
15.11. curses — Terminal handling for
character-cell displays

Changed in version 1.6: Added support for the ncurses library and converted to a
package.

The curses module provides an interface to the curses library, the de-facto standard for
portable advanced terminal handling.

While curses is most widely used in the Unix environment, versions are available for DOS,
OS/2, and possibly other systems as well. This extension module is designed to match
the API of ncurses, an open-source curses library hosted on Linux and the BSD variants of
Unix.

Note: Since version 5.4, the ncurses library decides how to interpret non-ASCII data
using the nl_langinfo function. That means that you have to call locale.setlocale() in
the application and encode Unicode strings using one of the system’s available
encodings. This example uses the system’s default encoding:

Then use code as the encoding for str.encode() calls.

See also:

Module curses.ascii

Utilities for working with ASCII characters, regardless of your locale settings.

Module curses.panel

A panel stack extension that adds depth to curses windows.

Module curses.textpad

Editable text widget for curses supporting Emacs-like bindings.

Curses Programming with Python

Tutorial material on using curses with Python, by Andrew Kuchling and Eric
Raymond.

The Demo/curses/ directory in the Python source distribution contains some example
programs using the curses bindings provided by this module.

15.11.1. Functions

The module curses defines the following exception:

import locale
locale.setlocale(locale.LC_ALL, '')
code = locale.getpreferredencoding()

exception curses.error
Exception raised when a curses library function returns an error.

Note: Whenever x or y arguments to a function or a method are optional, they
default to the current cursor location. Whenever attr is optional, it defaults to A_NORMAL.

The module curses defines the following functions:

curses.baudrate()

Return the output speed of the terminal in bits per second. On software terminal
emulators it will have a fixed high value. Included for historical reasons; in former
times, it was used to write output loops for time delays and occasionally to change
interfaces depending on the line speed.

curses.beep()

Emit a short attention sound.

curses.can_change_color()

Return True or False, depending on whether the programmer can change the colors
displayed by the terminal.

curses.cbreak()

Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line
buffering is turned off and characters are available to be read one by one. However,
unlike raw mode, special characters (interrupt, quit, suspend, and flow control) retain
their effects on the tty driver and calling program. Calling first raw() then cbreak()
leaves the terminal in cbreak mode.

curses.color_content(color_number)

Return the intensity of the red, green, and blue (RGB) components in the color
color_number, which must be between 0 and COLORS. A 3-tuple is returned,
containing the R,G,B values for the given color, which will be between 0 (no
component) and 1000 (maximum amount of component).

curses.color_pair(color_number)

Return the attribute value for displaying text in the specified color. This attribute
value can be combined with A_STANDOUT, A_REVERSE, and the other A_* attributes.
pair_number() is the counterpart to this function.

curses.curs_set(visibility)

Set the cursor state. visibility can be set to 0, 1, or 2, for invisible, normal, or very
visible. If the terminal supports the visibility requested, the previous cursor state is
returned; otherwise, an exception is raised. On many terminals, the “visible” mode is
an underline cursor and the “very visible” mode is a block cursor.

curses.def_prog_mode()

Save the current terminal mode as the “program” mode, the mode when the running

program is using curses. (Its counterpart is the “shell” mode, for when the program
is not in curses.) Subsequent calls to reset_prog_mode() will restore this mode.

curses.def_shell_mode()

Save the current terminal mode as the “shell” mode, the mode when the running
program is not using curses. (Its counterpart is the “program” mode, when the
program is using curses capabilities.) Subsequent calls to reset_shell_mode() will
restore this mode.

curses.delay_output(ms)

Insert an ms millisecond pause in output.

curses.doupdate()

Update the physical screen. The curses library keeps two data structures, one
representing the current physical screen contents and a virtual screen representing
the desired next state. The doupdate() ground updates the physical screen to match
the virtual screen.

The virtual screen may be updated by a noutrefresh() call after write operations
such as addstr() have been performed on a window. The normal refresh() call is
simply noutrefresh() followed by doupdate(); if you have to update multiple
windows, you can speed performance and perhaps reduce screen flicker by issuing
noutrefresh() calls on all windows, followed by a single doupdate().

curses.echo()

Enter echo mode. In echo mode, each character input is echoed to the screen as it is
entered.

curses.endwin()

De-initialize the library, and return terminal to normal status.

curses.erasechar()

Return the user’s current erase character. Under Unix operating systems this is a
property of the controlling tty of the curses program, and is not set by the curses
library itself.

curses.filter()

The filter() routine, if used, must be called before initscr() is called. The effect is
that, during those calls, LINES is set to 1; the capabilities clear, cup, cud, cud1, cuu1,
cuu, vpa are disabled; and the home string is set to the value of cr. The effect is that
the cursor is confined to the current line, and so are screen updates. This may be
used for enabling character-at-a-time line editing without touching the rest of the
screen.

curses.flash()

Flash the screen. That is, change it to reverse-video and then change it back in a
short interval. Some people prefer such as ‘visible bell’ to the audible attention
signal produced by beep().

curses.flushinp()

Flush all input buffers. This throws away any typeahead that has been typed by the
user and has not yet been processed by the program.

curses.getmouse()

After getch() returns KEY_MOUSE to signal a mouse event, this method should be call
to retrieve the queued mouse event, represented as a 5-tuple (id, x, y, z, bstate).
id is an ID value used to distinguish multiple devices, and x, y, z are the event’s
coordinates. (z is currently unused.) bstate is an integer value whose bits will be set
to indicate the type of event, and will be the bitwise OR of one or more of the
following constants, where n is the button number from 1 to 4: BUTTONn_PRESSED,
BUTTONn_RELEASED, BUTTONn_CLICKED, BUTTONn_DOUBLE_CLICKED, BUTTONn_TRIPLE_CLICKED,
BUTTON_SHIFT, BUTTON_CTRL, BUTTON_ALT.

curses.getsyx()

Return the current coordinates of the virtual screen cursor in y and x. If leaveok is
currently true, then -1,-1 is returned.

curses.getwin(file)

Read window related data stored in the file by an earlier putwin() call. The routine
then creates and initializes a new window using that data, returning the new window
object.

curses.has_colors()

Return True if the terminal can display colors; otherwise, return False.

curses.has_ic()

Return True if the terminal has insert- and delete-character capabilities. This function
is included for historical reasons only, as all modern software terminal emulators
have such capabilities.

curses.has_il()

Return True if the terminal has insert- and delete-line capabilities, or can simulate
them using scrolling regions. This function is included for historical reasons only, as
all modern software terminal emulators have such capabilities.

curses.has_key(ch)

Take a key value ch, and return True if the current terminal type recognizes a key
with that value.

curses.halfdelay(tenths)

Used for half-delay mode, which is similar to cbreak mode in that characters typed
by the user are immediately available to the program. However, after blocking for
tenths tenths of seconds, an exception is raised if nothing has been typed. The value
of tenths must be a number between 1 and 255. Use nocbreak() to leave half-delay
mode.

curses.init_color(color_number, r, g, b)

Change the definition of a color, taking the number of the color to be changed
followed by three RGB values (for the amounts of red, green, and blue components).
The value of color_number must be between 0 and COLORS. Each of r, g, b, must be a
value between 0 and 1000. When init_color() is used, all occurrences of that color
on the screen immediately change to the new definition. This function is a no-op on
most terminals; it is active only if can_change_color() returns 1.

curses.init_pair(pair_number, fg, bg)

Change the definition of a color-pair. It takes three arguments: the number of the
color-pair to be changed, the foreground color number, and the background color
number. The value of pair_number must be between 1 and COLOR_PAIRS - 1 (the 0
color pair is wired to white on black and cannot be changed). The value of fg and bg
arguments must be between 0 and COLORS. If the color-pair was previously initialized,
the screen is refreshed and all occurrences of that color-pair are changed to the new
definition.

curses.initscr()

Initialize the library. Return a WindowObject which represents the whole screen.

Note: If there is an error opening the terminal, the underlying curses library may
cause the interpreter to exit.

curses.is_term_resized(nlines, ncols)

Return True if resize_term() would modify the window structure, False otherwise.

curses.isendwin()

Return True if endwin() has been called (that is, the curses library has been
deinitialized).

curses.keyname(k)

Return the name of the key numbered k. The name of a key generating printable
ASCII character is the key’s character. The name of a control-key combination is a
two-character string consisting of a caret followed by the corresponding printable
ASCII character. The name of an alt-key combination (128-255) is a string consisting
of the prefix ‘M-‘ followed by the name of the corresponding ASCII character.

curses.killchar()

Return the user’s current line kill character. Under Unix operating systems this is a
property of the controlling tty of the curses program, and is not set by the curses
library itself.

curses.longname()

Return a string containing the terminfo long name field describing the current
terminal. The maximum length of a verbose description is 128 characters. It is
defined only after the call to initscr().

curses.meta(yes)

If yes is 1, allow 8-bit characters to be input. If yes is 0, allow only 7-bit chars.

curses.mouseinterval(interval)

Set the maximum time in milliseconds that can elapse between press and release
events in order for them to be recognized as a click, and return the previous interval
value. The default value is 200 msec, or one fifth of a second.

curses.mousemask(mousemask)

Set the mouse events to be reported, and return a tuple (availmask, oldmask).
availmask indicates which of the specified mouse events can be reported; on
complete failure it returns 0. oldmask is the previous value of the given window’s
mouse event mask. If this function is never called, no mouse events are ever
reported.

curses.napms(ms)

Sleep for ms milliseconds.

curses.newpad(nlines, ncols)

Create and return a pointer to a new pad data structure with the given number of
lines and columns. A pad is returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not
necessarily associated with a particular part of the screen. Pads can be used when a
large window is needed, and only a part of the window will be on the screen at one
time. Automatic refreshes of pads (such as from scrolling or echoing of input) do not
occur. The refresh() and noutrefresh() methods of a pad require 6 arguments to
specify the part of the pad to be displayed and the location on the screen to be used
for the display. The arguments are pminrow, pmincol, sminrow, smincol, smaxrow,
smaxcol; the p arguments refer to the upper left corner of the pad region to be
displayed and the s arguments define a clipping box on the screen within which the
pad region is to be displayed.

curses.newwin(nlines, ncols)
curses.newwin(nlines, ncols, begin_y, begin_x)

Return a new window, whose left-upper corner is at (begin_y, begin_x), and whose
height/width is nlines/ncols.

By default, the window will extend from the specified position to the lower right
corner of the screen.

curses.nl()

Enter newline mode. This mode translates the return key into newline on input, and
translates newline into return and line-feed on output. Newline mode is initially on.

curses.nocbreak()

Leave cbreak mode. Return to normal “cooked” mode with line buffering.

curses.noecho()

Leave echo mode. Echoing of input characters is turned off.

curses.nonl()

Leave newline mode. Disable translation of return into newline on input, and disable
low-level translation of newline into newline/return on output (but this does not
change the behavior of addch('\n'), which always does the equivalent of return and
line feed on the virtual screen). With translation off, curses can sometimes speed up
vertical motion a little; also, it will be able to detect the return key on input.

curses.noqiflush()

When the noqiflush() routine is used, normal flush of input and output queues
associated with the INTR, QUIT and SUSP characters will not be done. You may want
to call noqiflush() in a signal handler if you want output to continue as though the
interrupt had not occurred, after the handler exits.

curses.noraw()

Leave raw mode. Return to normal “cooked” mode with line buffering.

curses.pair_content(pair_number)

Return a tuple (fg, bg) containing the colors for the requested color pair. The value
of pair_number must be between 1 and COLOR_PAIRS - 1.

curses.pair_number(attr)

Return the number of the color-pair set by the attribute value attr. color_pair() is
the counterpart to this function.

curses.putp(string)

Equivalent to tputs(str, 1, putchar); emit the value of a specified terminfo
capability for the current terminal. Note that the output of putp() always goes to
standard output.

curses.qiflush([flag])

If flag is False, the effect is the same as calling noqiflush(). If flag is True, or no
argument is provided, the queues will be flushed when these control characters are
read.

curses.raw()

Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit,
suspend, and flow control keys are turned off; characters are presented to curses
input functions one by one.

curses.reset_prog_mode()

Restore the terminal to “program” mode, as previously saved by def_prog_mode().

curses.reset_shell_mode()

Restore the terminal to “shell” mode, as previously saved by def_shell_mode().

curses.resetty()

Restore the state of the terminal modes to what it was at the last call to savetty().

curses.resize_term(nlines, ncols)

Backend function used by resizeterm(), performing most of the work; when resizing
the windows, resize_term() blank-fills the areas that are extended. The calling
application should fill in these areas with appropriate data. The resize_term()
function attempts to resize all windows. However, due to the calling convention of
pads, it is not possible to resize these without additional interaction with the
application.

curses.resizeterm(nlines, ncols)

Resize the standard and current windows to the specified dimensions, and adjusts
other bookkeeping data used by the curses library that record the window
dimensions (in particular the SIGWINCH handler).

curses.savetty()

Save the current state of the terminal modes in a buffer, usable by resetty().

curses.setsyx(y, x)

Set the virtual screen cursor to y, x. If y and x are both -1, then leaveok is set.

curses.setupterm([termstr, fd])

Initialize the terminal. termstr is a string giving the terminal name; if omitted, the
value of the TERM environment variable will be used. fd is the file descriptor to which
any initialization sequences will be sent; if not supplied, the file descriptor for
sys.stdout will be used.

curses.start_color()

Must be called if the programmer wants to use colors, and before any other color
manipulation routine is called. It is good practice to call this routine right after
initscr().

start_color() initializes eight basic colors (black, red, green, yellow, blue, magenta,
cyan, and white), and two global variables in the curses module, COLORS and
COLOR_PAIRS, containing the maximum number of colors and color-pairs the terminal
can support. It also restores the colors on the terminal to the values they had when
the terminal was just turned on.

curses.termattrs()

Return a logical OR of all video attributes supported by the terminal. This information
is useful when a curses program needs complete control over the appearance of the
screen.

curses.termname()

Return the value of the environment variable TERM, truncated to 14 characters.

curses.tigetflag(capname)

Return the value of the Boolean capability corresponding to the terminfo capability
name capname. The value -1 is returned if capname is not a Boolean capability, or 0
if it is canceled or absent from the terminal description.

curses.tigetnum(capname)

Return the value of the numeric capability corresponding to the terminfo capability
name capname. The value -2 is returned if capname is not a numeric capability, or
-1 if it is canceled or absent from the terminal description.

curses.tigetstr(capname)

Return the value of the string capability corresponding to the terminfo capability
name capname. None is returned if capname is not a string capability, or is canceled
or absent from the terminal description.

curses.tparm(str[, ...])

Instantiate the string str with the supplied parameters, where str should be a
parameterized string obtained from the terminfo database. E.g.
tparm(tigetstr("cup"), 5, 3) could result in '\033[6;4H', the exact result depending
on terminal type.

curses.typeahead(fd)

Specify that the file descriptor fd be used for typeahead checking. If fd is -1, then no
typeahead checking is done.

The curses library does “line-breakout optimization” by looking for typeahead
periodically while updating the screen. If input is found, and it is coming from a tty,
the current update is postponed until refresh or doupdate is called again, allowing
faster response to commands typed in advance. This function allows specifying a
different file descriptor for typeahead checking.

curses.unctrl(ch)

Return a string which is a printable representation of the character ch. Control
characters are displayed as a caret followed by the character, for example as ^C.
Printing characters are left as they are.

curses.ungetch(ch)

Push ch so the next getch() will return it.

Note: Only one ch can be pushed before getch() is called.

curses.ungetmouse(id, x, y, z, bstate)

Push a KEY_MOUSE event onto the input queue, associating the given state data with
it.

curses.use_env(flag)

If used, this function should be called before initscr() or newterm are called. When

flag is False, the values of lines and columns specified in the terminfo database will
be used, even if environment variables LINES and COLUMNS (used by default) are set,
or if curses is running in a window (in which case default behavior would be to use
the window size if LINES and COLUMNS are not set).

curses.use_default_colors()

Allow use of default values for colors on terminals supporting this feature. Use this to
support transparency in your application. The default color is assigned to the color
number -1. After calling this function, init_pair(x, curses.COLOR_RED, -1) initializes,
for instance, color pair x to a red foreground color on the default background.

curses.wrapper(func, ...)

Initialize curses and call another callable object, func, which should be the rest of
your curses-using application. If the application raises an exception, this function will
restore the terminal to a sane state before re-raising the exception and generating a
traceback. The callable object func is then passed the main window ‘stdscr’ as its
first argument, followed by any other arguments passed to wrapper(). Before calling
func, wrapper() turns on cbreak mode, turns off echo, enables the terminal keypad,
and initializes colors if the terminal has color support. On exit (whether normally or
by exception) it restores cooked mode, turns on echo, and disables the terminal
keypad.

15.11.2. Window Objects

Window objects, as returned by initscr() and newwin() above, have the following
methods:

window.addch(ch[, attr])

window.addch(y, x, ch[, attr])

Note: A character means a C character (an ASCII code), rather than a Python
character (a string of length 1). (This note is true whenever the documentation
mentions a character.) The built-in ord() is handy for conveying strings to codes.

Paint character ch at (y, x) with attributes attr, overwriting any character previously
painter at that location. By default, the character position and attributes are the
current settings for the window object.

window.addnstr(str, n[, attr])

window.addnstr(y, x, str, n[, attr])

Paint at most n characters of the string str at (y, x) with attributes attr, overwriting
anything previously on the display.

window.addstr(str[, attr])

window.addstr(y, x, str[, attr])

Paint the string str at (y, x) with attributes attr, overwriting anything previously on

the display.

window.attroff(attr)

Remove attribute attr from the “background” set applied to all writes to the current
window.

window.attron(attr)

Add attribute attr from the “background” set applied to all writes to the current
window.

window.attrset(attr)

Set the “background” set of attributes to attr. This set is initially 0 (no attributes).

window.bkgd(ch[, attr])

Set the background property of the window to the character ch, with attributes attr.
The change is then applied to every character position in that window:

The attribute of every character in the window is changed to the new
background attribute.
Wherever the former background character appears, it is changed to the new
background character.

window.bkgdset(ch[, attr])

Set the window’s background. A window’s background consists of a character and
any combination of attributes. The attribute part of the background is combined
(OR’ed) with all non-blank characters that are written into the window. Both the
character and attribute parts of the background are combined with the blank
characters. The background becomes a property of the character and moves with the
character through any scrolling and insert/delete line/character operations.

window.border([ls[, rs[, ts[, bs[, tl[, tr[, bl[, br]]]]]]]])

Draw a border around the edges of the window. Each parameter specifies the
character to use for a specific part of the border; see the table below for more
details. The characters can be specified as integers or as one-character strings.

Note: A 0 value for any parameter will cause the default character to be used for
that parameter. Keyword parameters can not be used. The defaults are listed in
this table:

Parameter Description Default value

ls Left side ACS_VLINE

rs Right side ACS_VLINE

ts Top ACS_HLINE

bs Bottom ACS_HLINE

tl Upper-left corner ACS_ULCORNER

Parameter Description Default value

tr Upper-right corner ACS_URCORNER

bl Bottom-left corner ACS_LLCORNER

br Bottom-right corner ACS_LRCORNER

window.box([vertch, horch])

Similar to border(), but both ls and rs are vertch and both ts and bs are horch. The
default corner characters are always used by this function.

window.chgat(attr)
window.chgat(num, attr)
window.chgat(y, x, attr)
window.chgat(y, x, num, attr)

Set the attributes of num characters at the current cursor position, or at position (y,
x) if supplied. If no value of num is given or num = -1, the attribute will be set on all
the characters to the end of the line. This function does not move the cursor. The
changed line will be touched using the touchline() method so that the contents will
be redisplayed by the next window refresh.

window.clear()

Like erase(), but also cause the whole window to be repainted upon next call to
refresh().

window.clearok(yes)

If yes is 1, the next call to refresh() will clear the window completely.

window.clrtobot()

Erase from cursor to the end of the window: all lines below the cursor are deleted,
and then the equivalent of clrtoeol() is performed.

window.clrtoeol()

Erase from cursor to the end of the line.

window.cursyncup()

Update the current cursor position of all the ancestors of the window to reflect the
current cursor position of the window.

window.delch([y, x])

Delete any character at (y, x).

window.deleteln()

Delete the line under the cursor. All following lines are moved up by one line.

window.derwin(begin_y, begin_x)
window.derwin(nlines, ncols, begin_y, begin_x)

An abbreviation for “derive window”, derwin() is the same as calling subwin(),

except that begin_y and begin_x are relative to the origin of the window, rather than
relative to the entire screen. Return a window object for the derived window.

window.echochar(ch[, attr])

Add character ch with attribute attr, and immediately call refresh() on the window.

window.enclose(y, x)

Test whether the given pair of screen-relative character-cell coordinates are enclosed
by the given window, returning True or False. It is useful for determining what subset
of the screen windows enclose the location of a mouse event.

window.erase()

Clear the window.

window.getbegyx()

Return a tuple (y, x) of co-ordinates of upper-left corner.

window.getbkgd()

Return the given window’s current background character/attribute pair.

window.getch([y, x])

Get a character. Note that the integer returned does not have to be in ASCII range:
function keys, keypad keys and so on return numbers higher than 256. In no-delay
mode, -1 is returned if there is no input, else getch() waits until a key is pressed.

window.getkey([y, x])

Get a character, returning a string instead of an integer, as getch() does. Function
keys, keypad keys and so on return a multibyte string containing the key name. In
no-delay mode, an exception is raised if there is no input.

window.getmaxyx()

Return a tuple (y, x) of the height and width of the window.

window.getparyx()

Return the beginning coordinates of this window relative to its parent window into
two integer variables y and x. Return -1, -1 if this window has no parent.

window.getstr([y, x])

Read a string from the user, with primitive line editing capacity.

window.getyx()

Return a tuple (y, x) of current cursor position relative to the window’s upper-left
corner.

window.hline(ch, n)
window.hline(y, x, ch, n)

Display a horizontal line starting at (y, x) with length n consisting of the character

ch.

window.idcok(flag)

If flag is False, curses no longer considers using the hardware insert/delete character
feature of the terminal; if flag is True, use of character insertion and deletion is
enabled. When curses is first initialized, use of character insert/delete is enabled by
default.

window.idlok(yes)

If called with yes equal to 1, curses will try and use hardware line editing facilities.
Otherwise, line insertion/deletion are disabled.

window.immedok(flag)

If flag is True, any change in the window image automatically causes the window to
be refreshed; you no longer have to call refresh() yourself. However, it may degrade
performance considerably, due to repeated calls to wrefresh. This option is disabled
by default.

window.inch([y, x])

Return the character at the given position in the window. The bottom 8 bits are the
character proper, and upper bits are the attributes.

window.insch(ch[, attr])

window.insch(y, x, ch[, attr])

Paint character ch at (y, x) with attributes attr, moving the line from position x right
by one character.

window.insdelln(nlines)

Insert nlines lines into the specified window above the current line. The nlines bottom
lines are lost. For negative nlines, delete nlines lines starting with the one under the
cursor, and move the remaining lines up. The bottom nlines lines are cleared. The
current cursor position remains the same.

window.insertln()

Insert a blank line under the cursor. All following lines are moved down by one line.

window.insnstr(str, n[, attr])

window.insnstr(y, x, str, n[, attr])

Insert a character string (as many characters as will fit on the line) before the
character under the cursor, up to n characters. If n is zero or negative, the entire
string is inserted. All characters to the right of the cursor are shifted right, with the
rightmost characters on the line being lost. The cursor position does not change
(after moving to y, x, if specified).

window.insstr(str[, attr])

window.insstr(y, x, str[, attr])

Insert a character string (as many characters as will fit on the line) before the
character under the cursor. All characters to the right of the cursor are shifted right,
with the rightmost characters on the line being lost. The cursor position does not
change (after moving to y, x, if specified).

window.instr([n])

window.instr(y, x[, n])

Return a string of characters, extracted from the window starting at the current
cursor position, or at y, x if specified. Attributes are stripped from the characters. If n
is specified, instr() returns a string at most n characters long (exclusive of the
trailing NUL).

window.is_linetouched(line)

Return True if the specified line was modified since the last call to refresh();
otherwise return False. Raise a curses.error exception if line is not valid for the
given window.

window.is_wintouched()

Return True if the specified window was modified since the last call to refresh();
otherwise return False.

window.keypad(yes)

If yes is 1, escape sequences generated by some keys (keypad, function keys) will be
interpreted by curses. If yes is 0, escape sequences will be left as is in the input
stream.

window.leaveok(yes)

If yes is 1, cursor is left where it is on update, instead of being at “cursor position.”
This reduces cursor movement where possible. If possible the cursor will be made
invisible.

If yes is 0, cursor will always be at “cursor position” after an update.

window.move(new_y, new_x)

Move cursor to (new_y, new_x).

window.mvderwin(y, x)

Move the window inside its parent window. The screen-relative parameters of the
window are not changed. This routine is used to display different parts of the parent
window at the same physical position on the screen.

window.mvwin(new_y, new_x)

Move the window so its upper-left corner is at (new_y, new_x).

window.nodelay(yes)

If yes is 1, getch() will be non-blocking.

window.notimeout(yes)

If yes is 1, escape sequences will not be timed out.

If yes is 0, after a few milliseconds, an escape sequence will not be interpreted, and
will be left in the input stream as is.

window.noutrefresh()

Mark for refresh but wait. This function updates the data structure representing the
desired state of the window, but does not force an update of the physical screen. To
accomplish that, call doupdate().

window.overlay(destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])

Overlay the window on top of destwin. The windows need not be the same size, only
the overlapping region is copied. This copy is non-destructive, which means that the
current background character does not overwrite the old contents of destwin.

To get fine-grained control over the copied region, the second form of overlay() can
be used. sminrow and smincol are the upper-left coordinates of the source window,
and the other variables mark a rectangle in the destination window.

window.overwrite(destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow,

dmaxcol])

Overwrite the window on top of destwin. The windows need not be the same size, in
which case only the overlapping region is copied. This copy is destructive, which
means that the current background character overwrites the old contents of destwin.

To get fine-grained control over the copied region, the second form of overwrite()
can be used. sminrow and smincol are the upper-left coordinates of the source
window, the other variables mark a rectangle in the destination window.

window.putwin(file)

Write all data associated with the window into the provided file object. This
information can be later retrieved using the getwin() function.

window.redrawln(beg, num)

Indicate that the num screen lines, starting at line beg, are corrupted and should be
completely redrawn on the next refresh() call.

window.redrawwin()

Touch the entire window, causing it to be completely redrawn on the next refresh()
call.

window.refresh([pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol])

Update the display immediately (sync actual screen with previous drawing/deleting
methods).

The 6 optional arguments can only be specified when the window is a pad created

with newpad(). The additional parameters are needed to indicate what part of the pad
and screen are involved. pminrow and pmincol specify the upper left-hand corner of
the rectangle to be displayed in the pad. sminrow, smincol, smaxrow, and smaxcol
specify the edges of the rectangle to be displayed on the screen. The lower
right-hand corner of the rectangle to be displayed in the pad is calculated from the
screen coordinates, since the rectangles must be the same size. Both rectangles
must be entirely contained within their respective structures. Negative values of
pminrow, pmincol, sminrow, or smincol are treated as if they were zero.

window.resize(nlines, ncols)

Reallocate storage for a curses window to adjust its dimensions to the specified
values. If either dimension is larger than the current values, the window’s data is
filled with blanks that have the current background rendition (as set by bkgdset())
merged into them.

window.scroll([lines=1])

Scroll the screen or scrolling region upward by lines lines.

window.scrollok(flag)

Control what happens when the cursor of a window is moved off the edge of the
window or scrolling region, either as a result of a newline action on the bottom line,
or typing the last character of the last line. If flag is false, the cursor is left on the
bottom line. If flag is true, the window is scrolled up one line. Note that in order to
get the physical scrolling effect on the terminal, it is also necessary to call idlok().

window.setscrreg(top, bottom)

Set the scrolling region from line top to line bottom. All scrolling actions will take
place in this region.

window.standend()

Turn off the standout attribute. On some terminals this has the side effect of turning
off all attributes.

window.standout()

Turn on attribute A_STANDOUT.

window.subpad(begin_y, begin_x)
window.subpad(nlines, ncols, begin_y, begin_x)

Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and whose
width/height is ncols/nlines.

window.subwin(begin_y, begin_x)
window.subwin(nlines, ncols, begin_y, begin_x)

Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and whose
width/height is ncols/nlines.

By default, the sub-window will extend from the specified position to the lower right
corner of the window.

window.syncdown()

Touch each location in the window that has been touched in any of its ancestor
windows. This routine is called by refresh(), so it should almost never be necessary
to call it manually.

window.syncok(flag)

If called with flag set to True, then syncup() is called automatically whenever there is
a change in the window.

window.syncup()

Touch all locations in ancestors of the window that have been changed in the
window.

window.timeout(delay)

Set blocking or non-blocking read behavior for the window. If delay is negative,
blocking read is used (which will wait indefinitely for input). If delay is zero, then
non-blocking read is used, and -1 will be returned by getch() if no input is waiting. If
delay is positive, then getch() will block for delay milliseconds, and return -1 if there
is still no input at the end of that time.

window.touchline(start, count[, changed])

Pretend count lines have been changed, starting with line start. If changed is
supplied, it specifies whether the affected lines are marked as having been changed
(changed=1) or unchanged (changed=0).

window.touchwin()

Pretend the whole window has been changed, for purposes of drawing optimizations.

window.untouchwin()

Mark all lines in the window as unchanged since the last call to refresh().

window.vline(ch, n)
window.vline(y, x, ch, n)

Display a vertical line starting at (y, x) with length n consisting of the character ch.

15.11.3. Constants

The curses module defines the following data members:

curses.ERR
Some curses routines that return an integer, such as getch(), return ERR upon failure.

curses.OK
Some curses routines that return an integer, such as napms(), return OK upon
success.

curses.version

A string representing the current version of the module. Also available as
__version__.

Several constants are available to specify character cell attributes:

Attribute Meaning

A_ALTCHARSET Alternate character set mode.

A_BLINK Blink mode.

A_BOLD Bold mode.

A_DIM Dim mode.

A_NORMAL Normal attribute.

A_REVERSE Reverse background and foreground colors.

A_STANDOUT Standout mode.

A_UNDERLINE Underline mode.

Keys are referred to by integer constants with names starting with KEY_. The exact
keycaps available are system dependent.

Key constant Key

KEY_MIN Minimum key value

KEY_BREAK Break key (unreliable)

KEY_DOWN Down-arrow

KEY_UP Up-arrow

KEY_LEFT Left-arrow

KEY_RIGHT Right-arrow

KEY_HOME Home key (upward+left arrow)

KEY_BACKSPACE Backspace (unreliable)

KEY_F0 Function keys. Up to 64 function keys are supported.

KEY_Fn Value of function key n

KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert char or enter insert mode

KEY_EIC Exit insert char mode

KEY_CLEAR Clear screen

KEY_EOS Clear to end of screen

KEY_EOL Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backward (reverse)

KEY_NPAGE Next page

KEY_PPAGE Previous page

Key constant Key
KEY_STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB Clear all tabs

KEY_ENTER Enter or send (unreliable)

KEY_SRESET Soft (partial) reset (unreliable)

KEY_RESET Reset or hard reset (unreliable)

KEY_PRINT Print

KEY_LL Home down or bottom (lower left)

KEY_A1 Upper left of keypad

KEY_A3 Upper right of keypad

KEY_B2 Center of keypad

KEY_C1 Lower left of keypad

KEY_C3 Lower right of keypad

KEY_BTAB Back tab

KEY_BEG Beg (beginning)

KEY_CANCEL Cancel

KEY_CLOSE Close

KEY_COMMAND Cmd (command)

KEY_COPY Copy

KEY_CREATE Create

KEY_END End

KEY_EXIT Exit

KEY_FIND Find

KEY_HELP Help

KEY_MARK Mark

KEY_MESSAGE Message

KEY_MOVE Move

KEY_NEXT Next

KEY_OPEN Open

KEY_OPTIONS Options

KEY_PREVIOUS Prev (previous)

KEY_REDO Redo

KEY_REFERENCE Ref (reference)

KEY_REFRESH Refresh

KEY_REPLACE Replace

KEY_RESTART Restart

KEY_RESUME Resume

KEY_SAVE Save

Key constant Key
KEY_SBEG Shifted Beg (beginning)

KEY_SCANCEL Shifted Cancel

KEY_SCOMMAND Shifted Command

KEY_SCOPY Shifted Copy

KEY_SCREATE Shifted Create

KEY_SDC Shifted Delete char

KEY_SDL Shifted Delete line

KEY_SELECT Select

KEY_SEND Shifted End

KEY_SEOL Shifted Clear line

KEY_SEXIT Shifted Dxit

KEY_SFIND Shifted Find

KEY_SHELP Shifted Help

KEY_SHOME Shifted Home

KEY_SIC Shifted Input

KEY_SLEFT Shifted Left arrow

KEY_SMESSAGE Shifted Message

KEY_SMOVE Shifted Move

KEY_SNEXT Shifted Next

KEY_SOPTIONS Shifted Options

KEY_SPREVIOUS Shifted Prev

KEY_SPRINT Shifted Print

KEY_SREDO Shifted Redo

KEY_SREPLACE Shifted Replace

KEY_SRIGHT Shifted Right arrow

KEY_SRSUME Shifted Resume

KEY_SSAVE Shifted Save

KEY_SSUSPEND Shifted Suspend

KEY_SUNDO Shifted Undo

KEY_SUSPEND Suspend

KEY_UNDO Undo

KEY_MOUSE Mouse event has occurred

KEY_RESIZE Terminal resize event

KEY_MAX Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are
normally at least four function keys (KEY_F1, KEY_F2, KEY_F3, KEY_F4) available, and the
arrow keys mapped to KEY_UP, KEY_DOWN, KEY_LEFT and KEY_RIGHT in the obvious way. If
your machine has a PC keyboard, it is safe to expect arrow keys and twelve function keys

(older PC keyboards may have only ten function keys); also, the following keypad
mappings are standard:

Keycap Constant

Insert KEY_IC

Delete KEY_DC

Home KEY_HOME

End KEY_END

Page Up KEY_PPAGE

Page Down KEY_NPAGE

The following table lists characters from the alternate character set. These are inherited
from the VT100 terminal, and will generally be available on software emulations such as
X terminals. When there is no graphic available, curses falls back on a crude printable
ASCII approximation.

Note: These are available only after initscr() has been called.

ACS code Meaning

ACS_BBSS alternate name for upper right corner

ACS_BLOCK solid square block

ACS_BOARD board of squares

ACS_BSBS alternate name for horizontal line

ACS_BSSB alternate name for upper left corner

ACS_BSSS alternate name for top tee

ACS_BTEE bottom tee

ACS_BULLET bullet

ACS_CKBOARD checker board (stipple)

ACS_DARROW arrow pointing down

ACS_DEGREE degree symbol

ACS_DIAMOND diamond

ACS_GEQUAL greater-than-or-equal-to

ACS_HLINE horizontal line

ACS_LANTERN lantern symbol

ACS_LARROW left arrow

ACS_LEQUAL less-than-or-equal-to

ACS_LLCORNER lower left-hand corner

ACS_LRCORNER lower right-hand corner

ACS_LTEE left tee

ACS_NEQUAL not-equal sign

ACS_PI letter pi

ACS code Meaning
ACS_PLMINUS plus-or-minus sign

ACS_PLUS big plus sign

ACS_RARROW right arrow

ACS_RTEE right tee

ACS_S1 scan line 1

ACS_S3 scan line 3

ACS_S7 scan line 7

ACS_S9 scan line 9

ACS_SBBS alternate name for lower right corner

ACS_SBSB alternate name for vertical line

ACS_SBSS alternate name for right tee

ACS_SSBB alternate name for lower left corner

ACS_SSBS alternate name for bottom tee

ACS_SSSB alternate name for left tee

ACS_SSSS alternate name for crossover or big plus

ACS_STERLING pound sterling

ACS_TTEE top tee

ACS_UARROW up arrow

ACS_ULCORNER upper left corner

ACS_URCORNER upper right corner

ACS_VLINE vertical line

The following table lists the predefined colors:

Constant Color

COLOR_BLACK Black

COLOR_BLUE Blue

COLOR_CYAN Cyan (light greenish blue)

COLOR_GREEN Green

COLOR_MAGENTA Magenta (purplish red)

COLOR_RED Red

COLOR_WHITE White

COLOR_YELLOW Yellow

15.12. curses.textpad — Text input widget for
curses programs

New in version 1.6.

The curses.textpad module provides a Textbox class that handles elementary text editing

in a curses window, supporting a set of keybindings resembling those of Emacs (thus,
also of Netscape Navigator, BBedit 6.x, FrameMaker, and many other programs). The
module also provides a rectangle-drawing function useful for framing text boxes or for
other purposes.

The module curses.textpad defines the following function:

curses.textpad.rectangle(win, uly, ulx, lry, lrx)

Draw a rectangle. The first argument must be a window object; the remaining
arguments are coordinates relative to that window. The second and third arguments
are the y and x coordinates of the upper left hand corner of the rectangle to be
drawn; the fourth and fifth arguments are the y and x coordinates of the lower right
hand corner. The rectangle will be drawn using VT100/IBM PC forms characters on
terminals that make this possible (including xterm and most other software terminal
emulators). Otherwise it will be drawn with ASCII dashes, vertical bars, and plus
signs.

15.12.1. Textbox objects

You can instantiate a Textbox object as follows:

class curses.textpad.Textbox(win)

Return a textbox widget object. The win argument should be a curses WindowObject in
which the textbox is to be contained. The edit cursor of the textbox is initially located
at the upper left hand corner of the containing window, with coordinates (0, 0). The
instance’s stripspaces flag is initially on.

Textbox objects have the following methods:

edit([validator])

This is the entry point you will normally use. It accepts editing keystrokes until
one of the termination keystrokes is entered. If validator is supplied, it must be a
function. It will be called for each keystroke entered with the keystroke as a
parameter; command dispatch is done on the result. This method returns the
window contents as a string; whether blanks in the window are included is
affected by the stripspaces attribute.

do_command(ch)

Process a single command keystroke. Here are the supported special keystrokes:

Keystroke Action

Control-A Go to left edge of window.

Control-B Cursor left, wrapping to previous line if appropriate.

Control-D Delete character under cursor.

Control-E Go to right edge (stripspaces off) or end of line
(stripspaces on).

Keystroke Action

Control-F Cursor right, wrapping to next line when appropriate.

Control-G Terminate, returning the window contents.

Control-H Delete character backward.

Control-J Terminate if the window is 1 line, otherwise insert
newline.

Control-K If line is blank, delete it, otherwise clear to end of line.

Control-L Refresh screen.

Control-N Cursor down; move down one line.

Control-O Insert a blank line at cursor location.

Control-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is
not possible. The following synonyms are supported where possible:

Constant Keystroke

KEY_LEFT Control-B

KEY_RIGHT Control-F

KEY_UP Control-P

KEY_DOWN Control-N

KEY_BACKSPACE Control-h

All other keystrokes are treated as a command to insert the given character and
move right (with line wrapping).

gather()

Return the window contents as a string; whether blanks in the window are
included is affected by the stripspaces member.

stripspaces
This attribute is a flag which controls the interpretation of blanks in the window.
When it is on, trailing blanks on each line are ignored; any cursor motion that
would land the cursor on a trailing blank goes to the end of that line instead, and
trailing blanks are stripped when the window contents are gathered.

