect the CC2531 with an USB extension cable to reduce interference from the Raspberry Pi's
on-board Wi-Fi and Bluetooth.

https://www.zigbee2mqtt.io/information/supported_devices.html
https://www.zigbee2mqtt.io/how_tos/how_to_support_new_devices.html
https://github.com/yllibed/Zigbee2MqttAssistant

Chapter 9 ● Zigbee

● 195

9.3.2 • Installing Zigbee2mqtt and Zigbee2MqttAssistant

Just like almost all the software in this book, you'll run Zigbee2mqtt and Zigbee2MqttAssistant
in Docker containers. First create a directory for Zigbee2mqtt to store its data in:

mkdir -p /home/pi/containers/zigbee2mqtt

Zigbee2MqttAssistant doesn't need a configuration file, as you configure it with environment
variables.

Then edit your docker-compose.yml file in your home directory with the following content:

version: '3.7'

services:
 mosquitto:
 # mosquitto configuration
 zigbee2mqtt:
 image: koenkk/zigbee2mqtt
 container_name: zigbee2mqtt
 volumes:
 - ./containers/zigbee2mqtt:/app/data
 devices:
 - /dev/ttyACM0:/dev/ttyACM0
 restart: always
 environment:
 - TZ=Europe/Brussels
 zigbee2mqttassistant:
 image: carldebilly/zigbee2mqttassistant
 container_name: zigbee2mqttassistant
 environment:
 - Z2MA_SETTINGS__MQTTSERVER=mosquitto
 - Z2MA_SETTINGS__MQTTUSERNAME=home
 - Z2MA_SETTINGS__MQTTPASSWORD=PASSWORD
 - TZ=Europe/Brussels
 ports:
 - 8880:80
 restart: always

Some of these values should be adapted to your situation. For instance, the TZ environment
variable should be set to your location's time zone, and the device should have the correct
path. Normally you should see the right path for your setup if you execute the command

Control Your Home with Raspberry Pi

● 196

dmesg | grep tty after you have connected the CC2531 to the USB port. See the
appendix at the end of the book for a better way using the device ID.

For the zigbee2mqttassistant container, enter the password you created for the user home
in your Mosquitto configuration after the Z2MA_SETTINGS__MQTTPASSWORD environment
variable.

Note:
If you want to run Zigbee2MqttAssistant on another device than the one running
your MQTT broker, you're currently out of luck: Zigbee2MqttAssistant doesn't support
(yet) certificates signed by your own CA. I reported this issue on https://github.com/
yllibed/Zigbee2MqttAssistant/issues/251, and hopefully by the time you read this book
you can set the CA file with an environment variable.

Now start the container:

docker-compose up -d

This will take a while because Docker downloads and then starts both containers.

9.3.3 • Configuring Zigbee2mqtt and Zigbee2MqttAssistant

While Zigbee2MqttAssistant is configured with environment variables (see https://github.
com/yllibed/Zigbee2MqttAssistant for all the variables you can configure), Zigbee2mqtt uses
a file, configuration.yaml. It's been created automatically the first time the Zigbee2mqtt
container starts. So let's first stop the container:

docker-compose stop zigbee2mqtt

Open the configuration file in an editor:

sudo nano /home/pi/containers/zigbee2mqtt/configuration.yaml

Change the MQTT section to the following:

https://github.com/yllibed/Zigbee2MqttAssistant/issues/251
https://github.com/yllibed/Zigbee2MqttAssistant/issues/251
https://github.com/yllibed/Zigbee2MqttAssistant
https://github.com/yllibed/Zigbee2MqttAssistant

Chapter 9 ● Zigbee

● 197

MQTT settings
mqtt:
 # MQTT base topic for zigbee2mqtt MQTT messages
 base_topic: zigbee2mqtt
 # MQTT server URL
 server: 'mqtt://mosquitto'
 # MQTT server authentication
 user: home
 password: PASSWORD

This supposes that you're running Zigbee2mqtt on the same Raspberry Pi as your MQTT
broker. Make sure you enter the correct password for the home user on your MQTT broker.

Note:
If you want to run Zigbee2mqtt on another device than the one running your MQTT
broker, look at the configuration example on https://www.zigbee2mqtt.io/information/
configuration.html. The server URL should be 'mqtts://HOSTNAME' with the fully qualified
hostname of your MQTT broker, and you should add the path to your trusted CA in the ca
variable. Also, don't forget to mount a volume backed by your TLS certificates directory
for the zigbee2mqtt service in your Docker Compose file.

By default, Zigbee2mqtt uses a well-known key for network encryption. It's recommended
to use a different one. A network encryption key is a 128-bit number, which is essentially
16 decimal values between 0 and 255. You can create a random network encryption key
with the following command:

dd if=/dev/urandom bs=1 count=16 2>/dev/null | od -A n -t u1 | awk '{printf
"["} {for(i = 1; i< NF; i++) {printf "%s, ", $i}} {printf "%s]\n", $NF}'

Copy the output of this command, and paste it in the right section in your configuration.
yaml, like this:

advanced:
 network_key: [133, 242, 71, 182, 54, 45, 233, 255, 23, 38, 194, 62, 62, ⏎
230, 255, 48]

You can change a lot more in the configuration file. Have a look at https://www.zigbee2mqtt.
io/information/configuration.html for all available options, including experimental ones.

⏎

https://www.zigbee2mqtt.io/information/configuration.html
https://www.zigbee2mqtt.io/information/configuration.html
https://www.zigbee2mqtt.io/information/configuration.html
https://www.zigbee2mqtt.io/information/configuration.html

Control Your Home with Raspberry Pi

● 198

Note:
One interesting change could be to add the line disable_led: true in the serial:
section because the CC2531's green LED is very bright.

After entering the correct settings, restart the container with:

docker-compose start zigbee2mqtt

And then check whether it has started correctly:

docker-compose logs -f zigbee2mqtt

If all goes well, you should only see green (info) and some yellow (warn) messages. One
of the info messages that Zigbee2mqtt shows is the firmware version on the CC2531. If
you see a red message (error), try to find a solution to the problem. Afterwards, restart
the container if needed.

9.3.4 • Using Zigbee2MqttAssistant

After the initial configuration, you'll mostly use Zigbee2MqttAssistant and not Zigbee2mqtt
directly. You can access it in your web browser on http://IP:8880, with the IP address of
your Raspberry Pi. When you don't have paired any devices yet, you'll see something like
this:

If you don't see your coordinator, have a closer look at the logs, because this means that
your CC2531 hasn't been detected.

You can also verify whether your setup is working by clicking on Status. At the top of the
page, you should see Bridge State: online.

Figure 9.5 Zigbee2MqttAssistant shows your CC2531 as the coordinator of your Zigbee network.

Chapter 9 ● Zigbee

● 199

Now the next step is to pair your Zigbee devices. For this, your Zigbee coordinator
should allow other devices to join the network. While Zigbee2mqtt allows this in its
default configuration (with the line permit_join: true in its configuration.yaml),
Zigbee2MqttAssistant automatically denies new devices to join the network after 20
minutes, even if Zigbee2mqtt's configuration allows it.

If Zigbee2MqttAssistant has been started more than 20 minutes ago, you can always allow
pairing temporarily by clicking on Allow new devices to join the network at the top of
the Status tab. You have 20 minutes now to pair your Zigbee devices. You can always deny
new pairing requests after you're done, by clicking on Deny new devices to join the
network in the same tab of Zigbee2MqttAssistant's web interface.

The procedure to pair your Zigbee devices depends on your specific device, and you
should consult its user manual for more details. However, Zigbee2mqtt has also
extensive documentation about each supported device, including pairing instructions,
recommendations, and tips for its configuration. You should search all your devices on the
https://www.zigbee2mqtt.io/information/supported_devices.html page and consult each
device's page.

For instance, for the Xiaomi Aqara door and window contact sensor (Xiaomi MCCGQ11LM),
the pairing procedure consists of pressing and holding the reset button on the device for 5
seconds. When the blue light starts blinking, you can stop pressing and the device is paired
to your Zigbee coordinator.

If you look at the Devices tab now (you may need to refresh the web page), a new device
has appeared. Zigbee2MqttAssistant even shows a picture of the device, and in the right
column, it shows some 'components' of the device. For instance, for a door and window
contact sensor the components are battery, contact, and linkquality.

The first column shows the numerical ID of the device, as well as a friendly name. By
default, the friendly name for all newly added devices is the same as its numerical ID. So
click on the name, and then this device-specific page allows you to change its name to a
more user-friendly one. Click on Rename. After this, you should see your configured name
as the friendly name in the device list. Note that to prevent some issues, you should restart
Zigbee2mqtt after every name change. This can be done with:

docker-compose restart zigbee2mqtt

Note:
In contrast to Z-Wave devices, there's very little you can configure in the way your Zigbee
devices function.

https://www.zigbee2mqtt.io/information/supported_devices.html

Control Your Home with Raspberry Pi

● 200

9.4 • Using our Zigbee devices with MQTT

After you have paired and configured your Zigbee devices and everything works, you
shouldn't use the web interface of Zigbee2MqttAssistant that often anymore. You shouldn't
even have to know about Zigbee2mqtt. Both services are there if you need to check
something (the logs are often helpful when you encounter a problem with your Zigbee
network), but in most cases you just interact with your Zigbee network using MQTT. The
MQTT topics and message structures are nicely documented on https://www.zigbee2mqtt.
io/information/mqtt_topics_and_message_structure.html.

The first thing you can do is have a look at what messages Zigbee2mqtt emits. Try this
mosquitto_sub command:

mosquitto_sub -t 'zigbee2mqtt/#' -v

Use the same base topic (zigbee2mqtt) as the one you have configured in the base_topic
key in the file configuration.yaml in Zigbee2mqtt's directory.

Even if nothing is going on in your Zigbee network at the moment, this command should
show you at least the configuration of your coordinator and optionally the configuration of
some of your devices. For instance, the configuration of Zigbee2mqtt and its coordinator
is sent to the zigbee2mqtt/bridge/config topic as a JSON string. In a more human-
readable representation with indents this should look like:

{
 "version": "1.11.0",
 "commit": "31e5678",
 "coordinator": {
 "type": "zStack12",
 "meta": {
 "transportrev": 2,
 "product": 0,
 "majorrel": 2,
 "minorrel": 6,
 "maintrel": 3,
 "revision": 20190608
 }
 },
 "log_level": "info",
 "permit_join": true
}

https://www.zigbee2mqtt.io/information/mqtt_topics_and_message_structure.html
https://www.zigbee2mqtt.io/information/mqtt_topics_and_message_structure.html

Chapter 9 ● Zigbee

● 201

9.4.1 • Reading sensor values

As soon as one of your Zigbee sensors emits a value, you should see a new MQTT message,
such as:

zigbee2mqtt/Cabinet door
{"battery":100,"voltage":3055,"contact":false,"linkquality":52}

In this case, I opened the cabinet door that has the Xiaomi Aqara door and window contact
sensor attached. This output of mosquitto_sub first shows the topic: zigbee2mqtt/
Cabinet door. Every device in your Zigbee network gets a subtopic on a level below the
base topic zigbee2mqtt, and its subtopic is just the friendly name that you have configured
for the device in Zigbee2MqttAssistant, and otherwise its ID.

The message itself is in JSON format again, and it shows the components of the sensor as
values of its keys. For this Xiaomi Aqara door and window contact sensor, this looks like this
(if I indent the JSON code for more readability):

{
 "battery": 100,
 "voltage": 3055,
 "contact": false,
 "linkquality": 52
}

In this case, you see that the device sends its battery percentage, voltage, contact (true
for a closed door, false for an open door) and link quality (from 0 to 255, with 255 the
best link quality).

In this case, the piece of information you are interested in is the state of the contact: the
door has opened. If you want to use this value in your program, you can easily subscribe
to the relevant MQTT topics with the Paho MQTT Python library, parse the JSON content of
the messages and react to the values.

9.4.2 • Controlling switches

Now how do you set a value, for instance, if you want to turn on a switch or lamp? For this,
you send an MQTT message to the MQTT topic zigbee2mqtt/FRIENDLY NAME/set with a
JSON payload. For instance, for the Xiaomi Mi power plug (ZNCZ02LM) the command to
switch the power plug on becomes:

Control Your Home with Raspberry Pi

● 202

mosquitto_pub -t 'zigbee2mqtt/coffee/set' -m '{"state": "ON"}'

Zigbee2mqtt now receives your command, translates it to a Zigbee command, and sends it
to the right device. As a result, the power plug turns on. You can find the available keys in
the JSON payload on the page for the device on Zigbee2mqtt's web site.

If you don't like the verbosity of the JSON payload, you can also publish on a subtopic with
the state key. The payload then just becomes a string with the value of the key:

mosquitto_pub -t 'zigbee2mqtt/coffee/set/state' -m 'ON'

If a switch supports this, you can also read the current state of the device by sending this
command:

mosquitto_pub -t 'zigbee2mqtt/coffee/get' -m '{"state": ""}'

9.5 • Summary and further exploration

Zigbee is a popular wireless home automation protocol, and in this chapter, I showed you
how you can add a Zigbee transceiver to turn your Raspberry Pi into a Zigbee coordinator,
so you don't need another Zigbee gateway such as the Philips Hue Bridge anymore.
The magic behind all this is Zigbee2mqtt, which lets you interact with your Zigbee devices
using MQTT. This software essentially translates Zigbee to MQTT and vice versa. I also
added Zigbee2MqttAssistant, which is a simple web interface for Zigbee2mqtt. After this,
you can read sensor values by subscribing to MQTT topics and control switches and lights
by publishing to MQTT topics.

Zigbee2mqtt is not the only way to integrate Zigbee with your home automation gateway.
Another project that implements the Zigbee protocol stack is zigpy (https://github.
com/zigpy/zigpy). It supports a lot more Zigbee transceivers than the CC2531 family,
including the popular ConBee II and the HUSBZB-1 (which supports both Zigbee and
Z-Wave in one USB transceiver). Zigpy is the project that is used in Home Assistant (see
Chapter 10) to support Zigbee devices. If you want to focus more on Home Assistant, this
is an interesting project to explore.

https://github.com/zigpy/zigpy
https://github.com/zigpy/zigpy

Chapter 10 ● Automating your home

● 203

Chapter 10 • Automating your home

In the previous chapters, I've explained a lot of home automation protocols and how you
could link them to MQTT. If you have tried the software I showed, you are already on the
right track to home automation, but you can barely call it automation. What you have
done until now is more or less limited to message passing: one piece of software reacts to
an event (such as receiving a sensor value) by publishing a message to another piece of
software (in most cases an MQTT broker).

That's why in this chapter I'll show you how you can automate your devices. You'll learn
how to:

•	 create dashboards to show you current and historical sensor values;
•	 alert you when your fridge is too warm;
•	 alert you when your garage door is open.

You can automate your home perfectly by writing Python scripts using the Eclipse Paho
MQTT client library (see Chapter 4), which I already showed you in a couple of chapters.
But that won't result in very maintainable code. You need a home automation platform
that takes away some of the bookkeeping and boilerplate code, such as connecting to your
MQTT broker, registering callback functions, and so on.

Luckily there are a lot of open-source home automation platforms, and I'll cover three of
them in this chapter and show you how to automate your home with them. However, I won't
go into too much detail, because these platforms are vast and have a lot of functionality.
You could write a whole book about each one of them.1 Many of them are also in constant
flux with fast developments, so by the time you read this book, a lot of the advanced
functionality has probably already changed. But I'll give you an overview of the basic
functionality in each of these platforms. You can choose the one you prefer, or even use
more than one simultaneously.

In this chapter I cover the following systems, that each have their strengths:

Node-RED
A 'low-code' platform that lets you 'wire together' devices, APIs, and online services in a
graphical way, so you don't have to write code.

Home Assistant
A popular home automation gateway that puts local control and privacy first, with
integrations to a lot of home automation devices and protocols, as well as a user-friendly
way to add automations.

1	 For instance, if you want to delve more into Node-RED, have a look at the book
Programming with Node-RED: Design IoT Projects with Raspberry Pi, Arduino and ESP32
(https://www.elektor.com/programming-with-node-red) by Dogan Ibrahim.

https://www.elektor.com/programming-with-node-red

Control Your Home with Raspberry Pi

● 204

AppDaemon
A multithreaded Python execution environment for writing apps for home automation
projects. It has direct support for Home Assistant and MQTT.

It's clear that each of them has a specific focus, so it's not possible to call one of them the
'best'. I'll show you some of their strengths in the next sections.

Note:
There are many home automation platforms. The fact that I don't cover them in this book
doesn't mean that they are bad choices. If you're already using another home automation
platform, by all means, keep using it, and try to find how you can integrate it with the
projects covered in this book. And if the platforms in this chapter are just not your cup of
tea, you can explore some of the alternatives I list at the end of this chapter.

10.1 • Node-RED

Node-RED (https://nodered.org) is a 'low-code' platform that lets you 'wire together'
devices, APIs, and online services in a graphical way, so you don't have to write code. It's
completely web-based, so you can create your automations in a web browser.

You create your automations by dragging components ("nodes") to the canvas and then
connecting them. Under the hood, Node-RED is running JavaScript functions on the
Node.js platform (https://nodejs.org).

10.1.1 • Installing Node-RED

First, create a directory where Node-RED can store its data:

mkdir /home/pi/containers/node-red

Add a Node-RED container to your docker-compose.yml file:

version: '3.7'

services:
 mosquitto:
 # mosquitto configuration
 node-red:
 image: nodered/node-red
 container_name: node-red
 restart: always
 volumes:

https://nodered.org
https://nodejs.org

Chapter 10 ● Automating your home

● 205

 - ./containers/node-red:/data
 - ./containers/certificates:/etc/ssl/private:ro
 - /etc/localtime:/etc/localtime:ro

 ports:
 - "1880:1880"

Then start Node-RED:

docker-compose up -d

After this, you can visit http://IP:1880, with IP the IP address of your Raspberry Pi, to
view Node-RED's web interface. However, this doesn't use HTTPS and isn't protected with a
password. You should start Node-RED one time with this default configuration so it creates
a configuration file.

10.1.2 • Adding authentication to Node-RED

Now that the first run of the Node-RED container has created its configuration file, you can
change this to add authentication. This can be done for three places in Node-RED:

•	 the editor;
•	 the dashboard;
•	 static pages.

You can enter the passwords there as a password hash. Generating a password hash can
be performed in the Node-RED container, for instance using:

docker exec -ti node-red /usr/local/bin/node -e "console.⏎
log(require('bcryptjs').hashSync(process.argv[1], 8));" PASSWORD

Just replace PASSWORD with a password of your choice. The result is a long string such as
$2a$08$eNu717MuUoucCgUAWKM9Qeymf94ps6qxaJHTzdA2hDOvy2pbrYH12.

Now open Node-RED's configuration file:

nano /home/pi/containers/node-red/settings.js

Almost all configuration options are commented out with two slashes (//). Scroll to the
following section:

Control Your Home with Raspberry Pi

● 206

 // Securing Node-RED
 // -----------------
 // To password protect the Node-RED editor and admin API, the following
 // property can be used. See http://nodered.org/docs/security.html for
details.
 //adminAuth: {
 // type: "credentials",
 // users: [{
 // username: "admin",
 // password:
"$2a$08$zZWtXTja0fB1pzD4sHCMyOCMYz2Z6dNbM6tl8sJogENOMcxWV9DN.",
 // permissions: "*"
 // }]
 //},

 // To password protect the node-defined HTTP endpoints (httpNodeRoot), or
 // the static content (httpStatic), the following properties can be used.
 // The pass field is a bcrypt hash of the password.
 // See http://nodered.org/docs/security.html#generating-the-password-hash
 //httpNodeAuth

{user:"user",pass:"$2a$08$zZWtXTja0fB1pzD4sHCMyOCMYz2Z6dNbM6tl8sJogENOMcxWV9D
N."},
 //httpStaticAuth:
{user:"user",pass:"$2a$08$zZWtXTja0fB1pzD4sHCMyOCMYz2Z6dNbM6tl8sJogENOMcxWV9D
N."},

And change it to something like this:

 // Securing Node-RED
 // -----------------
 // To password protect the Node-RED editor and admin API, the following
 // property can be used. See http://nodered.org/docs/security.html for
details.
 adminAuth: {
 type: "credentials",
 users: [{
 username: "admin",
 password:
"$2a$08$eNu717MuUoucCgUAWKM9Qeymf94ps6qxaJHTzdA2hDOvy2pbrYH12",
 permissions: "*"
 }]
 },

 // To password protect the node-defined HTTP endpoints (httpNodeRoot), or

Chapter 10 ● Automating your home

● 207

 // the static content (httpStatic), the following properties can be used.
 // The pass field is a bcrypt hash of the password.
 // See http://nodered.org/docs/security.html#generating-the-password-hash
 httpNodeAuth:
{user:"user",pass:"$2a$08$eNu717MuUoucCgUAWKM9Qeymf94ps6qxaJHTzdA2hDOvy2pbrYH
12"},
 httpStaticAuth:
{user:"user",pass:"$2a$08$eNu717MuUoucCgUAWKM9Qeymf94ps6qxaJHTzdA2hDOvy2pbrYH
12"},

Make sure to enter the password hash you generated in the place of the password string
for the admin authentication (for the Node-Red editor) and enter the same or another
password hash in the place of the pass string for the node (dashboard) and static pages.
You can also change the default usernames (admin in adminAuth and user in httpNodeAuth
and httpStaticAuth) if you want.

After these changes, restart the Node-RED container:

docker-compose restart node-red

If you now reopen http://IP:1880 in your web browser, you first have to enter the right
username and password before you're allowed in the flow editor.

10.1.3 • Using Node-RED over HTTPS

There's still one task to do to secure your Node-RED setup: using HTTPS instead of HTTP.
You have already mounted a volume in the container with your Raspberry Pi's certificate
files in the Docker Compose file, so you just have to refer to these files in Node-RED's
configuration. Reopen the configuration file. At the beginning, uncomment the line that
begins with //var fs = require("fs");, so it looks like this:

var fs = require("fs");

Then scroll further down again to the section beginning with // Securing Node-RED. After
this section, you see these lines:

 // The following property can be used to enable HTTPS
 // See http://nodejs.org/api/https.html#https_https_createserver_options_
requestlistener
 // for details on its contents.

Control Your Home with Raspberry Pi

● 208

 // See the comment at the top of this file on how to load the `fs` module
used by
 // this setting.
 //
 //https: {
 // key: fs.readFileSync('privatekey.pem'),
 // cert: fs.readFileSync('certificate.pem')
 //},

 // The following property can be used to cause insecure HTTP connections
to
 // be redirected to HTTPS.
 //requireHttps: true,

 // for details on its contents.

Change them to something like this:

 // The following property can be used to enable HTTPS
 // See http://nodejs.org/api/https.html#https_https_createserver_
options_requestlistener
 // for details on its contents.
 // See the comment at the top of this file on how to load the `fs`
module used by
 // this setting.
 //
 https: {
 key: fs.readFileSync('/etc/ssl/private/key.pem'),
 cert: fs.readFileSync('/etc/ssl/private/cert.pem')
 },

 // The following property can be used to cause insecure HTTP
connections to
 // be redirected to HTTPS.
 requireHttps: true,

Make sure to adapt the filenames of the key and certificate to your situation.

After these changes, restart the Node-RED container:

docker-compose restart node-red

Chapter 10 ● Automating your home

● 209

Your Node-RED installation is now not accessible anymore using HTTP. But if you enter
https://HOSTNAME:1880 in your web browser, you're asked the username and password
for the flow editor. Your Node-RED installation is now secure and all communication is
encrypted.

10.1.4 • Creating Node-RED flows

In Node-RED you don't type code to create a program, but you connect nodes to create
a flow. In the sidebar at the left, you see a lot of nodes, arranged in categories such as
common, function, network, sequence, parser and storage.

For instance, let's revisit the Python program in Chapter 4 that sends an MQTT message

Figure 10.1 Node-RED shows an empty canvas where you can put nodes on to create a flow.

Control Your Home with Raspberry Pi

● 210

with the time to your broker when someone asks for it. Rewriting it in the form of a Node-
RED flow is a good way to familiarize yourself with the Node-RED platform.

Note:
You can add more than one flow to Node-RED: just click on the + icon at the right above
the canvas. You can also change the name of a flow by double-clicking on the current
name (by default Flow 1) and then editing the Name field.

First, drag the mqtt in node in the category network to the canvas. This node lets you
react to an MQTT message with a specific topic. Double-click on the node on your canvas
to edit its properties.

Now you have to define the MQTT broker this node is listening to. Next to Server, select
Add new mqtt-broker… and click on the pencil on the right.

Give this MQTT broker a name and add its hostname in the Server text field. If you're
running Mosquitto as a broker in a Docker container defined in the same Docker Compose
file as Node-RED at the beginning of this chapter, you can just enter mosquitto here,
which is the name of the Docker container Mosquitto's running in.

If you're using an MQTT broker on another machine, you should have configured TLS for
it (see Chapter 4) and you should choose port 8883 here. Make sure that the hostname is
the same one as the one the TLS certificate is created for. Also, click on Enable secure
(SSL/TLS) connection. A new dropdown list appears then: TLS Configuration. Click on
the pencil icon next to Add next tls-config… and then upload the CA certificate for your
MQTT broker (rootCA.pem, see Chapter 3) next to CA Certificate. You can ignore the other
files.2 Give the TLS configuration a name and click Add.

2	 Those are for a client certificate, which is out of scope for this book. A client
certificate can be used to authenticate to the MQTT broker instead of a username and
password.

Figure 10.2 Node-RED is able to communicate with an MQTT broker.

Chapter 10 ● Automating your home

● 211

After this, you're back in the properties of the mqtt in node. Go to the Security tab and
supply a valid username and password. Finally, click on Add to add this broker configuration.

The broker you just configured is now defined as this node's broker. Next, choose the topic
this node is listening to: time/request. And optionally give the node a name, such as Time
request. Click on Done to save the node.

Now drag the mqtt out node to the canvas, and double-click on it to edit its properties.
Choose the same broker as the server, and enter time/reply as the topic. Optionally give
the node a name, such as Time reply, and click Done to save it.

Then link both nodes (just drag a line between the little square at the right of the first node
and the square at the left of the second node), and click on Deploy at the top right. Both
nodes should now show a green block below with the message connected. This means
that the nodes are successfully connected to the MQTT broker.

This flow now does something very simple: if Node-RED receives a message on MQTT topic
time/request, it echoes the message to another topic, time/reply.

Verify this on the command line with the mosquitto_sub and mosquitto_pub commands.
Open a shell and subscribe to the time/reply topic:

mosquitto_sub -t 'time/reply' -v

In another shell, send a request:

mosquitto_pub -t 'time/request' -m ''

Now you should see time/reply (null) in the first shell, which is an empty payload. Of
course, this isn't that useful, so let's change the flow so it replies the current time. Add a
function node (in the category function), delete the existing connection between the two
MQTT nodes, and link the output of the time request to the input of the function node and
the output of the function node to the input of the time reply.

Control Your Home with Raspberry Pi

● 212

Double-click on the function node, enter a name such as Current time and enter the
following JavaScript code in the Function text field:

var date = new Date();
msg.payload = date.toString();
return msg;

This creates a Date object in JavaScript and sets the payload of the MQTT message to
a string representation of this date. Click on Done to save the node and don't forget to
click on Deploy to deploy your changes. Now send an MQTT message again on the time/
request topic and look at the message you get on time/reply:

Note:
If you add a debug node to the canvas and connect it to the output of another node, you
can see the payload of the node in a debug panel. The debug panel is shown at the right
when you open the hamburger menu and then View > Debug messages.

Figure 10.3 This simple Node-RED flow sends the current time as an MQTT message in reply to another
message.

Figure 10.4 This Node-RED flow sends the time/reply MQTT message with the current time as its payload.

Chapter 10 ● Automating your home

● 213

10.1.5 • Installing extra nodes in Node-RED

Node-RED has a big ecosystem of external nodes you can install. Just open the hamburger
menu (the three horizontal lines) at the top right and then choose Manage palette. If you
click on the Install tab, you get access to thousands of nodes.

Just start typing some keyword and the shown nodes are filtered. For instance, let's install
the node-red-contrib-moment node: search for moment and then click on install next
to the right node and then Install again.

Figure 10.5 Node-RED comes with a big ecosystem of thousands of nodes.

Control Your Home with Raspberry Pi

● 214

After installation, you can close the palette manager. Two new node types have been added
to your pallette: moment and humanizer. Let's use the moment node to improve on the
flow from the previous subsection and show a more readable time.

Remove the connection between the function node and the mqtt out node from the
previous subsection, drag the moment node between them, and recreate the connections.

Now edit the properties of the moment node. Put your timezone right, and enter YYYY-
MM-DD HH:mm in the Output Format field. After deploying your Node-RED flow, an
MQTT message to the time/request topic gives you a message with a time such as 2019-
11-30 17:56 to the time/reply topic.

Figure 10.6 The moment node lets you use a more readable output format for dates and times.

Chapter 10 ● Automating your home

● 215

There's still a lot more to say about flows in Node-RED, but I'll give a slightly more complex
example in Chapter 12, so this will suffice for now.

10.1.6 • Creating a dashboard in Node-RED

The flow you made in the previous subsections just uses MQTT for its output, but Node-RED
also has a nice way to create a user interface: dashboards. Let's create a dashboard that
shows sensor readings that are sent as MQTT messages.

The Node-RED dashboard isn't installed by default, so return to Manage palette in the
hamburger menu and install node-red-dashboard. You'll see a message that a lot of new
nodes have been installed. Close the settings after installation.

Now click on the plus sign at the top right to create a new flow. Double-click on its name
(probably Flow 2) and change the name to something more descriptive.

Let's first add an mqtt in node to read your sensor data. I'll use the sensor data of a
RuuviTag as an example, published as MQTT messages by bt-mqtt-gateway (see Chapter
6). If you want to use something else, just change the MQTT topic. So in this case, I enter
bt-mqtt-gateway/ruuvitag/bedroom/temperature as the topic in the properties of the
mqtt in node. Give the node a name (such as Bedroom temperature) and make sure
you point it to the correct MQTT broker:

Figure 10.7 Installing node-red-dashboard adds a lot of new node types.

Control Your Home with Raspberry Pi

● 216

Now add an mqtt in node for every sensor measurement you want to show in your
dashboard. After this, scroll at the bottom of your palette at the left sidebar and drag a
gauge node (from the dashboard collection of nodes) after every mqtt in node. Then
connect each mqtt in node with their corresponding gauge node.

There's an orange triangle on top of each of the gauge nodes, which means that their
configuration is invalid or incomplete. So double-click on one of the gauges. Next to Group,
you see Add new ui_group with a red outline. This is the incomplete configuration that
the orange triangle warned you about. Click on the pencil icon next to it. This creates a new
dashboard group, which groups some dashboard widgets. Enter the name of your sensor,
for instance, Bedroom, for the Name field.

This node also needs you to choose a Tab. So click on the pencil right to Add new ui_
tab… to create a new tab. I'll use a tab for each sensor. So give this tab a name such as
Environmental sensors and optionally the name of an icon.3 Then click Add to create
the tab. After this, you return to the group properties and click again on Add to create the

3	 You can search for available icon descriptions on the websites of Material Design
Icons (https://materialdesignicons.com), Font Awesome (https://fontawesome.com) and
Weather Icons (https://github.com/Paul-Reed/weather-icons-lite/blob/master/css_mappings.
md).

Figure 10.8 Let Node-RED subscribe to an MQTT topic with sensor measurements.

https://materialdesignicons.com
https://fontawesome.com
https://github.com/Paul-Reed/weather-icons-lite/blob/master/css_mappings.md
https://github.com/Paul-Reed/weather-icons-lite/blob/master/css_mappings.md

Chapter 10 ● Automating your home

● 217

group.

Now you return to the gauge properties. Change the Label field to Temperature for a
temperature sensor, choose your unit, and enter a range with minimal and maximal values
you expect for this sensor. You can also add threshold values for the color gradients, and
you can even change the colors, for instance, blue for cold temperatures, green for normal
temperatures, and red for hot temperatures. Finally, click on Done.

Figure 10.9 You can configure how the gauge widget appears on your dashboard.

Control Your Home with Raspberry Pi

● 218

Now do the same for all your other gauge nodes. For instance, for the node showing the
humidity of the same sensor that you just added the temperature for, you can reuse the
same group. Just change the other properties, such as the units, range, colour gradients,
and thresholds.

For other sensors, click on the dropdown list next to Group and select Add new ui_group
and then click on the pencil. Give it the name of the sensor, make sure that Tab still lists
the tab you have created and then click on Add to create this new group. Then for other
gauge nodes for the same sensor choose this group in the dropdown list.

If you have edited all the gauge nodes, click on Deploy to deploy your flows. If you
visit https://HOSTNAME:1880/ui/ now, with the hostname of your Raspberry Pi, you first
have to enter the username and password you configured earlier in this chapter for the
dashboard, and afterwards you see your dashboard with some gauges that are updated
continuously as the relevant MQTT messages are received by Node-RED.

Figure 10.10 This flow lets each sensor measurement coming in through MQTT messages 'flow' to a
dashboard widget.

Chapter 10 ● Automating your home

● 219

Of course, this just scratched the surface of Node-RED's dashboard. Have a look at the
other node types in the dashboard part of the palette and try them to create your own
dashboards for your home automation system.

10.2 • Home Assistant

Home Assistant (https://www.home-assistant.io) is a popular home automation gateway
that puts local control and privacy first. It integrates with a lot of home automation devices
and protocols, and it has a user-friendly way to add automations. It doesn't require you to
write code, but has another approach than Node-RED's flow-based automations; instead, it
uses automations with triggers, conditions, and actions.

10.2.1 • Installing Home Assistant

To run Home Assistant as a Docker container, add this to your Docker Compose file:

version: '3.7'
services:
 mosquitto:
 # mosquitto configuration
 homeassistant:
 container_name: homeassistant
 image: homeassistant/home-assistant:latest
 volumes:
 - ./containers/homeassistant:/config

Figure 10.11 This simple Node-RED dashboard shows the sensor measurements from your environmental
sensors.

https://www.home-assistant.io

Control Your Home with Raspberry Pi

● 220

 - ./containers/certificates:/etc/ssl/private:ro
 - /etc/localtime:/etc/localtime:ro
 restart: always
 ports:
 - "8123:8123"

And create a directory where Home Assistant can store its data:

mkdir /home/pi/containers/homeassistant

Then start Home Assistant:

docker-compose up -d

After this, your Home Assistant setup is available on http://IP:8123, with IP the IP address
of your Raspberry Pi. But let's immediately configure it to use TLS. Open the configuration
file that Home Assistant has created:

sudo nano /home/pi/containers/homeassistant/configuration.yaml

Then add the following section:

http:
 base_url: https://HOSTNAME:8123
 ssl_certificate: /etc/ssl/private/cert.pem
 ssl_key: /etc/ssl/private/key.pem

Then restart the Home Assistant container:

docker-compose restart homeassistant

If you now visit https://HOSTNAME:8123 (make sure to use the hostname and not the
IP address), your connection to Home Assistant is secured over TLS. Then follow the
instructions of Home Assistant's configuration wizard: choose a username and password,
and locate your home. When the wizard is ready, you see Home Assistant's web interface
with the weather forecast for your location.

Chapter 10 ● Automating your home

● 221

10.2.2 • Integrating MQTT

Home Assistant supports integrations with a lot of home automation devices and services,
but that's out of scope for this book. What's interesting for us is its MQTT integration.
You can activate it by opening the menu Configuration > Integrations, clicking on the
orange plus icon at the right bottom, and choosing MQTT in the list of integrations.

Then enter the connection for your MQTT broker. If you're using the Mosquitto container from
the same Docker Compose file as the one where you defined the Home Assistant container,
you can just enter mosquitto as the broker.4 Enter your username and password. And
then enable the Enable discovery checkbox for better integration with MQTT services that
follow Home Assistant's discovery conventions. Click on Submit to add this configuration.

4	 If you want to configure a connection to an MQTT broker with TLS, at the moment
Home Assistant doesn't support this in a graphical way. Have a look at https://www.home-
assistant.io/docs/mqtt/broker/ to see how to configure an encrypted MQTT broker connection
in Home Assistant's configuration.yaml.

Figure 10.12 Home Assistant's configuration wizard makes the home automation software ready to use.

ttps://www.home-assistant.io/docs/mqtt/broker/
ttps://www.home-assistant.io/docs/mqtt/broker/

Control Your Home with Raspberry Pi

● 222

Now Home Assistant will listen to messages published on the MQTT broker. It can even
automatically discover devices thanks to the MQTT discovery conventions (https://www.
home-assistant.io/docs/mqtt/discovery/).

Figure 10.13 You can easily integrate Home Assistant with your MQTT broker.

Figure 10.14 Home Assistant automatically adds devices that follow its MQTT discovery conventions.

https://www.home-assistant.io/docs/mqtt/discovery/
https://www.home-assistant.io/docs/mqtt/discovery/

Chapter 10 ● Automating your home

● 223

Zigbee2mqtt has enabled MQTT discovery by default in its configuration file, so your
Zigbee devices should appear automatically in Home Assistant. If not, make sure that
Zigbee2mqtt's configuration.yaml has a line homeassistant: true and restart the
Zigbee2mqtt container.

If you're using bt-mqtt-gateway (see Chapter 6), you only have to add some YAML code
under the manager key in the project's configuration file:

mqtt:
 # mqtt config

manager:
 command_timeout: 30
 sensor_config:
 topic: homeassistant
 retain: true
 topic_subscription:
 update_all:
 topic: homeassistant/status
 payload: online
 workers:
 # worker configuration

After this, restart the bt-mqtt-gateway container:

docker-compose restart bt-mqtt-gateway

And if all goes well, you'll see the sensors you have defined in bt-mqtt-gateway appearing
in Home Assistant's default view.

Figure 10.15 Thanks to MQTT discovery Home Assistant automatically adds sensors published by bt-mqtt-
gateway.

Control Your Home with Raspberry Pi

● 224

10.2.3 • Creating automation rules

Home Assistant also lets you create simple automation rules. Open Configuration >
Automations and then click on the orange plus icon at the bottom right.

Home Assistant asks you to describe your automation rule and tries to convert this sentence
(if it's in English) to an automation. In many cases this doesn't work yet, so just click on
Skip. Give your automation rule a name and an optional description.

An Home Assistant automation rule has three parts:

Trigger
Triggers are what starts the processing of an automation rule. You can specify multiple
triggers for the same rule. Once a trigger starts, Home Assistant validates the conditions,
if any, and calls the action.

Condition
If a rule has a condition, the action is only called when the condition is true. So conditions
can be used to prevent an action from happening when triggered in specific circumstances.
Conditions are optional.

Action
Actions are what Home Assistant will do when the automation rule is triggered.

At first triggers and conditions look very similar, so the difference can be confusing. It helps
to look at it like this:

•	 A trigger looks at events at the moment they are happening in the system. For instance,
a trigger detects that a switch is being turned on.

•	 A condition looks at the current state of the system. For instance, a condition can check
at any time if a switch is on or off.

To make it a bit more concrete: if you want to get a notification when the RuuviTag in your
fridge reports a temperature higher than 5 degrees Celsius, you don't need a condition,
you need a trigger.

Because temperature is a number, select Numeric state for the Trigger type. Then for
Entity, choose your sensor's entity, such as sensor.ruuvitag_tag1_temperature. And
enter 5 in the Above text field.

Then choose Call service for the Action type and persistent_notification.create for
the Service. In the Service data text field, enter the following JSON code:

Chapter 10 ● Automating your home

● 225

{
 "notification_id": "1234",
 "title": "Temperature alert",
 "message": "The fridge is too warm"
}

Finally, click on the save icon to create your automation rule. If all goes well, you get a
notification on Home Assistant's notification page (click on Notifications at the bottom
left) when the temperature in your fridge is higher than 5 degrees Celsius.

Note:
This is just a simple example of a notification. Home Assistant knows a lot of more
advanced notification types, including push notifications on mobile devices, text-to-
speech notifications, SMS messages, emails, and messages on social networks. Have a
look at https://www.home-assistant.io/integrations/#notifications for the complete list,
and return to this chapter after reading the next chapter about notifications.

Figure 10.16 Home Assistant's automation rules have a simple trigger-condition-action structure.

https://www.home-assistant.io/integrations/#notifications

Control Your Home with Raspberry Pi

● 226

10.3 • AppDaemon

AppDaemon (https://appdaemon.readthedocs.io) is a loosely coupled, multithreaded
Python execution environment for writing applications for home automation projects or any
environment that requires a robust event-driven architecture.

AppDaemon is closely related to Home Assistant, so it has excellent support for Home
Assistant, but it also directly supports MQTT. This makes it an interesting environment for
Python programs that work with your home automation system's MQTT infrastructure. In
this section, I'll show some basic examples.

10.3.1 • Installing AppDaemon

AppDaemon has an official Docker image, but unfortunately, this isn't offered for the
Raspberry Pi's ARM architecture.5

The solution is to build your own Docker image. So download the latest source and build its
Docker image on your Raspberry Pi:6

5	 You should check whether this still is true when you read this: https://appdaemon.
readthedocs.io/en/latest/INSTALL.html#raspberry-pi-docker. I opened an issue about this in
AppDaemon's GitHub repository: https://github.com/home-assistant/appdaemon/issues/970.
If there will be an official ARM image, you should see this mentioned there.
6	 Don't forget to regularly update AppDaemon's source with a git pull command
in the appdaemon directory and then rebuild the Docker container with docker build -t
appdaemon. After this, stop and remove the container with docker stop appdaemon and
docker rm appdaemon and recreate it with docker-compose up -d.

Figure 10.17 Let Home Assistant show you notifications when your sensors exceed a specified value.

https://appdaemon.readthedocs.io
https://appdaemon.readthedocs.io/en/latest/INSTALL.html#raspberry-pi-docker
https://appdaemon.readthedocs.io/en/latest/INSTALL.html#raspberry-pi-docker
https://github.com/home-assistant/appdaemon/issues/970

Chapter 10 ● Automating your home

● 227

git clone https://github.com/home-assistant/appdaemon.git
cd appdaemon
docker build -t appdaemon .

Building the Docker image takes a while (more than 20 minutes on a Raspberry Pi 4).

When the image has been built, you can use it in your Docker Compose file:

Figure 10.18 You have to build the AppDaemon Docker image for the Raspberry Pi yourself.

Control Your Home with Raspberry Pi

● 228

version: '3.7'

services:
 mosquitto:
 # mosquitto configuration
 homeassistant:
 # homeassistant configuration
 appdaemon:
 image: appdaemon
 container_name: appdaemon
 restart: always
 volumes:
 - ./containers/appdaemon:/conf
 user: "1000:1000"

Note that you use just appdaemon as the image name, and not acockburn/appdaemon
(which is the official Docker image of AppDaemon). By using the appdaemon tag you refer
to the image you built yourself: you supplied this tag with the -t appdaemon option in the
docker build command).

Then create the directory for AppDaemon:

mkdir /home/pi/containers/appdaemon

And create a file appdaemon.yaml in this directory. A minimal configuration to use
AppDaemon with MQTT should look like this:

appdaemon:
 time_zone: Europe/Brussels
 latitude: LATITUDE
 longitude: LONGITUDE
 elevation: ELEVATION
 plugins:
 MQTT:
 type: mqtt
 client_host: mosquitto
 namespace: mqtt
 client_user: home
 client_password: PASSWORD

In this file, you have to enter the timezone, latitude, longitude, and elevation for your

Chapter 10 ● Automating your home

● 229

location.7

After this comes the configuration of the MQTT plugin. The value of client_host should
be the hostname or IP address of the MQTT broker. Because you're running Mosquitto as a
Docker container configured in the same Docker Compose file as AppDaemon, you can use
mosquitto here, as it's the name of the Mosquitto container.8

After the configuration is done, start the container:

docker-compose up -d

This will create an example app. You can delete it because you don't need it:

rm -rf /home/pi/appdaemon/apps/*

10.3.2 • Creating an AppDaemon app with MQTT: the time

Now revisit the Python program in Chapter 4 that sends an MQTT message with the time
to your broker when someone asks for it. I'll rewrite this to an AppDaemon app. Create a
directory for the app:

mkdir /home/pi/containers/appdaemon/apps/time_app

Then the app's code looks like this:

"""Send an MQTT message with the time to your broker when asked.

Copyright (C) 2020 Koen Vervloesem

License: MIT
"""
import mqttapi as mqtt

7	 It may look strange that these parameters are mandatory, especially the latitude,
longitude and elevation, but they are used by AppDaemon to run functions at sunrise or
sunset.
8	 If you want to use an external MQTT broker with TLS, consult AppDaemon's docu-
mentation for the configuration of the MQTT plugin (https://appdaemon.readthedocs.io/en/
latest/CONFIGURE.html#configuration-of-the-mqtt-plugin).

https://appdaemon.readthedocs.io/en/latest/CONFIGURE.html#configuration-of-the-mqtt-plugin
https://appdaemon.readthedocs.io/en/latest/CONFIGURE.html#configuration-of-the-mqtt-plugin

Control Your Home with Raspberry Pi

● 230

MQTT_MSG = "MQTT_MESSAGE"
MQTT_TOPIC_TIME_REQUEST = "time/request"
MQTT_TOPIC_TIME_REPLY = "time/reply"
TIME_FORMAT = "%Y-%m-%d %H:%M"

class TimeApp(mqtt.Mqtt):
 """App that sends the time as an MQTT message."""

 def initialize(self):
 """Subscribe to the right MQTT topic."""
 self.set_namespace("mqtt")
 self.listen_event(
 self.on_time_request, event=MQTT_MSG, topic=MQTT_TOPIC_TIME_REQUEST
)
 self.log("Time app initialized")

 def on_time_request(self, event_name, data, kwargs):
 """Reply with the time if it's asked."""
 now = self.datetime().strftime(TIME_FORMAT)
 self.mqtt_publish(MQTT_TOPIC_TIME_REPLY, now)

It's immediately clear that you need much less boilerplate code. You don't need to define
the MQTT host and port, because it's already defined in AppDaemon's configuration. You
also don't need to initialize the MQTT connection and start the event loop. So the only thing
you need to do is start listening to the right MQTT topic, with the self.listen_event line.

Note:
Instead of datetime.now() from Python's standard library, this AppDaemon app
uses self.datetime() to get the current date and time. This is the preferred way in
AppDaemon.

Now if you change your MQTT broker, the only thing you have to change is the configuration
of AppDaemon. After restarting AppDaemon, all AppDaemon apps use this new MQTT
broker. Compare this to the approach in Chapter 4: you had to change the MQTT settings
in all Python files.

Save this file as time_app.py in the apps/time_app directory of AppDaemon, and also
create a file called time_app.yaml in the same directory. Give this file the following content:

time_app:
 module: time_app
 class: TimeApp

Chapter 10 ● Automating your home

● 231

After you have saved both files, AppDaemon automatically picks up the changes and loads
your app. You don't have to 'run' the app or restart AppDaemon for this. So now you can
just test the app by subscribing to the time/reply topic in one shell:

mosquitto_sub -t 'time/reply' -v

In another shell, send a request to the program

mosquitto_pub -t 'time/request' -m ''

If all goes well, you'll see the current date and time appearing in the shell running
mosquitto_sub.

10.3.3 • Creating an AppDaemon app with MQTT: garage door alert

Now let's revisit the Python program from Chapter 6 that uses a RuuviTag attached to your
garage door to see whether it's open or closed. Create a directory for the app:

mkdir /home/pi/containers/appdaemon/apps/garage_door

If you use bt-mqtt-gateway to translate the BLE data from the RuuviTag to MQTT messages,
an AppDaemon app would look like this:

"""Send an MQTT message to your broker when the position of your
garage door changes.

Copyright (C) 2020 Koen Vervloesem

License: MIT
"""
import mqttapi as mqtt

MQTT_MSG = "MQTT_MESSAGE"
MQTT_TOPIC_ACCEL = "bt-mqtt-gateway/ruuvitag/tag2/acceleration_z"
MQTT_TOPIC_STATE = "garagedoor/state"

class GarageDoor(mqtt.Mqtt):
 """App that signals the position of your garage on MQTT."""

Control Your Home with Raspberry Pi

● 232

 def initialize(self):
 """Subscribe to the right MQTT topic."""
 self.set_namespace("mqtt")
 self.state = "error"
 self.listen_event(self.on_accel, event=MQTT_MSG, topic=MQTT_TOPIC_
ACCEL)
 self.log("Garage door app initialized")

 def change_and_publish_if_not(self, state):
 """Change and publish the garage door's state
 if the current state is not equal to the state.
 Do nothing in the other situation.
 """
 if self.state != state:
 self.state = state
 self.mqtt_publish(MQTT_TOPIC_STATE, state)

 def on_accel(self, event_name, data, kwargs):
 """Publish the garage door's state when it changes."""
 acceleration_z = int(data["payload"])
 if acceleration_z > 100:
 self.log("Right side up")
 self.change_and_publish_if_not("error")
 elif acceleration_z < -100:
 self.log("Upside down")
 self.change_and_publish_if_not("open")
 else:
 self.log("On its side")
 self.change_and_publish_if_not("closed")

You'll have to change the MQTT_TOPIC_ACCEL topic to the one you have configured for your
RuuviTag. After this, the app just listens to messages on this topic and emits the right MQTT
message when the state of the Z component of the acceleration changes.

Save this file as garage_door.py in the apps/garage_door directory of AppDaemon, and
also create a file called garage_door.yaml in the same directory. Give this file the following
content:

garage_door:
 module: garage_door
 class: GarageDoor

Now when the RuuviTag on your garage door changes position, the state is sent to the
garagedoor/state topic.

Chapter 10 ● Automating your home

● 233

10.4 • Summary and further exploration

This chapter was all about more maintainable ways to automate your home than a bunch
of Python scripts. I introduced you to three interesting home automation platforms: Node-
RED, Home Assistant, and AppDaemon. The first two are interesting because they have
a complete ecosystem of integrations and add-ons around them, so you don't have to
reinvent the wheel. AppDaemon is interesting if you want to automate your home with
Python but do it in a more maintainable way.

There are more projects than these three. Many home automation platforms are popular in
specific countries or language regions. For instance, in Germany FHEM (https://fhem.de) is
a popular choice, in France Jeedom (https://jeedom.com) and in the Netherlands Domoticz
(https://www.domoticz.com). Other popular open-source home automation platforms are
openHAB (https://www.openhab.org) and ioBroker (https://www.iobroker.net).

A fairly recent addition is Mozilla IoT WebThings Gateway (https://iot.mozilla.org/gateway).
This innovative project is trying to create a decentralized Internet of Things by giving
Things URLs on the web to make them linkable and discoverable. This "Web of Things" is
a great vision, but it's not yet as mature and usable as the other projects in this chapter.
An interesting project that builds on the IoT WebThings Gateway is Candle (https://www.
candlesmarthome.com), a prototype of a privacy-friendly smart home solution developed
by a collective of designers, artists, and privacy experts from Amsterdam.

If you want to use one of these instead of the solutions in this chapter, feel free to do this.
They all have an open architecture and all run on a Raspberry Pi, so you should be able to
use them with the approach advocated in this book.

https://fhem.de
https://jeedom.com
https://www.domoticz.com
https://www.openhab.org
https://www.iobroker.net
https://iot.mozilla.org/gateway
https://www.candlesmarthome.com
https://www.candlesmarthome.com

Control Your Home with Raspberry Pi

● 234

Chapter 11 • Notifications

Your home automation gateway can do a lot of things automatically, and it can show
you some information on a dashboard. But sometimes that's not enough: you want to be
notified about some events. In this chapter, I'll show you two ways to send notifications:
emails and push notifications with Gotify.

These two ways cover most use cases. Emails are useful to send you information that
you don't have to act upon immediately, and push notifications can give you immediate
warnings when that's needed.

I end this chapter with mqttwarn, a highly flexible system that you can let react to specific
MQTT topics and then notify you using a wide range of notification services. This is an easy
way to send notifications without having to program.

Note:
Setting up a fully self-hosted notifications infrastructure is no easy feat. Email on the
server of your email provider is not self-hosted. However, I put email in this chapter
because you are free to choose your email provider. For push notifications, there's much
less choice. If you choose a centralized notifications service such as Pushover, you depend
on one company, which is what I'm trying to avoid in this book (see Chapter 1). That's
why I use Gotify, which you can install on your server.

11.1 • Forwarding local email

Email is probably the simplest way to send you notifications. It's not very useful if you want
to be notified immediately, but for a lot of events, it's the perfect type of notification. For
instance, if you have set up Raspberry Pi OS to automatically update all packages daily
(see Chapter 3), you don't need to see a notification immediately: it's enough if you read a
report of the updated packages when you open your inbox.

Many of the system services on Raspberry Pi OS can send you emails, for example, if
someone tries to log in with a wrong password. By default, these emails arrive in a local
mailbox on your Raspberry Pi, where you probably won't read these. Therefore it's much
more useful to forward these locally delivered emails to your normal email address.

You can do this by installing a full-blown mail server on your Raspberry Pi, such as Postfix or
Exim, but that's probably overkilling. A better alternative is Nullmailer, which is specifically
developed for this purpose: forwarding locally delivered emails to a configured email
address.

11.1.1 • Installing Nullmailer

Installing Nullmailer is simple:

Chapter 11 ● Notifications

● 235

sudo apt install nullmailer

This will ask you to confirm or change some settings. Just accept the default settings; you'll
change them afterwards in the configuration files in the /etc/nullmailer directory.

Note:
You could also install nullmailer in a Docker container, but I prefer to run nullmailer on
Raspberry Pi OS directly, so it still works when your Docker setup breaks.

The most important configuration is the mail server to deliver emails to. Open the
configuration file:

sudo nano /etc/nullmailer/remotes

And then enter a line with your mail server's configuration. This should look like this:

smtp.example.com smtp --user=USERNAME --pass=PASSWORD --port=587 --starttls

Let's look at each of these components:

smtp.example.com
This is the hostname of the SMTP (Simple Mail Transfer Protocol) server of your mail server.

--user=USERNAME
Replace USERNAME by your username on the mail server. For some mail servers, this
username is only the part before the @ sign in your email address; for others, this is your
full email address.

--pass=PASSWORD
Replace PASSWORD by your email password. Note: if your password contains spaces, add it
as --pass='my password'.

--port=587
This is the port number where the SMTP server is listening to.

--starttls
This option initiates a TLS session with the STARTTLS command.
You should consult your email provider's documentation for some of these values. Look up
other options in man nullmailer-send or /usr/lib/nullmailer/smtp --help.

Control Your Home with Raspberry Pi

● 236

Warning:
The /etc/nullmailer/remotes file contains your email password in plaintext. This makes it
especially important to secure your Raspberry Pi (see Chapter 3) so no one can find your
email password. To be on the safe side, you should use a dedicated email account for
your Raspberry Pi, so if someone finds your email password in this file, your main email
account isn't compromised.

Now you have to configure the sender of the emails sent by Nullmailer. This is done in
another configuration file:

sudo nano /etc/nullmailer/allmailfrom

You should enter a valid email address in this file, preferably the email address from the
account that you configured in the /etc/nullmailer/remotes file. Otherwise, your mail
server will probably reject your emails.

The next step is to configure Nullmailer to forward all locally delivered emails to your email
address. Enter this email address in another file:

sudo nano /etc/nullmailer/adminaddr

11.1.2 • Testing Nullmailer

After this, you should test your configuration. Stop the nullmailer service and start
nullmailer manually to look at its output:

sudo systemctl stop nullmailer
sudo nullmailer-send

Now locally delivered emails should be forwarded to your configured email address. You can
test this manually. First, install the mail command with:

sudo apt install mailutils

After this, send a test email with:

Chapter 11 ● Notifications

● 237

echo "This is a mail message" | mail -s "This is a mail subject" root@localhost

If all goes well, the running nullmailer-send command should show the message Delivery
complete, 0 message(s) remain., and your test email arrives in your mailbox. If not, try
to understand what the error message in the output of nullmailer-send is telling you. In
this case, you probably also receive an email from your mail server with an error message
with more information.

11.1.3 • Using Nullmailer

If sending an email works, you can exit the nullmailer-send command with Ctrl+C and
then restart the nullmailer service:

sudo systemctl start nullmailer

All the system services on your Raspberry Pi that you configure to send email to local users
now work using Nullmailer and forward those emails to your email address with your email
provider

11.2 • Forwarding emails from Docker containers

If you want services in your Docker containers, such as motionEye (for motion detection,
see Chapter 5), Node-RED, or Home Assistant (see Chapter 10) to send emails to you as
notifications, the previous setup doesn't suffice. But the installation and configuration of a
full-blown mail server for your local network is beyond the scope of this book.
However, there's an easier solution: an SMTP relay that accepts emails from other containers
on the same Raspberry Pi and sends them to an external mail server. One simple project
that does this, is the docker-postfix project (https://github.com/juanluisbaptiste/docker-
postfix) by Juan Luis Baptiste.1

11.2.1 • Installing docker-postfix

Unfortunately, at the moment, the docker-postfix project only publishes container images
for the amd64 architecture on Docker Hub, so you can't run them on a Raspberry Pi's ARM
processor.2 So you have to build the image yourself:

1	 Postfix (http://www.postfix.org) is an easy to administer and secure mail transfer
agent (MTA).
2	 See https://github.com/juanluisbaptiste/docker-postfix/issues/23 for the status of
the publication of ARM images of the project on Docker Hub.

https://github.com/juanluisbaptiste/docker-postfix
https://github.com/juanluisbaptiste/docker-postfix
http://www.postfix.org
https://github.com/juanluisbaptiste/docker-postfix/issues/23

Control Your Home with Raspberry Pi

● 238

git clone https://github.com/juanluisbaptiste/docker-postfix.git
cd docker-postfix
git checkout migrate_to_alpine
docker build -t postfix .

The third line is only needed to switch to the branch that uses Alpine Linux as the base
operating system for the container image. If entering this line on the command-line results
in an error, the Alpine Linux image has been made the default one and you can just skip
this line.

After the Docker image has been built, you can use it in your docker-compose.yml file:

version: '3.7'

services:
 # other services
 postfix:
 image: postfix
 container_name: postfix
 restart: always
 environment:
 SMTP_SERVER: SMTP_SERVER
 SMTP_PORT: 587
 SMTP_USERNAME: USERNAME
 SMTP_PASSWORD: PASSWORD
 SERVER_HOSTNAME: HOSTNAME
 volumes:
 - /etc/localtime:/etc/localtime:ro

As the image, you just enter postfix, because it's your locally built postfix image. If by the
time you read this Juan Luis has published ARM images on Docker Hub, you don't have to
build it yourself anymore and can just refer to the juanluisbaptiste/postfix image in
your Docker Compose file.

The configuration settings of the server you want to relay your emails to are set in a couple
of environment variables.

Note:
There are no port mappings defined for the container in this Docker Compose file. This is
how you make the mail server only accessible to the other Docker containers defined in
the Docker Compose file.

Chapter 11 ● Notifications

● 239

After this, create the container with:

docker-compose up -d

Now look at the logs of the postfix container:

docker logs -f postfix

If all goes well, you should see a successful start of the Postfix container. If not, check the
configuration of your mail server settings.

11.2.2 • Sending emails to docker-postfix

Now your other containers defined in the Docker Compose file on the same Raspberry Pi
can send emails to your docker-postfix container on port 25. I give an example of how you
do this in Node-RED (see Chapter 10).

In Node-RED, install the node-red-node-email module. Two new nodes are added in the
social category: email in (for receiving emails) and email (for sending emails). Drag the
second on the canvas and add a change node before it, and an inject node before the
change node. Connect the three nodes so the flow goes from inject to change to email.

Now double-click on the email node, enter the email address of the receiver, enter postfix
(the name of the container running the mail server) as the server address, and 25 as the
port number. Uncheck Use secure connection and Use TLS?. Leave the user ID and
password empty. Click on Done to save the node.

Figure 11.1 A simple flow to test sending emails from Node-RED to docker-postfix.

Control Your Home with Raspberry Pi

● 240

Warning:
As these settings make clear, the docker-postfix mail server doesn't require any form of
authentication or encryption. That's why it's important to not expose the container's port
25 to the Raspberry Pi itself because then anyone on your network can send emails using
your mail server. This set up is only meant for allowing Docker containers on the same
machine send emails outside your network.

Then double-click on the change node set msg.from to the email address of the sender
(many mail servers require a valid sender address), msg.payload to the body of the email,
and msg.topic to the title of the email. Save your settings, deploy the flow, and then click
on the button at the left of the inject node. If all goes well, you're receiving an email from
Node-RED now. If not, look at the logs of docker-postfix: the mail server has probably

Figure 11.2 Enter the settings for your docker-postfix mail server.

Chapter 11 ● Notifications

● 241

rejected the email and lists the reason.

If this test works, you can now send emails in more complex Node-RED flows to notify you
about important events. The process is similar for other containers: just enter postfix as
the server and 25 as the port number.

11.3 • Push notifications with Gotify

Email is a nice way for notifications, but if you want to be notified immediately when
something happens, push notifications are better. We all know push notifications from our
smartphones. Many of these systems work with a central server where all notifications are
sent. This central server then sends the notifications to the right device or app.

Almost always, this central server is managed by a commercial entity and is not under your
control. This means that you have to trust a third party that processes your notifications. It
also means that you probably have to pay for the service or be happy with some restrictions
on the number of notifications you can send or other aspects of the service.
However, there's an alternative that is open-source and that you can run on your system,
such as on the Raspberry Pi running your home automation system: Gotify (https://gotify.
net). It has a simple to use web interface, can manage users, clients and applications and
lets you send messages via REST and subscribe to and receive messages via a WebSocket
connection.

The only downside is that Gotify doesn't support iOS: for smartphones, there's only an
Android app. The problem seems to be that Apple has strict restrictions on background
services, so an iOS app for Gotify wouldn't be able to keep a persistent WebSocket connection
in the background.3 The only way to send notifications on iOS devices is using the Apple
Push Notification service, which works with a central server to manage notifications and
sends them to Apple before reaching the user. This is not what Gotify is designed for, nor
does it fit in this book's approach.

3	 See https://github.com/gotify/server/issues/87

Figure 11.3 You've got mail from Node-RED.

https://gotify.net
https://gotify.net
https://github.com/gotify/server/issues/87

Control Your Home with Raspberry Pi

● 242

Note:
If you set up your notification server on your LAN, Gotify will only be able to notify your
phone as long as it's connected to the LAN, not when you're away from home. However,
notifications will work when you're away frome home and connected to your VPN. See
Chapter 13 to set up a VPN for remote access. You could also set up Gotify on a VPS
(virtual private server) on the internet.

There are three parts in Gotify's architecture:

The Gotify server
This is the server with a REST and WebSocket API that receives notifications from
applications and delivers them to clients.

Gotify applications
Programs that send messages to the Gotify server using the REST API.

Gotify clients
Programs that receive notifications from the Gotify server using the WebSocket API.
Examples of clients are the web interface of the server and an Android app.

11.3.1 • Installing the Gotify server

Gotify can be installed easily as a Docker container. Edit your docker-compose.yml file in
your home directory to have the following content:

version: '3.7'

services:
 # Other services
 gotify:
 image: gotify/server-arm7
 container_name: gotify
 restart: always
 volumes:
 - ./containers/gotify:/app/data
 - ./containers/certificates:/certs:ro
 - /etc/localtime:/etc/localtime:ro
 ports:
 - 8443:443
 environment:
 - GOTIFY_SERVER_SSL_ENABLED=true
 - GOTIFY_SERVER_SSL_CERTFILE=/certs/cert.pem
 - GOTIFY_SERVER_SSL_CERTKEY=/certs/key.pem
 - GOTIFY_DEFAULTUSER_PASS="!K8B*vuSixsb2tAn&BIA"

Chapter 11 ● Notifications

● 243

Change the values of the environment variables for your certificate and key file and choose
a strong password for the default user (admin) in the GOTIFY_DEFAULTUSER_PASS variable.

Note:
If your password contains special characters, you have to quote it in the Docker Compose
file, so "!K8B*vuSixsb2tAn&BIA" instead of !K8B*vuSixsb2tAn&BIA.

Now start the container:

docker-compose up -d

After this, you should be able to log into Gotify's web interface (on https://HOSTNAME:8443)
with the username admin and the password you configured in the docker-compose.yml
file.

You can now create users for everyone in your household (click on Users at the top), or you
can just use the admin account if you're the only user.

11.3.2 • Adding applications to Gotify

Now you should create an application in the web interface for every program that sends
push notifications with Gotify. For instance, if you want Home Assistant to send push
notifications, then create an application Home Assistant.

Click on Apps at the top and then on Create application. Provide a name and (optionally)
a short description. Click on Create.

Every application that you create this way comes in a list, with a token and an icon. If you
have multiple applications, it's recommended to upload a custom image (PNG, JPEG, or
GIF) for each application with the upload icon right to the default icon. That way you easily
recognize the source of notifications.

Control Your Home with Raspberry Pi

● 244

For each application, a tab with its name is added to the left sidebar, under All Messages.
If you click on it, this shows only the messages from this specific application.

11.3.3 • Using Gotify applications

After you have added one or more applications to Gotify, you can start using them to send
messages. How exactly this works depends on the application, but they all use REST (see
also Chapter 5), so they all need the same information:

The REST URI
This has the form https://HOSTNAME:8443/message?token=<apptoken>, where
<apptoken> is the token assigned to your application in the Apps list.

URI parameters
You choose the content of the notification by URI parameters message, title, and
priority. Only the first one is required.

An example makes this clear. You can test push notifications with this one-liner on the
command line:

Figure 11.4 Create an app in Gotify for every program that should send push notifications.

Chapter 11 ● Notifications

● 245

curl "https://HOSTNAME:8443/message?token=APPTOKEN" --cacert /home/pi/⏎
containers/certificates/rootCA.pem -F "title=First" -F "message=My first ⏎
push notification" -F "priority=5"

Note the --cacert option, which specifies the root CA certificate used to verify the TLS
certificate of your Gotify server. Without this option, curl will fail to connect.

After this, the curl command gives some output in JSON format. If you go to the web
interface, you'll see the notification too, in the All Messages tab as well as the tab from
your application.

Note:
If you don't like the verbosity of curl commands, there are some command-line alternatives.
The developers of Gotify have Gotify-CLI (https://github.com/gotify/cli), which stores the
REST URI and application token in a configuration file. After this, you can just enter gotify
push "My message". Another command-line client is gotify-push (https://github.com/
schwma/gotify-push), that supports multiple applications and users.

Figure 11.5 Gotify's web interface shows the messages sent by all your applications.

https://github.com/gotify/cli
https://github.com/schwma/gotify-push
https://github.com/schwma/gotify-push

Control Your Home with Raspberry Pi

● 246

Now you can use the same approach to send notifications from:

Node-RED
with a http request node

Home Assistant
with the rest notification platform (https://www.home-assistant.io/integrations/notify.rest)

motionEye
by enabling Call A Web Hook in Motion Notifications

You can also send a notification in your Python programs. A simple example would look
like this:

"""Post a notification to your Gotify server.

Copyright (C) 2020 Koen Vervloesem

License: MIT
"""
import requests

resp = requests.post(
 "https://HOSTNAME:8443/message?token=APPTOKEN",
 json={
 "message": "Hello from **Python**.",
 "priority": 2,
 "title": "Python notification",
 "extras": {"client::display": {"contentType": "text/markdown"}},
 },
 verify="/home/pi/containers/certificates/rootCA.pem",
)

This is using the Requests library (https://requests.readthedocs.io), which makes it very
easy to send HTTP requests (see also Chapter 5). You can install it with pip3 install
requests. Change the hostname and app token to your situation and specify the location
of your root CA certificate on the last line to verify the TLS certificate of the Gotify server.

Note that this code uses message extras (https://gotify.net/docs/msgextras#clientdisplay)
to set the content type to Markdown. This way you can use formatting codes to spice up the
layout of your notification messages, such as **Python** to make Python bold.

There are also some browser add-ons, such as Gotify for Firefox (https://addons.mozilla.
org/nl/firefox/addon/gotify-for-firefox/) and Gotify Chrome (https://github.com/rorpage/

https://www.home-assistant.io/integrations/notify.rest
https://requests.readthedocs.io
https://gotify.net/docs/msgextras#clientdisplay
https://addons.mozilla.org/nl/firefox/addon/gotify-for-firefox/
https://addons.mozilla.org/nl/firefox/addon/gotify-for-firefox/
https://github.com/rorpage/gotify-chrome

Chapter 11 ● Notifications

● 247

gotify-chrome) that let you send notifications to Gotify from your web browser. For instance,
you can push the current page's URL or you can create a note and send it via the add-on's
icon in the top right corner. After installing the add-on, you first have to enter the REST API
URL of the Gotify server and the application token that you have created for the browser
add-on.

11.3.4 • Using Gotify clients

This is all nice, but looking at a web interface is not the same as getting realtime notifications
on your phone. The project has an official Android app, called Gotify (https://play.google.
com/store/apps/details?id=com.github.gotify). This app subscribes to events from your
Gotify server's WebSocket API and creates push notifications on any new messages.

After you have installed the app on your Android phone, enter the URL of your Gotify
server and press Check URL. Add your username (admin if you haven't created another
user) and your password, and press Login. Then choose a name for your client and press
Create.

After this setup, the app on your phone shows you the same list of notifications as the
web interface. The hamburger menu at the left lets you filter all notifications from specific
applications.

Figure 11.6 Your Gotify server pushes notifications to your Android phone.

https://github.com/rorpage/gotify-chrome
https://play.google.com/store/apps/details?id=com.github.gotify
https://play.google.com/store/apps/details?id=com.github.gotify

Control Your Home with Raspberry Pi

● 248

But the whole point of this app is of course that you can receive push notifications. When
one of your applications sends a message, you receive an immediate notification on your
Android phone.

If you set up Gotify applications for the components in your home automation system that
should be able to get your attention immediately, you'll never miss their notifications on
your Android phone.

11.4 • Notifications on receiving MQTT messages

You have been using another notification system from the beginning of this book: MQTT.
Maybe you don't think about MQTT as a notification system, but it is: every MQTT client is
immediately notified by the MQTT broker of new messages on the topics it's subscribed to.
You don't have an MQTT client open all the time, so using MQTT messages as notifications
directly will not work. But because the whole architecture of this book's home automation
system is centered around MQTT, there's another approach: let a program listen on specific
MQTT topics and notify you by email, Gotify push messages, or other means for each
received message.

Before you start implementing this idea, let me stop you: Jan-Piet Mens has already
created such a system, mqttwarn (https://github.com/jpmens/mqttwarn). It subscribes
to any number of MQTT topics and publishes received payloads to one or more notification
services after optionally applying some transformations. It comes with over 70 notification
handler plugins for a wide range of notification services.

11.4.1 • Installing mqttwarn

Before installing mqttwarn as a Docker container, create a directory to hold its configuration
file:

mkdir /home/pi/containers/mqttwarn

Then create mqttwarn's configuration file:

nano /home/pi/containers/mqttwarn/mqttwarn.ini

Enter the basic information for the MQTT connection and logging:

https://github.com/jpmens/mqttwarn

Chapter 11 ● Notifications

● 249

; --
; Base configuration
; --

[defaults]

; ----
; MQTT
; ----

hostname = 'mosquitto'
port = 1883
username = home
password = PASSWORD
clientid = 'mqttwarn'
lwt = 'clients/mqttwarn'
skipretained = False
cleansession = False

Uncomment the following lines for MQTTS and make sure the hostname and port
are correct:
;ca_certs = '/etc/ssl/certs/rootCA.pem'
;tls_version = 'tlsv1_2'
;tls_insecure = False

MQTTv31 = 3 (default)
MQTTv311 = 4
protocol = 4

; -------
; Logging
; -------

; Send log output to STDERR
logfile = 'stream://sys.stderr'

; one of: CRITICAL, DEBUG, ERROR, INFO, WARN
loglevel = DEBUG

; name the service providers you will be using.
launch = log

; -------
; Targets
; -------

Control Your Home with Raspberry Pi

● 250

[config:log]
targets = {
 'debug' : ['debug'],
 'info' : ['info'],
 'warn' : ['warn'],
 'crit' : ['crit'],
 'error' : ['error']
 }

)

This configures mqttwarn to connect to the mosquitto container on the same Raspberry
Pi, unencrypted over Docker's internal network. If you want to connect to an MQTT broker
on another machine using TLS, uncomment the lines with ca_certs, tls_version, and
tls_insecure and make sure to change the hostname to the fully qualified hostname (for
instance pi-mqtt.home) and the port to 8883. Don't forget to mount the directory with the
root CA file in the Docker Compose file.

Because mqttwarn currently doesn't have a Docker image for ARM yet on the Docker Hub,
download its Git repository to build the image yourself:4

git clone https://github.com/jpmens/mqttwarn
cd mqttwarn
docker build -t mqttwarn .

After the Docker image has been built, add the following container definition to your
docker-compose.yml file:

version: '3.7'

services:
 mosquitto:
 # mosquitto config
 mqttwarn:
 image: mqttwarn
 container_name: mqttwarn
 restart: always
 volumes:
 - ./containers/mqttwarn:/etc/mqttwarn
 - /etc/localtime:/etc/localtime:ro

4	 You can follow the status of an official ARM image on Docker Hub here: https://github.
com/jpmens/mqttwarn/issues/424.

https://github.com/jpmens/mqttwarn/issues/424
https://github.com/jpmens/mqttwarn/issues/424

Chapter 11 ● Notifications

● 251

Note:
If you want mqttwarn to connect to your MQTT broker with TLS, don't forget to add a line
to mount your certificates directory to /etc/ssl/certs.

If by the time you read this book there's an ARM image of mqttwarn on Docker Hub, just
use the jpmens/mqttwarn image instead in your Docker Compose file.

Now run the container:

docker-compose up -d

If you look at the logs with docker logs -f mqttwarn, you should see a line with "Connected
to MQTT broker". This proves that the basic configuration works.

11.4.2 • Sending emails with mqttwarn

To be able to send emails, you have to add an smtp service configuration at the end of
mqttwarn.ini:

[config:smtp]
server = 'postfix:25'
sender = 'MQTTwarn <koen@vervloesem.eu>'
username = None
password = None
starttls = False
targets = {
 'koen' : ['koen@vervloesem.eu'],
 'others' : ['other@example.com', 'boss@example.com']
 }

The server postfix:25 refers to the postfix container you installed in the previous section
with the port number 25. The username and password are empty. Then you can define
multiple targets. In this case, the target 'koen' refers to my email address, while the target
'others' refers to a couple of other email addresses.

Now the only thing you should do to make this service active is adding it to the launch =
line earlier in the configuration. So this line becomes:

launch = log, smtp

Control Your Home with Raspberry Pi

● 252

Now with the email service set up in mqttwarn, you can easily send emails on receiving
specific MQTT messages. I'll give an example with a Zigbee contact sensor (the Xiaomi Aqara
door and window contact sensor), supported by Zigbee2mqtt (see Chapter 9). When this
sensor makes or breaks contact, Zigbee2mqtt sends an MQTT message on the configured
topic (for instance zigbee2mqtt/Front door) with a JSON payload like the following:

{"battery":100,"voltage":3055,"contact":false,"linkquality":52}

What if you want to receive an email every time that the status of the sensor changes? You
only have to add the following lines to the configuration:

[zigbee2mqtt/Front door]
targets = smtp:koen
title = Front door
format = Front door contact changed to {contact}.

Then restart mqttwarn:

docker restart mqttwarn

Now if the contact changes, you receive an email from mqttwarn with the title "Front door"
and the message "Front door contact changed to False." when the contact opened, and
"Front door contact changed to True." when the contact closed.

11.4.3 • Transforming and filtering payloads

"Front door contact changed to False." is not a very user-friendly message. Luckily, you can
let mqttwarn execute arbitrary Python functions on incoming MQTT messages to transform
them before further processing. First, add the following line in the [defaults] section of
mqttwarn.ini:

functions = 'funcs.py'

Now create this Python file:

nano /home/pi/containers/mqttwarn/funcs.py

Chapter 11 ● Notifications

● 253

"""Custom functions for mqttwarn.

Copyright (C) 2020 Koen Vervloesem

License: MIT
"""
import json

Data mapping functions

def translate_xiaomi_aqara_contact(topic, data, srv=None):
 """Translate the Xiaomi Aqara's contact sensor JSON data to a
 human-readable description of whether it's open or closed."""
 payload = json.loads(data["payload"])
 if "contact" in payload:
 if payload["contact"]:
 return dict(status="closed")
 else:
 return dict(status="opened")

 return None

This is a data mapping function. Load the MQTT payload as a JSON dictionary and then
check whether the "contact" entry is found in the dictionary. If it is, check whether its value
is True and add an entry status with the value "closed". If the value is False, add an
entry status with the value "open".

Now change the configuration in mqttwarn.ini to:

[zigbee2mqtt/Cabinet door]
targets = smtp:koen
title = Front door
alldata = translate_xiaomi_aqara_contact()
format = Front door {status}.

With the alldata line you tell mqttwarn to use the specified function to merge the result of
the function (a Python dict) with the dictionary of the data. This adds a status object that
you can then use in the format string.

Now restart the mqttwarn container. The result: when your door opens now, you get an
email with the message "Front door opened."

Control Your Home with Raspberry Pi

● 254

Another interesting concept is a filter. Suppose you want to get a notification when your
Xiaomi Aqara sensors have a low battery. Zigbee2mqtt sends the battery value as a
percentage in the JSON payload, so you only want to get notified when this value is lower
than 20. This is easily done by adding the following functions to your funcs.py:

Data mapping functions

def zigbee2mqtt_device_name(topic, data, srv=None):
 """Return the last part of the MQTT topic name."""
 return dict(name=topic.split("/")[-1])

Filter functions

def filter_xiaomi_aqara_battery_low(topic, message):
 """Ignore messages from Xiaomi Aqara when the battery is OK."""
 data = json.loads(message)
 if "battery" in data:
 return int(data["battery"]) > 20

 return True

The function zigbee2mqtt_device_name is a data mapping function that adds the last part
of the MQTT topic as a new item in the processed dictionary, so the device name is more
easily accessible in the formatter.

The second function is a filter that returns True when the battery value is higher than 20
and False otherwise.

Now add the following configuration to your mqttwarn.ini:

[zigbee2mqtt-battery]
targets = smtp:koen
topic = zigbee2mqtt/+
alldata = zigbee2mqtt_device_name()
filter = filter_xiaomi_aqara_battery_low()
title = {name} battery low
format = {name} has a low battery: {battery}%

This shows an alternative way to name your configuration settings. I have used the more

Chapter 11 ● Notifications

● 255

descriptive zigbee2mqtt-battery here, which is used as a name instead of an MQTT topic.
The topic is specified then in the topic = line. In the alldata = line you specify the
function to execute to enrich the message dictionary. In the filter = line you specify
which filter is executed on each message. If the filter returns True (in this case when the
battery value is above 20) the message is discarded. Only if the filter returns False, the
target is called. Thanks to the title and format strings, you get the message that the battery
is low, with the correct name and battery value included.

Just restart the container and you have a low battery notification for your devices.

Note:
If your filter or data mapper function doesn't seem to work, have a look at the output of
docker logs -f mqttwarn. Chances are that you have some syntax error, and the logs
will show you Python's stack trace.

This is just one example of a target and some easy examples for filtering and transforming
messages, but I hope it's clear that mqttwarn is a very flexible way to plug other notification
systems into the MQTT based home automation system of this book.

11.5 • Summary and further exploration

Emails are still one of the best ways to send notifications, at least when you don't have to
receive the information immediately. In this chapter, you learned how to let the Raspberry
Pi OS system services email you, for instance when there are new updates. You also saw a
way to let the various Docker containers of your home automation system send you emails.

At the other end of the spectrum, there's the Gotify server that sends push notifications to
your Android phone. Every system that can do HTTP requests, including Home Assistant,
Node-RED, or your Python code, can notify you instantly with Gotify.

There are still a lot of other notification systems, but actually, you've been using one from
the beginning of this book: MQTT. Thanks to mqttwarn you can plug other notification
systems into the MQTT based approach of home automation used in this book. If you want
to try other notification services with mqttwarn, such as WebSocket or HTTP, read the
documentation on mqttwarn's GitHub repository. Moreover, thanks to the possibility to add
custom functions, you have the full power of Python at your disposal.

Another interesting option to explore for your home automation system is an SMS gateway,
so it can send SMS messages to your phone. This requires a cellular modem with SIM card
and some SMS software such as Gammu (https://wammu.eu).

https://wammu.eu

Control Your Home with Raspberry Pi

● 256

Chapter 12 • Voice control

Voice control is the holy grail of home automation. Science fiction series and movies have
accustomed us to spaceships or homes we can talk to. In recent years, voice control at
home has become possible thanks to the so-called 'smart speakers' of Google and Amazon.

However, if you think about it, there's nothing smart about these smart speakers: the
intelligence is almost completely in the cloud, where your voice recordings are processed
and translated into sentences and meaning. This is a complex and very CPU and data-
intensive task, and companies like Google and Amazon make us believe that you need
the cloud to be able to use voice control. So at first sight it seems that voice control is
completely out of reach of a self-hosted home automation system.

Luckily that's not completely true. Granted, you can't have the same performance as those
general-purpose smart speakers such as the Google Home and Amazon Echo in a self-
hosted system, let alone a Raspberry Pi. But you can have a reasonably working voice
control system, even on a Raspberry Pi, if you limit its purpose to some specific domain, for
instance, opening and closing your blinds, turning on and off your lights, asking what time
it is, and a couple of other specific tasks.

There's a lot of open-source software that implements parts of voice control, but it's a
challenge to bring all these parts together and create a working and user-friendly voice
control system. A very promising piece of software that is doing exactly this is Rhasspy
(https://rhasspy.readthedocs.io), developed by Michael Hansen.1

Rhasspy is a voice assistant that works completely self-hosted, is entirely open-source,
supports many languages, and works well with Home Assistant and Node-RED. It even runs
on the Raspberry Pi. The downside is that you have to train it for your specific use-case.
In this chapter, I show you how to create a voice-controlled home automation system on
your Raspberry Pi with Rhasspy.

Warning:
This is the most cutting-edge chapter in this book, and Rhasspy's development is
progressing very fast. So some examples in this chapter will not work. Please consult
Rhasspy's online documentation when you're stuck.

12.1 • A basic Rhasspy setup

In this section, you set up Rhasspy for voice control on a Raspberry Pi with a microphone
and speakers. You can do this on a dedicated Raspberry Pi or your main home automation
gateway, as long as it's in a location where you can talk to it and hear its output. Later in
this chapter, I show you how you can give Rhasspy a remote 'mouth and ears' by using a
second Raspberry Pi.

1	 Disclaimer: After I started writing this book, I became involved in Rhasspy's
development.

Chapter 12 ● Voice control

● 257

12.1.1 • Hardware requirements

Rhasspy needs at least a Raspberry Pi 2, but the newer the model the better, especially
when you're using more services and a more complex language model. I recommend a
Raspberry Pi 4. You also need to connect a microphone and speaker.

For this book, I have tested Rhasspy with the ReSpeaker 2 Mics pHAT from Seeed on a
Raspberry Pi 3B and 4B. The pHAT is attached to the Raspberry Pi's GPIO header. You can
connect a speaker to the 3.5 mm audio jack or the JST 2.0 connector. I tested this setup
with an 8 Ohm 1 W 3" speaker connected to the JST 2 connector of the ReSpeaker. Other
Seeed audio devices should work too.

12.1.2 • Configure audio hardware

The ReSpeaker 2 Mics pHAT requires you to install a driver:2

git clone https://github.com/respeaker/seeed-voicecard
cd seeed-voicecard
sudo ./install.sh

2	 Don't forget to update this regularly with a git pull command in the seeed-voicecard
directory and a reinstall of the driver. See Chapter 3.

Figure 12.1 A Raspberry Pi with the ReSpeaker 2 Mics pHAT and a speaker (not shown here) is all you need to
add voice control to your home automation system.

Control Your Home with Raspberry Pi

● 258

Now to make it easier later to find the right audio output device in Rhasspy's settings, I
recommend to disable the Raspberry Pi's on-board audio device:

sudo nano /etc/modprobe.d/blacklist-snd_bcm2835.conf

List the module to blacklist in this file:

blacklist snd_bcm2835

And then reboot your Raspberry Pi:

Figure 12.2 The ReSpeaker 2 Mics pHAT requires you to install a driver.

Chapter 12 ● Voice control

● 259

sudo reboot

After the reboot, check the available audio input devices with:

arecord -l

This should show the ReSpeaker device.

Now also check the available audio output devices:

aplay -l

This should only show the ReSpeaker device because the on-board audio device has been
disabled.

You can check whether your audio hardware has been configured correctly by recording a
short 5-second audio clip:

arecord -f S16_LE -d 5 test.wav

Then say something. After five seconds, the recording is saved in the file test.wav. Now
play this on the Raspberry Pi's speaker with:

aplay test.wav

If you hear your recording now, your audio setup is ready. Make sure that this works before
you install Rhasspy. It makes debugging problems much easier.

Figure 12.3 After disabling the Raspberry Pi's on-board audio, the ReSpeaker is the only recognized audio
device.

Control Your Home with Raspberry Pi

● 260

12.1.3 • Installing Rhasspy

Rhasspy can be installed in a Docker container, in a Python virtual environment, or as a
Hass.io add-on for Home Assistant. In this chapter, I show you the Docker way.

First, create a directory for the Rhasspy container's configuration and data:

mkdir /home/pi/containers/rhasspy

Update your docker-compose.yml file with:

version: '3.7'

services:
 mosquitto:
 # mosquitto config
 rhasspy:
 image: rhasspy/rhasspy
 container_name: rhasspy
 restart: always
 volumes:
 - ./containers/rhasspy/profiles:/profiles
 - ./containers/certificates:/etc/ssl/private:ro
 ports:
 - 12101:12101
 devices:
 - /dev/snd:/dev/snd
 command: --user-profiles /profiles --profile en --certfile /etc/ssl/
private/cert.pem --keyfile /etc/ssl/private/key.pem

Make sure to specify the correct file names for your certificate and key files.

Then create the container with:

docker-compose up -d

This will take a while: the container is more than 400 MB..

When Rhasspy has been started, open its web interface in your web browser by surfing to
https://HOSTNAME:12101/ with HOSTNAME the hostname of your Raspberry Pi.

Chapter 12 ● Voice control

● 261

12.1.4 • Rhasspy's settings

The page you're looking at now is the Test page. For now, you can't test anything. The icons
on the left bar lead you to other pages, and an alternative way to navigate to other pages is
the menu at the top, which shows Test. If you click on it, you get a menu with the names
of other pages.

Note:
The nice thing about Rhasspy is that it has documentation embedded in its web interface.
As long as you haven't configured any Rhasspy services yet, you're greeted by an invitation
to have a look at the Getting Started Guide. The settings of the various services also have
links to the relevant documentation parts.

Let's go to the Settings page first. At the topic, you see a siteId (which has the value
default). This site ID is the name of your Rhasspy device. If you're only using one device
with Rhasspy, this name doesn't matter.3

Then comes a list of services. As you see, every service there is disabled, except MQTT
which is Internal. That's because Rhasspy by default uses an internal MQTT server that's
only available inside its Docker container. However, if you select External from the drop-
down list, the MQTT box becomes green and if you click on it, you can set the host,
port, username, and password of your MQTT broker. If you're running Rhasspy from the
same Docker Compose file as the mosquitto container, you can enter mosquitto as the
hostname, 1883 as the port number, and the username and password you configured for
mosquitto.

3	 Later you can add satellites, which are other devices that are used for only audio input
and/or output and a wake word. They offload the rest of the work to your central Rhasspy
device. This makes it possible to put some less powerful Raspberry Pi models around the house
that let you talk to the same Rhasspy server everywhere.

Figure 12.4 Let Rhasspy use the MQTT broker of your home automation gateway.

Control Your Home with Raspberry Pi

● 262

To be able to do something with Rhasspy, you have to enable a lot of these services and
choose an implementation.

Note:
Rhasspy is more a voice assistant toolkit than monolithic program. For almost any of
its services you have the choice between multiple implementations. In this chapter, I
make a choice for each of its services, but you can make your own choice after you have
experimented with Rhasspy and you have noticed that you have other needs. Rhasspy's
architecture is extremely flexible.

12.1.5 • Configuring audio

Let's first configure the microphone that Rhasspy listens to. Select PyAudio next to Audio
Recording, and click on Save Settings below to apply the settings. This will restart
Rhasspy.

Afterwards, click on Audio Recording to open the audio input settings. If you click on
Refresh, the input device list becomes populated with your audio input devices. For the
Seeed ReSpeaker 2 Mics pHAT, you should see seeed-2mic-voicecard in the list. Select it
and click again on Save Settings.

Next, you have to choose the device for Rhasspy's audio playback. Go to Audio Playing and
choose aplay. Save the settings and click on the Refresh button to refresh the list of available
devices and choose your output device. When I selected Direct hardware device without
any conversions, the device text box is changed to hw:CARD=seeed2micvoicec,DEV=0.
Now save your settings.

Figure 12.5 Choose your device for audio recording.

Chapter 12 ● Voice control

● 263

12.1.6 • Configuring the wake word

With the audio settings configured now, it's time to enable the wake word. This is the word
that you use to activate Rhasspy. Choose Mycroft Precise in the drop-down list next to
Wake Word and save the settings.

After this, click on Wake Word to return to Rhasspy's wake word settings and click on
Refresh. You can now choose a wake word from the list of available keywords. The default
one is "Hey Mycroft", but some of the other choices are "Sheila", "Athena" and "Marvin".
Save the settings after changing the wake word.

Note:
If the recognition rate of these universal wake words is not enough for you or if you want
to use another wake word, you have to train your own wake word, put the resulting
model file in Rhasspy's profile directory and refer to it in the wake word settings. Mycroft
Precise has some instructions about training a wake word on their wiki: https://github.
com/MycroftAI/mycroft-precise/wiki/Training-your-own-wake-word. At the moment this
is quite laborious. In the future, Rhasspy will have the training process integrated into its
web interface. Another option is to use Porcupine as the wake word engine in Rhasspy, but
it has some limits on custom wake words. You could also try Raven, Rhasspy's own wake
word system, which is currently in development.

12.1.7 • Configuring text to speech

When Rhasspy replies to you, it has to convert text to speech. Choose Espeak next to

Figure 12.6 Choose your wake word for your voice assistant.

https://github.com/MycroftAI/mycroft-precise/wiki/Training-your-own-wake-word
https://github.com/MycroftAI/mycroft-precise/wiki/Training-your-own-wake-word

Control Your Home with Raspberry Pi

● 264

Text to Speech and click Save Settings. After this, you can find a list of available voices
in the text to speech settings (don't forget to click on Refresh first). If you change the
default one, click on Save Settings again.

You can easily test the text to speech. Return to the Test page, enter a sentence next to
the Speak button, and click on the button. You should hear the text you have entered
spoken on your Raspberry Pi's speaker.

12.1.8 • Configuring speech to text

For Rhasspy to be able to understand you, it needs to have a speech to text engine
running. Choose Kaldi next to Speech to Text and then click Save Settings.

After Rhasspy has restarted, it warns you that it has to download some files. This is
because the speech to text engine uses an acoustic model and base dictionary. Click on
Download. After all the files have downloaded, your profile is trained and on the bottom,
you get a message that training has been completed.

Figure 12.7 You can change Rhasspy's voice to your desired accent.

Chapter 12 ● Voice control

● 265

12.1.9 • Configuring intent recognition

Until now you have only been preoccupied with the audio part of Rhasspy: audio in and
out, wake word recognition, speech recognition, and speech synthesis. However, you don't
only want Rhasspy to know what text is equivalent to the words you spoke, you also want
Rhasspy to 'understand' your intent. That's what intent recognition is about.

In Rhasspy's settings, choose Fsticuffs next to Intent Recognition and click on Save
Settings. Now Rhasspy can understand your voice commands if they have been defined
before. By default, Rhasspy ships with a file with example sentences. You can find it on
the Sentences page. For instance, you see an intent GetTime with the example sentences
"what time is it" and "tell me the time".

Figure 12.8 Rhasspy needs to download some profile files for Kaldi to work.

Control Your Home with Raspberry Pi

● 266

12.1.10 • Configuring dialogue management

There's one final component you should enable: Dialogue Management. This component
manages sessions initiated by a wake word detection or started programmatically by
another program. Choose Rhasspy for the dialogue manager.

12.1.11 • Testing your Rhasspy setup

After all these settings, it's time for a test.4 So go to the Test page, type one of the
sentences from the Sentences page in the text field that says "Text to recognize" and click
on the Recognize button next to it. The page should show GetTime in a red box below the
button. And when you click on the Show JSON button, you see a lot of other information
about the intent recognition, such as the recognized tokens (words) and the time needed
to recognize the intent.

Intents can also have slots. For instance, if you type "turn on the living room lamp" and
click on Recognize, you get the intent ChangeLightState with two slots shown in blue:
name with the value "living room lamp" and state with the value on. If you now click on
Show JSON, you also get information about the slots.

If this works, try speaking instead of typing your commands. Click on the Wake Up button
and then speak your command. Rhasspy will show in the "Text to recognize" field which
text it has understood from your voice. And if it can link the text to one of its configured
intents, you also get the recognized intent.

The final test is waking Rhasspy with your voice instead of the button. Speak your wake
word, and when you hear a feedback sound, speak your command. The Test page should
show your recognized text and intent.

4	 Note that I have kept the intent handling component disabled. I'll show later in this
chapter how you handle intents using Node-RED or by subscribing to MQTT topics published
by Rhasspy. However, you can also define a Home Assistant installation or a HTTP endpoint to
handle intents, and even a local program that is called for each intent.

Chapter 12 ● Voice control

● 267

If this works: congratulations, you have now an open-source voice assistant running on
your Raspberry Pi that works completely offline.

Note:
Rhasspy may have trouble recognizing your commands or your wake word. There's still
a lot of tuning you can do and you can use better performing components than the ones
I chose in this chapter. A lot of Rhasspy's performance depends on the quality of your
audio input and how far you are from the microphone. Rhasspy's documentation has all
the information you need and you can ask for help on the forum (https://community.
rhasspy.org).

12.2 • A Rhasspy base with satellites

Until now you've been running Rhasspy on just one Raspberry Pi, but what if you want voice
control in multiple rooms in your house? That's were a base/satellite (also called master/
satellite) setup comes in handy. You run a satellite device in each room and all these
satellites communicate with the base.

Figure 12.9 If you have configured everything correctly, Rhasspy recognizes that you gave the command to
turn on the living room lamp.

https://community.rhasspy.org
https://community.rhasspy.org

Control Your Home with Raspberry Pi

● 268

So instead of running all the services you have configured in the previous section, the base
only runs the following Rhasspy services:

•	 Speech to text
•	 Text to speech
•	 Intent recognition
•	 Dialogue management
•	 Intent handling (optionally)

The satellites each run the following Rhasspy services:

•	 Audio recording
•	 Audio playing
•	 Wake word

Rhasspy supports two ways of communicating between the base and its satellites: using an
MQTT API or a HTTP API. The MQTT API is the most flexible one, and it's a good fit for the
approach in this book, so that's what I'll explain in this section.

12.2.1 • Hardware requirements

The services on the base can be quite CPU intensive if you add complex intents, so it's
recommended to use a Raspberry Pi 4 as a base.5 This Raspberry Pi doesn't need any audio
devices for recording and playback, as you'll use the satellites for this purpose. So you can
delete the following lines in your docker-compose.yml on the base:

devices:
 - /dev/snd:/dev/snd

Note:
It's perfectly possible to still enable the wake word, audio recording, and audio playback
services on your base if you have connected audio devices.

For the satellites, the hardware requirements are much more modest. The only thing the
satellites are doing is listening to the audio recording of a microphone, detecting a wake
word, streaming audio over the network to the base, receiving audio back from the base,
and playing it on the speaker. A Raspberry Pi Zero W or any of the older Raspberry Pi
models should be up to the task, depending on the wake word component you run. You
need supported audio hardware on the satellites, such as the ReSpeaker 2 Mics pHAT and
a speaker.

5	 If your intents are very complex or if you want to use alternative Rhasspy compo-
nents that are better but slower, even a Raspberry Pi 4 can't handle the task. You should use
an Intel NUC (Next Unit of Computing) or server with Linux for the base then.

Chapter 12 ● Voice control

● 269

12.2.2 • Setting up the satellites

On each satellite device, make sure that you configure and test the audio hardware and
then install Rhasspy as explained in the previous section.

Go to the Settings page, and enter a unique name for the siteId. This should probably
be a description of the location of your satellite, such as kitchen, livingroom, or office.

Then set MQTT to External and change the host, port, username, and password to the
relevant settings of your MQTT broker.

Configure Audio Recording, Wake Word, and Audio Playing as in the previous section.
Leave Intent Handling and Dialogue Management disabled.

With these settings, your satellite can record and play audio and detect its wake word,
but it doesn't do anything with it. So the next step is to set Speech to Text, Intent
Recognition and Text to Speech to Hermes MQTT. This makes Rhasspy on the satellite
use MQTT messages with the Hermes protocol for these services.

Figure 12.10 A Raspberry Pi Zero W with the ReSpeaker 2 Mics pHAT and a speaker is the perfect satellite
device for Rhasspy.

Control Your Home with Raspberry Pi

● 270

After all these changes, click on Save Settings. Now repeat the same process on all your
other satellites, but make sure that each satellite has a different site ID.

12.2.3 • Setting up the base

After you have set up your satellites, it's time to configure the base system. Go to the
Settings page and enter a unique name for the siteId. If you don't use a microphone and
speaker on this base, you don't have to describe the location in its name. Just use base or
master then.

Then set MQTT to External and change the host, port, username, and password to the
relevant settings of your MQTT broker. If you're running your MQTT broker on the same
Raspberry Pi in the mosquitto container, you can just use mosquitto as the hostname.

Now leave Audio Recording, Wake Word and Audio Playing disabled, as these are
handled by your satellites. You can leave Intent Handling also disabled for now; I'll show
another way to handle intents later in this chapter.

Figure 12.11 The satellite offloads speech to text, intent recognition, and text to speech to the base using the
Hermes MQTT protocol.

Chapter 12 ● Voice control

● 271

The next step is to enable your Speech to Text, Intent Recognition, and Text to Speech
services. Configure them like in the previous section. Also set Dialogue Management to
Rhasspy. Now for each of these services, add the siteIds of all your satellites in the Satellite
siteIds text field, separated by a comma, for instance, livingroom,kitchen,office.

After all these changes, click on Save Settings. After Rhasspy has restarted on your base,
your setup is ready for a test.

The dialogue manager makes the base listen and respond to requests for each satellite. It
gets notified on wake word detections on each satellite, it engages the speech recognition
and intent recognition, and it can generate audio with the speech synthesis and relay it
back to the right satellite to play it on its speakers, all using MQTT messages.

12.2.4 • Testing your base and satellites

Wake up one of your satellites with its wake word. Then speak your command, such as
"turn on the living room lamp". The audio stream will be sent from the satellite to your
base, where it's transcribed thanks to the speech to text engine. If all goes well, the intent
is recognized, which you'll see on the Test page.

Figure 12.12 The base doesn't need audio and wake word services.

Control Your Home with Raspberry Pi

● 272

You can also check this with the Mosquitto client on the command line:

mosquitto_sub -t 'hermes/nlu/#' -v

Now the text recognized in your voice is sent to the hermes/nlu/query topic, with a JSON
dictionary as its payload, for instance:

{
 "input": "turn the bedroom light on",
 "intentFilter": null,
 "id": "",
 "siteId": "livingroom",
 "sessionId": "livingroom-default-171e8db6-e5d7-4f8c-ac4e-c67dac27377c"
 }

The intent recognition service uses this as its input, and if it recognizes intent in this text,
it sends a JSON payload to the hermes/nlu/intentParsed topic, such as:

{
 "input": "turn the bedroom light on",
 "intent": {
 "intentName": "ChangeLightState",
 "confidenceScore": 1
 },
 "slots": [
 {
 "entity": "name",
 "slotName": "name",
 "confidence": 1,
 "raw_value": "bedroom light",
 "value": "bedroom light",
 "range": {
 "start": 9,
 "end": 22,
 "raw_start": 9,
 "raw_end": 22
 }
 },
 {
 "entity": "name",
 "slotName": "name",

Chapter 12 ● Voice control

● 273

 "confidence": 1,
 "raw_value": "on",
 "value": "on",
 "range": {
 "start": 23,
 "end": 25,
 "raw_start": 23,
 "raw_end": 25
 }
 }
],
 "id": "",
 "siteId": "livingroom",
 "sessionId": "livingroom-default-171e8db6-e5d7-4f8c-ac4e-c67dac27377c"
}

You can see a lot of information here: the text input, the recognized intent
(ChangeLightState), the slots and their values, and even the siteId of the satellite where
you spoke your command.

Note:
There's a lot more data sent around on MQTT. Have a look at the complete reference of
the MQTT API (https://rhasspy-hermes.readthedocs.io/en/latest/api.html).

12.2.5 • Enable UDP audio streaming

By default, satellites continuously stream recorded audio over MQTT. This can strain your
network if you have a lot of satellites, and it's also not nice from a privacy point of view.
You can check this by listening to the MQTT topics hermes/audioServer/#. You'll see
a continuous stream of garbled data. These are the RAW audio recordings from the
microphones of your satellites.

That's why Rhasspy has another option: let the audio recorder on a satellite stream audio
locally over a UDP port to the wake word engine on the same machine, and only start
streaming audio over MQTT to the rest of the network once a wake word is detected and
until your command is finished.

To use this option, open the Settings page on each satellite, open Audio Recording, and
enter a port number in the UDP Audio (Output) port field, for example 12202. You can
keep the host field empty. Now enter the same port number in the UDP Audio (Input)
field in the Wake Word section and save your settings.

Control Your Home with Raspberry Pi

● 274

After this change, you should still be able to test Rhasspy successfully, but audio is only
streamed from your satellite to your base when it's listening for a command after it has
detected its wake word.

12.3 • Train your sentences

By default, Rhasspy has defined a couple of intents, each with their example sentences.
You can find these on the Sentences page, formatted as an ini file. The default file looks
like this:

Figure 12.13 With UDP audio streaming the audio recorder doesn't continuously stream audio data over
MQTT.

Chapter 12 ● Voice control

● 275

[GetTime]
what time is it
tell me the time

[GetTemperature]
whats the temperature
how (hot | cold) is it

[GetGarageState]
is the garage door (open | closed)

[ChangeLightState]
light_name = ((living room lamp | garage light) {name}) | <ChangeLightColor.
light_name>
light_state = (on | off) {state}

turn <light_state> [the] <light_name>
turn [the] <light_name> <light_state>

[ChangeLightColor]
light_name = (bedroom light) {name}
color = (red | green | blue) {color}

set [the] <light_name> [to] <color>
make [the] <light_name> <color>

Each intent has a section in the ini file. For instance, the first section in the file is designated
by the [GetTime] section header, which lists all example sentences that will be assigned
to the GetTime intent. So if Rhasspy hears you say "what time is it" or "tell me the time",
it will recognize the GetTime intent.

Note:
Don't use non-word characters, such as punctuation marks. Even question marks are
ignored. Capitalization is ignored too.

Every time you change something in the text field with your intents, you should click the
Save Sentences button. This also re-trains your language profile, so Rhasspy recognizes
your new sentences.

Control Your Home with Raspberry Pi

● 276

Note:
If you add words to your sentences that Rhasspy doesn't know how to pronounce, this
will be shown on the Words page. You have to add the phonetic pronunciation for every
unknown word there.

You can also add new sentences files by clicking on New Sentences File and choosing a
file name. You can select the sentences file you want to edit. This way you don't have to
add all your intents in one file.

12.3.1 • Rhasspy's template language

The example of the GetTime intent is rather basic: you just add some sentences and when
you say one of these sentences verbatim, the corresponding intent is recognized. However,
Rhasspy can do a lot more: it has a template language so not every sentence for an intent
has to be spelled out verbatim.

You can have alternatives, such as in the sentence how (hot | cold) is it. This sentence
template matches both sentences "how hot is it" and "how cold is it". You can also add
optional words, such as in turn [the] light on, which matches both sentences "turn the
light on" and "turn light on".

The more complex your intents become, the more you want to reuse parts of your sentence
templates. For instance, let's say you have an intent to set the light to a color:

[SetLightColor]
set the light to (red | green | blue)

Now you want to add an intent to ask what the current color of the light is:

[GetLightColor]
is the light (red | green | blue)

This works, but now your colors are duplicated in two intents. And if you want to support a
new color, you have to change the colors in both places.

That's where rules come into play. You define a rule in one of the intents, and in the
sentence, you refer to the name of this rule, which is substituted by the colors. Even more,
you can also refer to this rule in other intents. The result is that you don't have to duplicate
all these colors anymore:

Chapter 12 ● Voice control

● 277

[SetLightColor]
colors = (red | green | blue)
set the light to <colors>

[GetLightColor]
is the light <SetLightColor.colors>

Now if you add a color in the rule colors = (red | green | blue) of the SetLightColor
intent and retrain Rhasspy, the new color is automatically recognized in the GetLightColor
intent too.

There's a lot more possible with Rhasspy's template language, but you can go a long way
with these basics. Consult the online documentation for the full syntax.

12.3.2 • Slots

Colors can easily be added as alternatives in a rule, but if a list of alternatives becomes too
long, it's better to use slots for it. Go to the page Slots and then click the New Slot button
and choose a slot name, for instance, rooms.

Now you can add a room on each line in the text field, for example:

bathroom
(living room):living_room
office
kitchen
toilet
bedroom

Note the line (living room):living_room. This will substitute "living room" by "living_
room" in the rooms slot. You can use this to replace a user-friendly name by a name more
suited for one of the programs that will process your intents.

So how do you use these slots? If you have saved the slot as rooms, you can refer to it in
your sentence templates as $rooms, for instance:

[TurnOnLight]
turn the ($rooms){room} light on

After retraining Rhasspy, the command "turn the living room light on" will match the
TurnOnLight intent, because "living room" is in the rooms slot.

Control Your Home with Raspberry Pi

● 278

Moreover, if you look at the JSON payload of the intent, you see that the room slot has the
value living_room. The slot is called room because the {room} tag has been attached to
the ($rooms) slot in the example sentence. And the value is living_room because in the
slot list living room is replaced by living_room. This is just one example of the very
powerful syntax of Rhasspy's templates.

12.4 • Intent handling

Until now Rhasspy just showed what intent it has recognized, but it doesn't do anything
with it. That's the last step in your voice control system: intent handling.

Maybe you remember that you have kept the Intent Handling component disabled in
Rhasspy's settings. If you click on the dropdown list, you'll see that Rhasspy can use Home
Assistant, a remote HTTP server or a local command to do intent handling. However, you
don't need to do this, you don't even have to enable intent handling, because recognized
intents are already sent as MQTT messages to your MQTT broker using the Hermes protocol,
and available as events on a WebSocket connection. In this section, I show you both ways
to handle intents.

12.4.1 • Intent handling with MQTT

You can easily create your own intent handler, for instance with a Python program using the
Paho MQTT library. See Chapter 4 for some background. Here I show you a simple example
of a Python intent handler for Rhasspy, using the room slots and TurnOnLight intent I
defined in the previous section.

"""Rhasspy intent handler for the TurnOnLight intent.

Copyright (C) 2020 Koen Vervloesem

License: MIT
"""
import json

import paho.mqtt.client as mqtt

MQTT_HOST = "pi-red"
MQTT_PORT = 1883
MQTT_CLIENT_ID = "Lights"
MQTT_USERNAME = "home"
MQTT_PASSWORD = "PASSWORD"

INTENT_LIGHT = "hermes/intent/TurnOnLight"
INTENT_NOT_RECOGNIZED = "hermes/nlu/intentNotRecognized"

Chapter 12 ● Voice control

● 279

TTS_SAY = "hermes/tts/say"

def on_connect(client, userdata, flags, rc):
 """Subscribe to the right MQTT topics after connecting."""
 print("Connected with result code " + str(rc))
 client.subscribe(INTENT_LIGHT)
 client.subscribe(INTENT_NOT_RECOGNIZED)

def on_message(client, userdata, msg):
 """Called each time an intent is recognized (or not)."""
 nlu_payload = json.loads(msg.payload)
 if msg.topic == INTENT_NOT_RECOGNIZED:
 sentence = "Unrecognized command."
 print("Recognition failure")
 else:
 print("Got intent:", nlu_payload["intent"]["intentName"])
 room_slot = nlu_payload["slots"][0]
 room_name = room_slot["raw_value"]
 sentence = "Turning on {} light.".format(room_name)

 site_id = nlu_payload["siteId"]
 client.publish(TTS_SAY, json.dumps({"text": sentence, "siteId": site_
id}))

if __name__ == "__main__":
 # Initialize MQTT connection
 mqtt_client = mqtt.Client(MQTT_CLIENT_ID)
 mqtt_client.on_connect = on_connect
 mqtt_client.on_message = on_message
 mqtt_client.username_pw_set(MQTT_USERNAME, MQTT_PASSWORD)
 mqtt_client.connect(MQTT_HOST, MQTT_PORT)

 # Start event loop
 mqtt_client.loop_forever()

The basic structure of this program is the same as in Chapter 4, with on_connect and
on_message callbacks.

The on_connect function is called when connecting to the MQTT broker. The program
subscribes then to two MQTT topics: one for the intent TurnOnLight and one that Rhasspy
publishes to when there's no intent recognized.

Control Your Home with Raspberry Pi

● 280

The on_message function is where the magic happens. This function is called when Rhasspy
publishes to one of the topics this program has subscribed to. If the intent is recognized, its
JSON payload is decoded, and some information is extracted, such as the intent name and
the raw value of the room slot.6

At the end of the function, a reply is published to the hermes/tts/say topic. This is a
JSON object with two elements: the text to say and the siteId where Rhasspy has to say
the text. This siteId can be extracted from the original intent.7

If you run this Python program in a virtual environment with paho-mqtt installed and
then say "turn the living room light on", Rhasspy recognizes the TurnOnLight intent and
publishes it on MQTT. The program receives the intent in an MQTT message, extracts the
slot name, and replies that it turns that light on.

Note:
Replying to your command is the only thing this Python program does. I'll leave it as an
exercise for you to expand upon and let the program turn your living room light on. With
the knowledge of the previous chapters, it should be an easy task to add this.

12.4.2 • Intent handling with AppDaemon and MQTT

The Python script in the previous subsection is a simple example of intent handling, but if
you want to have multiple Python scripts handling various intents, they all have to define the
MQTT host and port, username and password, initialize the MQTT connection and start the
event loop. As you have seen in Chapter 10, a better solution, in that case, is AppDaemon.

Let's see how an AppDaemon app for Rhasspy would look like. First, create a directory for
the app:

mkdir /home/pi/containers/appdaemon/apps/whatsthetime

Then the app's code looks like this:

6	 The raw value of a slot (raw_value) is the value as it's spoken in the recognized
sentence, for instance "living room". The value of a slot (value) is the same as the raw value
except when it's substituted by a rule. In this example the value would be "living_room".
7	 Make it a habit to always add punctuation to the sentences you send to the text to
speech engine, because some TTS systems have a problem without it. That's why I added the
period at the end of the sentences. I haven't tested this, but Michael Hansen warned me that
without this period the voice that MaryTTS (http://mary.dfki.de) generates sounds like it's hav-
ing a stroke.

http://mary.dfki.de

Chapter 12 ● Voice control

● 281

"""Tell the time when someone asks for it using Rhasspy's Hermes API.

Copyright (C) 2020 Koen Vervloesem

License: MIT
"""
import json

import mqttapi as mqtt

MQTT_MSG = "MQTT_MESSAGE"
INTENT_GETTIME = "hermes/intent/GetTime"
TTS_SAY = "hermes/tts/say"
TIME_FORMAT = "%H %M"

class WhatsTheTime(mqtt.Mqtt):
 """Rhasspy app that tells the time."""

 def initialize(self):
 """Initialize the app by subscribing to the right intent."""
 self.set_namespace("mqtt")
 self.listen_event(self.on_time_request, event=MQTT_MSG, topic=INTENT_
GETTIME)
 self.log("What's The Time app initialized")

 def on_time_request(self, event_name, data, kwargs):
 """Tell the time."""
 nlu_payload = json.loads(data["payload"])
 site_id = nlu_payload["siteId"]
 now = self.datetime().strftime(TIME_FORMAT)
 sentence = f"It's {now}."
 self.mqtt_publish(TTS_SAY, json.dumps({"text": sentence, "siteId":
site_id}))

You see that there's much less boilerplate code. On initialization, the app subscribes to the
hermes/intent/GetTime MQTT topic. When Rhasspy recognizes the GetTime intent in your
speech, a message is sent to this MQTT topic and the on_time_request method is called.
The MQTT message's payload is decoded as a JSON dictionary, and the siteId is extracted
from the MQTT message.

Then the current time is put in a sentence, and this sentence is put in a JSON dictionary
together with the right siteId. The result is published to the hermes/tts/say topic, and
Rhasspy tells you the time.

Control Your Home with Raspberry Pi

● 282

Save this file as whatsthetime.py in the apps/whatsthetime directory of AppDaemon,
and also create a file called whatsthetime.yaml in the same directory. Give this file the
following content:

whatsthetime:
 module: whatsthetime
 class: WhatsTheTime

After you have saved both files, AppDaemon automatically picks up the changes and loads
your app. If you now ask Rhasspy "What's the time", it will answer you with the current
time.

12.4.3 • Intent handling with WebSocket in Node-RED

If you prefer a graphical way to program your intent handling, Node-RED is the perfect
solution. In Chapter 10 I already showed you how you could subscribe to MQTT topics.
Sending MQTT messages is as straightforward. So you could perfectly create a Node-RED
flow to handle Rhasspy's intents using MQTT.

However, just to illustrate Rhasspy's versatility and the power and simplicity of its
WebSocket API, I show you here how to create a Node-RED flow talking to Rhasspy using
the WebSocket protocol.

Create a new flow in Node-RED by clicking on the + icon at the top right. Double-click on
the name of the flow to edit it and call it Rhasspy.

Pick a websocket in node from the network category and drag it to the canvas. Double-
click on it, leave the type on Listen on, and click on the pencil icon next to Add new
websocket-listener… for the Path field. Enter ws://rhasspy:12101/api/events/
intent in the Path field: this is the WebSocket URL for Rhasspy's API.

Note:
The hostname rhasspy refers to the name of the container that is running Rhasspy. If
Node-RED and Rhasspy are running on different machines, you need to enter another
hostname here.

Change Send/Receive from payload to entire message and click Add to add this
WebSocket listener. Then you're back in the settings of your websocket in node. Give it a
name (for instance Rhasspy) and click Done.

Chapter 12 ● Voice control

● 283

Drag a debug node to the canvas and link its input to the output of the websocket in node.
Deploy your flow.

Now click on the hamburger menu at the top right and then choose View and then Debug
messages. If you now talk to Rhasspy and it recognizes an intent, Node-RED shows the
intent as a JSON object in the debug panel at the right.

Let's now add some action to the flow. Drag a switch node (from the function category) to
the canvas and link it to the output of the websocket in node. Double-click on the switch
node and change the Property field to msg.intent.name. Leave the rule with == empty:
this way you check for an unrecognized intent (because the intent then has an empty
name). Click Done to save the node.

Then add a change node (also from the function category) and link it to the switch node's
output. Double-click on the change node and set the msg.payload to "What did you say?".
Give the node a descriptive name and click on Done.

Then put a http request (from network) node on the canvas and link it to the change
node. Double-click on the node, change the Method to POST, the URL to http://
rhasspy:12101/api/text-to-speech, and give the node a name. If you deploy your flow
now and tell Rhasspy something it doesn't recognize, Node-RED asks you "What did you
say?".

Figure 12.14 Rhasspy publishes the recognized intents as WebSocket events.

Control Your Home with Raspberry Pi

● 284

Now you can easily add other rules to the switch node to reply to other recognized intents.
For instance, to reply to the GetTime intent, double-click on the switch node, click on the
+add button at the bottom to add a rule and then enter GetTime in the field next to the
double equals sign.

Figure 12.15 You can ask Rhasspy to speak a sentence by doing a HTTP POST request.

Chapter 12 ● Voice control

● 285

After you have saved the switch node, a second output appears. Now drag a function node
(in the function category) to the canvas and link its input to this second output. Also, link
the output of this function node to the http request node. Double-click on the function node
to open its properties.

A function node lets you write JavaScript code to do more complex manipulation than is
possible with the standard nodes in Node-RED. And some tasks are possible with Node-RED
nodes but easier in plain JavaScript.

Figure 12.16 Let Node-RED execute other nodes depending on the name of the intent.

Control Your Home with Raspberry Pi

● 286

In this case, I use JavaScript to get the current time and put it in a text to send to Rhasspy's
text to speech engine. The code looks like this:

var timeString = new Date().toLocaleTimeString([],
{
 hour: "2-digit",
 minute: "2-digit",
 hour12: false
})

return {
 payload: "It's " + timeString.replace(":", " ")
}

First I create a time string, such as "09:48", for the current time. Then I return this string,
preceded by "It's " and with the colon replaced by a space for easier pronunciation.

Note:
There's still room for improvement. Rhasspy speaks each number separately, for instance
"zero nine four eight". This is an exercise for the reader.

After saving this function node, deploy your flow. If you ask Rhasspy "What time is it?",
your Node-RED flow reacts by sending the current time to Rhasspy, which tells you the
time.8

The resulting flow looks like this and can be easily extended for other intents:

8	 Make sure to stop the AppDaemon app from the previous subsection that reacts to
the same intent if you test this Node-RED flow.

Figure 12.17 Node-RED lets you react to Rhasspy's intent recognition.

Chapter 12 ● Voice control

● 287

12.5 • Summary and further exploration

As is clear from this chapter, voice control is quite a complex task consisting of various
closely interrelated components. Luckily Rhasspy integrates all these components in one
web interface and lets them talk over MQTT using the Hermes protocol. This makes it easy
to create one "base" system that does the heavy lifting and connect multiple "satellites"
with audio hardware that you talk to.

In contrast to the well-known cloud-based voice assistants, on the Raspberry Pi, it's not
yet possible to recognize unrestricted voice commands. The processing power needed to
understand you as if you are talking to another human is just too much.

However, you probably don't want to talk to your Raspberry Pi as if it's another human: you
want to give it specific commands and ask it for specific information. In this chapter, I have
shown you how you can train your sentences so Rhasspy can recognize intent. And because
these sentences and intents are quite limited in number, your Raspberry Pi can understand
them very well with limited processing requirements.

If there's one chapter where you can keep exploring more and more, it's this one. Voice
technology is a fascinating domain of research, and a lot of open-source projects let you
experiment with them. You can swap one of the components I used in this chapter for
another one to see whether it performs better for you. For instance, I recommend you to
explore MaryTTS (http://mary.dfki.de) as the text to speech engine, because it sounds
much better than the rather robotic voice of eSpeak. Michael Hansen has even created a
Docker image so you can easily run MaryTTS, also on your Raspberry Pi (https://github.
com/synesthesiam/docker-marytts). Try swapping Fsticuffs for Rasa NLU (https://rasa.
com/docs/rasa/nlu/about/) as the intent recognizer. It's also very enjoyable to develop
complex intent handling scripts to make every aspect of your home automation system
controllable by your voice.

Writing apps that can react to Rhasspy's intents is not yet as developer-friendly as it
should be, but that's because the focus of Rhasspy's development has been on the lower-
level parts of the voice technology stack: getting all these components to work together.
There will probably appear some helper libraries and tools to make this easier, with much
less boilerplate code. When I was finishing the book, there were already some tentative
discussions in Rhasspy's forum, and I created my own helper library (https://rhasspy-
hermes-app.readthedocs.io). Have a look there if you want to write the next killer app for
voice control.

If you're not so much interested in a complete voice assistant for your home automation
setup, but if you're looking for a way to quickly add speech recognition to an existing
program or to do an offline batch process of speech/intent data, have a look at another
project of Rhasspy's creator, voice2json (https://voice2json.org). You can use it to launch
programs on your computer, set timers, and so on.

When I asked Michael Hansen to review this chapter, he added:

http://mary.dfki.de
https://github.com/synesthesiam/docker-marytts
https://github.com/synesthesiam/docker-marytts
https://rasa.com/docs/rasa/nlu/about/
https://rasa.com/docs/rasa/nlu/about/
https://rhasspy-hermes-app.readthedocs.io
https://rhasspy-hermes-app.readthedocs.io
https://voice2json.org

Control Your Home with Raspberry Pi

● 288

'Rhasspy's (and voice2json's) profiles come from a curated collection of free models (https://
github.com/synesthesiam/voice2json-profiles/) that were made possible by donating their
data. I think the future of offline voice assistant technology is going to depend on finding
ways to collect large amounts of (donated) data without invading people's privacy like
Google/Amazon/etc. do.'

I agree with him that this will be the next big challenge for self-hosted voice assistants. We
have all the technology, but not the data.

Rhasspy is not the only project that is creating an open-source voice assistant, but it's
currently the most promising one for a self-hosted setup. Another interesting project is
Mycroft AI (https://mycroft.ai).9 However, at the moment it still sends your voice commands
to a cloud service to recognize them.

9	 The wake word system Mycroft Precise that you configured earlier in this chapter is a
part of the Mycroft AI project.

https://github.com/synesthesiam/voice2json-profiles/
https://github.com/synesthesiam/voice2json-profiles/
https://mycroft.ai

Chapter 13 ● Remote access

● 289

Chapter 13 • Remote access

Automating and controlling devices at home is nice, but you probably also want to have
access from remote locations. For instance:

•	 You're at work and there's a storm outside. You want to look at the camera feed from
your garden to check whether there's some damage from fallen trees.

•	 You're at a club with friends and you're staying longer than expected. You want to be
able to close your motorized blinds at home remotely.

Many commercial home automation systems implement this remote access by having
communication from all users relayed by a central server. You log into a web interface
from the company, and on this web interface, you have access to your home automation
gateway at home.

With a self-hosted home automation system like the one that I implement in this book, you
don't need to rely on a third party.1 In this chapter, I'll show you how you can remotely
access your home automation system securely, with the least reliance on other parties as
possible.

Warning:
There's a reason why this chapter is at the end of the book and the chapter about security
is at the beginning. From the moment you give remote access to your home automation
system, it's very important to have a secure setup. If not, malicious people can abuse
your system and make your life very miserable. So before you start implementing the
remote access solutions in this chapter, revisit Chapter 3.

13.1 • Three ways for remote access

There are a couple of ways to implement remote access to your home automation gateway
(or any computer on your local network):

•	 Port forwarding
•	 A localhost tunneling solution
•	 A virtual private network (VPN)

The implementation details are out of scope for this book, but I'll explain the principles
behind these three ways and their strengths and weaknesses.

13.1.1 • Port forwarding

The first way is the one you see advocated the most. It's not always easy to set up in

1	 Except for your internet provider and a (dynamic) DNS provider.

Control Your Home with Raspberry Pi

● 290

practice, but it's conceptually simple and there's a lot of support for it in various software
packages. With the free TLS certificates from Let's Encrypt it has become even easier in
recent years.

In this approach you need to solve three issues:

•	 You need a domain name that always refers to your home's IP address, even if your
internet service provider gives you a dynamic IP address.

•	 You need to forward a port from your router at home to your Raspberry Pi running your
home automation software.

•	 You need a TLS certificate to have a secure connection to your home automation
gateway.

If you have solved these three issues, you can point your web browser from anywhere in
the world to your domain name, after which you get referred to your home automation
gateway's web interface on an encrypted connection.

So let's look at these three issues one by one. Depending on your internet service provider,
your modem at home gets a fixed IP address or a dynamic IP address. In the first case,
you pay for a specific IP address and your modem always gets assigned this IP address as
long as your contract is valid. In the second case, you just pay for a connection and you get
assigned a random IP address, which can change any time.2

Whether it's fixed or dynamic, you're probably not able to remember your IP address, so
you need to be able to address your home using a domain name. That's what DNS (Domain
Name System) is for: it translates domain names to IP addresses.

If you have a fixed IP address at home, using a domain for your home is quite simple: you
buy a domain name at a domain name registrar and you let it point to your IP address. The
only thing you need to do after this is to pay the fee every year.

If you have a dynamic IP address, using a domain for your home becomes a bit more
convoluted. You have to run software on your local network (on your router, server, or
Raspberry Pi) that continuously checks your external IP address. After a change, the
software sends your IP address to a dynamic DNS (DynDNS) service. This is a service where
you have a subscription (there are many free ones) and that assigns you a subdomain of
its domain.3 Every time that your DynDNS software sends an updated IP address to the
DynDNS provider, the subdomain refers to your new IP address. This way you can always
refer to your home with your domain name. There are many options for DynDNS software,
some of them are even included in routers as built-in software or can be easily installed

2	 In practice, dynamic IP addresses don't change that often. But your contract doesn't
guarantee that it stays the same, so you should really treat your IP address as one that could
change any time.
3	 I started using Duck DNS (https://www.duckdns.org) for dynamic DNS because
Home Assistant has an easy-to-use add-on for it. Now I'm using Duck DNS with ddclient and
I'm quite happy with this combination.

https://www.duckdns.org

Chapter 13 ● Remote access

● 291

as add-ons. Later in this chapter, I show you how you do this with ddclient on your
Raspberry Pi.

So now you have a way to refer to your home with a domain name, but this domain name
refers to the IP address of your modem. Your home automation gateway doesn't run on
your modem, but on a Raspberry Pi in your network. So if you're pointing your browser
at your domain name, your modem gets a request to view its web pages. It will probably
block this request because it's not a good idea to expose a modem's management interface
to the world.

So how do you get this request from your web browser to your Raspberry Pi instead of to
your modem? That's what port forwarding is for. Every time you connect to a web server
with your web browser, you connect to port 80 for unencrypted HTTP or port 443 for
encrypted HTTPS, or another one if you specify it in the URL. So what you want to do is this:
when you connect to port 443 (or another one) on your modem's IP address, you want this
request to be forwarded to port 443 (or another one, it doesn't even have to be the same
as the original port) on your Raspberry Pi.

This mapping from one port on your modem's IP address to another (or the same) port
on your Raspberry Pi's IP address is a setting you have to configure in your modem's web
interface. The way to do this depends on your modem's model. Consult the documentation
that your provider has given you, or consult the documentation for your router or its page
on portforward.com (https://portforward.com/router.htm) if you have a router connected
to the LAN port of your modem.

Warning:
This method for remote access requires that your Raspberry Pi has a fixed IP address on
your local network. When it hasn't and the IP address suddenly changes, you can't reach
your Raspberry Pi anymore from a remote location. Even worse, if by a stroke of bad
luck another unsecured device on your network gets the IP address that your Raspberry
Pi had, your port forwarding rule will make this other device widely available on the
internet! So always configure your Raspberry Pi's local IP address to a fixed one, or add a
static entry to the DHCP settings of your router. Consult your router's documentation for
information about how to do this.

https://portforward.com/router.htm

Control Your Home with Raspberry Pi

● 292

Now you can point your web browser to your domain name from anywhere, and you get
access to your home automation gateway's web interface running on your Raspberry Pi. If
you don't use HTTPS on your home automation gateway's web interface, this works now,
but it's very insecure: everyone in the network path between you and your Raspberry Pi
can eavesdrop on your communication.

The solution is to use HTTPS. But there's a problem: for HTTPS you need to have a valid TLS
certificate for your domain. In the past, you had to purchase such a certificate, but for a few
years, you have been able to get a free certificate from Let's Encrypt (https://letsencrypt.
org), which is renewable in an automatic way. A lot of software supports Let's Encrypt.
You need to run an ACME client (ACME stands for Automated Certificate Management
Environment), that automatically requests and renews a TLS certificate for your domain.
You can find a list of available ACME client implementations in the documentation of Let's
Encrypt (https://letsencrypt.org/docs/client-options/).

So after you have a valid TLS certificate for your dynamic domain, when you point your
web browser to your domain, you get referred to your home automation gateway's web
interface and the communication is secured by TLS. This is one way for secure remote
access to your home automation gateway.

Figure 13.1 The router forwards incoming packets on port 443 of its external interface to port 8123 of the
Raspberry Pi's IP address.

https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org/docs/client-options/

Chapter 13 ● Remote access

● 293

Warning:
If you use this approach for remote access, everyone in the world can try to log into
your home automation gateway.4 So make sure that you're using a strong password
(see Chapter 3). Moreover, one configuration mistake (for instance disabling or resetting
the password, or allowing registration of new users) can make your home automation
gateway wide open for everyone. That's why I don't advocate this approach.

13.1.2 • A localhost tunneling solution4

Another solution is localhost tunneling. On your home automation gateway, you create a
network tunnel that leads to a relay server on the internet. Now when you (or anyone else)
visits the relay server in a web browser, all traffic is forwarded through the tunnel to your
home automation gateway at home.

With this method, you don't need to set up dynamic DNS or port forwarding at home,
because the tunnel is initiated at your side. As soon as the tunnel is running, there's two-
way communication between your home automation gateway and the relay server. So this
could be an interesting solution if your modem is not flexible enough to set up dynamic
DNS or port forwarding.

There are a lot of services that offer a central relay server for localhost tunneling. As part of
your account (free or paid), you receive one or more subdomains of the service's domain.
At first sight, this subdomain looks like a dynamic DNS domain. The difference is subtle but
important: your subdomain at the localhost tunneling service doesn't point to your home
IP address, but to the relay server. So no one except the localhost tunneling service knows
your IP address. Many users find this thought comforting.

Two popular examples of these services are:

Pagekite (https://pagekite.net)
You get your own subdomain https://yourname.pagekite.me. The service is free for
individuals (or a suggested donation of $ 3 per month). The software is completely open-
source and you can even use it to create your own relay server, for example on a publicly
accessible VPS (virtual private server) that you rent.

Ngrok (https://ngrok.com)
It has a free plan with a random subdomain, and for $ 5 per month, you get custom
subdomains. If you want an end-to-end TLS tunnel, you have to pay more. It's not open-

4	 You can prevent this by introducting TLS certificates for the client. This way the
client not only authenticates the server by its server certificate, but the server (your home
automation gateway) also authenticates your client by its client certificate. If a client tries
to connect to your home automation gateway and can't offer a trusted certificate, the
connection is declined and it can't even try a password. However, using TLS client certificates
adds some complexity and it hasn't really caught on.

https://pagekite.net
https://yourname.pagekite.me
https://ngrok.com

Control Your Home with Raspberry Pi

● 294

source, and you can't run an ngrok server on your own VPS.5 It has a few nice features
for web development, such as inspection of HTTP requests and traffic. For secure remote
access to your home automation gateway, I don't recommend it.

Note that you should not just use one of these services without thinking thoroughly about
what they are offering exactly. I already mentioned that with ngrok you have to pay for an
end-to-end TLS tunnel. What does this mean? There are two ways in which these services
offer their tunneling solution. I'll use Pagekite as an example:

With a certificate of the service
If you get a subdomain https://yourname.pagekite.me and you inspect its certificate in
your web browser, you'll see that it's a wildcard certificate for *.pagekite.me. This means
that all users of Pagekite share the same certificate. You're not in control of the private key
of this certificate: the company behind the Pagekite service is. So the connection between
you and the Pagekite service is encrypted, and the connection between the Pagekite service
and your home automation gateway is encrypted, but in principle, all Pagekite employees
can intercept your traffic.

With your own certificate, end-to-end encrypted
If you create your own certificate, only you have access to the certificate's private key.
So you can run your home automation gateway at home using this certificate, and all
communication between you and your home automation gateway is end-to-end encrypted.
Even Pagekite employees can't eavesdrop on your communication: they only see encrypted
network traffic. To use your certificate, you have to pay a domain name registrar for your
domain and then get a certificate for it, for example with Let's Encrypt, or use your own
certificate authority and add its certificate to all your client devices. This is more difficult to
set up, see Chapter 3.

All in all, a localhost tunneling solution is a bit easier to set up than using dynamic DNS
and port forwarding, but for the most secure way, you still need your own TLS certificate.

5	 The product page mentions that you can license a dedicated installation of the ngrok
server cluster for commercial use on the Amazon Web Services cloud, but it's completely
managed by the ngrok company, you even have to give them the keys to your AWS instance.

Figure 13.2 A localhost tunneling solution such as Pagekite creates an encrypted tunnel to a web server
running in your home automation gateway.

https://yourname.pagekite.me

Chapter 13 ● Remote access

● 295

The same warning applies here: everyone in the world can try to log in to your home
automation gateway. That's why I also don't advocate this way.

Note:
There's another way that looks like the localhost tunneling solution: SSH remote port
forwarding. With this method, you create a tunnel with an ssh command on your home
automation gateway to a publicly accessible server such as your VPS. As long as the tunnel
is open, network traffic to the specified port on your VPS will be tunneled in an encrypted
(SSH) connection to your home automation gateway at home. While this is secure and
easy to set up, it's not the most efficient way and it's more suited for temporary access.
If you want to know more, read man ssh and search for the -R option.

13.1.3 • A virtual private network (VPN)

Both plain port forwarding and a local tunneling solution have some security measures
but mostly trust that your home automation gateway they point to is secured. Moreover, a
configuration mistake can wreak havoc on your network.

A better solution is a virtual private network (VPN). If you make a configuration mistake
there, chances are higher that your connection to the home automation gateway doesn't
even work then.

So the approach with a VPN becomes this. Anywhere in the world, you can connect to your
modem at home. This requires you to have a domain name pointing to your IP address, and
thus probably a dynamic DNS. You also need to know the port number of your VPN server.
By default, this is UDP port 1194 for OpenVPN, and 51820 for WireGuard. But you don't
connect to the VPN with your web browser: you have to connect to it with a VPN client. Your
VPN server running at home authenticates your VPN client using a certificate, a long key,
password, or any other means.6

Only when you can authenticate to your VPN server, the VPN connection is set up. This
creates a virtual network that links you to your network at home, with all traffic between
your VPN client and the VPN server encrypted. As long as the VPN connection is open, you
can access your home automation gateway as if you're on your home network.

There are many ways to work with a VPN at home. First, there's the choice of where you
want to run the VPN server:

On a combined modem/router
If you have a combined modem/router at home and you can install a VPN server on it, you
don't even need port forwarding: you just have to set up the VPN server and allow traffic
to come into its designated port.

6	 You can even authenticate your VPN client using a hardware key such as a FIDO U2F
security key.

Control Your Home with Raspberry Pi

● 296

On a router behind your modem
If you have a separate router connected to the LAN port of your modem, you can install a
VPN server on it. You only have to forward the port of your VPN server software on your
modem so the traffic on this port goes to your router running the VPN server.

On a Raspberry Pi
If you can't install a VPN server on your router, you can always install it on a Raspberry
Pi on your local network, even on the same Raspberry Pi as the one running your home
automation gateway. You need to forward the port of your VPN server software on your
combined modem/router to your Raspberry Pi. If you have separate modem and router
devices, you need to forward the port on your modem to your router, and on your router
to your Raspberry Pi.

As soon as you're connected to the VPN from outside, you have access to all your devices
on your home network, including your home automation gateway.

The second choice you have to make is which VPN server software. Two popular choices
are:

OpenVPN (https://openvpn.net)
The community version of OpenVPN is open-source. It's using TLS to create a secure
tunnel, is very flexible, and extensible can be installed on many operating systems and
devices, including OpenWrt routers. The downside is that it's a quite complex codebase,
and complexity is the enemy of security.

WireGuard (https://www.wireguard.com)
This is a relatively new VPN protocol (created in 2015), but it has already made quite
a splash. It's open-source, easy to set up and use, highly performant, and has a small
codebase, partly because it doesn't use OpenSSL (in contrast to OpenVPN). It's using state-
of-the-art cryptography and the protocol is formally verified. There's one big downside: if a
fundamental weakness is found in one of the protocols it uses, the WireGuard protocol can't
be fixed without breaking compatibility, because the protocol is not extensible.

Because I value security higher than extensibility and I don't trust complex software,
my preference is WireGuard. This is what I'll show further in this chapter: how to install
WireGuard on your Raspberry Pi running your home automation gateway, and how you
connect to it on your smartphone or laptop when you're on the go.

Note:
You can also run WireGuard on your router, especially if it's running an open-source
operating system such as OpenWrt or OPNsense. I prefer this way. A lot of readers don't
have this option, and I want all readers to have a way to secure remote access to their
home automation gateway. WireGuard on a Raspberry Pi offers this.

https://openvpn.net
https://www.wireguard.com

Chapter 13 ● Remote access

● 297

13.2 • Updating your dynamic DNS with ddclient

If you want to connect to your VPN server at home and you don't have a fixed IP address
for your internet connection, you first need a dynamic DNS service. Many of these services
offer their domains for free. Some examples are No-IP (https://www.noip.com), FreeDNS
(https://freedns.afraid.org), and Duck DNS (https://www.duckdns.org). Register a domain
with one of these services. In the rest of this section, I assume you have registered a
subdomain of Duck DNS, example.duckdns.org.

As I already told you, you could run a dynamic DNS updater on your router, but your
Raspberry Pi can do it too. The software you use for it is called ddclient (https://ddclient.
net). Installing it directly on Raspberry Pi OS is easy, but the LinuxServer people (https://
www.linuxserver.io) have created a Docker container, which makes it even easier to
integrate the dynamic DNS update with the architecture advocated in this book based on
a Docker Compose file.

First create a directory for the ddclient container to store its configuration file in:

mkdir -p /home/pi/containers/ddclient

Then edit your docker-compose.yml file in your home directory so it has the following
content:

version: '3.7'

services:
 # other containers
 ddclient:
 image: linuxserver/ddclient
 container_name: ddclient
 environment:
 - PUID=1000
 - PGID=1000
 - TZ=Europe/Brussels
 volumes:
 - ./containers/ddclient:/config
 restart: always

Change the TZ environment variable to your location's time zone.

Now create a configuration file for ddclient:

https://www.noip.com
https://freedns.afraid.org
https://www.duckdns.org
http://example.duckdns.org
https://ddclient.net
https://ddclient.net
https://www.linuxserver.io
https://www.linuxserver.io

Control Your Home with Raspberry Pi

● 298

nano /home/pi/containers/ddclient/ddclient.conf

Have a look at the list of supported dynamic DNS protocols (https://sourceforge.net/
p/ddclient/wiki/protocols/) for the right syntax for your dynamic DNS provider.

For Duck DNS, the file should look like this:

ssl=yes
use=web
protocol=duckdns
password=TOKEN
example.duckdns.org

Replace TOKEN by your API token for Duck DNS, and change the domain on the last line of
the configuration file to your subdomain registered at the dynamic DNS service. Save the
file, exit nano, and then start the container:

docker-compose up -d

Wait for a while until the container is started, and then look at the logs:

docker logs -f ddclient

On the list line, you should see SUCCESS and the message that your dynamic DNS is linked
to your IP address. Compare this IP address to the one you see in https://www.whatismyip.
com: it should be the same.

From now on, ddclient periodically checks for a change of your IP address and then updates
your dynamic DNS.

13.3 • Running WireGuard on your Raspberry Pi

Before you start installing WireGuard, make sure Raspberry Pi OS is up-to-date and
especially that it has installed the newest kernel version. After this, reboot to use the
updated kernel:

https://sourceforge.net/p/ddclient/wiki/protocols/
https://sourceforge.net/p/ddclient/wiki/protocols/
https://www.whatismyip.com
https://www.whatismyip.com

Chapter 13 ● Remote access

● 299

sudo apt update
sudo apt upgrade
sudo reboot

This update is needed because WireGuard is a kernel module and the version you install
should not be newer than the running kernel version.

Because WireGuard is tightly coupled to the Linux kernel, I don't install it in a Docker
container, but directly on Raspberry Pi OS.

There are still two things you should take care of in your network:

Static IP address
Give your Raspberry Pi a static IP address. See Chapter 2 for more details.

Port forwarding
Forward UDP port 51820 from your modem/router to the IP address of your Raspberry Pi.
After this, you can install WireGuard.

13.3.1 • Installing PiVPN

You could install and configure WireGuard manually, but there's an interesting tool that
makes this much more user-friendly: PiVPN (https://www.pivpn.io).

PiVPN can be installed like this:

git clone https://github.com/pivpn/pivpn.git
sudo bash pivpn/auto_install/install.sh

The install script checks whether you have enough free storage space, and it installs
everything that's needed. It lets you choose the network interface (eth0 for the Ethernet
interface) and whether you want to use DHCP or a static address. Choose DHCP if you have
set up a static mapping in your router's DHCP settings.

Confirm that you want to store your VPN settings in the pi user's home directory. Then
choose WireGuard as the VPN protocol (OpenVPN is the other choice). Confirm the default
port (51820) and then choose the DNS server for the VPN clients. By default, Quad9 is
selected. If you have a DNS server running on your home network (for instance on your
router), use Custom and enter its IP address.

https://www.pivpn.io

Control Your Home with Raspberry Pi

● 300

In the next step, the install script enters the public IP address of your internet connection.
If your internet provider doesn't assign you a fixed IP address, choose the option DNS
Entry and enter the dynamic DNS domain that you keep updated with ddclient.

After this, the install script generates VPN keys. At the end, it asks you to reboot.

13.3.2 • Adding a VPN client

Now your WireGuard VPN is ready, and you only have to add a client. PiVPN makes this
very easy:

pivpn add

Enter a name for the client. After this, PiVPN generates a key pair and a configuration
file for the client, adds the client to the WireGuard server configuration, and restarts the
WireGuard server on your Raspberry Pi.

Figure 13.3 Use one of the preconfigured DNS providers or use your own.

Chapter 13 ● Remote access

● 301

Now you have to get this VPN configuration on your client device that you want to connect
to your Raspberry Pi's VPN from outside your network. On an Android or Apple smartphone
you can run the official WireGuard app. Then enter the following command on your
Raspberry Pi:

pivpn qrcode

Enter the name of your client. After this, you see a QR code that you can scan on your
smartphone. In the WireGuard app, press the blue plus sign at the bottom right and choose
Create from QR code. Scan the QR code on your screen, give the VPN tunnel a name,
and choose Create tunnel.

Figure 13.4 Add a VPN client to your WireGuard server with PiVPN.

Control Your Home with Raspberry Pi

● 302

13.3.3 • Connecting with a VPN client

Now the WireGuard app on your smartphone has your VPN configuration with the secret
key that is needed to connect to your VPN server. You only have to enable the switch in your
app next to the name you assigned to the tunnel, and you're connected.

Note:
Make sure you're not connected to your home Wi-Fi network when you're testing the
VPN connection. Disable Wi-Fi on your smartphone and connect from your mobile data
connection.

Figure 13.5 The QR code is an easy way to import your VPN configuration into the WireGuard app on your
smartphone.

Chapter 13 ● Remote access

● 303

When you're connected to the VPN, you are now able to access your home automation
gateway by surfing to the IP address of your Raspberry Pi on your local network. This lets
you access the web interfaces of Zwave2mqtt, Home Assistant, Node-RED, and so on. You
are also able to access other devices on your local network, which is interesting if you have
spread your home automation installation over multiple devices.

Note:
Your VPN clients use the DNS server you have configured while installing PiVPN. If you
entered the IP address of your internal DNS server which is running on your router, you
can access your gateway by its internal hostname, such as raspberrypi.home. This is
required if you want to access your services over HTTPS.

Figure 13.6 The WireGuard app for Android lets you connect to your Raspberry Pi at home.

Control Your Home with Raspberry Pi

● 304

PiVPN does more than you have asked for: it has installed firewall and packet forwarding
rules so you can even surf on the internet from your smartphone using your internet
connection at home while you're abroad. This is interesting to be able to surf the internet
over an encrypted tunnel while you're on an insecure network, but if you won't use this, you
can disable it. Just open the configuration file for system settings:

sudo nano /etc/sysctl.conf

Search for this line:

net.ipv4.ip_forward=1

And put a hash sign (#) at the beginning of that line to disable packet forwarding. Reboot
and check your VPN connection again. This time you can only connect to devices on your
local network when you have your smartphone connected to your VPN.

Note:
If you encounter trouble with PiVPN, have a look at the wiki where common problems
and their solutions are listed (https://github.com/pivpn/pivpn/wiki/FAQ). The first thing
you can do is run the pivpn debug command, which does a self-test and shows a lot of
information about your configuration. If you don't find a solution this way, open an issue
on GitHub (https://github.com/pivpn/pivpn/issues) and show the output of pivpn
debug.

13.3.4 • Managing your VPN clients

PiVPN offers a couple of simple commands to manage your VPN clients. If you want to get
a list of all clients you have defined, just enter:

pivpn list

For every client, you see its name, and public key when you have created the configuration.

If you want to know which clients are currently connected to the VPN, enter:

pivpn clients

https://github.com/pivpn/pivpn/wiki/FAQ
https://github.com/pivpn/pivpn/issues

Chapter 13 ● Remote access

● 305

This shows you a table with clients with their name, external IP address, virtual IP address
on the VPN, how many bytes have been sent and received by the client and when the client
was last active.

There's another command to remove a client:

pivpn remove

Choose the name of the client. After this, the WireGuard server doesn't allow the public key
of your client anymore, so the client can't connect to your VPN.

Warning:
If you have lost your smartphone, immediately remove its configuration from your
Raspberry Pi with pivpn remove to prevent someone from having access to your network!

13.4 • Summary and further exploration

In this chapter, you learned how to access your home automation gateway securely from
outside your home. I showed you three ways for remote access, and I discussed their
strengths and weaknesses. You learned how to update your dynamic DNS with ddclient and
how to run the WireGuard VPN service on your Raspberry Pi with PiVPN.

In the spirit of self-hosting, this makes it possible to remotely get access to your home
automation system securely, with the least reliance on other parties as possible.

If you don't like the VPN approach, feel free to try the other ways for remote access. If you do
like VPN, I recommend you to explore WireGuard more, and perhaps try to install it yourself
without PiVPN. It gives you more control over the configuration. There's also experimental
work to better secure your WireGuard connections with two-factor authentication.

Figure 13.7 PiVPN shows you a list of connected VPN clients to your WireGuard server.

Control Your Home with Raspberry Pi

● 306

Chapter 14 • Conclusion

In this book, I have shown you step by step that it's possible to create a fully self-hosted
home automation system and that you can even do this on a Raspberry Pi, including
advanced functionality such as a voice assistant.

Let's reiterate the four properties of a good home automation system that I introduced in
Chapter 1. If you have followed the instructions in this book closely, your home automation
system is now:

Secure
You make as much use as possible of encryption and authentication, updated software, and
isolated services in Docker containers. This minimizes the risk if one of the components of
your home automation system becomes vulnerable.

Modular
You can add other devices and even other home automation protocols, because your home
automation system has an extensible architecture, using MQTT to communicate between
various services.

Open-source
If you encounter problems, you can delve into the code of all software used in your home
automation system. You can fix errors yourself and if every user does that, your home
automation system keeps getting better and better.

Self-sufficient
Your home automation system keeps working when your internet connection is down, and
you don't depend on any third-party services that render your home automation system
useless when they stop. You are in full control of your home, as it should be.

To wrap up this book, I'll show you one more service, to give you an overview of all your
home automation services, and I give some pointers to other interesting projects that I
couldn't cover in this book.

14.1 • A dashboard for all your services

Let's install one more service: Heimdall (https://heimdall.site), which is an application
dashboard. By now you have various services with a web interface running, but do you
remember which port you have to use for each one of them? Of course not, and that's
where Heimdall comes to help: it lets you define a dashboard with an icon for each of your
services, so you only have to visit Heimdall's page on your Raspberry Pi and there you go:
all your home automation services are just a click away.

Create a directory for Heimdall and copy the TLS key and certificate of your Raspberry Pi to
the locations where Heimdall expects them:

https://heimdall.site

Chapter 14 ● Conclusion

● 307

mkdir -p /home/pi/containers/heimdall/keys
cp /home/pi/containers/certificates/key.pem
/home/pi/containers/heimdall/keys/cert.key
cp /home/pi/containers/certificates/cert.pem
/home/pi/containers/heimdall/keys/cert.crt

And then add the following container definition to your docker-compose.yml file:

version: '3.7'

services:
 # other services
 heimdall:
 image: linuxserver/heimdall
 container_name: heimdall
 restart: always
 environment:
 - PUID=1000
 - PGID=1000
 - TZ=Europe/Brussels
 volumes:
 - ./containers/heimdall:/config
 ports:
 - 443:443

And start the container:

docker-compose up -d

In the logs (docker logs -f heimdall), you should see the message "using keys found
in /config/keys". After this, a new Heimdall configuration is installed in the container, and
this takes a while. When you see the message "Creating app key. This may take a while on
slower systems", expect to wait a couple of minutes on a Raspberry Pi 4, longer on a less
powerful model.

When the container has started, you can just visit https://HOSTNAME in your web browser,
with HOSTNAME the hostname of your Raspberry Pi. This will show you an empty dashboard
with the message "There are currently no pinned applications, Add an application here or
Pin an item to the dash".

First set a password on the admin user, because otherwise, everyone in your network has
access to your dashboard. Click on the user icon at the bottom right of the page and then

Control Your Home with Raspberry Pi

● 308

on the edit button next to the admin user. Enter a name and email address for the user,
and choose and confirm a password. You can even upload an image file as an avatar. Click
on Save to change the user.

Now click on the items icon (just below the user icon) and then on Add. Enter the name
of your service. If the service is in the list of supported application types (such as Gotify,
Home Assistant, and Node-RED), this will automatically fill in an icon, application type,
and color. Otherwise, upload an icon and/or choose a color (#161b1f is a nice one for the
default background). Also, enter its URL with the right port number on your Raspberry Pi.
Don't forget to enable Pinned at the top and then click Save. After this, there's an icon for
your service on the dashboard. When you click on it, a new tab opens with the web page
for the service.

Figure 14.1 You can secure Heimdall's dashboard with a password for each user.

Chapter 14 ● Conclusion

● 309

If you now add all your services this way to Heimdall's dashboard, you have them all in one
place and you don't have to remember their port names anymore. If anyone on the network
wants to access the dashboard, they are asked first to choose a user and enter a password.

Figure 14.2 Add a link for each of your home automation services to the Heimdall dashboard.

Figure 14.3 Log in to your Heimdall dashboard to get access to all your home automation services.

Control Your Home with Raspberry Pi

● 310

14.2 • More about home automation

In this book, I covered a selection of home automation services, but like every book with
such a broad topic, there are services I could only shortly explain and other services that
I couldn't cover at all. To make up for the latter, here are some interesting projects that I
recommend you to explore.

Jan-Piet Mens, the creator of mqttwarn (see Chapter 11), has developed another interesting
project, OwnTracks (https://owntracks.org). This is an open-source project that lets you
keep track of your location. You install the server on your Raspberry Pi and run an app on
your Android or iOS phone, that continuously updates your location to the server using
MQTT. This way you can automate things like turning up the heat in winter when you're
almost home or sending you a notification when your spouse leaves at work, all without
having to send your location to an untrusted third party.

I also haven't covered other AI (artificial intelligence) topics than voice control. For instance,
you could add realtime object detection to your motionEye set up with a system such as
Frigate (https://github.com/blakeblackshear/frigate). This analyzes images from an RTSP
camera on your network with OpenCV and TensorFlow Lite, and it tells you whether it sees
a person, a dog, or something else. Frigate can send this information to an MQTT broker, so
it perfectly fits in this book's architecture. However, the processing power needed for object
detection is big: you need a Google Coral USB Accelerator and preferably a Raspberry Pi 4
to fully use the USB 3 throughput of the accelerator dongle.

Concerning wireless technologies, you could also add infrared support. With an infrared
transmitter on your Raspberry Pi you could let it control your TV or music installation, and
with an infrared receiver connected you could control your home automation gateway with
an infrared remote. An infrared transmitter or receiver is quite cheap and can be easily

Figure 14.4 A Heimdall dashboard with all the services from this book that have a web interface.

https://owntracks.org
https://github.com/blakeblackshear/frigate

Chapter 14 ● Conclusion

● 311

connected to the Raspberry Pi's GPIO pins. The software to control all this is LIRC, which
stands for Linux Infrared Remote Control (https://www.lirc.org).

If you want a longer range, LoRa (Long Range) is an interesting technology to explore. It
is a low-power wide-area network (LPWAN) protocol, which can reach distances of a few
kilometers. LoRA uses the 868 MHz or 433 MHz frequency band in Europe, 915 MHz in North
America and Australia, and 923 MHz in Asia. The LoRA protocol is quite resilient against
interference, which is important because it shares its frequencies with other protocols (such
as Z-Wave in Europe). It's a perfect technology if you want to have temperature and
humidity sensors in a big garden. You only have to add a LoRA HAT expansion board on a
Raspberry Pi to communicate with your LoRA devices.

This is the end of this book, but it's surely not the end of your (and my) home automation
adventure. You can keep tinkering with your setup, adding new functionality, automating
more things, and so on. Home automation is an addictive hobby. Like with many hobbies,
it's not the destination that matters but the journey, and meanwhile, you learn about a lot
of fascinating topics and powerful technology. I can't imagine a better companion for this
journey than the Raspberry Pi.

https://www.lirc.org

Control Your Home with Raspberry Pi

● 312

• Appendix

This appendix lists some specialized tips that could come in handy in various situations
while working on home automation with your Raspberry Pi:

•	 Getting the name and ID of a serial device
•	 Switching USB ports on and off
•	 Disabling onboard Bluetooth and/or Wi-Fi
•	 Disabling the on-board LEDs from the Raspberry Pi or the Camera Module
•	 Securing insecure services with a reverse proxy
•	 Bridging two MQTT brokers securely

15.1 • Getting the name and ID of a serial device

If you have connected a device to your Raspberry Pi and you want to use it, you have to
determine the device name that Raspberry Pi OS has assigned to it. For serial devices (such
as a Z-Wave or Zigbee device) you should see the right path for your setup if you execute
the command dmesg | grep tty after connecting the device. For instance, if you see
ttyACM0 as the device name, this makes the device path /dev/ttyACM0.

However, if you're applying a multi-protocol approach as advocated in this book, and thus
you have connected multiple serial devices, you shouldn't rely on these device names, as
the name a device gets assigned depends on the order of loading the device driver. It's
perfectly possible that your Z-Wave and Zigbee transceiver swap device names after a
reboot or upgrade of the Linux kernel.

That's why you should use the device name by ID. You can find these in the output of ls
-l /dev/serial/by-id.

For the CC2531 Zigbee transceiver, you should see a name such as usb-Texas_
Instruments_TI_CC2531_USB_CDC___0X00124B0018E31EDB-if00. This means that
you'll use the device /dev/serial/by-id/usb-Texas_Instruments_TI_CC2531_USB_
CDC___0X00124B0018E31EDB-if00.

For Aeotec's Z-Stick, you should see a name such as usb-Silicon_Labs_CP2102_USB_to_
UART_Bridge_Controller_0001-if00-port0, which makes the device path /dev/serial/
by-id/usb-Silicon_Labs_CP2102_USB_to_UART_Bridge_Controller_0001-if00-port0.

Figure 15.1 If you have multiple serial devices attached, you better use the device ID.

Appendix

● 313

15.2 • Switching USB ports

In various situations it could be interesting to shut off power to specific USB ports,
temporarily or for a longer time:

•	 Your Z-Wave transceiver is stuck in a non-working state. Shutting down the USB port
and immediately re-enabling it resets the transceiver so it works again. You can do this
without having to walk to the Raspberry Pi, pulling the transceiver out and re-inserting
it. Two commands on a remote SSH session are enough.

•	 You have connected a USB-powered device such as a fan to your Raspberry Pi that you
want to easily enable and disable. You can do this without having to fiddle with GPIO
pins or complex home automation protocols.

On some USB hubs, you can control USB power on individual ports. Only very few hubs
support per-port power switching.

Two projects let you control USB ports:

•	 hub-ctrl.c (https://github.com/codazoda/hub-ctrl.c)
•	 uhubctl (https://github.com/mvp/uhubctl)

The second project is actually in the Raspberry Pi OS repository, but you might want to
install it from source to get a newer version with support for the Raspberry Pi 4's USB ports.

Both projects can be used to control the internal USB hub of the Raspberry Pi, but this only
works for all USB ports at the same time, not for individual USB ports. This is a limitation
of the Raspberry Pi hardware design.

Note:
As a workaround, you can buy an external USB hub, attach it to any USB port of the
Raspberry Pi, and connect the USB devices you want to control individually to this USB
hub.

15.3 • Disabling the onboard radio chips

In various situations, you'd like to disable the on-board Bluetooth and/or Wi-Fi chips. For
instance:

•	 You want to use the RaZberry daughterboard for Z-Wave on your Raspberry Pi, but the
on-board Bluetooth chip already uses the UART it needs.

•	 You want to eliminate interference between the on-board Bluetooth and/or Wi-Fi radio
and your Zigbee transceiver, which all operate in the crowded 2.4 GHz frequency band.

•	 You want to save as much power as possible and you don't need the onboard Bluetooth
and/or Wi-Fi chips.

•	 You want to use an external USB adapter for Bluetooth and/or Wi-Fi with a better

https://github.com/codazoda/hub-ctrl.c
https://github.com/mvp/uhubctl

Control Your Home with Raspberry Pi

● 314

range.

Luckily the on-board radio chips can be easily disabled.

15.3.1 • Disabling onboard Bluetooth

You can disable the on-board Bluetooth chip with the following line in /boot/config.txt:

dtoverlay=disable-bt

This will free the UART so it can be used by other devices such as the RaZberry and
restores the UART function to GPIOs BCM14 and BCM15 (physical pins 8 and 10 on the
GPIO header).

Next, disable the system service that initializes the modem so it doesn't use the UART
anymore:

sudo systemctl disable hciuart

Then reboot your Raspberry Pi to check whether the Bluetooth device has been disabled:
hciconfig -a shouldn't show the on-board Bluetooth device anymore.

15.3.2 • Disabling onboard Wi-Fi

You can disable the onboard Wi-Fi chip with the following line in /boot/config.txt:

dtoverlay=disable-wifi

Then reboot your Raspberry Pi to check whether the Wi-Fi device has been disabled: ip
link show shouldn't show the wlan0 device anymore.

15.4 • Disabling the on-board LEDs

In some situations you'd like to disable the Raspberry Pi's on-board LEDs:

•	 You want your Raspberry Pi Zero (W) to use as little power as possible, maybe because
it's powered by a battery or solar panel.

•	 You're annoyed by the glaring red LED on your Raspberry Pi with the Camera Module
that's watching your hallway at night.

Appendix

● 315

Luckily the LEDs on various Raspberry Pi models can be enabled and disabled individually.

15.4.1 • Raspberry Pi Zero (W)

The Raspberry Pi Zero (W) has only one LED. By default, it's on when it has power, and it
temporarily goes off for activity on the microSD card. So whenever your little Pi is active,
you see the LED flashing.

To disable the LED completely, add the following lines to the /boot/config.txt file:

dtparam=act_led_trigger=none
dtparam=act_led_activelow=on

After a reboot, the LED stays off.

15.4.2 • The big Raspberry Pi models

The bigger Raspberry Pi models (including the Raspberry Pi 3A+) show the board's activity
on two LEDs:

POW (red)
The board gets enough power.

ACT (green)
The microSD card is active.

You can disable these LEDs on all these models except the original Raspberry Pi Model B
with the following lines in /boot/config.txt:

dtparam=pwr_led_trigger=none
dtparam=pwr_led_activelow=off

dtparam=act_led_trigger=none
dtparam=act_led_activelow=off

After rebooting, the LEDs stay off.

The green ACT led isn't as annoying as the red POW led. So if you just want to disable the
PWR LED, ignore the last two lines.

15.4.3 • Ethernet models

Control Your Home with Raspberry Pi

● 316

The Raspberry Pi models with an Ethernet interface have two other LEDs for the network
interface:

LNK (green)
On when a link is established, flashes when there's network activity on the Ethernet
interface.

SPD (yellow)
On when there's a 100 Mbps connection or higher.

On the original Raspberry Pi Model B, these LEDs were positioned next to the POW and ACT
LEDs; the newer models have them on the sides of the Ethernet socket.

On the Raspberry Pi 4B you can disable both LEDs with the following lines in /boot/
config.txt:1

dtparam=eth_led0=4
dtparam=eth_led1=4

On the Raspberry Pi 3B+ the lines should be:

dtparam=eth_led0=14
dtparam=eth_led1=14

On older models of the Raspberry Pi you need the software LAN951x LED control (https://
mockmoon-cybernetics.ch/computer/raspberry-pi/lan951x-led-ctl/):

lan951x-led-ctl --spd=0 --lnk=0

This disables both the SPD and the LNK LEDs. You need to run this program after each boot
of the Raspberry Pi, for instance by putting the command in the startup script /etc/
rc.local.

15.4.4 • Raspberry Pi Camera Module

The Raspberry Pi Camera Module has its own LED which lights up when the camera is
recording. You can disable it by adding the following line to /boot/config.txt:

1	 You can find all the possible values in https://github.com/raspberrypi/firmware/blob/
master/boot/overlays/README.

https://mockmoon-cybernetics.ch/computer/raspberry-pi/lan951x-led-ctl/
https://mockmoon-cybernetics.ch/computer/raspberry-pi/lan951x-led-ctl/
https://github.com/raspberrypi/firmware/blob/master/boot/overlays/README
https://github.com/raspberrypi/firmware/blob/master/boot/overlays/README

Appendix

● 317

disable_camera_led=1

Note:
Some other CSI cameras for Raspberry Pi use this setting for something else, for instance,
to enable night vision mode for cameras with infrared lighting.

15.5 • Securing insecure web services with a reverse proxy

Some projects in this book don't offer an encrypted connection for their web interface.
However, this doesn't mean that you have to use them unsecured. You can create a reverse
proxy. This software:

•	 listens on port X of your Raspberry Pi for an HTTPS connection;
•	 forwards all traffic unencrypted to port Y of the service.

This all happens transparently for the user: you can just use HTTPS, you can verify the
TLS certificate and there's nothing that tells you that the underlying service is using HTTP.
One such reverse proxy is Nginx (https://nginx.org). You can install it in a Docker container,
let it listen on port X of Your Raspberry Pi for an HTTPS connection, and then forward traffic
unencrypted over Docker's internal network to port Y of another Docker container. As the
unencrypted connection stays on your Raspberry Pi, you have secured your connection.

Moreover, you can add authentication in your reverse proxy too if the other service doesn't
support it. When connecting to the reverse proxy, you have to supply a username and
password, and only if they are correct, you are forwarded to the service.

15.5.1 • Using nginx as a reverse proxy with HTTPS

As an example, let's install and configure nginx as a reverse proxy for Zwave2Mqtt using
TLS.

First create a directory for your nginx container and enter it:

Figure 15.2 With nginx working as a reverse proxy for the other containers, you can use HTTPS to access
services that only support HTTP.

https://nginx.org

Control Your Home with Raspberry Pi

● 318

mkdir /home/pi/containers/nginx
cd !$

Create Diffie-Hellman parameters for the TLS connection:

openssl dhparam -out dhparams.pem 2048

Note:
This command takes a couple of minutes, even on a Raspberry Pi 4.

Then you need a configuration file for nginx. Because you can use nginx as a reverse proxy
for more than one other service, it's recommended to split the configuration file for easier
reuse.

First create a configuration file common_location.conf with this content:

Figure 15.3 Creating Diffie-Hellman parameters takes a long time on a Raspberry Pi.

Appendix

● 319

proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header X-Forwarded-Host $host;
proxy_set_header X-Forwarded-Port $server_port;
proxy_set_header Host $host;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";

This just contains some HTTP headers that the reverse proxy sets. Not all of them are strictly
needed for all services, but for instance, the connection upgrade headers are needed for the
WebSocket protocol to work.

Then create a configuration file ssl.conf with this content:

ssl_protocols TLSv1.2 TLSv1.3;
ssl_ecdh_curve secp384r1;
ssl_ciphers "ECDHE-RSA-AES256-GCM-SHA512:DHE-RSA-AES256-
GCM-SHA512:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-
AES256-SHA384 OLD_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
OLD_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256";
ssl_prefer_server_ciphers on;
ssl_dhparam /etc/nginx/dhparams.pem;
ssl_certificate /etc/ssl/private/cert.pem;
ssl_certificate_key /etc/ssl/private/key.pem;
ssl_session_timeout 10m;
ssl_session_cache shared:SSL:10m;
ssl_session_tickets off;

This contains all configuration variables related to the TLS connection. Note the dhparams.
pem file that you just created. Make sure that you change the file names of the ssl_
certificate and ssl_certificate_key files. The /etc/ssl/private directory in the
container is /home/pi/containers/certificates on your Raspberry Pi.

Then finally create the main configuration file of nginx, nginx.conf:

worker_processes 1;

events { worker_connections 1024; }

http {

 sendfile on;

Control Your Home with Raspberry Pi

● 320

 server {
 listen 8091 ssl;
 include /etc/nginx/ssl.conf;

 location / {
 proxy_pass http://zwave2mqtt:8091;
 include common_location.conf;
 }
 }

}

This is just an example if you want to access Zwave2Mqtt over HTTPS. In the server
block, you let nginx listen on port 8091 with a TLS (ssl) connection, and you include the
TLS configuration from /etc/nginx/ssl.conf. Then the block location / defines what
happens when you visit the server's root directory. The proxy_pass directive says the
request is passed on to port 8091 of the zwave2mqtt container over the HTTP protocol.

Now the only thing you need to add to make this work is the definition of the nginx container
in your Docker Compose file. So go back to your home directory with cd and open docker-
compose.yml. Add a definition for an nginx container:

version: '3.7'

services:
 # other services
 nginx:
 image: nginx:alpine
 container_name: nginx
 restart: always
 volumes:
 - ./containers/nginx:/etc/nginx
 - ./containers/certificates:/etc/ssl/private:ro
 ports:
 - "8091:8091"
 zwave2mqtt:
 image: robertslando/zwave2mqtt
 container_name: zwave2mqtt
 restart: always
 volumes:
 - ./containers/zwave2mqtt:/usr/src/app/store
 #ports:
 # - "8091:8091"

 environment:

Appendix

● 321

 - TZ=Europe/Brussels
 devices:
 - "/dev/ttyUSB0:/dev/ttyUSB0"

 sendfile on;

I have also added the definition of the zwave2mqtt container here to show what you should
change there. I have commented out the original ports section because you have to remove
it: you don't get direct access to Zwave2Mqtt's HTTP port anymore. Instead, the nginx
container has this port 8091 exposed.

Warning:
If you don't remove or comment out the ports section of the zwave2mqtt container,
your setup won't work because no two containers can listen on the same port of your
Raspberry Pi.

After this, recreate your containers with:

docker-compose up -d

Now you can access the web interface of Zwave2Mqtt over TLS on https://HOST:8091 and
not anymore on http://HOST:8091.

If you want to do the same for other services, just add another server block to your nginx.
conf, with another port to listen on and another container name and port in the proxy_
pass directive. Then add the port to expose to the ports section of your nginx container and
remove or comment out the ports section of your other service. Recreate your containers
with a docker-compose up -d and you're ready.

Note:
This is just a simple reverse proxy configuration. You can also configure nginx to listen on
port 443 but take into account the hostname. If your local DNS server allows you to assign
wildcard subdomains to your IP addresses (which all point to the same IP address), you
can then visit https://zwave.pi.home to be forwarded to Zwave2Mqtt, https://node-red.
pi.home to be forwarded to Node-RED and so on. This is beyond the scope of this book.

15.5.2 • Adding basic authentication to nginx

Now that Zwave2Mqtt isn't exposed directly anymore to the network but has to be accessed
via nginx, you can add other protection measures, such as a username and password. To
be able to create a password hash, you have to install the package apache2-utils first on

https://zwave.pi.home
https://node-red.pi.home
https://node-red.pi.home

Control Your Home with Raspberry Pi

● 322

Raspberry Pi OS:

sudo apt install apache2-utils

Afterwards, create a password file and add a user with:

htpasswd -c /home/pi/containers/nginx/.htpasswd USER

Add your preferred username instead of USER.

The program then asks you to enter your password. Make sure to choose a strong password
(see Chapter 3). Retype it. After this, your user is added to the file, together with a hash
of the password. If you want to create a second user, just enter the command again, but
without the -c option (which creates a new password file) and with another username.

The output of the file should look something like this:

koan:$apr1$oBgoppc6$kO14XotRBC8hTnXcu3H8N0
testuser:$apr1$njYvKGLp$3GSy87JMQBh5fRWRv4TRt/

Each line has a user, a colon, a hash type between dollar signs, and then the hashed
password.

Now open your nginx.conf and add the following lines to the location block of the
service you want to secure, in this example Zwave2Mqtt:

auth_basic "Zwave2Mqtt";
auth_basic_user_file /etc/nginx/.htpasswd;

Then restart the nginx container:

docker restart nginx

If you now visit the URL in your web browser, it asks you to enter a valid username and
password. If the combination is wrong, you'll see a HTTP 401 Authorization Required error
page.

Appendix

● 323

15.6 • Bridging two MQTT brokers securely

If anyone in your network can just listen to MQTT messages or sniff unencrypted MQTT
traffic, this can leave some private data exposed. Especially with Rhasspy, because it
streams your voice over the network and publishes sentences it recognizes to MQTT.
In this book, I advocate the use of encryption and authentication as much as possible, also
for MQTT. However, some projects in this book don't support (yet) a TLS connection to an
MQTT broker. This doesn't mean that you have to use them in an insecure way. There's a
solution.

For all containers running on the same Raspberry Pi as your MQTT broker, you can use an
unencrypted connection to mosquitto by using the container's name. The network traffic
then stays on your Raspberry Pi, because it uses Docker's internal network. So there's no
real need to encrypt the traffic.

The problem only starts when you're running one of your services on another machine and
they don't support MQTT over TLS. However, there's an easy fix: run another mosquitto
container on that second machine and let the service talk to this container, unencrypted
over that machine's internal Docker network. Then bridge this mosquitto container to your
main MQTT broker, over an encrypted connection.

I'll illustrate this with rtl_433 (see Chapter 7), but you can use the same method for other
services.

This setup doesn't need any change on your main MQTT broker. On the second machine,
add a mosquitto container to your docker-compose.yml file:

Figure 15.4 Adding authentication to one of your home automation services is easy with nginx as its reverse
proxy.

Control Your Home with Raspberry Pi

● 324

version: '3.7'

services:
 # other services
 mosquitto:
 image: eclipse-mosquitto
 container_name: mosquitto
 restart: always
 volumes:
 - ./containers/mosquitto/config:/mosquitto/config
 - ./containers/mosquitto/data:/mosquitto/data
 - ./containers/mosquitto/log:/mosquitto/log
 - ./containers/certificates:/mosquitto/config/certs:ro
 - /etc/localtime:/etc/localtime:ro
 user: "1000:1000"

Note that you don't expose any ports in this service definition: only the other containers on
this machine can connect (using Docker's internal network) to this broker.

Now create some directories for Mosquitto's configuration, data and logs:

mkdir -p /home/pi/containers/mosquitto/{config,data,log}

Create a configuration file for mosquitto:

nano /home/pi/containers/mosquitto/config/mosquitto.conf

Then put the basic configuration for mosquitto (see Chapter 4) in this file, and add some
extra configuration directives to create a bridge:

port 1883
listener 9001
protocol websockets
persistence true
persistence_location /mosquitto/data/
log_dest file /mosquitto/log/mosquitto.log

connection bridge
address HOSTNAME:8883
remote_username home
remote_password PASSWORD

Appendix

● 325

bridge_cafile /mosquitto/config/certs/rootCA.pem
bridge_insecure false
topic # both

The first part is just the basic configuration for mosquitto, so it listens to port 1883 and (for
the WebSocket protocol) port 9001, unencrypted. You can always add authentication if you
want, see Chapter 4 for the details.

Then the part beginning with connection bridge configures a bridge, with the hostname
and port number of your main MQTT broker, as well as a valid username and password.
Make sure that your mosquitto container can resolve this address, so make it a fully qualified
domain name such as pi-red.home. You also specify the root CA file to verify the broker's
TLS certificate.

The last line is as simple as it's magical. This says that every topic (the # wildcard) that
is coming in or out of is forwarded between the main MQTT broker and this MQTT broker.

Save this file, and then create a directory for the root CA file:

mkdir -p /home/pi/containers/certificates

And then copy the root CA file from your main home automation gateway to this directory.
For instance:

scp pi-red:containers/certificates/rootCA.pem containers/certificates

After this, you can recreate your containers:

docker-compose up -d

And now you can connect the containers on this machine to your local MQTT broker, which
communicates transparently over TLS to your main MQTT broker. No unencrypted data
leave your machine. Rtl_433 connects to the local MQTT broker unencrypted and thanks to
the encrypted bridge is also connected transparently to the main MQTT broker.

Control Your Home with Raspberry Pi

● 326

Figure 15.5 With two Raspberry Pis running a mosquitto container in an encrypted MQTT bridge
configuration, the first one's internal MQTT traffic doesn't leave its Raspberry Pi unencrypted.

Index

● 327

• Index

Symbols
433.92 MHz 13, 18, 19, 24, 157-167

915 MHz 157, 160, 311

A
access control list 80, 87-89, 91, 103

antenna 134, 158, 159-160, 166, 171, 172

AppDaemon 25, 156, 204, 226-232, 280, 282, 286

application dashboard 306

attack surface 54, 78

automation rules 224-225

B
balenaEtcher 33-34, 124

Bluetooth 13, 18, 24, 27, 29, 30, 134-156, 168, 172, 188, 194, 313-314

bluez 139

bridging two MQTT brokers 323-326

bt-mqtt-gateway 89, 102, 148-151, 153, 154, 156, 215, 223, 231

C
camera controller 122, 124, 125, 128

castle approach 54

CC2531 189-198, 202, 312

certificate authority 66-70, 294

cloud services 21-22

cooling 31

CSI socket 123

curl 46, 118, 119, 245

D
ddclient 290-291, 297-298, 300, 305

Defense in depth 54

DHCP 35, 36, 37, 59, 106, 118, 291, 299

Diceware 63-64

Docker 46-48

Docker Compose 48-51

DVB dongle 158, 160, 166

dynamic DNS 290, 293, 294, 295, 297-298, 300, 305

E
email 65, 75, 131, 234-241, 248, 251-253, 255, 308

encrypted MQTT 86-92, 177, 221, 326

encryption 24, 53, 65-66, 78, 83, 86, 94, 96, 98, 103, 113, 145, 197, 240, 306, 323

Control Your Home with Raspberry Pi

● 328

F
firewall 54, 55, 56, 57, 58-62, 78, 304

fixed IP address 36, 290-291, 297, 300

FLOSS 19

FOSS 19

G
gatttool 141-143
Generic Access Profile 134 Generic Attribute Profile 135

Gotify 234, 241-248, 255, 308

H
hcidump 139-140, 143

hcitool 139

Heimdall 306-310

Hermes protocol 269, 278, 287

Home Assistant 81, 82, 106, 116, 119, 128, 132, 152, 155, 156, 167, 173, 178, 183, 202, 203, 204, 219-226, 233, 237, 243,

246, 255, 256, 260, 266, 278, 290, 303, 308

Home ID 170

I
IKEA TRÅDFRI 25, 188, 189

industrial, scientific, and medical frequency band 157, 170

intent handling 266, 278-287

intent recognition 265, 266, 270, 271, 272, 286

IP camera 29, 122-125, 127

J
JavaScript 116, 204, 212, 285-286

jq 118-119, 184

K
Keep It Simple Stupid 54, 78

L
Let's Encrypt 290, 292, 294

localhost tunneling 289, 293-295

low-code 203, 204

M
Management Information Base 111

mesh network 169, 189

mkcert 67-71, 77

modularity 17

monitor.sh 152-156

Mosquitto 83-92

Index

● 329

Mosquitto clients 85, 90-93

motion detection 22, 125, 128, 129-133, 237

motionEye 128, 131

motionEyeOS 122-128

MQTT broker 19, 64, 80-104, 131-133, 149-151, 153, 161, 164-166, 177-178, 196-197, 210-211, 215, 221-222, 229-232, 248-

255, 261, 269-270, 278-282, 310, 323-326

MQTT clients 24, 80, 88, 93, 95

MQTT Explorer 95-97

MQTT.fx 93-95, 184, 186

MQTT in Python 97

MQTT over WebSocket 83, 84, 86, 87, 90, 101

mqtt-smarthome conventions 82

MQTT topics 81-82, 88, 95, 96, 98, 103, 155, 166, 178, 184-187, 200-202, 234, 248, 266, 273, 279, 282

mqttwarn 234, 248-255, 310

N
Network ID 170

network isolation 59

Network Key 176

Ngrok 293

Node.js 152, 204

Node-RED 64-65, 132-133, 156, 203-219, 237, 239-241, 246, 256, 266, 282-286, 303, 308, 321

Node-RED dashboard 215, 219

Nullmailer 234-237

O
open-source 18, 19-20, 53, 56-57, 168, 173, 256, 288

Open Source Definition 20

OpenSSH 37-38, 60-61, 69, 107

OpenVPN 295, 296, 299

OpenZWave 168, 173, 187

P
Pagekite 293-294

Paho MQTT 103, 185, 186, 201, 203, 278

passwordless logins 109-111

password manager 64-65

Philips Hue 21, 25, 188-189, 202

physical isolation 55

pip 43-45, 52, 77, 78, 97, 143, 146, 147

PiVPN 299-305

port forwarding 289, 299

Postfix 234, 237, 239

presence detection 24, 152, 156

principle of least privilege 54, 55, 62, 78, 88

public-key authentication 109-111

Control Your Home with Raspberry Pi

● 330

PubSubClient 104

push notifications 25, 225, 234, 241-248, 255

R
Raspberry Pi Camera Module 31, 122, 123, 316

Raspberry Pi models 27-30, 51, 137, 261, 268, 315, 316

RaZberry 171-172, 313, 314

Realtek RTL2832 158, 160

remote access 51, 242, 289-305

ReSpeaker 2 Mics pHAT 257-258, 262, 268-269

reverse proxy 126, 174, 194, 317-323

Rhasspy 15, 133, 256-288, 323, 326

rtl_433 160-166, 323

RTL-SDR 158-166

S
self-hosted system 22, 256

serial devices 312

Shelly devices 103, 117-118, 133

smart assistant 15

smart speaker 22

SMTP relay 237

SNMP 111-116

snmpget 113-116

snmpwalk 112-115

software-defined radio 158

Sonoff devices 56, 103, 133

speech to text 264, 270-271

SPIN 57

SSH 37-38, 60-62, 65, 105-111, 295

SSL 66, 94, 210, 242, 319

T
TCP/IP 105, 133

terminal multiplexer 40, 51

text to speech 88, 263-264, 270, 280, 286, 287

TLS 55, 66-72, 86-87, 90-104, 151, 165, 177-178, 197, 210, 220-221, 229, 235, 239, 245-246, 250-251, 290-292, 293-294, 296, 306,

317-323, 325

tmux 40-43, 51, 85, 90

U
UART 138, 171-172, 312-314

ufw 59-62

unattended-upgrades 74-75

unencrypted MQTT 99, 101, 177, 323

Universally Unique Identifier 136

Index

● 331

updates 55, 56, 59, 72-78, 255, 298, 310

user interface 15, 16, 18, 33, 215

user management 53

V
venv 44-45, 99, 143, 147

video surveillance 121-133

virtual environment 44-45, 77, 99, 143, 146, 147, 260, 280

virtual private network 289, 295

VLAN 57-58, 78

voice assistant 15, 133, 256, 262, 263, 267, 287, 288, 306

voice control 88, 256, 257, 267, 278, 287, 310

W
Wake-on-LAN 105-106

wake word 22, 261, 263, 265, 266, 267, 268, 269, 271, 273, 274, 288

WebSocket 83, 84, 86, 87, 90, 100, 101, 133, 241, 242, 247, 255, 278, 282, 283, 319, 325

Wi-Fi 27, 29-31, 35-36, 37, 56-58, 59, 65, 103-104, 105-106, 117-118, 153, 156, 168, 188, 194, 302, 312-314

wildcards 82, 89, 94, 103

WireGuard 295-296, 298-305

wireless ad hoc network 169, 189

Y
yamllint 50

Z
Zigbee 18, 19, 188-202, 223, 252, 312, 313

Zigbee2mqtt 19, 189, 192-202, 223, 252, 254

Zigbee2MqttAssistant 193-202

Zigbee Alliance 188

Zigbee and Wi-Fi coexistence 188

Zigbee coordinator 189, 193, 199, 202

zigpy 202

Z-Stick 172-173, 312

Zwave2Mqtt 169, 173-187, 317, 320-322

Z-Wave 168-187

Z-Wave Alliance 168

Z-Wave controller 170-173, 186

Z-Wave nodes 170-173, 178-180

Z-Wave transceivers 172

Control Your Home with Raspberry Pi

● 332

books books

C
ontrol Your H

om
e w

ith Raspberry Pi • Koen Vervloesem

Koen Vervloesem

Control Your Home
with Raspberry Pi

Control Your Home
with Raspberry Pi

Koen Vervloesem has been
writing for over 20 years on Linux,
open-source software, security, home
automation, AI, and programming. He
holds a Master‘s degree in Computer
Science Engineering, a Master’s
degree in Philosophy and an LPIC-3
303 Security certificate. He is editor-
in-chief of the Dutch MagPi magazine
and is a board member of the Belgian
privacy activist organization, the
Ministry of Privacy.

Ever since the Raspberry Pi was introduced, it has been used by enthusi-
asts to automate their homes. The Raspberry Pi is a powerful computer in
a small package, with lots of interfacing options to control various devices.
This book shows you how you can automate your home with a Raspberry
Pi. You’ll learn how to use various wireless protocols for home automation,
such as Bluetooth, 433.92 MHz radio waves, Z-Wave, and Zigbee. Soon
you’ll automate your home with Python, Node-RED, and Home Assis-
tant, and you’ll even be able to speak to your home automation system.
All this is done securely, with a modular system, completely open-source,
without relying on third-party services. You’re in control of your home,
and no one else.

At the end of this book, you can install and configure your Raspberry Pi as
a highly flexible home automation gateway for protocols of your choice,
and link various services with MQTT to make it your own system. This
DIY (do it yourself) approach is a bit more laborious than just installing
an o� -the-shelf home automation system, but in the process, you can
learn a lot, and in the end, you know exactly what’s running your house
and how to tweak it. This is why you were interested in the Raspberry Pi
in the first place, right?

> Turn your Raspberry Pi into a reliable gateway for various home
automation protocols.

> Make your home automation setup reproducible with Docker
Compose.

> Secure all your network communication with TLS.
> Create a video surveillance system for your home.
> Automate your home with Python, Node-RED, Home Assistant and

AppDaemon.
> Securely access your home automation dashboard from remote

locations.
> Use fully o� line voice commands in your own language. Elektor International Media BV

www.elektor.com

Secure, Modular, Open-Source and Self-Suffi cient

Koen Vervloesem

Control Your Home
with Raspberry Pi
Secure, Modular, Open-Source

 and Self-Suffi cient

	Table of Contents
	Preface
	Chapter 1 • Introduction
	1.1 What is home automation?
	1.2 Why use a Raspberry Pi as a home automation gateway?
	1.3 The properties of a good home automation system
	1.3.1 Secure
	1.3.2 Modular
	1.3.3 Open-Source
	1.3.4 Self-sufficient

	1.4 How to use this book
	1.5 Summary and further exploration

	Chapter 2 • The Raspberry Pi as a home automation gateway
	2.1 Which Raspberry Pi models are suitable for home automation?
	2.2 Requirements for a reliable home automation gateway
	2.3 Installing Raspberry Pi OS
	2.4 Setting up network connectivity with Ethernet or Wi-Fi
	2.4.1 Ethernet
	2.4.2 Wi-Fi
	2.4.3 Setting a fixed IP address

	2.5 Remote access using SSH
	2.5.1 Enabling the SSH server
	2.5.2 Connecting with the SSH client

	2.6 Basic setup
	2.7 The tmux terminal multiplexer
	2.7.1 The basics of tmux: windows
	2.7.2 Working with tmux sessions
	2.7.3 Seeing more at the same time with panes
	2.7.4 Copying and pasting text

	2.8 Python
	2.8.1 Virtual environments
	2.8.2 Package requirements

	2.9 Docker
	2.9.2 Installing Docker Compose
	2.9.3 Creating a Docker Compose YAML file

	2.10 Summary and further exploration

	Chapter 3 • Secure your home automation system
	3.1 Some general computer security principles
	3.2 Isolate your home automation devices
	3.2.1 Physical isolation
	3.2.2 VLANs
	3.2.3 Firewalls

	3.3 User management
	3.3.1 Permissions
	3.3.2 Passwords
	3.3.3 Lifecycle

	3.4 Encryption
	3.4.1 Your threat model
	3.4.2 TLS
	3.4.3 Setting up your own CA with mkcert
	3.4.4 Creating a CA
	3.4.5 Creating and signing a certificate
	3.4.6 Keeping your root CA key secure

	3.5 Keeping your software up-to-date
	3.5.1 Update apt packages
	3.5.2 Update Docker images
	3.5.3 Update pip packages
	3.5.4 Update manually installed packages
	3.5.5 Update your home automation devices

	3.6 Summary and further exploration

	Chapter 4 • MQTT (Message Queuing Telemetry Transport)
	4.1 What is MQTT?
	4.1.1 Central intermediary
	4.1.2 Hierarchical names
	4.1.3 Using wildcards

	4.2 Installing and configuring the Mosquitto MQTT broker
	4.2.1 A basic Mosquitto setup
	4.2.2 Testing your setup with the Mosquitto clients
	4.2.3 A secure Mosquitto setup
	4.2.4 Testing your secure setup with the Mosquitto clients
	4.2.5 Default options for Mosquitto clients

	4.3 Using graphical MQTT clients
	4.3.1 MQTT.fx
	4.3.2 MQTT Explorer

	4.4 Using MQTT in Python
	4.5 Direct communication between other containers and Mosquitto
	4.6 Summary and further exploration

	Chapter 5 • TCP/IP
	5.1 Wake other network devices
	5.2 Remote control with SSH
	5.2.1 Run commands on other devices
	5.2.2 Secure passwordless logins using SSH keys

	5.3 Collecting information from devices using SNMP
	5.3.1 Walking through the MIB tree
	5.3.2 Collecting your router's version using SNMP
	5.3.3 Collecting your printer's ink levels

	5.4 Using devices with a HTTP/REST API
	5.4.1 Setting up a Shelly device for secure remote control
	5.4.2 Using Shelly's HTTP API with curl
	5.4.3 Using the HTTP API in Python

	5.5 Creating a video surveillance system
	5.5.1 Turn your Raspberry Pi into an IP camera
	5.5.2 Turn your Raspberry Pi into a camera controller
	5.5.3 Viewing your remote cameras
	5.5.4 Motion detection
	5.5.5 Notifications on motion

	5.6 Summary and further exploration

	Chapter 6 • Bluetooth
	6.1 An introduction to Bluetooth Low Energy
	6.1.1 Broadcasting data
	6.1.2 Connecting to services

	6.2 Enabling Bluetooth
	6.3 Investigating Bluetooth Low Energy devices
	6.3.1 Scanning for Bluetooth Low Energy devices
	6.3.2 Dumping raw Bluetooth broadcast data
	6.3.3 Discovering device characteristics
	6.3.4 Reading device characteristics

	6.4 Reading BLE sensor values in Python
	6.4.1 RuuviTag Sensor
	6.4.2 Miflora

	6.5 Relaying Bluetooth sensor values with bt-mqtt-gateway
	6.5.1 Configuring bt-mqtt-gateway
	6.5.2 Running bt-mqtt-gateway

	6.6 Presence detection with Bluetooth
	6.6.1 Presence detection with monitor.sh
	6.6.2 Configuring and running monitor.sh
	6.6.3 Trigger arrival and departure scans in monitor.sh

	6.7 Summary and further exploration

	Chapter 7 • 433.92 MHz
	7.1 433.92 MHz protocols
	7.2 Hardware requirements
	7.2.1 Receiver
	7.2.2 Antenna

	7.3 Receiving sensor values with rtl_433
	7.3.1 Installing rtl_433toMQTT
	7.3.2 Configuring rtl_433

	7.4 Publishing 433.92 MHz sensor values to MQTT
	7.5 Summary and further exploration

	Chapter 8 • Z-Wave
	8.1 An introduction to Z-Wave
	8.1.1 The specification
	8.1.2 How does Z-Wave work?

	8.2 Choosing a Z-Wave transceiver
	8.2.1 Transceiver on the GPIO header: RaZberry
	8.2.2 USB Transceiver

	8.3 OpenZWave and Zwave2Mqtt
	8.3.1 Installing Zwave2Mqtt
	8.3.2 Configuring Zwave2Mqtt
	8.3.3 Using the Zwave2Mqtt Control Panel

	8.4 Using your Z-Wave devices with MQTT
	8.4.1 Reading sensor values
	8.4.2 Controlling switches

	8.5 Summary and further exploration

	Chapter 9 • Zigbee
	9.1 An introduction to Zigbee
	9.1.1 The specification
	9.1.2 How does Zigbee work?

	9.2 Creating a Zigbee transceiver
	9.2.1 Connect the downloader cable
	9.2.2 Install the flashing software
	9.2.3 Flash the firmware

	9.3 Zigbee2mqtt and Zigbee2MqttAssistant
	9.3.1 Connecting the CC2531
	9.3.2 Installing Zigbee2mqtt and Zigbee2MqttAssistant
	9.3.3 Configuring Zigbee2mqtt and Zigbee2MqttAssistant
	9.3.4 Using Zigbee2MqttAssistant

	9.4 Using our Zigbee devices with MQTT
	9.4.1 Reading sensor values
	9.4.2 Controlling switches

	9.5 Summary and further exploration

	Chapter 10 • Automating your home
	10.1 Node-RED
	10.1.1 Installing Node-RED
	10.1.2 Adding authentication to Node-RED
	10.1.3 Using Node-RED over HTTPS
	10.1.4 Creating Node-RED flows
	10.1.5 Installing extra nodes in Node-RED
	10.1.6 Creating a dashboard in Node-RED

	10.2 Home Assistant
	10.2.2 Integrating MQTT
	10.2.3 Creating automation rules

	10.3 AppDaemon
	10.3.1 Installing AppDaemon
	10.3.2 Creating an AppDaemon app with MQTT: the time
	10.3.3 Creating an AppDaemon app with MQTT: garage door alert

	10.4 Summary and further exploration

	Chapter 11 • Notifications
	11.1 Forwarding local email
	11.1.1 Installing Nullmailer
	11.1.2 Testing Nullmailer
	11.1.3 Using Nullmailer

	11.2 Forwarding emails from Docker containers
	11.2.1 Installing docker-postfix
	11.2.2 Sending emails to docker-postfix

	11.3 Push notifications with Gotify
	11.3.1 Installing the Gotify server
	11.3.2 Adding applications to Gotify
	11.3.3 Using Gotify applications
	11.3.4 Using Gotify clients

	11.4 Notifications on receiving MQTT messages
	11.4.1 Installing mqttwarn
	11.4.2 Sending emails with mqttwarn
	11.4.3 Transforming and filtering payloads

	11.5 Summary and further exploration

	Chapter 12 • Voice control
	12.1 A basic Rhasspy setup
	12.1.1 Hardware requirements
	12.1.2 Configure audio hardware
	12.1.3 Installing Rhasspy
	12.1.4 Rhasspy's settings
	12.1.5 Configuring audio
	12.1.6 Configuring the wake word
	12.1.7 Configuring text to speech
	12.1.8 Configuring speech to text
	12.1.9 Configuring intent recognition
	12.1.10 Configuring dialogue management
	12.1.11 Testing your Rhasspy setup

	12.2 A Rhasspy base with satellites
	12.2.1 Hardware requirements
	12.2.2 Setting up the satellites
	12.2.3 Setting up the base
	12.2.4 Testing your base and satellites
	12.2.5 Enable UDP audio streaming

	12.3 Train your sentences
	12.3.1 Rhasspy's template language
	12.3.2 Slots

	12.4 Intent handling
	12.4.1 Intent handling with MQTT
	12.4.2 Intent handling with AppDaemon and MQTT
	12.4.3 Intent handling with WebSocket in Node-RED

	12.5 Summary and further exploration

	Chapter 13 • Remote access
	13.1 Three ways for remote access
	13.1.1 Port forwarding
	13.1.2 A localhost tunneling solution�

	13.2 Updating your dynamic DNS with ddclient
	13.3 Running WireGuard on your Raspberry Pi
	13.3.1 Installing PiVPN
	13.3.2 Adding a VPN client
	13.3.3 Connecting with a VPN client
	13.3.4 Managing your VPN clients

	13.4 Summary and further exploration

	Chapter 14 • Conclusion
	14.1 A dashboard for all your services
	14.2 More about home automation

	Chapter 15 • Appendix
	15.1 Getting the name and ID of a serial device
	15.2 Switching USB ports
	15.3 Disabling the onboard radio chips
	15.3.1 Disabling onboard Bluetooth
	15.3.2 Disabling onboard Wi-Fi

	15.4 Disabling the on-board LEDs
	15.4.1 Raspberry Pi Zero (W)
	15.4.2 The big Raspberry Pi models
	15.4.3 Ethernet models
	15.4.4 Raspberry Pi Camera Module

	15.5 Securing insecure web services with a reverse proxy
	15.5.1 Using nginx as a reverse proxy with HTTPS
	15.5.2 Adding basic authentication to nginx

	15.6 Bridging two MQTT brokers securely

	Index

